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Preface

This document provides information about the features supported by Java Virtual Machine
technology.

Audience
This document is intended for experienced developers who build applications using the Java
HotSpot technology.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
See JDK 21 Documentation for other JDK 21 guides.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text.
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Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.
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1
Java Virtual Machine Technology Overview

This chapter describes the implementation of the Java Virtual Machine (JVM) and the main
features of the Java HotSpot technology:

• Adaptive compiler: A standard interpreter is used to launch the applications. When the
application runs, the code is analyzed to detect performance bottlenecks, or hot spots. The
Java HotSpot VM compiles the performance-critical portions of the code for a boost in
performance, but does not compile the seldom-used code (most of the application). The
Java HotSpot VM uses the adaptive compiler to decide how to optimize compiled code
with techniques such as inlining.

• Rapid memory allocation and garbage collection: Java HotSpot technology provides
rapid memory allocation for objects and fast, efficient, state-of-the-art garbage collectors.

• Thread synchronization: Java HotSpot technology provides a thread-handling capability
that is designed to scale for use in large, shared-memory multiprocessor servers.

In Oracle Java Runtime Environment (JRE) 8 and earlier, different implementations of the JVM,
(the client VM, server VM, and minimal VM) were supported for configurations commonly used
as clients, as servers, and for embedded systems. Because most systems can now take
advantage of the server VM, only that VM implementation is provided in later versions.
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2
Compiler Control

Compiler Control provides a way to control Java Virtual Machine (JVM) compilation through
compiler directive options. The level of control is runtime-manageable and method specific.

A compiler directive is an instruction that tells the JVM how compilation should occur. A
directive provides method-context precision in controlling the compilation process. You can use
directives to write small, contained, JVM compiler tests that can run without restarting the
entire JVM. You can also use directives to create workarounds for bugs, in the JVM compilers.

You can specify a file that contains compiler directives when you start a program through the
command line. You can also add or remove directives from an already running program by
using diagnostic commands.

Compiler Control supersedes and is backward compatible with CompileCommand.

Topics:

• Writing Directives

– Compiler Control Options

– Writing a Directive File

– Writing a Compiler Directive

– Writing a Method Pattern in a Compiler Directive

– Writing an Inline Directive Option

– Preventing Duplication with the Enable Option

• Understanding Directives

– What Is the Default Directive?

– How Directives are Applied to Code?

– Compiler Control and Backward Compatibility

• Commands for Working with Directive Files

– Compiler Directives and the Command Line

– Compiler Directives and Diagnostic Commands

– How Directives Are Ordered in the Directives Stack?

Writing Directives
This topic examines Compiler Control options and steps for writing directives from those
options.

Topics:

• Compiler Control Options

• Writing a Directive File
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• Writing a Compiler Directive

• Writing a Method Pattern in a Compiler Directive

• Writing an Inline Directive Option

• Preventing Duplication with the Enable Option

Compiler Control Options
Options are instructions for compilation. Options provide method-context precision. Available
options vary by compiler and require specific types of values.

Table 2-1    Common Options

Option Description Value Type Default Value

Enable Hides a directive and
renders it unmatchable if
it is set to false. This
option is useful for
preventing option
duplication. See 
Preventing Duplication
with the Enable Option.

bool true

Exclude Excludes methods from
compilation.

bool false

BreakAtExecute Sets a breakpoint to stop
execution at the
beginning of the
specified methods when
debugging the JVM.

bool false

BreakAtCompile Sets a breakpoint to stop
compilation at the
beginning of the
specified methods when
debugging the JVM.

bool false

Log Places only the specified
methods in a log. You
must first set the
command-line option -
XX:+LogCompilation.
The default value false
places all compiled
methods in a log.

bool false

PrintAssembly Prints assembly code for
bytecoded and native
methods by using the
external
disassembler.so
library.

bool false

PrintInlining Prints which methods
are inlined, and where.

bool false

PrintNMethods Prints nmethods as they
are generated.

bool false

Chapter 2
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Table 2-1    (Cont.) Common Options

Option Description Value Type Default Value

BackgroundCompilati
on

Compiles methods as a
background task.
Methods run in
interpreter mode until the
background compilation
finishes. The value
false compiles
methods as a foreground
task.

bool true

ReplayInline Enables the same
CIReplay functionality
as the corresponding
global option, but on a
per-method basis.

bool false

DumpReplay Enables the same
CIReplay functionality
as the corresponding
global option, but on a
per-method basis.

bool false

DumpInline Enables the same
CIReplay functionality
as the corresponding
global option, but on a
per-method basis.

bool false

CompilerDirectivesI
gnoreCompileCommand
s

Disregards all
CompileCommands.

bool false

DisableIntrinsic Disables the use of
intrinsics based on
method-matching
criteria.

ccstr No default value.

inline Forces or prevents
inlining of a method
based on method-
matching criteria. See 
Writing an Inline
Directive Option.

ccstr[] No default value.

Table 2-2    C2 Exclusive Options

Option Description Value Type Default Value

BlockLayoutByFreque
ncy

Moves infrequent
execution branches from
the hot path.

bool true
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Table 2-2    (Cont.) C2 Exclusive Options

Option Description Value Type Default Value

PrintOptoAssembly Prints generated
assembly code after
compilation by using the
external
disassembler.so
library. This requires a
debugging build of the
JVM.

bool false

PrintIntrinsics Prints which intrinsic
methods are used, and
where.

bool false

TraceOptoPipelining Traces pipelining
information, similar to
the corresponding global
option, but on a per-
method basis. This is
intended for slow and
fast debugging builds.

bool false

TraceOptoOutput Traces pipelining
information, similar to
the corresponding global
option, but on a per-
method basis. This is
intended for slow and
fast debugging builds.

bool false

TraceSpilling Traces variable spilling. bool false

Vectorize Performs calculations in
parallel, across vector
registers.

bool false

VectorizeDebug Performs calculations in
parallel, across vector
registers. This requires a
debugging build of the
JVM.

intx 0

CloneMapDebug Enables you to examine
the CloneMap generated
from vectorization. This
requires a debugging
build of the JVM.

bool false

IGVPrintLevel Specifies the points
where the compiler
graph is printed in
Oracle’s Hotspot Ideal
Graphic Visualizer (IGV).
A higher value means
higher granularity.

intx 0

MaxNodeLimit Sets the maximum
number of nodes to use
during a single method’s
compilation.

intx 80000

A ccstr value type is a method pattern. See Writing a Method Pattern in a Compiler Directive.
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The default directive supplies default values for compiler options. See What Is the Default
Directive?

Writing a Directive File
Individual compiler directives are written in a directives file. Only directive files, not individual
directives, can be added to the stack of active directives.

1. Create a file with a .json extension. Directive files are written using a subset of JSON
syntax with minor additions and deviations.

2. Add the following syntax as a template you can work from:

[  //Array of Directives
    {   //Directive Block
        //Directive 1
    },
    {   //Directive Block
        //Directive 2
    },
]

The components of this template are:

Array of Directives

• A directives file stores an array of directive blocks, denoted with a pair of brackets ([]).

• The brackets are optional if the file contains only a single directive block.

Directive Block

• A block is denoted with a pair of braces ({}).

• A block contains one individual directive.

• A directives file can contain any number of directive blocks.

• Blocks are separated with a comma (,).

• A comma is optional following the final block in the array.

Directive

• Each directive must be within a directive block.

• A directives file can contain multiple directives when it contains multiple directive
blocks.

Comments

• Single-line comments are preceded with two slashes (//).

• Multiline comments are not allowed.

3. Add or remove directive blocks from the template to match the number of directives you
want in the directives file.

4. In each directive block, write one compiler directive. See Writing a Compiler Directive.

5. Reorder the directive blocks if necessary. The ordering of directives in a file is significant.
Directives written closer to the beginning of the array receive higher priority. For more
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information, see How Directives Are Ordered in the Directives Stack? and How Directives
are Applied to Code?

[  //Array of directives
    {   //Directive Block
        //Directive 1
        match: ["java*.*", "oracle*.*"],
        c1: {
            Enable: true,
            Exclude: true,
            BreakAtExecute: true,
        },
        c2: {
            Enable: false,
            MaxNodeLimit: 1000,
        },
        BreakAtCompile: true,
        DumpReplay: true,
    },
    {   //Directive Block
        //Directive 2
        match: ["*Concurrent.*"],
        c2: {
            Exclude:true,
        },
    },
]

Writing a Compiler Directive
You must write a compiler directive within a directives file. You can repeat the following steps
for each individual compiler directive that you want to write in a directives file.

An individual compiler directive is written within a directive block in a directives file. See Writing
a Directive File.

1. Insert the following block of code, as a template you can work from, to write an individual
compiler directive. This block of code is a directive block.

    {
        match: [],
        c1: {
            //c1 directive options
        },
        c2: {
            //c2 directive options
        },
        //Directive options applicable to all compilers
    },

2. Provide the match attribute with an array of method patterns. See Writing a Method Pattern
in a Compiler Directive.
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Writing Directives

Java Virtual Machine Guide
F80256-03
Copyright © 1993, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 6 of 21



For example:

        match: ["java*.*", "oracle*.*"],

3. Provide the c1 attribute with a block of comma-separated directive options. Ensure that
these options are valid for the c1 compiler.

For example:

        c1: {
            Enable: true,
            Exclude: true,
            BreakAtExecute: true,
        },

4. Provide the c2 attribute with a block of comma-separated directive options. This block can
contain a mix of common and c2-exclusive compiler options.

For example:

        c2: {
            Enable: false,
            MaxNodeLimit: 1000,
        },

5. Provide, at the end of the directive, options you want applicable to all compilers. These
options are considered written within the scope of the common block. Options are comma-
separated.

For example:

        BreakAtCompile: true,
        DumpReplay: true,

6. Clean up the file by completing the following steps.

a. Check for the duplication of directive options. If a conflict occurs, then the last
occurrence of an option takes priority. Conflicts typically occur between the common
block and the c1 or c2 blocks, not between the c1 and c2 blocks.

b. Avoid writing c2-exclusive directive options in the common block. Although the
common block can accept a mix of common and c2-exclusive options, it’s pointless to
structure a directive this way because c2-exclusive options in the common block have
no effect on the c1 compiler. Write c2-exclusive options within the c2 block instead.

c. If the c1 or c2 attribute has no corresponding directive options, then omit the attribute-
value syntax for that compiler.

The following example shows the resulting directive, based on earlier examples, is:

    {
        match: ["java*.*", "oracle*.*"],
        c1: {
            Enable: true,
            Exclude: true,
            BreakAtExecute: true,
        },
        c2: {
            Enable: false,
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            MaxNodeLimit: 1000,
        },
        BreakAtCompile: true,
        DumpReplay: true,
    },

The JSON format of directive files allows the following deviations in syntax:

• Extra trailing commas are optional in arrays and objects.

• Attributes are strings and are optionally placed within quotation marks.

• If an array contains only one element, then brackets are optional.

Therefore, the following example shows a valid compiler directive:

    {
       "match": "*Concurrent.*",
        c2: {
            "Exclude": true,
        }
    },

Writing a Method Pattern in a Compiler Directive
A ccstr is a method pattern that you can write precisely or you can generalize with wildcard
characters. You can specify what best-matching Java code should have accompanying
directive options applied, or what Java code should be inlined.

To write a method pattern:

1. Use the following syntax to write your method pattern: package/
class.method(parameter_list). To generalize a method pattern with wildcard characters,
see Step 2.

The following example shows a method pattern that uses this syntax:

java/lang/String.indexOf()

Other formatting styles are available. This ensures backward compatibility with earlier
ways of method matching such as CompileCommand. Valid formatting alternatives for the
previous example include:

• java/lang/String.indexOf()

• java/lang/String,indexOf()

• java/lang/String indexOf()

• java.lang.String::indexOf()

The last formatting style matches the HotSpot output.

2. Insert a wildcard character (*) where you want to generalize part of the method pattern.

The following examples are valid generalizations of the method pattern example in Step 1:

• java/lang/String.indexOf*

• *lang/String.indexOf*

• *va/lang*.*dex*

Chapter 2
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• java/lang/String.*

• *.*

Increased generalization leads to decreased precision. More Java code becomes a
potential match with the method pattern. Therefore, it’s important to use the wildcard
character (*) judiciously.

3. Modify the signature portion of the method pattern, according to the Java Specifications. A
signature match must be exact, otherwise the signature defaults to a wildcard character
(*). Omitted signatures also default to a wildcard character. Signatures cannot contain the
wildcard character.

4. Optional: If you write a method pattern to accompany the inline directive option, then you
must prefix the method pattern with additional characters. See Writing an Inline Directive
Option.

Writing an Inline Directive Option
The attribute for an inline directive option requires an array of method patterns with special
commands prefixed. This indicates which method patterns should or shouldn’t inline.

1. Write inline: in the common block, c1 block , or c2 block of a directive.

2. Add an array of carefully ordered method patterns. The prefixed command on the first
matching method pattern is executed. The remaining method patterns in the array are
ignored.

3. Prefix a + to force inlining of any matching Java code.

4. Prefix a - to prevent inlining of any matching Java code.

5. Optional: If you need inlining behavior applied to multiple method patterns, then repeat
Steps 1 to 4 to write multiple inline statements. Don’t write a single array that contains
multiple method patterns.

The following examples show the inline directive options:

• inline: ["+java/lang*.*", "-sun*.*"]

• inline: "+java/lang*.*"

Preventing Duplication with the Enable Option
You can use the Enable option to hide aspects of directives and prevent duplication between
directives.

In the following example, the c1attribute of the compiler directives are identical.:

[
    {
        match: ["java*.*"],
        c1: {
            BreakAtExecute: true,
            BreakAtCompile: true,
            DumpReplay: true,
            DumpInline: true,
        },
        c2: {
            MaxNodeLimit: 1000,
        },
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    },
    {
        match: ["oracle*.*"],
        c1: {
            BreakAtExecute: true,
            BreakAtCompile: true,
            DumpReplay: true,
            DumpInline: true,
        },
        c2: {
            MaxNodeLimit: 2000,
        },
    },
]

The following example shows how the undesirable code duplication is resolved with the Enable
option. Enable hides the block directives and renders them unmatchable.

