Thanks to visit codestin.com
Credit goes to doxygen.postgresql.org

PostgreSQL Source Code git master
nbtree.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * nbtree.c
4 * Implementation of Lehman and Yao's btree management algorithm for
5 * Postgres.
6 *
7 * NOTES
8 * This file contains only the public interface routines.
9 *
10 *
11 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
12 * Portions Copyright (c) 1994, Regents of the University of California
13 *
14 * IDENTIFICATION
15 * src/backend/access/nbtree/nbtree.c
16 *
17 *-------------------------------------------------------------------------
18 */
19#include "postgres.h"
20
21#include "access/nbtree.h"
22#include "access/relscan.h"
23#include "access/stratnum.h"
24#include "commands/progress.h"
25#include "commands/vacuum.h"
26#include "nodes/execnodes.h"
27#include "pgstat.h"
28#include "storage/bulk_write.h"
30#include "storage/indexfsm.h"
31#include "storage/ipc.h"
32#include "storage/lmgr.h"
33#include "storage/read_stream.h"
34#include "utils/datum.h"
35#include "utils/fmgrprotos.h"
37#include "utils/memutils.h"
38
39
40/*
41 * BTPARALLEL_NOT_INITIALIZED indicates that the scan has not started.
42 *
43 * BTPARALLEL_NEED_PRIMSCAN indicates that some process must now seize the
44 * scan to advance it via another call to _bt_first.
45 *
46 * BTPARALLEL_ADVANCING indicates that some process is advancing the scan to
47 * a new page; others must wait.
48 *
49 * BTPARALLEL_IDLE indicates that no backend is currently advancing the scan
50 * to a new page; some process can start doing that.
51 *
52 * BTPARALLEL_DONE indicates that the scan is complete (including error exit).
53 */
54typedef enum
55{
62
63/*
64 * BTParallelScanDescData contains btree specific shared information required
65 * for parallel scan.
66 */
68{
69 BlockNumber btps_nextScanPage; /* next page to be scanned */
70 BlockNumber btps_lastCurrPage; /* page whose sibling link was copied into
71 * btps_nextScanPage */
72 BTPS_State btps_pageStatus; /* indicates whether next page is
73 * available for scan. see above for
74 * possible states of parallel scan. */
75 LWLock btps_lock; /* protects shared parallel state */
76 ConditionVariable btps_cv; /* used to synchronize parallel scan */
77
78 /*
79 * btps_arrElems is used when scans need to schedule another primitive
80 * index scan with one or more SAOP arrays. Holds BTArrayKeyInfo.cur_elem
81 * offsets for each = scan key associated with a ScalarArrayOp array.
82 */
84
85 /*
86 * Additional space (at the end of the struct) is used when scans need to
87 * schedule another primitive index scan with one or more skip arrays.
88 * Holds a flattened datum representation for each = scan key associated
89 * with a skip array.
90 */
92
94
95
97 BTScanOpaque so);
99 BTScanOpaque so);
100static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
101 IndexBulkDeleteCallback callback, void *callback_state,
102 BTCycleId cycleid);
105 IndexTuple posting,
106 OffsetNumber updatedoffset,
107 int *nremaining);
108
109
110/*
111 * Btree handler function: return IndexAmRoutine with access method parameters
112 * and callbacks.
113 */
114Datum
116{
118
120 amroutine->amsupport = BTNProcs;
121 amroutine->amoptsprocnum = BTOPTIONS_PROC;
122 amroutine->amcanorder = true;
123 amroutine->amcanorderbyop = false;
124 amroutine->amcanhash = false;
125 amroutine->amconsistentequality = true;
126 amroutine->amconsistentordering = true;
127 amroutine->amcanbackward = true;
128 amroutine->amcanunique = true;
129 amroutine->amcanmulticol = true;
130 amroutine->amoptionalkey = true;
131 amroutine->amsearcharray = true;
132 amroutine->amsearchnulls = true;
133 amroutine->amstorage = false;
134 amroutine->amclusterable = true;
135 amroutine->ampredlocks = true;
136 amroutine->amcanparallel = true;
137 amroutine->amcanbuildparallel = true;
138 amroutine->amcaninclude = true;
139 amroutine->amusemaintenanceworkmem = false;
140 amroutine->amsummarizing = false;
141 amroutine->amparallelvacuumoptions =
143 amroutine->amkeytype = InvalidOid;
144
145 amroutine->ambuild = btbuild;
146 amroutine->ambuildempty = btbuildempty;
147 amroutine->aminsert = btinsert;
148 amroutine->aminsertcleanup = NULL;
149 amroutine->ambulkdelete = btbulkdelete;
150 amroutine->amvacuumcleanup = btvacuumcleanup;
151 amroutine->amcanreturn = btcanreturn;
152 amroutine->amcostestimate = btcostestimate;
153 amroutine->amgettreeheight = btgettreeheight;
154 amroutine->amoptions = btoptions;
155 amroutine->amproperty = btproperty;
157 amroutine->amvalidate = btvalidate;
158 amroutine->amadjustmembers = btadjustmembers;
159 amroutine->ambeginscan = btbeginscan;
160 amroutine->amrescan = btrescan;
161 amroutine->amgettuple = btgettuple;
162 amroutine->amgetbitmap = btgetbitmap;
163 amroutine->amendscan = btendscan;
164 amroutine->ammarkpos = btmarkpos;
165 amroutine->amrestrpos = btrestrpos;
171
172 PG_RETURN_POINTER(amroutine);
173}
174
175/*
176 * btbuildempty() -- build an empty btree index in the initialization fork
177 */
178void
180{
181 bool allequalimage = _bt_allequalimage(index, false);
182 BulkWriteState *bulkstate;
183 BulkWriteBuffer metabuf;
184
186
187 /* Construct metapage. */
188 metabuf = smgr_bulk_get_buf(bulkstate);
189 _bt_initmetapage((Page) metabuf, P_NONE, 0, allequalimage);
190 smgr_bulk_write(bulkstate, BTREE_METAPAGE, metabuf, true);
191
192 smgr_bulk_finish(bulkstate);
193}
194
195/*
196 * btinsert() -- insert an index tuple into a btree.
197 *
198 * Descend the tree recursively, find the appropriate location for our
199 * new tuple, and put it there.
200 */
201bool
202btinsert(Relation rel, Datum *values, bool *isnull,
203 ItemPointer ht_ctid, Relation heapRel,
204 IndexUniqueCheck checkUnique,
205 bool indexUnchanged,
206 IndexInfo *indexInfo)
207{
208 bool result;
209 IndexTuple itup;
210
211 /* generate an index tuple */
212 itup = index_form_tuple(RelationGetDescr(rel), values, isnull);
213 itup->t_tid = *ht_ctid;
214
215 result = _bt_doinsert(rel, itup, checkUnique, indexUnchanged, heapRel);
216
217 pfree(itup);
218
219 return result;
220}
221
222/*
223 * btgettuple() -- Get the next tuple in the scan.
224 */
225bool
227{
228 BTScanOpaque so = (BTScanOpaque) scan->opaque;
229 bool res;
230
231 Assert(scan->heapRelation != NULL);
232
233 /* btree indexes are never lossy */
234 scan->xs_recheck = false;
235
236 /* Each loop iteration performs another primitive index scan */
237 do
238 {
239 /*
240 * If we've already initialized this scan, we can just advance it in
241 * the appropriate direction. If we haven't done so yet, we call
242 * _bt_first() to get the first item in the scan.
243 */
244 if (!BTScanPosIsValid(so->currPos))
245 res = _bt_first(scan, dir);
246 else
247 {
248 /*
249 * Check to see if we should kill the previously-fetched tuple.
250 */
251 if (scan->kill_prior_tuple)
252 {
253 /*
254 * Yes, remember it for later. (We'll deal with all such
255 * tuples at once right before leaving the index page.) The
256 * test for numKilled overrun is not just paranoia: if the
257 * caller reverses direction in the indexscan then the same
258 * item might get entered multiple times. It's not worth
259 * trying to optimize that, so we don't detect it, but instead
260 * just forget any excess entries.
261 */
262 if (so->killedItems == NULL)
263 so->killedItems = (int *)
264 palloc(MaxTIDsPerBTreePage * sizeof(int));
266 so->killedItems[so->numKilled++] = so->currPos.itemIndex;
267 }
268
269 /*
270 * Now continue the scan.
271 */
272 res = _bt_next(scan, dir);
273 }
274
275 /* If we have a tuple, return it ... */
276 if (res)
277 break;
278 /* ... otherwise see if we need another primitive index scan */
279 } while (so->numArrayKeys && _bt_start_prim_scan(scan, dir));
280
281 return res;
282}
283
284/*
285 * btgetbitmap() -- gets all matching tuples, and adds them to a bitmap
286 */
287int64
289{
290 BTScanOpaque so = (BTScanOpaque) scan->opaque;
291 int64 ntids = 0;
292 ItemPointer heapTid;
293
294 Assert(scan->heapRelation == NULL);
295
296 /* Each loop iteration performs another primitive index scan */
297 do
298 {
299 /* Fetch the first page & tuple */
301 {
302 /* Save tuple ID, and continue scanning */
303 heapTid = &scan->xs_heaptid;
304 tbm_add_tuples(tbm, heapTid, 1, false);
305 ntids++;
306
307 for (;;)
308 {
309 /*
310 * Advance to next tuple within page. This is the same as the
311 * easy case in _bt_next().
