Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Traumatic spinal cord injury

Abstract

Traumatic spinal cord injury (SCI) has devastating consequences for the physical, social and vocational well-being of patients. The demographic of SCIs is shifting such that an increasing proportion of older individuals are being affected. Pathophysiologically, the initial mechanical trauma (the primary injury) permeabilizes neurons and glia and initiates a secondary injury cascade that leads to progressive cell death and spinal cord damage over the subsequent weeks. Over time, the lesion remodels and is composed of cystic cavitations and a glial scar, both of which potently inhibit regeneration. Several animal models and complementary behavioural tests of SCI have been developed to mimic this pathological process and form the basis for the development of preclinical and translational neuroprotective and neuroregenerative strategies. Diagnosis requires a thorough patient history, standardized neurological physical examination and radiographic imaging of the spinal cord. Following diagnosis, several interventions need to be rapidly applied, including haemodynamic monitoring in the intensive care unit, early surgical decompression, blood pressure augmentation and, potentially, the administration of methylprednisolone. Managing the complications of SCI, such as bowel and bladder dysfunction, the formation of pressure sores and infections, is key to address all facets of the patient's injury experience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

£ 29.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of the spinal column.
Figure 2: Annual incidence of spinal cord injury across reported countries, states or provinces and regions.
Figure 3: Pathophysiology of traumatic spinal cord injury.
Figure 4: Cervical and high thoracic spinal cord injuries disrupt the outflow of the sympathetic nervous system.
Figure 5: Spinal cord injury syndromes.
Figure 6: Surgical decompression and realignment of the injured spinal cord.
Figure 7: Post-spinal cord injury syrinx.

Similar content being viewed by others

References

  1. Noonan, V. K., Dvorak, M. F. & Fehlings, M. G. in Critical Care in Spinal Cord Injury (ed. Fehlings, M. G. ) 6–20 (Future Medicine Ltd, 2013).

    Google Scholar 

  2. [No authors listed.] Spinal cord injury facts and figures at a glance. J. Spinal Cord Med. 37, 117–118 (2014).

  3. Singh, A., Tetreault, L., Kalsi-Ryan, S., Nouri, A. & Fehlings, M. G. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6, 309–331 (2014). A comprehensive overview of the global epidemiology of traumatic SCI divided by data available from geographical regions.

    Google Scholar 

  4. Cripps, R. A. et al. A global map for traumatic spinal cord injury epidemiology: towards a living data repository for injury prevention. Spinal Cord 49, 493–501 (2011).

    Google Scholar 

  5. Noonan, V. K. et al. Incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology 38, 219–226 (2012).

    Google Scholar 

  6. New, P. W., Farry, A., Baxter, D. & Noonan, V. K. Prevalence of non-traumatic spinal cord injury in Victoria, Australia. Spinal Cord 51, 99–102 (2013).

    Google Scholar 

  7. Chen, Y., He, Y. & DeVivo, M. J. Changing demographics and injury profile of new traumatic spinal cord injuries in the United States, 1972–2014. Arch. Phys. Med. Rehabil. 97, 1610–1619 (2016). A cross-sectional analysis of longitudinal data that highlights key trends in the demographics of individuals with traumatic SCIs.

    Google Scholar 

  8. van den Berg, M. E., Castellote, J. M., Mahillo-Fernandez, I. & de Pedro-Cuesta, J. Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology 34, 184–192 (2010).

    Google Scholar 

  9. Lenehan, B. et al. The epidemiology of traumatic spinal cord injury in British Columbia, Canada. Spine 37, 321–329 (2012).

    Google Scholar 

  10. Devivo, M. J. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 50, 365–372 (2012).

    Google Scholar 

  11. DeVivo, M. J. & Chen, Y. Trends in new injuries, prevalent cases, and aging with spinal cord injury. Arch. Phys. Med. Rehabil. 92, 332–338 (2011).

    Google Scholar 

  12. Wu, J. C. et al. Effects of age, gender, and socio-economic status on the incidence of spinal cord injury: an assessment using the eleven-year comprehensive nationwide database of Taiwan. J. Neurotrauma 29, 889–897 (2012).

    Google Scholar 

  13. Wu, J. C. et al. Epidemiology of cervical spondylotic myelopathy and its risk of causing spinal cord injury: a national cohort study. Neurosurg. Focus 35, E10 (2013).

    Google Scholar 

  14. Krause, J., Sternberb, M., Lottes, S. & Maides, J. Mortality after spinal cord injury: an 11-year prospective study. Arch. Phys. Med. Rehabil. 78, 815–821 (1997).

    Google Scholar 

  15. LaPlaca, M. C., Simon, C. M., Prado, G. R. & Cullen, D. K. CNS injury biomechanics and experimental models. Prog. Brain Res. 161, 13–26 (2007).

    Google Scholar 

  16. Choo, A. M. et al. Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J. Neurosurg. Spine 6, 255–266 (2007).

    Google Scholar 

  17. Pineau, I. & Lacroix, S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J. Comp. Neurol. 500, 267–285 (2007).

    Google Scholar 

  18. Schanne, F. A., Kane, A. B., Young, E. E. & Farber, J. L. Calcium dependence of toxic cell death: a final common pathway. Science 206, 700–702 (1979).

    Google Scholar 

  19. Kwon, B. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 4, 451–464 (2004).

    Google Scholar 

  20. Dizdaroglu, M., Jaruga, P., Birincioglu, M. & Rodriguez, H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32, 1102–1115 (2002).

