Rate this Page

PyTorch: Tensors#

Created On: Dec 03, 2020 | Last Updated: Sep 29, 2025 | Last Verified: Nov 05, 2024

A third order polynomial, trained to predict \(y=\sin(x)\) from \(-\pi\) to \(\pi\) by minimizing squared Euclidean distance.

This implementation uses PyTorch tensors to manually compute the forward pass, loss, and backward pass.

A PyTorch Tensor is basically the same as a numpy array: it does not know anything about deep learning or computational graphs or gradients, and is just a generic n-dimensional array to be used for arbitrary numeric computation.

The biggest difference between a numpy array and a PyTorch Tensor is that a PyTorch Tensor can run on either CPU or GPU. To run operations on the GPU, just cast the Tensor to a cuda datatype.

99 1162.708740234375
199 796.9078369140625
299 547.6904907226562
399 377.70660400390625
499 261.6330261230469
599 182.28121948242188
699 127.97107696533203
799 90.75730895996094
899 65.22895050048828
999 47.69671630859375
1099 35.642417907714844
1199 27.345149993896484
1299 21.62775230407715
1399 17.68368148803711
1499 14.960031509399414
1599 13.077188491821289
1699 11.774267196655273
1799 10.871729850769043
1899 10.245935440063477
1999 9.811614990234375
Result: y = 0.029132110998034477 + 0.8417767882347107 x + -0.005025772377848625 x^2 + -0.09120187908411026 x^3

import torch
import math


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)

learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    if t % 100 == 99:
        print(t, loss)

    # Backprop to compute gradients of a, b, c, d with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()

    # Update weights using gradient descent
    a -= learning_rate * grad_a
    b -= learning_rate * grad_b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d


print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

Total running time of the script: (0 minutes 0.220 seconds)