312 */
313 if (++so->currPos.itemIndex > so->currPos.lastItem)
314 {
315 /* let _bt_next do the heavy lifting */
316 if (!_bt_next(scan, ForwardScanDirection))
317 break;
318 }
319
320 /* Save tuple ID, and continue scanning */
321 heapTid = &so->currPos.items[so->currPos.itemIndex].heapTid;
322 tbm_add_tuples(tbm, heapTid, 1, false);
323 ntids++;
324 }
325 }
326 /* Now see if we need another primitive index scan */
328
329 return ntids;
330}
331
332/*
333 * btbeginscan() -- start a scan on a btree index
334 */
336btbeginscan(Relation rel, int nkeys, int norderbys)
337{
338 IndexScanDesc scan;
339 BTScanOpaque so;
340
341 /* no order by operators allowed */
342 Assert(norderbys == 0);
343
344 /* get the scan */
345 scan = RelationGetIndexScan(rel, nkeys, norderbys);
346
347 /* allocate private workspace */
348 so = (BTScanOpaque) palloc(sizeof(BTScanOpaqueData));
351 if (scan->numberOfKeys > 0)
352 so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
353 else
354 so->keyData = NULL;
355
356 so->skipScan = false;
357 so->needPrimScan = false;
358 so->scanBehind = false;
359 so->oppositeDirCheck = false;
360 so->arrayKeys = NULL;
361 so->orderProcs = NULL;
362 so->arrayContext = NULL;
363
364 so->killedItems = NULL; /* until needed */
365 so->numKilled = 0;
366
367 /*
368 * We don't know yet whether the scan will be index-only, so we do not
369 * allocate the tuple workspace arrays until btrescan. However, we set up
370 * scan->xs_itupdesc whether we'll need it or not, since that's so cheap.
371 */
372 so->currTuples = so->markTuples = NULL;
373
374 scan->xs_itupdesc = RelationGetDescr(rel);
375
376 scan->opaque = so;
377
378 return scan;
379}
380
381/*
382 * btrescan() -- rescan an index relation
383 */
384void
385btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
386 ScanKey orderbys, int norderbys)
387{
388 BTScanOpaque so = (BTScanOpaque) scan->opaque;
389
390 /* we aren't holding any read locks, but gotta drop the pins */
392 {
393 /* Before leaving current page, deal with any killed items */
394 if (so->numKilled > 0)
395 _bt_killitems(scan);
398 }
399
400 /*
401 * We prefer to eagerly drop leaf page pins before btgettuple returns.
402 * This avoids making VACUUM wait to acquire a cleanup lock on the page.
403 *
404 * We cannot safely drop leaf page pins during index-only scans due to a
405 * race condition involving VACUUM setting pages all-visible in the VM.
406 * It's also unsafe for plain index scans that use a non-MVCC snapshot.
407 *
408 * When we drop pins eagerly, the mechanism that marks so->killedItems[]
409 * index tuples LP_DEAD has to deal with concurrent TID recycling races.
410 * The scheme used to detect unsafe TID recycling won't work when scanning
411 * unlogged relations (since it involves saving an affected page's LSN).
412 * Opt out of eager pin dropping during unlogged relation scans for now
413 * (this is preferable to opting out of kill_prior_tuple LP_DEAD setting).
414 *
415 * Also opt out of dropping leaf page pins eagerly during bitmap scans.
416 * Pins cannot be held for more than an instant during bitmap scans either
417 * way, so we might as well avoid wasting cycles on acquiring page LSNs.
418 *
419 * See nbtree/README section on making concurrent TID recycling safe.
420 *
421 * Note: so->dropPin should never change across rescans.
422 */
423 so->dropPin = (!scan->xs_want_itup &&
426 scan->heapRelation != NULL);
427
428 so->markItemIndex = -1;
429 so->needPrimScan = false;
430 so->scanBehind = false;
431 so->oppositeDirCheck = false;
434
435 /*
436 * Allocate tuple workspace arrays, if needed for an index-only scan and
437 * not already done in a previous rescan call. To save on palloc
438 * overhead, both workspaces are allocated as one palloc block; only this
439 * function and btendscan know that.
440 *
441 * NOTE: this data structure also makes it safe to return data from a
442 * "name" column, even though btree name_ops uses an underlying storage
443 * datatype of cstring. The risk there is that "name" is supposed to be
444 * padded to NAMEDATALEN, but the actual index tuple is probably shorter.
445 * However, since we only return data out of tuples sitting in the
446 * currTuples array, a fetch of NAMEDATALEN bytes can at worst pull some
447 * data out of the markTuples array --- running off the end of memory for
448 * a SIGSEGV is not possible. Yeah, this is ugly as sin, but it beats
449 * adding special-case treatment for name_ops elsewhere.
450 */
451 if (scan->xs_want_itup && so->currTuples == NULL)
452 {
453 so->currTuples = (char *) palloc(BLCKSZ * 2);
454 so->markTuples = so->currTuples + BLCKSZ;
455 }
456
457 /*
458 * Reset the scan keys
459 */
460 if (scankey && scan->numberOfKeys > 0)
461 memcpy(scan->keyData, scankey, scan->numberOfKeys * sizeof(ScanKeyData));
462 so->numberOfKeys = 0; /* until _bt_preprocess_keys sets it */
463 so->numArrayKeys = 0; /* ditto */
464}
465
466/*
467 * btendscan() -- close down a scan
468 */
469void
471{
472 BTScanOpaque so = (BTScanOpaque) scan->opaque;
473
474 /* we aren't holding any read locks, but gotta drop the pins */
476 {
477 /* Before leaving current page, deal with any killed items */
478 if (so->numKilled > 0)
479 _bt_killitems(scan);
481 }
482
483 so->markItemIndex = -1;
485
486 /* No need to invalidate positions, the RAM is about to be freed. */
487
488 /* Release storage */
489 if (so->keyData != NULL)
490 pfree(so->keyData);
491 /* so->arrayKeys and so->orderProcs are in arrayContext */
492 if (so->arrayContext != NULL)
494 if (so->killedItems != NULL)
495 pfree(so->killedItems);
496 if (so->currTuples != NULL)
497 pfree(so->currTuples);
498 /* so->markTuples should not be pfree'd, see btrescan */
499 pfree(so);
500}
501
502/*
503 * btmarkpos() -- save current scan position
504 */
505void
507{
508 BTScanOpaque so = (BTScanOpaque) scan->opaque;
509
510 /* There may be an old mark with a pin (but no lock). */
512
513 /*
514 * Just record the current itemIndex. If we later step to next page
515 * before releasing the marked position, _bt_steppage makes a full copy of
516 * the currPos struct in markPos. If (as often happens) the mark is moved
517 * before we leave the page, we don't have to do that work.
518 */
519 if (BTScanPosIsValid(so->currPos))
521 else
522 {
524 so->markItemIndex = -1;
525 }
526}
527
528/*
529 * btrestrpos() -- restore scan to last saved position
530 */
531void
533{
534 BTScanOpaque so = (BTScanOpaque) scan->opaque;
535
536 if (so->markItemIndex >= 0)
537 {
538 /*
539 * The scan has never moved to a new page since the last mark. Just
540 * restore the itemIndex.
541 *
542 * NB: In this case we can't count on anything in so->markPos to be
543 * accurate.
544 */
546 }
547 else
548 {
549 /*
550 * The scan moved to a new page after last mark or restore, and we are
551 * now restoring to the marked page. We aren't holding any read
552 * locks, but if we're still holding the pin for the current position,
553 * we must drop it.
554 */
555 if (BTScanPosIsValid(so->currPos))
556 {
557 /* Before leaving current page, deal with any killed items */
558 if (so->numKilled > 0)
559 _bt_killitems(scan);
561 }
562
563 if (BTScanPosIsValid(so->markPos))
564 {
565 /* bump pin on mark buffer for assignment to current buffer */
566 if (BTScanPosIsPinned(so->markPos))
568 memcpy(&so->currPos, &so->markPos,
569 offsetof(BTScanPosData, items[1]) +
570 so->markPos.lastItem * sizeof(BTScanPosItem));
571 if (so->currTuples)
572 memcpy(so->currTuples, so->markTuples,
574 /* Reset the scan's array keys (see _bt_steppage for why) */
575 if (so->numArrayKeys)
576 {
578 so->needPrimScan = false;
579 }
580 }
581 else
583 }
584}
585
586/*
587 * btestimateparallelscan -- estimate storage for BTParallelScanDescData
588 */
589Size
590btestimateparallelscan(Relation rel, int nkeys, int norderbys)
591{
593 Size estnbtreeshared,
594 genericattrspace;
595
596 /*
597 * Pessimistically assume that every input scan key will be output with
598 * its own SAOP array
599 */
600 estnbtreeshared = offsetof(BTParallelScanDescData, btps_arrElems) +
601 sizeof(int) * nkeys;
602
603 /* Single column indexes cannot possibly use a skip array */
604 if (nkeyatts == 1)
605 return estnbtreeshared;
606
607 /*
608 * Pessimistically assume that all attributes prior to the least
609 * significant attribute require a skip array (and an associated key)
610 */
611 genericattrspace = datumEstimateSpace((Datum) 0, false, true,
612 sizeof(Datum));
613 for (int attnum = 1; attnum < nkeyatts; attnum++)
614 {
615 CompactAttribute *attr;
616
617 /*
618 * We make the conservative assumption that every index column will
619 * also require a skip array.
620 *
621 * Every skip array must have space to store its scan key's sk_flags.
622 */
623 estnbtreeshared = add_size(estnbtreeshared, sizeof(int));
624
625 /* Consider space required to store a datum of opclass input type */
626 attr = TupleDescCompactAttr(rel->rd_att, attnum - 1);
627 if (attr->attbyval)
628 {
629 /* This index attribute stores pass-by-value datums */
630 Size estfixed = datumEstimateSpace((Datum) 0, false,
631 true, attr->attlen);
632
633 estnbtreeshared = add_size(estnbtreeshared, estfixed);
634 continue;
635 }
636
637 /*
638 * This index attribute stores pass-by-reference datums.
639 *
640 * Assume that serializing this array will use just as much space as a
641 * pass-by-value datum, in addition to space for the largest possible
642 * whole index tuple (this is not just a per-datum portion of the
643 * largest possible tuple because that'd be almost as large anyway).
644 *
645 * This is quite conservative, but it's not clear how we could do much
646 * better. The executor requires an up-front storage request size
647 * that reliably covers the scan's high watermark memory usage. We
648 * can't be sure of the real high watermark until the scan is over.
649 */
650 estnbtreeshared = add_size(estnbtreeshared, genericattrspace);
651 estnbtreeshared = add_size(estnbtreeshared, BTMaxItemSize);
652 }
653
654 return estnbtreeshared;
655}
656
657/*
658 * _bt_parallel_serialize_arrays() -- Serialize parallel array state.
659 *
660 * Caller must have exclusively locked btscan->btps_lock when called.