    Google Scholar 

  21. Hausmann, O. N. Post-traumatic inflammation following spinal cord injury. Spinal Cord 41, 369–378 (2003).

    Google Scholar 

  22. Liu, M. et al. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J. Spinal Cord Med. 38, 745–753 (2015).

    Google Scholar 

  23. Wang, Y. et al. Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 266, 91–101 (2014).

    Google Scholar 

  24. Li, S., Mealing, G. A., Morley, P. & Stys, P. K. Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J. Neurosci. 19, RC16 (1999).

    Google Scholar 

  25. Li, S. & Stys, P. K. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J. Neurosci. 20, 1190–1198 (2000).

    Google Scholar 

  26. Norenberg, M. D., Smith, J. & Marcillo, A. The pathology of human spinal cord injury: defining the problems. J. Neurotrauma 21, 429–440 (2004).

    Google Scholar 

  27. Tator, C. H. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 5, 407–413 (1995).

    Google Scholar 

  28. Milhorat, T. H., Capocelli, A. L., Anzil, A. P., Kotzen, R. M. & Milhorat, R. H. Pathological basis of spinal cord cavitation in syringomyelia: analysis of 105 autopsy cases. J. Neurosurg. 82, 802–812 (1995).

    Google Scholar 

  29. McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).

    Google Scholar 

  30. Ahuja, C. S., Martin, A. R. & Fehlings, M. Recent advances in managing a spinal cord injury secondary to trauma. F1000Res. 5 (F1000 Faculty Rev), 1017 (2016).

    Google Scholar 

  31. Cregg, J. M. et al. Functional regeneration beyond the glial scar. Exp. Neurol. 253, 197–207 (2014).

    Google Scholar 

  32. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004). An in-depth review of the glial scar, ECM proteoglycans and the behaviour of regenerating neurons in the injured CNS microenvironment.

    Google Scholar 

  33. Wanner, I. B. et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 33, 12870–12886 (2013).

    Google Scholar 

  34. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    Google Scholar 

  35. Rolls, A., Shechter, R. & Schwartz, M. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 10, 235–241 (2009).

    Google Scholar 

  36. Filbin, M. T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4, 703–713 (2003).

    Google Scholar 

  37. Forgione, N. & Fehlings, M. G. Rho–ROCK inhibition in the treatment of spinal cord injury. World Neurosurg. 82, e535–e539 (2014).

    Google Scholar 

  38. Lee, J. K. et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 66, 663–670 (2010).

    Google Scholar 

  39. Geoffroy, C. G. & Zheng, B. Myelin-associated inhibitors in axonal growth after CNS injury. Curr. Opin. Neurobiol. 27, 31–38 (2014).

    Google Scholar 

  40. Fehlings, M. G. & Tator, C. H. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp. Neurol. 132, 220–228 (1995).

    Google Scholar 

  41. Tator, C. H. & Fehlings, M. G. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 75, 15–26 (1991).

    Google Scholar 

  42. Kotter, M. R., Li, W. W., Zhao, C. & Franklin, R. J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006).

    Google Scholar 

  43. Syed, Y. A. et al. Antibody-mediated neutralization of myelin-associated EphrinB3 accelerates CNS remyelination. Acta Neuropathol. 131, 281–298 (2016).

    Google Scholar 

  44. Kotter, M. R., Setzu, A., Sim, F. J., Van Rooijen, N. & Franklin, R. J. Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35, 204–212 (2001).

    Google Scholar 

  45. Bieber, A. J., Warrington, A., Pease, L. R. & Rodriguez, M. Humoral autoimmunity as a mediator of CNS repair. Trends Neurosci. 24, S39–S44 (2001).

    Google Scholar 

  46. Jeffery, N. D. & Blakemore, W. F. Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 120, 27–37 (1997).

    Google Scholar 

  47. Lynskey, J. V., Belanger, A. & Jung, R. Activity-dependent plasticity in spinal cord injury. J. Rehabil. Res. Dev. 45, 229–240 (2008).

    Google Scholar 

  48. Raineteau, O. & Schwab, M. E. Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2, 263–273 (2001).

    Google Scholar 

  49. Meletis, K. et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 6, e182 (2008).

    Google Scholar 

  50. Barnabe-Heider, F. et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7, 470–482 (2010).

    Google Scholar 

  51. Mao, Y., Nguyen, T., Sutherland, T. & Gorrie, C. A. Endogenous neural progenitor cells in the repair of the injured spinal cord. Neural Regen. Res. 11, 1075–1076 (2016).

    Google Scholar 

  52. Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Google Scholar 

  53. Li, G. et al. Mdivi-1 inhibits astrocyte activation and astroglial scar formation and enhances axonal regeneration after spinal cord injury in rats. Front. Cell. Neurosci. 10, 241 (2016).

    Google Scholar 

  54. Tator, C. H. Review of treatment trials in human spinal cord injury. Neurosurgery 59, 957–987 (2006).

    Google Scholar 

  55. Zhang, N., Fang, M., Chen, H., Gou, F. & Ding, M. Evaluation of spinal cord injury animal models. Neural Regen. Res. 9, 2008–2012 (2014).

    Google Scholar 

  56. Nout, Y. S. et al. Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury. Neurotherapeutics 9, 380–392 (2012).

    Google Scholar 

  57. Kwon, B. K. et al. Large animal and primate models of spinal cord injury for the testing of novel therapies. Exp. Neurol. 269, 154–168 (2015).

    Google Scholar 

  58. Fisher, M. et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40, 2244–2250 (2009).

    Google Scholar 

  59. Tator, C. H. Acute spinal cord injury: a review of recent studies of treatment and pathophysiology. Can. Med. Assoc. J. 107, 143–145 (1972).