[
    {
        match: ["java*.*"],
        c1: {
            Enable: false,
        },
        c2: {
            MaxNodeLimit: 1000,
        },
    },
    {
        match: ["oracle*.*"],
        c1: {
            Enable: false,
        },
        c2: {
            MaxNodeLimit: 2000,
        },
    },
    {
        match: ["java*.*", "oracle*.*"],
        c1: {
            BreakAtExecute: true,
            BreakAtCompile: true,
            DumpReplay: true,
            DumpInline: true,
        },
        c2: {
            //Unreachable code
        },
    },
]

Typically, the first matching directive is applied to a method’s compilation. The Enable option
provides an exception to this rule. A method that would typically be compiled by c1 in the first
or second directive is now compiled with the c1 block of the third directive. The c2 block of the
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third directive is unreachable because the c2 blocks in the first and second directive take
priority.

Understanding Directives
The following topics examine how directives behave and interact.

Topics:

• What Is the Default Directive?

• How Directives are Applied to Code?

• Compiler Control and Backward Compatibility

What Is the Default Directive?
The default directive is a compiler directive that contains default values for all possible directive
options. It is the bottom-most directives in the stack and matches every method submitted for
compilation.

When you design a new compiler directive, you specify how the new directive differs from the
default directive. The default directive becomes a template to guide your design decisions.

Directive Option Values in the Default Directive

You can print an empty directive stack to reveal the matching criteria and the values for all
directive options in the default compiler directive:

Directive: (default)
 matching: *.*
 c1 directives:
  inline: -
  Enable:true Exclude:false BreakAtExecute:false BreakAtCompile:false 
Log:false PrintAssembly:false PrintInlining:false PrintNMethods:false 
BackgroundCompilation:true ReplayInline:false DumpReplay:false 
DumpInline:false CompilerDirectivesIgnoreCompileCommands:false 
DisableIntrinsic: BlockLayoutByFrequency:true PrintOptoAssembly:false 
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoOutput:false 
TraceSpilling:false Vectorize:false VectorizeDebug:0 CloneMapDebug:false 
IGVPrintLevel:0 MaxNodeLimit:80000

 c2 directives:
  inline: -
  Enable:true Exclude:false BreakAtExecute:false BreakAtCompile:false 
Log:false PrintAssembly:false PrintInlining:false PrintNMethods:false 
BackgroundCompilation:true ReplayInline:false DumpReplay:false 
DumpInline:false CompilerDirectivesIgnoreCompileCommands:false 
DisableIntrinsic: BlockLayoutByFrequency:true PrintOptoAssembly:false 
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoOutput:false 
TraceSpilling:false Vectorize:false VectorizeDebug:0 CloneMapDebug:false 
IGVPrintLevel:0 MaxNodeLimit:80000
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Note

Certain options are applicable exclusively to the c2 compiler. For a complete list, see 
Table 2-2.

Directive Option Values in New Directives

In a new directives, you must specify how the directive differs from the default directive. If you
don’t specify a directive option, then that option retains the value from the default directive.

Example:

[
    {
        match: ["*Concurrent.*"],
        c2: {
            MaxNodeLimit: 1000,
        },
        Exclude:true,
    },
]

When you add a new directive to the directives stack, the default directive becomes the
bottom-most directive in the stack. See How Directives Are Ordered in the Directives Stack?
for a description of this process. For this example, when you print the directives stack, it shows
how the directive options specified in the new directive differ from the values in the default
directive:

Directive:
 matching: *Concurrent.*
 c1 directives:
  inline: -
  Enable:true Exclude:true BreakAtExecute:false BreakAtCompile:false 
Log:false PrintAssembly:false PrintInlining:false PrintNMethods:false 
BackgroundCompilation:true ReplayInline:false DumpReplay:false 
DumpInline:false CompilerDirectivesIgnoreCompileCommands:false 
DisableIntrinsic: BlockLayoutByFrequency:true PrintOptoAssembly:false 
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoOutput:false 
TraceSpilling:false Vectorize:false VectorizeDebug:0 CloneMapDebug:false 
IGVPrintLevel:0 MaxNodeLimit:80000 

 c2 directives:
  inline: -
  Enable:true Exclude:true BreakAtExecute:false BreakAtCompile:false 
Log:false PrintAssembly:false PrintInlining:false PrintNMethods:false 
BackgroundCompilation:true ReplayInline:false DumpReplay:false 
DumpInline:false CompilerDirectivesIgnoreCompileCommands:false 
DisableIntrinsic: BlockLayoutByFrequency:true PrintOptoAssembly:false 
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoOutput:false 
TraceSpilling:false Vectorize:false VectorizeDebug:0 CloneMapDebug:false 
IGVPrintLevel:0 MaxNodeLimit:1000 

Directive: (default)
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 matching: *.*
 c1 directives:
  inline: -
  Enable:true Exclude:false BreakAtExecute:false BreakAtCompile:false 
Log:false PrintAssembly:false PrintInlining:false PrintNMethods:false 
BackgroundCompilation:true ReplayInline:false DumpReplay:false 
DumpInline:false CompilerDirectivesIgnoreCompileCommands:false 
DisableIntrinsic: BlockLayoutByFrequency:true PrintOptoAssembly:false 
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoOutput:false 
TraceSpilling:false Vectorize:false VectorizeDebug:0 CloneMapDebug:false 
IGVPrintLevel:0 MaxNodeLimit:80000 

 c2 directives:
  inline: -
  Enable:true Exclude:false BreakAtExecute:false BreakAtCompile:false 
Log:false PrintAssembly:false PrintInlining:false PrintNMethods:false 
BackgroundCompilation:true ReplayInline:false DumpReplay:false 
DumpInline:false CompilerDirectivesIgnoreCompileCommands:false 
DisableIntrinsic: BlockLayoutByFrequency:true PrintOptoAssembly:false 
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoOutput:false 
TraceSpilling:false Vectorize:false VectorizeDebug:0 CloneMapDebug:false 
IGVPrintLevel:0 MaxNodeLimit:80000 

How Directives are Applied to Code?
A directive is applied to code based on a method matching process. Every method submitted
for compilation is matched with a directive in the directives stack.

The process of matching a method with a directive in the directives stack is performed by the
CompilerBroker.

The Method Matching Process

When a method is submitted for compilation, the fully qualified name of the method is
compared with the matching criteria in the directives stack. The first directive in the stack that
matches is applied to the method. The remaining directives in the stack are ignored. If no
match is found, then the default directive is applied.

This process is repeated for all methods in a compilation. More than one directive can be
applied in a compilation, but only one directive is applied to each method. All directives in the
stack are considered active because they are potentially applicable. The key differences
between active and applied directives are:

• A directive is active if it’s present in the directives stack.

• A directive is applied if it’s affecting code.

Example 2-1    When a Match Is Found

The following example shows a method submitted for compilation:

public int exampleMethod(int x){
    return x;
}
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Based on method-matching criteria, Directive 2 is applied from the following example
directive stack:

Directive 2:
 matching: *.*example*
Directive 1:
 matching: *.*exampleMethod*
Directive 0: (default)
 matching: *.*

Example 2-2    When No Match Is Found

The following example shows a method submitted for compilation:

public int otherMethod(int y){
    return y;
}

Based on method-matching criteria, Directive 0 (the default directive) is applied from the
following example directive stack:

Directive 2:
 matching: *.*example*
Directive 1:
 matching: *.*exampleMethod*
Directive 0: (default)
 matching: *.*

Guidelines for Writing a New Directive

• No feedback mechanism is provided to verify which directive is applied to a given method.
Instead, a profiler such as Java Management Extensions (JMX) is used to measure the
cumulative effects of applied directives.

• The CompilerBroker ignores directive options that create bad code, such as forcing
hardware instructions on a platform that doesn't offer support. A warning message is
displayed.

• Directive options have the same limitations as typical command-line flags. For example,
the instructions to inline code are followed only if the Intermediate Representation (IR)
doesn’t become too large.

Compiler Control and Backward Compatibility
CompileCommand and command-line flags can be used alongside Compiler Control directives.

Although Compiler Control can replace CompileCommand, backward compatibility is provided.
It’s possible to utilize both at the same time. Compiler Control receives priority. Conflicts are
handled based on the following prioritization:

1. Compiler Control

2. CompileCommand

3. Command-line flags

4. Default values
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Example 2-3    Mixing Compiler Control and CompileCommand

The following list shows a small number of compilation options and values:

• Compiler Control:

– Exclude: true

– BreakAtExecute: false

• CompileCommand:

– BreakAtExecute: true

– BreakAtCompile: true

• Default values:

– Exclude: false

– BreakAtExecute: false

– BreakAtCompile: false

– Log: false

For the options and values in this example, the resulting compilation is determined by using the
rules for handling backward compatibility conflicts:

• Exclude: true

• BreakAtExecute: false

• BreakAtCompile: true

• Log: false

Commands for Working with Directive Files
This topic examines commands and the effects of working with completed directive files.

• Compiler Directives and the Command Line

• Compiler Directives and Diagnostic Commands

• How Directives Are Ordered in the Directives Stack?

Compiler Directives and the Command Line
You can use the command-line interface to add and print compiler directives while starting a
program.

You can specify only one directives file at the command line. All directives within that file are
added to the directives stack and are immediately active when the program starts. Adding
directives at the command line enables you to test the performance effects of directives during
a program’s early stages. You can also focus on debugging and developing your program.

Adding Directives Through the Command Line

The following command-line option specifies a directives file:

XX:CompilerDirectivesFile=file

Chapter 2
Commands for Working with Directive Files

Java Virtual Machine Guide
F80256-03
Copyright © 1993, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 15 of 21



Include this command-line option when you start a Java program. The following example
shows this option, which starts TestProgram:

java -XX:+UnlockDiagnosticVMOptions -XX:CompilerDirectivesFile=File_A.json 
TestProgram

In the example:

• -XX:+UnlockDiagnosticVMOptions enables diagnostic options. You must enter this before
you add directives at the command line.

• -XX:CompilerDirectivesFile is a type of diagnostic option. You can use it to specify one
directives file to add to the directives stack.

• File_A.json is a directives file. The file can contain multiple directives, all of which are
added to the stack of active directives when the program starts.

• If File_A.json contains syntax errors or malformed directives, then an error message is
displayed and TestProgram does not start.

Printing Directives Through the Command Line

You can automatically print the directives stack when a program starts or when additional
directives are added through diagnostic commands. The following command-line option to
enables this behavior:

-XX:+CompilerDirectivesPrint

The following example shows how to include this diagnostic command at the command line:

java -XX:+UnlockDiagnosticVMOptions -XX:+CompilerDirectivesPrint -
XX:CompilerDirectivesFile=File_A.json TestProgram 

Compiler Directives and Diagnostic Commands
You can use diagnostic commands to manage which directives are active at runtime. You can
add or remove directives without restarting a running program.

Crafting a single perfect directives file might take some iteration and experimentation.
Diagnostic commands provide powerful mechanisms for testing different configurations of
directives in the directives stack. Diagnostic commands let you add or remove directives
without restarting a running program’s JVM.

Getting Your Java Process Identification Number
To test directives you must find the processor identifier (PID) number of your running program.

1. Open a terminal.

2. Enter the jcmd command.

The jcmd command returns a list of the Java process that are running, along with their PID
numbers. In the following example, the information returned about TestProgram :

11084 TestProgram
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Adding Directives Through Diagnostic Commands
You can add all directives in a file to the directives stack through the following diagnostic
command.

Syntax:

jcmd pid Compiler.directives_add file

The following example shows a diagnostic command:

jcmd 11084 Compiler.directives_add File_B.json

The terminal reports the number of individual directives added. If the directives file contains
syntax errors or malformed directives, then an error message is displayed, and no directives
from the file are added to the stack, and no changes are made to the running program.

Removing Directives Through Diagnostic Commands
You can remove directives by using diagnostic commands.

To remove the top-most, individual directive from the directive stack, enter:

jcmd pid Compiler.directives_remove

To clear every directive you added to the directives stack, enter:

jcmd pid Compiler.directives_clear

It’s not possible to specify an entire file of directives to remove, nor is any other way available
to remove directives in bulk.

Printing Directives Through Diagnostic Commands
You can use diagnostic commands to print the directives stack of a running program.

To print a detailed description of the full directives stack, enter:

jcmd pid Compiler.directives_print

Example output is shown in What Is the Default Directive?

How Directives Are Ordered in the Directives Stack?
The order of the directives in a directives file, and in the directives is very important. The top-
most, best-matching directive in the stack receives priority and is applied to code compilation.

The following examples illustrate the order of directive files in an example directives stack. The
directive files in the examples contain the following directives :

• File_A contains Directive 1 and Directive 2.

• File_B contains Directive 3.
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• File_C contains Directive 4 and Directive 5.

Starting an Application With or Without Directives

You can start the TestProgram without specifying the directive files.

• To start TestProgram without adding any directives, at the command line, enter the
following command:

java TestProgram

• TestProgram starts without any directives file specified.

• The default directive is always the bottom-most directive in the directives stack. Figure 2-1
shows the default directive as Directive 0. When you don’t specify a directives file, the
default directive is also the top-most directive and it receives priority.

Figure 2-1    Starting a Program Without Directives

File_A

[
 Directive 1
 Directive 2

]

File_B

[
 Directive 3

]

File_C

[
 Directive 4
 Directive 5

]

Directives Stack

Directive 0

java TestProgram

You can start an application and specify directives.

• To start the TestProgram application and add the directives from File_A.json to the
directives stack, at the command line, enter the following command:

java -XX:+UnlockDiagnosticVMOptions -XX:CompilerDirectivesFile=File_A.json 
TestProgram

• TestProgram starts and the directives in File_A are added to the stack. The top-most
directive in the directives file becomes the top-most directive in the directives stack.

• Figure 2-2 shows that the order of directives in the stack, from top to bottom, becomes is
[1, 2, 0].
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Figure 2-2    Starting a Program with Directives

File_A

[
 Directive 1
 Directive 2

]

File_B

[
 Directive 3

]

File_C

[
 Directive 4
 Directive 5

]

Directives Stack

Directive 2

Directive 0

Directive 1

-XX: CompilerDirectivesFile=File_A.json

Adding Directives to a Running Application

You can add directives to a running application through diagnostic commands.

• To to add all directives from File_B to the directives stack, enter the following command:

jcmd 11084 Compiler.directives_add File_B.json

The directive in File_B is added to the top of the stack.

• Figure 2-3 shows that the order of directives in the stack becomes is [3, 1, 2, 0].