661 */
662static void
664 BTScanOpaque so)
665{
666 char *datumshared;
667
668 /* Space for serialized datums begins immediately after btps_arrElems[] */
669 datumshared = ((char *) &btscan->btps_arrElems[so->numArrayKeys]);
670 for (int i = 0; i < so->numArrayKeys; i++)
671 {
672 BTArrayKeyInfo *array = &so->arrayKeys[i];
673 ScanKey skey = &so->keyData[array->scan_key];
674
675 if (array->num_elems != -1)
676 {
677 /* Save SAOP array's cur_elem (no need to copy key/datum) */
678 Assert(!(skey->sk_flags & SK_BT_SKIP));
679 btscan->btps_arrElems[i] = array->cur_elem;
680 continue;
681 }
682
683 /* Save all mutable state associated with skip array's key */
684 Assert(skey->sk_flags & SK_BT_SKIP);
685 memcpy(datumshared, &skey->sk_flags, sizeof(int));
686 datumshared += sizeof(int);
687
688 if (skey->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL))
689 {
690 /* No sk_argument datum to serialize */
691 Assert(skey->sk_argument == 0);
692 continue;
693 }
694
695 datumSerialize(skey->sk_argument, (skey->sk_flags & SK_ISNULL) != 0,
696 array->attbyval, array->attlen, &datumshared);
697 }
698}
699
700/*
701 * _bt_parallel_restore_arrays() -- Restore serialized parallel array state.
702 *
703 * Caller must have exclusively locked btscan->btps_lock when called.
704 */
705static void
707 BTScanOpaque so)
708{
709 char *datumshared;
710
711 /* Space for serialized datums begins immediately after btps_arrElems[] */
712 datumshared = ((char *) &btscan->btps_arrElems[so->numArrayKeys]);
713 for (int i = 0; i < so->numArrayKeys; i++)
714 {
715 BTArrayKeyInfo *array = &so->arrayKeys[i];
716 ScanKey skey = &so->keyData[array->scan_key];
717 bool isnull;
718
719 if (array->num_elems != -1)
720 {
721 /* Restore SAOP array using its saved cur_elem */
722 Assert(!(skey->sk_flags & SK_BT_SKIP));
723 array->cur_elem = btscan->btps_arrElems[i];
724 skey->sk_argument = array->elem_values[array->cur_elem];
725 continue;
726 }
727
728 /* Restore skip array by restoring its key directly */
729 if (!array->attbyval && skey->sk_argument)
731 skey->sk_argument = (Datum) 0;
732 memcpy(&skey->sk_flags, datumshared, sizeof(int));
733 datumshared += sizeof(int);
734
735 Assert(skey->sk_flags & SK_BT_SKIP);
736
737 if (skey->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL))
738 {
739 /* No sk_argument datum to restore */
740 continue;
741 }
742
743 skey->sk_argument = datumRestore(&datumshared, &isnull);
744 if (isnull)
745 {
746 Assert(skey->sk_argument == 0);
748 Assert(skey->sk_flags & SK_ISNULL);
749 }
750 }
751}
752
753/*
754 * btinitparallelscan -- initialize BTParallelScanDesc for parallel btree scan
755 */
756void
758{
759 BTParallelScanDesc bt_target = (BTParallelScanDesc) target;
760
761 LWLockInitialize(&bt_target->btps_lock,
762 LWTRANCHE_PARALLEL_BTREE_SCAN);
766 ConditionVariableInit(&bt_target->btps_cv);
767}
768
769/*
770 * btparallelrescan() -- reset parallel scan
771 */
772void
774{
775 BTParallelScanDesc btscan;
776 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
777
778 Assert(parallel_scan);
779
780 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
781 parallel_scan->ps_offset_am);
782
783 /*
784 * In theory, we don't need to acquire the LWLock here, because there
785 * shouldn't be any other workers running at this point, but we do so for
786 * consistency.
787 */
792 LWLockRelease(&btscan->btps_lock);
793}
794
795/*
796 * _bt_parallel_seize() -- Begin the process of advancing the scan to a new
797 * page. Other scans must wait until we call _bt_parallel_release()
798 * or _bt_parallel_done().
799 *
800 * The return value is true if we successfully seized the scan and false
801 * if we did not. The latter case occurs when no pages remain, or when
802 * another primitive index scan is scheduled that caller's backend cannot
803 * start just yet (only backends that call from _bt_first are capable of
804 * starting primitive index scans, which they indicate by passing first=true).
805 *
806 * If the return value is true, *next_scan_page returns the next page of the
807 * scan, and *last_curr_page returns the page that *next_scan_page came from.
808 * An invalid *next_scan_page means the scan hasn't yet started, or that
809 * caller needs to start the next primitive index scan (if it's the latter
810 * case we'll set so.needPrimScan).
811 *
812 * Callers should ignore the value of *next_scan_page and *last_curr_page if
813 * the return value is false.
814 */
815bool
817 BlockNumber *last_curr_page, bool first)
818{
819 Relation rel = scan->indexRelation;
820 BTScanOpaque so = (BTScanOpaque) scan->opaque;
821 bool exit_loop = false,
822 status = true,
823 endscan = false;
824 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
825 BTParallelScanDesc btscan;
826
827 *next_scan_page = InvalidBlockNumber;
828 *last_curr_page = InvalidBlockNumber;
829
830 /*
831 * Reset so->currPos, and initialize moreLeft/moreRight such that the next
832 * call to _bt_readnextpage treats this backend similarly to a serial
833 * backend that steps from *last_curr_page to *next_scan_page (unless this
834 * backend's so->currPos is initialized by _bt_readfirstpage before then).
835 */
837 so->currPos.moreLeft = so->currPos.moreRight = true;
838
839 if (first)
840 {
841 /*
842 * Initialize array related state when called from _bt_first, assuming
843 * that this will be the first primitive index scan for the scan
844 */
845 so->needPrimScan = false;
846 so->scanBehind = false;
847 so->oppositeDirCheck = false;
848 }
849 else
850 {
851 /*
852 * Don't attempt to seize the scan when it requires another primitive
853 * index scan, since caller's backend cannot start it right now
854 */
855 if (so->needPrimScan)
856 return false;
857 }
858
859 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
860 parallel_scan->ps_offset_am);
861
862 while (1)
863 {
864 LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
865
866 if (btscan->btps_pageStatus == BTPARALLEL_DONE)
867 {
868 /* We're done with this parallel index scan */
869 status = false;
870 }
871 else if (btscan->btps_pageStatus == BTPARALLEL_IDLE &&
872 btscan->btps_nextScanPage == P_NONE)
873 {
874 /* End this parallel index scan */
875 status = false;
876 endscan = true;
877 }
878 else if (btscan->btps_pageStatus == BTPARALLEL_NEED_PRIMSCAN)
879 {
880 Assert(so->numArrayKeys);
881
882 if (first)
883 {
884 /* Can start scheduled primitive scan right away, so do so */
885 btscan->btps_pageStatus = BTPARALLEL_ADVANCING;
886
887 /* Restore scan's array keys from serialized values */
888 _bt_parallel_restore_arrays(rel, btscan, so);
889 exit_loop = true;
890 }
891 else
892 {
893 /*
894 * Don't attempt to seize the scan when it requires another
895 * primitive index scan, since caller's backend cannot start
896 * it right now
897 */
898 status = false;
899 }
900
901 /*
902 * Either way, update backend local state to indicate that a
903 * pending primitive scan is required
904 */
905 so->needPrimScan = true;
906 so->scanBehind = false;
907 so->oppositeDirCheck = false;
908 }
909 else if (btscan->btps_pageStatus != BTPARALLEL_ADVANCING)
910 {
911 /*
912 * We have successfully seized control of the scan for the purpose
913 * of advancing it to a new page!
914 */
915 btscan->btps_pageStatus = BTPARALLEL_ADVANCING;
916 Assert(btscan->btps_nextScanPage != P_NONE);
917 *next_scan_page = btscan->btps_nextScanPage;
918 *last_curr_page = btscan->btps_lastCurrPage;
919 exit_loop = true;
920 }
921 LWLockRelease(&btscan->btps_lock);
922 if (exit_loop || !status)
923 break;
924 ConditionVariableSleep(&btscan->btps_cv, WAIT_EVENT_BTREE_PAGE);
925 }
927
928 /* When the scan has reached the rightmost (or leftmost) page, end it */
929 if (endscan)
930 _bt_parallel_done(scan);
931
932 return status;
933}
934
935/*
936 * _bt_parallel_release() -- Complete the process of advancing the scan to a
937 * new page. We now have the new value btps_nextScanPage; another backend
938 * can now begin advancing the scan.
939 *
940 * Callers whose scan uses array keys must save their curr_page argument so
941 * that it can be passed to _bt_parallel_primscan_schedule, should caller
942 * determine that another primitive index scan is required.
943 *
944 * If caller's next_scan_page is P_NONE, the scan has reached the index's
945 * rightmost/leftmost page. This is treated as reaching the end of the scan
946 * within _bt_parallel_seize.
947 *
948 * Note: unlike the serial case, parallel scans don't need to remember both
949 * sibling links. next_scan_page is whichever link is next given the scan's
950 * direction. That's all we'll ever need, since the direction of a parallel
951 * scan can never change.
952 */
953void
955 BlockNumber curr_page)
956{
957 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
958 BTParallelScanDesc btscan;
959
960 Assert(BlockNumberIsValid(next_scan_page));
961
962 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
963 parallel_scan->ps_offset_am);
964
966 btscan->btps_nextScanPage = next_scan_page;
967 btscan->btps_lastCurrPage = curr_page;
969 LWLockRelease(&btscan->btps_lock);
971}
972
973/*
974 * _bt_parallel_done() -- Mark the parallel scan as complete.
975 *
976 * When there are no pages left to scan, this function should be called to
977 * notify other workers. Otherwise, they might wait forever for the scan to
978 * advance to the next page.