    Google Scholar 

  60. Wilson, J. R., Forgione, N. & Fehlings, M. G. Emerging therapies for acute traumatic spinal cord injury. CMAJ 185, 485–492 (2013).

    Google Scholar 

  61. Guha, A., Tator, C. H. & Rochon, J. Spinal cord blood flow and systemic blood pressure after experimental spinal cord injury in rats. Stroke 20, 372–377 (1989).

    Google Scholar 

  62. Guha, A. B. & Tator, C. H. Acute cardiovascular effects of experimental spinal cord injury. J. Trauma 28, 481–490 (1988).

    Google Scholar 

  63. Schwab, J. M., Zhang, Y., Kopp, M. A., Brommer, B. & Popovich, P. G. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp. Neurol. 258, 121–129 (2014).

    Google Scholar 

  64. Ko, H., Dittuno, J., Graziani, V. & Little, J. The pattern of reflex recovery during spinal shock. Spinal Cord 37, 402–409 (1999).

    Google Scholar 

  65. Ploumis, A., Yadlapalli, N., Fehlings, M. G., Kwon, B. K. & Vaccaro, A. R. A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord 48, 356–362 (2010).

    Google Scholar 

  66. Lehmann, K. G., Lane, J. G., Piepmeier, J. M. & Batsford, W. P. Cardiovascular abnormalities accompanying acute spinal cord injury in humans: incidence, time course and severity. J. Am. Coll. Cardiol. 10, 46–52 (1987).

    Google Scholar 

  67. Guly, H. R., Bouamra, O., Lecky, F. E. & Trauma Audit and Research Network. The incidence of neurogenic shock in patients with isolated spinal cord injury in the emergency department. Resuscitation 76, 57–62 (2008).

    Google Scholar 

  68. Acheson, M., Livingston, R., Richardson, M. & Stimac, G. High-resolution CT scanning in the evaluation of cervical spine fractures: comparison with plain film examinations. AJR Am. J. Roentgenol. 148, 1179–1185 (1987).

    Google Scholar 

  69. Woodring, J. & Lee, C. Limitations of cervical radiography in the evaluation of acute cervical trauma. J. Trauma 34, 32–39 (1993).

    Google Scholar 

  70. Vaccaro, A. R. et al. AOSpine subaxial cervical spine injury classification system. Eur. Spine J. 25, 2173–2184 (2016).

    Google Scholar 

  71. Vaccaro, A. R. et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 38, 2028–2037 (2013).

    Google Scholar 

  72. Lammertse, D. et al. Neuroimaging in traumatic spinal cord injury: an evidence-based review for clinical practice and research. J. Spinal Cord Med. 30, 205–214 (2007).

    Google Scholar 

  73. Miyanji, F., Furlan, J., Aarabi, B., Arnold, P. & Fehlings, M. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome — prospective study with 100 consecutive patients. Radiology 243, 820–827 (2007).

    Google Scholar 

  74. Vaccaro, A. R. et al. Magnetic resonance evaluation of the intervertebral disc, spinal ligaments, and spinal cord before and after closed traction reduction of cervical spine dislocations. Spine 24, 1210–1217 (1999).

    Google Scholar 

  75. Nakashima, H. et al. Posterior approach for cervical fracture-dislocations with traumatic disc herniation. Eur. Spine J. 20, 387–394 (2011).

    Google Scholar 

  76. Resnick, D. K. Updated guidelines for the management of acute cervical spine and spinal cord injury. Neurosurgery 72 (Suppl. 3), 1 (2013). Widely accepted guidelines by the AANS/CNS for the management of acute cervical SCIs.

    Google Scholar 

  77. Cadotte, D. W. & Fehlings, M. G. Will imaging biomarkers transform spinal cord injury trials? Lancet Neurol. 12, 843–844 (2013).

    Google Scholar 

  78. Curt, A. & Dietz, V. Electrophysiological recordings in patients with spinal cord injury: significance for predicting outcome. Spinal Cord 37, 157–165 (1999).

    Google Scholar 

  79. Curt, A., Van Hedel, H. J., Klaus, D., Dietz, V. & Group, E.-S. S. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J. Neurotrauma 25, 677–685 (2008).

    Google Scholar 

  80. Kirshblum, S. C. et al. Reference for the 2011 revision of the International Standards for Neurological Classification of Spinal Cord Injury. J. Spinal Cord Med. 34, 547–554 (2011). The updated ISNCSCI for the assessment and reassessment of patients with traumatic SCI.

    Google Scholar 

  81. American Spinal Injury Association. ISNCSCI worksheet. ASIAhttp://asia-spinalinjury.org/information/downloads/ (2000).

  82. Marino, R. J., Jones, L., Kirshblum, S., Tal, J. & Dasgupta, A. Reliability and repeatability of the motor and sensory examination of the international standards for neurological classification of spinal cord injury. J. Spinal Cord Med. 31, 166–170 (2008).

    Google Scholar 

  83. Savic, G., Bergstrom, E. M., Frankel, H. L., Jamous, M. A. & Jones, P. W. Inter-rater reliability of motor and sensory examinations performed according to American Spinal Injury Association standards. Spinal Cord 45, 444–451 (2007).

    Google Scholar 

  84. Sherwood, A. M., Dimitrijevic, M. R. & McKay, W. B. Evidence of subclinical brain influence in clinically complete spinal cord injury: discomplete SCI. J. Neurol. Sci. 110, 90–98 (1992).

    Google Scholar 

  85. Schneider, R. C., Cherry, G. & Pantek, H. The syndrome of acute central cervical spinal cord injury; with special reference to the mechanisms involved in hyperextension injuries of cervical spine. J. Neurosurg. 11, 546–577 (1954).