Figure 2-3    Adding a Directive to a Running Program

File_A

[
 Directive 1
 Directive 2

]

File_B

[
 Directive 3

]

File_C

[
 Directive 4
 Directive 5

]

Directives Stack

Directive 3

Directive 2

Directive 0

Directive 1

Compiler.directives_add File_B.json

You can add directive files through diagnostic commands to the TestProgram while it is
running:

• To add all directives from File_C to the directives stack, enter the following command.

jcmd 11084 Compiler.directives_add File_C.json

• Figure 2-4 shows that the order of directives in the stack becomes is [4, 5, 3, 1, 2, 0].
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Figure 2-4    Adding multiple Directives to a Running Program
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Compiler.directives_add File_C.json

Removing Directives from the Directives Stack

You can remove the top-most directive from the directive stacks through diagnostic commands.

• To remove Directive 4 from the stack, enter the following command:

jcmd 11084 Compiler.directives_remove

• To remove more, repeat this diagnostic command until only the default directive remains.
You can’t remove the default directive.

• Figure 2-5 shows that the order of directives in the stack becomes is [5, 3, 1, 2, 0].

Figure 2-5    Removing One Directive from the Stack

File_A

[
 Directive 1
 Directive 2

]

File_B
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 Directive 3
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File_C
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 Directive 4
 Directive 5
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Directives Stack

Directive 4

Directive 5

Directive 3

Directive 2

Directive 0

Directive 1

Compiler.directives_remove

You can remove multiple directives from the directives stack.

• To clear the directives stack, enter the following command:

jcmd 11084 Compiler.directives_clear

• All directives are removed except the default directive. You can’t remove the default
directive.

• Figure 2-6 shows that only Directive 0 remains in the stack.
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Figure 2-6    Removing All Directives from the Stack
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3
Garbage Collection

Oracle’s HotSpot VM includes several garbage collectors that you can use to help optimize the
performance of your application. A garbage collector is especially helpful if your application
handles large amounts of data (multiple gigabytes), has many threads, and has high
transaction rates.

For descriptions on the available garbage collectors, see Garbage Collection Implementation in
the Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection Tuning
Guide.
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4
Class Data Sharing

This chapter describes the class data sharing (CDS) feature that can help reduce the startup
time and memory footprints for Java applications.

Topics:

• Class Data Sharing

• Regenerating the Shared Archive

• Manually Controlling Class Data Sharing

• Generating CDS Archive Automatically

Class Data Sharing
The Class data sharing (CDS) feature helps reduce the startup time and memory footprint
between multiple Java Virtual Machines (JVM).

Starting from JDK 12, a default CDS archive is pre-packaged with the Oracle JDK binary. The
default CDS archive is created at the JDK build time by running -Xshare:dump, using G1 GC
and 128M Java heap. It uses a built-time generated default class list that contains the selected
core library classes. The default CDS archive resides in the following location:

• On Linux and macOS platforms, the shared archive is stored in /lib/[arch]/server/
classes.jsa

• On Windows platforms, the shared archive is stored in /bin/server/classes.jsa

By default, the default CDS archive is enabled at the runtime. Specify -Xshare:off to disable
the default shared archive. See Regenerating the Shared Archive to create a customized
shared archive. Use the same Java heap size for both dump time and runtime while creating
and using a customized shared archive.

When the JVM starts, the shared archive is memory-mapped to allow sharing of read-only JVM
metadata for these classes among multiple JVM processes. Because accessing the shared
archive is faster than loading the classes, startup time is reduced.

Class data sharing is supported with the ZGC, G1, serial, and parallel garbage collectors. The
shared Java heap object feature (part of class data sharing) supports only the G1 garbage
collector on 64-bit non-Windows platforms.

The primary motivation for including CDS in Java SE is to decrease in startup time. The
smaller the application relative to the number of core classes it uses, the larger the saved
fraction of startup time.

The footprint cost of new JVM instances has been reduced in two ways:

1. A portion of the shared archive on the same host is mapped as read-only and shared
among multiple JVM processes. Otherwise, this data would need to be replicated in each
JVM instance, which would increase the startup time of your application.

2. The shared archive contains class data in the form that the Java Hotspot VM uses it. The
memory that would otherwise be required to access the original class information in the
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runtime modular image, is not used. These memory savings allow more applications to be
run concurrently on the same system. In Windows applications, the memory footprint of a
process, as measured by various tools, might appear to increase, because more pages are
mapped to the process’s address space. This increase is offset by the reduced amount of
memory (inside Windows) that is needed to hold portions on the runtime modular image.
Reducing footprint remains a high priority.

Application Class-Data Sharing
To further reduce the startup time and the footprint, Application Class-Data Sharing (AppCDS)
is introduced that extends the CDS to include selected classes from the application class path.

This feature allows application classes to be placed in a shared drive. The common class
metadata is shared across different Java processes. AppCDS allows the built-in system class
loader, built-in platform class loader, and custom class loaders to load the archived classes.
When multiple JVMs share the same archive file, memory is saved and the overall system
response time improves.

See Application Class Data Sharing in Java Development Kit Tool Specifications.

Dynamic CDS Archive
Dynamic CDS archive extends application class-data sharing (AppCDS) to allow dynamic
archiving of classes when a Java application exits.

It simplifies AppCDS usage by eliminating the trial runs to create a class list for each
application. The archived classes include all loaded application classes and library classes that
are not present in the default CDS archive.

To create a dynamic CDS archive, start the Java application with the command -
XX:+RecordDynamicDumpInfo; don't use this flag with -XX:ArchiveClassesAtExit.

See Using CDS Archives in Java Development Kit Tool Specifications.

Regenerating the Shared Archive
You can regenerate the shared archive for all supported platforms.

The default class list that is installed with the JDK contains only a small set of core library
classes. You might want to include other classes in the shared archive. To create a dynamic
CDS archive with the default CDS archive as the base archive, start the Java application with
the following command:

-XX:+RecordDynamicDumpInfo

A separate dynamically-generated archive is created on top of the default system for each
application. You can specify the name of the dynamic archive as an argument to the jcmd <pid
or AppName> VM.cds dynamic_dump <filename> command. If you don't specify the file name,
then a default file name java_pid<number>_dynamic.jsa is generated, where <number> is the
process ID.

To regenerate the archive file log in as the administrator. In networked situations, log in to a
computer of the same architecture as the Java SE installation. Ensure that you have
permissions to write to the installation directory.

To regenerate the shared archive by using a user defined class list, enter the following
command:

Chapter 4
Regenerating the Shared Archive

Java Virtual Machine Guide
F80256-03
Copyright © 1993, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 2 of 3

http://www.oracle.com/pls/topic/lookup?ctx=javase19&id=application_class_data_sharing
https://docs.oracle.com/en/java/javase/19/docs/specs/man/java.html#using-cds-archives


jcmd <pid or AppName> VM.cds <subcommand> <filename>

Diagnostic information is printed when the archive is generated.

Manually Controlling Class Data Sharing
Class data sharing is enabled by default. You can manually enable and disable this feature.

You can use the following command-line options for diagnostic and debugging purposes.

-Xshare:off
To disable class data sharing.

-Xshare:on
To enable class data sharing. If class data sharing can't be enabled, print an error message
and exit.

Note

The -Xshare:on is for testing purposes only. It may cause the VM to unexpectedly
exit during start-up when the CDS archive cannot be used (for example, when certain
VM parameters are changed, or when a different JDK is used). This option should not
be used in production environments.

-Xshare:auto
To enable class data sharing by default. Enable class data sharing whenever possible.

Generating CDS Archive Automatically
You can create Dynamic CDS Archive File automatically using the command -
XX:+AutoCreateSharedArchive. For example:

java -XX:+AutoCreateSharedArchive -XX:SharedArchiveFile=app.jsa -cp app.jar
    App

The specified archive file will be created if it does not exist, or if it was generated by a different
JDK version.

See Creating Dynamic CDS Archive File with -XX:+AutoCreateSharedArchive in Java
Development Kit Tool Specifications.
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5
Java HotSpot Virtual Machine Performance
Enhancements

This chapter describes the performance enhancements in the Oracle’s HotSpot Virtual
Machine technology.

Topics:

• Compact Strings

• Tiered Compilation

• Compressed Ordinary Object Pointer

• Zero-Based Compressed Ordinary Object Pointers

• Escape Analysis

Compact Strings
The compact strings feature introduces a space-efficient internal representation for strings.

Data from different applications suggests that strings are a major component of Java heap
usage and that most java.lang.String objects contain only Latin-1 characters. Such
characters require only one byte of storage. As a result, half of the space in the internal
character arrays of java.lang.String objects are not used. The compact strings feature,
introduced in Java SE 9 reduces the memory footprint, and reduces garbage collection activity.
This feature can be disabled if you observe performance regression issues in an application.

The compact strings feature does not introduce new public APIs or interfaces. It modifies the
internal representation of the java.lang.String class from a UTF-16 (two bytes) character
array to a byte array with an additional field to identify character encoding. Other string-related
classes, such as AbstractStringBuilder, StringBuilder, and StringBuffer are updated to
use a similar internal representation.

In Java SE 9, the compact strings feature is enabled by default. Therefore, the
java.lang.String class stores characters as one byte for each character, encoded as Latin-1.
The additional character encoding field indicates the encoding that is used. The HotSpot VM
string intrinsics are updated and optimized to support the internal representation.

You can disable the compact strings feature by using the -XX:-CompactStrings flag with the
java command line. When the feature is disabled, the java.lang.String class stores
characters as two bytes, encoded as UTF-16, and the HotSpot VM string intrinsics to use
UTF-16 encoding.

Tiered Compilation
Tiered compilation, introduced in Java SE 7, brings client VM startup speeds to the server VM.
Without tired compilation, a server VM uses the interpreter to collect profiling information about
methods that is sent to the compiler. With tiered compilation, the server VM also uses the client
compiler to generate compiled versions of methods that collect profiling information about
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themselves. The compiled code is substantially faster than the interpreter, and the program
executes with greater performance during the profiling phase. Often, startup is faster than the
client VM startup speed because the final code produced by the server compiler might be
available during the early stages of application initialization. Tiered compilation can also
achieve better peak performance than a regular server VM, because, the faster profiling phase
allows a longer period of profiling, which can yield better optimization.

Tiered compilation is enabled by default for the server VM. The 64-bit mode and Compressed
Ordinary Object Pointer are supported. You can disable tiered compilation by using the -XX:-
TieredCompilation flag with the java command.

To accommodate the additional profiling code that is generated with tiered compilation, the
default size of code cache is multiplied by 5x. To organize and manage the larger space
effectively, segmented code cache is used.

Segmented Code Cache
The code cache is the area of memory where the Java Virtual Machine stores generated native
code. It is organized as a single heap data structure on top of a contiguous chunk of memory. 

Instead of having a single code heap, the code cache is divided into segments, each
containing compiled code of a particular type. This segmentation provides better control of the
JVM memory footprint, shortens scanning time of compiled methods, significantly decreases
the fragmentation of code cache, and improves performance.

The code cache is divided into the following three segments:

Table 5-1    Segmented Code Cache

Code Cache
Segments

Description JVM Command-Line Arguments

Non-method This code heap contains non-
method code such as
compiler buffers and
bytecode interpreter. This
code type stays in the code
cache forever. The code heap
has a fixed size of 3 MB and
remaining code cache is
distributed evenly among the
profiled and non-profiled code
heaps.

-XX:NonMethodCodeHeapSize

Profiled This code heap contains
lightly optimized, profiled
methods with a short lifetime.

–XX:ProfiledCodeHeapSize

Non-profiled This code heap contains fully
optimized, non-profiled
methods with a potentially
long lifetime.

-XX:NonProfiledCodeHeapSize

Compressed Ordinary Object Pointer
An ordinary object pointer (oop) in Java Hotspot parlance, is a managed pointer to an object.
Typically, an oop is the same size as a native machine pointer, which is 64-bit on an LP64
system. On an ILP32 system, maximum heap size is less than 4 gigabytes, which is insufficient
for many applications. On an LP64 system, the heap used by a given program might have to
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be around 1.5 times larger than when it is run on an ILP32 system. This requirement is due to
the expanded size of managed pointers. Memory is inexpensive, but these days bandwidth
and cache are in short supply, so significantly increasing the size of the heap and only getting
just over the 4 gigabyte limit is undesirable.

Managed pointers in the Java heap point to objects that are aligned on 8-byte address
boundaries. Compressed oops represent managed pointers (in many but not all places in the
Java Virtual Machine (JVM) software) as 32-bit object offsets from the 64-bit Java heap base
address. Because they're object offsets rather than byte offsets, oops can be used to address
up to four billion objects (not bytes), or a heap size of up to about 32 gigabytes. To use them,
they must be scaled by a factor of 8 and added to the Java heap base address to find the
object to which they refer. Object sizes using compressed oops are comparable to those in
ILP32 mode.

The term decode refer to the operation by which a 32-bit compressed oop is converted to a 64-
bit native address and added into the managed heap. The term encode refers to that inverse
operation.

Compressed oops is supported and enabled by default in Java SE 6u23 and later. In Java SE
7, compressed oops is enabled by default for 64-bit JVM processes when -Xmx isn't specified
and for values of -Xmx less than 32 gigabytes. For JDK releases earlier than 6u23 release, use
the -XX:+UseCompressedOops flag with the java command to enable the compressed oops.

Zero-Based Compressed Ordinary Object Pointers
When the JVM uses compressed ordinary object pointers (oops) in a 64-bit JVM process, the
JVM software sends a request to the operating system to reserve memory for the Java heap
starting at virtual address zero. If the operating system supports such a request and can
reserve memory for the Java heap at virtual address zero, then zero-based compressed oops
are used.

When zero-based compressed oops are used, a 64-bit pointer can be decoded from a 32-bit
object offset without including the Java heap base address. For heap sizes less than 4
gigabytes, the JVM software can use a byte offset instead of an object offset and thus also
avoid scaling the offset by 8. Encoding a 64-bit address into a 32-bit offset is correspondingly
efficient.

For Java heap sizes up to 26 gigabytes, the Linux and Windows operating systems typically
can allocate the Java heap at virtual address zero.

Escape Analysis
Escape analysis is a technique by which the Java HotSpot Server Compiler can analyze the
scope of a new object's uses and decide whether to allocate the object on the Java heap.

Escape analysis is supported and enabled by default in Java SE 6u23 and later.