979 */
980void
982{
983 BTScanOpaque so = (BTScanOpaque) scan->opaque;
984 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
985 BTParallelScanDesc btscan;
986 bool status_changed = false;
987
989
990 /* Do nothing, for non-parallel scans */
991 if (parallel_scan == NULL)
992 return;
993
994 /*
995 * Should not mark parallel scan done when there's still a pending
996 * primitive index scan
997 */
998 if (so->needPrimScan)
999 return;
1000
1001 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
1002 parallel_scan->ps_offset_am);
1003
1004 /*
1005 * Mark the parallel scan as done, unless some other process did so
1006 * already
1007 */
1008 LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
1009 Assert(btscan->btps_pageStatus != BTPARALLEL_NEED_PRIMSCAN);
1010 if (btscan->btps_pageStatus != BTPARALLEL_DONE)
1011 {
1012 btscan->btps_pageStatus = BTPARALLEL_DONE;
1013 status_changed = true;
1014 }
1015 LWLockRelease(&btscan->btps_lock);
1016
1017 /* wake up all the workers associated with this parallel scan */
1018 if (status_changed)
1019 ConditionVariableBroadcast(&btscan->btps_cv);
1020}
1021
1022/*
1023 * _bt_parallel_primscan_schedule() -- Schedule another primitive index scan.
1024 *
1025 * Caller passes the curr_page most recently passed to _bt_parallel_release
1026 * by its backend. Caller successfully schedules the next primitive index scan
1027 * if the shared parallel state hasn't been seized since caller's backend last
1028 * advanced the scan.
1029 */
1030void
1032{
1033 Relation rel = scan->indexRelation;
1034 BTScanOpaque so = (BTScanOpaque) scan->opaque;
1035 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
1036 BTParallelScanDesc btscan;
1037
1038 Assert(so->numArrayKeys);
1039
1040 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
1041 parallel_scan->ps_offset_am);
1042
1043 LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
1044 if (btscan->btps_lastCurrPage == curr_page &&
1045 btscan->btps_pageStatus == BTPARALLEL_IDLE)
1046 {
1047 btscan->btps_nextScanPage = InvalidBlockNumber;
1048 btscan->btps_lastCurrPage = InvalidBlockNumber;
1049 btscan->btps_pageStatus = BTPARALLEL_NEED_PRIMSCAN;
1050
1051 /* Serialize scan's current array keys */
1052 _bt_parallel_serialize_arrays(rel, btscan, so);
1053 }
1054 LWLockRelease(&btscan->btps_lock);
1055}
1056
1057/*
1058 * Bulk deletion of all index entries pointing to a set of heap tuples.
1059 * The set of target tuples is specified via a callback routine that tells
1060 * whether any given heap tuple (identified by ItemPointer) is being deleted.
1061 *
1062 * Result: a palloc'd struct containing statistical info for VACUUM displays.
1063 */
1066 IndexBulkDeleteCallback callback, void *callback_state)
1067{
1068 Relation rel = info->index;
1069 BTCycleId cycleid;
1070
1071 /* allocate stats if first time through, else re-use existing struct */
1072 if (stats == NULL)
1074
1075 /* Establish the vacuum cycle ID to use for this scan */
1076 /* The ENSURE stuff ensures we clean up shared memory on failure */
1078 {
1079 cycleid = _bt_start_vacuum(rel);
1080
1081 btvacuumscan(info, stats, callback, callback_state, cycleid);
1082 }
1084 _bt_end_vacuum(rel);
1085
1086 return stats;
1087}
1088
1089/*
1090 * Post-VACUUM cleanup.
1091 *
1092 * Result: a palloc'd struct containing statistical info for VACUUM displays.
1093 */
1096{
1097 BlockNumber num_delpages;
1098
1099 /* No-op in ANALYZE ONLY mode */
1100 if (info->analyze_only)
1101 return stats;
1102
1103 /*
1104 * If btbulkdelete was called, we need not do anything (we just maintain
1105 * the information used within _bt_vacuum_needs_cleanup() by calling
1106 * _bt_set_cleanup_info() below).
1107 *
1108 * If btbulkdelete was _not_ called, then we have a choice to make: we
1109 * must decide whether or not a btvacuumscan() call is needed now (i.e.
1110 * whether the ongoing VACUUM operation can entirely avoid a physical scan
1111 * of the index). A call to _bt_vacuum_needs_cleanup() decides it for us
1112 * now.
1113 */
1114 if (stats == NULL)
1115 {
1116 /* Check if VACUUM operation can entirely avoid btvacuumscan() call */
1117 if (!_bt_vacuum_needs_cleanup(info->index))
1118 return NULL;
1119
1120 /*
1121 * Since we aren't going to actually delete any leaf items, there's no
1122 * need to go through all the vacuum-cycle-ID pushups here.
1123 *
1124 * Posting list tuples are a source of inaccuracy for cleanup-only
1125 * scans. btvacuumscan() will assume that the number of index tuples
1126 * from each page can be used as num_index_tuples, even though
1127 * num_index_tuples is supposed to represent the number of TIDs in the
1128 * index. This naive approach can underestimate the number of tuples
1129 * in the index significantly.
1130 *
1131 * We handle the problem by making num_index_tuples an estimate in
1132 * cleanup-only case.
1133 */
1135 btvacuumscan(info, stats, NULL, NULL, 0);
1136 stats->estimated_count = true;
1137 }
1138
1139 /*
1140 * Maintain num_delpages value in metapage for _bt_vacuum_needs_cleanup().
1141 *
1142 * num_delpages is the number of deleted pages now in the index that were
1143 * not safe to place in the FSM to be recycled just yet. num_delpages is
1144 * greater than 0 only when _bt_pagedel() actually deleted pages during
1145 * our call to btvacuumscan(). Even then, _bt_pendingfsm_finalize() must
1146 * have failed to place any newly deleted pages in the FSM just moments
1147 * ago. (Actually, there are edge cases where recycling of the current
1148 * VACUUM's newly deleted pages does not even become safe by the time the
1149 * next VACUUM comes around. See nbtree/README.)
1150 */
1151 Assert(stats->pages_deleted >= stats->pages_free);
1152 num_delpages = stats->pages_deleted - stats->pages_free;
1153 _bt_set_cleanup_info(info->index, num_delpages);
1154
1155 /*
1156 * It's quite possible for us to be fooled by concurrent page splits into
1157 * double-counting some index tuples, so disbelieve any total that exceeds
1158 * the underlying heap's count ... if we know that accurately. Otherwise
1159 * this might just make matters worse.
1160 */
1161 if (!info->estimated_count)
1162 {
1163 if (stats->num_index_tuples > info->num_heap_tuples)
1164 stats->num_index_tuples = info->num_heap_tuples;
1165 }
1166
1167 return stats;
1168}
1169
1170/*
1171 * btvacuumscan --- scan the index for VACUUMing purposes
1172 *
1173 * This combines the functions of looking for leaf tuples that are deletable
1174 * according to the vacuum callback, looking for empty pages that can be
1175 * deleted, and looking for old deleted pages that can be recycled. Both
1176 * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
1177 * btbulkdelete call occurred and _bt_vacuum_needs_cleanup returned true).
1178 *
1179 * The caller is responsible for initially allocating/zeroing a stats struct
1180 * and for obtaining a vacuum cycle ID if necessary.
1181 */
1182static void
1184 IndexBulkDeleteCallback callback, void *callback_state,
1185 BTCycleId cycleid)
1186{
1187 Relation rel = info->index;
1188 BTVacState vstate;
1189 BlockNumber num_pages;
1190 bool needLock;
1192 ReadStream *stream = NULL;
1193
1194 /*
1195 * Reset fields that track information about the entire index now. This
1196 * avoids double-counting in the case where a single VACUUM command
1197 * requires multiple scans of the index.
1198 *
1199 * Avoid resetting the tuples_removed and pages_newly_deleted fields here,
1200 * since they track information about the VACUUM command, and so must last
1201 * across each call to btvacuumscan().
1202 *
1203 * (Note that pages_free is treated as state about the whole index, not
1204 * the current VACUUM. This is appropriate because RecordFreeIndexPage()
1205 * calls are idempotent, and get repeated for the same deleted pages in
1206 * some scenarios. The point for us is to track the number of recyclable
1207 * pages in the index at the end of the VACUUM command.)
1208 */
1209 stats->num_pages = 0;
1210 stats->num_index_tuples = 0;
1211 stats->pages_deleted = 0;
1212 stats->pages_free = 0;
1213
1214 /* Set up info to pass down to btvacuumpage */
1215 vstate.info = info;
1216 vstate.stats = stats;
1217 vstate.callback = callback;
1218 vstate.callback_state = callback_state;
1219 vstate.cycleid = cycleid;
1220
1221 /* Create a temporary memory context to run _bt_pagedel in */
1223 "_bt_pagedel",
1225
1226 /* Initialize vstate fields used by _bt_pendingfsm_finalize */
1227 vstate.bufsize = 0;
1228 vstate.maxbufsize = 0;
1229 vstate.pendingpages = NULL;
1230 vstate.npendingpages = 0;
1231 /* Consider applying _bt_pendingfsm_finalize optimization */
1232 _bt_pendingfsm_init(rel, &vstate, (callback == NULL));
1233
1234 /*
1235 * The outer loop iterates over all index pages except the metapage, in
1236 * physical order (we hope the kernel will cooperate in providing
1237 * read-ahead for speed). It is critical that we visit all leaf pages,
1238 * including ones added after we start the scan, else we might fail to
1239 * delete some deletable tuples. Hence, we must repeatedly check the
1240 * relation length. We must acquire the relation-extension lock while
1241 * doing so to avoid a race condition: if someone else is extending the
1242 * relation, there is a window where bufmgr/smgr have created a new
1243 * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
1244 * we manage to scan such a page here, we'll improperly assume it can be
1245 * recycled. Taking the lock synchronizes things enough to prevent a
1246 * problem: either num_pages won't include the new page, or _bt_getbuf
1247 * already has write lock on the buffer and it will be fully initialized
1248 * before we can examine it. Also, we need not worry if a page is added
1249 * immediately after we look; the page splitting code already has
1250 * write-lock on the left page before it adds a right page, so we must
1251 * already have processed any tuples due to be moved into such a page.
1252 *
1253 * XXX: Now that new pages are locked with RBM_ZERO_AND_LOCK, I don't
1254 * think the use of the extension lock is still required.