    Google Scholar 

  86. Fehlings, M. G. et al. The aging of the global population: the changing epidemiology of disease and spinal disorders. Neurosurgery 77, S1–S5 (2015).

    Google Scholar 

  87. McKinley, W., Santos, K., Meade, M. & Brooke, K. Incidence and outcomes of spinal cord injury clinical syndromes. J. Spinal Cord Med. 30, 215–224 (2007).

    Google Scholar 

  88. Burns, A. & Ditunno, J. Establishing prognosis and maximizing functional outcomes after spinal cord injury. Spine 26, S137–S145 (2001).

    Google Scholar 

  89. Kirshblum, S., Millis, S., McKinley, W. & Tulsky, D. Late neurologic recovery after traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 85, 1811–1817 (2004).

    Google Scholar 

  90. Fawcett, J. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic trials. Spinal Cord 45, 190–205 (2007).

    Google Scholar 

  91. Marino, R., Dittuno, J., Donovan, W. & Maynard, F. Neurologic recovery after traumatic spinal cord injury: data from the model spinal cord injury systems. Arch. Phys. Med. Rehabil. 80, 1391–1396 (1999).

    Google Scholar 

  92. Waters, R., Yakura, J., Adkins, R. & Sie, I. Recovery following complete paraplegia. Arch. Phys. Med. Rehabil. 73, 784–789 (1992).

    Google Scholar 

  93. Coleman, W. & Geisler, F. Injury severity as primary predictor of outcome in acute spinal cord injury: retrospective results from a large multicenter clinical trial. Spine J. 4, 373–378 (2004).

    Google Scholar 

  94. Kay, E., Deutsch, A. & Wuermser, L. Predicting walking at discharge from inpatient rehabilitation after a traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 88, 745–750 (2007).

    Google Scholar 

  95. van Middendorp, J. J. et al. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet 377, 1004–1010 (2011). A clinical prediction rule for ambulation at 1 year post-SCI based on age, ASIA motor scores and sensory function in the subacute (within 15 days) injury period.

    Google Scholar 

  96. Wilson, J. R. et al. A clinical prediction model for long-term functional outcome after traumatic spinal cord injury based on acute clinical and imaging factors. J. Neurotrauma 29, 2263–2271 (2012).

    Google Scholar 

  97. Pavese, C. et al. Prediction of bladder outcomes after traumatic spinal cord injury: a longitudinal cohort study. PLoS Med. 13, e1002041 (2016).

    Google Scholar 

  98. Ryken, T. C. et al. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery 72 (Suppl. 2), 84–92 (2013).

    Google Scholar 

  99. Braughler, J. & Hall, E. Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. J. Neurosurg. 61, 290–295 (1984).

    Google Scholar 

  100. Hall, E. D. & Braughler, J. M. Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg. Neurol. 18, 320–327 (1982).

    Google Scholar 

  101. Hall, E. D. & Braughler, J. M. Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and Na+ + K+)-ATPase activity. Dose–response analysis during 1st hour after contusion injury in the cat. J. Neurosurg. 57, 247–253 (1982).

    Google Scholar 

  102. Bracken, M. et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277, 1597–1604 (1997).

    Google Scholar 

  103. Bracken, M. B. et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N. Engl. J. Med. 322, 1405–1411 (1990).

    Google Scholar 

  104. Bracken, M. B. et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251, 45–52 (1984).

    Google Scholar 

  105. Bracken, M. B. Steroids for acute spinal cord injury. Cochrane Database Syst. Rev. 18, CD001046 (2012). A systematic review and meta-analysis of the best-available randomized trials that assess steroid therapy for acute traumatic SCI.

    Google Scholar 

  106. Eck, J. C., Nachtigall, D., Humphreys, S. C. & Hodges, S. D. Questionnaire survey of spine surgeons on the use of methylprednisolone for acute spinal cord injury. Spine 31, E250–E253 (2006).

    Google Scholar 

  107. Hurlbert, R. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J. Neurosurg. Spine 93, 1–7 (2000).

    Google Scholar 

  108. Hurlbert, R. J. et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery 72 (Suppl. 2), 93–105 (2013).

    Google Scholar 

  109. Hadley, M. et al. Pharmacological therapy after acute cervical spinal cord injury. Neurosurgery 50, 563–572 (2002).

    Google Scholar 

  110. Fehlings, M. G., Wilson, J. R. & Cho, N. Methylprednisolone for the treatment of acute spinal cord injury: counterpoint. Neurosurgery 61 (Suppl. 1), 36–42 (2014).

    Google Scholar 

  111. Hurlbert, R. J. Methylprednisolone for the treatment of acute spinal cord injury: point. Neurosurgery 61 (Suppl. 1), 32–35 (2014).

    Google Scholar 

  112. Carlson, G. D. et al. Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. J. Neurotrauma 14, 951–962 (1997).

    Google Scholar 

  113. Dimar, J., Glassman, S., Raque, G., Zhang, Y. & Shields, C. The influence of spinal canal narrowing and timing of decompression on neurologic recovery after spinal cord contusion in a rat model. Spine 24, 1623–1633 (1999).

    Google Scholar 

  114. Batchelor, P. E. et al. Meta-analysis of pre-clinical studies of early decompression in acute spinal cord injury: a battle of time and pressure. PLoS ONE 8, e72659 (2013).

    Google Scholar 

  115. Wilson, J. R. et al. Early versus late surgery for traumatic spinal cord injury: the results of a prospective Canadian cohort study. Spinal Cord 50, 840–843 (2012).

