@@ -40,7 +40,7 @@ def fit_ont_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epo
40
40
with torch .no_grad ():
41
41
if cuda :
42
42
images = Variable (torch .from_numpy (images ).type (torch .FloatTensor )).cuda ()
43
- targets = [Variable (torch .from_numpy (ann ).type (torch .FloatTensor )) for ann in targets ]
43
+ targets = [Variable (torch .from_numpy (ann ).type (torch .FloatTensor )). cuda () for ann in targets ]
44
44
else :
45
45
images = Variable (torch .from_numpy (images ).type (torch .FloatTensor ))
46
46
targets = [Variable (torch .from_numpy (ann ).type (torch .FloatTensor )) for ann in targets ]
@@ -66,11 +66,11 @@ def fit_ont_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epo
66
66
67
67
with torch .no_grad ():
68
68
if cuda :
69
- images = Variable (torch .from_numpy (images ). cuda (). type (torch .FloatTensor ))
70
- targets = [Variable (torch .from_numpy (ann ).type (torch .FloatTensor )) for ann in targets ]
69
+ images_val = Variable (torch .from_numpy (images_val ). type (torch .FloatTensor )). cuda ( )
70
+ targets_val = [Variable (torch .from_numpy (ann ).type (torch .FloatTensor )). cuda () for ann in targets_val ]
71
71
else :
72
- images = Variable (torch .from_numpy (images ).type (torch .FloatTensor ))
73
- targets = [Variable (torch .from_numpy (ann ).type (torch .FloatTensor )) for ann in targets ]
72
+ images_val = Variable (torch .from_numpy (images_val ).type (torch .FloatTensor ))
73
+ targets_val = [Variable (torch .from_numpy (ann ).type (torch .FloatTensor )) for ann in targets_val ]
74
74
optimizer .zero_grad ()
75
75
outputs = net (images_val )
76
76
losses = []
@@ -154,7 +154,7 @@ def fit_ont_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epo
154
154
Init_Epoch = 0
155
155
Freeze_Epoch = 25
156
156
157
- optimizer = optim .Adam (net .parameters (),lr )
157
+ optimizer = optim .Adam (net .parameters (),lr , weight_decay = 5e-4 )
158
158
if Cosine_lr :
159
159
lr_scheduler = optim .lr_scheduler .CosineAnnealingLR (optimizer , T_max = 5 , eta_min = 1e-5 )
160
160
else :
@@ -183,7 +183,7 @@ def fit_ont_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epo
183
183
Freeze_Epoch = 25
184
184
Unfreeze_Epoch = 50
185
185
186
- optimizer = optim .Adam (net .parameters (),lr )
186
+ optimizer = optim .Adam (net .parameters (),lr , weight_decay = 5e-4 )
187
187
if Cosine_lr :
188
188
lr_scheduler = optim .lr_scheduler .CosineAnnealingLR (optimizer , T_max = 5 , eta_min = 1e-5 )
189
189
else :
@@ -204,4 +204,4 @@ def fit_ont_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epo
204
204
205
205
for epoch in range (Freeze_Epoch ,Unfreeze_Epoch ):
206
206
fit_ont_epoch (net ,yolo_losses ,epoch ,epoch_size ,epoch_size_val ,gen ,gen_val ,Unfreeze_Epoch ,Cuda )
207
- lr_scheduler .step ()
207
+ lr_scheduler .step ()
0 commit comments