1255 *
1256 * We can skip locking for new or temp relations, however, since no one
1257 * else could be accessing them.
1258 */
1259 needLock = !RELATION_IS_LOCAL(rel);
1260
1262
1263 /*
1264 * It is safe to use batchmode as block_range_read_stream_cb takes no
1265 * locks.
1266 */
1270 info->strategy,
1271 rel,
1274 &p,
1275 0);
1276 for (;;)
1277 {
1278 /* Get the current relation length */
1279 if (needLock)
1281 num_pages = RelationGetNumberOfBlocks(rel);
1282 if (needLock)
1284
1285 if (info->report_progress)
1287 num_pages);
1288
1289 /* Quit if we've scanned the whole relation */
1290 if (p.current_blocknum >= num_pages)
1291 break;
1292
1293 p.last_exclusive = num_pages;
1294
1295 /* Iterate over pages, then loop back to recheck relation length */
1296 while (true)
1297 {
1298 BlockNumber current_block;
1299 Buffer buf;
1300
1301 /* call vacuum_delay_point while not holding any buffer lock */
1302 vacuum_delay_point(false);
1303
1304 buf = read_stream_next_buffer(stream, NULL);
1305
1306 if (!BufferIsValid(buf))
1307 break;
1308
1309 current_block = btvacuumpage(&vstate, buf);
1310
1311 if (info->report_progress)
1313 current_block);
1314 }
1315
1316 /*
1317 * We have to reset the read stream to use it again. After returning
1318 * InvalidBuffer, the read stream API won't invoke our callback again
1319 * until the stream has been reset.
1320 */
1321 read_stream_reset(stream);
1322 }
1323
1324 read_stream_end(stream);
1325
1326 /* Set statistics num_pages field to final size of index */
1327 stats->num_pages = num_pages;
1328
1330
1331 /*
1332 * If there were any calls to _bt_pagedel() during scan of the index then
1333 * see if any of the resulting pages can be placed in the FSM now. When
1334 * it's not safe we'll have to leave it up to a future VACUUM operation.
1335 *
1336 * Finally, if we placed any pages in the FSM (either just now or during
1337 * the scan), forcibly update the upper-level FSM pages to ensure that
1338 * searchers can find them.
1339 */
1340 _bt_pendingfsm_finalize(rel, &vstate);
1341 if (stats->pages_free > 0)
1343}
1344
1345/*
1346 * btvacuumpage --- VACUUM one page
1347 *
1348 * This processes a single page for btvacuumscan(). In some cases we must
1349 * backtrack to re-examine and VACUUM pages that were on buf's page during
1350 * a previous call here. This is how we handle page splits (that happened
1351 * after our cycleid was acquired) whose right half page happened to reuse
1352 * a block that we might have processed at some point before it was
1353 * recycled (i.e. before the page split).
1354 *
1355 * Returns BlockNumber of a scanned page (not backtracked).
1356 */
1357static BlockNumber
1359{
1360 IndexVacuumInfo *info = vstate->info;
1361 IndexBulkDeleteResult *stats = vstate->stats;
1363 void *callback_state = vstate->callback_state;
1364 Relation rel = info->index;
1365 Relation heaprel = info->heaprel;
1366 bool attempt_pagedel;
1367 BlockNumber blkno,
1368 backtrack_to;
1370 Page page;
1371 BTPageOpaque opaque;
1372
1373 blkno = scanblkno;
1374
1375backtrack:
1376
1377 attempt_pagedel = false;
1378 backtrack_to = P_NONE;
1379
1380 _bt_lockbuf(rel, buf, BT_READ);
1381 page = BufferGetPage(buf);
1382 opaque = NULL;
1383 if (!PageIsNew(page))
1384 {
1385 _bt_checkpage(rel, buf);
1386 opaque = BTPageGetOpaque(page);
1387 }
1388
1389 Assert(blkno <= scanblkno);
1390 if (blkno != scanblkno)
1391 {
1392 /*
1393 * We're backtracking.
1394 *
1395 * We followed a right link to a sibling leaf page (a page that
1396 * happens to be from a block located before scanblkno). The only
1397 * case we want to do anything with is a live leaf page having the
1398 * current vacuum cycle ID.
1399 *
1400 * The page had better be in a state that's consistent with what we
1401 * expect. Check for conditions that imply corruption in passing. It
1402 * can't be half-dead because only an interrupted VACUUM process can
1403 * leave pages in that state, so we'd definitely have dealt with it
1404 * back when the page was the scanblkno page (half-dead pages are
1405 * always marked fully deleted by _bt_pagedel(), barring corruption).
1406 */
1407 if (!opaque || !P_ISLEAF(opaque) || P_ISHALFDEAD(opaque))
1408 {
1409 Assert(false);
1410 ereport(LOG,
1411 (errcode(ERRCODE_INDEX_CORRUPTED),
1412 errmsg_internal("right sibling %u of scanblkno %u unexpectedly in an inconsistent state in index \"%s\"",
1413 blkno, scanblkno, RelationGetRelationName(rel))));
1414 _bt_relbuf(rel, buf);
1415 return scanblkno;
1416 }
1417
1418 /*
1419 * We may have already processed the page in an earlier call, when the
1420 * page was scanblkno. This happens when the leaf page split occurred
1421 * after the scan began, but before the right sibling page became the
1422 * scanblkno.
1423 *
1424 * Page may also have been deleted by current btvacuumpage() call,
1425 * since _bt_pagedel() sometimes deletes the right sibling page of
1426 * scanblkno in passing (it does so after we decided where to
1427 * backtrack to). We don't need to process this page as a deleted
1428 * page a second time now (in fact, it would be wrong to count it as a
1429 * deleted page in the bulk delete statistics a second time).
1430 */
1431 if (opaque->btpo_cycleid != vstate->cycleid || P_ISDELETED(opaque))
1432 {
1433 /* Done with current scanblkno (and all lower split pages) */
1434 _bt_relbuf(rel, buf);
1435 return scanblkno;
1436 }
1437 }
1438
1439 if (!opaque || BTPageIsRecyclable(page, heaprel))
1440 {
1441 /* Okay to recycle this page (which could be leaf or internal) */
1442 RecordFreeIndexPage(rel, blkno);
1443 stats->pages_deleted++;
1444 stats->pages_free++;
1445 }
1446 else if (P_ISDELETED(opaque))
1447 {
1448 /*
1449 * Already deleted page (which could be leaf or internal). Can't
1450 * recycle yet.
1451 */
1452 stats->pages_deleted++;
1453 }
1454 else if (P_ISHALFDEAD(opaque))
1455 {
1456 /* Half-dead leaf page (from interrupted VACUUM) -- finish deleting */
1457 attempt_pagedel = true;
1458
1459 /*
1460 * _bt_pagedel() will increment both pages_newly_deleted and
1461 * pages_deleted stats in all cases (barring corruption)
1462 */
1463 }
1464 else if (P_ISLEAF(opaque))
1465 {
1467 int ndeletable;
1469 int nupdatable;
1470 OffsetNumber offnum,
1471 minoff,
1472 maxoff;
1473 int nhtidsdead,
1474 nhtidslive;
1475
1476 /*
1477 * Trade in the initial read lock for a full cleanup lock on this
1478 * page. We must get such a lock on every leaf page over the course
1479 * of the vacuum scan, whether or not it actually contains any
1480 * deletable tuples --- see nbtree/README.
1481 */
1483
1484 /*
1485 * Check whether we need to backtrack to earlier pages. What we are
1486 * concerned about is a page split that happened since we started the
1487 * vacuum scan. If the split moved tuples on the right half of the
1488 * split (i.e. the tuples that sort high) to a block that we already
1489 * passed over, then we might have missed the tuples. We need to
1490 * backtrack now. (Must do this before possibly clearing btpo_cycleid
1491 * or deleting scanblkno page below!)
1492 */
1493 if (vstate->cycleid != 0 &&
1494 opaque->btpo_cycleid == vstate->cycleid &&
1495 !(opaque->btpo_flags & BTP_SPLIT_END) &&
1496 !P_RIGHTMOST(opaque) &&
1497 opaque->btpo_next < scanblkno)
1498 backtrack_to = opaque->btpo_next;
1499
1500 ndeletable = 0;
1501 nupdatable = 0;
1502 minoff = P_FIRSTDATAKEY(opaque);
1503 maxoff = PageGetMaxOffsetNumber(page);
1504 nhtidsdead = 0;
1505 nhtidslive = 0;
1506 if (callback)
1507 {
1508 /* btbulkdelete callback tells us what to delete (or update) */
1509 for (offnum = minoff;
1510 offnum <= maxoff;
1511 offnum = OffsetNumberNext(offnum))
1512 {
1513 IndexTuple itup;
1514
1515 itup = (IndexTuple) PageGetItem(page,
1516 PageGetItemId(page, offnum));
1517
1518 Assert(!BTreeTupleIsPivot(itup));
1519 if (!BTreeTupleIsPosting(itup))
1520 {
1521 /* Regular tuple, standard table TID representation */
1522 if (callback(&itup->t_tid, callback_state))
1523 {
1524 deletable[ndeletable++] = offnum;
1525 nhtidsdead++;
1526 }
1527 else
1528 nhtidslive++;
1529 }
1530 else
1531 {
1532 BTVacuumPosting vacposting;
1533 int nremaining;
1534
1535 /* Posting list tuple */
1536 vacposting = btreevacuumposting(vstate, itup, offnum,
1537 &nremaining);
1538 if (vacposting == NULL)
1539 {
1540 /*
1541 * All table TIDs from the posting tuple remain, so no
1542 * delete or update required
1543 */
1544 Assert(nremaining == BTreeTupleGetNPosting(itup));
1545 }
1546 else if (nremaining > 0)
1547 {
1548
1549 /*
1550 * Store metadata about posting list tuple in
1551 * updatable array for entire page. Existing tuple
1552 * will be updated during the later call to
1553 * _bt_delitems_vacuum().
1554 */
1555 Assert(nremaining < BTreeTupleGetNPosting(itup));
1556 updatable[nupdatable++] = vacposting;
1557 nhtidsdead += BTreeTupleGetNPosting(itup) - nremaining;
1558 }
1559 else
1560 {
1561 /*
1562 * All table TIDs from the posting list must be
1563 * deleted. We'll delete the index tuple completely
1564 * (no update required).
1565 */
1566 Assert(nremaining == 0);
1567 deletable[ndeletable++] = offnum;
1568 nhtidsdead += BTreeTupleGetNPosting(itup);
1569 pfree(vacposting);
1570 }
1571
1572 nhtidslive += nremaining;
1573 }
1574 }
1575 }
1576
1577 /*
1578 * Apply any needed deletes or updates. We issue just one
1579 * _bt_delitems_vacuum() call per page, so as to minimize WAL traffic.
1580 */
1581 if (ndeletable > 0 || nupdatable > 0)
1582 {
1583 Assert(nhtidsdead >= ndeletable + nupdatable);
1584 _bt_delitems_vacuum(rel, buf, deletable, ndeletable, updatable,
1585 nupdatable);
1586
1587 stats->tuples_removed += nhtidsdead;
1588 /* must recompute maxoff */
1589 maxoff = PageGetMaxOffsetNumber(page);
1590
1591 /* can't leak memory here */
1592 for (int i = 0; i < nupdatable; i++)
1593 pfree(updatable[i]);
1594 }
1595 else
1596 {
1597 /*
1598 * If the leaf page has been split during this vacuum cycle, it
1599 * seems worth expending a write to clear btpo_cycleid even if we
1600 * don't have any deletions to do. (If we do, _bt_delitems_vacuum
1601 * takes care of this.) This ensures we won't process the page
1602 * again.
1603 *
1604 * We treat this like a hint-bit update because there's no need to
1605 * WAL-log it.
1606 */
1607 Assert(nhtidsdead == 0);
1608 if (vstate->cycleid != 0 &&
1609 opaque->btpo_cycleid == vstate->cycleid)
1610 {
1611 opaque->btpo_cycleid = 0;
1612 MarkBufferDirtyHint(buf, true);
1613 }
1614 }
1615
1616 /*
1617 * If the leaf page is now empty, try to delete it; else count the
1618 * live tuples (live table TIDs in posting lists are counted as
1619 * separate live tuples). We don't delete when backtracking, though,
1620 * since that would require teaching _bt_pagedel() about backtracking
1621 * (doesn't seem worth adding more complexity to deal with that).
1622 *
1623 * We don't count the number of live TIDs during cleanup-only calls to
1624 * btvacuumscan (i.e. when callback is not set). We count the number
1625 * of index tuples directly instead. This avoids the expense of
1626 * directly examining all of the tuples on each page. VACUUM will
1627 * treat num_index_tuples as an estimate in cleanup-only case, so it
1628 * doesn't matter that this underestimates num_index_tuples
1629 * significantly in some cases.
1630 */
1631 if (minoff > maxoff)
1632 attempt_pagedel = (blkno == scanblkno);
1633 else if (callback)
1634 stats->num_index_tuples += nhtidslive;
1635 else
1636 stats->num_index_tuples += maxoff - minoff + 1;
1637
1638 Assert(!attempt_pagedel || nhtidslive == 0);
1639 }
1640
1641 if (attempt_pagedel)
1642 {
1643 MemoryContext oldcontext;
1644
1645 /* Run pagedel in a temp context to avoid memory leakage */
1647 oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);
1648
1649 /*
1650 * _bt_pagedel maintains the bulk delete stats on our behalf;
1651 * pages_newly_deleted and pages_deleted are likely to be incremented
1652 * during call
1653 */
1654 Assert(blkno == scanblkno);
1655 _bt_pagedel(rel, buf, vstate);
1656
1657 MemoryContextSwitchTo(oldcontext);
1658 /* pagedel released buffer, so we shouldn't */
1659 }
1660 else
1661 _bt_relbuf(rel, buf);
1662
1663 if (backtrack_to != P_NONE)
1664 {
1665 blkno = backtrack_to;
1666
1667 /* check for vacuum delay while not holding any buffer lock */
1668 vacuum_delay_point(false);
1669
1670 /*
1671 * We can't use _bt_getbuf() here because it always applies
1672 * _bt_checkpage(), which will barf on an all-zero page. We want to
1673 * recycle all-zero pages, not fail. Also, we want to use a
1674 * nondefault buffer access strategy.
1675 */
1677 info->strategy);
1678 goto backtrack;
1679 }
1680
1681 return scanblkno;
1682}
1683
1684/*
1685 * btreevacuumposting --- determine TIDs still needed in posting list
1686 *
1687 * Returns metadata describing how to build replacement tuple without the TIDs
1688 * that VACUUM needs to delete. Returned value is NULL in the common case
1689 * where no changes are needed to caller's posting list tuple (we avoid
1690 * allocating memory here as an optimization).
1691 *
1692 * The number of TIDs that should remain in the posting list tuple is set for
1693 * caller in *nremaining.
1694 */
1695static BTVacuumPosting
1697 OffsetNumber updatedoffset, int *nremaining)
1698{
1699 int live = 0;
1700 int nitem = BTreeTupleGetNPosting(posting);
1702 BTVacuumPosting vacposting = NULL;
1703
1704 for (int i = 0; i < nitem; i++)
1705 {
1706 if (!vstate->callback(items + i, vstate->callback_state))
1707 {
1708 /* Live table TID */
1709 live++;
1710 }
1711 else if (vacposting == NULL)
1712 {
1713 /*
1714 * First dead table TID encountered.
1715 *
1716 * It's now clear that we need to delete one or more dead table
1717 * TIDs, so start maintaining metadata describing how to update
1718 * existing posting list tuple.
1719 */
1720 vacposting = palloc(offsetof(BTVacuumPostingData, deletetids) +
1721 nitem * sizeof(uint16));
1722
1723 vacposting->itup = posting;
1724 vacposting->updatedoffset = updatedoffset;
1725 vacposting->ndeletedtids = 0;
1726 vacposting->deletetids[vacposting->ndeletedtids++] = i;
1727 }
1728 else
1729 {
1730 /* Second or subsequent dead table TID */
1731 vacposting->deletetids[vacposting->ndeletedtids++] = i;
1732 }
1733 }
1734
1735 *nremaining = live;
1736 return vacposting;
1737}
1738
1739/*
1740 * btcanreturn() -- Check whether btree indexes support index-only scans.
1741 *
1742 * btrees always do, so this is trivial.
1743 */
1744bool
1746{
1747 return true;
1748}
1749
1750/*
1751 * btgettreeheight() -- Compute tree height for use by btcostestimate().
1752 */
1753int
1755{
1756 return _bt_getrootheight(rel);
1757}
1758
1761{
1762 switch (strategy)
1763 {
1765 return COMPARE_LT;
1767 return COMPARE_LE;
1769 return COMPARE_EQ;
1771 return COMPARE_GE;
1773 return COMPARE_GT;
1774 default:
1775 return COMPARE_INVALID;
1776 }
1777}
1778
1781{
1782 switch (cmptype)
1783 {
1784 case COMPARE_LT:
1785 return BTLessStrategyNumber;
1786 case COMPARE_LE:
1788 case COMPARE_EQ:
1789 return BTEqualStrategyNumber;
1790 case COMPARE_GE:
1792 case COMPARE_GT:
1794 default:
1795 return InvalidStrategy;
1796 }
1797}
void pgstat_progress_update_param(int index, int64 val)
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
static Datum values[MAXATTR]
Definition: bootstrap.c:153
int Buffer
Definition: buf.h:23
void IncrBufferRefCount(Buffer buffer)
Definition: bufmgr.c:5370
BlockNumber BufferGetBlockNumber(Buffer buffer)
Definition: bufmgr.c:4198
void MarkBufferDirtyHint(Buffer buffer, bool buffer_std)
Definition: bufmgr.c:5402
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:805
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:283
static Page BufferGetPage(Buffer buffer)
Definition: bufmgr.h:417
@ RBM_NORMAL
Definition: bufmgr.h:46
static bool BufferIsValid(Buffer bufnum)
Definition: bufmgr.h:368
static Item PageGetItem(const PageData *page, const ItemIdData *itemId)
Definition: bufpage.h:354
static bool PageIsNew(const PageData *page)
Definition: bufpage.h:234
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:244
PageData * Page
Definition: bufpage.h:82
static OffsetNumber PageGetMaxOffsetNumber(const PageData *page)
Definition: bufpage.h:372
BulkWriteState * smgr_bulk_start_rel(Relation rel, ForkNumber forknum)
Definition: bulk_write.c:87
void smgr_bulk_write(BulkWriteState *bulkstate, BlockNumber blocknum, BulkWriteBuffer buf, bool page_std)
Definition: bulk_write.c:323
BulkWriteBuffer smgr_bulk_get_buf(BulkWriteState *bulkstate)
Definition: bulk_write.c:347
void smgr_bulk_finish(BulkWriteState *bulkstate)
Definition: bulk_write.c:130
#define OffsetToPointer(base, offset)
Definition: c.h:772
int64_t int64
Definition: c.h:536
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:471
int16_t int16
Definition: c.h:534
uint16_t uint16
Definition: c.h:538
size_t Size
Definition: c.h:611
CompareType
Definition: cmptype.h:32
@ COMPARE_LE
Definition: cmptype.h:35
@ COMPARE_INVALID
Definition: cmptype.h:33
@ COMPARE_GT
Definition: cmptype.h:38
@ COMPARE_EQ
Definition: cmptype.h:36
@ COMPARE_GE
Definition: cmptype.h:37
@ COMPARE_LT
Definition: cmptype.h:34
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariableInit(ConditionVariable *cv)
void ConditionVariableSleep(ConditionVariable *cv, uint32 wait_event_info)
void ConditionVariableSignal(ConditionVariable *cv)
Datum datumRestore(char **start_address, bool *isnull)
Definition: datum.c:521
void datumSerialize(Datum value, bool isnull, bool typByVal, int typLen, char **start_address)
Definition: datum.c:459
Size datumEstimateSpace(Datum value, bool isnull, bool typByVal, int typLen)
Definition: datum.c:412
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1161
int errcode(int sqlerrcode)
Definition: elog.c:854
#define LOG
Definition: elog.h:31
#define ereport(elevel,...)