    Google Scholar 

  116. Bourassa-Moreau, E., Mac-Thiong, J. M., Feldman, D. E., Thompson, C. & Parent, S. Non-neurological outcomes after complete traumatic spinal cord injury: the impact of surgical timing. J. Neurotrauma 30, 1596–1601 (2013).

    Google Scholar 

  117. Grassner, L. et al. Early decompression (<8 h) after traumatic cervical spinal cord injury improves functional outcome as assessed by spinal cord independence measure after one year. J. Neurotrauma 33, 1658–1666 (2016).

    Google Scholar 

  118. Fehlings, M., Rabin, D., Sears, W., Cadotte, D. & Aarabi, B. Current practice in the timing of surgical intervention in spinal cord injury. Spine 35, 166–173 (2010).

    Google Scholar 

  119. Brodbelt, A. R. & Stoodley, M. A. Post-traumatic syringomyelia: a review. J. Clin. Neurosci. 10, 401–408 (2003).

    Google Scholar 

  120. Schurch, B., Wichmann, W. & Rossier, A. B. Post-traumatic syringomyelia (cystic myelopathy): a prospective study of 449 patients with spinal cord injury. J. Neurol. Neurosurg. Psychiatry 60, 61–67 (1996).

    Google Scholar 

  121. Alpert, S. W., Koval, K. J. & Zuckerman, J. D. Neuropathic arthropathy: review of current knowledge. J. Am. Acad. Orthop. Surg. 4, 100–108 (1996).

    Google Scholar 

  122. Aebli, N., Potzel, T. & Krebs, J. Characteristics and surgical management of neuropathic (Charcot) spinal arthropathy after spinal cord injury. Spine J. 14, 884–891 (2014).

    Google Scholar 

  123. Adams, M. M. & Hicks, A. L. Spasticity after spinal cord injury. Spinal Cord 43, 577–586 (2005).

    Google Scholar 

  124. Sezer, N., Akkus, S. & Ugurlu, F. G. Chronic complications of spinal cord injury. World J. Orthop. 6, 24–33 (2015).

    Google Scholar 

  125. Claydon, V. E., Steeves, J. D. & Krassioukov, A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord 44, 341–351 (2006).

    Google Scholar 

  126. Krassioukov, A., Eng, J. J., Warburton, D. E., Teasell, R. & Spinal Cord Injury Rehabilitation Evidence Research Team. A systematic review of the management of orthostatic hypotension after spinal cord injury. Arch. Phys. Med. Rehabil. 90, 876–885 (2009).

    Google Scholar 

  127. Krassioukov, A., Warburton, D. E., Teasell, R. & Eng, J. J. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch. Phys. Med. Rehabil. 90, 682–695 (2009).

    Google Scholar 

  128. Blackmer, J. Rehabilitation medicine: 1. Autonomic dysreflexia. CMAJ 169, 931–935 (2003).

    Google Scholar 

  129. Linn, W. S., Adkins, R. H., Gong, H. Jr & Waters, R. L. Pulmonary function in chronic spinal cord injury: a cross-sectional survey of 222 southern California adult outpatients. Arch. Phys. Med. Rehabil. 81, 757–763 (2000).

    Google Scholar 

  130. Brown, R., DiMarco, A. F., Hoit, J. D. & Garshick, E. Respiratory dysfunction and management in spinal cord injury. Respir. Care 51, 853–868 (2006).

    Google Scholar 

  131. Winslow, C. & Rozovsky, J. Effect of spinal cord injury on the respiratory system. Am. J. Phys. Med. Rehabil. 82, 803–814 (2003).

    Google Scholar 

  132. DeVivo, M. J., Black, K. J. & Stover, S. L. Causes of death during the first 12 years after spinal cord injury. Arch. Phys. Med. Rehabil. 74, 248–254 (1993).

    Google Scholar 

  133. Brommer, B. et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain 139, 692–707 (2016).

    Google Scholar 

  134. Ulndreaj, A., Chio, J. C., Ahuja, C. S. & Fehlings, M. G. Modulating the immune response in spinal cord injury. Expert Rev. Neurother. 16, 1127–1129 (2016).

    Google Scholar 

  135. Benevento, B. T. & Sipski, M. L. Neurogenic bladder, neurogenic bowel, and sexual dysfunction in people with spinal cord injury. Phys. Ther. 82, 601–612 (2002).

    Google Scholar 

  136. Taweel, W. A. & Seyam, R. Neurogenic bladder in spinal cord injury patients. Res. Rep. Urol. 7, 85–99 (2015).

    Google Scholar 

  137. Hess, M. J. & Hough, S. Impact of spinal cord injury on sexuality: broad-based clinical practice intervention and practical application. J. Spinal Cord Med. 35, 211–218 (2012).

    Google Scholar 

  138. Coggrave, M. J. & Norton, C. The need for manual evacuation and oral laxatives in the management of neurogenic bowel dysfunction after spinal cord injury: a randomized controlled trial of a stepwise protocol. Spinal Cord 48, 504–510 (2010).

    Google Scholar 

  139. Krassioukov, A., Eng, J. J., Claxton, G., Sakakibara, B. M. & Shum, S. Neurogenic bowel management after spinal cord injury: a systematic review of the evidence. Spinal Cord 48, 718–733 (2010).

    Google Scholar 

  140. Consortium for Spinal Cord Medicine Clinical Practice Guidelines. Pressure ulcer prevention and treatment following spinal cord injury: a clinical practice guideline for health-care professionals. J. Spinal Cord Med. 24, S40–S101 (2001).

    Google Scholar 

  141. van Kuijk, A. A., Geurts, A. C. & van Kuppevelt, H. J. Neurogenic heterotopic ossification in spinal cord injury. Spinal Cord 40, 313–326 (2002).

