|
| 1 | +import streamlit as st |
| 2 | +import pandas as pd |
| 3 | +import base64 |
| 4 | +import matplotlib.pyplot as plt |
| 5 | +import seaborn as sns |
| 6 | +import numpy as np |
| 7 | +import yfinance as yf |
| 8 | + |
| 9 | +st.title('S&P 500 App') |
| 10 | + |
| 11 | +st.markdown(""" |
| 12 | +This app retrieves the list of the **S&P 500** (from Wikipedia) and its corresponding **stock closing price** (year-to-date)! |
| 13 | +* **Python libraries:** base64, pandas, streamlit, numpy, matplotlib, seaborn |
| 14 | +* **Data source:** [Wikipedia](https://www.wikipedia.org/). |
| 15 | +""") |
| 16 | + |
| 17 | +st.sidebar.header('User Input Features') |
| 18 | + |
| 19 | +# Web scraping of S&P 500 data |
| 20 | +# |
| 21 | +@st.cache |
| 22 | +def load_data(): |
| 23 | + url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies' |
| 24 | + html = pd.read_html(url, header = 0) |
| 25 | + df = html[0] |
| 26 | + return df |
| 27 | + |
| 28 | +df = load_data() |
| 29 | +sector = df.groupby('GICS Sector') |
| 30 | + |
| 31 | +# Sidebar - Sector selection |
| 32 | +sorted_sector_unique = sorted( df['GICS Sector'].unique() ) |
| 33 | +selected_sector = st.sidebar.multiselect('Sector', sorted_sector_unique, sorted_sector_unique) |
| 34 | + |
| 35 | +# Filtering data |
| 36 | +df_selected_sector = df[ (df['GICS Sector'].isin(selected_sector)) ] |
| 37 | + |
| 38 | +st.header('Display Companies in Selected Sector') |
| 39 | +st.write('Data Dimension: ' + str(df_selected_sector.shape[0]) + ' rows and ' + str(df_selected_sector.shape[1]) + ' columns.') |
| 40 | +st.dataframe(df_selected_sector) |
| 41 | + |
| 42 | +# Download S&P500 data |
| 43 | +# https://discuss.streamlit.io/t/how-to-download-file-in-streamlit/1806 |
| 44 | +def filedownload(df): |
| 45 | + csv = df.to_csv(index=False) |
| 46 | + b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions |
| 47 | + href = f'<a href="data:file/csv;base64,{b64}" download="SP500.csv">Download CSV File</a>' |
| 48 | + return href |
| 49 | + |
| 50 | +st.markdown(filedownload(df_selected_sector), unsafe_allow_html=True) |
| 51 | + |
| 52 | +# https://pypi.org/project/yfinance/ |
| 53 | + |
| 54 | +data = yf.download( |
| 55 | + tickers = list(df_selected_sector[:10].Symbol), |
| 56 | + period = "ytd", |
| 57 | + interval = "1d", |
| 58 | + group_by = 'ticker', |
| 59 | + auto_adjust = True, |
| 60 | + prepost = True, |
| 61 | + threads = True, |
| 62 | + proxy = None |
| 63 | + ) |
| 64 | + |
| 65 | +# Plot Closing Price of Query Symbol |
| 66 | +def price_plot(symbol): |
| 67 | + df = pd.DataFrame(data[symbol].Close) |
| 68 | + df['Date'] = df.index |
| 69 | + plt.fill_between(df.Date, df.Close, color='skyblue', alpha=0.3) |
| 70 | + plt.plot(df.Date, df.Close, color='skyblue', alpha=0.8) |
| 71 | + plt.xticks(rotation=90) |
| 72 | + plt.title(symbol, fontweight='bold') |
| 73 | + plt.xlabel('Date', fontweight='bold') |
| 74 | + plt.ylabel('Closing Price', fontweight='bold') |
| 75 | + return st.pyplot() |
| 76 | + |
| 77 | +num_company = st.sidebar.slider('Number of Companies', 1, 5) |
| 78 | + |
| 79 | +if st.button('Show Plots'): |
| 80 | + st.header('Stock Closing Price') |
| 81 | + for i in list(df_selected_sector.Symbol)[:num_company]: |
| 82 | + price_plot(i) |
0 commit comments