Definition: elog.h:150
#define PG_RETURN_POINTER(x)
Definition: fmgr.h:361
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
IndexScanDesc RelationGetIndexScan(Relation indexRelation, int nkeys, int norderbys)
Definition: genam.c:80
bool(* IndexBulkDeleteCallback)(ItemPointer itemptr, void *state)
Definition: genam.h:112
IndexUniqueCheck
Definition: genam.h:141
Assert(PointerIsAligned(start, uint64))
void IndexFreeSpaceMapVacuum(Relation rel)
Definition: indexfsm.c:71
void RecordFreeIndexPage(Relation rel, BlockNumber freeBlock)
Definition: indexfsm.c:52
IndexTuple index_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: indextuple.c:44
#define PG_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:47
#define PG_END_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:52
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
IndexTupleData * IndexTuple
Definition: itup.h:53
#define MaxIndexTuplesPerPage
Definition: itup.h:181
void LockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:424
void UnlockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:474
#define ExclusiveLock
Definition: lockdefs.h:42
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:698
@ LW_EXCLUSIVE
Definition: lwlock.h:112
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:400
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:469
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
bool _bt_doinsert(Relation rel, IndexTuple itup, IndexUniqueCheck checkUnique, bool indexUnchanged, Relation heapRel)
Definition: nbtinsert.c:103
void _bt_relbuf(Relation rel, Buffer buf)
Definition: nbtpage.c:1023
int _bt_getrootheight(Relation rel)
Definition: nbtpage.c:675
void _bt_pagedel(Relation rel, Buffer leafbuf, BTVacState *vstate)
Definition: nbtpage.c:1802
void _bt_delitems_vacuum(Relation rel, Buffer buf, OffsetNumber *deletable, int ndeletable, BTVacuumPosting *updatable, int nupdatable)
Definition: nbtpage.c:1154
void _bt_checkpage(Relation rel, Buffer buf)
Definition: nbtpage.c:797
void _bt_set_cleanup_info(Relation rel, BlockNumber num_delpages)
Definition: nbtpage.c:232
void _bt_upgradelockbufcleanup(Relation rel, Buffer buf)
Definition: nbtpage.c:1109
void _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level, bool allequalimage)
Definition: nbtpage.c:67
bool _bt_vacuum_needs_cleanup(Relation rel)
Definition: nbtpage.c:179
void _bt_pendingfsm_finalize(Relation rel, BTVacState *vstate)
Definition: nbtpage.c:2996
void _bt_lockbuf(Relation rel, Buffer buf, int access)
Definition: nbtpage.c:1039
void _bt_pendingfsm_init(Relation rel, BTVacState *vstate, bool cleanuponly)
Definition: nbtpage.c:2954
void _bt_parallel_primscan_schedule(IndexScanDesc scan, BlockNumber curr_page)
Definition: nbtree.c:1031
bool btcanreturn(Relation index, int attno)
Definition: nbtree.c:1745
BTPS_State
Definition: nbtree.c:55
@ BTPARALLEL_ADVANCING
Definition: nbtree.c:58
@ BTPARALLEL_NEED_PRIMSCAN
Definition: nbtree.c:57
@ BTPARALLEL_NOT_INITIALIZED
Definition: nbtree.c:56
@ BTPARALLEL_IDLE
Definition: nbtree.c:59
@ BTPARALLEL_DONE
Definition: nbtree.c:60
bool _bt_parallel_seize(IndexScanDesc scan, BlockNumber *next_scan_page, BlockNumber *last_curr_page, bool first)
Definition: nbtree.c:816
StrategyNumber bttranslatecmptype(CompareType cmptype, Oid opfamily)
Definition: nbtree.c:1780
IndexScanDesc btbeginscan(Relation rel, int nkeys, int norderbys)
Definition: nbtree.c:336
static BlockNumber btvacuumpage(BTVacState *vstate, Buffer buf)
Definition: nbtree.c:1358
Size btestimateparallelscan(Relation rel, int nkeys, int norderbys)
Definition: nbtree.c:590
void _bt_parallel_done(IndexScanDesc scan)
Definition: nbtree.c:981
IndexBulkDeleteResult * btvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
Definition: nbtree.c:1095
static BTVacuumPosting btreevacuumposting(BTVacState *vstate, IndexTuple posting, OffsetNumber updatedoffset, int *nremaining)
Definition: nbtree.c:1696
CompareType bttranslatestrategy(StrategyNumber strategy, Oid opfamily)
Definition: nbtree.c:1760
bool btgettuple(IndexScanDesc scan, ScanDirection dir)
Definition: nbtree.c:226
void btparallelrescan(IndexScanDesc scan)
Definition: nbtree.c:773
struct BTParallelScanDescData BTParallelScanDescData
bool btinsert(Relation rel, Datum *values, bool *isnull, ItemPointer ht_ctid, Relation heapRel, IndexUniqueCheck checkUnique, bool indexUnchanged, IndexInfo *indexInfo)
Definition: nbtree.c:202
void btbuildempty(Relation index)
Definition: nbtree.c:179
int btgettreeheight(Relation rel)
Definition: nbtree.c:1754
void btinitparallelscan(void *target)
Definition: nbtree.c:757
IndexBulkDeleteResult * btbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state)
Definition: nbtree.c:1065
static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state, BTCycleId cycleid)
Definition: nbtree.c:1183
static void _bt_parallel_serialize_arrays(Relation rel, BTParallelScanDesc btscan, BTScanOpaque so)
Definition: nbtree.c:663
int64 btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm)
Definition: nbtree.c:288
void btmarkpos(IndexScanDesc scan)
Definition: nbtree.c:506
void btendscan(IndexScanDesc scan)
Definition: nbtree.c:470
void btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys, ScanKey orderbys, int norderbys)
Definition: nbtree.c:385
struct BTParallelScanDescData * BTParallelScanDesc
Definition: nbtree.c:93
void _bt_parallel_release(IndexScanDesc scan, BlockNumber next_scan_page, BlockNumber curr_page)
Definition: nbtree.c:954
Datum bthandler(PG_FUNCTION_ARGS)
Definition: nbtree.c:115
void btrestrpos(IndexScanDesc scan)
Definition: nbtree.c:532
static void _bt_parallel_restore_arrays(Relation rel, BTParallelScanDesc btscan, BTScanOpaque so)
Definition: nbtree.c:706
#define P_ISHALFDEAD(opaque)
Definition: nbtree.h:224
#define BTScanPosIsPinned(scanpos)
Definition: nbtree.h:1003
static uint16 BTreeTupleGetNPosting(IndexTuple posting)
Definition: nbtree.h:518
static bool BTreeTupleIsPivot(IndexTuple itup)
Definition: nbtree.h:480
#define P_ISLEAF(opaque)
Definition: nbtree.h:220
#define SK_BT_SKIP
Definition: nbtree.h:1136
#define BTPageGetOpaque(page)
Definition: nbtree.h:73
#define P_ISDELETED(opaque)
Definition: nbtree.h:222
static ItemPointer BTreeTupleGetPosting(IndexTuple posting)
Definition: nbtree.h:537
#define BTNProcs
Definition: nbtree.h:722
#define MaxTIDsPerBTreePage
Definition: nbtree.h:185
#define BTScanPosIsValid(scanpos)
Definition: nbtree.h:1020
#define P_FIRSTDATAKEY(opaque)
Definition: nbtree.h:369
uint16 BTCycleId
Definition: nbtree.h:29
#define P_NONE
Definition: nbtree.h:212
#define P_RIGHTMOST(opaque)
Definition: nbtree.h:219
#define BTREE_METAPAGE
Definition: nbtree.h:148
#define SK_BT_MAXVAL
Definition: nbtree.h:1140
#define BT_READ
Definition: nbtree.h:729
static bool BTPageIsRecyclable(Page page, Relation heaprel)
Definition: nbtree.h:291
static bool BTreeTupleIsPosting(IndexTuple itup)
Definition: nbtree.h:492
#define BTScanPosInvalidate(scanpos)
Definition: nbtree.h:1026
#define BTScanPosUnpinIfPinned(scanpos)
Definition: nbtree.h:1014
#define BTMaxItemSize
Definition: nbtree.h:164
#define BTP_SPLIT_END
Definition: nbtree.h:81
#define BTOPTIONS_PROC
Definition: nbtree.h:720
#define SK_BT_MINVAL
Definition: nbtree.h:1139
BTScanOpaqueData * BTScanOpaque
Definition: nbtree.h:1096
bool _bt_first(IndexScanDesc scan, ScanDirection dir)
Definition: nbtsearch.c:887
bool _bt_next(IndexScanDesc scan, ScanDirection dir)
Definition: nbtsearch.c:1593
IndexBuildResult * btbuild(Relation heap, Relation index, IndexInfo *indexInfo)
Definition: nbtsort.c:296
void _bt_end_vacuum(Relation rel)
Definition: nbtutils.c:3672
void _bt_end_vacuum_callback(int code, Datum arg)
Definition: nbtutils.c:3700
void _bt_killitems(IndexScanDesc scan)
Definition: nbtutils.c:3361
bool _bt_start_prim_scan(IndexScanDesc scan, ScanDirection dir)
Definition: nbtutils.c:1274
char * btbuildphasename(int64 phasenum)
Definition: nbtutils.c:3796
bytea * btoptions(Datum reloptions, bool validate)
Definition: nbtutils.c:3750
bool btproperty(Oid index_oid, int attno, IndexAMProperty prop, const char *propname, bool *res, bool *isnull)
Definition: nbtutils.c:3773
bool _bt_allequalimage(Relation rel, bool debugmessage)
Definition: nbtutils.c:4327
void _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir)
Definition: nbtutils.c:613
BTCycleId _bt_start_vacuum(Relation rel)
Definition: nbtutils.c:3615
bool btvalidate(Oid opclassoid)
Definition: nbtvalidate.c:40
void btadjustmembers(Oid opfamilyoid, Oid opclassoid, List *operators, List *functions)
Definition: nbtvalidate.c:288
#define makeNode(_type_)
Definition: nodes.h:161
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
uint16 OffsetNumber
Definition: off.h:24
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
int16 attnum
Definition: pg_attribute.h:74
static char * buf
Definition: pg_test_fsync.c:72
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:125
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:124
void read_stream_reset(ReadStream *stream)
Definition: read_stream.c:1044
Buffer read_stream_next_buffer(ReadStream *stream, void **per_buffer_data)
Definition: read_stream.c:791
ReadStream * read_stream_begin_relation(int flags, BufferAccessStrategy strategy, Relation rel, ForkNumber forknum, ReadStreamBlockNumberCB callback, void *callback_private_data, size_t per_buffer_data_size)
Definition: read_stream.c:737
void read_stream_end(ReadStream *stream)
Definition: read_stream.c:1089
BlockNumber block_range_read_stream_cb(ReadStream *stream, void *callback_private_data, void *per_buffer_data)
Definition: read_stream.c:162
#define READ_STREAM_MAINTENANCE
Definition: read_stream.h:28
#define READ_STREAM_USE_BATCHING
Definition: read_stream.h:64
#define READ_STREAM_FULL
Definition: read_stream.h:43
#define RELATION_IS_LOCAL(relation)
Definition: rel.h:657
#define RelationGetDescr(relation)
Definition: rel.h:540
#define RelationGetRelationName(relation)
Definition: rel.h:548
#define RelationNeedsWAL(relation)
Definition: rel.h:637
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:533
@ MAIN_FORKNUM
Definition: relpath.h:58
@ INIT_FORKNUM
Definition: relpath.h:61
ScanDirection
Definition: sdir.h:25
@ ForwardScanDirection
Definition: sdir.h:28
void btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: selfuncs.c:7286
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
#define SK_SEARCHNULL
Definition: skey.h:121
ScanKeyData * ScanKey
Definition: skey.h:75
#define SK_ISNULL
Definition: skey.h:115
#define IsMVCCSnapshot(snapshot)
Definition: snapmgr.h:55
uint16 StrategyNumber
Definition: stratnum.h:22
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define InvalidStrategy
Definition: stratnum.h:24
#define BTMaxStrategyNumber
Definition: stratnum.h:35
#define BTLessStrategyNumber
Definition: stratnum.h:29
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define BTLessEqualStrategyNumber
Definition: stratnum.h:30
#define BTGreaterEqualStrategyNumber
Definition: stratnum.h:32
bool attbyval
Definition: nbtree.h:1045
Datum * elem_values
Definition: nbtree.h:1040
int16 attlen
Definition: nbtree.h:1044
BlockNumber btpo_next
Definition: nbtree.h:65
uint16 btpo_flags
Definition: nbtree.h:67
BTCycleId btpo_cycleid
Definition: nbtree.h:68
BTPS_State btps_pageStatus
Definition: nbtree.c:72
BlockNumber btps_lastCurrPage
Definition: nbtree.c:70
ConditionVariable btps_cv
Definition: nbtree.c:76
BlockNumber btps_nextScanPage
Definition: nbtree.c:69
int btps_arrElems[FLEXIBLE_ARRAY_MEMBER]
Definition: nbtree.c:83
bool needPrimScan
Definition: nbtree.h:1062
BTArrayKeyInfo * arrayKeys
Definition: nbtree.h:1065
char * markTuples
Definition: nbtree.h:1080
FmgrInfo * orderProcs
Definition: nbtree.h:1066
BTScanPosData currPos
Definition: nbtree.h:1092
int * killedItems
Definition: nbtree.h:1070
char * currTuples
Definition: nbtree.h:1079
bool oppositeDirCheck
Definition: nbtree.h:1064
BTScanPosData markPos
Definition: nbtree.h:1093
ScanKey keyData
Definition: nbtree.h:1057
MemoryContext arrayContext
Definition: nbtree.h:1067
bool moreRight
Definition: nbtree.h:985
Buffer buf
Definition: nbtree.h:963
int nextTupleOffset
Definition: nbtree.h:978
bool moreLeft
Definition: nbtree.h:984
int lastItem
Definition: nbtree.h:995
BTScanPosItem items[MaxTIDsPerBTreePage]
Definition: nbtree.h:998
int itemIndex
Definition: nbtree.h:996
ScanDirection dir
Definition: nbtree.h:972
ItemPointerData heapTid
Definition: nbtree.h:956
IndexBulkDeleteResult * stats
Definition: nbtree.h:333
BTCycleId cycleid
Definition: nbtree.h:336
BTPendingFSM * pendingpages
Definition: nbtree.h:344
int npendingpages
Definition: nbtree.h:345
IndexBulkDeleteCallback callback
Definition: nbtree.h:334
MemoryContext pagedelcontext
Definition: nbtree.h:337
IndexVacuumInfo * info
Definition: nbtree.h:332
int bufsize
Definition: nbtree.h:342
int maxbufsize
Definition: nbtree.h:343
void * callback_state
Definition: nbtree.h:335
uint16 deletetids[FLEXIBLE_ARRAY_MEMBER]
Definition: nbtree.h:921
uint16 ndeletedtids
Definition: nbtree.h:920
IndexTuple itup
Definition: nbtree.h:916
OffsetNumber updatedoffset
Definition: nbtree.h:917
int16 attlen
Definition: tupdesc.h:71
ambuildphasename_function ambuildphasename
Definition: amapi.h:304
ambuildempty_function ambuildempty
Definition: amapi.h:294
amvacuumcleanup_function amvacuumcleanup
Definition: amapi.h:298
bool amclusterable
Definition: amapi.h:268
amoptions_function amoptions
Definition: amapi.h:302
amestimateparallelscan_function amestimateparallelscan
Definition: amapi.h:316
amrestrpos_function amrestrpos
Definition: amapi.h:313
aminsert_function aminsert
Definition: amapi.h:295
amendscan_function amendscan
Definition: amapi.h:311
amtranslate_strategy_function amtranslatestrategy
Definition: amapi.h:321
uint16 amoptsprocnum
Definition: amapi.h:242
amparallelrescan_function amparallelrescan
Definition: amapi.h:318
Oid amkeytype
Definition: amapi.h:284
bool amconsistentordering
Definition: amapi.h:252
bool ampredlocks
Definition: amapi.h:270
uint16 amsupport
Definition: amapi.h:240
amtranslate_cmptype_function amtranslatecmptype
Definition: amapi.h:322
amcostestimate_function amcostestimate
Definition: amapi.h:300
bool amcanorderbyop
Definition: amapi.h:246
amadjustmembers_function amadjustmembers
Definition: amapi.h:306
ambuild_function ambuild
Definition: amapi.h:293
bool amstorage
Definition: amapi.h:266
uint16 amstrategies
Definition: amapi.h:238
bool amoptionalkey
Definition: amapi.h:260
amgettuple_function amgettuple
Definition: amapi.h:309
amcanreturn_function amcanreturn
Definition: amapi.h:299
bool amcanunique
Definition: amapi.h:256
amgetbitmap_function amgetbitmap
Definition: amapi.h:310
amproperty_function amproperty
Definition: amapi.h:303
ambulkdelete_function ambulkdelete
Definition: amapi.h:297
bool amsearcharray
Definition: amapi.h:262
bool amsummarizing
Definition: amapi.h:280
amvalidate_function amvalidate
Definition: amapi.h:305
ammarkpos_function ammarkpos
Definition: amapi.h:312
bool amcanmulticol
Definition: amapi.h:258
bool amusemaintenanceworkmem
Definition: amapi.h:278
ambeginscan_function ambeginscan
Definition: amapi.h:307
bool amcanparallel
Definition: amapi.h:272
amrescan_function amrescan
Definition: amapi.h:308
bool amcanorder
Definition: amapi.h:244
bool amcanbuildparallel
Definition: amapi.h:274
aminitparallelscan_function aminitparallelscan
Definition: amapi.h:317
uint8 amparallelvacuumoptions
Definition: amapi.h:282
aminsertcleanup_function aminsertcleanup
Definition: amapi.h:296
bool amcanbackward
Definition: amapi.h:254
amgettreeheight_function amgettreeheight
Definition: amapi.h:301
bool amcaninclude
Definition: amapi.h:276
bool amsearchnulls
Definition: amapi.h:264
bool amconsistentequality
Definition: amapi.h:250
bool amcanhash
Definition: amapi.h:248
BlockNumber pages_deleted
Definition: genam.h:107
BlockNumber pages_free
Definition: genam.h:108
BlockNumber num_pages
Definition: genam.h:102
double tuples_removed
Definition: genam.h:105
double num_index_tuples
Definition: genam.h:104
struct ScanKeyData * keyData
Definition: relscan.h:141
struct ParallelIndexScanDescData * parallel_scan
Definition: relscan.h:191
bool kill_prior_tuple
Definition: relscan.h:147
struct TupleDescData * xs_itupdesc
Definition: relscan.h:168
Relation indexRelation
Definition: relscan.h:137
ItemPointerData xs_heaptid
Definition: relscan.h:172
struct SnapshotData * xs_snapshot
Definition: relscan.h:138
Relation heapRelation
Definition: relscan.h:136
ItemPointerData t_tid
Definition: itup.h:37
Relation index
Definition: genam.h:71
double num_heap_tuples
Definition: genam.h:77
bool analyze_only
Definition: genam.h:73
BufferAccessStrategy strategy
Definition: genam.h:78
Relation heaprel
Definition: genam.h:72
bool report_progress
Definition: genam.h:74
bool estimated_count
Definition: genam.h:75
Definition: lwlock.h:42
TupleDesc rd_att
Definition: rel.h:112
int sk_flags
Definition: skey.h:66
Datum sk_argument
Definition: skey.h:72
Definition: type.h:96
static void callback(struct sockaddr *addr, struct sockaddr *mask, void *unused)
Definition: test_ifaddrs.c:46
static ItemArray items
Definition: test_tidstore.c:48
void tbm_add_tuples(TIDBitmap *tbm, const ItemPointer tids, int ntids, bool recheck)
Definition: tidbitmap.c:366
static CompactAttribute * TupleDescCompactAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:175
void vacuum_delay_point(bool is_analyze)
Definition: vacuum.c:2423
#define VACUUM_OPTION_PARALLEL_BULKDEL
Definition: vacuum.h:48
#define VACUUM_OPTION_PARALLEL_COND_CLEANUP
Definition: vacuum.h:55