    Google Scholar 

  142. Rush, P. J. The rheumatic manifestations of traumatic spinal cord injury. Semin. Arthritis Rheum. 19, 77–89 (1989).

    Google Scholar 

  143. Cardenas, D. D. & Felix, E. R. Pain after spinal cord injury: a review of classification, treatment approaches, and treatment assessment. PM R 1, 1077–1090 (2009).

    Google Scholar 

  144. Gomara-Toldra, N., Sliwinski, M. & Dijkers, M. P. Physical therapy after spinal cord injury: a systematic review of treatments focused on participation. J. Spinal Cord Med. 37, 371–379 (2014).

    Google Scholar 

  145. Hwang, D. H. et al. Survival of neural stem cell grafts in the lesioned spinal cord is enhanced by a combination of treadmill locomotor training via insulin-like growth factor-1 signaling. J. Neurosci. 34, 12788–12800 (2014).

    Google Scholar 

  146. Dobkin, B. et al. Weight-supported treadmill versus over-ground training for walking after acute incomplete SCI. Neurology 66, 484–493 (2006).

    Google Scholar 

  147. Stiens, S. A., Kirshblum, S. C., Groah, S. L., McKinley, W. O. & Gittler, M. S. Spinal cord injury medicine. 4. Optimal participation in life after spinal cord injury: physical, psychosocial, and economic reintegration into the environment. Arch. Phys. Med. Rehabil. 83, S72–S81 (2002).

    Google Scholar 

  148. Ho, C. H. et al. Functional electrical stimulation and spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 25, 631–654 (2014).

    Google Scholar 

  149. Bhambhani, Y., Tuchak, C., Burnham, R., Jeon, J. & Maikala, R. Quadriceps muscle deoxygenation during functional electrical stimulation in adults with spinal cord injury. Spinal Cord 38, 630–638 (2000).

    Google Scholar 

  150. Kakebeeke, T. H. et al. Training and detraining of a tetraplegic subject: high-volume FES cycle training. Am. J. Phys. Med. Rehabil. 87, 56–64 (2008).

    Google Scholar 

  151. Ragnarsson, K. T. Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord 46, 255–274 (2008).

    Google Scholar 

  152. Tate, D. & Forchheimer, M. Review of cross-cultural issues related to quality of life after spinal cord injury. Top. Spinal Cord Inj. Rehabil. 20, 181–190 (2014).

    Google Scholar 

  153. Wilson, J. R., Hashimoto, R. E., Dettori, J. R. & Fehlings, M. G. Spinal cord injury and quality of life: a systematic review of outcome measures. Evid. Based Spine Care J. 2, 37–44 (2011).

    Google Scholar 

  154. Tulsky, D. S. et al. Overview of the Spinal Cord Injury–Quality of Life (SCI-QOL) measurement system. J. Spinal Cord Med. 38, 257–269 (2015).

    Google Scholar 

  155. Dijkers, M. Quality of life after spinal cord injury: a meta analysis of the effects of disablement components. Spinal Cord 35, 829–840 (1997). A meta-analysis of studies that assesses the relationship between QOL and disability, impairment and handicap.

    Google Scholar 

  156. Clayton, K. S. & Chubon, R. A. Factors associated with the quality of life of long-term spinal cord injured persons. Arch. Phys. Med. Rehabil. 75, 633–638 (1994).

    Google Scholar 

  157. Evans, R. L. et al. Quality of life after spinal cord injury: a literature critique and meta-analysis (1983–1992). J. Am. Paraplegia Soc. 17, 60–66 (1994).

    Google Scholar 

  158. Fuhrer, M. J., Rintala, D. H., Hart, K. A., Clearman, R. & Young, M. E. Relationship of life satisfaction to impairment, disability, and handicap among persons with spinal cord injury living in the community. Arch. Phys. Med. Rehabil. 73, 552–557 (1992).

    Google Scholar 

  159. Gerhart, K. A., Koziol-McLain, J., Lowenstein, S. R. & Whiteneck, G. G. Quality of life following spinal cord injury: knowledge and attitudes of emergency care providers. Ann. Emerg. Med. 23, 807–812 (1994).

    Google Scholar 

  160. Krause, J. S. & Crewe, N. M. Chronologic age, time since injury, and time of measurement: effect on adjustment after spinal cord injury. Arch. Phys. Med. Rehabil. 72, 91–100 (1991).

    Google Scholar 

  161. Jain, N. B., Sullivan, M., Kazis, L. E., Tun, C. G. & Garshick, E. Factors associated with health-related quality of life in chronic spinal cord injury. Am. J. Phys. Med. Rehabil. 86, 387–396 (2007). A cross-sectional study that investigates the health-related QOL instrument and identifies potentially modifiable factors related to QOL in SCI.

    Google Scholar 

  162. Brillhart, B. & Johnson, K. Motivation and the coping process of adults with disabilities: a qualitative study. Rehabil. Nurs. 22, 249–256 (1997).

    Google Scholar 

  163. Siosteen, A., Lundqvist, C., Blomstrand, C., Sullivan, L. & Sullivan, M. The quality of life of three functional spinal cord injury subgroups in a Swedish community. Paraplegia 28, 476–488 (1990).

    Google Scholar 

  164. DeVivo, M. J. & Richards, J. S. Community reintegration and quality of life following spinal cord injury. Paraplegia 30, 108–112 (1992).

    Google Scholar 

  165. Saadat, S. et al. Health-related quality of life among individuals with long-standing spinal cord injury: a comparative study of veterans and non-veterans. BMC Public Health 10, 6 (2010).

    Google Scholar 

  166. Westgren, N. & Levi, R. Quality of life and traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 79, 1433–1439 (1998).