The Java HotSpot Server Compiler implements the flow-insensitive escape analysis algorithm
described in:

 [Choi99] Jong-Deok Choi, Manish Gupta, Mauricio Seffano,
          Vugranam C. Sreedhar, Sam Midkiff,
          "Escape Analysis for Java", Procedings of ACM SIGPLAN
          OOPSLA  Conference, November 1, 1999
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An object's escape state, based on escape analysis, can be one of the following states:

• GlobalEscape: The object escapes the method and thread. For example, an object stored
in a static field, stored in a field of an escaped object, or returned as the result of the
current method.

• ArgEscape: The object is passed as an argument or referenced by an argument but does
not globally escape during a call. This state is determined by analyzing the bytecode of the
called method.

• NoEscape: The object is a scalar replaceable object, which means that its allocation could
be removed from generated code.

After escape analysis, the server compiler eliminates the scalar replaceable object allocations
and the associated locks from generated code. The server compiler also eliminates locks for
objects that do not globally escape. It does not replace a heap allocation with a stack allocation
for objects that do not globally escape.

The following examples describe some scenarios for escape analysis:

• The server compiler might eliminate certain object allocations. For example, a method
makes a defensive copy of an object and returns the copy to the caller.

public class Person {
  private String name;
  private int age;
  public Person(String personName, int personAge) {
    name = personName;
                age = personAge;
  }
        
  public Person(Person p) { this(p.getName(), p.getAge()); }
  public int getName() { return name; }
  public int getAge() { return age; }
}

public class Employee {
  private Person person;
  
        // makes a defensive copy to protect against modifications by 
caller
        public Person getPerson() { return new Person(person) };
        
        public void printEmployeeDetail(Employee emp) {
          Person person = emp.getPerson();
          // this caller does not modify the object, so defensive copy was 
unnecessary
                System.out.println ("Employee's name: " + person.getName() 
+ "; age: "  + person.getAge());     
        }
}       
        

The method makes a copy to prevent modification of the original object by the caller. If the
compiler determines that the getPerson method is being invoked in a loop, then the
compiler inlines that method. By using escape analysis, when the compiler determines that

Chapter 5
Escape Analysis

Java Virtual Machine Guide
F80256-03
Copyright © 1993, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 4 of 5



the original object is never modified, the compiler can optimize and eliminate the call to
make a copy.

• The server compiler might eliminate synchronization blocks (lock elision) if it determines
that an object is thread local. For example, methods of classes such as StringBuffer and
Vector are synchronized because they can be accessed by different threads. However, in
most scenarios, they are used in a thread local manner. In cases where the usage is
thread local, the compiler can optimize and remove the synchronization blocks.
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6
JVM Constant API

The JVM Constant API is defined in the package java.lang.constant, which contains the
nominal descriptors of various types of loadable constants. These nominal descriptors are
useful for applications that manipulate class files and compile-time or link-time program
analysis tools.

A nominal descriptor is not the value of a loadable constant but a description of its value, which
can be reconstituted given a class loading context. A loadable constant is a constant pool entry
that can be pushed onto the operand stack or can appear in the static argument list of a
bootstrap method for the invokedynamic instruction. The operand stack is where JVM
instructions get their input and store their output. Every Java class file has a constant pool,
which contains several kinds of constants, ranging from numeric literals known at compile-time
to method and field references that must be resolved at run-time.

The issue with working with non-nominal loadable constants, such as a Class objects, whose
references are resolved at run-time, is that these references depend on the correctness and
consistency of the class loading context. Class loading may have side effects, such as running
code that you don't want run and throwing access-related and out-of-memory exceptions,
which you can avoid with nominal descriptions. In addition, class loading may not be possible
at all.

See the package java.lang.constant.
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7
Support for Non-Java Languages

This chapter describes the Non-Java Language features in the Java Virtual Machine.

Topics:

• Introduction to Non-Java Language Features

• Static and Dynamic Typing

• The Challenge of Compiling Dynamically-Typed Languages

• The invokedynamic Instruction

Introduction to Non-Java Language Features
The Java Platform, Standard Edition (Java SE) enables the development of applications that
have the following features:

• They can be written once and run anywhere

• They can be run securely because of the Java sandbox security model

• They are easy to package and deliver

The Java SE platform provides robust support in the following areas:

• Concurrency

• Garbage collection

• Reflective access to classes and objects

• JVM Tool Interface (JVM TI): A native programming interface for use by tools. It provides
both a way to inspect the state and to control the execution of applications running in the
JVM.

Oracle's HotSpot JVM provides the following tools and features:

• DTrace: A dynamic tracing utility that monitors the behavior of applications and the
operating system.

• Performance optimizations

• PrintAssembly: A Java HotSpot option that prints assembly code for bytecoded and native
methods.

The Java SE 7 platform enables non-Java languages to use the infrastructure and potential
performance optimizations of the JVM. The key mechanism is the invokedynamic instruction,
which simplifies the implementation of compilers and runtime systems for dynamically-typed
languages on the JVM.

Static and Dynamic Typing
A programming language is statically-typed if it performs type checking at compile time. Type
checking is the process of verifying that a program is type safe. A program is type safe if the
arguments of all of its operations are the correct type.
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Java is a statically-typed language. Type information is available for class and instance
variables, method parameters, return values, and other variables when a program is compiled.
The compiler for the Java programming language uses this type information to produce
strongly typed bytecode, which can then be efficiently executed by the JVM at runtime.

The following example of a Hello World program demonstrates static typing. Types are shown
in bold.

import java.util.Date;

public class HelloWorld {
    public static void main(String[] argv) {
        String hello = "Hello ";
        Date currDate = new Date();
        for (String a : argv) {
            System.out.println(hello + a);
            System.out.println("Today's date is: " + currDate);
        }
    }
}

A programming language is dynamically-typed if it performs type checking at runtime.
JavaScript and Ruby are examples of dynamically typed languages. These languages verify at
runtime, rather than at compile time, that values in an application conform to expected types.
Typically, type information for these languages is not available when an application is compiled.
The type of an object is determined only at runtime. In the past, it was difficult to efficiently
implement dynamically-typed languages on the JVM.

The following is an example of the Hello World program written in the Ruby programming
language:

#!/usr/bin/env ruby
require 'date'

hello = "Hello "
currDate = DateTime.now
ARGV.each do|a|
  puts hello + a
  puts "Date and time: " + currDate.to_s
end

In the example, every name is introduced without a type declaration. The main program is not
located inside a holder type (the Java class HelloWorld). The Ruby equivalent of the Java for
loop is inside the dynamic type ARGV variable. The body of the loop is contained in a block
called a closure, which is a common feature in dynamic languages.

Statically-Typed Languages Are Not Necessarily Strongly-Typed Languages
Statically-typed programming languages can employ strong typing or weak typing. A
programming language that employs strong typing specifies restrictions on the types of values
supplied to its operations, and it prevents the execution of an operation if its arguments have
the wrong type. A language that employs weak typing would implicitly convert (or cast)
arguments of an operation if those arguments have the wrong or incompatible types.
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Dynamically-typed languages can employ strong typing or weak typing. For example, the Ruby
programming language is dynamically-typed and strongly-typed. When a variable is initialized
with a value of some type, the Ruby programming language does not implicitly convert the
variable into another data type.

In the following example, the Ruby programming language does not implicitly cast the number
2, which has a Fixnum type, to a string.

a = "40"
b = a + 2

The Challenge of Compiling Dynamically-Typed Languages
Consider the following dynamically-typed method, addtwo, which adds any two numbers (which
can be of any numeric type) and returns their sum:

def addtwo(a, b)
       a + b;
end

Suppose your organization is implementing a compiler and runtime system for the
programming language in which the method addtwo is written. In a strongly-typed language,
whether typed statically or dynamically, the behavior of + (the addition operator) depends on
the operand types. A compiler for a statically-typed language chooses the appropriate
implementation of + based on the static types of a and b. For example, a Java compiler
implements + with the iadd JVM instruction if the types of a and b are int. The addition
operator is compiled to a method call because the JVM iadd instruction requires the operand
types to be statically known.

A compiler for a dynamically-typed language must defer the choice until runtime. The
statement a + b is compiled as the method call +(a, b), where + is the method name. A
method named + is permitted in the JVM but not in the Java programming language. If the
runtime system for the dynamically-typed language is able to identify that a and b are variables
of integer type, then the runtime system would prefer to call an implementation of + that is
specialized for integer types rather than arbitrary object types.

The challenge of compiling dynamically-typed languages is how to implement a runtime
system that can choose the most appropriate implementation of a method or function — after
the program has been compiled. Treating all variables as objects of Object type would not
work efficiently; the Object class does not contain a method named +.

In Java SE 7 and later, the invokedynamic instruction enables the runtime system to customize
the linkage between a call site and a method implementation. In this example, the
invokedynamic call site is +. An invokedynamic call site is linked to a method by means of a
bootstrap method, which is a method specified by the compiler for the dynamically-typed
language that is called once by the JVM to link the site. Assuming the compiler emitted an
invokedynamic instruction that invokes +, and assuming that the runtime system knows about
the method adder(Integer,Integer), the runtime can link the invokedynamic call site to the
adder method as follows:
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IntegerOps.java

class IntegerOps {

  public static Integer adder(Integer x, Integer y) {
    return x + y;
  }
}

Example.java

import java.util.*;
import java.lang.invoke.*;
import static java.lang.invoke.MethodType.*;
import static java.lang.invoke.MethodHandles.*;

class Example {

  public static CallSite mybsm(
    MethodHandles.Lookup callerClass, String dynMethodName, MethodType 
dynMethodType)
    throws Throwable {

    MethodHandle mh =
      callerClass.findStatic(
        Example.class,
        "IntegerOps.adder",
        MethodType.methodType(Integer.class, Integer.class, Integer.class));

    if (!dynMethodType.equals(mh.type())) {
      mh = mh.asType(dynMethodType);
    }

    return new ConstantCallSite(mh);
  }
}

In this example, the IntegerOps class belongs to the library that accompanies runtime system
for the dynamically-typed language.

The Example.mybsm method is a bootstrap method that links the invokedynamic call site to the
adder method.

The callerClass object is a lookup object, which is a factory for creating method handles.

The MethodHandles.Lookup.findStatic method (called from the callerClass lookup object)
creates a static method handle for the method adder.

Note: This bootstrap method links an invokedynamic call site to only the code that is defined in
the adder method. It assumes that the arguments given to the invokedynamic call site are
Integer objects. A bootstrap method requires additional code to properly link invokedynamic
call sites to the appropriate code to execute if the parameters of the bootstrap method (in this
example, callerClass, dynMethodName, and dynMethodType) vary.
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The java.lang.invoke.MethodHandles class and java.lang.invoke.MethodHandle class
contain various methods that create method handles based on existing method handles. This
example calls the asType method if the method type of the mh method handle does not match
the method type specified by the dynMethodType parameter. This enables the bootstrap
method to link invokedynamic call sites to Java methods whose method types don’t exactly
match.

The ConstantCallSite instance returned by the bootstrap method represents a call site to be
associated with a distinct invokedynamic instruction. The target for a ConstantCallSite
instance is permanent and can never be changed. In this case, one Java method, adder, is a
candidate for executing the call site. This method does not have to be a Java method. Instead,
if several such methods are available to the runtime system, each handling different argument
types, the mybsm bootstrap method could dynamically select the correct method based on the
dynMethodType argument.

The invokedynamic Instruction
You can use the invokedynamic instruction in implementations of compilers and runtime
systems for dynamically typed languages on the JVM. The invokedynamic instruction enables
the language implementer to define custom linkage. This contrasts with other JVM instructions
such as invokevirtual, in which linkage behavior specific to Java classes and interfaces is
hard-wired by the JVM.

Each instance of an invokedynamic instruction is called a dynamic call site. When an instance
of the dynamic call site is created, it is in an unlinked state, with no method specified for the
call site to invoke. The dynamic call site is linked to a method by means of a bootstrap method.
A dynamic call site's bootstrap method is a method specified by the compiler for the
dynamically-typed language. The method is called once by the JVM to link the site. The object
returned from the bootstrap method permanently determines the call site's activity.

The invokedynamic instruction contains a constant pool index (in the same format as for the
other invoke instructions). This constant pool index references a CONSTANT_InvokeDynamic
entry. This entry specifies the bootstrap method (a CONSTANT_MethodHandle entry), the name of
the dynamically-linked method, and the argument types and return type of the call to the
dynamically-linked method.

In the following example, the runtime system links the dynamic call site specified by the
invokedynamic instruction (which is +, the addition operator) to the IntegerOps.adder method by
using the Example.mybsm bootstrap method. The adder method and mybsm method are defined
in The Challenge of Compiling Dynamically Typed Languages (line breaks have been added
for clarity):

invokedynamic   InvokeDynamic
  REF_invokeStatic:
    Example.mybsm:
      "(Ljava/lang/invoke/MethodHandles/Lookup;
        Ljava/lang/String;
        Ljava/lang/invoke/MethodType;)
      Ljava/lang/invoke/CallSite;":
    +:
      "(Ljava/lang/Integer;
        Ljava/lang/Integer;)
      Ljava/lang/Integer;";
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Note

The bytecode examples use the syntax of the ASM Java bytecode manipulation and
analysis framework.

Invoking a dynamically-linked method with the invokedynamic instruction involves the following
steps:

1. Defining the Bootstrap Method

2. Specifying Constant Pool Entries

3. Using the invokedynamic Instruction

Defining the Bootstrap Method
At runtime, the first time the JVM encounters an invokedynamic instruction, it calls the
bootstrap method. This method links the name that the invokedynamic instruction specifies
with the code to execute the target method, which is referenced by a method handle. The next
time the JVM executes the same invokedynamic instruction, it does not call the bootstrap
method; it automatically calls the linked method handle.

The bootstrap method's return type must be java.lang.invoke.CallSite. The CallSite
object represents the linked state of the invokedynamic instruction and the method handle to
which it is linked.

The bootstrap method takes three or more of the following parameters:

• MethodHandles.Lookup object: A factory for creating method handles in the context of the
invokedynamic instruction.

• String object: The method name mentioned in the dynamic call site.

• MethodType object: The resolved type signature of the dynamic call site.

• One or more additional static arguments to the invokedynamic instruction: Optional
arguments, drawn from the constant pool, are intended to help language implementers
safely and compactly encode additional metadata useful to the bootstrap method. In
principle, the name and extra arguments are redundant because each call site could be
given its own unique bootstrap method. However, such a practice is likely to produce large
class files and constant pools

See The Challenge of Compiling Dynamically Typed Languages for an example of a bootstrap
method.

Specifying Constant Pool Entries
The invokedynamic instruction contains a reference to an entry in the constant pool with the
CONSTANT_InvokeDynamic tag. This entry contains references to other entries in the constant
pool and references to attributes. See java.lang.invoke package documentation and
The Java Virtual Machine Specification.
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Example Constant Pool
The following example shows an excerpt from the constant pool for the class Example, which
contains the bootstrap method Example.mybsm that links the method + with the Java method
adder:

    class #159; // #47
    Utf8 "adder"; // #83
    Utf8 "(Ljava/lang/Integer;Ljava/lang/Integer;)Ljava/lang/Integer;"; // #84
    Utf8 "mybsm"; // #87
    Utf8 "(Ljava/lang/invoke/MethodHandles/Lookup;Ljava/lang/String;Ljava/
lang/invoke/MethodType;)
      java/lang/invoke/CallSite;"; // #88
    Utf8 "Example"; // #159
    Utf8 "+"; // #166

    // ...

    NameAndType #83 #84; // #228
    Method #47 #228; // #229
    MethodHandle 6b #229; // #230
    NameAndType #87 #88; // #231
    Method #47 #231; // #232
    MethodHandle 6b #232; // #233
    NameAndType #166 #84; // #234
    Utf8 "BootstrapMethods"; // #235
    InvokeDynamic 0s #234; // #236

The constant pool entry for the invokedynamic instruction in this example contains the
following values:

• CONSTANT_InvokeDynamic tag

• Unsigned short of value 0

• Constant pool index #234.

The value, 0, refers to the first bootstrap method specifier in the array of specifiers that are
stored in the BootstrapMethods attribute. Bootstrap method specifiers are not in the constant
pool table. They are contained in this separate array of specifiers. Each bootstrap method
specifier contains an index to a CONSTANT_MethodHandle constant pool entry, which is the
bootstrap method itself.

The following example shows an excerpt from the same constant pool that shows the
BootstrapMethods attribute, which contains the array of bootstrap method specifiers:

  [3] { // Attributes

    // ...

    Attr(#235, 6) { // BootstrapMethods at 0x0F63
      [1] { // bootstrap_methods
        {  //  bootstrap_method
          #233; // bootstrap_method_ref
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          [0] { // bootstrap_arguments
          }  //  bootstrap_arguments
        }  //  bootstrap_method
      }
    } // end BootstrapMethods
  } // Attributes

The constant pool entry for the bootstrap method mybsm method handle contains the following
values:

• CONSTANT_MethodHandle tag

• Unsigned byte of value 6

• Constant pool index #232.

The value, 6, is the REF_invokeStatic subtag. See, Using the invokedynamic Instruction, for
more information about this subtag.

Using the invokedynamic Instruction
The following example shows how the bytecode uses the invokedynamic instruction to call the
mybsm bootstrap method, which links the dynamic call site (+, the addition operator) to the
adder method. This example uses the + method to add the numbers 40 and 2 (line breaks have
been added for clarity):

bipush  40;
invokestatic    Method java/lang/Integer.valueOf:"(I)Ljava/lang/Integer;";
iconst_2;
invokestatic    Method java/lang/Integer.valueOf:"(I)Ljava/lang/Integer;";
invokedynamic   InvokeDynamic
  REF_invokeStatic:
    Example.mybsm:
      "(Ljava/lang/invoke/MethodHandles/Lookup;
        Ljava/lang/String;
        Ljava/lang/invoke/MethodType;)
      Ljava/lang/invoke/CallSite;":
    +:
      "(Ljava/lang/Integer;
        Ljava/lang/Integer;)
      Ljava/lang/Integer;";

The first four instructions put the integers 40 and 2 in the stack and boxes them in the
java.lang.Integer wrapper type. The fifth instruction invokes a dynamic method. This
instruction refers to a constant pool entry with a CONSTANT_InvokeDynamic tag:

REF_invokeStatic:
  Example.mybsm:
    "(Ljava/lang/invoke/MethodHandles/Lookup;
      Ljava/lang/String;
      Ljava/lang/invoke/MethodType;)
    Ljava/lang/invoke/CallSite;":
  +:
    "(Ljava/lang/Integer;
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      Ljava/lang/Integer;)
    Ljava/lang/Integer;";

Four bytes follow the CONSTANT_InvokeDynamic tag in this entry.

• The first two bytes form a reference to a CONSTANT_MethodHandle entry that references a
bootstrap method specifier:

REF_invokeStatic:
  Example.mybsm:
    "(Ljava/lang/invoke/MethodHandles/Lookup;
      Ljava/lang/String;
      Ljava/lang/invoke/MethodType;)
    Ljava/lang/invoke/CallSite;"

This reference to a bootstrap method specifier is not in the constant pool table. It is
contained in a separate array defined by a class file attribute named BootstrapMethods.
The bootstrap method specifier contains an index to a CONSTANT_MethodHandle constant
pool entry, which is the bootstrap method itself.

Three bytes follow this CONSTANT_MethodHandle constant pool entry:

– The first byte is the REF_invokeStatic subtag. This means that this bootstrap method
will create a method handle for a static method; note that this bootstrap method is
linking the dynamic call site with the static Java adder method.

– The next two bytes form a CONSTANT_Methodref entry that represents the method for
which the method handle is to be created:

Example.mybsm:
  "(Ljava/lang/invoke/MethodHandles/Lookup;
    Ljava/lang/String;
    Ljava/lang/invoke/MethodType;)
  Ljava/lang/invoke/CallSite;"

In this example, the fully qualified name of the bootstrap method is Example.mybsm .
The argument types are MethodHandles.Lookup, String, and MethodType. The return
type is CallSite.

• The next two bytes form a reference to a CONSTANT_NameAndType entry:

+:
  "(Ljava/lang/Integer;
    Ljava/lang/Integer;)
  Ljava/lang/Integer;"

This constant pool entry specifies the method name (+), the argument types (two Integer
instances), and return type of the dynamic call site (Integer).

In this example, the dynamic call site is presented with boxed integer values, which exactly
match the type of the eventual target, the adder method. In practice, the argument and return
types don’t need to exactly match. For example, the invokedynamic instruction could pass
either or both of its operands on the JVM stack as primitive int values. Either or both operands
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could be untyped Object values. The invokedynamic instruction could receive its result as a
primitive int value, or an untyped Object value. In any case, the dynMethodType argument to
mybsm accurately describes the method type that is required by the invokedynamic instruction.

The adder method could be given primitive or untyped arguments or return values. The
bootstrap method is responsible for making up any difference between the dynMethodType and
the type of the adder method. As shown in the code, this is easily done with an asType call on
the target method.
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8
Signal Chaining

Signal chaining enables you to write applications that need to install their own signal handlers.
This facility is available on Linux and macOS.

The signal chaining facility has the following features:

• Support for preinstalled signal handlers when you create Oracle’s HotSpot Virtual Machine.

When the HotSpot VM is created, the signal handlers for signals that are used by the
HotSpot VM are saved. During execution, when any of these signals are raised and are not
to be targeted at the HotSpot VM, the preinstalled handlers are invoked. In other words,
preinstalled signal handlers are chained behind the HotSpot VM handlers for these signals.

• Support for the signal handlers that are installed after you create the HotSpot VM, either
inside the Java Native Interface code or from another native thread.

Your application can link and load the libjsig.so shared library before the libc/
libthread/libpthread library. This library ensures that calls such as signal(), sigset(),
and sigaction() are intercepted and don’t replace the signal handlers that are used by
the HotSpot VM, if the handlers conflict with the signal handlers that are already installed
by HotSpot VM. Instead, these calls save the new signal handlers. The new signal
handlers are chained behind the HotSpot VM signal handlers for the signals. During
execution, when any of these signals are raised and are not targeted at the HotSpot VM,
the preinstalled handlers are invoked.

Note

As of Java 16 the use of the signal and sigset functions are deprecated, and
support for those functions will be removed in a future release. Use the sigaction
function instead.

If support for signal handler installation after the creation of the VM is not required, then the
libjsig.so shared library is not needed.

To enable signal chaining, perform one of the following procedures to use the libjsig.so
shared library:

– Link the libjsig.so shared library with the application that creates or embeds the
HotSpot VM:

cc -L libjvm.so-directory -ljsig -ljvm java_application.c

– Use the LD_PRELOAD environment variable:

* Korn shell (ksh):

export LD_PRELOAD=libjvm.so-directory/libjsig.so; java_application
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* C shell (csh):

setenv LD_PRELOAD libjvm.so-directory/libjsig.so; java_application

The interposed signal() , sigset() , and sigaction() calls return the saved signal
handlers, not the signal handlers installed by the HotSpot VM and are seen by the
operating system.

Note

The SIGQUIT, SIGTERM, SIGINT, and SIGHUP signals cannot be chained. If the
application must handle these signals, then consider using the —Xrs option.

Enable Signal Chaining in macOS

To enable signal chaining in macOS, set the following environment variables:

• DYLD_INSERT_LIBRARIES: Preloads the specified libraries instead of the LD_PRELOAD
environment variable available on Linux.

• DYLD_FORCE_FLAT_NAMESPACE: Enables functions in the libjsig library and replaces the
OS implementations, because of macOS’s two-level namespace (a symbol's fully qualified
name includes its library). To enable this feature, set this environment variable to any
value.

The following command enables signal chaining by preloading the libjsig library:

$ DYLD_FORCE_FLAT_NAMESPACE=0 DYLD_INSERT_LIBRARIES="JAVA_HOME/lib/libjsig.dylib"
java MySpiffyJavaApp

Note

The library file name on macOS is libjsig.dylib not libjsig.so as it is on Linux.
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9
Native Memory Tracking

This chapter describes the Native Memory Tracking (NMT) feature. NMT is a Java Hotspot VM
feature that tracks internal memory usage for a HotSpot VM. You can access NMT data by
using the jcmd utility. NMT does not track memory allocations for third-party native code and
Oracle Java Development Kit (JDK) class libraries. NMT does not include NMT MBean in
HotSpot for Java Mission Control (JMC).

Topics:

• Key Features

• Using Native Memory Tracking

– Enabling NMT

– Accessing NMT Data using jcmd

• Obtaining NMT Data at VM Exit

Key Features
When you use Native Memory Tracking with jcmd, you can track Java Virtual Machine (JVM)
or HotSpot VM memory usage at different levels. NMT tracks only the memory that the JVM or
HotSpot VM uses, not the user's native memory. NMT doesn't give complete information for the
memory used by the class data sharing (CDS) archive.

NMT for HotSpot VM is turned off by default. You can turn on NMT by using the JVM
command-line option. See java in the Java Development Kit Tool Specifications for information
about advanced runtime options.

You can access NMT using the jcmd utility. See Use jcmd to Access NMT Data. You can stop
NMT by using the jcmd utility, but you can't start or restart NMT by using the jcmd utilty.

NMT supports the following features:

• Generate summary and detail reports.

• Establish an early baseline for later comparison.

• Request a memory usage report at JVM exit with the JVM command-line option. See NMT
at VM exit.

Using Native Memory Tracking
You must enable NMT and then use the jcmd utility to access the NMT data.

Enabling NMT
To enable NMT, use the following command-line options:

-XX:NativeMemoryTracking=[off | summary | detail]
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Note

Enabling NMT causes a 5% -10% performance overhead.

The following table describes the NMT command-line usage options:

Table 9-1    NMT Usage Options

NMT Options Description

off NMT is turned off by default.

summary Collect only memory usage aggregated by subsystem.

detail Collect the memory usage by individual call sites.

Accessing NMT Data using jcmd
Use jcmd to dump the data that is collected and optionally compare the data to the last
baseline.

jcmd <pid> VM.native_memory [summary | detail | baseline | summary.diff |
detail.diff | shutdown] [scale= KB | MB | GB]

Table 9-2    jcmd NMT Options

jcmd NMT Option Description

summary Print a summary, aggregated by category.

detail • Print memory usage, aggregated by category
• Print virtual memory map
• Print memory usage, aggregated by call site

baseline Create a new memory usage snapshot for comparison.

summary.diff Print a new summary report against the last baseline.

detail.diff Print a new detail report against the last baseline.

shutdown Stop NMT.

Obtaining NMT Data at VM Exit
To obtain data for the last memory usage at VM exit, when Native Memory Tracking is enabled,
use the following VM diagnostic command-line options. The level of detail is based on tracking
level.

-XX:+UnlockDiagnosticVMOptions -XX:+PrintNMTStatistics

See Native Memory Tracking in the Java Platform, Standard Edition Troubleshooting Guide for
information about how to monitor VM internal memory allocations and diagnose VM memory
leaks.
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10
DTrace Probes in HotSpot VM

This chapter describes DTrace support in Oracle’s HotSpot VM. The hotspot and hotspot_jni
providers let you access probes that you can use to monitor the Java application that is
running together with the internal state and activities of the Java Virtual Machine (JVM). All of
the probes are USDT probes and you can access them by using the process-id of the JVM
process.

Topics:

• Using the hotspot Provider

– VM Lifecycle Probes

– Thread Lifecycle Probes

– Classloading Probes

– Garbage Collection Probes

– Method Compilation Probes

– Monitor Probes

– Application Tracking Probes

• Using the hotspot_jni Provider

• Sample DTrace Probes

Using the hotspot Provider
The hotspot provider lets you access probes that you can use to track the lifespan of the VM,
thread start and stop events, garbage collector (GC) and memory pool statistics, method
compilations, and monitor activity. A startup flag can enable additional probes that you can use
to monitor the running Java program, such as object allocations and method enter and return
probes. The hotspot probes originate in the VM library (libjvm.so), so they are provided from
programs that embed the VM.

Many of the probes in the provider have arguments for providing further details on the state of
the VM. Many of these arguments are opaque IDs which can be used to link probe firings to
each other. However, strings and other data are also provided. When string values are
provided, they are always present as a pair: a pointer to unterminated modified UTF-8 data
(see the JVM Specification) , and a length value which indicates the extent of that data. The
string data is not guaranteed to be terminated by a NUL character, and it is necessary to use
the length-terminated copyinstr() intrinsic to read the string data. This is true even when
none of the characters are outside the ASCII range.

VM Lifecycle Probes
The following probes are available for tracking VM lifecycle activities. None have any
arguments.
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Table 10-1    VM Lifecycle Probes

Probe Description

vm-init-begin Probe that starts when the VM initialization begins

vm-init-end Probe that starts when the VM initialization finishes, and the
VM is ready to start running application code

vm-shutdown Probe that starts as the VM is shuts down due to program
termination or an error

Thread Lifecycle Probes
The following probes are available for tracking thread start and stop events.

Probe Description

thread-start Probe that starts when a thread starts.

thread-stop Probe that starts when the thread has completed.

The following argument are available for the thread lifecycle probes:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the thread name.

args[1] The length of the thread name data (in bytes).

args[2] The Java thread ID. This value matches other HotSpot VM
probes that contain a thread argument.

args[3] The native or OS thread ID. This ID is assigned by the host
operating system.

args[4] A boolean value that indicates whether this thread is a
daemon or not. A value of 0 indicates a non-daemon thread.

Classloading Probes
The following probes are available for tracking class loading and unloading activity.

Probe Description

class-loaded Probe that fires when a class is loaded

class-unloaded Probe that fires when a class is unloaded from the system

The following arguments are available for the classloading probes:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the name of the
class that is loaded

args[1] The length of the class name data (in bytes)
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Probe Arguments Description

args[2] The class loader ID, which is a unique identifier for a class
loader in the VM. (This is the class loader that loaded the
class.)

args[3] A boolean value that indicates whether the class is a shared
class (if the class was loaded from the shared archive)

Garbage Collection Probes
Probes are available that you can use to measure the duration of a system-wide garbage
collection cycle (for those garbage collectors that have a defined begin and end). Each
memory pool is tracked independently. The probes for individual pools pass the memory
manager's name, the pool name, and pool usage information at both the beginning and ending
of pool collection.

The following probes are available for garbage collecting activities:

Probe Description

gc-begin Probe that starts when a system-wide collection starts. The
one argument available for this probe, (arg[0]), is a boolean
value that indicates whether to perform a Full GC.

gc-end Probe that starts when a system-wide collection is
completed. No arguments.

mem-pool-gc-begin Probe that starts when an individual memory pool is
collected.

mem-pool-gc-end Probe that starts after an individual memory pool is collected.

The following arguments are available for the memory pool probes:

Probe Arguments Description

args[0] A pointer to the UTF-8 string data that contains the name of
the manager that manages this memory pool.

args[1] The length of the manager name data (in bytes).

args[2] A pointer to the UTF-8 string data that contains the name of
the memory pool.

args[3] The length of the memory pool name data (in bytes).

args[4] The initial size of the memory pool (in bytes).

args[5] The amount of memory in use in the memory pool (in bytes).

args[6] The number of committed pages in the memory pool.

args[7] The maximum size of the memory pool.

Method Compilation Probes
Probes are available to indicate which methods are being compiled and by which compiler, and
to track when the compiled methods are installed or uninstalled.

The following probes are available to mark the beginning and ending of method compilation:
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Probe Description

method-compile-begin Probe that starts when the method compilation begins.

method-compile-end Probe that starts when method compilation is completed. In
addition to the following arguments, the argv[8] argument is
a boolean value that indicates whether the compilation was
successful.

The following arguments are available for the method compilation probes:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the name of the
compiler that is compiling this method.

args[1] The length of the compiler name data (in bytes).

args[2] A pointer to UTF-8 string data that contains the name of the
class of the method being compiled.

args[3] The length of the class name data (in bytes).

args[4] A pointer to UTF-8 string data that contains the name of the
method being compiled.

args[5] The length of the method name data (in bytes).

args[6] A pointer to UTF-8 string data that contains the signature of
the method being compiled.

args[7] The length of the signature data (in bytes).

The following probes are available when compiled methods are installed for execution or
uninstalled:

Probe Description

compiled-method-load Probe that starts when a compiled method is installed. The
additional argument, argv[6] contains a pointer to the
compiled code, and the argv[7] is the size of the compiled
code.

compiled-method-unload Probe that starts when a compiled method is uninstalled.

The following arguments are available for the compiled method loading probe:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the name of the
class of the method being installed.

args[1] The length of the class name data (in bytes).

args[2] A pointer to UTF-8 string data that contains the name of the
method being installed.

args[3] The length of the method name data (in bytes).

args[4] A pointer to UTF-8 string data that contains the signature of
the method being installed.

args[5] The length of the signature data (in bytes).
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Monitor Probes
When your Java application runs, threads enter and exit monitors, wait on monitors, and
perform notifications. Probes are available for all wait and notification events, and for
contended monitor entry and exit events.

A contended monitor entry occurs when a thread attempts to enter a monitor while another
thread is in the monitor. A contended monitor exit event occurs when a thread leaves a monitor
while other threads are waiting to enter to the monitor. The contended monitor entry and
contended monitor exit events might not match each other in relation to the thread that
encounters these events, athough a contended exit from one thread is expected to match up to
a contended enter on another thread (the thread waiting to enter the monitor).

Monitor events provide the thread ID, a monitor ID, and the type of the class of the object as
arguments. The thread ID and the class type can map back to the Java program, while the
monitor ID can provide matching information between probe firings.

The existence of these probes in the VM degrades performance and they start only when the -
XX:+ExtendedDTraceProbes flag is set on the Java command line. This flag is turned on and off
dynamically at runtime by using the jinfo utility.

If the flag is off, the monitor probes are present in the probe listing that is obtainable from
Dtrace, but the probes remain dormant and don’t start. Removal of this restriction is planned
for future releases of the VM, and these probes will be enabled with no impact to performance.

The following probes are available for monitoring events:

Probe Description

monitor-contended-enter Probe that starts when a thread attempts to enter a
contended monitor

monitor-contended-entered Probe that starts when a thread successfully enters the
contended monitor

monitor-contended-exit Probe that starts when a thread leaves a monitor and other
threads are waiting to enter

monitor-wait Probe that starts when a thread begins a wait on a monitor
by using the Object.wait(). The additional argument,
args[4] is a long value that indicates the timeout being
used.

monitor-waited Probe that starts when a thread completes an
Object.wait() action.

monitor-notify Probe that starts when a thread calls Object.notify() to
notify waiters on a monitor.

monitor-notifyAll Probe that starts when a thread calls Object.notifyAll()
to notify waiters on a monitor.

The following arguments are available for the monitor:

Probe Arguments Description

args[0] The Java thread identifier for the thread performing the
monitor operation.

args[1] A unique, but opaque identifier for the specific monitor that
the action is performed upon.
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Probe Arguments Description

args[2] A pointer to UTF-8 string data which contains the class name
of the object being acted upon.

args[3] The length of the class name data (in bytes).

Application Tracking Probes
You can use probes to allow fine-grained examination of Java thread execution. Application
tracking probes start when a method is entered or returned from, or when a Java object has
been allocated.

The existence of these probes in the VM degrades performance and they start only when the
VM has the ExtendedDTraceProbes flag enabled. By default, the probes are present in any
listing of the probes in the VM, but are dormant without the appropriate flag. Removal of this
restriction is planned in future releases of the VM, and these probes will be enabled no impact
to performance.

The following probes are available for the method entry and exit:

Probe Description

method-entry Probe that starts when a method is being entered.

method-return Probe that starts when a method returns, either normally or
due to an exception.

The following arguments are available for the method entry and exit:

Probe Arguments Description

args[0] The Java thread ID of the thread that is entering or leaving
the method.

args[1] A pointer to UTF-8 string data that contains the name of the
class of the method.

args[2] The length of the class name data (in bytes).

args[3] A pointer to UTF-8 string data that contains the name of the
method.

args[4] The length of the method name data (in bytes).

args[5] A pointer to UTF-8 string data that contains the signature of
the method.

args[6] The length of the signature data (in bytes).

The following probe is available for the object allocation:

Probe Description

object-alloc Probe that starts when any object is allocated, provided that
the ExtendedDTraceProbes flag is enabled.

The following arguments are available for the object allocation probe:
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Probe Arguments Description

args[0] The Java thread ID of the thread that is allocating the object.

args[1] A pointer to UTF-8 string data that contains the class name
of the object being allocated.

args[2] The length of the class name data (in bytes).

args[3] The size of the object being allocated.

Using the hotspot_jni Provider
In order to call from native code to Java code, due to embedding of the VM in an application or
execution of native code within a Java application, the native code must make a call through
the Java Native Interface (JNI). The JNI provides a number of methods for invoking Java code
and examining the state of the VM. DTrace probes are provided at the entry point and return
point for each of these methods. The probes are provided by the hotspot_jni provider. The
name of the probe is the name of the JNI method, appended with -entry for entry probes, and
-return for return probes. The arguments available at each entry probe are the arguments that
were provided to the function, with the exception of the Invoke* methods, which omit the
arguments that are passed to the Java method. The return probes have the return value of the
method as an argument (if available).

Sample DTrace Probes

provider hotspot {
  probe vm-init-begin();
  probe vm-init-end();
  probe vm-shutdown();
  probe class-loaded(
      char* class_name, uintptr_t class_name_len, uintptr_t class_loader_id, 
bool is_shared);
  probe class-unloaded(
      char* class_name, uintptr_t class_name_len, uintptr_t class_loader_id, 
bool is_shared);
  probe gc-begin(bool is_full);
  probe gc-end();
  probe mem-pool-gc-begin(
      char* mgr_name, uintptr_t mgr_name_len, char* pool_name, uintptr_t 
pool_name_len, 
      uintptr_t initial_size, uintptr_t used, uintptr_t committed, uintptr_t 
max_size);
  probe mem-pool-gc-end(
      char* mgr_name, uintptr_t mgr_name_len, char* pool_name, uintptr_t 
pool_name_len, 
      uintptr_t initial_size, uintptr_t used, uintptr_t committed, uintptr_t 
max_size);
  probe thread-start(
      char* thread_name, uintptr_t thread_name_length, 
      uintptr_t java_thread_id, uintptr_t native_thread_id, bool is_daemon);
  probe thread-stop(
      char* thread_name, uintptr_t thread_name_length, 
      uintptr_t java_thread_id, uintptr_t native_thread_id, bool is_daemon);
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  probe method-compile-begin(
      char* class_name, uintptr_t class_name_len, 
      char* method_name, uintptr_t method_name_len,
      char* signature, uintptr_t signature_len);
  probe method-compile-end(
      char* class_name, uintptr_t class_name_len, 
      char* method_name, uintptr_t method_name_len,
      char* signature, uintptr_t signature_len,
      bool is_success);
  probe compiled-method-load(
      char* class_name, uintptr_t class_name_len, 
      char* method_name, uintptr_t method_name_len,
      char* signature, uintptr_t signature_len,
      void* code, uintptr_t code_size);
  probe compiled-method-unload(
      char* class_name, uintptr_t class_name_len, 
      char* method_name, uintptr_t method_name_len,
      char* signature, uintptr_t signature_len);
  probe monitor-contended-enter(
      uintptr_t java_thread_id, uintptr_t monitor_id, 
      char* class_name, uintptr_t class_name_len);
  probe monitor-contended-entered(
      uintptr_t java_thread_id, uintptr_t monitor_id, 
      char* class_name, uintptr_t class_name_len);
  probe monitor-contended-exit(
      uintptr_t java_thread_id, uintptr_t monitor_id, 
      char* class_name, uintptr_t class_name_len);
  probe monitor-wait(
      uintptr_t java_thread_id, uintptr_t monitor_id, 
      char* class_name, uintptr_t class_name_len,
      uintptr_t timeout);
  probe monitor-waited(
      uintptr_t java_thread_id, uintptr_t monitor_id, 
      char* class_name, uintptr_t class_name_len);
  probe monitor-notify(
      uintptr_t java_thread_id, uintptr_t monitor_id, 
      char* class_name, uintptr_t class_name_len);
  probe monitor-notifyAll(
      uintptr_t java_thread_id, uintptr_t monitor_id, 
      char* class_name, uintptr_t class_name_len);
  probe method-entry(
      uintptr_t java_thread_id, char* class_name, uintptr_t class_name_len,
      char* method_name, uintptr_t method_name_len,
      char* signature, uintptr_t signature_len);
  probe method-return(
      uintptr_t java_thread_id, char* class_name, uintptr_t class_name_len,
      char* method_name, uintptr_t method_name_len,
      char* signature, uintptr_t signature_len);
  probe object-alloc(
      uintptr_t java_thread_id, char* class_name, uintptr_t class_name_len,
      uintptr_t size);
};

provider hotspot_jni {
  probe AllocObject-entry(void*, void*);
  probe AllocObject-return(void*);
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  probe AttachCurrentThreadAsDaemon-entry(void*, void**, void*);
  probe AttachCurrentThreadAsDaemon-return(uint32_t);
  probe AttachCurrentThread-entry(void*, void**, void*);
  probe AttachCurrentThread-return(uint32_t);
  probe CallBooleanMethodA-entry(void*, void*, uintptr_t);
  probe CallBooleanMethodA-return(uintptr_t);
  probe CallBooleanMethod-entry(void*, void*, uintptr_t);
  probe CallBooleanMethod-return(uintptr_t);
  probe CallBooleanMethodV-entry(void*, void*, uintptr_t);
  probe CallBooleanMethodV-return(uintptr_t);
  probe CallByteMethodA-entry(void*, void*, uintptr_t);
  probe CallByteMethodA-return(char);
  probe CallByteMethod-entry(void*, void*, uintptr_t);
  probe CallByteMethod-return(char);
  probe CallByteMethodV-entry(void*, void*, uintptr_t);

  probe CallByteMethodV-return(char);
  probe CallCharMethodA-entry(void*, void*, uintptr_t);
  probe CallCharMethodA-return(uint16_t);
  probe CallCharMethod-entry(void*, void*, uintptr_t);
  probe CallCharMethod-return(uint16_t);
  probe CallCharMethodV-entry(void*, void*, uintptr_t);
  probe CallCharMethodV-return(uint16_t);
  probe CallDoubleMethodA-entry(void*, void*, uintptr_t);
  probe CallDoubleMethodA-return(double);
  probe CallDoubleMethod-entry(void*, void*, uintptr_t);
  probe CallDoubleMethod-return(double);
  probe CallDoubleMethodV-entry(void*, void*, uintptr_t);
  probe CallDoubleMethodV-return(double);
  probe CallFloatMethodA-entry(void*, void*, uintptr_t);
  probe CallFloatMethodA-return(float);
  probe CallFloatMethod-entry(void*, void*, uintptr_t);
  probe CallFloatMethod-return(float);
  probe CallFloatMethodV-entry(void*, void*, uintptr_t);
  probe CallFloatMethodV-return(float);
  probe CallIntMethodA-entry(void*, void*, uintptr_t);
  probe CallIntMethodA-return(uint32_t);
  probe CallIntMethod-entry(void*, void*, uintptr_t);
  probe CallIntMethod-return(uint32_t);
  probe CallIntMethodV-entry(void*, void*, uintptr_t);
  probe CallIntMethodV-return(uint32_t);
  probe CallLongMethodA-entry(void*, void*, uintptr_t);
  probe CallLongMethodA-return(uintptr_t);
  probe CallLongMethod-entry(void*, void*, uintptr_t);
  probe CallLongMethod-return(uintptr_t);
  probe CallLongMethodV-entry(void*, void*, uintptr_t);
  probe CallLongMethodV-return(uintptr_t);
  probe CallNonvirtualBooleanMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualBooleanMethodA-return(uintptr_t);
  probe CallNonvirtualBooleanMethod-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualBooleanMethod-return(uintptr_t);
  probe CallNonvirtualBooleanMethodV-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualBooleanMethodV-return(uintptr_t);
  probe CallNonvirtualByteMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualByteMethodA-return(char);
  probe CallNonvirtualByteMethod-entry(void*, void*, void*, uintptr_t);
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  probe CallNonvirtualByteMethod-return(char);
  probe CallNonvirtualByteMethodV-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualByteMethodV-return(char);
  probe CallNonvirtualCharMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualCharMethodA-return(uint16_t);
  probe CallNonvirtualCharMethod-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualCharMethod-return(uint16_t);
  probe CallNonvirtualCharMethodV-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualCharMethodV-return(uint16_t);
  probe CallNonvirtualDoubleMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualDoubleMethodA-return(double);
  probe CallNonvirtualDoubleMethod-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualDoubleMethod-return(double);
  probe CallNonvirtualDoubleMethodV-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualDoubleMethodV-return(double);
  probe CallNonvirtualFloatMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualFloatMethodA-return(float);
  probe CallNonvirtualFloatMethod-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualFloatMethod-return(float);
  probe CallNonvirtualFloatMethodV-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualFloatMethodV-return(float);
  probe CallNonvirtualIntMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualIntMethodA-return(uint32_t);
  probe CallNonvirtualIntMethod-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualIntMethod-return(uint3t);
  probe CallNonvirtualIntMethodV-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualIntMethodV-return(uint32_t);
  probe CallNonvirtualLongMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualLongMethodA-return(uintptr_t);
  probe CallNonvirtualLongMethod-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualLongMethod-return(uintptr_t);
  probe CallNonvirtualLongMethodV-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualLongMethodV-return(uintptr_t);
  probe CallNonvirtualObjectMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualObjectMethodA-return(void*);
  probe CallNonvirtualObjectMethod-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualObjectMethod-return(void*);
  probe CallNonvirtualObjectMethodV-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualObjectMethodV-return(void*);
  probe CallNonvirtualShortMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualShortMethodA-return(uint16_t);
  probe CallNonvirtualShortMethod-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualShortMethod-return(uint16_t);
  probe CallNonvirtualShortMethodV-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualShortMethodV-return(uint16_t);
  probe CallNonvirtualVoidMethodA-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualVoidMethodA-return();
  probe CallNonvirtualVoidMethod-entry(void*, void*, void*, uintptr_t);
  probe CallNonvirtualVoidMethod-return();
  probe CallNonvirtualVoidMethodV-entry(void*, void*, void*, uintptr_t);  
  probe CallNonvirtualVoidMethodV-return();
  probe CallObjectMethodA-entry(void*, void*, uintptr_t);
  probe CallObjectMethodA-return(void*);
  probe CallObjectMethod-entry(void*, void*, uintptr_t);
  probe CallObjectMethod-return(void*);
  probe CallObjectMethodV-entry(void*, void*, uintptr_t);
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  probe CallObjectMethodV-return(void*);
  probe CallShortMethodA-entry(void*, void*, uintptr_t);
  probe CallShortMethodA-return(uint16_t);
  probe CallShortMethod-entry(void*, void*, uintptr_t);
  probe CallShortMethod-return(uint16_t);
  probe CallShortMethodV-entry(void*, void*, uintptr_t);
  probe CallShortMethodV-return(uint16_t);
  probe CallStaticBooleanMethodA-entry(void*, void*, uintptr_t);
  probe CallStaticBooleanMethodA-return(uintptr_t);
  probe CallStaticBooleanMethod-entry(void*, void*, uintptr_t);
  probe CallStaticBooleanMethod-return(uintptr_t);
  probe CallStaticBooleanMethodV-entry(void*, void*, uintptr_t);
  probe CallStaticBooleanMethodV-return(uintptr_t);
  probe CallStaticByteMethodA-entry(void*, void*, uintptr_t);
  probe CallStaticByteMethodA-return(char);
  probe CallStaticByteMethod-entry(void*, void*, uintptr_t);
  probe CallStaticByteMethod-return(char);
  probe CallStaticByteMethodV-entry(void*, void*, uintptr_t);
  probe CallStaticByteMethodV-return(char);
  probe CallStaticCharMethodA-entry(void*, void*, uintptr_t);
  probe CallStaticCharMethodA-return(uint16_t);
  probe CallStaticCharMethod-entry(void*, void*, uintptr_t);
  probe CallStaticCharMethod-return(uint16_t);
  probe CallStaticCharMethodV-entry(void*, void*, uintptr_t);
  probe CallStaticCharMethodV-return(uint16_t);
  probe CallStaticDoubleMethodA-entry(void*, void*, uintptr_t);
  probe CallStaticDoubleMethodA-return(double);
  probe CallStaticDoubleMethod-entry(void*, void*, uintptr_t);
  probe CallStaticDoubleMethod-return(double);
  probe CallStaticDoubleMethodV-entry(void*, void*, uintptr_t);
  probe CallStaticDoubleMethodV-return(double);
  probe CallStaticFloatMethodA-entry(void*, void*, uintptr_t);
  probe CallStaticFloatMethodA-return(float);
  probe CallStaticFloatMethod-entry(void*, void*, uintptr_t);
  probe CallStaticFloatMethod-return(float);
  probe CallStaticFloatMethodV-entry(void*, void*, uintptr_t);
  probe CallStaticFloatMethodV-return(float);
  probe CallStaticIntMethodA-entry(void*, void*, uintptr_t);
  probe CallStaticIntMethodA-return(uint32_t);
  probe CallStaticIntMethod-entry(void*, void*, uintptr_t);
  probe CallStaticIntMethod-return(uint32_t);
  probe CallStaticIntMethodentry(void*, void*, uintptr_t);
  probe CallStaticIntMethodV-return(uint32_t);
  probe CallStaticLongMethodA-entry(void*, void*, uintptr_t);
  probe CallStaticLongMethodA-return(uintptr_t);
  probe CallStaticLongMethod-entry(void*, void*, uintptr_t);
  probe CallStaticLongMethod-return(uintptr_t);
  probe CallStaticLongMethodV-entry(void*, void*, uintptr_t);
  probe CallStaticLongMethodV-return(uintptr_t);
  probe CallStaticObjectMethodA-entry(void*, void*, uintptr_t);
  probe CallStaticObjectMethodA-return(void*);
  probe CallStaticObjectMethod-entry(void*, void*, uintptr_t);
  probe CallStaticObjectMethod-return(void*);
  probe CallStaticObjectMethodV-entry(void*, void*, uintptr_t);
  probe CallStaticObjectMethodV-return(void*);
  probe CallStaticShortMethodA-entry(void*, void*, uintptr_t);
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  probe CallStaticShortMethodA-return(uint16_t);
  probe CallStaticShortMethod-entry(void*, void*, uintptr_t);
  probe CallStaticShortMethod-return(uint16_t);
  probe CallStaticShortMethodV-entry(void*, void*, uintptr_t);
  probe CallStaticShortMethodV-return(uint16_t);
  probe CallStaticVoidMethodA-entry(void*, void*, uintptr_t);
  probe CallStaticVoidMethodA-return();
  probe CallStaticVoidMethod-entry(void*, void*, uintptr_t);
  probe CallStaticVoidMethod-return(); 
  probe CallStaticVoidMethodV-entry(void*, void*, uintptr_t);  
  probe CallStaticVoidMethodV-return();
  probe CallVoidMethodA-entry(void*, void*, uintptr_t);  
  probe CallVoidMethodA-return();
  probe CallVoidMethod-entry(void*, void*, uintptr_t);  
  probe CallVoidMethod-return(); 
  probe CallVoidMethodV-entry(void*, void*, uintptr_t);  
  probe CallVoidMethodV-return();
  probe CreateJavaVM-entry(void**, void**, void*);
  probe CreateJavaVM-return(uint32_t);
  probe DefineClass-entry(void*, const char*, void*, char, uintptr_t);
  probe DefineClass-return(void*);
  probe DeleteGlobalRef-entry(void*, void*);
  probe DeleteGlobalRef-return();
  probe DeleteLocalRef-entry(void*, void*);
  probe DeleteLocalRef-return();
  probe DeleteWeakGlobalRef-entry(void*, void*);
  probe DeleteWeakGlobalRef-return();
  probe DestroyJavaVM-entry(void*);
  probe DestroyJavaVM-return(uint32_t);
  probe DetachCurrentThread-entry(void*);
  probe DetachCurrentThread-return(uint32_t);
  probe EnsureLocalCapacity-entry(void*, uint32_t);
  probe EnsureLocalCapacity-return(uint32_t);
  probe ExceptionCheck-entry(void*);
  probe ExceptionCheck-return(uintptr_t);
  probe ExceptionClear-entry(void*);
  probe ExceptionClear-return();
  probe ExceptionDescribe-entry(void*);  
  probe ExceptionDescribe-return();
  probe ExceptionOccurred-entry(void*);
  probe ExceptionOccurred-return(void*);
  probe FatalError-entry(void* env, const char*);
  probe FindClass-entry(void*, const char*);
  probe FindClass-return(void*);
  probe FromReflectedField-entry(void*, void*);
  probe FromReflectedField-return(uintptr_t);
  probe FromReflectedMethod-entry(void*, void*);
  probe FromReflectedMethod-return(uintptr_t);
  probe GetArrayLength-entry(void*, void*);
  probe GetArrayLength-return(uintptr_t);
  probe GetBooleanArrayElements-entry(void*, void*, uintptr_t*);
  probe GetBooleanArrayElements-return(uintptr_t*);
  probe GetBooleanArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, 
uintptr_t*);
  probe GetBooleanArrayRegion-return();
  probe GetBooleanField-entry(void*, void*, uintptr_t);
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  probe GetBooleanField-return(uintptr_t);
  probe GetByteArrayElements-entry(void*, void*, uintptr_t*);
  probe GetByteArrayElements-return(char*);
  probe GetByteArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, char*);
  probe GetByteArrayRegion-return();
  probe GetByteField-entry(void*, void*, uintptr_t);
  probe GetByteField-return(char);
  probe GetCharArrayElements-entry(void*, void*, uintptr_t*);
  probe GetCharArrayElements-return(uint16_t*);
  probe GetCharArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, 
uint16_t*);
  probe GetCharArrayRegion-return();
  probe GetCharField-entry(void*, void*, uintptr_t);
  probe GetCharField-return(uint16_t);
  probe GetCreatedJavaVMs-eintptr_t*);
  probe GetCreatedJavaVMs-return(uintptr_t);
  probe GetCreateJavaVMs-entry(void*, uintptr_t, uintptr_t*);
  probe GetCreateJavaVMs-return(uint32_t);
  probe GetDefaultJavaVMInitArgs-entry(void*);
  probe GetDefaultJavaVMInitArgs-return(uint32_t);
  probe GetDirectBufferAddress-entry(void*, void*);
  probe GetDirectBufferAddress-return(void*);
  probe GetDirectBufferCapacity-entry(void*, void*);
  probe GetDirectBufferCapacity-return(uintptr_t);
  probe GetDoubleArrayElements-entry(void*, void*, uintptr_t*);
  probe GetDoubleArrayElements-return(double*);
  probe GetDoubleArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, 
double*);
  probe GetDoubleArrayRegion-return();
  probe GetDoubleField-entry(void*, void*, uintptr_t);
  probe GetDoubleField-return(double);
  probe GetEnv-entry(void*, void*, void*);
  probe GetEnv-return(uint32_t);
  probe GetFieldID-entry(void*, void*, const char*, const char*);
  probe GetFieldID-return(uintptr_t);
  probe GetFloatArrayElements-entry(void*, void*, uintptr_t*);
  probe GetFloatArrayElements-return(float*);
  probe GetFloatArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, float*);
  probe GetFloatArrayRegion-return();
  probe GetFloatField-entry(void*, void*, uintptr_t);
  probe GetFloatField-return(float);
  probe GetIntArrayElements-entry(void*, void*, uintptr_t*);
  probe GetIntArrayElements-return(uint32_t*);
  probe GetIntArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, 
uint32_t*);
  probe GetIntArrayRegion-return();
  probe GetIntField-entry(void*, void*, uintptr_t);
  probe GetIntField-return(uint32_t);
  probe GetJavaVM-entry(void*, void**);
  probe GetJavaVM-return(uint32_t);
  probe GetLongArrayElements-entry(void*, void*, uintptr_t*);
  probe GetLongArrayElements-return(uintptr_t*);
  probe GetLongArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, 
uintptr_t*);
  probe GetLongArrayRegion-return();
  probe GetLongField-entry(void*, void*, uintptr_t);
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  probe GetLongField-return(uintptr_t);
  probe GetMethodID-entry(void*, void*, const char*, const char*);
  probe GetMethodID-return(uintptr_t);
  probe GetObjectArrayElement-entry(void*, void*, uintptr_t);
  probe GetObjectArrayElement-return(void*);
  probe GetObjectClass-entry(void*, void*);
  probe GetObjectClass-return(void*);
  probe GetObjectField-entry(void*, void*, uintptr_t);
  probe GetObjectField-return(void*);
  probe GetObjectRefType-entry(void*, void*);
  probe GetObjectRefType-return(void*);
  probe GetPrimitiveArrayCritical-entry(void*, void*, uintptr_t*);
  probe GetPrimitiveArrayCritical-return(void*);
  probe GetShortArrayElements-entry(void*, void*, uintptr_t*);
  probe GetShortArrayElements-return(uint16_t*);
  probe GetShortArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, 
uint16_t*);
  probe GetShortArrayRegion-return();
  probe GetShortField-entry(void*, void*, uintptr_t);
  probe GetShortField-return(uint16_t);
  probe GetStaticBooleanField-entry(void*, void*, uintptr_t);
  probe GetStaticBooleanField-return(uintptr_t);
  probe GetStaticByteField-entry(void*, void*, uintptr_t);
  probe GetStaticByteField-return(char);
  probe GetStaticCharField-entry(void*, void*, uintptr_t);
  probe GetStaticCharField-return(uint16_t);
  probe GetStaticDoubleField-entry(void*, void*, uintptr_t);
  probe GetStaticDoubleField-return(double);
  probe GetStaticFieldID-entry(void*, void*, const char*, const char*);
  probe GetStaticFieldID-return(uintptr_t);
  probe GetStaticFloatField-entry(void*, void*, uintptr_t);
  probe GetStaticFloatField-return(float);
  probe GetStaticIntField-entry(void*, void*, uintptr_t);
  probe GetStaticIntField-return(uint32_t);
  probe GetStaticLongField-entry(void*, void*, uintptr_t);
  probe GetStaticLongField-return(uintptr_t);
  probe GetStaticMethodID-entry(void*, void*, const char*, const char*);
  probe GetStaticMethodID-return(uintptr_t);
  probe GetStaticObjectField-entry(void*, void*, uintptr_t);
  probe GetStaticObjectField-return(void*);
  probe GetStaticShortField-entry(void*, void*, uintptr_t);
  probe GetStaticShortField-return(uint16_t);
  pro GetStringChars-entry(void*, void*, uintptr_t*);
  probe GetStringChars-return(const uint16_t*);
  probe GetStringCritical-entry(void*, void*, uintptr_t*);
  probe GetStringCritical-return(const uint16_t*);
  probe GetStringLength-entry(void*, void*);
  probe GetStringLength-return(uintptr_t);
  probe GetStringRegion-entry(void*, void*, uintptr_t, uintptr_t, uint16_t*);
  probe GetStringRegion-return();
  probe GetStringUTFChars-entry(void*, void*, uintptr_t*);
  probe GetStringUTFChars-return(const char*);
  probe GetStringUTFLength-entry(void*, void*);
  probe GetStringUTFLength-return(uintptr_t);
  probe GetStringUTFRegion-entry(void*, void*, uintptr_t, uintptr_t, char*);
  probe GetStringUTFRegion-return();
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  probe GetSuperclass-entry(void*, void*);
  probe GetSuperclass-return(void*);
  probe GetVersion-entry(void*);
  probe GetVersion-return(uint32_t);
  probe IsAssignableFrom-entry(void*, void*, void*);
  probe IsAssignableFrom-return(uintptr_t);
  probe IsInstanceOf-entry(void*, void*, void*);
  probe IsInstanceOf-return(uintptr_t);
  probe IsSameObject-entry(void*, void*, void*);
  probe IsSameObject-return(uintptr_t);
  probe MonitorEnter-entry(void*, void*);
  probe MonitorEnter-return(uint32_t);
  probe MonitorExit-entry(void*, void*);
  probe MonitorExit-return(uint32_t);
  probe NewBooleanArray-entry(void*, uintptr_t);
  probe NewBooleanArray-return(void*);
  probe NewByteArray-entry(void*, uintptr_t);
  probe NewByteArray-return(void*);
  probe NewCharArray-entry(void*, uintptr_t);
  probe NewCharArray-return(void*);
  probe NewDirectByteBuffer-entry(void*, void*, uintptr_t);
  probe NewDirectByteBuffer-return(void*);
  probe NewDoubleArray-entry(void*, uintptr_t);
  probe NewDoubleArray-return(void*);
  probe NewFloatArray-entry(void*, uintptr_t);
  probe NewFloatArray-return(void*);
  probe NewGlobalRef-entry(void*, void*);
  probe NewGlobalRef-return(void*);
  probe NewIntArray-entry(void*, uintptr_t);
  probe NewIntArray-return(void*);
  probe NewLocalRef-entry(void*, void*);
  probe NewLocalRef-return(void*);
  probe NewLongArray-entry(void*, uintptr_t);
  probe NewLongArray-return(void*);
  probe NewObjectA-entry(void*, void*, uintptr_t);  
  probe NewObjectA-return(void*);
  probe NewObjectArray-entry(void*, uintptr_t, void*, void*);
  probe NewObjectArray-return(void*);
  probe NewObject-entry(void*, void*, uintptr_t); 
  probe NewObject-return(void*);
  probe NewObjectV-entry(void*, void*, uintptr_t);  
  probe NewObjectV-return(void*);
  probe NewShortArray-entry(void*, uintptr_t);
  probe NewShortArray-return(void*);
  probe NewString-entry(void*, const uint16_t*, uintptr_t);
  probe NewString-return(void*);
  probe NewStringUTF-entry(void*, const char*);
  probe NewStringUTF-return(void*);
  probe NewWeakGlobalRef-entry(void*, void*);
  probe NewWeakGlobalRef-return(void*);
  probe PopLocalFrame-entry(void*, void*);
  probe PopLocalFrame-return(void*);
  probe PushLocalFrame-entry(void*, uint32_t);
  probe PushLocalFrame-return(uint32_t);
  probe RegisterNatives-entry(void*, void*, const void*, uint32_t);  
  probe RegisterNatives-return(uint32_t);
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  probe ReleaseBooleanArrayElements-entry(void*, void*, uintptr_t*, uint32_t);
  probe ReleaseBooleanArrayElements-return();
  probe ReleaseByteArrayElements-entry(void*, void*, char*, uint32_t);
  probe ReleaseByteArrayElements-return();
  probe ReleaseCharArrayElements-entry(void*, void*, uint16_t*, uint32_t);
  probe ReleaseCharArrayElements-return();
  probe ReleaseDoubleArrayElements-entry(void*, void*, double*, uint32_t);
  probe ReleaseDoubleArrayElements-return();
  probe ReleaseFloatArrayElements-entry(void*, void*, float*, uint32_t);
  probe ReleaseFloatArrayElements-return();
  probe ReleaseIntArrayElements-entry(void*, void*, uint32_t*, uint32_t);
  probe ReleaseIntArrayElements-return();
  probe ReleaseLongArrayElements-entry(void*, void*, uintptr_t*, uint32_t);
  probe ReleaseLongArrayElements-return();
  probe ReleaseObjectArrayElements-entry(void*, void*, void**, uint32_t);
  probe ReleaseObjectArrayElements-return();
  probe Releasey(void*, void*, void*, uint32_t);
  probe ReleasePrimitiveArrayCritical-return();
  probe ReleaseShortArrayElements-entry(void*, void*, uint16_t*, uint32_t);
  probe ReleaseShortArrayElements-return();
  probe ReleaseStringChars-entry(void*, void*, const uint16_t*);
  probe ReleaseStringChars-return();
  probe ReleaseStringCritical-entry(void*, void*, const uint16_t*);
  probe ReleaseStringCritical-return();
  probe ReleaseStringUTFChars-entry(void*, void*, const char*);
  probe ReleaseStringUTFChars-return();
  probe SetBooleanArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, const 
uintptr_t*);
  probe SetBooleanArrayRegion-return();
  probe SetBooleanField-entry(void*, void*, uintptr_t, uintptr_t);
  probe SetBooleanField-return();
  probe SetByteArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, const 
char*);
  probe SetByteArrayRegion-return();
  probe SetByteField-entry(void*, void*, uintptr_t, char);
  probe SetByteField-return();
  probe SetCharArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, const 
uint16_t*);
  probe SetCharArrayRegion-return();
  probe SetCharField-entry(void*, void*, uintptr_t, uint16_t);
  probe SetCharField-return();
  probe SetDoubleArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, const 
double*);
  probe SetDoubleArrayRegion-return();
  probe SetDoubleField-entry(void*, void*, uintptr_t, double);
  probe SetDoubleField-return();
  probe SetFloatArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, const 
float*);
  probe SetFloatArrayRegion-return();
  probe SetFloatField-entry(void*, void*, uintptr_t, float);
  probe SetFloatField-return();
  probe SetIntArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, const 
uint32_t*);
  probe SetIntArrayRegion-return();
  probe SetIntField-entry(void*, void*, uintptr_t, uint32_t);
  probe SetIntField-return();
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  probe SetLongArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, const 
uintptr_t*);
  probe SetLongArrayRegion-return();
  probe SetLongField-entry(void*, void*, uintptr_t, uintptr_t);
  probe SetLongField-return();
  probe SetObjectArrayElement-entry(void*, void*, uintptr_t, void*);
  probe SetObjectArrayElement-return();
  probe SetObjectField-entry(void*, void*, uintptr_t, void*);
  probe SetObjectField-return();
  probe SetShortArrayRegion-entry(void*, void*, uintptr_t, uintptr_t, const 
uint16_t*);
  probe SetShortArrayRegion-return();
  probe SetShortField-entry(void*, void*, uintptr_t, uint16_t);
  probe SetShortField-return();
  probe SetStaticBooleanField-entry(void*, void*, uintptr_t, uintptr_t);
  probe SetStaticBooleanField-return();
  probe SetStaticByteField-entry(void*, void*, uintptr_t, char);
  probe SetStaticByteField-return();
  probe SetStaticCharField-entry(void*, void*, uintptr_t, uint16_t);
  probe SetStaticCharField-return();
  probe SetStaticDoubleField-entry(void*, void*, uintptr_t, double);
  probe SetStaticDoubleField-return();
  probe SetStaticFloatField-entry(void*, void*, uintptr_t, float);
  probe SetStaticFloatField-return();
  probe SetStaticIntField-entry(void*, void*, uintptr_t, uint32_t);
  probe SetStaticIntField-return();
  probe SetStaticLongField-entry(void*, void*, uintptr_t, uintptr_t);
  probe SetStaticLongField-return();
  probe SetStaticObjectField-entry(void*, void*, uintptr_t, void*);
  probe SetStaticObjectField-return();
  probe SetStaticShortField-entry(void*, void*, uintptr_t, uint16_t);
  probe SetStaticShortField-return();
  probe Throw-entry(void*, void*);
  probe ThrowNew-entry(void*, void*, const char*);  
  probe ThrowNew-return(uint32_t);
  probe Throw-return(uint32_t);
  probe ToReflectedField-entry(void*, void*, uintptr_t, uintptr_t);
  probe ToReflectedField-return(void*);
  probe ToReflectedMethod-entry(void*, void*, uintptr_t, uintptr_t);
  probe ToReflectedMethod-return(void*);
  probe UnregisterNatives-entry(void*, void*);  
  probe UnregisterNatives-return(uint32_t);
};
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11
Fatal Error Reporting

Fatal errors are errors such as native memory exhaustion, memory access errors, or explicit
signals directed to the process. Fatal errors can be triggered by native code within the
application (for example, developer-written Java Native Interface (JNI) code), by third-party
native libraries that the are used by application or the JVM, or by native code in the JVM. If a
fatal error causes the process that is hosting the JVM to terminate, the JVM gathers
information about the error and writes a crash report.

The JVM tries to identify the nature and location of the error. If possible, the JVM writes
detailed information about the state of the JVM and the process, at the time of the crash. The
details that are available can depend on the platform and the nature of the crash. The
information that is provided by this error-reporting mechanism lets you debug your application
more easily and efficiently, and helps you identify issues in third-party code. When an error
message indicates a problem in the JVM code, you can submit a more accurate and helpful
bug report. In some cases, crash report generation causes secondary errors that prevent full
details from being reported.

Error Report Example
The following example shows the start of an error report (file hs_err_pid18240.log) for a
crash in the native JNI code for an application:

#
# A fatal error has been detected by the Java Runtime Environment:
#
#  SIGSEGV (0xb) at pc=0x00007f0f159f857d, pid=18240, tid=18245
#
# JRE version: Java(TM) SE Runtime Environment (9.0+167) (build 9-ea+167)
# Java VM: Java HotSpot(TM) 64-Bit Server VM (9-ea+167, mixed mode, tiered, 
compressed oops, g1 gc, linux-amd64)
# Problematic frame:
# C  [libMyApp.so+0x57d]  Java_MyApp_readData+0x11
#
# Core dump will be written. Default location: /cores/core.18240)
#
# If you would like to submit a bug report, please visit:
#   http://bugreport.java.com/bugreport/crash.jsp
# The crash happened outside the Java Virtual Machine in native code.
# See problematic frame for where to report the bug.
#

---------------  S U M M A R Y ------------

Command Line: MyApp

Host: Intel(R) Xeon(R) CPU           X5675  @ 3.07GHz, 24 cores, 141G, Ubuntu 
12.04 LTS
Time: Fri Apr 28 02:57:13 2017 EDT elapsed time: 2 seconds (0d 0h 0m 2s)
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---------------  T H R E A D  ---------------

Current thread (0x00007f102c013000):  JavaThread "main" [_thread_in_native, 
id=18245, stack(0x00007f10345c0000,0x00007f10346c0000)]

Stack: [0x00007f10345c0000,0x00007f10346c0000],  sp=0x00007f10346be930,  free 
space=1018k
Native frames: (J=compiled Java code, A=aot compiled Java code, 
j=interpreted, Vv=VM code, C=native code)
C  [libMyApp.so+0x57d]  Java_MyApp_readData+0x11
j  MyApp.readData()I+0
j  MyApp.main([Ljava/lang/String;)V+15
v  ~StubRoutines::call_stub
V  [libjvm.so+0x839eea]  JavaCalls::call_helper(JavaValue*, methodHandle 
const&, JavaCallArguments*, Thread*)+0x47a
V  [libjvm.so+0x896fcf]  jni_invoke_static(JNIEnv_*, JavaValue*, _jobject*, 
JNICallType, _jmethodID*, JNI_ArgumentPusher*, Thread*) [clone .isra.90]+0x21f
V  [libjvm.so+0x8a7f1e]  jni_CallStaticVoidMethod+0x14e
C  [libjli.so+0x4142]  JavaMain+0x812
C  [libpthread.so.0+0x7e9a]  start_thread+0xda

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
j  MyApp.readData()I+0
j  MyApp.main([Ljava/lang/String;)V+15
v  ~StubRoutines::call_stub

siginfo: si_signo: 11 (SIGSEGV), si_code: 1 (SEGV_MAPERR), si_addr: 
0x0000000000000000
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12
Java Virtual Machine Related Resources

The following related links are related to the JVM.

• java.lang.invoke package documentation

• The Da Vinci Machine Project

Tools
You can control some operating characteristics of the Java HotSpot VM by using command-
line flags. For more information about the Java application launcher, see The java Command in
the Java Development Kit Tool Specifications.
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