|
| 1 | +Task 1:- make a changes in data according |
| 2 | + |
| 3 | +SELECT sum(cumulative_confirmed) as total_cases_worldwide |
| 4 | +FROM `bigquery-public-data.covid19_open_data.covid19_open_data` |
| 5 | +WHERE date='2020-05-25' |
| 6 | + |
| 7 | + |
| 8 | +=========================================================================================================================================================================== |
| 9 | + |
| 10 | +Task 2:- Worst affected areas |
| 11 | + |
| 12 | + |
| 13 | + with deaths_by_states as ( |
| 14 | + |
| 15 | + SELECT subregion1_name as state, sum(cumulative_deceased) as death_count |
| 16 | + |
| 17 | + FROM `bigquery-public-data.covid19_open_data.covid19_open_data` |
| 18 | + |
| 19 | + where country_name="United States of America" and date='2020-04-10' and subregion1_name is NOT NULL |
| 20 | + |
| 21 | + group by subregion1_name |
| 22 | + ) |
| 23 | + |
| 24 | + select count(*) as count_of_states |
| 25 | + |
| 26 | + from deaths_by_states |
| 27 | + |
| 28 | + where death_count > 300 |
| 29 | + |
| 30 | + |
| 31 | + |
| 32 | +=========================================================================================================================================================================== |
| 33 | + |
| 34 | +Task 3:-Identifying hotspots |
| 35 | + |
| 36 | + |
| 37 | +SELECT * FROM ( |
| 38 | + |
| 39 | + SELECT subregion1_name as state, sum(cumulative_confirmed) as total_confirmed_cases |
| 40 | + |
| 41 | + FROM `bigquery-public-data.covid19_open_data.covid19_open_data` |
| 42 | + |
| 43 | + WHERE country_code="US" AND date='2020-04-10' AND subregion1_name is NOT NULL |
| 44 | + |
| 45 | + GROUP BY subregion1_name |
| 46 | + |
| 47 | + ORDER BY total_confirmed_cases DESC |
| 48 | +) |
| 49 | +WHERE total_confirmed_cases > 3000 |
| 50 | + |
| 51 | + |
| 52 | + |
| 53 | +=========================================================================================================================================================================== |
| 54 | + |
| 55 | +Task 4:- Fatality ratio |
| 56 | + |
| 57 | +NOTE :- look carefully in may there are 31 day and april 30 so please make the changes according |
| 58 | + |
| 59 | + |
| 60 | +SELECT sum(cumulative_confirmed) as total_confirmed_cases, sum(cumulative_deceased) as total_deaths, (sum(cumulative_deceased)/sum(cumulative_confirmed))*100 as case_fatality_ratio |
| 61 | + |
| 62 | +FROM `bigquery-public-data.covid19_open_data.covid19_open_data` |
| 63 | + |
| 64 | +where country_name="Italy" AND date BETWEEN '2020-05-01'and '2020-05-31' |
| 65 | + |
| 66 | + |
| 67 | + |
| 68 | +=========================================================================================================================================================================== |
| 69 | + |
| 70 | +Task 5:- Identifying specific day |
| 71 | + |
| 72 | + |
| 73 | +SELECT date |
| 74 | + |
| 75 | +FROM `bigquery-public-data.covid19_open_data.covid19_open_data` |
| 76 | + |
| 77 | +where country_name="Italy" and cumulative_deceased>16000 |
| 78 | + |
| 79 | +order by date asc |
| 80 | + |
| 81 | +limit 1 |
| 82 | + |
| 83 | + |
| 84 | + |
| 85 | + |
| 86 | +=========================================================================================================================================================================== |
| 87 | + |
| 88 | + |
| 89 | +Task 6:- Finding days with zero net new cases |
| 90 | + |
| 91 | +NOTE:- please check the start date and end date carefully |
| 92 | + |
| 93 | + |
| 94 | +WITH india_cases_by_date AS ( |
| 95 | + |
| 96 | + SELECT |
| 97 | + |
| 98 | + date, |
| 99 | + |
| 100 | + SUM( cumulative_confirmed ) AS cases |
| 101 | + |
| 102 | + FROM |
| 103 | + |
| 104 | + `bigquery-public-data.covid19_open_data.covid19_open_data` |
| 105 | + |
| 106 | + WHERE |
| 107 | + |
| 108 | + country_name ="India" |
| 109 | + |
| 110 | + AND date between '2020-02-23' and '2020-03-11' |
| 111 | + |
| 112 | + GROUP BY |
| 113 | + |
| 114 | + date |
| 115 | + |
| 116 | + ORDER BY |
| 117 | + |
| 118 | + date ASC |
| 119 | + |
| 120 | + ) |
| 121 | + |
| 122 | +, india_previous_day_comparison AS |
| 123 | + |
| 124 | +(SELECT |
| 125 | + |
| 126 | + date, |
| 127 | + |
| 128 | + cases, |
| 129 | + |
| 130 | + LAG(cases) OVER(ORDER BY date) AS previous_day, |
| 131 | + |
| 132 | + cases - LAG(cases) OVER(ORDER BY date) AS net_new_cases |
| 133 | + |
| 134 | +FROM india_cases_by_date |
| 135 | + |
| 136 | +) |
| 137 | + |
| 138 | +select count(*) |
| 139 | + |
| 140 | +from india_previous_day_comparison |
| 141 | + |
| 142 | +where net_new_cases=0 |
| 143 | + |
| 144 | + |
| 145 | + |
| 146 | + |
| 147 | +=========================================================================================================================================================================== |
| 148 | + |
| 149 | +Task 7:- |
| 150 | + |
| 151 | + |
| 152 | +WITH us_cases_by_date AS ( |
| 153 | + |
| 154 | + SELECT |
| 155 | + |
| 156 | + date, |
| 157 | + |
| 158 | + SUM(cumulative_confirmed) AS cases |
| 159 | + |
| 160 | + FROM |
| 161 | + |
| 162 | + `bigquery-public-data.covid19_open_data.covid19_open_data` |
| 163 | + |
| 164 | + WHERE |
| 165 | + |
| 166 | + country_name="United States of America" |
| 167 | + |
| 168 | + AND date between '2020-03-22' and '2020-04-20' |
| 169 | + |
| 170 | + GROUP BY |
| 171 | + |
| 172 | + date |
| 173 | + |
| 174 | + ORDER BY |
| 175 | + |
| 176 | + date ASC |
| 177 | + |
| 178 | + ) |
| 179 | + |
| 180 | + |
| 181 | + |
| 182 | +, us_previous_day_comparison AS |
| 183 | + |
| 184 | +(SELECT |
| 185 | + |
| 186 | + date, |
| 187 | + |
| 188 | + cases, |
| 189 | + |
| 190 | + LAG(cases) OVER(ORDER BY date) AS previous_day, |
| 191 | + |
| 192 | + cases - LAG(cases) OVER(ORDER BY date) AS net_new_cases, |
| 193 | + |
| 194 | + (cases - LAG(cases) OVER(ORDER BY date))*100/LAG(cases) OVER(ORDER BY date) AS percentage_increase |
| 195 | + |
| 196 | +FROM us_cases_by_date |
| 197 | + |
| 198 | +) |
| 199 | + |
| 200 | + |
| 201 | + |
| 202 | +select Date, cases as Confirmed_Cases_On_Day, previous_day as Confirmed_Cases_Previous_Day, percentage_increase as Percentage_Increase_In_Cases |
| 203 | + |
| 204 | +from us_previous_day_comparison |
| 205 | + |
| 206 | +where percentage_increase > 5 |
| 207 | + |
| 208 | + |
| 209 | + |
| 210 | +=========================================================================================================================================================================== |
| 211 | + |
| 212 | +Task 8:- |
| 213 | + |
| 214 | + |
| 215 | +WITH cases_by_country AS ( |
| 216 | + |
| 217 | + SELECT |
| 218 | + |
| 219 | + country_name AS country, |
| 220 | + |
| 221 | + sum(cumulative_confirmed) AS cases, |
| 222 | + |
| 223 | + sum(cumulative_recovered) AS recovered_cases |
| 224 | + |
| 225 | + FROM |
| 226 | + |
| 227 | + bigquery-public-data.covid19_open_data.covid19_open_data |
| 228 | + |
| 229 | + WHERE |
| 230 | + |
| 231 | + date = '2020-05-10' |
| 232 | + |
| 233 | + GROUP BY |
| 234 | + |
| 235 | + country_name |
| 236 | + |
| 237 | + ) |
| 238 | + |
| 239 | + |
| 240 | + |
| 241 | +, recovered_rate AS |
| 242 | + |
| 243 | +(SELECT |
| 244 | + |
| 245 | + country, cases, recovered_cases, |
| 246 | + |
| 247 | + (recovered_cases * 100)/cases AS recovery_rate |
| 248 | + |
| 249 | +FROM cases_by_country |
| 250 | + |
| 251 | +) |
| 252 | + |
| 253 | + |
| 254 | + |
| 255 | +SELECT country, cases AS confirmed_cases, recovered_cases, recovery_rate |
| 256 | + |
| 257 | +FROM recovered_rate |
| 258 | + |
| 259 | +WHERE cases > 50000 |
| 260 | + |
| 261 | +ORDER BY recovery_rate desc |
| 262 | + |
| 263 | +LIMIT 5 |
| 264 | + |
| 265 | + |
| 266 | + |
| 267 | + |
| 268 | +=========================================================================================================================================================================== |
| 269 | + |
| 270 | +Task 9:- Here we change the date |
| 271 | + |
| 272 | +WITH |
| 273 | + france_cases AS ( |
| 274 | + SELECT |
| 275 | + date, |
| 276 | + SUM(cumulative_confirmed) AS total_cases |
| 277 | + FROM |
| 278 | + `bigquery-public-data.covid19_open_data.covid19_open_data` |
| 279 | + WHERE |
| 280 | + country_name="France" |
| 281 | + AND date IN ('2020-01-24', |
| 282 | + '2020-04-10') |
| 283 | + GROUP BY |
| 284 | + date |
| 285 | + ORDER BY |
| 286 | + date) |
| 287 | +, summary as ( |
| 288 | +SELECT |
| 289 | + total_cases AS first_day_cases, |
| 290 | + LEAD(total_cases) OVER(ORDER BY date) AS last_day_cases, |
| 291 | + DATE_DIFF(LEAD(date) OVER(ORDER BY date),date, day) AS days_diff |
| 292 | +FROM |
| 293 | + france_cases |
| 294 | +LIMIT 1 |
| 295 | +) |
| 296 | +select first_day_cases, last_day_cases, days_diff, POWER((last_day_cases/first_day_cases),(1/days_diff))-1 as cdgr |
| 297 | +from summary |
| 298 | + |
| 299 | + |
| 300 | + |
| 301 | +=========================================================================================================================================================================== |
| 302 | + |
| 303 | +Task 10:- Create a Looker Studio report |
| 304 | + |
| 305 | + |
| 306 | +SELECT |
| 307 | + |
| 308 | + date, SUM(cumulative_confirmed) AS country_cases, |
| 309 | + |
| 310 | + SUM(cumulative_deceased) AS country_deaths |
| 311 | + |
| 312 | +FROM |
| 313 | + |
| 314 | + `bigquery-public-data.covid19_open_data.covid19_open_data` |
| 315 | + |
| 316 | +WHERE |
| 317 | + |
| 318 | + date BETWEEN '2020-03-20' |
| 319 | + |
| 320 | + AND '2020-04-23' |
| 321 | + |
| 322 | + AND country_name ="United States of America" |
| 323 | + |
| 324 | +GROUP BY date |
| 325 | + |
| 326 | + |
| 327 | + |
0 commit comments