    Google Scholar 

  167. Bracken, M. B. et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277, 1597–1604 (1997).

    Google Scholar 

  168. Kwon, B. K. et al. Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J. Neurotrauma 27, 669–682 (2010).

    Google Scholar 

  169. Siddiqui, A. M., Khazaei, M. & Fehlings, M. G. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Prog. Brain Res. 218, 15–54 (2015).

    Google Scholar 

  170. Grossman, R. G., Toups, E. G., Frankowski, R. F., Burau, K. D. & Howley, S. North American Clinical Trials Network for the Treatment of Spinal Cord Injury: goals and progress. J. Neurosurg. Spine 17 (1 Suppl.), 6–10 (2012).

    Google Scholar 

  171. DeVivo, M. et al. International spinal cord injury core data set. Spinal Cord 44, 535–540 (2006).

    Google Scholar 

  172. DeVivo, M. J., Go, B. K. & Jackson, A. B. Overview of the national spinal cord injury statistical center database. J. Spinal Cord Med. 25, 335–338 (2002).

    Google Scholar 

  173. Ahuja, C. S. & Fehlings, M. Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl Med. 5, 914–924 (2016). A review of key neuroregenerative and neuroprotective interventions for traumatic SCI along the translational pipeline.

    Google Scholar 

  174. Wells, J., Hurlbert, R., Fehlings, M. & Yong, V. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126, 1628–1637 (2003).

    Google Scholar 

  175. Lee, S. M. et al. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J. Neurotrauma 20, 1017–1027 (2003).

    Google Scholar 

  176. Wilson, J. R. & Fehlings, M. G. Riluzole for acute traumatic spinal cord injury: a promising neuroprotective treatment strategy. World Neurosurg. 81, 825–829 (2013).

    Google Scholar 

  177. Grossman, R. G. et al. A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J. Neurotrauma 31, 239–255 (2014).

    Google Scholar 

  178. Santa-Olalla, J. & Covarrubias, L. Basic fibroblast growth factor promotes epidermal growth factor responsiveness and survival of mesencephalic neural precursor cells. J. Neurobiol. 40, 14–27 (1999).

    Google Scholar 

  179. Teng, Y. D., Mocchetti, I., Taveira-DaSilva, A. M., Gillis, R. A. & Wrathall, J. R. Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J. Neurosci. 19, 7037–7047 (1999).

    Google Scholar 

  180. Rabchevsky, A. G. et al. Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp. Neurol. 164, 280–291 (2000).

    Google Scholar 

  181. Batchelor, P. E. et al. Hypothermia prior to decompression: buying time for treatment of acute spinal cord injury. J. Neurotrauma 27, 1357–1368 (2010).

    Google Scholar 

  182. Levi, A. D. et al. Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery 66, 670–677 (2010).

    Google Scholar 

  183. Dergham, P., Ellezam, B. & Essagian, C. Rho signalling pathway targeted to promote spinal cord repair. J. Neurosci. 22, 6570–6577 (2002).

    Google Scholar 

  184. Kwon, B. K., Sekhon, L. H. & Fehlings, M. G. Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine 35, S263–S270 (2010).

    Google Scholar 

  185. Fehlings, M. G. et al. A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J. Neurotrauma 28, 787–796 (2011).

    Google Scholar 

  186. Freund, P. et al. Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey. J. Comp. Neurol. 502, 644–659 (2007).

    Google Scholar 

  187. Zorner, B. & Schwab, M. E. Anti-Nogo on the go: from animal models to a clinical trial. Ann. NY Acad. Sci. 1198 (Suppl. 1), E22–E34 (2010). A review of anti-Nogo therapy, which provides an example of the bench-to-bedside path for novel therapeutics.

    Google Scholar 

  188. Harrop, J. S. et al. Evaluation of clinical experience using cell-based therapies in patients with spinal cord injury: a systematic review. J. Neurosurg. Spine 17, 230–246 (2012).

    Google Scholar 

  189. Tetzlaff, W. et al. A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma 28, 1611–1682 (2011).

    Google Scholar 

  190. Khazaei, M., Ahuja, C. S. & Fehlings, M. G. Induced pluripotent stem cells for traumatic spinal cord injury. Front. Cell Dev. Biol. 4, 152 (2017).

    Google Scholar 

  191. Ramon-Cueto, A., Cordero, M. I., Santos-Benito, F. F. & Avila, J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25, 425–435 (2000).

    Google Scholar 

  192. Keyvan-Fouladi, N., Raisman, G. & Li, Y. Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J. Neurosci. 23, 9428–9434 (2003).

    Google Scholar 

  193. Pascual, J. I., Gudino-Cabrera, G., Insausti, R. & Nieto-Sampedro, M. Spinal implants of olfactory ensheathing cells promote axon regeneration and bladder activity after bilateral lumbosacral dorsal rhizotomy in the adult rat. J. Urol. 167, 1522–1526 (2002).

    Google Scholar 

  194. Li, Y., Decherchi, P. & Raisman, G. Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. J. Neurosci. 23, 727–731 (2003).

    Google Scholar 

  195. Boyd, J. G., Lee, J., Skihar, V., Doucette, R. & Kawaja, M. D. LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord. Proc. Natl Acad. Sci. USA 101, 2162–2166 (2004).

    Google Scholar 

  196. Li, J. & Lepski, G. Cell transplantation for spinal cord injury: a systematic review. Biomed. Res. Int. 2013, 786475 (2013).

    Google Scholar 

  197. Pastrana, E. et al. Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. J. Neurosci. 26, 5347–5359 (2006).

    Google Scholar 

  198. Guo, J. S. et al. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal Cord 45, 15–24 (2007).

    Google Scholar 

  199. Mackay-Sim, A. et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131, 2376–2386 (2008).

    Google Scholar 

  200. Dlouhy, B. J., Awe, O., Rao, R. C., Kirby, P. A. & Hitchon, P. W. Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient: case report. J. Neurosurg. Spine 21, 618–622 (2014).

    Google Scholar 

  201. Chhabra, H. S. et al. Autologous olfactory [corrected] mucosal transplant in chronic spinal cord injury: an Indian pilot study. Spinal Cord 47, 887–895 (2009).

    Google Scholar 

  202. Tabakow, P. et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 22, 1591–1612 (2013).

    Google Scholar 

  203. Hill, C. E., Moon, L. D., Wood, P. M. & Bunge, M. B. Labeled Schwann cell transplantation: cell loss, host Schwann cell replacement, and strategies to enhance survival. Glia 53, 338–343 (2006).

    Google Scholar 

  204. Li, L. et al. Effects of transplantation of olfactory ensheathing cells in chronic spinal cord injury: a systematic review and meta-analysis. Eur. Spine J. 24, 919–930 (2015). A meta-analysis that pools data from 1,193 patients receiving OEC transplants for chronic SCI.

    Google Scholar 

  205. Zhu, H. et al. Phase I–II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant. 25, 1925–1943(2016).

    Google Scholar 

  206. Harkema, S. et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377, 1938–1947 (2011).

    Google Scholar 

  207. Bachmann, L. C. et al. Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats. Sci. Transl Med. 5, 208ra146 (2013).

    Google Scholar 

  208. Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    Google Scholar 

  209. Zeilig, G. et al. Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J. Spinal Cord Med. 35, 96–101 (2012).

    Google Scholar 

  210. Miller, L. E., Zimmermann, A. K. & Herbert, W. G. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med. Devices (Auckl.) 9, 455–466 (2016).

    Google Scholar 

  211. Akhtar, A. Z., Pippin, J. J. & Sandusky, C. B. Animal models in spinal cord injury: a review. Rev. Neurosci. 19 47–60 (2008).

    Google Scholar 

  212. Basso, D. M. Behavioral testing after spinal cord injury: congruities, complexities, and controversies. J. Neurotrauma 21, 395–404 (2004).

    Google Scholar 

  213. Kwon, B. K., Oxland, T. R. & Tetzlaff, W. Animal models used in spinal cord regeneration research. Spine 27, 1504–1510 (2002). An overview of pertinent animal models and injury paradigms to study spinal cord regeneration.

    Google Scholar 

  214. Calancie, B., Molano, M. R. & Broton, J. G. EMG for assessing the recovery of voluntary movement after acute spinal cord injury in man. Clin. Neurophysiol. 115, 1748–1759 (2004).

    Google Scholar 

  215. Curt, A. & Dietz, V. Nerve conduction study in cervical spinal cord injury: significance for hand function. NeuroRehabilitation 7, 165–173 (1996).

    Google Scholar 

  216. Jacobs, S. R., Yeaney, N. K., Herbison, G. J. & Ditunno, J. F. Jr . Future ambulation prognosis as predicted by somatosensory evoked potentials in motor complete and incomplete quadriplegia. Arch. Phys. Med. Rehabil. 76, 635–641 (1995).

    Google Scholar 

  217. Ogura, T. et al. Sympathetic skin response in patients with spinal cord injury. J. Orthop. Surg. (Hong Kong) 12, 35–39 (2004).

    Google Scholar 

  218. Bradbury, E. J. & McMahon, S. B. Spinal cord repair strategies: why do they work? Nat. Rev. Neurosci. 7, 644–653 (2006).

    Google Scholar 

  219. Takahashi, H. et al. Neuroprotective therapy using granulocyte colony-stimulating factor for acute spinal cord injury: a phase I/IIa clinical trial. Eur. Spine J. 21, 2580–2587 (2012).

    Google Scholar 

  220. Kamiya, K. et al. Neuroprotective therapy with granulocyte colony-stimulating factor in acute spinal cord injury: a comparison with high-dose methylprednisolone as a historical control. Eur. Spine J. 24, 963–967 (2015).

    Google Scholar 

  221. Lo, T. P. Jr et al. Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J. Comp. Neurol. 514, 433–448 (2009).

    Google Scholar 

  222. Levi, A. D. et al. Clinical application of modest hypothermia after spinal cord injury. J. Neurotrauma 26, 407–415 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.G.F., C.S.A., J.R.W., S.N., M.R.N.K. and C.D.); Epidemiology (S.N., C.S.A., J.R.W., M.R.N.K. and C.D.); Mechanisms/pathophysiology (M.G.F., C.S.A., J.R.W. and S.N.); Diagnosis, screening and prevention (C.S.A., J.R.W., S.N. and A.C.); Management (M.G.F., C.S.A., J.R.W., M.R.N.K., C.D. and A.C.); Quality of life (S.N., C.S.A., J.R.W., M.R.N.K. and C.D.); Outlook (C.S.A., J.R.W., S.N., M.R.N.K. and A.C.); Overview of Primer (M.G.F.). Co-first authors C.S.A. and J.R.W. contributed equally to this work.

Corresponding author

Correspondence to Michael G. Fehlings.

Ethics declarations

Competing interests

M.G.F. has consulting agreements with Pfizer, Zimmer Biomed and InVivo therapeutics. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahuja, C., Wilson, J., Nori, S. et al. Traumatic spinal cord injury. Nat Rev Dis Primers 3, 17018 (2017). https://doi.org/10.1038/nrdp.2017.18

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing