diff --git a/.github/ISSUE_TEMPLATE/blank_issue.yml b/.github/ISSUE_TEMPLATE/blank_issue.yml new file mode 100644 index 000000000..bbd855958 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/blank_issue.yml @@ -0,0 +1,12 @@ +name: Blank Issue +description: Submit an issue about Tensorflow.NET. +labels: [Blank Issue] +body: + - type: textarea + id: description + attributes: + label: Description + description: Please describe the issue here. + placeholder: Description + validations: + required: false diff --git a/.github/ISSUE_TEMPLATE/bug_report.yml b/.github/ISSUE_TEMPLATE/bug_report.yml new file mode 100644 index 000000000..14e237951 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/bug_report.yml @@ -0,0 +1,48 @@ +name: BUG Report +description: Report a BUG of Tensorflow.NET. +title: "[BUG Report]: " +labels: [bug-report] +body: + - type: markdown + attributes: + value: | + We welcome bug reports! Any unexpected behavior could be a BUG and this template help us gather the information to fix it. + - type: textarea + id: background + attributes: + label: Description + description: Please share a clear and concise description of the problem. + placeholder: Description + validations: + required: true + - type: textarea + id: repro-steps + attributes: + label: Reproduction Steps + description: | + Please include minimal steps to reproduce the problem if possible. E.g.: the smallest possible code snippet; or a small project, with steps to run it. It will greatly help us to locate the reason of the problem. + placeholder: Minimal Reproduction + validations: + required: false + - type: textarea + id: known-workarounds + attributes: + label: Known Workarounds + description: | + Please provide a description of any known workarounds. + placeholder: Known Workarounds + validations: + required: false + - type: textarea + id: configuration + attributes: + label: Configuration and Other Information + description: | + Please provide more information on your configuration: + * Which version of Tensorflow.NET is the code depending on? + * Which version of .NET runtime is the code running on? + * What is the OS? + * Any other information about this problem? + placeholder: Configuration + validations: + required: false \ No newline at end of file diff --git a/.github/ISSUE_TEMPLATE/documention_issue.yml b/.github/ISSUE_TEMPLATE/documention_issue.yml new file mode 100644 index 000000000..f8a04e40f --- /dev/null +++ b/.github/ISSUE_TEMPLATE/documention_issue.yml @@ -0,0 +1,30 @@ +name: Documentation Issue +description: Report an issue about Tensorflow.NET ducumention or require a documention. +title: "[Documention Issue]: " +labels: [Documention Issue] +body: + - type: markdown + attributes: + value: | + Welcome to suggest to Tensorflow.NET documention! This template will help us gather the information we need to improve it. + - type: textarea + id: brief-description + attributes: + label: Brief Description + description: Please describe the problem or the requst for new documention here. + placeholder: Description + validations: + required: true + - type: textarea + id: alternatives + attributes: + label: Alternatives + description: | + Please provide some alternative information here, if any. + placeholder: Alternatives + validations: + required: false + - type: markdown + attributes: + value: | + Thanks for your contributing! diff --git a/.github/ISSUE_TEMPLATE/feature_request.yml b/.github/ISSUE_TEMPLATE/feature_request.yml new file mode 100644 index 000000000..9ce3f1663 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/feature_request.yml @@ -0,0 +1,50 @@ +name: Feature Request +description: Request/Propose a new feature of Tensorflow.NET. +title: "[Feature Request]: " +labels: [feature-request] +body: + - type: markdown + attributes: + value: | + We welcome feature proposal/request! This template will help us gather the information we need to implement the new feature. + - type: textarea + id: background + attributes: + label: Background and Feature Description + description: Please describe the purpose and value of the new feature here. If the feature is linked to a specific problem, please describe it or put the link here. + placeholder: Purpose + validations: + required: true + - type: textarea + id: api-proposal + attributes: + label: API Definition and Usage + description: | + Please tell us the new API related to the requested feature, if any. + placeholder: API declaration (no method bodies) + value: | + ```cs + public Tensor NewFunc(Tensor x, int y); + + var result = NewFunc(input, index); + ``` + validations: + required: false + - type: textarea + id: alternatives + attributes: + label: Alternatives + description: | + Please provide some alternative information of the feature, if any. For example, if you request a feature which depends on a specific device, please provide the device information. + placeholder: Alternatives + validations: + required: false + - type: textarea + id: risks + attributes: + label: Risks + description: | + Please mention any risks that to your knowledge the API proposal might entail, such as breaking changes, performance regressions, etc. + placeholder: Risks + validations: + required: false \ No newline at end of file diff --git a/.github/ISSUE_TEMPLATE/performance_issue.yml b/.github/ISSUE_TEMPLATE/performance_issue.yml new file mode 100644 index 000000000..cbe86d329 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/performance_issue.yml @@ -0,0 +1,48 @@ +name: Performance Issue +description: Submit an issue about performance problem or regression of Tensorflow.NET. +title: "[Performance Issue]: " +labels: [Performance Issue] +body: + - type: markdown + attributes: + value: | + We welcome issues about Tensorflow.NET performance! This template will help us gather the information we need to locate the problem improve the performance. + - type: textarea + id: brief-description + attributes: + label: Brief Description + description: Please give a brief description about the performance issue here. + placeholder: Description + validations: + required: true + - type: textarea + id: device-and-context + attributes: + label: Device and Context + description: | + Please describe the device and context you used when you encounter the performance problem/regression. + placeholder: Device and Context + validations: + required: true + - type: textarea + id: benchmark + attributes: + label: Benchmark + description: | + We will appreciate it if you'd like to provide benchmark comparison of the performance issue. + placeholder: Benchmark + validations: + required: false + - type: textarea + id: alternatives + attributes: + label: Alternatives + description: | + Please provide some alternative information of the performance issue here, if any. For example, we'll appreciate it if you'd like to provide the the code to reproduce the performance problem. + placeholder: Alternatives + validations: + required: false + - type: markdown + attributes: + value: | + Thanks for your contributing! diff --git a/.github/ISSUE_TEMPLATE/question.yml b/.github/ISSUE_TEMPLATE/question.yml new file mode 100644 index 000000000..ca38be340 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/question.yml @@ -0,0 +1,30 @@ +name: Question +description: Ask any question about Tensorflow.NET and discuss with community members. +title: "[Question]: " +labels: [Question] +body: + - type: markdown + attributes: + value: | + Any question about Tensorflow.NET is welcomed! This template will help us get your point. + - type: textarea + id: description + attributes: + label: Description + description: Please describe your question here. + placeholder: Description + validations: + required: true + - type: textarea + id: alternatives + attributes: + label: Alternatives + description: | + Please provide some alternative information here, if any. + placeholder: Alternatives + validations: + required: false + - type: markdown + attributes: + value: | + We are always willing to answer your questions! diff --git a/.github/workflows/build_and_test.yml b/.github/workflows/build_and_test.yml new file mode 100644 index 000000000..9fd34fc49 --- /dev/null +++ b/.github/workflows/build_and_test.yml @@ -0,0 +1,66 @@ +# This workflow will build a .NET project +# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-net + +name: build_and_test + +on: + push: + branches: [ "master" ] + pull_request: + branches: [ "master" ] + types: ["opened", "reopened", "synchronize", "ready_for_review", "auto_merge_enabled"] + +jobs: + windows: + + runs-on: windows-latest + + steps: + - uses: actions/checkout@v3 + - name: Setup .NET 6 + uses: actions/setup-dotnet@v3 + with: + dotnet-version: 6.0.x + - name: Restore dependencies + run: dotnet restore + - name: Build CPU version + run: dotnet build --no-restore + - name: Test CPU version + run: dotnet test --no-build --verbosity normal + - name: uninstall redist cpu for unit tests + run: dotnet remove tools/Tensorflow.UnitTest.RedistHolder package SciSharp.TensorFlow.Redist + - name: install redist gpu for unit tests + run: dotnet add tools/Tensorflow.UnitTest.RedistHolder package SciSharp.TensorFlow.Redist-Windows-GPU + - name: Restore dependencies + run: dotnet restore + - name: Build GPU version + run: dotnet build --no-restore +# - name: Test GPU version +# run: dotnet test --no-build --verbosity normal + + linux: + + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v3 + - name: Setup .NET + uses: actions/setup-dotnet@v3 + with: + dotnet-version: 6.0.x + - name: Restore dependencies + run: dotnet restore + - name: Build CPU version + run: dotnet build --no-restore + - name: Test CPU version + run: dotnet test --no-build --verbosity normal + - name: uninstall redist cpu for unit tests + run: dotnet remove tools/Tensorflow.UnitTest.RedistHolder package SciSharp.TensorFlow.Redist + - name: install redist gpu for unit tests + run: dotnet add tools/Tensorflow.UnitTest.RedistHolder package SciSharp.TensorFlow.Redist-Linux-GPU + - name: Restore dependencies + run: dotnet restore + - name: Build GPU version + run: dotnet build --no-restore +# - name: Test GPU version +# run: dotnet test --no-build --verbosity normal diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml new file mode 100644 index 000000000..02601764c --- /dev/null +++ b/.github/workflows/release.yml @@ -0,0 +1,62 @@ +name: auto-release + +on: + workflow_run: + workflows: ["release-prepare"] + types: + - completed + +env: + MYGET_API_TOKEN: ${{ SECRETS.MYGET_API_KEY }} + GITHUB_TOKEN: ${{ SECRETS.RINNE_GITHUB_TOKEN }} + +jobs: + release_to_myget: + runs-on: windows-latest +# needs: run-semantic-release + + steps: + - uses: actions/checkout@v3 + - name: Setup .NET 6.0.x SDK + uses: actions/setup-dotnet@v3 + with: + dotnet-version: 6.0.x + + - name: Check .NET info + run: dotnet --info + + - name: Install dependencies + run: dotnet restore + + - name: Build solution + run: dotnet build -c Release --no-restore + + - name: Pack packages + run: | + git fetch --unshallow; + git config remote.origin.fetch "+refs/heads/*:refs/remotes/origin/*"; + git fetch origin; + $LastTag = git describe --tags; + $DroppedTag = ($LastTag).TrimStart('v'); + echo "Last tag is: $DroppedTag"; + $Suffix = "-nightly" + $Version = "${DroppedTag}${Suffix}"; + echo "Publishing version: $Version"; + dotnet pack ./src/TensorFlowNET.Core/Tensorflow.Binding.csproj -c Release -o packages /p:PackageVersion=$Version /p:Version=$Version; + dotnet pack ./src/TensorFlowNET.Keras/Tensorflow.Keras.csproj -c Release -o packages /p:PackageVersion=$Version /p:Version=$Version; + dotnet pack ./src/TensorflowNET.Hub/Tensorflow.Hub.csproj -c Release -o packages /p:PackageVersion=$Version /p:Version=$Version; + + if($LastExitCode -ne 0) + { + Write-Warning -Message "Pack packages warming, last exit code is ${LastExitCode}." + $LastExitCode = 0; + } + + - name: Upload packages artifacts + uses: actions/upload-artifact@v4.0.0 + with: + name: "drop-ci-packages" + path: './packages' + + - name: Push TensorFlow.NET to myget.org + run: dotnet nuget push .\packages\TensorFlow*.nupkg --source https://www.myget.org/F/scisharp/api/v3/index.json -k ${{ secrets.MYGET_API_KEY }} --skip-duplicate diff --git a/.github/workflows/release_prepare.yml b/.github/workflows/release_prepare.yml new file mode 100644 index 000000000..b21c6665c --- /dev/null +++ b/.github/workflows/release_prepare.yml @@ -0,0 +1,46 @@ +name: release-prepare + +on: + pull_request: + branches: + - master + types: [ closed ] + +env: + MYGET_API_TOKEN: ${{ SECRETS.MYGET_API_KEY }} + GITHUB_TOKEN: ${{ SECRETS.RINNE_GITHUB_TOKEN }} + +jobs: + build: + if: contains(github.event.pull_request.labels.*.name, 'auto-release') + runs-on: windows-latest + + steps: + - uses: actions/checkout@v3 + - name: Setup .NET 6.0.x SDK + uses: actions/setup-dotnet@v3 + with: + dotnet-version: 6.0.x + + - name: Check .NET info + run: dotnet --info + + - name: Install dependencies + run: dotnet restore + + - name: Build solution + run: dotnet build -c Release --no-restore + +# run-semantic-release: +# runs-on: ubuntu-latest +# needs: build + +# steps: +# - name: Checkout +# uses: actions/checkout@v2 + +# - name: Run semantic-release +# run: | +# export PATH=$PATH:$(yarn global bin) +# yarn global add semantic-release@17.4.3 +# semantic-release \ No newline at end of file diff --git a/.github/workflows/semantic.yml b/.github/workflows/semantic.yml new file mode 100644 index 000000000..db8c06a3e --- /dev/null +++ b/.github/workflows/semantic.yml @@ -0,0 +1,17 @@ +name: Semantic + +on: + pull_request: + branches: [ "master" ] + +jobs: + semantic-pull-request: + name: Semantic check + runs-on: windows-latest + steps: + - name: semantic-pull-request + uses: amannn/action-semantic-pull-request@v4 + env: + GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} + with: + validateSingleCommit: true diff --git a/README.md b/README.md index 40ca1afca..75cad0aa7 100644 --- a/README.md +++ b/README.md @@ -2,79 +2,97 @@ **TensorFlow.NET** (TF.NET) provides a .NET Standard binding for [TensorFlow](https://www.tensorflow.org/). It aims to implement the complete Tensorflow API in C# which allows .NET developers to develop, train and deploy Machine Learning models with the cross-platform .NET Standard framework. TensorFlow.NET has built-in Keras high-level interface and is released as an independent package [TensorFlow.Keras](https://www.nuget.org/packages/TensorFlow.Keras/). +[![Discord](https://img.shields.io/discord/1106946823282761851?label=Discord)](https://discord.gg/qRVm82fKTS) +[![QQ群聊](https://img.shields.io/static/v1?label=QQ&message=群聊&color=brightgreen)](http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=sN9VVMwbWjs5L0ATpizKKxOcZdEPMrp8&authKey=RLDw41bLTrEyEgZZi%2FzT4pYk%2BwmEFgFcrhs8ZbkiVY7a4JFckzJefaYNW6Lk4yPX&noverify=0&group_code=985366726) [![Join the chat at https://gitter.im/publiclab/publiclab](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/sci-sharp/community) -[![Tensorflow.NET](https://ci.appveyor.com/api/projects/status/wx4td43v2d3f2xj6?svg=true)](https://ci.appveyor.com/project/Haiping-Chen/tensorflow-net) -[![NuGet](https://img.shields.io/nuget/dt/TensorFlow.NET.svg)](https://www.nuget.org/packages/TensorFlow.NET) +[![CI Status](https://github.com/SciSharp/TensorFlow.NET/actions/workflows/build_and_test.yml/badge.svg)](https://github.com/SciSharp/TensorFlow.NET/actions/workflows/build_and_test.yml) [![Documentation Status](https://readthedocs.org/projects/tensorflownet/badge/?version=latest)](https://tensorflownet.readthedocs.io/en/latest/?badge=latest) +[![TensorFlow.NET Badge](https://img.shields.io/nuget/v/TensorFlow.NET?label=TensorFlow.NET)](https://www.nuget.org/packages/TensorFlow.NET) +[![TensorFlow.Keras Badge](https://img.shields.io/nuget/v/TensorFlow.Keras?label=TensorFlow.Keras)](https://www.nuget.org/packages/TensorFlow.Keras) +[![MyGet Badge](https://img.shields.io/badge/dynamic/json?color=purple&label=Nightly%20Release&prefix=myget-v&query=items%5B0%5D.lower&url=https%3A%2F%2Fwww.myget.org%2FF%2Fscisharp%2Fapi%2Fv3%2Fregistration1%2Ftensorflow.net%2Findex.json)](https://www.myget.org/feed/scisharp/package/nuget/Tensorflow.NET) [![Badge](https://img.shields.io/badge/link-996.icu-red.svg)](https://996.icu/#/en_US) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab) -*master branch is based on tensorflow v2.x, v0.6x branch is based on tensorflow v2.6, v0.15-tensorflow1.15 is from tensorflow1.15.* +English | [中文](docs/README-CN.md) + +> [!IMPORTANT] +> We're happy that our work on tensorflow.net has attracted many users. However, at this time, none of the main maintainers of this repo is available for new features and bug fix. We won't refuse PRs and will help to review them. +> +> If you would like to be a contributor or maintainer of tensorflow.net, we'd like to help you to start up. +> +> We feel sorry for that and we'll resume the maintaining for this project once one of us has bandwidth for it. +> + +*master branch and v0.100.x is corresponding to tensorflow v2.10, v0.6x branch is from tensorflow v2.6, v0.15-tensorflow1.15 is from tensorflow1.15. Please add `https://www.myget.org/F/scisharp/api/v3/index.json` to nuget source to use nightly release.* ![tensors_flowing](docs/assets/tensors_flowing.gif) -### Why TensorFlow in C# and F# ? +## Why Tensorflow.NET ? `SciSharp STACK`'s mission is to bring popular data science technology into the .NET world and to provide .NET developers with a powerful Machine Learning tool set without reinventing the wheel. Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET. -![pythn vs csharp](docs/assets/syntax-comparision.png) +![python vs csharp](docs/assets/syntax-comparision.png) SciSharp's philosophy allows a large number of machine learning code written in Python to be quickly migrated to .NET, enabling .NET developers to use cutting edge machine learning models and access a vast number of TensorFlow resources which would not be possible without this project. -In comparison to other projects, like for instance [TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/) which only provide TensorFlow's low-level C++ API and can only run models that were built using Python, Tensorflow.NET also implements TensorFlow's high level API where all the magic happens. This computation graph building layer is still under active development. Once it is completely implemented you can build new Machine Learning models in C# or F#. +In comparison to other projects, like for instance [TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/) which only provide TensorFlow's low-level C++ API and can only run models that were built using Python, Tensorflow.NET makes it possible to build the pipeline of training and inference with pure C# and F#. Besides, Tensorflow.NET provides binding of Tensorflow.Keras to make it easy to transfer your code from python to .NET. + +[ML.NET](https://github.com/dotnet/machinelearning) also take Tensorflow.NET as one of the backends to train and infer your model, which provides better integration with .NET. + +## Documention + +Introduction and simple examples:[Tensorflow.NET Documents](https://scisharp.github.io/tensorflow-net-docs) -Go through the online docs [TensorFlow for .NET](https://scisharp.github.io/tensorflow-net-docs) before you get started with Machine Learning in .NET. +Detailed documention:[The Definitive Guide to Tensorflow.NET](https://tensorflownet.readthedocs.io/en/latest/FrontCover.html) -### How to use +Examples:[TensorFlow.NET Examples](https://github.com/SciSharp/TensorFlow.NET-Examples) -| TensorFlow | tf native1.14, cuda 10.0 | tf native 1.15, cuda 10.0 | tf native 2.3, cuda 10.1 | tf native 2.4, cuda 11 | -| -------------------------- | ------------- | -------------- | ------------- | ------------- | -| tf.net 0.4x, tf.keras 0.5 | | | | x | -| tf.net 0.3x, tf.keras 0.4 | | | x | | -| tf.net 0.2x | | x | x | | -| tf.net 0.15 | x | x | | | -| tf.net 0.14 | x | | | | +Troubleshooting of running example or installation:[Tensorflow.NET FAQ](tensorflowlib/README.md) -Troubleshooting of running example or installation, please refer [here](tensorflowlib/README.md). +## Usage -There are many examples reside at [TensorFlow.NET Examples](https://github.com/SciSharp/TensorFlow.NET-Examples) written in C# and F#. +### Installation -#### TensorFlow.net Version -` tf.net 0.4x -> tf native 2.4` -`tf.net 0.6x -> tf native 2.6` -`tf.net 0.7x -> tf native 2.7` -`...` +You can search the package name in NuGet Manager, or use the commands below in package manager console. -#### C# Example +The installation contains two parts, the first is the main body: -Install TF.NET and TensorFlow binary through NuGet. ```sh -### install tensorflow C#/F# binding +### Install Tensorflow.NET PM> Install-Package TensorFlow.NET -### install keras for tensorflow + +### Install Tensorflow.Keras PM> Install-Package TensorFlow.Keras +``` + +The second part is the computing support part. Only one of the following packages is needed, depending on your device and system. -### Install tensorflow binary -### For CPU version +``` +### CPU version for Windows and Linux PM> Install-Package SciSharp.TensorFlow.Redist -### For GPU version (CUDA and cuDNN are required) +### CPU version for MacOS +PM> Install-Package SciSharp.TensorFlow.Redist-OSX + +### GPU version for Windows (CUDA and cuDNN are required) PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU + +### GPU version for Linux (CUDA and cuDNN are required) +PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU ``` -Import TF.NET and Keras API in your project. + +Two simple examples are given here to introduce the basic usage of Tensorflow.NET. As you can see, it's easy to write C# code just like that in Python. + +### Example - Linear Regression in `Eager` mode ```csharp using static Tensorflow.Binding; using static Tensorflow.KerasApi; using Tensorflow; using Tensorflow.NumPy; -``` - -Linear Regression in `Eager` mode: -```csharp // Parameters var training_steps = 1000; var learning_rate = 0.01f; @@ -120,10 +138,15 @@ foreach (var step in range(1, training_steps + 1)) Run this example in [Jupyter Notebook](https://github.com/SciSharp/SciSharpCube). -Toy version of `ResNet` in `Keras` functional API: +### Example - Toy version of `ResNet` in `Keras` functional API ```csharp -var layers = new LayersApi(); +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; +using Tensorflow; +using Tensorflow.NumPy; + +var layers = keras.layers; // input layer var inputs = keras.Input(shape: (32, 32, 3), name: "img"); // convolutional layer @@ -147,96 +170,67 @@ var model = keras.Model(inputs, outputs, name: "toy_resnet"); model.summary(); // compile keras model in tensorflow static graph model.compile(optimizer: keras.optimizers.RMSprop(1e-3f), - loss: keras.losses.CategoricalCrossentropy(from_logits: true), + loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), metrics: new[] { "acc" }); // prepare dataset var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data(); +// normalize the input x_train = x_train / 255.0f; -y_train = np_utils.to_categorical(y_train, 10); // training model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)], - batch_size: 64, - epochs: 10, - validation_split: 0.2f); + batch_size: 64, + epochs: 10, + validation_split: 0.2f); +// save the model +model.save("./toy_resnet_model"); ``` -#### F# Example - -Linear Regression in `Eager` mode: - -```fsharp -#r "nuget: TensorFlow.Net" -#r "nuget: TensorFlow.Keras" -#r "nuget: SciSharp.TensorFlow.Redist" - -open Tensorflow -open Tensorflow.NumPy -open type Tensorflow.Binding -open type Tensorflow.KerasApi - -let tf = New() -tf.enable_eager_execution() +The F# example for linear regression is available [here](docs/Example-fsharp.md). -// Parameters -let training_steps = 1000 -let learning_rate = 0.01f -let display_step = 100 +More adcanced examples could be found in [TensorFlow.NET Examples](https://github.com/SciSharp/TensorFlow.NET-Examples). -// Sample data -let train_X = - np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, - 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f) -let train_Y = - np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, - 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f) -let n_samples = train_X.shape.[0] - -// We can set a fixed init value in order to demo -let W = tf.Variable(-0.06f,name = "weight") -let b = tf.Variable(-0.73f, name = "bias") -let optimizer = keras.optimizers.SGD(learning_rate) +## Version Relationships -// Run training for the given number of steps. -for step = 1 to (training_steps + 1) do - // Run the optimization to update W and b values. - // Wrap computation inside a GradientTape for automatic differentiation. - use g = tf.GradientTape() - // Linear regression (Wx + b). - let pred = W * train_X + b - // Mean square error. - let loss = tf.reduce_sum(tf.pow(pred - train_Y,2)) / (2 * n_samples) - // should stop recording - // compute gradients - let gradients = g.gradient(loss,struct (W,b)) +| TensorFlow.NET Versions | tensorflow 1.14, cuda 10.0 | tensorflow 1.15, cuda 10.0 | tensorflow 2.3, cuda 10.1 | tensorflow 2.4, cuda 11 | tensorflow 2.7, cuda 11 |tensorflow 2.10, cuda 11 | +| -------------------------- | ------------- | -------------- | ------------- | ------------- | ------------ | ------------ | +| tf.net 0.10x, tf.keras 0.10 | | | | | | x | +| tf.net 0.7x, tf.keras 0.7 | | | | | x | | +| tf.net 0.4x, tf.keras 0.5 | | | | x | | | +| tf.net 0.3x, tf.keras 0.4 | | | x | | | | +| tf.net 0.2x | | x | x | | | | +| tf.net 0.15 | x | x | | | | | +| tf.net 0.14 | x | | | | | | - // Update W and b following gradients. - optimizer.apply_gradients(zip(gradients, struct (W,b))) - if (step % display_step) = 0 then - let pred = W * train_X + b - let loss = tf.reduce_sum(tf.pow(pred-train_Y,2)) / (2 * n_samples) - printfn $"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}" +``` +tf.net 0.4x -> tf native 2.4 +tf.net 0.6x -> tf native 2.6 +tf.net 0.7x -> tf native 2.7 +tf.net 0.10x -> tf native 2.10 +... ``` -Read the book [The Definitive Guide to Tensorflow.NET](https://tensorflownet.readthedocs.io/en/latest/FrontCover.html) if you want to know more about TensorFlow for .NET under the hood. +## Contribution: -### Contribute: +Feel like contributing to one of the hottest projects in the Machine Learning field? Want to know how Tensorflow magically creates the computational graph? -Feel like contributing to one of the hottest projects in the Machine Learning field? Want to know how Tensorflow magically creates the computational graph? We appreciate every contribution however small. There are tasks for novices to experts alike, if everyone tackles only a small task the sum of contributions will be huge. +We appreciate every contribution however small! There are tasks for novices to experts alike, if everyone tackles only a small task the sum of contributions will be huge. You can: -* Let everyone know about this project -* Port Tensorflow unit tests from Python to C# or F# -* Port missing Tensorflow code from Python to C# or F# -* Port Tensorflow examples to C# or F# and raise issues if you come accross missing parts of the API -* Debug one of the unit tests that is marked as Ignored to get it to work -* Debug one of the not yet working examples and get it to work +- Star Tensorflow.NET or share it with others +- Tell us about the missing APIs compared to Tensorflow +- Port Tensorflow unit tests from Python to C# or F# +- Port Tensorflow examples to C# or F# and raise issues if you come accross missing parts of the API or BUG +- Debug one of the unit tests that is marked as Ignored to get it to work +- Debug one of the not yet working examples and get it to work +- Help us to complete the documentions. + -### How to debug unit tests: +#### How to debug unit tests: The best way to find out why a unit test is failing is to single step it in C# or F# and its corresponding Python at the same time to see where the flow of execution digresses or where variables exhibit different values. Good Python IDEs like PyCharm let you single step into the tensorflow library code. -### Git Knowhow for Contributors +#### Git Knowhow for Contributors Add SciSharp/TensorFlow.NET as upstream to your local repo ... ```git @@ -247,6 +241,7 @@ Please make sure you keep your fork up to date by regularly pulling from upstrea ```git git pull upstream master ``` + ### Support Buy our book to make open source project be sustainable [TensorFlow.NET实战](https://item.jd.com/13441549.html)

@@ -257,9 +252,9 @@ Buy our book to make open source project be sustainable [TensorFlow.NET实战](h ### Contact -Follow us on [Twitter](https://twitter.com/ScisharpStack), [Facebook](https://www.facebook.com/scisharp.stack.9), [Medium](https://medium.com/scisharp), [LinkedIn](https://www.linkedin.com/company/scisharp-stack/). +Join our chat on [Discord](https://discord.gg/qRVm82fKTS) or [Gitter](https://gitter.im/sci-sharp/community). -Join our chat on [Gitter](https://gitter.im/sci-sharp/community). +Follow us on [Twitter](https://twitter.com/ScisharpStack), [Facebook](https://www.facebook.com/scisharp.stack.9), [Medium](https://medium.com/scisharp), [LinkedIn](https://www.linkedin.com/company/scisharp-stack/). TensorFlow.NET is a part of [SciSharp STACK](https://scisharp.github.io/SciSharp/)
diff --git a/TensorFlow.NET.sln b/TensorFlow.NET.sln index 8846d5bfd..e0c273568 100644 --- a/TensorFlow.NET.sln +++ b/TensorFlow.NET.sln @@ -1,16 +1,12 @@  Microsoft Visual Studio Solution File, Format Version 12.00 -# Visual Studio Version 16 -VisualStudioVersion = 16.0.31624.102 +# Visual Studio Version 17 +VisualStudioVersion = 17.4.33213.308 MinimumVisualStudioVersion = 10.0.40219.1 Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Binding", "src\TensorFlowNET.Core\Tensorflow.Binding.csproj", "{FD682AC0-7B2D-45D3-8B0D-C6D678B04144}" EndProject -Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Benchmark", "src\TensorFlowNet.Benchmarks\Tensorflow.Benchmark.csproj", "{3A6EB896-604F-4E25-B677-B8103BCF3D2E}" -EndProject Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Binding.UnitTest", "test\TensorFlowNET.UnitTest\Tensorflow.Binding.UnitTest.csproj", "{23C28035-2FCE-41F3-9A12-E73CE8A5AE32}" EndProject -Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Console", "src\TensorFlowNET.Console\Tensorflow.Console.csproj", "{03F06299-3F4B-4449-A709-3A647657BC0C}" -EndProject Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Keras", "src\TensorFlowNET.Keras\Tensorflow.Keras.csproj", "{49D71826-C03D-4FA7-9BAC-22C1327E65CF}" EndProject Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Text", "src\TensorFlowNET.Text\Tensorflow.Text.csproj", "{1AB8108D-4FFE-4A16-88E7-328EAF686370}" @@ -23,11 +19,38 @@ Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Keras.UnitTest", EndProject Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "TensorFlowNET.Graph.UnitTest", "test\TensorFlowNET.Graph.UnitTest\TensorFlowNET.Graph.UnitTest.csproj", "{3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}" EndProject +Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Hub", "src\TensorflowNET.Hub\Tensorflow.Hub.csproj", "{9738D16A-CFA0-405C-A7DF-D3D203B0CB18}" +EndProject +Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Hub.Unittest", "test\TensorflowNET.Hub.Unittest\Tensorflow.Hub.Unittest.csproj", "{7DEA8760-E401-4872-81F3-405F185A13A0}" +EndProject +Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "src", "src", "{01A1787F-A9BE-4221-84E8-6360DD010AB6}" +EndProject +Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "test", "test", "{1B0918B9-65AD-4F34-A287-AF4597B27DBD}" +EndProject +Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "tools", "tools", "{E1A5D2B7-10AF-4876-85C0-7714EF274214}" +EndProject +Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.CodeGen", "tools\Tensorflow.CodeGen\Tensorflow.CodeGen.csproj", "{3D92142F-EEDB-469B-B03C-4E38728BFE4C}" +EndProject +Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Redist.NativeLibrarySplitter", "tools\Tensorflow.Redist.NativeLibrarySplitter\Tensorflow.Redist.NativeLibrarySplitter.csproj", "{AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}" +EndProject +Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.UnitTest.RedistHolder", "tools\Tensorflow.UnitTest.RedistHolder\Tensorflow.UnitTest.RedistHolder.csproj", "{D24FCAA5-548C-4251-B226-A1B6535D0845}" +EndProject +Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Benchmark", "tools\TensorFlowNET.Benchmarks\Tensorflow.Benchmark.csproj", "{C23563DB-FE21-48E7-A411-87A109E4A899}" +EndProject +Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Console", "tools\TensorFlowNET.Console\Tensorflow.Console.csproj", "{1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}" +EndProject +Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "TensorFlow.Kernel.UnitTest", "test\TensorFlow.Kernel.UnitTest\TensorFlow.Kernel.UnitTest.csproj", "{654A027D-1364-4729-880B-144DFE1FF5BB}" +EndProject +Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Tensorflow.UnitTest", "test\Tensorflow.UnitTest\Tensorflow.UnitTest.csproj", "{A73DF5A6-866E-4AED-9017-AA2EE86368C4}" +EndProject Global GlobalSection(SolutionConfigurationPlatforms) = preSolution Debug|Any CPU = Debug|Any CPU Debug|x64 = Debug|x64 Debug|x86 = Debug|x86 + GPU|Any CPU = GPU|Any CPU + GPU|x64 = GPU|x64 + GPU|x86 = GPU|x86 Release|Any CPU = Release|Any CPU Release|x64 = Release|x64 Release|x86 = Release|x86 @@ -39,54 +62,48 @@ Global {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Debug|x64.Build.0 = Debug|x64 {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Debug|x86.ActiveCfg = Debug|Any CPU {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Debug|x86.Build.0 = Debug|Any CPU + {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.GPU|Any CPU.ActiveCfg = GPU|Any CPU + {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.GPU|Any CPU.Build.0 = GPU|Any CPU + {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.GPU|x64.ActiveCfg = GPU|x64 + {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.GPU|x64.Build.0 = GPU|x64 + {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.GPU|x86.ActiveCfg = GPU|Any CPU + {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.GPU|x86.Build.0 = GPU|Any CPU {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Release|Any CPU.ActiveCfg = Release|Any CPU {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Release|Any CPU.Build.0 = Release|Any CPU {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Release|x64.ActiveCfg = Release|x64 {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Release|x64.Build.0 = Release|x64 {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Release|x86.ActiveCfg = Release|Any CPU {FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Release|x86.Build.0 = Release|Any CPU - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Debug|Any CPU.ActiveCfg = Debug|Any CPU - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Debug|Any CPU.Build.0 = Debug|Any CPU - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Debug|x64.ActiveCfg = Debug|x64 - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Debug|x64.Build.0 = Debug|x64 - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Debug|x86.ActiveCfg = Debug|Any CPU - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Debug|x86.Build.0 = Debug|Any CPU - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Release|Any CPU.ActiveCfg = Release|Any CPU - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Release|Any CPU.Build.0 = Release|Any CPU - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Release|x64.ActiveCfg = Release|x64 - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Release|x64.Build.0 = Release|x64 - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Release|x86.ActiveCfg = Release|Any CPU - {3A6EB896-604F-4E25-B677-B8103BCF3D2E}.Release|x86.Build.0 = Release|Any CPU {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Debug|Any CPU.ActiveCfg = Debug|Any CPU {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Debug|Any CPU.Build.0 = Debug|Any CPU {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Debug|x64.ActiveCfg = Debug|x64 {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Debug|x64.Build.0 = Debug|x64 {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Debug|x86.ActiveCfg = Debug|Any CPU {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Debug|x86.Build.0 = Debug|Any CPU + {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.GPU|Any CPU.ActiveCfg = Release|Any CPU + {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.GPU|Any CPU.Build.0 = Release|Any CPU + {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.GPU|x64.ActiveCfg = Release|x64 + {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.GPU|x64.Build.0 = Release|x64 + {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.GPU|x86.ActiveCfg = Release|Any CPU + {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.GPU|x86.Build.0 = Release|Any CPU {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Release|Any CPU.ActiveCfg = Release|Any CPU {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Release|Any CPU.Build.0 = Release|Any CPU {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Release|x64.ActiveCfg = Release|x64 {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Release|x64.Build.0 = Release|x64 {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Release|x86.ActiveCfg = Release|Any CPU {23C28035-2FCE-41F3-9A12-E73CE8A5AE32}.Release|x86.Build.0 = Release|Any CPU - {03F06299-3F4B-4449-A709-3A647657BC0C}.Debug|Any CPU.ActiveCfg = Debug|Any CPU - {03F06299-3F4B-4449-A709-3A647657BC0C}.Debug|Any CPU.Build.0 = Debug|Any CPU - {03F06299-3F4B-4449-A709-3A647657BC0C}.Debug|x64.ActiveCfg = Debug|x64 - {03F06299-3F4B-4449-A709-3A647657BC0C}.Debug|x64.Build.0 = Debug|x64 - {03F06299-3F4B-4449-A709-3A647657BC0C}.Debug|x86.ActiveCfg = Debug|Any CPU - {03F06299-3F4B-4449-A709-3A647657BC0C}.Debug|x86.Build.0 = Debug|Any CPU - {03F06299-3F4B-4449-A709-3A647657BC0C}.Release|Any CPU.ActiveCfg = Release|Any CPU - {03F06299-3F4B-4449-A709-3A647657BC0C}.Release|Any CPU.Build.0 = Release|Any CPU - {03F06299-3F4B-4449-A709-3A647657BC0C}.Release|x64.ActiveCfg = Release|x64 - {03F06299-3F4B-4449-A709-3A647657BC0C}.Release|x64.Build.0 = Release|x64 - {03F06299-3F4B-4449-A709-3A647657BC0C}.Release|x86.ActiveCfg = Release|Any CPU - {03F06299-3F4B-4449-A709-3A647657BC0C}.Release|x86.Build.0 = Release|Any CPU {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.Debug|Any CPU.ActiveCfg = Debug|Any CPU {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.Debug|Any CPU.Build.0 = Debug|Any CPU {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.Debug|x64.ActiveCfg = Debug|x64 {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.Debug|x64.Build.0 = Debug|x64 {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.Debug|x86.ActiveCfg = Debug|Any CPU {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.Debug|x86.Build.0 = Debug|Any CPU + {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.GPU|Any CPU.ActiveCfg = GPU|Any CPU + {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.GPU|Any CPU.Build.0 = GPU|Any CPU + {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.GPU|x64.ActiveCfg = GPU|x64 + {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.GPU|x64.Build.0 = GPU|x64 + {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.GPU|x86.ActiveCfg = GPU|Any CPU + {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.GPU|x86.Build.0 = GPU|Any CPU {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.Release|Any CPU.ActiveCfg = Release|Any CPU {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.Release|Any CPU.Build.0 = Release|Any CPU {49D71826-C03D-4FA7-9BAC-22C1327E65CF}.Release|x64.ActiveCfg = Release|x64 @@ -99,6 +116,12 @@ Global {1AB8108D-4FFE-4A16-88E7-328EAF686370}.Debug|x64.Build.0 = Debug|x64 {1AB8108D-4FFE-4A16-88E7-328EAF686370}.Debug|x86.ActiveCfg = Debug|Any CPU {1AB8108D-4FFE-4A16-88E7-328EAF686370}.Debug|x86.Build.0 = Debug|Any CPU + {1AB8108D-4FFE-4A16-88E7-328EAF686370}.GPU|Any CPU.ActiveCfg = Release|Any CPU + {1AB8108D-4FFE-4A16-88E7-328EAF686370}.GPU|Any CPU.Build.0 = Release|Any CPU + {1AB8108D-4FFE-4A16-88E7-328EAF686370}.GPU|x64.ActiveCfg = Release|x64 + {1AB8108D-4FFE-4A16-88E7-328EAF686370}.GPU|x64.Build.0 = Release|x64 + {1AB8108D-4FFE-4A16-88E7-328EAF686370}.GPU|x86.ActiveCfg = Release|Any CPU + {1AB8108D-4FFE-4A16-88E7-328EAF686370}.GPU|x86.Build.0 = Release|Any CPU {1AB8108D-4FFE-4A16-88E7-328EAF686370}.Release|Any CPU.ActiveCfg = Release|Any CPU {1AB8108D-4FFE-4A16-88E7-328EAF686370}.Release|Any CPU.Build.0 = Release|Any CPU {1AB8108D-4FFE-4A16-88E7-328EAF686370}.Release|x64.ActiveCfg = Release|x64 @@ -111,6 +134,12 @@ Global {F17AAECB-960A-4E18-A270-BAD776F0E55B}.Debug|x64.Build.0 = Debug|x64 {F17AAECB-960A-4E18-A270-BAD776F0E55B}.Debug|x86.ActiveCfg = Debug|Any CPU {F17AAECB-960A-4E18-A270-BAD776F0E55B}.Debug|x86.Build.0 = Debug|Any CPU + {F17AAECB-960A-4E18-A270-BAD776F0E55B}.GPU|Any CPU.ActiveCfg = Release|Any CPU + {F17AAECB-960A-4E18-A270-BAD776F0E55B}.GPU|Any CPU.Build.0 = Release|Any CPU + {F17AAECB-960A-4E18-A270-BAD776F0E55B}.GPU|x64.ActiveCfg = Release|x64 + {F17AAECB-960A-4E18-A270-BAD776F0E55B}.GPU|x64.Build.0 = Release|x64 + {F17AAECB-960A-4E18-A270-BAD776F0E55B}.GPU|x86.ActiveCfg = Release|Any CPU + {F17AAECB-960A-4E18-A270-BAD776F0E55B}.GPU|x86.Build.0 = Release|Any CPU {F17AAECB-960A-4E18-A270-BAD776F0E55B}.Release|Any CPU.ActiveCfg = Release|Any CPU {F17AAECB-960A-4E18-A270-BAD776F0E55B}.Release|Any CPU.Build.0 = Release|Any CPU {F17AAECB-960A-4E18-A270-BAD776F0E55B}.Release|x64.ActiveCfg = Release|x64 @@ -123,6 +152,12 @@ Global {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.Debug|x64.Build.0 = Debug|x64 {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.Debug|x86.ActiveCfg = Debug|Any CPU {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.Debug|x86.Build.0 = Debug|Any CPU + {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.GPU|Any CPU.ActiveCfg = Release|Any CPU + {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.GPU|Any CPU.Build.0 = Release|Any CPU + {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.GPU|x64.ActiveCfg = Release|x64 + {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.GPU|x64.Build.0 = Release|x64 + {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.GPU|x86.ActiveCfg = Release|Any CPU + {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.GPU|x86.Build.0 = Release|Any CPU {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.Release|Any CPU.ActiveCfg = Release|Any CPU {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.Release|Any CPU.Build.0 = Release|Any CPU {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3}.Release|x64.ActiveCfg = Release|x64 @@ -135,6 +170,12 @@ Global {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.Debug|x64.Build.0 = Debug|x64 {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.Debug|x86.ActiveCfg = Debug|Any CPU {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.Debug|x86.Build.0 = Debug|Any CPU + {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.GPU|Any CPU.ActiveCfg = Release|Any CPU + {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.GPU|Any CPU.Build.0 = Release|Any CPU + {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.GPU|x64.ActiveCfg = Release|x64 + {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.GPU|x64.Build.0 = Release|x64 + {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.GPU|x86.ActiveCfg = Release|Any CPU + {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.GPU|x86.Build.0 = Release|Any CPU {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.Release|Any CPU.ActiveCfg = Release|Any CPU {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.Release|Any CPU.Build.0 = Release|Any CPU {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA}.Release|x64.ActiveCfg = Release|x64 @@ -147,16 +188,203 @@ Global {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.Debug|x64.Build.0 = Debug|x64 {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.Debug|x86.ActiveCfg = Debug|Any CPU {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.Debug|x86.Build.0 = Debug|Any CPU + {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.GPU|Any CPU.ActiveCfg = Release|Any CPU + {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.GPU|Any CPU.Build.0 = Release|Any CPU + {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.GPU|x64.ActiveCfg = Release|x64 + {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.GPU|x64.Build.0 = Release|x64 + {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.GPU|x86.ActiveCfg = Release|Any CPU + {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.GPU|x86.Build.0 = Release|Any CPU {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.Release|Any CPU.ActiveCfg = Release|Any CPU {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.Release|Any CPU.Build.0 = Release|Any CPU {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.Release|x64.ActiveCfg = Release|x64 {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.Release|x64.Build.0 = Release|x64 {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.Release|x86.ActiveCfg = Release|Any CPU {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3}.Release|x86.Build.0 = Release|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Debug|Any CPU.Build.0 = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Debug|x64.ActiveCfg = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Debug|x64.Build.0 = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Debug|x86.ActiveCfg = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Debug|x86.Build.0 = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.GPU|Any CPU.ActiveCfg = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.GPU|Any CPU.Build.0 = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.GPU|x64.ActiveCfg = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.GPU|x64.Build.0 = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.GPU|x86.ActiveCfg = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.GPU|x86.Build.0 = Debug|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Release|Any CPU.ActiveCfg = Release|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Release|Any CPU.Build.0 = Release|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Release|x64.ActiveCfg = Release|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Release|x64.Build.0 = Release|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Release|x86.ActiveCfg = Release|Any CPU + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18}.Release|x86.Build.0 = Release|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Debug|Any CPU.Build.0 = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Debug|x64.ActiveCfg = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Debug|x64.Build.0 = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Debug|x86.ActiveCfg = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Debug|x86.Build.0 = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.GPU|Any CPU.ActiveCfg = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.GPU|Any CPU.Build.0 = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.GPU|x64.ActiveCfg = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.GPU|x64.Build.0 = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.GPU|x86.ActiveCfg = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.GPU|x86.Build.0 = Debug|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Release|Any CPU.ActiveCfg = Release|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Release|Any CPU.Build.0 = Release|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Release|x64.ActiveCfg = Release|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Release|x64.Build.0 = Release|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Release|x86.ActiveCfg = Release|Any CPU + {7DEA8760-E401-4872-81F3-405F185A13A0}.Release|x86.Build.0 = Release|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Debug|Any CPU.Build.0 = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Debug|x64.ActiveCfg = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Debug|x64.Build.0 = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Debug|x86.ActiveCfg = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Debug|x86.Build.0 = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.GPU|Any CPU.ActiveCfg = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.GPU|Any CPU.Build.0 = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.GPU|x64.ActiveCfg = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.GPU|x64.Build.0 = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.GPU|x86.ActiveCfg = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.GPU|x86.Build.0 = Debug|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Release|Any CPU.ActiveCfg = Release|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Release|Any CPU.Build.0 = Release|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Release|x64.ActiveCfg = Release|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Release|x64.Build.0 = Release|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Release|x86.ActiveCfg = Release|Any CPU + {3D92142F-EEDB-469B-B03C-4E38728BFE4C}.Release|x86.Build.0 = Release|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Debug|Any CPU.Build.0 = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Debug|x64.ActiveCfg = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Debug|x64.Build.0 = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Debug|x86.ActiveCfg = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Debug|x86.Build.0 = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.GPU|Any CPU.ActiveCfg = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.GPU|Any CPU.Build.0 = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.GPU|x64.ActiveCfg = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.GPU|x64.Build.0 = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.GPU|x86.ActiveCfg = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.GPU|x86.Build.0 = Debug|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Release|Any CPU.ActiveCfg = Release|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Release|Any CPU.Build.0 = Release|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Release|x64.ActiveCfg = Release|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Release|x64.Build.0 = Release|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Release|x86.ActiveCfg = Release|Any CPU + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C}.Release|x86.Build.0 = Release|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Debug|Any CPU.Build.0 = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Debug|x64.ActiveCfg = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Debug|x64.Build.0 = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Debug|x86.ActiveCfg = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Debug|x86.Build.0 = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.GPU|Any CPU.ActiveCfg = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.GPU|Any CPU.Build.0 = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.GPU|x64.ActiveCfg = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.GPU|x64.Build.0 = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.GPU|x86.ActiveCfg = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.GPU|x86.Build.0 = Debug|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Release|Any CPU.ActiveCfg = Release|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Release|Any CPU.Build.0 = Release|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Release|x64.ActiveCfg = Release|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Release|x64.Build.0 = Release|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Release|x86.ActiveCfg = Release|Any CPU + {D24FCAA5-548C-4251-B226-A1B6535D0845}.Release|x86.Build.0 = Release|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.Debug|Any CPU.Build.0 = Debug|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.Debug|x64.ActiveCfg = Debug|x64 + {C23563DB-FE21-48E7-A411-87A109E4A899}.Debug|x64.Build.0 = Debug|x64 + {C23563DB-FE21-48E7-A411-87A109E4A899}.Debug|x86.ActiveCfg = Debug|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.Debug|x86.Build.0 = Debug|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.GPU|Any CPU.ActiveCfg = Debug|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.GPU|Any CPU.Build.0 = Debug|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.GPU|x64.ActiveCfg = Debug|x64 + {C23563DB-FE21-48E7-A411-87A109E4A899}.GPU|x64.Build.0 = Debug|x64 + {C23563DB-FE21-48E7-A411-87A109E4A899}.GPU|x86.ActiveCfg = Debug|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.GPU|x86.Build.0 = Debug|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.Release|Any CPU.ActiveCfg = Release|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.Release|Any CPU.Build.0 = Release|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.Release|x64.ActiveCfg = Release|x64 + {C23563DB-FE21-48E7-A411-87A109E4A899}.Release|x64.Build.0 = Release|x64 + {C23563DB-FE21-48E7-A411-87A109E4A899}.Release|x86.ActiveCfg = Release|Any CPU + {C23563DB-FE21-48E7-A411-87A109E4A899}.Release|x86.Build.0 = Release|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Debug|Any CPU.Build.0 = Debug|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Debug|x64.ActiveCfg = Debug|x64 + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Debug|x64.Build.0 = Debug|x64 + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Debug|x86.ActiveCfg = Debug|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Debug|x86.Build.0 = Debug|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.GPU|Any CPU.ActiveCfg = Debug|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.GPU|Any CPU.Build.0 = Debug|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.GPU|x64.ActiveCfg = Debug|x64 + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.GPU|x64.Build.0 = Debug|x64 + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.GPU|x86.ActiveCfg = Debug|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.GPU|x86.Build.0 = Debug|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Release|Any CPU.ActiveCfg = Release|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Release|Any CPU.Build.0 = Release|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Release|x64.ActiveCfg = Release|x64 + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Release|x64.Build.0 = Release|x64 + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Release|x86.ActiveCfg = Release|Any CPU + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0}.Release|x86.Build.0 = Release|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Debug|Any CPU.Build.0 = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Debug|x64.ActiveCfg = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Debug|x64.Build.0 = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Debug|x86.ActiveCfg = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Debug|x86.Build.0 = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.GPU|Any CPU.ActiveCfg = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.GPU|Any CPU.Build.0 = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.GPU|x64.ActiveCfg = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.GPU|x64.Build.0 = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.GPU|x86.ActiveCfg = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.GPU|x86.Build.0 = Debug|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Release|Any CPU.ActiveCfg = Release|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Release|Any CPU.Build.0 = Release|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Release|x64.ActiveCfg = Release|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Release|x64.Build.0 = Release|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Release|x86.ActiveCfg = Release|Any CPU + {654A027D-1364-4729-880B-144DFE1FF5BB}.Release|x86.Build.0 = Release|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Debug|Any CPU.ActiveCfg = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Debug|Any CPU.Build.0 = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Debug|x64.ActiveCfg = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Debug|x64.Build.0 = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Debug|x86.ActiveCfg = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Debug|x86.Build.0 = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.GPU|Any CPU.ActiveCfg = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.GPU|Any CPU.Build.0 = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.GPU|x64.ActiveCfg = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.GPU|x64.Build.0 = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.GPU|x86.ActiveCfg = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.GPU|x86.Build.0 = Debug|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Release|Any CPU.ActiveCfg = Release|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Release|Any CPU.Build.0 = Release|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Release|x64.ActiveCfg = Release|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Release|x64.Build.0 = Release|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Release|x86.ActiveCfg = Release|Any CPU + {A73DF5A6-866E-4AED-9017-AA2EE86368C4}.Release|x86.Build.0 = Release|Any CPU EndGlobalSection GlobalSection(SolutionProperties) = preSolution HideSolutionNode = FALSE EndGlobalSection + GlobalSection(NestedProjects) = preSolution + {FD682AC0-7B2D-45D3-8B0D-C6D678B04144} = {01A1787F-A9BE-4221-84E8-6360DD010AB6} + {23C28035-2FCE-41F3-9A12-E73CE8A5AE32} = {1B0918B9-65AD-4F34-A287-AF4597B27DBD} + {49D71826-C03D-4FA7-9BAC-22C1327E65CF} = {01A1787F-A9BE-4221-84E8-6360DD010AB6} + {1AB8108D-4FFE-4A16-88E7-328EAF686370} = {01A1787F-A9BE-4221-84E8-6360DD010AB6} + {F17AAECB-960A-4E18-A270-BAD776F0E55B} = {01A1787F-A9BE-4221-84E8-6360DD010AB6} + {84CA35F8-99FC-408E-8DF3-5AA175E5EFD3} = {1B0918B9-65AD-4F34-A287-AF4597B27DBD} + {79EB56DF-E29E-4AE2-A7D9-FE403FD919BA} = {1B0918B9-65AD-4F34-A287-AF4597B27DBD} + {3F5388FF-FBB4-462B-8F6F-829FFBAEB8A3} = {1B0918B9-65AD-4F34-A287-AF4597B27DBD} + {9738D16A-CFA0-405C-A7DF-D3D203B0CB18} = {01A1787F-A9BE-4221-84E8-6360DD010AB6} + {7DEA8760-E401-4872-81F3-405F185A13A0} = {1B0918B9-65AD-4F34-A287-AF4597B27DBD} + {3D92142F-EEDB-469B-B03C-4E38728BFE4C} = {E1A5D2B7-10AF-4876-85C0-7714EF274214} + {AB131FA7-B7C3-4ABF-ABDE-E059C72A613C} = {E1A5D2B7-10AF-4876-85C0-7714EF274214} + {D24FCAA5-548C-4251-B226-A1B6535D0845} = {E1A5D2B7-10AF-4876-85C0-7714EF274214} + {C23563DB-FE21-48E7-A411-87A109E4A899} = {E1A5D2B7-10AF-4876-85C0-7714EF274214} + {1DC32255-BA1F-4D6D-A9C9-5BD5ED71CAA0} = {E1A5D2B7-10AF-4876-85C0-7714EF274214} + {654A027D-1364-4729-880B-144DFE1FF5BB} = {1B0918B9-65AD-4F34-A287-AF4597B27DBD} + {A73DF5A6-866E-4AED-9017-AA2EE86368C4} = {1B0918B9-65AD-4F34-A287-AF4597B27DBD} + EndGlobalSection GlobalSection(ExtensibilityGlobals) = postSolution SolutionGuid = {2DEAD3CC-486B-4918-A607-50B0DE7B114A} EndGlobalSection diff --git a/data/img001.bmp b/data/img001.bmp new file mode 100644 index 000000000..d149d76f1 Binary files /dev/null and b/data/img001.bmp differ diff --git a/docs/Example-fsharp.md b/docs/Example-fsharp.md new file mode 100644 index 000000000..578543454 --- /dev/null +++ b/docs/Example-fsharp.md @@ -0,0 +1,55 @@ +Linear Regression in `Eager` mode: + +```fsharp +#r "nuget: TensorFlow.Net" +#r "nuget: TensorFlow.Keras" +#r "nuget: SciSharp.TensorFlow.Redist" + +open Tensorflow +open Tensorflow.NumPy +open type Tensorflow.Binding +open type Tensorflow.KerasApi + +let tf = New() +tf.enable_eager_execution() + +// Parameters +let training_steps = 1000 +let learning_rate = 0.01f +let display_step = 100 + +// Sample data +let train_X = + np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, + 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f) +let train_Y = + np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, + 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f) +let n_samples = train_X.shape.[0] + +// We can set a fixed init value in order to demo +let W = tf.Variable(-0.06f,name = "weight") +let b = tf.Variable(-0.73f, name = "bias") +let optimizer = keras.optimizers.SGD(learning_rate) + +// Run training for the given number of steps. +for step = 1 to (training_steps + 1) do + // Run the optimization to update W and b values. + // Wrap computation inside a GradientTape for automatic differentiation. + use g = tf.GradientTape() + // Linear regression (Wx + b). + let pred = W * train_X + b + // Mean square error. + let loss = tf.reduce_sum(tf.pow(pred - train_Y,2)) / (2 * n_samples) + // should stop recording + // compute gradients + let gradients = g.gradient(loss,struct (W,b)) + + // Update W and b following gradients. + optimizer.apply_gradients(zip(gradients, struct (W,b))) + + if (step % display_step) = 0 then + let pred = W * train_X + b + let loss = tf.reduce_sum(tf.pow(pred-train_Y,2)) / (2 * n_samples) + printfn $"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}" +``` \ No newline at end of file diff --git a/docs/README-CN.md b/docs/README-CN.md new file mode 100644 index 000000000..9776b0fb8 --- /dev/null +++ b/docs/README-CN.md @@ -0,0 +1,228 @@ +![logo](assets/tf.net.logo.png) + +**Tensorflow.NET**是AI框架[TensorFlow](https://www.tensorflow.org/)在.NET平台上的实现,支持C#和F#,可以用来搭建深度学习模型并进行训练和推理,并内置了Numpy API,可以用来进行其它科学计算。 + +Tensorflow.NET并非对于Python的简单封装,而是基于C API的pure C#实现,因此使用时无需额外的环境,可以很方便地用NuGet直接安装使用。并且dotnet团队提供的[ML.NET](https://github.com/dotnet/machinelearning)也依赖于Tensorflow.NET,支持调用Tensorflow.NET进行训练和推理,可以很方便地融入.NET生态。 + +与tensorflow相同,Tensorflow.NET也内置了Keras这一高级API,只要在安装Tensorflow.NET的同时安装Tensorflow.Keras就可以使用,Keras支持以模块化的方式调用模型,给模型的搭建提供了极大的便利。 + +[![Join the chat at https://gitter.im/publiclab/publiclab](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/sci-sharp/community) +[![Tensorflow.NET](https://ci.appveyor.com/api/projects/status/wx4td43v2d3f2xj6?svg=true)](https://ci.appveyor.com/project/Haiping-Chen/tensorflow-net) +[![NuGet](https://img.shields.io/nuget/dt/TensorFlow.NET.svg)](https://www.nuget.org/packages/TensorFlow.NET) +[![Documentation Status](https://readthedocs.org/projects/tensorflownet/badge/?version=latest)](https://tensorflownet.readthedocs.io/en/latest/?badge=latest) +[![Badge](https://img.shields.io/badge/link-996.icu-red.svg)](https://996.icu/#/en_US) +[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab) + +中文 | [English](https://github.com/SciSharp/TensorFlow.NET#readme) + +*当前主分支与Tensorflow2.10版本相对应,支持Eager Mode,同时也支持v1的静态图。* + + +![tensors_flowing](assets/tensors_flowing.gif) + +## Why Tensorflow.NET? + +`SciSharp STACK`开源社区的目标是构建.NET平台下易用的科学计算库,而Tensorflow.NET就是其中最具代表性的仓库之一。在深度学习领域Python是主流,无论是初学者还是资深开发者,模型的搭建和训练都常常使用Python写就的AI框架,比如tensorflow。但在实际应用深度学习模型的时候,又可能希望用到.NET生态,亦或只是因为.NET是自己最熟悉的领域,这时候Tensorflow.NET就有显著的优点,因为它不仅可以和.NET生态很好地贴合,其API还使得开发者很容易将Python代码迁移过来。下面的对比就是很好的例子,Python代码和C#代码有着高度相似的API,这会使得迁移的时候无需做过多修改。 + +![python vs csharp](assets/syntax-comparision.png) + +除了高度相似的API外,Tensorflow.NET与tensorflow也已经打通数据通道,tensorflow训练并保存的模型可以在Tensorflow.NET中直接读取并继续训练或推理,反之Tensorflow.NET保存的模型也可以在tensorflow中读取,这大大方便了模型的训练和部署。 + +与其它类似的库比如[TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/)相比,Tensorflow.NET的实现更加完全,提供了更多的高级API,使用起来更为方便,更新也更加迅速。 + + +## 文档 + +基本介绍与简单用例:[Tensorflow.NET Documents](https://scisharp.github.io/tensorflow-net-docs) + +详细文档:[The Definitive Guide to Tensorflow.NET](https://tensorflownet.readthedocs.io/en/latest/FrontCover.html) + +例程:[TensorFlow.NET Examples](https://github.com/SciSharp/TensorFlow.NET-Examples) + +运行例程常见问题:[Tensorflow.NET FAQ](tensorflowlib/README.md) + +## 安装与使用 + +安装可以在NuGet包管理器中搜索包名安装,也可以用下面命令行的方式。 + +安装分为两个部分,第一部分是Tensorflow.NET的主体: + +```sh +### 安装Tensorflow.NET +PM> Install-Package TensorFlow.NET + +### 安装Tensorflow.Keras +PM> Install-Package TensorFlow.Keras +``` + +第二部分是计算支持部分,只需要根据自己的设备和系统选择下面之一即可: + +``` +### CPU版本,支持Windows、Linux和Mac +PM> Install-Package SciSharp.TensorFlow.Redist + +### Windows下的GPU版本(需要安装CUDA和cuDNN) +PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU + +### Linux下的GPU版本(需要安装CUDA和cuDNN) +PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU +``` + +下面给出两个简单的例子,更多例子可以在[TensorFlow.NET Examples]中查看。 + +### 简单例子(使用Eager Mode进行线性回归) + +```csharp +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; +using Tensorflow; +using Tensorflow.NumPy; + +// Parameters +var training_steps = 1000; +var learning_rate = 0.01f; +var display_step = 100; + +// Sample data +var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, + 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); +var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, + 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); +var n_samples = X.shape[0]; + +// We can set a fixed init value in order to demo +var W = tf.Variable(-0.06f, name: "weight"); +var b = tf.Variable(-0.73f, name: "bias"); +var optimizer = keras.optimizers.SGD(learning_rate); + +// Run training for the given number of steps. +foreach (var step in range(1, training_steps + 1)) +{ + // Run the optimization to update W and b values. + // Wrap computation inside a GradientTape for automatic differentiation. + using var g = tf.GradientTape(); + // Linear regression (Wx + b). + var pred = W * X + b; + // Mean square error. + var loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples); + // should stop recording + // Compute gradients. + var gradients = g.gradient(loss, (W, b)); + + // Update W and b following gradients. + optimizer.apply_gradients(zip(gradients, (W, b))); + + if (step % display_step == 0) + { + pred = W * X + b; + loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples); + print($"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}"); + } +} +``` + +这一用例也可以在[Jupyter Notebook Example](https://github.com/SciSharp/SciSharpCube)进行运行. + +### 简单例子(使用Keras搭建Resnet) + +```csharp +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; +using Tensorflow; +using Tensorflow.NumPy; + +var layers = keras.layers; +// input layer +var inputs = keras.Input(shape: (32, 32, 3), name: "img"); +// convolutional layer +var x = layers.Conv2D(32, 3, activation: "relu").Apply(inputs); +x = layers.Conv2D(64, 3, activation: "relu").Apply(x); +var block_1_output = layers.MaxPooling2D(3).Apply(x); +x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_1_output); +x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x); +var block_2_output = layers.Add().Apply(new Tensors(x, block_1_output)); +x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_2_output); +x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x); +var block_3_output = layers.Add().Apply(new Tensors(x, block_2_output)); +x = layers.Conv2D(64, 3, activation: "relu").Apply(block_3_output); +x = layers.GlobalAveragePooling2D().Apply(x); +x = layers.Dense(256, activation: "relu").Apply(x); +x = layers.Dropout(0.5f).Apply(x); +// output layer +var outputs = layers.Dense(10).Apply(x); +// build keras model +var model = keras.Model(inputs, outputs, name: "toy_resnet"); +model.summary(); +// compile keras model in tensorflow static graph +model.compile(optimizer: keras.optimizers.RMSprop(1e-3f), + loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), + metrics: new[] { "acc" }); +// prepare dataset +var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data(); +// normalize the input +x_train = x_train / 255.0f; +// training +model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)], + batch_size: 64, + epochs: 10, + validation_split: 0.2f); +// save the model +model.save("./toy_resnet_model"); +``` + +此外,Tensorflow.NET也支持用F#搭建上述模型进行训练和推理。 + +## Tensorflow.NET版本对应关系 + +| TensorFlow.NET Versions | tensorflow 1.14, cuda 10.0 | tensorflow 1.15, cuda 10.0 | tensorflow 2.3, cuda 10.1 | tensorflow 2.4, cuda 11 | tensorflow 2.7, cuda 11 |tensorflow 2.10, cuda 11 | +| -------------------------- | ------------- | -------------- | ------------- | ------------- | ------------ | ------------ | +| tf.net 0.10x, tf.keras 0.10 | | | | | | x | +| tf.net 0.7x, tf.keras 0.7 | | | | | x | | +| tf.net 0.4x, tf.keras 0.5 | | | | x | | | +| tf.net 0.3x, tf.keras 0.4 | | | x | | | | +| tf.net 0.2x | | x | x | | | | +| tf.net 0.15 | x | x | | | | | +| tf.net 0.14 | x | | | | | | + + +``` +tf.net 0.4x -> tf native 2.4 +tf.net 0.6x -> tf native 2.6 +tf.net 0.7x -> tf native 2.7 +tf.net 0.10x -> tf native 2.10 +... +``` + +如果使用过程中发现有缺失的版本,请告知我们,谢谢! + +请注意Tensorflow.NET与Tensorflow.Keras版本存在一一对应关系,请安装与Tensorflow.NET对应的Tensorflow.Keras版本。 + +## 参与我们的开发: + +我们欢迎任何人的任何形式的贡献!无论是文档中的错误纠正,新特性提议,还是BUG修复等等,都会使得Tensorflow.NET项目越来越好,Tensorflow.NET的全体开发者也会积极帮助解决您提出的问题。 + +下面任何一种形式都可以帮助Tensorflow.NET越来越好: + +* Star和分享Tensorflow.NET项目 +* 为Tensorflow.NET添加更多的用例 +* 在issue中告知我们Tensorflow.NET目前相比tensorflow缺少的API或者没有对齐的特性 +* 在issue中提出Tensorflow.NET存在的BUG或者可以改进的地方 +* 在待办事项清单中选择一个进行或者解决某个issue +* 帮助我们完善文档,这也十分重要 + + +## 支持我们 +我们推出了[TensorFlow.NET实战](https://item.jd.com/13441549.html)这本书,包含了Tensorflow.NET主要开发者编写的讲解与实战例程,欢迎您的购买,希望这本书可以给您带来帮助。 +

+ + + +

+ +## 联系我们 + +可以在 [Twitter](https://twitter.com/ScisharpStack), [Facebook](https://www.facebook.com/scisharp.stack.9), [Medium](https://medium.com/scisharp), [LinkedIn](https://www.linkedin.com/company/scisharp-stack/)中关注我们,也可以在[Gitter](https://gitter.im/sci-sharp/community)中与项目开发者以及其它使用者进行沟通交流,也欢迎在仓库中提起issue。 + +TensorFlow.NET is a part of [SciSharp STACK](https://scisharp.github.io/SciSharp/) +
+ diff --git a/src/SciSharp.TensorFlow.Redist/README.md b/src/SciSharp.TensorFlow.Redist/README.md index 141bba352..4002aa21d 100644 --- a/src/SciSharp.TensorFlow.Redist/README.md +++ b/src/SciSharp.TensorFlow.Redist/README.md @@ -26,7 +26,7 @@ Related merged [commits](https://github.com/SciSharp/TensorFlow.NET/commit/854a5 #### Download pre-build package -[Mac OSX CPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-darwin-x86_64-2.4.0.tar.gz), [Linux CPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-2.4.0.tar.gz), [Linux GPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-linux-x86_64-2.4.0.tar.gz), [Windows CPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-windows-x86_64-2.4.0.tar.gz), [Windows GPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-windows-x86_64-2.4.0.zip) +[Mac OSX CPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-darwin-x86_64-2.10.0.tar.gz), [Linux CPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-2.10.0.tar.gz), [Linux GPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-linux-x86_64-2.10.0.tar.gz), [Windows CPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-windows-x86_64-2.10.0.zip), [Windows GPU](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-windows-x86_64-2.10.0.zip) @@ -35,6 +35,6 @@ Related merged [commits](https://github.com/SciSharp/TensorFlow.NET/commit/854a5 On Windows, the tar command does not support extracting archives with symlinks. So when `dotnet pack` runs on Windows it will only package the Windows binaries. 1. Run `dotnet pack SciSharp.TensorFlow.Redist.nupkgproj` under `src/SciSharp.TensorFlow.Redist` directory in Linux. -2. Run `dotnet nuget push SciSharp.TensorFlow.Redist.2.4.0.nupkg -k APIKEY -s https://api.nuget.org/v3/index.json -t 600` +2. Run `dotnet nuget push SciSharp.TensorFlow.Redist.2.10.0.nupkg -k APIKEY -s https://api.nuget.org/v3/index.json -t 600` diff --git a/src/TensorFlowNET.Core/APIs/c_api.cs b/src/TensorFlowNET.Core/APIs/c_api.cs index 10f678e0a..a91b86827 100644 --- a/src/TensorFlowNET.Core/APIs/c_api.cs +++ b/src/TensorFlowNET.Core/APIs/c_api.cs @@ -16,6 +16,7 @@ limitations under the License. using System; using System.Runtime.InteropServices; +using static Tensorflow.CppShapeInferenceResult.Types; namespace Tensorflow { @@ -50,6 +51,35 @@ public static string StringPiece(IntPtr handle) return handle == IntPtr.Zero ? String.Empty : Marshal.PtrToStringAnsi(handle); } + public unsafe static byte[] ByteStringPiece(Buffer? handle) + { + if (handle is null) + { + return new byte[0]; + } + var data = handle.ToArray(); + return data; + } + + public unsafe static byte[] ByteStringPieceFromNativeString(IntPtr handle) + { + if (handle == IntPtr.Zero) + { + return new byte[0]; + } + + byte* str_data = (byte*)handle.ToPointer(); + List bytes = new List(); + byte current = 255; + while (current != ((byte)'\0')) + { + current = *(str_data++); + bytes.Add(current); + } + var data = bytes.ToArray(); + return data; + } + [UnmanagedFunctionPointer(CallingConvention.Winapi)] public delegate void Deallocator(IntPtr data, IntPtr size, ref DeallocatorArgs args); diff --git a/src/TensorFlowNET.Core/APIs/c_api.customize.cs b/src/TensorFlowNET.Core/APIs/c_api.customize.cs new file mode 100644 index 000000000..bee4897ee --- /dev/null +++ b/src/TensorFlowNET.Core/APIs/c_api.customize.cs @@ -0,0 +1,17 @@ +using System; +using System.Collections.Generic; +using System.Runtime.InteropServices; +using System.Text; + +namespace Tensorflow +{ + public partial class c_api + { + [DllImport(TensorFlowLibName)] + public static extern void TF_SetAttr(SafeGraphHandle graph, IntPtr op, string attr_name, SafeBufferHandle attr_value_proto, SafeStatusHandle status); + [DllImport(TensorFlowLibName)] + public static extern SafeBufferHandle TF_GetHandleShapeAndType(SafeGraphHandle c_graph, TF_Output output); + [DllImport(TensorFlowLibName)] + public static extern void TF_SetHandleShapeAndType(SafeGraphHandle c_graph, TF_Output output, byte[] data, long proto_len, SafeStatusHandle status); + } +} diff --git a/src/TensorFlowNET.Core/APIs/tf.array.cs b/src/TensorFlowNET.Core/APIs/tf.array.cs index a2c91983e..b529cd319 100644 --- a/src/TensorFlowNET.Core/APIs/tf.array.cs +++ b/src/TensorFlowNET.Core/APIs/tf.array.cs @@ -44,7 +44,8 @@ public partial class tensorflow /// /// public Tensor batch_to_space_nd(T input, int[] block_shape, int[,] crops, string name = null) - => gen_array_ops.batch_to_space_nd(input, block_shape, crops, name: name); + => gen_array_ops.batch_to_space_nd(ops.convert_to_tensor(input), ops.convert_to_tensor(block_shape), + ops.convert_to_tensor(crops), name: name); /// /// Apply boolean mask to tensor. @@ -90,8 +91,7 @@ public Tensor concat(IEnumerable values, int axis, string name = "concat return identity(values.First(), name: scope); }); } - - return gen_array_ops.concat_v2(values.ToArray(), axis, name: name); + return array_ops.concat(values.ToArray(), axis, name: name); } /// @@ -115,7 +115,7 @@ public Tensor expand_dims(Tensor input, int axis = -1, string name = null) /// /// public Tensor fill(Tensor dims, T value, string name = null) - => gen_array_ops.fill(dims, value, name: name); + => gen_array_ops.fill(dims, ops.convert_to_tensor(value), name: name); public Tensor fill(Shape dims, T value, string name = null) => array_ops.fill(dims, value, name: name); @@ -138,7 +138,17 @@ public Tensor identity(Tensor input, string name = null) /// /// public Tensor gather(Tensor @params, Tensor indices, string name = null, int axis = 0) - => array_ops.gather(@params, indices, name: name, axis: axis); + => array_ops.gather(@params, indices, name: name, axis: ops.convert_to_tensor(axis)); + + /// + /// Gather slices from `params` into a Tensor with shape specified by `indices`. + /// + /// + /// + /// + /// + public Tensor gather_nd(Tensor @params, Tensor indices, string name = null) + => gen_array_ops.gather_nd(@params, indices, name: name); /// /// Return the elements, either from `x` or `y`, depending on the `condition`. @@ -162,14 +172,17 @@ public Tensor transpose(T1 a, Axis perm = null, string name = "transpose", b /// Reverses specific dimensions of a tensor. /// /// - /// + /// The indices of the dimensions to reverse. Must be in the range [-rank(tensor), rank(tensor)). /// /// - public Tensor reverse(Tensor tensor, int[] axis, string name = null) - => gen_array_ops.reverse(tensor, axis, name: name); - - public Tensor reverse(Tensor tensor, Tensor axis, string name = null) - => gen_array_ops.reverse(tensor, axis, name: name); + public Tensor reverse(Tensor tensor, Axis axis, string name = null) + { + if (axis.IsScalar) + { + axis = new Axis(axis.axis); + } + return array_ops.reverse(tensor, axis, name: name); + } /// /// Returns the rank of a tensor. @@ -189,7 +202,8 @@ public Tensor rank(Tensor input, string name = null) /// A name for the operation (optional). /// A `Tensor` the same type as `input`. public Tensor slice(Tensor input, Tb[] begin, Ts[] size, string name = null) - => array_ops.slice(input, begin, size, name: name); + => array_ops.slice(input, begin.Select(x => ops.convert_to_tensor(x)).ToArray(), + size.Select(x => ops.convert_to_tensor(x)).ToArray(), name: name); public Tensor squeeze(Tensor input, int axis, string name = null, int squeeze_dims = -1) => array_ops.squeeze(input, new[] { axis }, name); @@ -255,7 +269,7 @@ public Tensor pad(Tensor tensor, Tensor paddings, string mode = "CONSTANT", stri /// A name for the operation (optional). /// A `Tensor`. Has the same type as `input`. public Tensor placeholder_with_default(T input, int[] shape, string name = null) - => gen_array_ops.placeholder_with_default(input, shape, name: name); + => gen_array_ops.placeholder_with_default(ops.convert_to_tensor(input), shape, name: name); /// /// Returns the shape of a tensor. diff --git a/src/TensorFlowNET.Core/APIs/tf.compat.cs b/src/TensorFlowNET.Core/APIs/tf.compat.cs index 4d979eb55..8a30badd9 100644 --- a/src/TensorFlowNET.Core/APIs/tf.compat.cs +++ b/src/TensorFlowNET.Core/APIs/tf.compat.cs @@ -14,6 +14,9 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Google.Protobuf; +using System.Text; + namespace Tensorflow { public partial class tensorflow @@ -23,6 +26,43 @@ public partial class tensorflow public class CompatApi { public CompatV1Api v1 { get; } = new CompatV1Api(); + + internal string as_text(string bytes_or_text, Encoding? encoding = null) + { + if(encoding is null) encoding = Encoding.UTF8; + return bytes_or_text; + } + internal string as_text(byte[] bytes_or_text, Encoding? encoding = null) + { + if(encoding is null) encoding = Encoding.UTF8; + return encoding.GetString(bytes_or_text); + } + + internal string as_str(string bytes_or_text, Encoding? encoding = null) + { + return as_text(bytes_or_text, encoding); + } + internal string as_str(byte[] bytes_or_text, Encoding? encoding = null) + { + return as_text(bytes_or_text, encoding); + } + + public ByteString as_bytes(ByteString bytes, Encoding encoding = null) + { + return bytes; + } + public ByteString as_bytes(byte[] bytes, Encoding encoding = null) + { + return ByteString.CopyFrom(bytes); + } + public ByteString as_bytes(string text, Encoding encoding = null) + { + if(encoding is null) + { + encoding = Encoding.UTF8; + } + return ByteString.CopyFrom(encoding.GetBytes(text)); + } } public bool executing_eagerly() diff --git a/src/TensorFlowNET.Core/APIs/tf.control_flow.cs b/src/TensorFlowNET.Core/APIs/tf.control_flow.cs index 239487e05..cd5a71e50 100644 --- a/src/TensorFlowNET.Core/APIs/tf.control_flow.cs +++ b/src/TensorFlowNET.Core/APIs/tf.control_flow.cs @@ -46,10 +46,10 @@ public Tensor while_loop(Func cond, Tensor loop_vars, int parallel_iterations = 10) { - Func cond1 = x + Func cond1 = x => cond(x[0]); - Func body1 = x + Func body1 = x => new[] { body(x[0]) }; var results = control_flow_ops.while_loop(cond1, @@ -58,9 +58,9 @@ public Tensor while_loop(Func cond, return results[0]; } - public Tensor[] while_loop(Func cond, - Func body, - Tensor[] loop_vars, + public Tensor[] while_loop(Func cond, + Func body, + Tensors loop_vars, int parallel_iterations = 10, string name = null) => control_flow_ops.while_loop(cond, body, loop_vars, diff --git a/src/TensorFlowNET.Core/APIs/tf.image.cs b/src/TensorFlowNET.Core/APIs/tf.image.cs index 9230b50dc..41ef52967 100644 --- a/src/TensorFlowNET.Core/APIs/tf.image.cs +++ b/src/TensorFlowNET.Core/APIs/tf.image.cs @@ -14,6 +14,10 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using OneOf.Types; +using System; +using System.Buffers.Text; +using Tensorflow.Contexts; using static Tensorflow.Binding; namespace Tensorflow @@ -162,17 +166,108 @@ public Tensor ssim_multiscale(Tensor img1, Tensor img2, float max_val, float[] p public Tensor sobel_edges(Tensor image) => image_ops_impl.sobel_edges(image); - public Tensor decode_jpeg(Tensor contents, - int channels = 0, - int ratio = 1, - bool fancy_upscaling = true, - bool try_recover_truncated = false, - int acceptable_fraction = 1, - string dct_method = "", - string name = null) - => gen_image_ops.decode_jpeg(contents, channels: channels, ratio: ratio, - fancy_upscaling: fancy_upscaling, try_recover_truncated: try_recover_truncated, - acceptable_fraction: acceptable_fraction, dct_method: dct_method); + /// + /// Adjust contrast of RGB or grayscale images. + /// + /// Images to adjust. At least 3-D. + /// + /// A float multiplier for adjusting contrast. + /// The contrast-adjusted image or images. + public Tensor adjust_contrast(Tensor images, float contrast_factor, string name = null) + => gen_image_ops.adjust_contrastv2(images, contrast_factor, name); + + /// + /// Adjust hue of RGB images. + /// + /// RGB image or images. The size of the last dimension must be 3. + /// float. How much to add to the hue channel. + /// A name for this operation (optional). + /// Adjusted image(s), same shape and DType as `image`. + /// if `delta` is not in the interval of `[-1, 1]`. + public Tensor adjust_hue(Tensor images, float delta, string name = null) + { + if (tf.Context.executing_eagerly()) + { + if (delta < -1f || delta > 1f) + throw new ValueError("delta must be in the interval [-1, 1]"); + } + return gen_image_ops.adjust_hue(images, delta, name: name); + } + + /// + /// Adjust saturation of RGB images. + /// + /// RGB image or images. The size of the last dimension must be 3. + /// float. Factor to multiply the saturation by. + /// A name for this operation (optional). + /// Adjusted image(s), same shape and DType as `image`. + public Tensor adjust_saturation(Tensor image, float saturation_factor, string name = null) + => gen_image_ops.adjust_saturation(image, saturation_factor, name); + + /// + /// Greedily selects a subset of bounding boxes in descending order of score. + /// + /// + /// A 4-D float `Tensor` of shape `[batch_size, num_boxes, q, 4]`. If `q` + /// is 1 then same boxes are used for all classes otherwise, if `q` is equal + /// to number of classes, class-specific boxes are used. + /// + /// + /// A 3-D float `Tensor` of shape `[batch_size, num_boxes, num_classes]` + /// representing a single score corresponding to each box(each row of boxes). + /// + /// + /// A scalar integer `Tensor` representing the + /// maximum number of boxes to be selected by non-max suppression per class + /// + /// + /// A int32 scalar representing maximum number of boxes retained + /// over all classes.Note that setting this value to a large number may + /// result in OOM error depending on the system workload. + /// + /// + /// A float representing the threshold for deciding whether boxes + /// overlap too much with respect to IOU. + /// + /// + /// A float representing the threshold for deciding when to + /// remove boxes based on score. + /// + /// + /// If false, the output nmsed boxes, scores and classes are + /// padded/clipped to `max_total_size`. If true, the output nmsed boxes, scores and classes are padded to be of length `max_size_per_class`*`num_classes`, + /// unless it exceeds `max_total_size` in which case it is clipped to `max_total_size`. Defaults to false. + /// + /// + /// If true, the coordinates of output nmsed boxes will be clipped + /// to[0, 1]. If false, output the box coordinates as it is. Defaults to true. + /// + /// + /// 'nmsed_boxes': A [batch_size, max_detections, 4] float32 tensor containing the non-max suppressed boxes. + /// 'nmsed_scores': A [batch_size, max_detections] float32 tensor containing the scores for the boxes. + /// 'nmsed_classes': A [batch_size, max_detections] float32 tensor containing the class for boxes. + /// 'valid_detections': A [batch_size] int32 tensor indicating the number of + /// valid detections per batch item. Only the top valid_detections[i] entries + /// in nms_boxes[i], nms_scores[i] and nms_class[i] are valid. The rest of the + /// entries are zero paddings. + /// + public (Tensor, Tensor, Tensor, Tensor) combined_non_max_suppression( + Tensor boxes, + Tensor scores, + int max_output_size_per_class, + int max_total_size, + float iou_threshold, + float score_threshold, + bool pad_per_class = false, + bool clip_boxes = true) + { + var iou_threshold_t = ops.convert_to_tensor(iou_threshold, TF_DataType.TF_FLOAT, name: "iou_threshold"); + var score_threshold_t = ops.convert_to_tensor(score_threshold, TF_DataType.TF_FLOAT, name: "score_threshold"); + var max_total_size_t = ops.convert_to_tensor(max_total_size); + var max_output_size_per_class_t = ops.convert_to_tensor(max_output_size_per_class); + return gen_image_ops.combined_non_max_suppression(boxes, scores, max_output_size_per_class_t, max_total_size_t, + iou_threshold_t, score_threshold_t, pad_per_class, clip_boxes); + } /// /// Extracts crops from the input image tensor and resizes them using bilinear sampling or nearest neighbor sampling (possibly with aspect ratio change) to a common output size specified by crop_size. This is more general than the crop_to_bounding_box op which extracts a fixed size slice from the input image and does not allow resizing or aspect ratio change. @@ -187,7 +282,19 @@ public Tensor decode_jpeg(Tensor contents, /// A name for the operation (optional). /// A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth]. public Tensor crop_and_resize(Tensor image, Tensor boxes, Tensor box_ind, Tensor crop_size, string method = "bilinear", float extrapolation_value = 0f, string name = null) => - image_ops_impl.crop_and_resize(image, boxes, box_ind, crop_size, method, extrapolation_value, name); + gen_image_ops.crop_and_resize(image, boxes, box_ind, crop_size, method, extrapolation_value, name); + + public Tensor decode_jpeg(Tensor contents, + int channels = 0, + int ratio = 1, + bool fancy_upscaling = true, + bool try_recover_truncated = false, + int acceptable_fraction = 1, + string dct_method = "", + string name = null) + => gen_image_ops.decode_jpeg(contents, channels: channels, ratio: ratio, + fancy_upscaling: fancy_upscaling, try_recover_truncated: try_recover_truncated, + acceptable_fraction: acceptable_fraction, dct_method: dct_method); public Tensor extract_glimpse(Tensor input, Tensor size, Tensor offsets, bool centered = true, bool normalized = true, bool uniform_noise = true, string name = null) @@ -232,6 +339,13 @@ public Tensor decode_image(Tensor contents, int channels = 0, TF_DataType dtype => image_ops_impl.decode_image(contents, channels: channels, dtype: dtype, name: name, expand_animations: expand_animations); + public Tensor encode_png(Tensor contents, string name = null) + => image_ops_impl.encode_png(contents, name: name); + + public Tensor encode_jpeg(Tensor contents, string name = null) + => image_ops_impl.encode_jpeg(contents, name: name); + + /// /// Convenience function to check if the 'contents' encodes a JPEG image. /// diff --git a/src/TensorFlowNET.Core/APIs/tf.init.cs b/src/TensorFlowNET.Core/APIs/tf.init.cs index 0681258e4..8635f6620 100644 --- a/src/TensorFlowNET.Core/APIs/tf.init.cs +++ b/src/TensorFlowNET.Core/APIs/tf.init.cs @@ -76,13 +76,13 @@ public IInitializer random_normal_initializer(float mean = 0.0f, /// /// public IInitializer variance_scaling_initializer(float factor = 1.0f, - string mode = "FAN_IN", - bool uniform = false, + string mode = "fan_in", + string distribution = "truncated_normal", int? seed = null, TF_DataType dtype = TF_DataType.TF_FLOAT) => new VarianceScaling( - factor: factor, + scale: factor, mode: mode, - uniform: uniform, + distribution: distribution, seed: seed, dtype: dtype); diff --git a/src/TensorFlowNET.Core/APIs/tf.io.cs b/src/TensorFlowNET.Core/APIs/tf.io.cs index 0c0510dd5..ea1e44b28 100644 --- a/src/TensorFlowNET.Core/APIs/tf.io.cs +++ b/src/TensorFlowNET.Core/APIs/tf.io.cs @@ -16,6 +16,7 @@ limitations under the License. using System.Collections.Generic; using Tensorflow.IO; +using Tensorflow.Operations; namespace Tensorflow { @@ -46,6 +47,12 @@ public Operation save_v2(Tensor prefix, string[] tensor_names, public Tensor[] restore_v2(Tensor prefix, string[] tensor_names, string[] shape_and_slices, TF_DataType[] dtypes, string name = null) => ops.restore_v2(prefix, tensor_names, shape_and_slices, dtypes, name: name); + + public Operation write_file(string filename, Tensor conentes, string name = null) + => write_file(Tensorflow.ops.convert_to_tensor(filename, TF_DataType.TF_STRING), conentes, name); + + public Operation write_file(Tensor filename, Tensor conentes, string name = null) + => gen_ops.write_file(filename, conentes, name); } public GFile gfile = new GFile(); @@ -54,6 +61,6 @@ public ITensorOrOperation[] import_graph_def(GraphDef graph_def, Dictionary input_map = null, string[] return_elements = null, string name = null, - OpList producer_op_list = null) => importer.import_graph_def(graph_def, input_map, return_elements, name, producer_op_list); + OpList producer_op_list = null) => importer.import_graph_def(graph_def, input_map, return_elements, name: name, producer_op_list: producer_op_list); } } diff --git a/src/TensorFlowNET.Core/APIs/tf.linalg.cs b/src/TensorFlowNET.Core/APIs/tf.linalg.cs index 5b79d1384..32f64ec35 100644 --- a/src/TensorFlowNET.Core/APIs/tf.linalg.cs +++ b/src/TensorFlowNET.Core/APIs/tf.linalg.cs @@ -54,10 +54,22 @@ public Tensor inv(Tensor input, bool adjoint = false, string name = null) public Tensor global_norm(Tensor[] t_list, string name = null) => clip_ops.global_norm(t_list, name: name); + public Tensor l2_normalize(Tensor x, + int axis = 0, + float epsilon = 1e-12f, + string name = null) + => nn_impl.l2_normalize(x, axis: axis, epsilon: constant_op.constant(epsilon), name: name); + public Tensor lstsq(Tensor matrix, Tensor rhs, NDArray l2_regularizer = null, bool fast = true, string name = null) => ops.matrix_solve_ls(matrix, rhs, l2_regularizer: l2_regularizer, fast: fast, name: name); + public Tensors qr(Tensor input, bool full_matrices = true, string name = null) + => ops.qr(input, full_matrices: full_matrices, name: name); + + public Tensor tensor_diag_part(Tensor input, string name = null) + => gen_array_ops.diag_part(input, name: name); + public Tensor tensordot(Tensor x, Tensor y, NDArray axes, string name = null) => math_ops.tensordot(x, y, axes, name: name); } diff --git a/src/TensorFlowNET.Core/APIs/tf.math.cs b/src/TensorFlowNET.Core/APIs/tf.math.cs index ce6dc4d6c..da54a9dd7 100644 --- a/src/TensorFlowNET.Core/APIs/tf.math.cs +++ b/src/TensorFlowNET.Core/APIs/tf.math.cs @@ -1,5 +1,5 @@ /***************************************************************************** - Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. + Copyright 2023 The TensorFlow.NET Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. @@ -14,6 +14,9 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Tensorflow.NumPy; +using Tensorflow.Operations; + namespace Tensorflow { public partial class tensorflow @@ -24,6 +27,8 @@ public class MathApi public Tensor argmax(Tensor input, Axis axis = null, string name = null, int? dimension = null, TF_DataType output_type = TF_DataType.TF_INT64) => gen_math_ops.arg_max(input, axis, name: name, output_type: output_type); + public Tensor count_nonzero(Tensor input, Axis? axis = null, bool? keepdims = null, TF_DataType dtype = TF_DataType.TF_INT64, string name = null) + => math_ops.count_nonzero_v2(input, axis: axis, keepdims: keepdims ?? false, dtype: dtype); public Tensor log(Tensor x, string name = null) => gen_math_ops.log(x, name); @@ -36,9 +41,48 @@ public Tensor log(Tensor x, string name = null) public Tensor erf(Tensor x, string name = null) => math_ops.erf(x, name); + public Tensor multiply(Tensor x, Tensor y, string name = null) + => math_ops.multiply(x, y, name: name); + public Tensor divide_no_nan(Tensor a, Tensor b, string name = null) + => math_ops.div_no_nan(a, b); + + /// + /// Computes the Euclidean norm of elements across dimensions of a tensor. + /// + /// The tensor to reduce. Should have numeric type. + /// The dimensions to reduce. If `None` (the default), reduces all dimensions.Must be in the range `[-rank(input_tensor), rank(input_tensor))` + /// If true, retains reduced dimensions with length 1. + /// A name for the operation (optional). + /// The reduced tensor, of the same dtype as the input_tensor. + public Tensor reduce_euclidean_norm(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) + => math_ops.reduce_euclidean_norm(input_tensor, axis: axis, keepdims: keepdims, name); + + public Tensor square(Tensor x, string name = null) + => math_ops.square(x, name: name); + public Tensor sum(Tensor x, Axis? axis = null, string name = null) => math_ops.reduce_sum(x, axis: axis, name: name); + public Tensor softplus(Tensor features, string name = null) + => nn_ops.softplus(features, name: name); + + public Tensor tanh(Tensor x, string name = null) + => math_ops.tanh(x, name: name); + + /// + /// Finds values and indices of the `k` largest entries for the last dimension. + /// + /// + /// + /// + /// + /// + public Tensors top_k(Tensor input, int k, bool sorted = true, string name = null) + => nn_ops.top_kv2(input, k, sorted: sorted, name: name); + + public Tensor in_top_k(Tensor predictions, Tensor targets, int k, string name = "InTopK") + => nn_ops.in_top_k(predictions, targets, k, name); + /// /// /// @@ -60,6 +104,16 @@ public Tensor bincount(Tensor arr, Tensor weights = null, bool binary_output = false) => math_ops.bincount(arr, weights: weights, minlength: minlength, maxlength: maxlength, dtype: dtype, name: name, axis: axis, binary_output: binary_output); + + public Tensor real(Tensor x, string name = null) + => gen_ops.real(x, x.dtype.real_dtype(), name); + public Tensor imag(Tensor x, string name = null) + => gen_ops.imag(x, x.dtype.real_dtype(), name); + + public Tensor conj(Tensor x, string name = null) + => gen_ops.conj(x, name); + public Tensor angle(Tensor x, string name = null) + => gen_ops.angle(x, x.dtype.real_dtype(), name); } public Tensor abs(Tensor x, string name = null) @@ -87,7 +141,7 @@ public Tensor add(Tensor a, Tensor b, string name = null) => gen_math_ops.add(a, b, name: name); public Tensor add(Tx a, Ty b, string name = null) - => gen_math_ops.add(a, b, name: name); + => gen_math_ops.add(ops.convert_to_tensor(a), ops.convert_to_tensor(b), name: name); /// /// Adds all input tensors element-wise. @@ -108,10 +162,10 @@ public Tensor atan(Tensor x, string name = null) => gen_math_ops.atan(x, name); public Tensor arg_max(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) - => gen_math_ops.arg_max(input, dimension, output_type: output_type, name: name); + => gen_math_ops.arg_max(input, ops.convert_to_tensor(dimension), output_type: output_type, name: name); public Tensor arg_min(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) - => gen_math_ops.arg_min(input, dimension, output_type: output_type, name: name); + => gen_math_ops.arg_min(input, ops.convert_to_tensor(dimension), output_type: output_type, name: name); public Tensor is_finite(Tensor input, string name = null) => gen_math_ops.is_finite(input, name); @@ -156,7 +210,7 @@ public Tensor cos(Tensor x, string name = null) => gen_math_ops.cos(x, name); public Tensor cos(float x, string name = null) - => gen_math_ops.cos(x, name); + => gen_math_ops.cos(ops.convert_to_tensor(x), name); /// /// Computes hyperbolic cosine of x element-wise. @@ -192,7 +246,7 @@ public Tensor floor(Tensor x, string name = null) /// /// public Tensor greater(Tx x, Ty y, string name = null) - => gen_math_ops.greater(x, y, name); + => gen_math_ops.greater(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); /// /// Returns the truth value of (x >= y) element-wise. @@ -204,7 +258,7 @@ public Tensor greater(Tx x, Ty y, string name = null) /// /// public Tensor greater_equal(Tx x, Ty y, string name = null) - => gen_math_ops.greater_equal(x, y, name); + => gen_math_ops.greater_equal(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); /// /// Returns the truth value of (x < y) element-wise. @@ -216,7 +270,7 @@ public Tensor greater_equal(Tx x, Ty y, string name = null) /// /// public Tensor less(Tx x, Ty y, string name = null) - => gen_math_ops.less(x, y, name); + => gen_math_ops.less(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); /// /// Computes the log of the absolute value of `Gamma(x)` element-wise. @@ -237,7 +291,7 @@ public Tensor lgamma(Tensor x, string name = null) /// /// public Tensor less_equal(Tx x, Ty y, string name = null) - => gen_math_ops.less_equal(x, y, name); + => gen_math_ops.less_equal(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); /// /// Computes natural logarithm of (1 + x) element-wise. @@ -249,7 +303,7 @@ public Tensor log1p(Tensor x, string name = null) => gen_math_ops.log1p(x, name); public Tensor logical_and(T x, T y, string name = null) - => gen_math_ops.logical_and(x, y, name); + => gen_math_ops.logical_and(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); public Tensor logical_not(Tensor x, string name = null) => gen_math_ops.logical_not(x, name); @@ -258,7 +312,10 @@ public Tensor logical_or(Tensor x, Tensor y, string name = null) => gen_math_ops.logical_or(x, y, name); public Tensor logical_xor(Tensor x, Tensor y, string name = "LogicalXor") - => gen_math_ops.logical_xor(x, y, name); + { + return gen_math_ops.logical_and(gen_math_ops.logical_or(x, y), + gen_math_ops.logical_not(gen_math_ops.logical_and(x, y)), name); + } /// /// Clips tensor values to a specified min and max. @@ -269,7 +326,7 @@ public Tensor logical_xor(Tensor x, Tensor y, string name = "LogicalXor") /// /// public Tensor _clip_by_value(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = null) - => gen_math_ops._clip_by_value(t, clip_value_min, clip_value_max); + => gen_math_ops.clip_by_value(t, clip_value_min, clip_value_max); /// /// Clips tensor values to a specified min and max. @@ -302,13 +359,13 @@ public Tensor clip_by_value(Tensor t, T1 clip_value_min, T2 clip_value_m => clip_ops.clip_by_value(t, clip_value_min, clip_value_max, name); public Tensor sub(Tx a, Ty b, string name = null) - => gen_math_ops.sub(a, b, name: name); + => gen_math_ops.sub(ops.convert_to_tensor(a), ops.convert_to_tensor(b), name: name); public Tensor divide(Tensor a, Tensor b) => a / b; public Tensor sqrt(Tensor a, string name = null) - => gen_math_ops.sqrt(a, name); + => math_ops.sqrt(a, name); public Tensor sign(Tensor a, string name = null) => gen_math_ops.sign(a, name); @@ -353,7 +410,7 @@ public Tensor atan2(Tensor y, Tensor x, string name = null) /// /// public Tensor max(Tx input, Ty axis, bool keep_dims = false, string name = null) - => gen_math_ops._max(input, axis, keep_dims: keep_dims, name: name); + => gen_math_ops.max(ops.convert_to_tensor(input), ops.convert_to_tensor(axis), keep_dims: keep_dims, name: name); /// /// Computes the minimum of elements across dimensions of a tensor. @@ -366,7 +423,7 @@ public Tensor max(Tx input, Ty axis, bool keep_dims = false, string name /// /// public Tensor min(Tx input, Ty axis, bool keep_dims = false, string name = null) - => gen_math_ops._min(input, axis, keep_dims: keep_dims, name: name); + => gen_math_ops.min(ops.convert_to_tensor(input), ops.convert_to_tensor(axis), keep_dims: keep_dims, name: name); /// /// Returns the max of x and y (i.e. x > y ? x : y) element-wise. @@ -378,7 +435,7 @@ public Tensor min(Tx input, Ty axis, bool keep_dims = false, string name /// /// public Tensor maximum(T1 x, T2 y, string name = null) - => gen_math_ops.maximum(x, y, name: name); + => gen_math_ops.maximum(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); /// /// Returns the min of x and y (i.e. x < y ? x : y) element-wise. @@ -390,7 +447,7 @@ public Tensor maximum(T1 x, T2 y, string name = null) /// /// public Tensor minimum(T1 x, T2 y, string name = null) - => gen_math_ops.minimum(x, y, name: name); + => gen_math_ops.minimum(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); public Tensor multiply(Tensor x, Tensor y, string name = null) => gen_math_ops.mul(x, y, name: name); @@ -405,8 +462,19 @@ public Tensor multiply(Tensor x, Tensor y, string name = null) /// /// public Tensor multiply(Tx x, Ty y, string name = null) - => gen_math_ops.mul(x, y, name: name); - + => gen_math_ops.mul(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); + /// + /// return scalar product + /// + /// + /// + /// + /// + /// + /// + /// + public Tensor dot_prod(Tx x, Ty y, NDArray axes, string name = null) + => math_ops.tensordot(convert_to_tensor(x), convert_to_tensor(y), axes, name: name); public Tensor negative(Tensor x, string name = null) => gen_math_ops.neg(x, name); @@ -504,7 +572,7 @@ public Tensor reduce_prod(Tensor input_tensor, Axis? axis = null, bool keepdims public Tensor reduce_sum(Tensor input, Axis? axis = null, Axis? reduction_indices = null, bool keepdims = false, string name = null) { - if(keepdims) + if (keepdims) return math_ops.reduce_sum(input, axis: constant_op.constant(axis ?? reduction_indices), keepdims: keepdims, name: name); else return math_ops.reduce_sum(input, axis: constant_op.constant(axis ?? reduction_indices)); @@ -534,7 +602,7 @@ public Tensor sigmoid(T x, string name = null) => math_ops.sigmoid(x, name: name); public Tensor sum(Tensor input, int axis, bool keep_dims = false, string name = null) - => gen_math_ops._sum(input, axis, keep_dims: keep_dims, name: name); + => gen_math_ops.sum(input, ops.convert_to_tensor(axis), keep_dims: keep_dims, name: name); public Tensor reduce_mean(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null, int? reduction_indices = null) => math_ops.reduce_mean(input_tensor, axis: axis, keepdims: keepdims, name: name, reduction_indices: reduction_indices); @@ -552,5 +620,9 @@ public Tensor square(Tensor x, string name = null) => gen_math_ops.square(x, name: name); public Tensor squared_difference(Tensor x, Tensor y, string name = null) => gen_math_ops.squared_difference(x: x, y: y, name: name); + public Tensor complex(Tensor real, Tensor imag, Tensorflow.TF_DataType? dtype = null, + string name = null) => gen_ops.complex(real, imag, dtype, name); + public Tensor exp(Tensor x, + string name = null) => gen_math_ops.exp(x, name); } } diff --git a/src/TensorFlowNET.Core/APIs/tf.nn.cs b/src/TensorFlowNET.Core/APIs/tf.nn.cs index 1595e52fc..112c48628 100644 --- a/src/TensorFlowNET.Core/APIs/tf.nn.cs +++ b/src/TensorFlowNET.Core/APIs/tf.nn.cs @@ -14,6 +14,7 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Xml.Linq; using Tensorflow.Operations; using Tensorflow.Operations.Activation; using static Tensorflow.Binding; @@ -29,21 +30,8 @@ public class nn_internal public Tensor conv2d(Tensor input, Tensor filter, int[] strides, string padding, bool use_cudnn_on_gpu = true, string data_format = "NHWC", int[] dilations = null, string name = null) { - var parameters = new Conv2dParams - { - Input = input, - Filter = filter, - Strides = strides, - Padding = padding, - UseCudnnOnGpu = use_cudnn_on_gpu, - DataFormat = data_format, - Name = name - }; - - if (dilations != null) - parameters.Dilations = dilations; - - return gen_nn_ops.conv2d(parameters); + return gen_nn_ops.conv2d(input, filter, strides, padding, use_cudnn_on_gpu, + data_format: data_format, dilations: dilations, name: name); } public Tensor[] ctc_greedy_decoder(Tensor inputs, Tensor sequence_length, bool merge_repeated = true, string name = null) @@ -113,16 +101,21 @@ public Tensor embedding_lookup(Tensor @params, name: name); public IActivation relu() => new relu(); + + public IActivation swish() => new swish(); public IActivation tanh() => new tanh(); public IActivation softmax() => new softmax(); public Tensor tanh(Tensor x, string name = null) - => gen_nn_ops.tanh(x, name); + => gen_math_ops.tanh(x, name); public Tensor relu(Tensor features, string name = null) => gen_nn_ops.relu(features, name); + public Tensor relu6(Tensor features, string name = null) + => gen_nn_ops.relu6(features, name); + public Tensor[] fused_batch_norm(Tensor x, Tensor scale, Tensor offset, @@ -139,6 +132,26 @@ public Tensor[] fused_batch_norm(Tensor x, name: name, exponential_avg_factor: exponential_avg_factor); + /// + /// Normalizes a tensor by `mean` and `variance`, and applies (optionally) a`scale` \\(\gamma\\) to it, as well as an `offset` \\(\beta\\). + /// + /// A floating point tensor. + /// A mean `Tensor`. + /// A variance `Tensor`. + /// An offset `Tensor`, often denoted \\(\beta\\) in equations, or NULL. If present, will be added to the normalized tensor. + /// A scale `Tensor`, often denoted \\(\gamma\\) in equations, or NULL. If present, the scale is applied to the normalized tensor. + /// A small float number to avoid dividing by 0. + /// A name for this operation. + /// the normalized, scaled, offset tensor. + public Tensor batch_normalization(Tensor x, + Tensor mean, + Tensor variance, + Tensor offset, + Tensor scale, + float variance_epsilon, + string name = null) => nn_impl.batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name); + + public Tensor max_pool(Tensor value, int[] ksize, int[] strides, string padding, string data_format = "NHWC", string name = null) => nn_ops.max_pool(value, ksize, strides, padding, data_format: data_format, name: name); @@ -146,14 +159,14 @@ public Tensor in_top_k(Tensor predictions, Tensor targets, int k, string name = => nn_ops.in_top_k(predictions, targets, k, name); public Tensor[] top_k(Tensor input, int k = 1, bool sorted = true, string name = null) - => gen_nn_ops.top_kv2(input, k: k, sorted: sorted, name: name); + => gen_nn_ops.top_kv2(input, k: ops.convert_to_tensor(k), sorted: sorted, name: name); public Tensor bias_add(Tensor value, IVariableV1 bias, string data_format = null, string name = null) { return tf_with(ops.name_scope(name, "BiasAdd", new { value, bias }), scope => { name = scope; - return gen_nn_ops.bias_add(value, bias, data_format: data_format, name: name); + return gen_nn_ops.bias_add(value, ops.convert_to_tensor(bias), data_format: data_format, name: name); }); } @@ -172,7 +185,7 @@ public Tensor l2_loss(Tensor t, string name = null) /// public Tensor lrn(Tensor input, int depth_radius = 5, int bias = 1, int alpha = 1, float beta = 0.5f, string name = null) - => gen_nn_ops.local_response_normalization(input, depth_radius: depth_radius, bias: bias, + => gen_nn_ops.lrn(input, depth_radius: depth_radius, bias: bias, alpha: alpha, beta: beta, name: name); public Tensor leaky_relu(Tensor features, float alpha = 0.2f, string name = null) diff --git a/src/TensorFlowNET.Core/APIs/tf.random.cs b/src/TensorFlowNET.Core/APIs/tf.random.cs index 9fbf3924b..4f4962840 100644 --- a/src/TensorFlowNET.Core/APIs/tf.random.cs +++ b/src/TensorFlowNET.Core/APIs/tf.random.cs @@ -39,6 +39,12 @@ public Tensor normal(Shape shape, int? seed = null, string name = null) => random_ops.random_normal(shape, mean, stddev, dtype, seed, name); + public Tensor stateless_normal(Shape shape, + float mean = 0.0f, + float stddev = 1.0f, + TF_DataType dtype = TF_DataType.TF_FLOAT, + string name = null) => stateless_random_ops.stateless_random_normal(shape, mean, stddev, dtype, name: name); + /// /// Outputs random values from a truncated normal distribution. /// diff --git a/src/TensorFlowNET.Core/APIs/tf.reshape.cs b/src/TensorFlowNET.Core/APIs/tf.reshape.cs index cdd5194a2..102a81323 100644 --- a/src/TensorFlowNET.Core/APIs/tf.reshape.cs +++ b/src/TensorFlowNET.Core/APIs/tf.reshape.cs @@ -31,6 +31,6 @@ public Tensor reshape(Tensor tensor, public Tensor reshape(Tensor tensor, object[] shape, string name = null) - => gen_array_ops.reshape(tensor, shape, name); + => array_ops.reshape(tensor, shape, name); } } diff --git a/src/TensorFlowNET.Core/APIs/tf.saved_model.cs b/src/TensorFlowNET.Core/APIs/tf.saved_model.cs new file mode 100644 index 000000000..ef6251ca8 --- /dev/null +++ b/src/TensorFlowNET.Core/APIs/tf.saved_model.cs @@ -0,0 +1,20 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Train; + +namespace Tensorflow +{ + public partial class tensorflow + { + public SavedModelAPI saved_model { get; } = new SavedModelAPI(); + } + + public class SavedModelAPI + { + public Trackable load(string export_dir, LoadOptions? options = null) + { + return Loader.load(export_dir, options); + } + } +} diff --git a/src/TensorFlowNET.Core/APIs/tf.signal.cs b/src/TensorFlowNET.Core/APIs/tf.signal.cs new file mode 100644 index 000000000..2471124c5 --- /dev/null +++ b/src/TensorFlowNET.Core/APIs/tf.signal.cs @@ -0,0 +1,40 @@ +/***************************************************************************** + Copyright 2023 Konstantin Balashov All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +******************************************************************************/ + +using Tensorflow.Operations; + +namespace Tensorflow +{ + public partial class tensorflow + { + public SignalApi signal { get; } = new SignalApi(); + public class SignalApi + { + public Tensor fft(Tensor input, string name = null) + => gen_ops.f_f_t(input, name: name); + public Tensor ifft(Tensor input, string name = null) + => gen_ops.i_f_f_t(input, name: name); + public Tensor fft2d(Tensor input, string name = null) + => gen_ops.f_f_t2d(input, name: name); + public Tensor ifft2d(Tensor input, string name = null) + => gen_ops.i_f_f_t2d(input, name: name); + public Tensor fft3d(Tensor input, string name = null) + => gen_ops.f_f_t3d(input, name: name); + public Tensor ifft3d(Tensor input, string name = null) + => gen_ops.i_f_f_t3d(input, name: name); + } + } +} diff --git a/src/TensorFlowNET.Core/APIs/tf.tensor.cs b/src/TensorFlowNET.Core/APIs/tf.tensor.cs index 91293b3a7..b03168ab3 100644 --- a/src/TensorFlowNET.Core/APIs/tf.tensor.cs +++ b/src/TensorFlowNET.Core/APIs/tf.tensor.cs @@ -14,6 +14,8 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Tensorflow.Operations; + namespace Tensorflow { public partial class tensorflow @@ -44,10 +46,10 @@ public Tensor strided_slice(Tensor input, T[] begin, T[] end, T[] strides = n int ellipsis_mask = 0, int new_axis_mask = 0, int shrink_axis_mask = 0, - string name = null) => gen_array_ops.strided_slice(input: input, - begin: begin, - end: end, - strides: strides, + string name = null) => array_ops.strided_slice(input, + begin: ops.convert_to_tensor(begin), + end: ops.convert_to_tensor(end), + strides: ops.convert_to_tensor(strides), begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, @@ -66,18 +68,30 @@ public Tensor strided_slice(Tensor input, T[] begin, T[] end, T[] strides = n /// A name for the operation (optional) /// if num_or_size_splits is a scalar returns num_or_size_splits Tensor objects; /// if num_or_size_splits is a 1-D Tensor returns num_or_size_splits.get_shape[0] Tensor objects resulting from splitting value. - public Tensor[] split(Tensor value, int num_split, Tensor axis, string name = null) + public Tensor[] split(Tensor value, int num_split, Axis axis, string name = null) => array_ops.split( value: value, - num_split: num_split, + num_or_size_splits: num_split, axis: axis, name: name); - public Tensor[] split(Tensor value, int num_split, int axis, string name = null) + public Tensor[] split(Tensor value, int[] num_split, Axis axis, string name = null) => array_ops.split( value: value, - num_split: num_split, + num_or_size_splits: num_split, axis: axis, name: name); + + //public Tensor[] split(Tensor value, int num_split, Axis axis, string name = null) + // => array_ops.split( + // value: value, + // num_or_size_splits: num_split, + // axis: axis, + // name: name); + + public Tensor ensure_shape(Tensor x, Shape shape, string name = null) + { + return gen_ops.ensure_shape(x, shape, name); + } } } diff --git a/src/TensorFlowNET.Core/APIs/tf.tile.cs b/src/TensorFlowNET.Core/APIs/tf.tile.cs index be03e453c..a3b497e8a 100644 --- a/src/TensorFlowNET.Core/APIs/tf.tile.cs +++ b/src/TensorFlowNET.Core/APIs/tf.tile.cs @@ -23,7 +23,7 @@ public Tensor tile(Tensor input, Tensor multiples, string name = null) => gen_array_ops.tile(input, multiples, name); public Tensor tile(Tensor input, object[] multiples, string name = null) - => gen_array_ops.tile(input, multiples, name); + => array_ops.tile(input, constant_op.constant(shape_utils.from_object_array(multiples).dims), name); public Tensor tile(Tensor input, Shape multiples, string name = null) { diff --git a/src/TensorFlowNET.Core/Attributes/c_api.ops.cs b/src/TensorFlowNET.Core/Attributes/c_api.ops.cs index 7d9ff65fa..ba6f653a1 100644 --- a/src/TensorFlowNET.Core/Attributes/c_api.ops.cs +++ b/src/TensorFlowNET.Core/Attributes/c_api.ops.cs @@ -57,11 +57,26 @@ public partial class c_api [DllImport(TensorFlowLibName)] public static extern int TF_OperationGetAttrValueProto(IntPtr oper, string attr_name, SafeBufferHandle output_attr_value, SafeStatusHandle status); + [DllImport(TensorFlowLibName)] + public static extern void TF_OperationGetAttrType(IntPtr oper, string attr_name, IntPtr value, SafeStatusHandle status); + + [DllImport(TensorFlowLibName)] + public static extern void TF_OperationGetAttrInt(IntPtr oper, string attr_name, IntPtr value, SafeStatusHandle status); + + [DllImport(TensorFlowLibName)] + public static extern void TF_OperationGetAttrFloat(IntPtr oper, string attr_name, IntPtr value, SafeStatusHandle status); + + [DllImport(TensorFlowLibName)] + public static extern void TF_OperationGetAttrBool(IntPtr oper, string attr_name, IntPtr value, SafeStatusHandle status); + + [DllImport(TensorFlowLibName)] + public static extern void TF_OperationGetAttrShape(IntPtr oper, string attr_name, long[] value, int num_dims, SafeStatusHandle status); + [DllImport(TensorFlowLibName)] public static extern void TF_SetAttrBool(IntPtr desc, string attr_name, bool value); [DllImport(TensorFlowLibName)] - public static extern void TF_SetAttrValueProto(IntPtr desc, string attr_name, byte[] proto, int proto_len, SafeStatusHandle status); + public static extern void TF_SetAttrValueProto(IntPtr desc, string attr_name, byte[] proto, ulong proto_len, SafeStatusHandle status); /// /// Set `num_dims` to -1 to represent "unknown rank". diff --git a/src/TensorFlowNET.Core/Binding.Util.cs b/src/TensorFlowNET.Core/Binding.Util.cs index 5d9d799d7..99ed5c1f3 100644 --- a/src/TensorFlowNET.Core/Binding.Util.cs +++ b/src/TensorFlowNET.Core/Binding.Util.cs @@ -22,6 +22,7 @@ limitations under the License. using System.Diagnostics; using System.IO; using System.Linq; +using Tensorflow.Operations; namespace Tensorflow { @@ -485,7 +486,28 @@ public static Shape GetShape(this object data) throw new NotImplementedException(""); } } - + public static NDArray GetFlattenArray(NDArray x) + { + switch (x.GetDataType()) + { + case TF_DataType.TF_FLOAT: + x = x.ToArray(); + break; + case TF_DataType.TF_DOUBLE: + x = x.ToArray(); + break; + case TF_DataType.TF_INT16: + case TF_DataType.TF_INT32: + x = x.ToArray(); + break; + case TF_DataType.TF_INT64: + x = x.ToArray(); + break; + default: + break; + } + return x; + } public static TF_DataType GetDataType(this object data) { var type = data.GetType(); @@ -502,7 +524,7 @@ public static TF_DataType GetDataType(this object data) case Tensors tensors: return tensors.dtype; case IEnumerable tensors: - return tensors.First().dtype; + return tensors.Where(x => x is not null).First().dtype; case RefVariable variable: return variable.dtype; case ResourceVariable variable: diff --git a/src/TensorFlowNET.Core/Buffers/Buffer.cs b/src/TensorFlowNET.Core/Buffers/Buffer.cs index bb4b880a2..330e30caa 100644 --- a/src/TensorFlowNET.Core/Buffers/Buffer.cs +++ b/src/TensorFlowNET.Core/Buffers/Buffer.cs @@ -25,15 +25,15 @@ namespace Tensorflow /// /// Represents a TF_Buffer that can be passed to Tensorflow. /// - public sealed class Buffer : IDisposable + public sealed class Buffer { - public SafeBufferHandle Handle { get; } + SafeBufferHandle _handle; /// /// /// private unsafe ref readonly TF_Buffer DangerousBuffer - => ref Unsafe.AsRef(Handle.DangerousGetHandle().ToPointer()); + => ref Unsafe.AsRef(_handle.DangerousGetHandle().ToPointer()); /// /// The memory block representing this buffer. @@ -59,7 +59,7 @@ public ulong Length { get { - using (Handle.Lease()) + using (_handle.Lease()) { return DangerousBuffer.length; } @@ -67,13 +67,13 @@ public ulong Length } public Buffer() - => Handle = TF_NewBuffer(); + => _handle = TF_NewBuffer(); public Buffer(SafeBufferHandle handle) - => Handle = handle; + => _handle = handle; public Buffer(byte[] data) - => Handle = _toBuffer(data); + => _handle = _toBuffer(data); private static SafeBufferHandle _toBuffer(byte[] data) { @@ -92,7 +92,7 @@ private static SafeBufferHandle _toBuffer(byte[] data) /// public unsafe byte[] ToArray() { - using (Handle.Lease()) + using (_handle.Lease()) { ref readonly TF_Buffer buffer = ref DangerousBuffer; @@ -107,7 +107,18 @@ public unsafe byte[] ToArray() } } - public void Dispose() - => Handle.Dispose(); + public void Release() + { + _handle.Dispose(); + _handle = null; + } + + public override string ToString() + => $"0x{_handle.DangerousGetHandle():x16}"; + + public static implicit operator SafeBufferHandle(Buffer buffer) + { + return buffer._handle; + } } } \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Buffers/TF_Buffer.cs b/src/TensorFlowNET.Core/Buffers/TF_Buffer.cs index 7ebdd5b85..c10f7b5f1 100644 --- a/src/TensorFlowNET.Core/Buffers/TF_Buffer.cs +++ b/src/TensorFlowNET.Core/Buffers/TF_Buffer.cs @@ -25,5 +25,32 @@ public struct TF_Buffer public IntPtr data; public ulong length; public IntPtr data_deallocator; + + public unsafe Span AsSpan() where T: unmanaged + { + if(length > int.MaxValue) + { + throw new ValueError($"The length {length} is too large to use in the span."); + } + return new Span(data.ToPointer(), (int)length); + } + + public unsafe byte[] ToByteArray() + { + byte[] res = new byte[length]; + if(length > int.MaxValue) + { + byte* root = (byte*)data; + for(ulong i = 0; i < length; i++) + { + res[i] = *(root++); + } + } + else + { + new Span(data.ToPointer(), (int)length).CopyTo(res.AsSpan()); + } + return res; + } } } diff --git a/src/TensorFlowNET.Core/Checkpoint/CheckPointUtils.cs b/src/TensorFlowNET.Core/Checkpoint/CheckPointUtils.cs new file mode 100644 index 000000000..071b41875 --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/CheckPointUtils.cs @@ -0,0 +1,171 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.IO; +using System.Linq; +using Tensorflow.Functions; +using Tensorflow.Train; +using Tensorflow.Training; +using pbc = global::Google.Protobuf.Collections; + +namespace Tensorflow.Checkpoint; + +public static class CheckPointUtils +{ + private static string _ESCAPE_CHAR = "."; + public static (IList, IDictionary>, IDictionary, + IDictionary>, + IDictionary) objects_ids_and_slot_variables_and_paths(ObjectGraphView graph_view) + { + var (trackable_objects, node_paths) = graph_view.breadth_first_traversal(); + Dictionary object_names = new(); + foreach (var pair in node_paths) + { + object_names[pair.Key] = TrackableUtils.object_path_to_string(pair.Value); + } + + Dictionary node_ids = new(); + for (int i = 0; i < trackable_objects.Count; i++) + { + node_ids[trackable_objects[i]] = i; + } + + var slot_variables = serialize_slot_variables(trackable_objects, node_ids, object_names); + return (trackable_objects, node_paths, node_ids, slot_variables, object_names); + } + + public static + IDictionary> + serialize_slot_variables(IEnumerable trackable_objects, + IDictionary node_ids, IDictionary object_names) + { + var non_slot_objects = trackable_objects.ToList(); + Dictionary> + slot_variables = new(); + foreach (var trackable in non_slot_objects) + { + if (trackable is not Optimizer) + { + continue; + } + + var optim = (Optimizer)trackable; + var slot_names = optim.get_slot_names(); + foreach (var slot_name in slot_names) + { + for (int original_variable_node_id = 0; + original_variable_node_id < non_slot_objects.Count; + original_variable_node_id++) + { + var original_variable = non_slot_objects[original_variable_node_id]; + IVariableV1 slot_variable; + if (original_variable is not IVariableV1) + { + slot_variable = null; + } + slot_variable = optim.get_slot((IVariableV1)original_variable, slot_name); + if(slot_variable is null) continue; + + // There're some problems about the inherits of `Variable` and `Trackable`. + throw new NotImplementedException(); + } + } + } + + return slot_variables; + } + + public static Trackable get_mapped_trackable(Trackable trackable, IDictionary? object_map) + { + if (object_map is null || !object_map.TryGetValue(trackable, out var possible_res)) + { + return trackable; + } + else + { + return possible_res; + } + } + + public static string get_full_name(Trackable variable) + { + // TODO: This state is not correct, the whole framework need to be updated in the future. + if (!(variable is IVariableV1 || resource_variable_ops.is_resource_variable(variable))) + { + return ""; + } + // skip the check of attribute `_save_slice_info` . + + // TODO: Need to be revised!!! + Debug.Assert(variable is BaseResourceVariable); + return ((BaseResourceVariable)variable).Name; + } + + public static void add_checkpoint_values_check(TrackableObjectGraph object_graph_proto) + { + HashSet checkpointed_trackables = new(); + Dictionary> parents = new(); + for (int i = 0; i < object_graph_proto.Nodes.Count; i++) + { + var object_proto = object_graph_proto.Nodes[i]; + // skip the process of registered saver. + if (object_proto.Attributes is not null && object_proto.Attributes.Count > 0 || + object_proto.SlotVariables is not null && object_proto.SlotVariables.Count > 0) + { + checkpointed_trackables.Add(i); + } + + foreach (var child_proto in object_proto.Children) + { + var child = child_proto.NodeId; + if (!parents.ContainsKey(child)) + { + parents[child] = new HashSet(); + } + + parents[child].Add(i); + } + } + + Queue to_visit = new(checkpointed_trackables.AsEnumerable()); + while (to_visit.Count > 0) + { + var trackable = to_visit.Dequeue(); + if (!parents.ContainsKey(trackable)) continue; + var current_parents = parents[trackable]; + foreach (var parent in current_parents) + { + checkpointed_trackables.Add(parent); + if (parents.ContainsKey(parent)) + { + to_visit.Enqueue(parent); + } + } + parents.Remove(trackable); + } + + // TODO: Complete it after supporting checkpoint. + // for (int i = 0; i < object_graph_proto.Nodes.Count; i++) + // { + // object_graph_proto.Nodes[i].has_checkpoint_values.value = checkpointed_trackables.Contains(i); + // } + } + + /// + /// Traverse the object graph and list all accessible objects. + /// + /// + public static IList list_objects(ObjectGraphView graph_view) + { + return objects_ids_and_slot_variables_and_paths(graph_view).Item1; + } + + internal static IEnumerable _objects_with_attributes(IEnumerable full_list) + { + return full_list.Where(x => + { + var saveables = x.gather_saveables_for_checkpoint(); + return saveables is not null && saveables.Count > 0; + }); + } +} diff --git a/src/TensorFlowNET.Core/Checkpoint/CheckpointOptions.cs b/src/TensorFlowNET.Core/Checkpoint/CheckpointOptions.cs new file mode 100644 index 000000000..75b392af8 --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/CheckpointOptions.cs @@ -0,0 +1,5 @@ +namespace Tensorflow.Checkpoint; + +public record class CheckpointOptions( + string? experimental_io_device = null, + bool experimental_enable_async_checkpoint = false); diff --git a/src/TensorFlowNET.Core/Checkpoint/CheckpointReader.cs b/src/TensorFlowNET.Core/Checkpoint/CheckpointReader.cs new file mode 100644 index 000000000..a1dba371c --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/CheckpointReader.cs @@ -0,0 +1,69 @@ +namespace Tensorflow.Checkpoint; + +public class CheckpointReader +{ + private SafeCheckpointReaderHandle _handle; + public Dictionary VariableToDataTypeMap { get; set; } + public Dictionary VariableToShapeMap { get; set; } + + public CheckpointReader(string filename) + { + Status status = new Status(); + VariableToDataTypeMap = new Dictionary(); + VariableToShapeMap = new Dictionary(); + _handle = c_api.TF_NewCheckpointReader(filename, status); + status.Check(true); + ReadAllShapeAndType(); + } + + public int HasTensor(string name) + => c_api.TF_CheckpointReaderHasTensor(_handle, name); + + /// + /// Get the variable name. + /// + /// + /// + public string GetVariable(int index) + => c_api.StringPiece(c_api.TF_CheckpointReaderGetVariable(_handle, index)); + + public int Size() + => c_api.TF_CheckpointReaderSize(_handle); + + public TF_DataType GetVariableDataType(string name) + => c_api.TF_CheckpointReaderGetVariableDataType(_handle, name); + + public Shape GetVariableShape(string name) + { + int num_dims = GetVariableNumDims(name); + long[] dims = new long[num_dims]; + Status status = new Status(); + c_api.TF_CheckpointReaderGetVariableShape(_handle, name, dims, num_dims, status); + status.Check(true); + return new Shape(dims); + } + + public int GetVariableNumDims(string name) + => c_api.TF_CheckpointReaderGetVariableNumDims(_handle, name); + + public unsafe Tensor GetTensor(string name, TF_DataType dtype = TF_DataType.DtInvalid) + { + Status status = new Status(); + var tensor = c_api.TF_CheckpointReaderGetTensor(_handle, name, status); + status.Check(true); + return new Tensor(tensor); + } + + private void ReadAllShapeAndType() + { + int size = Size(); + for(int i = 0; i < size; i++) + { + var name = GetVariable(i); + var shape = GetVariableShape(name); + var dtype = GetVariableDataType(name); + VariableToDataTypeMap[name] = dtype; + VariableToShapeMap[name] = shape; + } + } +} diff --git a/src/TensorFlowNET.Core/Checkpoint/ObjectGraphView.cs b/src/TensorFlowNET.Core/Checkpoint/ObjectGraphView.cs new file mode 100644 index 000000000..f435dd88b --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/ObjectGraphView.cs @@ -0,0 +1,64 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using Serilog.Debugging; +using Tensorflow.Keras.Saving.SavedModel; +using Tensorflow.Train; + +namespace Tensorflow.Checkpoint; + +public class ObjectGraphView: TrackableView, ICloneable +{ + protected IEnumerable? _attached_dependencies; + // TODO: attached_dependencies + public ObjectGraphView(Trackable root, IEnumerable? attached_dependencies = null): base(root) + { + _attached_dependencies = attached_dependencies; + } + + public object Clone() + { + // TODO: Implement real deep copy corresponding to tensorflow/python/checkpoint/graph_view.ObjectGraphView.__deepcopy__ + return new ObjectGraphView(Root, _attached_dependencies); + } + + public virtual List list_children(Trackable obj, SaveType save_type = SaveType.CHECKPOINT, IDictionary>? serialization_cache = null) + { + List res = base.children(obj, save_type, serialization_cache) + .Select(x => new TrackableReference(x.Key, x.Value)).ToList(); + // Check the reference, not value. + if (obj == Root && _attached_dependencies is not null) + { + res.AddRange(_attached_dependencies); + } + + return res; + } + + public override IDictionary children(Trackable obj, SaveType save_type = SaveType.CHECKPOINT, IDictionary>? serialization_cache = null) + { + return list_children(obj, save_type, serialization_cache).ToDictionary(x => x.Name, x => x.Refer); + } + + public IEnumerable? AttachedDependencies + { + get => _attached_dependencies; + } + + public virtual (IList, IDictionary>) breadth_first_traversal() + { + return base._descendants_with_paths(); + } + + // TODO: complete the implementation + public void serialize_object_graph(object? saveables_cache = null) + { + throw new NotImplementedException(); + } + + // TODO: complete the implementation + public void frozen_saveable_objects(object? object_map = null, object? to_graph = null, object call_with_mapped_captures = null) + { + throw new NotImplementedException(); + } +} diff --git a/src/TensorFlowNET.Core/Checkpoint/SafeCheckpointReaderHandle.cs b/src/TensorFlowNET.Core/Checkpoint/SafeCheckpointReaderHandle.cs new file mode 100644 index 000000000..674e83512 --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/SafeCheckpointReaderHandle.cs @@ -0,0 +1,21 @@ +using Tensorflow.Util; + +namespace Tensorflow.Checkpoint; + +public sealed class SafeCheckpointReaderHandle : SafeTensorflowHandle +{ + private SafeCheckpointReaderHandle() : base () + { + } + + public SafeCheckpointReaderHandle(IntPtr handle) : base(handle) + { + } + + protected override bool ReleaseHandle() + { + c_api.TF_DeleteCheckpointReader(handle); + SetHandle(IntPtr.Zero); + return true; + } +} diff --git a/src/TensorFlowNET.Core/Checkpoint/SaveUtil.cs b/src/TensorFlowNET.Core/Checkpoint/SaveUtil.cs new file mode 100644 index 000000000..7a5da7e3a --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/SaveUtil.cs @@ -0,0 +1,261 @@ +using OneOf; +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using System.Text; +using Tensorflow.Train; +using Tensorflow.Training; +using Tensorflow.Common.Extensions; +using pbc = global::Google.Protobuf.Collections; + +namespace Tensorflow.Checkpoint +{ + internal record class TrackableData( + // A trackable in the root Trackable object graph. + Trackable trackable, + // The index at which the Trackable appears in TrackableObjectGraph.nodes. + int node_id, + // The BFS-generated path from the root object / used to generate readable checkpoint keys. + string object_name, + // A list of ObjectReference for each child connected to this Trackable. + pbc::RepeatedField children_proto, + // A list of SlotVariableReference to save to the object (only valid for Optimizer objects). + pbc::RepeatedField slot_variable_proto, + // The object to save to checkpoint. Usually this is the same as `trackable`, + // but can differ when the the caller wants to specify a different object to + // save. For example, when saving checkpoints asynchronously, variables are + // copied to the CPU. `object_to_save` is set as the copied variable. + Trackable object_to_save + ); + public static class SaveUtil + { + public static (IDictionary>>>, IDictionary, IDictionary>, TrackableObjectGraph) + serialize_graph_view(ObjectGraphView graph_view, IDictionary? object_map = null, bool call_with_mapped_captures = false, object? cache = null) + { + var (trackable_data, node_ids) = gather_trackable_data(graph_view, object_map); + var (tensor_trackables, pystate_trackables, registered_trackables) = split_trackables(trackable_data); + + var object_graph_proto = fill_object_graph_proto(trackable_data); + + var serialized_tensors = get_and_write_tensors_to_serialize(tensor_trackables, node_ids, call_with_mapped_captures, cache, object_graph_proto); + var registered_savers = get_and_write_registered_savers(registered_trackables, object_graph_proto); + + Dictionary feed_additions; + if(cache is null) + { + feed_additions = null; + serialized_tensors = serialized_tensors.Concat(get_and_write_tensors_to_serialize(pystate_trackables, node_ids, call_with_mapped_captures, + cache, object_graph_proto)).ToDictionary(x => x.Key, x => x.Value); + } + else + { + feed_additions = null; + // TODO: deal with cache. + throw new NotFiniteNumberException(); + } + + CheckPointUtils.add_checkpoint_values_check(object_graph_proto); + + return (serialized_tensors, feed_additions, registered_savers, object_graph_proto); + } + + private static (IList, IDictionary) gather_trackable_data(ObjectGraphView graph_view, IDictionary? object_map) + { + var (trackable_objects, node_paths) = graph_view.breadth_first_traversal(); + Dictionary object_names = new(); + foreach(var pair in node_paths) + { + object_names[pair.Key] = TrackableUtils.object_path_to_string(pair.Value); + } + Dictionary node_ids = new(); + for(int i = 0; i < trackable_objects.Count; i++) + { + node_ids[trackable_objects[i]] = i; + } + var slot_variables = CheckPointUtils.serialize_slot_variables(trackable_objects, node_ids, object_names); + List trackable_data = new(); + foreach(var trackable in trackable_objects) + { + pbc::RepeatedField children_proto = new(); + foreach(var child in graph_view.list_children(trackable)) + { + children_proto.Add(new TrackableObjectGraph.Types.TrackableObject.Types.ObjectReference() + { + NodeId = node_ids[child.Refer], + LocalName = child.Name + }); + } + slot_variables.TryGetValue(trackable, out var slot_variable); + trackable_data.Add(new TrackableData( + trackable: trackable, + node_id: node_ids[trackable], + object_name: object_names[trackable], + children_proto: children_proto, + slot_variable_proto: slot_variable??new pbc.RepeatedField(), + object_to_save: CheckPointUtils.get_mapped_trackable(trackable, object_map) + )); + } + return (trackable_data, node_ids); + } + + private static TrackableObjectGraph fill_object_graph_proto(IList trackable_data) + { + TrackableObjectGraph object_graph_proto = new(); + for(int i = 0; i < trackable_data.Count; i++) + { + var td = trackable_data[i]; + Debug.Assert(td.node_id == i); + TrackableObjectGraph.Types.TrackableObject trackable_object = new(); + trackable_object.SlotVariables.AddRange(td.slot_variable_proto); + trackable_object.Children.AddRange(td.children_proto); + object_graph_proto.Nodes.Add(trackable_object); + } + return object_graph_proto; + } + + /// + /// Creates dictionary of tensors to checkpoint, and updates the proto. + /// + /// + /// + /// + /// + /// + private static IDictionary>>> get_and_write_tensors_to_serialize(IList tensor_trackables, IDictionary node_ids, + bool call_with_mapped_captures, object? cache, TrackableObjectGraph object_graph_proto) + { + Dictionary>>> serialized_tensors = new(); + foreach(var td in tensor_trackables) + { + // TODO: deal with cache. + var legacy_name = SaveableCompat.get_saveable_name(td.object_to_save) ?? ""; + Trackable trackable = null; + IDictionary>> tensor_dict; + if(!saveable_object_util.trackable_has_serialize_to_tensor(td.object_to_save) || legacy_name.Length > 0) + { + (trackable, tensor_dict) = get_tensors_from_legacy_saveable(td, node_ids, call_with_mapped_captures, object_graph_proto); + } + else + { + tensor_dict = get_tensors_from_trackable(td, call_with_mapped_captures, object_graph_proto); + trackable = td.object_to_save; + } + if(trackable is not null) + { + serialized_tensors[trackable] = tensor_dict; + } + else + { + serialized_tensors[Trackable.None] = tensor_dict; + } + } + return serialized_tensors; + } + + private static IDictionary>> get_tensors_from_trackable(TrackableData trackable_data, bool call_with_mapped_captures, TrackableObjectGraph object_graph_proto) + { + var trackable = trackable_data.object_to_save; + + // TODO: complete it. Note that actually `call_with_mapped_captures` is of function type. + IDictionary>> ret_tensor_dict; + if (call_with_mapped_captures) + { + throw new NotImplementedException(); + } + else + { + ret_tensor_dict = trackable.serialize_to_tensors(); + } + + Dictionary>> tensor_dict = new(); + foreach(var pair in ret_tensor_dict) + { + var local_name = TrackableUtils.escape_local_name(pair.Key); + var maybe_tensor = pair.Value; + var checkpoint_key = TrackableUtils.checkpoint_key(trackable_data.object_name, local_name); + + tensor_dict[checkpoint_key] = maybe_tensor; + + foreach(var key in maybe_tensor.Keys) + { + if (maybe_tensor[key].IsTypeOrDeriveFrom()) + { + maybe_tensor[key].AsT1.name = local_name + maybe_tensor[key].AsT1.name; + } + } + + if(object_graph_proto is not null) + { + object_graph_proto.Nodes[trackable_data.node_id].Attributes.Add(new TrackableObjectGraph.Types.TrackableObject.Types.SerializedTensor() + { + Name = local_name, + CheckpointKey = checkpoint_key, + FullName = CheckPointUtils.get_full_name(trackable) + }); + } + } + return tensor_dict; + } + + /// + /// Gets tensors to serialize from a Trackable with legacy SaveableObjects. + /// + /// + /// + /// + /// + /// + private static (Trackable, IDictionary>>) get_tensors_from_legacy_saveable(TrackableData trackable_data, IDictionary node_ids, + bool call_with_mapped_captures, TrackableObjectGraph object_graph_proto) + { + Dictionary object_names = new(); + object_names[trackable_data.trackable] = trackable_data.object_name; + Dictionary object_map = new(); + object_map[trackable_data.trackable] = trackable_data.object_to_save; + + var (checkpoint_factory_map, _) = SaveUtilV1.get_checkpoint_factories_and_keys(object_names, object_map); + var (named_saveable_objects, _) = SaveUtilV1.generate_saveable_objects(checkpoint_factory_map, object_graph_proto, node_ids, object_map, + call_with_mapped_captures, saveables_cache: null); + var trackable = new SaveableCompatibilityConverter(trackable_data.object_to_save, named_saveable_objects); + return (trackable, trackable.serialize_to_tensors()); + } + + private static IDictionary> get_and_write_registered_savers(IDictionary> registered_trackables, TrackableObjectGraph object_graph_proto) + { + Dictionary> registered_savers = new(); + foreach(var pair in registered_trackables) + { + foreach(var td in pair.Value) + { + if (registered_savers.ContainsKey(pair.Key)) + { + registered_savers[pair.Key] = new Dictionary(); + } + else + { + registered_savers[pair.Key][td.object_name] = td.object_to_save; + } + + var object_proto = object_graph_proto.Nodes[td.node_id]; + // TODO: add APIs and complete it. Now the `TrackableObjectGraph.Types.TrackableObject` lacks `registered_savers`. + } + } + return registered_savers; + } + + private static (IList, IList, IDictionary>) split_trackables(IEnumerable trackable_data) + { + List tensor_trackables = new(); + List py_state_trackables = new(); // skip the process of `PyState` for the lack of API. This is only a pleceholder. + Dictionary> registered_trackables = new(); + + foreach(var td in trackable_data) + { + // TODO: deal with registration. + tensor_trackables.Add(td); + } + return (tensor_trackables, py_state_trackables, registered_trackables); + } + } +} diff --git a/src/TensorFlowNET.Core/Checkpoint/SaveUtilV1.cs b/src/TensorFlowNET.Core/Checkpoint/SaveUtilV1.cs new file mode 100644 index 000000000..9280179c0 --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/SaveUtilV1.cs @@ -0,0 +1,225 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using Tensorflow.Exceptions; +using Tensorflow.Train; +using Tensorflow.Training; +using pbc = global::Google.Protobuf.Collections; +using static Tensorflow.Binding; +using Google.Protobuf; +using OneOf; + +namespace Tensorflow.Checkpoint; + +public static class SaveUtilV1 +{ + public static (IDictionary>, object?) get_checkpoint_factories_and_keys(IDictionary object_names, + IDictionary? object_map = null) + { + // According to https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/registration/README.md, + // till now only internal registrations are allowed. So, we won't return a saver in this function. + // The implementation of this function should be updated if tensorflow update it. + Dictionary> checkpoint_factory_map = new(); + foreach (var pair in object_names) + { + var trackable = pair.Key; + var object_name = pair.Value; + var object_to_save = CheckPointUtils.get_mapped_trackable(trackable, object_map); + + // skip the registration process. + + List current_list = new(); + foreach (var name_and_factory in saveable_object_util.saveable_objects_from_trackable(object_to_save)) + { + // treat name as key_suffix. + var name = name_and_factory.Key; + var checkpoint_key = TrackableUtils.checkpoint_key(object_name, name); + + current_list.Add(new CheckpointFactoryData(name_and_factory.Value, name, checkpoint_key)); + } + + checkpoint_factory_map[trackable] = current_list; + } + + return (checkpoint_factory_map, null); + } + + public static (IList, IDictionary>?) frozen_saveables_and_savers(ObjectGraphView graph_view, + IDictionary object_map, Graph? to_graph, bool call_with_mapped_captures, + object? saveables_cache = null) + { + if (to_graph is not null) + { + var g = to_graph.as_default(); + var (named_saveable_objects, graph_proto, _, registered_savers) = serialize_gathered_objects(graph_view, + object_map, call_with_mapped_captures, saveables_cache); + var object_graph_tensor = tf_with(ops.device("/cpu:0"), _ => + { + // TODO(Rinne): locate the error that causes transferring TF_STRING to this function throws an exception. + return constant_op.constant(graph_proto.ToByteArray()); + }); + named_saveable_objects.Add(new NoRestoreSaveable(object_graph_tensor, Trackable.Constants.OBJECT_GRAPH_PROTO_KEY)); + g.Exit(); + return (named_saveable_objects, registered_savers); + } + else + { + using (new ops.NullContextManager()) + { + var (named_saveable_objects, graph_proto, _, registered_savers) = serialize_gathered_objects(graph_view, + object_map, call_with_mapped_captures, saveables_cache); + var object_graph_tensor = tf_with(ops.device("/cpu:0"), _ => + { + return constant_op.constant(graph_proto.ToString()); + }); + named_saveable_objects.Add(new NoRestoreSaveable(object_graph_tensor, Trackable.Constants.OBJECT_GRAPH_PROTO_KEY)); + return (named_saveable_objects, registered_savers); + } + } + } + + public static (IList, TrackableObjectGraph, object?, IDictionary>?) serialize_gathered_objects(ObjectGraphView graph_view, + IDictionary object_map, bool call_with_mapped_captures, object? saveables_cache = null) + { + var (trackable_objects, node_paths) = graph_view.breadth_first_traversal(); + Dictionary object_names = new(); + foreach (var pair in node_paths) + { + object_names[pair.Key] = TrackableUtils.object_path_to_string(pair.Value); + } + + Dictionary node_ids = new(); + for (int i = 0; i < trackable_objects.Count; i++) + { + node_ids[trackable_objects[i]] = i; + } + + var slot_variables = CheckPointUtils.serialize_slot_variables(trackable_objects, node_ids, object_names); + var object_graph_proto = fill_object_graph_proto(graph_view, trackable_objects, node_ids, slot_variables); + var (named_saveable_objects, feed_additions, registered_savers) = add_attributes_to_object_graph( + trackable_objects, object_graph_proto, node_ids, object_names, object_map, call_with_mapped_captures, + saveables_cache); + + CheckPointUtils.add_checkpoint_values_check(object_graph_proto); + return (named_saveable_objects, object_graph_proto, feed_additions, registered_savers); + } + + private static TrackableObjectGraph fill_object_graph_proto(ObjectGraphView graph_view, IList trackable_objects, + IDictionary node_ids, + IDictionary> + slot_variables) + { + TrackableObjectGraph object_graph_proto = new(); + for (int i = 0; i < trackable_objects.Count; i++) + { + var trackable = trackable_objects[i]; + Debug.Assert(node_ids[trackable] == i); + var object_proto = new TrackableObjectGraph.Types.TrackableObject(); + if (slot_variables.TryGetValue(trackable, out var slots)) + { + object_proto.SlotVariables.AddRange(slots); + } + object_graph_proto.Nodes.Add(object_proto); + foreach (var child in graph_view.list_children(trackable)) + { + object_proto.Children.Add(new TrackableObjectGraph.Types.TrackableObject.Types.ObjectReference() + { NodeId = node_ids[child.Refer], LocalName = child.Name }); + } + } + + return object_graph_proto; + } + + private static (IList, object?, IDictionary>?) add_attributes_to_object_graph( + IList trackable_objects, + TrackableObjectGraph object_graph_proto, IDictionary node_ids, + IDictionary object_names, IDictionary object_map, + bool call_with_mapped_captures, object? saveables_cache = null) + { + int cnt = Math.Min(trackable_objects.Count, object_graph_proto.Nodes.Count); + for (int i = 0; i < cnt; i++) + { + Debug.Assert(node_ids[trackable_objects[i]] == i); + } + + var (checkpoint_factory_map, unmmaped_registered_savers) = + get_checkpoint_factories_and_keys(object_names, object_map); + + // skip the process of registered savers + + var (named_saveable_objects, feed_additions) = generate_saveable_objects(checkpoint_factory_map, + object_graph_proto, node_ids, object_map, call_with_mapped_captures, saveables_cache); + return (named_saveable_objects, feed_additions, null); + } + + public static (IList, object?) generate_saveable_objects( + IDictionary> checkpoint_factory_map, + TrackableObjectGraph? object_graph_proto, IDictionary? node_ids, + IDictionary object_map, bool call_with_mapped_captures, object? saveables_cache = null) + { + List named_saveable_objects = new(); + foreach (var pair in checkpoint_factory_map) + { + var trackable = pair.Key; + var factory_data_list = pair.Value; + bool fill_object_proto = object_graph_proto is not null && node_ids is not null; + TrackableObjectGraph.Types.TrackableObject object_proto = null!; + if (fill_object_proto) + { + object_proto = object_graph_proto.Nodes[node_ids[trackable]]; + } + + var object_to_save = CheckPointUtils.get_mapped_trackable(trackable, object_map); + // skip cache + + foreach (var factory_data in factory_data_list) + { + var name = factory_data.name; + var key = factory_data.checkpoint_key; + var maybe_saveable = saveable_object_util.create_saveable_object(name, key, factory_data.factory); + + // TODO: tensorflow python has a process with callable `saveable_factory`. + List saveables = new(); + if (maybe_saveable.TryPickT1(out var s, out var variable)) + { + saveables.Add(s); + } + else + { + saveables.AddRange(saveable_object_util.saveable_objects_for_op(variable as Trackable, key)); + } + + foreach (var saveable in saveables) + { + if (!saveable.name.Contains(key)) + { + throw new AssertionError($"The object {trackable} produced a SaveableObject with name " + + $"'{saveable.name}' for attribute '{name}'. Expected a name" + + $" containing '{key}'."); + } + } + + // skip the process of PythonState + + named_saveable_objects.AddRange(saveables); + + if(!fill_object_proto) continue; + + // skip the process of `TrackableSaveable` because of lack of APIs. + + object_proto!.Attributes.Add(new TrackableObjectGraph.Types.TrackableObject.Types.SerializedTensor() + { Name = name, CheckpointKey = key, FullName = CheckPointUtils.get_full_name(object_to_save) }); + } + } + + return (named_saveable_objects, null); + } +} + +public record class CheckpointFactoryData +( + Func> factory, + string name, + string checkpoint_key +); diff --git a/src/TensorFlowNET.Core/Checkpoint/SaveableCompat.cs b/src/TensorFlowNET.Core/Checkpoint/SaveableCompat.cs new file mode 100644 index 000000000..fa441d799 --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/SaveableCompat.cs @@ -0,0 +1,16 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Train; + +namespace Tensorflow.Checkpoint +{ + internal static class SaveableCompat + { + public static string? get_saveable_name(Trackable cls_or_obj) + { + // TODO: implement it with Attribute. + return null; + } + } +} diff --git a/src/TensorFlowNET.Core/Checkpoint/TrackableView.cs b/src/TensorFlowNET.Core/Checkpoint/TrackableView.cs new file mode 100644 index 000000000..dab6d5d97 --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/TrackableView.cs @@ -0,0 +1,82 @@ +using System; +using Tensorflow.Train; +using System.Collections.Generic; +using System.IO; +using Tensorflow.Keras.Saving.SavedModel; + +namespace Tensorflow.Checkpoint; + +public class TrackableView +{ + protected WeakReference _root_ref; + public TrackableView(Trackable obj) + { + _root_ref = new WeakReference(obj); + } + + public TrackableView(WeakReference obj) + { + _root_ref = obj; + } + + public virtual IDictionary children(Trackable obj, SaveType save_type = SaveType.CHECKPOINT, IDictionary>? cache = null) + { + obj._maybe_initialize_trackable(); + Dictionary children = new(); + // Note: in python the return type of `Trackable._trackable_children` is not fixed. + // Therefore it uses `convert_to_trackable` to have an extra process. + foreach (var pair in obj._trackable_children(save_type, cache)) + { + children[pair.Key] = pair.Value; + } + return children; + } + + public Trackable Root + { + get + { + if (_root_ref.TryGetTarget(out Trackable res)) + { + return res; + } + else + { + throw new InvalidDataException( + "Cannot get the object from the weak reference. Please consider if a null reference is passed to the constructor."); + } + } + } + + /// + /// Returns a list of all nodes and its paths from self.root using a breadth first traversal. + /// Corresponding to tensorflow/python/checkpoint/trackable_view.Trackable._descendants_with_paths + /// + protected (IList, IDictionary>) _descendants_with_paths() + { + List bfs_sorted = new(); + Queue to_visit = new(); + to_visit.Enqueue(Root); + Dictionary> node_paths = new(); + node_paths[this.Root] = new List(); + while (!to_visit.empty()) + { + var current_trackable = to_visit.Dequeue(); + bfs_sorted.Add(current_trackable); + var children_dict = this.children(current_trackable); + foreach (var name in children_dict.Keys) + { + var dependency = children_dict[name]; + if (!node_paths.ContainsKey(dependency)) + { + var list = new List(node_paths[current_trackable]); + list.Add(new TrackableReference(name, dependency)); + node_paths[dependency] = list; + to_visit.Enqueue(dependency); + } + } + } + + return (bfs_sorted, node_paths); + } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Checkpoint/c_api.checkpoint.cs b/src/TensorFlowNET.Core/Checkpoint/c_api.checkpoint.cs new file mode 100644 index 000000000..f956e3337 --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/c_api.checkpoint.cs @@ -0,0 +1,27 @@ +using System.Runtime.InteropServices; +using Tensorflow.Checkpoint; + +namespace Tensorflow +{ + public unsafe partial class c_api + { + [DllImport(TensorFlowLibName)] + internal static extern SafeCheckpointReaderHandle TF_NewCheckpointReader(string filename, SafeStatusHandle status); + [DllImport(TensorFlowLibName)] + internal static extern void TF_DeleteCheckpointReader(IntPtr reader); + [DllImport(TensorFlowLibName)] + internal static extern int TF_CheckpointReaderHasTensor(SafeCheckpointReaderHandle reader, string name); + [DllImport(TensorFlowLibName)] + internal static extern IntPtr TF_CheckpointReaderGetVariable(SafeCheckpointReaderHandle reader, int index); + [DllImport(TensorFlowLibName)] + internal static extern int TF_CheckpointReaderSize(SafeCheckpointReaderHandle reader); + [DllImport(TensorFlowLibName)] + internal static extern TF_DataType TF_CheckpointReaderGetVariableDataType(SafeCheckpointReaderHandle reader, string name); + [DllImport(TensorFlowLibName)] + internal static extern void TF_CheckpointReaderGetVariableShape(SafeCheckpointReaderHandle reader, string name, long[] dims, int num_dims, SafeStatusHandle status); + [DllImport(TensorFlowLibName)] + internal static extern int TF_CheckpointReaderGetVariableNumDims(SafeCheckpointReaderHandle reader, string name); + [DllImport(TensorFlowLibName)] + internal static extern SafeTensorHandle TF_CheckpointReaderGetTensor(SafeCheckpointReaderHandle reader, string name, SafeStatusHandle status); + } +} diff --git a/src/TensorFlowNET.Core/Checkpoint/checkpoint.cs b/src/TensorFlowNET.Core/Checkpoint/checkpoint.cs new file mode 100644 index 000000000..30d45e82c --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/checkpoint.cs @@ -0,0 +1,582 @@ +using Google.Protobuf; +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using Tensorflow.Contexts; +using Tensorflow.Eager; +using Tensorflow.Train; +using Tensorflow.Exceptions; +using static Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types; +using static Tensorflow.Binding; +using Tensorflow.Operations; +using Newtonsoft.Json; +using Tensorflow.Training; +using OneOf; + +namespace Tensorflow.Checkpoint; + +/// +/// Saves and restores a `Trackable` object and its dependencies. +/// +public class TrackableSaver +{ + private ObjectGraphView _graph_view; + private Tensor _cached_save_operation; + private TrackableObjectGraph _last_save_object_graph; + private Tensor? _object_graph_feed_tensor = null; + private Tensor? _file_prefix_feed_tensor = null; + private Tensor? _file_prefix_placeholder = null; + private Dictionary? _object_map = null; + private object? _cache = null; + public Tensor? FilePrefixPlaceHolder + { + get + { + return _file_prefix_placeholder; + } + set + { + _file_prefix_placeholder = value; + } + } + public TrackableSaver(ObjectGraphView graph_view) + { + _graph_view = graph_view; + + // TODO: cache when not executing eagerly. + // including `_cache`, `_file_prefix_feed_tensor`, `_file_prefix_placeholder` + // `_object_graph_feed_tensor`, `_object_map`, `_restore_op_cache`, `_saveables_cache` + + } + + private (IDictionary>>>, IDictionary, IDictionary>, TrackableObjectGraph) + gather_serialized_tensors(Tensor? object_graph_tensor = null) + { + var (serialized_tensors, feed_additions, registered_savers, graph_proto) = SaveUtil.serialize_graph_view(_graph_view, _object_map, cache:_cache); + + // TODO: cache. + + if(object_graph_tensor is null) + { + tf_with(ops.device("/cpu:0"), _ => + { + object_graph_tensor = constant_op.constant(graph_proto.ToByteArray()); + }); + } + else + { + feed_additions[object_graph_tensor] = graph_proto.ToByteArray(); + } + Debug.Assert(!serialized_tensors.ContainsKey(Trackable.None) || !serialized_tensors[Trackable.None].ContainsKey(Trackable.Constants.OBJECT_GRAPH_PROTO_KEY)); + if (!serialized_tensors.ContainsKey(Trackable.None)) + { + serialized_tensors[Trackable.None] = new Dictionary>>(); + } + serialized_tensors[Trackable.None][Trackable.Constants.OBJECT_GRAPH_PROTO_KEY] = new Dictionary>(); + serialized_tensors[Trackable.None][Trackable.Constants.OBJECT_GRAPH_PROTO_KEY].Add(saveable_object_util.NO_SLICE_SPEC_KEY, object_graph_tensor); + return (serialized_tensors, feed_additions, registered_savers, graph_proto); + } + + private (Tensor, IDictionary) save_cached_when_graph_building(Tensor file_prefix, Tensor object_graph_tensor, CheckpointOptions options) + { + var (serialized_tensors, feed_additions, registered_savers, graph_proto) = gather_serialized_tensors(object_graph_tensor); + + Func<(Tensor, IDictionary)> run_save = () => + { + if (_last_save_object_graph != graph_proto || tf.Context.executing_eagerly() || ops.inside_function()) + { + var saver = new MultiDeviceSaver(serialized_tensors, registered_savers); + var save_op = saver.save(file_prefix, options); + + // tensorflow python: `with ops.device("/cpu:0"):` + using (ops.control_dependencies(new object[] { save_op })) + { + _cached_save_operation = array_ops.identity(file_prefix); + } + _last_save_object_graph = graph_proto; + } + return (_cached_save_operation, feed_additions); + }; + + if (options.experimental_enable_async_checkpoint) + { + throw new NotImplementedException(); + } + + return run_save(); + } + + private (Tensor, IDictionary) save_cached_when_graph_building(string file_prefix, Tensor object_graph_tensor, CheckpointOptions options) + { + var (serialized_tensors, feed_additions, registered_savers, graph_proto) = gather_serialized_tensors(object_graph_tensor); + + Func<(Tensor, IDictionary)> run_save = () => + { + if (_last_save_object_graph != graph_proto || tf.Context.executing_eagerly() || ops.inside_function()) + { + var saver = new MultiDeviceSaver(serialized_tensors, registered_savers); + var save_op = saver.save(file_prefix, options); + + // tensorflow python: `with ops.device("/cpu:0"):` + using (ops.control_dependencies(new object[] {save_op} )) + { + _cached_save_operation = array_ops.identity(tf.constant(file_prefix)); + } + _last_save_object_graph = graph_proto; + } + return (_cached_save_operation, feed_additions); + }; + + if (options.experimental_enable_async_checkpoint) + { + throw new NotImplementedException(); + } + + return run_save(); + } + + // TODO: parameter write_done_callback + public Tensor save(string file_prefix, int? checkpoint_number = null, Session? session = null, + CheckpointOptions? options = null) + { + if (options is null) + { + options = new CheckpointOptions(); + } + + Dictionary feed_dict = new(); + bool use_session = (!tf.Context.executing_eagerly() && !ops.inside_function()); + if (checkpoint_number is not null) + { + file_prefix = $"{file_prefix}-{checkpoint_number?.ToString()}"; + } + + Tensor file_prefix_tensor; + Tensor object_graph_tensor; + string file_prefix_to_save; + if (use_session) + { + if (_object_graph_feed_tensor is null) + { + // In python there is `with ops.device("/cpu:0")`. + _object_graph_feed_tensor = constant_op.constant("", TF_DataType.TF_STRING); + _file_prefix_feed_tensor = constant_op.constant("", TF_DataType.TF_STRING); + } + + object_graph_tensor = _object_graph_feed_tensor; + file_prefix_tensor = _file_prefix_feed_tensor; + feed_dict[file_prefix_tensor] = file_prefix; + file_prefix_to_save = ""; + } + else + { + // In python there is `with ops.device("/cpu:0")`. + file_prefix_tensor = ops.convert_to_tensor(file_prefix, TF_DataType.TF_STRING); + object_graph_tensor = null; + file_prefix_to_save = file_prefix; + } + + var (save_path, new_feed_additions) = + save_cached_when_graph_building(file_prefix_to_save, object_graph_tensor, options); + + if (new_feed_additions is not null) + { + foreach (var pair in new_feed_additions) + { + feed_dict.Add(pair.Key, pair.Value); + } + } + if(!use_session) + { + session = null; + } + else if (session is null) + { + session = new Session(); // In python it uses `get_session`. + } + + if (session is not null) + { + var s = feed_dict.Select(x => new FeedItem(x.Key, x.Value)).ToArray(); + return session.run((Tensor)save_path, s); + } + else if (use_session) + { + throw new RuntimeError($"Unable to save checkpoint to \"{file_prefix}\" " + + "in graph mode without a default session. Please use " + + "`with tf.Session():` to create a session."); + } + else + { + return save_path; + } + } + + public LoadStatus restore(string? save_path, CheckpointOptions? options = null) + { + if (options is null) + { + options = new CheckpointOptions(); + } + if(save_path is null) + { + return new InitializationOnlyStatus(_graph_view, ops.uid()); + } + + CheckpointReader reader = new CheckpointReader(save_path); + bool graph_building = tf.Context.executing_eagerly(); + Dictionary dtype_map = null; + if (!graph_building) + { + dtype_map = reader.VariableToDataTypeMap; + } + Tensor object_graph_string = reader.GetTensor(Trackable.Constants.OBJECT_GRAPH_PROTO_KEY, dtype: TF_DataType.TF_STRING); + + Dictionary file_prefix_feed_dict; + Tensor file_prefix_tensor = null; + if (graph_building) + { + if(_file_prefix_placeholder is null) + { + _file_prefix_placeholder = tf_with(ops.device("/cpu:0"), _ => + { + return constant_op.constant("model"); + }); + } + file_prefix_tensor = _file_prefix_placeholder; + file_prefix_feed_dict = new(); + file_prefix_feed_dict[_file_prefix_placeholder] = save_path; + } + else + { + file_prefix_tensor = tf_with(ops.device("/cpu:0"), _ => + { + return constant_op.constant(save_path); + }); + file_prefix_feed_dict = null; + } + TrackableObjectGraph object_graph_proto = new(); + if(object_graph_string.ndim > 0) + { + object_graph_proto.MergeFrom(object_graph_string.BufferToArray()); + } + else + { + object_graph_proto.MergeFrom(object_graph_string.StringBytes()[0]); + } + CheckpointRestoreCoordinator checkpoint = new CheckpointRestoreCoordinator( + object_graph_proto: object_graph_proto, + save_path: save_path, + save_path_tensor: file_prefix_tensor, + reader: reader, + restore_op_cache: null, + graph_view: _graph_view, + options: options, + saveables_cache: null + ); + + new CheckpointPosition(checkpoint, 0).restore(_graph_view.Root); + + if(_graph_view.AttachedDependencies is not null) + { + foreach(var refer in _graph_view.AttachedDependencies) + { + if(refer.Name == "root") + { + continue; + } + int? proto_id = null; + // Find proto ID of attached dependency (if it is in the proto). + foreach (var proto_refer in object_graph_proto.Nodes[0].Children) + { + if(proto_refer.LocalName == refer.Name) + { + proto_id = proto_refer.NodeId; + break; + } + } + + if (proto_id is null) + { + continue; + } + + // Object has already been restored. This can happen when there's an + // indirect connection from the attached object to the root. + if (checkpoint.ObjectByProtoId.ContainsKey(proto_id.Value)) + { + continue; + } + + new CheckpointPosition(checkpoint, proto_id.Value).restore(refer.Refer); + } + } + + return new CheckpointLoadStatus(checkpoint, file_prefix_feed_dict, _graph_view); + } +} + +public class CheckpointRestoreCoordinator +{ + private CheckpointOptions _options; + private TrackableObjectGraph _object_graph_proto; + private int _restore_uid; + private HashSet _matched_proto_ids; + private Tensor _save_path_tensor; + private string _save_path_string; + private CheckpointReader _reader; + private Dictionary _dtype_map; + private Dictionary _shape_map; + private ObjectGraphView _graph_view; + private Dictionary> _slot_restorations; + private bool _expect_partial_attr; + private List _restore_ops; + private List _all_trackables; + private Dictionary _object_by_proto_id; + private Dictionary _restore_ops_by_name; + private Dictionary> _deferred_slot_restorations; + private Dictionary> _unused_attributes; + + public CheckpointRestoreCoordinator(TrackableObjectGraph object_graph_proto, string save_path, Tensor save_path_tensor, + CheckpointReader reader, object? restore_op_cache, ObjectGraphView graph_view, CheckpointOptions options, object? saveables_cache) + { + // TODO(Rinne): cache. + _options = options; + _object_graph_proto = object_graph_proto; + _restore_uid = ops.uid(); + _save_path_tensor = save_path_tensor; + _save_path_string = save_path; + _reader = reader; + if(_reader is null) + { + _reader = new CheckpointReader(save_path); + } + _dtype_map = _reader.VariableToDataTypeMap; + _shape_map = _reader.VariableToShapeMap; + _graph_view = graph_view; + _restore_ops = new List(); + _restore_ops_by_name = new Dictionary(); + _all_trackables = new List(); + _matched_proto_ids = new HashSet(); + _object_by_proto_id = new Dictionary(); + _slot_restorations = new Dictionary>(); + _deferred_slot_restorations = new Dictionary>(); + + _expect_partial_attr = false; + for(int i = 0; i < _object_graph_proto.Nodes.Count; i++) + { + var node = _object_graph_proto.Nodes[i]; + foreach(var slot_reference in node.SlotVariables) + { + _slot_restorations.SetDefault(slot_reference.OriginalVariableNodeId, new List()) + .Add(new SlotVariableRestoration(i, slot_reference.SlotVariableNodeId, slot_reference.SlotName)); + } + } + + // skip the deleter and cache. + } + + public bool ExpectPartial + { + get + { + return _expect_partial_attr; + } + set + { + _expect_partial_attr = value; + } + } + + /// + /// Corresponding to `all_python_objects` of tensorflow python + /// + public List AllTrackables => _all_trackables; + public HashSet MatchedProtoIds => _matched_proto_ids; + // TODO(Rinne): change to weak ref. + public Dictionary ObjectByProtoId => _object_by_proto_id; + public int RestoreUid => _restore_uid; + public TrackableObjectGraph ObjectGraphProto => _object_graph_proto; + public Dictionary> SlotRestorations => _slot_restorations; + public Dictionary> DeferredSlotRestorations => _deferred_slot_restorations; + public Dictionary RestoreOpsByName => _restore_ops_by_name; + public Dictionary> UnusedAttributes => _unused_attributes; + + public void new_restore_ops(IEnumerable new_ops) + { + _restore_ops.AddRange(new_ops); + // skip the callback. + } + + public List restore_saveables(Dictionary> tensor_saveables, List positions, object? registered_savers = null) + { + List restore_ops = new(); + foreach(var position in positions) + { + var key = position.ObjectProto.Attributes[0].CheckpointKey; + throw new NotImplementedException(); + } + + Dictionary variable_dict = new(); + foreach(var item in tensor_saveables) + { + if(item.Value.TryPickT0(out var variable, out var _)) + { + variable_dict[item.Key] = variable; + } + else + { + throw new TypeError(); + } + } + + if (tensor_saveables is not null && tensor_saveables.Count > 0) + { + var flat_saveables = saveable_object_util.validate_and_slice_inputs(variable_dict); + var new_restore_ops = MultiDeviceSaver.from_saveables(flat_saveables).restore(_save_path_tensor, _options); + if (!tf.Context.executing_eagerly()) + { + foreach(var item in new_restore_ops) + { + restore_ops.Add(item.Value); + Debug.Assert(!_restore_ops_by_name.ContainsKey(item.Key)); + _restore_ops_by_name[item.Key] = item.Value; + } + } + } + return restore_ops; + } +} + +public abstract class LoadStatus +{ + public abstract LoadStatus assert_consumed(); + public abstract LoadStatus assert_existing_objects_matched(); + public abstract LoadStatus assert_nontrivial_match(); + public abstract LoadStatus run_restore_ops(Session? session = null); + public abstract void initialize_or_restore(Session? session = null); + public virtual LoadStatus expect_partial() + { + return this; + } +} + +public class InitializationOnlyStatus: LoadStatus +{ + private int _restore_uid; + private ObjectGraphView _object_graph_view; + private Trackable _root; + public InitializationOnlyStatus(ObjectGraphView object_graph_view, int restore_uid) + { + _restore_uid = restore_uid; + _object_graph_view = object_graph_view; + _root = object_graph_view.Root; + } + public override LoadStatus assert_consumed() + { + throw new AssertionError("No checkpoint specified (save_path=None); nothing is being restored."); + } + public override LoadStatus assert_existing_objects_matched() + { + throw new AssertionError("No checkpoint specified (save_path=None); nothing is being restored."); + } + public override LoadStatus assert_nontrivial_match() + { + throw new AssertionError("No checkpoint specified (save_path=None); nothing is being restored."); + } + public override LoadStatus run_restore_ops(Session? session = null) + { + throw new AssertionError("No checkpoint specified, so no restore ops are available " + + "(save_path=None to Saver.restore)."); + } + public override void initialize_or_restore(Session? session = null) + { + if (tf.Context.executing_eagerly()) + { + return; + } + if(session is null) + { + session = new Session(); + } + var trackable_objects = CheckPointUtils.list_objects(_object_graph_view); + throw new NotImplementedException("Not implemented, please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } +} + +internal class CheckpointLoadStatus: LoadStatus +{ + private CheckpointRestoreCoordinator _checkpoint; + private Dictionary _feed_dict; + private ObjectGraphView _object_graph_view; + private Trackable _root; + public CheckpointLoadStatus(CheckpointRestoreCoordinator checkpoint, Dictionary feed_dict, ObjectGraphView graph_view):base() + { + _checkpoint = checkpoint; + _feed_dict = feed_dict; + _object_graph_view = graph_view; + _root = graph_view.Root; + } + + public CheckpointRestoreCoordinator Checkpoint => _checkpoint; + + public override LoadStatus assert_consumed() + { + throw new NotImplementedException(); + } + + public override LoadStatus assert_existing_objects_matched() + { + for(int i = 0; i < _checkpoint.ObjectGraphProto.Nodes.Count; i++) + { + var node = _checkpoint.ObjectGraphProto.Nodes[i]; + if(_checkpoint.ObjectByProtoId.TryGetValue(i, out var trackable) && + trackable.UpdateUid < _checkpoint.RestoreUid) + { + throw new AssertionError($"Object {node} not assigned a value from checkpoint."); + } + } + foreach(var trackable_object in CheckPointUtils.list_objects(_object_graph_view)) + { + if(trackable_object is TrackableDataStructure && trackable_object._trackable_children().Count == 0) + { + continue; + } + _checkpoint.AllTrackables.Add(trackable_object); + } + var unused_trackables = CheckPointUtils._objects_with_attributes(_checkpoint.AllTrackables) + .Except(_checkpoint.ObjectByProtoId.Values); + if (unused_trackables.Any()) + { + var num_unused_trackables = unused_trackables.Count(); + var num_variables_to_show = Math.Min(10, num_unused_trackables); + throw new AssertionError($"Found {num_unused_trackables} Python objects that were " + + $"not bound to checkpointed values, likely due to changes in the " + + $"Python program. Showing {num_variables_to_show} of " + + $"{num_unused_trackables} unmatched objects: " + + $"{{list(unused_python_objects)[:num_variables_to_show]}}"); + } + return this; + } + + public override LoadStatus assert_nontrivial_match() + { + throw new NotImplementedException(); + } + + public override LoadStatus expect_partial() + { + throw new NotImplementedException(); + } + + public override void initialize_or_restore(Session? session = null) + { + throw new NotImplementedException(); + } + + public override LoadStatus run_restore_ops(Session? session = null) + { + throw new NotImplementedException(); + } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Checkpoint/functional_saver.cs b/src/TensorFlowNET.Core/Checkpoint/functional_saver.cs new file mode 100644 index 000000000..211d7d6f0 --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/functional_saver.cs @@ -0,0 +1,464 @@ +using System; +using System.Buffers.Text; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Train; +using static Tensorflow.ApiDef.Types; +using static Tensorflow.CostGraphDef.Types; +using static Tensorflow.OptimizerOptions.Types; +using static Tensorflow.Binding; +using System.Text.RegularExpressions; +using System.Linq; +using Tensorflow.Operations; +using Tensorflow.Training; +using Tensorflow.Graphs; +using System.Xml.Linq; +using System.Diagnostics; +using RestoreFunc = System.Func; +using OneOf; + +namespace Tensorflow.Checkpoint +{ + internal class SingleDeviceSaver + { + private IDictionary>> _tensor_slice_dict; + public SingleDeviceSaver(IDictionary>> tensor_slice_dict) + { + _tensor_slice_dict = tensor_slice_dict; + } + public SingleDeviceSaver(IDictionary> tensor_slice_dict) + { + _tensor_slice_dict = tensor_slice_dict.ToDictionary( + x => x.Key, x => x.Value.ToDictionary( + y => y.Key, y => OneOf.FromT0(y.Value)) + as IDictionary>); + } + public SingleDeviceSaver(IDictionary> tensor_slice_dict) + { + _tensor_slice_dict = tensor_slice_dict.ToDictionary( + x => x.Key, x => x.Value.ToDictionary( + y => y.Key, y => OneOf.FromT1(y.Value)) + as IDictionary>); + } + public Operation? save(Tensor file_prefix, CheckpointOptions? options = null) + { + if(options is null) + { + options = new CheckpointOptions(); + } + List tensor_names = new(); + List tensors = new(); + List slice_specs = new(); + foreach(var pair in _tensor_slice_dict) + { + var checkpoint_key = pair.Key; + var tensor_slices = pair.Value; + foreach(var slice in tensor_slices) + { + var slice_spec = slice.Key; + var maybe_tensor = slice.Value; + if(maybe_tensor.TryPickT1(out var spec, out var tensor)) + { + var tensor_value = spec.tensor; + if (tensor_value is not null) + { + tensor_names.Add(spec.name); + tensors.Add(tensor_value); + slice_specs.Add(spec.slice_spec); + } + } + else + { + tensor_names.Add(checkpoint_key); + tensors.Add(tensor); + slice_specs.Add(slice_spec); + } + } + } + // TODO: specify the device. + return tf.io.save_v2(file_prefix, tensor_names.ToArray(), slice_specs.ToArray(), tensors.ToArray()); + } + + public Operation? save(string file_prefix, CheckpointOptions? options = null) => save(tf.constant(file_prefix, TF_DataType.TF_STRING), options); + + public IDictionary> restore(Tensor file_prefix, CheckpointOptions? options = null) + { + if(options is null) + { + options = new CheckpointOptions(); + } + List tensor_names = new(); + List tensor_dtypes = new(); + List slice_specs = new(); + + foreach(var pair in _tensor_slice_dict) + { + var checkpoint_key = pair.Key; + var tensor_slices = pair.Value; + foreach(var slice in tensor_slices) + { + var slice_spec = slice.Key; + var maybe_tensor = slice.Value; + // TODO: deal with other types. Currently only `SaveSpec` is allowed. + if(maybe_tensor.TryPickT1(out var spec, out var tensor)) + { + tensor_dtypes.Add(spec.dtype); + slice_specs.Add(spec.slice_spec); + tensor_names.Add(spec.name); + } + else + { + tensor_dtypes.Add(tensor.dtype); + slice_specs.Add(slice_spec); + tensor_names.Add(checkpoint_key); + } + } + } + + string restore_device = string.IsNullOrEmpty(options.experimental_io_device) ? "cpu:0": options.experimental_io_device!; + + Tensor[] restored_tensors = null; + tf_with(ops.device(restore_device), _ => + { + restored_tensors = gen_ops.restore_v2(file_prefix, tensor_names.ToArray(), slice_specs.ToArray(), tensor_dtypes.ToArray()); + }); + + Dictionary> restored_tensor_dict = new(); + int idx = 0; + foreach(var pair in _tensor_slice_dict) + { + var checkpoint_key = pair.Key; + var tensor_slices = pair.Value; + foreach(var slice_spec in tensor_slices.Keys) + { + var restored_tensor = restored_tensors[idx++]; + if (!restored_tensor_dict.ContainsKey(checkpoint_key)) + { + restored_tensor_dict[checkpoint_key] = new Dictionary(); + } + restored_tensor_dict[checkpoint_key][slice_spec] = restored_tensor; + } + } + return restored_tensor_dict; + } + + public IDictionary> restore(string file_prefix, CheckpointOptions? options = null) => restore(tf.constant(file_prefix)); + } + /// + /// Saves checkpoints directly from multiple devices. + /// Note that this is a low-level utility which stores Tensors in the keys + /// specified by `SaveableObject`s.Higher-level utilities for object-based + /// checkpointing are built on top of it. + /// + public class MultiDeviceSaver + { + private Dictionary _single_device_savers; + private IDictionary _registered_savers; + private Dictionary<(string, string), RestoreFunc> _keys_to_restore_fn; + private Dictionary> _restore_fn_to_keys; + /// + /// + /// + /// A dictionary mapping `Trackable` to a tensor dict, which maps checkpoint_key -> (slice_spec ->) -> Tensor/SaveSpec. + /// + /// + public MultiDeviceSaver(IDictionary>>> serialized_tensors, + IDictionary>? registered_savers = null, bool call_with_mapped_capture = false) + { + _keys_to_restore_fn = new Dictionary<(string, string), RestoreFunc>(); + _restore_fn_to_keys = new Dictionary>(); + Dictionary>>> tensors_by_device= new(); + + foreach(var pair in serialized_tensors) + { + var obj = pair.Key; + var tensor_dict = pair.Value; + RestoreFunc restore_fn; + if(obj == Trackable.None) + { + restore_fn = new RestoreFunc(x => null); + } + else + { + restore_fn = new RestoreFunc(x => + { + if(x is IDictionary>>) + { + return obj._restore_from_tensors(x as IDictionary>>); + } + throw new TypeError($"Expected `IDictionary>>` as input, got{x.GetType()}."); + }); + } + + foreach(var item in tensor_dict) + { + var checkpoint_key = item.Key; + var spec_to_tensor = item.Value; + + foreach(var spec in spec_to_tensor) + { + var slice_spec = spec.Key; + var tensor = spec.Value; + if(_keys_to_restore_fn.ContainsKey((checkpoint_key, slice_spec))) + { + throw new ValueError("Recieved multiple tensors with the same checkpoint key and " + + $"slice spec. This is invalid because one will overwrite the " + + $"other in the checkpoint. This indicates a bug in the Checkpoint key-generation."); + } + _keys_to_restore_fn[(checkpoint_key, slice_spec)] = restore_fn; + _restore_fn_to_keys.SetDefault(restore_fn, new List<(string, string)>()).Add((checkpoint_key, slice_spec)); + + string host_device; + if (tensor.IsT0) + { + host_device = tensor.AsT0.Device; + } + else + { + host_device = tensor.AsT1.device; + } + host_device = saveable_object_util.set_cpu0(host_device); + var internal_dict = tensors_by_device.SetDefault(host_device, new Dictionary>>()); + if (!internal_dict.ContainsKey(checkpoint_key)) + { + internal_dict[checkpoint_key] = new Dictionary>(); + } + internal_dict[checkpoint_key][slice_spec] = tensor; + } + } + } + + _single_device_savers = tensors_by_device.ToDictionary(x => x.Key, x => new SingleDeviceSaver(x.Value)); + + _registered_savers = new Dictionary(); + if(registered_savers is not null && registered_savers.Count > 0) + { + // TODO: complete the implementation. + throw new NotImplementedException(); + } + } + + public Operation save(Tensor file_prefix, CheckpointOptions? options= null) + { + if(options is null) + { + options = new CheckpointOptions(); + } + + Tensor tmp_checkpoint_prefix = null; + tf_with(ops.device("CPU"), _ => + { + var sharded_suffix = array_ops.where(gen_ops.regex_full_match(file_prefix, tf.constant(@"^s3://.*")), + constant_op.constant(".part"), constant_op.constant("_temp/part")); + tmp_checkpoint_prefix = gen_ops.string_join(new Tensor[] { file_prefix, sharded_suffix }); + IDictionary registered_paths = _registered_savers.Keys.ToDictionary(x => x, x => registered_saver_filename(file_prefix, x)); + }); + + Operation save_fn() + { + List saved_prefixes= new(); + foreach(var saver in _registered_savers) + { + // TODO: implementi it later. + throw new NotImplementedException(); + } + + int num_shards = _single_device_savers.Count; + List sharded_saves = new(); + var num_shards_tensor = constant_op.constant(num_shards, name: "num_shards"); + string? last_device = null; + int shard = 0; + foreach(var pair in _single_device_savers.OrderBy(x => x.Key)) + { + var device = pair.Key; + var saver = pair.Value; + last_device = device; + // skip the extra process of device name because of lack of API. + Tensor shard_prefix = null; + tf_with(ops.device(device), _ => + { + shard_prefix = sharded_filename(tmp_checkpoint_prefix, shard, num_shards_tensor); + }); + saved_prefixes.Add(shard_prefix); + tf_with(ops.device(device), _ => + { + sharded_saves.Add(saver.save(shard_prefix, options)); + }); + } + using (var controller = ops.control_dependencies(sharded_saves.ToArray())) + { + string merge_device = string.IsNullOrEmpty(options.experimental_io_device) ? last_device : options.experimental_io_device; + return tf_with(ops.device(merge_device), _ => + { + return gen_ops.merge_v2_checkpoints(saved_prefixes.ToArray(), tf.constant(file_prefix), delete_old_dirs: true); + }); + } + } + + if(tf.Context.executing_eagerly() && _single_device_savers.Count > 1) + { + // TODO: implement it. Currently `autograph` does not support the function with non parameter. + throw new NotImplementedException(); + } + else + { + return save_fn(); + } + } + + public Operation save(string file_prefix, CheckpointOptions? options = null) => save(tf.constant(file_prefix), options); + + public IDictionary restore(Tensor file_prefix, CheckpointOptions? options = null) + { + if(options is null) + { + options = new CheckpointOptions(); + } + + IDictionary restore_func() + { + Dictionary>>> restore_fn_inputs = new(); + Dictionary restore_fn_input_count = _restore_fn_to_keys.ToDictionary(x => x.Key, x => x.Value.Count); + Dictionary restore_ops = new(); + + foreach(var single_saver in _single_device_savers.OrderBy(x => x.Key)) + { + var device = single_saver.Key; + var saver = single_saver.Value; + tf_with(ops.device(device), _ => + { + var restored_tensor_dict = saver.restore(file_prefix, options); + + foreach (var pair in restored_tensor_dict) + { + var checkpoint_key = pair.Key; + var slice_and_tensor = pair.Value; + foreach (var item in slice_and_tensor) + { + var slice_spec = item.Key; + var tensor = item.Value; + var restore_fn = _keys_to_restore_fn[(checkpoint_key, slice_spec)]; + var internal_dict = restore_fn_inputs.SetDefault(restore_fn, new Dictionary>>()); + if (!string.IsNullOrEmpty(slice_spec)) + { + if (!internal_dict.ContainsKey(checkpoint_key)) + { + Dictionary dict = new(); + dict[slice_spec] = tensor; + internal_dict[checkpoint_key] = OneOf>.FromT1(dict); + } + else + { + internal_dict[checkpoint_key].AsT1[slice_spec] = tensor; + } + } + else + { + internal_dict[checkpoint_key] = OneOf>.FromT0(tensor); + } + restore_fn_input_count[restore_fn]--; + + if (restore_fn_input_count[restore_fn] == 0) + { + Dictionary>> restored_tensors = new(); + foreach (var input in restore_fn_inputs[restore_fn]) + { + restored_tensors[TrackableUtils.extract_local_name(input.Key)] = input.Value; + } + var ret = restore_fn.DynamicInvoke(restored_tensors); + if (ret is IDictionary) + { + var dict = (IDictionary)ret; + restore_ops = restore_ops.Concat(dict).ToDictionary(x => x.Key, x => x.Value); + } + } + } + } + }); + } + + foreach(var item in _registered_savers) + { + throw new NotImplementedException(); + } + return restore_ops; + } + + // TODO: complete the implementation. Currently skip it because of lack of API. + bool has_custom_device_saver = false; + + if (tf.Context.executing_eagerly() && (_single_device_savers.Count > 1 || has_custom_device_saver)) + { + // TODO: implement it. Currently `autograph` does not support the function with non parameter. + throw new NotImplementedException(); + } + else + { + return restore_func(); + } + } + + /// + /// Serializes to a SaverDef referencing the current graph. + /// + public SaverDef to_proto() + { + var filename_tensor = array_ops.placeholder(TF_DataType.TF_STRING, new int[] { }, "saver_filename"); + var traced_save_func = tf.autograph.to_graph(_traced_save, TF_DataType.TF_STRING); + var traced_restore_func = tf.autograph.to_graph(_traced_restore, TF_DataType.TF_STRING); + var save_tensor = traced_save_func(filename_tensor); + var restore_op = traced_restore_func(filename_tensor).op; + return new SaverDef() + { + FilenameTensorName = filename_tensor.name, + SaveTensorName = save_tensor.name, + RestoreOpName = restore_op.name, + Version = SaverDef.Types.CheckpointFormatVersion.V2 + }; + } + + private Tensor _traced_save(Tensor file_prefix) + { + var save_op = save(file_prefix); + return tf_with(ops.device("cpu:0"), _ => + { + return tf_with(ops.control_dependencies(new object[] { save_op }), __ => + { + return array_ops.identity(file_prefix); + }); + }); + } + + private Tensor _traced_restore(Tensor file_prefix) + { + var restore_op = restore(file_prefix); + return tf_with(ops.device("cpu:0"), _ => + { + return tf_with(ops.control_dependencies(restore_op.Values.ToArray()), __ => + { + return array_ops.identity(file_prefix); + }); + }); + } + + public static MultiDeviceSaver from_saveables(IEnumerable saveables, IDictionary>? registered_savers = null, bool call_with_mapped_captures = false) + { + Dictionary>>> serialized_tensors = new(); + foreach (var saveable in saveables) + { + var trackable = new SaveableCompatibilityConverter(saveable, new List() { saveable }); + serialized_tensors[trackable] = trackable.serialize_to_tensors(); + } + return new MultiDeviceSaver(serialized_tensors, registered_savers, call_with_mapped_captures); + } + + private static Tensor registered_saver_filename(Tensor filename_tensor, string saver_name) + { + return gen_ops.string_join(new Tensor[] { filename_tensor, constant_op.constant($"-{saver_name}") }); + } + private static Tensor sharded_filename(Tensor filename_tensor, int shard, Tensor num_shards) + { + return gen_ops.sharded_filename(filename_tensor, tf.constant(shard), num_shards); + } + } +} diff --git a/src/TensorFlowNET.Core/Checkpoint/restore.cs b/src/TensorFlowNET.Core/Checkpoint/restore.cs new file mode 100644 index 000000000..0e1a300e9 --- /dev/null +++ b/src/TensorFlowNET.Core/Checkpoint/restore.cs @@ -0,0 +1,333 @@ +using OneOf; +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using System.Security; +using System.Text; +using Tensorflow.Train; +using Tensorflow.Training; +using static Tensorflow.Binding; + +namespace Tensorflow.Checkpoint; + +public class CheckpointPosition +{ + private CheckpointRestoreCoordinator _checkpoint; + private int _proto_id; + private bool _skip_restore; + public CheckpointPosition(CheckpointRestoreCoordinator checkpoint, int proto_id) + { + _checkpoint = checkpoint; + _proto_id = proto_id; + _skip_restore = false; + } + + public Trackable Trackable => _checkpoint.ObjectByProtoId[_proto_id]; + public CheckpointRestoreCoordinator Checkpoint => _checkpoint; + public TrackableObjectGraph.Types.TrackableObject ObjectProto => _checkpoint.ObjectGraphProto.Nodes[_proto_id]; + + public void restore(Trackable trackable) + { + using (ops.init_scope()) + { + if (bind_project(trackable)) + { + var restore_ops = _restore_descendants(); + if(restore_ops is not null && restore_ops.Count > 0) + { + _checkpoint.new_restore_ops(restore_ops); + } + } + } + } + + /// + /// Set a checkpoint<->object correspondence. + /// + /// + /// + public bool bind_project(Trackable trackable) + { + _checkpoint.AllTrackables.Add(trackable); + _checkpoint.MatchedProtoIds.Add(_proto_id); + if(_checkpoint.ObjectByProtoId.TryGetValue(_proto_id, out var current_assignment) && current_assignment is not null) + { + // skip the `logging.warning`. + return false; + } + else + { + _checkpoint.ObjectByProtoId[_proto_id] = trackable; + return true; + } + } + + public (List, Dictionary>, List, object?) gather_ops_or_named_saveables() + { + // skip the registered_saver + + if (ObjectProto.Attributes is null || ObjectProto.Attributes.Count == 0) + { + return (new List(), new Dictionary>(), + new List(), null); + } + + var saveable_factories = saveable_object_util.saveable_objects_from_trackable(this.Trackable); + + List existing_restore_ops; + List positions = new(); + Dictionary> named_saveables; + if (saveable_factories.Keys.Count == 1 && saveable_factories.Keys.First() == TrackableUtils.SERIALIZE_TO_TENSORS_NAME) + { + (existing_restore_ops, named_saveables) = _create_serialize_to_tensor_saveable(saveable_factories); + } + else if(saveable_factories.Count > 0) + { + (existing_restore_ops, named_saveables) = _create_saveables_by_attribute_name(saveable_factories); + } + else + { + throw new NotImplementedException(); + } + return (existing_restore_ops, named_saveables, positions, null); + } + + public CheckpointPosition create_child_position(int node_id) + { + return new CheckpointPosition(_checkpoint, node_id); + } + + public (CheckpointPosition, BaseResourceVariable) create_slot_variable_position(Optimizer optimizer_object, BaseResourceVariable variable, + int slot_variable_id, string slot_name) + { + //CheckpointPosition slot_variable_position = new(Checkpoint, slot_variable_id); + + // TODO(Rinne): implement it. + return (null, null); + } + + /// + /// Creates a saveable using the _serialize_to_tensor method. + /// + /// + private (List, Dictionary>) _create_serialize_to_tensor_saveable( + IDictionary>> saveable_factories) + { + string suffix = SaveableCompat.get_saveable_name(this.Trackable); + suffix = suffix ?? ""; + var saveable_name = _extract_saveable_name(ObjectProto.Attributes[0].CheckpointKey) + suffix; + + if (!tf.Context.executing_eagerly()) + { + throw new NotImplementedException("The restore under graph mode has not been implemented. " + + "Please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } + + var saveable = saveable_factories[TrackableUtils.SERIALIZE_TO_TENSORS_NAME](saveable_name); + // skip the cache. + Dictionary> dict = new(); + dict[saveable_name] = saveable; + return (new List(), dict); + } + + private (List, Dictionary>) _create_saveables_by_attribute_name( + IDictionary>> saveable_factories) + { + // TODO(Rinne): implement it. + if(ObjectProto.Attributes is null) + { + return (new List(), new Dictionary>()); + } + + List existing_restore_ops = new(); + HashSet created_compat_names = new(); + Dictionary> named_saveables = new(); + foreach (var serialized_tensor in ObjectProto.Attributes) + { + Operation existing_op; + if (tf.Context.executing_eagerly() || !_checkpoint.RestoreOpsByName.ContainsKey(serialized_tensor.CheckpointKey)) + { + existing_op = null; + } + else + { + existing_op = _checkpoint.RestoreOpsByName[serialized_tensor.CheckpointKey]; + } + + if(existing_op is not null) + { + existing_restore_ops.Add(existing_op); + continue; + } + + if(created_compat_names.Any(x => serialized_tensor.Name.StartsWith(x))) + { + continue; + } + + // TODO(Rinne): deal with cache. + + var saveable = _get_saveable_from_factory(saveable_factories, serialized_tensor, created_compat_names); + if(saveable is null) + { + _checkpoint.UnusedAttributes.SetDefault(_proto_id, new List()).Add(serialized_tensor.Name); + continue; + } + named_saveables[serialized_tensor.CheckpointKey] = saveable.Value; + } + return (existing_restore_ops, named_saveables); + } + + private OneOf? _get_saveable_from_factory(IDictionary>> saveable_factories, + TrackableObjectGraph.Types.TrackableObject.Types.SerializedTensor serialized_tensor, HashSet created_compat_names) + { + var expected_factory_name = serialized_tensor.Name; + var factory_input_name = serialized_tensor.CheckpointKey; + + if (!saveable_factories.TryGetValue(expected_factory_name, out var matched_factory)) + { + foreach(var item in saveable_factories) + { + var factory_name = item.Key; + var factory = item.Value; + if (expected_factory_name.StartsWith(factory_name)) + { + if(matched_factory is not null) + { + throw new ValueError($"Forward compatibility load error: Unable to load " + + "checkpoint saved in future version of TensorFlow. " + + "Please update your version of TensorFlow to the " + + "version in which the checkpoint was saved."); + } + } + matched_factory = factory; + factory_input_name = _extract_saveable_name(serialized_tensor.CheckpointKey) + factory_name; + created_compat_names.Add(factory_name); + } + } + return matched_factory(factory_input_name); + } + + private string _extract_saveable_name(string checkpoint_key) + { + var search_key = TrackableUtils.OBJECT_ATTRIBUTES_NAME + "/"; + return checkpoint_key.Substring(0, checkpoint_key.IndexOf(search_key) + search_key.Length); + } + + /// + /// Restore the bound Trackable and dependencies (may be deferred). + /// + private List _restore_descendants() + { + Queue<(CheckpointPosition, Trackable)> visit_queue = new(); + visit_queue.Enqueue((this, this.Trackable)); + List restore_ops = new(); + Dictionary> tensor_saveables = new(); + List positions = new(); + + CheckpointPosition current_position = null; + while (visit_queue.Count > 0) + { + current_position = visit_queue.Dequeue().Item1; + var (new_restore_ops, new_tensor_saveables, new_positions, new_registered_savers) = current_position._single_restore(); + restore_ops.AddRange(new_restore_ops); + foreach(var item in new_tensor_saveables) + { + tensor_saveables.Add(item.Key, item.Value); + } + positions.AddRange(new_positions); + _queue_children_for_restoration(current_position, visit_queue); + _queue_slot_variables(current_position, visit_queue); + } + restore_ops.AddRange(current_position.Checkpoint.restore_saveables(tensor_saveables, positions, null)); + return restore_ops; + } + + private void _queue_children_for_restoration(CheckpointPosition checkpoint_position, Queue<(CheckpointPosition, Trackable)> visit_queue) + { + var trackable = checkpoint_position.Trackable; + foreach(var child in checkpoint_position.ObjectProto.Children) + { + var child_position = checkpoint_position.create_child_position(child.NodeId); + var local_object = trackable._lookup_dependency(child.LocalName); + var child_proto = child_position.ObjectProto; + if(local_object is null) + { + if(child_proto.Children.Any() || child_proto.Attributes.Any() || child_proto.SlotVariables.Any()) + { + trackable.DeferredDependencies.SetDefault(child.LocalName, new List()).Add(child_position); + } + } + else + { + if (child_position.bind_project(local_object)) + { + visit_queue.Enqueue((child_position, local_object)); + } + } + } + } + + private void _queue_slot_variables(CheckpointPosition checkpoint_position, Queue<(CheckpointPosition, Trackable)> visit_queue) + { + var trackable = checkpoint_position.Trackable; + var checkpoint = checkpoint_position.Checkpoint; + if(checkpoint.DeferredSlotRestorations.TryGetValue(checkpoint_position._proto_id, out var positions)) + { + checkpoint.DeferredSlotRestorations.Remove(checkpoint_position._proto_id); + foreach (var deferred_slot_restoration in positions) + { + var (slot_variable_position, slot_variable) = checkpoint_position.create_slot_variable_position( + trackable as Optimizer, deferred_slot_restoration.OriginalVariable, deferred_slot_restoration.SlotVariableId, + deferred_slot_restoration.SlotName + ); + if(slot_variable_position is not null) + { + visit_queue.Enqueue((slot_variable_position, slot_variable)); + } + } + } + if (checkpoint.SlotRestorations.TryGetValue(checkpoint_position._proto_id, out var restorations)) + { + checkpoint.SlotRestorations.Remove(checkpoint_position._proto_id); + foreach (var slot_restoration in restorations) + { + if(Checkpoint.ObjectByProtoId.TryGetValue(slot_restoration.OptimizerId, out var optimizer_object)) + { + throw new NotImplementedException(); + // TODO(Rinne); implement it. + } + else + { + Debug.Assert(trackable is BaseResourceVariable); + Checkpoint.DeferredSlotRestorations.SetDefault(slot_restoration.OptimizerId, new List()) + .Add(new DeferredSlotVariableRestoration(trackable as BaseResourceVariable, slot_restoration.SlotVariableId, slot_restoration.SlotName)); + } + } + } + } + + private (List, Dictionary>, List, object?) _single_restore() + { + var trackable = this.Trackable; + trackable._maybe_initialize_trackable(); + if(_checkpoint.RestoreUid > trackable.UpdateUid) + { + var (restore_ops, tensor_saveables, positions, registered_savers) = gather_ops_or_named_saveables(); + trackable.UpdateUid = _checkpoint.RestoreUid; + return (restore_ops, tensor_saveables, positions, registered_savers); + } + else + { + return (new List(), new Dictionary>(), + new List(), null); + } + } +} + +public record class DeferredSlotVariableRestoration( + BaseResourceVariable OriginalVariable, + int SlotVariableId, + string SlotName +); \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Clustering/_InitializeClustersOpFactory.cs b/src/TensorFlowNET.Core/Clustering/_InitializeClustersOpFactory.cs index adb26ef29..1b295fcfd 100644 --- a/src/TensorFlowNET.Core/Clustering/_InitializeClustersOpFactory.cs +++ b/src/TensorFlowNET.Core/Clustering/_InitializeClustersOpFactory.cs @@ -88,7 +88,7 @@ private Tensor _initialize() public Tensor op() { - var x = control_flow_ops.cond(gen_math_ops.equal(_num_remaining, 0), + var x = control_flow_ops.cond(gen_math_ops.equal(_num_remaining, ops.convert_to_tensor(0)), () => { return check_ops.assert_equal(_cluster_centers_initialized, true); diff --git a/src/TensorFlowNET.Core/Common/Extensions/DictionaryExtension.cs b/src/TensorFlowNET.Core/Common/Extensions/DictionaryExtension.cs new file mode 100644 index 000000000..7502a3a78 --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Extensions/DictionaryExtension.cs @@ -0,0 +1,31 @@ +using System; +using System.Collections.Generic; +using System.Runtime.CompilerServices; +using System.Text; + +namespace Tensorflow.Common.Extensions +{ + public static class DictionaryExtension + { + public static void Deconstruct(this KeyValuePair pair, out T1 first, out T2 second) + { + first = pair.Key; + second = pair.Value; + } + public static void Update(this Dictionary dic, IDictionary other) + { + foreach(var (key, value) in other) + { + dic[key] = value; + } + } + public static T2 GetOrDefault(this Dictionary dic, T1 key, T2 defaultValue) + { + if (dic.ContainsKey(key)) + { + return dic[key]; + } + return defaultValue; + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Extensions/JObjectExtensions.cs b/src/TensorFlowNET.Core/Common/Extensions/JObjectExtensions.cs new file mode 100644 index 000000000..6ceba445a --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Extensions/JObjectExtensions.cs @@ -0,0 +1,23 @@ +using Newtonsoft.Json.Linq; +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Common.Extensions +{ + public static class JObjectExtensions + { + public static T? TryGetOrReturnNull(this JObject obj, string key) + { + var res = obj[key]; + if (res is null) + { + return default; + } + else + { + return res.ToObject(); + } + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Extensions/LinqExtensions.cs b/src/TensorFlowNET.Core/Common/Extensions/LinqExtensions.cs new file mode 100644 index 000000000..287b48cc3 --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Extensions/LinqExtensions.cs @@ -0,0 +1,38 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using System.Text; + +namespace Tensorflow.Common.Extensions +{ + public static class LinqExtensions + { +#if NETSTANDARD2_0 + public static IEnumerable TakeLast(this IEnumerable sequence, int count) + { + return sequence.Skip(sequence.Count() - count); + } + + public static IEnumerable SkipLast(this IEnumerable sequence, int count) + { + return sequence.Take(sequence.Count() - count); + } +#endif + public static Tensors ToTensors(this Tensor[] tensors) + { + return new Tensors(tensors); + } + + public static Tensors ToTensors(this IList tensors) + { + return new Tensors(tensors); + } + + public static void Deconstruct(this (T1, T2, T3) values, out T1 first, out T2 second, out T3 third) + { + first = values.Item1; + second = values.Item2; + third = values.Item3; + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Extensions/NestExtensions.cs b/src/TensorFlowNET.Core/Common/Extensions/NestExtensions.cs new file mode 100644 index 000000000..76bdd6133 --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Extensions/NestExtensions.cs @@ -0,0 +1,33 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Common.Types; + +namespace Tensorflow.Common.Extensions +{ + public static class NestExtensions + { + public static Tensors ToTensors(this INestable tensors) + { + return new Tensors(tensors.AsNest()); + } + + public static Tensors? ToTensors(this Nest tensors) + { + return Tensors.FromNest(tensors); + } + + /// + /// If the nested object is already a nested type, this function could reduce it. + /// For example, `Nest[Nest[T]]` can be reduced to `Nest[T]`. + /// + /// + /// + /// + /// + public static Nest ReduceTo(this INestStructure input) where TIn: INestStructure + { + return Nest.ReduceFrom(input); + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Extensions/OneofExtension.cs b/src/TensorFlowNET.Core/Common/Extensions/OneofExtension.cs new file mode 100644 index 000000000..c7fb80938 --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Extensions/OneofExtension.cs @@ -0,0 +1,13 @@ +using OneOf; +using System; + +namespace Tensorflow.Common.Extensions +{ + public static class OneofExtension + { + public static bool IsTypeOrDeriveFrom(this IOneOf src) + { + return src.Value is T; + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/FakeTensorByTensorArray.cs b/src/TensorFlowNET.Core/Common/Types/FakeTensorByTensorArray.cs new file mode 100644 index 000000000..d0c35ee70 --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/FakeTensorByTensorArray.cs @@ -0,0 +1,20 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Common.Types +{ + /// + /// This is a temp solution, which should be removed after refactoring `Tensors` + /// + [Obsolete] + public class FakeTensorByTensorArray: Tensor + { + public TensorArray TensorArray { get; set; } + + public FakeTensorByTensorArray(TensorArray array) + { + TensorArray = array; + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/GeneralizedTensorShape.cs b/src/TensorFlowNET.Core/Common/Types/GeneralizedTensorShape.cs new file mode 100644 index 000000000..986136f4d --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/GeneralizedTensorShape.cs @@ -0,0 +1,69 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Text; + +namespace Tensorflow.Common.Types +{ + public class GeneralizedTensorShape: Nest + { + public GeneralizedTensorShape(Shape value, string? name = null) + { + NodeValue = value; + NestType = NestType.Node; + } + + public GeneralizedTensorShape(IEnumerable values, string? name = null) + { + ListValue = values.Select(s => new Nest(s) as INestStructure).ToList(); + Name = name; + NestType = NestType.List; + } + + public GeneralizedTensorShape(Dictionary value, string? name = null) + { + DictValue = value.ToDictionary(x => x.Key, x => new Nest(x.Value) as INestStructure); + Name = name; + NestType = NestType.Dictionary; + } + + public GeneralizedTensorShape(Nest other) + { + NestType = other.NestType; + NodeValue = other.NodeValue; + DictValue = other.DictValue; + ListValue = other.ListValue; + Name = other.Name; + } + + public Shape ToSingleShape() + { + var shapes = Flatten().ToList(); + if (shapes.Count != 1) + { + throw new ValueError("The generalized shape contains more than 1 dim."); + } + return shapes[0]; + } + + public long ToNumber() + { + var shapes = Flatten().ToList(); + if (shapes.Count != 1 || shapes[0].ndim != 1) + { + throw new ValueError("The generalized shape contains more than 1 dim."); + } + return shapes[0].dims[0]; + } + + public INestStructure ToTensorShapeConfigs() + { + return MapStructure(s => new TensorShapeConfig() { Items = s.dims.Select(x => x == -1 ? null : x).ToArray() }); + } + + public static implicit operator GeneralizedTensorShape(Shape shape) + { + return new GeneralizedTensorShape(shape); + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/INestStructure.cs b/src/TensorFlowNET.Core/Common/Types/INestStructure.cs new file mode 100644 index 000000000..32b662937 --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/INestStructure.cs @@ -0,0 +1,40 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Common.Types +{ + /// + /// This interface indicates that a class may have a nested structure and provide + /// methods to manipulate with the structure. + /// + public interface INestStructure: INestable + { + NestType NestType { get; } + + /// + /// The item count of depth 1 of the nested structure. + /// For example, [1, 2, [3, 4, 5]] has ShallowNestedCount = 3. + /// + int ShallowNestedCount { get; } + /// + /// The total item count of depth 1 of the nested structure. + /// For example, [1, 2, [3, 4, 5]] has TotalNestedCount = 5. + /// + int TotalNestedCount { get; } + + /// + /// Flatten the Nestable object. Node that if the object contains only one value, + /// it will be flattened to an enumerable with one element. + /// + /// + IEnumerable Flatten(); + /// + /// Construct a new object with the same nested structure. + /// + /// + /// + /// + INestStructure MapStructure(Func func); + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/INestable.cs b/src/TensorFlowNET.Core/Common/Types/INestable.cs new file mode 100644 index 000000000..7ce49f85a --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/INestable.cs @@ -0,0 +1,11 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Common.Types +{ + public interface INestable + { + Nest AsNest(); + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/IOptionalArgs.cs b/src/TensorFlowNET.Core/Common/Types/IOptionalArgs.cs new file mode 100644 index 000000000..427e71aaa --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/IOptionalArgs.cs @@ -0,0 +1,21 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Common.Types +{ + /// + /// This interface is used when some corresponding python methods have optional args. + /// For example, `Keras.Layer.Apply` generally takes three args as the inputs, while + /// `Keras.Layer.RNN` takes more. Then when calling RNN, you should add `RnnOptionalArgs` + /// as the parameter of the method. + /// + public interface IOptionalArgs + { + /// + /// The identifier of the class. It is not an argument but only something to + /// separate different OptionalArgs. + /// + string Identifier { get; } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/NamedTuple.cs b/src/TensorFlowNET.Core/Common/Types/NamedTuple.cs new file mode 100644 index 000000000..48073c61b --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/NamedTuple.cs @@ -0,0 +1,13 @@ +using System; +using System.Collections.Generic; +using System.Runtime.CompilerServices; +using System.Text; + +namespace Tensorflow.Common.Types +{ + public class NamedTuple + { + public string Name { get; set; } + public Dictionary ValueDict { get; set; } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/Nest.Static.cs b/src/TensorFlowNET.Core/Common/Types/Nest.Static.cs new file mode 100644 index 000000000..dc7fd3a1f --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/Nest.Static.cs @@ -0,0 +1,62 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Common.Types +{ + public static class Nest + { + /// + /// Pack the flat items to a nested sequence by the template. + /// + /// + /// + /// + /// + public static Nest PackSequenceAs(INestable template, TOut[] flatItems) + { + return template.AsNest().PackSequence(flatItems); + } + + /// + /// Pack the flat items to a nested sequence by the template. + /// + /// + /// + /// + /// + public static Nest PackSequenceAs(INestable template, List flatItems) + { + return template.AsNest().PackSequence(flatItems.ToArray()); + } + + /// + /// Flatten the nested object. + /// + /// + /// + /// + public static IEnumerable Flatten(INestable nestedObject) + { + return nestedObject.AsNest().Flatten(); + } + + /// + /// Map the structure with specified function. + /// + /// + /// + /// + /// + /// + public static INestStructure MapStructure(Func func, INestable nestedObject) + { + return nestedObject.AsNest().MapStructure(func); + } + + public static bool IsNested(INestable obj) + { + return obj.AsNest().IsNested(); + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/Nest.cs b/src/TensorFlowNET.Core/Common/Types/Nest.cs new file mode 100644 index 000000000..89ce29f2f --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/Nest.cs @@ -0,0 +1,485 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Common.Extensions; + +namespace Tensorflow.Common.Types +{ + public enum NestType + { + Empty, + Node, + List, + Dictionary + } + + /// + /// A nested structure which may inclulde value, list and dictionary. + /// Note that dictionary does not ensure the data order. When using it as IEnumerable, + /// its order is depth-first. + /// + /// + public class Nest : INestStructure, IEnumerable + { + private static readonly Nest _empty = new Nest() + { + NestType = NestType.Empty, + }; + public static Nest Empty => _empty; + public NestType NestType { get; protected set; } + public string? Name { get; set; } + public T? NodeValue { get; protected set; } + public List>? ListValue { get; protected set; } + public Dictionary>? DictValue { get; protected set; } + + public int ShallowNestedCount + { + get + { + if (NestType == NestType.Empty) + { + return 0; + } + else if (NestType == NestType.Node) + { + return 1; + } + else if (NestType == NestType.List) + { + return ListValue!.Count; + } + else // dict + { + return DictValue!.Count; + } + } + } + + public int TotalNestedCount + { + get + { + return Flatten().Count(); + } + } + + protected Nest() { } + + public Nest(T value, string? name = null) + { + NodeValue = value; + Name = name; + NestType = NestType.Node; + } + + public Nest(IEnumerable> values, string? name = null) + { + ListValue = values.ToList(); + Name = name; + NestType = NestType.List; + } + + public Nest(Dictionary> value, string? name = null) + { + DictValue = value; + Name = name; + NestType = NestType.Dictionary; + } + + public Nest(Nest other) + { + NestType = other.NestType; + NodeValue = other.NodeValue; + DictValue = other.DictValue; + ListValue = other.ListValue; + Name = other.Name; + } + + public virtual IEnumerable Flatten() + { + return FlattenInternal(this); + } + public virtual INestStructure MapStructure(Func func) + { + return MapStructureInternal(func); + } + + /// + /// Pack the flat items to a nested sequence by the template. + /// + /// + /// + public virtual Nest PackSequence(TOut[] flatItems) + { + if(flatItems.Length == 0) + { + return Nest.Empty; + } + int index = 0; + return PackSequenceInternal(this, flatItems, ref index); + } + + private static Nest PackSequenceInternal(Nest template, TOut[] flatItems, ref int index) + { + if(template.NestType == NestType.Node) + { + if(index >= flatItems.Length) + { + throw new InvalidArgumentError("The template and flat items are not matched."); + } + return new Nest(flatItems[index++]); + } + else if(template.NestType == NestType.List) + { + List> nestedObjects = new List>(); + for (int i = 0; i < template.ListValue!.Count; i++) + { + nestedObjects.Add(PackSequenceInternal(template.ListValue![i].AsNest(), flatItems, ref index)); + } + return new Nest(nestedObjects); + } + else if(template.NestType == NestType.Node) + { + Dictionary> dict = new Dictionary>(); + foreach(var (key, value) in template.DictValue!) + { + dict[key] = PackSequenceInternal(value.AsNest(), flatItems, ref index); + } + return new Nest(dict); + } + // Consider Empty as invalid type. + throw new InvalidArgumentError("When using `PackSequenceAs`, the template cannot contain empty node."); + } + + public virtual Nest AsNest() + { + return this; + } + + public virtual Nest MergeWith(Nest? other) + { + if(other is null || other == Nest.Empty) + { + return this; + } + if(this == Nest.Empty) + { + return other; + } + if(NestType == NestType.Node && other.NestType == NestType.Node) + { + return new Nest(new Nest[] { this, other }); + } + else if(NestType == NestType.List && other.NestType == NestType.List) + { + return new Nest(this.ListValue!.Concat(other.ListValue!)); + } + else if(NestType == NestType.Dictionary && other.NestType == NestType.Dictionary) + { + return new Nest(this.DictValue!.Concat(other.DictValue!).ToDictionary(x => x.Key, x => x.Value)); + } + else + { + return new Nest(new Nest[] { this, other }); + } + } + + /// + /// To see if the nested object is really nested. Despite being called `Nest`, sometimes it's actually not + /// nested. For example, [1, 2, 3] is not nested, while [1, [2, 3]] is nested. + /// + /// + public bool IsNested() + { + if(NestType is NestType.Empty or NestType.Node) + { + return false; + } + else if(NestType is NestType.List) + { + return ListValue!.Count > 0; + } + else + { + return DictValue!.Count > 0; + } + } + + [Obsolete("The indexer of Tensors is not encouraged because it leads to unclear meanings.")] + public T this[int index] + { + get + { + bool success = FindInternal(this, index, out var result); + if (success) + { + return result; + } + else + { + throw new IndexOutOfRangeException(); + } + } + set + { + bool success = SetInternal(this, index, value); + if (!success) + { + throw new IndexOutOfRangeException(); + } + } + } + + /// + /// If the existing nested structure if of type `Nest[INestStructure[T]]`, we can reduce it + /// to `Nest[T]`. + /// + /// + /// + /// + public static Nest ReduceFrom(INestStructure input) where TOut: INestStructure + { + var nested = input.AsNest(); + return ReduceInternal(nested).AsNest(); + } + + private static INestStructure ReduceInternal(Nest node) where TOut : INestStructure + { + if(node.NestType == NestType.Empty) + { + return Nest.Empty; + } + else if(node.NestType == NestType.Node) + { + return node.NodeValue!.AsNest(); + } + else if(node.NestType == NestType.List) + { + return new Nest(node.ListValue!.Select(x => ReduceInternal(x.AsNest()))); + } + else // Dictionary type + { + return new Nest(node.DictValue!.ToDictionary(x => x.Key, x => ReduceInternal(x.Value.AsNest()))); + } + } + + private static bool FindInternal(Nest node, int index, out T? result) + { + if (node.NestType == NestType.Node) + { + if(index == 0) + { + result = node.NodeValue!; + return true; + } + result = default(T); + return false; + } + else if (node.NestType == NestType.List) + { + foreach (var item in node.ListValue!) + { + if(index == 0) + { + return FindInternal(item.AsNest(), index, out result); + } + index--; + } + result = default(T); + return false; + } + else if(node.NestType == NestType.Dictionary) + { + foreach (var item in node.DictValue!.Values) + { + if (index == 0) + { + return FindInternal(item.AsNest(), index, out result); + } + index--; + } + result = default(T); + return false; + } + else + { + result = default(T); + return false; + } + } + + private static bool SetInternal(Nest node, int index, T newValue) + { + if (node.NestType == NestType.Node) + { + if (index == 0) + { + node.NodeValue = newValue; + return true; + } + return false; + } + else if (node.NestType == NestType.List) + { + foreach (var item in node.ListValue!) + { + if (index == 0) + { + return SetInternal(item.AsNest(), index, newValue); + } + index--; + } + return false; + } + else if (node.NestType == NestType.Dictionary) + { + foreach (var item in node.DictValue!.Values) + { + if (index == 0) + { + return SetInternal(item.AsNest(), index, newValue); + } + index--; + } + return false; + } + else + { + return false; + } + } + + private static IEnumerable FlattenInternal(Nest node) + { + if (node.NestType == NestType.Node) + { + yield return node.NodeValue!; + } + else if (node.NestType == NestType.List) + { + foreach (var item in node.ListValue!) + { + foreach(var val in FlattenInternal(item.AsNest())) + { + yield return val; + } + } + } + else if (node.NestType == NestType.Dictionary) + { + foreach (var item in node.DictValue!.Values) + { + foreach (var val in FlattenInternal(item.AsNest())) + { + yield return val; + } + } + } + } + + private Nest MapStructureInternal(Func func) + { + if (NestType == NestType.Node) + { + return new Nest(func(NodeValue!)); + } + else if (NestType == NestType.List) + { + List> outs = new List>(); + foreach (var item in ListValue!) + { + outs.Add(item.AsNest().MapStructureInternal(func)); + } + return new Nest(outs); + } + else if (NestType == NestType.Dictionary) + { + Dictionary> outs = new Dictionary>(); + foreach (var (key, value) in DictValue!) + { + outs.Add(key, value.AsNest().MapStructureInternal(func)); + } + return new Nest(outs); + } + else + { + return Nest.Empty; + } + } + + public IEnumerator GetEnumerator() + { + return Flatten().GetEnumerator(); + } + + IEnumerator IEnumerable.GetEnumerator() + { + return GetEnumerator(); + } + + public override string ToString() + { + StringBuilder sb = new StringBuilder(); + sb.Append("("); + WriteString(this, sb); + sb.Append(")"); + return sb.ToString(); + } + + private static void WriteString(Nest node, StringBuilder sb) + { + if (!string.IsNullOrEmpty(node.Name)) + { + sb.Append($"{node.Name}: "); + } + if (node.NestType == NestType.Node) + { + sb.Append(node.NodeValue!.ToString()); + } + else if (node.NestType == NestType.List) + { + sb.Append("["); + for(int i = 0; i < node.ListValue!.Count; i++) + { + WriteString(node.ListValue![i].AsNest(), sb); + if(i != node.ListValue!.Count - 1) + { + sb.Append(", "); + } + } + sb.Append("]"); + } + else if (node.NestType == NestType.Dictionary) + { + sb.Append("{"); + int count = node.DictValue!.Count; + int i = 0; + foreach (var (key, value) in node.DictValue!) + { + sb.Append($"{key}: "); + WriteString(value.AsNest(), sb); + if (i != count - 1) + { + sb.Append(", "); + } + i++; + } + sb.Append("}"); + } + else + { + sb.Append(""); + } + } + + public static implicit operator Nest((INestStructure, INestStructure) inputs) + { + return new Nest(new INestStructure[] { inputs.Item1, inputs.Item2 }); + } + + public static implicit operator Nest((INestStructure, INestStructure, INestStructure) inputs) + { + return new Nest(new INestStructure[] { inputs.Item1, inputs.Item2, inputs.Item3 }); + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/NestDictionary.cs b/src/TensorFlowNET.Core/Common/Types/NestDictionary.cs new file mode 100644 index 000000000..cf1994554 --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/NestDictionary.cs @@ -0,0 +1,103 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Common.Types +{ + public class NestDictionary : INestStructure, IDictionary where TKey : notnull + { + public NestType NestType => NestType.Dictionary; + public IDictionary Value { get; set; } + public int ShallowNestedCount => Values.Count; + + public int TotalNestedCount => Values.Count; + public NestDictionary(IDictionary dict) + { + Value = dict; + } + public IEnumerable Flatten() + { + return Value.Select(x => x.Value); + } + public INestStructure MapStructure(Func func) + { + return new NestList(Value.Select(x => func(x.Value))); + } + + public Nest AsNest() + { + return new Nest(Value.Values.Select(x => new Nest(x))); + } + + // Required IDictionary members + public int Count => Value.Count; + + public bool IsReadOnly => Value.IsReadOnly; + + public ICollection Keys => Value.Keys; + + public ICollection Values => Value.Values; + + public void Add(TKey key, TValue value) + { + Value.Add(key, value); + } + + public void Add(KeyValuePair item) + { + Value.Add(item); + } + + public void Clear() + { + Value.Clear(); + } + + public bool Contains(KeyValuePair item) + { + return Value.Contains(item); + } + + public bool ContainsKey(TKey key) + { + return Value.ContainsKey(key); + } + + public void CopyTo(KeyValuePair[] array, int arrayIndex) + { + Value.CopyTo(array, arrayIndex); + } + + public IEnumerator> GetEnumerator() + { + return Value.GetEnumerator(); + } + + IEnumerator IEnumerable.GetEnumerator() + { + return GetEnumerator(); + } + + public bool Remove(TKey key) + { + return Value.Remove(key); + } + + public bool Remove(KeyValuePair item) + { + return Value.Remove(item); + } + + public bool TryGetValue(TKey key, out TValue value) + { + return Value.TryGetValue(key, out value); + } + + // Optional IDictionary members + public TValue this[TKey key] + { + get => Value[key]; + set => Value[key] = value; + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/NestList.cs b/src/TensorFlowNET.Core/Common/Types/NestList.cs new file mode 100644 index 000000000..1e0d272b7 --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/NestList.cs @@ -0,0 +1,53 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Common.Types +{ + /// + /// The implementation of a list that support nest structure, in which the depth is 1. + /// + /// + public sealed class NestList : INestStructure, IEnumerable + { + public NestType NestType => NestType.List; + public List Values { get; set; } + public int ShallowNestedCount => Values.Count; + + public int TotalNestedCount => Values.Count; + + public NestList(params T[] values) + { + Values = new List(values); + } + + public NestList(IEnumerable values) + { + Values = new List(values); + } + public IEnumerable Flatten() + { + return Values; + } + public INestStructure MapStructure(Func func) + { + return new NestList(Values.Select(x => func(x))); + } + + public Nest AsNest() + { + return new Nest(Values.Select(x => new Nest(x))); + } + + // Enumerator implementation + public IEnumerator GetEnumerator() + { + return Values.GetEnumerator(); + } + + IEnumerator IEnumerable.GetEnumerator() + { + return GetEnumerator(); + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/NestNode.cs b/src/TensorFlowNET.Core/Common/Types/NestNode.cs new file mode 100644 index 000000000..701aade9a --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/NestNode.cs @@ -0,0 +1,36 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Common.Types +{ + /// + /// A nested structure with only one element. + /// + /// + public class NestNode : INestStructure + { + public NestType NestType => NestType.Node; + public T Value { get; set; } + public int ShallowNestedCount => 1; + + public int TotalNestedCount => 1; + public NestNode(T value) + { + Value = value; + } + public IEnumerable Flatten() + { + yield return Value; + } + public INestStructure MapStructure(Func func) + { + return new NestNode(func(Value)); + } + + public Nest AsNest() + { + return new Nest(Value); + } + } +} diff --git a/src/TensorFlowNET.Core/Common/Types/TensorShapeConfig.cs b/src/TensorFlowNET.Core/Common/Types/TensorShapeConfig.cs new file mode 100644 index 000000000..a36930eca --- /dev/null +++ b/src/TensorFlowNET.Core/Common/Types/TensorShapeConfig.cs @@ -0,0 +1,21 @@ +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Linq; + +namespace Tensorflow.Common.Types +{ + public class TensorShapeConfig + { + [JsonProperty("class_name")] + public string ClassName { get; set; } = "TensorShape"; + [JsonProperty("items")] + public long?[] Items { get; set; } + + public static implicit operator Shape(TensorShapeConfig shape) + => shape == null ? null : new Shape(shape.Items.Select(x => x.HasValue ? x.Value : -1).ToArray()); + + public static implicit operator TensorShapeConfig(Shape shape) + => new TensorShapeConfig() { Items = shape.dims.Select(x => x == -1 ? null : x).ToArray() }; + } +} diff --git a/src/TensorFlowNET.Core/Contexts/Context.Config.cs b/src/TensorFlowNET.Core/Contexts/Context.Config.cs index b363b516e..0c7bded6e 100644 --- a/src/TensorFlowNET.Core/Contexts/Context.Config.cs +++ b/src/TensorFlowNET.Core/Contexts/Context.Config.cs @@ -14,9 +14,11 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Google.Protobuf; using System; using System.Diagnostics; using System.Linq; +using Tensorflow.Common.Extensions; namespace Tensorflow.Contexts { @@ -25,12 +27,93 @@ namespace Tensorflow.Contexts /// public sealed partial class Context { - public ConfigProto Config { get; set; } = new ConfigProto + protected Device.PhysicalDevice[] _physical_devices; + protected Dictionary _physical_device_to_index; + ConfigProto _config; + public ConfigProto Config { - GpuOptions = new GPUOptions + get { + _initialize_physical_devices(); + + var config = new ConfigProto(); + if(_config is not null) + { + config.MergeFrom(_config); + } + config.LogDevicePlacement = _log_device_placement; + + config.DeviceCount["CPU"] = 0; + config.DeviceCount["GPU"] = 0; + foreach(var dev in _physical_devices) + { + if (config.DeviceCount.ContainsKey(dev.DeviceType)) + { + config.DeviceCount[dev.DeviceType] += 1; + } + else + { + config.DeviceCount[dev.DeviceType] = 1; + } + } + + var gpu_options = _compute_gpu_options(); + config.GpuOptions = GPUOptions.Parser.ParseFrom(gpu_options.ToByteArray()); + + return config; + } + set + { + _config = value; + } + } + + protected void _initialize_physical_devices(bool reinitialize = false) + { + if(!reinitialize && _physical_devices is not null) + { + return; + } + var devs = list_physical_devices(); + _physical_devices = devs.Select(d => new Device.PhysicalDevice() + { + DeviceName = d.DeviceName, + DeviceType = d.DeviceType + }).ToArray(); + _physical_device_to_index = _physical_devices.Select((p, i) => new KeyValuePair(p, i)) + .ToDictionary(x => x.Key, x => x.Value); + + _import_config(); + } + + protected void _import_config() + { + if(_config is null) + { + return; + } + if(!_config.DeviceCount.TryGetValue("CPU", out var num_cpus)) + { + num_cpus = 1; + } + if(num_cpus != 1) + { + // TODO(Rinne): implement it. } - }; + + var gpus = _physical_devices.Where(d => d.DeviceType == "GPU"); + if(gpus.Count() == 0) + { + return; + } + + if(!_config.DeviceCount.TryGetValue("GPU", out var gpu_count)) + { + gpu_count = 0; + } + + // TODO(Rinne): implement it. + } ConfigProto MergeConfig() { diff --git a/src/TensorFlowNET.Core/Contexts/Context.Device.cs b/src/TensorFlowNET.Core/Contexts/Context.Device.cs index fea2c8241..d35d10847 100644 --- a/src/TensorFlowNET.Core/Contexts/Context.Device.cs +++ b/src/TensorFlowNET.Core/Contexts/Context.Device.cs @@ -21,6 +21,7 @@ limitations under the License. using static Tensorflow.Binding; using Google.Protobuf; using Tensorflow.Device; +using Tensorflow.Exceptions; using System.Collections.Generic; namespace Tensorflow.Contexts @@ -30,14 +31,34 @@ namespace Tensorflow.Contexts /// public sealed partial class Context { + internal static Dictionary<(string, string), (string, DeviceSpec)> _device_parsing_cache = new(); + internal List _logical_devices = null; + internal List _context_devices = null; + ContextDevicePlacementPolicy _device_policy; bool _log_device_placement; + int _num_gpus; Dictionary _memory_growth_map = new Dictionary(); + public string DeviceName { get; set; } = ""; + public DeviceSpec DeviceSpec { get; set; } = null; + + internal List Devices + { + get + { + if(_context_devices is null) + { + throw new AssertionError("Context must be initialized first."); + } + return _context_devices; + } + } + public void log_device_placement(bool enable) { if (_handle != null) - c_api.TFE_ContextSetLogDevicePlacement(_handle, enable, tf.Status.Handle); + c_api.TFE_ContextSetLogDevicePlacement(_handle, enable, tf.Status); _log_device_placement = enable; // _thread_local_data.function_call_options = null; } @@ -60,15 +81,15 @@ public void set_memory_growth(PhysicalDevice device, bool enable) public PhysicalDevice[] list_physical_devices(string device_type = null) { using var opts = c_api.TFE_NewContextOptions(); - using var ctx = c_api.TFE_NewContext(opts, tf.Status.Handle); - using var devices = c_api.TFE_ContextListDevices(ctx, tf.Status.Handle); + using var ctx = c_api.TFE_NewContext(opts, tf.Status); + using var devices = c_api.TFE_ContextListDevices(ctx, tf.Status); tf.Status.Check(true); int num_devices = c_api.TF_DeviceListCount(devices); var results = new List(); for (int i = 0; i < num_devices; ++i) { - var dev_type = c_api.StringPiece(c_api.TF_DeviceListType(devices, i, tf.Status.Handle)); + var dev_type = c_api.StringPiece(c_api.TF_DeviceListType(devices, i, tf.Status)); tf.Status.Check(true); if (dev_type.StartsWith("XLA")) @@ -76,7 +97,7 @@ public PhysicalDevice[] list_physical_devices(string device_type = null) if (device_type == null || dev_type == device_type) { - var dev_name = c_api.TF_DeviceListName(devices, i, tf.Status.Handle); + var dev_name = c_api.TF_DeviceListName(devices, i, tf.Status); tf.Status.Check(true); results.Add(new PhysicalDevice @@ -89,5 +110,65 @@ public PhysicalDevice[] list_physical_devices(string device_type = null) return results.ToArray(); } + + public bool is_custom_device(string device_name) + { + return false; + // TODO(Rinne): After tf2.11 TFE_IsCustomDevice has been added to C APIs. + //ensure_initialized(); + //return c_api.TFE_IsCustomDevice(_handle, device_name); + } + + public EagerDeviceContext device(string name) + { + return new EagerDeviceContext(this, name); + } + + internal void _set_device(string device_name, DeviceSpec device_spec) + { + DeviceSpec = device_spec; + DeviceName = device_name; + } + + internal void _initialize_logical_devices() + { + List logical_devices = new(); + List context_devices = new(); + Status status = new(); + var device_list = c_api.TFE_ContextListDevices(_handle, status); + status.Check(true); + try + { + this._num_gpus = 0; + string current_job = null; + int current_task = -1; + for(int i = 0; i < c_api.TF_DeviceListCount(device_list); i++) + { + var dev_name = c_api.TF_DeviceListName(device_list, i, status); + status.Check(true); + context_devices.Add(DeviceUtils.canonical_name(dev_name)); + var spec = DeviceSpec.from_string(dev_name); + if(spec.Job == "localhost") + { + spec = spec.replace(job: null, replica: -1, task: -1); + } + logical_devices.Add(new LogicalDevice(spec.ToString(), spec.DeviceType)); + var dev_type_memory = c_api.TF_DeviceListType(device_list, i, status); + var dev_type = c_api.StringPiece(dev_type_memory); + status.Check(true); + if(dev_type == "GPU" && spec.Job == current_job && spec.Task == current_task) + { + _num_gpus++; + } + } + } + finally + { + _logical_devices = logical_devices; + _context_devices = context_devices; + } + } } + + public record class LogicalDevice(string name, string device_type); } diff --git a/src/TensorFlowNET.Core/Contexts/Context.ExecuteOp.cs b/src/TensorFlowNET.Core/Contexts/Context.ExecuteOp.cs index ac1cd8660..f6e0911ca 100644 --- a/src/TensorFlowNET.Core/Contexts/Context.ExecuteOp.cs +++ b/src/TensorFlowNET.Core/Contexts/Context.ExecuteOp.cs @@ -49,7 +49,7 @@ Tensors ExecGraphAction(string OpType, string Name, ExecuteOpArgs args) Tensors ExecEagerAction(string OpType, string Name, ExecuteOpArgs args) { - var opExecInfo = new FastPathOpExecInfo(OpType, Name, args.OpInputArgs) + var opExecInfo = new FastPathOpExecInfo(tf.Context, OpType, Name, args.OpInputArgs) { attrs = args.OpAttrs }; diff --git a/src/TensorFlowNET.Core/Contexts/Context.cs b/src/TensorFlowNET.Core/Contexts/Context.cs index 5d02c0274..0507cc2f8 100644 --- a/src/TensorFlowNET.Core/Contexts/Context.cs +++ b/src/TensorFlowNET.Core/Contexts/Context.cs @@ -28,28 +28,38 @@ namespace Tensorflow.Contexts /// /// Environment in which eager operations execute. /// - public sealed partial class Context : IDisposable + public sealed partial class Context { public const int GRAPH_MODE = 0; public const int EAGER_MODE = 1; int defaultExecutionMode = EAGER_MODE; - public string DeviceName { get; set; } = ""; public string ScopeName { get; set; } = ""; bool initialized = false; ContextSwitchStack context_switches; - public FunctionCallOptions FunctionCallOptions { get; } - - SafeContextHandle _handle; - public SafeContextHandle Handle + protected FunctionCallOptions _function_call_options; + public FunctionCallOptions FunctionCallOptions { get { - if (_handle == null) - ensure_initialized(); - return _handle; + if(_function_call_options is null) + { + var config = Config; + _function_call_options = new FunctionCallOptions() + { + Config = config + }; + } + return _function_call_options; + } + set + { + _function_call_options = value; } } + + SafeContextHandle _handle; + int? _seed; Random _rng; @@ -59,6 +69,7 @@ public Context() context_switches = new ContextSwitchStack(defaultExecutionMode == EAGER_MODE, false); initialized = false; FunctionCallOptions = new FunctionCallOptions(); + ensure_initialized(); } /// @@ -69,16 +80,19 @@ public void ensure_initialized() if (initialized) return; + Debug.Assert(_context_devices is null); + Config = MergeConfig(); FunctionCallOptions.Config = Config; var config_str = Config.ToByteArray(); - using var opts = new ContextOptions(); - using var status = new Status(); - c_api.TFE_ContextOptionsSetConfig(opts.Handle, config_str, (ulong)config_str.Length, status.Handle); + var opts = new ContextOptions(); + var status = new Status(); + c_api.TFE_ContextOptionsSetConfig(opts, config_str, (ulong)config_str.Length, status); status.Check(true); - c_api.TFE_ContextOptionsSetDevicePlacementPolicy(opts.Handle, _device_policy); - _handle = c_api.TFE_NewContext(opts.Handle, status.Handle); + c_api.TFE_ContextOptionsSetDevicePlacementPolicy(opts, _device_policy); + _handle = c_api.TFE_NewContext(opts, status); status.Check(true); + _initialize_logical_devices(); initialized = true; } @@ -127,6 +141,11 @@ public string shared_name(string name = null) name : "cd2c89b7-88b7-44c8-ad83-06c2a9158347"; + public string anonymous_name() + { + return "cd2c89b7-88b7-44c8-ad83-06c2a9158347"; + } + public void graph_mode(bool isFunc = false) => context_switches.Push(false, isFunc); @@ -163,6 +182,37 @@ public bool has_graph_arg(params object[] args) return has_graph_arg; } + public bool has_function(string name) + { + ensure_initialized(); + return c_api.TFE_ContextHasFunction(_handle, name); + } + + public void add_function(SafeFuncGraphHandle fn) + { + ensure_initialized(); + Status status = new(); + c_api.TFE_ContextAddFunction(_handle, fn, status); + status.Check(true); + } + + public void remove_function(string name) + { + ensure_initialized(); + Status status = new(); + c_api.TFE_ContextRemoveFunction(_handle, name, status); + status.Check(true); + } + + public void add_function_def(FunctionDef fdef) + { + ensure_initialized(); + var fdef_string = fdef.ToByteArray(); + Status status = new Status(); + c_api.TFE_ContextAddFunctionDef(_handle, fdef_string, (ulong)fdef_string.Length, status); + status.Check(true); + } + public void restore_mode() { context_switches.Pop(); @@ -178,10 +228,15 @@ public void reset_context() tf.Context.ensure_initialized(); if (_handle != null) + { c_api.TFE_ContextClearCaches(_handle); + } + _device_parsing_cache.Clear(); } - public void Dispose() - => _handle.Dispose(); + public static implicit operator SafeContextHandle(Context ctx) + { + return ctx._handle; + } } } diff --git a/src/TensorFlowNET.Core/Contexts/ContextOptions.cs b/src/TensorFlowNET.Core/Contexts/ContextOptions.cs index 6c2156a97..4a07f1f5c 100644 --- a/src/TensorFlowNET.Core/Contexts/ContextOptions.cs +++ b/src/TensorFlowNET.Core/Contexts/ContextOptions.cs @@ -14,21 +14,21 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ -using System; using Tensorflow.Eager; -namespace Tensorflow.Contexts +namespace Tensorflow.Contexts; + +public sealed class ContextOptions { - public sealed class ContextOptions : IDisposable - { - public SafeContextOptionsHandle Handle { get; } + SafeContextOptionsHandle _handle { get; } - public ContextOptions() - { - Handle = c_api.TFE_NewContextOptions(); - } + public ContextOptions() + { + _handle = c_api.TFE_NewContextOptions(); + } - public void Dispose() - => Handle.Dispose(); + public static implicit operator SafeContextOptionsHandle(ContextOptions opt) + { + return opt._handle; } } diff --git a/src/TensorFlowNET.Core/Contexts/EagerDeviceContext.cs b/src/TensorFlowNET.Core/Contexts/EagerDeviceContext.cs new file mode 100644 index 000000000..2d5f61cdb --- /dev/null +++ b/src/TensorFlowNET.Core/Contexts/EagerDeviceContext.cs @@ -0,0 +1,71 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Device; + +namespace Tensorflow.Contexts +{ + public class EagerDeviceContext : ITensorFlowObject + { + private Context _ctx; + private string _device_name; + private Stack<(string, DeviceSpec, DeviceSpec)> _stack; + + public EagerDeviceContext(Context ctx, string device_name) + { + _ctx = ctx; + _device_name = device_name; + _stack = new Stack<(string, DeviceSpec, DeviceSpec)>(); + } + public void __enter__() + { + var ctx = _ctx; + var old_device_name = ctx.DeviceName; + var old_device_spec = ctx.DeviceSpec; + var new_device_name = _device_name; + var cache_key = (old_device_name, new_device_name); + DeviceSpec new_device_spec; + if (Context._device_parsing_cache.ContainsKey(cache_key)) + { + (new_device_name, new_device_spec) = Context._device_parsing_cache[cache_key]; + } + else + { + if(new_device_name is not null) + { + var device_spec = DeviceSpec.from_string(new_device_name); + if (!string.IsNullOrEmpty(old_device_name)) + { + new_device_spec = new DeviceSpec(old_device_spec); + } + else + { + ctx.ensure_initialized(); + new_device_spec = DeviceSpec.from_string(ctx._context_devices[0]); + } + new_device_spec = new_device_spec.make_merged_spec(device_spec); + } + else + { + new_device_spec = DeviceSpec.from_string(ctx._context_devices[0]); + } + new_device_name = new_device_spec.ToString(); + Context._device_parsing_cache[cache_key] = (new_device_name, new_device_spec); + } + ctx._set_device(new_device_name, new_device_spec); + _stack.Push((old_device_name, old_device_spec, new_device_spec)); + } + + public void __exit__() + { + var ctx = _ctx; + var (old_device_name, old_device_spec, new_device_spec) = _stack.Pop(); + ctx._set_device(old_device_name, old_device_spec); + } + + public void Dispose() + { + + } + } +} diff --git a/src/TensorFlowNET.Core/Contexts/FunctionCallOptions.cs b/src/TensorFlowNET.Core/Contexts/FunctionCallOptions.cs index 6b6028f03..71312d11b 100644 --- a/src/TensorFlowNET.Core/Contexts/FunctionCallOptions.cs +++ b/src/TensorFlowNET.Core/Contexts/FunctionCallOptions.cs @@ -2,6 +2,7 @@ using System.Collections.Generic; using System.Text; using Google.Protobuf; +using Protobuf.Text; using static Tensorflow.Binding; namespace Tensorflow.Contexts @@ -9,10 +10,11 @@ namespace Tensorflow.Contexts public class FunctionCallOptions { public ConfigProto Config { get; set; } + public string ExecutorType { get; set; } - public string config_proto_serialized() + public ByteString config_proto_serialized() { - return Config.ToByteString().ToStringUtf8(); + return Config.ToByteString(); } } } diff --git a/src/TensorFlowNET.Core/Data/DatasetV2.cs b/src/TensorFlowNET.Core/Data/DatasetV2.cs index 103d7cfff..c1762d670 100644 --- a/src/TensorFlowNET.Core/Data/DatasetV2.cs +++ b/src/TensorFlowNET.Core/Data/DatasetV2.cs @@ -19,6 +19,8 @@ public class DatasetV2 : IDatasetV2 public TensorSpec[] structure { get; set; } + public int FirstInputTensorCount { get; set; } = 1; + public Shape[] output_shapes => structure.Select(x => x.shape).ToArray(); public TF_DataType[] output_types => structure.Select(x => x.dtype).ToArray(); @@ -131,6 +133,7 @@ public IDatasetV2 apply_options() // (4) Apply stats aggregator options + dataset.FirstInputTensorCount = this.FirstInputTensorCount; return dataset; } @@ -142,7 +145,7 @@ public override string ToString() $"types: {string.Join(", ", structure.Select(x => "tf." + x.dtype.as_numpy_name()))}, " + $"len: {length}"; - public IEnumerator<(Tensor, Tensor)> GetEnumerator() + public IEnumerator<(Tensors, Tensors)> GetEnumerator() { using var ownedIterator = new OwnedIterator(this); @@ -158,7 +161,8 @@ public override string ToString() break; } - yield return (results[0], results.Length == 1 ? null : results[1]); + yield return (new Tensors(results.Take(FirstInputTensorCount).ToArray()), results.Length == FirstInputTensorCount ? + null : new Tensors(results.Skip(FirstInputTensorCount).ToArray())); } } diff --git a/src/TensorFlowNET.Core/Data/IDatasetV2.cs b/src/TensorFlowNET.Core/Data/IDatasetV2.cs index 5cfeb27cc..320cbe348 100644 --- a/src/TensorFlowNET.Core/Data/IDatasetV2.cs +++ b/src/TensorFlowNET.Core/Data/IDatasetV2.cs @@ -4,7 +4,7 @@ namespace Tensorflow { - public interface IDatasetV2 : IEnumerable<(Tensor, Tensor)> + public interface IDatasetV2 : IEnumerable<(Tensors, Tensors)> { string[] class_names { get; set; } @@ -18,6 +18,8 @@ public interface IDatasetV2 : IEnumerable<(Tensor, Tensor)> TensorSpec[] structure { get; set; } + int FirstInputTensorCount { get; set; } + /// /// Caches the elements in this dataset. /// diff --git a/src/TensorFlowNET.Core/Data/OwnedIterator.cs b/src/TensorFlowNET.Core/Data/OwnedIterator.cs index eb91272c7..6f6fd0b58 100644 --- a/src/TensorFlowNET.Core/Data/OwnedIterator.cs +++ b/src/TensorFlowNET.Core/Data/OwnedIterator.cs @@ -13,7 +13,7 @@ public class OwnedIterator : IDisposable IDatasetV2 _dataset; TensorSpec[] _element_spec; dataset_ops ops = new dataset_ops(); - Tensor _deleter; + //Tensor _deleter; Tensor _iterator_resource; public OwnedIterator(IDatasetV2 dataset) @@ -26,8 +26,8 @@ void _create_iterator(IDatasetV2 dataset) dataset = dataset.apply_options(); _dataset = dataset; _element_spec = dataset.element_spec; - // _flat_output_types = - (_iterator_resource, _deleter) = ops.anonymous_iterator_v2(_dataset.output_types, _dataset.output_shapes); + _iterator_resource = ops.anonymous_iterator_v3(_dataset.output_types, _dataset.output_shapes); + // TODO(Rinne): deal with graph mode. ops.make_iterator(dataset.variant_tensor, _iterator_resource); } @@ -48,7 +48,7 @@ public Tensor[] next() public void Dispose() { - tf.Runner.Execute(tf.Context, "DeleteIterator", 0, new[] { _iterator_resource, _deleter }, null); + //tf.Runner.Execute(tf.Context, "DeleteIterator", 0, new[] { _iterator_resource, _deleter }, null); } } } diff --git a/src/TensorFlowNET.Core/Device/DeviceSpec.cs b/src/TensorFlowNET.Core/Device/DeviceSpec.cs new file mode 100644 index 000000000..255191cb5 --- /dev/null +++ b/src/TensorFlowNET.Core/Device/DeviceSpec.cs @@ -0,0 +1,206 @@ +using System; +using System.Collections.Concurrent; +using System.Collections.Generic; +using System.Text; +using System.Threading.Tasks; + +namespace Tensorflow.Device +{ + public class DeviceSpec + { + private static ConcurrentDictionary _STRING_TO_COMPONENTS_CACHE = new(); + private static ConcurrentDictionary _COMPONENTS_TO_STRING_CACHE = new(); + private string _job; + private int _replica; + private int _task; + private string _device_type; + private int _device_index; + private string _as_string; + + public string Job => _job; + public int Replica => _replica; + public int Task => _task; + public string DeviceType => _device_type; + public int DeviceIndex => _device_index; + + public DeviceSpec(string job = null, int replica = -1, int task = -1, + string device_type = null, int device_index = -1) + { + _job = job; + _replica = replica; + _task = task; + _device_type = device_type; + _device_index = device_index; + _as_string = _components_to_string(job, replica, task, device_type, _device_index); + + } + + public DeviceSpec(DeviceSpec other) + { + _job = other._job; + _replica = other._replica; + _task = other._task; + _device_type = other._device_type; + _device_index = other._device_index; + _as_string = other._as_string; + } + + protected DeviceSpec(Components com) + { + _job = com.Job; + _replica = com.Replica; + _task = com.Task; + _device_type = com.DeviceType; + _device_index = com.DeviceIndex; + _as_string = _components_to_string(_job, _replica, _task, _device_type, _device_index); + } + + public DeviceSpec replace(string job = null, int replica = -1, int task = -1, + string device_type = null, int device_index = -1) + { + job = job ?? _job; + replica = replica == -1 ? _replica : replica; + task = task == -1 ? _task : task; + device_type = device_type ?? _device_type; + device_index = device_index == -1 ? _device_index : device_index; + return new DeviceSpec(job, replica, task, device_type, device_index); + } + + public static DeviceSpec from_string(string spec) + { + var components = _string_to_components(spec); + return new DeviceSpec(components.Job, components.Replica, components.Task, components.DeviceType, components.DeviceIndex); + } + + public DeviceSpec make_merged_spec(DeviceSpec dev) + { + return new DeviceSpec(_get_combined_properties(dev)); + } + + private Components _get_combined_properties(DeviceSpec dev) + { + return new Components( + dev.Job ?? _job, + dev.Replica == -1 ? _replica : dev.Replica, + dev.Task == -1 ? _task : dev.Task, + dev.DeviceType ?? _device_type, + dev.DeviceIndex == -1 ? _device_index : dev.DeviceIndex + ); + } + + private static string _components_to_string(string job, int replica, int task, string device_type, int device_index) + { + var key = new Components(job, replica, task, device_type, device_index); + if(_COMPONENTS_TO_STRING_CACHE.TryGetValue(key, out var cache_result)) + { + return cache_result; + } + + StringBuilder output = new(); + if(job is not null) + { + output.Append($"/job:{job}"); + } + if(replica != -1) + { + output.Append($"/replica:{replica}"); + } + if(task != -1) + { + output.Append($"/task:{task}"); + } + if (device_type is not null) + { + string device_index_string = "*"; + if (device_index != -1) + { + device_index_string = device_index.ToString(); + } + output.Append($"/device:{device_type}:{device_index_string}"); + } + var result = output.ToString(); + _COMPONENTS_TO_STRING_CACHE[key] = result; + return result; + } + + private static Components _string_to_components(string spec) + { + if(_STRING_TO_COMPONENTS_CACHE.TryGetValue(spec, out var cached_result)) + { + return cached_result; + } + var raw_spec = spec; + var splits = spec.Split('/').Select(x => x.Split(':')); + var valid_device_types = _get_valid_device_types(); + string job = null, device_type = null; + int replica = -1, task = -1, device_index = -1; + foreach (var y in splits) + { + var ly = y.Length; + if (ly > 0) + { + if(ly == 2 && y[0] == "job") + { + job = y[1]; + } + else if(ly == 2 && y[0] == "replica") + { + replica = int.Parse(y[1]); + } + else if(ly == 2 && y[0] == "task") + { + task = int.Parse(y[1]); + } + else if((ly == 1 || ly == 2) && valid_device_types.Contains(y[0].ToUpper())) + { + if (device_type is not null) + { + throw new ValueError($"Multiple device types are not allowed " + + $"while parsing the device spec: {spec}."); + } + device_type = y[0].ToUpper(); + if(ly == 2 && y[1] != "*") + { + device_index = int.Parse(y[1]); + } + } + else if(ly == 3 && y[0] == "device") + { + if(device_type is not null) + { + throw new ValueError($"Multiple device types are not allowed " + + $"while parsing the device spec: {spec}."); + } + device_type = y[1]; + if (y[2] != "*") + { + device_index = int.Parse(y[2]); + } + } + else if (y[0] != "") + { + throw new ValueError($"Unknown attribute '{y[0]}' is encountered " + + $"while parsing the device spec: {spec}."); + } + } + } + + var output = new Components(job, replica, task, device_type, device_index); + _STRING_TO_COMPONENTS_CACHE[raw_spec] = output; + return output; + } + + private static HashSet _get_valid_device_types() + { + // TODO(Rinne): revise it to calling C API (need customized API). + return new HashSet(new string[] { "CPU", "GPU" }); + } + + public override string ToString() + { + return _as_string; + } + + protected record class Components(string Job, int Replica, int Task, string DeviceType, int DeviceIndex); + } +} diff --git a/src/TensorFlowNET.Core/Device/DeviceUtils.cs b/src/TensorFlowNET.Core/Device/DeviceUtils.cs new file mode 100644 index 000000000..8f11e6c8a --- /dev/null +++ b/src/TensorFlowNET.Core/Device/DeviceUtils.cs @@ -0,0 +1,26 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Device +{ + internal static class DeviceUtils + { + public static string canonical_name(string device) + { + if(device is null) + { + return ""; + } + return DeviceSpec.from_string(device).ToString(); + } + public static string canonical_name(DeviceSpec device) + { + if (device is null) + { + return ""; + } + return device.ToString(); + } + } +} diff --git a/src/TensorFlowNET.Core/DisposableObject.cs b/src/TensorFlowNET.Core/DisposableObject.cs index 3c70739bd..c3c677fff 100644 --- a/src/TensorFlowNET.Core/DisposableObject.cs +++ b/src/TensorFlowNET.Core/DisposableObject.cs @@ -17,6 +17,7 @@ limitations under the License. using System; using System.Diagnostics.CodeAnalysis; using System.Runtime.CompilerServices; +using Tensorflow.Train; namespace Tensorflow { @@ -90,4 +91,71 @@ public void Dispose() Dispose(false); } } -} \ No newline at end of file + + public abstract class DisposableTrackableObject: Trackable, IDisposable + { + protected IntPtr _handle; + protected bool _disposed; + + protected DisposableTrackableObject() + { } + + protected DisposableTrackableObject(IntPtr handle) + => _handle = handle; + + private void Dispose(bool disposing) + { + if (_disposed) + return; + + //first handle managed, they might use the unmanaged resources. + if (disposing) + { + // dispose managed state (managed objects). + DisposeManagedResources(); + } + + // free unmanaged memory + if (_handle != IntPtr.Zero) + { + // Call the appropriate methods to clean up + // unmanaged resources here. + // If disposing is false, + // only the following code is executed. + DisposeUnmanagedResources(_handle); + _handle = IntPtr.Zero; + } + + // Note disposing has been done. + _disposed = true; + } + + /// + /// Dispose any managed resources. + /// + /// Equivalent to what you would perform inside + protected virtual void DisposeManagedResources() + { } + + /// + /// Dispose any unmanaged resources related to given . + /// + protected abstract void DisposeUnmanagedResources(IntPtr handle); + + public void Dispose() + { + Dispose(true); + // This object will be cleaned up by the Dispose method. + // Therefore, you should call GC.SupressFinalize to + // take this object off the finalization queue + // and prevent finalization code for this object + // from executing a second time. + GC.SuppressFinalize(this); + } + + ~DisposableTrackableObject() + { + Dispose(false); + } + } +} diff --git a/src/TensorFlowNET.Core/Eager/EagerRunner.MustRecordGradient.cs b/src/TensorFlowNET.Core/Eager/EagerRunner.MustRecordGradient.cs index c4bce84f1..333827037 100644 --- a/src/TensorFlowNET.Core/Eager/EagerRunner.MustRecordGradient.cs +++ b/src/TensorFlowNET.Core/Eager/EagerRunner.MustRecordGradient.cs @@ -12,18 +12,36 @@ public bool MustRecordGradient() return HasGradientTape(); } - private bool ShouldRecord(Tensor[] inputs) + public int TFE_TapeSetPossibleGradientTypes(Tensor[] tensors) { - bool should_record = false; - foreach (var tape in tf.GetTapeSet()) + var tape_set = tf.GetTapeSet(); + var input_ids = MakeTensorIDList(tensors); + var input_dtypes = MakeTensorDtypeList(tensors); + bool some_tape_watching = false; + if (tape_set is not null && tape_set.Count > 0) { - if (tape.ShouldRecord(inputs)) + foreach (var tape in tape_set) { - should_record = true; - break; + if (tape.ShouldRecord(input_ids, input_dtypes)) + { + if (tape.Persistent || some_tape_watching) + { + return gradients_util.POSSIBLE_GRADIENT_TYPES_HIGHER_ORDER; + } + some_tape_watching = true; + } } } - return should_record; + // skip the forward_accumulators. + + if (some_tape_watching) + { + return gradients_util.POSSIBLE_GRADIENT_TYPES_FIRST_ORDER; + } + else + { + return gradients_util.POSSIBLE_GRADIENT_TYPES_NONE; + } } } } diff --git a/src/TensorFlowNET.Core/Eager/EagerRunner.RecordGradient.cs b/src/TensorFlowNET.Core/Eager/EagerRunner.RecordGradient.cs index cfcea55a2..2bdd65f5b 100644 --- a/src/TensorFlowNET.Core/Eager/EagerRunner.RecordGradient.cs +++ b/src/TensorFlowNET.Core/Eager/EagerRunner.RecordGradient.cs @@ -13,7 +13,17 @@ public bool RecordGradient(string op_name, Tensor[] results, BackwardFunction backwardFunction = null) { - bool should_record = ShouldRecord(inputs); + var input_ids = MakeTensorIDList(inputs); + var input_dtypes = MakeTensorDtypeList(inputs); + bool should_record = false; + foreach (var tape in tf.GetTapeSet()) + { + if (tape.ShouldRecord(input_ids, input_dtypes)) + { + should_record = true; + break; + } + } if (!should_record) { @@ -59,7 +69,7 @@ public bool RecordGradient(string op_name, op_inputs = inputs;*/ backwardFunction = backwardFunction ?? GetGradientFunction(op_name, inputs, attrs, results); - TapeSetRecordOperation(op_name, inputs, results, backwardFunction); + TapeSetRecordOperation(op_name, inputs, results, input_ids, input_dtypes, backwardFunction); return true; } @@ -70,6 +80,11 @@ BackwardFunction GetGradientFunction(string op_name, Tensor[] op_outputs) => (out_grads, unneeded_gradients) => { + if(!ops.gradientFunctions.ContainsKey(op_name)) + { + throw new Exception($"gradientFunctions not find op_name: {op_name}"); + } + if (ops.gradientFunctions[op_name] == null) return new Tensor[op_inputs.Length]; @@ -129,10 +144,5 @@ bool CouldBackprop() { return HasGradientTape(); } - - TF_DataType[] MakeTensorDtypeList(Tensor[] tensors) - { - return tensors.Select(x => x.dtype).ToArray(); - } } } diff --git a/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_Execute.cs b/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_Execute.cs index 4aad851ff..018ba921e 100644 --- a/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_Execute.cs +++ b/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_Execute.cs @@ -17,6 +17,7 @@ limitations under the License. using System; using System.Linq; using Tensorflow.Contexts; +using Tensorflow.Functions; using static Tensorflow.Binding; namespace Tensorflow.Eager @@ -41,9 +42,9 @@ public Tensor[] TFE_ExecuteCancelable(Context ctx, object[] attrs, int num_outputs) { - var status = tf.Status; + var status = new Status(); var op = GetOp(ctx, op_name, status); - c_api.TFE_OpSetDevice(op, device_name, status.Handle); + c_api.TFE_OpSetDevice(op, device_name, status); if (status.ok()) { for (int i = 0; i < inputs.Length; ++i) @@ -54,7 +55,7 @@ public Tensor[] TFE_ExecuteCancelable(Context ctx, Tensor nd => nd.EagerTensorHandle, _ => throw new NotImplementedException("Eager tensor handle has not been allocated.") }; - c_api.TFE_OpAddInput(op, tensor_handle, status.Handle); + c_api.TFE_OpAddInput(op, tensor_handle, status); status.Check(true); } } @@ -64,7 +65,7 @@ public Tensor[] TFE_ExecuteCancelable(Context ctx, var outputs = new SafeEagerTensorHandle[num_outputs]; if (status.ok()) { - c_api.TFE_Execute(op, outputs, out num_outputs, status.Handle); + c_api.TFE_Execute(op, outputs, out num_outputs, status); status.Check(true); } return outputs.Select(x => new EagerTensor(x)).ToArray(); diff --git a/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_FastPathExecute.cs b/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_FastPathExecute.cs index c6158ab00..0ce55841b 100644 --- a/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_FastPathExecute.cs +++ b/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_FastPathExecute.cs @@ -68,7 +68,8 @@ public Tensor[] TFE_FastPathExecute(FastPathOpExecInfo op_exec_info) var input_arg = op_def.InputArg[i]; if (!string.IsNullOrEmpty(input_arg.NumberAttr)) { - int len = (input as object[]).Length; + var fast_input_array = input is Tensors tensors ? (object[])tensors : (object[])input; + int len = fast_input_array.Length; c_api.TFE_OpSetAttrInt(op, input_arg.NumberAttr, len); if (op_exec_info.run_callbacks) { @@ -79,7 +80,6 @@ public Tensor[] TFE_FastPathExecute(FastPathOpExecInfo op_exec_info) if (len > 0) { - var fast_input_array = (object[])op_exec_info.args[i]; // First item adds the type attr. if (!AddInputToOp(fast_input_array[i], true, input_arg, flattened_attrs, flattened_inputs, op, status)) return null; @@ -104,7 +104,7 @@ public Tensor[] TFE_FastPathExecute(FastPathOpExecInfo op_exec_info) var eager_tensor = ops.convert_to_tensor(fast_input_array[j]); attr_values[j] = eager_tensor.dtype; - c_api.TFE_OpAddInput(op, eager_tensor.EagerTensorHandle, status.Handle); + c_api.TFE_OpAddInput(op, eager_tensor.EagerTensorHandle, status); if (op_exec_info.run_callbacks) { @@ -142,7 +142,7 @@ public Tensor[] TFE_FastPathExecute(FastPathOpExecInfo op_exec_info) } var retVals = new SafeEagerTensorHandle[num_retvals]; - c_api.TFE_Execute(op, retVals, out num_retvals, status.Handle); + c_api.TFE_Execute(op, retVals, out num_retvals, status); status.Check(true); var flat_result = retVals.Select(x => new EagerTensor(x)).ToArray(); @@ -160,10 +160,10 @@ public Tensor[] TFE_FastPathExecute(FastPathOpExecInfo op_exec_info) SafeEagerOpHandle GetOp(Context ctx, string op_or_function_name, Status status) { if (thread_local_eager_operation_map.find(op_or_function_name, out var op)) - c_api.TFE_OpReset(op, op_or_function_name, ctx.DeviceName, status.Handle); + c_api.TFE_OpReset(op, op_or_function_name, ctx.DeviceName, status); else { - op = c_api.TFE_NewOp(ctx.Handle, op_or_function_name, status.Handle); + op = c_api.TFE_NewOp(ctx, op_or_function_name, status); thread_local_eager_operation_map[op_or_function_name] = op; } @@ -219,7 +219,7 @@ bool AddInputToOp(object inputs, flattened_attrs.Add(dtype); } - c_api.TFE_OpAddInput(op, tensor.EagerTensorHandle, status.Handle); + c_api.TFE_OpAddInput(op, tensor.EagerTensorHandle, status); status.Check(true); return true; @@ -235,7 +235,7 @@ public void SetOpAttrs(SafeEagerOpHandle op, params object[] attrs) var value = attrs[i + 1]; byte is_list = 0; - var type = c_api.TFE_OpGetAttrType(op, key, ref is_list, status.Handle); + var type = c_api.TFE_OpGetAttrType(op, key, ref is_list, status); if (!status.ok()) return; if (is_list != 0) SetOpAttrList(tf.Context, op, key, value as object[], type, null, status); @@ -264,7 +264,7 @@ void SetOpAttrWithDefaults(Context ctx, SafeEagerOpHandle op, AttrDef attr, Status status) { byte is_list = 0; - var type = c_api.TFE_OpGetAttrType(op, attr_name, ref is_list, status.Handle); + var type = c_api.TFE_OpGetAttrType(op, attr_name, ref is_list, status); if (status.Code != TF_Code.TF_OK) return; if (attr_value == null) @@ -305,7 +305,7 @@ bool SetOpAttrList(Context ctx, SafeEagerOpHandle op, tf.memcpy(dims[i], values1[i].dims, values1[i].ndim * sizeof(long)); } - c_api.TFE_OpSetAttrShapeList(op, key, dims, num_dims, num_values, status.Handle); + c_api.TFE_OpSetAttrShapeList(op, key, dims, num_dims, num_values, status); Array.ForEach(dims, x => Marshal.FreeHGlobal(x)); } else if (type == TF_AttrType.TF_ATTR_TYPE && values is TF_DataType[] values2) @@ -352,13 +352,19 @@ bool SetOpAttrScalar(Context ctx, SafeEagerOpHandle op, c_api.TFE_OpSetAttrFloat(op, key, Convert.ToSingle(value)); break; case TF_AttrType.TF_ATTR_SHAPE: - var dims = (value as long[]).ToArray(); - c_api.TFE_OpSetAttrShape(op, key, dims, dims.Length, status.Handle); + long[] dims; + if (value is Shape shape) dims = shape.dims.ToArray(); + else if (value is long[] longs) dims = longs.ToArray(); + else if (value is int[] ints) dims = ints.Select(x => (long)x).ToArray(); + else dims = ((long[])value).ToArray(); + c_api.TFE_OpSetAttrShape(op, key, dims, dims.Length, status); status.Check(true); break; case TF_AttrType.TF_ATTR_FUNC: if (value is ConcreteFunction func) - c_api.TFE_OpSetAttrFunctionName(op, key, func.Name, func.Name.Length); + c_api.TFE_OpSetAttrFunctionName(op, key, func.func_graph.FuncName, func.func_graph.FuncName.Length); + else if(value is string str) + c_api.TFE_OpSetAttrFunctionName(op, key, str, str.Length); else throw new NotImplementedException("TF_AttrType.TF_ATTR_FUNC"); break; diff --git a/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_TapeGradient.cs b/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_TapeGradient.cs index c96d09e58..3515fed83 100644 --- a/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_TapeGradient.cs +++ b/src/TensorFlowNET.Core/Eager/EagerRunner.TFE_TapeGradient.cs @@ -1,6 +1,8 @@ -using System; +using OneOf.Types; +using System; using Tensorflow.Gradients; using Tensorflow.Util; +using static Tensorflow.Binding; namespace Tensorflow.Eager { @@ -9,40 +11,187 @@ namespace Tensorflow.Eager /// public partial class EagerRunner { + /// + /// + /// + /// + /// + /// + /// + /// determines the value returned if the target and + /// sources are unconnected.When 'none' the value returned is None wheras when + /// 'zero' a zero tensor in the same shape as the sources is returned. + /// + /// public Tensor[] TFE_TapeGradient(ITape tape, Tensor[] target, Tensor[] sources, - Tensor[] output_gradients) + List output_gradients, + Tensor[] sources_raw, + string unconnected_gradients) { - var target_vec = target; - var sources_vec = sources; - var sources_set = sources_vec; + if (!tape.Persistent) + { + var tape_set = tf.GetTapeSet(); + if (tape_set.Contains(tape)) + { + throw new RuntimeError("gradient() cannot be invoked within the " + + "GradientTape context (i.e., while operations are being " + + "recorded). Either move the call to gradient() to be " + + "outside the 'with tf.GradientTape' block, or " + + "use a persistent tape: " + + "'with tf.GradientTape(persistent=true)'"); + } + } + + var target_vec = MakeTensorIDList(target); + var sources_vec = MakeTensorIDList(sources); + HashSet sources_set = new HashSet(sources_vec); + var source_tensors_that_are_targets = new UnorderedMap(); + + int len = target.Length; + for(int i = 0; i < len; i++) + { + var target_id = target_vec[i]; + if (sources_set.Contains(target_id)) + { + var tensor = target[i]; + source_tensors_that_are_targets[target_id] = TapeTensorFromTensor(tensor); + } + } - var seq_array = target; - var source_tensors_that_are_targets = new UnorderedMap(); + List outgrad_vec = new(); + if(output_gradients is not null) + { + outgrad_vec = output_gradients.ToList(); + } + var result = tape.ComputeGradient(target_vec, sources_vec, source_tensors_that_are_targets, outgrad_vec, true); - for (int i = 0; i < target.Length; ++i) + + bool unconnected_gradients_zero = unconnected_gradients == "zero"; + Tensor[] sources_obj = null; + if (unconnected_gradients_zero) { - source_tensors_that_are_targets.Add(target_vec[i], new TapeTensor(seq_array[i])); + sources_obj = MakeTensorList(sources_raw); } - if (output_gradients != null) + if (result.Length > 0) { - throw new NotImplementedException(""); + for(int i = 0; i < result.Length; i++) + { + if (result[i] is null && unconnected_gradients_zero) + { + var dtype = sources_obj[i].dtype; + result[i] = new TapeTensor(sources_vec[i], dtype, sources_obj[i]).ZerosLike(); + } + } } - else + return result; + } + + Tensor[] MakeTensorList(IEnumerable tensors) + { + return tensors.ToArray(); + } + + long[] MakeTensorIDList(Tensor[] tensors) + { + int len = tensors.Length; + long[] ids = new long[len]; + for(int i = 0; i < len; i++) + { + var tensor = tensors[i]; + ids[i] = tensor.Id; + } + return ids; + } + + TF_DataType[] MakeTensorDtypeList(Tensor[] tensors) + { + int len = tensors.Length; + TF_DataType[] dtypes = new TF_DataType[len]; + for (int i = 0; i < len; i++) { - output_gradients = new Tensor[0]; + var tensor = tensors[i]; + dtypes[i] = tensor.dtype; } + return dtypes; + } + + TapeTensor TapeTensorFromTensor(Tensor tensor) + { + long id = tensor.Id; + var dtype = tensor.dtype; + if (tensor is EagerTensor) + { + var handle = tensor.EagerTensorHandle; + if (DTypeNeedsHandleData(dtype)) + { + return new TapeTensor(id, c_api.TFE_TensorHandleDataType(handle), tensor); + } - var outgrad_vec = MakeTensorList(output_gradients); + Status status = new(); + int num_dims = c_api.TFE_TensorHandleNumDims(handle, status); + long[] dims = new long[num_dims]; + for(int i = 0; i < num_dims; i++) + { + dims[i] = c_api.TFE_TensorHandleDim(handle, i, status); + } - return tape.ComputeGradient(target_vec, sources_vec, source_tensors_that_are_targets, outgrad_vec); + if(status.Code != TF_Code.TF_OK) + { + return new TapeTensor(id, TF_DataType.DtInvalid, Shape.Null); + } + else + { + Shape tensor_shape = new(dims); + return new TapeTensor(id, dtype, tensor_shape); + } + } + var shape_tuple = tensor.shape.dims; + if(ListContainNone(shape_tuple) || DTypeNeedsHandleData(dtype)) + { + return new TapeTensor(id, dtype, tensor); + } + long[] l = new long[shape_tuple.Length]; + for(int i = 0; i < shape_tuple.Length; i++) + { + if (shape_tuple[i] < 0) + { + l[i] = 0; + } + else + { + l[i] = shape_tuple[i]; + } + } + return new TapeTensor(id, dtype, new Shape(l)); } - Tensor[] MakeTensorList(Tensor[] tensors) + bool DTypeNeedsHandleData(TF_DataType dtype) { - return tensors; + return dtype == dtypes.variant || dtype == dtypes.resource; + } + + bool ListContainNone(long[]? list) + { + if(list is null) + { + return true; + } + int len = list.Length; + if(len == 0) + { + return true; + } + for(int i = 0; i < len; i++) + { + if (list[i] == -1) + { + return true; + } + } + return false; } } } diff --git a/src/TensorFlowNET.Core/Eager/EagerRunner.TapeSetRecordBackprop.cs b/src/TensorFlowNET.Core/Eager/EagerRunner.TapeSetRecordBackprop.cs index e8751aed3..9bcc8fe2e 100644 --- a/src/TensorFlowNET.Core/Eager/EagerRunner.TapeSetRecordBackprop.cs +++ b/src/TensorFlowNET.Core/Eager/EagerRunner.TapeSetRecordBackprop.cs @@ -7,8 +7,9 @@ namespace Tensorflow.Eager public partial class EagerRunner { void TapeSetRecordBackprop(string op_type, - Tensor[] input_tensors, - TapeTensor[] output_tensors, + TapeTensor[] output_info, + long[] input_ids, + TF_DataType[] input_detyps, BackwardFunction backward_function) { if (!CouldBackprop()) @@ -18,7 +19,7 @@ void TapeSetRecordBackprop(string op_type, foreach (var tape in tf.GetTapeSet()) { - tape.RecordOperation(op_type, input_tensors, output_tensors, backward_function); + tape.RecordOperation(op_type, output_info, input_ids, input_detyps, backward_function); } } } diff --git a/src/TensorFlowNET.Core/Eager/EagerRunner.TapeSetRecordOperation.cs b/src/TensorFlowNET.Core/Eager/EagerRunner.TapeSetRecordOperation.cs index 42e1cff98..3987e7a3d 100644 --- a/src/TensorFlowNET.Core/Eager/EagerRunner.TapeSetRecordOperation.cs +++ b/src/TensorFlowNET.Core/Eager/EagerRunner.TapeSetRecordOperation.cs @@ -10,18 +10,28 @@ public partial class EagerRunner public bool TapeSetRecordOperation(string op_type, Tensor[] input_tensors, Tensor[] output_tensors, + long[] input_ids, + TF_DataType[] input_dtypes, BackwardFunction backward_function) { - var output_info = output_tensors.Select(x => new TapeTensor(x)).ToArray(); - + var output_info = output_tensors.Select(t => TapeTensorFromTensor(t)).ToArray(); if (!TapeSetRecordForwardprop(op_type, input_tensors, output_info, backward_function)) return false; - TapeSetRecordBackprop(op_type, input_tensors, output_info, + TapeSetRecordBackprop(op_type, output_info, input_ids, input_dtypes, backward_function); return true; } + + public void TFE_TapeSetRecordOperation(string op_type, Tensor[] output_tensors, + Tensor[] input_tensors, BackwardFunction backward_function) + { + var input_ids = MakeTensorIDList(input_tensors); + var input_dtypes = MakeTensorDtypeList(input_tensors); + TapeSetRecordOperation(op_type, input_tensors, output_tensors, input_ids, input_dtypes, + backward_function); + } } } diff --git a/src/TensorFlowNET.Core/Eager/EagerTensor.Creation.cs b/src/TensorFlowNET.Core/Eager/EagerTensor.Creation.cs index b9f741f3e..c7d71de38 100644 --- a/src/TensorFlowNET.Core/Eager/EagerTensor.Creation.cs +++ b/src/TensorFlowNET.Core/Eager/EagerTensor.Creation.cs @@ -54,7 +54,7 @@ public EagerTensor(IntPtr data_ptr, Shape shape, TF_DataType dtype) : base(data_ void NewEagerTensorHandle(SafeTensorHandle h) { _id = ops.uid(); - _eagerTensorHandle = c_api.TFE_NewTensorHandle(h, tf.Status.Handle); + _eagerTensorHandle = c_api.TFE_NewTensorHandle(h, tf.Status); #if TRACK_TENSOR_LIFE Console.WriteLine($"New EagerTensor {_eagerTensorHandle}"); #endif @@ -65,7 +65,7 @@ public void Resolve() { if (_handle != null) return; - _handle = c_api.TFE_TensorHandleResolve(_eagerTensorHandle, tf.Status.Handle); + _handle = c_api.TFE_TensorHandleResolve(_eagerTensorHandle, tf.Status); tf.Status.Check(true); } diff --git a/src/TensorFlowNET.Core/Eager/EagerTensor.ToString.cs b/src/TensorFlowNET.Core/Eager/EagerTensor.ToString.cs index ce3c983b5..71b3075aa 100644 --- a/src/TensorFlowNET.Core/Eager/EagerTensor.ToString.cs +++ b/src/TensorFlowNET.Core/Eager/EagerTensor.ToString.cs @@ -10,6 +10,11 @@ public override string ToString() var str = NDArrayRender.ToString(nd); return $"tf.Tensor: shape={shape}, dtype={dtype.as_numpy_name()}, numpy={str}"; } - + public string ToString(int maxLength) + { + var nd = new NDArray(this); + var str = NDArrayRender.ToString(nd, maxLength); + return $"tf.Tensor: shape={shape}, dtype={dtype.as_numpy_name()}, numpy={str}"; + } } } diff --git a/src/TensorFlowNET.Core/Eager/EagerTensor.cs b/src/TensorFlowNET.Core/Eager/EagerTensor.cs index f85e8df66..02bd0bdf2 100644 --- a/src/TensorFlowNET.Core/Eager/EagerTensor.cs +++ b/src/TensorFlowNET.Core/Eager/EagerTensor.cs @@ -24,10 +24,10 @@ public override IntPtr buffer } } - public override string Device => c_api.StringPiece(c_api.TFE_TensorHandleDeviceName(_eagerTensorHandle, tf.Status.Handle)); + public override string Device => c_api.StringPiece(c_api.TFE_TensorHandleDeviceName(_eagerTensorHandle, tf.Status)); public override TF_DataType dtype => c_api.TFE_TensorHandleDataType(_eagerTensorHandle); - public override int rank => c_api.TFE_TensorHandleNumDims(EagerTensorHandle, tf.Status.Handle); + public override int rank => c_api.TFE_TensorHandleNumDims(EagerTensorHandle, tf.Status); public override ulong bytesize { @@ -49,9 +49,9 @@ public override IntPtr TensorDataPointer protected override Shape GetShapeInternal() { - var dims = new int[c_api.TFE_TensorHandleNumDims(_eagerTensorHandle, tf.Status.Handle)]; + var dims = new int[c_api.TFE_TensorHandleNumDims(_eagerTensorHandle, tf.Status)]; for (int i = 0; i < dims.Length; i++) - dims[i] = c_api.TFE_TensorHandleDim(_eagerTensorHandle, i, tf.Status.Handle); + dims[i] = c_api.TFE_TensorHandleDim(_eagerTensorHandle, i, tf.Status); return dims; } @@ -64,15 +64,15 @@ protected override void SetShapeInternal(Shape value) public static int GetRank(IntPtr handle) { var tfe_tensor_handle = c_api.TFE_EagerTensorHandle(handle); - return c_api.TFE_TensorHandleNumDims(tfe_tensor_handle, tf.Status.Handle); + return c_api.TFE_TensorHandleNumDims(tfe_tensor_handle, tf.Status); } public static int[] GetDims(IntPtr handle) { var tfe_tensor_handle = c_api.TFE_EagerTensorHandle(handle); - var dims = new int[c_api.TFE_TensorHandleNumDims(tfe_tensor_handle, tf.Status.Handle)]; + var dims = new int[c_api.TFE_TensorHandleNumDims(tfe_tensor_handle, tf.Status)]; for (int i = 0; i < dims.Length; i++) - dims[i] = c_api.TFE_TensorHandleDim(tfe_tensor_handle, i, tf.Status.Handle); + dims[i] = c_api.TFE_TensorHandleDim(tfe_tensor_handle, i, tf.Status); return dims; } diff --git a/src/TensorFlowNET.Core/Eager/FastPathOpExecInfo.cs b/src/TensorFlowNET.Core/Eager/FastPathOpExecInfo.cs index 2cdf025a1..307ca2ce4 100644 --- a/src/TensorFlowNET.Core/Eager/FastPathOpExecInfo.cs +++ b/src/TensorFlowNET.Core/Eager/FastPathOpExecInfo.cs @@ -17,8 +17,9 @@ public class FastPathOpExecInfo public bool run_callbacks { get; set; } public Action callbacks { get; set; } - public FastPathOpExecInfo(string opName, string name, params object[] inputArgs) + public FastPathOpExecInfo(Context ctx, string opName, string name, params object[] inputArgs) { + this.ctx = ctx; this.op_name = opName; this.name = name; this.args = inputArgs; diff --git a/src/TensorFlowNET.Core/Eager/GraphOnlyOps.cs b/src/TensorFlowNET.Core/Eager/GraphOnlyOps.cs new file mode 100644 index 000000000..2c20cfe9b --- /dev/null +++ b/src/TensorFlowNET.Core/Eager/GraphOnlyOps.cs @@ -0,0 +1,25 @@ +using Tensorflow; + +internal static class GraphOnlyOps +{ + /// + /// Graph-only version of tf.compat.v1.placeholder(), for internal use only. + /// + /// + /// + /// + /// + internal static Tensor graph_placeholder(TF_DataType dtype, Shape shape, string? name = null) + { + var dtype_value = new AttrValue() { Type = dtype.as_datatype_enum() }; + var shape_value = new AttrValue() { Shape = shape.as_proto() }; + var g = ops.get_default_graph(); + Dictionary attrs = new(); + attrs["dtype"] = dtype_value; + attrs["shape"] = shape_value; + var op = g.create_op("Placeholder", new Tensor[0], new TF_DataType[] { dtype }, + new TF_DataType[0], attrs: attrs, name: name); + var result = op.outputs[0]; + return result; + } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Eager/IEagerRunner.cs b/src/TensorFlowNET.Core/Eager/IEagerRunner.cs index 7baf4cd7a..21a336690 100644 --- a/src/TensorFlowNET.Core/Eager/IEagerRunner.cs +++ b/src/TensorFlowNET.Core/Eager/IEagerRunner.cs @@ -29,7 +29,14 @@ Tensor[] TFE_Execute(Context ctx, Tensor[] TFE_TapeGradient(ITape tape, Tensor[] target, Tensor[] sources, - Tensor[] output_gradients); + List output_gradients, + Tensor[] sources_raw, + string unconnected_gradients); + + void TFE_TapeSetRecordOperation(string op_type, Tensor[] output_tensors, + Tensor[] input_tensors, BackwardFunction backward_function); + + int TFE_TapeSetPossibleGradientTypes(Tensor[] tensors); bool RecordGradient(string op_name, Tensor[] inputs, diff --git a/src/TensorFlowNET.Core/Eager/backprop_util.cs b/src/TensorFlowNET.Core/Eager/backprop_util.cs new file mode 100644 index 000000000..0d726e1de --- /dev/null +++ b/src/TensorFlowNET.Core/Eager/backprop_util.cs @@ -0,0 +1,53 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Operations; + +namespace Tensorflow.Eager +{ + internal static class backprop_util + { + // TODO: add quantized_dtypes (after being supported). + private static HashSet _trainable_dtypes = new HashSet(new TF_DataType[] + { + dtypes.float16, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128, + dtypes.resource, dtypes.variant, TF_DataType.TF_BFLOAT16 + }); + public static bool IsTrainable(Tensor tensor) + { + var dtype = _DTypeFromTensor(tensor); + return _trainable_dtypes.Contains(dtype); + } + public static bool IsTrainable(TF_DataType dtype) + { + return _trainable_dtypes.Contains(dtype); + } + + private static TF_DataType _DTypeFromTensor(Tensor tensor) + { + var dtype = tensor.dtype; + if(dtype.as_base_dtype() == TF_DataType.TF_VARIANT) + { + CppShapeInferenceResult.Types.HandleData handle_data; + if (tensor is EagerTensor) + { + handle_data = tensor.HandleData; + } + else + { + handle_data = handle_data_util.get_resource_handle_data(tensor); + } + if(handle_data is not null && handle_data.IsSet && handle_data.ShapeAndType is not null && + handle_data.ShapeAndType.Count > 0) + { + var first_type = handle_data.ShapeAndType[0].Dtype; + if(first_type != DataType.DtInvalid && handle_data.ShapeAndType.All(x => x.Dtype == first_type)) + { + return first_type.as_tf_dtype(); + } + } + } + return dtype; + } + } +} diff --git a/src/TensorFlowNET.Core/Eager/c_api.eager.cs b/src/TensorFlowNET.Core/Eager/c_api.eager.cs index d874ac933..11de49600 100644 --- a/src/TensorFlowNET.Core/Eager/c_api.eager.cs +++ b/src/TensorFlowNET.Core/Eager/c_api.eager.cs @@ -30,6 +30,9 @@ public partial class c_api [DllImport(TensorFlowLibName)] public static extern void TFE_ContextOptionsSetConfig(SafeContextOptionsHandle opts, byte[] proto, ulong proto_len, SafeStatusHandle status); + [DllImport(TensorFlowLibName)] + public static extern void TFE_ContextAddFunctionDef(SafeContextHandle ctx, byte[] serialized_function_def, ulong size, SafeStatusHandle status); + [DllImport(TensorFlowLibName)] public static extern void TFE_ContextOptionsSetDevicePlacementPolicy(SafeContextOptionsHandle opts, ContextDevicePlacementPolicy device_policy); @@ -114,7 +117,7 @@ public partial class c_api /// /// [DllImport(TensorFlowLibName)] - public static extern void TFE_ContextAddFunction(SafeContextHandle ctx, IntPtr function, SafeStatusHandle status); + public static extern void TFE_ContextAddFunction(SafeContextHandle ctx, SafeFuncGraphHandle function, SafeStatusHandle status); /// /// Removes a function from the context. Once removed, you can no longer @@ -277,7 +280,7 @@ public static void TFE_Execute(SafeEagerOpHandle op, SafeEagerTensorHandle[] ret public static extern void TFE_OpSetAttrIntList(SafeEagerOpHandle op, string attr_name, long[] values, int num_values); [DllImport(TensorFlowLibName)] - public static extern void TFE_OpSetAttrValueProto(SafeEagerOpHandle op, string attr_name, IMessage[] proto, int proto_len, SafeStatusHandle status); + public static extern void TFE_OpSetAttrValueProto(IntPtr op, string attr_name, IntPtr proto, ulong proto_len, SafeStatusHandle status); /// /// @@ -480,5 +483,8 @@ public static extern SafeStatusHandle TFE_TapeGradient(IntPtr tape, IntPtr[] target, int target_size, IntPtr[] sources, int source_size, IntPtr[] outputs, int output_size); + + [DllImport(TensorFlowLibName)] + public static extern bool TFE_IsCustomDevice(SafeContextHandle ctx, string device_name); } } diff --git a/src/TensorFlowNET.Core/Eager/execute.cs b/src/TensorFlowNET.Core/Eager/execute.cs new file mode 100644 index 000000000..e981c6c51 --- /dev/null +++ b/src/TensorFlowNET.Core/Eager/execute.cs @@ -0,0 +1,45 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using System.Text; +using System.Xml.Linq; +using Tensorflow.Contexts; +using static Tensorflow.ApiDef.Types; +using static Tensorflow.CostGraphDef.Types; +using static Tensorflow.Binding; +using Tensorflow.Gradients; + +namespace Tensorflow.Eager +{ + internal static class _execute + { + public static (DataType[], Tensor[]) onvert_to_mixed_eager_tensors(Tensor[] values, Context ctx) + { + var v = values.Select(t => ops.convert_to_tensor(t, ctx:ctx)); + var types = v.Select(t => t.dtype.as_datatype_enum()); + return (types.ToArray(), v.ToArray()); + } + public static Tensor[] execute(string op_name, int num_outputs, Tensor[] inputs, object[] attrs, Context ctx, string name = null) + { + return quick_execute(op_name, num_outputs, inputs, attrs, ctx, name); + } + public static Tensor[] quick_execute(string op_name, int num_outputs, Tensor[] inputs, object[] attrs, Context ctx, string name = null) + { + string device_name = ctx.DeviceName; + + ctx.ensure_initialized(); + var tensors = tf.Runner.TFE_Execute(ctx, device_name, op_name, inputs, attrs, num_outputs); + + return tensors; + } + public static bool must_record_gradient() + { + return tf.GetTapeSet().Count != 0; + } + + public static bool record_gradient(string op_name, Tensor[] inputs, object[] attrs, Tensor[] results) + { + return tf.Runner.RecordGradient(op_name, inputs, attrs, results); + } + } +} diff --git a/src/TensorFlowNET.Core/Eager/forwardprop_util.cs b/src/TensorFlowNET.Core/Eager/forwardprop_util.cs new file mode 100644 index 000000000..a53026d42 --- /dev/null +++ b/src/TensorFlowNET.Core/Eager/forwardprop_util.cs @@ -0,0 +1,13 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Eager +{ + public class TangentInfo + { + // TODO(Rinne): implement it. + public object Indices { get; set; } + public object Tangents { get; set; } + } +} diff --git a/src/TensorFlowNET.Core/Exceptions/AssertionError.cs b/src/TensorFlowNET.Core/Exceptions/AssertionError.cs new file mode 100644 index 000000000..977fe2340 --- /dev/null +++ b/src/TensorFlowNET.Core/Exceptions/AssertionError.cs @@ -0,0 +1,14 @@ +namespace Tensorflow.Exceptions; + +public class AssertionError : TensorflowException +{ + public AssertionError() : base() + { + + } + + public AssertionError(string message) : base(message) + { + + } +} diff --git a/src/TensorFlowNET.Core/Exceptions/NotOkStatusException.cs b/src/TensorFlowNET.Core/Exceptions/NotOkStatusException.cs new file mode 100644 index 000000000..c283c1a45 --- /dev/null +++ b/src/TensorFlowNET.Core/Exceptions/NotOkStatusException.cs @@ -0,0 +1,19 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Exceptions +{ + public class NotOkStatusException : TensorflowException + { + public NotOkStatusException() : base() + { + + } + + public NotOkStatusException(string message) : base(message) + { + + } + } +} diff --git a/src/TensorFlowNET.Core/Framework/IndexedSlices.cs b/src/TensorFlowNET.Core/Framework/IndexedSlices.cs index 24d356fbb..bac5e6fb1 100644 --- a/src/TensorFlowNET.Core/Framework/IndexedSlices.cs +++ b/src/TensorFlowNET.Core/Framework/IndexedSlices.cs @@ -49,12 +49,25 @@ public IndexedSlices(Tensor values, Tensor indices, Tensor dense_shape = null) public static implicit operator Tensor(IndexedSlices indexedSlices) { - return indexedSlices.values; + return _indexed_slices_to_tensor(indexedSlices); } public static implicit operator IndexedSlices(Tensor tensor) { return tensor.Tag as IndexedSlices; } + + /// + /// Converts an IndexedSlices object `value` to a Tensor. + /// + /// + /// + /// + /// + /// + public static Tensor _indexed_slices_to_tensor(IndexedSlices indexedSlices, TF_DataType dtype = TF_DataType.DtInvalid, String name = "", bool as_ref = false) + { + return gen_math_ops.unsorted_segment_sum(indexedSlices.values, indexedSlices.indices, indexedSlices.dense_shape.slice(0)); + } } } diff --git a/src/TensorFlowNET.Core/Framework/Models/DenseSpec.cs b/src/TensorFlowNET.Core/Framework/Models/DenseSpec.cs index 1af29e227..5a89b90ed 100644 --- a/src/TensorFlowNET.Core/Framework/Models/DenseSpec.cs +++ b/src/TensorFlowNET.Core/Framework/Models/DenseSpec.cs @@ -6,8 +6,11 @@ public class DenseSpec : TypeSpec { protected Shape _shape; - public Shape shape => _shape; - + public Shape shape + { + get { return _shape; } + set { _shape = value; } + } protected TF_DataType _dtype; public TF_DataType dtype => _dtype; diff --git a/src/TensorFlowNET.Core/Framework/Models/ScopedTFFunction.cs b/src/TensorFlowNET.Core/Framework/Models/ScopedTFFunction.cs deleted file mode 100644 index bce889b6b..000000000 --- a/src/TensorFlowNET.Core/Framework/Models/ScopedTFFunction.cs +++ /dev/null @@ -1,6 +0,0 @@ -namespace Tensorflow.Framework.Models -{ - class ScopedTFFunction - { - } -} diff --git a/src/TensorFlowNET.Core/Framework/Models/TensorSpec.cs b/src/TensorFlowNET.Core/Framework/Models/TensorSpec.cs index b6a279db7..ac099ae2b 100644 --- a/src/TensorFlowNET.Core/Framework/Models/TensorSpec.cs +++ b/src/TensorFlowNET.Core/Framework/Models/TensorSpec.cs @@ -1,4 +1,5 @@ using System.Linq; +using Tensorflow.Eager; namespace Tensorflow.Framework.Models { @@ -7,7 +8,7 @@ public class TensorSpec : DenseSpec public TensorSpec(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) : base(shape, dtype, name) { - + } public TensorSpec _unbatch() @@ -24,5 +25,17 @@ public TensorSpec _batch(int dim = -1) shapes.Insert(0, dim); return new TensorSpec(shapes.ToArray(), _dtype); } + + public static TensorSpec FromTensor(Tensor tensor, string? name = null) + { + if(tensor is EagerTensor) + { + return new TensorSpec(tensor.shape, tensor.dtype, name); + } + else + { + return new TensorSpec(tensor.shape, tensor.dtype, name ?? tensor.name); + } + } } } diff --git a/src/TensorFlowNET.Core/Framework/ScopedTFFunction.cs b/src/TensorFlowNET.Core/Framework/ScopedTFFunction.cs new file mode 100644 index 000000000..11e920f86 --- /dev/null +++ b/src/TensorFlowNET.Core/Framework/ScopedTFFunction.cs @@ -0,0 +1,22 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Framework +{ + internal class ScopedTFFunction + { + SafeFuncGraphHandle _handle; + string _name; + public ScopedTFFunction(SafeFuncGraphHandle func, string name) + { + _handle = func; + _name = name; + } + + public SafeFuncGraphHandle Get() + { + return _handle; + } + } +} diff --git a/src/TensorFlowNET.Core/Framework/auto_control_deps_utils.cs b/src/TensorFlowNET.Core/Framework/auto_control_deps_utils.cs new file mode 100644 index 000000000..28d9e5008 --- /dev/null +++ b/src/TensorFlowNET.Core/Framework/auto_control_deps_utils.cs @@ -0,0 +1,89 @@ +using Tensorflow.Graphs; + +namespace Tensorflow.Framework +{ + internal static class auto_control_deps_utils + { + public static readonly string READ_ONLY_RESOURCE_INPUTS_ATTR = "_read_only_resource_inputs"; + public static List get_read_only_resource_input_indices_graph(FuncGraph func_graph) + { + List result = new List(); + // A cache to store the read only resource inputs of an Op. + // Operation -> ObjectIdentitySet of resource handles. + Dictionary> opReadOnlyResourceInputs = + new Dictionary>(); + + for (int inputIndex = 0; inputIndex < func_graph.Inputs.Length; inputIndex++) + { + Tensor t = func_graph.Inputs[inputIndex]; + if (t.dtype != dtypes.resource) + continue; + + bool readOnly = true; + foreach (var op in t.consumers()) + { + if (opReadOnlyResourceInputs.ContainsKey(op)) + { + if (!opReadOnlyResourceInputs[op].Contains(t)) + { + readOnly = false; + break; + } + } + else + { + List indices = _get_read_only_resource_input_indices_op(op); + opReadOnlyResourceInputs[op] = new HashSet( + indices.Select(i => op.inputs[i])); + if (!opReadOnlyResourceInputs[op].Contains(t)) + { + readOnly = false; + break; + } + } + } + + if (readOnly) + result.Add(inputIndex); + } + + return result; + } + + private static List _get_read_only_resource_input_indices_op(Operation op) + { + // ignore the RESOURCE_READ_OPS + + int[] read_only_input_indices; + + try + { + read_only_input_indices = op.get_attr(READ_ONLY_RESOURCE_INPUTS_ATTR); + } + catch (InvalidArgumentError) + { + return new List(); + } + + int read_only_index = 0; + List result = new(); + for (int i = 0; i < op.inputs.Length; i++) + { + if (read_only_index >= read_only_input_indices.Length) + { + break; + } + if (op.inputs[i].dtype != dtypes.resource) + { + continue; + } + if (read_only_index < read_only_input_indices.Length && i == read_only_input_indices[read_only_index]) + { + result.Add(i); + read_only_index++; + } + } + return result; + } + } +} diff --git a/src/TensorFlowNET.Core/Framework/c_api_util.cs b/src/TensorFlowNET.Core/Framework/c_api_util.cs index 9cfbf0d04..e21c3b019 100644 --- a/src/TensorFlowNET.Core/Framework/c_api_util.cs +++ b/src/TensorFlowNET.Core/Framework/c_api_util.cs @@ -111,7 +111,17 @@ public static void DownloadLibrary() public static ImportGraphDefOptions ScopedTFImportGraphDefOptions() => new ImportGraphDefOptions(); - public static Buffer tf_buffer(byte[] data) => new Buffer(data); + public static Buffer tf_buffer(byte[] data = null) + { + if(data is not null) + { + return new Buffer(data); ; + } + else + { + return new Buffer(); + } + } public static IEnumerable new_tf_operations(Graph graph) { diff --git a/src/TensorFlowNET.Core/Framework/function_def_lib.cs b/src/TensorFlowNET.Core/Framework/function_def_lib.cs new file mode 100644 index 000000000..488c6b654 --- /dev/null +++ b/src/TensorFlowNET.Core/Framework/function_def_lib.cs @@ -0,0 +1,297 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Security.Cryptography; +using System.Text; +using Tensorflow.Graphs; +using Tensorflow.Common.Extensions; +using static Tensorflow.Binding; +using static Tensorflow.CppShapeInferenceResult.Types; + +namespace Tensorflow.Framework +{ + public class function_def_lib + { + // TODO(Rinne): process signatures and structured outputs. + public static FuncGraph function_def_to_graph(FunctionDef fdef, object? structured_input_signature, + object? structured_outputs, List input_shapes = null) + { + var func_graph = new FuncGraph(fdef.Signature.Name); + if(input_shapes is null) + { + if(fdef.Attr.TryGetValue("_input_shapes", out var input_shapes_attr)) + { + var raw_input_shapes = input_shapes_attr.List.Shape; + input_shapes = new List(); + foreach(var (input_shape, arg_def) in raw_input_shapes.Zip(fdef.Signature.InputArg, (x, y) => (x, y))) + { + if(arg_def.Type == DataType.DtResource && arg_def.HandleData is not null && arg_def.HandleData.Count > 0) + { + input_shapes.Add(null); + } + else + { + input_shapes.Add(input_shape); + } + } + } + } + + var (graph_def, nested_to_flat_tensor_name) = function_def_to_graph_def(fdef, input_shapes); + + func_graph.as_default(); + importer.import_graph_def(graph_def, name: "", validate_colocation_constraints: false); + var input_tensor_names = fdef.Signature.InputArg.Select(x => nested_to_flat_tensor_name[x.Name]); + func_graph.Inputs = new Tensors(input_tensor_names.Select(x => func_graph.get_tensor_by_name(x)).ToArray()); + + var output_tensor_names = fdef.Signature.OutputArg.Select(x => nested_to_flat_tensor_name[fdef.Ret[x.Name]]); + func_graph.Outputs = new Tensors(output_tensor_names.Select(x => func_graph.get_tensor_by_name(x)).ToArray()); + // TODO(Rinne): func_graph.ControlOutputs + _set_handle_data(func_graph, fdef); + + foreach(var node in graph_def.Node) + { + if(node.Attr.TryGetValue("_output_shapes", out var output_shapes)) + { + var op = func_graph.get_operation_by_name(node.Name); + foreach(var (output_index, shape) in enumerate(output_shapes.List.Shape.Take(op.outputs.Length))) + { + op.outputs[output_index].shape = new Shape(shape); + } + } + } + Dictionary output_names = new(); + foreach(var (ret_arg_def, tensor_name) in zip(fdef.Signature.OutputArg, output_tensor_names)) + { + output_names[ops.tensor_id(func_graph.get_tensor_by_name(tensor_name))] = ret_arg_def.Name; + } + func_graph._output_names = output_names; + + func_graph.Exit(); + return func_graph; + } + + public static (GraphDef, Dictionary) function_def_to_graph_def(FunctionDef fdef, List input_shapes) + { + var graph_def = new GraphDef() + { + Versions = new VersionDef() + { + Producer = versions.GRAPH_DEF_VERSION, + MinConsumer = versions.GRAPH_DEF_VERSION_MIN_CONSUMER + } + }; + + var default_graph = ops.get_default_graph(); + + if(input_shapes is not null && input_shapes.Count > 0 && input_shapes.Count != fdef.Signature.InputArg.Count) + { + throw new ValueError($"Length of `input_shapes` must match the number " + + $"of `input_arg`s in `fdef`. Got {input_shapes.Count} `input_shapes` and " + + $"{fdef.Signature.InputArg.Count} `input_arg`s."); + } + + foreach(var (i, arg_def) in enumerate(fdef.Signature.InputArg)) + { + NodeDef node_def = new(); + node_def.Name = arg_def.Name; + node_def.Op = "Placeholder"; + node_def.Attr["dtype"] = new AttrValue() + { + Type = arg_def.Type + }; + if(input_shapes is not null && input_shapes.Count > 0 && input_shapes[i] is not null) + { + var input_shape = input_shapes[i]; + // skip the condition that input_shape is not `TensorShapeProto`. + AttrValue shape = new AttrValue() + { + Shape = new TensorShapeProto() + }; + shape.Shape = new TensorShapeProto(input_shape); + node_def.Attr["shape"] = shape; + } + if (!fdef.ArgAttr.ContainsKey((uint)i)) + { + fdef.ArgAttr[(uint)i] = new FunctionDef.Types.ArgAttrs(); + } + var arg_attrs = fdef.ArgAttr[(uint)i].Attr; + foreach(var k in arg_attrs.Keys) + { + if(k == "_output_shapes") + { + if (arg_attrs[k].ValueCase == AttrValue.ValueOneofCase.List) + { + node_def.Attr["shape"].Shape = new TensorShapeProto(arg_attrs[k].List.Shape[0]); + } + else if (arg_attrs[k].ValueCase == AttrValue.ValueOneofCase.Shape) + { + node_def.Attr["shape"].Shape = new TensorShapeProto(arg_attrs[k].Shape); + } + } + else if (k.StartsWith("_")) + { + if (!node_def.Attr.ContainsKey(k)) + { + node_def.Attr[k] = new AttrValue(); + } + node_def.Attr[k] = new AttrValue(arg_attrs[k]); + } + } + + graph_def.Node.Add(node_def); + } + + graph_def.Node.AddRange(fdef.NodeDef); + + Dictionary nested_to_flat_tensor_name = new(); + foreach(var arg_def in fdef.Signature.InputArg) + { + nested_to_flat_tensor_name[arg_def.Name] = $"{arg_def.Name}:0"; + string control_name = "^" + arg_def.Name; + nested_to_flat_tensor_name[control_name] = control_name; + } + + foreach(var node_def in fdef.NodeDef) + { + var graph = default_graph; + while (true) + { + if(graph is null) + { + break; + } + var f = graph.Functions.GetOrDefault(node_def.Op, null); + if(f is not null && graph.OuterGraph is null) + { + break; + } + graph = graph.OuterGraph; + } + + var op_def = default_graph.GetOpDef(node_def.Op); + + foreach(var attr in op_def.Attr) + { + if(attr.Type == "func") + { + var fname = node_def.Attr[attr.Name].Func.Name; + if (!is_function(fname)) + { + throw new ValueError($"Function {fname} was not found. Please make sure " + + $"the FunctionDef `fdef` is correct."); + } + } + else if(attr.Type == "list(func)") + { + foreach(var fn in node_def.Attr[attr.Name].List.Func) + { + var fname = fn.Name; + if (!is_function(fname)) + { + throw new ValueError($"Function {fname} was not found. Please make " + + $"sure the FunctionDef `fdef` is correct."); + } + } + } + } + + int flattened_index = 0; + foreach(var arg_def in op_def.OutputArg) + { + var num_args = _get_num_args(arg_def, node_def); + for(int i = 0; i < num_args; i++) + { + var nested_name = $"{node_def.Name}:{arg_def.Name}:{i}"; + var flat_name = $"{node_def.Name}:{flattened_index}"; + nested_to_flat_tensor_name[nested_name] = flat_name; + flattened_index++; + } + } + string control_name = "^" + node_def.Name; + nested_to_flat_tensor_name[control_name] = control_name; + } + + foreach(var node_def in graph_def.Node) + { + for(int i = 0; i < node_def.Input.Count; i++) + { + node_def.Input[i] = nested_to_flat_tensor_name[node_def.Input[i]]; + } + } + + return (graph_def, nested_to_flat_tensor_name); + } + + private static void _set_handle_data(FuncGraph func_graph, FunctionDef fdef) + { + foreach(var (tensor, arg_def) in zip(func_graph.Inputs, fdef.Signature.InputArg).Concat(zip(func_graph.Outputs, fdef.Signature.OutputArg))) + { + if(arg_def.HandleData is not null && arg_def.HandleData.Count > 0) + { + tensor.shape = Shape.Scalar; + + var shape_and_type = arg_def.HandleData[0]; + var handle_data = new HandleData(); + handle_data.IsSet = true; + handle_data.ShapeAndType.Add(new HandleShapeAndType() + { + Shape = shape_and_type.Shape, + Dtype = shape_and_type.Dtype + }); + resource_variable_ops._set_handle_shapes_and_types(tensor, handle_data, true); + } + } + } + + private static long _get_num_args(OpDef.Types.ArgDef arg_def, NodeDef node_def) + { + if (!string.IsNullOrEmpty(arg_def.NumberAttr)) + { + return node_def.Attr[arg_def.NumberAttr].I; + } + else if(!string.IsNullOrEmpty(arg_def.TypeListAttr)) + { + return node_def.Attr[arg_def.TypeListAttr].List.Type.Count; + } + else if(arg_def.TypeAttr is not null || arg_def.Type != DataType.DtInvalid) + { + return 1; + } + else + { + throw new ValueError($"Invalid arg_def:\n\n{arg_def}. Please make sure the " + + $"FunctionDef `fdef` is correct."); + } + } + + public static bool is_function(string fname) + { + if (tf.Context.executing_eagerly()) + { + return tf.Context.has_function(fname); + } + else + { + var graph = ops.get_default_graph(); + while(graph is not null) + { + if (graph.IsFunction(fname)) + { + return true; + } + if(graph.OuterGraph is not null) + { + graph = graph.OuterGraph; + } + else + { + return false; + } + } + } + throw new ValueError("Unexpected behavior happened in runtime, please submit an issue to " + + "https://github.com/SciSharp/TensorFlow.NET/issues"); + } + } +} diff --git a/src/TensorFlowNET.Core/Framework/importer.cs b/src/TensorFlowNET.Core/Framework/importer.cs index 1d0098b45..e7e7cf394 100644 --- a/src/TensorFlowNET.Core/Framework/importer.cs +++ b/src/TensorFlowNET.Core/Framework/importer.cs @@ -17,6 +17,7 @@ limitations under the License. using Google.Protobuf; using System; using System.Collections.Generic; +using System.Diagnostics; using System.Linq; using static Tensorflow.Binding; using static Tensorflow.OpDef.Types; @@ -25,9 +26,14 @@ namespace Tensorflow { public class importer { + public static ITensorOrOperation[] import_graph_def_for_function(GraphDef graph_def, string name = null) + { + return import_graph_def(graph_def, validate_colocation_constraints: false, name: name); + } public static ITensorOrOperation[] import_graph_def(GraphDef graph_def, Dictionary input_map = null, string[] return_elements = null, + bool validate_colocation_constraints = true, string name = null, OpList producer_op_list = null) { @@ -56,15 +62,14 @@ public static ITensorOrOperation[] import_graph_def(GraphDef graph_def, TF_ImportGraphDefResults results = null; var bytes = graph_def.ToByteString().ToArray(); - using (var buffer = c_api_util.tf_buffer(bytes)) - using (var scoped_options = c_api_util.ScopedTFImportGraphDefOptions()) - using (var status = new Status()) - { - _PopulateTFImportGraphDefOptions(scoped_options, prefix, input_map, return_elements); - // need to create a class ImportGraphDefWithResults with IDisposal - results = new TF_ImportGraphDefResults(c_api.TF_GraphImportGraphDefWithResults(graph, buffer.Handle, scoped_options.Handle, status.Handle)); - status.Check(true); - } + var buffer = c_api_util.tf_buffer(bytes); + var scoped_options = c_api_util.ScopedTFImportGraphDefOptions(); + var status = new Status(); + + _PopulateTFImportGraphDefOptions(scoped_options, prefix, input_map, return_elements, validate_colocation_constraints ); + // need to create a class ImportGraphDefWithResults with IDisposal + results = new TF_ImportGraphDefResults(c_api.TF_GraphImportGraphDefWithResults(graph, buffer, scoped_options, status)); + status.Check(true); _ProcessNewOps(graph); @@ -108,21 +113,36 @@ private static void _ProcessNewOps(Graph graph) foreach (var new_op in graph._add_new_tf_operations()) { var original_device = new_op.Device; + new_op._set_device(original_device); } } public static void _PopulateTFImportGraphDefOptions(ImportGraphDefOptions options, string prefix, Dictionary input_map, - string[] return_elements) + string[] return_elements, + bool validate_colocation_constraints) { - c_api.TF_ImportGraphDefOptionsSetPrefix(options.Handle, prefix); - c_api.TF_ImportGraphDefOptionsSetUniquifyNames(options.Handle, (char)1); + c_api.TF_ImportGraphDefOptionsSetPrefix(options, prefix); + c_api.TF_ImportGraphDefOptionsSetUniquifyNames(options.Options, true); foreach (var input in input_map) { - var (src_name, src_index) = _ParseTensorName(input.Key); - c_api.TF_ImportGraphDefOptionsAddInputMapping(options.Handle, src_name, src_index, input.Value._as_tf_output()); + var input_src = tf.compat.as_str(input.Key); + var input_dst = input.Value; + if (input_src.StartsWith("^")) + { + var src_name = tf.compat.as_str(input_src.Substring(1)); + var dst_op = input_dst._as_tf_output().oper; + c_api.TF_ImportGraphDefOptionsRemapControlDependency(options.Options, src_name, dst_op); + } + else + { + var (src_name, src_index) = _ParseTensorName(input.Key); + src_name = tf.compat.as_str(src_name); + var dst_output = input_dst._as_tf_output(); + c_api.TF_ImportGraphDefOptionsAddInputMapping(options.Options, src_name, src_index, dst_output); + } } if (return_elements == null) @@ -133,15 +153,16 @@ public static void _PopulateTFImportGraphDefOptions(ImportGraphDefOptions option if (name.Contains(":")) { var (op_name, index) = _ParseTensorName(name); - c_api.TF_ImportGraphDefOptionsAddReturnOutput(options.Handle, op_name, index); + op_name = tf.compat.as_str(op_name); + c_api.TF_ImportGraphDefOptionsAddReturnOutput(options.Options, op_name, index); } else { - c_api.TF_ImportGraphDefOptionsAddReturnOperation(options.Handle, name); + c_api.TF_ImportGraphDefOptionsAddReturnOperation(options.Options, tf.compat.as_str(name)); } } - // c_api.TF_ImportGraphDefOptionsSetValidateColocationConstraints(options, validate_colocation_constraints); + c_api.TF_ImportGraphDefOptionsSetValidateColocationConstraints(options.Options, validate_colocation_constraints); } private static (string, int) _ParseTensorName(string tensor_name) @@ -174,6 +195,14 @@ public static GraphDef _ProcessGraphDefParam(GraphDef graph_def, Dictionary op_dict, OpLis } } + private static void _RemoveDefaultAttrs(OpList producer_op_list, GraphDef graph_def) + { + var producer_op_dict = producer_op_list.Op.ToDictionary(x => x.Name, x => x); + + foreach (var node in graph_def.Node) + { + // Remove any default attr values that aren't in op_def. + if (producer_op_dict.ContainsKey(node.Op)) + { + var op_def = op_def_registry.GetOpDef(node.Op); + if(op_def is null) + { + continue; + } + var producer_op_def = producer_op_dict[node.Op]; + foreach (var key in node.Attr.Keys) + { + if (_FindAttrInOpDef(key, op_def) is null) + { + var attr_def = _FindAttrInOpDef(key, producer_op_def); + if (attr_def != null && attr_def.DefaultValue != null && + node.Attr[key] == attr_def.DefaultValue) + node.Attr[key].ClearValue(); + } + } + } + } + } + private static AttrDef _FindAttrInOpDef(string name, OpDef op_def) { return op_def.Attr.FirstOrDefault(x => x.Name == name); diff --git a/src/TensorFlowNET.Core/Framework/meta_graph.cs b/src/TensorFlowNET.Core/Framework/meta_graph.cs index 6ce3bf3c5..c3616fafd 100644 --- a/src/TensorFlowNET.Core/Framework/meta_graph.cs +++ b/src/TensorFlowNET.Core/Framework/meta_graph.cs @@ -304,7 +304,7 @@ private static void add_collection_def(MetaGraphDef meta_graph_def, } } - private static OpList stripped_op_list_for_graph(GraphDef graph_def) + public static OpList stripped_op_list_for_graph(GraphDef graph_def) { var used_ops = ops_used_by_graph_def(graph_def); @@ -345,5 +345,89 @@ private static string[] ops_used_by_graph_def(GraphDef graph_def) return used_ops.ToArray(); } + + private static bool is_default_attr_value(OpDef op_def, string attr_name, AttrValue attr_value) + { + foreach (var attr_def in op_def.Attr) + { + if (attr_def.Name == attr_name) + { + if (attr_def.DefaultValue is null) return false; + // TODO: add new c_api `EqualAttrValueWrapper` and complete the check. + return true; + } + } + + return false; + } + + public static void strip_graph_default_valued_attrs(MetaGraphDef meta_graph_def) + { + Dictionary op_name_to_function = new(); + foreach (var function_def in meta_graph_def.GraphDef.Library.Function) + { + op_name_to_function[function_def.Signature.Name] = function_def; + } + + Action _strip_node_default_valued_attrs = (node_def) => + { + if (op_name_to_function.ContainsKey(node_def.Op)) return; + + var op_def = op_def_registry.GetOpDef(node_def.Op); + if(op_def is null) return; + + HashSet attrs_to_strip = new(); + foreach (var attr in node_def.Attr) + { + if (is_default_attr_value(op_def, attr.Key, attr.Value)) + { + attrs_to_strip.Add(attr.Key); + } + } + + foreach (var attr in attrs_to_strip) + { + node_def.Attr.Remove(attr); + } + }; + + foreach (var node_def in meta_graph_def.GraphDef.Node) + { + _strip_node_default_valued_attrs(node_def); + } + + foreach (var function_def in meta_graph_def.GraphDef.Library.Function) + { + foreach (var function_node_def in function_def.NodeDef) + { + _strip_node_default_valued_attrs(function_node_def); + } + } + + meta_graph_def.MetaInfoDef.StrippedDefaultAttrs = true; + } + + /// + /// Extract the Op name from a Tensor name. + /// + /// + /// + public static string op_name(string tensor_name) + { + if (string.IsNullOrEmpty(tensor_name)) + { + throw new ValueError($"Tensor name cannot be empty or None. Received: {tensor_name}."); + } + + if (tensor_name.StartsWith("^")) + { + tensor_name = tensor_name.Substring(1); + } + if (tensor_name.Contains(":")) + { + return tensor_name.Split(':')[0]; + } + return tensor_name; + } } } diff --git a/src/TensorFlowNET.Core/Framework/op_def_registry.py.cs b/src/TensorFlowNET.Core/Framework/op_def_registry.py.cs index eec234c64..111719aad 100644 --- a/src/TensorFlowNET.Core/Framework/op_def_registry.py.cs +++ b/src/TensorFlowNET.Core/Framework/op_def_registry.py.cs @@ -33,7 +33,7 @@ public static Dictionary get_registered_ops() if (_registered_ops.Count > 0) return _registered_ops; - using var buffer = new Buffer(c_api.TF_GetAllOpList()); + var buffer = new Buffer(c_api.TF_GetAllOpList()); var op_list = OpList.Parser.ParseFrom(buffer.ToArray()); foreach (var op_def in op_list.Op) _registered_ops[op_def.Name] = op_def; diff --git a/src/TensorFlowNET.Core/Framework/smart_module.cs b/src/TensorFlowNET.Core/Framework/smart_module.cs index d9e35a6d6..e1f84d7eb 100644 --- a/src/TensorFlowNET.Core/Framework/smart_module.cs +++ b/src/TensorFlowNET.Core/Framework/smart_module.cs @@ -56,8 +56,8 @@ public static Tensor smart_cond(bool pred, if (pred_value is null) { var result = range(pred.op.NumOutputs).Select(x => IntPtr.Zero).ToArray(); - var evaluated = c_api.TF_TryEvaluateConstant(pred.graph, pred._as_tf_output(), result, tf.Status.Handle); - if (!evaluated || c_api.TF_GetCode(tf.Status.Handle) != TF_Code.TF_OK) + var evaluated = c_api.TF_TryEvaluateConstant(pred.graph, pred._as_tf_output(), result, tf.Status); + if (!evaluated || c_api.TF_GetCode(tf.Status) != TF_Code.TF_OK) return null; else throw new NotImplementedException(""); diff --git a/src/TensorFlowNET.Core/Framework/versions.cs b/src/TensorFlowNET.Core/Framework/versions.cs new file mode 100644 index 000000000..e91f08a2c --- /dev/null +++ b/src/TensorFlowNET.Core/Framework/versions.cs @@ -0,0 +1,12 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Framework +{ + public class versions + { + public static int GRAPH_DEF_VERSION = 1286; + public static int GRAPH_DEF_VERSION_MIN_CONSUMER = 0; + } +} diff --git a/src/TensorFlowNET.Core/Functions/ConcreteFunction.cs b/src/TensorFlowNET.Core/Functions/ConcreteFunction.cs index c52d0b5f5..8742e4535 100644 --- a/src/TensorFlowNET.Core/Functions/ConcreteFunction.cs +++ b/src/TensorFlowNET.Core/Functions/ConcreteFunction.cs @@ -1,8 +1,14 @@ using System; using System.Collections.Generic; +using System.Diagnostics; using System.Linq; +using Tensorflow.Eager; using Tensorflow.Framework.Models; +using Tensorflow.Gradients; using Tensorflow.Graphs; +using Tensorflow.Train; +using Tensorflow.Util; +using Tensorflow.Common.Extensions; using static Tensorflow.Binding; namespace Tensorflow.Functions @@ -10,29 +16,60 @@ namespace Tensorflow.Functions /// /// /// - public class ConcreteFunction + public class ConcreteFunction: Trackable { - FuncGraph func_graph; - ForwardBackwardCall forward_backward; + protected IEnumerable _captured_inputs; + protected DelayedRewriteGradientFunctions _delayed_rewrite_functions; + protected Dictionary _attrs; + protected FunctionSpec _function_spec; + protected FunctionSpec _pre_initialized_function_spec = null; + protected EagerDefinedFunction _inference_function; + protected Dictionary _tape_functions_cache = new(); + internal FuncGraph func_graph; + internal ForwardBackwardCall forward_backward; public Tensor[] Inputs => func_graph.Inputs; public Tensor[] CapturedInputs => func_graph.external_captures; - public string Name => func_graph?.FuncName; + public string Name => _delayed_rewrite_functions.Forward().Name; - public Tensor[] Outputs; + public Tensor[] Outputs => func_graph.Outputs; public Type ReturnType; public TensorSpec[] OutputStructure; + public IEnumerable ArgKeywords { get; set; } + public long NumPositionArgs { get; set; } + public FunctionDef FunctionDef => _delayed_rewrite_functions.Forward().Definition; + public Tensor[] FlatStructuredOutputs => func_graph.FlatStructuredOutputs; + public IEnumerable Variables => func_graph.Variables; + public IEnumerable TrainableVariables => func_graph.TrainableVariables; + internal NameAttrList AsNameAttrList + { + get + { + NameAttrList ret = new() { Name = this.Name }; + foreach (var (name, value) in _attrs) + { + ret.Attr[name] = value; + } + return ret; + } + } public ConcreteFunction(string name) { func_graph = new FuncGraph(name); + _captured_inputs = func_graph.external_captures; + _attrs= new Dictionary(); + _set_infer_function(); } - public ConcreteFunction(FuncGraph graph, Dictionary attrs = null) + public ConcreteFunction(FuncGraph graph, Dictionary attrs = null) { func_graph = graph; + _captured_inputs = func_graph.external_captures; - ToGraph(graph.Inputs, graph.Outputs.Where(x => x != null).ToArray()); + //ToGraph(graph.Inputs, graph.Outputs.Where(x => x != null).ToArray()); + _attrs = attrs; + _set_infer_function(); } public ConcreteFunction(Func func, TF_DataType dtype) @@ -50,6 +87,9 @@ public ConcreteFunction(Func func, TF_DataType dtype) new[] { output }, null); func_graph.Exit(); + _captured_inputs = func_graph.external_captures; + _attrs = new Dictionary(); + _set_infer_function(); } public ConcreteFunction(Func func, TF_DataType dtype) @@ -70,6 +110,9 @@ public ConcreteFunction(Func func, TF_DataType dtype) new[] { output.variant_tensor }, null); func_graph.Exit(); + _captured_inputs = func_graph.external_captures; + _attrs = new Dictionary(); + _set_infer_function(); } /*public ConcreteFunction(Func func, @@ -127,45 +170,157 @@ public Tensors CallFlat(Tensor[] args, Tensor[] captured_inputs) { var executing_eagerly = tf.Context.executing_eagerly(); var default_graph = ops.get_default_graph(); + // TODO(Rinne): deal with `default_graph.building_function` + + var tempvv = func_graph.Variables; + if(tf.GetTapeSet().Count > 0 || default_graph is FuncGraph) + { + foreach(var v in this.func_graph.Variables) + { + resource_variable_ops.variable_accessed(v); + } + } + var tensor_inputs = new Tensors(); foreach (var (i, arg) in enumerate(args)) { tensor_inputs.Add(arg); // If we're graph building, shape inference is on. - if (!executing_eagerly) - { - } } - tensor_inputs.AddRange(captured_inputs); + if (!executing_eagerly) + { + // TODO(Rinne): add the check + } + tensor_inputs.AddRange(captured_inputs); args = tensor_inputs.ToArray(); - var possible_gradient_type = tf.Runner.MustRecordGradient() ? 1 : 0; + var possible_gradient_type = gradients_util.PossibleTapeGradientTypes(args); // No tape is watching; skip to running the function. - if (possible_gradient_type == 0 && executing_eagerly) + if (possible_gradient_type == gradients_util.POSSIBLE_GRADIENT_TYPES_NONE && executing_eagerly) { - var attrs = new object[] - { - "executor_type", "", - "config_proto", tf.Context.FunctionCallOptions.config_proto_serialized() - }; - return tf.Runner.Execute(tf.Context, func_graph.FuncName, func_graph.Outputs.Length, args, attrs); + return _build_call_outputs(_inference_function.Call(args)); } - if (forward_backward == null) - forward_backward = SelectForwardAndBackwardFunctions(args, possible_gradient_type, executing_eagerly); + forward_backward = SelectForwardAndBackwardFunctions(args, possible_gradient_type, executing_eagerly); var (forward_function, args_with_tangents) = forward_backward.Forward(); Tensors flat_outputs = null; if (executing_eagerly) + { flat_outputs = forward_function.Call(args_with_tangents); + } + else + { + tf_with(default_graph._override_gradient_function(new Dictionary>(){ + { "PartitionedCall", _get_gradient_function() }, { "StatefulPartitionedCall", _get_gradient_function() } + }), _ => + { + flat_outputs = forward_function.Call(args_with_tangents); + }); + } forward_backward.Record(flat_outputs); - return flat_outputs; + return _build_call_outputs(flat_outputs); + } + + public void AddTograph(Graph? g = null) + { + if(!tf.Context.executing_eagerly() && g is null) + { + g = ops.get_default_graph(); + } + _delayed_rewrite_functions.Forward().AddToGraph(g); + } + + public void SetExternalCaptures(IEnumerable captures) + { + _captured_inputs = captures; } ForwardBackwardCall SelectForwardAndBackwardFunctions(Tensors args, int possible_gradient_type, bool executing_eagerly) { - var functions = new FirstOrderTapeGradientFunctions(func_graph, false); - return new ForwardBackwardCall(functions, args, tape_watching: true); + TangentInfo input_tangents; + if (executing_eagerly) + { + // TODO(Rinne): check if it needs to be implemented. + input_tangents = new TangentInfo(); + } + else + { + input_tangents = new TangentInfo(); + } + if(possible_gradient_type == gradients_util.POSSIBLE_GRADIENT_TYPES_FIRST_ORDER) + { + if(input_tangents.Indices is not null || executing_eagerly) + { + string cache_key = "first_order"; + if(!_tape_functions_cache.TryGetValue(cache_key, out var functions)) + { + functions = new FirstOrderTapeGradientFunctions(func_graph, false); + _tape_functions_cache[cache_key] = functions; + } + return new ForwardBackwardCall(functions, args, tape_watching: true); + } + else + { + return new ForwardBackwardCall(_delayed_rewrite_functions, args, tape_watching: true); + } + } + else if(possible_gradient_type == gradients_util.POSSIBLE_GRADIENT_TYPES_HIGHER_ORDER) + { + throw new NotImplementedException(); + } + + // TODO(Rinne): add arg "input_tagents" for ForwardBackwardCall. + return new ForwardBackwardCall(_delayed_rewrite_functions, args, tape_watching: false); + } + + internal void set_variables(IEnumerable variables) + { + func_graph.Variables = variables; + } + + internal void _set_infer_function() + { + _delayed_rewrite_functions = new DelayedRewriteGradientFunctions(func_graph, _attrs); + _inference_function = _delayed_rewrite_functions.Forward(); + } + + internal void _set_function_spec(FunctionSpec spec) + { + _function_spec = null; + _pre_initialized_function_spec = spec; + _initialize_function_spec(); + } + + internal void _initialize_function_spec() + { + if(_pre_initialized_function_spec is null) + { + return; + } + Debug.Assert(_function_spec is null, "already initialized"); + var spec = _pre_initialized_function_spec; + //var args = spec.Fullargspec.DictValue.Fields["args"]; + // TODO(Rinne): self.structured_input_signature + + _function_spec = new FunctionSpec() + { + Fullargspec = spec.Fullargspec, + IsMethod = spec.IsMethod, + InputSignature = spec.InputSignature + }; + } + + internal Func _get_gradient_function() + { + return _delayed_rewrite_functions._rewrite_forward_and_call_backward; + } + + private Tensors _build_call_outputs(Tensors result) + { + // TODO(Rinne): deal with `func_graph.structured_outputs` + + return result; } public override string ToString() diff --git a/src/TensorFlowNET.Core/Functions/EagerDefinedFunction.cs b/src/TensorFlowNET.Core/Functions/EagerDefinedFunction.cs index bfb8aa71a..d547b6120 100644 --- a/src/TensorFlowNET.Core/Functions/EagerDefinedFunction.cs +++ b/src/TensorFlowNET.Core/Functions/EagerDefinedFunction.cs @@ -1,50 +1,232 @@ using Google.Protobuf; using System; using System.Collections.Generic; +using System.IO; using System.Linq; using System.Text; +using Tensorflow.Contexts; +using Tensorflow.Eager; using Tensorflow.Graphs; +using Tensorflow.Operations; +using Tensorflow.Util; +using Tensorflow.Common.Extensions; using static Tensorflow.Binding; +using Tensorflow.Framework; +using System.Buffers; +using Tensorflow.Gradients; namespace Tensorflow.Functions { - public class EagerDefinedFunction + public class EagerDefinedFunction: IDisposable { public int _num_outputs; - public string Name => _func_graph.FuncName; + FuncGraph _graph; + FunctionDef _definition; + OpDef _signature; + string _name; + internal ScopedTFFunction _c_func; + internal Tensor[] _func_graph_outputs; + internal string _grad_func_name; + internal Func csharp_grad_func; + internal EagerDefinedFunction _grad_func; + internal bool _registered_on_context = false; + public string Name => _name; + public DataType[] OutputTypes { get; protected set; } + public Shape[] OutputShapes { get; protected set; } + public FunctionDef Definition + { + get + { + if(_definition is null) + { + _definition = _get_definition(); + } + return _definition; + } + } - FuncGraph _func_graph; - public EagerDefinedFunction(string name, FuncGraph graph, + public OpDef Signature + { + get + { + if( _signature is null) + { + _signature = Definition.Signature; + } + return _signature; + } + } + public unsafe EagerDefinedFunction(string name, FuncGraph graph, Tensors inputs, Tensors outputs, - Dictionary attrs) + Dictionary attrs) { - _num_outputs = outputs.Length; - var input_ops = inputs.Select(x => x.op).ToArray(); var operations = graph.get_operations().Where(x => !input_ops.Contains(x.op)) .Select(x => x as Operation).ToArray(); - var output_names = new string[0]; + var graph_output_names = graph._output_names; + string[] output_names; + if(graph_output_names is not null && outputs.All(t => graph_output_names.ContainsKey(ops.tensor_id(t)))) + { + output_names = outputs.Select(t => graph_output_names[ops.tensor_id(t)]).ToArray(); + if(output_names.Distinct().Count() != output_names.Length) + { + output_names = new string[0]; + } + } + else + { + output_names = new string[0]; + } - _func_graph = new FuncGraph(graph, name, attrs); - _func_graph.ToGraph(operations, inputs, outputs, output_names); + Status status = new Status(); + var fn = c_api.TF_GraphToFunction(graph.c_graph, + name, + false, + operations.Length, + operations.Length == 0 ? new IntPtr[0] : operations.Select(x => (IntPtr)x).ToArray(), + inputs.Length, + inputs.Select(t => t._as_tf_output()).ToArray(), + outputs.Length, + outputs.Select(t => t._as_tf_output()).ToArray(), + output_names.Length != outputs.Length ? null : output_names, + IntPtr.Zero, // warning: the control output hasbben totally ignored. + null, + status); + status.Check(true); + + _c_func = new ScopedTFFunction(fn, name); + + foreach(var (attr_name, attr_value) in attrs) + { + var serialized = attr_value.ToByteArray(); + c_api.TF_FunctionSetAttrValueProto(fn, attr_name, serialized, serialized.Length, status); + status.Check(true); + } + + var signature = _get_definition().Signature; + _name = signature.Name; + tf_with(ops.init_scope(), s => + { + tf.Context.add_function(fn); + _registered_on_context = true; + }); + + _num_outputs = signature.OutputArg.Count; + OutputTypes = signature.OutputArg.Select(x => x.Type).ToArray(); + OutputShapes = outputs.Select(x => x.shape).ToArray(); + _func_graph_outputs = new List(outputs).ToArray(); + csharp_grad_func = null; + _graph = graph; } - public Tensors Call(Tensors args) + public unsafe Tensors Call(Tensors args) { + // TODO(Rinne): Add arg `CancellationManager`. + // TODO(Rinne): Check the arg length. + var function_call_options = tf.Context.FunctionCallOptions; + string config = ""; // TODO(Rinne): revise it. The following code should work but not, for unclear reasons. + + //if (function_call_options.config_proto_serialized().Length == 0) + //{ + // config = function_utils.get_disabled_rewriter_config().ToStringUtf8(); + //} + //else + //{ + // config = function_call_options.config_proto_serialized().ToStringUtf8(); + //} + + string executor_type = function_call_options.ExecutorType ?? ""; + var executing_eagerly = tf.Context.executing_eagerly(); + var attrs = new object[] { - "executor_type", "", - "config_proto", tf.Context.FunctionCallOptions.config_proto_serialized() + "executor_type", executor_type, + "config_proto", config }; - var results = tf.Runner.TFE_Execute(tf.Context, - tf.Context.DeviceName, - _func_graph.FuncName, - args, - attrs, - _num_outputs); + Tensor[] outputs; + if (executing_eagerly) + { + outputs = _execute.execute( + Signature.Name, + _num_outputs, + args, + attrs, + tf.Context); + } + else + { + if(tf.GetTapeSet().Count == 0) + { + outputs = functional_ops.partitioned_call(args, this, OutputTypes, + executing_eagerly, config, ""); + } + else + { + var tape = tf.GetTapeSet().Peek(); + tape.StopRecord(); + outputs = functional_ops.partitioned_call(args, this, OutputTypes, + executing_eagerly, config, ""); + tape.StartRecord(); + } + } + foreach(var (i, func_graph_output) in enumerate(_func_graph_outputs)) + { + handle_data_util.copy_handle_data(func_graph_output, outputs[i]); + } + if (executing_eagerly) + { + return outputs; + } + else + { + foreach(var (i, shape) in enumerate(OutputShapes)) + { + outputs[i].shape = shape; + } + return outputs; + } + } + + public void AddToGraph(Graph g = null) + { + if(g is null && tf.Context.executing_eagerly()) + { + var ctx = tf.Context; + if (!ctx.has_function(this.Name)) + { + ctx.add_function_def(Definition); + } + } + else + { + if (!g.IsFunction(Name)) + { + g.AddFunction(this); + } + foreach(var f in _graph.Functions.Values) + { + if (!g.IsFunction(f.Name)) + { + g.AddFunction(f); + } + } + } + } - return results; + private FunctionDef _get_definition() + { + var buffer = c_api_util.tf_buffer(); + Status status = new(); + c_api.TF_FunctionToFunctionDef(_c_func.Get(), buffer, status); + status.Check(true); + var proto_data = c_api.TF_GetBuffer(buffer); + return FunctionDef.Parser.ParseFrom(proto_data.AsSpan()); + } + + public void Dispose() + { + tf.Context.remove_function(Name); } } } diff --git a/src/TensorFlowNET.Core/Functions/FirstOrderTapeGradientFunctions.cs b/src/TensorFlowNET.Core/Functions/FirstOrderTapeGradientFunctions.cs index 3c099927c..bfb0defcb 100644 --- a/src/TensorFlowNET.Core/Functions/FirstOrderTapeGradientFunctions.cs +++ b/src/TensorFlowNET.Core/Functions/FirstOrderTapeGradientFunctions.cs @@ -14,12 +14,11 @@ public FirstOrderTapeGradientFunctions(FuncGraph func_graph, } - public override EagerDefinedFunction ForwardAndBackwardFunctions(Tensors inference_args) + public override (EagerDefinedFunction, FuncGraph, ConcreteFunction, List, int) + ForwardAndBackwardFunctions(Tensors inference_args) { - var outputs = _func_graph.Outputs; - (_forward, _forward_graph, _backward, _forwardprop_output_indices, _num_forwardprop_outputs) - = BuildFunctionsForOutputs(outputs, inference_args); - return _forward; + var outputs = _func_graph.Outputs.Take(_num_inference_outputs).ToArray(); + return BuildFunctionsForOutputs(outputs, inference_args); } } } diff --git a/src/TensorFlowNET.Core/Functions/Function.cs b/src/TensorFlowNET.Core/Functions/Function.cs index d57097ae9..e301048a8 100644 --- a/src/TensorFlowNET.Core/Functions/Function.cs +++ b/src/TensorFlowNET.Core/Functions/Function.cs @@ -1,16 +1,84 @@ using System; +using Tensorflow.Functions; +using Tensorflow.Train; namespace Tensorflow { - public class Function + public class Function: Trackable, IGenericFunction { #pragma warning disable CS0169 // The field 'Function._handle' is never used private IntPtr _handle; #pragma warning restore CS0169 // The field 'Function._handle' is never used - public Function() + protected Func _csharp_function; + protected ConcreteFunction _concrete_variable_creation_fn; + protected bool _autograph; + protected TracingCompiler _variable_creation_fn; + public string Name { get; set; } + public Function(Func csharp_function, + string name, bool auto_graph = true) { + _csharp_function = csharp_function; + Name = name; + _autograph = auto_graph; + } + + public virtual Tensors Apply(Tensors inputs) + { + if (_run_functions_eagerly()) + { + return _csharp_function(inputs); + } + + var result = _call(inputs); + return result; + } + + public ConcreteFunction get_concrete_function(params Tensor[] args) + { + return _get_concrete_function_garbage_collected(args); + } + + protected virtual Tensors _call(Tensors inputs) + { + if(_variable_creation_fn is not null) + { + return _variable_creation_fn.Apply(inputs); + } + _initialize(inputs); + + return _concrete_variable_creation_fn.CallFlat(inputs, + _concrete_variable_creation_fn.CapturedInputs); + } + protected TracingCompiler _compiler(Func fn) + { + var name = nameof(fn); + return new TracingCompiler(fn, name, autograph: _autograph); + } + + protected virtual bool _run_functions_eagerly() + { + return false; + } + + protected ConcreteFunction _get_concrete_function_garbage_collected(Tensor[] args) + { + if(_variable_creation_fn is null) + { + _initialize(args); + // TODO(Rinne): _initialize_uninitialized_variables + } + + var concrete = _variable_creation_fn._get_concrete_function_internal_garbage_collected(args); + return concrete; + } + + private void _initialize(Tensor[] args) + { + _variable_creation_fn = _compiler(_csharp_function); + _variable_creation_fn._name = this.Name; + _concrete_variable_creation_fn = _variable_creation_fn._get_concrete_function_internal_garbage_collected(args); } } } diff --git a/src/TensorFlowNET.Core/Functions/IGenericFunction.cs b/src/TensorFlowNET.Core/Functions/IGenericFunction.cs new file mode 100644 index 000000000..f046731bf --- /dev/null +++ b/src/TensorFlowNET.Core/Functions/IGenericFunction.cs @@ -0,0 +1,12 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Functions +{ + public interface IGenericFunction + { + Tensors Apply(Tensors args); + ConcreteFunction get_concrete_function(params Tensor[] args); + } +} diff --git a/src/TensorFlowNET.Core/Functions/TapeGradientFunctions.cs b/src/TensorFlowNET.Core/Functions/TapeGradientFunctions.cs index 9f216ff73..3895226ef 100644 --- a/src/TensorFlowNET.Core/Functions/TapeGradientFunctions.cs +++ b/src/TensorFlowNET.Core/Functions/TapeGradientFunctions.cs @@ -3,8 +3,10 @@ using System.Linq; using System.Text; using Tensorflow.Eager; +using Tensorflow.Gradients; using Tensorflow.Graphs; using Tensorflow.NumPy; +using Tensorflow.Operations; using static Tensorflow.Binding; using static Tensorflow.tensorflow; @@ -15,17 +17,21 @@ namespace Tensorflow.Functions /// public abstract class TapeGradientFunctions { - string FORWARD_FUNCTION_ATTRIBUTE_NAME = "forward_function_name"; - string BACKWARD_FUNCTION_ATTRIBUTE_NAME = "backward_function_name"; - string _FORWARD_PREFIX = "__forward_"; - string _BACKWARD_PREFIX = "__backward_"; - string _INFERENCE_PREFIX = "__inference_"; + protected string FORWARD_FUNCTION_ATTRIBUTE_NAME = "forward_function_name"; + protected string BACKWARD_FUNCTION_ATTRIBUTE_NAME = "backward_function_name"; + protected string _FORWARD_PREFIX = "__forward_"; + protected string _BACKWARD_PREFIX = "__backward_"; + protected string _INFERENCE_PREFIX = "__inference_"; protected FuncGraph _func_graph; protected EagerDefinedFunction _forward; protected FuncGraph _forward_graph; + protected List _forwardprop_input_indices; protected List _forwardprop_output_indices; protected int _num_forwardprop_outputs; + protected int _num_inference_outputs; + protected int _num_outputs; + protected int _num_trainable_inference_outputs; protected ConcreteFunction _backward; BackwardFunction _backward_function_wrapper; @@ -33,11 +39,25 @@ public TapeGradientFunctions(FuncGraph func_graph, bool need_gradients_for_jvps) { _func_graph = func_graph; + _forward_graph = null; + _forward = null; + _backward = null; + _num_outputs = func_graph.Outputs.Length; + _forwardprop_output_indices = null; + _num_forwardprop_outputs = 0; + _num_inference_outputs = func_graph.Outputs.Length; + _num_trainable_inference_outputs = func_graph.Outputs.Where(t => backprop_util.IsTrainable(t)).Count(); } - public EagerDefinedFunction Forward(Tensors inference_args) + public virtual EagerDefinedFunction Forward(Tensors inference_args, Tensors input_tangents = null) { - return ForwardAndBackwardFunctions(inference_args); + // TODO(Rinne): add input_tangents arg. + if(_forward is null) + { + (_forward, _forward_graph, _backward, _forwardprop_output_indices, _num_forwardprop_outputs) + = ForwardAndBackwardFunctions(inference_args); + } + return _forward; } /// @@ -45,11 +65,16 @@ public EagerDefinedFunction Forward(Tensors inference_args) /// /// /// - public void Record(Tensors flat_outputs, Tensors inference_args) + public virtual void Record(Tensors flat_outputs, Tensors inference_args) { + // TODO(Rinne): add arg `input_tagents`. var (backward_function, to_record) = _wrap_backward_function(_forward_graph, _backward, flat_outputs); - tf.Runner.RecordGradient(_forward.Name, inference_args, new object[0], to_record, - getBackwardFunction: backward_function); + if(_forwardprop_output_indices is not null && _forwardprop_output_indices.Count > 0) + { + // TODO(Rinne): implement it. + throw new NotImplementedException(); + } + tf.Runner.TFE_TapeSetRecordOperation(_forward.Signature.Name, to_record, inference_args, backward_function); } /// @@ -61,66 +86,95 @@ public void Record(Tensors flat_outputs, Tensors inference_args) /// (BackwardFunction, Tensors) _wrap_backward_function(FuncGraph forward_graph, ConcreteFunction backward, Tensors outputs) { + var capture_mapping = zip(forward_graph.Outputs.Select(t => ops.tensor_id(t)), outputs) + .ToDictionary(x => x.Item1, x => x.Item2); + var captured_inputs = backward.CapturedInputs; + var remapped_captures = captured_inputs.Select(c => + { + if (capture_mapping.TryGetValue(ops.tensor_id(c), out var value)) + { + return value; + } + else + { + return c; + } + }).ToArray(); + if(remapped_captures.Where(t => t is not EagerTensor).Any(t => t.graph == forward_graph)) + { + var incorrect_mapping = remapped_captures.Where(t => t is not EagerTensor && t.graph != forward_graph); + throw new RuntimeError($"Failed to map all backward graph captures to " + + $"the forward graph. Incorrectly mapped: {string.Join(", ", incorrect_mapping)}"); + } + + Dictionary variant_zeros_like = new Dictionary(); var backward_function_inputs = backward.Inputs.Length - backward.CapturedInputs.Length; var recorded_outputs = new Tensors(); - var trainable_recorded_outputs = 0; - foreach (var (output_index, output) in enumerate(outputs)) + int trainable_recorded_outputs = 0; + var skip_positions = new HashSet(); + var relevant_outputs = outputs; + foreach (var (output_index, output) in enumerate(relevant_outputs)) { if (trainable_recorded_outputs < backward_function_inputs) recorded_outputs.Add(output); - if (gradients_util.IsTrainable(output)) - trainable_recorded_outputs += 1; + if (backprop_util.IsTrainable(output)) + trainable_recorded_outputs++; + else + skip_positions.Add(output_index); + if (output.dtype == dtypes.variant) + variant_zeros_like[output_index] = default_gradient.zeros_like(output); } - if(_backward_function_wrapper == null) + _backward_function_wrapper = (args, unneeded_gradients) => { - var capture_mapping = new Dictionary(); - foreach (var (i, output) in enumerate(outputs)) - capture_mapping[forward_graph.Outputs[i].Id] = output; - - var remapped_captures = new Tensors(); - foreach (var capture in backward.CapturedInputs) - { - if (capture_mapping.ContainsKey(capture.Id)) - remapped_captures.Add(capture_mapping[capture.Id]); - } - - var skip_positions = new List(); - foreach (var (output_index, output) in enumerate(outputs)) + if(backward.Outputs is null || backward.Outputs.Length == 0) { - if (!gradients_util.IsTrainable(output)) - skip_positions.Add(output_index); + return backward.FlatStructuredOutputs; } - _backward_function_wrapper = (args, unneeded_gradients) => + var processed_args = new Tensors(); + int input_index = 0; + foreach (var (output_index, arg) in enumerate(args)) { - var processed_args = new Tensors(); - var input_index = 0; - foreach (var (output_index, arg) in enumerate(args)) + if (skip_positions.Contains(output_index)) + continue; + if (arg is null) + { + var input_placeholder = backward.Inputs[input_index]; + Tensor variant_arg; + if (input_placeholder.dtype == dtypes.variant) + { + variant_arg = variant_zeros_like[output_index]; + } + else + { + var (shape, type) = default_gradient.shape_and_dtype(input_placeholder); + + variant_arg = array_ops.zeros(shape, type); + } + processed_args.Add(variant_arg); + } + else { - if (skip_positions.Contains(output_index)) - continue; - if (arg == null) - throw new NotImplementedException(""); processed_args.Add(arg); - input_index += 1; - if (input_index >= backward_function_inputs) - break; } + input_index++; + if (input_index >= backward_function_inputs) + break; + } - tf.Logger.Debug($"Invoke backward function: {backward.Name}"); - var gradients = backward.CallFlat(processed_args, remapped_captures); + tf.Logger.Debug($"Invoke backward function: {backward.Name}"); + var gradients = backward.CallFlat(processed_args, remapped_captures); - foreach (var unneeded_gradient_index in unneeded_gradients) - { - var index = Convert.ToInt32(unneeded_gradient_index); - if (gradients.Length <= index) - gradients.Insert(index, null); - } + foreach (var unneeded_gradient_index in unneeded_gradients) + { + var index = Convert.ToInt32(unneeded_gradient_index); + if (gradients.Length <= index) + gradients.Insert(index, null); + } - return gradients; - }; - } + return gradients; + }; return (_backward_function_wrapper, recorded_outputs); } @@ -132,51 +186,66 @@ public void Record(Tensors flat_outputs, Tensors inference_args) var trainable_indices = new List(); foreach(var (index, output) in enumerate(outputs)) { - if (gradients_util.IsTrainable(output)) + if (backprop_util.IsTrainable(output)) { trainable_outputs.Add(output); trainable_indices.Add(index); } } - var gradients_wrt_outputs = new List(); - var backwards_graph = new FuncGraph($"{_BACKWARD_PREFIX}_{_func_graph.FuncName}_{ops.uid()}"); + var backwards_graph = new FuncGraph(monomorphic_function_utils._backward_name(_func_graph.Name)); backwards_graph.as_default(); + var gradients_wrt_outputs = new List(); foreach (var output in trainable_outputs) - gradients_wrt_outputs.Add(tf.placeholder(output.dtype, output.shape)); + { + var (gradient_shape, gradient_dtype) = default_gradient.shape_and_dtype(output); + var gradient_placeholder = tf.placeholder(gradient_dtype, gradient_shape); + gradients_wrt_outputs.Add(gradient_placeholder); + handle_data_util.copy_handle_data(output, gradient_placeholder); + } + // TODO(Rinne): with ops.device(None) var gradients_wrt_inputs = gradients_util._GradientsHelper(trainable_outputs.ToArray(), - _func_graph.Inputs, - grad_ys: gradients_wrt_outputs.ToArray(), - src_graph: _func_graph); + _func_graph.Inputs, + grad_ys: gradients_wrt_outputs.ToArray(), + src_graph: _func_graph); var captures_from_forward = backwards_graph.external_captures .Where(x => x is not EagerTensor && x is not NDArray && x.graph == _func_graph) .ToArray(); + HashSet existing_outputs = new(_func_graph.Outputs); foreach(var capture in captures_from_forward) { - if (!_func_graph.Outputs.Contains(capture)) + if (!existing_outputs.Contains(capture)) + { + existing_outputs.Add(capture); _func_graph.Outputs.Add(capture); + } } backwards_graph.Exit(); - var forward_function_name = $"{_FORWARD_PREFIX}_{_func_graph.FuncName}_{ops.uid()}"; - var backward_function_attr = new Dictionary(); - backward_function_attr[FORWARD_FUNCTION_ATTRIBUTE_NAME] = forward_function_name; - gradients_wrt_outputs.append(backwards_graph.internal_captures); - backwards_graph.Inputs = gradients_wrt_outputs; - backwards_graph.Outputs = gradients_wrt_inputs; + backwards_graph.Inputs = gradients_wrt_outputs.Concat(backwards_graph.internal_captures).ToArray(); + backwards_graph.Outputs.AddRange(gradients_wrt_inputs.Where(x => x is not null)); + + var (wrapped_forward_function, wrapped_backward_function) = + monomorphic_function_utils._create_forward_backward_with_graph(null, _func_graph, backwards_graph); + //var forward_function_name = $"{_FORWARD_PREFIX}_{_func_graph.FuncName}_{ops.uid()}"; + //var backward_function_attr = new Dictionary(); + //backward_function_attr[FORWARD_FUNCTION_ATTRIBUTE_NAME] = forward_function_name; - var backward_function = new ConcreteFunction(backwards_graph, backward_function_attr); + //var backward_function = new ConcreteFunction(backwards_graph, + // monomorphic_function_utils._parse_func_attrs(backward_function_attr)); - var forward_function_attr = new Dictionary(); - forward_function_attr[BACKWARD_FUNCTION_ATTRIBUTE_NAME] = backward_function.Name; - var forward_function = new EagerDefinedFunction(forward_function_name, _func_graph, - _func_graph.Inputs, _func_graph.Outputs, forward_function_attr); + //var forward_function_attr = new Dictionary(); + //forward_function_attr[BACKWARD_FUNCTION_ATTRIBUTE_NAME] = backward_function.Name; + //var forward_function = new EagerDefinedFunction(forward_function_name, _func_graph, + // _func_graph.Inputs, _func_graph.Outputs, + // monomorphic_function_utils._parse_func_attrs(forward_function_attr)); - return (forward_function, _func_graph, backward_function, null, 0); + return (wrapped_forward_function, _func_graph, wrapped_backward_function, null, 0); } - public virtual EagerDefinedFunction ForwardAndBackwardFunctions(Tensors inference_args) + public virtual (EagerDefinedFunction, FuncGraph, ConcreteFunction, List, int) + ForwardAndBackwardFunctions(Tensors inference_args) { throw new NotImplementedException(""); } diff --git a/src/TensorFlowNET.Core/Functions/TracingCompiler.cs b/src/TensorFlowNET.Core/Functions/TracingCompiler.cs new file mode 100644 index 000000000..aa30c9f79 --- /dev/null +++ b/src/TensorFlowNET.Core/Functions/TracingCompiler.cs @@ -0,0 +1,84 @@ +using System; +using System.Collections.Generic; +using System.Security.Cryptography.X509Certificates; +using System.Text; +using Tensorflow.Graphs; + +namespace Tensorflow.Functions +{ + public class TracingCompiler + { + Func _csharp_function; + //FunctionSpec _function_spec; + internal string _name; + bool _autograph; + Dictionary _function_cache; + Dictionary _function_attributes; + int _tracing_count; + + public TracingCompiler(Func csharp_function, string name, object? input_signatures = null, + Dictionary attributes = null, bool autograph = true, object? autograph_options = null, + bool reduce_retracing = false, bool capture_by_value = false) + { + _csharp_function = csharp_function; + bool pure_function = attributes is not null && attributes.Count > 0 && attributes.ContainsKey(monomorphic_function_utils.IMPLEMENTS_ATTRIBUTE_NAME); + _name = name; + _autograph = autograph; + _function_attributes = attributes ?? new Dictionary(); + _function_cache = new Dictionary(); + _tracing_count = 0; + } + + public Tensor[] Apply(Tensor[] inputs) + { + // TODO(Rinne): add lock here. + var (concrete_function, filtered_flat_args) = _maybe_define_function(inputs); + return concrete_function.CallFlat(filtered_flat_args, concrete_function.CapturedInputs); + } + + internal ConcreteFunction _get_concrete_function_internal_garbage_collected(Tensor[] args) + { + var (concrete_function, _) = _maybe_define_concrete_function(args); + return concrete_function; + } + + private (ConcreteFunction, Tensor[]) _maybe_define_concrete_function(Tensor[] args) + { + return _maybe_define_function(args); + } + + private (ConcreteFunction, Tensor[]) _maybe_define_function(Tensor[] args) + { + var lookup_func_key = make_cache_key(args); + if(_function_cache.TryGetValue(lookup_func_key, out var concrete_function)) + { + return (concrete_function, args); + } + concrete_function = _create_concrete_function(args); + _function_cache[lookup_func_key] = concrete_function; + return (concrete_function, args); + } + + private ConcreteFunction _create_concrete_function(Tensor[] args) + { + _tracing_count++; + + int arglen = args.Length; + var concrete_function = new ConcreteFunction(FuncGraph.func_graph_from_func( + _name, x => _csharp_function(x.Where(y => y is Tensor).Select(y => (Tensor)y).ToArray()), + args, new Dictionary(), autograph: _autograph + ), _function_attributes); + return concrete_function; + } + + private static string make_cache_key(Tensor[] inputs) + { + //string res = ""; + //foreach (var input in inputs) + //{ + // res += $"{input.name}_{input.Id}"; + //} + return inputs.Length.ToString(); + } + } +} diff --git a/src/TensorFlowNET.Core/Functions/c_api.function.cs b/src/TensorFlowNET.Core/Functions/c_api.function.cs index 230d85ba6..04d102b5f 100644 --- a/src/TensorFlowNET.Core/Functions/c_api.function.cs +++ b/src/TensorFlowNET.Core/Functions/c_api.function.cs @@ -16,6 +16,7 @@ limitations under the License. using System; using System.Runtime.InteropServices; +using Tensorflow.Functions; namespace Tensorflow { @@ -34,10 +35,10 @@ public partial class c_api /// /// [DllImport(TensorFlowLibName)] - public static extern void TF_FunctionToFunctionDef(IntPtr func, SafeBufferHandle output_func_def, SafeStatusHandle status); + public static extern void TF_FunctionToFunctionDef(SafeFuncGraphHandle func, SafeBufferHandle output_func_def, SafeStatusHandle status); [DllImport(TensorFlowLibName)] - public static extern IntPtr TF_GraphToFunction(IntPtr fn_body, string fn_name, + public static extern SafeFuncGraphHandle TF_GraphToFunction(SafeGraphHandle fn_body, string fn_name, bool append_hash_to_fn_name, int num_opers, IntPtr[] opers, int ninputs, TF_Output[] inputs, @@ -48,12 +49,15 @@ public static extern IntPtr TF_GraphToFunction(IntPtr fn_body, string fn_name, SafeStatusHandle status); [DllImport(TensorFlowLibName)] - public static extern IntPtr TF_FunctionSetAttrValueProto(IntPtr func, string attr_name, byte[] proto, int proto_len, SafeStatusHandle status); + public static extern IntPtr TF_FunctionSetAttrValueProto(SafeFuncGraphHandle func, string attr_name, byte[] proto, int proto_len, SafeStatusHandle status); [DllImport(TensorFlowLibName)] - public static extern IntPtr TF_FunctionName(IntPtr func); + public static extern IntPtr TF_FunctionName(SafeFuncGraphHandle func); [DllImport(TensorFlowLibName)] - public static extern void TF_GraphCopyFunction(IntPtr g, IntPtr func, IntPtr grad, SafeStatusHandle status); + public static extern void TF_GraphCopyFunction(SafeGraphHandle g, SafeFuncGraphHandle func, SafeFuncGraphHandle grad, SafeStatusHandle status); + + [DllImport(TensorFlowLibName)] + public static extern int TF_GraphGetFunctions(SafeGraphHandle g, IntPtr[] funcs, int max_func, SafeStatusHandle status); } } diff --git a/src/TensorFlowNET.Core/Functions/composite_tensor_utils.cs b/src/TensorFlowNET.Core/Functions/composite_tensor_utils.cs new file mode 100644 index 000000000..7994bef11 --- /dev/null +++ b/src/TensorFlowNET.Core/Functions/composite_tensor_utils.cs @@ -0,0 +1,50 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Framework; +using Tensorflow.Framework.Models; +using Tensorflow.Util; + +namespace Tensorflow.Functions +{ + internal static class composite_tensor_utils + { + public static List flatten_with_variables(object inputs) + { + List flat_inputs = new(); + foreach(var value in nest.flatten(inputs)) + { + if(value is CompositeTensor && !resource_variable_ops.is_resource_variable(value)) + { + throw new NotImplementedException("The composite tensor has not been fully supported."); + } + else + { + flat_inputs.Add(value); + } + } + return flat_inputs; + } + public static List flatten_with_variables_or_variable_specs(object arg) + { + List flat_inputs = new(); + foreach(var value in nest.flatten(arg)) + { + if(value is CompositeTensor && !resource_variable_ops.is_resource_variable(value)) + { + throw new NotImplementedException("The composite tensor has not been fully supported."); + } + // TODO(Rinne): deal with `VariableSpec`. + else if(value is TypeSpec type_spec && value is not TensorSpec) + { + throw new NotImplementedException("The TypeSpec has not been fully supported."); + } + else + { + flat_inputs.Add(value); + } + } + return flat_inputs; + } + } +} diff --git a/src/TensorFlowNET.Core/Functions/function_saved_model_utils.cs b/src/TensorFlowNET.Core/Functions/function_saved_model_utils.cs new file mode 100644 index 000000000..b3caef96c --- /dev/null +++ b/src/TensorFlowNET.Core/Functions/function_saved_model_utils.cs @@ -0,0 +1,94 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Operations; +using Tensorflow.Train; +using Tensorflow.Variables; +using static Tensorflow.Binding; + +namespace Tensorflow.Functions +{ + public static class function_saved_model_utils + { + /// + /// + /// + /// + /// a list tensors or other objects (such as variables) which + /// contain tensors that were originally captured by the function + public static void restore_captures(ConcreteFunction concrete_function, IEnumerable inputs) + { + var bound_inputs = inputs?.Select(obj => + { + if(obj is Tensor tensor) + { + return get_tensor_from_node(tensor); + } + else if(obj is IVariableV1 variable) + { + return get_tensor_from_node(variable); + } + else + { + throw new TypeError("Encountered an type error, please submit an issue to " + + "https://github.com/SciSharp/TensorFlow.NET/issues"); + } + }); + var bound_variables = inputs.Where(obj => obj is IVariableV1).Select(x => (IVariableV1)x); + + List captured_inputs_list = new(); + concrete_function.set_variables(bound_variables); + + if (bound_inputs is not null) + { + foreach(var (bound_input, internal_capture) in zip(bound_inputs, concrete_function.Inputs.Skip(concrete_function.Inputs.Length - bound_inputs.Count()))) + { + if(hasattr(bound_input, "__tf_experimental_restore_capture__")) + { + throw new NotImplementedException(); + } + else + { + captured_inputs_list.Add(bound_input); + concrete_function.func_graph.replace_capture(bound_input, internal_capture); + if(internal_capture.dtype == dtypes.resource) + { + if (resource_variable_ops.is_resource_variable(bound_input)) + { + handle_data_util.copy_handle_data(bound_input.Handle, internal_capture); + } + else + { + handle_data_util.copy_handle_data(bound_input, internal_capture); + } + } + concrete_function.func_graph.capture(bound_input); + } + } + } + + if(captured_inputs_list.Any(inp => inp is null)) + { + // TODO(Rinne): add warnings. + } + concrete_function.SetExternalCaptures(captured_inputs_list); + } + + public static Tensor get_tensor_from_node(Tensor node) + { + return node; + } + public static Tensor get_tensor_from_node(IVariableV1 node) + { + if (resource_variable_ops.is_resource_variable(node)) + { + return node.Handle; + } + else + { + throw new TypeError("Encountered an type error, please submit an issue to " + + "https://github.com/SciSharp/TensorFlow.NET/issues"); + } + } + } +} diff --git a/src/TensorFlowNET.Core/Functions/monomorphic_function.cs b/src/TensorFlowNET.Core/Functions/monomorphic_function.cs new file mode 100644 index 000000000..7cb5c7050 --- /dev/null +++ b/src/TensorFlowNET.Core/Functions/monomorphic_function.cs @@ -0,0 +1,282 @@ +using Google.Protobuf; +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Eager; +using Tensorflow.Framework.Models; +using Tensorflow.Gradients; +using Tensorflow.Graphs; +using Tensorflow.Common.Extensions; +using Tensorflow.Operations; +using Tensorflow.Framework; +using static Tensorflow.Binding; +using System.Diagnostics; + +namespace Tensorflow.Functions +{ + internal static class monomorphic_function_utils + { + internal static string _FORWARD_PREFIX = "__forward_"; + internal static string _BACKWARD_PREFIX = "__backward_"; + internal static string _INFERENCE_PREFIX = "__inference_"; + internal static string IMPLEMENTS_ATTRIBUTE_NAME = "_implements"; + internal static string FORWARD_FUNCTION_ATTRIBUTE_NAME = "forward_function_name"; + internal static string BACKWARD_FUNCTION_ATTRIBUTE_NAME = "backward_function_name"; + public static string _inference_name(string name) + { + return $"{_INFERENCE_PREFIX}{name}_{ops.uid()}"; + } + public static string _forward_name(string name) + { + return $"{_FORWARD_PREFIX}{name}_{ops.uid()}"; + } + public static string _backward_name(string name) + { + return $"{_BACKWARD_PREFIX}{name}_{ops.uid()}"; + } + + public static (EagerDefinedFunction, ConcreteFunction) _create_forward_backward_with_graph(Dictionary attrs, + FuncGraph forward_graph, FuncGraph backwards_graph) + { + string forward_function_name = _forward_name(forward_graph.Name); + Dictionary common_attributes; + if(attrs is null) + { + common_attributes = new Dictionary(); + } + else + { + common_attributes = new Dictionary(attrs); + } + + if (common_attributes.ContainsKey(IMPLEMENTS_ATTRIBUTE_NAME)) + { + common_attributes.Remove(IMPLEMENTS_ATTRIBUTE_NAME); + } + var backward_function_attr = _parse_func_attrs(new Dictionary() + { + {FORWARD_FUNCTION_ATTRIBUTE_NAME, forward_function_name } + }); + backward_function_attr.Update(common_attributes); + var backward_function = new ConcreteFunction(backwards_graph, backward_function_attr); + var forward_function_attr = _parse_func_attrs(new Dictionary() + { + {BACKWARD_FUNCTION_ATTRIBUTE_NAME, backward_function.Name } + }); + forward_function_attr.Update(common_attributes); + var forward_function = new EagerDefinedFunction(forward_function_name, forward_graph, + forward_graph.Inputs, forward_graph.Outputs, forward_function_attr); + return (forward_function, backward_function); + } + + public static Dictionary _parse_func_attrs(Dictionary attributes) + { + Dictionary attrs = new(); + foreach(var item in attributes) + { + var key = item.Key; + var value = item.Value; + if (value is AttrValue attr_value) + { + attrs[key] = attr_value; + } + else if (value is bool b) + { + attrs[key] = new AttrValue() { B = b }; + } + else if (value is int i) + { + attrs[key] = new AttrValue() { I = i }; + } + else if (value is float f) + { + attrs[key] = new AttrValue() { F = f }; + } + else if(value is string s) + { + attrs[key] = new AttrValue() { S = ByteString.CopyFromUtf8(s) }; + } + else if (value is byte[] bytes) + { + attrs[key] = new AttrValue() { S = ByteString.CopyFrom(bytes) }; + } + else + { + throw new ValueError($"Attribute {key} must be bool, int, float, string, or " + + $"AttrValue. Got {value.GetType()}."); + } + } + return attrs; + } + + public static Dictionary _parse_func_attrs(Dictionary attributes) + { + Dictionary attrs = new(); + foreach (var item in attributes) + { + var key = item.Key; + var value = item.Value; + attrs[key] = new AttrValue() { S = ByteString.CopyFromUtf8(value) }; + } + return attrs; + } + } + public class DelayedRewriteGradientFunctions : TapeGradientFunctions + { + EagerDefinedFunction _inference_function; + Dictionary _attrs; + int _num_inference_outputs; + Dictionary _cached_function_pairs = new(); + public DelayedRewriteGradientFunctions(FuncGraph func_graph, Dictionary attrs) + : base(func_graph, false) + { + _func_graph = func_graph; + _inference_function = new EagerDefinedFunction(monomorphic_function_utils._inference_name(_func_graph.Name), + _func_graph, _func_graph.Inputs, _func_graph.Outputs, attrs); + _attrs = attrs; + _num_inference_outputs = _func_graph.Outputs.Length; + } + + public override EagerDefinedFunction Forward(Tensors inference_args = null, Tensors input_tangents = null) + { + if (input_tangents is not null) + { + throw new InvalidArgumentError($"unexpectedly got forwardprop information in " + + $"a class that does not support forwardprop."); + } + return _inference_function; + } + + public override void Record(Tensors flat_outputs, Tensors inference_args) + { + var (backward_function, to_record) = _backward(flat_outputs); + foreach(var tape in tf.GetTapeSet()) + { + tape.RecordOperation(_inference_function.Signature.Name, to_record, + inference_args, backward_function); + } + } + + public (EagerDefinedFunction, ConcreteFunction) forward_backward(int num_doutputs = -2) + { + if(num_doutputs == -2) + { + num_doutputs = _num_inference_outputs; + } + if(_cached_function_pairs.TryGetValue(num_doutputs, out var target)) + { + return target; + } + var (forward, backward) = _construct_forward_backward(num_doutputs); + _cached_function_pairs[num_doutputs] = (forward, backward); + return (forward, backward); + + } + + private (BackwardFunction, Tensors) _backward(Tensors outputs) + { + Tensor[] backward_function(Tensor[] args, long[] unneeded_gradients) + { + var call_op = outputs[0].op; + return _rewrite_forward_and_call_backward(call_op, args); + } + return (backward_function, outputs); + } + + internal Tensor[] _rewrite_forward_and_call_backward(Operation op, params object[] doutputs) + { + var (forward_function, backward_function) = forward_backward(doutputs.Length); + if(backward_function.Outputs is null || backward_function.Outputs.Length == 0) + { + return backward_function.FlatStructuredOutputs; + } + forward_function.AddToGraph(op.graph); + + op._set_func_attr("f", forward_function.Name); + op._set_type_list_attr("Tout", forward_function.OutputTypes); + op._add_outputs(forward_function.OutputTypes.Select(x => x.as_tf_dtype()). + Skip(op.outputs.Length).ToArray(), forward_function.OutputShapes.Skip(op.outputs.Length).ToArray() + ); + for(int i = 0; i < op.outputs.Length; i++) + { + var func_graph_output = forward_function._func_graph_outputs[i]; + handle_data_util.copy_handle_data(func_graph_output, op.outputs[i]); + } + + var capture_mapping = zip(_func_graph.Outputs.Select(t => ops.tensor_id(t)), op.outputs). + ToDictionary(x => x.Item1, x => x.Item2); + var remapped_captures = backward_function.CapturedInputs.Select( + x => capture_mapping.GetOrDefault(ops.tensor_id(x), x) + ); + + List cleaned_doutputs = new(); + foreach(var (doutput, placeholder) in zip(doutputs, _func_graph.Outputs)) + { + if (backprop_util.IsTrainable(placeholder)) + { + if(doutput is IndexedSlices) + { + cleaned_doutputs.Add(ops.convert_to_tensor(doutput)); + } + else if(doutput is null) + { + cleaned_doutputs.Add(default_gradient.zeros_like(placeholder)); + } + else if(doutput is Tensor tensor) + { + cleaned_doutputs.Add(tensor); + } + else + { + throw new ValueError($"Unsupported type {doutput.GetType()} in function _rewrite_forward_and_call_backward"); + } + } + } + + return backward_function.CallFlat(cleaned_doutputs.ToArray(), remapped_captures.ToArray()); + } + + private (EagerDefinedFunction, ConcreteFunction) _construct_forward_backward(int num_doutputs) + { + var trainable_outputs = _func_graph.Outputs.Take(num_doutputs).Where(x => backprop_util.IsTrainable(x)); + + List signature = new(); + foreach(var t in trainable_outputs) + { + var (shape, dtype) = default_gradient.shape_and_dtype(t); + signature.Add(new TensorSpec(shape, dtype)); + } + + Tensor[] _backprop_function(Tensor[] grad_ys) + { + return gradients_util._GradientsHelper(trainable_outputs.ToArray(), _func_graph.Inputs, + grad_ys, src_graph: _func_graph); + } + + _func_graph.as_default(); + FuncGraph backwards_graph = new(monomorphic_function_utils._backward_name(_func_graph.Name)); + FuncGraph.func_graph_from_func(backwards_graph.Name, x => _backprop_function(x.Select(y => + { + Debug.Assert(y is Tensor); + return (Tensor)y; + }).ToArray()), new object[0], new Dictionary(), signature.ToArray(), backwards_graph); + var backwards_graph_captures = backwards_graph.external_captures; + var captures_from_forward = backwards_graph_captures.Where(c => c is not EagerTensor && c.graph == _func_graph); + + HashSet existing_outputs = new HashSet(_func_graph.Outputs); + foreach(var capture in captures_from_forward) + { + if (!existing_outputs.Contains(capture)) + { + existing_outputs.Add(capture); + _func_graph.Outputs.Add(capture); + } + } + + var (forward_function, backward_function) = monomorphic_function_utils._create_forward_backward_with_graph( + _attrs, _func_graph, backwards_graph); + _func_graph.Exit(); + return (forward_function, backward_function); + } + } +} diff --git a/src/TensorFlowNET.Core/GlobalUsing.cs b/src/TensorFlowNET.Core/GlobalUsing.cs new file mode 100644 index 000000000..7e02c9083 --- /dev/null +++ b/src/TensorFlowNET.Core/GlobalUsing.cs @@ -0,0 +1,9 @@ +global using System; +global using System.Collections.Generic; +global using System.Text; +global using System.Collections; +global using System.Data; +global using System.Linq; +global using Tensorflow.Keras.Engine; +global using Tensorflow.Framework.Models; +global using static Tensorflow.Binding; \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Gradients/BackpropInitialState.cs b/src/TensorFlowNET.Core/Gradients/BackpropInitialState.cs index eee98a61a..743ed0d8e 100644 --- a/src/TensorFlowNET.Core/Gradients/BackpropInitialState.cs +++ b/src/TensorFlowNET.Core/Gradients/BackpropInitialState.cs @@ -9,7 +9,7 @@ public class BackpropInitialState /// Map from tensor to how many references still exist for this tensor in /// the tape. /// - public UnorderedMap tensor_usage_counts { get; set; } + public UnorderedMap tensor_usage_counts { get; set; } /// /// Maps from op ID to how many output tensors of this op still need to have /// their gradients computed. @@ -19,7 +19,7 @@ public class BackpropInitialState public BackpropInitialState() { op_tape = new OpTape(); - tensor_usage_counts = new UnorderedMap(); + tensor_usage_counts = new UnorderedMap(); op_missing_tensor = new UnorderedMap(); } } diff --git a/src/TensorFlowNET.Core/Gradients/GradientTape.cs b/src/TensorFlowNET.Core/Gradients/GradientTape.cs index 31517e580..a714436a3 100644 --- a/src/TensorFlowNET.Core/Gradients/GradientTape.cs +++ b/src/TensorFlowNET.Core/Gradients/GradientTape.cs @@ -44,6 +44,15 @@ public ITape PushTape(bool persistent = false, return tape; } + public void PushTape(ITape tape) + { + // Enters a context inside which operations are recorded on this tape. + if (tf.Context.executing_eagerly()) + tf.Context.ensure_initialized(); + + _tapeSet.Push(tape); + } + ITape PopTape() { _tape.StopRecord(); @@ -67,40 +76,59 @@ public void watch(Tensor x) /// /// /// - public Tensor gradient(Tensor target, Tensor source) + public Tensor gradient(Tensor target, Tensor source, List output_gradients = null, + string unconnected_gradients = null) { + if(_tape is null) + { + throw new RuntimeError("A non-persistent GradientTape can only be used to " + + "compute one set of gradients (or jacobians)."); + } + ITape tape = stop_recording(); var results = tf.Runner.TFE_TapeGradient(tape, new[] { target }, new[] { source }, - null); + output_gradients, + new[] { source }, + unconnected_gradients); return results[0]; } - public Tensor gradient(Tensor target, ResourceVariable source) + public Tensor gradient(Tensor target, ResourceVariable source, List output_gradients = null, + string unconnected_gradients = null) { - var results = gradient(target, new List { source }); + var results = gradient(target, new List { source }, output_gradients, unconnected_gradients); return results[0]; } - public (Tensor, Tensor) gradient(Tensor target, (ResourceVariable, ResourceVariable) sources) + public (Tensor, Tensor) gradient(Tensor target, (ResourceVariable, ResourceVariable) sources, List output_gradients = null, + string unconnected_gradients = null) { - var results = gradient(target, new List { sources.Item1, sources.Item2 }); + var results = gradient(target, new List { sources.Item1, sources.Item2 }, output_gradients, unconnected_gradients); return (results[0], results[1]); } - public Tensor[] gradient(Tensor target, IEnumerable sources) + public Tensor[] gradient(Tensor target, IEnumerable sources, List output_gradients = null, + string unconnected_gradients = null) { + if (_tape is null) + { + throw new RuntimeError("A non-persistent GradientTape can only be used to " + + "compute one set of gradients (or jacobians)."); + } var tape = stop_recording(); var results = tf.Runner.TFE_TapeGradient(tape, new[] { target }, sources.Select(x => x.Handle).ToArray(), - null); + output_gradients, + sources.Select(x => x.Handle).ToArray(), + unconnected_gradients); if (!tape.Persistent) { diff --git a/src/TensorFlowNET.Core/Gradients/ITape.cs b/src/TensorFlowNET.Core/Gradients/ITape.cs index dbd085eac..07594dabd 100644 --- a/src/TensorFlowNET.Core/Gradients/ITape.cs +++ b/src/TensorFlowNET.Core/Gradients/ITape.cs @@ -6,24 +6,31 @@ namespace Tensorflow.Gradients public interface ITape { void SetTapeId(int id); - bool ShouldRecord(Tensor[] tensors); + bool ShouldRecord(long[] tensor_ids, TF_DataType[] tensor_dtypes); void StartRecord(); void StopRecord(); bool Persistent { get; } void RecordOperation(string op_type, - Tensor[] input_tensors, TapeTensor[] output_tensors, + long[] input_tensor_id, + TF_DataType[] input_dtypes, BackwardFunction backward_function); - void VariableAccessed(ResourceVariable variable); + void RecordOperation(string op_type, + Tensor[] outputs, + Tensor[] inputs, + BackwardFunction backward_function); + + void VariableAccessed(IVariableV1 variable); void Watch(Tensor x); - ResourceVariable[] WatchedVariables(); + IVariableV1[] WatchedVariables(); - Tensor[] ComputeGradient(Tensor[] target_tensor_ids, - Tensor[] source_tensor_ids, - UnorderedMap sources_that_are_targets, - Tensor[] output_gradients); + Tensor[] ComputeGradient(long[] target_tensor_ids, + long[] source_tensor_ids, + UnorderedMap sources_that_are_targets, + List output_gradients, + bool build_default_zeros_grads); } } diff --git a/src/TensorFlowNET.Core/Gradients/OpTapeEntry.cs b/src/TensorFlowNET.Core/Gradients/OpTapeEntry.cs index 537369dd8..7665fa017 100644 --- a/src/TensorFlowNET.Core/Gradients/OpTapeEntry.cs +++ b/src/TensorFlowNET.Core/Gradients/OpTapeEntry.cs @@ -9,9 +9,9 @@ public class OpTapeEntry { public string op_type { get; set; } public TapeTensor[] output_tensor_info { get; set; } - public Tensor[] input_tensor_id { get; set; } + public long[] input_tensor_id { get; set; } public BackwardFunction backward_function { get; set; } public override string ToString() - => $"{op_type}, inputs: {string.Join(",", input_tensor_id.Select(x => x.Id))}"; + => $"{op_type}, inputs: {string.Join(",", input_tensor_id)}"; } } diff --git a/src/TensorFlowNET.Core/Gradients/Tape.ComputeGradient.cs b/src/TensorFlowNET.Core/Gradients/Tape.ComputeGradient.cs index 0d0ecbe25..8a4a41f62 100644 --- a/src/TensorFlowNET.Core/Gradients/Tape.ComputeGradient.cs +++ b/src/TensorFlowNET.Core/Gradients/Tape.ComputeGradient.cs @@ -2,233 +2,246 @@ using System.Collections.Generic; using System.Linq; using Tensorflow.Util; +using static Tensorflow.Binding; namespace Tensorflow.Gradients { public partial class Tape { - // int kMinAggregateCount = 4; - // int kMinAggregateBytes = 128 * 1024 * 1024; + static readonly int kMinAggregateCount = 4; + static readonly int kMinAggregateBytes = 128 * 1024 * 1024; + private static UnorderedMap> _functionsAcceptingNoneForIndicesMap; - public Tensor[] ComputeGradient(Tensor[] target_tensor_ids, - Tensor[] source_tensor_ids, - UnorderedMap sources_that_are_targets, - Tensor[] output_gradients) + static Tape() { - var sources_set = new UnorderedSet(source_tensor_ids); - // var gradients_size = new UnorderedMap(); - var functionsAcceptingNoneForIndicesMap = FunctionsAcceptingNoneForIndicesMap(); - var state = PrepareBackprop( - target_tensor_ids, tensor_tape_, op_tape_, sources_set, _persistent); - var op_stack = InitialStack(state.op_tape, state.op_missing_tensor); - var gradients = InitialGradients(target_tensor_ids, sources_that_are_targets, - output_gradients, - tensor_tape_, - state.op_tape); + _functionsAcceptingNoneForIndicesMap = new(); + _functionsAcceptingNoneForIndicesMap.Add("SoftmaxCrossEntropyWithLogits", new UnorderedSet(new[] { 1 })); + _functionsAcceptingNoneForIndicesMap.Add("SparseSoftmaxCrossEntropyWithLogits", new UnorderedSet(new[] { 1 })); + _functionsAcceptingNoneForIndicesMap.Add("FusedBatchNorm", new UnorderedSet(new[] { 1, 2, 3, 4 })); + } - while (!op_stack.empty()) + public Tensor[] ComputeGradient(long[] target_tensor_ids, + long[] source_tensor_ids, + UnorderedMap sources_that_are_targets, + List output_gradients, + bool build_default_zeros_grads) + { + UnorderedSet sources_set = new(source_tensor_ids); + BackpropInitialState state = PrepareBackprop(target_tensor_ids, tensor_tape_, op_tape_, sources_set, Persistent); + var op_stack = InitialStack(state.op_tape, state.op_missing_tensor); + var gradients = InitialGradients(target_tensor_ids, sources_that_are_targets, output_gradients, tensor_tape_, state.op_tape); + UnorderedMap gradients_size = new(); + while(op_stack.Count > 0) { - var op = op_stack.Dequeue(); - if (!state.op_tape.find(op, out var trace)) + long op = op_stack.Dequeue(); + if(!state.op_tape.TryGetValue(op, out var op_it)) + { continue; - - // Console.WriteLine($"ComputeGradient: {state.op_tape[op].op_type}"); + } + var trace = op_it; state.op_tape.erase(op); - - var out_gradients = new List(trace.output_tensor_info.Length); - var unneeded_gradients = new List(); - for (int i = 0; i < trace.input_tensor_id.Length; i++) + List out_gradients = new(); + List unneeded_gradients = new(); + for(int i = 0, end = trace.input_tensor_id.Length; i < end; i++) { - var in_tensor_id = trace.input_tensor_id[i]; - if (!tensor_tape_.find(in_tensor_id) && - !sources_set.find(in_tensor_id)) + long in_tensor_id = trace.input_tensor_id[i]; + if(!tensor_tape_.find(in_tensor_id) && !sources_set.find(in_tensor_id)) + { unneeded_gradients.Add(i); + } } bool any_gradient_nonzero = false; - var zero_indices = new List(); - for (int i = 0; i < trace.output_tensor_info.Length; ++i) + List zero_indices = new(); + for(int i = 0, end = trace.output_tensor_info.Length; i < end; i++) { - var id = trace.output_tensor_info[i].GetTensor(); - if (!gradients.find(id, out var grad_it)) + long id = trace.output_tensor_info[i].GetID(); + if(!gradients.TryGetValue(id, out var grad_it)) { - if (functionsAcceptingNoneForIndicesMap.find(trace.op_type, out var func_name_it) && - func_name_it.find(i)) + out_gradients.Add(null); + if (build_default_zeros_grads) { - out_gradients.Add(null); - } - else - { - out_gradients.Add(null); - zero_indices.Add(i); + if(!_functionsAcceptingNoneForIndicesMap.TryGetValue(trace.op_type, out var func_name_it) || + !func_name_it.find(i)) + { + zero_indices.Add(i); + } } } else { any_gradient_nonzero = true; - var new_gradients = grad_it.Count == 1 ? - grad_it[0] : - gen_math_ops.add_n(grad_it.ToArray()); // vspace.AggregateGradients - + Tensor new_gradients; + if (grad_it.Count == 1) + { + new_gradients = grad_it[0]; + } + else + { + new_gradients = AggregateGradients(grad_it); + } if (!sources_set.find(id)) + { gradients.Remove(id); + } else { - // grad_it.Clear(); - // grad_it.Add(new_gradients); - // vspace.MarkAsResult(new_gradients); + grad_it.Clear(); + grad_it.Add(new_gradients); + // MarkAsResult } out_gradients.Add(new_gradients); } } - Tensor[] in_gradients; + Tensor[] in_gradients = new Tensor[0]; if (any_gradient_nonzero) { - // foreach (var i in zero_indices) - // out_gradients[i] = trace.output_tensor_info[i].ZerosLike(); - - in_gradients = trace.backward_function(out_gradients.ToArray(), unneeded_gradients.ToArray()); - - if (in_gradients.Count() != trace.input_tensor_id.Count()) - throw new RuntimeError($"Recorded operation '{trace.op_type}' returned too few gradients. Expected {trace.input_tensor_id.Length} but received {in_gradients.Count()}"); - if (!_persistent) + foreach(var i in zero_indices) { - // trace.backward_function_deleter(trace.backward_function); - trace.backward_function = null; + out_gradients[i] = trace.output_tensor_info[i].ZerosLike(); } + in_gradients = CallBackwardFunction(trace.backward_function, unneeded_gradients, out_gradients); } else { - in_gradients = new Tensor[trace.input_tensor_id.Length]; + out_gradients.Clear(); } - - for (int i = 0; i < in_gradients.Length; ++i) + + for(int i = 0, end = in_gradients.Length; i < end; i++) { - var id = trace.input_tensor_id[i]; - if (in_gradients[i] != null) + long id = trace.input_tensor_id[i]; + if (in_gradients[i] is not null) { - var unaggregated_grads = gradients[id]; + var unaggregated_grads = gradients.SetDefault(id, new List()); unaggregated_grads.Add(in_gradients[i]); - /*if (unaggregated_grads.Count > kMinAggregateCount) + if(unaggregated_grads.Count > kMinAggregateCount) { - if (!gradients_size.find(id, out var size)) + if(!gradients_size.TryGetValue(id, out var size)) { - size = (long)unaggregated_grads[0].size; + size = NumElements(unaggregated_grads[0]); gradients_size.emplace(id, size); } - - if (unaggregated_grads.Count * size * 4 > kMinAggregateBytes) + if(unaggregated_grads.Count * size * 4 > kMinAggregateBytes) { - throw new NotImplementedException(""); + Tensor grad = AggregateGradients(unaggregated_grads); + unaggregated_grads.Clear(); + unaggregated_grads.Add(grad); } - }*/ + } } - - if (!state.tensor_usage_counts.find(id)) + if(!state.tensor_usage_counts.find(id)) + { continue; - + } state.tensor_usage_counts[id]--; - if (state.tensor_usage_counts[id] > 0) + if(state.tensor_usage_counts[id] > 0) + { continue; - - if (!tensor_tape_.find(id, out var tape_it)) + } + if (!tensor_tape_.TryGetValue(id, out var tape_it)) { - if (gradients.find(id, out var grad_it)) + if (gradients.find(id)) { - // foreach (var g in grad_it) - // DeleteGradient(g); gradients.erase(id); } continue; } - - var op_id = tape_it; - if (op_id == -1) + long op_id = tape_it; + if(op_id == -1) + { continue; - - if (state.op_missing_tensor.find(op_id, out var missing_it)) + } + if(state.op_missing_tensor.find(op_id)) { state.op_missing_tensor[op_id]--; - if (state.op_missing_tensor[op_id] == 0) + if(state.op_missing_tensor[op_id] == 0) + { op_stack.Enqueue(op_id); + } } } } - if (state.op_tape.Count > 0) + if(state.op_tape.Count > 0) + { throw new RuntimeError("Invalid tape state."); - - var result = new Tensor[source_tensor_ids.Length]; - var j = 0; - foreach (var id in source_tensor_ids) + } + Tensor[] result = new Tensor[source_tensor_ids.Length]; + for(int i = 0; i < source_tensor_ids.Length; i++) { - if (gradients.find(id, out var grad_it)) + long tensor_id = source_tensor_ids[i]; + if(!gradients.TryGetValue(tensor_id, out var grad_it)) { - if (grad_it.Count > 1) - result[j] = gen_math_ops.add_n(grad_it.ToArray()); - else - result[j] = grad_it[0]; + result[i] = null; + } + else + { + if(grad_it.Count > 1) + { + Tensor grad = AggregateGradients(grad_it); + grad_it.Clear(); + grad_it.Add(grad); + } + result[i] = grad_it[0]; } - j++; } - return result; } UnorderedMap> FunctionsAcceptingNoneForIndicesMap() { - var m = new UnorderedMap>(); - m.Add("SoftmaxCrossEntropyWithLogits", new UnorderedSet(new[] { 1 })); - m.Add("SparseSoftmaxCrossEntropyWithLogits", new UnorderedSet(new[] { 1 })); - m.Add("FusedBatchNorm", new UnorderedSet(new[] { 1, 2, 3, 4 })); - return m; + return _functionsAcceptingNoneForIndicesMap; } - UnorderedMapEnumerable> InitialGradients(Tensor[] target_tensor_ids, - UnorderedMap sources_that_are_targets, - Tensor[] output_gradients, + UnorderedMap> InitialGradients(long[] target_tensor_ids, + UnorderedMap sources_that_are_targets, + List output_gradients, TensorTape tensor_tape, OpTape op_tape) { - var result = new UnorderedMapEnumerable>(); - for (int i = 0; i < target_tensor_ids.Length; ++i) + var result = new UnorderedMap>(); + for(int i = 0, end = target_tensor_ids.Length; i < end; i++) { - var id = target_tensor_ids[i]; - if (output_gradients.Length == 0 || output_gradients[i] == null) + long id = target_tensor_ids[i]; + if( output_gradients is null ||output_gradients.Count == 0 || output_gradients[i] is null) { - if (tensor_tape.find(id, out var tensor_id) && tensor_id != null) + if(tensor_tape.TryGetValue(id, out var tensor_it) && tensor_it != -1) { - if (!op_tape.find(tensor_tape[id], out var op_it)) + if(!op_tape.TryGetValue(tensor_it, out var op_it)) + { throw new RuntimeError("Internal state of the gradient tape is invalid: " + - "failed to find operation producing a tensor"); + "failed to find operation producing a tensor."); + } bool found = false; - for (int j = 0; j < op_it.output_tensor_info.Length; ++j) + for(int j = 0; j < op_it.output_tensor_info.Length; j++) { - if (op_it.output_tensor_info[j].GetTensor() == id) + if (op_it.output_tensor_info[j].GetID() == id) { found = true; - var ones = op_it.output_tensor_info[j].OnesLike(); - result[id].Add(ones); + Tensor ones_like = BuildOnesLike(op_it.output_tensor_info[j]); + result.SetDefault(id, new List()).Add(ones_like); break; } } - if (!found) { - throw new ValueError("Internal state of the gradient tape is invalid: " + - "none of operations outputs match expected tensor"); + throw new RuntimeError("Internal state of the gradient tape is invalid: " + + "none of operations outputs match expected tensor."); } } else { - if (sources_that_are_targets.find(id, out var source_tensor)) - result[id].Add(source_tensor.OnesLike()); + if(sources_that_are_targets.TryGetValue(id, out var source_tensor)) + { + Tensor ones_like = BuildOnesLike(source_tensor); + result.SetDefault(id, new List()).Add(ones_like); + } } } else { - result[id].Add(output_gradients[i]); + result.SetDefault(id, new List()).Add(output_gradients[i]); } } @@ -246,5 +259,26 @@ Queue InitialStack(OpTape op_tape, } return result; } + + Tensor BuildOnesLike(TapeTensor t) + { + return t.OnesLike(); + } + + Tensor AggregateGradients(List gradient_tensors) + { + if(gradient_tensors.Count == 0) + { + return gradient_tensors[0]; + } + return tf.add_n(gradient_tensors.ToArray()); + } + + void DeleteGradient(Tensor gradient) + { + // Do not do anything here. Because GC will collect it when it has no reference. + } + + long NumElements(Tensor tensor) => 1; } } diff --git a/src/TensorFlowNET.Core/Gradients/Tape.PrepareBackprop.cs b/src/TensorFlowNET.Core/Gradients/Tape.PrepareBackprop.cs index 2ab4ddbbe..f8f356e76 100644 --- a/src/TensorFlowNET.Core/Gradients/Tape.PrepareBackprop.cs +++ b/src/TensorFlowNET.Core/Gradients/Tape.PrepareBackprop.cs @@ -5,63 +5,62 @@ namespace Tensorflow.Gradients { public partial class Tape { - public BackpropInitialState PrepareBackprop(Tensor[] target, + public BackpropInitialState PrepareBackprop(long[] target, TensorTape tensor_tape, OpTape op_tape, - UnorderedSet sources_set, + UnorderedSet sources_set, bool persistent_tape) { + Stack tensor_stack = new Stack(); + foreach(var t in target) + { + tensor_stack.Push(t); + } BackpropInitialState result = new BackpropInitialState(); - var tensor_stack = new Queue(target); - while (tensor_stack.Count > 0) + while(tensor_stack.Count > 0) { - var tensor_id = tensor_stack.Dequeue(); - - if (!tensor_tape.find(tensor_id, out var op_id)) + long tensor_id = tensor_stack.Pop(); + if(!tensor_tape.TryGetValue(tensor_id, out var op_id)) + { continue; - - if (op_id == -1 || - !op_tape.find(op_id, out var op_it) || - result.op_tape.find(op_id, out var result_op_it)) + } + if(op_id == -1 || !op_tape.TryGetValue(op_id, out var op_it) + || result.op_tape.find(op_id)) + { continue; - + } result.op_tape.emplace(op_id, op_it); - - foreach (var it in op_it.input_tensor_id) + foreach(var it in op_it.input_tensor_id) { - if (result.tensor_usage_counts.find(it)) + if(result.tensor_usage_counts.find(it)) + { result.tensor_usage_counts[it]++; + } else { result.tensor_usage_counts[it] = 1; if (tensor_tape.find(it)) - tensor_stack.Enqueue(it); + { + tensor_stack.Push(it); + } } } - if (!persistent_tape) - op_tape.Remove(op_id); + { + op_tape.erase(op_id); + } } - - foreach (var pair in result.tensor_usage_counts) + foreach(var pair in result.tensor_usage_counts) { - if (tensor_tape.find(pair.Key, out var it) && it != -1) - result.op_missing_tensor[it] += 1; + if(tensor_tape.TryGetValue(pair.Key, out var it) && it != -1) + { + result.op_missing_tensor[it]++; + } } - if (!persistent_tape) { - // Call destructors for all unneeded gradient functions and - // clear the op_tape. We can clear the tape because ownership of - // backward functions that will be used for gradient computation - // has been transferred to `result`. - /*for (const auto&op_pair : *op_tape) { - op_pair.second.backward_function_deleter( - op_pair.second.backward_function); - }*/ op_tape.Clear(); } - return result; } } diff --git a/src/TensorFlowNET.Core/Gradients/Tape.RecordOperation.cs b/src/TensorFlowNET.Core/Gradients/Tape.RecordOperation.cs index a692f1f45..708b9121d 100644 --- a/src/TensorFlowNET.Core/Gradients/Tape.RecordOperation.cs +++ b/src/TensorFlowNET.Core/Gradients/Tape.RecordOperation.cs @@ -8,34 +8,45 @@ namespace Tensorflow.Gradients public partial class Tape { long next_op_id_ = 0; - UnorderedMap tensor_usage_; + UnorderedMap tensor_usage_; public void RecordOperation(string op_type, - Tensor[] input_tensors, TapeTensor[] output_tensors, + long[] input_tensor_id, + TF_DataType[] input_dtypes, BackwardFunction backward_function) { - if (!ShouldRecord(input_tensors)) + if (!ShouldRecord(input_tensor_id, input_dtypes)) return; - var op_id = next_op_id_++; - foreach (var i in input_tensors) + foreach (var i in input_tensor_id) + { tensor_usage_[i]++; - + } + long op_id = next_op_id_++; + foreach (var o in output_tensors) { tf.Logger.Debug($"RecordOperation: tensor_tape_[{o.GetID()}] = {op_id}"); - tensor_tape_[o.GetTensor()] = op_id; - tensor_usage_[o.GetTensor()] = 1; + tensor_tape_[o.GetID()] = op_id; + tensor_usage_[o.GetID()] = 1; } op_tape_[op_id] = new OpTapeEntry { op_type = op_type, - output_tensor_info = output_tensors, - input_tensor_id = input_tensors, + output_tensor_info = output_tensors.ToArray(), + input_tensor_id = input_tensor_id.ToArray(), backward_function = backward_function }; } + + public void RecordOperation(string op_type, + Tensor[] outputs, + Tensor[] inputs, + BackwardFunction backward_function) + { + tf.Runner.TFE_TapeSetRecordOperation(op_type, outputs, inputs, backward_function); + } } } diff --git a/src/TensorFlowNET.Core/Gradients/Tape.cs b/src/TensorFlowNET.Core/Gradients/Tape.cs index 15caf81b9..648666bbf 100644 --- a/src/TensorFlowNET.Core/Gradients/Tape.cs +++ b/src/TensorFlowNET.Core/Gradients/Tape.cs @@ -1,5 +1,6 @@ using System; using System.Collections.Generic; +using System.Diagnostics; using System.Linq; using Tensorflow.Util; using static Tensorflow.Binding; @@ -29,7 +30,7 @@ public Tape(bool persistent, bool watch_accessed_variables) _created_eagerly = tf.Context.executing_eagerly(); tensor_tape_ = new TensorTape(); op_tape_ = new OpTape(); - tensor_usage_ = new UnorderedMap(); + tensor_usage_ = new UnorderedMap(); if(_created_eagerly) tf.Context.start_step(); // nesting_id = ++tape_nesting_id_counter; @@ -42,29 +43,28 @@ public Tape(bool persistent, bool watch_accessed_variables) public void Watch(Tensor x) { tf.Logger.Debug($"Watch tensor id={x.Id}, name={x.name}"); - tensor_tape_.emplace(x, -1); + tensor_tape_.emplace(x.Id, -1); } - public bool ShouldRecord(Tensor[] tensors) + public bool ShouldRecord(long[] tensor_ids, TF_DataType[] tensor_dtypes) { - var dtypes = tensors.Select(x => x.dtype).ToArray(); - for (int i = 0; i < tensors.Length; ++i) + Debug.Assert(tensor_ids.Length == tensor_dtypes.Length); + for (int i = 0; i < tensor_ids.Length; ++i) { - if (tensor_tape_.find(tensors[i])) + if (tensor_tape_.find(tensor_ids[i]) && IsDtypeTrainable(tensor_dtypes[i])) { - if (IsDtypeTrainable(dtypes[i])) - return true; + return true; } } return false; } - public void VariableAccessed(ResourceVariable variable) + public void VariableAccessed(IVariableV1 variable) { Watch(variable.Handle); } - public ResourceVariable[] WatchedVariables() + public IVariableV1[] WatchedVariables() { return null; } diff --git a/src/TensorFlowNET.Core/Gradients/TapeTensor.cs b/src/TensorFlowNET.Core/Gradients/TapeTensor.cs index 210794d86..3ad19768c 100644 --- a/src/TensorFlowNET.Core/Gradients/TapeTensor.cs +++ b/src/TensorFlowNET.Core/Gradients/TapeTensor.cs @@ -1,27 +1,63 @@ -using static Tensorflow.Binding; +using OneOf; +using static Tensorflow.Binding; namespace Tensorflow.Gradients { public class TapeTensor { - Tensor tensor; - long id => tensor.Id; - TF_DataType dtype => tensor.dtype; - Shape shape => tensor.shape; + internal Tensor tensor; + internal long id; + internal TF_DataType dtype; + internal OneOf shape; + + public TapeTensor(long id, TF_DataType dtype, Shape shape) + { + this.id = id; + this.dtype = dtype; + this.shape = shape; + } + + public TapeTensor(long id, TF_DataType dtype, Tensor shape) + { + this.id = id; + this.dtype = dtype; + this.shape = shape; + } public TapeTensor(Tensor tensor) { + this.id = tensor.Id; + this.dtype = tensor.dtype; + this.shape = tensor.shape; this.tensor = tensor; } - public long GetID() => tensor.Id; - public Tensor GetTensor() => tensor; + public long GetID() => id; public Tensor ZerosLike() - => tf.zeros(shape: shape, dtype: dtype); + { + if(dtype == dtypes.resource) + { + return null; + } + if(shape.Index == 1) + { + return tf.zeros_like(shape.AsT1); + } + return tf.zeros(shape.AsT0, dtype); + } public Tensor OnesLike() - => tf.ones(shape: shape, dtype: dtype); + { + if (shape.Index == 1) + { + return tf.ones_like(shape.AsT1); + } + return tf.ones(shape.AsT0, dtype); + } + + //public Tensor OnesLike() + // => tf.ones(shape: shape, dtype: dtype); public override string ToString() => $"{id}, {shape}, {dtype.as_numpy_name()}"; diff --git a/src/TensorFlowNET.Core/Gradients/TensorTape.cs b/src/TensorFlowNET.Core/Gradients/TensorTape.cs index b9424f91a..3f069082f 100644 --- a/src/TensorFlowNET.Core/Gradients/TensorTape.cs +++ b/src/TensorFlowNET.Core/Gradients/TensorTape.cs @@ -7,7 +7,7 @@ namespace Tensorflow.Gradients /// produced this tensor. A value of -1 means that the tensor was directly /// watched and not the result of any operation in the tape. /// - public class TensorTape : UnorderedMap + public class TensorTape : UnorderedMap { } diff --git a/src/TensorFlowNET.Core/Gradients/array_grad.cs b/src/TensorFlowNET.Core/Gradients/array_grad.cs index c4cb9fbd1..a4da60eed 100644 --- a/src/TensorFlowNET.Core/Gradients/array_grad.cs +++ b/src/TensorFlowNET.Core/Gradients/array_grad.cs @@ -36,8 +36,7 @@ public static Tensor[] _BroadcastToGrad(Operation op, Tensor[] grads) var input_value = op.inputs[0]; var broadcast_shape = op.inputs[1]; var input_value_shape = array_ops.shape(input_value); - var (_, reduction_axes) = gen_array_ops.broadcast_gradient_args(broadcast_shape, - input_value_shape); + var reduction_axes = gen_array_ops.broadcast_gradient_args(broadcast_shape, input_value_shape)[1]; var updates_grad_reshaped = math_ops.reduce_sum(grad, axis: reduction_axes, keepdims: true); @@ -91,8 +90,7 @@ private static Tensor[] _ConcatGradHelper(Operation op, Tensor grad, int start_v ? input_values[0].rank + dim_int : dim_int % input_values[0].rank; var sizes = input_values.Select(x => x.shape[non_neg_concat_dim]).ToArray(); - var sizes_tensor = constant_op.constant(sizes); - out_grads = array_ops.split(grad, sizes_tensor, non_neg_concat_dim).ToList(); + out_grads = array_ops.split(grad, sizes.Select(x => (int)x).ToArray(), ops.convert_to_tensor(non_neg_concat_dim)).ToList(); } else if (constant_op.is_constant(concat_dim)) { @@ -128,7 +126,7 @@ there will be a small number of performance regressions.*/ new Tensor[] { non_neg_concat_dim, tf.constant(0) }, new Tensor[] { tf.constant(1), tf.constant(-1) }); var squeeze_sizes = array_ops.squeeze(slice); - out_grads = array_ops.split(axis: grad, value: squeeze_sizes, num_split: (int)non_neg_concat_dim).ToList(); + out_grads = array_ops.split(axis: grad, value: squeeze_sizes, num_or_size_splits: (int)non_neg_concat_dim).ToList(); } else { @@ -351,16 +349,16 @@ public static Tensor[] _StridedSliceGradGrad(Operation op, Tensor[] grads) null, null, null, - gen_array_ops.strided_slice( + array_ops.strided_slice( grad, begin, end, strides, - begin_mask: op.get_attr("begin_mask"), - end_mask: op.get_attr("end_mask"), - ellipsis_mask: op.get_attr("ellipsis_mask"), - new_axis_mask: op.get_attr("new_axis_mask"), - shrink_axis_mask: op.get_attr("shrink_axis_mask")) + begin_mask: (int)op.get_attr("begin_mask"), + end_mask: (int)op.get_attr("end_mask"), + ellipsis_mask: (int)op.get_attr("ellipsis_mask"), + new_axis_mask: (int)op.get_attr("new_axis_mask"), + shrink_axis_mask: (int)op.get_attr("shrink_axis_mask")) }; } @@ -375,5 +373,56 @@ public static Tensor[] _TransposeGrad(Operation op, Tensor[] grads) var p = op.inputs[1]; return new Tensor[] { array_ops.transpose(grads[0], array_ops.invert_permutation(p)), null }; } + + [RegisterGradient("ReverseV2")] + public static Tensor[] _ReverseV2Grad(Operation op, Tensor[] grads) + { + var grad = grads[0]; + var axis = op.inputs[1]; + return new Tensor[] { array_ops.reverse(grad, axis), null }; + } + + [RegisterGradient("Tile")] + public static Tensor[] _TileGrad(Operation op, Tensor[] grads) + { + var grad = grads[0]; + var input_shape = array_ops.shape(op.inputs[0], out_type: op.inputs[1].dtype); + var split_shape = array_ops.reshape(array_ops.transpose(array_ops.stack(new Tensor[] { op.inputs[1], input_shape })), new Shape(-1)); + var axes = math_ops.range(0, array_ops.size(split_shape), 2); + + //# Sum reduces grad along the first dimension for IndexedSlices + //if isinstance(grad, indexed_slices_lib.IndexedSlices): + //input_shape_0 = math_ops.cast(input_shape[0], grad.indices.dtype) + //grad = math_ops.unsorted_segment_sum( + // grad.values, math_ops.mod(grad.indices, input_shape_0), input_shape_0) + //split_shape = array_ops.concat([[1], split_shape[1:]], axis = 0) + + var input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes); + if (!tf.Context.executing_eagerly()) + { + input_grad.set_shape(op.inputs[0].GetShape()); + } + return new Tensor[] { input_grad, null }; + } + + [RegisterGradient("GatherNd")] + public static Tensor[] _GatherNdGrad(Operation op, Tensor[] grads) + { + var @ref = op.inputs[0]; + var indices = op.inputs[1]; + var grad = grads[0]; + var ref_shape = array_ops.shape(@ref, out_type: indices.dtype); + Tensor ref_grad = null; + if (indices.shape.ndim == 2 && indices.shape.dims[indices.shape.Length - 1] == 1) + { + ref_grad = (Tensor)new IndexedSlices(grad, array_ops.squeeze(indices, axis: -1), ref_shape); + } + else + { + ref_grad = gen_array_ops.scatter_nd(indices, grad, ref_shape); + } + return new Tensor[] { ref_grad, null }; + } + } } diff --git a/src/TensorFlowNET.Core/Gradients/c_api.gradient.cs b/src/TensorFlowNET.Core/Gradients/c_api.gradient.cs index 70dcfd67f..901a33ca8 100644 --- a/src/TensorFlowNET.Core/Gradients/c_api.gradient.cs +++ b/src/TensorFlowNET.Core/Gradients/c_api.gradient.cs @@ -37,7 +37,7 @@ public partial class c_api /// TF_Status* /// TF_Output* [DllImport(TensorFlowLibName)] - public static extern void TF_AddGradientsWithPrefix(IntPtr g, string prefix, TF_Output[] y, int ny, + public static extern void TF_AddGradientsWithPrefix(SafeGraphHandle g, string prefix, TF_Output[] y, int ny, TF_Output[] x, int nx, TF_Output[] dx, SafeStatusHandle status, IntPtr[] dy); } } diff --git a/src/TensorFlowNET.Core/Gradients/custom_gradient.cs b/src/TensorFlowNET.Core/Gradients/custom_gradient.cs new file mode 100644 index 000000000..0a248086b --- /dev/null +++ b/src/TensorFlowNET.Core/Gradients/custom_gradient.cs @@ -0,0 +1,14 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Gradients +{ + public class custom_gradient + { + public static string generate_name() + { + return $"CustomGradient-{ops.uid()}"; + } + } +} diff --git a/src/TensorFlowNET.Core/Gradients/default_gradient.cs b/src/TensorFlowNET.Core/Gradients/default_gradient.cs new file mode 100644 index 000000000..e6c22e369 --- /dev/null +++ b/src/TensorFlowNET.Core/Gradients/default_gradient.cs @@ -0,0 +1,52 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Gradients +{ + internal static class default_gradient + { + public static (Shape, TF_DataType) shape_and_dtype(Tensor t) + { + if(t.dtype == dtypes.resource) + { + var handle_data = resource_variable_ops.get_eager_safe_handle_data(t); + if(handle_data is null || !handle_data.IsSet || handle_data.ShapeAndType.Count != 1) + { + throw new ValueError($"Internal error: Tried to take gradients (or similar) " + + $"of a variable without handle data:\n{t}"); + } + return (new Shape(handle_data.ShapeAndType[0].Shape), handle_data.ShapeAndType[0].Dtype.as_tf_dtype()); + } + return (t.shape, t.dtype); + } + + public static Tensor zeros_like(Tensor t) + { + if(t.dtype == dtypes.resource) + { + var (shape, dtype) = shape_and_dtype(t); + return array_ops.zeros(shape, dtype); + } + else + { + return array_ops.zeros_like(t); + } + } + + public static TF_DataType get_zeros_dtype(Tensor t) + { + if(t.dtype == dtypes.resource) + { + var handle_data = resource_variable_ops.get_eager_safe_handle_data(t); + if(handle_data is null || !handle_data.IsSet || handle_data.ShapeAndType.Count != 1) + { + throw new ValueError($"Internal error: Tried to take gradients (or similar) " + + $"of a variable without handle data:\n{t}"); + } + return handle_data.ShapeAndType[0].Dtype.as_tf_dtype(); + } + return t.dtype; + } + } +} diff --git a/src/TensorFlowNET.Core/Gradients/gradients_util.cs b/src/TensorFlowNET.Core/Gradients/gradients_util.cs index 40a834931..1fb327788 100644 --- a/src/TensorFlowNET.Core/Gradients/gradients_util.cs +++ b/src/TensorFlowNET.Core/Gradients/gradients_util.cs @@ -14,10 +14,15 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Google.Protobuf; using System; using System.Collections.Generic; +using System.Diagnostics; using System.Linq; +using Tensorflow.Functions; +using Tensorflow.Gradients; using Tensorflow.Graphs; +using Tensorflow.Operations; using Tensorflow.Operations.ControlFlows; using static Tensorflow.Binding; @@ -25,6 +30,11 @@ namespace Tensorflow { public class gradients_util { + // Represents the output of TFE_Py_TapeSetPossibleGradientTypes. Real enums are + // unfortunately too slow to use here. + public static int POSSIBLE_GRADIENT_TYPES_NONE = 0; + public static int POSSIBLE_GRADIENT_TYPES_FIRST_ORDER = 1; + public static int POSSIBLE_GRADIENT_TYPES_HIGHER_ORDER = 2; public static Tensor[] _GradientsHelper(Tensor[] ys, Tensor[] xs, Tensor[] grad_ys = null, @@ -143,7 +153,7 @@ public static Tensor[] _GradientsHelper(Tensor[] ys, Tensor[] in_grads = null; Func grad_fn = null; var is_partitioned_call = _IsPartitionedCall(op); - var is_func_call = false; + var is_func_call = src_graph.IsFunction(op.type) || is_partitioned_call; var has_out_grads = out_grads.Exists(x => x != null); if (has_out_grads && !stop_ops.Contains(op)) { @@ -157,14 +167,41 @@ public static Tensor[] _GradientsHelper(Tensor[] ys, { if (is_func_call) { + EagerDefinedFunction func_call = null; if (is_partitioned_call) { - + var func_attr = op.get_attr("f"); + Debug.Assert(func_attr is NameAttrList); + var func_name = ((NameAttrList)func_attr).Name; + func_call = src_graph._get_function(func_name); + if(func_call is null && src_graph.OuterGraph is not null) + { + var graph = src_graph.OuterGraph; + while(graph is not null) + { + func_call = graph._get_function(func_name); + if(func_call is not null) + { + break; + } + if(graph.OuterGraph is not null) + { + graph = graph.OuterGraph; + } + else + { + break; + } + } + } } else { - + func_call = src_graph._get_function(op.type); } + // skip the following codes: + // `func_call = getattr(op, "__defun", func_call)` + grad_fn = func_call.csharp_grad_func; } else { @@ -208,6 +245,8 @@ public static Tensor[] _GradientsHelper(Tensor[] ys, } else { + in_grads = _MaybeCompile(grad_scope, op, out_grads.Where(x => x != null).Select(x => x[0]).ToArray(), + null, (x, y) => _SymGrad(x, y)); throw new NotImplementedException("lambda: _SymGrad(op, out_grads)"); } _VerifyGeneratedGradients(in_grads, op); @@ -663,6 +702,11 @@ public static bool IsTrainable(Tensor tensor) dtypes.resource, dtypes.variant}.Contains(dtype); } + public static int PossibleTapeGradientTypes(Tensor[] tensors) + { + return tf.Runner.TFE_TapeSetPossibleGradientTypes(tensors); + } + /// /// Return true if op has real gradient. /// @@ -683,7 +727,7 @@ private static bool _HasAnyNotNoneGrads(Dictionary>> g private static Tensor[] _MaybeCompile(string scope, Operation op, Tensor[] out_grads, Action func, Func grad_fn) { - scope = scope.EndsWith("/") ? scope.Substring(0, scope.Length - 1) : scope; + // scope = scope.TrimEnd('/').Replace('/', '_'); return grad_fn(op, out_grads); } @@ -696,5 +740,28 @@ private static void _VerifyGeneratedGradients(Tensor[] grads, Operation op) throw new ValueError($"Num gradients {grads.Length} generated for op {op.node_def} do not match num " + $"inputs {op.inputs._inputs.Count()}"); } + + private static Tensor[] _SymGrad(Operation op, Tensor[] out_grads) + { + var f_in = ((Tensor[])op.inputs).Concat(out_grads).ToArray(); + var f_types = ((Tensor[])op.inputs).Select(x => default_gradient.get_zeros_dtype(x)).ToArray(); + NameAttrList f = new(); + if (_IsPartitionedCall(op)) + { + var func_attr = op.get_attr("f"); + Debug.Assert(func_attr is NameAttrList); + f.Name = ((NameAttrList)func_attr).Name; + } + else + { + f.Name = op.type; + } + foreach(var k in op.node_def.Attr.Keys) + { + f.Attr[k] = AttrValue.Parser.ParseFrom(op.node_def.Attr[k].ToByteArray()); + } + var in_grads = gen_functional_ops.symbolic_gradient(f_in, f_types, f); + return in_grads; + } } } diff --git a/src/TensorFlowNET.Core/Gradients/math_grad.cs b/src/TensorFlowNET.Core/Gradients/math_grad.cs index d9bc9b228..8c3f0f8bd 100644 --- a/src/TensorFlowNET.Core/Gradients/math_grad.cs +++ b/src/TensorFlowNET.Core/Gradients/math_grad.cs @@ -53,7 +53,8 @@ public static Tensor[] _AddGrad(Operation op, Tensor[] grads) var sx = array_ops.shape(x); var sy = array_ops.shape(y); - var (rx, ry) = gen_array_ops.broadcast_gradient_args(sx, sy); + var args = gen_array_ops.broadcast_gradient_args(sx, sy); + var (rx, ry) = (args[0], args[1]); var sum1 = math_ops.reduce_sum(grad, rx); var r1 = gen_array_ops.reshape(sum1, sx); @@ -101,7 +102,8 @@ public static Tensor[] _DivNoNanGrad(Operation op, Tensor[] grads) var y = op.inputs[1]; var sx = array_ops.shape(x); var sy = array_ops.shape(y); - var (rx, ry) = gen_array_ops.broadcast_gradient_args(sx, sy); + var args = gen_array_ops.broadcast_gradient_args(sx, sy); + var (rx, ry) = (args[0], args[1]); x = math_ops.conj(x); y = math_ops.conj(y); @@ -115,6 +117,137 @@ public static Tensor[] _DivNoNanGrad(Operation op, Tensor[] grads) }; } + public static string ellipsis = "..."; + [RegisterGradient("Einsum")] + public static Tensor[] _EinsumGrad(Operation op, Tensor[] grads) + { + // Gradient for Einsum. + string equation = (string)op.get_attr("equation"); + string[] split_equation = equation.Split(new string[] { "->" }, StringSplitOptions.None); + var input_subs = split_equation[0]; + var output_subs = split_equation[1]; + + if (op.inputs.Length == 1) + { + var input_shape = array_ops.shape(op.inputs[0]); + var reduced_label_set = new HashSet(new HashSet(input_subs).Except(new HashSet(output_subs + ellipsis))); + if (reduced_label_set.Count == 0) + return new Tensor[] { math_ops.einsum(string.Format("{0}->{1}", output_subs, input_subs), new Tensors(grads)) }; + return new Tensor[] { _GetGradReduced(new Tensors(grads), output_subs, input_subs, input_shape, reduced_label_set) }; + } + + string[] split_input_subs = input_subs.Split(new string[] { "," }, StringSplitOptions.None); + var x_subs = split_input_subs[0]; + var y_subs = split_input_subs[1]; + // Add ellipsis for broadcasted dimensions if any operand does not have it. + // This is because the equation "...ij,jk->ik" may be valid if the 0th input's + // batch shape is empty, but the VJP equation "jk,ik->...ij" is not valid + // because only the output subscripts contain ellipsis. + if (output_subs.Contains(ellipsis)) + { + if (!x_subs.Contains(ellipsis)) + x_subs += ellipsis; + if (!y_subs.Contains(ellipsis)) + y_subs += ellipsis; + } + // Obtain the gradients wrt the inputs x and y, without taking into account + // the unbroadcasting. + var x = op.inputs[0]; + var y = op.inputs[1]; + if (grads.GetDataType().is_complex()) + { + x = math_ops.conj(x); + y = math_ops.conj(y); + } + + var x_shape = array_ops.shape(x); + var y_shape = array_ops.shape(y); + var grad_x = _GetGradWrt(grads, y, x_shape, x_subs, y_subs, output_subs); + var grad_y = _GetGradWrt(grads, x, y_shape, y_subs, x_subs, output_subs); + + if (!output_subs.Contains(ellipsis)) + return new Tensor[] { grad_x, grad_y }; + var bx = _GetBcastSubshape(x_subs); + int bx_start = bx[0], bx_end = bx[1]; + var by = _GetBcastSubshape(y_subs); + int by_start = by[0], by_end = by[1]; + + var x_shape_static = x.shape; + var y_shape_static = y.shape; + if(x_shape_static.IsFullyDefined && + y_shape_static.IsFullyDefined && + x_shape_static[string.Format("{0}:{1}",bx_start,bx_end)] == y_shape_static[string.Format("{0}:{1}", by_start, by_end)]) + return new Tensor[] { grad_x, grad_y }; + + var r = gen_array_ops.broadcast_gradient_args(x_shape[string.Format("{0}:{1}", bx_start, bx_end)], + y_shape[string.Format("{0}:{1}", by_start, by_end)]); + var rx = r[0]; + var ry = r[1]; + grad_x = array_ops.reshape(math_ops.reduce_sum(grad_x, bx_start + rx), x_shape); + grad_y = array_ops.reshape(math_ops.reduce_sum(grad_y, by_start + ry), y_shape); + return new Tensor[] { grad_x, grad_y }; + } + protected static Tensor _GetGradWrt(Tensor[] output_grads, Tensor other_operand, Tensor input_shape, + string input_subs, string other_subs, string output_subs) + { + var reduced_label_set = new HashSet(new HashSet(input_subs).Except(new HashSet(output_subs + other_subs + "."))); + var left_subs = string.Join("", input_subs.Where(s => !reduced_label_set.Contains(s))); + var grad_reduced = math_ops.einsum(string.Format("{0},{1}->{2}", output_subs, other_subs, left_subs), new Tensors((Tensors)output_grads, other_operand)); + if (reduced_label_set.Count == 0) + return grad_reduced; + return _GetGradReduced(grad_reduced, left_subs, input_subs, input_shape, reduced_label_set); + } + protected static Tensor _GetGradReduced(Tensor output_grad, string output_subs, string input_subs, Tensor input_shape, HashSet reduced_label_set) + { + string reduced_subs; + Tensor reduced_dims; + List reduced_axes; + _GetReducedSubscripts(reduced_label_set, input_shape, input_subs, out reduced_subs, out reduced_dims, out reduced_axes); + bool has_repeated_labels = ( + new HashSet(input_subs).Count + new HashSet(output_subs).Count < + input_subs.Length + output_subs.Length); + var input_subs_without_reduced_labels = string.Join("", input_subs.Where(s => !reduced_label_set.Contains(s))); + + if (!has_repeated_labels && input_subs_without_reduced_labels == output_subs) + { + var reduced_shape = math_ops.reduced_shape(input_shape, ops.convert_to_tensor(reduced_axes)); + return gen_array_ops.broadcast_to(array_ops.reshape(output_grad, reduced_shape), input_shape); + } + else + { + var grad_shape_with_reduced_labels = array_ops.concat(new Tensor[] { reduced_dims, array_ops.shape(new Tensors(output_grad)) }, axis: 0); + var reduced_shape = array_ops.concat(new Tensor[] { array_ops.ones(reduced_label_set.Count, dtype: dtypes.int32), array_ops.shape(new Tensors(output_grad)) }, axis: 0); + var broadcasted_grad = gen_array_ops.broadcast_to(array_ops.reshape(output_grad, reduced_shape), grad_shape_with_reduced_labels); + return math_ops.einsum(string.Format("{0}->{1}", reduced_subs + output_subs, input_subs), new Tensors(broadcasted_grad)); + } + } + protected static void _GetReducedSubscripts(HashSet reduced_label_set, Tensor input_shape, string subscripts, out string reduced_subs, out Tensor reduced_dims, out List reduced_axes) + { + reduced_subs = string.Join("", reduced_label_set.Select(c => c.ToString())); + reduced_axes = reduced_subs.Select(s => _GetAxisFromLabel(subscripts, s)).ToList(); + reduced_dims = array_ops.stack(reduced_axes.Select(ax => input_shape[ax]).ToList()); + } + protected static int _GetAxisFromLabel(string subscripts, char label) + { + var splits = subscripts.Split(new string[] { ellipsis }, StringSplitOptions.None); + var index = splits[0].IndexOf(label); + if (index != -1) return index; + if (splits.Length < 2) throw new OutOfRangeError(); + index = splits[1].IndexOf(label); + if (index != -1) return index; + throw new ValueError(); + } + protected static int[] _GetBcastSubshape(string subscripts) + { + int start = subscripts.IndexOf(ellipsis); + if (start == -1) return new int[] { 0, 0 }; + int remaining = subscripts.Length - (start + ellipsis.Length); + int end; + if (remaining > 0) end = remaining; + else throw new Exception(); + return new int[] { start, end }; + } + /// /// Returns grad * exp(x). /// @@ -427,7 +560,8 @@ private static Tensor[] _MaximumMinimumGrad(bool isMaximum, Operation op, Tensor isMaximum ? gen_math_ops.greater_equal(x, y) : gen_math_ops.less_equal(x, y); - var (rx, ry) = gen_array_ops.broadcast_gradient_args(sx, sy); + var args = gen_array_ops.broadcast_gradient_args(sx, sy); + var (rx, ry) = (args[0], args[1]); var xgrad = array_ops.where(xmask, grad, zeros); var gx = array_ops.reshape(math_ops.reduce_sum(xgrad, rx), sx); var ygrad = array_ops.where(xmask, zeros, grad); @@ -458,7 +592,7 @@ public static Tensor[] _SelectGrad(Operation op, Tensor[] grads) private static Tensor _safe_shape_div(Tensor x, Tensor y) { - return math_ops.floordiv(x, gen_math_ops.maximum(y, 1)); + return math_ops.floordiv(x, gen_math_ops.maximum(y, ops.convert_to_tensor(1))); } [RegisterGradient("Sub")] @@ -573,7 +707,8 @@ public static Tensor[] _RealDivGrad(Operation op, Tensor[] grads) var sx = array_ops.shape(x); var sy = array_ops.shape(y); - var (rx, ry) = gen_array_ops.broadcast_gradient_args(sx, sy); + var args = gen_array_ops.broadcast_gradient_args(sx, sy); + var (rx, ry) = (args[0], args[1]); x = math_ops.conj(x); y = math_ops.conj(y); @@ -639,6 +774,20 @@ public static Tensor[] _SqrtGrad(Operation op, Tensor[] grads) }); } + [RegisterGradient("Rsqrt")] + public static Tensor[] _RsqrtGrad(Operation op, Tensor[] grads) + { + var grad = grads[0]; + var y = op.outputs[0]; + + return tf_with(ops.control_dependencies(grads), delegate + { + y = math_ops.conj(y); + var factor = constant_op.constant(-0.5f, dtype: y.dtype); + return new Tensor[] { grad * (factor * math_ops.square(y) * y) }; + }); + } + [RegisterGradient("Asin")] public static Tensor[] _ASinGrad(Operation op, Tensor[] grads) { @@ -810,7 +959,7 @@ public static Tensor[] _PowGrad(Operation op, Tensor[] grads) mask = x > 0.0f; var ones = array_ops.ones_like(x); var safe_x = array_ops.where(mask, x, ones); - var x1 = gen_array_ops.log(safe_x); + var x1 = math_ops.log(safe_x); var y1 = array_ops.zeros_like(x); var log_x = array_ops.where(mask, x1, y1); var mul1 = grad * z * log_x; @@ -826,7 +975,7 @@ public static Tensor[] _PowGrad(Operation op, Tensor[] grads) /// /// /// - private static (Tensor, Tensor, bool)[] SmartBroadcastGradientArgs(Tensor x, Tensor y, Tensor grad) + public static (Tensor, Tensor, bool)[] SmartBroadcastGradientArgs(Tensor x, Tensor y, Tensor grad) { Tensor sx, sy; if (x.shape.IsFullyDefined && @@ -841,7 +990,8 @@ private static (Tensor, Tensor, bool)[] SmartBroadcastGradientArgs(Tensor x, Ten sy = array_ops.shape_internal(y, optimize: false); } - var (rx, ry) = gen_array_ops.broadcast_gradient_args(sx, sy); + var args = gen_array_ops.broadcast_gradient_args(sx, sy); + var (rx, ry) = (args[0], args[1]); return new[] { (sx, rx, !x.shape.Equals(grad.shape)), diff --git a/src/TensorFlowNET.Core/Gradients/math_grad_eager.cs b/src/TensorFlowNET.Core/Gradients/math_grad_eager.cs index 530bb6c08..f8b16090f 100644 --- a/src/TensorFlowNET.Core/Gradients/math_grad_eager.cs +++ b/src/TensorFlowNET.Core/Gradients/math_grad_eager.cs @@ -47,8 +47,8 @@ public static Tensor[] _MulGrad(EagerOperation op, IntPtr[] grads) { return new Tensor[] { - gen_math_ops.mul(grad, y), - gen_math_ops.mul(grad, x) + math_ops.multiply(grad, y), + math_ops.multiply(grad, x) }; } diff --git a/src/TensorFlowNET.Core/Gradients/nn_grad.cs b/src/TensorFlowNET.Core/Gradients/nn_grad.cs index d461595b1..87646a9ea 100644 --- a/src/TensorFlowNET.Core/Gradients/nn_grad.cs +++ b/src/TensorFlowNET.Core/Gradients/nn_grad.cs @@ -15,6 +15,7 @@ limitations under the License. ******************************************************************************/ using System; +using System.Diagnostics; using System.Linq; using Tensorflow.Operations; using static Tensorflow.Binding; @@ -120,18 +121,50 @@ public static Tensor[] _SparseSoftmaxCrossEntropyWithLogitsGrad(Operation op, Te }; } + [RegisterGradient("Softplus")] + public static Tensor[] _SoftplusGrad(Operation op, Tensor[] grads) + { + var grad = grads[0]; + var x = op.inputs[0]; + + var softplus = grad * math_ops.sigmoid(x); + return new Tensor[] { softplus }; + } + [RegisterGradient("SquaredDifference")] public static Tensor[] _SquaredDifferenceGrad(Operation op, Tensor[] grads) { Tensor x = op.inputs[0]; Tensor y = op.inputs[1]; + var grad = grads[0]; var scale = ops.convert_to_tensor(2.0f, dtype: x.dtype); - var x_grad = math_ops.scalar_mul(scale, grads[0]) * (x - y); - return new Tensor[] + var x_grad = math_ops.scalar_mul(scale, grad) * (x - y); + if (math_grad._ShapesFullySpecifiedAndEqual(x, y, grad)) { - x_grad, - -x_grad - }; + return new Tensor[] { x_grad, -x_grad }; + } + var broadcast_info = math_grad.SmartBroadcastGradientArgs(x, y, grad); + Debug.Assert(broadcast_info.Length == 2); + var (sx, rx, must_reduce_x) = broadcast_info[0]; + var (sy, ry, must_reduce_y) = broadcast_info[1]; + Tensor gx, gy; + if (must_reduce_x) + { + gx = array_ops.reshape(math_ops.reduce_sum(x_grad, rx), sx); + } + else + { + gx = x_grad; + } + if (must_reduce_y) + { + gy = -array_ops.reshape(math_ops.reduce_sum(x_grad, ry), sy); + } + else + { + gy = -x_grad; + } + return new Tensor[] { gx, gy }; } /// @@ -159,17 +192,8 @@ public static Tensor[] _Conv2DBackpropInputGrad(Operation op, Tensor[] grads) explicit_paddings: explicit_paddings, dilations: dilations, data_format: data_format), - gen_nn_ops.conv2d(new Conv2dParams - { - Input = grad, - Filter = op.inputs[1], - Strides = strides, - Padding = padding, - DataFormat = data_format, - Dilations = dilations, - ExplicitPaddings = explicit_paddings, - UseCudnnOnGpu = use_cudnn_on_gpu - }) + gen_nn_ops.conv2d(grad, op.inputs[1], strides, padding, + use_cudnn_on_gpu, explicit_paddings, data_format, dilations) }; } @@ -205,6 +229,37 @@ public static Tensor[] _Conv2DGrad(Operation op, Tensor[] grads) }; } + /// + /// Gradient function for Conv2D. + /// + /// + /// + /// + [RegisterGradient("DepthwiseConv2dNative")] + public static Tensor[] _DepthwiseConv2DGrad(Operation op, Tensor[] grads) + { + var dilations = op.get_attr_list("dilations"); + var strides = op.get_attr_list("strides"); + var padding = op.get_attr("padding"); + var explicit_paddings = op.get_attr_list("explicit_paddings"); + var data_format = op.get_attr("data_format"); + var shape = gen_array_ops.shape_n(new Tensor[] { op.inputs[0], op.inputs[1] }); + + return new Tensor[] + { + gen_nn_ops.depthwise_conv2d_native_backprop_input( + shape[0], op.inputs[1], grads[0], + strides, padding, explicit_paddings, + dilations: dilations, + data_format: data_format), + gen_nn_ops.depthwise_conv2d_native_backprop_filter(op.inputs[0], shape[1], grads[0], + strides, padding, + dilations: dilations, + explicit_paddings: explicit_paddings, + data_format: data_format) + }; + } + [RegisterGradient("FusedBatchNorm")] public static Tensor[] _FusedBatchNormGrad(Operation op, Tensor[] grads) => _BaseFusedBatchNormGrad(op, 0, grads); @@ -232,20 +287,27 @@ public static Tensor[] _BaseFusedBatchNormGrad(Operation op, int version, Tensor var epsilon = op.get_attr("epsilon"); var data_format = op.get_attr("data_format"); var is_training = op.get_attr("is_training"); - Func grad_fun = null; - - switch (version) + Func grad_fun = (p) => { - case 2: - grad_fun = gen_nn_ops.fused_batch_norm_grad_v3; - break; - case 1: - // grad_fun = gen_nn_ops.fused_batch_norm_grad_v2; - throw new NotImplementedException(""); - default: - grad_fun = gen_nn_ops.fused_batch_norm_grad; - break; - } + if(version == 2) + { + return gen_nn_ops.fused_batch_norm_grad_v3(p.YBackprop, p.X, p.Scale, + p.ReserveSpace1, p.ReserveSpace2, p.ReserveSpace3, p.Epsilon, + p.DataFormat, p.IsTraining, p.Name); + } + else if(version == 1) + { + return gen_nn_ops.fused_batch_norm_grad_v2(p.YBackprop, p.X, p.Scale, + p.ReserveSpace1, p.ReserveSpace2, p.Epsilon, p.DataFormat, + p.IsTraining, p.Name); + } + else + { + return gen_nn_ops.fused_batch_norm_grad(p.YBackprop, p.X, p.Scale, + p.ReserveSpace1, p.ReserveSpace2, p.Epsilon, p.DataFormat, + p.IsTraining, p.Name); + } + }; if (is_training) { @@ -334,6 +396,23 @@ public static Tensor[] _MaxPoolGrad(Operation op, Tensor[] grads) }; } + [RegisterGradient("AvgPool")] + public static Tensor[] _AvgPoolGrad(Operation op, Tensor[] grads) + { + Tensor grad = grads[0]; + + return new Tensor[] + { + gen_nn_ops.avg_pool_grad( + array_ops.shape(op.inputs[0]), + grad, + op.get_attr_list("ksize"), + op.get_attr_list("strides"), + op.get_attr("padding"), + op.get_attr("data_format")) + }; + } + /// /// Return the gradients for TopK. /// @@ -373,7 +452,7 @@ public static Tensor[] _TopKGrad(Operation op, Tensor[] grads) // finally reshaping it to the original input shape. var scatter = gen_array_ops.scatter_nd(array_ops.expand_dims(ind, -1), array_ops.reshape(grad, new int[] { -1 }), - new Tensor[] { math_ops.reduce_prod(in_shape) }); + math_ops.reduce_prod(in_shape)); return new Tensor[] { diff --git a/src/TensorFlowNET.Core/Gradients/ops.gradient_function_mapping.cs b/src/TensorFlowNET.Core/Gradients/ops.gradient_function_mapping.cs index e5831f252..7d3ea1715 100644 --- a/src/TensorFlowNET.Core/Gradients/ops.gradient_function_mapping.cs +++ b/src/TensorFlowNET.Core/Gradients/ops.gradient_function_mapping.cs @@ -98,12 +98,23 @@ public static Func get_gradient_function(Operatio { if (op.inputs == null) return null; - RegisterFromAssembly(); + var gradient_function = op._gradient_function; + if(gradient_function is null) + { + RegisterFromAssembly(); + + if (!gradientFunctions.ContainsKey(op.type)) + throw new LookupError($"can't get graident function through get_gradient_function {op.type}"); - if (!gradientFunctions.ContainsKey(op.type)) - throw new LookupError($"can't get graident function through get_gradient_function {op.type}"); + return gradientFunctions[op.type]; + } - return gradientFunctions[op.type]; + Tensor[] wrapped_gradient_function(Operation operation, Tensor[] args) + { + return gradient_function(operation, args); + } + // TODO(Rinne): check if this needs to be registered. + return wrapped_gradient_function; } } } diff --git a/src/TensorFlowNET.Core/GraphTransformation/GraphTransformer.cs b/src/TensorFlowNET.Core/GraphTransformation/GraphTransformer.cs index 8870e295f..f662b4486 100644 --- a/src/TensorFlowNET.Core/GraphTransformation/GraphTransformer.cs +++ b/src/TensorFlowNET.Core/GraphTransformation/GraphTransformer.cs @@ -22,21 +22,19 @@ public GraphDef TransformGraph(GraphDef input_graph_def, var inputs_string = string.Join(",", inputs); var outputs_string = string.Join(",", outputs); var transforms_string = string.Join(" ", transforms); - using (var status = new Status()) - { - var buffer = new Buffer(); - var len = c_api.TransformGraphWithStringInputs(input_graph_def_string, - input_graph_def_string.Length, - inputs_string, - outputs_string, - transforms_string, - buffer.Handle, - status.Handle); + var status = new Status(); + var buffer = new Buffer(); + var len = c_api.TransformGraphWithStringInputs(input_graph_def_string, + input_graph_def_string.Length, + inputs_string, + outputs_string, + transforms_string, + buffer, + status); - status.Check(false); - var bytes = buffer.ToArray(); - return GraphDef.Parser.ParseFrom(bytes); - } + status.Check(false); + var bytes = buffer.ToArray(); + return GraphDef.Parser.ParseFrom(bytes); } } } diff --git a/src/TensorFlowNET.Core/Graphs/AutoGraph.cs b/src/TensorFlowNET.Core/Graphs/AutoGraph.cs index 2af1a3720..48d14d6bd 100644 --- a/src/TensorFlowNET.Core/Graphs/AutoGraph.cs +++ b/src/TensorFlowNET.Core/Graphs/AutoGraph.cs @@ -1,4 +1,5 @@ using System; +using System.Diagnostics; using System.Linq; using static Tensorflow.Binding; @@ -6,14 +7,14 @@ namespace Tensorflow.Graphs { public class AutoGraph { - public Func to_graph(Func func) + public Func to_graph(Func func, TF_DataType dtype = TF_DataType.TF_INT32) { string func_name = $"{func.Method.Name}_{ops.uid_function()}"; var graph = new FuncGraph(func_name); graph.as_default(); - var input = tf.placeholder(tf.int32); + var input = tf.placeholder(dtype); var output = func(input); var opers = graph._nodes_by_name.Values.Select(x => x as Operation).ToArray(); @@ -26,25 +27,31 @@ public Func to_graph(Func func) return (Tensor input) => { - var result = tf.Runner.TFE_Execute(tf.Context, - tf.Context.DeviceName, - func_name, - new[] { input }, - null, - 1); - return result[0]; + if (tf.executing_eagerly()) + { + var result = tf.Runner.TFE_Execute(tf.Context, + tf.Context.DeviceName, + func_name, + new[] { input }, + null, + 1); + return result[0]; + } + var s = tf.Session(input.graph); + var output = func(input); + return output; }; } - public Func to_graph(Func func) + public Func to_graph(Func func, params TF_DataType[] dtypes) { string func_name = $"{func.Method.Name}_{ops.uid_function()}"; var graph = new FuncGraph(func_name); graph.as_default(); - var input1 = tf.placeholder(tf.int32); - var input2 = tf.placeholder(tf.int32); + var input1 = tf.placeholder(dtypes.Length >= 1 ? dtypes[0] : tf.int32); + var input2 = tf.placeholder(dtypes.Length >= 2 ? dtypes[1] : tf.int32); var output = func(input1, input2); var opers = graph._nodes_by_name.Values.Select(x => x as Operation).ToArray(); @@ -56,13 +63,20 @@ public Func to_graph(Func func) return (Tensor a, Tensor b) => { - var result = tf.Runner.TFE_Execute(tf.Context, + if (tf.executing_eagerly()) + { + var result = tf.Runner.TFE_Execute(tf.Context, tf.Context.DeviceName, func_name, new[] { a, b }, null, 1); - return result[0]; + return result[0]; + } + var s = tf.Session(a.graph); + Debug.Assert(a.graph == b.graph); + var output = func(a, b); + return output; }; } } diff --git a/src/TensorFlowNET.Core/Graphs/AutoGraphAttribute.cs b/src/TensorFlowNET.Core/Graphs/AutoGraphAttribute.cs index 31cc9c0bd..cc283db4e 100644 --- a/src/TensorFlowNET.Core/Graphs/AutoGraphAttribute.cs +++ b/src/TensorFlowNET.Core/Graphs/AutoGraphAttribute.cs @@ -1,6 +1,7 @@ using MethodBoundaryAspect.Fody.Attributes; using System; using System.Collections.Generic; +using System.IO; using System.Linq; using Tensorflow.Eager; using Tensorflow.Functions; @@ -22,7 +23,7 @@ public sealed class AutoGraphAttribute : OnMethodBoundaryAspect public override void OnEntry(MethodExecutionArgs args) { // TODO: func_name can be cache in FullName + Args - func_name = $"{args.Method.DeclaringType.FullName}.{args.Method.Name}_{ops.uid_function()}"; + func_name = $"{args.Method.DeclaringType.FullName}.{args.Method.Name}"; if (functions.ContainsKey(func_name)) { @@ -91,6 +92,7 @@ public override void OnExit(MethodExecutionArgs args) // cache function. function.ReturnType = args.ReturnValue.GetType(); + function._set_infer_function(); functions[func_name] = function; // run function diff --git a/src/TensorFlowNET.Core/Graphs/FuncGraph.cs b/src/TensorFlowNET.Core/Graphs/FuncGraph.cs index df750813d..6f7fa9c5f 100644 --- a/src/TensorFlowNET.Core/Graphs/FuncGraph.cs +++ b/src/TensorFlowNET.Core/Graphs/FuncGraph.cs @@ -1,258 +1,609 @@ using Google.Protobuf; using System; -using System.Collections.Generic; +using System.Buffers; +using System.Diagnostics; using System.Linq; using Tensorflow.Eager; using Tensorflow.Exceptions; +using Tensorflow.Framework; +using Tensorflow.Framework.Models; +using Tensorflow.Functions; +using Tensorflow.NumPy; +using Tensorflow.Operations; +using Tensorflow.Util; using static Tensorflow.Binding; -namespace Tensorflow.Graphs +namespace Tensorflow.Graphs; + +/// +/// Graph representing a function body. +/// +public class FuncGraph : Graph, IDisposable { + internal SafeFuncGraphHandle _func_graph_handle; + internal HashSet _resource_tensor_inputs; + internal HashSet> _watched_variables; + internal IEnumerable> _weak_variables; + internal object[] _structured_outputs; + internal Dictionary _output_names; + public string FuncName => _graph_key; + + public Tensors Inputs { get; set; } = new Tensors(); + public Tensors Outputs { get; set; } = new Tensors(); + public Tensors FlatStructuredOutputs + { + get + { + List res = new(); + foreach(var obj in _structured_outputs) + { + if(obj is Tensor tensor) + { + res.Add(tensor); + } + else if(obj is IEnumerable tensors) + { + res.AddRange(tensors); + } + else + { + throw new TypeError("The structured outputs member should be tensor or tensors."); + } + } + return res; + } + } + public string Name { get; set; } + public IEnumerable Variables + { + get + { + return _weak_variables.Select(v => + { + if (v.TryGetTarget(out var target)) + { + return target; + } + else + { + throw new AssertionError("Called a function referencing variables which have been deleted. " + + "This likely means that function-local variables were created and " + + "not referenced elsewhere in the program. This is generally a " + + "mistake; consider storing variables in an object attribute on first call."); + } + }); + } + internal set + { + _weak_variables = value.Select(x => new WeakReference(x)); + } + } + public IEnumerable TrainableVariables => Variables.Where(v => v.Trainable); + public Dictionary Attrs { get; set; } + + internal Dictionary _captures + = new Dictionary(); + + public Tensor[] external_captures + => _captures.Select(x => x.Value.Item1).ToArray(); + public (Tensor, Tensor)[] captures + => _captures.Values.Select(x => x).ToArray(); + + public Tensor[] internal_captures + => _captures.Select(x => x.Value.Item2).ToArray(); + + public Tensor[] captured_inputs + => external_captures; + /// - /// Graph representing a function body. + /// Construct a new FuncGraph. /// - public class FuncGraph : Graph + public FuncGraph(string name) : base() { - IntPtr _func_graph_handle; - public string FuncName => _graph_key; + outer_graph = ops.get_default_graph(); + while (outer_graph.building_function) + outer_graph = outer_graph.OuterGraph; + _graph_key = Name = name; + building_function = true; + _weak_variables = new List>(); + _resource_tensor_inputs = new HashSet(); + _watched_variables = new HashSet>(); + } - public Tensors Inputs { get; set; } = new Tensors(); - public Tensors Outputs { get; set; } = new Tensors(); - public Dictionary Attrs { get; set; } + public FuncGraph(SafeGraphHandle handle, string name, Dictionary attrs) : base() + { + outer_graph = ops.get_default_graph(); + while (outer_graph.building_function) + outer_graph = outer_graph.OuterGraph; + _graph_key = Name = name; + building_function = true; + Attrs = attrs; + // Will to test if FuncGraph has memory leak + // c_api.TF_DeleteGraph(_handle); + _handle = handle; + _weak_variables = new List>(); + _resource_tensor_inputs = new HashSet(); + _watched_variables = new HashSet>(); + } - Dictionary _captures - = new Dictionary(); + public void replace_capture(Tensor tensor, Tensor placeholder) + { + _captures[tensor.Id] = (tensor, placeholder); + } - public Tensor[] external_captures - => _captures.Select(x => x.Value.Item1).ToArray(); - public (Tensor, Tensor)[] captures - => _captures.Values.Select(x => x).ToArray(); + public unsafe void ToGraph(Operation[] opers, + Tensor[] inputs, Tensor[] outputs, + string[] output_names) + { + var status = new Status(); + if (output_names is null) + { + output_names = new string[0]; + }; + + _func_graph_handle = c_api.TF_GraphToFunction(_handle, + _graph_key, + false, + opers.Length, + opers.Select(x => (IntPtr)x).ToArray(), + inputs.Length, + inputs.Select(x => new TF_Output(x.op, 0)).ToArray(), + outputs.Length, + outputs.Select(x => new TF_Output(x.op, 0)).ToArray(), + output_names.Length != outputs.Length ? null : output_names, + IntPtr.Zero, + null, + status); + status.Check(true); + + SetAttrs(); + + // c_api.TF_GraphCopyFunction(outer_graph, _func_graph_handle, IntPtr.Zero, status.Handle); + // status.Check(true); + + c_api.TFE_ContextAddFunction(tf.Context, _func_graph_handle, status); + status.Check(true); + + _graph_key = c_api.StringPiece(c_api.TF_FunctionName(_func_graph_handle)); + + Inputs = inputs; + // mark_as_return + Outputs = outputs;// .Select(x => array_ops.identity(x)).ToArray(); + } - public Tensor[] internal_captures - => _captures.Select(x => x.Value.Item2).ToArray(); + public override Operation create_op(string op_type, Tensor[] inputs, TF_DataType[] dtypes, TF_DataType[] input_types = null, string name = null, Dictionary attrs = null, OpDef op_def = null, bool compute_device = true) + { + foreach(var (i, inp) in enumerate(inputs)) + inputs[i] = capture(inp); - public Tensor[] captured_inputs - => external_captures; + return base.create_op(op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device); + } - /// - /// Construct a new FuncGraph. - /// - public FuncGraph(string name) : base() + const int _EAGER_CONST_THRESHOLD = 128; + public Tensor capture(Tensor tensor, string name = null, Shape shape = null) + { + if(tensor is EagerTensor or NDArray) { - outer_graph = ops.get_default_graph(); - while (outer_graph.building_function) - outer_graph = outer_graph.OuterGraph; - _graph_key = name; - building_function = true; + if (name == null) + name = ops.uid().ToString(); + + // Small EagerTensors are captured with Const ops + if (dtypes.is_value_dtype(tensor.dtype) + && (tensor.rank == 0 || tensor.size < _EAGER_CONST_THRESHOLD)) + return capture_eager_tensor(tensor, name); + + // Large EagerTensors and resources are captured with Placeholder ops + return _capture_helper(tensor, name, shape: shape); } - public FuncGraph(IntPtr handle, string name, Dictionary attrs) : base() + if(tensor.graph != this) { - outer_graph = ops.get_default_graph(); - while (outer_graph.building_function) - outer_graph = outer_graph.OuterGraph; - _graph_key = name; - building_function = true; - Attrs = attrs; - // Will to test if FuncGraph has memory leak - // c_api.TF_DeleteGraph(_handle); - _handle = handle; + if (name == null) + name = tensor.op.name; + var inner_graph = tensor.graph; + while(inner_graph != null && inner_graph is FuncGraph inner_func_graph) + { + if (inner_graph == this) + throw new InaccessibleTensorError($"The tensor '{tensor.name}' cannot be accessed here: it is defined" + + " in another function or code block. Use return values," + + " explicit Python locals or TensorFlow collections to access" + + $" it. Defined in: {tensor.graph.graph_key}; accessed from: {graph_key}."); + inner_graph = inner_func_graph.outer_graph; + } + return _capture_helper(tensor, name); } - public void ToGraph(Operation[] opers, - Tensor[] inputs, Tensor[] outputs, - string[] output_names) + return tensor; + } + + public void watch_variable(IVariableV1 v) + { + if (_resource_tensor_inputs.Contains(v.Handle)) + { + return; + } + _watched_variables.Add(new WeakReference(v)); + //this = this.outer_graph; + } + + Tensor capture_eager_tensor(Tensor tensor, string name) + { + Tensor graph_const = null; + if (!_captures.ContainsKey(tensor.Id)) + { + graph_const = tf_with(ops.control_dependencies(null), ctl + => constant_op.constant(tensor.numpy(), dtype: tensor.dtype, shape: tensor.shape, name: name)); + add_capture(tensor, graph_const); + } + else { - var status = new Status(); - _func_graph_handle = c_api.TF_GraphToFunction(_handle, - _graph_key, - false, - opers.Length, - opers.Select(x => (IntPtr)x).ToArray(), - inputs.Length, - inputs.Select(x => new TF_Output(x.op, 0)).ToArray(), - outputs.Length, - outputs.Select(x => new TF_Output(x.op, 0)).ToArray(), - output_names == null || output_names.Length == 0 ? null : output_names, - IntPtr.Zero, - null, - status.Handle); - status.Check(true); - - SetAttrs(); - - // c_api.TF_GraphCopyFunction(outer_graph, _func_graph_handle, IntPtr.Zero, status.Handle); - // status.Check(true); - - c_api.TFE_ContextAddFunction(tf.Context.Handle, _func_graph_handle, status.Handle); - status.Check(true); - - _graph_key = c_api.StringPiece(c_api.TF_FunctionName(_func_graph_handle)); - - Inputs = inputs; - // mark_as_return - Outputs = outputs;// .Select(x => array_ops.identity(x)).ToArray(); + graph_const = _captures[tensor.Id].Item2; } - public override Operation create_op(string op_type, Tensor[] inputs, TF_DataType[] dtypes, TF_DataType[] input_types = null, string name = null, Dictionary attrs = null, OpDef op_def = null, bool compute_device = true) + BackwardFunction _backward_function_wrapper = (output_grads, unneeded_gradients) => { - foreach(var (i, inp) in enumerate(inputs)) - inputs[i] = capture(inp); + return output_grads; + }; - return base.create_op(op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device); + tf.Runner.RecordGradient("captured_value", + new[] { graph_const }, null, + new[] { tensor }, + getBackwardFunction: _backward_function_wrapper + /*getForwardFunction: forward_function*/); + + return graph_const; + } + + Tensor _capture_helper(Tensor tensor, string name, Shape shape = null) + { + Tensor placeholder = null; + if (!_captures.ContainsKey(tensor.Id)) + { + placeholder = _create_substitute_placeholder(tensor, + name: name, + dtype: tensor.dtype, + shape: shape); + add_capture(tensor, placeholder); + } + else + { + placeholder = _captures[tensor.Id].Item2; } - const int _EAGER_CONST_THRESHOLD = 128; - public Tensor capture(Tensor tensor, string name = null, Shape shape = null) + BackwardFunction _backward_function_wrapper = (output_grads, unneeded_gradients) => { - if(tensor is EagerTensor) - { - if (name == null) - name = ops.uid().ToString(); + return output_grads; + }; - // Small EagerTensors are captured with Const ops - if (dtypes.is_value_dtype(tensor.dtype) - && (tensor.rank == 0 || tensor.size < _EAGER_CONST_THRESHOLD)) - return capture_eager_tensor(tensor, name); + tf.Runner.RecordGradient("captured_value", + new[] { placeholder }, null, + new[] { tensor }, + getBackwardFunction: _backward_function_wrapper + /*getForwardFunction: forward_function*/); - // Large EagerTensors and resources are captured with Placeholder ops - return _capture_helper(tensor, name, shape: shape); - } + return placeholder; + } + + void add_capture(Tensor tensor, Tensor placeholder) + { + _captures.Add(tensor.Id, (tensor, placeholder)); + Inputs.Add(placeholder); + } + + Tensor pop_capture(Tensor tensor) + { + if(_captures.TryGetValue(tensor.Id, out var capture)) + { + _captures.Remove(tensor.Id); + return capture.Item2; + } + else + { + return null; + } + } + + Tensor _create_substitute_placeholder(Tensor value, + string name = null, + TF_DataType dtype = TF_DataType.DtInvalid, + Shape shape = null) + { + if (shape is null) + shape = value.shape; + if (dtype == TF_DataType.DtInvalid) + dtype = value.dtype; + + var placeholder = tf_with(ops.control_dependencies(null), ctl + => array_ops.placeholder(dtype, shape: shape, name: name)); + // custom_gradient.copy_handle_data(value, placeholder) + return placeholder; + } + + void SetAttrs() + { + if (Attrs == null) + return; + + foreach (var (_name, attr_value) in enumerate(Attrs)) + { + var serialized = attr_value.ToByteArray(); + c_api.TF_FunctionSetAttrValueProto(_func_graph_handle, _name, serialized, serialized.Length, tf.Status); + tf.Status.Check(true); + } + } + + public override Graph as_default() + { + tf.Context.graph_mode(isFunc: true); + ops.set_default_graph(this); + return this; + } + + public override void Exit() + { + tf.Context.restore_mode(); + ops.pop_graph(); + } + + public void Dispose() + { + c_api.TFE_ContextRemoveFunction(tf.Context, _graph_key, tf.Status); + } + + public static FuncGraph func_graph_from_func(string name, Func func, + object[] args, Dictionary kwargs, TensorSpec[] signature = null, + FuncGraph func_graph = null, bool autograph = false, object autograph_options = null, + bool add_control_dependencies = true, string[] arg_names = null, + Tensor op_return_value = null, bool capture_by_value = false, + bool acd_record_initial_resource_uses = false) + { + if(func_graph is null) + { + func_graph = new FuncGraph(name); + } - if(tensor.graph != this) + // TODO(Rinne): deal with control dependencies. + + func_graph.as_default(); + var current_scope = variable_scope.get_variable_scope(); + var default_use_resource = current_scope.use_resource; + current_scope.use_resource = true; + + if(signature is not null) + { + args = signature; + kwargs = new Dictionary(); + } + var func_args = _get_defun_inputs_from_args(args, arg_names); + var func_kwargs = _get_defun_inputs_from_kwargs(kwargs); + + if(func_kwargs is not null && func_kwargs.Count > 0) + { + throw new NotImplementedException("The keyword args has not been supported in `func_graph_from_func`."); + } + + foreach(var arg in nest.flatten(new object[] { func_args, func_kwargs })) + { + if(arg is Tensor tensor && tensor.dtype == dtypes.resource) { - if (name == null) - name = tensor.op.name; - var inner_graph = tensor.graph; - while(inner_graph != null && inner_graph is FuncGraph inner_func_graph) - { - if (inner_graph == this) - throw new InaccessibleTensorError($"The tensor '{tensor.name}' cannot be accessed here: it is defined" + - " in another function or code block. Use return values," + - " explicit Python locals or TensorFlow collections to access" + - $" it. Defined in: {tensor.graph.graph_key}; accessed from: {graph_key}."); - inner_graph = inner_func_graph.outer_graph; - } - return _capture_helper(tensor, name); + func_graph._resource_tensor_inputs.Add(tensor); + } + else if (arg is ResourceVariable variable) + { + func_graph._resource_tensor_inputs.Add(variable.Handle); } - - return tensor; } - Tensor capture_eager_tensor(Tensor tensor, string name) + // skip the assignment of `func_graph.structured_input_signature`. + + var flat_func_args = nest.flatten(func_args as object); + var flat_func_kwargs = nest.flatten(func_kwargs as object); + func_graph.Inputs = new Tensors(flat_func_args.concat(flat_func_kwargs) + .Where(x => x is Tensor).Select(x => (Tensor)x).ToArray()); + + //var func_args_before = nest.pack_sequence_as(func_args, flat_func_args, true); + //var func_kwargs_before = nest.pack_sequence_as(func_kwargs, flat_func_kwargs, true); + + Tensor convert(object x) { - Tensor graph_const = null; - if (!_captures.ContainsKey(tensor.Id)) + if (x is null) return null; + Tensor res = null; + if(op_return_value is not null && x is Operation) { - graph_const = tf_with(ops.control_dependencies(null), ctl - => constant_op.constant(tensor.numpy(), dtype: tensor.dtype, shape: tensor.shape, name: name)); - add_capture(tensor, graph_const); + tf_with(ops.control_dependencies(new object[] { x }), _ => + { + res = array_ops.identity(op_return_value); + }); + } + else if(x is not TensorArray) + { + Debug.Assert(x is Tensor); + res = ops.convert_to_tensor_or_composite(x as Tensor); } else { - graph_const = _captures[tensor.Id].Item2; + throw new NotImplementedException($"The `TensorArray` is not supported here currently."); } - - BackwardFunction _backward_function_wrapper = (output_grads, unneeded_gradients) => + if (add_control_dependencies) { - return output_grads; - }; - - tf.Runner.RecordGradient("captured_value", - new[] { graph_const }, null, - new[] { tensor }, - getBackwardFunction: _backward_function_wrapper - /*getForwardFunction: forward_function*/); + // TODO(Rinne): `x = deps_ctx.mark_as_return(x)`. + } + return res; + } - return graph_const; + if (autograph) + { + throw new NotImplementedException("The autograph of `func_graph_from_func` has not been supported."); } - Tensor _capture_helper(Tensor tensor, string name, Shape shape = null) + var func_outputs = func(func_args); + func_outputs = variable_utils.convert_variables_to_tensors(func_outputs); + func_outputs = func_outputs.Select(x => convert(x)).ToArray(); + // TODO(Rinne): `check_func_mutation`. + + current_scope.use_resource = default_use_resource; + + var graph_variables = func_graph._watched_variables.ToList(); + HashSet arg_variables = new HashSet(); + List inputs = new(); + foreach(var arg in composite_tensor_utils.flatten_with_variables(func_args)) { - Tensor placeholder = null; - if (!_captures.ContainsKey(tensor.Id)) + if(arg is BaseResourceVariable variable) { - placeholder = _create_substitute_placeholder(tensor, - name: name, - dtype: tensor.dtype, - shape: shape); - add_capture(tensor, placeholder); + var resource_placeholder = func_graph.pop_capture(variable.Handle); + if(resource_placeholder is null) + { + continue; + } + Debug.Assert(variable is IVariableV1); + arg_variables.Add(variable as IVariableV1); + inputs.Add(resource_placeholder); + } + else if(arg is Tensor tensor) + { + inputs.Add(tensor); + } + } + var variables = graph_variables.Select(v => + { + if (v.TryGetTarget(out var target)) + { + return target; } else { - placeholder = _captures[tensor.Id].Item2; + return null; } + }).Where(v => v is not null && !arg_variables.Contains(v)); + func_graph.Inputs = inputs.Concat(func_graph.internal_captures).ToArray(); + func_graph._structured_outputs = func_outputs; + func_graph.Outputs.AddRange(func_graph.FlatStructuredOutputs.Where(x => x is not null) + .Select(x => func_graph.capture(x))); - BackwardFunction _backward_function_wrapper = (output_grads, unneeded_gradients) => - { - return output_grads; - }; + func_graph.Variables = variables; - tf.Runner.RecordGradient("captured_value", - new[] { placeholder }, null, - new[] { tensor }, - getBackwardFunction: _backward_function_wrapper - /*getForwardFunction: forward_function*/); + func_graph.Exit(); - return placeholder; + if (add_control_dependencies) + { + // TODO(Rinne): implement it. } + return func_graph; + } - void add_capture(Tensor tensor, Tensor placeholder) + private static object[] _get_defun_inputs_from_args(object[] args, string[] names) + { + return _get_defun_inputs(args, names, args) as object[]; + } + + private static Dictionary _get_defun_inputs_from_kwargs(Dictionary kwargs) + { + // TODO(Rinne): implement it. + Debug.Assert(kwargs is null || kwargs.Count == 0); + return kwargs; + //string[] names; + //object[] args; + //if(kwargs is not null && kwargs.Count > 0) + //{ + // var sorted_kwargs = kwargs.OrderBy(x => x.Key); + // names = sorted_kwargs.Select(x => x.Key).ToArray(); + // args = sorted_kwargs.Select(x => x.Value).ToArray(); + //} + //else + //{ + // names = new string[0]; + // args = new object[0]; + //} + //return _get_defun_inputs(args, names, kwargs) as Dictionary; + } + + private static object _get_defun_inputs(object[] args, string[] names, object structured_args) + { + List function_inputs = new(); + if(names is null) { - _captures.Add(tensor.Id, (tensor, placeholder)); - Inputs.Add(placeholder); + names = new string[args.Length]; } - Tensor _create_substitute_placeholder(Tensor value, - string name = null, - TF_DataType dtype = TF_DataType.DtInvalid, - Shape shape = null) + foreach(var (arg_value, name) in zip(args, names)) { - if (shape is null) - shape = value.shape; - if (dtype == TF_DataType.DtInvalid) - dtype = value.dtype; - - var placeholder = tf_with(ops.control_dependencies(null), ctl - => array_ops.placeholder(dtype, shape: shape, name: name)); - // custom_gradient.copy_handle_data(value, placeholder) - return placeholder; + foreach(var val in composite_tensor_utils.flatten_with_variables_or_variable_specs(arg_value)) + { + function_inputs.Add(_get_defun_input(val, name)); + } } + return nest.pack_sequence_as(structured_args, nest.flatten(function_inputs), true); + } - void SetAttrs() + private static object _get_defun_input(object arg, string name) + { + var func_graph = ops.get_default_graph() as FuncGraph; + Debug.Assert(func_graph is not null); + if (arg is Tensor tensor) { - if (Attrs == null) - return; - - foreach (var (_name, attr_value) in enumerate(Attrs)) + Tensor placeholder; + try + { + placeholder = GraphOnlyOps.graph_placeholder(tensor.dtype, tensor.shape, name); + } + catch (ValueError ex) + { + tf.Logger.Warning(ex.ToString()); + placeholder = GraphOnlyOps.graph_placeholder(tensor.dtype, tensor.shape); + } + handle_data_util.copy_handle_data(tensor, placeholder); + if (name is not null) { - var serialized = new AttrValue + placeholder.op._set_attr("_user_specified_name", new AttrValue() { - S = ByteString.CopyFromUtf8(attr_value) - }.ToByteArray(); - c_api.TF_FunctionSetAttrValueProto(_func_graph_handle, _name, serialized, serialized.Length, tf.Status.Handle); - tf.Status.Check(true); + S = tf.compat.as_bytes(name) + }); } + return placeholder; } - - public override Graph as_default() + else if (arg is TensorSpec spec) { - tf.Context.graph_mode(isFunc: true); - ops.set_default_graph(this); - return this; + string requested_name; + if (!string.IsNullOrEmpty(spec.name)) + { + requested_name = spec.name; + } + else + { + requested_name = name; + } + Tensor placeholder; + try + { + placeholder = GraphOnlyOps.graph_placeholder(spec.dtype, spec.shape, requested_name); + } + catch (ValueError) + { + // TODO(Rinne): Add warning here. + placeholder = GraphOnlyOps.graph_placeholder(spec.dtype, spec.shape); + } + if (name is not null) + { + placeholder.op._set_attr("_user_specified_name", new AttrValue() + { + S = tf.compat.as_bytes(requested_name) + }); + } + return placeholder; } - - public override void Exit() + else if (arg is BaseResourceVariable variable) { - tf.Context.restore_mode(); - ops.pop_graph(); + var placeholder = func_graph.capture(variable.Handle, name); + placeholder.op._set_attr("_user_specified_name", new AttrValue() + { + S = tf.compat.as_bytes(name) + }); + return arg; } - - protected override void DisposeUnmanagedResources(IntPtr handle) + // TODO(Rinne): deal with `VariableSpec`. + else { - c_api.TFE_ContextRemoveFunction(tf.Context.Handle, _graph_key, tf.Status.Handle); - c_api.TF_DeleteFunction(_func_graph_handle); - base.DisposeUnmanagedResources(handle); + return arg; } } } diff --git a/src/TensorFlowNET.Core/Graphs/Graph.Export.cs b/src/TensorFlowNET.Core/Graphs/Graph.Export.cs index 612c74015..a11d91e73 100644 --- a/src/TensorFlowNET.Core/Graphs/Graph.Export.cs +++ b/src/TensorFlowNET.Core/Graphs/Graph.Export.cs @@ -24,7 +24,7 @@ public partial class Graph public Buffer ToGraphDef(Status s) { var buffer = new Buffer(); - c_api.TF_GraphToGraphDef(_handle, buffer.Handle, s.Handle); + c_api.TF_GraphToGraphDef(_handle, buffer, s); s.Check(true); return buffer; @@ -33,14 +33,12 @@ public Buffer ToGraphDef(Status s) private GraphDef _as_graph_def(bool add_shapes = false) { GraphDef def; - using (var status = new Status()) - using (var buffer = ToGraphDef(status)) - { - status.Check(true); - // limit size to 250M, recursion to max 100 - var inputStream = CodedInputStream.CreateWithLimits(buffer.DangerousMemoryBlock, 250 * 1024 * 1024, 100); - def = GraphDef.Parser.ParseFrom(inputStream); - } + var status = new Status(); + var buffer = ToGraphDef(status); + status.Check(true); + // limit size to 250M, recursion to max 100 + var inputStream = CodedInputStream.CreateWithLimits(buffer.DangerousMemoryBlock, 250 * 1024 * 1024, 100); + def = GraphDef.Parser.ParseFrom(inputStream); // Strip the experimental library field iff it's empty. // if(def.Library.Function.Count == 0) diff --git a/src/TensorFlowNET.Core/Graphs/Graph.Gradient.cs.cs b/src/TensorFlowNET.Core/Graphs/Graph.Gradient.cs.cs index 91aef2dcb..bed8b35ca 100644 --- a/src/TensorFlowNET.Core/Graphs/Graph.Gradient.cs.cs +++ b/src/TensorFlowNET.Core/Graphs/Graph.Gradient.cs.cs @@ -1,4 +1,6 @@ -namespace Tensorflow +using Tensorflow.Graphs; + +namespace Tensorflow { public partial class Graph { @@ -6,5 +8,10 @@ public void _colocate_with_for_gradient(Operation op, string gradient_uid, bool { } + + internal GraphOverrideGradientContext _override_gradient_function(Dictionary> gradient_function_map) + { + return new GraphOverrideGradientContext(this, gradient_function_map); + } } } diff --git a/src/TensorFlowNET.Core/Graphs/Graph.Import.cs b/src/TensorFlowNET.Core/Graphs/Graph.Import.cs index 28ecd64e4..b80e26590 100644 --- a/src/TensorFlowNET.Core/Graphs/Graph.Import.cs +++ b/src/TensorFlowNET.Core/Graphs/Graph.Import.cs @@ -29,7 +29,7 @@ public unsafe TF_Output[] ImportGraphDefWithReturnOutputs(Buffer graph_def, Impo int size = Marshal.SizeOf(); var return_output_handle = Marshal.AllocHGlobal(size * num_return_outputs); - c_api.TF_GraphImportGraphDefWithReturnOutputs(_handle, graph_def.Handle, opts.Handle, return_output_handle, num_return_outputs, s.Handle); + c_api.TF_GraphImportGraphDefWithReturnOutputs(_handle, graph_def, opts, return_output_handle, num_return_outputs, s); var tf_output_ptr = (TF_Output*)return_output_handle; for (int i = 0; i < num_return_outputs; i++) @@ -48,15 +48,14 @@ public bool Import(string file_path, string prefix = "") public bool Import(byte[] bytes, string prefix = "") { - using (var opts = new ImportGraphDefOptions()) - using (var status = new Status()) - using (var graph_def = new Buffer(bytes)) - { - c_api.TF_ImportGraphDefOptionsSetPrefix(opts.Handle, prefix); - c_api.TF_GraphImportGraphDef(_handle, graph_def.Handle, opts.Handle, status.Handle); - status.Check(true); - return status.Code == TF_Code.TF_OK; - } + var opts = new ImportGraphDefOptions(); + var status = new Status(); + var graph_def = new Buffer(bytes); + + c_api.TF_ImportGraphDefOptionsSetPrefix(opts, prefix); + c_api.TF_GraphImportGraphDef(_handle, graph_def, opts, status); + status.Check(true); + return status.Code == TF_Code.TF_OK; } public Graph ImportGraphDef(string file_path, string name = null) diff --git a/src/TensorFlowNET.Core/Graphs/Graph.Operation.cs b/src/TensorFlowNET.Core/Graphs/Graph.Operation.cs index fc3566875..c788aaf01 100644 --- a/src/TensorFlowNET.Core/Graphs/Graph.Operation.cs +++ b/src/TensorFlowNET.Core/Graphs/Graph.Operation.cs @@ -118,7 +118,7 @@ public ITensorOrOperation _get_operation_by_tf_operation(IntPtr tf_oper) /// (Optional.) If True, device functions will be executed /// to compute the device property of the Operation. /// An `Operation` object. - public Operation _create_op_from_tf_operation(IntPtr c_op, bool compute_device = true) + public Operation _create_op_from_tf_operation(IntPtr c_op, bool compute_device = true, OperationDescription desc = null) { var ret = new Operation(c_op, this); _add_op(ret); diff --git a/src/TensorFlowNET.Core/Graphs/Graph.cs b/src/TensorFlowNET.Core/Graphs/Graph.cs index 2a982274a..9e879a0f0 100644 --- a/src/TensorFlowNET.Core/Graphs/Graph.cs +++ b/src/TensorFlowNET.Core/Graphs/Graph.cs @@ -19,6 +19,10 @@ limitations under the License. using System.Collections.Generic; using System.Collections.Specialized; using System.Linq; +using Tensorflow.Framework; +using Tensorflow.Functions; +using Tensorflow.Common.Extensions; +using Tensorflow.Graphs; using static Tensorflow.Binding; namespace Tensorflow @@ -75,9 +79,9 @@ all variables that are created during the construction of a graph. The caller /// then create a TensorFlow session to run parts of the graph across a set of local and remote devices. /// /// https://www.tensorflow.org/guide/graphs

https://www.tensorflow.org/api_docs/python/tf/Graph
- public partial class Graph : DisposableObject - , IEnumerable + public partial class Graph : IEnumerable { + protected new SafeGraphHandle _handle; private Dictionary _nodes_by_id; public Dictionary _nodes_by_name; private Dictionary _names_in_use; @@ -85,6 +89,13 @@ public partial class Graph : DisposableObject private int _next_id_counter; private List _unfetchable_ops = new List(); private List _unfeedable_tensors = new List(); + private Dictionary _functions = new(); + internal Dictionary> _gradient_function_map = new(); + private VersionDef _graph_def_versions = new VersionDef() + { + Producer = versions.GRAPH_DEF_VERSION, + MinConsumer = versions.GRAPH_DEF_VERSION_MIN_CONSUMER + }; public string _name_stack = ""; protected string _graph_key; @@ -118,8 +129,10 @@ public int seed } } - protected Graph outer_graph; + internal Graph outer_graph; public Graph OuterGraph => outer_graph; + public Dictionary Functions => _functions; + public SafeGraphHandle c_graph => _handle; public Graph() { @@ -130,15 +143,6 @@ public Graph() _graph_key = $"graph-{ops.GraphUniqueId()}/"; } - public Graph(IntPtr handle) - { - _handle = handle; - _nodes_by_id = new Dictionary(); - _nodes_by_name = new Dictionary(); - _names_in_use = new Dictionary(); - _graph_key = $"grap-{ops.GraphUniqueId()}/"; - } - public ITensorOrOperation as_graph_element(object obj, bool allow_tensor = true, bool allow_operation = true) { return _as_graph_element_locked(obj, allow_tensor, allow_operation); @@ -155,6 +159,44 @@ public virtual Graph as_default() return ops.set_default_graph(this); } + public bool IsFunction(string name) + { + return _functions.ContainsKey(tf.compat.as_str(name)); + } + + internal void AddFunction(EagerDefinedFunction function) + { + _check_not_finalized(); + + var name = function.Name; + if(function._grad_func_name is not null && function.csharp_grad_func is not null) + { + throw new ValueError($"Gradient defined twice for function {name}"); + } + + var c_graph = this.c_graph; + var func = function._c_func.Get(); + Status status = new(); + if (function._grad_func is not null) + { + var gradient = function._grad_func._c_func.Get(); + c_api.TF_GraphCopyFunction(c_graph, func, gradient, status); + status.Check(true); + } + else + { + c_api.TF_GraphCopyFunction(c_graph, func, new SafeFuncGraphHandle(IntPtr.Zero), status); + status.Check(true); + } + + _functions[tf.compat.as_str(name)] = function; + + if(_graph_def_versions.MinConsumer < 12) + { + _graph_def_versions.MinConsumer = 12; + } + } + private Tensor _as_graph_element(object obj) { if (obj is RefVariable var) @@ -303,13 +345,22 @@ public virtual Operation create_op(string op_type, Tensor[] inputs, TF_DataType[ return op; } - public void device(string device_name) + public ITensorFlowObject device(string device_name) + { + return new GraphDeviceContext(this, device_name); + } + + private void add_device_to_stack(string device_name, int offset = 0) { - + // TODO(Rinne): deal with device spec. + int total_offset = offset + 1; } private void _create_op_helper(Operation op, bool compute_device = true) { + // high priority + // TODO(Rinne): complete the implementation. + op._gradient_function = _gradient_function_map.GetOrDefault(op.type, null); _record_op_seen_by_control_dependencies(op); } @@ -486,16 +537,6 @@ public void prevent_fetching(Operation op) _unfetchable_ops.Add(op); } - protected override void DisposeManagedResources() - { - - } - - protected override void DisposeUnmanagedResources(IntPtr handle) - { - c_api.TF_DeleteGraph(handle); - } - public Tensor get_tensor_by_tf_output(TF_Output tf_output) { var op = _get_operation_by_tf_operation(tf_output.oper); @@ -517,14 +558,14 @@ public Tensor get_tensor_by_name(string name) public Shape GetTensorShape(TF_Output output) { var status = tf.Status; - var ndim = c_api.TF_GraphGetTensorNumDims(_handle, output, status.Handle); + var ndim = c_api.TF_GraphGetTensorNumDims(_handle, output, status); status.Check(); if (ndim == -1) return Shape.Null; var dims = new long[ndim]; - c_api.TF_GraphGetTensorShape(_handle, output, dims, dims.Length, status.Handle); + c_api.TF_GraphGetTensorShape(_handle, output, dims, dims.Length, status); status.Check(); return new Shape(dims.Select(x => (int)x).ToArray()); @@ -536,10 +577,15 @@ public virtual void Exit() ops.pop_graph(); } + internal EagerDefinedFunction _get_function(string name) + { + return _functions.GetOrDefault(name, null); + } + string debugString = string.Empty; public override string ToString() { - return $"{graph_key}, 0x{_handle.ToString("x16")}"; + return $"{graph_key}, 0x{_handle.DangerousGetHandle().ToString("x16")}"; /*if (string.IsNullOrEmpty(debugString)) { int len = 0; @@ -558,7 +604,7 @@ IEnumerator IEnumerable.GetEnumerator() IEnumerator IEnumerable.GetEnumerator() => throw new NotImplementedException(); - public static implicit operator IntPtr(Graph graph) + public static implicit operator SafeGraphHandle(Graph graph) { return graph._handle; } diff --git a/src/TensorFlowNET.Core/Graphs/GraphDeviceContext.cs b/src/TensorFlowNET.Core/Graphs/GraphDeviceContext.cs new file mode 100644 index 000000000..2754c2b36 --- /dev/null +++ b/src/TensorFlowNET.Core/Graphs/GraphDeviceContext.cs @@ -0,0 +1,31 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Graphs +{ + public class GraphDeviceContext : ITensorFlowObject + { + private Graph _graph; + + public GraphDeviceContext(Graph graph, string device_name) + { + _graph = graph; + } + + public void __enter__() + { + + } + + public void __exit__() + { + + } + + public void Dispose() + { + + } + } +} diff --git a/src/TensorFlowNET.Core/Graphs/GraphOverrideGradientContext.cs b/src/TensorFlowNET.Core/Graphs/GraphOverrideGradientContext.cs new file mode 100644 index 000000000..2befbbff6 --- /dev/null +++ b/src/TensorFlowNET.Core/Graphs/GraphOverrideGradientContext.cs @@ -0,0 +1,37 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Text; + +namespace Tensorflow.Graphs +{ + internal class GraphOverrideGradientContext: ITensorFlowObject + { + Graph _graph; + Dictionary> _new_gradient_function_map; + public GraphOverrideGradientContext(Graph graph, + Dictionary> new_gradient_function_map) + { + _graph = graph; + _new_gradient_function_map = new_gradient_function_map; + } + + [DebuggerStepThrough] + public void __enter__() + { + Debug.Assert(_graph._gradient_function_map.Count == 0); + _graph._gradient_function_map = _new_gradient_function_map; + } + + [DebuggerStepThrough] + public void __exit__() + { + _graph._gradient_function_map = new Dictionary>(); + } + + public void Dispose() + { + + } + } +} diff --git a/src/TensorFlowNET.Core/Graphs/ImportGraphDefOptions.cs b/src/TensorFlowNET.Core/Graphs/ImportGraphDefOptions.cs index a04cf55a4..a7ce6ff5f 100644 --- a/src/TensorFlowNET.Core/Graphs/ImportGraphDefOptions.cs +++ b/src/TensorFlowNET.Core/Graphs/ImportGraphDefOptions.cs @@ -14,28 +14,29 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ -using System; +namespace Tensorflow; -namespace Tensorflow +public sealed class ImportGraphDefOptions { - public sealed class ImportGraphDefOptions : IDisposable - { - public SafeImportGraphDefOptionsHandle Handle { get; } + SafeImportGraphDefOptionsHandle _handle { get; } - public int NumReturnOutputs - => c_api.TF_ImportGraphDefOptionsNumReturnOutputs(Handle); + public int NumReturnOutputs + => c_api.TF_ImportGraphDefOptionsNumReturnOutputs(_handle); - public ImportGraphDefOptions() - { - Handle = c_api.TF_NewImportGraphDefOptions(); - } + public ImportGraphDefOptions() + { + _handle = c_api.TF_NewImportGraphDefOptions(); + } - public void AddReturnOutput(string name, int index) - { - c_api.TF_ImportGraphDefOptionsAddReturnOutput(Handle, name, index); - } + public SafeImportGraphDefOptionsHandle Options => _handle; - public void Dispose() - => Handle.Dispose(); + public void AddReturnOutput(string name, int index) + { + c_api.TF_ImportGraphDefOptionsAddReturnOutput(_handle, name, index); + } + + public static implicit operator SafeImportGraphDefOptionsHandle(ImportGraphDefOptions opt) + { + return opt._handle; } } diff --git a/src/TensorFlowNET.Core/Graphs/SafeFuncGraphHandle.cs b/src/TensorFlowNET.Core/Graphs/SafeFuncGraphHandle.cs new file mode 100644 index 000000000..f38301b64 --- /dev/null +++ b/src/TensorFlowNET.Core/Graphs/SafeFuncGraphHandle.cs @@ -0,0 +1,22 @@ +using Tensorflow.Util; + +namespace Tensorflow; + +public sealed class SafeFuncGraphHandle : SafeTensorflowHandle +{ + private SafeFuncGraphHandle() + { + } + + public SafeFuncGraphHandle(IntPtr handle) + : base(handle) + { + } + + protected override bool ReleaseHandle() + { + c_api.TF_DeleteFunction(handle); + SetHandle(IntPtr.Zero); + return true; + } +} diff --git a/src/TensorFlowNET.Core/Graphs/SafeGraphHandle.cs b/src/TensorFlowNET.Core/Graphs/SafeGraphHandle.cs new file mode 100644 index 000000000..a6da01987 --- /dev/null +++ b/src/TensorFlowNET.Core/Graphs/SafeGraphHandle.cs @@ -0,0 +1,22 @@ +using Tensorflow.Util; + +namespace Tensorflow; + +public sealed class SafeGraphHandle : SafeTensorflowHandle +{ + private SafeGraphHandle() + { + } + + public SafeGraphHandle(IntPtr handle) + : base(handle) + { + } + + protected override bool ReleaseHandle() + { + c_api.TF_DeleteGraph(handle); + SetHandle(IntPtr.Zero); + return true; + } +} diff --git a/src/TensorFlowNET.Core/Graphs/c_api.graph.cs b/src/TensorFlowNET.Core/Graphs/c_api.graph.cs index 6eb8f367f..e0c58966d 100644 --- a/src/TensorFlowNET.Core/Graphs/c_api.graph.cs +++ b/src/TensorFlowNET.Core/Graphs/c_api.graph.cs @@ -60,7 +60,7 @@ public partial class c_api /// /// [DllImport(TensorFlowLibName)] - public static extern void TF_GraphGetTensorShape(IntPtr graph, TF_Output output, long[] dims, int num_dims, SafeStatusHandle status); + public static extern void TF_GraphGetTensorShape(SafeGraphHandle graph, TF_Output output, long[] dims, int num_dims, SafeStatusHandle status); /// /// Import the graph serialized in `graph_def` into `graph`. @@ -78,7 +78,7 @@ public partial class c_api /// int /// TF_Status* [DllImport(TensorFlowLibName)] - public static extern unsafe void TF_GraphImportGraphDefWithReturnOutputs(IntPtr graph, SafeBufferHandle graph_def, SafeImportGraphDefOptionsHandle options, IntPtr return_outputs, int num_return_outputs, SafeStatusHandle status); + public static extern unsafe void TF_GraphImportGraphDefWithReturnOutputs(SafeGraphHandle graph, SafeBufferHandle graph_def, SafeImportGraphDefOptionsHandle options, IntPtr return_outputs, int num_return_outputs, SafeStatusHandle status); /// /// Import the graph serialized in `graph_def` into `graph`. Returns nullptr and @@ -92,7 +92,7 @@ public partial class c_api /// TF_Status* /// TF_ImportGraphDefResults* [DllImport(TensorFlowLibName)] - public static extern SafeImportGraphDefResultsHandle TF_GraphImportGraphDefWithResults(IntPtr graph, SafeBufferHandle graph_def, SafeImportGraphDefOptionsHandle options, SafeStatusHandle status); + public static extern SafeImportGraphDefResultsHandle TF_GraphImportGraphDefWithResults(SafeGraphHandle graph, SafeBufferHandle graph_def, SafeImportGraphDefOptionsHandle options, SafeStatusHandle status); /// /// Import the graph serialized in `graph_def` into `graph`. @@ -102,7 +102,7 @@ public partial class c_api /// TF_ImportGraphDefOptions* /// TF_Status* [DllImport(TensorFlowLibName)] - public static extern void TF_GraphImportGraphDef(IntPtr graph, SafeBufferHandle graph_def, SafeImportGraphDefOptionsHandle options, SafeStatusHandle status); + public static extern void TF_GraphImportGraphDef(SafeGraphHandle graph, SafeBufferHandle graph_def, SafeImportGraphDefOptionsHandle options, SafeStatusHandle status); /// /// Iterate through the operations of a graph. @@ -111,7 +111,7 @@ public partial class c_api /// /// [DllImport(TensorFlowLibName)] - public static extern IntPtr TF_GraphNextOperation(IntPtr graph, ref uint pos); + public static extern IntPtr TF_GraphNextOperation(SafeGraphHandle graph, ref uint pos); /// /// Returns the operation in the graph with `oper_name`. Returns nullptr if @@ -121,14 +121,14 @@ public partial class c_api /// /// [DllImport(TensorFlowLibName)] - public static extern IntPtr TF_GraphOperationByName(IntPtr graph, string oper_name); + public static extern IntPtr TF_GraphOperationByName(SafeGraphHandle graph, string oper_name); /// /// Sets the shape of the Tensor referenced by `output` in `graph` to /// the shape described by `dims` and `num_dims`. /// [DllImport(TensorFlowLibName)] - public static extern void TF_GraphSetTensorShape(IntPtr graph, TF_Output output, long[] dims, int num_dims, SafeStatusHandle status); + public static extern void TF_GraphSetTensorShape(SafeGraphHandle graph, TF_Output output, long[] dims, int num_dims, SafeStatusHandle status); /// /// Write out a serialized representation of `graph` (as a GraphDef protocol @@ -138,7 +138,7 @@ public partial class c_api /// TF_Buffer* /// TF_Status* [DllImport(TensorFlowLibName)] - public static extern void TF_GraphToGraphDef(IntPtr graph, SafeBufferHandle output_graph_def, SafeStatusHandle status); + public static extern void TF_GraphToGraphDef(SafeGraphHandle graph, SafeBufferHandle output_graph_def, SafeStatusHandle status); /// /// Returns the number of dimensions of the Tensor referenced by `output` @@ -151,7 +151,7 @@ public partial class c_api /// /// [DllImport(TensorFlowLibName)] - public static extern int TF_GraphGetTensorNumDims(IntPtr graph, TF_Output output, SafeStatusHandle status); + public static extern int TF_GraphGetTensorNumDims(SafeGraphHandle graph, TF_Output output, SafeStatusHandle status); /// /// Cause the imported graph to have a control dependency on `oper`. `oper` @@ -185,6 +185,9 @@ public partial class c_api [DllImport(TensorFlowLibName)] public static extern void TF_ImportGraphDefOptionsAddReturnOperation(SafeImportGraphDefOptionsHandle opts, string oper_name); + [DllImport(TensorFlowLibName)] + public static extern void TF_ImportGraphDefOptionsSetValidateColocationConstraints(SafeImportGraphDefOptionsHandle options, bool validate_colocation_constraints); + /// /// Add an output in `graph_def` to be returned via the `return_outputs` output /// parameter of TF_GraphImportGraphDef(). If the output is remapped via an input @@ -246,7 +249,7 @@ public partial class c_api /// TF_ImportGraphDefOptions* /// unsigned char [DllImport(TensorFlowLibName)] - public static extern void TF_ImportGraphDefOptionsSetUniquifyNames(SafeImportGraphDefOptionsHandle ops, char uniquify_prefix); + public static extern void TF_ImportGraphDefOptionsSetUniquifyNames(SafeImportGraphDefOptionsHandle ops, bool uniquify_prefix); /// /// Fetches the return operations requested via @@ -287,12 +290,12 @@ public partial class c_api /// TF_Status* /// [DllImport(TensorFlowLibName)] - public static extern IntPtr TF_LoadSessionFromSavedModel(SafeSessionOptionsHandle session_options, IntPtr run_options, + public static extern SafeSessionHandle TF_LoadSessionFromSavedModel(SafeSessionOptionsHandle session_options, IntPtr run_options, string export_dir, string[] tags, int tags_len, - IntPtr graph, IntPtr meta_graph_def, SafeStatusHandle status); + SafeGraphHandle graph, IntPtr meta_graph_def, SafeStatusHandle status); [DllImport(TensorFlowLibName)] - public static extern IntPtr TF_NewGraph(); + public static extern SafeGraphHandle TF_NewGraph(); [DllImport(TensorFlowLibName)] public static extern SafeImportGraphDefOptionsHandle TF_NewImportGraphDefOptions(); @@ -308,7 +311,7 @@ public static extern IntPtr TF_LoadSessionFromSavedModel(SafeSessionOptionsHandl /// const TF_DataType* /// TF_Status* [DllImport(TensorFlowLibName)] - public static extern void TF_GraphSetOutputHandleShapesAndTypes(IntPtr graph, TF_Output output, + public static extern void TF_GraphSetOutputHandleShapesAndTypes(SafeGraphHandle graph, TF_Output output, int num_shapes_and_types, IntPtr[] shapes, int[] ranks, DataType[] types, SafeStatusHandle status); @@ -334,6 +337,6 @@ public static extern void TF_GraphSetOutputHandleShapesAndTypes(IntPtr graph, TF /// /// [DllImport(TensorFlowLibName)] - public static extern bool TF_TryEvaluateConstant(IntPtr graph, TF_Output output, IntPtr[] result, SafeStatusHandle status); + public static extern bool TF_TryEvaluateConstant(SafeGraphHandle graph, TF_Output output, IntPtr[] result, SafeStatusHandle status); } } diff --git a/src/TensorFlowNET.Core/IO/gfile.cs b/src/TensorFlowNET.Core/IO/gfile.cs index 5f08702da..142b8b64e 100644 --- a/src/TensorFlowNET.Core/IO/gfile.cs +++ b/src/TensorFlowNET.Core/IO/gfile.cs @@ -16,8 +16,10 @@ limitations under the License. using System; using System.Collections.Generic; +using System.Diagnostics; using System.IO; using System.Linq; +using static Tensorflow.Binding; namespace Tensorflow.IO { @@ -63,5 +65,15 @@ public string[] glob(string data_dir) dirs.AddRange(Directory.GetFiles(dir)); return dirs.ToArray(); } + + public string join(params string[] paths) + { + Debug.Assert(paths.Length >= 1); + if (paths[0].Substring(1).Contains("://")) + { + throw new NotImplementedException("The combination of urls has not been implemented."); + } + return Path.Combine(paths); + } } } diff --git a/src/TensorFlowNET.Core/Keras/Activations/Activations.cs b/src/TensorFlowNET.Core/Keras/Activations/Activations.cs index b8f321e64..37264104a 100644 --- a/src/TensorFlowNET.Core/Keras/Activations/Activations.cs +++ b/src/TensorFlowNET.Core/Keras/Activations/Activations.cs @@ -1,4 +1,45 @@ -namespace Tensorflow.Keras +using Newtonsoft.Json; +using System.Reflection; +using System.Runtime.Versioning; +using Tensorflow.Keras.Saving.Common; + +namespace Tensorflow.Keras { - public delegate Tensor Activation(Tensor features, string name = null); + [JsonConverter(typeof(CustomizedActivationJsonConverter))] + public class Activation + { + public string Name { get; set; } + /// + /// The parameters are `features` and `name`. + /// + public Func ActivationFunction { get; set; } + + public Tensor Apply(Tensor input, string name = null) => ActivationFunction(input, name); + + public static implicit operator Activation(Func func) + { + return new Activation() + { + Name = func.GetMethodInfo().Name, + ActivationFunction = func + }; + } + } + + public interface IActivationsApi + { + Activation GetActivationFromName(string name); + Activation Linear { get; } + + Activation Relu { get; } + Activation Relu6 { get; } + + Activation Sigmoid { get; } + + Activation Softmax { get; } + + Activation Tanh { get; } + + Activation Mish { get; } + } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/ELUArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/ELUArgs.cs index 235523161..e830e5bf8 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/ELUArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/ELUArgs.cs @@ -1,9 +1,12 @@ -using System; +using Newtonsoft.Json; +using System; using System.Collections.Generic; using System.Text; namespace Tensorflow.Keras.ArgsDefinition { - public class ELUArgs : LayerArgs { - public float Alpha { get; set; } = 0.1f; - } + public class ELUArgs : AutoSerializeLayerArgs + { + [JsonProperty("alpha")] + public float Alpha { get; set; } = 0.1f; + } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/ExponentialArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/ExponentialArgs.cs new file mode 100644 index 000000000..ef024971d --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/ExponentialArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class ExponentialArgs : LayerArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/HardSigmoidArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/HardSigmoidArgs.cs new file mode 100644 index 000000000..788e0f36d --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/HardSigmoidArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class HardSigmoidArgs : LayerArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/LeakyReLuArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/LeakyReLuArgs.cs index 6bdb294c2..6d9531346 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/LeakyReLuArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/LeakyReLuArgs.cs @@ -1,14 +1,16 @@ -using System; +using Newtonsoft.Json; +using System; using System.Collections.Generic; using System.Text; namespace Tensorflow.Keras.ArgsDefinition { - public class LeakyReLuArgs : LayerArgs + public class LeakyReLuArgs : AutoSerializeLayerArgs { /// /// Negative slope coefficient. /// + [JsonProperty("alpha")] public float Alpha { get; set; } = 0.3f; } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SELUArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SELUArgs.cs new file mode 100644 index 000000000..eb0e18446 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SELUArgs.cs @@ -0,0 +1,11 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class SELUArgs : LayerArgs + { + + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftmaxArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftmaxArgs.cs index ca35d75d5..1c1d147f1 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftmaxArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftmaxArgs.cs @@ -1,9 +1,12 @@ -using System; +using Newtonsoft.Json; +using System; using System.Collections.Generic; using System.Text; namespace Tensorflow.Keras.ArgsDefinition { - public class SoftmaxArgs : LayerArgs { - public Axis axis { get; set; } = -1; - } + public class SoftmaxArgs : AutoSerializeLayerArgs + { + [JsonProperty("axis")] + public Axis axis { get; set; } = -1; + } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftplusArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftplusArgs.cs new file mode 100644 index 000000000..7b4f20795 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftplusArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class SoftplusArgs : LayerArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftsignArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftsignArgs.cs new file mode 100644 index 000000000..4e23d261d --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SoftsignArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class SoftsignArgs : LayerArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SwishArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SwishArgs.cs new file mode 100644 index 000000000..3dea06a23 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/SwishArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class SwishArgs : LayerArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/TanhArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/TanhArgs.cs new file mode 100644 index 000000000..5df41b71b --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Activation/TanhArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class TanhArgs : LayerArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/AttentionArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/AttentionArgs.cs index 73477c58f..4cdfb46bd 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/AttentionArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/AttentionArgs.cs @@ -1,3 +1,5 @@ +using Newtonsoft.Json; + namespace Tensorflow.Keras.ArgsDefinition { public class AttentionArgs : BaseDenseAttentionArgs @@ -6,6 +8,7 @@ public class AttentionArgs : BaseDenseAttentionArgs /// /// If `true`, will create a scalar variable to scale the attention scores. /// + [JsonProperty("use_scale")] public bool use_scale { get; set; } = false; /// @@ -14,6 +17,7 @@ public class AttentionArgs : BaseDenseAttentionArgs /// and key vectors. `"concat"` refers to the hyperbolic tangent of the /// concatenation of the query and key vectors. /// + [JsonProperty("score_mode")] public string score_mode { get; set; } = "dot"; } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/BaseDenseAttentionArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/BaseDenseAttentionArgs.cs index b2a0c3a51..0ef017370 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/BaseDenseAttentionArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/BaseDenseAttentionArgs.cs @@ -1,6 +1,8 @@ +using Newtonsoft.Json; + namespace Tensorflow.Keras.ArgsDefinition { - public class BaseDenseAttentionArgs : LayerArgs + public class BaseDenseAttentionArgs : AutoSerializeLayerArgs { /// @@ -14,6 +16,7 @@ public class BaseDenseAttentionArgs : LayerArgs /// Float between 0 and 1. Fraction of the units to drop for the /// attention scores. /// + [JsonProperty("dropout")] public float dropout { get; set; } = 0f; } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/MultiHeadAttentionArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/MultiHeadAttentionArgs.cs index 21b2d218c..077dea89d 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/MultiHeadAttentionArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/MultiHeadAttentionArgs.cs @@ -1,22 +1,40 @@ +using Newtonsoft.Json; using System; using static Tensorflow.Binding; namespace Tensorflow.Keras.ArgsDefinition { - public class MultiHeadAttentionArgs : LayerArgs + public class MultiHeadAttentionArgs : AutoSerializeLayerArgs { + [JsonProperty("num_heads")] public int NumHeads { get; set; } + [JsonProperty("key_dim")] public int KeyDim { get; set; } + [JsonProperty("value_dim")] public int? ValueDim { get; set; } = null; + [JsonProperty("dropout")] public float Dropout { get; set; } = 0f; + [JsonProperty("use_bias")] public bool UseBias { get; set; } = true; + [JsonProperty("output_shape")] public Shape OutputShape { get; set; } = null; + [JsonProperty("attention_axes")] public Shape AttentionAxis { get; set; } = null; + [JsonProperty("kernel_initializer")] public IInitializer KernelInitializer { get; set; } = tf.glorot_uniform_initializer; + [JsonProperty("bias_initializer")] public IInitializer BiasInitializer { get; set; } = tf.zeros_initializer; + [JsonProperty("kernel_regularizer")] public IRegularizer KernelRegularizer { get; set; } = null; + [JsonProperty("bias_regularizer")] public IRegularizer BiasRegularizer { get; set; } = null; + [JsonProperty("kernel_constraint")] public Action KernelConstraint { get; set; } = null; + [JsonProperty("bias_constraint")] public Action BiasConstraint { get; set; } = null; + [JsonProperty("activity_regularizer")] + public override IRegularizer ActivityRegularizer { get => base.ActivityRegularizer; set => base.ActivityRegularizer = value; } + + // TODO: Add `key_shape`, `value_shape`, `query_shape`. } } \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/AutoSerializeLayerArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/AutoSerializeLayerArgs.cs new file mode 100644 index 000000000..583ab9322 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/AutoSerializeLayerArgs.cs @@ -0,0 +1,26 @@ +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.ArgsDefinition +{ + /// + /// This class has nothing but the attributes different from `LayerArgs`. + /// It's used to serialize the model to `tf` format. + /// If the `get_config` of a `Layer` in python code of tensorflow contains `super().get_config`, + /// then the Arg definition should inherit `AutoSerializeLayerArgs` instead of `LayerArgs`. + /// + public class AutoSerializeLayerArgs: LayerArgs + { + [JsonProperty("name")] + public override string Name { get => base.Name; set => base.Name = value; } + [JsonProperty("dtype")] + public override TF_DataType DType { get => base.DType; set => base.DType = value; } + [JsonProperty("batch_input_shape", NullValueHandling = NullValueHandling.Ignore)] + public override KerasShapesWrapper BatchInputShape { get => base.BatchInputShape; set => base.BatchInputShape = value; } + [JsonProperty("trainable")] + public override bool Trainable { get => base.Trainable; set => base.Trainable = value; } + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Convolution/Conv2DTransposeArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Convolution/Conv2DTransposeArgs.cs new file mode 100644 index 000000000..3daba9465 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Convolution/Conv2DTransposeArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class Conv2DTransposeArgs : Conv2DArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Convolution/ConvolutionalArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Convolution/ConvolutionalArgs.cs index 4f050228b..f34c63d1b 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Convolution/ConvolutionalArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Convolution/ConvolutionalArgs.cs @@ -1,31 +1,46 @@ -using System; +using Newtonsoft.Json; +using System; using static Tensorflow.Binding; namespace Tensorflow.Keras.ArgsDefinition { - public class ConvolutionalArgs : LayerArgs + public class ConvolutionalArgs : AutoSerializeLayerArgs { - public int Rank { get; set; } = 2; + public int Rank { get; set; } + [JsonProperty("filters")] public int Filters { get; set; } public int NumSpatialDims { get; set; } = Unknown; - public Shape KernelSize { get; set; } = 5; + [JsonProperty("kernel_size")] + public Shape KernelSize { get; set; } /// /// specifying the stride length of the convolution. /// - public Shape Strides { get; set; } = (1, 1); - - public string Padding { get; set; } = "valid"; + [JsonProperty("strides")] + public Shape Strides { get; set; } + [JsonProperty("padding")] + public string Padding { get; set; } + [JsonProperty("data_format")] public string DataFormat { get; set; } - public Shape DilationRate { get; set; } = (1, 1); - public int Groups { get; set; } = 1; + [JsonProperty("dilation_rate")] + public Shape DilationRate { get; set; } + [JsonProperty("groups")] + public int Groups { get; set; } + [JsonProperty("activation")] public Activation Activation { get; set; } + [JsonProperty("use_bias")] public bool UseBias { get; set; } - public IInitializer KernelInitializer { get; set; } = tf.glorot_uniform_initializer; - public IInitializer BiasInitializer { get; set; } = tf.zeros_initializer; + [JsonProperty("kernel_initializer")] + public IInitializer KernelInitializer { get; set; } + [JsonProperty("bias_initializer")] + public IInitializer BiasInitializer { get; set; } + [JsonProperty("kernel_regularizer")] public IRegularizer KernelRegularizer { get; set; } + [JsonProperty("bias_regularizer")] public IRegularizer BiasRegularizer { get; set; } + [JsonProperty("kernel_constraint")] public Action KernelConstraint { get; set; } + [JsonProperty("bias_constraint")] public Action BiasConstraint { get; set; } } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/DenseArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/DenseArgs.cs index e9b3c2fd9..0caa76ef5 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/DenseArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/DenseArgs.cs @@ -1,53 +1,73 @@ -using System; +using Newtonsoft.Json; +using System; +using System.Xml.Linq; +using Tensorflow.Operations.Initializers; using static Tensorflow.Binding; namespace Tensorflow.Keras.ArgsDefinition { + // TODO: `activity_regularizer` public class DenseArgs : LayerArgs { /// /// Positive integer, dimensionality of the output space. /// + [JsonProperty("units")] public int Units { get; set; } /// /// Activation function to use. /// + [JsonProperty("activation")] public Activation Activation { get; set; } /// /// Whether the layer uses a bias vector. /// + [JsonProperty("use_bias")] public bool UseBias { get; set; } = true; /// /// Initializer for the `kernel` weights matrix. /// + [JsonProperty("kernel_initializer")] public IInitializer KernelInitializer { get; set; } = tf.glorot_uniform_initializer; /// /// Initializer for the bias vector. /// + [JsonProperty("bias_initializer")] public IInitializer BiasInitializer { get; set; } = tf.zeros_initializer; /// /// Regularizer function applied to the `kernel` weights matrix. /// + [JsonProperty("kernel_regularizer")] public IRegularizer KernelRegularizer { get; set; } /// /// Regularizer function applied to the bias vector. /// + [JsonProperty("bias_regularizer")] public IRegularizer BiasRegularizer { get; set; } /// /// Constraint function applied to the `kernel` weights matrix. /// + [JsonProperty("kernel_constraint")] public Action KernelConstraint { get; set; } /// /// Constraint function applied to the bias vector. /// + [JsonProperty("bias_constraint")] public Action BiasConstraint { get; set; } + + [JsonProperty("name")] + public override string Name { get => base.Name; set => base.Name = value; } + [JsonProperty("dtype")] + public override TF_DataType DType { get => base.DType; set => base.DType = value; } + [JsonProperty("trainable")] + public override bool Trainable { get => base.Trainable; set => base.Trainable = value; } } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/EinsumDenseArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/EinsumDenseArgs.cs similarity index 76% rename from src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/EinsumDenseArgs.cs rename to src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/EinsumDenseArgs.cs index 3a8642ffc..e60309720 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Attention/EinsumDenseArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/EinsumDenseArgs.cs @@ -1,9 +1,10 @@ +using Newtonsoft.Json; using System; using static Tensorflow.Binding; -namespace Tensorflow.Keras.ArgsDefinition +namespace Tensorflow.Keras.ArgsDefinition.Core { - public class EinsumDenseArgs : LayerArgs + public class EinsumDenseArgs : AutoSerializeLayerArgs { /// /// An equation describing the einsum to perform. This equation must @@ -11,6 +12,7 @@ public class EinsumDenseArgs : LayerArgs /// `ab...,bc->ac...` where 'ab', 'bc', and 'ac' can be any valid einsum axis /// expression sequence. /// + [JsonProperty("equation")] public string Equation { get; set; } /// @@ -19,6 +21,7 @@ public class EinsumDenseArgs : LayerArgs /// None for any dimension that is unknown or can be inferred from the input /// shape. /// + [JsonProperty("output_shape")] public Shape OutputShape { get; set; } /// @@ -26,41 +29,51 @@ public class EinsumDenseArgs : LayerArgs /// Each character in the `bias_axes` string should correspond to a character /// in the output portion of the `equation` string. /// + [JsonProperty("bias_axes")] public string BiasAxes { get; set; } = null; /// /// Activation function to use. /// + [JsonProperty("activation")] public Activation Activation { get; set; } /// /// Initializer for the `kernel` weights matrix. /// + [JsonProperty("kernel_initializer")] public IInitializer KernelInitializer { get; set; } = tf.glorot_uniform_initializer; /// /// Initializer for the bias vector. /// + [JsonProperty("bias_initializer")] public IInitializer BiasInitializer { get; set; } = tf.zeros_initializer; /// /// Regularizer function applied to the `kernel` weights matrix. /// + [JsonProperty("kernel_regularizer")] public IRegularizer KernelRegularizer { get; set; } /// /// Regularizer function applied to the bias vector. /// + [JsonProperty("bias_regularizer")] public IRegularizer BiasRegularizer { get; set; } /// /// Constraint function applied to the `kernel` weights matrix. /// + [JsonProperty("kernel_constraint")] public Action KernelConstraint { get; set; } /// /// Constraint function applied to the bias vector. /// + [JsonProperty("bias_constraint")] public Action BiasConstraint { get; set; } + [JsonProperty("activity_regularizer")] + public override IRegularizer ActivityRegularizer { get => base.ActivityRegularizer; set => base.ActivityRegularizer = value; } } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/EmbeddingArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/EmbeddingArgs.cs index b1f4fddd3..c462961b3 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/EmbeddingArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/EmbeddingArgs.cs @@ -1,11 +1,22 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition { - public class EmbeddingArgs : LayerArgs + public class EmbeddingArgs : AutoSerializeLayerArgs { + [JsonProperty("input_dim")] public int InputDim { get; set; } + [JsonProperty("output_dim")] public int OutputDim { get; set; } + [JsonProperty("mask_zero")] public bool MaskZero { get; set; } + [JsonProperty("input_length")] public int InputLength { get; set; } = -1; + [JsonProperty("embeddings_initializer")] public IInitializer EmbeddingsInitializer { get; set; } + [JsonProperty("activity_regularizer")] + public override IRegularizer ActivityRegularizer { get => base.ActivityRegularizer; set => base.ActivityRegularizer = value; } + + // TODO: `embeddings_regularizer`, `embeddings_constraint`. } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/InputLayerArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/InputLayerArgs.cs index 723109c27..e036e1912 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/InputLayerArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Core/InputLayerArgs.cs @@ -1,9 +1,22 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Newtonsoft.Json; +using Newtonsoft.Json.Serialization; +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.ArgsDefinition { public class InputLayerArgs : LayerArgs { + [JsonIgnore] public Tensor InputTensor { get; set; } - public bool Sparse { get; set; } + [JsonProperty("sparse")] + public virtual bool Sparse { get; set; } + [JsonProperty("ragged")] public bool Ragged { get; set; } + [JsonProperty("name")] + public override string Name { get => base.Name; set => base.Name = value; } + [JsonProperty("dtype")] + public override TF_DataType DType { get => base.DType; set => base.DType = value; } + [JsonProperty("batch_input_shape", NullValueHandling = NullValueHandling.Ignore)] + public override KerasShapesWrapper BatchInputShape { get => base.BatchInputShape; set => base.BatchInputShape = value; } } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Cropping/Cropping2DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Cropping/Cropping2DArgs.cs deleted file mode 100644 index 16705063e..000000000 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Cropping/Cropping2DArgs.cs +++ /dev/null @@ -1,16 +0,0 @@ -using Tensorflow.NumPy; - -namespace Tensorflow.Keras.ArgsDefinition { - public class Cropping2DArgs : LayerArgs { - /// - /// channel last: (b, h, w, c) - /// channels_first: (b, c, h, w) - /// - public enum DataFormat { channels_first = 0, channels_last = 1 } - /// - /// Accept: int[1][2], int[1][1], int[2][2] - /// - public NDArray cropping { get; set; } - public DataFormat data_format { get; set; } = DataFormat.channels_last; - } -} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Cropping/Cropping3DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Cropping/Cropping3DArgs.cs deleted file mode 100644 index 9da2adc7f..000000000 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Cropping/Cropping3DArgs.cs +++ /dev/null @@ -1,16 +0,0 @@ -using Tensorflow.NumPy; - -namespace Tensorflow.Keras.ArgsDefinition { - public class Cropping3DArgs : LayerArgs { - /// - /// channel last: (b, h, w, c) - /// channels_first: (b, c, h, w) - /// - public enum DataFormat { channels_first = 0, channels_last = 1 } - /// - /// Accept: int[1][3], int[1][1], int[3][2] - /// - public NDArray cropping { get; set; } - public DataFormat data_format { get; set; } = DataFormat.channels_last; - } -} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Cropping/CroppingArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Cropping/CroppingArgs.cs deleted file mode 100644 index 9d23acd43..000000000 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Cropping/CroppingArgs.cs +++ /dev/null @@ -1,10 +0,0 @@ -using Tensorflow.NumPy; - -namespace Tensorflow.Keras.ArgsDefinition { - public class CroppingArgs : LayerArgs { - /// - /// Accept length 1 or 2 - /// - public NDArray cropping { get; set; } - } -} \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/DataAdapterArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/DataAdapterArgs.cs index f3cca438f..ba0332836 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/DataAdapterArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/DataAdapterArgs.cs @@ -1,11 +1,13 @@ using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.NumPy; namespace Tensorflow.Keras.ArgsDefinition { - public class DataAdapterArgs + public class DataAdapterArgs: IKerasConfig { - public Tensor X { get; set; } - public Tensor Y { get; set; } + public Tensors X { get; set; } + public Tensors Y { get; set; } public IDatasetV2 Dataset { get; set; } public int BatchSize { get; set; } = 32; public int Steps { get; set; } @@ -15,5 +17,7 @@ public class DataAdapterArgs public int Worker { get; set; } public bool UseMultiprocessing { get; set; } public IModel Model { get; set; } + public Dictionary ClassWeight = null; + public NDArray SampleWeight = null; } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/DataHandlerArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/DataHandlerArgs.cs index b6e6849bc..72d0bb811 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/DataHandlerArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/DataHandlerArgs.cs @@ -1,11 +1,13 @@ using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.NumPy; namespace Tensorflow.Keras.ArgsDefinition { - public class DataHandlerArgs + public class DataHandlerArgs: IKerasConfig { - public Tensor X { get; set; } - public Tensor Y { get; set; } + public Tensors X { get; set; } + public Tensors Y { get; set; } public IDatasetV2 Dataset { get; set; } public int BatchSize { get; set; } = 32; public int StepsPerEpoch { get; set; } = -1; @@ -17,5 +19,7 @@ public class DataHandlerArgs public bool UseMultiprocessing { get; set; } = false; public IModel Model { get; set; } public IVariableV1 StepsPerExecution { get; set; } + public Dictionary ClassWeight = null; + public NDArray SampleWeight = null; } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/LSTMArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/LSTMArgs.cs deleted file mode 100644 index 0a2555a69..000000000 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/LSTMArgs.cs +++ /dev/null @@ -1,22 +0,0 @@ -namespace Tensorflow.Keras.ArgsDefinition -{ - public class LSTMArgs : RNNArgs - { - public int Units { get; set; } - public Activation Activation { get; set; } - public Activation RecurrentActivation { get; set; } - public IInitializer KernelInitializer { get; set; } - public IInitializer RecurrentInitializer { get; set; } - public IInitializer BiasInitializer { get; set; } - public bool UnitForgetBias { get; set; } - public float Dropout { get; set; } - public float RecurrentDropout { get; set; } - public int Implementation { get; set; } - public bool ReturnSequences { get; set; } - public bool ReturnState { get; set; } - public bool GoBackwards { get; set; } - public bool Stateful { get; set; } - public bool TimeMajor { get; set; } - public bool Unroll { get; set; } - } -} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/LayerArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/LayerArgs.cs index 4df4fb2b4..11b8ba39a 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/LayerArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/LayerArgs.cs @@ -1,51 +1,54 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Newtonsoft.Json; +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.ArgsDefinition { - public class LayerArgs + [JsonObject(MemberSerialization.OptIn)] + public class LayerArgs: IKerasConfig { /// /// Indicates whether the layer's weights are updated during training /// and whether the layer's updates are run during training. /// - public bool Trainable { get; set; } = true; - - public string Name { get; set; } + public virtual bool Trainable { get; set; } = true; + public virtual string Name { get; set; } /// /// Only applicable to input layers. /// - public TF_DataType DType { get; set; } = TF_DataType.TF_FLOAT; + public virtual TF_DataType DType { get; set; } = TF_DataType.TF_FLOAT; /// /// Whether the `call` method can be used to build a TF graph without issues. /// This attribute has no effect if the model is created using the Functional /// API. Instead, `model.dynamic` is determined based on the internal layers. /// - public bool Dynamic { get; set; } = false; + public virtual bool Dynamic { get; set; } = false; /// /// Only applicable to input layers. /// - public Shape InputShape { get; set; } + public virtual Shape InputShape { get; set; } /// /// Only applicable to input layers. /// - public Shape BatchInputShape { get; set; } + public virtual KerasShapesWrapper BatchInputShape { get; set; } - public int BatchSize { get; set; } = -1; + public virtual int BatchSize { get; set; } = -1; /// /// Initial weight values. /// - public float[] Weights { get; set; } + public virtual float[] Weights { get; set; } /// /// Regularizer function applied to the output of the layer(its "activation"). /// - public IRegularizer ActivityRegularizer { get; set; } + public virtual IRegularizer ActivityRegularizer { get; set; } - public bool Autocast { get; set; } + public virtual bool Autocast { get; set; } - public bool IsFromConfig { get; set; } + public virtual bool IsFromConfig { get; set; } } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/AddArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/AddArgs.cs new file mode 100644 index 000000000..016d58203 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/AddArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class AddArgs : MergeArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/ConcatenateArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/ConcatenateArgs.cs new file mode 100644 index 000000000..4a81d139d --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/ConcatenateArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class ConcatenateArgs : MergeArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/MergeArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/MergeArgs.cs index 3e6791e3b..9bcf1908e 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/MergeArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/MergeArgs.cs @@ -1,12 +1,15 @@ -using System; +using Newtonsoft.Json; +using System; using System.Collections.Generic; using System.Text; namespace Tensorflow.Keras.ArgsDefinition { - public class MergeArgs : LayerArgs + // TODO: complete the implementation + public class MergeArgs : AutoSerializeLayerArgs { public Tensors Inputs { get; set; } + [JsonProperty("axis")] public int Axis { get; set; } } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/SubtractArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/SubtractArgs.cs new file mode 100644 index 000000000..1e3621cb6 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Merging/SubtractArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class SubtractArgs : MergeArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/NodeArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/NodeArgs.cs index 0d9e26ac4..ad55ff612 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/NodeArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/NodeArgs.cs @@ -1,6 +1,8 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.ArgsDefinition { - public class NodeArgs + public class NodeArgs: IKerasConfig { public ILayer[] InboundLayers { get; set; } public int[] NodeIndices { get; set; } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/BatchNormalizationArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/BatchNormalizationArgs.cs index 954ede574..6ee91e80b 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/BatchNormalizationArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/BatchNormalizationArgs.cs @@ -1,21 +1,37 @@ -using static Tensorflow.Binding; +using Newtonsoft.Json; +using static Tensorflow.Binding; namespace Tensorflow.Keras.ArgsDefinition { - public class BatchNormalizationArgs : LayerArgs + public class BatchNormalizationArgs : AutoSerializeLayerArgs { + [JsonProperty("axis")] public Shape Axis { get; set; } = -1; + [JsonProperty("momentum")] public float Momentum { get; set; } = 0.99f; + [JsonProperty("epsilon")] public float Epsilon { get; set; } = 1e-3f; + [JsonProperty("center")] public bool Center { get; set; } = true; + [JsonProperty("scale")] public bool Scale { get; set; } = true; + [JsonProperty("beta_initializer")] public IInitializer BetaInitializer { get; set; } = tf.zeros_initializer; + [JsonProperty("gamma_initializer")] public IInitializer GammaInitializer { get; set; } = tf.ones_initializer; + [JsonProperty("moving_mean_initializer")] public IInitializer MovingMeanInitializer { get; set; } = tf.zeros_initializer; + [JsonProperty("moving_variance_initializer")] public IInitializer MovingVarianceInitializer { get; set; } = tf.ones_initializer; + [JsonProperty("beta_regularizer")] public IRegularizer BetaRegularizer { get; set; } + [JsonProperty("gamma_regularizer")] public IRegularizer GammaRegularizer { get; set; } + // TODO: `beta_constraint` and `gamma_constraint`. + [JsonProperty("renorm")] public bool Renorm { get; set; } + // TODO: `renorm_clipping` and `virtual_batch_size`. + [JsonProperty("renorm_momentum")] public float RenormMomentum { get; set; } = 0.99f; } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/LayerNormalizationArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/LayerNormalizationArgs.cs index 13fd98b41..1ac661b37 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/LayerNormalizationArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/LayerNormalizationArgs.cs @@ -1,16 +1,27 @@ -using static Tensorflow.Binding; +using Newtonsoft.Json; +using static Tensorflow.Binding; namespace Tensorflow.Keras.ArgsDefinition { - public class LayerNormalizationArgs : LayerArgs + public class LayerNormalizationArgs : AutoSerializeLayerArgs { + [JsonProperty("axis")] public Axis Axis { get; set; } = -1; + [JsonProperty("epsilon")] public float Epsilon { get; set; } = 1e-3f; + [JsonProperty("center")] public bool Center { get; set; } = true; + [JsonProperty("scale")] public bool Scale { get; set; } = true; + [JsonProperty("beta_initializer")] public IInitializer BetaInitializer { get; set; } = tf.zeros_initializer; + [JsonProperty("gamma_initializer")] public IInitializer GammaInitializer { get; set; } = tf.ones_initializer; + [JsonProperty("beta_regularizer")] public IRegularizer BetaRegularizer { get; set; } + [JsonProperty("gamma_regularizer")] public IRegularizer GammaRegularizer { get; set; } + + // TODO: `beta_constraint` and `gamma_constraint`. } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/NormalizationArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/NormalizationArgs.cs new file mode 100644 index 000000000..30c901453 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Normalization/NormalizationArgs.cs @@ -0,0 +1,15 @@ +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition; + +public class NormalizationArgs : PreprocessingLayerArgs +{ + [JsonProperty("axis")] + public Axis? Axis { get; set; } + [JsonProperty("mean")] + public float? Mean { get; set; } + [JsonProperty("variance")] + public float? Variance { get; set; } + + public bool Invert { get; set; } = false; +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/OptimizerV2Args.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/OptimizerV2Args.cs index e2a0e43c8..6256fd329 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/OptimizerV2Args.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/OptimizerV2Args.cs @@ -1,6 +1,8 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.ArgsDefinition { - public class OptimizerV2Args + public class OptimizerV2Args: IKerasConfig { public string Name { get; set; } public float LearningRate { get; set; } = 0.001f; diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalAveragePooling1DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalAveragePooling1DArgs.cs new file mode 100644 index 000000000..e73aff766 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalAveragePooling1DArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class GlobalAveragePooling1DArgs : Pooling1DArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalAveragePooling2DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalAveragePooling2DArgs.cs new file mode 100644 index 000000000..d143cf471 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalAveragePooling2DArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class GlobalAveragePooling2DArgs : Pooling2DArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalMaxPooling1DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalMaxPooling1DArgs.cs new file mode 100644 index 000000000..e03227feb --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalMaxPooling1DArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class GlobalMaxPooling1DArgs : Pooling1DArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalMaxPooling2DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalMaxPooling2DArgs.cs new file mode 100644 index 000000000..a95cac836 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/GlobalMaxPooling2DArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class GlobalMaxPooling2DArgs : Pooling2DArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/MaxPooling1DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/MaxPooling1DArgs.cs new file mode 100644 index 000000000..4cfff2c15 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/MaxPooling1DArgs.cs @@ -0,0 +1,10 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class MaxPooling1DArgs : Pooling1DArgs + { + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling1DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling1DArgs.cs index 9742203d6..c5fdca675 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling1DArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling1DArgs.cs @@ -1,6 +1,8 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition { - public class Pooling1DArgs : LayerArgs + public class Pooling1DArgs : AutoSerializeLayerArgs { /// /// The pooling function to apply, e.g. `tf.nn.max_pool2d`. @@ -10,11 +12,13 @@ public class Pooling1DArgs : LayerArgs /// /// specifying the size of the pooling window. /// + [JsonProperty("pool_size")] public int PoolSize { get; set; } /// /// specifying the strides of the pooling operation. /// + [JsonProperty("strides")] public int Strides { get { return _strides.HasValue ? _strides.Value : PoolSize; } set { _strides = value; } @@ -24,11 +28,13 @@ public int Strides { /// /// The padding method, either 'valid' or 'same'. /// + [JsonProperty("padding")] public string Padding { get; set; } = "valid"; /// /// one of `channels_last` (default) or `channels_first`. /// + [JsonProperty("data_format")] public string DataFormat { get; set; } } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling2DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling2DArgs.cs index 1260af4c6..91a372ef3 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling2DArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling2DArgs.cs @@ -1,6 +1,8 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition { - public class Pooling2DArgs : LayerArgs + public class Pooling2DArgs : AutoSerializeLayerArgs { /// /// The pooling function to apply, e.g. `tf.nn.max_pool2d`. @@ -10,21 +12,25 @@ public class Pooling2DArgs : LayerArgs /// /// specifying the size of the pooling window. /// + [JsonProperty("pool_size")] public Shape PoolSize { get; set; } /// /// specifying the strides of the pooling operation. /// + [JsonProperty("strides")] public Shape Strides { get; set; } /// /// The padding method, either 'valid' or 'same'. /// + [JsonProperty("padding")] public string Padding { get; set; } = "valid"; /// /// one of `channels_last` (default) or `channels_first`. /// + [JsonProperty("data_format")] public string DataFormat { get; set; } } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/CategoryEncodingArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/CategoryEncodingArgs.cs new file mode 100644 index 000000000..c282afd89 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/CategoryEncodingArgs.cs @@ -0,0 +1,16 @@ +using Newtonsoft.Json; +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class CategoryEncodingArgs : AutoSerializeLayerArgs + { + [JsonProperty("num_tokens")] + public int NumTokens { get; set; } + [JsonProperty("output_mode")] + public string OutputMode { get; set; } + [JsonProperty("sparse")] + public bool Sparse { get; set; } + public NDArray CountWeights { get; set; } + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/PreprocessingLayerArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/PreprocessingLayerArgs.cs index 28ccf9f74..97cb364d9 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/PreprocessingLayerArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/PreprocessingLayerArgs.cs @@ -4,7 +4,7 @@ namespace Tensorflow.Keras.ArgsDefinition { - public class PreprocessingLayerArgs : LayerArgs + public class PreprocessingLayerArgs : AutoSerializeLayerArgs { } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/RescalingArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/RescalingArgs.cs new file mode 100644 index 000000000..154bd8c89 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/RescalingArgs.cs @@ -0,0 +1,12 @@ +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class RescalingArgs : AutoSerializeLayerArgs + { + [JsonProperty("scale")] + public float Scale { get; set; } + [JsonProperty("offset")] + public float Offset { get; set; } + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/ResizingArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/ResizingArgs.cs index cf11595e2..39fa52211 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/ResizingArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/ResizingArgs.cs @@ -1,5 +1,6 @@ namespace Tensorflow.Keras.ArgsDefinition { + // TODO: no corresponding class found in keras python, maybe obselete? public class ResizingArgs : PreprocessingLayerArgs { public int Height { get; set; } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/TextVectorizationArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/TextVectorizationArgs.cs index ddeadc001..1a7149f5a 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/TextVectorizationArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Preprocessing/TextVectorizationArgs.cs @@ -1,4 +1,5 @@ -using System; +using Newtonsoft.Json; +using System; using System.Collections.Generic; using System.Text; @@ -6,11 +7,19 @@ namespace Tensorflow.Keras.ArgsDefinition { public class TextVectorizationArgs : PreprocessingLayerArgs { + [JsonProperty("standardize")] public Func Standardize { get; set; } + [JsonProperty("split")] public string Split { get; set; } = "standardize"; + [JsonProperty("max_tokens")] public int MaxTokens { get; set; } = -1; + [JsonProperty("output_mode")] public string OutputMode { get; set; } = "int"; + [JsonProperty("output_sequence_length")] public int OutputSequenceLength { get; set; } = -1; + [JsonProperty("vocabulary")] public string[] Vocabulary { get; set; } + + // TODO: Add `ngrams`, `sparse`, `ragged`, `idf_weights`, `encoding` } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/RNNArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/RNNArgs.cs deleted file mode 100644 index 3ebcf617a..000000000 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/RNNArgs.cs +++ /dev/null @@ -1,21 +0,0 @@ -using System.Collections.Generic; - -namespace Tensorflow.Keras.ArgsDefinition -{ - public class RNNArgs : LayerArgs - { - public interface IRnnArgCell : ILayer - { - object state_size { get; } - } - - public IRnnArgCell Cell { get; set; } = null; - public bool ReturnSequences { get; set; } = false; - public bool ReturnState { get; set; } = false; - public bool GoBackwards { get; set; } = false; - public bool Stateful { get; set; } = false; - public bool Unroll { get; set; } = false; - public bool TimeMajor { get; set; } = false; - public Dictionary Kwargs { get; set; } = null; - } -} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Regularization/DropoutArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Regularization/DropoutArgs.cs index c41c6fe85..1c85d4936 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Regularization/DropoutArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Regularization/DropoutArgs.cs @@ -1,21 +1,26 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition { - public class DropoutArgs : LayerArgs + public class DropoutArgs : AutoSerializeLayerArgs { /// /// Float between 0 and 1. Fraction of the input units to drop. /// + [JsonProperty("rate")] public float Rate { get; set; } /// /// 1D integer tensor representing the shape of the /// binary dropout mask that will be multiplied with the input. /// + [JsonProperty("noise_shape")] public Shape NoiseShape { get; set; } /// /// random seed. /// + [JsonProperty("seed")] public int? Seed { get; set; } public bool SupportsMasking { get; set; } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rescaling/RescalingArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rescaling/RescalingArgs.cs deleted file mode 100644 index ec9b53150..000000000 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rescaling/RescalingArgs.cs +++ /dev/null @@ -1,8 +0,0 @@ -namespace Tensorflow.Keras.ArgsDefinition -{ - public class RescalingArgs : LayerArgs - { - public float Scale { get; set; } - public float Offset { get; set; } - } -} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/Cropping2DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/Cropping2DArgs.cs new file mode 100644 index 000000000..8c2626390 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/Cropping2DArgs.cs @@ -0,0 +1,18 @@ +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.ArgsDefinition.Reshaping +{ + public class Cropping2DArgs : LayerArgs + { + /// + /// channel last: (b, h, w, c) + /// channels_first: (b, c, h, w) + /// + public enum DataFormat { channels_first = 0, channels_last = 1 } + /// + /// Accept: int[1][2], int[1][1], int[2][2] + /// + public NDArray cropping { get; set; } + public DataFormat data_format { get; set; } = DataFormat.channels_last; + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/Cropping3DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/Cropping3DArgs.cs new file mode 100644 index 000000000..2d98e55db --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/Cropping3DArgs.cs @@ -0,0 +1,18 @@ +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.ArgsDefinition.Reshaping +{ + public class Cropping3DArgs : LayerArgs + { + /// + /// channel last: (b, h, w, c) + /// channels_first: (b, c, h, w) + /// + public enum DataFormat { channels_first = 0, channels_last = 1 } + /// + /// Accept: int[1][3], int[1][1], int[3][2] + /// + public NDArray cropping { get; set; } + public DataFormat data_format { get; set; } = DataFormat.channels_last; + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/CroppingArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/CroppingArgs.cs new file mode 100644 index 000000000..21b85966b --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/CroppingArgs.cs @@ -0,0 +1,12 @@ +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.ArgsDefinition.Reshaping +{ + public class Cropping1DArgs : LayerArgs + { + /// + /// Accept length 1 or 2 + /// + public NDArray cropping { get; set; } + } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/FlattenArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/FlattenArgs.cs index c2b48cc2f..91ffc2058 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/FlattenArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/FlattenArgs.cs @@ -1,7 +1,10 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition { - public class FlattenArgs : LayerArgs + public class FlattenArgs : AutoSerializeLayerArgs { + [JsonProperty("data_format")] public string DataFormat { get; set; } } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/PermuteArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/PermuteArgs.cs index 2686f6cd7..92be10ab1 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/PermuteArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/PermuteArgs.cs @@ -1,5 +1,9 @@ -namespace Tensorflow.Keras.ArgsDefinition { - public class PermuteArgs : LayerArgs { - public int[] dims { get; set; } - } +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition { + public class PermuteArgs : AutoSerializeLayerArgs + { + [JsonProperty("dims")] + public int[] dims { get; set; } + } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/ReshapeArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/ReshapeArgs.cs index 77bca8ad0..4d1123c8a 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/ReshapeArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/ReshapeArgs.cs @@ -1,7 +1,10 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition { - public class ReshapeArgs : LayerArgs + public class ReshapeArgs : AutoSerializeLayerArgs { + [JsonProperty("target_shape")] public Shape TargetShape { get; set; } public object[] TargetShapeObjects { get; set; } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/UpSampling2DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/UpSampling2DArgs.cs index 7fdda32d3..504b3d46d 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/UpSampling2DArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/UpSampling2DArgs.cs @@ -1,12 +1,17 @@ -namespace Tensorflow.Keras.ArgsDefinition +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition { - public class UpSampling2DArgs : LayerArgs + public class UpSampling2DArgs : AutoSerializeLayerArgs { + [JsonProperty("size")] public Shape Size { get; set; } - public string DataFormat { get; set; } + [JsonProperty("data_format")] + public string DataFormat { get; set; } = "channels_last"; /// /// 'nearest', 'bilinear' /// + [JsonProperty("interpolation")] public string Interpolation { get; set; } = "nearest"; } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/Upsampling1DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/Upsampling1DArgs.cs new file mode 100644 index 000000000..4e3dbf17a --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/Upsampling1DArgs.cs @@ -0,0 +1,10 @@ +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class UpSampling1DArgs : AutoSerializeLayerArgs + { + [JsonProperty("size")] + public int Size { get; set; } + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/ZeroPadding2DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/ZeroPadding2DArgs.cs index ed6e7cc9c..4831e435b 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/ZeroPadding2DArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Reshaping/ZeroPadding2DArgs.cs @@ -2,6 +2,7 @@ namespace Tensorflow.Keras.ArgsDefinition { + // TODO: complete the implementation public class ZeroPadding2DArgs : LayerArgs { public NDArray Padding { get; set; } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/BidirectionalArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/BidirectionalArgs.cs new file mode 100644 index 000000000..d658a82e9 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/BidirectionalArgs.cs @@ -0,0 +1,20 @@ +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class BidirectionalArgs : AutoSerializeLayerArgs + { + [JsonProperty("layer")] + public ILayer Layer { get; set; } + [JsonProperty("merge_mode")] + public string? MergeMode { get; set; } + [JsonProperty("backward_layer")] + public ILayer BackwardLayer { get; set; } + public NDArray Weights { get; set; } + } + +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/GRUArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/GRUArgs.cs new file mode 100644 index 000000000..cdc3097e9 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/GRUArgs.cs @@ -0,0 +1,29 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class GRUArgs : AutoSerializeLayerArgs + { + public int Units { get; set; } + public Activation Activation { get; set; } + public Activation RecurrentActivation { get; set; } + public bool UseBias { get; set; } = true; + public float Dropout { get; set; } = .0f; + public float RecurrentDropout { get; set; } = .0f; + public IInitializer KernelInitializer { get; set; } + public IInitializer RecurrentInitializer { get; set; } + public IInitializer BiasInitializer { get; set; } + public bool ReturnSequences { get;set; } + public bool ReturnState { get;set; } + public bool GoBackwards { get;set; } + public bool Stateful { get;set; } + public bool Unroll { get;set; } + public bool TimeMajor { get;set; } + public bool ResetAfter { get;set; } + public int Implementation { get; set; } = 2; + + } + +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/GRUCellArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/GRUCellArgs.cs new file mode 100644 index 000000000..624756afe --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/GRUCellArgs.cs @@ -0,0 +1,39 @@ +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class GRUCellArgs : AutoSerializeLayerArgs + { + [JsonProperty("units")] + public int Units { get; set; } + // TODO(Rinne): lack of initialized value of Activation. Merging keras + // into tf.net could resolve it. + [JsonProperty("activation")] + public Activation Activation { get; set; } + [JsonProperty("recurrent_activation")] + public Activation RecurrentActivation { get; set; } + [JsonProperty("use_bias")] + public bool UseBias { get; set; } = true; + [JsonProperty("dropout")] + public float Dropout { get; set; } = .0f; + [JsonProperty("recurrent_dropout")] + public float RecurrentDropout { get; set; } = .0f; + [JsonProperty("kernel_initializer")] + public IInitializer KernelInitializer { get; set; } + [JsonProperty("recurrent_initializer")] + public IInitializer RecurrentInitializer { get; set; } + [JsonProperty("bias_initializer")] + public IInitializer BiasInitializer { get; set; } + [JsonProperty("reset_after")] + public bool ResetAfter { get;set; } + [JsonProperty("implementation")] + public int Implementation { get; set; } = 2; + + + + } + +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/GRUOptionalArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/GRUOptionalArgs.cs new file mode 100644 index 000000000..1d215576f --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/GRUOptionalArgs.cs @@ -0,0 +1,11 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class GRUOptionalArgs : RnnOptionalArgs + { + public string Identifier => "GRU"; + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/LSTMArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/LSTMArgs.cs new file mode 100644 index 000000000..a6beb77e8 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/LSTMArgs.cs @@ -0,0 +1,14 @@ +namespace Tensorflow.Keras.ArgsDefinition +{ + public class LSTMArgs : RNNArgs + { + // TODO: maybe change the `RNNArgs` and implement this class. + public bool UnitForgetBias { get; set; } + public int Implementation { get; set; } + + public LSTMArgs Clone() + { + return (LSTMArgs)MemberwiseClone(); + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/LSTMCellArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/LSTMCellArgs.cs new file mode 100644 index 000000000..f45032312 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/LSTMCellArgs.cs @@ -0,0 +1,35 @@ +using Newtonsoft.Json; +using static Tensorflow.Binding; + +namespace Tensorflow.Keras.ArgsDefinition +{ + // TODO: complete the implementation + public class LSTMCellArgs : AutoSerializeLayerArgs + { + [JsonProperty("units")] + public int Units { get; set; } + // TODO(Rinne): lack of initialized value of Activation. Merging keras + // into tf.net could resolve it. + [JsonProperty("activation")] + public Activation Activation { get; set; } + [JsonProperty("recurrent_activation")] + public Activation RecurrentActivation { get; set; } + [JsonProperty("use_bias")] + public bool UseBias { get; set; } = true; + [JsonProperty("dropout")] + public float Dropout { get; set; } = .0f; + [JsonProperty("recurrent_dropout")] + public float RecurrentDropout { get; set; } = .0f; + [JsonProperty("kernel_initializer")] + public IInitializer KernelInitializer { get; set; } + [JsonProperty("recurrent_initializer")] + public IInitializer RecurrentInitializer { get; set; } + [JsonProperty("bias_initializer")] + public IInitializer BiasInitializer { get; set; } + [JsonProperty("unit_forget_bias")] + public bool UnitForgetBias { get; set; } = true; + [JsonProperty("implementation")] + public int Implementation { get; set; } = 2; + + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/LSTMOptionalArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/LSTMOptionalArgs.cs new file mode 100644 index 000000000..2829927c3 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/LSTMOptionalArgs.cs @@ -0,0 +1,11 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition.Rnn +{ + public class LSTMOptionalArgs : RnnOptionalArgs + { + public string Identifier => "LSTM"; + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/RNNArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/RNNArgs.cs new file mode 100644 index 000000000..d0b73ba44 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/RNNArgs.cs @@ -0,0 +1,49 @@ +using Newtonsoft.Json; +using System.Collections.Generic; +using Tensorflow.Keras.Layers; + +namespace Tensorflow.Keras.ArgsDefinition +{ + // TODO(Rinne): add regularizers. + public class RNNArgs : AutoSerializeLayerArgs + { + [JsonProperty("return_sequences")] + public bool ReturnSequences { get; set; } = false; + [JsonProperty("return_state")] + public bool ReturnState { get; set; } = false; + [JsonProperty("go_backwards")] + public bool GoBackwards { get; set; } = false; + [JsonProperty("stateful")] + public bool Stateful { get; set; } = false; + [JsonProperty("unroll")] + public bool Unroll { get; set; } = false; + [JsonProperty("time_major")] + public bool TimeMajor { get; set; } = false; + + public int? InputDim { get; set; } + public int? InputLength { get; set; } + // TODO: Add `num_constants` and `zero_output_for_mask`. + [JsonProperty("units")] + public int Units { get; set; } + [JsonProperty("activation")] + public Activation Activation { get; set; } + [JsonProperty("recurrent_activation")] + public Activation RecurrentActivation { get; set; } + [JsonProperty("use_bias")] + public bool UseBias { get; set; } = true; + public IInitializer KernelInitializer { get; set; } + public IInitializer RecurrentInitializer { get; set; } + public IInitializer BiasInitializer { get; set; } + [JsonProperty("dropout")] + public float Dropout { get; set; } = .0f; + [JsonProperty("zero_output_for_mask")] + public bool ZeroOutputForMask { get; set; } = false; + [JsonProperty("recurrent_dropout")] + public float RecurrentDropout { get; set; } = .0f; + + public RNNArgs Clone() + { + return (RNNArgs)MemberwiseClone(); + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/RnnOptionalArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/RnnOptionalArgs.cs new file mode 100644 index 000000000..a6520589d --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/RnnOptionalArgs.cs @@ -0,0 +1,14 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Common.Types; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class RnnOptionalArgs: IOptionalArgs + { + public string Identifier => "Rnn"; + public Tensor Mask { get; set; } = null; + public Tensors Constants { get; set; } = null; + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/LSTMCellArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/SimpleRNNArgs.cs similarity index 59% rename from src/TensorFlowNET.Core/Keras/ArgsDefinition/LSTMCellArgs.cs rename to src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/SimpleRNNArgs.cs index 62f9a0c4e..e45ef79d0 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/LSTMCellArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/SimpleRNNArgs.cs @@ -1,6 +1,7 @@ namespace Tensorflow.Keras.ArgsDefinition { - public class LSTMCellArgs : LayerArgs + public class SimpleRNNArgs : RNNArgs { + } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/SimpleRNNCellArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/SimpleRNNCellArgs.cs new file mode 100644 index 000000000..b84ea21b3 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/SimpleRNNCellArgs.cs @@ -0,0 +1,27 @@ +using Newtonsoft.Json; + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class SimpleRNNCellArgs: AutoSerializeLayerArgs + { + [JsonProperty("units")] + public int Units { get; set; } + // TODO(Rinne): lack of initialized value of Activation. Merging keras + // into tf.net could resolve it. + [JsonProperty("activation")] + public Activation Activation { get; set; } + [JsonProperty("use_bias")] + public bool UseBias { get; set; } = true; + [JsonProperty("dropout")] + public float Dropout { get; set; } = .0f; + [JsonProperty("recurrent_dropout")] + public float RecurrentDropout { get; set; } = .0f; + [JsonProperty("kernel_initializer")] + public IInitializer KernelInitializer { get; set; } + [JsonProperty("recurrent_initializer")] + public IInitializer RecurrentInitializer { get; set; } + [JsonProperty("bias_initializer")] + public IInitializer BiasInitializer { get; set; } + + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/SimpleRNNOptionalArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/SimpleRNNOptionalArgs.cs new file mode 100644 index 000000000..a8b8caf06 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/SimpleRNNOptionalArgs.cs @@ -0,0 +1,11 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.ArgsDefinition.Rnn +{ + public class SimpleRNNOptionalArgs : RnnOptionalArgs + { + public string Identifier => "SimpleRNN"; + } +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/StackedRNNCellsArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/StackedRNNCellsArgs.cs similarity index 54% rename from src/TensorFlowNET.Core/Keras/ArgsDefinition/StackedRNNCellsArgs.cs rename to src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/StackedRNNCellsArgs.cs index 9b910e17e..2600f14ee 100644 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/StackedRNNCellsArgs.cs +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/StackedRNNCellsArgs.cs @@ -1,10 +1,10 @@ using System.Collections.Generic; +using Tensorflow.Keras.Layers; namespace Tensorflow.Keras.ArgsDefinition { public class StackedRNNCellsArgs : LayerArgs { - public IList Cells { get; set; } - public Dictionary Kwargs { get; set; } = null; + public bool ReverseStateOrder = false; } } diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/WrapperArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/WrapperArgs.cs new file mode 100644 index 000000000..ec8e16d59 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Rnn/WrapperArgs.cs @@ -0,0 +1,24 @@ +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Runtime.CompilerServices; +using System.Text; + + +namespace Tensorflow.Keras.ArgsDefinition +{ + public class WrapperArgs : AutoSerializeLayerArgs + { + [JsonProperty("layer")] + public ILayer Layer { get; set; } + + public WrapperArgs(ILayer layer) + { + Layer = layer; + } + + public static implicit operator WrapperArgs(BidirectionalArgs args) + => new WrapperArgs(args.Layer); + } + +} diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/SimpleRNNArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/SimpleRNNArgs.cs deleted file mode 100644 index 658155875..000000000 --- a/src/TensorFlowNET.Core/Keras/ArgsDefinition/SimpleRNNArgs.cs +++ /dev/null @@ -1,30 +0,0 @@ -namespace Tensorflow.Keras.ArgsDefinition -{ - public class SimpleRNNArgs : RNNArgs - { - public int Units { get; set; } - public Activation Activation { get; set; } - - // units, - // activation='tanh', - // use_bias=True, - // kernel_initializer='glorot_uniform', - // recurrent_initializer='orthogonal', - // bias_initializer='zeros', - // kernel_regularizer=None, - // recurrent_regularizer=None, - // bias_regularizer=None, - // activity_regularizer=None, - // kernel_constraint=None, - // recurrent_constraint=None, - // bias_constraint=None, - // dropout=0., - // recurrent_dropout=0., - // return_sequences=False, - // return_state=False, - // go_backwards=False, - // stateful=False, - // unroll=False, - // **kwargs): - } -} diff --git a/src/TensorFlowNET.Core/Keras/Engine/ICallback.cs b/src/TensorFlowNET.Core/Keras/Engine/ICallback.cs new file mode 100644 index 000000000..e114ca97f --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Engine/ICallback.cs @@ -0,0 +1,22 @@ +namespace Tensorflow.Keras.Engine; + +public interface ICallback +{ + Dictionary> history { get; set; } + void on_train_begin(); + void on_train_end(); + void on_epoch_begin(int epoch); + void on_train_batch_begin(long step); + void on_train_batch_end(long end_step, Dictionary logs); + void on_epoch_end(int epoch, Dictionary epoch_logs); + void on_predict_begin(); + void on_predict_batch_begin(long step); + void on_predict_batch_end(long end_step, Dictionary logs); + void on_predict_end(); + void on_test_begin(); + void on_test_end(Dictionary logs); + void on_test_batch_begin(long step); + void on_test_batch_end(long end_step, Dictionary logs); + + +} diff --git a/src/TensorFlowNET.Core/Keras/Engine/IModel.cs b/src/TensorFlowNET.Core/Keras/Engine/IModel.cs index a26d29741..889c76d91 100644 --- a/src/TensorFlowNET.Core/Keras/Engine/IModel.cs +++ b/src/TensorFlowNET.Core/Keras/Engine/IModel.cs @@ -1,6 +1,116 @@ -namespace Tensorflow.Keras.Engine +using Tensorflow.Functions; +using Tensorflow.Keras.Losses; +using Tensorflow.Keras.Metrics; +using Tensorflow.Keras.Saving; +using Tensorflow.NumPy; +using Tensorflow.Util; + +namespace Tensorflow.Keras.Engine; + +public interface IModel : ILayer { - public interface IModel - { - } + void compile(IOptimizer optimizer, ILossFunc loss); + + void compile(IOptimizer optimizer, ILossFunc loss, string[] metrics); + + void compile(string optimizer, string loss, string[] metrics); + + void compile(IOptimizer optimizer, ILossFunc loss, IMetricFunc[] metrics); + + ICallback fit(NDArray x, NDArray y, + int batch_size = -1, + int epochs = 1, + int verbose = 1, + List callbacks = null, + float validation_split = 0f, + ValidationDataPack validation_data = null, + int validation_step = 10, + bool shuffle = true, + Dictionary class_weight = null, + NDArray sample_weight = null, + int initial_epoch = 0, + int max_queue_size = 10, + int workers = 1, + bool use_multiprocessing = false); + + ICallback fit(IEnumerable x, NDArray y, + int batch_size = -1, + int epochs = 1, + int verbose = 1, + List callbacks = null, + float validation_split = 0f, + ValidationDataPack validation_data = null, + bool shuffle = true, + Dictionary class_weight = null, + NDArray sample_weight = null, + int initial_epoch = 0, + int max_queue_size = 10, + int workers = 1, + bool use_multiprocessing = false); + + public ICallback fit(IDatasetV2 dataset, + int batch_size = -1, + int epochs = 1, + int verbose = 1, + List callbacks = null, + IDatasetV2 validation_data = null, + int validation_step = 10, // 间隔多少次会进行一次验证 + bool shuffle = true, + Dictionary class_weight = null, + int initial_epoch = 0, + int max_queue_size = 10, + int workers = 1, + bool use_multiprocessing = false); + + void save(string filepath, + bool overwrite = true, + bool include_optimizer = true, + string save_format = "tf", + SaveOptions? options = null, + ConcreteFunction? signatures = null, + bool save_traces = true); + + void save_weights(string filepath, + bool overwrite = true, + string save_format = null, + object options = null); + + void load_weights(string filepath, + bool by_name = false, + bool skip_mismatch = false, + object options = null); + + Dictionary evaluate(NDArray x, NDArray y, + int batch_size = -1, + int verbose = 1, + NDArray sample_weight = null, + + int steps = -1, + int max_queue_size = 10, + int workers = 1, + bool use_multiprocessing = false, + bool return_dict = false, + bool is_val = false); + + Tensors predict(Tensors x, + int batch_size = -1, + int verbose = 0, + int steps = -1, + int max_queue_size = 10, + int workers = 1, + bool use_multiprocessing = false); + + public Tensors predict(IDatasetV2 dataset, + int batch_size = -1, + int verbose = 0, + int steps = -1, + int max_queue_size = 10, + int workers = 1, + bool use_multiprocessing = false); + + void summary(int line_length = -1, float[] positions = null); + + IKerasConfig get_config(); + + bool Stop_training { get;set; } } diff --git a/src/TensorFlowNET.Core/Keras/Engine/IOptimizer.cs b/src/TensorFlowNET.Core/Keras/Engine/IOptimizer.cs new file mode 100644 index 000000000..1f989391b --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Engine/IOptimizer.cs @@ -0,0 +1,22 @@ +namespace Tensorflow.Keras.Engine; + +public interface IOptimizer +{ + Tensor[] aggregate_gradients(IEnumerable<(Tensor, IVariableV1)> grads_and_vars); + Tensor[] clip_gradients(Tensor[] grads); + void apply_gradients((Tensor, IVariableV1) grads_and_vars, + string name = null, + bool experimental_aggregate_gradients = true); + void apply_gradients(IEnumerable<(Tensor, IVariableV1)> grads_and_vars, + string name = null, + bool experimental_aggregate_gradients = true); + + void apply_gradients((Tensor, ResourceVariable) grads_and_vars, + string name = null, + bool experimental_aggregate_gradients = true); + void apply_gradients(IEnumerable<(Tensor, ResourceVariable)> grads_and_vars, + string name = null, + bool experimental_aggregate_gradients = true); + + IVariableV1 add_slot(IVariableV1 var, string slot_name, IInitializer initializer = null); +} diff --git a/src/TensorFlowNET.Core/Keras/Engine/InputSpec.cs b/src/TensorFlowNET.Core/Keras/Engine/InputSpec.cs index 7280594b7..6743935c8 100644 --- a/src/TensorFlowNET.Core/Keras/Engine/InputSpec.cs +++ b/src/TensorFlowNET.Core/Keras/Engine/InputSpec.cs @@ -16,23 +16,27 @@ limitations under the License. using System.Collections.Generic; using System.Linq; +using Tensorflow.Keras.Saving; namespace Tensorflow.Keras.Engine { /// /// Specifies the ndim, dtype and shape of every input to a layer. /// - public class InputSpec + public class InputSpec: IKerasConfigable { public int? ndim; + public int? max_ndim; public int? min_ndim; Dictionary axes; Shape shape; + TF_DataType dtype; public int[] AllAxisDim; public InputSpec(TF_DataType dtype = TF_DataType.DtInvalid, int? ndim = null, int? min_ndim = null, + int? max_ndim = null, Dictionary axes = null, Shape shape = null) { @@ -41,7 +45,9 @@ public InputSpec(TF_DataType dtype = TF_DataType.DtInvalid, axes = new Dictionary(); this.axes = axes; this.min_ndim = min_ndim; + this.max_ndim = max_ndim; this.shape = shape; + this.dtype = dtype; if (ndim == null && shape != null) this.ndim = shape.ndim; @@ -49,7 +55,30 @@ public InputSpec(TF_DataType dtype = TF_DataType.DtInvalid, AllAxisDim = axes.Select(x => x.Value).ToArray(); } + public IKerasConfig get_config() + { + return new Config() + { + DType = dtype == TF_DataType.DtInvalid ? null : dtype, + Shape = shape, + Ndim = ndim, + MinNdim = min_ndim, + MaxNdim = max_ndim, + Axes = axes.ToDictionary(x => x.Key.ToString(), x => x.Value) + }; + } + public override string ToString() => $"ndim={ndim}, min_ndim={min_ndim}, axes={axes.Count}"; + + public class Config: IKerasConfig + { + public TF_DataType? DType { get; set; } + public Shape Shape { get; set; } + public int? Ndim { get; set; } + public int? MinNdim { get;set; } + public int? MaxNdim { get;set; } + public IDictionary Axes { get; set; } + } } } diff --git a/src/TensorFlowNET.Core/Keras/Engine/KerasTensor.cs b/src/TensorFlowNET.Core/Keras/Engine/KerasTensor.cs new file mode 100644 index 000000000..5a264b631 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Engine/KerasTensor.cs @@ -0,0 +1,75 @@ +namespace Tensorflow.Keras.Engine; + +/// +/// A representation of a Keras in/output during Functional API construction. +/// +public class KerasTensor +{ + private Tensors _original_tensors; + public Tensors original_tensors + { + get => _original_tensors; + set => _original_tensors = value; + } + + private Shape _inferred_value; + public Shape inferred_value => _inferred_value; + + private string _name; + private TensorSpec _type_spec; + public Shape shape => _type_spec.shape; + public TF_DataType dtype => _type_spec.dtype; + + public KerasTensor(TensorSpec type_spec, Shape inferred_value = null, string name = null) + { + _type_spec = type_spec; + _inferred_value = inferred_value; + _name = name; + } + + public static KerasTensor from_tensor(Tensor tensor) + { + var type_spec = tensor.ToTensorSpec(); + Shape? inferred_value = default; + if (tensor.dtype == TF_DataType.TF_INT32 && tensor.rank < 2) + { + inferred_value = tf.ones(tensor).shape; + } + var kt = new KerasTensor(type_spec, inferred_value: inferred_value, name: tensor.name); + kt.original_tensors = tensor; + return kt; + } + + public KerasTensor this[int idx] + => _original_tensors.First()[idx]; + + public KerasTensor this[params Slice[] slices] + => _original_tensors.First()[slices]; + + public override string ToString() + => _original_tensors.Length switch + { + > 1 => "[" + string.Join(", ", _original_tensors.Select(x => $"KerasTensor: shape={x.shape} dtype={x.dtype.as_numpy_name()}{GetInferredValueString()}")) + "]", + 1 => $"KerasTensor: shape={_original_tensors.shape} dtype={_original_tensors.dtype.as_numpy_name()}{GetInferredValueString()}", + _ => _original_tensors.ToString(), + }; + + private string GetInferredValueString() + => _inferred_value == null ? "" : $" inferred_value={_inferred_value}"; + + public static implicit operator Tensors(KerasTensor kt) + => kt._original_tensors; + + public static implicit operator Tensor(KerasTensor kt) + { + Tensor tensor = kt._original_tensors; + tensor.IsFromKerasTensor = true; + return tensor; + } + + public static implicit operator KerasTensor(Tensor tensor) + => from_tensor(tensor); + + public static implicit operator KerasTensor(Tensors tensors) + => from_tensor(tensors.First()); +} diff --git a/src/TensorFlowNET.Core/Keras/IInitializersApi.cs b/src/TensorFlowNET.Core/Keras/IInitializersApi.cs new file mode 100644 index 000000000..3ad5e87b8 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/IInitializersApi.cs @@ -0,0 +1,13 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras +{ + public interface IInitializersApi + { + IInitializer Orthogonal(float gain = 1.0f, int? seed = null); + + IInitializer HeNormal(int? seed = null); + } +} diff --git a/src/TensorFlowNET.Core/Keras/IKerasApi.cs b/src/TensorFlowNET.Core/Keras/IKerasApi.cs new file mode 100644 index 000000000..db8deb24b --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/IKerasApi.cs @@ -0,0 +1,61 @@ +using System; +using System.Collections.Generic; +using System.Text; +using System.Threading; +using Tensorflow.Framework.Models; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Layers; +using Tensorflow.Keras.Losses; +using Tensorflow.Keras.Metrics; +using Tensorflow.Keras.Models; + +namespace Tensorflow.Keras +{ + public interface IKerasApi + { + IInitializersApi initializers { get; } + ILayersApi layers { get; } + ILossesApi losses { get; } + IActivationsApi activations { get; } + IOptimizerApi optimizers { get; } + IMetricsApi metrics { get; } + IModelsApi models { get; } + + /// + /// `Model` groups layers into an object with training and inference features. + /// + /// + /// + /// + IModel Model(Tensors inputs, Tensors outputs, string name = null); + + /// + /// Instantiate a Keras tensor. + /// + /// + /// + /// + /// + /// + /// A boolean specifying whether the placeholder to be created is sparse. + /// + /// + /// A boolean specifying whether the placeholder to be created is ragged. + /// + /// + /// Optional existing tensor to wrap into the `Input` layer. + /// If set, the layer will not create a placeholder tensor. + /// + /// + Tensors Input(Shape shape = null, + int batch_size = -1, + string name = null, + TF_DataType dtype = TF_DataType.DtInvalid, + bool sparse = false, + Tensor tensor = null, + bool ragged = false, + TypeSpec type_spec = null, + Shape batch_input_shape = null, + Shape batch_shape = null); + } +} diff --git a/src/TensorFlowNET.Core/Keras/IOptimizerApi.cs b/src/TensorFlowNET.Core/Keras/IOptimizerApi.cs new file mode 100644 index 000000000..6c15fd469 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/IOptimizerApi.cs @@ -0,0 +1,68 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.Engine; + +namespace Tensorflow.Keras +{ + public interface IOptimizerApi + { + /// + /// Adam optimization is a stochastic gradient descent method that is based on + /// adaptive estimation of first-order and second-order moments. + /// + /// + /// + /// + /// + /// + /// + /// + IOptimizer Adam(float learning_rate = 0.001f, + float beta_1 = 0.9f, + float beta_2 = 0.999f, + float epsilon = 1e-7f, + bool amsgrad = false, + string name = "Adam"); + + /// + /// Adam enables L2 weight decay on gradients. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + IOptimizer AdamW(float learning_rate = 0.001f, + float weight_decay = 0.004f, + float beta_1 = 0.9f, + float beta_2 = 0.999f, + float epsilon = 1e-7f, + bool amsgrad = false, + List no_decay_params = null, + string name = "AdamW"); + + /// + /// Construct a new RMSprop optimizer. + /// + /// + /// + /// + /// + /// + /// + /// + IOptimizer RMSprop(float learning_rate = 0.001f, + float rho = 0.9f, + float momentum = 0.0f, + float epsilon = 1e-7f, + bool centered = false, + string name = "RMSprop"); + + IOptimizer SGD(float learning_rate = 0.01f, float momentum = 0f); + } +} diff --git a/src/TensorFlowNET.Core/Keras/IPreprocessing.cs b/src/TensorFlowNET.Core/Keras/IPreprocessing.cs new file mode 100644 index 000000000..28eea0f56 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/IPreprocessing.cs @@ -0,0 +1,16 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras +{ + public interface IPreprocessing + { + public ILayer Resizing(int height, int width, string interpolation = "bilinear"); + public ILayer TextVectorization(Func standardize = null, + string split = "whitespace", + int max_tokens = -1, + string output_mode = "int", + int output_sequence_length = -1); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Layers/ILayer.cs b/src/TensorFlowNET.Core/Keras/Layers/ILayer.cs index 271fece08..2f92c4e57 100644 --- a/src/TensorFlowNET.Core/Keras/Layers/ILayer.cs +++ b/src/TensorFlowNET.Core/Keras/Layers/ILayer.cs @@ -1,25 +1,32 @@ -using System.Collections.Generic; -using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Common.Types; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.NumPy; +using Tensorflow.Training; namespace Tensorflow.Keras { - public interface ILayer + public interface ILayer: IWithTrackable, IKerasConfigable { string Name { get; } bool Trainable { get; } bool Built { get; } + void build(KerasShapesWrapper input_shape); List Layers { get; } List InboundNodes { get; } List OutboundNodes { get; } - Tensors Apply(Tensors inputs, Tensor state = null, bool is_training = false); - List trainable_variables { get; } - List trainable_weights { get; } - List non_trainable_weights { get; } - Shape output_shape { get; } - Shape BatchInputShape { get; } + Tensors Apply(Tensors inputs, Tensors states = null, bool? training = false, IOptionalArgs? optional_args = null); + List TrainableVariables { get; } + List TrainableWeights { get; } + List NonTrainableWeights { get; } + List Weights { get; set; } + void set_weights(IEnumerable weights); + List get_weights(); + Shape OutputShape { get; } + KerasShapesWrapper BatchInputShape { get; } + KerasShapesWrapper BuildInputShape { get; } TF_DataType DType { get; } int count_params(); - LayerArgs get_config(); + void adapt(Tensor data, int? batch_size = null, int? steps = null); } } diff --git a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Activation.cs b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Activation.cs new file mode 100644 index 000000000..524798690 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Activation.cs @@ -0,0 +1,21 @@ +using System; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.NumPy; +using Tensorflow.Operations.Activation; + +namespace Tensorflow.Keras.Layers +{ + public partial interface ILayersApi + { + public ILayer ELU(float alpha = 0.1f); + public ILayer SELU(); + public ILayer Softmax(int axis = -1); + public ILayer Softmax(Axis axis); + public ILayer Softplus(); + public ILayer HardSigmoid(); + public ILayer Softsign(); + public ILayer Swish(); + public ILayer Tanh(); + public ILayer Exponential(); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Attention.cs b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Attention.cs new file mode 100644 index 000000000..22fb50d3d --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Attention.cs @@ -0,0 +1,28 @@ +using System; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.Layers +{ + public partial interface ILayersApi + { + public ILayer Attention(bool use_scale = false, + string score_mode = "dot", + bool causal = false, + float dropout = 0f); + public ILayer MultiHeadAttention(int num_heads, + int key_dim, + int? value_dim = null, + float dropout = 0f, + bool use_bias = true, + Shape output_shape = null, + Shape attention_axes = null, + IInitializer kernel_initializer = null, + IInitializer bias_initializer = null, + IRegularizer kernel_regularizer = null, + IRegularizer bias_regularizer = null, + IRegularizer activity_regularizer = null, + Action kernel_constraint = null, + Action bias_constraint = null); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Cropping.cs b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Cropping.cs new file mode 100644 index 000000000..3578652ee --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Cropping.cs @@ -0,0 +1,13 @@ +using System; +using Tensorflow.Keras.ArgsDefinition.Reshaping; +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.Layers +{ + public partial interface ILayersApi + { + public ILayer Cropping1D(NDArray cropping); + public ILayer Cropping2D(NDArray cropping, Cropping2DArgs.DataFormat data_format = Cropping2DArgs.DataFormat.channels_last); + public ILayer Cropping3D(NDArray cropping, Cropping3DArgs.DataFormat data_format = Cropping3DArgs.DataFormat.channels_last); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Merging.cs b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Merging.cs new file mode 100644 index 000000000..d0a7f09fd --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Merging.cs @@ -0,0 +1,10 @@ +using System; +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.Layers +{ + public partial interface ILayersApi + { + public ILayer Concatenate(int axis = -1); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Reshaping.cs b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Reshaping.cs new file mode 100644 index 000000000..ae34c514f --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.Reshaping.cs @@ -0,0 +1,22 @@ +using System; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.Layers +{ + public partial interface ILayersApi + { + public ILayer Reshape(Shape target_shape); + public ILayer Reshape(object[] target_shape); + + public ILayer UpSampling1D( + int size + ); + + public ILayer UpSampling2D(Shape size = null, + string data_format = null, + string interpolation = "nearest"); + + public ILayer ZeroPadding2D(NDArray padding); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs new file mode 100644 index 000000000..57273eb08 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs @@ -0,0 +1,317 @@ +using System; +using Tensorflow.Framework.Models; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Layers; +using Tensorflow.NumPy; +using static Google.Protobuf.Reflection.FieldDescriptorProto.Types; + +namespace Tensorflow.Keras.Layers +{ + public partial interface ILayersApi + { + public IPreprocessing preprocessing { get; } + + public ILayer Add(); + + public ILayer AveragePooling2D(Shape pool_size = null, + Shape strides = null, + string padding = "valid", + string data_format = null); + + public ILayer BatchNormalization(int axis = -1, + float momentum = 0.99f, + float epsilon = 0.001f, + bool center = true, + bool scale = true, + IInitializer beta_initializer = null, + IInitializer gamma_initializer = null, + IInitializer moving_mean_initializer = null, + IInitializer moving_variance_initializer = null, + bool trainable = true, + string name = null, + bool renorm = false, + float renorm_momentum = 0.99f); + + /// + /// A preprocessing layer which encodes integer features. + /// + /// The total number of tokens the layer should support. + /// Specification for the output of the layer. + /// + public ILayer CategoryEncoding(int num_tokens, + string output_mode = "one_hot", + bool sparse = false, + NDArray count_weights = null); + + public ILayer Conv1D(int filters, + Shape kernel_size, + int strides = 1, + string padding = "valid", + string data_format = "channels_last", + int dilation_rate = 1, + int groups = 1, + string activation = null, + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string bias_initializer = "zeros"); + + public ILayer Conv2D(int filters, + Shape kernel_size = null, + Shape strides = null, + string padding = "valid" + ); + + public ILayer Conv2D(int filters, + Shape kernel_size = null, + Shape strides = null, + string padding = "valid", + string data_format = null, + Shape dilation_rate = null, + int groups = 1, + Activation activation = null, + bool use_bias = true, + IInitializer kernel_initializer = null, + IInitializer bias_initializer = null, + IRegularizer kernel_regularizer = null, + IRegularizer bias_regularizer = null, + IRegularizer activity_regularizer = null); + + public ILayer Conv2DTranspose(int filters, + Shape kernel_size = null, + Shape strides = null, + string output_padding = "valid", + string data_format = null, + Shape dilation_rate = null, + string activation = null, + bool use_bias = true, + string kernel_initializer = null, + string bias_initializer = null, + string kernel_regularizer = null, + string bias_regularizer = null, + string activity_regularizer = null); + + public ILayer Conv2D(int filters, + Shape kernel_size = null, + Shape strides = null, + string padding = "valid", + string data_format = null, + Shape dilation_rate = null, + int groups = 1, + string activation = null, + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string bias_initializer = "zeros"); + public ILayer DepthwiseConv2D(Shape kernel_size = null, + Shape strides = null, + string padding = "valid", + string data_format = null, + Shape dilation_rate = null, + int groups = 1, + int depth_multiplier = 1, + string activation = null, + bool use_bias = false, + string kernel_initializer = "glorot_uniform", + string bias_initializer = "zeros", + string depthwise_initializer = "glorot_uniform" + ); + + public ILayer Dense(int units); + public ILayer Dense(int units, + string activation = null, + Shape input_shape = null); + public ILayer Dense(int units, + Activation activation = null, + IInitializer kernel_initializer = null, + bool use_bias = true, + IInitializer bias_initializer = null, + Shape input_shape = null); + + public ILayer Dropout(float rate, Shape noise_shape = null, int? seed = null); + + public ILayer Embedding(int input_dim, + int output_dim, + IInitializer embeddings_initializer = null, + bool mask_zero = false, + Shape input_shape = null, + int input_length = -1); + + public ILayer EinsumDense(string equation, + Shape output_shape, + string bias_axes, + Activation activation = null, + IInitializer kernel_initializer = null, + IInitializer bias_initializer = null, + IRegularizer kernel_regularizer = null, + IRegularizer bias_regularizer = null, + IRegularizer activity_regularizer = null, + Action kernel_constraint = null, + Action bias_constraint = null); + + public ILayer Flatten(string data_format = null); + + public ILayer GlobalAveragePooling1D(string data_format = "channels_last"); + public ILayer GlobalAveragePooling2D(); + public ILayer GlobalAveragePooling2D(string data_format = "channels_last"); + public ILayer GlobalMaxPooling1D(string data_format = "channels_last"); + public ILayer GlobalMaxPooling2D(string data_format = "channels_last"); + + public KerasTensor Input(Shape shape = null, + int batch_size = -1, + string name = null, + TF_DataType dtype = TF_DataType.DtInvalid, + bool sparse = false, + Tensor tensor = null, + bool ragged = false, + TypeSpec type_spec = null, + Shape batch_input_shape = null, + Shape batch_shape = null); + public ILayer InputLayer(Shape input_shape, + string name = null, + bool sparse = false, + bool ragged = false); + + public ILayer LayerNormalization(Axis? axis, + float epsilon = 1e-3f, + bool center = true, + bool scale = true, + IInitializer beta_initializer = null, + IInitializer gamma_initializer = null); + + public ILayer Normalization(Shape? input_shape = null, int? axis = -1, float? mean = null, float? variance = null, bool invert = false); + public ILayer LeakyReLU(float alpha = 0.3f); + + public ILayer ReLU6(); + + + public IRnnCell LSTMCell(int uints, + string activation = "tanh", + string recurrent_activation = "sigmoid", + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + bool unit_forget_bias = true, + float dropout = 0f, + float recurrent_dropout = 0f, + int implementation = 2); + + public ILayer LSTM(int units, + Activation activation = null, + Activation recurrent_activation = null, + bool use_bias = true, + IInitializer kernel_initializer = null, + IInitializer recurrent_initializer = null, + IInitializer bias_initializer = null, + bool unit_forget_bias = true, + float dropout = 0f, + float recurrent_dropout = 0f, + int implementation = 2, + bool return_sequences = false, + bool return_state = false, + bool go_backwards = false, + bool stateful = false, + bool time_major = false, + bool unroll = false); + + public ILayer MaxPooling1D(int? pool_size = null, + int? strides = null, + string padding = "valid", + string data_format = null); + public ILayer MaxPooling2D(Shape pool_size = null, + Shape strides = null, + string padding = "valid", + string data_format = null); + + public ILayer Permute(int[] dims); + + public ILayer Rescaling(float scale, + float offset = 0, + Shape input_shape = null); + + public IRnnCell SimpleRNNCell( + int units, + string activation = "tanh", + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + float dropout = 0f, + float recurrent_dropout = 0f); + + public IRnnCell StackedRNNCells( + IEnumerable cells); + + public ILayer SimpleRNN(int units, + string activation = "tanh", + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + bool return_sequences = false, + bool return_state = false); + + public ILayer RNN( + IRnnCell cell, + bool return_sequences = false, + bool return_state = false, + bool go_backwards = false, + bool stateful = false, + bool unroll = false, + bool time_major = false + ); + + public ILayer RNN( + IEnumerable cell, + bool return_sequences = false, + bool return_state = false, + bool go_backwards = false, + bool stateful = false, + bool unroll = false, + bool time_major = false + ); + + public IRnnCell GRUCell( + int units, + string activation = "tanh", + string recurrent_activation = "sigmoid", + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + float dropout = 0f, + float recurrent_dropout = 0f, + bool reset_after = true); + + public ILayer GRU( + int units, + string activation = "tanh", + string recurrent_activation = "sigmoid", + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + float dropout = 0f, + float recurrent_dropout = 0f, + bool return_sequences = false, + bool return_state = false, + bool go_backwards = false, + bool stateful = false, + bool unroll = false, + bool time_major = false, + bool reset_after = true + ); + + /// + /// Bidirectional wrapper for RNNs. + /// + /// `keras.layers.RNN` instance, such as `keras.layers.LSTM` or `keras.layers.GRU` + /// automatically. + /// + public ILayer Bidirectional( + ILayer layer, + string merge_mode = "concat", + NDArray weights = null, + ILayer backward_layer = null); + + public ILayer Subtract(); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Layers/Rnn/IRnnCell.cs b/src/TensorFlowNET.Core/Keras/Layers/Rnn/IRnnCell.cs new file mode 100644 index 000000000..43df75b17 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Layers/Rnn/IRnnCell.cs @@ -0,0 +1,25 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Common.Types; + +namespace Tensorflow.Keras.Layers +{ + public interface IRnnCell: ILayer + { + /// + /// If the derived class tends to not implement it, please return null. + /// + INestStructure? StateSize { get; } + /// + /// If the derived class tends to not implement it, please return null. + /// + INestStructure? OutputSize { get; } + /// + /// Whether the optional RNN args are supported when appying the layer. + /// In other words, whether `Apply` is overwrited with process of `RnnOptionalArgs`. + /// + bool SupportOptionalArgs { get; } + Tensors GetInitialState(Tensors inputs, Tensor batch_size, TF_DataType dtype); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Layers/Rnn/IStackedRnnCells.cs b/src/TensorFlowNET.Core/Keras/Layers/Rnn/IStackedRnnCells.cs new file mode 100644 index 000000000..8cf6150d3 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Layers/Rnn/IStackedRnnCells.cs @@ -0,0 +1,12 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.Layers +{ + public interface IStackedRnnCells : IRnnCell + { + int Count { get; } + IRnnCell this[int idx] { get; } + } +} diff --git a/src/TensorFlowNET.Core/Keras/Losses/ILossFunc.cs b/src/TensorFlowNET.Core/Keras/Losses/ILossFunc.cs new file mode 100644 index 000000000..408c7ca18 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Losses/ILossFunc.cs @@ -0,0 +1,8 @@ +namespace Tensorflow.Keras.Losses; + +public interface ILossFunc +{ + public string Reduction { get; } + public string Name { get; } + Tensor Call(Tensor y_true, Tensor y_pred, Tensor sample_weight = null); +} diff --git a/src/TensorFlowNET.Core/Keras/Losses/ILossesApi.cs b/src/TensorFlowNET.Core/Keras/Losses/ILossesApi.cs new file mode 100644 index 000000000..4c92512d4 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Losses/ILossesApi.cs @@ -0,0 +1,56 @@ +namespace Tensorflow.Keras.Losses; + +public interface ILossesApi +{ + ILossFunc BinaryCrossentropy(bool from_logits = false, + float label_smoothing = 0f, + int axis = -1, + string reduction = "auto", + string name = "binary_crossentropy"); + + ILossFunc SparseCategoricalCrossentropy(string reduction = null, + string name = null, + bool from_logits = false); + + ILossFunc CategoricalCrossentropy(string reduction = null, + string name = null, + bool from_logits = false); + + ILossFunc MeanSquaredError(string reduction = null, + string name = null); + + ILossFunc MeanSquaredLogarithmicError(string reduction = null, + string name = null); + + ILossFunc MeanAbsolutePercentageError(string reduction = null, + string name = null); + + ILossFunc MeanAbsoluteError(string reduction = null, + string name = null); + + ILossFunc CosineSimilarity(string reduction = null, + int axis = -1, + string name = null); + + ILossFunc Huber(string reduction = null, + string name = null, + Tensor delta = null); + + ILossFunc LogCosh(string reduction = null, + string name = null); + + /// + /// Implements the focal loss function. + /// + /// + /// + /// + /// + /// + /// + ILossFunc SigmoidFocalCrossEntropy(bool from_logits = false, + float alpha = 0.25f, + float gamma = 2.0f, + string reduction = "none", + string name = "sigmoid_focal_crossentropy"); +} diff --git a/src/TensorFlowNET.Core/Keras/Metrics/IMetricFunc.cs b/src/TensorFlowNET.Core/Keras/Metrics/IMetricFunc.cs new file mode 100644 index 000000000..930afa0b0 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Metrics/IMetricFunc.cs @@ -0,0 +1,18 @@ +namespace Tensorflow.Keras.Metrics; + +public interface IMetricFunc +{ + string Name { get; } + /// + /// Accumulates metric statistics. + /// + /// + /// + /// + /// + Tensor update_state(Tensor y_true, Tensor y_pred, Tensor sample_weight = null); + + Tensor result(); + + void reset_states(); +} diff --git a/src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs b/src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs new file mode 100644 index 000000000..dbe4ac3fd --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Metrics/IMetricsApi.cs @@ -0,0 +1,186 @@ +namespace Tensorflow.Keras.Metrics; + +public interface IMetricsApi +{ + Tensor binary_accuracy(Tensor y_true, Tensor y_pred); + + Tensor categorical_accuracy(Tensor y_true, Tensor y_pred); + Tensor categorical_crossentropy(Tensor y_true, Tensor y_pred, + bool from_logits = false, + float label_smoothing = 0f, + Axis? axis = null); + + Tensor mean_absolute_error(Tensor y_true, Tensor y_pred); + + Tensor mean_absolute_percentage_error(Tensor y_true, Tensor y_pred); + + /// + /// Calculates how often predictions matches integer labels. + /// + /// Integer ground truth values. + /// The prediction values. + /// Sparse categorical accuracy values. + Tensor sparse_categorical_accuracy(Tensor y_true, Tensor y_pred); + + /// + /// Computes the sparse categorical crossentropy loss. + /// + /// + /// + /// + /// + /// + /// + Tensor sparse_categorical_crossentropy(Tensor y_true, Tensor y_pred, + bool from_logits = false, + int? ignore_class = null, + Axis? axis = null); + + /// + /// Computes how often targets are in the top `K` predictions. + /// + /// + /// + /// + /// + Tensor top_k_categorical_accuracy(Tensor y_true, Tensor y_pred, int k = 5); + + /// + /// Calculates how often predictions equal labels. + /// + /// + IMetricFunc Accuracy(string name = "accuracy", + TF_DataType dtype = TF_DataType.TF_FLOAT); + + /// + /// Calculates how often predictions match binary labels. + /// + /// + IMetricFunc BinaryAccuracy(string name = "binary_accuracy", + TF_DataType dtype = TF_DataType.TF_FLOAT, + float threshold = 05f); + + /// + /// Calculates how often predictions match one-hot labels. + /// + /// + IMetricFunc CategoricalCrossentropy(string name = "categorical_crossentropy", + TF_DataType dtype = TF_DataType.TF_FLOAT, + bool from_logits = false, + float label_smoothing = 0f, + Axis? axis = null); + + /// + /// Computes the crossentropy metric between the labels and predictions. + /// + /// + IMetricFunc SparseCategoricalCrossentropy(string name = "sparse_categorical_crossentropy", + TF_DataType dtype = TF_DataType.TF_FLOAT, + bool from_logits = false, + int? ignore_class = null, + Axis? axis = null); + + /// + /// Computes the crossentropy metric between the labels and predictions. + /// + /// + IMetricFunc CategoricalAccuracy(string name = "categorical_accuracy", + TF_DataType dtype = TF_DataType.TF_FLOAT); + + /// + /// Calculates how often predictions match integer labels. + /// + /// + IMetricFunc SparseCategoricalAccuracy(string name = "sparse_categorical_accuracy", + TF_DataType dtype = TF_DataType.TF_FLOAT); + + /// + /// Computes the cosine similarity between the labels and predictions. + /// + /// + IMetricFunc CosineSimilarity(string name = "cosine_similarity", + TF_DataType dtype = TF_DataType.TF_FLOAT, + Axis? axis = null); + + /// + /// Computes F-1 Score. + /// + /// + IMetricFunc F1Score(int num_classes, + string? average = null, + float? threshold = null, + string name = "f1_score", + TF_DataType dtype = TF_DataType.TF_FLOAT); + + /// + /// Computes F-Beta score. + /// + /// + IMetricFunc FBetaScore(int num_classes, + string? average = null, + float beta = 0.1f, + float? threshold = null, + string name = "fbeta_score", + TF_DataType dtype = TF_DataType.TF_FLOAT); + + /// + /// Computes hamming loss. + /// + /// multiclass or multilabel + /// + /// + /// + /// + IMetricFunc HammingLoss(string mode, + float? threshold = null, + string name = "hamming_loss", + TF_DataType dtype = TF_DataType.TF_FLOAT); + + /// + /// Computes how often targets are in the top K predictions. + /// + /// + /// + IMetricFunc TopKCategoricalAccuracy(int k = 5, + string name = "top_k_categorical_accuracy", + TF_DataType dtype = TF_DataType.TF_FLOAT); + + /// + /// Computes how often integer targets are in the top K predictions. + /// + /// + /// + IMetricFunc SparseTopKCategoricalAccuracy(int k = 5, + string name = "sparse_top_k_categorical_accuracy", + TF_DataType dtype = TF_DataType.TF_FLOAT); + + /// + /// Computes the precision of the predictions with respect to the labels. + /// + /// + /// + /// + /// + /// + /// + IMetricFunc Precision(float thresholds = 0.5f, + int top_k = 0, + int class_id = 0, + string name = "recall", + TF_DataType dtype = TF_DataType.TF_FLOAT); + + /// + /// Computes the recall of the predictions with respect to the labels. + /// + /// + /// + /// + /// + /// + /// + IMetricFunc Recall(float thresholds = 0.5f, + int top_k = 0, + int class_id = 0, + string name = "recall", + TF_DataType dtype = TF_DataType.TF_FLOAT); +} diff --git a/src/TensorFlowNET.Core/Keras/Models/IModelsApi.cs b/src/TensorFlowNET.Core/Keras/Models/IModelsApi.cs new file mode 100644 index 000000000..007c82a17 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Models/IModelsApi.cs @@ -0,0 +1,12 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.Engine; + +namespace Tensorflow.Keras.Models +{ + public interface IModelsApi + { + public IModel load_model(string filepath, bool compile = true, LoadOptions? options = null); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Regularizers/IRegularizer.cs b/src/TensorFlowNET.Core/Keras/Regularizers/IRegularizer.cs index f4045c7b2..06dbb7c8c 100644 --- a/src/TensorFlowNET.Core/Keras/Regularizers/IRegularizer.cs +++ b/src/TensorFlowNET.Core/Keras/Regularizers/IRegularizer.cs @@ -1,7 +1,25 @@ -namespace Tensorflow.Keras +using Newtonsoft.Json; +using System.Collections.Generic; +using Tensorflow.Keras.Saving.Common; + +namespace Tensorflow.Keras { - public interface IRegularizer - { - Tensor Apply(RegularizerArgs args); - } + [JsonConverter(typeof(CustomizedRegularizerJsonConverter))] + public interface IRegularizer + { + [JsonProperty("class_name")] + string ClassName { get; } + [JsonProperty("config")] + IDictionary Config { get; } + Tensor Apply(RegularizerArgs args); + } + + public interface IRegularizerApi + { + IRegularizer GetRegularizerFromName(string name); + IRegularizer L1 { get; } + IRegularizer L2 { get; } + IRegularizer L1L2 { get; } + } + } diff --git a/src/TensorFlowNET.Core/Keras/Saving/IKerasConfig.cs b/src/TensorFlowNET.Core/Keras/Saving/IKerasConfig.cs new file mode 100644 index 000000000..1217e1e52 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/IKerasConfig.cs @@ -0,0 +1,15 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.Saving +{ + public interface IKerasConfig + { + } + + public interface IKerasConfigable + { + IKerasConfig get_config(); + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedActivationJsonConverter.cs b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedActivationJsonConverter.cs new file mode 100644 index 000000000..b348780cf --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedActivationJsonConverter.cs @@ -0,0 +1,50 @@ +using Newtonsoft.Json; +using Newtonsoft.Json.Converters; +using Newtonsoft.Json.Linq; +using System; +using System.Collections.Generic; +using System.Text; +using static Tensorflow.Binding; + +namespace Tensorflow.Keras.Saving.Common +{ + public class CustomizedActivationJsonConverter : JsonConverter + { + public override bool CanConvert(Type objectType) + { + return objectType == typeof(Activation); + } + + public override bool CanRead => true; + + public override bool CanWrite => true; + + public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer) + { + if (value is null) + { + var token = JToken.FromObject(""); + token.WriteTo(writer); + } + else if (value is not Activation) + { + throw new TypeError($"Unable to use `CustomizedActivationJsonConverter` to serialize the type {value.GetType()}."); + } + else + { + var token = JToken.FromObject(((Activation)value).Name); + token.WriteTo(writer); + } + } + + public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer) + { + var activationName = serializer.Deserialize(reader); + if (tf.keras is null) + { + throw new RuntimeError("Tensorflow.Keras is not loaded, please install it first."); + } + return tf.keras.activations.GetActivationFromName(string.IsNullOrEmpty(activationName) ? "linear" : activationName); + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedAxisJsonConverter.cs b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedAxisJsonConverter.cs new file mode 100644 index 000000000..aea4af6d6 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedAxisJsonConverter.cs @@ -0,0 +1,57 @@ +using Newtonsoft.Json.Linq; +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.Saving.Common +{ + public class CustomizedAxisJsonConverter : JsonConverter + { + public override bool CanConvert(Type objectType) + { + return objectType == typeof(Axis); + } + + public override bool CanRead => true; + + public override bool CanWrite => true; + + public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer) + { + if (value is null) + { + var token = JToken.FromObject(new int[] { }); + token.WriteTo(writer); + } + else if (value is not Axis) + { + throw new TypeError($"Unable to use `CustomizedAxisJsonConverter` to serialize the type {value.GetType()}."); + } + else + { + var token = JToken.FromObject((value as Axis)!.axis); + token.WriteTo(writer); + } + } + + public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer) + { + int[]? axis; + if (reader.ValueType == typeof(long)) + { + axis = new int[1]; + axis[0] = (int)serializer.Deserialize(reader, typeof(int)); + } + else + { + axis = serializer.Deserialize(reader, typeof(int[])) as int[]; + } + if (axis is null) + { + throw new ValueError("Cannot deserialize 'null' to `Axis`."); + } + return new Axis(axis!); + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedDTypeJsonConverter.cs b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedDTypeJsonConverter.cs new file mode 100644 index 000000000..29b3b094c --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedDTypeJsonConverter.cs @@ -0,0 +1,36 @@ +using Newtonsoft.Json.Linq; +using Newtonsoft.Json; + +namespace Tensorflow.Keras.Saving.Common +{ + public class CustomizedDTypeJsonConverter : JsonConverter + { + public override bool CanConvert(Type objectType) + { + return objectType == typeof(TF_DataType); + } + + public override bool CanRead => true; + + public override bool CanWrite => true; + + public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer) + { + var token = JToken.FromObject(((TF_DataType)value).as_numpy_name()); + token.WriteTo(writer); + } + + public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer) + { + if (reader.ValueType == typeof(string)) + { + var str = (string)serializer.Deserialize(reader, typeof(string)); + return dtypes.tf_dtype_from_name(str); + } + else + { + return (TF_DataType)serializer.Deserialize(reader, typeof(int)); + } + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedIInitializerJsonConverter.cs b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedIInitializerJsonConverter.cs new file mode 100644 index 000000000..a7bae56d0 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedIInitializerJsonConverter.cs @@ -0,0 +1,69 @@ +using Newtonsoft.Json.Linq; +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Operations; + +using Tensorflow.Operations.Initializers; + +namespace Tensorflow.Keras.Saving.Common +{ + class InitializerInfo + { + public string class_name { get; set; } + public JObject config { get; set; } + } + public class CustomizedIinitializerJsonConverter : JsonConverter + { + public override bool CanConvert(Type objectType) + { + return objectType == typeof(IInitializer); + } + + public override bool CanRead => true; + + public override bool CanWrite => true; + + public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer) + { + var initializer = value as IInitializer; + if (initializer is null) + { + JToken.FromObject(null).WriteTo(writer); + return; + } + JToken.FromObject(new InitializerInfo() + { + class_name = initializer.ClassName, + config = JObject.FromObject(initializer.Config) + }, serializer).WriteTo(writer); + } + + public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer) + { + var info = serializer.Deserialize(reader); + if (info is null) + { + return null; + } + return info.class_name switch + { + "Constant" => new Constant(info.config["value"].ToObject()), + "GlorotUniform" => new GlorotUniform(seed: info.config["seed"].ToObject()), + "Ones" => new Ones(), + "Orthogonal" => new Orthogonal(info.config["gain"].ToObject(), info.config["seed"].ToObject()), + "RandomNormal" => new RandomNormal(info.config["mean"].ToObject(), info.config["stddev"].ToObject(), + info.config["seed"].ToObject()), + "RandomUniform" => new RandomUniform(minval: info.config["minval"].ToObject(), + maxval: info.config["maxval"].ToObject(), seed: info.config["seed"].ToObject()), + "TruncatedNormal" => new TruncatedNormal(info.config["mean"].ToObject(), info.config["stddev"].ToObject(), + info.config["seed"].ToObject()), + "VarianceScaling" => new VarianceScaling(info.config["scale"].ToObject(), info.config["mode"].ToObject(), + info.config["distribution"].ToObject(), info.config["seed"].ToObject()), + "Zeros" => new Zeros(), + _ => throw new ValueError($"The specified initializer {info.class_name} cannot be recognized.") + }; + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedKerasShapesWrapperJsonConverter.cs b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedKerasShapesWrapperJsonConverter.cs new file mode 100644 index 000000000..3a21db9d2 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedKerasShapesWrapperJsonConverter.cs @@ -0,0 +1,76 @@ +using Newtonsoft.Json.Linq; +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Common.Types; + +namespace Tensorflow.Keras.Saving.Json +{ + public class CustomizedKerasShapesWrapperJsonConverter : JsonConverter + { + public override bool CanConvert(Type objectType) + { + return objectType == typeof(KerasShapesWrapper); + } + + public override bool CanRead => true; + + public override bool CanWrite => true; + + public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer) + { + if (value is null) + { + JToken.FromObject(null).WriteTo(writer); + return; + } + if (value is not KerasShapesWrapper wrapper) + { + throw new TypeError($"Expected `KerasShapesWrapper` to be serialized, bug got {value.GetType()}"); + } + if (wrapper.Shapes.Length == 0) + { + JToken.FromObject(null).WriteTo(writer); + } + else if (wrapper.Shapes.Length == 1) + { + JToken.FromObject(wrapper.Shapes[0]).WriteTo(writer); + } + else + { + JToken.FromObject(wrapper.Shapes).WriteTo(writer); + } + } + + public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer) + { + if (reader.TokenType == JsonToken.StartArray) + { + TensorShapeConfig[] shapes = serializer.Deserialize(reader); + if (shapes is null) + { + return null; + } + return new KerasShapesWrapper(shapes); + } + else if (reader.TokenType == JsonToken.StartObject) + { + var shape = serializer.Deserialize(reader); + if (shape is null) + { + return null; + } + return new KerasShapesWrapper(shape); + } + else if (reader.TokenType == JsonToken.Null) + { + return null; + } + else + { + throw new ValueError($"Cannot deserialize the token type {reader.TokenType}"); + } + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedNodeConfigJsonConverter.cs b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedNodeConfigJsonConverter.cs new file mode 100644 index 000000000..51194a610 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedNodeConfigJsonConverter.cs @@ -0,0 +1,100 @@ +using Newtonsoft.Json; +using Newtonsoft.Json.Converters; +using Newtonsoft.Json.Linq; +using System; +using System.Collections.Generic; +using System.Linq; +using System.Text; +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.Saving.Common +{ + public class CustomizedNodeConfigJsonConverter : JsonConverter + { + public override bool CanConvert(Type objectType) + { + return objectType == typeof(NodeConfig); + } + + public override bool CanRead => true; + + public override bool CanWrite => true; + + public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer) + { + if (value is null) + { + var token = JToken.FromObject(null); + token.WriteTo(writer); + } + else if (value is not NodeConfig) + { + throw new TypeError($"Unable to use `CustomizedNodeConfigJsonConverter` to serialize the type {value.GetType()}."); + } + else + { + var config = value as NodeConfig; + var token = JToken.FromObject(new object[] { config!.Name, config.NodeIndex, config.TensorIndex }); + token.WriteTo(writer); + } + } + + public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer) + { + var values = serializer.Deserialize(reader, typeof(object[])) as object[]; + if (values is null) + { + throw new ValueError("Cannot deserialize 'null' to `Shape`."); + } + if (values.Length == 1) + { + var array = values[0] as JArray; + if (array is null) + { + throw new ValueError($"The value ({string.Join(", ", values)}) cannot be deserialized to type `NodeConfig`."); + } + values = array.ToObject(); + } + if (values.Length < 3) + { + throw new ValueError($"The value ({string.Join(", ", values)}) cannot be deserialized to type `NodeConfig`."); + } + if (values[0] is not string) + { + throw new TypeError($"The first value of `NodeConfig` is expected to be `string`, but got `{values[0].GetType().Name}`"); + } + int nodeIndex; + int tensorIndex; + if (values[1] is long) + { + nodeIndex = (int)(long)values[1]; + } + else if (values[1] is int) + { + nodeIndex = (int)values[1]; + } + else + { + throw new TypeError($"The first value of `NodeConfig` is expected to be `int`, but got `{values[1].GetType().Name}`"); + } + if (values[2] is long) + { + tensorIndex = (int)(long)values[2]; + } + else if (values[1] is int) + { + tensorIndex = (int)values[2]; + } + else + { + throw new TypeError($"The first value of `NodeConfig` is expected to be `int`, but got `{values[2].GetType().Name}`"); + } + return new NodeConfig() + { + Name = values[0] as string, + NodeIndex = nodeIndex, + TensorIndex = tensorIndex + }; + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedRegularizerJsonConverter.cs b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedRegularizerJsonConverter.cs new file mode 100644 index 000000000..4b1790aca --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedRegularizerJsonConverter.cs @@ -0,0 +1,57 @@ +using Newtonsoft.Json.Linq; +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Operations.Regularizers; + +namespace Tensorflow.Keras.Saving.Common +{ + class RegularizerInfo + { + public string class_name { get; set; } + public JObject config { get; set; } + } + + public class CustomizedRegularizerJsonConverter : JsonConverter + { + public override bool CanConvert(Type objectType) + { + return objectType == typeof(IRegularizer); + } + + public override bool CanRead => true; + + public override bool CanWrite => true; + + public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer) + { + var regularizer = value as IRegularizer; + if (regularizer is null) + { + JToken.FromObject(null).WriteTo(writer); + return; + } + JToken.FromObject(new RegularizerInfo() + { + class_name = regularizer.ClassName, + config = JObject.FromObject(regularizer.Config) + }, serializer).WriteTo(writer); + } + + public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer) + { + var info = serializer.Deserialize(reader); + if (info is null) + { + return null; + } + return info.class_name switch + { + "L1L2" => new L1L2 (info.config["l1"].ToObject(), info.config["l2"].ToObject()), + "L1" => new L1(info.config["l1"].ToObject()), + "L2" => new L2(info.config["l2"].ToObject()), + }; + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedShapeJsonConverter.cs b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedShapeJsonConverter.cs new file mode 100644 index 000000000..39799e929 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedShapeJsonConverter.cs @@ -0,0 +1,93 @@ +using Newtonsoft.Json; +using Newtonsoft.Json.Converters; +using Newtonsoft.Json.Linq; +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.Saving.Common +{ + class ShapeInfoFromPython + { + public string class_name { get; set; } + public long?[] items { get; set; } + } + public class CustomizedShapeJsonConverter : JsonConverter + { + public override bool CanConvert(Type objectType) + { + return objectType == typeof(Shape); + } + + public override bool CanRead => true; + + public override bool CanWrite => true; + + public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer) + { + if (value is null) + { + var token = JToken.FromObject(null); + token.WriteTo(writer); + } + else if (value is not Shape) + { + throw new TypeError($"Unable to use `CustomizedShapeJsonConverter` to serialize the type {value.GetType()}."); + } + else + { + var shape = (value as Shape)!; + long?[] dims = new long?[shape.ndim]; + for (int i = 0; i < dims.Length; i++) + { + if (shape.dims[i] == -1) + { + dims[i] = null; + } + else + { + dims[i] = shape.dims[i]; + } + } + var token = JToken.FromObject(new ShapeInfoFromPython() + { + class_name = "__tuple__", + items = dims + }); + token.WriteTo(writer); + } + } + + public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer) + { + long?[] dims; + if (reader.TokenType == JsonToken.StartObject) + { + var shape_info_from_python = serializer.Deserialize(reader); + if (shape_info_from_python is null) + { + return null; + } + dims = shape_info_from_python.items; + } + else if (reader.TokenType == JsonToken.StartArray) + { + dims = serializer.Deserialize(reader); + } + else if (reader.TokenType == JsonToken.Null) + { + return null; + } + else + { + throw new ValueError($"Cannot deserialize the token {reader} as Shape."); + } + long[] convertedDims = new long[dims.Length]; + for (int i = 0; i < dims.Length; i++) + { + convertedDims[i] = dims[i] ?? -1; + } + return new Shape(convertedDims); + } + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/KerasShapesWrapper.cs b/src/TensorFlowNET.Core/Keras/Saving/KerasShapesWrapper.cs new file mode 100644 index 000000000..ea6fe976f --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/KerasShapesWrapper.cs @@ -0,0 +1,61 @@ +using Newtonsoft.Json.Linq; +using Newtonsoft.Json; +using System; +using System.Collections.Generic; +using System.Text; +using System.Diagnostics; +using OneOf.Types; +using Tensorflow.Keras.Saving.Json; +using Tensorflow.Common.Types; + +namespace Tensorflow.Keras.Saving +{ + [JsonConverter(typeof(CustomizedKerasShapesWrapperJsonConverter))] + public class KerasShapesWrapper + { + public TensorShapeConfig[] Shapes { get; set; } + + public KerasShapesWrapper(Shape shape) + { + Shapes = new TensorShapeConfig[] { shape }; + } + + public KerasShapesWrapper(TensorShapeConfig shape) + { + Shapes = new TensorShapeConfig[] { shape }; + } + + public KerasShapesWrapper(TensorShapeConfig[] shapes) + { + Shapes = shapes; + } + + public KerasShapesWrapper(IEnumerable shape) + { + Shapes = shape.Select(x => (TensorShapeConfig)x).ToArray(); + } + + public Shape ToSingleShape() + { + Debug.Assert(Shapes.Length == 1); + var shape_config = Shapes[0]; + Debug.Assert(shape_config is not null); + return new Shape(shape_config.Items.Select(x => x is null ? -1 : x.Value).ToArray()); + } + + public Shape[] ToShapeArray() + { + return Shapes.Select(x => new Shape(x.Items.Select(y => y is null ? -1 : y.Value).ToArray())).ToArray(); + } + + public static implicit operator KerasShapesWrapper(Shape shape) + { + return new KerasShapesWrapper(shape); + } + public static implicit operator KerasShapesWrapper(TensorShapeConfig shape) + { + return new KerasShapesWrapper(shape); + } + + } +} diff --git a/src/TensorFlowNET.Core/Keras/Saving/LayerConfig.cs b/src/TensorFlowNET.Core/Keras/Saving/LayerConfig.cs index b8b8cab40..4ce290c83 100644 --- a/src/TensorFlowNET.Core/Keras/Saving/LayerConfig.cs +++ b/src/TensorFlowNET.Core/Keras/Saving/LayerConfig.cs @@ -1,4 +1,5 @@ -using System; +using Newtonsoft.Json; +using System; using System.Collections.Generic; using System.Text; using Tensorflow.Keras.ArgsDefinition; @@ -6,11 +7,15 @@ namespace Tensorflow.Keras.Saving { - public class LayerConfig + public class LayerConfig: IKerasConfig { + [JsonProperty("name")] public string Name { get; set; } + [JsonProperty("class_name")] public string ClassName { get; set; } + [JsonProperty("config")] public LayerArgs Config { get; set; } + [JsonProperty("inbound_nodes")] public List InboundNodes { get; set; } } } diff --git a/src/TensorFlowNET.Core/Keras/Saving/ModelConfig.cs b/src/TensorFlowNET.Core/Keras/Saving/ModelConfig.cs index abfb235be..8ddcd1f04 100644 --- a/src/TensorFlowNET.Core/Keras/Saving/ModelConfig.cs +++ b/src/TensorFlowNET.Core/Keras/Saving/ModelConfig.cs @@ -1,15 +1,23 @@ -using System; +using Newtonsoft.Json; +using Newtonsoft.Json.Linq; +using System; using System.Collections.Generic; using System.Text; +using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using static Google.Protobuf.Reflection.FieldDescriptorProto.Types; namespace Tensorflow.Keras.Saving { - public class ModelConfig + public class FunctionalConfig : IKerasConfig { + [JsonProperty("name")] public string Name { get; set; } + [JsonProperty("layers")] public List Layers { get; set; } + [JsonProperty("input_layers")] public List InputLayers { get; set; } + [JsonProperty("output_layers")] public List OutputLayers { get; set; } public override string ToString() diff --git a/src/TensorFlowNET.Core/Keras/Saving/NodeConfig.cs b/src/TensorFlowNET.Core/Keras/Saving/NodeConfig.cs index 3132248ef..8337ae018 100644 --- a/src/TensorFlowNET.Core/Keras/Saving/NodeConfig.cs +++ b/src/TensorFlowNET.Core/Keras/Saving/NodeConfig.cs @@ -1,10 +1,13 @@ -using System; +using Newtonsoft.Json; +using System; using System.Collections.Generic; using System.Text; +using Tensorflow.Keras.Saving.Common; namespace Tensorflow.Keras.Saving { - public class NodeConfig + [JsonConverter(typeof(CustomizedNodeConfigJsonConverter))] + public class NodeConfig : IKerasConfig { public string Name { get; set; } public int NodeIndex { get; set; } diff --git a/src/TensorFlowNET.Core/Keras/Saving/SavedModel/ISerializedAttributes.cs b/src/TensorFlowNET.Core/Keras/Saving/SavedModel/ISerializedAttributes.cs new file mode 100644 index 000000000..ae8a1ab13 --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/Saving/SavedModel/ISerializedAttributes.cs @@ -0,0 +1,35 @@ +using System; +using System.Collections.Generic; +using Tensorflow.Train; + +namespace Tensorflow.Keras.Saving.SavedModel +{ + public interface ISerializedAttributes + { + IDictionary Functions { get; } + + IDictionary CheckpointableObjects { get; } + + /// + /// Returns functions to attach to the root object during serialization. + /// + IDictionary FunctionsToSerialize { get; } + + /// + /// Returns objects to attach to the root object during serialization. + /// + IDictionary ObjectsToSerialize{get; } + + /// + /// Saves function dictionary, and validates dictionary values. + /// + /// + IDictionary set_and_validate_functions(IDictionary function_dict); + + /// + /// Saves objects to a dictionary, and validates the values. + /// + /// + IDictionary set_and_validate_objects(IDictionary object_dict); + } +} diff --git a/src/TensorFlowNET.Core/ModelSaving/ModelSaver.cs b/src/TensorFlowNET.Core/ModelSaving/ModelSaver.cs index 4437ba0aa..9ff381299 100644 --- a/src/TensorFlowNET.Core/ModelSaving/ModelSaver.cs +++ b/src/TensorFlowNET.Core/ModelSaving/ModelSaver.cs @@ -3,6 +3,7 @@ using System.Text; using Tensorflow.Keras.Engine; using Tensorflow.Train; +using Tensorflow.Training.Saving.SavedModel; namespace Tensorflow.ModelSaving { diff --git a/src/TensorFlowNET.Core/ModelSaving/SaveOptions.cs b/src/TensorFlowNET.Core/ModelSaving/SaveOptions.cs deleted file mode 100644 index e25537d80..000000000 --- a/src/TensorFlowNET.Core/ModelSaving/SaveOptions.cs +++ /dev/null @@ -1,18 +0,0 @@ -using System; -using System.Collections.Generic; -using System.Text; - -namespace Tensorflow.ModelSaving -{ - /// - /// Options for saving to SavedModel. - /// - public class SaveOptions - { - bool save_debug_info; - public SaveOptions(bool save_debug_info = false) - { - this.save_debug_info = save_debug_info; - } - } -} diff --git a/src/TensorFlowNET.Core/NumPy/Axis.cs b/src/TensorFlowNET.Core/NumPy/Axis.cs index 6c7189df1..7a3ecbf10 100644 --- a/src/TensorFlowNET.Core/NumPy/Axis.cs +++ b/src/TensorFlowNET.Core/NumPy/Axis.cs @@ -14,20 +14,29 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Newtonsoft.Json; using System; using System.Collections.Generic; using System.Linq; using System.Text; +using Tensorflow.Keras.Saving.Common; namespace Tensorflow { - public record Axis(params int[] axis) + [JsonConverter(typeof(CustomizedAxisJsonConverter))] + public class Axis { + public int[] axis { get; set; } public int size => axis == null ? -1 : axis.Length; public bool IsScalar { get; init; } public int this[int index] => axis[index]; + public Axis(params int[] axis) + { + this.axis = axis; + } + public static implicit operator int[]?(Axis axis) => axis?.axis; @@ -65,8 +74,3 @@ public override string ToString() => IsScalar ? $"{axis[0]}" : $"({string.Join(", ", axis)})"; } } - -namespace System.Runtime.CompilerServices -{ - internal static class IsExternalInit { } -} diff --git a/src/TensorFlowNET.Core/NumPy/Implementation/NumPyImpl.Creation.cs b/src/TensorFlowNET.Core/NumPy/Implementation/NumPyImpl.Creation.cs index f29879b0f..c0f9e695d 100644 --- a/src/TensorFlowNET.Core/NumPy/Implementation/NumPyImpl.Creation.cs +++ b/src/TensorFlowNET.Core/NumPy/Implementation/NumPyImpl.Creation.cs @@ -4,6 +4,8 @@ using System.Linq; using System.Text; using Tensorflow.Util; +using Razorvine.Pickle; +using Tensorflow.NumPy.Pickle; using static Tensorflow.Binding; namespace Tensorflow.NumPy @@ -97,6 +99,14 @@ Array ReadValueMatrix(BinaryReader reader, Array matrix, int bytes, Type type, i return matrix; } + Array ReadObjectMatrix(BinaryReader reader, Array matrix, int[] shape) + { + Stream deflateStream = reader.BaseStream; + BufferedStream bufferedStream = new BufferedStream(deflateStream); + var unpickler = new Unpickler(); + return (MultiArrayPickleWarpper)unpickler.load(bufferedStream); + } + public (NDArray, NDArray) meshgrid(T[] array, bool copy = true, bool sparse = false) { var tensors = array_ops.meshgrid(array, copy: copy, sparse: sparse); diff --git a/src/TensorFlowNET.Core/NumPy/Implementation/NumPyImpl.load.cs b/src/TensorFlowNET.Core/NumPy/Implementation/NumPyImpl.load.cs index 70a4245b3..199e5ced3 100644 --- a/src/TensorFlowNET.Core/NumPy/Implementation/NumPyImpl.load.cs +++ b/src/TensorFlowNET.Core/NumPy/Implementation/NumPyImpl.load.cs @@ -1,11 +1,4 @@ - using System; -using System.Collections; -using System.Collections.Generic; -using System.IO; -using System.Linq; -using System.Reflection; -using System.Text; -using Tensorflow.Util; +using System.IO; namespace Tensorflow.NumPy { @@ -15,10 +8,7 @@ public NDArray load(string file) { using var stream = new FileStream(file, FileMode.Open); using var reader = new BinaryReader(stream, Encoding.ASCII, leaveOpen: true); - int bytes; - Type type; - int[] shape; - if (!ParseReader(reader, out bytes, out type, out shape)) + if (!ParseReader(reader, out var bytes, out var type, out var shape)) throw new FormatException(); Array array = Create(type, shape.Aggregate((dims, dim) => dims * dim)); @@ -31,17 +21,20 @@ public Array LoadMatrix(Stream stream) { using (var reader = new BinaryReader(stream, System.Text.Encoding.ASCII, leaveOpen: true)) { - int bytes; - Type type; - int[] shape; - if (!ParseReader(reader, out bytes, out type, out shape)) + if (!ParseReader(reader, out var bytes, out var type, out var shape)) throw new FormatException(); Array matrix = Array.CreateInstance(type, shape); //if (type == typeof(String)) - //return ReadStringMatrix(reader, matrix, bytes, type, shape); - return ReadValueMatrix(reader, matrix, bytes, type, shape); + //return ReadStringMatrix(reader, matrix, bytes, type, shape); + + if (type == typeof(Object)) + return ReadObjectMatrix(reader, matrix, shape); + else + { + return ReadValueMatrix(reader, matrix, bytes, type, shape); + } } } @@ -50,7 +43,7 @@ public T Load(Stream stream) ICloneable, IList, ICollection, IEnumerable, IStructuralComparable, IStructuralEquatable { // if (typeof(T).IsArray && (typeof(T).GetElementType().IsArray || typeof(T).GetElementType() == typeof(string))) - // return LoadJagged(stream) as T; + // return LoadJagged(stream) as T; return LoadMatrix(stream) as T; } @@ -106,7 +99,7 @@ bool ParseReader(BinaryReader reader, out int bytes, out Type t, out int[] shape Type GetType(string dtype, out int bytes, out bool? isLittleEndian) { isLittleEndian = IsLittleEndian(dtype); - bytes = Int32.Parse(dtype.Substring(2)); + bytes = dtype.Length > 2 ? Int32.Parse(dtype.Substring(2)) : 0; string typeCode = dtype.Substring(1); @@ -134,6 +127,8 @@ Type GetType(string dtype, out int bytes, out bool? isLittleEndian) return typeof(Double); if (typeCode.StartsWith("S")) return typeof(String); + if (typeCode.StartsWith("O")) + return typeof(Object); throw new NotSupportedException(); } diff --git a/src/TensorFlowNET.Core/NumPy/Implementation/RandomizedImpl.cs b/src/TensorFlowNET.Core/NumPy/Implementation/RandomizedImpl.cs index 222b10bb0..a707e8aae 100644 --- a/src/TensorFlowNET.Core/NumPy/Implementation/RandomizedImpl.cs +++ b/src/TensorFlowNET.Core/NumPy/Implementation/RandomizedImpl.cs @@ -14,17 +14,17 @@ public class RandomizedImpl public NDArray permutation(NDArray x) => new NDArray(random_ops.random_shuffle(x)); [AutoNumPy] - public void shuffle(NDArray x) + public void shuffle(NDArray x, int? seed = null) { - var y = random_ops.random_shuffle(x); + var y = random_ops.random_shuffle(x, seed); Marshal.Copy(y.BufferToArray(), 0, x.TensorDataPointer, (int)x.bytesize); } - public NDArray rand(params int[] shape) - => throw new NotImplementedException(""); + public NDArray random(Shape size) + => uniform(low: 0, high: 1, size: size); [AutoNumPy] - public NDArray randint(int low, int? high = null, Shape size = null, TF_DataType dtype = TF_DataType.TF_INT32) + public NDArray randint(int low, int? high = null, Shape? size = null, TF_DataType dtype = TF_DataType.TF_INT32) { if(high == null) { @@ -41,11 +41,11 @@ public NDArray randn(params int[] shape) => new NDArray(random_ops.random_normal(shape ?? Shape.Scalar)); [AutoNumPy] - public NDArray normal(float loc = 0.0f, float scale = 1.0f, Shape size = null) + public NDArray normal(float loc = 0.0f, float scale = 1.0f, Shape? size = null) => new NDArray(random_ops.random_normal(size ?? Shape.Scalar, mean: loc, stddev: scale)); [AutoNumPy] - public NDArray uniform(float low = 0.0f, float high = 1.0f, Shape size = null) + public NDArray uniform(float low = 0.0f, float high = 1.0f, Shape? size = null) => new NDArray(random_ops.random_uniform(size ?? Shape.Scalar, low, high)); } } diff --git a/src/TensorFlowNET.Core/NumPy/NDArray.Implicit.cs b/src/TensorFlowNET.Core/NumPy/NDArray.Implicit.cs index 53401a444..45b236c7b 100644 --- a/src/TensorFlowNET.Core/NumPy/NDArray.Implicit.cs +++ b/src/TensorFlowNET.Core/NumPy/NDArray.Implicit.cs @@ -14,7 +14,76 @@ public void Deconstruct(out byte blue, out byte green, out byte red) red = data[2]; } - public static implicit operator NDArray(Array array) + public static implicit operator NDArray(int[] array) + => new NDArray(array); + + public static implicit operator NDArray(byte[] array) + => new NDArray(array); + + public static implicit operator NDArray(float[] array) + => new NDArray(array); + + public static implicit operator NDArray(double[] array) + => new NDArray(array); + + public static implicit operator NDArray(long[] array) + => new NDArray(array); + + public static implicit operator NDArray(bool[] array) + => new NDArray(array); + + public static implicit operator NDArray(uint[] array) + => new NDArray(array); + + public static implicit operator NDArray(ulong[] array) + => new NDArray(array); + + public static implicit operator NDArray(int[,] array) + => new NDArray(array); + + public static implicit operator NDArray(byte[,] array) + => new NDArray(array); + + public static implicit operator NDArray(float[,] array) + => new NDArray(array); + + public static implicit operator NDArray(double[,] array) + => new NDArray(array); + + public static implicit operator NDArray(long[,] array) + => new NDArray(array); + + public static implicit operator NDArray(bool[,] array) + => new NDArray(array); + + public static implicit operator NDArray(uint[,] array) + => new NDArray(array); + + public static implicit operator NDArray(ulong[,] array) + => new NDArray(array); + + public static implicit operator NDArray(int[,,] array) + => new NDArray(array); + + public static implicit operator NDArray(byte[,,] array) + => new NDArray(array); + + public static implicit operator NDArray(float[,,] array) + => new NDArray(array); + + public static implicit operator NDArray(double[,,] array) + => new NDArray(array); + + public static implicit operator NDArray(long[,,] array) + => new NDArray(array); + + public static implicit operator NDArray(bool[,,] array) + => new NDArray(array); + + public static implicit operator NDArray(uint[,,] array) + => new NDArray(array); + + public static implicit operator NDArray(ulong[,,] array) => new NDArray(array); public unsafe static implicit operator bool(NDArray nd) @@ -38,9 +107,15 @@ public unsafe static implicit operator double(NDArray nd) public static implicit operator NDArray(bool value) => new NDArray(value); + public static implicit operator NDArray(byte value) + => new NDArray(value); + public static implicit operator NDArray(int value) => new NDArray(value); + public static implicit operator NDArray(long value) + => new NDArray(value); + public static implicit operator NDArray(float value) => new NDArray(value); diff --git a/src/TensorFlowNET.Core/NumPy/NDArray.Operators.cs b/src/TensorFlowNET.Core/NumPy/NDArray.Operators.cs index 7168678a3..dd4577096 100644 --- a/src/TensorFlowNET.Core/NumPy/NDArray.Operators.cs +++ b/src/TensorFlowNET.Core/NumPy/NDArray.Operators.cs @@ -1,8 +1,4 @@ -using System; -using System.Collections.Generic; -using System.Linq; -using System.Text; -using static Tensorflow.Binding; +using static Tensorflow.Binding; namespace Tensorflow.NumPy { @@ -14,21 +10,52 @@ public partial class NDArray public static NDArray operator -(NDArray lhs, NDArray rhs) => new NDArray(BinaryOpWrapper("sub", lhs, rhs)); [AutoNumPy] public static NDArray operator *(NDArray lhs, NDArray rhs) => new NDArray(BinaryOpWrapper("mul", lhs, rhs)); - [AutoNumPy] + [AutoNumPy] public static NDArray operator /(NDArray lhs, NDArray rhs) => new NDArray(BinaryOpWrapper("div", lhs, rhs)); [AutoNumPy] public static NDArray operator %(NDArray lhs, NDArray rhs) => new NDArray(BinaryOpWrapper("mod", lhs, rhs)); - [AutoNumPy] + [AutoNumPy] public static NDArray operator >(NDArray lhs, NDArray rhs) => new NDArray(gen_math_ops.greater(lhs, rhs)); - [AutoNumPy] + [AutoNumPy] public static NDArray operator <(NDArray lhs, NDArray rhs) => new NDArray(gen_math_ops.less(lhs, rhs)); - [AutoNumPy] + [AutoNumPy] public static NDArray operator -(NDArray lhs) => new NDArray(gen_math_ops.neg(lhs)); [AutoNumPy] - public static NDArray operator ==(NDArray lhs, NDArray rhs) - => rhs is null ? Scalar(false) : new NDArray(math_ops.equal(lhs, rhs)); + public static NDArray operator ==(NDArray lhs, NDArray rhs) + { + if (ReferenceEquals(lhs, rhs)) + return Scalar(true); + if (lhs is null) + return Scalar(false); + if (rhs is null) + return Scalar(false); + // TODO(Rinne): use np.allclose instead. + if (lhs.dtype.is_floating() || rhs.dtype.is_floating()) + { + var diff = tf.abs(lhs - rhs); + return new NDArray(gen_math_ops.less(diff, new NDArray(1e-5).astype(diff.dtype))); + } + else + { + return new NDArray(math_ops.equal(lhs, rhs)); + } + } [AutoNumPy] - public static NDArray operator !=(NDArray lhs, NDArray rhs) - => new NDArray(math_ops.not_equal(lhs, rhs)); + public static NDArray operator !=(NDArray lhs, NDArray rhs) + { + if (ReferenceEquals(lhs, rhs)) + return Scalar(false); + if (lhs is null || rhs is null) + return Scalar(true); + if (lhs.dtype.is_floating() || rhs.dtype.is_floating()) + { + var diff = tf.abs(lhs - rhs); + return new NDArray(gen_math_ops.greater_equal(diff, new NDArray(1e-5).astype(diff.dtype))); + } + else + { + return new NDArray(math_ops.not_equal(lhs, rhs)); + } + } } } diff --git a/src/TensorFlowNET.Core/NumPy/NDArrayConverter.cs b/src/TensorFlowNET.Core/NumPy/NDArrayConverter.cs index 2d042a5d1..4c64eba74 100644 --- a/src/TensorFlowNET.Core/NumPy/NDArrayConverter.cs +++ b/src/TensorFlowNET.Core/NumPy/NDArrayConverter.cs @@ -10,11 +10,13 @@ public class NDArrayConverter public unsafe static T Scalar(NDArray nd) where T : unmanaged => nd.dtype switch { + TF_DataType.TF_BOOL => Scalar(*(bool*)nd.data), TF_DataType.TF_UINT8 => Scalar(*(byte*)nd.data), TF_DataType.TF_FLOAT => Scalar(*(float*)nd.data), TF_DataType.TF_INT32 => Scalar(*(int*)nd.data), TF_DataType.TF_INT64 => Scalar(*(long*)nd.data), - _ => throw new NotImplementedException("") + TF_DataType.TF_DOUBLE => Scalar(*(double*)nd.data), + _ => throw new NotImplementedException(nameof(NDArrayConverter)) }; static T Scalar(byte input) @@ -23,7 +25,8 @@ static T Scalar(byte input) TypeCode.Byte => (T)Convert.ChangeType(input, TypeCode.Byte), TypeCode.Int32 => (T)Convert.ChangeType(input, TypeCode.Int32), TypeCode.Single => (T)Convert.ChangeType(input, TypeCode.Single), - _ => throw new NotImplementedException("") + TypeCode.Double => (T)Convert.ChangeType(input, TypeCode.Double), + _ => throw new NotImplementedException(nameof(NDArrayConverter)) }; static T Scalar(float input) @@ -32,7 +35,8 @@ static T Scalar(float input) TypeCode.Byte => (T)Convert.ChangeType(input, TypeCode.Byte), TypeCode.Int32 => (T)Convert.ChangeType(input, TypeCode.Int32), TypeCode.Single => (T)Convert.ChangeType(input, TypeCode.Single), - _ => throw new NotImplementedException("") + TypeCode.Double => (T)Convert.ChangeType(input, TypeCode.Double), + _ => throw new NotImplementedException(nameof(NDArrayConverter)) }; static T Scalar(int input) @@ -41,7 +45,8 @@ static T Scalar(int input) TypeCode.Byte => (T)Convert.ChangeType(input, TypeCode.Byte), TypeCode.Int64 => (T)Convert.ChangeType(input, TypeCode.Int64), TypeCode.Single => (T)Convert.ChangeType(input, TypeCode.Single), - _ => throw new NotImplementedException("") + TypeCode.Double => (T)Convert.ChangeType(input, TypeCode.Double), + _ => throw new NotImplementedException(nameof(NDArrayConverter)) }; static T Scalar(long input) @@ -50,7 +55,8 @@ static T Scalar(long input) TypeCode.Byte => (T)Convert.ChangeType(input, TypeCode.Byte), TypeCode.Int32 => (T)Convert.ChangeType(input, TypeCode.Int32), TypeCode.Single => (T)Convert.ChangeType(input, TypeCode.Single), - _ => throw new NotImplementedException("") + TypeCode.Double => (T)Convert.ChangeType(input, TypeCode.Double), + _ => throw new NotImplementedException(nameof(NDArrayConverter)) }; public static unsafe Array ToMultiDimArray(NDArray nd) where T : unmanaged @@ -65,7 +71,7 @@ public static unsafe Array ToMultiDimArray(NDArray nd) where T : unmanaged T[,,,] array => Addr(array), T[,,,,] array => Addr(array), T[,,,,,] array => Addr(array), - _ => throw new NotImplementedException("") + _ => throw new NotImplementedException(nameof(NDArrayConverter)) }; System.Buffer.MemoryCopy(nd.data.ToPointer(), addr, nd.bytesize, nd.bytesize); diff --git a/src/TensorFlowNET.Core/NumPy/NDArrayRender.cs b/src/TensorFlowNET.Core/NumPy/NDArrayRender.cs index 741e25812..230797b8b 100644 --- a/src/TensorFlowNET.Core/NumPy/NDArrayRender.cs +++ b/src/TensorFlowNET.Core/NumPy/NDArrayRender.cs @@ -7,7 +7,7 @@ namespace Tensorflow.NumPy { public class NDArrayRender { - public static string ToString(NDArray array) + public static string ToString(NDArray array, int maxLength = 10) { Shape shape = array.shape; if (shape.IsScalar) @@ -15,12 +15,12 @@ public static string ToString(NDArray array) var s = new StringBuilder(); s.Append("array("); - Build(s, array); + Build(s, array, maxLength); s.Append(")"); return s.ToString(); } - static void Build(StringBuilder s, NDArray array) + static void Build(StringBuilder s, NDArray array, int maxLength) { var shape = array.shape; @@ -35,11 +35,11 @@ static void Build(StringBuilder s, NDArray array) var len = shape[0]; s.Append("["); - if (len <= 10) + if (len <= maxLength) { for (int i = 0; i < len; i++) { - Build(s, array[i]); + Build(s, array[i], maxLength); if (i < len - 1) { s.Append(", "); @@ -49,9 +49,9 @@ static void Build(StringBuilder s, NDArray array) } else { - for (int i = 0; i < 5; i++) + for (int i = 0; i < maxLength / 2; i++) { - Build(s, array[i]); + Build(s, array[i], maxLength); if (i < len - 1) { s.Append(", "); @@ -62,9 +62,9 @@ static void Build(StringBuilder s, NDArray array) s.Append(" ... "); s.AppendLine(); - for (int i = (int)len - 5; i < len; i++) + for (int i = (int)len - maxLength / 2; i < len; i++) { - Build(s, array[i]); + Build(s, array[i], maxLength); if (i < len - 1) { s.Append(", "); @@ -109,6 +109,7 @@ static string Render(NDArray array) TF_DataType.TF_INT8 => Render(array.ToArray(), array.shape), TF_DataType.TF_INT32 => Render(array.ToArray(), array.shape), TF_DataType.TF_INT64 => Render(array.ToArray(), array.shape), + TF_DataType.TF_UINT64 => Render(array.ToArray(), array.shape), TF_DataType.TF_FLOAT => Render(array.ToArray(), array.shape), TF_DataType.TF_DOUBLE => Render(array.ToArray(), array.shape), _ => Render(array.ToArray(), array.shape) diff --git a/src/TensorFlowNET.Core/NumPy/NumPy.Sorting.Searching.Counting.cs b/src/TensorFlowNET.Core/NumPy/NumPy.Sorting.Searching.Counting.cs index 61feb5e78..4cad36e0b 100644 --- a/src/TensorFlowNET.Core/NumPy/NumPy.Sorting.Searching.Counting.cs +++ b/src/TensorFlowNET.Core/NumPy/NumPy.Sorting.Searching.Counting.cs @@ -1,6 +1,7 @@ using System; using System.Collections; using System.Collections.Generic; +using System.Globalization; using System.Numerics; using System.Text; @@ -9,11 +10,15 @@ namespace Tensorflow.NumPy public partial class np { [AutoNumPy] - public static NDArray argmax(NDArray a, Axis axis = null) + public static NDArray argmax(NDArray a, Axis? axis = null) => new NDArray(math_ops.argmax(a, axis ?? 0)); [AutoNumPy] - public static NDArray argsort(NDArray a, Axis axis = null) + public static NDArray argmin(NDArray a, Axis? axis = null) + => new NDArray(math_ops.argmin(a, axis ?? 0)); + + [AutoNumPy] + public static NDArray argsort(NDArray a, Axis? axis = null) => new NDArray(sort_ops.argsort(a, axis: axis ?? -1)); [AutoNumPy] @@ -25,5 +30,22 @@ public static (NDArray, NDArray) unique(NDArray a) [AutoNumPy] public static void shuffle(NDArray x) => np.random.shuffle(x); + + /// + /// Sorts a ndarray + /// + /// + /// + /// The axis along which to sort. The default is -1, which sorts the last axis. + /// + /// + /// The direction in which to sort the values (`'ASCENDING'` or `'DESCENDING'`) + /// + /// + /// A `NDArray` with the same dtype and shape as `values`, with the elements sorted along the given `axis`. + /// + [AutoNumPy] + public static NDArray sort(NDArray values, Axis? axis = null, string direction = "ASCENDING") + => new NDArray(sort_ops.sort(values, axis: axis ?? -1, direction: direction)); } } diff --git a/src/TensorFlowNET.Core/NumPy/NumPy.Statistics.cs b/src/TensorFlowNET.Core/NumPy/NumPy.Statistics.cs index 5d86b1b39..bce16ec9f 100644 --- a/src/TensorFlowNET.Core/NumPy/NumPy.Statistics.cs +++ b/src/TensorFlowNET.Core/NumPy/NumPy.Statistics.cs @@ -10,10 +10,10 @@ namespace Tensorflow.NumPy public partial class np { [AutoNumPy] - public static NDArray amin(NDArray x, int axis = 0) => new NDArray(tf.arg_min(x, axis)); + public static NDArray amin(NDArray x, int axis = 0) => new NDArray(tf.min(x, axis)); [AutoNumPy] - public static NDArray amax(NDArray x, int axis = 0) => new NDArray(tf.math.argmax(x, axis)); + public static NDArray amax(NDArray x, int axis = 0) => new NDArray(tf.max(x, axis)); [AutoNumPy] public static NDArray average(NDArray a, int axis = -1, NDArray? weights = null, bool returned = false) diff --git a/src/TensorFlowNET.Core/NumPy/Numpy.Manipulation.cs b/src/TensorFlowNET.Core/NumPy/Numpy.Manipulation.cs index 091509fda..5e2574170 100644 --- a/src/TensorFlowNET.Core/NumPy/Numpy.Manipulation.cs +++ b/src/TensorFlowNET.Core/NumPy/Numpy.Manipulation.cs @@ -8,6 +8,10 @@ namespace Tensorflow.NumPy { public partial class np { + [AutoNumPy] + public static NDArray concatenate((NDArray, NDArray) tuple, int axis = 0) + => new NDArray(array_ops.concat(new[] { tuple.Item1, tuple.Item2 }, axis)); + [AutoNumPy] public static NDArray concatenate(NDArray[] arrays, int axis = 0) => new NDArray(array_ops.concat(arrays, axis)); @@ -26,6 +30,15 @@ public partial class np [AutoNumPy] public static NDArray stack(params NDArray[] arrays) => new NDArray(array_ops.stack(arrays)); + [AutoNumPy] + public static NDArray stack(NDArray[] arrays, int axis = 0) => new NDArray(array_ops.stack(arrays, axis)); + + [AutoNumPy] + public static NDArray stack((NDArray, NDArray) tuple, int axis = 0) => new NDArray(array_ops.stack(new[] { tuple.Item1, tuple.Item2 }, axis)); + + [AutoNumPy] + public static NDArray stack((NDArray, NDArray, NDArray) tuple, int axis = 0) => new NDArray(array_ops.stack(new[] { tuple.Item1, tuple.Item2, tuple.Item3 }, axis)); + [AutoNumPy] public static NDArray moveaxis(NDArray array, Axis source, Axis destination) => new NDArray(array_ops.moveaxis(array, source, destination)); } diff --git a/src/TensorFlowNET.Core/NumPy/Numpy.Math.cs b/src/TensorFlowNET.Core/NumPy/Numpy.Math.cs index 0e50cd564..2559638b3 100644 --- a/src/TensorFlowNET.Core/NumPy/Numpy.Math.cs +++ b/src/TensorFlowNET.Core/NumPy/Numpy.Math.cs @@ -28,7 +28,16 @@ public partial class np public static NDArray multiply(NDArray x1, NDArray x2) => new NDArray(tf.multiply(x1, x2)); [AutoNumPy] - public static NDArray maximum(NDArray x1, NDArray x2) => new NDArray(tf.maximum(x1, x2)); + //public static NDArray maximum(NDArray x1, NDArray x2) => new NDArray(tf.maximum(x1, x2)); + public static NDArray maximum(NDArray x1, NDArray x2, int? axis = null) + { + var maxValues = tf.maximum(x1, x2); + if (axis.HasValue) + { + maxValues = tf.reduce_max(maxValues, axis: axis.Value); + } + return new NDArray(maxValues); + } [AutoNumPy] public static NDArray minimum(NDArray x1, NDArray x2) => new NDArray(tf.minimum(x1, x2)); @@ -40,9 +49,30 @@ public static NDArray prod(NDArray array, Axis? axis = null, Type? dtype = null, [AutoNumPy] public static NDArray prod(params T[] array) where T : unmanaged => new NDArray(tf.reduce_prod(new NDArray(array))); + [AutoNumPy] + public static NDArray dot(NDArray x1, NDArray x2, NDArray? axes = null, string? name = null) + { + //if axes mentioned + if (axes != null) + { + return new NDArray(tf.dot_prod(x1, x2, axes, name)); + } + if (x1.shape.ndim > 1) + { + x1 = GetFlattenArray(x1); + } + if (x2.shape.ndim > 1) + { + x2 = GetFlattenArray(x2); + } + //if axes not mentioned, default 0,0 + return new NDArray(tf.dot_prod(x1, x2, axes: new int[] { 0, 0 }, name)); + } [AutoNumPy] public static NDArray power(NDArray x, NDArray y) => new NDArray(tf.pow(x, y)); + [AutoNumPy] + public static NDArray square(NDArray x) => new NDArray(tf.square(x)); [AutoNumPy] public static NDArray sin(NDArray x) => new NDArray(math_ops.sin(x)); @@ -55,5 +85,11 @@ public static NDArray prod(params T[] array) where T : unmanaged [AutoNumPy] public static NDArray add(NDArray x, NDArray y) => new NDArray(math_ops.add(x, y)); + + [AutoNumPy] + public static NDArray greater(NDArray x, NDArray y) => new NDArray(tf.greater(x, y)); + + [AutoNumPy] + public static NDArray less(NDArray x, NDArray y) => new NDArray(tf.less(x, y)); } } diff --git a/src/TensorFlowNET.Core/NumPy/Numpy.Persistence.cs b/src/TensorFlowNET.Core/NumPy/Numpy.Persistence.cs new file mode 100644 index 000000000..b349f5229 --- /dev/null +++ b/src/TensorFlowNET.Core/NumPy/Numpy.Persistence.cs @@ -0,0 +1,60 @@ +/***************************************************************************** + Copyright 2023 Haiping Chen. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +******************************************************************************/ + +using System.IO; +using System.IO.Compression; + +namespace Tensorflow.NumPy; + +public partial class np +{ + [AutoNumPy] + public static NpzDictionary loadz(string file) + { + using var stream = new FileStream(file, FileMode.Open); + return new NpzDictionary(stream); + } + + public static void save(string file, NDArray nd) + { + using var stream = new FileStream(file, FileMode.Create); + NpyFormat.Save(nd, stream); + } + + public static void savez(string file, params NDArray[] nds) + { + using var stream = new FileStream(file, FileMode.Create); + NpzFormat.Save(nds, stream); + } + + public static void savez(string file, object nds) + { + using var stream = new FileStream(file, FileMode.Create); + NpzFormat.Save(nds, stream); + } + + public static void savez_compressed(string file, params NDArray[] nds) + { + using var stream = new FileStream(file, FileMode.Create); + NpzFormat.Save(nds, stream, CompressionLevel.Fastest); + } + + public static void savez_compressed(string file, object nds) + { + using var stream = new FileStream(file, FileMode.Create); + NpzFormat.Save(nds, stream, CompressionLevel.Fastest); + } +} diff --git a/src/TensorFlowNET.Core/NumPy/Persistence/NpyFormat.cs b/src/TensorFlowNET.Core/NumPy/Persistence/NpyFormat.cs new file mode 100644 index 000000000..10de0e7d2 --- /dev/null +++ b/src/TensorFlowNET.Core/NumPy/Persistence/NpyFormat.cs @@ -0,0 +1,95 @@ +using System.IO; +using System.Runtime.InteropServices; + +namespace Tensorflow.NumPy; + +public class NpyFormat +{ + public static void Save(NDArray array, Stream stream, bool leaveOpen = true) + { + using var writer = new BinaryWriter(stream, Encoding.ASCII, leaveOpen: leaveOpen); + + string dtype = GetDtypeName(array, out var type, out var maxLength); + int[] shape = array.shape.as_int_list(); + var bytesWritten = (ulong)writeHeader(writer, dtype, shape); + stream.Write(array.ToByteArray(), 0, (int)array.bytesize); + } + + private static int writeHeader(BinaryWriter writer, string dtype, int[] shape) + { + // The first 6 bytes are a magic string: exactly "x93NUMPY" + + char[] magic = { 'N', 'U', 'M', 'P', 'Y' }; + writer.Write((byte)147); + writer.Write(magic); + writer.Write((byte)1); // major + writer.Write((byte)0); // minor; + + string tuple = shape.Length == 1 ? $"{shape[0]}," : String.Join(", ", shape.Select(i => i.ToString()).ToArray()); + string header = "{{'descr': '{0}', 'fortran_order': False, 'shape': ({1}), }}"; + header = string.Format(header, dtype, tuple); + int preamble = 10; // magic string (6) + 4 + + int len = header.Length + 1; // the 1 is to account for the missing \n at the end + int headerSize = len + preamble; + + int pad = 16 - (headerSize % 16); + header = header.PadRight(header.Length + pad); + header += "\n"; + headerSize = header.Length + preamble; + + if (headerSize % 16 != 0) + throw new Exception(""); + + writer.Write((ushort)header.Length); + for (int i = 0; i < header.Length; i++) + writer.Write((byte)header[i]); + + return headerSize; + } + + private static string GetDtypeName(NDArray array, out Type type, out int bytes) + { + type = array.dtype.as_system_dtype(); + + bytes = 1; + + if (type == typeof(string)) + { + throw new NotSupportedException(""); + } + else if (type == typeof(bool)) + { + bytes = 1; + } + else + { + bytes = Marshal.SizeOf(type); + } + + if (type == typeof(bool)) + return "|b1"; + else if (type == typeof(byte)) + return "|u1"; + else if (type == typeof(short)) + return " : IDisposable, IReadOnlyDictionary, ICollection + where T : class, + ICloneable, IList, ICollection, IEnumerable, IStructuralComparable, IStructuralEquatable +{ + Stream stream; + ZipArchive archive; + + bool disposedValue = false; + + Dictionary entries; + Dictionary arrays; + + + public NpzDictionary(Stream stream) + { + this.stream = stream; + this.archive = new ZipArchive(stream, ZipArchiveMode.Read, leaveOpen: true); + + this.entries = new Dictionary(); + foreach (var entry in archive.Entries) + this.entries[entry.FullName] = entry; + + this.arrays = new Dictionary(); + } + + + public IEnumerable Keys + { + get { return entries.Keys; } + } + + + public IEnumerable Values + { + get { return entries.Values.Select(OpenEntry); } + } + + public int Count + { + get { return entries.Count; } + } + + + public object SyncRoot + { + get { return ((ICollection)entries).SyncRoot; } + } + + + public bool IsSynchronized + { + get { return ((ICollection)entries).IsSynchronized; } + } + + public bool IsReadOnly + { + get { return true; } + } + + public T this[string key] + { + get { return OpenEntry(entries[key]); } + } + + private T OpenEntry(ZipArchiveEntry entry) + { + T array; + if (arrays.TryGetValue(entry.FullName, out array)) + return array; + + using (Stream s = entry.Open()) + { + array = Load_Npz(s); + arrays[entry.FullName] = array; + return array; + } + } + + protected virtual T Load_Npz(Stream s) + { + return np.Load(s); + } + + public bool ContainsKey(string key) + { + return entries.ContainsKey(key); + } + + public bool TryGetValue(string key, out T value) + { + value = default(T); + ZipArchiveEntry entry; + if (!entries.TryGetValue(key, out entry)) + return false; + value = OpenEntry(entry); + return true; + } + + public IEnumerator> GetEnumerator() + { + foreach (var entry in archive.Entries) + yield return new KeyValuePair(entry.FullName, OpenEntry(entry)); + } + + IEnumerator IEnumerable.GetEnumerator() + { + foreach (var entry in archive.Entries) + yield return new KeyValuePair(entry.FullName, OpenEntry(entry)); + } + + IEnumerator IEnumerable.GetEnumerator() + { + foreach (var entry in archive.Entries) + yield return OpenEntry(entry); + } + + public void CopyTo(Array array, int arrayIndex) + { + foreach (var v in this) + array.SetValue(v, arrayIndex++); + } + + public void CopyTo(T[] array, int arrayIndex) + { + foreach (var v in this) + array.SetValue(v, arrayIndex++); + } + + public void Add(T item) + { + throw new ReadOnlyException(); + } + + public void Clear() + { + throw new ReadOnlyException(); + } + + public bool Contains(T item) + { + foreach (var v in this) + if (Object.Equals(v.Value, item)) + return true; + return false; + } + + public bool Remove(T item) + { + throw new ReadOnlyException(); + } + + protected virtual void Dispose(bool disposing) + { + if (!disposedValue) + { + if (disposing) + { + archive.Dispose(); + stream.Dispose(); + } + + archive = null; + stream = null; + entries = null; + arrays = null; + + disposedValue = true; + } + } + + public void Dispose() + { + Dispose(true); + } +} diff --git a/src/TensorFlowNET.Core/NumPy/Persistence/NpzDictionaryArray.cs b/src/TensorFlowNET.Core/NumPy/Persistence/NpzDictionaryArray.cs new file mode 100644 index 000000000..ba7868faa --- /dev/null +++ b/src/TensorFlowNET.Core/NumPy/Persistence/NpzDictionaryArray.cs @@ -0,0 +1,138 @@ +using System.IO; +using System.IO.Compression; + +namespace Tensorflow.NumPy; + +public class NpzDictionary +{ + Dictionary arrays = new Dictionary(); + + public NDArray this[string key] => arrays[key]; + + public NpzDictionary(Stream stream) + { + using var archive = new ZipArchive(stream, ZipArchiveMode.Read, leaveOpen: false); + + foreach (var entry in archive.Entries) + { + arrays[entry.FullName] = OpenEntry(entry); + } + } + + private NDArray OpenEntry(ZipArchiveEntry entry) + { + if (arrays.TryGetValue(entry.FullName, out var array)) + return array; + + using var s = entry.Open(); + return (NDArray)LoadMatrix(s); + } + + public Array LoadMatrix(Stream stream) + { + using var reader = new BinaryReader(stream, System.Text.Encoding.ASCII, leaveOpen: false); + + if (!ParseReader(reader, out var bytes, out var type, out var shape)) + throw new FormatException(); + + Array matrix = Array.CreateInstance(type, shape); + + return ReadMatrix(reader, matrix, bytes, type, shape); + } + + bool ParseReader(BinaryReader reader, out int bytes, out Type t, out int[] shape) + { + bytes = 0; + t = null; + shape = null; + + // The first 6 bytes are a magic string: exactly "x93NUMPY" + if (reader.ReadChar() != 63) return false; + if (reader.ReadChar() != 'N') return false; + if (reader.ReadChar() != 'U') return false; + if (reader.ReadChar() != 'M') return false; + if (reader.ReadChar() != 'P') return false; + if (reader.ReadChar() != 'Y') return false; + + byte major = reader.ReadByte(); // 1 + byte minor = reader.ReadByte(); // 0 + + if (major != 1 || minor != 0) + throw new NotSupportedException(); + + ushort len = reader.ReadUInt16(); + + string header = new string(reader.ReadChars(len)); + string mark = "'descr': '"; + int s = header.IndexOf(mark) + mark.Length; + int e = header.IndexOf("'", s + 1); + string type = header.Substring(s, e - s); + bool? isLittleEndian; + t = GetType(type, out bytes, out isLittleEndian); + + if (isLittleEndian.HasValue && isLittleEndian.Value == false) + throw new Exception(); + + mark = "'fortran_order': "; + s = header.IndexOf(mark) + mark.Length; + e = header.IndexOf(",", s + 1); + bool fortran = bool.Parse(header.Substring(s, e - s)); + + if (fortran) + throw new Exception(); + + mark = "'shape': ("; + s = header.IndexOf(mark) + mark.Length; + e = header.IndexOf(")", s + 1); + shape = header.Substring(s, e - s).Split(',').Where(v => !String.IsNullOrEmpty(v)).Select(Int32.Parse).ToArray(); + + return true; + } + + Type GetType(string dtype, out int bytes, out bool? isLittleEndian) + { + isLittleEndian = IsLittleEndian(dtype); + bytes = int.Parse(dtype.Substring(2)); + + string typeCode = dtype.Substring(1); + return typeCode switch + { + "b1" => typeof(bool), + "i1" => typeof(byte), + "i2" => typeof(short), + "i4" => typeof(int), + "i8" => typeof(long), + "u1" => typeof(byte), + "u2" => typeof(ushort), + "u4" => typeof(uint), + "u8" => typeof(ulong), + "f4" => typeof(float), + "f8" => typeof(double), + // typeCode.StartsWith("S") => typeof(string), + _ => throw new NotSupportedException() + }; + } + + bool? IsLittleEndian(string type) + { + return type[0] switch + { + '<' => true, + '>' => false, + '|' => null, + _ => throw new Exception() + }; + } + + Array ReadMatrix(BinaryReader reader, Array matrix, int bytes, Type type, int[] shape) + { + int total = 1; + for (int i = 0; i < shape.Length; i++) + total *= shape[i]; + + var buffer = reader.ReadBytes(bytes * total); + System.Buffer.BlockCopy(buffer, 0, matrix, 0, buffer.Length); + + return matrix; + } +} diff --git a/src/TensorFlowNET.Core/NumPy/Persistence/NpzFormat.cs b/src/TensorFlowNET.Core/NumPy/Persistence/NpzFormat.cs new file mode 100644 index 000000000..7470a1ea7 --- /dev/null +++ b/src/TensorFlowNET.Core/NumPy/Persistence/NpzFormat.cs @@ -0,0 +1,37 @@ +using System.IO.Compression; +using System.IO; +using System; + +namespace Tensorflow.NumPy; + +public class NpzFormat +{ + public static void Save(NDArray[] arrays, Stream stream, CompressionLevel compression = CompressionLevel.NoCompression, bool leaveOpen = false) + { + using var zip = new ZipArchive(stream, ZipArchiveMode.Create, leaveOpen: leaveOpen); + for (int i = 0; i < arrays.Length; i++) + { + var entry = zip.CreateEntry($"arr_{i}", compression); + NpyFormat.Save(arrays[i], entry.Open(), leaveOpen); + } + } + + public static void Save(object arrays, Stream stream, CompressionLevel compression = CompressionLevel.NoCompression, bool leaveOpen = false) + { + var properties = arrays.GetType().GetProperties(); + using var zip = new ZipArchive(stream, ZipArchiveMode.Create, leaveOpen: leaveOpen); + for (int i = 0; i < properties.Length; i++) + { + var entry = zip.CreateEntry(properties[i].Name, compression); + var value = properties[i].GetValue(arrays); + if (value is NDArray nd) + { + NpyFormat.Save(nd, entry.Open(), leaveOpen); + } + else + { + throw new NotSupportedException("Please pass in NDArray."); + } + } + } +} diff --git a/src/TensorFlowNET.Core/NumPy/Pickle/DTypePickleWarpper.cs b/src/TensorFlowNET.Core/NumPy/Pickle/DTypePickleWarpper.cs new file mode 100644 index 000000000..5dff6c16b --- /dev/null +++ b/src/TensorFlowNET.Core/NumPy/Pickle/DTypePickleWarpper.cs @@ -0,0 +1,20 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.NumPy.Pickle +{ + public class DTypePickleWarpper + { + TF_DataType dtype { get; set; } + public DTypePickleWarpper(TF_DataType dtype) + { + this.dtype = dtype; + } + public void __setstate__(object[] args) { } + public static implicit operator TF_DataType(DTypePickleWarpper dTypeWarpper) + { + return dTypeWarpper.dtype; + } + } +} diff --git a/src/TensorFlowNET.Core/NumPy/Pickle/DtypeConstructor.cs b/src/TensorFlowNET.Core/NumPy/Pickle/DtypeConstructor.cs new file mode 100644 index 000000000..160c7d4e9 --- /dev/null +++ b/src/TensorFlowNET.Core/NumPy/Pickle/DtypeConstructor.cs @@ -0,0 +1,52 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics.CodeAnalysis; +using System.Text; +using Razorvine.Pickle; + +namespace Tensorflow.NumPy.Pickle +{ + /// + /// + /// + [SuppressMessage("ReSharper", "InconsistentNaming")] + [SuppressMessage("ReSharper", "MemberCanBePrivate.Global")] + [SuppressMessage("ReSharper", "MemberCanBeMadeStatic.Global")] + class DtypeConstructor : IObjectConstructor + { + public object construct(object[] args) + { + var typeCode = (string)args[0]; + TF_DataType dtype; + if (typeCode == "b1") + dtype = np.@bool; + else if (typeCode == "i1") + dtype = np.@byte; + else if (typeCode == "i2") + dtype = np.int16; + else if (typeCode == "i4") + dtype = np.int32; + else if (typeCode == "i8") + dtype = np.int64; + else if (typeCode == "u1") + dtype = np.ubyte; + else if (typeCode == "u2") + dtype = np.uint16; + else if (typeCode == "u4") + dtype = np.uint32; + else if (typeCode == "u8") + dtype = np.uint64; + else if (typeCode == "f4") + dtype = np.float32; + else if (typeCode == "f8") + dtype = np.float64; + else if (typeCode.StartsWith("S")) + dtype = np.@string; + else if (typeCode.StartsWith("O")) + dtype = np.@object; + else + throw new NotSupportedException(); + return new DTypePickleWarpper(dtype); + } + } +} diff --git a/src/TensorFlowNET.Core/NumPy/Pickle/MultiArrayConstructor.cs b/src/TensorFlowNET.Core/NumPy/Pickle/MultiArrayConstructor.cs new file mode 100644 index 000000000..885f368c4 --- /dev/null +++ b/src/TensorFlowNET.Core/NumPy/Pickle/MultiArrayConstructor.cs @@ -0,0 +1,53 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics.CodeAnalysis; +using System.Text; +using Razorvine.Pickle; +using Razorvine.Pickle.Objects; + +namespace Tensorflow.NumPy.Pickle +{ + /// + /// Creates multiarrays of objects. Returns a primitive type multiarray such as int[][] if + /// the objects are ints, etc. + /// + [SuppressMessage("ReSharper", "InconsistentNaming")] + [SuppressMessage("ReSharper", "MemberCanBePrivate.Global")] + [SuppressMessage("ReSharper", "MemberCanBeMadeStatic.Global")] + public class MultiArrayConstructor : IObjectConstructor + { + public object construct(object[] args) + { + if (args.Length != 3) + throw new InvalidArgumentError($"Invalid number of arguments in MultiArrayConstructor._reconstruct. Expected three arguments. Given {args.Length} arguments."); + + var types = (ClassDictConstructor)args[0]; + if (types.module != "numpy" || types.name != "ndarray") + throw new RuntimeError("_reconstruct: First argument must be a sub-type of ndarray"); + + var arg1 = (object[])args[1]; + var dims = new int[arg1.Length]; + for (var i = 0; i < arg1.Length; i++) + { + dims[i] = (int)arg1[i]; + } + var shape = new Shape(dims); + + TF_DataType dtype; + string identifier; + if (args[2].GetType() == typeof(string)) + identifier = (string)args[2]; + else + identifier = Encoding.UTF8.GetString((byte[])args[2]); + switch (identifier) + { + case "u": dtype = np.uint32; break; + case "c": dtype = np.complex_; break; + case "f": dtype = np.float32; break; + case "b": dtype = np.@bool; break; + default: throw new NotImplementedException($"Unsupported data type: {args[2]}"); + } + return new MultiArrayPickleWarpper(shape, dtype); + } + } +} diff --git a/src/TensorFlowNET.Core/NumPy/Pickle/MultiArrayPickleWarpper.cs b/src/TensorFlowNET.Core/NumPy/Pickle/MultiArrayPickleWarpper.cs new file mode 100644 index 000000000..af8d1ecc2 --- /dev/null +++ b/src/TensorFlowNET.Core/NumPy/Pickle/MultiArrayPickleWarpper.cs @@ -0,0 +1,119 @@ +using Newtonsoft.Json.Linq; +using Serilog.Debugging; +using System; +using System.Collections; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.NumPy.Pickle +{ + public class MultiArrayPickleWarpper + { + public Shape reconstructedShape { get; set; } + public TF_DataType reconstructedDType { get; set; } + public NDArray reconstructedNDArray { get; set; } + public Array reconstructedMultiArray { get; set; } + public MultiArrayPickleWarpper(Shape shape, TF_DataType dtype) + { + reconstructedShape = shape; + reconstructedDType = dtype; + } + public void __setstate__(object[] args) + { + if (args.Length != 5) + throw new InvalidArgumentError($"Invalid number of arguments in NDArray.__setstate__. Expected five arguments. Given {args.Length} arguments."); + + var version = (int)args[0]; // version + + var arg1 = (object[])args[1]; + var dims = new int[arg1.Length]; + for (var i = 0; i < arg1.Length; i++) + { + dims[i] = (int)arg1[i]; + } + var _ShapeLike = new Shape(dims); // shape + + TF_DataType _DType_co = (DTypePickleWarpper)args[2]; // DType + + var F_continuous = (bool)args[3]; // F-continuous + if (F_continuous) + throw new InvalidArgumentError("Fortran Continuous memory layout is not supported. Please use C-continuous layout or check the data format."); + + var data = args[4]; // Data + /* + * If we ever need another pickle format, increment the version + * number. But we should still be able to handle the old versions. + */ + if (version < 0 || version > 4) + throw new ValueError($"can't handle version {version} of numpy.dtype pickle"); + + // TODO: Implement the missing details and checks from the official Numpy C code here. + // https://github.com/numpy/numpy/blob/2f0bd6e86a77e4401d0384d9a75edf9470c5deb6/numpy/core/src/multiarray/descriptor.c#L2761 + + if (data.GetType() == typeof(ArrayList)) + { + Reconstruct((ArrayList)data); + } + else + throw new NotImplementedException(""); + } + private void Reconstruct(ArrayList arrayList) + { + int ndim = 1; + var subArrayList = arrayList; + while (subArrayList.Count > 0 && subArrayList[0] != null && subArrayList[0].GetType() == typeof(ArrayList)) + { + subArrayList = (ArrayList)subArrayList[0]; + ndim += 1; + } + var type = subArrayList[0].GetType(); + if (type == typeof(int)) + { + if (ndim == 1) + { + int[] list = (int[])arrayList.ToArray(typeof(int)); + Shape shape = new Shape(new int[] { arrayList.Count }); + reconstructedMultiArray = list; + reconstructedNDArray = new NDArray(list, shape); + } + if (ndim == 2) + { + int secondDim = 0; + foreach (ArrayList subArray in arrayList) + { + secondDim = subArray.Count > secondDim ? subArray.Count : secondDim; + } + int[,] list = new int[arrayList.Count, secondDim]; + for (int i = 0; i < arrayList.Count; i++) + { + var subArray = (ArrayList?)arrayList[i]; + if (subArray == null) + throw new NullReferenceException(""); + for (int j = 0; j < subArray.Count; j++) + { + var element = subArray[j]; + if (element == null) + throw new NoNullAllowedException("the element of ArrayList cannot be null."); + list[i, j] = (int)element; + } + } + Shape shape = new Shape(new int[] { arrayList.Count, secondDim }); + reconstructedMultiArray = list; + reconstructedNDArray = new NDArray(list, shape); + } + if (ndim > 2) + throw new NotImplementedException("can't handle ArrayList with more than two dimensions."); + } + else + throw new NotImplementedException(""); + } + public static implicit operator Array(MultiArrayPickleWarpper arrayWarpper) + { + return arrayWarpper.reconstructedMultiArray; + } + public static implicit operator NDArray(MultiArrayPickleWarpper arrayWarpper) + { + return arrayWarpper.reconstructedNDArray; + } + } +} diff --git a/src/TensorFlowNET.Core/NumPy/ShapeHelper.cs b/src/TensorFlowNET.Core/NumPy/ShapeHelper.cs index 9c9ae7d3d..80f056fe5 100644 --- a/src/TensorFlowNET.Core/NumPy/ShapeHelper.cs +++ b/src/TensorFlowNET.Core/NumPy/ShapeHelper.cs @@ -9,6 +9,9 @@ public class ShapeHelper { public static long GetSize(Shape shape) { + if (shape.IsNull) + return 0; + // scalar if (shape.ndim == 0) return 1; diff --git a/src/TensorFlowNET.Core/Numpy/NDArray.Creation.cs b/src/TensorFlowNET.Core/Numpy/NDArray.Creation.cs index 7417476e1..af7e94c85 100644 --- a/src/TensorFlowNET.Core/Numpy/NDArray.Creation.cs +++ b/src/TensorFlowNET.Core/Numpy/NDArray.Creation.cs @@ -8,6 +8,7 @@ namespace Tensorflow.NumPy { public partial class NDArray { + protected NDArray() { } public NDArray(bool value) : base(value) => NewEagerTensorHandle(); public NDArray(byte value) : base(value) => NewEagerTensorHandle(); public NDArray(short value) : base(value) => NewEagerTensorHandle(); @@ -57,11 +58,25 @@ public static NDArray Scalar(T value) where T : unmanaged _ => throw new NotImplementedException("") }; + /// + /// Reuse the existing memory instead of copying it. + /// + /// + /// + /// + /// + protected void InitWithExistingMemory(IntPtr data_ptr, Shape shape, TF_DataType dtype, c_api.DeallocatorV2 deallocator) + { + _handle = c_api.TF_NewTensor(TF_DataType.TF_STRING, shape.dims, shape.ndim, data_ptr, (ulong)(shape.size * dtype.get_datatype_size()), deallocator, IntPtr.Zero); + tensor_util.DangerousManuallySetTensorDType(_handle, dtype); + NewEagerTensorHandle(); + } + void NewEagerTensorHandle() { if (_handle is not null) { - _eagerTensorHandle = c_api.TFE_NewTensorHandle(_handle, tf.Status.Handle); + _eagerTensorHandle = c_api.TFE_NewTensorHandle(_handle, tf.Status); } } } diff --git a/src/TensorFlowNET.Core/Numpy/NDArray.cs b/src/TensorFlowNET.Core/Numpy/NDArray.cs index 3a2cb3ee2..6e4c6b32c 100644 --- a/src/TensorFlowNET.Core/Numpy/NDArray.cs +++ b/src/TensorFlowNET.Core/Numpy/NDArray.cs @@ -49,5 +49,8 @@ public IEnumerator GetEnumerator() IEnumerator IEnumerable.GetEnumerator() => GetEnumerator(); + + public static explicit operator NDArray(Array array) + => new NDArray(array); } } diff --git a/src/TensorFlowNET.Core/Numpy/NpzDictionary.cs b/src/TensorFlowNET.Core/Numpy/NpzDictionary.cs deleted file mode 100644 index bb7ff693e..000000000 --- a/src/TensorFlowNET.Core/Numpy/NpzDictionary.cs +++ /dev/null @@ -1,206 +0,0 @@ -using System; -using System.Collections; -using System.Collections.Generic; -using System.Data; -using System.IO; -using System.IO.Compression; -using System.Linq; -using System.Text; -using Tensorflow.Util; - -namespace Tensorflow.NumPy -{ - public class NpzDictionary : IDisposable, IReadOnlyDictionary, ICollection - where T : class, - ICloneable, IList, ICollection, IEnumerable, IStructuralComparable, IStructuralEquatable - { - Stream stream; - ZipArchive archive; - - bool disposedValue = false; - - Dictionary entries; - Dictionary arrays; - - - public NpzDictionary(Stream stream) - { - this.stream = stream; - this.archive = new ZipArchive(stream, ZipArchiveMode.Read, leaveOpen: true); - - this.entries = new Dictionary(); - foreach (var entry in archive.Entries) - this.entries[entry.FullName] = entry; - - this.arrays = new Dictionary(); - } - - - public IEnumerable Keys - { - get { return entries.Keys; } - } - - - public IEnumerable Values - { - get { return entries.Values.Select(OpenEntry); } - } - - public int Count - { - get { return entries.Count; } - } - - - public object SyncRoot - { - get { return ((ICollection)entries).SyncRoot; } - } - - - public bool IsSynchronized - { - get { return ((ICollection)entries).IsSynchronized; } - } - - public bool IsReadOnly - { - get { return true; } - } - - public T this[string key] - { - get { return OpenEntry(entries[key]); } - } - - private T OpenEntry(ZipArchiveEntry entry) - { - T array; - if (arrays.TryGetValue(entry.FullName, out array)) - return array; - - using (Stream s = entry.Open()) - { - array = Load_Npz(s); - arrays[entry.FullName] = array; - return array; - } - } - - protected virtual T Load_Npz(Stream s) - { - return np.Load(s); - } - - public bool ContainsKey(string key) - { - return entries.ContainsKey(key); - } - - public bool TryGetValue(string key, out T value) - { - value = default(T); - ZipArchiveEntry entry; - if (!entries.TryGetValue(key, out entry)) - return false; - value = OpenEntry(entry); - return true; - } - - public IEnumerator> GetEnumerator() - { - foreach (var entry in archive.Entries) - yield return new KeyValuePair(entry.FullName, OpenEntry(entry)); - } - - IEnumerator IEnumerable.GetEnumerator() - { - foreach (var entry in archive.Entries) - yield return new KeyValuePair(entry.FullName, OpenEntry(entry)); - } - - IEnumerator IEnumerable.GetEnumerator() - { - foreach (var entry in archive.Entries) - yield return OpenEntry(entry); - } - - public void CopyTo(Array array, int arrayIndex) - { - foreach (var v in this) - array.SetValue(v, arrayIndex++); - } - - public void CopyTo(T[] array, int arrayIndex) - { - foreach (var v in this) - array.SetValue(v, arrayIndex++); - } - - public void Add(T item) - { - throw new ReadOnlyException(); - } - - public void Clear() - { - throw new ReadOnlyException(); - } - - public bool Contains(T item) - { - foreach (var v in this) - if (Object.Equals(v.Value, item)) - return true; - return false; - } - - public bool Remove(T item) - { - throw new ReadOnlyException(); - } - - protected virtual void Dispose(bool disposing) - { - if (!disposedValue) - { - if (disposing) - { - archive.Dispose(); - stream.Dispose(); - } - - archive = null; - stream = null; - entries = null; - arrays = null; - - disposedValue = true; - } - } - - public void Dispose() - { - Dispose(true); - } - } - - public class NpzDictionary : NpzDictionary - { - bool jagged; - - public NpzDictionary(Stream stream, bool jagged) - : base(stream) - { - this.jagged = jagged; - } - - protected override Array Load_Npz(Stream s) - { - //if (jagged) - //return np.LoadJagged(s); - return np.LoadMatrix(s); - } - } -} diff --git a/src/TensorFlowNET.Core/Numpy/Numpy.Creation.cs b/src/TensorFlowNET.Core/Numpy/Numpy.Creation.cs index 7e6a2b656..409e5e310 100644 --- a/src/TensorFlowNET.Core/Numpy/Numpy.Creation.cs +++ b/src/TensorFlowNET.Core/Numpy/Numpy.Creation.cs @@ -1,9 +1,4 @@ -using System; -using System.Collections; -using System.Collections.Generic; -using System.IO; -using System.Numerics; -using System.Text; +using System.IO; using static Tensorflow.Binding; namespace Tensorflow.NumPy @@ -66,6 +61,7 @@ public static NDArray linspace(T start, T stop, int num = 50, bool endpoint = [AutoNumPy] public static NDArray load(string file) => tf.numpy.load(file); + [AutoNumPy] public static T Load(string path) where T : class, ICloneable, IList, ICollection, IEnumerable, IStructuralComparable, IStructuralEquatable { @@ -103,11 +99,16 @@ public static NDArray ndarray(Shape shape, TF_DataType dtype = TF_DataType.TF_DO public static NDArray ones(Shape shape, TF_DataType dtype = TF_DataType.TF_DOUBLE) => new NDArray(tf.ones(shape, dtype: dtype)); - public static NDArray ones_like(NDArray a, Type dtype = null) - => throw new NotImplementedException(""); + [AutoNumPy] + public static NDArray ones_like(NDArray a, TF_DataType dtype = TF_DataType.DtInvalid) + => new NDArray(tf.ones_like(a, dtype: dtype)); [AutoNumPy] public static NDArray zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_DOUBLE) => new NDArray(tf.zeros(shape, dtype: dtype)); + + [AutoNumPy] + public static NDArray zeros_like(NDArray a, TF_DataType dtype = TF_DataType.DtInvalid) + => new NDArray(tf.zeros_like(a, dtype: dtype)); } } diff --git a/src/TensorFlowNET.Core/Numpy/Numpy.cs b/src/TensorFlowNET.Core/Numpy/Numpy.cs index cd9373d46..fee2d63fc 100644 --- a/src/TensorFlowNET.Core/Numpy/Numpy.cs +++ b/src/TensorFlowNET.Core/Numpy/Numpy.cs @@ -14,65 +14,60 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ -using System; -using System.Collections; -using System.Collections.Generic; -using System.Numerics; -using System.Text; +namespace Tensorflow.NumPy; -namespace Tensorflow.NumPy +public partial class np { - public partial class np - { - /// - /// A convenient alias for None, useful for indexing arrays. - /// - /// https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html



https://stackoverflow.com/questions/42190783/what-does-three-dots-in-python-mean-when-indexing-what-looks-like-a-number
- public static readonly Slice newaxis = new Slice(null, null, 1) { IsNewAxis = true }; + /// + /// A convenient alias for None, useful for indexing arrays. + /// + /// https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html



https://stackoverflow.com/questions/42190783/what-does-three-dots-in-python-mean-when-indexing-what-looks-like-a-number
+ public static readonly Slice newaxis = new Slice(null, null, 1) { IsNewAxis = true }; - // https://docs.scipy.org/doc/numpy-1.16.0/user/basics.types.html - #region data type - public static readonly TF_DataType @bool = TF_DataType.TF_BOOL; - public static readonly TF_DataType @char = TF_DataType.TF_INT8; - public static readonly TF_DataType @byte = TF_DataType.TF_INT8; - public static readonly TF_DataType uint8 = TF_DataType.TF_UINT8; - public static readonly TF_DataType ubyte = TF_DataType.TF_UINT8; - public static readonly TF_DataType int16 = TF_DataType.TF_INT16; - public static readonly TF_DataType uint16 = TF_DataType.TF_UINT16; - public static readonly TF_DataType int32 = TF_DataType.TF_INT32; - public static readonly TF_DataType uint32 = TF_DataType.TF_UINT32; - public static readonly TF_DataType int64 = TF_DataType.TF_INT64; - public static readonly TF_DataType uint64 = TF_DataType.TF_UINT64; - public static readonly TF_DataType float32 = TF_DataType.TF_FLOAT; - public static readonly TF_DataType float64 = TF_DataType.TF_DOUBLE; - public static readonly TF_DataType @double = TF_DataType.TF_DOUBLE; - public static readonly TF_DataType @decimal = TF_DataType.TF_DOUBLE; - public static readonly TF_DataType complex_ = TF_DataType.TF_COMPLEX; - public static readonly TF_DataType complex64 = TF_DataType.TF_COMPLEX64; - public static readonly TF_DataType complex128 = TF_DataType.TF_COMPLEX128; - #endregion + // https://docs.scipy.org/doc/numpy-1.16.0/user/basics.types.html + #region data type + public static readonly TF_DataType @bool = TF_DataType.TF_BOOL; + public static readonly TF_DataType @char = TF_DataType.TF_INT8; + public static readonly TF_DataType @byte = TF_DataType.TF_INT8; + public static readonly TF_DataType uint8 = TF_DataType.TF_UINT8; + public static readonly TF_DataType ubyte = TF_DataType.TF_UINT8; + public static readonly TF_DataType int16 = TF_DataType.TF_INT16; + public static readonly TF_DataType uint16 = TF_DataType.TF_UINT16; + public static readonly TF_DataType int32 = TF_DataType.TF_INT32; + public static readonly TF_DataType uint32 = TF_DataType.TF_UINT32; + public static readonly TF_DataType int64 = TF_DataType.TF_INT64; + public static readonly TF_DataType uint64 = TF_DataType.TF_UINT64; + public static readonly TF_DataType float32 = TF_DataType.TF_FLOAT; + public static readonly TF_DataType float64 = TF_DataType.TF_DOUBLE; + public static readonly TF_DataType @double = TF_DataType.TF_DOUBLE; + public static readonly TF_DataType @decimal = TF_DataType.TF_DOUBLE; + public static readonly TF_DataType complex_ = TF_DataType.TF_COMPLEX; + public static readonly TF_DataType complex64 = TF_DataType.TF_COMPLEX64; + public static readonly TF_DataType complex128 = TF_DataType.TF_COMPLEX128; + public static readonly TF_DataType @string = TF_DataType.TF_STRING; + public static readonly TF_DataType @object = TF_DataType.TF_VARIANT; + #endregion - public static double nan => double.NaN; - public static double NAN => double.NaN; - public static double NaN => double.NaN; - public static double pi => Math.PI; - public static double e => Math.E; - public static double euler_gamma => 0.57721566490153286060651209008240243d; - public static double inf => double.PositiveInfinity; - public static double infty => double.PositiveInfinity; - public static double Inf => double.PositiveInfinity; - public static double NINF => double.NegativeInfinity; - public static double PINF => double.PositiveInfinity; - public static double Infinity => double.PositiveInfinity; - public static double infinity => double.PositiveInfinity; + public static double nan => double.NaN; + public static double NAN => double.NaN; + public static double NaN => double.NaN; + public static double pi => Math.PI; + public static double e => Math.E; + public static double euler_gamma => 0.57721566490153286060651209008240243d; + public static double inf => double.PositiveInfinity; + public static double infty => double.PositiveInfinity; + public static double Inf => double.PositiveInfinity; + public static double NINF => double.NegativeInfinity; + public static double PINF => double.PositiveInfinity; + public static double Infinity => double.PositiveInfinity; + public static double infinity => double.PositiveInfinity; - public static bool array_equal(NDArray a, NDArray b) - => a.Equals(b); + public static bool array_equal(NDArray a, NDArray b) + => a.Equals(b); - public static bool allclose(NDArray a, NDArray b, double rtol = 1.0E-5, double atol = 1.0E-8, - bool equal_nan = false) => throw new NotImplementedException(""); + public static bool allclose(NDArray a, NDArray b, double rtol = 1.0E-5, double atol = 1.0E-8, + bool equal_nan = false) => throw new NotImplementedException(""); - public static RandomizedImpl random = new RandomizedImpl(); - public static LinearAlgebraImpl linalg = new LinearAlgebraImpl(); - } + public static RandomizedImpl random = new RandomizedImpl(); + public static LinearAlgebraImpl linalg = new LinearAlgebraImpl(); } diff --git a/src/TensorFlowNET.Core/Numpy/Shape.cs b/src/TensorFlowNET.Core/Numpy/Shape.cs index bc79fefca..cbbf66b44 100644 --- a/src/TensorFlowNET.Core/Numpy/Shape.cs +++ b/src/TensorFlowNET.Core/Numpy/Shape.cs @@ -14,15 +14,19 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Newtonsoft.Json; using System; using System.Collections.Generic; using System.Linq; using System.Text; +using Tensorflow.Common.Types; +using Tensorflow.Keras.Saving.Common; using Tensorflow.NumPy; namespace Tensorflow { - public class Shape + [JsonConverter(typeof(CustomizedShapeJsonConverter))] + public class Shape : INestStructure { public int ndim => _dims == null ? -1 : _dims.Length; long[] _dims; @@ -38,6 +42,27 @@ public long[] strides } } + public NestType NestType => NestType.List; + + public int ShallowNestedCount => ndim; + /// + /// The total item count of depth 1 of the nested structure. + /// For example, [1, 2, [3, 4, 5]] has TotalNestedCount = 5. + /// + public int TotalNestedCount => ndim; + + public IEnumerable Flatten() => dims.Select(x => x); + + public INestStructure MapStructure(Func func) + { + return new NestList(dims.Select(x => func(x))); + } + + public Nest AsNest() + { + return new NestList(Flatten()).AsNest(); + } + #region https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/ranges public int Length => ndim; public long[] Slice(int start, int length) diff --git a/src/TensorFlowNET.Core/Operations/Initializers/Constant.cs b/src/TensorFlowNET.Core/Operations/Initializers/Constant.cs index fdcb5aff0..e7e9955c0 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/Constant.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/Constant.cs @@ -14,6 +14,8 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Collections.Generic; + namespace Tensorflow.Operations.Initializers { public class Constant : IInitializer @@ -22,11 +24,19 @@ public class Constant : IInitializer T value; bool _verify_shape; + private readonly Dictionary _config; + + public string ClassName => "Constant"; + public IDictionary Config => _config; + public Constant(T value, TF_DataType dtype = TF_DataType.TF_FLOAT, bool verify_shape = false) { this.value = value; this.dtype = dtype; _verify_shape = verify_shape; + + _config = new Dictionary(); + _config["value"] = this.value; } public Tensor Apply(InitializerArgs args) diff --git a/src/TensorFlowNET.Core/Operations/Initializers/GlorotUniform.cs b/src/TensorFlowNET.Core/Operations/Initializers/GlorotUniform.cs index d97d88308..7cd88cc68 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/GlorotUniform.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/GlorotUniform.cs @@ -14,21 +14,29 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Collections.Generic; + namespace Tensorflow.Operations.Initializers { public class GlorotUniform : VarianceScaling { + private readonly Dictionary _config; + + public override string ClassName => "GlorotUniform"; + public override IDictionary Config => _config; + public GlorotUniform(float scale = 1.0f, - string mode = "FAN_AVG", - bool uniform = true, + string mode = "fan_avg", + string distribution = "uniform", int? seed = null, - TF_DataType dtype = TF_DataType.TF_FLOAT) : base(factor: scale, + TF_DataType dtype = TF_DataType.TF_FLOAT) : base(scale: scale, mode: mode, - uniform: uniform, + distribution: distribution, seed: seed, dtype: dtype) { - + _config = new Dictionary(); + _config["seed"] = _seed; } } } diff --git a/src/TensorFlowNET.Core/Operations/Initializers/IInitializer.cs b/src/TensorFlowNET.Core/Operations/Initializers/IInitializer.cs index 50d4d5037..35b92448c 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/IInitializer.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/IInitializer.cs @@ -14,10 +14,19 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Newtonsoft.Json; +using System.Collections.Generic; +using Tensorflow.Keras.Saving.Common; + namespace Tensorflow { + [JsonConverter(typeof(CustomizedIinitializerJsonConverter))] public interface IInitializer { + [JsonProperty("class_name")] + string ClassName { get; } + [JsonProperty("config")] + IDictionary Config { get; } Tensor Apply(InitializerArgs args); } } diff --git a/src/TensorFlowNET.Core/Operations/Initializers/NpyLoadInitializer.cs b/src/TensorFlowNET.Core/Operations/Initializers/NpyLoadInitializer.cs new file mode 100644 index 000000000..202af652a --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/Initializers/NpyLoadInitializer.cs @@ -0,0 +1,22 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.NumPy; + +namespace Tensorflow.Operations.Initializers +{ + /// + /// An initializer specially used for debugging (to load weights from disk). + /// + class NpyLoadInitializer : IInitializer + { + string _path; + public NpyLoadInitializer(string path) { _path = path; } + public string ClassName => ""; + public IDictionary Config => new Dictionary(); + public Tensor Apply(InitializerArgs args) + { + return np.load(_path); + } + } +} diff --git a/src/TensorFlowNET.Core/Operations/Initializers/Ones.cs b/src/TensorFlowNET.Core/Operations/Initializers/Ones.cs index 02d3c93b2..3077a1e0e 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/Ones.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/Ones.cs @@ -14,12 +14,19 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Collections.Generic; + namespace Tensorflow.Operations.Initializers { public class Ones : IInitializer { private TF_DataType dtype; + private readonly Dictionary _config; + + public string ClassName => "Ones"; + public IDictionary Config => new Dictionary(); + public Ones(TF_DataType dtype = TF_DataType.TF_FLOAT) { this.dtype = dtype; diff --git a/src/TensorFlowNET.Core/Operations/Initializers/Orthogonal.cs b/src/TensorFlowNET.Core/Operations/Initializers/Orthogonal.cs index 254a7ee7b..ae8733740 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/Orthogonal.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/Orthogonal.cs @@ -1,12 +1,66 @@ -using System; +/***************************************************************************** + Copyright 2023 Haiping Chen. All Rights Reserved. -namespace Tensorflow.Operations.Initializers + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +******************************************************************************/ + +using System; +using System.Linq; +using static Tensorflow.Binding; + +namespace Tensorflow.Operations.Initializers; +using System.Collections.Generic; + +public class Orthogonal : IInitializer { - public class Orthogonal : IInitializer + float _gain = 0f; + int? _seed; + + public Orthogonal(float gain = 1.0f, int? seed = null) + { + _gain = gain; + _seed = seed; + } + + private readonly Dictionary _config; + + public string ClassName => "Orthogonal"; + public IDictionary Config => throw new NotImplementedException(); + public Tensor Apply(InitializerArgs args) + { + return _generate_init_val(args.Shape, args.DType == TF_DataType.DtInvalid ? TF_DataType.TF_FLOAT : args.DType); + } + + private Tensor _generate_init_val(Shape shape, TF_DataType dtype) { - public Tensor Apply(InitializerArgs args) + var num_rows = 1L; + foreach (var dim in shape.dims.Take(shape.ndim - 1)) + num_rows *= dim; + var num_cols = shape.dims.Last(); + var flat_shape = (Math.Max(num_cols, num_rows), Math.Min(num_cols, num_rows)); + + var a = tf.random.stateless_normal(flat_shape, dtype: dtype); + // Compute the qr factorization + var (q, r) = tf.linalg.qr(a, full_matrices: false); + // Make Q uniform + var d = tf.linalg.tensor_diag_part(r.Single); + q *= tf.sign(d); + + if (num_rows < num_cols) { - throw new NotImplementedException(); + q = array_ops.matrix_transpose(q); } + + return _gain * tf.reshape(q, shape); } } diff --git a/src/TensorFlowNET.Core/Operations/Initializers/RandomNormal.cs b/src/TensorFlowNET.Core/Operations/Initializers/RandomNormal.cs index 029b311bb..21fa7e2b2 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/RandomNormal.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/RandomNormal.cs @@ -14,6 +14,8 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Collections.Generic; + namespace Tensorflow.Operations.Initializers { public class RandomNormal : IInitializer @@ -23,6 +25,11 @@ public class RandomNormal : IInitializer private int? seed; private TF_DataType dtype; + private readonly Dictionary _config; + + public string ClassName => "RandomNormal"; + public IDictionary Config => _config; + public RandomNormal(float mean = 0.0f, float stddev = 0.05f, int? seed = null, @@ -32,6 +39,11 @@ public RandomNormal(float mean = 0.0f, this.stddev = stddev; this.seed = seed; this.dtype = dtype; + + _config = new Dictionary(); + _config["mean"] = this.mean; + _config["stddev"] = this.stddev; + _config["seed"] = this.seed; } public Tensor Apply(InitializerArgs args) diff --git a/src/TensorFlowNET.Core/Operations/Initializers/RandomUniform.cs b/src/TensorFlowNET.Core/Operations/Initializers/RandomUniform.cs index a49d59212..87404708c 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/RandomUniform.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/RandomUniform.cs @@ -14,6 +14,8 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Collections.Generic; + namespace Tensorflow.Operations.Initializers { public class RandomUniform : IInitializer @@ -23,12 +25,22 @@ public class RandomUniform : IInitializer private float maxval; private TF_DataType dtype; + private readonly Dictionary _config; + + public string ClassName => "RandomUniform"; + public IDictionary Config => _config; + public RandomUniform(TF_DataType dtype = TF_DataType.TF_FLOAT, float minval = -0.05f, float maxval = 0.05f, int? seed = null) { this.dtype = dtype; this.minval = minval; this.maxval = maxval; this.seed = seed; + + _config = new Dictionary(); + _config["minval"] = this.minval; + _config["maxval"] = this.maxval; + _config["seed"] = this.seed; } public Tensor Apply(InitializerArgs args) diff --git a/src/TensorFlowNET.Core/Operations/Initializers/TruncatedNormal.cs b/src/TensorFlowNET.Core/Operations/Initializers/TruncatedNormal.cs index 048c11e7a..c1c3e9996 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/TruncatedNormal.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/TruncatedNormal.cs @@ -14,6 +14,8 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Collections.Generic; + namespace Tensorflow.Operations.Initializers { public class TruncatedNormal : IInitializer @@ -23,6 +25,11 @@ public class TruncatedNormal : IInitializer private int? seed; private TF_DataType dtype; + private readonly Dictionary _config; + + public string ClassName => "TruncatedNormal"; + public IDictionary Config => _config; + public TruncatedNormal(float mean = 0.0f, float stddev = 1.0f, int? seed = null, @@ -32,6 +39,10 @@ public TruncatedNormal(float mean = 0.0f, this.stddev = stddev; this.seed = seed; this.dtype = dtype; + _config = new Dictionary(); + _config["mean"] = this.mean; + _config["stddev"] = this.stddev; + _config["seed"] = this.seed; } public Tensor Apply(InitializerArgs args) diff --git a/src/TensorFlowNET.Core/Operations/Initializers/VarianceScaling.cs b/src/TensorFlowNET.Core/Operations/Initializers/VarianceScaling.cs index d313f4c9a..37fdd764c 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/VarianceScaling.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/VarianceScaling.cs @@ -15,7 +15,9 @@ limitations under the License. ******************************************************************************/ using System; +using System.Collections.Generic; using System.Linq; +using System.Linq.Expressions; namespace Tensorflow.Operations.Initializers { @@ -26,30 +28,48 @@ public class VarianceScaling : IInitializer { protected float _scale; protected string _mode; - protected string _distribution; protected int? _seed; protected TF_DataType _dtype; - protected bool _uniform; + protected string _distribution; + private readonly Dictionary _config; + + public virtual string ClassName => "VarianceScaling"; + + public virtual IDictionary Config => _config; - public VarianceScaling(float factor = 2.0f, - string mode = "FAN_IN", - bool uniform = false, + public VarianceScaling(float scale = 1.0f, + string mode = "fan_in", + string distribution = "truncated_normal", int? seed = null, TF_DataType dtype = TF_DataType.TF_FLOAT) { if (!dtype.is_floating()) throw new TypeError("Cannot create initializer for non-floating point type."); - if (!new string[] { "FAN_IN", "FAN_OUT", "FAN_AVG" }.Contains(mode)) - throw new TypeError($"Unknown {mode} %s [FAN_IN, FAN_OUT, FAN_AVG]"); + if (!new string[] { "fan_in", "fan_out", "fan_avg" }.Contains(mode)) + throw new TypeError($"Unknown {mode} %s [fan_in, fan_out, fan_avg]"); + if(distribution == "normal") + { + distribution = "truncated_normal"; + } + if(!new string[] { "uniform", "truncated_normal", "untruncated_normal" }.Contains(distribution)) + { + throw new ValueError($"Invalid `distribution` argument: {distribution}"); + } - if (factor < 0) + if (scale <= 0) throw new ValueError("`scale` must be positive float."); - _scale = factor; + _scale = scale; _mode = mode; _seed = seed; _dtype = dtype; - _uniform = uniform; + _distribution = distribution; + + _config = new(); + _config["scale"] = _scale; + _config["mode"] = _mode; + _config["distribution"] = _distribution; + _config["seed"] = _seed; } public Tensor Apply(InitializerArgs args) @@ -59,23 +79,28 @@ public Tensor Apply(InitializerArgs args) float n = 0; var (fan_in, fan_out) = _compute_fans(args.Shape); - if (_mode == "FAN_IN") - n = fan_in; - else if (_mode == "FAN_OUT") - n = fan_out; - else if (_mode == "FAN_AVG") - n = (fan_in + fan_out) / 2.0f; + var scale = this._scale; + if (_mode == "fan_in") + scale /= Math.Max(1.0f, fan_in); + else if (_mode == "fan_out") + scale /= Math.Max(1.0f, fan_out); + else + scale /= Math.Max(1.0f, (fan_in + fan_out) / 2); - if (_uniform) + if(_distribution == "truncated_normal") { - var limit = Convert.ToSingle(Math.Sqrt(3.0f * _scale / n)); - return random_ops.random_uniform(args.Shape, -limit, limit, args.DType); + var stddev = Math.Sqrt(scale) / .87962566103423978f; + return random_ops.truncated_normal(args.Shape, 0.0f, (float)stddev, args.DType); + } + else if(_distribution == "untruncated_normal") + { + var stddev = Math.Sqrt(scale); + return random_ops.random_normal(args.Shape, 0.0f, (float)stddev, args.DType); } else { - var trunc_stddev = Convert.ToSingle(Math.Sqrt(1.3f * _scale / n)); - return random_ops.truncated_normal(args.Shape, 0.0f, trunc_stddev, args.DType, - seed: _seed); + var limit = (float)Math.Sqrt(scale * 3.0f); + return random_ops.random_uniform(args.Shape, -limit, limit, args.DType); } } diff --git a/src/TensorFlowNET.Core/Operations/Initializers/Zeros.cs b/src/TensorFlowNET.Core/Operations/Initializers/Zeros.cs index 5d045292f..c4ed25a17 100644 --- a/src/TensorFlowNET.Core/Operations/Initializers/Zeros.cs +++ b/src/TensorFlowNET.Core/Operations/Initializers/Zeros.cs @@ -14,6 +14,8 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Collections.Generic; + namespace Tensorflow.Operations.Initializers { public class Zeros : IInitializer @@ -21,6 +23,9 @@ public class Zeros : IInitializer Shape shape; TF_DataType dtype; + public string ClassName => "Zeros"; + public IDictionary Config => new Dictionary(); + public Zeros(Shape shape = null, TF_DataType dtype = TF_DataType.TF_FLOAT) { this.shape = shape; diff --git a/src/TensorFlowNET.Core/Operations/NnOps/AveragePoolFunction.cs b/src/TensorFlowNET.Core/Operations/NnOps/AveragePoolFunction.cs index d43f8a0c8..84ce56a4b 100644 --- a/src/TensorFlowNET.Core/Operations/NnOps/AveragePoolFunction.cs +++ b/src/TensorFlowNET.Core/Operations/NnOps/AveragePoolFunction.cs @@ -34,7 +34,7 @@ public Tensor Apply(Tensor value, { name = scope; value = ops.convert_to_tensor(value, name: "input"); - return gen_nn_ops.average_pool( + return gen_nn_ops.avg_pool( value, ksize: ksize, strides: strides, diff --git a/src/TensorFlowNET.Core/Operations/NnOps/BasicLSTMCell.cs b/src/TensorFlowNET.Core/Operations/NnOps/BasicLSTMCell.cs index d3592514d..16cbd0010 100644 --- a/src/TensorFlowNET.Core/Operations/NnOps/BasicLSTMCell.cs +++ b/src/TensorFlowNET.Core/Operations/NnOps/BasicLSTMCell.cs @@ -11,6 +11,7 @@ namespace Tensorflow /// Basic LSTM recurrent network cell. /// The implementation is based on: http://arxiv.org/abs/1409.2329. ///
+ [Obsolete("This is an incompleted tf v1 api, pleas use keras RNNs instead.")] public class BasicLstmCell : LayerRnnCell { int _num_units; @@ -88,7 +89,7 @@ protected Tensors Call(Tensors inputs, Tensor state = null, bool is_training = f gate_inputs = nn_ops.bias_add(gate_inputs, _bias); // i = input_gate, j = new_input, f = forget_gate, o = output_gate - var tensors = array_ops.split(value: gate_inputs, num_split: 4, axis: one); + var tensors = array_ops.split(value: gate_inputs, num_or_size_splits: 4, axis: one); var (i, j, f, o) = (tensors[0], tensors[1], tensors[2], tensors[3]); var forget_bias_tensor = constant_op.constant(_forget_bias, dtype: f.dtype); diff --git a/src/TensorFlowNET.Core/Operations/NnOps/BasicRNNCell.cs b/src/TensorFlowNET.Core/Operations/NnOps/BasicRNNCell.cs index 17d51363f..3308aebb7 100644 --- a/src/TensorFlowNET.Core/Operations/NnOps/BasicRNNCell.cs +++ b/src/TensorFlowNET.Core/Operations/NnOps/BasicRNNCell.cs @@ -20,6 +20,7 @@ limitations under the License. namespace Tensorflow { + [Obsolete("This is an incompleted tf v1 api, pleas use keras RNNs instead.")] public class BasicRnnCell : LayerRnnCell { int _num_units; diff --git a/src/TensorFlowNET.Core/Operations/NnOps/ConvolutionInternal.cs b/src/TensorFlowNET.Core/Operations/NnOps/ConvolutionInternal.cs index 958d79f42..ec70b1858 100644 --- a/src/TensorFlowNET.Core/Operations/NnOps/ConvolutionInternal.cs +++ b/src/TensorFlowNET.Core/Operations/NnOps/ConvolutionInternal.cs @@ -67,16 +67,15 @@ public Tensor Apply(Tensors input, Tensor filters) var dilations = _get_sequence(args.DilationRate, num_spatial_dims, channel_index).ToArray(); var strides = _get_sequence(args.Strides, num_spatial_dims, channel_index).ToArray(); - result = gen_nn_ops.conv2d(new Conv2dParams - { - Input = input, - Filter = filters, - Strides = strides, - Padding = padding, - DataFormat = data_format, - Dilations = dilations, - Name = name - }); + result = gen_nn_ops.conv2d( + input, + filters, + strides, + padding, + data_format: data_format, + dilations: dilations, + name: name + ); } else { @@ -93,16 +92,15 @@ public Tensor Apply(Tensors input, Tensor filters) input = array_ops.expand_dims(input, spatial_start_dim); filters = array_ops.expand_dims(filters, 0); - result = gen_nn_ops.conv2d(new Conv2dParams - { - Input = input, - Filter = filters, - Strides = strides.ToArray(), - Padding = padding, - DataFormat = channel_first ? "NCHW" : "NHWC", - Dilations = dilations.ToArray(), - Name = name - }); + result = gen_nn_ops.conv2d( + input, + filters, + strides.ToArray(), + padding, + data_format: channel_first ? "NCHW" : "NHWC", + dilations: dilations.ToArray(), + name: name + ); result = array_ops.squeeze(result, new[] { spatial_start_dim }); } }); diff --git a/src/TensorFlowNET.Core/Operations/NnOps/LayerRNNCell.cs b/src/TensorFlowNET.Core/Operations/NnOps/LayerRNNCell.cs index 7394cb7f9..65de4fe90 100644 --- a/src/TensorFlowNET.Core/Operations/NnOps/LayerRNNCell.cs +++ b/src/TensorFlowNET.Core/Operations/NnOps/LayerRNNCell.cs @@ -19,6 +19,7 @@ limitations under the License. namespace Tensorflow { + [Obsolete("This is an incompleted tf v1 api, pleas use keras RNNs instead.")] public class LayerRnnCell : RnnCell { protected InputSpec inputSpec; diff --git a/src/TensorFlowNET.Core/Operations/NnOps/MaxPoolFunction.cs b/src/TensorFlowNET.Core/Operations/NnOps/MaxPoolFunction.cs index 92bd95a57..149d2e889 100644 --- a/src/TensorFlowNET.Core/Operations/NnOps/MaxPoolFunction.cs +++ b/src/TensorFlowNET.Core/Operations/NnOps/MaxPoolFunction.cs @@ -14,6 +14,7 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Linq; using static Tensorflow.Binding; namespace Tensorflow.Operations @@ -24,7 +25,7 @@ namespace Tensorflow.Operations public class MaxPoolFunction : IPoolFunction { public Tensor Apply(Tensor value, - int[] ksize, + int[] pool_size, int[] strides, string padding, string data_format = "NHWC", @@ -33,10 +34,9 @@ public Tensor Apply(Tensor value, return tf_with(ops.name_scope(name, "MaxPool", value), scope => { name = scope; - value = ops.convert_to_tensor(value, name: "input"); return gen_nn_ops.max_pool( value, - ksize: ksize, + ksize: pool_size, strides: strides, padding: padding, data_format: data_format, diff --git a/src/TensorFlowNET.Core/Operations/NnOps/RNNCell.cs b/src/TensorFlowNET.Core/Operations/NnOps/RNNCell.cs index 7c5b21b68..9905d39c8 100644 --- a/src/TensorFlowNET.Core/Operations/NnOps/RNNCell.cs +++ b/src/TensorFlowNET.Core/Operations/NnOps/RNNCell.cs @@ -16,10 +16,15 @@ limitations under the License. using System; using System.Collections.Generic; +using Tensorflow.Common.Types; using Tensorflow.Keras; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Layers; +using Tensorflow.Keras.Saving; +using Tensorflow.NumPy; using Tensorflow.Operations; +using Tensorflow.Train; using Tensorflow.Util; using static Tensorflow.Binding; @@ -46,7 +51,8 @@ namespace Tensorflow /// matching structure of Tensors having shape `[batch_size].concatenate(s)` /// for each `s` in `self.batch_size`. ///
- public abstract class RnnCell : ILayer, RNNArgs.IRnnArgCell + [Obsolete("This is an incompleted tf v1 api, pleas use keras RNNs instead.")] + public abstract class RnnCell : ILayer, IRnnCell { /// /// Attribute that indicates whether the cell is a TF RNN cell, due the slight @@ -66,13 +72,19 @@ public abstract class RnnCell : ILayer, RNNArgs.IRnnArgCell public bool Trainable => throw new NotImplementedException(); - public List trainable_variables => throw new NotImplementedException(); - public List trainable_weights => throw new NotImplementedException(); - public List non_trainable_weights => throw new NotImplementedException(); + public List TrainableVariables => throw new NotImplementedException(); + public List TrainableWeights => throw new NotImplementedException(); + public List Weights { get => throw new NotImplementedException(); set => throw new NotImplementedException(); } - public Shape output_shape => throw new NotImplementedException(); + public List get_weights() => throw new NotImplementedException(); + public void set_weights(IEnumerable weights) => throw new NotImplementedException(); + public List NonTrainableWeights => throw new NotImplementedException(); - public Shape BatchInputShape => throw new NotImplementedException(); + public Shape OutputShape => throw new NotImplementedException(); + + public KerasShapesWrapper BatchInputShape => throw new NotImplementedException(); + + public KerasShapesWrapper BuildInputShape => throw new NotImplementedException(); public TF_DataType DType => throw new NotImplementedException(); protected bool built = false; @@ -132,7 +144,7 @@ private Tensor _zero_state_tensors(object state_size, Tensor batch_size, TF_Data throw new NotImplementedException("_zero_state_tensors"); } - public Tensors Apply(Tensors inputs, Tensor state = null, bool is_training = false) + public Tensors Apply(Tensors inputs, Tensors state = null, bool? is_training = false, IOptionalArgs? optional_args = null) { throw new NotImplementedException(); } @@ -142,9 +154,39 @@ public int count_params() throw new NotImplementedException(); } - public LayerArgs get_config() + public IKerasConfig get_config() + { + throw new NotImplementedException(); + } + + public void build(Shape input_shape) + { + throw new NotImplementedException(); + } + + public void build(KerasShapesWrapper input_shape) + { + throw new NotImplementedException(); + } + + public Trackable GetTrackable() { throw new NotImplementedException(); } + + public void adapt(Tensor data, int? batch_size = null, int? steps = null) + { + throw new NotImplementedException(); + } + + public (Tensor, Tensors) Call(Tensors inputs, Tensors states, bool? training = null) + { + throw new NotImplementedException(); + } + public Tensors GetInitialState(Tensors inputs = null, Tensor batch_size = null, TF_DataType dtype = TF_DataType.DtInvalid) { throw new NotImplementedException(); } + public INestStructure StateSize => throw new NotImplementedException(); + public INestStructure OutputSize => throw new NotImplementedException(); + public bool IsTFRnnCell => throw new NotImplementedException(); + public bool SupportOptionalArgs => throw new NotImplementedException(); } } diff --git a/src/TensorFlowNET.Core/Operations/NnOps/gen_nn_ops.cs b/src/TensorFlowNET.Core/Operations/NnOps/gen_nn_ops.cs deleted file mode 100644 index 0567858f2..000000000 --- a/src/TensorFlowNET.Core/Operations/NnOps/gen_nn_ops.cs +++ /dev/null @@ -1,381 +0,0 @@ -/***************************************************************************** - Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. -******************************************************************************/ - -using System.Linq; -using static Tensorflow.Binding; - -namespace Tensorflow.Operations -{ - public class gen_nn_ops - { - /// - /// Computes a 2-D convolution given 4-D `input` and `filter` tensors. - /// - /// Given an input tensor of shape `[batch, in_height, in_width, in_channels]` - /// and a filter / kernel tensor of shape - /// `[filter_height, filter_width, in_channels, out_channels]`, this op - /// performs the following: - /// - /// 1. Flattens the filter to a 2-D matrix with shape - /// `[filter_height * filter_width * in_channels, output_channels]`. - /// 2. Extracts image patches from the input tensor to form a *virtual* - /// tensor of shape `[batch, out_height, out_width, - /// filter_height * filter_width * in_channels]`. - /// 3. For each patch, right-multiplies the filter matrix and the image patch - /// vector. - /// - /// - /// - public static Tensor conv2d(Conv2dParams parameters) - => tf.Context.ExecuteOp("Conv2D", parameters.Name, new ExecuteOpArgs(parameters.Input, parameters.Filter) - .SetAttributes(new - { - strides = parameters.Strides, - padding = parameters.Padding, - use_cudnn_on_gpu = parameters.UseCudnnOnGpu, - explicit_paddings = parameters.ExplicitPaddings, - data_format = parameters.DataFormat, - dilations = parameters.Dilations - })); - - /// - /// Computes the gradients of convolution with respect to the filter. - /// - /// - /// - public static Tensor conv2d_backprop_filter(Tensor input, Tensor filter_sizes, Tensor out_backprop, - int[] strides, string padding, bool use_cudnn_on_gpu = true, - int[] explicit_paddings = null, - string data_format = "NHWC", - int[] dilations = null, - string name = null) - => tf.Context.ExecuteOp("Conv2DBackpropFilter", name, new ExecuteOpArgs(input, filter_sizes, out_backprop) - .SetAttributes(new - { - strides, - padding, - use_cudnn_on_gpu, - explicit_paddings = explicit_paddings ?? new int[0], - data_format, - dilations = dilations ?? new int[] { 1, 1, 1, 1 } - })); - - /// - /// Computes the gradients of convolution with respect to the input. - /// - /// - /// - public static Tensor conv2d_backprop_input(Tensor input_sizes, Tensor filter, Tensor out_backprop, - int[] strides, string padding, bool use_cudnn_on_gpu = true, - int[] explicit_paddings = null, - string data_format = "NHWC", - int[] dilations = null, - string name = null) - => tf.Context.ExecuteOp("Conv2DBackpropInput", name, new ExecuteOpArgs(input_sizes, filter, out_backprop) - .SetAttributes(new - { - strides, - padding, - use_cudnn_on_gpu, - explicit_paddings = explicit_paddings ?? new int[0], - data_format, - dilations = dilations ?? new int[] { 1, 1, 1, 1 } - })); - - public static Tensor bias_add(Tensor value, - IVariableV1 bias, - string data_format = null, - string name = null) - => tf.Context.ExecuteOp("BiasAdd", name, new ExecuteOpArgs(value, bias) - .SetAttributes(new { data_format = data_format ?? "NHWC" })); - - public static Tensor bias_add_grad(Tensor out_backprop, - string data_format = "NHWC", - string name = null) - => tf.Context.ExecuteOp("BiasAddGrad", name, new ExecuteOpArgs(out_backprop) - .SetAttributes(new { data_format = data_format ?? "NHWC" })); - - /// - /// Computes exponential linear: exp(features) - 1 if &lt; 0, features otherwise. - /// - /// - /// - /// - /// If specified, the created operation in the graph will be this one, otherwise it will be named 'Elu'. - /// - /// - /// The Operation can be fetched from the resulting Tensor, by fetching the Operation property from the result. - /// - /// - /// See [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) - /// ](http://arxiv.org/abs/1511.07289) - /// - public static Tensor elu(Tensor features, string name = "Elu") - { - var op = tf.OpDefLib._apply_op_helper("Elu", name: name, args: new { features }); - return op.output; - } - - /// - /// Gradient for batch normalization. - /// - /// - /// - public static Tensor[] fused_batch_norm_grad(FusedBatchNormParams @params) - { - var op = tf.OpDefLib._apply_op_helper("FusedBatchNormGrad", name: @params.Name, args: new - { - y_backprop = @params.YBackprop, - x = @params.X, - scale = @params.Scale, - reserve_space_1 = @params.ReserveSpace1, - reserve_space_2 = @params.ReserveSpace2, - epsilon = @params.Epsilon, - data_format = @params.DataFormat, - is_training = @params.IsTraining - }); - return op.outputs; - } - - public static Tensor[] fused_batch_norm_grad_v3(FusedBatchNormParams @params) - => tf.Context.ExecuteOp("FusedBatchNormGradV3", @params.Name, - new ExecuteOpArgs(@params.YBackprop, - @params.X, - @params.Scale, - @params.ReserveSpace1, - @params.ReserveSpace2, - @params.ReserveSpace3) - .SetAttributes(new - { - epsilon = @params.Epsilon, - data_format = @params.DataFormat, - is_training = @params.IsTraining - })); - - public static Tensor[] fused_batch_norm(Tensor x, - Tensor scale, - Tensor offset, - Tensor mean, - Tensor variance, - float epsilon = 0.0001f, - string data_format = "NHWC", - bool is_training = true, - string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("FusedBatchNorm", name: name, args: new - { - x, - scale, - offset, - mean, - variance, - epsilon, - data_format, - is_training - }); - - return _op.outputs; - } - - public static Tensors fused_batch_norm_v3(Tensor x, - Tensor scale, - Tensor offset, - Tensor mean, - Tensor variance, - float epsilon = 0.0001f, - float exponential_avg_factor = 1.0f, - string data_format = "NHWC", - bool is_training = true, - string name = null) - => tf.Context.ExecuteOp("FusedBatchNormV3", name, new ExecuteOpArgs(x, scale, offset, mean, variance) - .SetAttributes(new { epsilon, data_format, is_training })); - - /// - /// Local Response Normalization. - /// - /// - /// - /// - /// - /// - /// - /// - public static Tensor local_response_normalization(Tensor input, int depth_radius = 5, int bias = 1, - int alpha = 1, float beta = 0.5f, string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("LRN", name: name, args: new - { - input, - depth_radius, - bias, - alpha, - beta - }); - - return _op.output; - } - - public static Tensor log_softmax(Tensor logits, string name = null) - => tf.Context.ExecuteOp("LogSoftmax", name, new ExecuteOpArgs(logits)); - - /// - /// Says whether the targets are in the top `K` predictions. - /// - /// - /// - /// - /// - /// A `Tensor` of type `bool`. - public static Tensor in_top_kv2(Tensor predictions, Tensor targets, int k, string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("InTopKV2", name: name, args: new - { - predictions, - targets, - k - }); - - return _op.output; - } - - public static Tensor leaky_relu(Tensor features, float alpha = 0.2f, string name = null) - => tf.Context.ExecuteOp("LeakyRelu", name, - new ExecuteOpArgs(features).SetAttributes(new { alpha })); - - public static Tensor average_pool(Tensor input, - int[] ksize, - int[] strides, - string padding, - string data_format = "NHWC", - string name = null) - => tf.Context.ExecuteOp("AvgPool", name, new ExecuteOpArgs(input) - .SetAttributes(new - { - ksize, - strides, - padding, - data_format - })); - - public static Tensor max_pool(Tensor input, - int[] ksize, - int[] strides, - string padding, - string data_format = "NHWC", - string name = null) - => tf.Context.ExecuteOp("MaxPool", name, new ExecuteOpArgs(input) - .SetAttributes(new - { - ksize, - strides, - padding, - data_format - })); - - public static Tensor max_pool_grad(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, - string data_format = "NHWC", string name = null) - => tf.Context.ExecuteOp("MaxPoolGrad", name, new ExecuteOpArgs(orig_input, orig_output, grad) - .SetAttributes(new - { - ksize, - strides, - padding, - data_format - })); - - public static Tensor[] top_kv2(Tensor input, T k, bool sorted = true, string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("TopKV2", name: name, args: new - { - input, - k, - sorted - }); - - return _op.outputs; - } - - public static Tensor relu_grad(Tensor gradients, Tensor features, string name = null) - => tf.Context.ExecuteOp("ReluGrad", name, new ExecuteOpArgs(gradients, features)); - - public static Tensor leaky_relu_grad(Tensor gradients, Tensor features, float alpha = 0.2f, string name = null) - => tf.Context.ExecuteOp("LeakyReluGrad", name, new ExecuteOpArgs(gradients, features) - .SetAttributes(new { alpha })); - - public static Tensor softmax(Tensor logits, string name = null) - => tf.Context.ExecuteOp("Softmax", name, new ExecuteOpArgs(logits)); - - /// - /// Computes softmax cross entropy cost and gradients to backpropagate. - /// - /// - /// - /// - /// - public static (Tensor, Tensor) softmax_cross_entropy_with_logits(Tensor features, Tensor labels, string name = null) - { - var results = tf.Context.ExecuteOp("SoftmaxCrossEntropyWithLogits", name, new ExecuteOpArgs(features, labels)); - - return (results[0], results[1]); - } - - /// - /// Computes softmax cross entropy cost and gradients to backpropagate. - /// - /// - /// batch_size x num_classes matrix - /// - /// - /// batch_size vector with values in [0, num_classes). - /// This is the label for the given minibatch entry. - /// - /// - /// If specified, the created operation in the graph will be this one, otherwise it will be named 'SparseSoftmaxCrossEntropyWithLogits'. - /// - /// - /// Returns a tuple with multiple values, as follows: - /// loss : Per example loss (batch_size vector). - /// backprop : backpropagated gradients (batch_size x num_classes matrix). - /// The Operation can be fetched from any of the Tensorreturned in the tuple values, by fetching the Operation property. - /// - /// - /// Unlike SoftmaxCrossEntropyWithLogits, this operation does not accept - /// a matrix of label probabilities, but rather a single label per row - /// of features. This label is considered to have probability 1.0 for the - /// given row. - /// - /// Inputs are the logits, not probabilities. - /// - public static (Tensor loss, Tensor backprop) sparse_softmax_cross_entropy_with_logits(Tensor features, Tensor labels, string name = "SparseSoftmaxCrossEntropyWithLogits") - { - var results = tf.Context.ExecuteOp("SparseSoftmaxCrossEntropyWithLogits", name, new ExecuteOpArgs(features, labels)); - - return (results[0], results[1]); - } - - /// - /// Computes rectified linear: `max(features, 0)`. - /// - /// A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`, `qint8`. - /// A name for the operation (optional). - /// A `Tensor`. Has the same type as `features`. - public static Tensor relu(Tensor features, string name = null) - => tf.Context.ExecuteOp("Relu", name, new ExecuteOpArgs(features)); - - public static Tensor tanh(Tensor x, string name = null) - => tf.Context.ExecuteOp("Tanh", name, new ExecuteOpArgs(x)); - } -} diff --git a/src/TensorFlowNET.Core/Operations/OpDefLibrary.cs b/src/TensorFlowNET.Core/Operations/OpDefLibrary.cs index 3ccf0c190..29e1f074f 100644 --- a/src/TensorFlowNET.Core/Operations/OpDefLibrary.cs +++ b/src/TensorFlowNET.Core/Operations/OpDefLibrary.cs @@ -15,9 +15,11 @@ limitations under the License. ******************************************************************************/ using Google.Protobuf; +using Google.Protobuf.Collections; using System; using System.Collections.Generic; using System.Linq; +using Tensorflow.Functions; using static Tensorflow.Binding; using static Tensorflow.OpDef.Types; @@ -103,6 +105,11 @@ public Operation _apply_op_helper(string op_type_name, string name = null, Dicti DataType dtype = DataType.DtInvalid; DataType default_dtype = DataType.DtInvalid; + if (values is Tensors tensors) + { + values = (Tensor[])tensors; + } + if (_IsListParameter(input_arg)) { if (!_IsListValue(values)) @@ -382,9 +389,13 @@ private AttrValue SetAttrValue(OpDef op_def, AttrDef attr_def, object value) case "list(type)": attr_value.List.Type.AddRange((value as IList).Select(x => _MakeType(x, attr_def))); break; + case "list(float)": + if (value != null) + attr_value.List.F.AddRange((value as IEnumerable).ToArray()); + break; case "list(int)": if (value != null) - attr_value.List.I.AddRange((value as int[]).Select(x => Convert.ToInt64(x))); + attr_value.List.I.AddRange((value as IEnumerable).Select(x => Convert.ToInt64(x))); break; case "bool": attr_value.B = (bool)value; @@ -415,6 +426,15 @@ private AttrValue SetAttrValue(OpDef op_def, AttrDef attr_def, object value) case "list(shape)": attr_value.List.Shape.AddRange((value as Shape[]).Select(x => _MakeShape(x, attr_def))); break; + case "func": + attr_value.Func = _MakeFunc(value, attr_def.Name); + break; + case "list(func)": + attr_value.List.Func.AddRange(_MakeFuncList(value, attr_def.Name)); + break; + case "list(string)": + attr_value.List.S.AddRange((value as IEnumerable).Select(x => ByteString.CopyFromUtf8(x))); + break; default: throw new TypeError($"SetAttrValue: can't not convert attr_def.Type '{attr_def.Type}' to protos."); } @@ -422,6 +442,47 @@ private AttrValue SetAttrValue(OpDef op_def, AttrDef attr_def, object value) return attr_value; } + private NameAttrList _MakeFunc(object func, string arg_name) + { + if(func is NameAttrList attrList) + { + return attrList; + } + NameAttrList fn_attr; + if(func is string funcStr) + { + fn_attr = new NameAttrList() { Name = funcStr }; + } + else if(func is ConcreteFunction concrete) + { + concrete.AddTograph(ops.get_default_graph()); + fn_attr = concrete.AsNameAttrList; + } + else if(func is EagerDefinedFunction eager) + { + eager.AddToGraph(ops.get_default_graph()); + fn_attr = new NameAttrList() { Name = eager.Name }; + } + else + { + throw new TypeError($"Don't know how to convert {func} to a func for argument {arg_name}"); + } + return fn_attr; + } + + private List _MakeFuncList(object funcList, string arg_name) + { + List res = new List(); + if(funcList is IEnumerable enumerable) + { + foreach(var func in enumerable) + { + res.Add(_MakeFunc(func, arg_name)); + } + } + return res; + } + private bool _IsListParameter(ArgDef arg) { if (!String.IsNullOrEmpty(arg.NumberAttr)) diff --git a/src/TensorFlowNET.Core/Operations/Operation.Input.cs b/src/TensorFlowNET.Core/Operations/Operation.Input.cs index 44ac52e15..9aa6fde22 100644 --- a/src/TensorFlowNET.Core/Operations/Operation.Input.cs +++ b/src/TensorFlowNET.Core/Operations/Operation.Input.cs @@ -31,7 +31,7 @@ public partial class Operation public int InputListLength(string name) { int num = 0; - num = c_api.TF_OperationInputListLength(_handle, name, tf.Status.Handle); + num = c_api.TF_OperationInputListLength(_handle, name, tf.Status); tf.Status.Check(true); return num; } diff --git a/src/TensorFlowNET.Core/Operations/Operation.Output.cs b/src/TensorFlowNET.Core/Operations/Operation.Output.cs index b5d6191dc..2329a4786 100644 --- a/src/TensorFlowNET.Core/Operations/Operation.Output.cs +++ b/src/TensorFlowNET.Core/Operations/Operation.Output.cs @@ -28,13 +28,13 @@ public partial class Operation public int OutputListLength(string name) { - int num = c_api.TF_OperationOutputListLength(_handle, name, tf.Status.Handle); + int num = c_api.TF_OperationOutputListLength(_handle, name, tf.Status); tf.Status.Check(true); return num; } - protected Tensor[] _outputs; + internal Tensor[] _outputs; public virtual Tensor[] outputs => _outputs; public Tensor output => _outputs.FirstOrDefault(); diff --git a/src/TensorFlowNET.Core/Operations/Operation.cs b/src/TensorFlowNET.Core/Operations/Operation.cs index fb9a4a274..2105c53fa 100644 --- a/src/TensorFlowNET.Core/Operations/Operation.cs +++ b/src/TensorFlowNET.Core/Operations/Operation.cs @@ -20,6 +20,9 @@ limitations under the License. using System.Linq; using Tensorflow.Util; using static Tensorflow.Binding; +using Google.Protobuf; +using Google.Protobuf.WellKnownTypes; +using System.Diagnostics; namespace Tensorflow { @@ -43,9 +46,11 @@ namespace Tensorflow /// public partial class Operation : ITensorOrOperation { - private readonly IntPtr _handle; // _c_op in python + protected IntPtr _handle; // _c_op in python - private readonly Graph _graph; + protected Graph _graph; + + internal Func _gradient_function; public string type => OpType; @@ -61,9 +66,10 @@ public partial class Operation : ITensorOrOperation public string Device => _handle == IntPtr.Zero ? "" : c_api.StringPiece(c_api.TF_OperationDevice(_handle)); - // OperationDescription _opDesc; + //private OperationDescription _op_desc; public NodeDef node_def => GetNodeDef(); + protected Operation() { } public Operation(IntPtr handle, Graph g = null) { @@ -180,15 +186,50 @@ public void run(FeedItem[] feed_dict = null, Session session = null) } public virtual T get_attr(string name) - => (T)get_attr(name); + { + if (typeof(T).IsValueType) + { + return (T)Convert.ChangeType(get_attr(name), typeof(T)); + } + else + { + return (T)get_attr(name); + } + } + + internal unsafe TF_DataType _get_attr_type(string name) + { + Status status = new(); + TF_DataType result; + c_api.TF_OperationGetAttrType(_handle, name, new IntPtr(&result), status); + status.Check(true); + return result; + } + + internal unsafe long _get_attr_int(string name) + { + long result; + c_api.TF_OperationGetAttrInt(_handle, name, new IntPtr(&result), tf.Status); + tf.Status.Check(true); + return result; + } + + internal unsafe bool _get_attr_bool(string name) + { + Status status = new(); + bool result; + c_api.TF_OperationGetAttrBool(_handle, name, new IntPtr(&result), status); + status.Check(true); + return result; + } public virtual T[] get_attr_list(string name) { if (tf.executing_eagerly()) return (T[])get_attr(name); - using var buf = new Buffer(); - c_api.TF_OperationGetAttrValueProto(_handle, name, buf.Handle, tf.Status.Handle); + var buf = new Buffer(); + c_api.TF_OperationGetAttrValueProto(_handle, name, buf, tf.Status); tf.Status.Check(true); var x = AttrValue.Parser.ParseFrom(buf.ToArray()); @@ -210,38 +251,86 @@ public virtual T[] get_attr_list(string name) public virtual object get_attr(string name) { - using var buf = new Buffer(); - c_api.TF_OperationGetAttrValueProto(_handle, name, buf.Handle, tf.Status.Handle); - tf.Status.Check(true); + var buf = new Buffer(); + Status status = new(); + c_api.TF_OperationGetAttrValueProto(_handle, name, buf, status); + status.Check(true); + var tf_buffer = c_api.TF_GetBuffer(buf); - var x = AttrValue.Parser.ParseFrom(buf.ToArray()); + var x = AttrValue.Parser.ParseFrom(tf_buffer.AsSpan()); - string oneof_value = x.ValueCase.ToString(); - if (string.IsNullOrEmpty(oneof_value)) - return null; + var oneof_value = x.ValueCase; + if (oneof_value == AttrValue.ValueOneofCase.None) + return new object[0]; - switch (oneof_value.ToLower()) + if(oneof_value == AttrValue.ValueOneofCase.List) { - case "list": - throw new NotImplementedException($"Unsupported field type in {oneof_value}"); - case "type": - return x.Type; - case "s": - return x.S.ToStringUtf8(); - default: - return x.GetType().GetProperty(oneof_value).GetValue(x); + if (x.List.S is not null && x.List.S.Count > 0) + { + return x.List.S.Select(x => x.ToStringUtf8()).ToArray(); + } + else if (x.List.I is not null && x.List.I.Count > 0) + { + return x.List.I.ToArray(); + } + else if (x.List.F is not null && x.List.F.Count > 0) + { + return x.List.F.ToArray(); + } + else if (x.List.B is not null && x.List.B.Count > 0) + { + return x.List.B.ToArray(); + } + else if (x.List.Shape is not null && x.List.Shape.Count > 0) + { + return x.List.Shape.ToArray(); + } + else if (x.List.Tensor is not null && x.List.Tensor.Count > 0) + { + return x.List.Tensor.ToArray(); + } + else if (x.List.Func is not null && x.List.Func.Count > 0) + { + return x.List.Func.ToArray(); + } + else if (x.List.Type is not null && x.List.Type.Count > 0) + { + return x.List.Type.Select(x => x.as_tf_dtype()).ToArray(); + } + else + { + return null; + } } + if(oneof_value == AttrValue.ValueOneofCase.Type) + { + return dtypes.as_tf_dtype(x.Type); + } + return ProtoUtils.GetSingleAttrValue(x, oneof_value); } public TF_AttrMetadata GetAttributeMetadata(string attr_name, Status s) { - return c_api.TF_OperationGetAttrMetadata(_handle, attr_name, s.Handle); + return c_api.TF_OperationGetAttrMetadata(_handle, attr_name, s); + } + + [Obsolete("The implementation is not complete.")] + internal void _set_device_from_string(string device_str) + { + // TODO(Rinne): complete it with new C API `SetRequestedDevice`. + //c_api.TF_SetDevice(_handle, device_str); + } + + [Obsolete("The implementation is not complete.")] + internal void _set_device(string device) + { + _set_device_from_string(device); } private NodeDef GetNodeDef() { - using var buffer = new Buffer(); - c_api.TF_OperationToNodeDef(_handle, buffer.Handle, tf.Status.Handle); + var buffer = new Buffer(); + c_api.TF_OperationToNodeDef(_handle, buffer, tf.Status); tf.Status.Check(throwException: true); return NodeDef.Parser.ParseFrom(buffer.ToArray()); } @@ -296,5 +385,60 @@ public TF_Input _tf_input(int input_idx) } public NDArray numpy() => throw new NotImplementedException(""); + + internal void _add_outputs(TF_DataType[] types, Shape[] shapes) + { + Debug.Assert(types.Length == shapes.Length); + int orig_num_outputs = this.outputs.Length; + var new_outputs = new List(_outputs); + + // Since the `_outputs` is defined as `Array`, when we add new output, we + // have to create a new array, which brings some performance concerns. + // In the future maybe the type of `outputs` should be reconsidered. + for(int i = 0; i < types.Length; i++) + { + var t = new Tensor(this, orig_num_outputs + i, types[i]); + t.shape = shapes[i]; + new_outputs.Add(t); + } + _outputs = new_outputs.ToArray(); + } + + internal void _set_func_attr(string attr_name, string func_name) + { + var func = new NameAttrList() { Name = func_name }; + _set_attr(attr_name, new AttrValue() { Func = func }); + } + + internal void _set_type_list_attr(string attr_name, DataType[] types) + { + if(types is null || types.Length == 0) + { + return; + } + var type_list = new AttrValue.Types.ListValue(); + type_list.Type.AddRange(types); + _set_attr(attr_name, new AttrValue() { List = type_list }); + } + + internal void _set_attr(string attr_name, AttrValue attr_value) + { + var buffer = new Buffer(attr_value.ToByteArray()); + try + { + _set_attr_with_buf(attr_name, buffer); + } + finally + { + buffer.Release(); + } + } + + internal void _set_attr_with_buf(string attr_name, Buffer attr_buf) + { + Status status = new(); + c_api.TF_SetAttr(graph, _handle, attr_name, attr_buf, status); + status.Check(true); + } } } \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Operations/OperationDescription.cs b/src/TensorFlowNET.Core/Operations/OperationDescription.cs index 384f5386f..28df548dd 100644 --- a/src/TensorFlowNET.Core/Operations/OperationDescription.cs +++ b/src/TensorFlowNET.Core/Operations/OperationDescription.cs @@ -50,7 +50,7 @@ public void SetAttrShape(string attr_name, long[] dims) public Operation FinishOperation(Status status) { - return c_api.TF_FinishOperation(_handle, status.Handle); + return c_api.TF_FinishOperation(_handle, status); } public static implicit operator OperationDescription(IntPtr handle) diff --git a/src/TensorFlowNET.Core/Operations/Regularizers/L1.cs b/src/TensorFlowNET.Core/Operations/Regularizers/L1.cs new file mode 100644 index 000000000..9e0619454 --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/Regularizers/L1.cs @@ -0,0 +1,33 @@ +using System; + +using Tensorflow.Keras; + +namespace Tensorflow.Operations.Regularizers +{ + public class L1 : IRegularizer + { + float _l1; + private readonly Dictionary _config; + + public string ClassName => "L1"; + public virtual IDictionary Config => _config; + + public L1(float l1 = 0.01f) + { + // l1 = 0.01 if l1 is None else l1 + // validate_float_arg(l1, name = "l1") + // self.l1 = ops.convert_to_tensor(l1) + this._l1 = l1; + + _config = new(); + _config["l1"] = _l1; + } + + + public Tensor Apply(RegularizerArgs args) + { + //return self.l1 * ops.sum(ops.absolute(x)) + return _l1 * math_ops.reduce_sum(math_ops.abs(args.X)); + } + } +} diff --git a/src/TensorFlowNET.Core/Operations/Regularizers/L1L2.cs b/src/TensorFlowNET.Core/Operations/Regularizers/L1L2.cs new file mode 100644 index 000000000..e3af00eb5 --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/Regularizers/L1L2.cs @@ -0,0 +1,48 @@ +using System; + +using Tensorflow.Keras; + +namespace Tensorflow.Operations.Regularizers +{ + public class L1L2 : IRegularizer + { + float _l1; + float _l2; + private readonly Dictionary _config; + + public string ClassName => "L1L2"; + public virtual IDictionary Config => _config; + + public L1L2(float l1 = 0.0f, float l2 = 0.0f) + { + //l1 = 0.0 if l1 is None else l1 + //l2 = 0.0 if l2 is None else l2 + // validate_float_arg(l1, name = "l1") + // validate_float_arg(l2, name = "l2") + + // self.l1 = l1 + // self.l2 = l2 + this._l1 = l1; + this._l2 = l2; + + _config = new(); + _config["l1"] = l1; + _config["l2"] = l2; + } + + public Tensor Apply(RegularizerArgs args) + { + //regularization = ops.convert_to_tensor(0.0, dtype = x.dtype) + //if self.l1: + // regularization += self.l1 * ops.sum(ops.absolute(x)) + //if self.l2: + // regularization += self.l2 * ops.sum(ops.square(x)) + //return regularization + + Tensor regularization = tf.constant(0.0, args.X.dtype); + regularization += _l1 * math_ops.reduce_sum(math_ops.abs(args.X)); + regularization += _l2 * math_ops.reduce_sum(math_ops.square(args.X)); + return regularization; + } + } +} diff --git a/src/TensorFlowNET.Core/Operations/Regularizers/L2.cs b/src/TensorFlowNET.Core/Operations/Regularizers/L2.cs new file mode 100644 index 000000000..6c0e950a9 --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/Regularizers/L2.cs @@ -0,0 +1,33 @@ +using System; + +using Tensorflow.Keras; + +namespace Tensorflow.Operations.Regularizers +{ + public class L2 : IRegularizer + { + float _l2; + private readonly Dictionary _config; + + public string ClassName => "L2"; + public virtual IDictionary Config => _config; + + public L2(float l2 = 0.01f) + { + // l2 = 0.01 if l2 is None else l2 + // validate_float_arg(l2, name = "l2") + // self.l2 = l2 + this._l2 = l2; + + _config = new(); + _config["l2"] = _l2; + } + + + public Tensor Apply(RegularizerArgs args) + { + //return self.l2 * ops.sum(ops.square(x)) + return _l2 * math_ops.reduce_sum(math_ops.square(args.X)); + } + } +} diff --git a/src/TensorFlowNET.Core/Operations/SafeOperationHandle.cs b/src/TensorFlowNET.Core/Operations/SafeOperationHandle.cs new file mode 100644 index 000000000..41364fe65 --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/SafeOperationHandle.cs @@ -0,0 +1,40 @@ +/***************************************************************************** + Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +******************************************************************************/ + +using Tensorflow.Util; + +namespace Tensorflow; + +public sealed class SafeOperationHandle : SafeTensorflowHandle +{ + private SafeOperationHandle() + { + } + + public SafeOperationHandle(IntPtr handle) + : base(handle) + { + } + + protected override bool ReleaseHandle() + { + var status = new Status(); + // c_api.TF_CloseSession(handle, status); + c_api.TF_DeleteSession(handle, status); + SetHandle(IntPtr.Zero); + return true; + } +} diff --git a/src/TensorFlowNET.Core/Operations/_EagerTensorArray.cs b/src/TensorFlowNET.Core/Operations/_EagerTensorArray.cs index cf1b50af6..591760600 100644 --- a/src/TensorFlowNET.Core/Operations/_EagerTensorArray.cs +++ b/src/TensorFlowNET.Core/Operations/_EagerTensorArray.cs @@ -17,6 +17,8 @@ limitations under the License. using System; using System.Collections.Generic; using System.Linq; +using Tensorflow.Common.Types; +using Tensorflow.Eager; using Tensorflow.Framework; using static Tensorflow.Binding; @@ -37,10 +39,6 @@ public class _EagerTensorArray : TensorArray bool _infer_shape; public override bool infer_shape => _infer_shape; - public bool _dynamic_size; - public Shape _element_shape; - - public List _colocate_with; Tensor _handle; public override Tensor handle => _handle; @@ -48,12 +46,14 @@ public class _EagerTensorArray : TensorArray public override Tensor flow => _flow; bool _clear_after_read; List _tensor_array; + List _previous_read_indices; public _EagerTensorArray(TF_DataType dtype, Tensor size, bool dynamic_size = false, bool clear_after_read = true, string tensor_array_name = null, Tensor handle = null, Tensor flow = null, bool infer_shape = true, Shape? element_shape = null, bool colocate_with_first_write_call = true, string name = null) { + _size = size; _flow = constant_op.constant(0); _infer_shape = infer_shape; _element_shape = element_shape ?? Shape.Null; @@ -61,16 +61,20 @@ public _EagerTensorArray(TF_DataType dtype, Tensor size, bool dynamic_size = fal _dtype = dtype.as_base_dtype(); _dynamic_size = dynamic_size; _clear_after_read = clear_after_read; - _tensor_array = new List(); + _tensor_array = Enumerable.Repeat(null, size.numpy()).ToList(); + _previous_read_indices = new(); } public override TensorArray unstack(Tensor value, string name = null) { - return tf_with(ops.name_scope(name, "TensorArrayUnstack", new { _handle, value }), delegate + var tensors = array_ops.unstack(value, name: name); + if(tensors.Length > _tensor_array.Count && !_dynamic_size) { - var num_elements = array_ops.shape(value)[0]; - return scatter(indices: math_ops.range(0, num_elements), value: value, name: name); - }); + throw new ValueError($"Cannot unstack {tensors.Length} tensors into a TensorArray of static size {_tensor_array.Count}"); + } + _tensor_array = tensors.ToList(); + // TODO(Rinne): revise the implementation. Here we should return `parent()`. + return this; } public TensorArray scatter(Tensor indices, Tensor value, string name = null) @@ -103,7 +107,19 @@ public TensorArray scatter(Tensor indices, Tensor value, string name = null) return ta; });*/ - throw new NotImplementedException(""); + //if (indices is EagerTensor) + //{ + // indices = indices as EagerTensor; + // indices = indices.numpy(); + //} + + //foreach (var (index, val) in zip(indices.ToArray(), array_ops.unstack(value))) + //{ + // this.write(index, val); + //} + //return base; + //throw new NotImplementedException(""); + return this; } public void _merge_element_shape(Shape shape) @@ -116,9 +132,19 @@ public void _maybe_colocate_with(Tensor value) _colocate_with.Add(value); } + private Tensor _maybe_zero(int ix) + { + var val = _tensor_array[ix]; + if(val is null) + { + val = _tensor_array[ix] = array_ops.zeros(_element_shape, _dtype); + } + return val; + } + public override Tensor read(T index, string name = null) { - int index_int = -1; + int index_int; if (index is int int_index) index_int = int_index; else if (index is Tensor tensor_index) @@ -126,27 +152,75 @@ public override Tensor read(T index, string name = null) else throw new ValueError(""); + if(index_int >= _tensor_array.Count) + { + throw new OutOfRangeError($"Tried to read from index {index_int} but array size is: {_tensor_array.Count} "); + } + + var res = _tensor_array[index_int]; + if(res is null) + { + if (_previous_read_indices.Contains(index_int)) + { + throw new InvalidArgumentError($"Could not read index {index_int} twice because it was cleared after " + + $"a previous read (perhaps try setting clear_after_read = false?)"); + } + else + { + res = _maybe_zero(index_int); + } + } + if (_clear_after_read) { _tensor_array[index_int] = null; + _previous_read_indices.Add(index_int); } - - return _tensor_array[index_int]; + return res; } public override TensorArray write(Tensor index, Tensor value, string name = null) { - if (_infer_shape) - _element_shape = _element_shape.merge_with(value.shape); - _tensor_array.add(value); - return this; + int index_int; + if(index is EagerTensor eager) + { + return write(eager.numpy(), value, name); + } + throw new InvalidArgumentError("The index is supposed to be an EagerTensor"); } public override TensorArray write(int index, T value, string name = null) { - var value_tensor = ops.convert_to_tensor(value, preferred_dtype: _dtype, name: "value"); - var index_tensor = ops.convert_to_tensor(index, name: "index"); - return write(index_tensor, value_tensor, name: name); + int size = _tensor_array.Count; + if(index >= size) + { + if (!_dynamic_size) + { + throw new OutOfRangeError($"Tried to write to index {index} but array is not resizeable and size " + + $"is: {size} "); + } + _tensor_array.AddRange(Enumerable.Repeat(null, index - size + 1)); + } + + Tensor tensor = ops.convert_to_tensor(value, preferred_dtype: _dtype, name: "value"); + + if(_dtype != tensor.dtype) + { + throw new InvalidArgumentError($"TensorArray dtype is {_dtype.as_python_name()} but Op is " + + $"trying to write dtype {tensor.dtype.as_python_name()} "); + } + + if (!_element_shape.is_compatible_with(tensor.shape)) + { + throw new ValueError($"Incompatible shape for value ({tensor.shape}), expected ({_element_shape})"); + } + + if (_infer_shape) + { + _element_shape = _element_shape.merge_with(tensor.shape); + } + _tensor_array[index] = tensor; + return this; } private Tensor size(string name = null) @@ -156,11 +230,26 @@ private Tensor size(string name = null) public override Tensor stack(string name = null) { - ops.colocate_with(_handle); - return tf_with(ops.name_scope(name, "TensorArrayStack", new { _handle }), delegate + if(_tensor_array.Count > 0) + { + for(int i = 0; i < _tensor_array.Count; i++) + { + _maybe_zero(i); + } + } + if(_tensor_array.Count == 0 && _element_shape.IsFullyDefined) + { + return ops.convert_to_tensor(new Shape(new long[] { 0 }.Concat(_element_shape.dims).ToArray()), name: name, dtype: _dtype); + } + else { - return gather(math_ops.range(0, size()), name: name); - }); + return ops.convert_to_tensor(_tensor_array, name: name, dtype: _dtype); + } + //ops.colocate_with(_handle); + //return tf_with(ops.name_scope(name, "TensorArrayStack", new { _handle }), delegate + //{ + // return gather(math_ops.range(0, size()), name: name); + //}); } public override Tensor gather(Tensor indices, string name = null) diff --git a/src/TensorFlowNET.Core/Operations/_GraphTensorArray.cs b/src/TensorFlowNET.Core/Operations/_GraphTensorArray.cs index 16870e9f6..2384e8146 100644 --- a/src/TensorFlowNET.Core/Operations/_GraphTensorArray.cs +++ b/src/TensorFlowNET.Core/Operations/_GraphTensorArray.cs @@ -16,7 +16,10 @@ limitations under the License. using System; using System.Collections.Generic; +using System.Diagnostics; using System.Linq; +using Tensorflow.Common.Types; +using Tensorflow.Eager; using static Tensorflow.Binding; namespace Tensorflow.Operations @@ -32,18 +35,18 @@ public class _GraphTensorArray : TensorArray /// first tensor written to it. ///
bool _colocate_with_first_write_call; - public bool colocate_with_first_write_call => _colocate_with_first_write_call; + public override bool colocate_with_first_write_call => _colocate_with_first_write_call; bool _infer_shape; - public bool infer_shape => _infer_shape; - public bool _dynamic_size; + public override bool infer_shape => _infer_shape; public List _element_shape; public List _colocate_with; internal Tensor _handle; - public Tensor handle => _handle; + public override Tensor handle => _handle; internal Tensor _flow; + public override Tensor flow => _flow; public _GraphTensorArray(TF_DataType dtype, Tensor size, bool? dynamic_size = null, bool? clear_after_read = null, string tensor_array_name = null, Tensor handle = null, Tensor flow = null, @@ -54,6 +57,7 @@ public _GraphTensorArray(TF_DataType dtype, Tensor size, bool? dynamic_size = nu dynamic_size = dynamic_size ?? false; _dynamic_size = dynamic_size.Value; _dtype = dtype; + _size = size; _colocate_with_first_write_call = colocate_with_first_write_call; if (colocate_with_first_write_call) @@ -146,7 +150,9 @@ public TensorArray scatter(Tensor indices, Tensor value, string name = null) return ta; });*/ - throw new NotImplementedException(""); + + //throw new NotImplementedException(""); + return this; } public void _merge_element_shape(Shape shape) @@ -232,4 +238,173 @@ public override Tensor gather(Tensor indices, string name = null) return value; } } + + public class _GraphTensorArrayV2 : TensorArray + { + internal TF_DataType _dtype; + public override TF_DataType dtype => _dtype; + + /// + /// Used to keep track of what tensors the TensorArray should be + /// colocated with. We choose to colocate the TensorArray with the + /// first tensor written to it. + /// + bool _colocate_with_first_write_call; + public override bool colocate_with_first_write_call => _colocate_with_first_write_call; + + bool _infer_shape; + public override bool infer_shape => _infer_shape; + public Shape _element_shape; + + public List _colocate_with; + + internal Tensor _handle; + public override Tensor handle => _handle; + internal Tensor _flow; + public override Tensor flow => _flow; + + public _GraphTensorArrayV2(TF_DataType dtype, Tensor size, bool? dynamic_size = null, + bool? clear_after_read = null, string tensor_array_name = null, Tensor handle = null, Tensor flow = null, + bool infer_shape = true, Shape? element_shape = null, + bool colocate_with_first_write_call = true, string name = null) + { + Debug.Assert(handle is null); + dynamic_size = dynamic_size ?? false; + _dynamic_size = dynamic_size.Value; + _size = size; + + if(flow is not null && flow.dtype != dtypes.variant) + { + throw new TypeError($"Expected `flow` to be a variant tensor, but received `{flow.dtype}` instead"); + } + if(flow is null && size is null) + { + throw new ValueError("Argument `size` must be provided if argument `flow` is not provided."); + } + if(flow is not null && size is not null) + { + throw new ValueError("Cannot provide both `flow` and `size` arguments at the same time."); + } + if(flow is not null && element_shape is not null) + { + throw new ValueError("Cannot provide both `flow` and `element_shape` arguments at the same time."); + } + + _dtype = dtype; + + _element_shape = element_shape; + _infer_shape = infer_shape; + tf_with(ops.name_scope(name, "TensorArrayV2", new object[] { size, flow }), scope => + { + if (flow is null) + { + _flow = list_ops.tensor_list_reserve(element_shape, size, dtype, scope.scope_name); + } + else + { + _flow = flow; + } + }); + + _colocate_with_first_write_call = false; + _colocate_with = null; + } + + public override TensorArray unstack(Tensor value, string name = null) + { + return tf_with(ops.name_scope(name, "TensorArrayUnstack", new { _flow, value }), delegate + { + value = ops.convert_to_tensor(value, preferred_dtype: _dtype, name: "value"); + Debug.Assert(value.dtype == _dtype); + var flow_out = list_ops.tensor_list_from_tensor(value, value.shape.dims.Skip(1).ToArray()); + return tensor_array_ops.build_ta_with_new_flow(this, flow_out); + }); + } + + public TensorArray scatter(Tensor indices, Tensor value, string name = null) + { + return tf_with(ops.name_scope(name, "TensorArrayScatter", new { _flow, value, indices }), delegate + { + value = ops.convert_to_tensor(value, preferred_dtype: _dtype, name: "value"); + Debug.Assert(value.dtype == _dtype); + var flow_out = list_ops.tensor_list_scatter(value, indices, _element_shape, _flow); + return tensor_array_ops.build_ta_with_new_flow(this, flow_out); + }); + } + + public override Tensor read(T index, string name = null) + { + if(index is Tensor tensor) + { + return read(tensor, name); + } + else + { + throw new TypeError("Please use non-generic method instead."); + } + } + + public Tensor read(Tensor index, string name = null) + { + return tf_with(tf.name_scope(name, "TensorArrayV2Read", new object[] { _flow, index }), scope => + { + return list_ops.tensor_list_get_item(_flow, index, _dtype, _element_shape, name); + }); + } + + public override TensorArray write(Tensor index, Tensor value, string name = null) + { + return tf_with(ops.name_scope(name, "TensorArrayV2Write", new { _flow, index, value }), delegate + { + value = ops.convert_to_tensor(value, preferred_dtype: _dtype, name: "value"); + Debug.Assert(value.dtype == _dtype); + var flow_out = list_ops.tensor_list_set_item(_flow, index, value, _dynamic_size, name); + + return tensor_array_ops.build_ta_with_new_flow(this, flow_out); + }); + } + + public override TensorArray write(int index, T value, string name = null) + { + var value_tensor = ops.convert_to_tensor(value, preferred_dtype: _dtype, name: "value"); + var index_tensor = ops.convert_to_tensor(index, name: "index"); + return write(index_tensor, value_tensor); + } + + private Tensor size(string name = null) + { + if(!_dynamic_size && _size is not null) + { + return ops.convert_to_tensor(_size, dtypes.int32); + } + else + { + return gen_list_ops.tensor_list_length(_flow, name); + } + } + + public override Tensor stack(string name = null) + { + return tf_with(ops.name_scope(name, "TensorArrayV2Stack", _flow), delegate + { + int ta_size; + if(!_dynamic_size && (_size is not null)) + { + var size_tensor = tensor_util.constant_value(_size); + ta_size = size_tensor is null ? -1 : (int)size_tensor; + } + else + { + ta_size = -1; + } + var value = list_ops.tensor_list_stack(_flow, _dtype, ta_size, _element_shape); + return value; + }); + } + + public override Tensor gather(Tensor indices, string name = null) + { + return list_ops.tensor_list_gather(_flow, indices, _dtype, _element_shape, name); + } + } } diff --git a/src/TensorFlowNET.Core/Operations/array_ops.cs b/src/TensorFlowNET.Core/Operations/array_ops.cs index 263509f6f..548a885ed 100644 --- a/src/TensorFlowNET.Core/Operations/array_ops.cs +++ b/src/TensorFlowNET.Core/Operations/array_ops.cs @@ -22,12 +22,13 @@ limitations under the License. using Tensorflow.Eager; using Tensorflow.Framework; using static Tensorflow.Binding; +using System.Diagnostics; namespace Tensorflow { public class array_ops { - public static Tensor placeholder_with_default(T input, int[] shape, string name = null) + public static Tensor placeholder_with_default(Tensor input, int[] shape, string name = null) => gen_array_ops.placeholder_with_default(input, shape, name); /// @@ -83,8 +84,13 @@ public static Tensor zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT // var shape_tensor = constant_op._tensor_shape_tensor_conversion_function(shape); Tensor zeros = dtype switch { + TF_DataType.TF_BOOL => constant(false), TF_DataType.TF_DOUBLE => constant(0d), TF_DataType.TF_FLOAT => constant(0f), + TF_DataType.TF_INT64 => constant(0L), + TF_DataType.TF_UINT64 => constant((ulong)0), + TF_DataType.TF_INT32 => constant(0), + TF_DataType.TF_UINT32 => constant((uint)0), TF_DataType.TF_INT8 => constant((sbyte)0), TF_DataType.TF_UINT8 => constant((byte)0), _ => constant(0) @@ -107,9 +113,15 @@ public static Tensor zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT return _constant_if_small(0.0F, shape, dtype, name); case TF_DataType.TF_INT64: return _constant_if_small(0L, shape, dtype, name); + case TF_DataType.TF_UINT64: + return _constant_if_small(0, shape, dtype, name); case TF_DataType.TF_INT32: return _constant_if_small(0, shape, dtype, name); + case TF_DataType.TF_UINT32: + return _constant_if_small(0, shape, dtype, name); case TF_DataType.TF_INT8: + return _constant_if_small(0, shape, dtype, name); + case TF_DataType.TF_UINT8: return _constant_if_small(0, shape, dtype, name); default: throw new TypeError("can't find type for zeros"); @@ -118,6 +130,27 @@ public static Tensor zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT } } + public static Tensor zeros(Tensors shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) + { + dtype = dtype.as_base_dtype(); + Tensor shapeTensor; + if(shape.Length > 1) + { + shapeTensor = ops.convert_to_tensor(shape, dtypes.int32); + if (shapeTensor.ndim > 1) + { + shapeTensor = array_ops.reshape(shapeTensor, new Shape(-1)); + } + } + else + { + shapeTensor = shape[0]; + } + var output = fill(shapeTensor, array_ops.constant(0, dtype), name); + Debug.Assert(output.dtype.as_base_dtype() == dtype); + return output; + } + public static Tensor boolean_mask(T1 tensor, T2 mask, string name = "boolean_mask", int axis = 0) { return tf_with(ops.name_scope(name, values: new { tensor, mask }), delegate @@ -132,7 +165,12 @@ public static Tensor boolean_mask(T1 tensor, T2 mask, string name = "boo if (ndims_mask < 1) throw new ValueError("mask cannot be scalar."); - var leading_size = gen_math_ops.prod(shape(tensor_tensor)[$"{axis}:{axis + ndims_mask}"], new[] { 0 }); + var leading_size = gen_math_ops.prod(shape(tensor_tensor)[$"{axis}:{axis + ndims_mask}"], ops.convert_to_tensor(new[] { 0 })); + if (leading_size.rank == 0) + { + leading_size = expand_dims(leading_size, 0); + } + var shape1 = concat(new[] { shape(tensor_tensor)[$":{axis}"], @@ -152,8 +190,8 @@ public static Tensor boolean_mask(T1 tensor, T2 mask, string name = "boo private static Tensor _apply_mask_1d(Tensor reshaped_tensor, Tensor mask, int axis = 0) { - var indices = squeeze(where(mask), axis: new[] { 1 }); - return gather(reshaped_tensor, indices, axis: axis); + var indices = squeeze(where_v2(mask), axis: new[] { 1 }); + return gather(reshaped_tensor, indices, axis: ops.convert_to_tensor(axis)); } public static Tensor zeros(Tensor shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) @@ -221,6 +259,9 @@ private static TF_DataType _get_dtype_from_nested_lists(IEnumerable list_o case Tensor t: dtype = t.dtype.as_base_dtype(); break; + case int t: + dtype = TF_DataType.TF_INT32; + break; } if (dtype != TF_DataType.DtInvalid) @@ -268,6 +309,10 @@ public static Tensor _autopacking_helper(IEnumerable list_or_tuple, TF_D { elems_as_tensors.Add(tensor); } + else if (elem is KerasTensor kt) + { + elems_as_tensors.Add(kt); + } else { var elem_tensor = constant_op.constant(elem, dtype: dtype, name: i.ToString()); @@ -290,7 +335,7 @@ public static Tensor _autopacking_helper(IEnumerable list_or_tuple, TF_D } public static Tensor expand_dims(Tensor input, int axis = -1, string name = null) - => gen_array_ops.expand_dims(input, axis, name); + => gen_array_ops.expand_dims(input, ops.convert_to_tensor(axis), name); /// /// Creates a tensor filled with a scalar value. @@ -301,7 +346,10 @@ public static Tensor expand_dims(Tensor input, int axis = -1, string name = null /// Optional string. The name of the output `tf.Tensor`. /// A `tf.Tensor` with shape `dims` and the same dtype as `value`. public static Tensor fill(Shape dims, T value, string name = null) - => gen_array_ops.fill(dims, value, name: name); + => gen_array_ops.fill(dims, ops.convert_to_tensor(value), name: name); + + public static Tensor fill(Tensor dims, T value, string name = null) + => gen_array_ops.fill(dims, ops.convert_to_tensor(value), name: name); /// /// Returns the rank of a tensor. @@ -365,7 +413,20 @@ public static Tensor reshape(Tensor tensor, Shape shape, string name = null) => gen_array_ops.reshape(tensor, shape, name: name); public static Tensor reshape(Tensor tensor, object[] shape, string name = null) - => gen_array_ops.reshape(tensor, shape, name: name); + { + var dims = shape_utils.from_object_array(shape); + return gen_array_ops.reshape(tensor, dims, name: name); + } + + public static Tensor reverse(Tensor tensor, Tensor axis, string name = null) + => tf.Context.ExecuteOp("ReverseV2", name, new ExecuteOpArgs(tensor, axis) + { + GetGradientAttrs = (op) => new + { + T = op.get_attr("T"), + Tidx = op.get_attr("Tidx") + } + }); private static Tensor ones_like_impl(T tensor, TF_DataType dtype, string name, bool optimize = true) { @@ -386,6 +447,10 @@ public static Tensor ones(Tensor shape, TF_DataType dtype = TF_DataType.TF_FLOAT return tf_with(ops.name_scope(name, "ones", new { shape }), scope => { name = scope; + if (shape._shape_tuple().Length == 0) + { + shape = reshape(shape, new Shape(-1)); + } var output = gen_array_ops.fill(shape, constant_op.constant(1.0f, dtype: dtype), name: name); return output; }); @@ -414,7 +479,7 @@ public static Tensor ones(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, { TF_DataType.TF_DOUBLE => constant(1.0d), TF_DataType.TF_FLOAT => constant(1.0f), - _ => constant(1) + _ => constant(1, dtype) }; if (shape.ndim == 0) @@ -463,7 +528,11 @@ public static Tensor one_hot(Tensor indices, Tensor depth, } public static (Tensor, Tensor) unique(Tensor x, TF_DataType out_idx = TF_DataType.TF_INT32, string name = null) - => gen_array_ops.unique(x, out_idx: out_idx, name: name); + { + var res = gen_array_ops.unique(x, out_idx: out_idx, name: name); + Debug.Assert(res.Length == 2); + return (res[0], res[1]); + } public static Tensor stack(Tensor[] values, int axis = 0, string name = "stack") { @@ -489,12 +558,12 @@ public static Tensor where(Tensor condition, object x = null, object y = null, s { name = scope; condition = ops.convert_to_tensor(condition, preferred_dtype: dtypes.@bool, name: "condition"); - return gen_array_ops.where(condition: condition, name: name); + return gen_array_ops.where(condition, name: name); }); } else if (x != null && y != null) { - return gen_array_ops.select(condition, x, y, name); + return gen_math_ops.select(condition, ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); } else { @@ -502,7 +571,6 @@ public static Tensor where(Tensor condition, object x = null, object y = null, s } } - public static Tensor where_v2(Tensor condition, object x = null, object y = null, string name = null) { if (x == null && y == null) @@ -511,18 +579,19 @@ public static Tensor where_v2(Tensor condition, object x = null, object y = null { name = scope; condition = ops.convert_to_tensor(condition, preferred_dtype: dtypes.@bool, name: "condition"); - return gen_array_ops.where(condition: condition, name: name); + return gen_array_ops.where(condition, name: name); }); } else if (x != null && y != null) { - return gen_array_ops.select_v2(condition, x, y, name); + return gen_math_ops.select_v2(condition, ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); } else { throw new ValueError("x and y must both be non-None or both be None."); } } + /// /// Returns the shape of a tensor. /// @@ -560,7 +629,17 @@ public static Tensor shape_internal(Tensor input, string name = null, bool optim } } - return gen_array_ops.shape(input, name: name, out_type: out_type); + return tf.Context.ExecuteOp("Shape", name, new ExecuteOpArgs(input) + { + GetGradientAttrs = (op) => new + { + T = op.get_attr("T"), + out_type = op.get_attr("out_type") + } + }.SetAttributes(new + { + out_type + })).First(); }); } @@ -594,6 +673,18 @@ public static Tensor tile(Tensor input, Tensor multiples, string name = null) } }); + /*public static Tensor tile(Tensor input, Shape multiples, string name = null) + { + return tf.Context.ExecuteOp("Tile", name, new ExecuteOpArgs(input, multiples) + { + GetGradientAttrs = (op) => new + { + T = op.get_attr("T"), + Tmultiples = op.get_attr("Tmultiples") + } + }); + }*/ + public static Tensor zeros_like(Tensor tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) { return tf_with(ops.name_scope(name, "zeros_like", new Tensor[] { tensor }), scope => @@ -631,7 +722,12 @@ public static Tensor zeros_like(Tensor tensor, TF_DataType dtype = TF_DataType.D /// /// public static Tensor stop_gradient(Tensor input, string name = null) - => tf.Context.ExecuteOp("StopGradient", name, new ExecuteOpArgs(input)); + { + var tape = tf.GradientTape().stop_recording(); + var result = gen_array_ops.stop_gradient(input, name); + tape.StartRecord(); + return result; + } /// /// Extracts a strided slice of a tensor (generalized python array indexing). @@ -655,23 +751,26 @@ public static Tensor strided_slice(Tensor input_, Tensor begin, Tensor end, int new_axis_mask = 0, int shrink_axis_mask = 0, string name = null) - { - var op = gen_array_ops.strided_slice( - input: input_, - begin: begin, - end: end, - strides: strides, - begin_mask: begin_mask, - end_mask: end_mask, - ellipsis_mask: ellipsis_mask, - new_axis_mask: new_axis_mask, - shrink_axis_mask: shrink_axis_mask, - name: name); - - string parent_name = name; - - return op; - } + => tf.Context.ExecuteOp("StridedSlice", name, new ExecuteOpArgs(input_, begin, end, strides) + { + GetGradientAttrs = (op) => new + { + T = op.get_attr("T"), + Index = op.get_attr("Index"), + begin_mask = op.get_attr("begin_mask"), + end_mask = op.get_attr("end_mask"), + ellipsis_mask = op.get_attr("ellipsis_mask"), + new_axis_mask = op.get_attr("new_axis_mask"), + shrink_axis_mask = op.get_attr("shrink_axis_mask") + } + }.SetAttributes(new + { + begin_mask, + end_mask, + ellipsis_mask, + new_axis_mask, + shrink_axis_mask + })); /// /// Returns the gradient of `StridedSlice`. @@ -735,7 +834,7 @@ public static Tensor strided_slice_grad(Tensor shape, Tensor begin, Tensor end, /// A `Tensor`. Has the same type as `input`. /// Contains the same data as `input`, but has one or more dimensions of /// size 1 removed. - public static Tensor squeeze(Tensor input, int[] axis = null, string name = null) + public static Tensor squeeze(Tensor input, Axis axis = null, string name = null) => gen_array_ops.squeeze(input, axis, name); public static Tensor identity(Tensor input, string name = null) @@ -844,28 +943,14 @@ public static Tensor broadcast_static_shape(Tensor shape_x, Tensor shape_y) /// /// /// - public static Tensor concat(Tensor[] values, int axis, string name = "concat") - { - if (values.Length == 1) // Degenerate case of one tensor. - { - return tf_with(ops.name_scope(name), scope => - { - var t = ops.convert_to_tensor(axis, name: "concat_dim", dtype: TF_DataType.TF_INT32); - return identity(values[0], name: scope); - }); - } - - return gen_array_ops.concat_v2(values, axis, name: name); - } - public static Tensor concat(Tensor[] values, Tensor axis, string name = "concat") { - return gen_array_ops.concat_v2(values, axis, name: name); + return tf.Context.ExecuteOp("ConcatV2", name, new ExecuteOpArgs(values, axis)); } public static Tensor concat(object[] values, int axis, string name = "concat") { - return gen_array_ops.concat_v2(values, axis, name: name); + return tf.Context.ExecuteOp("ConcatV2", name, new ExecuteOpArgs(values, axis)); } /// @@ -883,19 +968,34 @@ public static Tensor concat(object[] values, int axis, string name = "concat") /// /// An integer. The number of batch dimensions. Must be less than or equal to rank(indices). /// - public static Tensor gather(T1 @params, T2 indices, string name = null, int axis = 0, int batch_dims = 0) + public static Tensor gather(Tensor @params, Tensor indices, string name = null, Tensor axis = null, int batch_dims = 0) { - if (axis != 0) - return gen_array_ops.gather_v2(@params, indices, axis, name: name); - - if (@params is ResourceVariable variable && - indices is Tensor indices_tensor) - return variable.sparse_read(indices_tensor, name); + if (axis is null) + axis = tf.convert_to_tensor(batch_dims); + if(tensor_util.constant_value(axis) != 0) + { + return gen_array_ops.gather_v2(@params, indices, axis, batch_dims: batch_dims, name: name); + } return gen_array_ops.gather_v2(@params, indices, axis, name: name); } - public static Tensor transpose(T1 a, Axis perm, string name = "transpose", bool conjugate = false) + public static Tensor gather(Tensor @params, Tensor indices, int axis, string name = null, int batch_dims = 0) + => gather(@params, indices, name, ops.convert_to_tensor(axis), batch_dims); + + public static Tensor gather(ResourceVariable @params, Tensor indices, string name = null, Tensor axis = null, int batch_dims = 0) + { + if (axis is null) + axis = tf.convert_to_tensor(batch_dims); + if (tensor_util.constant_value(axis) != 0) + { + throw new NotImplementedException(); + } + + return @params.sparse_read(indices, name); + } + + public static Tensor transpose(T1 a, Axis perm = null, string name = "transpose", bool conjugate = false) { return tf_with(ops.name_scope(name, "transpose", new { a }), scope => { @@ -918,55 +1018,77 @@ public static Tensor transpose(Tensor a, Tensor perm, string name = "transpose", }); } - public static Tensor[] split(Tensor value, Tensor size_splits, int axis, int num = -1, - string name = "split") + /// + /// Transposes last two dimensions of tensor `a`. + /// For example: + /// python + /// x = tf.constant([[1, 2, 3], [4, 5, 6]]) + /// tf.matrix_transpose(x) # [[1, 4], + /// # [2, 5], + /// # [3, 6]] + /// + /// Matrix with two batch dimensions. + /// x.shape is [1, 2, 3, 4] + /// tf.linalg.matrix_transpose(x) is shape [1, 2, 4, 3] + /// + /// + /// + /// + /// + /// + public static Tensor matrix_transpose(Tensor a, string name = "matrix_transpose", bool conjugate = false) { - if (num == -1) - num = (int)size_splits.shape[0]; - - return gen_array_ops.split_v(value, size_splits, axis, num, name: name); + return tf_with(ops.name_scope(name, "transpose", new { a }), scope => + { + var a_shape = a.shape; + var ndims = a.shape.ndim; + Axis perm; + if(ndims != 0) + { + if (ndims < 2) + { + throw new ValueError("Argument `a` should be a (batch) matrix with rank " + + $">= 2. Received `a` = {a} with shape: {a_shape}"); + } + perm = new Axis(Enumerable.Range(0, ndims - 2).Concat(new int[] { ndims - 1, ndims - 2 }).ToArray()); + } + else + { + var a_rank = a.rank; + perm = new Axis(Enumerable.Range(0, a_rank - 2).Concat(new int[] { a_rank - 1, a_rank - 2 }).ToArray()); + } + return transpose(a, perm:perm, conjugate:conjugate); + }); } - public static Tensor[] split(Tensor value, int num_split, T axis, + public static Tensor[] split(Tensor value, int num_or_size_splits, Tensor axis = null, string name = "split") { - var size_splits = ops.convert_to_tensor(num_split); + return gen_array_ops.split(split_dim: axis, value: value, num_split: num_or_size_splits, name); + } - if (tf.Context.executing_eagerly()) + public static Tensor[] split(Tensor value, int[] num_or_size_splits, Tensor axis = null, int num = -1, + string name = "split") + { + if(num_or_size_splits.Length == 0) { - return split_eager_fallback(axis, value, num_split: num_split, name: name, ctx: tf.Context); + throw new ValueError("Rank-0 tensors are not supported as the num_or_size_splits argument to split."); } + var size_splits = ops.convert_to_tensor(num_or_size_splits); - var _op = tf.OpDefLib._apply_op_helper("Split", name, new { split_dim = axis, value, num_split }); - return _op.outputs; - } - - private static Tensor[] split_eager_fallback(Ta axis, Tv value, int num_split, string name, Context ctx = null) - { - var (_attr_T, input) = tf.Runner.ArgsToMatchingEager(ctx, args: new object[] { value }); - var axis_tensor = ops.convert_to_tensor(axis, dtype: TF_DataType.TF_INT32); - var _inputs_flat = new List { axis_tensor }; - _inputs_flat.AddRange(input); - var _attrs = new object[] { "num_split", num_split, "T", _attr_T }; + if(num == -1) + { + num = (int)size_splits.shape[0]; + } - return tf.Runner.Execute(ctx, "Split", num_split, _inputs_flat.ToArray(), _attrs, name: name); + return gen_array_ops.split_v(value: value, size_splits: size_splits, split_dim: axis, num_split: num, name: name); } public static Tensor slice(Tensor input, Tensor[] begin, Tensor[] size, string name = null) - => gen_array_ops.slice(input, begin, size, name: name); - - public static Tensor slice(Tensor input, Tb begin, Ts size, string name = null) - => gen_array_ops.slice(input, begin, size, name: name); + => gen_array_ops.slice(input, ops.convert_to_tensor(begin), ops.convert_to_tensor(size), name: name); public static Tensor slice(Tensor input, Tensor begin, Tensor size, string name = null) - => tf.Context.ExecuteOp("Slice", name, new ExecuteOpArgs(input, begin, size) - { - GetGradientAttrs = (op) => new - { - T = op.get_attr("T"), - Index = op.get_attr("Index") - } - }); + => gen_array_ops.slice(input, begin, size, name: name); public static Tensor stack(object values, int axis = 0, string name = "stack") @@ -1022,5 +1144,18 @@ public static Tensor placeholder(TF_DataType dtype, Shape shape = null, string n var _op = tf.OpDefLib._apply_op_helper("Placeholder", name: name, args: new { dtype, shape }); return _op.output; } + + public static int get_positive_axis(int axis, int ndims=-100, string axis_name="axis", string ndims_name= "ndims") + { + if(ndims != -100) + { + if (axis >= 0 && axis < ndims) return axis; + else if (-ndims <= axis && axis < 0) return axis + ndims; + else throw new ValueError($"{axis_name}={axis} out of bounds:expected {-ndims}<={axis_name}<{ndims}"); + + } else if(axis < 0) throw new ValueError($"{axis_name}={axis} may only be negative if {ndims_name} is statically known."); + return axis; + } + } } diff --git a/src/TensorFlowNET.Core/Operations/c_api.ops.cs b/src/TensorFlowNET.Core/Operations/c_api.ops.cs index 0fc924541..900db8cac 100644 --- a/src/TensorFlowNET.Core/Operations/c_api.ops.cs +++ b/src/TensorFlowNET.Core/Operations/c_api.ops.cs @@ -96,7 +96,7 @@ public partial class c_api /// const char* /// TF_OperationDescription* [DllImport(TensorFlowLibName)] - public static extern IntPtr TF_NewOperation(IntPtr graph, string opType, string oper_name); + public static extern IntPtr TF_NewOperation(SafeGraphHandle graph, string opType, string oper_name); [DllImport(TensorFlowLibName)] public static extern IntPtr TF_OperationDevice(IntPtr oper); diff --git a/src/TensorFlowNET.Core/Operations/control_flow_ops.cs b/src/TensorFlowNET.Core/Operations/control_flow_ops.cs index 862b636fd..efd9aba35 100644 --- a/src/TensorFlowNET.Core/Operations/control_flow_ops.cs +++ b/src/TensorFlowNET.Core/Operations/control_flow_ops.cs @@ -675,16 +675,17 @@ public static Tensor ZerosLikeOutsideLoop(Operation op, int index) } } - public static Tensor[] while_loop(Func cond, - Func body, - Tensor[] loop_vars, + public static Tensors while_loop(Func cond, + Func body, + Tensors loop_vars, int parallel_iterations = 10, string name = null) { var executing_eagerly = tf.Context.executing_eagerly(); if (!executing_eagerly) { - throw new NotImplementedException(""); + return while_v2.while_loop(cond, body, loop_vars, parallel_iterations: parallel_iterations, + name: name); } return tf_with(ops.name_scope("name", "while"), delegate diff --git a/src/TensorFlowNET.Core/Operations/control_flow_util.py.cs b/src/TensorFlowNET.Core/Operations/control_flow_util.py.cs index c88911194..536d4e3c2 100644 --- a/src/TensorFlowNET.Core/Operations/control_flow_util.py.cs +++ b/src/TensorFlowNET.Core/Operations/control_flow_util.py.cs @@ -16,12 +16,20 @@ limitations under the License. using System; using System.Linq; +using Tensorflow.Functions; +using Tensorflow.Graphs; using Tensorflow.Operations; +using static Tensorflow.Binding; namespace Tensorflow { public class control_flow_util { + public static readonly bool ENABLE_CONTROL_FLOW_V2 = !string.IsNullOrEmpty(Environment.GetEnvironmentVariable("TF_ENABLE_CONTROL_FLOW_V2")) && Environment.GetEnvironmentVariable("TF_ENABLE_CONTROL_FLOW_V2") != "0" || + (!string.IsNullOrEmpty(Environment.GetEnvironmentVariable("TF_ENABLE_CONTROL_FLOW_V2")) && Environment.GetEnvironmentVariable("TF_ENABLE_CONTROL_FLOW_V2") != "0") || + (!string.IsNullOrEmpty(Environment.GetEnvironmentVariable("TF_ENABLE_COND_V2")) && Environment.GetEnvironmentVariable("TF_ENABLE_COND_V2") != "0") || + (!string.IsNullOrEmpty(Environment.GetEnvironmentVariable("TF_ENABLE_WHILE_V2")) && Environment.GetEnvironmentVariable("TF_ENABLE_WHILE_V2") != "0") || + (!string.IsNullOrEmpty(Environment.GetEnvironmentVariable("TF_ENABLE_TENSOR_ARRAY_V2")) && Environment.GetEnvironmentVariable("TF_ENABLE_TENSOR_ARRAY_V2") != "0"); /// /// Return true if `op` is an Exit. /// @@ -196,5 +204,74 @@ public static WhileContext GetContainingWhileContext(ControlFlowContext ctxt, Co } return null; } + + public static bool EnableControlFlowV2(Graph graph) + { + return ENABLE_CONTROL_FLOW_V2 || graph.building_function && (graph is not FuncGraph func || func.captures.Length == 0); + + } + + public static string create_new_tf_function(FuncGraph func_graph) + { + var func = new EagerDefinedFunction(func_graph.Name, func_graph, func_graph.Inputs, func_graph.Outputs, new Dictionary()); + func.AddToGraph(func_graph); + return func_graph.Name; + } + + public static (Operation, Tensor[]) get_op_and_outputs(Tensor[] inputs) + { + if(inputs.Length == 0) + { + return (null, new Tensor[0]); + } + else + { + return (inputs[0], inputs); + } + } + + public static Tensor[] run_as_function_for_tape_gradients(Func make_op, Tensor[] inputs) + { + if(gradients_util.PossibleTapeGradientTypes(inputs) == gradients_util.POSSIBLE_GRADIENT_TYPES_HIGHER_ORDER + && !(ops.get_default_graph().building_function)) + { + throw new NotImplementedException(); + } + else + { + return make_op(inputs); + } + } + + public static string unique_fn_name(string scope, string name) + { + return $"{scope}{name}_{ops.uid()}".Replace("/", "_"); + } + + public static bool output_all_intermediates() + { + if (in_defun()) + { + return false; + } + if(tf.Context.FunctionCallOptions.ExecutorType == "SINGLE_THREADED_EXECUTOR") + { + return false; + } + // TODO(Rinne): check this after refactoring keras building. + return false; + } + + public static bool in_defun() + { + if (tf.Context.executing_eagerly()) + { + return false; + } + + var graph = ops.get_default_graph(); + // TODO(Rinne): CondBranchFuncGraph, WhileBodyFuncGraph, WhileCondFuncGraph + return graph is FuncGraph; + } } } diff --git a/src/TensorFlowNET.Core/Operations/dataset_ops.cs b/src/TensorFlowNET.Core/Operations/dataset_ops.cs index 9407fd5aa..061fb95e3 100644 --- a/src/TensorFlowNET.Core/Operations/dataset_ops.cs +++ b/src/TensorFlowNET.Core/Operations/dataset_ops.cs @@ -1,6 +1,9 @@ using System; +using Tensorflow.Contexts; +using Tensorflow.Eager; using Tensorflow.Framework.Models; using Tensorflow.Functions; +using Tensorflow.Operations; using static Tensorflow.Binding; namespace Tensorflow @@ -220,6 +223,37 @@ public Tensor model_dataset(Tensor input_dataset, return (results[0], results[1]); } + public Tensor anonymous_iterator_v3(TF_DataType[] output_types, Shape[] output_shapes, string name = null) + { + var ctx = tf.Context; + Dictionary attrs = new(); + attrs["output_types"] = output_types; + attrs["output_shapes"] = output_shapes; + if (ctx.executing_eagerly()) + { + try + { + var result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(tf.Context, "AnonymousIteratorV3", name) + { + attrs = attrs + }); + return result[0]; + } + catch (Exception) + { + return anonymous_iterator_v3_eager_fallback(output_types, output_shapes, name, ctx); + } + } + return tf.OpDefLib._apply_op_helper("AnonymousIteratorV3", name, attrs).outputs[0]; + } + + public Tensor anonymous_iterator_v3_eager_fallback(TF_DataType[] output_types, Shape[] output_shapes, string name, Context ctx) + { + object[] attrs = new object[] { output_types, output_shapes }; + var result = _execute.quick_execute("AnonymousIteratorV3", 1, new Tensor[] { }, attrs, ctx, name); + return result[0]; + } + /// /// Makes a new iterator from the given `dataset` and stores it in `iterator`. /// diff --git a/src/TensorFlowNET.Core/Operations/functional_ops.cs b/src/TensorFlowNET.Core/Operations/functional_ops.cs index 908029f5d..105479216 100644 --- a/src/TensorFlowNET.Core/Operations/functional_ops.cs +++ b/src/TensorFlowNET.Core/Operations/functional_ops.cs @@ -14,10 +14,14 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Google.Protobuf; +using Google.Protobuf.WellKnownTypes; using System; using System.Collections.Generic; using System.Linq; using Tensorflow.Framework; +using Tensorflow.Functions; +using Tensorflow.Operations; using Tensorflow.Util; using static Tensorflow.Binding; @@ -25,6 +29,74 @@ namespace Tensorflow { public class functional_ops { + public static Tensor[] partitioned_call(Tensors args, EagerDefinedFunction f, DataType[] tout, + bool executing_eagerly, string config, string executor_type) + { + if (tout is null) + { + throw new NotImplementedException(); + } + + if (config is null) + { + config = function_utils.get_disabled_rewriter_config().ToStringUtf8(); + } + + if (executor_type is null) + { + executor_type = ""; + } + + if (executing_eagerly) + { + // TODO(Rinne): implement it. + + throw new NotImplementedException(); + } + + var converted_args = args.Select(x => ops.convert_to_tensor(x)).ToArray(); + AttrValue tin_attr = new() + { + List = new AttrValue.Types.ListValue() + }; + tin_attr.List.Type.AddRange(args.Select(x => x.dtype.as_datatype_enum())); + AttrValue tout_attr = new() + { + List = new AttrValue.Types.ListValue() + }; + tout_attr.List.Type.AddRange(tout); + AttrValue func_attr = new() + { + Func = new NameAttrList() + }; + func_attr.Func.Name = f.Name; + AttrValue executor_type_attr = new AttrValue() + { + S = tf.compat.as_bytes(executor_type) + }; + AttrValue config_proto = new AttrValue() + { + S = ByteString.CopyFromUtf8(executor_type) + }; + + var graph = ops.get_default_graph(); + f.AddToGraph(graph); + // TODO(Rinne): complete it with `f.stateful` + var op_name = "PartitionedCall"; + string xla_compile_attr = "_XlaMustCompile"; + Dictionary op_attrs = new(); + op_attrs["Tin"] = tin_attr; + op_attrs["Tout"] = tout_attr; + op_attrs["f"] = func_attr; + op_attrs["config_proto"] = config_proto; + op_attrs["executor_type"] = executor_type_attr; + // TODO(Rinne): deal with `f.definition`. + var op = graph.create_op(op_name, args, tout.Select(x => x.as_tf_dtype()).ToArray(), + name: op_name, attrs: op_attrs); + var outputs = op.outputs; + // TODO(Rinne): deal with `f.graph`. + return outputs; + } public static Tensor scan( Func fn, Tensor elems, diff --git a/src/TensorFlowNET.Core/Operations/gen_array_ops.cs b/src/TensorFlowNET.Core/Operations/gen_array_ops.cs index dd1604f61..8367c2f94 100644 --- a/src/TensorFlowNET.Core/Operations/gen_array_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_array_ops.cs @@ -1,495 +1,10806 @@ -/***************************************************************************** - Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. +/*Wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit.*/ - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. -******************************************************************************/ - -using System; -using System.Linq; +using Tensorflow.Eager; using Tensorflow.Contexts; +using Tensorflow.Exceptions; using static Tensorflow.Binding; -namespace Tensorflow +namespace Tensorflow; + +public static class gen_array_ops { - public static class gen_array_ops + /// + /// + /// + /// + /// + /// + /// + public static Tensor batch_matrix_band_part(Tensor input, Tensor num_lower, Tensor num_upper, string? name = null) { - public static Tensor batch_to_space_nd(T input, int[] block_shape, int[,] crops, string name = null) + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) { - var _op = tf.OpDefLib._apply_op_helper("BatchToSpaceND", name: name, args: new { input, block_shape, crops }); - - return _op.output; + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatrixBandPart", name) { args = new object[] { input, num_lower, num_upper }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_matrix_band_part_eager_fallback(input, num_lower, num_upper, name: name, ctx: _ctx); + } + catch (Exception) + { + } } - - public static Tensor check_numerics(Tensor tensor, string message, string name = null) + Dictionary keywords = new(); + keywords["input"] = input; + keywords["num_lower"] = num_lower; + keywords["num_upper"] = num_upper; + var _op = tf.OpDefLib._apply_op_helper("BatchMatrixBandPart", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("CheckNumerics", name: name, args: new { tensor, message }); - - return _op.output; + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("BatchMatrixBandPart", _op.inputs, _attrs, _result); } + return _result[0]; + } - /// - /// Concatenates tensors along one dimension. - /// - /// - /// - /// - /// - public static Tensor concat_v2(T[] values, Ta axis, string name = null) - => tf.Context.ExecuteOp("ConcatV2", name, new ExecuteOpArgs(values, axis)); - - public static Tensor concat_v2(Tensor[] values, Tensor axis, string name = null) + public static Tensor batch_matrix_band_part_eager_fallback(Tensor input, Tensor num_lower, Tensor num_upper, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, num_lower, num_upper }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("BatchMatrixBandPart", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BatchMatrixBandPart", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + public static Tensor batch_matrix_diag(Tensor diagonal, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) { - if (tf.Context.executing_eagerly()) + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatrixDiag", name) { args = new object[] { diagonal }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_matrix_diag_eager_fallback(diagonal, name: name, ctx: _ctx); + } + catch (Exception) { - return concat_v2_eager_fallback(values, axis, name, tf.Context); } - - var _op = tf.OpDefLib._apply_op_helper("ConcatV2", name: name, args: new { values, axis }); - return _op.output; } - - public static Tensor concat_v2(Tensor[] values, int axis, string name = null) - => tf.Context.ExecuteOp("ConcatV2", name, new ExecuteOpArgs(values, axis)); - - private static Tensor concat_v2_eager_fallback(T1[] values, T2 axis, string name, Context ctx) + Dictionary keywords = new(); + keywords["diagonal"] = diagonal; + var _op = tf.OpDefLib._apply_op_helper("BatchMatrixDiag", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var _attr_N = len(values); - var (_attr_T, input) = tf.Runner.ArgsToMatchingEager(ctx, args: values.Select(x => (object)x).ToArray()); - var (_attr_Tidx, axis1) = tf.Runner.ArgsToMatchingEager(ctx, default_dtype: tf.int32, args: new object[] { axis }); - var _inputs_flat = input.concat(axis1); - var _attrs = new object[] { "N", _attr_N, "T", _attr_T, "Tidx", _attr_Tidx }; - - return tf.Runner.Execute(ctx, "ConcatV2", 1, _inputs_flat, _attrs, name: name)[0]; + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("BatchMatrixDiag", _op.inputs, _attrs, _result); } + return _result[0]; + } - public static Tensor[] concat_offset(Tensor concat_dim, Tensor[] shape, string name = null) + public static Tensor batch_matrix_diag_eager_fallback(Tensor diagonal, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { diagonal }; + object[] _attrs = new object[] { "T", diagonal.dtype }; + var _result = _execute.execute("BatchMatrixDiag", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("ConcatOffset", name: name, args: new { concat_dim, shape }); - - return _op.outputs; + _execute.record_gradient("BatchMatrixDiag", _inputs_flat, _attrs, _result); } - - /// - /// Returns a diagonal tensor with a given diagonal values. - /// - /// - /// Rank k tensor where k is at most 1. - /// - /// - /// If specified, the created operation in the graph will be this one, otherwise it will be named 'Diag'. - /// - /// - /// The Operation can be fetched from the resulting Tensor, by fetching the Operation property from the result. - /// - /// - /// Given a diagonal, this operation returns a tensor with the diagonal and - /// everything else padded with zeros. The diagonal is computed as follows: - /// - /// Assume diagonal has dimensions [D1,..., Dk], then the output is a tensor of - /// rank 2k with dimensions [D1,..., Dk, D1,..., Dk] where: - /// - /// output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik] and 0 everywhere else. - /// - /// For example: - /// - /// - /// # 'diagonal' is [1, 2, 3, 4] - /// tf.diag(diagonal) ==&gt; [[1, 0, 0, 0] - /// [0, 2, 0, 0] - /// [0, 0, 3, 0] - /// [0, 0, 0, 4]] - /// - /// - public static Tensor diag(Tensor diagonal, string name = null) - => tf.Context.ExecuteOp("Diag", name, new ExecuteOpArgs(diagonal)); - - public static Tensor expand_dims(Tensor input, int axis, string name = null) - => tf.Context.ExecuteOp("ExpandDims", name, new ExecuteOpArgs(input, axis) - .SetAttributes(new { dim = axis })); - - public static Tensor gather_v2(T1 @params, T2 indices, int axis, int batch_dims = 0, string name = null) + return _result[0]; + } + /// + /// + /// + /// + /// + public static Tensor batch_matrix_diag_part(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatrixDiagPart", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_matrix_diag_part_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("BatchMatrixDiagPart", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var result = tf.Context.ExecuteOp("GatherV2", name, new ExecuteOpArgs( - @params, - indices, - axis).SetAttributes(new { batch_dims })); - return result [0]; + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("BatchMatrixDiagPart", _op.inputs, _attrs, _result); } + return _result[0]; + } - private static Tensor gather_v2_eager_fallback(object @params, object indices, int axis, string name, Context ctx) + public static Tensor batch_matrix_diag_part_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("BatchMatrixDiagPart", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - var (_attr_T, param) = tf.Runner.ArgsToMatchingEager(ctx, args: new[] { @params }); - var (_attr_Tindice, indice) = tf.Runner.ArgsToMatchingEager(ctx, default_dtype: tf.int32, args: new[] { indices }); - var (_attr_Taxis, axiss) = tf.Runner.ArgsToMatchingEager(ctx, default_dtype: tf.int32, args: new object[] { axis }); - var _inputs_flat = param.concat(indice).concat(axiss); - var _attrs = new object[] { "batch_dims", 0, "Tparams", _attr_T, "Tindices", _attr_Tindice, "Taxis", _attr_Taxis }; - - var results = tf.Runner.Execute(ctx, "GatherV2", 1, _inputs_flat, _attrs, name: name); - if (tf.Runner.MustRecordGradient()) - tf.Runner.RecordGradient("GatherV2", _inputs_flat, _attrs, results); - return results[0]; + _execute.record_gradient("BatchMatrixDiagPart", _inputs_flat, _attrs, _result); } - - - public static Tensor pad(Tensor input, Tensor paddings, string name = null) + return _result[0]; + } + /// + /// + /// + /// + /// + /// + public static Tensor batch_matrix_set_diag(Tensor input, Tensor diagonal, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) { - if (tf.Context.executing_eagerly()) + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatrixSetDiag", name) { args = new object[] { input, diagonal }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_matrix_set_diag_eager_fallback(input, diagonal, name: name, ctx: _ctx); + } + catch (Exception) { - /*var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, - "Pad", name, - null, - input, paddings); - return results[0];*/ - return pad_eager_fallback(input, paddings, name: name, ctx: tf.Context); } - - var _op = tf.OpDefLib._apply_op_helper("Pad", name: name, args: new { input, paddings }); - - return _op.output; } - - private static Tensor pad_eager_fallback(Tensor inputs, Tensor padding, string name = null, Context ctx = null) + Dictionary keywords = new(); + keywords["input"] = input; + keywords["diagonal"] = diagonal; + var _op = tf.OpDefLib._apply_op_helper("BatchMatrixSetDiag", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var (_attr_T, input) = tf.Runner.ArgsToMatchingEager(ctx, args: new[] { inputs }); - var (_attr_Tpaddings, paddings) = tf.Runner.ArgsToMatchingEager(ctx, default_dtype: tf.int32, args: new[] { padding }); - var _inputs_flat = input.concat(paddings); - var _attrs = new object[] { "T", _attr_T, "Tpaddings", _attr_Tpaddings }; - - var results = tf.Runner.Execute(ctx, "Pad", 1, _inputs_flat, _attrs, name: name); - if (tf.Runner.MustRecordGradient()) - tf.Runner.RecordGradient("Pad", _inputs_flat, _attrs, results); - return results[0]; + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("BatchMatrixSetDiag", _op.inputs, _attrs, _result); } + return _result[0]; + } - public static Tensor pack(Tensor[] values, int axis = 0, string name = null) - => tf.Context.ExecuteOp("Pack", name, new ExecuteOpArgs() + public static Tensor batch_matrix_set_diag_eager_fallback(Tensor input, Tensor diagonal, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, diagonal }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("BatchMatrixSetDiag", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BatchMatrixSetDiag", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// BatchToSpace for 4-D tensors of type T. + /// + /// + /// + /// This is a legacy version of the more general BatchToSpaceND. + /// + /// Rearranges (permutes) data from batch into blocks of spatial data, followed by + /// cropping. This is the reverse transformation of SpaceToBatch. More specifically, + /// this op outputs a copy of the input tensor where values from the `batch` + /// dimension are moved in spatial blocks to the `height` and `width` dimensions, + /// followed by cropping along the `height` and `width` dimensions. + /// + /// + /// + /// + /// + /// + public static Tensor batch_to_space(Tensor input, Tensor crops, int block_size = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try { - OpInputArgs = new object[] { values } - }.SetAttributes(new { axis })); - - /// - /// Return a tensor with the same shape and contents as the input tensor or value. - /// - /// - /// - public static Tensor identity(Tensor input, string name = null) - => tf.Context.ExecuteOp("Identity", name, new ExecuteOpArgs(input)); - - public static Tensor invert_permutation(Tensor x, string name = null) + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchToSpace", name) { args = new object[] { input, crops }, attrs = new Dictionary() { ["block_size"] = block_size } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_to_space_eager_fallback(input, crops, block_size: block_size, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["crops"] = crops; + keywords["block_size"] = block_size; + var _op = tf.OpDefLib._apply_op_helper("BatchToSpace", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("InvertPermutation", name, new { x }); - - return _op.outputs[0]; + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "block_size", _op._get_attr_int("block_size"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("BatchToSpace", _op.inputs, _attrs, _result); } + return _result[0]; + } - public static Tensor log(Tensor x, string name = null) - => tf.Context.ExecuteOp("Log", name, new ExecuteOpArgs(x)); - - - public static Tensor rank(Tensor input, string name = null) - => tf.Context.ExecuteOp("Rank", name, new ExecuteOpArgs(input)); - - /// - /// Creates a tensor filled with a scalar value. - /// - /// A `Tensor`. - /// A `Tensor`. 0-D (scalar). Value to fill the returned tensor. - /// A name for the operation (optional). - /// A `Tensor`. Has the same type as `value`. - public static Tensor fill(Tensor dims, T value, string name = null) - => tf.Context.ExecuteOp("Fill", name, new ExecuteOpArgs(dims, value)); - - /// - /// Return the reduction indices for computing gradients of s0 op s1 with broadcast. - /// - /// A `Tensor`. Must be one of the following types: `int32`, `int64`. - /// A `Tensor`. Must have the same type as `s0`. - /// A name for the operation (optional). - /// A tuple of `Tensor` objects (r0, r1). - public static (Tensor, Tensor) broadcast_gradient_args(Tensor s0, Tensor s1, string name = "") + public static Tensor batch_to_space_eager_fallback(Tensor input, Tensor crops, int block_size, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, crops }; + object[] _attrs = new object[] { "T", input.dtype, "block_size", block_size, "Tidx", crops.dtype }; + var _result = _execute.execute("BatchToSpace", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - var results = tf.Context.ExecuteOp("BroadcastGradientArgs", name, new ExecuteOpArgs(s0, s1)); - return (results[0], results[1]); + _execute.record_gradient("BatchToSpace", _inputs_flat, _attrs, _result); } - - public static Tensor reverse(Tensor tensor, T axis, string name = null) + return _result[0]; + } + /// + /// BatchToSpace for N-D tensors of type T. + /// + /// + /// + /// This operation reshapes the "batch" dimension 0 into `M + 1` dimensions of shape + /// `block_shape + [batch]`, interleaves these blocks back into the grid defined by + /// the spatial dimensions `[1, ..., M]`, to obtain a result with the same rank as + /// the input. The spatial dimensions of this intermediate result are then + /// optionally cropped according to `crops` to produce the output. This is the + /// reverse of SpaceToBatch. See below for a precise description. + /// + /// + /// + /// + /// + /// + public static Tensor batch_to_space_nd(Tensor input, Tensor block_shape, Tensor crops, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchToSpaceND", name) { args = new object[] { input, block_shape, crops }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_to_space_nd_eager_fallback(input, block_shape, crops, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["block_shape"] = block_shape; + keywords["crops"] = crops; + var _op = tf.OpDefLib._apply_op_helper("BatchToSpaceND", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("ReverseV2", name, new { tensor, axis }); - return _op.output; + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tblock_shape", _op._get_attr_type("Tblock_shape"), "Tcrops", _op._get_attr_type("Tcrops") }; + _execute.record_gradient("BatchToSpaceND", _op.inputs, _attrs, _result); } + return _result[0]; + } - public static Tensor reshape(Tensor tensor, T shape, string name = null) - => tf.Context.ExecuteOp("Reshape", name, new ExecuteOpArgs(tensor, shape)); - - public static Tensor reshape(Tensor tensor, object[] shape, string name = null) - => tf.Context.ExecuteOp("Reshape", name, new ExecuteOpArgs(tensor, shape)); - - private static Tensor reshape_eager_fallback(Tensor tensor, object[] shape, string name, Context ctx) + public static Tensor batch_to_space_nd_eager_fallback(Tensor input, Tensor block_shape, Tensor crops, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, block_shape, crops }; + object[] _attrs = new object[] { "T", input.dtype, "Tblock_shape", block_shape.dtype, "Tcrops", crops.dtype }; + var _result = _execute.execute("BatchToSpaceND", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - var (_attr_T, _input) = tf.Runner.ArgsToMatchingEager(ctx, args: new[] { tensor }); - var (_attr_Tshape, _input_shape) = tf.Runner.ArgsToMatchingEager(ctx, args: new object[] { shape }, default_dtype: TF_DataType.TF_INT32); - var _inputs_flat = new[] { _input[0], _input_shape[0] }; - var _attrs = new object[] { "T", _attr_T, "Tshape", _attr_Tshape }; - - var results = tf.Runner.Execute(ctx, "Reshape", 1, _inputs_flat, _attrs, name: name); - if (tf.Runner.MustRecordGradient()) + _execute.record_gradient("BatchToSpaceND", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Bitcasts a tensor from one type to another without copying data. + /// + /// + /// + /// Given a tensor `input`, this operation returns a tensor that has the same buffer + /// data as `input` with datatype `type`. + /// + /// If the input datatype `T` is larger than the output datatype `type` then the + /// shape changes from [...] to [..., sizeof(`T`)/sizeof(`type`)]. + /// + /// If `T` is smaller than `type`, the operator requires that the rightmost + /// dimension be equal to sizeof(`type`)/sizeof(`T`). The shape then goes from + /// [..., sizeof(`type`)/sizeof(`T`)] to [...]. + /// + /// tf.bitcast() and tf.cast() work differently when real dtype is casted as a complex dtype + /// (e.g. tf.complex64 or tf.complex128) as tf.cast() make imaginary part 0 while tf.bitcast() + /// gives module error. + /// For example, + /// + /// Example 1: + /// + /// >>> a = [1., 2., 3.] + /// >>> equality_bitcast = tf.bitcast(a, tf.complex128) + /// Traceback (most recent call last): + /// ... + /// InvalidArgumentError: Cannot bitcast from 1 to 18 [Op:Bitcast] + /// >>> equality_cast = tf.cast(a, tf.complex128) + /// >>> print(equality_cast) + /// tf.Tensor([1.+0.j 2.+0.j 3.+0.j], shape=(3,), dtype=complex128) + /// + /// Example 2: + /// + /// >>> tf.bitcast(tf.constant(0xffffffff, dtype=tf.uint32), tf.uint8) + /// + /// + /// Example 3: + /// + /// >>> x = [1., 2., 3.] + /// >>> y = [0., 2., 3.] + /// >>> equality= tf.equal(x,y) + /// >>> equality_cast = tf.cast(equality,tf.float32) + /// >>> equality_bitcast = tf.bitcast(equality_cast,tf.uint8) + /// >>> print(equality) + /// tf.Tensor([False True True], shape=(3,), dtype=bool) + /// >>> print(equality_cast) + /// tf.Tensor([0. 1. 1.], shape=(3,), dtype=float32) + /// >>> print(equality_bitcast) + /// tf.Tensor( + /// [[ 0 0 0 0] + /// [ 0 0 128 63] + /// [ 0 0 128 63]], shape=(3, 4), dtype=uint8) + /// + /// *NOTE*: Bitcast is implemented as a low-level cast, so machines with different + /// endian orderings will give different results. + /// + /// + /// + /// + /// + public static Tensor bitcast(Tensor input, TF_DataType type, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Bitcast", name) { args = new object[] { input }, attrs = new Dictionary() { ["type"] = type } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return bitcast_eager_fallback(input, type: type, name: name, ctx: _ctx); + } + catch (Exception) { - tf.Runner.RecordGradient("Reshape", _inputs_flat, _attrs, results); } - return results[0]; } - - /// - /// Finds unique elements in a 1-D tensor. - /// - /// - /// - /// - /// - public static (Tensor, Tensor) unique(Tensor x, TF_DataType out_idx = TF_DataType.TF_INT32, string name = null) + Dictionary keywords = new(); + keywords["input"] = input; + keywords["type"] = type; + var _op = tf.OpDefLib._apply_op_helper("Bitcast", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("Unique", name, new { x, out_idx }); - // TODO - //var _result = _UniqueOutput._make(_op.outputs); - return (_op.outputs[0], _op.outputs[1]); + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "type", _op._get_attr_type("type") }; + _execute.record_gradient("Bitcast", _op.inputs, _attrs, _result); } + return _result[0]; + } - public static Tensor[] unpack(Tensor value, int num, int axis = 0, string name = null) - => tf.Context.ExecuteOp("Unpack", name, new ExecuteOpArgs(value, num) - .SetAttributes(new { axis })); - - public static Tensor where(Tensor condition, string name = null) + public static Tensor bitcast_eager_fallback(Tensor input, TF_DataType type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "type", type }; + var _result = _execute.execute("Bitcast", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("Where", name, new { input = condition }); - return _op.output; + _execute.record_gradient("Bitcast", _inputs_flat, _attrs, _result); } - - public static Tensor one_hot(Tensor indices, Tensor depth, - Tensor on_value = null, - Tensor off_value = null, - TF_DataType dtype = TF_DataType.DtInvalid, - int axis = -1, - string name = null) - => tf.Context.ExecuteOp("OneHot", name, new ExecuteOpArgs(indices, depth, on_value, off_value) - .SetAttributes(new { axis })); - - /// - /// A placeholder op that passes through `input` when its output is not fed. - /// - /// The default value to produce when output is not fed. - /// - /// - /// - public static Tensor placeholder_with_default(T input, int[] shape, string name = null) + return _result[0]; + } + /// + /// Return the shape of s0 op s1 with broadcast. + /// + /// + /// + /// Given `s0` and `s1`, tensors that represent shapes, compute `r0`, the + /// broadcasted shape. `s0`, `s1` and `r0` are all integer vectors. + /// + /// + /// + /// + /// + public static Tensor broadcast_args(Tensor s0, Tensor s1, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BroadcastArgs", name) { args = new object[] { s0, s1 }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return broadcast_args_eager_fallback(s0, s1, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["s0"] = s0; + keywords["s1"] = s1; + var _op = tf.OpDefLib._apply_op_helper("BroadcastArgs", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("PlaceholderWithDefault", name, new { input, shape, name }); - return _op.outputs[0]; + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("BroadcastArgs", _op.inputs, _attrs, _result); } + return _result[0]; + } - public static Tensor select(Tensor condition, Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("Select", name, new ExecuteOpArgs(condition, x, y)); - - public static Tensor select_v2(Tensor condition, Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("SelectV2", name, new ExecuteOpArgs(condition, x, y)); - - public static Tensor scatter_nd(Tensor indices, Tensor updates, Tensor[] shape, string name = null) + public static Tensor broadcast_args_eager_fallback(Tensor s0, Tensor s1, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { s0, s1 }; + object[] _attrs = new object[] { "T", s0.dtype }; + var _result = _execute.execute("BroadcastArgs", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("ScatterNd", name, new { indices, updates, shape }); - return _op.outputs[0]; + _execute.record_gradient("BroadcastArgs", _inputs_flat, _attrs, _result); } - - public static Tensor shape(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) - => tf.Context.ExecuteOp("Shape", name, new ExecuteOpArgs(input) - .SetAttributes(new { out_type })); - - /// - /// Returns shape of tensors. - /// - /// - /// - /// - /// - public static Tensor[] shape_n(Tensor[] input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) - => tf.Context.ExecuteOp("ShapeN", name, new ExecuteOpArgs() + return _result[0]; + } + /// + /// Return the reduction indices for computing gradients of s0 op s1 with broadcast. + /// + /// + /// + /// This is typically used by gradient computations for a broadcasting operation. + /// + /// + /// + /// + /// + public static Tensor[] broadcast_gradient_args(Tensor s0, Tensor s1, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try { - OpInputArgs = new object[] { input } - }.SetAttributes(new { out_type })); - - public static Tensor size(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BroadcastGradientArgs", name) { args = new object[] { s0, s1 }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return broadcast_gradient_args_eager_fallback(s0, s1, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["s0"] = s0; + keywords["s1"] = s1; + var _op = tf.OpDefLib._apply_op_helper("BroadcastGradientArgs", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("Size", name, new { input, out_type }); - return _op.outputs[0]; + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("BroadcastGradientArgs", _op.inputs, _attrs, _result); } + return _result; + } - public static Tensor slice(Tensor input, Tensor[] begin, Tensor[] size, string name = null) + public static Tensor[] broadcast_gradient_args_eager_fallback(Tensor s0, Tensor s1, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { s0, s1 }; + object[] _attrs = new object[] { "T", s0.dtype }; + var _result = _execute.execute("BroadcastGradientArgs", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BroadcastGradientArgs", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Broadcast an array for a compatible shape. + /// + /// + /// + /// Broadcasting is the process of making arrays to have compatible shapes + /// for arithmetic operations. Two shapes are compatible if for each + /// dimension pair they are either equal or one of them is one. + /// + /// For example: + /// + /// >>> x = tf.constant([[1, 2, 3]]) # Shape (1, 3,) + /// >>> y = tf.broadcast_to(x, [2, 3]) + /// >>> print(y) + /// tf.Tensor( + /// [[1 2 3] + /// [1 2 3]], shape=(2, 3), dtype=int32) + /// + /// In the above example, the input Tensor with the shape of `[1, 3]` + /// is broadcasted to output Tensor with shape of `[2, 3]`. + /// + /// When broadcasting, if a tensor has fewer axes than necessary its shape is + /// padded on the left with ones. So this gives the same result as the previous + /// example: + /// + /// >>> x = tf.constant([1, 2, 3]) # Shape (3,) + /// >>> y = tf.broadcast_to(x, [2, 3]) + /// + /// + /// When doing broadcasted operations such as multiplying a tensor + /// by a scalar, broadcasting (usually) confers some time or space + /// benefit, as the broadcasted tensor is never materialized. + /// + /// However, `broadcast_to` does not carry with it any such benefits. + /// The newly-created tensor takes the full memory of the broadcasted + /// shape. (In a graph context, `broadcast_to` might be fused to + /// subsequent operation and then be optimized away, however.) + /// + /// + /// + /// + /// + public static Tensor broadcast_to(Tensor input, Tensor shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) { - if (tf.executing_eagerly()) + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BroadcastTo", name) { args = new object[] { input, shape }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return broadcast_to_eager_fallback(input, shape, name: name, ctx: _ctx); + } + catch (Exception) { - var result = slice_eager_fallback(input, begin, size, name, tf.Context); - return result; } - - var _op = tf.OpDefLib._apply_op_helper("Slice", name, new { input, begin, size }); - return _op.outputs[0]; } - - private static Tensor slice_eager_fallback(Tensor inputs, Tensor[] begin, Tensor[] size, string name, Context ctx) + Dictionary keywords = new(); + keywords["input"] = input; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("BroadcastTo", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var (_attr_T, input) = tf.Runner.ArgsToMatchingEager(ctx, args: new[] { inputs }); - var (_attr_Tidx, _inputs_Index) = tf.Runner.ArgsToMatchingEager(ctx, args: new object[] { begin, size }); - var _inputs_flat = input.concat(_inputs_Index); - var _attrs = new object[] { "T", _attr_T, "Index", _attr_Tidx }; + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("BroadcastTo", _op.inputs, _attrs, _result); + } + return _result[0]; + } - var results = tf.Runner.Execute(ctx, "Slice", 1, _inputs_flat, _attrs, name: name); - if (tf.Runner.MustRecordGradient()) + public static Tensor broadcast_to_eager_fallback(Tensor input, Tensor shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, shape }; + object[] _attrs = new object[] { "T", input.dtype, "Tidx", shape.dtype }; + var _result = _execute.execute("BroadcastTo", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BroadcastTo", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Checks a tensor for NaN and Inf values. + /// + /// + /// + /// When run, reports an `InvalidArgument` error if `tensor` has any values + /// that are not a number (NaN) or infinity (Inf). Otherwise, returns the input + /// tensor. + /// + /// Example usage: + /// + /// ``` python + /// a = tf.Variable(1.0) + /// tf.debugging.check_numerics(a, message='') + /// + /// b = tf.Variable(np.nan) + /// try: + /// tf.debugging.check_numerics(b, message='Checking b') + /// except Exception as e: + /// assert "Checking b : Tensor had NaN values" in e.message + /// + /// c = tf.Variable(np.inf) + /// try: + /// tf.debugging.check_numerics(c, message='Checking c') + /// except Exception as e: + /// assert "Checking c : Tensor had Inf values" in e.message + /// ``` + /// + /// + /// + /// + /// + /// + /// Prefix of the error message. + /// + /// + /// + public static Tensor check_numerics(Tensor tensor, string message, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "CheckNumerics", name) { args = new object[] { tensor }, attrs = new Dictionary() { ["message"] = message } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return check_numerics_eager_fallback(tensor, message: message, name: name, ctx: _ctx); + } + catch (Exception) { - tf.Runner.RecordGradient("Slice", _inputs_flat, _attrs, results); } - return results[0]; } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["message"] = message; + var _op = tf.OpDefLib._apply_op_helper("CheckNumerics", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "message", _op.get_attr("message") }; + _execute.record_gradient("CheckNumerics", _op.inputs, _attrs, _result); + } + return _result[0]; + } - public static Tensor slice(Tensor input, Tb begin, Ts size, string name = null) + public static Tensor check_numerics_eager_fallback(Tensor tensor, string message, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor }; + object[] _attrs = new object[] { "T", tensor.dtype, "message", message }; + var _result = _execute.execute("CheckNumerics", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("CheckNumerics", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Checks a tensor for NaN, -Inf and +Inf values. + /// + /// + /// + /// When run, reports an `InvalidArgument` error if `tensor` has any values + /// that are not a number (NaN) or infinity (Inf). Otherwise, returns the input + /// tensor. Unlike CheckNumerics (V1), CheckNumericsV2 distinguishes -Inf and +Inf + /// in the errors it throws. + /// + /// + /// + /// + /// + /// Prefix of the error message. + /// + /// + /// + public static Tensor check_numerics_v2(Tensor tensor, string message, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) { - if (tf.executing_eagerly()) + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "CheckNumericsV2", name) { args = new object[] { tensor }, attrs = new Dictionary() { ["message"] = message } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return check_numerics_v2_eager_fallback(tensor, message: message, name: name, ctx: _ctx); + } + catch (Exception) { - var outputs = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("Slice", name, input, begin, size)); - return outputs[0]; } - - var _op = tf.OpDefLib._apply_op_helper("Slice", name, new { input, begin, size }); - return _op.outputs[0]; } - - public static Tensor[] split_v(Tensor value, Tensor size_splits, - int axis, int num_split, string name = null) - => tf.Context.ExecuteOp("SplitV", name, new ExecuteOpArgs(value, size_splits, axis) - .SetAttributes(new { num_split })); - - public static Tensor tile(Tensor input, Tensor multiples, string name = null) - => tf.Context.ExecuteOp("Tile", name, new ExecuteOpArgs(input, multiples)); - - public static Tensor tile(Tensor input, object[] multiples, string name = null) - => tf.Context.ExecuteOp("Tile", name, new ExecuteOpArgs(input, multiples)); - - public static Tensor transpose(Tensor x, T1 perm, string name = null) - => tf.Context.ExecuteOp("Transpose", name, new ExecuteOpArgs(x, perm)); - - public static Tensor ones_like(Tensor x, string name = null) - => tf.Context.ExecuteOp("OnesLike", name, new ExecuteOpArgs(x)); - - public static Tensor zeros_like(Tensor x, string name = null) - => tf.Context.ExecuteOp("ZerosLike", name, new ExecuteOpArgs(x)); - - public static Tensor stop_gradient(Tensor x, string name = null) + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["message"] = message; + var _op = tf.OpDefLib._apply_op_helper("CheckNumericsV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("StopGradient", name, args: new { input = x, name }); + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "message", _op.get_attr("message") }; + _execute.record_gradient("CheckNumericsV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } - return _op.output; + public static Tensor check_numerics_v2_eager_fallback(Tensor tensor, string message, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor }; + object[] _attrs = new object[] { "T", tensor.dtype, "message", message }; + var _result = _execute.execute("CheckNumericsV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("CheckNumericsV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Concatenates tensors along one dimension. + /// + /// + /// + /// + public static Tensor concat(Tensor concat_dim, Tensors values, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Concat", name) { args = new object[] { concat_dim, values }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return concat_eager_fallback(concat_dim, values, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["concat_dim"] = concat_dim; + keywords["values"] = values; + var _op = tf.OpDefLib._apply_op_helper("Concat", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "N", _op._get_attr_int("N"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("Concat", _op.inputs, _attrs, _result); } + return _result[0]; + } - public static Tensor strided_slice(Tensor input, Tensor begin, Tensor end, Tensor strides, - long begin_mask = 0, - long end_mask = 0, - long ellipsis_mask = 0, - long new_axis_mask = 0, - long shrink_axis_mask = 0, - string name = null) - => tf.Context.ExecuteOp("StridedSlice", name, new ExecuteOpArgs(input, begin, end, strides) - .SetAttributes(new - { - begin_mask, - end_mask, - ellipsis_mask, - new_axis_mask, - shrink_axis_mask - })); - - public static Tensor resource_strided_slice_assign(Tensor input, Tensor begin, Tensor end, Tensor strides, Tensor value, - int begin_mask = 0, - int end_mask = 0, - int ellipsis_mask = 0, - int new_axis_mask = 0, - int shrink_axis_mask = 0, - string name = null) - => tf.Context.ExecuteOp("ResourceStridedSliceAssign", name, new ExecuteOpArgs(input, begin, end, strides, value) - .SetAttributes(new - { - begin_mask, - end_mask, - ellipsis_mask, - new_axis_mask, - shrink_axis_mask - })); - - public static Tensor strided_slice(Tensor input, T[] begin, T[] end, T[] strides, - int begin_mask = 0, - int end_mask = 0, - int ellipsis_mask = 0, - int new_axis_mask = 0, - int shrink_axis_mask = 0, - string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("StridedSlice", name, new - { - input, - begin, - end, - strides, - begin_mask, - end_mask, - ellipsis_mask, - new_axis_mask, - shrink_axis_mask - }); - - return _op.outputs[0]; - } - - /// - /// Removes dimensions of size 1 from the shape of a tensor. - /// Given a tensor `input`, this operation returns a tensor of the same type with - /// all dimensions of size 1 removed.If you don't want to remove all size 1 - /// dimensions, you can remove specific size 1 dimensions by specifying - /// `axis`. - /// - /// A `Tensor`. The `input` to squeeze. - /// An optional list of `ints`. Defaults to `[]`. If specified, only squeezes the dimensions listed. - /// A name for the operation (optional). - /// A `Tensor`. Has the same type as `input`. - public static Tensor squeeze(Tensor input, int[] axis = null, string name = null) - => tf.Context.ExecuteOp("Squeeze", name, new ExecuteOpArgs(input) - .SetAttributes(new { squeeze_dims = axis })); - - /// - /// Return the shape of s0 op s1 with broadcast. - /// Given `s0` and `s1`, tensors that represent shapes, compute `r0`, the - /// broadcasted shape. `s0`, `s1` and `r0` are all integer vectors. - /// - /// A `Tensor`. Must be one of the following types: `int32`, `int64`. - /// A `Tensor`. Must have the same type as `s0`. - /// A name for the operation (optional). - /// `Tensor`. Has the same type as `s0`. - public static Tensor broadcast_args(Tensor s0, Tensor s1, string name = null) - => tf.Context.ExecuteOp("BroadcastArgs", name, new ExecuteOpArgs(s0, s1)); - - /// - /// Broadcast an array for a compatible shape. - /// - /// - /// - /// - /// - public static Tensor broadcast_to(Tensor input, T shape, string name = null) - => tf.Context.ExecuteOp("BroadcastTo", name, new ExecuteOpArgs(input, shape)); + public static Tensor concat_eager_fallback(Tensor concat_dim, Tensors values, string name, Context ctx) + { + List _inputs_flat_list = new(); + _inputs_flat_list.Add(concat_dim); + _inputs_flat_list.AddRange(values); + var _inputs_flat = _inputs_flat_list.ToArray(); + object[] _attrs = new object[] { "N", values.Length, "T", values.dtype }; + var _result = _execute.execute("Concat", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Concat", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes offsets of concat inputs within its output. + /// + /// + /// + /// For example: + /// + /// >>> x = [2, 2, 7] + /// >>> y = [2, 3, 7] + /// >>> z = [2, 9, 7] + /// >>> offsets = concat_offset(1, [x, y, z]) + /// >>> [list(off.numpy()) for off in offsets] + /// [[0, 0, 0], [0, 2, 0], [0, 5, 0]] + /// + /// This is typically used by gradient computations for a concat operation. + /// + /// + /// + /// + /// + public static Tensor[] concat_offset(Tensor concat_dim, Tensors shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ConcatOffset", name) { args = new object[] { concat_dim, shape }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return concat_offset_eager_fallback(concat_dim, shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["concat_dim"] = concat_dim; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("ConcatOffset", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "N", _op._get_attr_int("N") }; + _execute.record_gradient("ConcatOffset", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] concat_offset_eager_fallback(Tensor concat_dim, Tensors shape, string name, Context ctx) + { + List _inputs_flat_list = new(); + _inputs_flat_list.Add(concat_dim); + _inputs_flat_list.AddRange(shape); + var _inputs_flat = _inputs_flat_list.ToArray(); + object[] _attrs = new object[] { "N", shape.Length }; + var _result = _execute.execute("ConcatOffset", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ConcatOffset", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Concatenates tensors along one dimension. + /// + /// + /// + /// + public static Tensor concat_v2(Tensors values, Tensor axis, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ConcatV2", name) { args = new object[] { values, axis }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return concat_v2_eager_fallback(values, axis, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["values"] = values; + keywords["axis"] = axis; + var _op = tf.OpDefLib._apply_op_helper("ConcatV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "N", _op._get_attr_int("N"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("ConcatV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor concat_v2_eager_fallback(Tensors values, Tensor axis, string name, Context ctx) + { + List _inputs_flat_list = new(); + _inputs_flat_list.AddRange(values); + _inputs_flat_list.Add(axis); + var _inputs_flat = _inputs_flat_list.ToArray(); + object[] _attrs = new object[] { "N", values.Length, "T", values.dtype, "Tidx", axis.dtype }; + var _result = _execute.execute("ConcatV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ConcatV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Shuffle dimensions of x according to a permutation and conjugate the result. + /// + /// + /// + /// The output `y` has the same rank as `x`. The shapes of `x` and `y` satisfy: + /// `y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]` + /// `y[i,j,k,...,s,t,u] == conj(x[perm[i], perm[j], perm[k],...,perm[s], perm[t], perm[u]])` + /// + /// + /// + /// + /// + public static Tensor conjugate_transpose(Tensor x, Tensor perm, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ConjugateTranspose", name) { args = new object[] { x, perm }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conjugate_transpose_eager_fallback(x, perm, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["perm"] = perm; + var _op = tf.OpDefLib._apply_op_helper("ConjugateTranspose", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tperm", _op._get_attr_type("Tperm") }; + _execute.record_gradient("ConjugateTranspose", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conjugate_transpose_eager_fallback(Tensor x, Tensor perm, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, perm }; + object[] _attrs = new object[] { "T", x.dtype, "Tperm", perm.dtype }; + var _result = _execute.execute("ConjugateTranspose", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ConjugateTranspose", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a constant tensor. + /// + /// + /// + /// Attr `value` is the tensor to return. + /// + /// + /// + /// + public static Tensor _const(TensorProto value, TF_DataType dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Const", name) { args = new object[] { }, attrs = new Dictionary() { ["value"] = value, ["dtype"] = dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return const_eager_fallback(value: value, dtype: dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["value"] = value; + keywords["dtype"] = dtype; + var _op = tf.OpDefLib._apply_op_helper("Const", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "value", _op.get_attr("value"), "dtype", _op._get_attr_type("dtype") }; + _execute.record_gradient("Const", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor const_eager_fallback(TensorProto value, TF_DataType dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "value", value, "dtype", dtype }; + var _result = _execute.execute("Const", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Const", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Identity op for gradient debugging. + /// + /// + /// + /// This op is hidden from public in Python. It is used by TensorFlow Debugger to + /// register gradient tensors for gradient debugging. + /// This op operates on non-reference-type tensors. + /// + /// + /// + /// + public static Tensor debug_gradient_identity(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DebugGradientIdentity", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return debug_gradient_identity_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("DebugGradientIdentity", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("DebugGradientIdentity", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor debug_gradient_identity_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("DebugGradientIdentity", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DebugGradientIdentity", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Identity op for gradient debugging. + /// + /// + /// + /// This op is hidden from public in Python. It is used by TensorFlow Debugger to + /// register gradient tensors for gradient debugging. + /// This op operates on reference-type tensors. + /// + /// + /// + /// + public static Tensor debug_gradient_ref_identity(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("debug_gradient_ref_identity op does not support eager execution. Arg input is a ref."); + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("DebugGradientRefIdentity", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("DebugGradientRefIdentity", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor debug_gradient_ref_identity_eager_fallback(Tensor input, string name, Context ctx) + { + throw new RuntimeError($"debug_gradient_ref_identity op does not support eager execution. Arg 'input' is a ref."); + } + /// + /// Makes a copy of `x`. + /// + /// + /// + public static Tensor deep_copy(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DeepCopy", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return deep_copy_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("DeepCopy", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("DeepCopy", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor deep_copy_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("DeepCopy", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DeepCopy", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// DepthToSpace for tensors of type T. + /// + /// + /// + /// Rearranges data from depth into blocks of spatial data. + /// This is the reverse transformation of SpaceToDepth. More specifically, + /// this op outputs a copy of the input tensor where values from the `depth` + /// dimension are moved in spatial blocks to the `height` and `width` dimensions. + /// The attr `block_size` indicates the input block size and how the data is moved. + /// + /// * Chunks of data of size `block_size * block_size` from depth are rearranged + /// into non-overlapping blocks of size `block_size x block_size` + /// * The width of the output tensor is `input_depth * block_size`, whereas the + /// height is `input_height * block_size`. + /// * The Y, X coordinates within each block of the output image are determined + /// by the high order component of the input channel index. + /// * The depth of the input tensor must be divisible by + /// `block_size * block_size`. + /// + /// The `data_format` attr specifies the layout of the input and output tensors + /// with the following options: + /// "NHWC": `[ batch, height, width, channels ]` + /// "NCHW": `[ batch, channels, height, width ]` + /// "NCHW_VECT_C": + /// `qint8 [ batch, channels / 4, height, width, 4 ]` + /// + /// It is useful to consider the operation as transforming a 6-D Tensor. + /// e.g. for data_format = NHWC, + /// Each element in the input tensor can be specified via 6 coordinates, + /// ordered by decreasing memory layout significance as: + /// n,iY,iX,bY,bX,oC (where n=batch index, iX, iY means X or Y coordinates + /// within the input image, bX, bY means coordinates + /// within the output block, oC means output channels). + /// The output would be the input transposed to the following layout: + /// n,iY,bY,iX,bX,oC + /// + /// This operation is useful for resizing the activations between convolutions + /// (but keeping all data), e.g. instead of pooling. It is also useful for training + /// purely convolutional models. + /// + /// For example, given an input of shape `[1, 1, 1, 4]`, data_format = "NHWC" and + /// block_size = 2: + /// + /// ``` + /// x = [[[[1, 2, 3, 4]]]] + /// + /// ``` + /// + /// This operation will output a tensor of shape `[1, 2, 2, 1]`: + /// + /// ``` + /// [[[[1], [2]], + /// [[3], [4]]]] + /// ``` + /// + /// Here, the input has a batch of 1 and each batch element has shape `[1, 1, 4]`, + /// the corresponding output will have 2x2 elements and will have a depth of + /// 1 channel (1 = `4 / (block_size * block_size)`). + /// The output element shape is `[2, 2, 1]`. + /// + /// For an input tensor with larger depth, here of shape `[1, 1, 1, 12]`, e.g. + /// + /// ``` + /// x = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]] + /// ``` + /// + /// This operation, for block size of 2, will return the following tensor of shape + /// `[1, 2, 2, 3]` + /// + /// ``` + /// [[[[1, 2, 3], [4, 5, 6]], + /// [[7, 8, 9], [10, 11, 12]]]] + /// + /// ``` + /// + /// Similarly, for the following input of shape `[1 2 2 4]`, and a block size of 2: + /// + /// ``` + /// x = [[[[1, 2, 3, 4], + /// [5, 6, 7, 8]], + /// [[9, 10, 11, 12], + /// [13, 14, 15, 16]]]] + /// ``` + /// + /// the operator will return the following tensor of shape `[1 4 4 1]`: + /// + /// ``` + /// x = [[[ [1], [2], [5], [6]], + /// [ [3], [4], [7], [8]], + /// [ [9], [10], [13], [14]], + /// [ [11], [12], [15], [16]]]] + /// + /// ``` + /// + /// + /// + /// + /// + /// The size of the spatial block, same as in Space2Depth. + /// + /// + /// + /// + public static Tensor depth_to_space(Tensor input, int block_size = 0, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DepthToSpace", name) { args = new object[] { input }, attrs = new Dictionary() { ["block_size"] = block_size, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return depth_to_space_eager_fallback(input, block_size: block_size, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["block_size"] = block_size; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("DepthToSpace", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "block_size", _op._get_attr_int("block_size"), "data_format", _op.get_attr("data_format") }; + _execute.record_gradient("DepthToSpace", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor depth_to_space_eager_fallback(Tensor input, int block_size, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "block_size", block_size, "data_format", data_format }; + var _result = _execute.execute("DepthToSpace", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DepthToSpace", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Dequantize the 'input' tensor into a float or bfloat16 Tensor. + /// + /// + /// + /// [min_range, max_range] are scalar floats that specify the range for + /// the output. The 'mode' attribute controls exactly which calculations are + /// used to convert the float values to their quantized equivalents. + /// + /// In 'MIN_COMBINED' mode, each value of the tensor will undergo the following: + /// + /// ``` + /// if T == qint8: in[i] += (range(T) + 1)/ 2.0 + /// out[i] = min_range + (in[i]* (max_range - min_range) / range(T)) + /// ``` + /// here `range(T) = numeric_limits::max() - numeric_limits::min()` + /// + /// *MIN_COMBINED Mode Example* + /// + /// If the input comes from a QuantizedRelu6, the output type is + /// quint8 (range of 0-255) but the possible range of QuantizedRelu6 is + /// 0-6. The min_range and max_range values are therefore 0.0 and 6.0. + /// Dequantize on quint8 will take each value, cast to float, and multiply + /// by 6 / 255. + /// Note that if quantizedtype is qint8, the operation will additionally add + /// each value by 128 prior to casting. + /// + /// If the mode is 'MIN_FIRST', then this approach is used: + /// + /// ```c++ + /// num_discrete_values = 1 << (# of bits in T) + /// range_adjust = num_discrete_values / (num_discrete_values - 1) + /// range = (range_max - range_min) * range_adjust + /// range_scale = range / num_discrete_values + /// const double offset_input = static_cast(input) - lowest_quantized; + /// result = range_min + ((input - numeric_limits::min()) * range_scale) + /// ``` + /// + /// If the mode is `SCALED`, dequantization is performed by multiplying each + /// input value by a scaling_factor. (Thus an input of 0 always maps to 0.0). + /// + /// The scaling_factor is determined from `min_range`, `max_range`, and + /// `narrow_range` in a way that is compatible with `QuantizeAndDequantize{V2|V3}` + /// and `QuantizeV2`, using the following algorithm: + /// + /// ```c++ + /// + /// const int min_expected_T = std::numeric_limits::min() + + /// (narrow_range ? 1 : 0); + /// const int max_expected_T = std::numeric_limits::max(); + /// const float max_expected_T = std::numeric_limits::max(); + /// + /// const float scale_factor = + /// (std::numeric_limits::min() == 0) ? (max_range / max_expected_T) + /// : std::max(min_range / min_expected_T, + /// max_range / max_expected_T); + /// ``` + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// Type of the output tensor. Currently Dequantize supports float and bfloat16. + /// If 'dtype' is 'bfloat16', it only supports 'MIN_COMBINED' mode. + /// + /// + /// + public static Tensor dequantize(Tensor input, Tensor min_range, Tensor max_range, string mode = "MIN_COMBINED", bool narrow_range = false, int axis = -1, TF_DataType dtype = TF_DataType.TF_FLOAT, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Dequantize", name) { args = new object[] { input, min_range, max_range }, attrs = new Dictionary() { ["mode"] = mode, ["narrow_range"] = narrow_range, ["axis"] = axis, ["dtype"] = dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return dequantize_eager_fallback(input, min_range, max_range, mode: mode, narrow_range: narrow_range, axis: axis, dtype: dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (mode is null) + { + mode = "MIN_COMBINED"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["min_range"] = min_range; + keywords["max_range"] = max_range; + keywords["mode"] = mode; + keywords["narrow_range"] = narrow_range; + keywords["axis"] = axis; + keywords["dtype"] = dtype; + var _op = tf.OpDefLib._apply_op_helper("Dequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "mode", _op.get_attr("mode"), "narrow_range", _op._get_attr_bool("narrow_range"), "axis", _op._get_attr_int("axis"), "dtype", _op._get_attr_type("dtype") }; + _execute.record_gradient("Dequantize", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor dequantize_eager_fallback(Tensor input, Tensor min_range, Tensor max_range, string mode, bool narrow_range, int axis, TF_DataType dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, min_range, max_range }; + object[] _attrs = new object[] { "T", input.dtype, "mode", mode, "narrow_range", narrow_range, "axis", axis, "dtype", dtype }; + var _result = _execute.execute("Dequantize", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Dequantize", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a diagonal tensor with a given diagonal values. + /// + /// + /// + /// Given a `diagonal`, this operation returns a tensor with the `diagonal` and + /// everything else padded with zeros. The diagonal is computed as follows: + /// + /// Assume `diagonal` has dimensions [D1,..., Dk], then the output is a tensor of + /// rank 2k with dimensions [D1,..., Dk, D1,..., Dk] where: + /// + /// `output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik]` and 0 everywhere else. + /// + /// For example: + /// + /// ``` + /// # 'diagonal' is [1, 2, 3, 4] + /// tf.diag(diagonal) ==> [[1, 0, 0, 0] + /// [0, 2, 0, 0] + /// [0, 0, 3, 0] + /// [0, 0, 0, 4]] + /// ``` + /// + /// + /// + /// + public static Tensor diag(Tensor diagonal, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Diag", name) { args = new object[] { diagonal }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return diag_eager_fallback(diagonal, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["diagonal"] = diagonal; + var _op = tf.OpDefLib._apply_op_helper("Diag", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Diag", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor diag_eager_fallback(Tensor diagonal, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { diagonal }; + object[] _attrs = new object[] { "T", diagonal.dtype }; + var _result = _execute.execute("Diag", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Diag", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the diagonal part of the tensor. + /// + /// + /// + /// This operation returns a tensor with the `diagonal` part + /// of the `input`. The `diagonal` part is computed as follows: + /// + /// Assume `input` has dimensions `[D1,..., Dk, D1,..., Dk]`, then the output is a + /// tensor of rank `k` with dimensions `[D1,..., Dk]` where: + /// + /// `diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik]`. + /// + /// For example: + /// + /// ``` + /// # 'input' is [[1, 0, 0, 0] + /// [0, 2, 0, 0] + /// [0, 0, 3, 0] + /// [0, 0, 0, 4]] + /// + /// tf.diag_part(input) ==> [1, 2, 3, 4] + /// ``` + /// + /// + /// + /// + public static Tensor diag_part(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DiagPart", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return diag_part_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("DiagPart", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("DiagPart", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor diag_part_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("DiagPart", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DiagPart", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the (possibly normalized) Levenshtein Edit Distance. + /// + /// + /// + /// The inputs are variable-length sequences provided by SparseTensors + /// (hypothesis_indices, hypothesis_values, hypothesis_shape) + /// and + /// (truth_indices, truth_values, truth_shape). + /// + /// The inputs are: + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// boolean (if true, edit distances are normalized by length of truth). + /// + /// The output is: + /// + /// + /// + public static Tensor edit_distance(Tensor hypothesis_indices, Tensor hypothesis_values, Tensor hypothesis_shape, Tensor truth_indices, Tensor truth_values, Tensor truth_shape, bool normalize = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EditDistance", name) { args = new object[] { hypothesis_indices, hypothesis_values, hypothesis_shape, truth_indices, truth_values, truth_shape }, attrs = new Dictionary() { ["normalize"] = normalize } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return edit_distance_eager_fallback(hypothesis_indices, hypothesis_values, hypothesis_shape, truth_indices, truth_values, truth_shape, normalize: normalize, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["hypothesis_indices"] = hypothesis_indices; + keywords["hypothesis_values"] = hypothesis_values; + keywords["hypothesis_shape"] = hypothesis_shape; + keywords["truth_indices"] = truth_indices; + keywords["truth_values"] = truth_values; + keywords["truth_shape"] = truth_shape; + keywords["normalize"] = normalize; + var _op = tf.OpDefLib._apply_op_helper("EditDistance", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "normalize", _op._get_attr_bool("normalize"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("EditDistance", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor edit_distance_eager_fallback(Tensor hypothesis_indices, Tensor hypothesis_values, Tensor hypothesis_shape, Tensor truth_indices, Tensor truth_values, Tensor truth_shape, bool normalize, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { hypothesis_indices, hypothesis_values, hypothesis_shape, truth_indices, truth_values, truth_shape }; + object[] _attrs = new object[] { "normalize", normalize, "T", hypothesis_values.dtype }; + var _result = _execute.execute("EditDistance", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("EditDistance", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + /// + public static Tensor empty(Tensor shape, TF_DataType dtype, bool init = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Empty", name) { args = new object[] { shape }, attrs = new Dictionary() { ["dtype"] = dtype, ["init"] = init } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return empty_eager_fallback(shape, dtype: dtype, init: init, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["shape"] = shape; + keywords["dtype"] = dtype; + keywords["init"] = init; + var _op = tf.OpDefLib._apply_op_helper("Empty", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "init", _op._get_attr_bool("init") }; + _execute.record_gradient("Empty", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor empty_eager_fallback(Tensor shape, TF_DataType dtype, bool init, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { shape }; + object[] _attrs = new object[] { "dtype", dtype, "init", init }; + var _result = _execute.execute("Empty", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Empty", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Ensures that the tensor's shape matches the expected shape. + /// + /// + /// + /// Raises an error if the input tensor's shape does not match the specified shape. + /// Returns the input tensor otherwise. + /// + /// + /// + /// + /// + /// The expected (possibly partially specified) shape of the input tensor. + /// + /// + /// + public static Tensor ensure_shape(Tensor input, Shape shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EnsureShape", name) { args = new object[] { input }, attrs = new Dictionary() { ["shape"] = shape } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return ensure_shape_eager_fallback(input, shape: shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("EnsureShape", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "shape", _op.get_attr("shape"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("EnsureShape", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor ensure_shape_eager_fallback(Tensor input, Shape shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "shape", shape, "T", input.dtype }; + var _result = _execute.execute("EnsureShape", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("EnsureShape", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Inserts a dimension of 1 into a tensor's shape. + /// + /// + /// + /// Given a tensor `input`, this operation inserts a dimension of 1 at the + /// dimension index `dim` of `input`'s shape. The dimension index `dim` starts at + /// zero; if you specify a negative number for `dim` it is counted backward from + /// the end. + /// + /// This operation is useful if you want to add a batch dimension to a single + /// element. For example, if you have a single image of shape `[height, width, + /// channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`, + /// which will make the shape `[1, height, width, channels]`. + /// + /// Other examples: + /// + /// ``` + /// # 't' is a tensor of shape [2] + /// shape(expand_dims(t, 0)) ==> [1, 2] + /// shape(expand_dims(t, 1)) ==> [2, 1] + /// shape(expand_dims(t, -1)) ==> [2, 1] + /// + /// # 't2' is a tensor of shape [2, 3, 5] + /// shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5] + /// shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5] + /// shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1] + /// ``` + /// + /// This operation requires that: + /// + /// `-1-input.dims() <= dim <= input.dims()` + /// + /// This operation is related to `squeeze()`, which removes dimensions of + /// size 1. + /// + /// + /// + /// + /// + public static Tensor expand_dims(Tensor input, Tensor dim, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ExpandDims", name) { args = new object[] { input, dim }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return expand_dims_eager_fallback(input, dim, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["dim"] = dim; + var _op = tf.OpDefLib._apply_op_helper("ExpandDims", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tdim", _op._get_attr_type("Tdim") }; + _execute.record_gradient("ExpandDims", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor expand_dims_eager_fallback(Tensor input, Tensor dim, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, dim }; + object[] _attrs = new object[] { "T", input.dtype, "Tdim", dim.dtype }; + var _result = _execute.execute("ExpandDims", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ExpandDims", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Extract `patches` from `images` and put them in the "depth" output dimension. + /// + /// + /// + /// + /// The size of the sliding window for each dimension of `images`. + /// + /// + /// + /// + /// How far the centers of two consecutive patches are in + /// the images. Must be: `[1, stride_rows, stride_cols, 1]`. + /// + /// + /// + /// + /// Must be: `[1, rate_rows, rate_cols, 1]`. This is the + /// input stride, specifying how far two consecutive patch samples are in the + /// input. Equivalent to extracting patches with + /// `patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by + /// subsampling them spatially by a factor of `rates`. This is equivalent to + /// `rate` in dilated (a.k.a. Atrous) convolutions. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + public static Tensor extract_image_patches(Tensor images, int[] ksizes, int[] strides, int[] rates, string padding, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ExtractImagePatches", name) { args = new object[] { images }, attrs = new Dictionary() { ["ksizes"] = ksizes, ["strides"] = strides, ["rates"] = rates, ["padding"] = padding } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return extract_image_patches_eager_fallback(images, ksizes: ksizes, strides: strides, rates: rates, padding: padding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["images"] = images; + keywords["ksizes"] = ksizes; + keywords["strides"] = strides; + keywords["rates"] = rates; + keywords["padding"] = padding; + var _op = tf.OpDefLib._apply_op_helper("ExtractImagePatches", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksizes", _op.get_attr("ksizes"), "strides", _op.get_attr("strides"), "rates", _op.get_attr("rates"), "T", _op._get_attr_type("T"), "padding", _op.get_attr("padding") }; + _execute.record_gradient("ExtractImagePatches", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor extract_image_patches_eager_fallback(Tensor images, int[] ksizes, int[] strides, int[] rates, string padding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { images }; + object[] _attrs = new object[] { "ksizes", ksizes, "strides", strides, "rates", rates, "T", images.dtype, "padding", padding }; + var _result = _execute.execute("ExtractImagePatches", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ExtractImagePatches", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Extract `patches` from `input` and put them in the `"depth"` output dimension. 3D extension of `extract_image_patches`. + /// + /// + /// + /// + /// The size of the sliding window for each dimension of `input`. + /// + /// + /// + /// + /// 1-D of length 5. How far the centers of two consecutive patches are in + /// `input`. Must be: `[1, stride_planes, stride_rows, stride_cols, 1]`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// The size-related attributes are specified as follows: + /// + /// ```python + /// ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1] + /// strides = [1, stride_planes, strides_rows, strides_cols, 1] + /// ``` + /// + /// + /// + public static Tensor extract_volume_patches(Tensor input, int[] ksizes, int[] strides, string padding, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ExtractVolumePatches", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksizes"] = ksizes, ["strides"] = strides, ["padding"] = padding } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return extract_volume_patches_eager_fallback(input, ksizes: ksizes, strides: strides, padding: padding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["ksizes"] = ksizes; + keywords["strides"] = strides; + keywords["padding"] = padding; + var _op = tf.OpDefLib._apply_op_helper("ExtractVolumePatches", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksizes", _op.get_attr("ksizes"), "strides", _op.get_attr("strides"), "T", _op._get_attr_type("T"), "padding", _op.get_attr("padding") }; + _execute.record_gradient("ExtractVolumePatches", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor extract_volume_patches_eager_fallback(Tensor input, int[] ksizes, int[] strides, string padding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "ksizes", ksizes, "strides", strides, "T", input.dtype, "padding", padding }; + var _result = _execute.execute("ExtractVolumePatches", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ExtractVolumePatches", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type. + /// + /// + /// + /// Attributes + /// + /// * `[min; max]` define the clamping range for the `inputs` data. + /// * `inputs` values are quantized into the quantization range ( + /// `[0; 2^num_bits - 1]` when `narrow_range` is false and `[1; 2^num_bits - 1]` + /// when it is true) and then de-quantized and output as floats in `[min; max]` + /// interval. + /// * `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive. + /// + /// Before quantization, `min` and `max` values are adjusted with the following + /// logic. + /// It is suggested to have `min <= 0 <= max`. If `0` is not in the range of values, + /// the behavior can be unexpected: + /// + /// * If `0 < min < max`: `min_adj = 0` and `max_adj = max - min`. + /// * If `min < max < 0`: `min_adj = min - max` and `max_adj = 0`. + /// * If `min <= 0 <= max`: `scale = (max - min) / (2^num_bits - 1) `, + /// `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`. + /// + /// Quantization is called fake since the output is still in floating point. + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor fake_quant_with_min_max_args(Tensor inputs, float min = -6f, float max = 6f, int num_bits = 8, bool narrow_range = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxArgs", name) { args = new object[] { inputs }, attrs = new Dictionary() { ["min"] = min, ["max"] = max, ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fake_quant_with_min_max_args_eager_fallback(inputs, min: min, max: max, num_bits: num_bits, narrow_range: narrow_range, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["inputs"] = inputs; + keywords["min"] = min; + keywords["max"] = max; + keywords["num_bits"] = num_bits; + keywords["narrow_range"] = narrow_range; + var _op = tf.OpDefLib._apply_op_helper("FakeQuantWithMinMaxArgs", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "min", _op.get_attr("min"), "max", _op.get_attr("max"), "num_bits", _op._get_attr_int("num_bits"), "narrow_range", _op._get_attr_bool("narrow_range") }; + _execute.record_gradient("FakeQuantWithMinMaxArgs", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fake_quant_with_min_max_args_eager_fallback(Tensor inputs, float min, float max, int num_bits, bool narrow_range, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { inputs }; + object[] _attrs = new object[] { "min", min, "max", max, "num_bits", num_bits, "narrow_range", narrow_range }; + var _result = _execute.execute("FakeQuantWithMinMaxArgs", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FakeQuantWithMinMaxArgs", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute gradients for a FakeQuantWithMinMaxArgs operation. + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor fake_quant_with_min_max_args_gradient(Tensor gradients, Tensor inputs, float min = -6f, float max = 6f, int num_bits = 8, bool narrow_range = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxArgsGradient", name) { args = new object[] { gradients, inputs }, attrs = new Dictionary() { ["min"] = min, ["max"] = max, ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fake_quant_with_min_max_args_gradient_eager_fallback(gradients, inputs, min: min, max: max, num_bits: num_bits, narrow_range: narrow_range, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["gradients"] = gradients; + keywords["inputs"] = inputs; + keywords["min"] = min; + keywords["max"] = max; + keywords["num_bits"] = num_bits; + keywords["narrow_range"] = narrow_range; + var _op = tf.OpDefLib._apply_op_helper("FakeQuantWithMinMaxArgsGradient", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "min", _op.get_attr("min"), "max", _op.get_attr("max"), "num_bits", _op._get_attr_int("num_bits"), "narrow_range", _op._get_attr_bool("narrow_range") }; + _execute.record_gradient("FakeQuantWithMinMaxArgsGradient", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fake_quant_with_min_max_args_gradient_eager_fallback(Tensor gradients, Tensor inputs, float min, float max, int num_bits, bool narrow_range, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { gradients, inputs }; + object[] _attrs = new object[] { "min", min, "max", max, "num_bits", num_bits, "narrow_range", narrow_range }; + var _result = _execute.execute("FakeQuantWithMinMaxArgsGradient", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FakeQuantWithMinMaxArgsGradient", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Fake-quantize the 'inputs' tensor of type float via global float scalars + /// + /// + /// + /// Fake-quantize the `inputs` tensor of type float via global float scalars + /// `min` and `max` to `outputs` tensor of same shape as `inputs`. + /// + /// Attributes + /// + /// * `[min; max]` define the clamping range for the `inputs` data. + /// * `inputs` values are quantized into the quantization range ( + /// `[0; 2^num_bits - 1]` when `narrow_range` is false and `[1; 2^num_bits - 1]` + /// when it is true) and then de-quantized and output as floats in `[min; max]` + /// interval. + /// * `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive. + /// + /// Before quantization, `min` and `max` values are adjusted with the following + /// logic. + /// It is suggested to have `min <= 0 <= max`. If `0` is not in the range of values, + /// the behavior can be unexpected: + /// + /// * If `0 < min < max`: `min_adj = 0` and `max_adj = max - min`. + /// * If `min < max < 0`: `min_adj = min - max` and `max_adj = 0`. + /// * If `min <= 0 <= max`: `scale = (max - min) / (2^num_bits - 1) `, + /// `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`. + /// + /// This operation has a gradient and thus allows for training `min` and `max` + /// values. + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor fake_quant_with_min_max_vars(Tensor inputs, Tensor min, Tensor max, int num_bits = 8, bool narrow_range = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxVars", name) { args = new object[] { inputs, min, max }, attrs = new Dictionary() { ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fake_quant_with_min_max_vars_eager_fallback(inputs, min, max, num_bits: num_bits, narrow_range: narrow_range, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["inputs"] = inputs; + keywords["min"] = min; + keywords["max"] = max; + keywords["num_bits"] = num_bits; + keywords["narrow_range"] = narrow_range; + var _op = tf.OpDefLib._apply_op_helper("FakeQuantWithMinMaxVars", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "num_bits", _op._get_attr_int("num_bits"), "narrow_range", _op._get_attr_bool("narrow_range") }; + _execute.record_gradient("FakeQuantWithMinMaxVars", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fake_quant_with_min_max_vars_eager_fallback(Tensor inputs, Tensor min, Tensor max, int num_bits, bool narrow_range, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { inputs, min, max }; + object[] _attrs = new object[] { "num_bits", num_bits, "narrow_range", narrow_range }; + var _result = _execute.execute("FakeQuantWithMinMaxVars", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FakeQuantWithMinMaxVars", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute gradients for a FakeQuantWithMinMaxVars operation. + /// + /// + /// + /// + /// + /// + /// + /// The bitwidth of the quantization; between 2 and 8, inclusive. + /// + /// + /// + /// + /// Whether to quantize into 2^num_bits - 1 distinct values. + /// + /// + /// + public static Tensor[] fake_quant_with_min_max_vars_gradient(Tensor gradients, Tensor inputs, Tensor min, Tensor max, int num_bits = 8, bool narrow_range = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxVarsGradient", name) { args = new object[] { gradients, inputs, min, max }, attrs = new Dictionary() { ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fake_quant_with_min_max_vars_gradient_eager_fallback(gradients, inputs, min, max, num_bits: num_bits, narrow_range: narrow_range, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["gradients"] = gradients; + keywords["inputs"] = inputs; + keywords["min"] = min; + keywords["max"] = max; + keywords["num_bits"] = num_bits; + keywords["narrow_range"] = narrow_range; + var _op = tf.OpDefLib._apply_op_helper("FakeQuantWithMinMaxVarsGradient", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "num_bits", _op._get_attr_int("num_bits"), "narrow_range", _op._get_attr_bool("narrow_range") }; + _execute.record_gradient("FakeQuantWithMinMaxVarsGradient", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fake_quant_with_min_max_vars_gradient_eager_fallback(Tensor gradients, Tensor inputs, Tensor min, Tensor max, int num_bits, bool narrow_range, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { gradients, inputs, min, max }; + object[] _attrs = new object[] { "num_bits", num_bits, "narrow_range", narrow_range }; + var _result = _execute.execute("FakeQuantWithMinMaxVarsGradient", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FakeQuantWithMinMaxVarsGradient", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Fake-quantize the 'inputs' tensor of type float via per-channel floats + /// + /// + /// + /// Fake-quantize the `inputs` tensor of type float per-channel and one of the + /// shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max` + /// of shape `[d]` to `outputs` tensor of same shape as `inputs`. + /// + /// Attributes + /// + /// * `[min; max]` define the clamping range for the `inputs` data. + /// * `inputs` values are quantized into the quantization range ( + /// `[0; 2^num_bits - 1]` when `narrow_range` is false and `[1; 2^num_bits - 1]` + /// when it is true) and then de-quantized and output as floats in `[min; max]` + /// interval. + /// * `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive. + /// + /// Before quantization, `min` and `max` values are adjusted with the following + /// logic. + /// It is suggested to have `min <= 0 <= max`. If `0` is not in the range of values, + /// the behavior can be unexpected: + /// + /// * If `0 < min < max`: `min_adj = 0` and `max_adj = max - min`. + /// * If `min < max < 0`: `min_adj = min - max` and `max_adj = 0`. + /// * If `min <= 0 <= max`: `scale = (max - min) / (2^num_bits - 1) `, + /// `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`. + /// + /// This operation has a gradient and thus allows for training `min` and `max` + /// values. + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor fake_quant_with_min_max_vars_per_channel(Tensor inputs, Tensor min, Tensor max, int num_bits = 8, bool narrow_range = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxVarsPerChannel", name) { args = new object[] { inputs, min, max }, attrs = new Dictionary() { ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fake_quant_with_min_max_vars_per_channel_eager_fallback(inputs, min, max, num_bits: num_bits, narrow_range: narrow_range, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["inputs"] = inputs; + keywords["min"] = min; + keywords["max"] = max; + keywords["num_bits"] = num_bits; + keywords["narrow_range"] = narrow_range; + var _op = tf.OpDefLib._apply_op_helper("FakeQuantWithMinMaxVarsPerChannel", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "num_bits", _op._get_attr_int("num_bits"), "narrow_range", _op._get_attr_bool("narrow_range") }; + _execute.record_gradient("FakeQuantWithMinMaxVarsPerChannel", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fake_quant_with_min_max_vars_per_channel_eager_fallback(Tensor inputs, Tensor min, Tensor max, int num_bits, bool narrow_range, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { inputs, min, max }; + object[] _attrs = new object[] { "num_bits", num_bits, "narrow_range", narrow_range }; + var _result = _execute.execute("FakeQuantWithMinMaxVarsPerChannel", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FakeQuantWithMinMaxVarsPerChannel", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation. + /// + /// + /// + /// + /// + /// + /// + /// The bitwidth of the quantization; between 2 and 16, inclusive. + /// + /// + /// + /// + /// Whether to quantize into 2^num_bits - 1 distinct values. + /// + /// + /// + public static Tensor[] fake_quant_with_min_max_vars_per_channel_gradient(Tensor gradients, Tensor inputs, Tensor min, Tensor max, int num_bits = 8, bool narrow_range = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeQuantWithMinMaxVarsPerChannelGradient", name) { args = new object[] { gradients, inputs, min, max }, attrs = new Dictionary() { ["num_bits"] = num_bits, ["narrow_range"] = narrow_range } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fake_quant_with_min_max_vars_per_channel_gradient_eager_fallback(gradients, inputs, min, max, num_bits: num_bits, narrow_range: narrow_range, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["gradients"] = gradients; + keywords["inputs"] = inputs; + keywords["min"] = min; + keywords["max"] = max; + keywords["num_bits"] = num_bits; + keywords["narrow_range"] = narrow_range; + var _op = tf.OpDefLib._apply_op_helper("FakeQuantWithMinMaxVarsPerChannelGradient", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "num_bits", _op._get_attr_int("num_bits"), "narrow_range", _op._get_attr_bool("narrow_range") }; + _execute.record_gradient("FakeQuantWithMinMaxVarsPerChannelGradient", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fake_quant_with_min_max_vars_per_channel_gradient_eager_fallback(Tensor gradients, Tensor inputs, Tensor min, Tensor max, int num_bits, bool narrow_range, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { gradients, inputs, min, max }; + object[] _attrs = new object[] { "num_bits", num_bits, "narrow_range", narrow_range }; + var _result = _execute.execute("FakeQuantWithMinMaxVarsPerChannelGradient", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FakeQuantWithMinMaxVarsPerChannelGradient", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Creates a tensor filled with a scalar value. + /// + /// + /// + /// This operation creates a tensor of shape `dims` and fills it with `value`. + /// + /// For example: + /// + /// ``` + /// # Output tensor has shape [2, 3]. + /// fill([2, 3], 9) ==> [[9, 9, 9] + /// [9, 9, 9]] + /// ``` + /// + /// `tf.fill` differs from `tf.constant` in a few ways: + /// + /// * `tf.fill` only supports scalar contents, whereas `tf.constant` supports + /// Tensor values. + /// * `tf.fill` creates an Op in the computation graph that constructs the actual + /// Tensor value at runtime. This is in contrast to `tf.constant` which embeds + /// the entire Tensor into the graph with a `Const` node. + /// * Because `tf.fill` evaluates at graph runtime, it supports dynamic shapes + /// based on other runtime Tensors, unlike `tf.constant`. + /// + /// + /// + /// + /// + public static Tensor fill(Tensor dims, Tensor value, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Fill", name) { args = new object[] { dims, value }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fill_eager_fallback(dims, value, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["dims"] = dims; + keywords["value"] = value; + var _op = tf.OpDefLib._apply_op_helper("Fill", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "index_type", _op._get_attr_type("index_type") }; + _execute.record_gradient("Fill", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fill_eager_fallback(Tensor dims, Tensor value, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { dims, value }; + object[] _attrs = new object[] { "T", value.dtype, "index_type", dims.dtype }; + var _result = _execute.execute("Fill", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Fill", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Generates fingerprint values. + /// + /// + /// + /// Generates fingerprint values of `data`. + /// + /// Fingerprint op considers the first dimension of `data` as the batch dimension, + /// and `output[i]` contains the fingerprint value generated from contents in + /// `data[i, ...]` for all `i`. + /// + /// Fingerprint op writes fingerprint values as byte arrays. For example, the + /// default method `farmhash64` generates a 64-bit fingerprint value at a time. + /// This 8-byte value is written out as an `uint8` array of size 8, in little-endian + /// order. + /// + /// For example, suppose that `data` has data type `DT_INT32` and shape (2, 3, 4), + /// and that the fingerprint method is `farmhash64`. In this case, the output shape + /// is (2, 8), where 2 is the batch dimension size of `data`, and 8 is the size of + /// each fingerprint value in bytes. `output[0, :]` is generated from 12 integers in + /// `data[0, :, :]` and similarly `output[1, :]` is generated from other 12 integers + /// in `data[1, :, :]`. + /// + /// Note that this op fingerprints the raw underlying buffer, and it does not + /// fingerprint Tensor's metadata such as data type and/or shape. For example, the + /// fingerprint values are invariant under reshapes and bitcasts as long as the + /// batch dimension remain the same: + /// + /// ``` + /// Fingerprint(data) == Fingerprint(Reshape(data, ...)) + /// Fingerprint(data) == Fingerprint(Bitcast(data, ...)) + /// ``` + /// + /// For string data, one should expect `Fingerprint(data) != + /// Fingerprint(ReduceJoin(data))` in general. + /// + /// + /// + /// + /// + public static Tensor fingerprint(Tensor data, Tensor method, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Fingerprint", name) { args = new object[] { data, method }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fingerprint_eager_fallback(data, method, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["method"] = method; + var _op = tf.OpDefLib._apply_op_helper("Fingerprint", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Fingerprint", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fingerprint_eager_fallback(Tensor data, Tensor method, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, method }; + object[] _attrs = new object[] { "T", data.dtype }; + var _result = _execute.execute("Fingerprint", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Fingerprint", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Gather slices from `params` according to `indices`. + /// + /// + /// + /// `indices` must be an integer tensor of any dimension (usually 0-D or 1-D). + /// Produces an output tensor with shape `indices.shape + params.shape[1:]` where: + /// + /// ```python + /// # Scalar indices + /// output[:, ..., :] = params[indices, :, ... :] + /// + /// # Vector indices + /// output[i, :, ..., :] = params[indices[i], :, ... :] + /// + /// # Higher rank indices + /// output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :] + /// ``` + /// + /// If `indices` is a permutation and `len(indices) == params.shape[0]` then + /// this operation will permute `params` accordingly. + /// + /// `validate_indices`: DEPRECATED. If this operation is assigned to CPU, values in + /// `indices` are always validated to be within range. If assigned to GPU, + /// out-of-bound indices result in safe but unspecified behavior, which may include + /// raising an error. + /// + ///
+ /// + ///
+ /// + ///
+ /// + /// + /// + /// + public static Tensor gather(Tensor params_, Tensor indices, bool validate_indices = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Gather", name) { args = new object[] { params_, indices }, attrs = new Dictionary() { ["validate_indices"] = validate_indices } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return gather_eager_fallback(params_, indices, validate_indices: validate_indices, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["params"] = params_; + keywords["indices"] = indices; + keywords["validate_indices"] = validate_indices; + var _op = tf.OpDefLib._apply_op_helper("Gather", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "validate_indices", _op._get_attr_bool("validate_indices"), "Tparams", _op._get_attr_type("Tparams"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("Gather", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor gather_eager_fallback(Tensor params_, Tensor indices, bool validate_indices, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { params_, indices }; + object[] _attrs = new object[] { "validate_indices", validate_indices, "Tparams", params_.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("Gather", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Gather", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Gather slices from `params` into a Tensor with shape specified by `indices`. + /// + /// + /// + /// `indices` is a K-dimensional integer tensor, best thought of as a + /// (K-1)-dimensional tensor of indices into `params`, where each element defines a + /// slice of `params`: + /// + /// output[\(i_0, ..., i_{K-2}\)] = params[indices[\(i_0, ..., i_{K-2}\)]] + /// + /// Whereas in `tf.gather` `indices` defines slices into the `axis` + /// dimension of `params`, in `tf.gather_nd`, `indices` defines slices into the + /// first `N` dimensions of `params`, where `N = indices.shape[-1]`. + /// + /// The last dimension of `indices` can be at most the rank of + /// `params`: + /// + /// indices.shape[-1] <= params.rank + /// + /// The last dimension of `indices` corresponds to elements + /// (if `indices.shape[-1] == params.rank`) or slices + /// (if `indices.shape[-1] < params.rank`) along dimension `indices.shape[-1]` + /// of `params`. The output tensor has shape + /// + /// indices.shape[:-1] + params.shape[indices.shape[-1]:] + /// + /// Note that on CPU, if an out of bound index is found, an error is returned. + /// On GPU, if an out of bound index is found, a 0 is stored in the + /// corresponding output value. + /// + /// Some examples below. + /// + /// Simple indexing into a matrix: + /// + /// ```python + /// indices = [[0, 0], [1, 1]] + /// params = [['a', 'b'], ['c', 'd']] + /// output = ['a', 'd'] + /// ``` + /// + /// Slice indexing into a matrix: + /// + /// ```python + /// indices = [[1], [0]] + /// params = [['a', 'b'], ['c', 'd']] + /// output = [['c', 'd'], ['a', 'b']] + /// ``` + /// + /// Indexing into a 3-tensor: + /// + /// ```python + /// indices = [[1]] + /// params = [[['a0', 'b0'], ['c0', 'd0']], + /// [['a1', 'b1'], ['c1', 'd1']]] + /// output = [[['a1', 'b1'], ['c1', 'd1']]] + /// + /// + /// indices = [[0, 1], [1, 0]] + /// params = [[['a0', 'b0'], ['c0', 'd0']], + /// [['a1', 'b1'], ['c1', 'd1']]] + /// output = [['c0', 'd0'], ['a1', 'b1']] + /// + /// + /// indices = [[0, 0, 1], [1, 0, 1]] + /// params = [[['a0', 'b0'], ['c0', 'd0']], + /// [['a1', 'b1'], ['c1', 'd1']]] + /// output = ['b0', 'b1'] + /// ``` + /// + /// Batched indexing into a matrix: + /// + /// ```python + /// indices = [[[0, 0]], [[0, 1]]] + /// params = [['a', 'b'], ['c', 'd']] + /// output = [['a'], ['b']] + /// ``` + /// + /// Batched slice indexing into a matrix: + /// + /// ```python + /// indices = [[[1]], [[0]]] + /// params = [['a', 'b'], ['c', 'd']] + /// output = [[['c', 'd']], [['a', 'b']]] + /// ``` + /// + /// Batched indexing into a 3-tensor: + /// + /// ```python + /// indices = [[[1]], [[0]]] + /// params = [[['a0', 'b0'], ['c0', 'd0']], + /// [['a1', 'b1'], ['c1', 'd1']]] + /// output = [[[['a1', 'b1'], ['c1', 'd1']]], + /// [[['a0', 'b0'], ['c0', 'd0']]]] + /// + /// indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]] + /// params = [[['a0', 'b0'], ['c0', 'd0']], + /// [['a1', 'b1'], ['c1', 'd1']]] + /// output = [[['c0', 'd0'], ['a1', 'b1']], + /// [['a0', 'b0'], ['c1', 'd1']]] + /// + /// + /// indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]] + /// params = [[['a0', 'b0'], ['c0', 'd0']], + /// [['a1', 'b1'], ['c1', 'd1']]] + /// output = [['b0', 'b1'], ['d0', 'c1']] + /// ``` + /// + /// See also `tf.gather` and `tf.batch_gather`. + /// + /// + /// + /// + /// + public static Tensor gather_nd(Tensor params_, Tensor indices, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "GatherNd", name) { args = new object[] { params_, indices }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return gather_nd_eager_fallback(params_, indices, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["params"] = params_; + keywords["indices"] = indices; + var _op = tf.OpDefLib._apply_op_helper("GatherNd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tparams", _op._get_attr_type("Tparams"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("GatherNd", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor gather_nd_eager_fallback(Tensor params_, Tensor indices, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { params_, indices }; + object[] _attrs = new object[] { "Tparams", params_.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("GatherNd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("GatherNd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Gather slices from `params` axis `axis` according to `indices`. + /// + /// + /// + /// `indices` must be an integer tensor of any dimension (usually 0-D or 1-D). + /// Produces an output tensor with shape `params.shape[:axis] + + /// indices.shape[batch_dims:] + params.shape[axis + 1:]` where: + /// + /// ```python + /// # Scalar indices (output is rank(params) - 1). + /// output[a_0, ..., a_n, b_0, ..., b_n] = + /// params[a_0, ..., a_n, indices, b_0, ..., b_n] + /// + /// # Vector indices (output is rank(params)). + /// output[a_0, ..., a_n, i, b_0, ..., b_n] = + /// params[a_0, ..., a_n, indices[i], b_0, ..., b_n] + /// + /// # Higher rank indices (output is rank(params) + rank(indices) - 1). + /// output[a_0, ..., a_n, i, ..., j, b_0, ... b_n] = + /// params[a_0, ..., a_n, indices[i, ..., j], b_0, ..., b_n] + /// ``` + /// + ///
+ /// + ///
+ /// + /// Note that on CPU, if an out of bound index is found, an error is returned. + /// On GPU, if an out of bound index is found, a 0 is stored in the + /// corresponding output value. + /// + /// See also `tf.batch_gather` and `tf.gather_nd`. + /// + ///
+ /// + /// + /// + /// + /// + public static Tensor gather_v2(Tensor params_, Tensor indices, Tensor axis, int batch_dims = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "GatherV2", name) { args = new object[] { params_, indices, axis }, attrs = new Dictionary() { ["batch_dims"] = batch_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return gather_v2_eager_fallback(params_, indices, axis, batch_dims: batch_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["params"] = params_; + keywords["indices"] = indices; + keywords["axis"] = axis; + keywords["batch_dims"] = batch_dims; + var _op = tf.OpDefLib._apply_op_helper("GatherV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "batch_dims", _op._get_attr_int("batch_dims"), "Tparams", _op._get_attr_type("Tparams"), "Tindices", _op._get_attr_type("Tindices"), "Taxis", _op._get_attr_type("Taxis") }; + _execute.record_gradient("GatherV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor gather_v2_eager_fallback(Tensor params_, Tensor indices, Tensor axis, int batch_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { params_, indices, axis }; + object[] _attrs = new object[] { "batch_dims", batch_dims, "Tparams", params_.dtype, "Tindices", indices.dtype, "Taxis", axis.dtype }; + var _result = _execute.execute("GatherV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("GatherV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Gives a guarantee to the TF runtime that the input tensor is a constant. + /// + /// + /// + /// The runtime is then free to make optimizations based on this. + /// + /// Only accepts value typed tensors as inputs and rejects resource variable handles + /// as input. + /// + /// Returns the input tensor without modification. + /// + /// + /// + /// + public static Tensor guarantee_const(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "GuaranteeConst", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return guarantee_const_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("GuaranteeConst", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("GuaranteeConst", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor guarantee_const_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("GuaranteeConst", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("GuaranteeConst", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Return a tensor with the same shape and contents as the input tensor or value. + /// + /// + /// + public static Tensor identity(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Identity", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return identity_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("Identity", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Identity", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor identity_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("Identity", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Identity", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a list of tensors with the same shapes and contents as the input + /// + /// + /// + /// tensors. + /// + /// This op can be used to override the gradient for complicated functions. For + /// example, suppose y = f(x) and we wish to apply a custom function g for backprop + /// such that dx = g(dy). In Python, + /// + /// ```python + /// with tf.get_default_graph().gradient_override_map( + /// {'IdentityN': 'OverrideGradientWithG'}): + /// y, _ = identity_n([f(x), x]) + /// + /// @tf.RegisterGradient('OverrideGradientWithG') + /// def ApplyG(op, dy, _): + /// return [None, g(dy)] # Do not backprop to f(x). + /// ``` + /// + /// + /// + /// + public static Tensor[] identity_n(Tensors input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IdentityN", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return identity_n_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("IdentityN", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op.get_attr("T") }; + _execute.record_gradient("IdentityN", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] identity_n_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("IdentityN", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("IdentityN", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Returns immutable tensor from memory region. + /// + /// + /// + /// The current implementation memmaps the tensor from a file. + /// + /// + /// + /// + /// Type of the returned tensor. + /// + /// + /// + /// + /// Shape of the returned tensor. + /// + /// + /// + /// + /// Name of readonly memory region used by the tensor, see + /// NewReadOnlyMemoryRegionFromFile in tensorflow::Env. + /// + /// + /// + public static Tensor immutable_const(TF_DataType dtype, Shape shape, string memory_region_name, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ImmutableConst", name) { args = new object[] { }, attrs = new Dictionary() { ["dtype"] = dtype, ["shape"] = shape, ["memory_region_name"] = memory_region_name } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return immutable_const_eager_fallback(dtype: dtype, shape: shape, memory_region_name: memory_region_name, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["dtype"] = dtype; + keywords["shape"] = shape; + keywords["memory_region_name"] = memory_region_name; + var _op = tf.OpDefLib._apply_op_helper("ImmutableConst", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape"), "memory_region_name", _op.get_attr("memory_region_name") }; + _execute.record_gradient("ImmutableConst", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor immutable_const_eager_fallback(TF_DataType dtype, Shape shape, string memory_region_name, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "dtype", dtype, "shape", shape, "memory_region_name", memory_region_name }; + var _result = _execute.execute("ImmutableConst", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ImmutableConst", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + /// + public static Tensor inplace_add(Tensor x, Tensor i, Tensor v, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InplaceAdd", name) { args = new object[] { x, i, v }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return inplace_add_eager_fallback(x, i, v, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["i"] = i; + keywords["v"] = v; + var _op = tf.OpDefLib._apply_op_helper("InplaceAdd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("InplaceAdd", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor inplace_add_eager_fallback(Tensor x, Tensor i, Tensor v, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, i, v }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("InplaceAdd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("InplaceAdd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + /// + public static Tensor inplace_sub(Tensor x, Tensor i, Tensor v, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InplaceSub", name) { args = new object[] { x, i, v }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return inplace_sub_eager_fallback(x, i, v, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["i"] = i; + keywords["v"] = v; + var _op = tf.OpDefLib._apply_op_helper("InplaceSub", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("InplaceSub", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor inplace_sub_eager_fallback(Tensor x, Tensor i, Tensor v, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, i, v }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("InplaceSub", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("InplaceSub", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + /// + public static Tensor inplace_update(Tensor x, Tensor i, Tensor v, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InplaceUpdate", name) { args = new object[] { x, i, v }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return inplace_update_eager_fallback(x, i, v, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["i"] = i; + keywords["v"] = v; + var _op = tf.OpDefLib._apply_op_helper("InplaceUpdate", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("InplaceUpdate", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor inplace_update_eager_fallback(Tensor x, Tensor i, Tensor v, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, i, v }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("InplaceUpdate", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("InplaceUpdate", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the inverse permutation of a tensor. + /// + /// + /// + /// This operation computes the inverse of an index permutation. It takes a 1-D + /// integer tensor `x`, which represents the indices of a zero-based array, and + /// swaps each value with its index position. In other words, for an output tensor + /// `y` and an input tensor `x`, this operation computes the following: + /// + /// `y[x[i]] = i for i in [0, 1, ..., len(x) - 1]` + /// + /// The values must include 0. There can be no duplicate values or negative values. + /// + /// For example: + /// + /// ``` + /// # tensor `x` is [3, 4, 0, 2, 1] + /// invert_permutation(x) ==> [2, 4, 3, 0, 1] + /// ``` + /// + /// + /// + /// + public static Tensor invert_permutation(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InvertPermutation", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return invert_permutation_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("InvertPermutation", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("InvertPermutation", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor invert_permutation_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("InvertPermutation", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("InvertPermutation", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the difference between two lists of numbers or strings. + /// + /// + /// + /// Given a list `x` and a list `y`, this operation returns a list `out` that + /// represents all values that are in `x` but not in `y`. The returned list `out` + /// is sorted in the same order that the numbers appear in `x` (duplicates are + /// preserved). This operation also returns a list `idx` that represents the + /// position of each `out` element in `x`. In other words: + /// + /// `out[i] = x[idx[i]] for i in [0, 1, ..., len(out) - 1]` + /// + /// For example, given this input: + /// + /// ``` + /// x = [1, 2, 3, 4, 5, 6] + /// y = [1, 3, 5] + /// ``` + /// + /// This operation would return: + /// + /// ``` + /// out ==> [2, 4, 6] + /// idx ==> [1, 3, 5] + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor[] list_diff(Tensor x, Tensor y, TF_DataType out_idx = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ListDiff", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return list_diff_eager_fallback(x, y, out_idx: out_idx, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + keywords["out_idx"] = out_idx; + var _op = tf.OpDefLib._apply_op_helper("ListDiff", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "out_idx", _op._get_attr_type("out_idx") }; + _execute.record_gradient("ListDiff", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] list_diff_eager_fallback(Tensor x, Tensor y, TF_DataType out_idx, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype, "out_idx", out_idx }; + var _result = _execute.execute("ListDiff", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ListDiff", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Applies lower_bound(sorted_search_values, values) along each row. + /// + /// + /// + /// Each set of rows with the same index in (sorted_inputs, values) is treated + /// independently. The resulting row is the equivalent of calling + /// `np.searchsorted(sorted_inputs, values, side='left')`. + /// + /// The result is not a global index to the entire + /// `Tensor`, but rather just the index in the last dimension. + /// + /// A 2-D example: + /// sorted_sequence = [[0, 3, 9, 9, 10], + /// [1, 2, 3, 4, 5]] + /// values = [[2, 4, 9], + /// [0, 2, 6]] + /// + /// result = LowerBound(sorted_sequence, values) + /// + /// result == [[1, 2, 2], + /// [0, 1, 5]] + /// + /// + /// + /// + /// + /// + public static Tensor lower_bound(Tensor sorted_inputs, Tensor values, TF_DataType out_type = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LowerBound", name) { args = new object[] { sorted_inputs, values }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return lower_bound_eager_fallback(sorted_inputs, values, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["sorted_inputs"] = sorted_inputs; + keywords["values"] = values; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("LowerBound", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("LowerBound", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor lower_bound_eager_fallback(Tensor sorted_inputs, Tensor values, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { sorted_inputs, values }; + object[] _attrs = new object[] { "T", sorted_inputs.dtype, "out_type", out_type }; + var _result = _execute.execute("LowerBound", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LowerBound", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Copy a tensor setting everything outside a central band in each innermost matrix to zero. + /// + /// + /// + /// The `band` part is computed as follows: + /// Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a + /// tensor with the same shape where + /// + /// `band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]`. + /// + /// The indicator function + /// + /// `in_band(m, n) = (num_lower < 0 || (m-n) <= num_lower)) && + /// (num_upper < 0 || (n-m) <= num_upper)`. + /// + /// For example: + /// + /// ``` + /// # if 'input' is [[ 0, 1, 2, 3] + /// # [-1, 0, 1, 2] + /// # [-2, -1, 0, 1] + /// # [-3, -2, -1, 0]], + /// + /// tf.linalg.band_part(input, 1, -1) ==> [[ 0, 1, 2, 3] + /// [-1, 0, 1, 2] + /// [ 0, -1, 0, 1] + /// [ 0, 0, -1, 0]], + /// + /// tf.linalg.band_part(input, 2, 1) ==> [[ 0, 1, 0, 0] + /// [-1, 0, 1, 0] + /// [-2, -1, 0, 1] + /// [ 0, -2, -1, 0]] + /// ``` + /// + /// Useful special cases: + /// + /// ``` + /// tf.linalg.band_part(input, 0, -1) ==> Upper triangular part. + /// tf.linalg.band_part(input, -1, 0) ==> Lower triangular part. + /// tf.linalg.band_part(input, 0, 0) ==> Diagonal. + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor matrix_band_part(Tensor input, Tensor num_lower, Tensor num_upper, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixBandPart", name) { args = new object[] { input, num_lower, num_upper }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_band_part_eager_fallback(input, num_lower, num_upper, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["num_lower"] = num_lower; + keywords["num_upper"] = num_upper; + var _op = tf.OpDefLib._apply_op_helper("MatrixBandPart", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindex", _op._get_attr_type("Tindex") }; + _execute.record_gradient("MatrixBandPart", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_band_part_eager_fallback(Tensor input, Tensor num_lower, Tensor num_upper, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, num_lower, num_upper }; + object[] _attrs = new object[] { "T", input.dtype, "Tindex", num_lower.dtype }; + var _result = _execute.execute("MatrixBandPart", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixBandPart", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a batched diagonal tensor with a given batched diagonal values. + /// + /// + /// + /// Given a `diagonal`, this operation returns a tensor with the `diagonal` and + /// everything else padded with zeros. The diagonal is computed as follows: + /// + /// Assume `diagonal` has `k` dimensions `[I, J, K, ..., N]`, then the output is a + /// tensor of rank `k+1` with dimensions [I, J, K, ..., N, N]` where: + /// + /// `output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]`. + /// + /// For example: + /// + /// ``` + /// # 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]] + /// + /// and diagonal.shape = (2, 4) + /// + /// tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0] + /// [0, 2, 0, 0] + /// [0, 0, 3, 0] + /// [0, 0, 0, 4]], + /// [[5, 0, 0, 0] + /// [0, 6, 0, 0] + /// [0, 0, 7, 0] + /// [0, 0, 0, 8]]] + /// + /// which has shape (2, 4, 4) + /// ``` + /// + /// + /// + /// + public static Tensor matrix_diag(Tensor diagonal, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiag", name) { args = new object[] { diagonal }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_diag_eager_fallback(diagonal, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["diagonal"] = diagonal; + var _op = tf.OpDefLib._apply_op_helper("MatrixDiag", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("MatrixDiag", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_diag_eager_fallback(Tensor diagonal, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { diagonal }; + object[] _attrs = new object[] { "T", diagonal.dtype }; + var _result = _execute.execute("MatrixDiag", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixDiag", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the batched diagonal part of a batched tensor. + /// + /// + /// + /// This operation returns a tensor with the `diagonal` part + /// of the batched `input`. The `diagonal` part is computed as follows: + /// + /// Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a + /// tensor of rank `k - 1` with dimensions `[I, J, K, ..., min(M, N)]` where: + /// + /// `diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n]`. + /// + /// The input must be at least a matrix. + /// + /// For example: + /// + /// ``` + /// # 'input' is [[[1, 0, 0, 0] + /// [0, 2, 0, 0] + /// [0, 0, 3, 0] + /// [0, 0, 0, 4]], + /// [[5, 0, 0, 0] + /// [0, 6, 0, 0] + /// [0, 0, 7, 0] + /// [0, 0, 0, 8]]] + /// + /// and input.shape = (2, 4, 4) + /// + /// tf.matrix_diag_part(input) ==> [[1, 2, 3, 4], [5, 6, 7, 8]] + /// + /// which has shape (2, 4) + /// ``` + /// + /// + /// + /// + public static Tensor matrix_diag_part(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagPart", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_diag_part_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("MatrixDiagPart", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("MatrixDiagPart", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_diag_part_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("MatrixDiagPart", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixDiagPart", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the batched diagonal part of a batched tensor. + /// + /// + /// + /// Returns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched + /// `input`. + /// + /// Assume `input` has `r` dimensions `[I, J, ..., L, M, N]`. + /// Let `max_diag_len` be the maximum length among all diagonals to be extracted, + /// `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` + /// Let `num_diags` be the number of diagonals to extract, + /// `num_diags = k[1] - k[0] + 1`. + /// + /// If `num_diags == 1`, the output tensor is of rank `r - 1` with shape + /// `[I, J, ..., L, max_diag_len]` and values: + /// + /// ``` + /// diagonal[i, j, ..., l, n] + /// = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N, + /// padding_value ; otherwise. + /// ``` + /// where `y = max(-k[1], 0)`, `x = max(k[1], 0)`. + /// + /// Otherwise, the output tensor has rank `r` with dimensions + /// `[I, J, ..., L, num_diags, max_diag_len]` with values: + /// + /// ``` + /// diagonal[i, j, ..., l, m, n] + /// = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N, + /// padding_value ; otherwise. + /// ``` + /// where `d = k[1] - m`, `y = max(-d, 0)`, and `x = max(d, 0)`. + /// + /// The input must be at least a matrix. + /// + /// For example: + /// + /// ``` + /// input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4) + /// [5, 6, 7, 8], + /// [9, 8, 7, 6]], + /// [[5, 4, 3, 2], + /// [1, 2, 3, 4], + /// [5, 6, 7, 8]]]) + /// + /// # A main diagonal from each batch. + /// tf.matrix_diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3) + /// [5, 2, 7]] + /// + /// # A superdiagonal from each batch. + /// tf.matrix_diag_part(input, k = 1) + /// ==> [[2, 7, 6], # Output shape: (2, 3) + /// [4, 3, 8]] + /// + /// # A tridiagonal band from each batch. + /// tf.matrix_diag_part(input, k = (-1, 1)) + /// ==> [[[2, 7, 6], # Output shape: (2, 3, 3) + /// [1, 6, 7], + /// [5, 8, 0]], + /// [[4, 3, 8], + /// [5, 2, 7], + /// [1, 6, 0]]] + /// + /// # Padding value = 9 + /// tf.matrix_diag_part(input, k = (1, 3), padding_value = 9) + /// ==> [[[4, 9, 9], # Output shape: (2, 3, 3) + /// [3, 8, 9], + /// [2, 7, 6]], + /// [[2, 9, 9], + /// [3, 4, 9], + /// [4, 3, 8]]] + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor matrix_diag_part_v2(Tensor input, Tensor k, Tensor padding_value, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagPartV2", name) { args = new object[] { input, k, padding_value }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_diag_part_v2_eager_fallback(input, k, padding_value, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["k"] = k; + keywords["padding_value"] = padding_value; + var _op = tf.OpDefLib._apply_op_helper("MatrixDiagPartV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("MatrixDiagPartV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_diag_part_v2_eager_fallback(Tensor input, Tensor k, Tensor padding_value, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, k, padding_value }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("MatrixDiagPartV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixDiagPartV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the batched diagonal part of a batched tensor. + /// + /// + /// + /// Returns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched + /// `input`. + /// + /// Assume `input` has `r` dimensions `[I, J, ..., L, M, N]`. + /// Let `max_diag_len` be the maximum length among all diagonals to be extracted, + /// `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` + /// Let `num_diags` be the number of diagonals to extract, + /// `num_diags = k[1] - k[0] + 1`. + /// + /// If `num_diags == 1`, the output tensor is of rank `r - 1` with shape + /// `[I, J, ..., L, max_diag_len]` and values: + /// + /// ``` + /// diagonal[i, j, ..., l, n] + /// = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N, + /// padding_value ; otherwise. + /// ``` + /// where `y = max(-k[1], 0)`, `x = max(k[1], 0)`. + /// + /// Otherwise, the output tensor has rank `r` with dimensions + /// `[I, J, ..., L, num_diags, max_diag_len]` with values: + /// + /// ``` + /// diagonal[i, j, ..., l, m, n] + /// = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N, + /// padding_value ; otherwise. + /// ``` + /// where `d = k[1] - m`, `y = max(-d, 0) - offset`, and `x = max(d, 0) - offset`. + /// + /// `offset` is zero except when the alignment of the diagonal is to the right. + /// ``` + /// offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT} + /// and `d >= 0`) or + /// (`align` in {LEFT_RIGHT, RIGHT_RIGHT} + /// and `d <= 0`) + /// 0 ; otherwise + /// ``` + /// where `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`. + /// + /// The input must be at least a matrix. + /// + /// For example: + /// + /// ``` + /// input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4) + /// [5, 6, 7, 8], + /// [9, 8, 7, 6]], + /// [[5, 4, 3, 2], + /// [1, 2, 3, 4], + /// [5, 6, 7, 8]]]) + /// + /// # A main diagonal from each batch. + /// tf.matrix_diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3) + /// [5, 2, 7]] + /// + /// # A superdiagonal from each batch. + /// tf.matrix_diag_part(input, k = 1) + /// ==> [[2, 7, 6], # Output shape: (2, 3) + /// [4, 3, 8]] + /// + /// # A band from each batch. + /// tf.matrix_diag_part(input, k = (-1, 2)) + /// ==> [[[0, 3, 8], # Output shape: (2, 4, 3) + /// [2, 7, 6], + /// [1, 6, 7], + /// [5, 8, 0]], + /// [[0, 3, 4], + /// [4, 3, 8], + /// [5, 2, 7], + /// [1, 6, 0]]] + /// + /// # LEFT_RIGHT alignment. + /// tf.matrix_diag_part(input, k = (-1, 2), align="LEFT_RIGHT") + /// ==> [[[3, 8, 0], # Output shape: (2, 4, 3) + /// [2, 7, 6], + /// [1, 6, 7], + /// [0, 5, 8]], + /// [[3, 4, 0], + /// [4, 3, 8], + /// [5, 2, 7], + /// [0, 1, 6]]] + /// + /// # max_diag_len can be shorter than the main diagonal. + /// tf.matrix_diag_part(input, k = (-2, -1)) + /// ==> [[[5, 8], + /// [9, 0]], + /// [[1, 6], + /// [5, 0]]] + /// + /// # padding_value = 9 + /// tf.matrix_diag_part(input, k = (1, 3), padding_value = 9) + /// ==> [[[9, 9, 4], # Output shape: (2, 3, 3) + /// [9, 3, 8], + /// [2, 7, 6]], + /// [[9, 9, 2], + /// [9, 3, 4], + /// [4, 3, 8]]] + /// + /// ``` + /// + /// + /// + /// + /// + /// + /// + /// Some diagonals are shorter than `max_diag_len` and need to be padded. `align` is + /// a string specifying how superdiagonals and subdiagonals should be aligned, + /// respectively. There are four possible alignments: "RIGHT_LEFT" (default), + /// "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals + /// to the right (left-pads the row) and subdiagonals to the left (right-pads the + /// row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is + /// the opposite alignment. + /// + /// + /// + public static Tensor matrix_diag_part_v3(Tensor input, Tensor k, Tensor padding_value, string align = "RIGHT_LEFT", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagPartV3", name) { args = new object[] { input, k, padding_value }, attrs = new Dictionary() { ["align"] = align } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_diag_part_v3_eager_fallback(input, k, padding_value, align: align, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (align is null) + { + align = "RIGHT_LEFT"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["k"] = k; + keywords["padding_value"] = padding_value; + keywords["align"] = align; + var _op = tf.OpDefLib._apply_op_helper("MatrixDiagPartV3", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "align", _op.get_attr("align") }; + _execute.record_gradient("MatrixDiagPartV3", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_diag_part_v3_eager_fallback(Tensor input, Tensor k, Tensor padding_value, string align, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, k, padding_value }; + object[] _attrs = new object[] { "T", input.dtype, "align", align }; + var _result = _execute.execute("MatrixDiagPartV3", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixDiagPartV3", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a batched diagonal tensor with given batched diagonal values. + /// + /// + /// + /// Returns a tensor with the contents in `diagonal` as `k[0]`-th to `k[1]`-th + /// diagonals of a matrix, with everything else padded with `padding`. `num_rows` + /// and `num_cols` specify the dimension of the innermost matrix of the output. If + /// both are not specified, the op assumes the innermost matrix is square and infers + /// its size from `k` and the innermost dimension of `diagonal`. If only one of them + /// is specified, the op assumes the unspecified value is the smallest possible + /// based on other criteria. + /// + /// Let `diagonal` have `r` dimensions `[I, J, ..., L, M, N]`. The output tensor has + /// rank `r+1` with shape `[I, J, ..., L, M, num_rows, num_cols]` when only one + /// diagonal is given (`k` is an integer or `k[0] == k[1]`). Otherwise, it has rank + /// `r` with shape `[I, J, ..., L, num_rows, num_cols]`. + /// + /// The second innermost dimension of `diagonal` has double meaning. + /// When `k` is scalar or `k[0] == k[1]`, `M` is part of the batch size + /// [I, J, ..., M], and the output tensor is: + /// + /// ``` + /// output[i, j, ..., l, m, n] + /// = diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper + /// padding_value ; otherwise + /// ``` + /// + /// Otherwise, `M` is treated as the number of diagonals for the matrix in the + /// same batch (`M = k[1]-k[0]+1`), and the output tensor is: + /// + /// ``` + /// output[i, j, ..., l, m, n] + /// = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1] + /// padding_value ; otherwise + /// ``` + /// where `d = n - m`, `diag_index = k[1] - d`, and `index_in_diag = n - max(d, 0)`. + /// + /// For example: + /// + /// ``` + /// # The main diagonal. + /// diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4) + /// [5, 6, 7, 8]]) + /// tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4) + /// [0, 2, 0, 0], + /// [0, 0, 3, 0], + /// [0, 0, 0, 4]], + /// [[5, 0, 0, 0], + /// [0, 6, 0, 0], + /// [0, 0, 7, 0], + /// [0, 0, 0, 8]]] + /// + /// # A superdiagonal (per batch). + /// diagonal = np.array([[1, 2, 3], # Input shape: (2, 3) + /// [4, 5, 6]]) + /// tf.matrix_diag(diagonal, k = 1) + /// ==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4) + /// [0, 0, 2, 0], + /// [0, 0, 0, 3], + /// [0, 0, 0, 0]], + /// [[0, 4, 0, 0], + /// [0, 0, 5, 0], + /// [0, 0, 0, 6], + /// [0, 0, 0, 0]]] + /// + /// # A band of diagonals. + /// diagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3) + /// [4, 5, 0]], + /// [[6, 7, 9], + /// [9, 1, 0]]]) + /// tf.matrix_diag(diagonals, k = (-1, 0)) + /// ==> [[[1, 0, 0], # Output shape: (2, 3, 3) + /// [4, 2, 0], + /// [0, 5, 3]], + /// [[6, 0, 0], + /// [9, 7, 0], + /// [0, 1, 9]]] + /// + /// # Rectangular matrix. + /// diagonal = np.array([1, 2]) # Input shape: (2) + /// tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4) + /// ==> [[0, 0, 0, 0], # Output shape: (3, 4) + /// [1, 0, 0, 0], + /// [0, 2, 0, 0]] + /// + /// # Rectangular matrix with inferred num_cols and padding_value = 9. + /// tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9) + /// ==> [[9, 9], # Output shape: (3, 2) + /// [1, 9], + /// [9, 2]] + /// ``` + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor matrix_diag_v2(Tensor diagonal, Tensor k, Tensor num_rows, Tensor num_cols, Tensor padding_value, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagV2", name) { args = new object[] { diagonal, k, num_rows, num_cols, padding_value }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_diag_v2_eager_fallback(diagonal, k, num_rows, num_cols, padding_value, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["diagonal"] = diagonal; + keywords["k"] = k; + keywords["num_rows"] = num_rows; + keywords["num_cols"] = num_cols; + keywords["padding_value"] = padding_value; + var _op = tf.OpDefLib._apply_op_helper("MatrixDiagV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("MatrixDiagV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_diag_v2_eager_fallback(Tensor diagonal, Tensor k, Tensor num_rows, Tensor num_cols, Tensor padding_value, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { diagonal, k, num_rows, num_cols, padding_value }; + object[] _attrs = new object[] { "T", diagonal.dtype }; + var _result = _execute.execute("MatrixDiagV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixDiagV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a batched diagonal tensor with given batched diagonal values. + /// + /// + /// + /// Returns a tensor with the contents in `diagonal` as `k[0]`-th to `k[1]`-th + /// diagonals of a matrix, with everything else padded with `padding`. `num_rows` + /// and `num_cols` specify the dimension of the innermost matrix of the output. If + /// both are not specified, the op assumes the innermost matrix is square and infers + /// its size from `k` and the innermost dimension of `diagonal`. If only one of them + /// is specified, the op assumes the unspecified value is the smallest possible + /// based on other criteria. + /// + /// Let `diagonal` have `r` dimensions `[I, J, ..., L, M, N]`. The output tensor has + /// rank `r+1` with shape `[I, J, ..., L, M, num_rows, num_cols]` when only one + /// diagonal is given (`k` is an integer or `k[0] == k[1]`). Otherwise, it has rank + /// `r` with shape `[I, J, ..., L, num_rows, num_cols]`. + /// + /// The second innermost dimension of `diagonal` has double meaning. + /// When `k` is scalar or `k[0] == k[1]`, `M` is part of the batch size + /// [I, J, ..., M], and the output tensor is: + /// + /// ``` + /// output[i, j, ..., l, m, n] + /// = diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper + /// padding_value ; otherwise + /// ``` + /// + /// Otherwise, `M` is treated as the number of diagonals for the matrix in the + /// same batch (`M = k[1]-k[0]+1`), and the output tensor is: + /// + /// ``` + /// output[i, j, ..., l, m, n] + /// = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1] + /// padding_value ; otherwise + /// ``` + /// where `d = n - m`, `diag_index = [k] - d`, and + /// `index_in_diag = n - max(d, 0) + offset`. + /// + /// `offset` is zero except when the alignment of the diagonal is to the right. + /// ``` + /// offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT} + /// and `d >= 0`) or + /// (`align` in {LEFT_RIGHT, RIGHT_RIGHT} + /// and `d <= 0`) + /// 0 ; otherwise + /// ``` + /// where `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`. + /// + /// For example: + /// + /// ``` + /// # The main diagonal. + /// diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4) + /// [5, 6, 7, 8]]) + /// tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4) + /// [0, 2, 0, 0], + /// [0, 0, 3, 0], + /// [0, 0, 0, 4]], + /// [[5, 0, 0, 0], + /// [0, 6, 0, 0], + /// [0, 0, 7, 0], + /// [0, 0, 0, 8]]] + /// + /// # A superdiagonal (per batch). + /// diagonal = np.array([[1, 2, 3], # Input shape: (2, 3) + /// [4, 5, 6]]) + /// tf.matrix_diag(diagonal, k = 1) + /// ==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4) + /// [0, 0, 2, 0], + /// [0, 0, 0, 3], + /// [0, 0, 0, 0]], + /// [[0, 4, 0, 0], + /// [0, 0, 5, 0], + /// [0, 0, 0, 6], + /// [0, 0, 0, 0]]] + /// + /// # A tridiagonal band (per batch). + /// diagonals = np.array([[[0, 8, 9], # Input shape: (2, 2, 3) + /// [1, 2, 3], + /// [4, 5, 0]], + /// [[0, 2, 3], + /// [6, 7, 9], + /// [9, 1, 0]]]) + /// tf.matrix_diag(diagonals, k = (-1, 1)) + /// ==> [[[1, 8, 0], # Output shape: (2, 3, 3) + /// [4, 2, 9], + /// [0, 5, 3]], + /// [[6, 2, 0], + /// [9, 7, 3], + /// [0, 1, 9]]] + /// + /// # LEFT_RIGHT alignment. + /// diagonals = np.array([[[8, 9, 0], # Input shape: (2, 2, 3) + /// [1, 2, 3], + /// [0, 4, 5]], + /// [[2, 3, 0], + /// [6, 7, 9], + /// [0, 9, 1]]]) + /// tf.matrix_diag(diagonals, k = (-1, 1), align="LEFT_RIGHT") + /// ==> [[[1, 8, 0], # Output shape: (2, 3, 3) + /// [4, 2, 9], + /// [0, 5, 3]], + /// [[6, 2, 0], + /// [9, 7, 3], + /// [0, 1, 9]]] + /// + /// # Rectangular matrix. + /// diagonal = np.array([1, 2]) # Input shape: (2) + /// tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4) + /// ==> [[0, 0, 0, 0], # Output shape: (3, 4) + /// [1, 0, 0, 0], + /// [0, 2, 0, 0]] + /// + /// # Rectangular matrix with inferred num_cols and padding_value = 9. + /// tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9) + /// ==> [[9, 9], # Output shape: (3, 2) + /// [1, 9], + /// [9, 2]] + /// + /// ``` + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// Some diagonals are shorter than `max_diag_len` and need to be padded. `align` is + /// a string specifying how superdiagonals and subdiagonals should be aligned, + /// respectively. There are four possible alignments: "RIGHT_LEFT" (default), + /// "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals + /// to the right (left-pads the row) and subdiagonals to the left (right-pads the + /// row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is + /// the opposite alignment. + /// + /// + /// + public static Tensor matrix_diag_v3(Tensor diagonal, Tensor k, Tensor num_rows, Tensor num_cols, Tensor padding_value, string align = "RIGHT_LEFT", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixDiagV3", name) { args = new object[] { diagonal, k, num_rows, num_cols, padding_value }, attrs = new Dictionary() { ["align"] = align } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_diag_v3_eager_fallback(diagonal, k, num_rows, num_cols, padding_value, align: align, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (align is null) + { + align = "RIGHT_LEFT"; + } + Dictionary keywords = new(); + keywords["diagonal"] = diagonal; + keywords["k"] = k; + keywords["num_rows"] = num_rows; + keywords["num_cols"] = num_cols; + keywords["padding_value"] = padding_value; + keywords["align"] = align; + var _op = tf.OpDefLib._apply_op_helper("MatrixDiagV3", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "align", _op.get_attr("align") }; + _execute.record_gradient("MatrixDiagV3", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_diag_v3_eager_fallback(Tensor diagonal, Tensor k, Tensor num_rows, Tensor num_cols, Tensor padding_value, string align, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { diagonal, k, num_rows, num_cols, padding_value }; + object[] _attrs = new object[] { "T", diagonal.dtype, "align", align }; + var _result = _execute.execute("MatrixDiagV3", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixDiagV3", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a batched matrix tensor with new batched diagonal values. + /// + /// + /// + /// Given `input` and `diagonal`, this operation returns a tensor with the + /// same shape and values as `input`, except for the main diagonal of the + /// innermost matrices. These will be overwritten by the values in `diagonal`. + /// + /// The output is computed as follows: + /// + /// Assume `input` has `k+1` dimensions `[I, J, K, ..., M, N]` and `diagonal` has + /// `k` dimensions `[I, J, K, ..., min(M, N)]`. Then the output is a + /// tensor of rank `k+1` with dimensions `[I, J, K, ..., M, N]` where: + /// + /// * `output[i, j, k, ..., m, n] = diagonal[i, j, k, ..., n]` for `m == n`. + /// * `output[i, j, k, ..., m, n] = input[i, j, k, ..., m, n]` for `m != n`. + /// + /// + /// + /// + /// + public static Tensor matrix_set_diag(Tensor input, Tensor diagonal, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixSetDiag", name) { args = new object[] { input, diagonal }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_set_diag_eager_fallback(input, diagonal, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["diagonal"] = diagonal; + var _op = tf.OpDefLib._apply_op_helper("MatrixSetDiag", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("MatrixSetDiag", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_set_diag_eager_fallback(Tensor input, Tensor diagonal, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, diagonal }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("MatrixSetDiag", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixSetDiag", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a batched matrix tensor with new batched diagonal values. + /// + /// + /// + /// Given `input` and `diagonal`, this operation returns a tensor with the + /// same shape and values as `input`, except for the specified diagonals of the + /// innermost matrices. These will be overwritten by the values in `diagonal`. + /// + /// `input` has `r+1` dimensions `[I, J, ..., L, M, N]`. When `k` is scalar or + /// `k[0] == k[1]`, `diagonal` has `r` dimensions `[I, J, ..., L, max_diag_len]`. + /// Otherwise, it has `r+1` dimensions `[I, J, ..., L, num_diags, max_diag_len]`. + /// `num_diags` is the number of diagonals, `num_diags = k[1] - k[0] + 1`. + /// `max_diag_len` is the longest diagonal in the range `[k[0], k[1]]`, + /// `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` + /// + /// The output is a tensor of rank `k+1` with dimensions `[I, J, ..., L, M, N]`. + /// If `k` is scalar or `k[0] == k[1]`: + /// + /// ``` + /// output[i, j, ..., l, m, n] + /// = diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1] + /// input[i, j, ..., l, m, n] ; otherwise + /// ``` + /// + /// Otherwise, + /// + /// ``` + /// output[i, j, ..., l, m, n] + /// = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1] + /// input[i, j, ..., l, m, n] ; otherwise + /// ``` + /// where `d = n - m`, `diag_index = k[1] - d`, and `index_in_diag = n - max(d, 0)`. + /// + /// For example: + /// + /// ``` + /// # The main diagonal. + /// input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4) + /// [7, 7, 7, 7], + /// [7, 7, 7, 7]], + /// [[7, 7, 7, 7], + /// [7, 7, 7, 7], + /// [7, 7, 7, 7]]]) + /// diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3) + /// [4, 5, 6]]) + /// tf.matrix_set_diag(diagonal) ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4) + /// [7, 2, 7, 7], + /// [7, 7, 3, 7]], + /// [[4, 7, 7, 7], + /// [7, 5, 7, 7], + /// [7, 7, 6, 7]]] + /// + /// # A superdiagonal (per batch). + /// tf.matrix_set_diag(diagonal, k = 1) + /// ==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4) + /// [7, 7, 2, 7], + /// [7, 7, 7, 3]], + /// [[7, 4, 7, 7], + /// [7, 7, 5, 7], + /// [7, 7, 7, 6]]] + /// + /// # A band of diagonals. + /// diagonals = np.array([[[1, 2, 3], # Diagonal shape: (2, 2, 3) + /// [4, 5, 0]], + /// [[6, 1, 2], + /// [3, 4, 0]]]) + /// tf.matrix_set_diag(diagonals, k = (-1, 0)) + /// ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4) + /// [4, 2, 7, 7], + /// [0, 5, 3, 7]], + /// [[6, 7, 7, 7], + /// [3, 1, 7, 7], + /// [7, 4, 2, 7]]] + /// + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor matrix_set_diag_v2(Tensor input, Tensor diagonal, Tensor k, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixSetDiagV2", name) { args = new object[] { input, diagonal, k }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_set_diag_v2_eager_fallback(input, diagonal, k, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["diagonal"] = diagonal; + keywords["k"] = k; + var _op = tf.OpDefLib._apply_op_helper("MatrixSetDiagV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("MatrixSetDiagV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_set_diag_v2_eager_fallback(Tensor input, Tensor diagonal, Tensor k, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, diagonal, k }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("MatrixSetDiagV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixSetDiagV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a batched matrix tensor with new batched diagonal values. + /// + /// + /// + /// Given `input` and `diagonal`, this operation returns a tensor with the + /// same shape and values as `input`, except for the specified diagonals of the + /// innermost matrices. These will be overwritten by the values in `diagonal`. + /// + /// `input` has `r+1` dimensions `[I, J, ..., L, M, N]`. When `k` is scalar or + /// `k[0] == k[1]`, `diagonal` has `r` dimensions `[I, J, ..., L, max_diag_len]`. + /// Otherwise, it has `r+1` dimensions `[I, J, ..., L, num_diags, max_diag_len]`. + /// `num_diags` is the number of diagonals, `num_diags = k[1] - k[0] + 1`. + /// `max_diag_len` is the longest diagonal in the range `[k[0], k[1]]`, + /// `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` + /// + /// The output is a tensor of rank `k+1` with dimensions `[I, J, ..., L, M, N]`. + /// If `k` is scalar or `k[0] == k[1]`: + /// + /// ``` + /// output[i, j, ..., l, m, n] + /// = diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1] + /// input[i, j, ..., l, m, n] ; otherwise + /// ``` + /// + /// Otherwise, + /// + /// ``` + /// output[i, j, ..., l, m, n] + /// = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1] + /// input[i, j, ..., l, m, n] ; otherwise + /// ``` + /// where `d = n - m`, `diag_index = k[1] - d`, and + /// `index_in_diag = n - max(d, 0) + offset`. + /// + /// `offset` is zero except when the alignment of the diagonal is to the right. + /// ``` + /// offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT} + /// and `d >= 0`) or + /// (`align` in {LEFT_RIGHT, RIGHT_RIGHT} + /// and `d <= 0`) + /// 0 ; otherwise + /// ``` + /// where `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`. + /// + /// For example: + /// + /// ``` + /// # The main diagonal. + /// input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4) + /// [7, 7, 7, 7], + /// [7, 7, 7, 7]], + /// [[7, 7, 7, 7], + /// [7, 7, 7, 7], + /// [7, 7, 7, 7]]]) + /// diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3) + /// [4, 5, 6]]) + /// tf.matrix_set_diag(input, diagonal) + /// ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4) + /// [7, 2, 7, 7], + /// [7, 7, 3, 7]], + /// [[4, 7, 7, 7], + /// [7, 5, 7, 7], + /// [7, 7, 6, 7]]] + /// + /// # A superdiagonal (per batch). + /// tf.matrix_set_diag(input, diagonal, k = 1) + /// ==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4) + /// [7, 7, 2, 7], + /// [7, 7, 7, 3]], + /// [[7, 4, 7, 7], + /// [7, 7, 5, 7], + /// [7, 7, 7, 6]]] + /// + /// # A band of diagonals. + /// diagonals = np.array([[[0, 9, 1], # Diagonal shape: (2, 4, 3) + /// [6, 5, 8], + /// [1, 2, 3], + /// [4, 5, 0]], + /// [[0, 1, 2], + /// [5, 6, 4], + /// [6, 1, 2], + /// [3, 4, 0]]]) + /// tf.matrix_set_diag(input, diagonals, k = (-1, 2)) + /// ==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4) + /// [4, 2, 5, 1], + /// [7, 5, 3, 8]], + /// [[6, 5, 1, 7], + /// [3, 1, 6, 2], + /// [7, 4, 2, 4]]] + /// + /// # LEFT_RIGHT alignment. + /// diagonals = np.array([[[9, 1, 0], # Diagonal shape: (2, 4, 3) + /// [6, 5, 8], + /// [1, 2, 3], + /// [0, 4, 5]], + /// [[1, 2, 0], + /// [5, 6, 4], + /// [6, 1, 2], + /// [0, 3, 4]]]) + /// tf.matrix_set_diag(input, diagonals, k = (-1, 2), align="LEFT_RIGHT") + /// ==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4) + /// [4, 2, 5, 1], + /// [7, 5, 3, 8]], + /// [[6, 5, 1, 7], + /// [3, 1, 6, 2], + /// [7, 4, 2, 4]]] + /// + /// ``` + /// + /// + /// + /// + /// + /// + /// + /// Some diagonals are shorter than `max_diag_len` and need to be padded. `align` is + /// a string specifying how superdiagonals and subdiagonals should be aligned, + /// respectively. There are four possible alignments: "RIGHT_LEFT" (default), + /// "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals + /// to the right (left-pads the row) and subdiagonals to the left (right-pads the + /// row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is + /// the opposite alignment. + /// + /// + /// + public static Tensor matrix_set_diag_v3(Tensor input, Tensor diagonal, Tensor k, string align = "RIGHT_LEFT", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatrixSetDiagV3", name) { args = new object[] { input, diagonal, k }, attrs = new Dictionary() { ["align"] = align } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matrix_set_diag_v3_eager_fallback(input, diagonal, k, align: align, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (align is null) + { + align = "RIGHT_LEFT"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["diagonal"] = diagonal; + keywords["k"] = k; + keywords["align"] = align; + var _op = tf.OpDefLib._apply_op_helper("MatrixSetDiagV3", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "align", _op.get_attr("align") }; + _execute.record_gradient("MatrixSetDiagV3", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matrix_set_diag_v3_eager_fallback(Tensor input, Tensor diagonal, Tensor k, string align, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, diagonal, k }; + object[] _attrs = new object[] { "T", input.dtype, "align", align }; + var _result = _execute.execute("MatrixSetDiagV3", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatrixSetDiagV3", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Pads a tensor with mirrored values. + /// + /// + /// + /// This operation pads a `input` with mirrored values according to the `paddings` + /// you specify. `paddings` is an integer tensor with shape `[n, 2]`, where n is + /// the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates + /// how many values to add before the contents of `input` in that dimension, and + /// `paddings[D, 1]` indicates how many values to add after the contents of `input` + /// in that dimension. Both `paddings[D, 0]` and `paddings[D, 1]` must be no greater + /// than `input.dim_size(D)` (or `input.dim_size(D) - 1`) if `copy_border` is true + /// (if false, respectively). + /// + /// The padded size of each dimension D of the output is: + /// + /// `paddings(D, 0) + input.dim_size(D) + paddings(D, 1)` + /// + /// For example: + /// + /// ``` + /// # 't' is [[1, 2, 3], [4, 5, 6]]. + /// # 'paddings' is [[1, 1]], [2, 2]]. + /// # 'mode' is SYMMETRIC. + /// # rank of 't' is 2. + /// pad(t, paddings) ==> [[2, 1, 1, 2, 3, 3, 2] + /// [2, 1, 1, 2, 3, 3, 2] + /// [5, 4, 4, 5, 6, 6, 5] + /// [5, 4, 4, 5, 6, 6, 5]] + /// ``` + /// + /// + /// + /// + /// + /// + /// Either `REFLECT` or `SYMMETRIC`. In reflect mode the padded regions + /// do not include the borders, while in symmetric mode the padded regions + /// do include the borders. For example, if `input` is `[1, 2, 3]` and `paddings` + /// is `[0, 2]`, then the output is `[1, 2, 3, 2, 1]` in reflect mode, and + /// it is `[1, 2, 3, 3, 2]` in symmetric mode. + /// + /// + /// + public static Tensor mirror_pad(Tensor input, Tensor paddings, string mode, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MirrorPad", name) { args = new object[] { input, paddings }, attrs = new Dictionary() { ["mode"] = mode } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return mirror_pad_eager_fallback(input, paddings, mode: mode, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["paddings"] = paddings; + keywords["mode"] = mode; + var _op = tf.OpDefLib._apply_op_helper("MirrorPad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tpaddings", _op._get_attr_type("Tpaddings"), "mode", _op.get_attr("mode") }; + _execute.record_gradient("MirrorPad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor mirror_pad_eager_fallback(Tensor input, Tensor paddings, string mode, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, paddings }; + object[] _attrs = new object[] { "T", input.dtype, "Tpaddings", paddings.dtype, "mode", mode }; + var _result = _execute.execute("MirrorPad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MirrorPad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Gradient op for `MirrorPad` op. This op folds a mirror-padded tensor. + /// + /// + /// + /// This operation folds the padded areas of `input` by `MirrorPad` according to the + /// `paddings` you specify. `paddings` must be the same as `paddings` argument + /// given to the corresponding `MirrorPad` op. + /// + /// The folded size of each dimension D of the output is: + /// + /// `input.dim_size(D) - paddings(D, 0) - paddings(D, 1)` + /// + /// For example: + /// + /// ``` + /// # 't' is [[1, 2, 3], [4, 5, 6], [7, 8, 9]]. + /// # 'paddings' is [[0, 1]], [0, 1]]. + /// # 'mode' is SYMMETRIC. + /// # rank of 't' is 2. + /// pad(t, paddings) ==> [[ 1, 5] + /// [11, 28]] + /// ``` + /// + /// + /// + /// + /// + /// + /// The mode used in the `MirrorPad` op. + /// + /// + /// + public static Tensor mirror_pad_grad(Tensor input, Tensor paddings, string mode, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MirrorPadGrad", name) { args = new object[] { input, paddings }, attrs = new Dictionary() { ["mode"] = mode } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return mirror_pad_grad_eager_fallback(input, paddings, mode: mode, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["paddings"] = paddings; + keywords["mode"] = mode; + var _op = tf.OpDefLib._apply_op_helper("MirrorPadGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tpaddings", _op._get_attr_type("Tpaddings"), "mode", _op.get_attr("mode") }; + _execute.record_gradient("MirrorPadGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor mirror_pad_grad_eager_fallback(Tensor input, Tensor paddings, string mode, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, paddings }; + object[] _attrs = new object[] { "T", input.dtype, "Tpaddings", paddings.dtype, "mode", mode }; + var _result = _execute.execute("MirrorPadGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MirrorPadGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a one-hot tensor. + /// + /// + /// + /// The locations represented by indices in `indices` take value `on_value`, + /// while all other locations take value `off_value`. + /// + /// If the input `indices` is rank `N`, the output will have rank `N+1`, + /// The new axis is created at dimension `axis` (default: the new axis is + /// appended at the end). + /// + /// If `indices` is a scalar the output shape will be a vector of length `depth`. + /// + /// If `indices` is a vector of length `features`, the output shape will be: + /// ``` + /// features x depth if axis == -1 + /// depth x features if axis == 0 + /// ``` + /// + /// If `indices` is a matrix (batch) with shape `[batch, features]`, + /// the output shape will be: + /// ``` + /// batch x features x depth if axis == -1 + /// batch x depth x features if axis == 1 + /// depth x batch x features if axis == 0 + /// ``` + /// + /// + /// Examples + /// ========= + /// + /// Suppose that + /// ``` + /// indices = [0, 2, -1, 1] + /// depth = 3 + /// on_value = 5.0 + /// off_value = 0.0 + /// axis = -1 + /// ``` + /// + /// Then output is `[4 x 3]`: + /// ``` + /// output = + /// [5.0 0.0 0.0] // one_hot(0) + /// [0.0 0.0 5.0] // one_hot(2) + /// [0.0 0.0 0.0] // one_hot(-1) + /// [0.0 5.0 0.0] // one_hot(1) + /// ``` + /// + /// Suppose that + /// ``` + /// indices = [0, 2, -1, 1] + /// depth = 3 + /// on_value = 0.0 + /// off_value = 3.0 + /// axis = 0 + /// ``` + /// + /// Then output is `[3 x 4]`: + /// ``` + /// output = + /// [0.0 3.0 3.0 3.0] + /// [3.0 3.0 3.0 0.0] + /// [3.0 3.0 3.0 3.0] + /// [3.0 0.0 3.0 3.0] + /// // ^ one_hot(0) + /// // ^ one_hot(2) + /// // ^ one_hot(-1) + /// // ^ one_hot(1) + /// ``` + /// + /// Suppose that + /// ``` + /// indices = [[0, 2], [1, -1]] + /// depth = 3 + /// on_value = 1.0 + /// off_value = 0.0 + /// axis = -1 + /// ``` + /// + /// Then output is `[2 x 2 x 3]`: + /// ``` + /// output = + /// [ + /// [1.0, 0.0, 0.0] // one_hot(0) + /// [0.0, 0.0, 1.0] // one_hot(2) + /// ][ + /// [0.0, 1.0, 0.0] // one_hot(1) + /// [0.0, 0.0, 0.0] // one_hot(-1) + /// ] + /// ``` + /// + /// + /// + /// + /// + /// + /// + /// + /// The axis to fill (default: -1, a new inner-most axis). + /// + /// + /// + public static Tensor one_hot(Tensor indices, Tensor depth, Tensor on_value, Tensor off_value, int axis = -1, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "OneHot", name) { args = new object[] { indices, depth, on_value, off_value }, attrs = new Dictionary() { ["axis"] = axis } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return one_hot_eager_fallback(indices, depth, on_value, off_value, axis: axis, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["indices"] = indices; + keywords["depth"] = depth; + keywords["on_value"] = on_value; + keywords["off_value"] = off_value; + keywords["axis"] = axis; + var _op = tf.OpDefLib._apply_op_helper("OneHot", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "axis", _op._get_attr_int("axis"), "T", _op._get_attr_type("T"), "TI", _op._get_attr_type("TI") }; + _execute.record_gradient("OneHot", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor one_hot_eager_fallback(Tensor indices, Tensor depth, Tensor on_value, Tensor off_value, int axis, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { indices, depth, on_value, off_value }; + object[] _attrs = new object[] { "axis", axis, "T", on_value.dtype, "TI", indices.dtype }; + var _result = _execute.execute("OneHot", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("OneHot", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a tensor of ones with the same shape and type as x. + /// + /// + /// + public static Tensor ones_like(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "OnesLike", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return ones_like_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("OnesLike", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("OnesLike", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor ones_like_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("OnesLike", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("OnesLike", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. + /// + /// + /// + /// Packs the `N` tensors in `values` into a tensor with rank one higher than each + /// tensor in `values`, by packing them along the `axis` dimension. + /// Given a list of tensors of shape `(A, B, C)`; + /// + /// if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`. + /// if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`. + /// Etc. + /// + /// For example: + /// + /// ``` + /// # 'x' is [1, 4] + /// # 'y' is [2, 5] + /// # 'z' is [3, 6] + /// pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim. + /// pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]] + /// ``` + /// + /// This is the opposite of `unpack`. + /// + /// + /// + /// + /// + /// Dimension along which to pack. Negative values wrap around, so the + /// valid range is `[-(R+1), R+1)`. + /// + /// + /// + public static Tensor pack(Tensors values, int axis = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Pack", name) { args = new object[] { values }, attrs = new Dictionary() { ["axis"] = axis } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return pack_eager_fallback(values, axis: axis, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["values"] = values; + keywords["axis"] = axis; + var _op = tf.OpDefLib._apply_op_helper("Pack", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "N", _op._get_attr_int("N"), "T", _op._get_attr_type("T"), "axis", _op._get_attr_int("axis") }; + _execute.record_gradient("Pack", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor pack_eager_fallback(Tensors values, int axis, string name, Context ctx) + { + List _inputs_flat_list = new(); + _inputs_flat_list.AddRange(values); + var _inputs_flat = _inputs_flat_list.ToArray(); + object[] _attrs = new object[] { "N", values.Length, "T", values.dtype, "axis", axis }; + var _result = _execute.execute("Pack", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Pack", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Pads a tensor with zeros. + /// + /// + /// + /// This operation pads a `input` with zeros according to the `paddings` you + /// specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the + /// rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates + /// how many zeros to add before the contents of `input` in that dimension, and + /// `paddings[D, 1]` indicates how many zeros to add after the contents of `input` + /// in that dimension. + /// + /// The padded size of each dimension D of the output is: + /// + /// `paddings(D, 0) + input.dim_size(D) + paddings(D, 1)` + /// + /// For example: + /// + /// ``` + /// # 't' is [[1, 1], [2, 2]] + /// # 'paddings' is [[1, 1], [2, 2]] + /// # rank of 't' is 2 + /// pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0] + /// [0, 0, 1, 1, 0, 0] + /// [0, 0, 2, 2, 0, 0] + /// [0, 0, 0, 0, 0, 0]] + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor pad(Tensor input, Tensor paddings, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Pad", name) { args = new object[] { input, paddings }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return pad_eager_fallback(input, paddings, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["paddings"] = paddings; + var _op = tf.OpDefLib._apply_op_helper("Pad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tpaddings", _op._get_attr_type("Tpaddings") }; + _execute.record_gradient("Pad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor pad_eager_fallback(Tensor input, Tensor paddings, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, paddings }; + object[] _attrs = new object[] { "T", input.dtype, "Tpaddings", paddings.dtype }; + var _result = _execute.execute("Pad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Pad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Pads a tensor. + /// + /// + /// + /// This operation pads `input` according to the `paddings` and `constant_values` + /// you specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is + /// the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates + /// how many padding values to add before the contents of `input` in that dimension, + /// and `paddings[D, 1]` indicates how many padding values to add after the contents + /// of `input` in that dimension. `constant_values` is a scalar tensor of the same + /// type as `input` that indicates the value to use for padding `input`. + /// + /// The padded size of each dimension D of the output is: + /// + /// `paddings(D, 0) + input.dim_size(D) + paddings(D, 1)` + /// + /// For example: + /// + /// ``` + /// # 't' is [[1, 1], [2, 2]] + /// # 'paddings' is [[1, 1], [2, 2]] + /// # 'constant_values' is 0 + /// # rank of 't' is 2 + /// pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0] + /// [0, 0, 1, 1, 0, 0] + /// [0, 0, 2, 2, 0, 0] + /// [0, 0, 0, 0, 0, 0]] + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor pad_v2(Tensor input, Tensor paddings, Tensor constant_values, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PadV2", name) { args = new object[] { input, paddings, constant_values }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return pad_v2_eager_fallback(input, paddings, constant_values, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["paddings"] = paddings; + keywords["constant_values"] = constant_values; + var _op = tf.OpDefLib._apply_op_helper("PadV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tpaddings", _op._get_attr_type("Tpaddings") }; + _execute.record_gradient("PadV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor pad_v2_eager_fallback(Tensor input, Tensor paddings, Tensor constant_values, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, paddings, constant_values }; + object[] _attrs = new object[] { "T", input.dtype, "Tpaddings", paddings.dtype }; + var _result = _execute.execute("PadV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("PadV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Concatenates a list of `N` tensors along the first dimension. + /// + /// + /// + /// The input tensors are all required to have size 1 in the first dimension. + /// + /// For example: + /// + /// ``` + /// # 'x' is [[1, 4]] + /// # 'y' is [[2, 5]] + /// # 'z' is [[3, 6]] + /// parallel_concat([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim. + /// ``` + /// + /// The difference between concat and parallel_concat is that concat requires all + /// of the inputs be computed before the operation will begin but doesn't require + /// that the input shapes be known during graph construction. Parallel concat + /// will copy pieces of the input into the output as they become available, in + /// some situations this can provide a performance benefit. + /// + /// + /// + /// + /// + /// the final shape of the result; should be equal to the shapes of any input + /// but with the number of input values in the first dimension. + /// + /// + /// + public static Tensor parallel_concat(Tensors values, Shape shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ParallelConcat", name) { args = new object[] { values }, attrs = new Dictionary() { ["shape"] = shape } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return parallel_concat_eager_fallback(values, shape: shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["values"] = values; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("ParallelConcat", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "N", _op._get_attr_int("N"), "T", _op._get_attr_type("T"), "shape", _op.get_attr("shape") }; + _execute.record_gradient("ParallelConcat", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor parallel_concat_eager_fallback(Tensors values, Shape shape, string name, Context ctx) + { + List _inputs_flat_list = new(); + _inputs_flat_list.AddRange(values); + var _inputs_flat = _inputs_flat_list.ToArray(); + object[] _attrs = new object[] { "N", values.Length, "T", values.dtype, "shape", shape }; + var _result = _execute.execute("ParallelConcat", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ParallelConcat", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A placeholder op for a value that will be fed into the computation. + /// + /// + /// + /// N.B. This operation will fail with an error if it is executed. It is + /// intended as a way to represent a value that will always be fed, and to + /// provide attrs that enable the fed value to be checked at runtime. + /// + /// + /// + /// + /// The type of elements in the tensor. + /// + /// + /// + /// + /// (Optional) The shape of the tensor. If the shape has 0 dimensions, the + /// shape is unconstrained. + /// + /// + /// + public static Tensor placeholder(TF_DataType dtype, Shape shape = null, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Placeholder", name) { args = new object[] { }, attrs = new Dictionary() { ["dtype"] = dtype, ["shape"] = shape } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return placeholder_eager_fallback(dtype: dtype, shape: shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["dtype"] = dtype; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("Placeholder", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape") }; + _execute.record_gradient("Placeholder", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor placeholder_eager_fallback(TF_DataType dtype, Shape shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "dtype", dtype, "shape", shape }; + var _result = _execute.execute("Placeholder", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Placeholder", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A placeholder op for a value that will be fed into the computation. + /// + /// + /// + /// N.B. This operation will fail with an error if it is executed. It is + /// intended as a way to represent a value that will always be fed, and to + /// provide attrs that enable the fed value to be checked at runtime. + /// + /// + /// + /// + /// The type of elements in the tensor. + /// + /// + /// + /// + /// The shape of the tensor. The shape can be any partially-specified + /// shape. To be unconstrained, pass in a shape with unknown rank. + /// + /// + /// + public static Tensor placeholder_v2(TF_DataType dtype, Shape shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PlaceholderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["dtype"] = dtype, ["shape"] = shape } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return placeholder_v2_eager_fallback(dtype: dtype, shape: shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["dtype"] = dtype; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("PlaceholderV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape") }; + _execute.record_gradient("PlaceholderV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor placeholder_v2_eager_fallback(TF_DataType dtype, Shape shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "dtype", dtype, "shape", shape }; + var _result = _execute.execute("PlaceholderV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("PlaceholderV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A placeholder op that passes through `input` when its output is not fed. + /// + /// + /// + /// + /// The (possibly partial) shape of the tensor. + /// + /// + /// + public static Tensor placeholder_with_default(Tensor input, Shape shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PlaceholderWithDefault", name) { args = new object[] { input }, attrs = new Dictionary() { ["shape"] = shape } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return placeholder_with_default_eager_fallback(input, shape: shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("PlaceholderWithDefault", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape") }; + _execute.record_gradient("PlaceholderWithDefault", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor placeholder_with_default_eager_fallback(Tensor input, Shape shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "dtype", input.dtype, "shape", shape }; + var _result = _execute.execute("PlaceholderWithDefault", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("PlaceholderWithDefault", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// An identity op that triggers an error if a gradient is requested. + /// + /// + /// + /// When executed in a graph, this op outputs its input tensor as-is. + /// + /// When building ops to compute gradients, the TensorFlow gradient system + /// will return an error when trying to lookup the gradient of this op, + /// because no gradient must ever be registered for this function. This + /// op exists to prevent subtle bugs from silently returning unimplemented + /// gradients in some corner cases. + /// + /// + /// + /// + /// + /// Will be printed in the error when anyone tries to differentiate + /// this operation. + /// + /// + /// + public static Tensor prevent_gradient(Tensor input, string message = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PreventGradient", name) { args = new object[] { input }, attrs = new Dictionary() { ["message"] = message } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return prevent_gradient_eager_fallback(input, message: message, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (message is null) + { + message = ""; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["message"] = message; + var _op = tf.OpDefLib._apply_op_helper("PreventGradient", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "message", _op.get_attr("message") }; + _execute.record_gradient("PreventGradient", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor prevent_gradient_eager_fallback(Tensor input, string message, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "message", message }; + var _result = _execute.execute("PreventGradient", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("PreventGradient", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Use QuantizeAndDequantizeV2 instead. + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor quantize_and_dequantize(Tensor input, bool signed_input = true, int num_bits = 8, bool range_given = false, float input_min = 0f, float input_max = 0f, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeAndDequantize", name) { args = new object[] { input }, attrs = new Dictionary() { ["signed_input"] = signed_input, ["num_bits"] = num_bits, ["range_given"] = range_given, ["input_min"] = input_min, ["input_max"] = input_max } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantize_and_dequantize_eager_fallback(input, signed_input: signed_input, num_bits: num_bits, range_given: range_given, input_min: input_min, input_max: input_max, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["signed_input"] = signed_input; + keywords["num_bits"] = num_bits; + keywords["range_given"] = range_given; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + var _op = tf.OpDefLib._apply_op_helper("QuantizeAndDequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "signed_input", _op._get_attr_bool("signed_input"), "num_bits", _op._get_attr_int("num_bits"), "range_given", _op._get_attr_bool("range_given"), "input_min", _op.get_attr("input_min"), "input_max", _op.get_attr("input_max"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("QuantizeAndDequantize", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor quantize_and_dequantize_eager_fallback(Tensor input, bool signed_input, int num_bits, bool range_given, float input_min, float input_max, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "signed_input", signed_input, "num_bits", num_bits, "range_given", range_given, "input_min", input_min, "input_max", input_max, "T", input.dtype }; + var _result = _execute.execute("QuantizeAndDequantize", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizeAndDequantize", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Quantizes then dequantizes a tensor. + /// + /// + /// + /// This op simulates the precision loss from the quantized forward pass by: + /// + /// 1. Quantizing the tensor to fixed point numbers, which should match the target + /// quantization method when it is used in inference. + /// 2. Dequantizing it back to floating point numbers for the following ops, most + /// likely matmul. + /// + /// There are different ways to quantize. This version uses only scaling, so 0.0 + /// maps to 0. + /// + /// From the specified 'num_bits' in the quantized output type, it determines + /// minimum and maximum representable quantized values. + /// + /// e.g. + /// + /// * [-128, 127] for signed, num_bits = 8, or + /// * [0, 255] for unsigned, num_bits = 8. + /// + /// If range_given == False, the initial input_min, input_max will be determined + /// automatically as the minimum and maximum values in the input tensor, otherwise + /// the specified values of input_min, input_max are used. + /// + /// Note: If the input_min, input_max are specified, they do not need to equal the + /// actual minimum and maximum values in the tensor. e.g. in some cases it may be + /// beneficial to specify these values such that the low probability extremes of the + /// input distribution are clipped. + /// + /// This op determines the maximum scale_factor that would map the initial + /// [input_min, input_max] range to a range that lies within the representable + /// quantized range. + /// + /// It determines the scale from one of input_min and input_max, then updates the + /// other one to maximize the representable range. + /// + /// e.g. + /// + /// * if the output is signed, num_bits = 8, [input_min, input_max] = [-10.0, + /// 5.0]: it would use a scale_factor of -128 / -10.0 = 12.8 In this case, it + /// would update input_max to be 127 / 12.8 = 9.921875 + /// * if the output is signed, num_bits = 8, [input_min, input_max] = [-10.0, + /// 10.0]: it would use a scale_factor of 127 / 10.0 = 12.7 In this case, it + /// would update input_min to be 128.0 / 12.7 = -10.07874 + /// * if the output is unsigned, input_min is forced to be 0, and only the + /// specified input_max is used. + /// + /// After determining the scale_factor and updating the input range, it applies the + /// following to each value in the 'input' tensor. + /// + /// output = round(clamp(value, input_min, input_max) * scale_factor) / scale_factor. + /// + /// The above round function rounds the value based on the given round_mode. + /// + /// + /// + /// + /// + /// + /// + /// + /// Whether the quantization is signed or unsigned. (actually this parameter should + /// have been called `signed_output`) + /// + /// + /// + /// + /// The bitwidth of the quantization. + /// + /// + /// + /// + /// Whether the range is given or should be determined from the `input` tensor. + /// + /// + /// + /// + /// The 'round_mode' attribute controls which rounding tie-breaking algorithm is + /// used when rounding float values to their quantized equivalents. The following + /// rounding modes are currently supported: + /// + /// * HALF_TO_EVEN: this is the default round_mode. + /// * HALF_UP: round towards positive. In this mode 7.5 rounds up to 8 and -7.5 + /// rounds up to -7. + /// + /// + /// + /// + /// + /// If True, then the absolute value of the quantized minimum value is the same as + /// the quantized maximum value, instead of 1 greater. + /// i.e. for 8 bit quantization, the minimum value is -127 instead of -128. + /// + /// + /// + /// + /// If specified, this axis is treated as a channel or slice axis, and a separate + /// quantization range is used for each channel or slice along this axis. + /// + /// + /// + public static Tensor quantize_and_dequantize_v2(Tensor input, Tensor input_min, Tensor input_max, bool signed_input = true, int num_bits = 8, bool range_given = false, string round_mode = "HALF_TO_EVEN", bool narrow_range = false, int axis = -1, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeAndDequantizeV2", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { ["signed_input"] = signed_input, ["num_bits"] = num_bits, ["range_given"] = range_given, ["round_mode"] = round_mode, ["narrow_range"] = narrow_range, ["axis"] = axis } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantize_and_dequantize_v2_eager_fallback(input, input_min, input_max, signed_input: signed_input, num_bits: num_bits, range_given: range_given, round_mode: round_mode, narrow_range: narrow_range, axis: axis, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (round_mode is null) + { + round_mode = "HALF_TO_EVEN"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + keywords["signed_input"] = signed_input; + keywords["num_bits"] = num_bits; + keywords["range_given"] = range_given; + keywords["round_mode"] = round_mode; + keywords["narrow_range"] = narrow_range; + keywords["axis"] = axis; + var _op = tf.OpDefLib._apply_op_helper("QuantizeAndDequantizeV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "signed_input", _op._get_attr_bool("signed_input"), "num_bits", _op._get_attr_int("num_bits"), "range_given", _op._get_attr_bool("range_given"), "T", _op._get_attr_type("T"), "round_mode", _op.get_attr("round_mode"), "narrow_range", _op._get_attr_bool("narrow_range"), "axis", _op._get_attr_int("axis") }; + _execute.record_gradient("QuantizeAndDequantizeV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor quantize_and_dequantize_v2_eager_fallback(Tensor input, Tensor input_min, Tensor input_max, bool signed_input, int num_bits, bool range_given, string round_mode, bool narrow_range, int axis, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, input_min, input_max }; + object[] _attrs = new object[] { "signed_input", signed_input, "num_bits", num_bits, "range_given", range_given, "T", input.dtype, "round_mode", round_mode, "narrow_range", narrow_range, "axis", axis }; + var _result = _execute.execute("QuantizeAndDequantizeV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizeAndDequantizeV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Quantizes then dequantizes a tensor. + /// + /// + /// + /// This is almost identical to QuantizeAndDequantizeV2, except that num_bits is a + /// tensor, so its value can change during training. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor quantize_and_dequantize_v3(Tensor input, Tensor input_min, Tensor input_max, Tensor num_bits, bool signed_input = true, bool range_given = true, bool narrow_range = false, int axis = -1, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeAndDequantizeV3", name) { args = new object[] { input, input_min, input_max, num_bits }, attrs = new Dictionary() { ["signed_input"] = signed_input, ["range_given"] = range_given, ["narrow_range"] = narrow_range, ["axis"] = axis } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantize_and_dequantize_v3_eager_fallback(input, input_min, input_max, num_bits, signed_input: signed_input, range_given: range_given, narrow_range: narrow_range, axis: axis, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + keywords["num_bits"] = num_bits; + keywords["signed_input"] = signed_input; + keywords["range_given"] = range_given; + keywords["narrow_range"] = narrow_range; + keywords["axis"] = axis; + var _op = tf.OpDefLib._apply_op_helper("QuantizeAndDequantizeV3", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "signed_input", _op._get_attr_bool("signed_input"), "range_given", _op._get_attr_bool("range_given"), "T", _op._get_attr_type("T"), "narrow_range", _op._get_attr_bool("narrow_range"), "axis", _op._get_attr_int("axis") }; + _execute.record_gradient("QuantizeAndDequantizeV3", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor quantize_and_dequantize_v3_eager_fallback(Tensor input, Tensor input_min, Tensor input_max, Tensor num_bits, bool signed_input, bool range_given, bool narrow_range, int axis, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, input_min, input_max, num_bits }; + object[] _attrs = new object[] { "signed_input", signed_input, "range_given", range_given, "T", input.dtype, "narrow_range", narrow_range, "axis", axis }; + var _result = _execute.execute("QuantizeAndDequantizeV3", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizeAndDequantizeV3", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Quantizes then dequantizes a tensor. + /// + /// + /// + /// This is almost identical to QuantizeAndDequantizeV2, except that it returns a + /// gradient of 1 for inputs that are within the quantization range, or 0 otherwise. + /// + /// + /// + /// + /// + /// + /// + /// Whether the quantization is signed or unsigned. (actually this parameter should + /// have been called `signed_output`) + /// + /// + /// + /// + /// The bitwidth of the quantization. + /// + /// + /// + /// + /// Whether the range is given or should be determined from the `input` tensor. + /// + /// + /// + /// + /// The 'round_mode' attribute controls which rounding tie-breaking algorithm is + /// used when rounding float values to their quantized equivalents. The following + /// rounding modes are currently supported: + /// + /// * HALF_TO_EVEN: this is the default round_mode. + /// * HALF_UP: round towards positive. In this mode 7.5 rounds up to 8 and -7.5 + /// rounds up to -7. + /// + /// + /// + /// + /// + /// If True, then the absolute value of the quantized minimum value is the same as + /// the quantized maximum value, instead of 1 greater. + /// i.e. for 8 bit quantization, the minimum value is -127 instead of -128. + /// + /// + /// + /// + /// If specified, this axis is treated as a channel or slice axis, and a separate + /// quantization range is used for each channel or slice along this axis. + /// + /// + /// + public static Tensor quantize_and_dequantize_v4(Tensor input, Tensor input_min, Tensor input_max, bool signed_input = true, int num_bits = 8, bool range_given = false, string round_mode = "HALF_TO_EVEN", bool narrow_range = false, int axis = -1, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeAndDequantizeV4", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { ["signed_input"] = signed_input, ["num_bits"] = num_bits, ["range_given"] = range_given, ["round_mode"] = round_mode, ["narrow_range"] = narrow_range, ["axis"] = axis } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantize_and_dequantize_v4_eager_fallback(input, input_min, input_max, signed_input: signed_input, num_bits: num_bits, range_given: range_given, round_mode: round_mode, narrow_range: narrow_range, axis: axis, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (round_mode is null) + { + round_mode = "HALF_TO_EVEN"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + keywords["signed_input"] = signed_input; + keywords["num_bits"] = num_bits; + keywords["range_given"] = range_given; + keywords["round_mode"] = round_mode; + keywords["narrow_range"] = narrow_range; + keywords["axis"] = axis; + var _op = tf.OpDefLib._apply_op_helper("QuantizeAndDequantizeV4", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "signed_input", _op._get_attr_bool("signed_input"), "num_bits", _op._get_attr_int("num_bits"), "range_given", _op._get_attr_bool("range_given"), "T", _op._get_attr_type("T"), "round_mode", _op.get_attr("round_mode"), "narrow_range", _op._get_attr_bool("narrow_range"), "axis", _op._get_attr_int("axis") }; + _execute.record_gradient("QuantizeAndDequantizeV4", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor quantize_and_dequantize_v4_eager_fallback(Tensor input, Tensor input_min, Tensor input_max, bool signed_input, int num_bits, bool range_given, string round_mode, bool narrow_range, int axis, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, input_min, input_max }; + object[] _attrs = new object[] { "signed_input", signed_input, "num_bits", num_bits, "range_given", range_given, "T", input.dtype, "round_mode", round_mode, "narrow_range", narrow_range, "axis", axis }; + var _result = _execute.execute("QuantizeAndDequantizeV4", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizeAndDequantizeV4", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Quantize the 'input' tensor of type float to 'output' tensor of type 'T'. + /// + /// + /// + /// [min_range, max_range] are scalar floats that specify the range for + /// the 'input' data. The 'mode' attribute controls exactly which calculations are + /// used to convert the float values to their quantized equivalents. The + /// 'round_mode' attribute controls which rounding tie-breaking algorithm is used + /// when rounding float values to their quantized equivalents. + /// + /// In 'MIN_COMBINED' mode, each value of the tensor will undergo the following: + /// + /// ``` + /// out[i] = (in[i] - min_range) * range(T) / (max_range - min_range) + /// if T == qint8: out[i] -= (range(T) + 1) / 2.0 + /// ``` + /// + /// here `range(T) = numeric_limits::max() - numeric_limits::min()` + /// + /// *MIN_COMBINED Mode Example* + /// + /// Assume the input is type float and has a possible range of [0.0, 6.0] and the + /// output type is quint8 ([0, 255]). The min_range and max_range values should be + /// specified as 0.0 and 6.0. Quantizing from float to quint8 will multiply each + /// value of the input by 255/6 and cast to quint8. + /// + /// If the output type was qint8 ([-128, 127]), the operation will additionally + /// subtract each value by 128 prior to casting, so that the range of values aligns + /// with the range of qint8. + /// + /// If the mode is 'MIN_FIRST', then this approach is used: + /// + /// ``` + /// num_discrete_values = 1 << (# of bits in T) + /// range_adjust = num_discrete_values / (num_discrete_values - 1) + /// range = (range_max - range_min) * range_adjust + /// range_scale = num_discrete_values / range + /// quantized = round(input * range_scale) - round(range_min * range_scale) + + /// numeric_limits::min() + /// quantized = max(quantized, numeric_limits::min()) + /// quantized = min(quantized, numeric_limits::max()) + /// ``` + /// + /// The biggest difference between this and MIN_COMBINED is that the minimum range + /// is rounded first, before it's subtracted from the rounded value. With + /// MIN_COMBINED, a small bias is introduced where repeated iterations of quantizing + /// and dequantizing will introduce a larger and larger error. + /// + /// *SCALED mode Example* + /// + /// `SCALED` mode matches the quantization approach used in + /// `QuantizeAndDequantize{V2|V3}`. + /// + /// If the mode is `SCALED`, the quantization is performed by multiplying each + /// input value by a scaling_factor. + /// The scaling_factor is determined from `min_range` and `max_range` to be as large + /// as possible such that the range from `min_range` to `max_range` is representable + /// within values of type T. + /// + /// ```c++ + /// + /// const int min_T = std::numeric_limits::min(); + /// const int max_T = std::numeric_limits::max(); + /// const float max_float = std::numeric_limits::max(); + /// + /// const float scale_factor_from_min_side = + /// (min_T * min_range > 0) ? min_T / min_range : max_float; + /// const float scale_factor_from_max_side = + /// (max_T * max_range > 0) ? max_T / max_range : max_float; + /// + /// const float scale_factor = std::min(scale_factor_from_min_side, + /// scale_factor_from_max_side); + /// ``` + /// + /// We next use the scale_factor to adjust min_range and max_range as follows: + /// + /// ```c++ + /// min_range = min_T / scale_factor; + /// max_range = max_T / scale_factor; + /// ``` + /// + /// + /// e.g. if T = qint8, and initially min_range = -10, and max_range = 9, we would + /// compare -128/-10.0 = 12.8 to 127/9.0 = 14.11, and set scaling_factor = 12.8 + /// In this case, min_range would remain -10, but max_range would be adjusted to + /// 127 / 12.8 = 9.921875 + /// + /// So we will quantize input values in the range (-10, 9.921875) to (-128, 127). + /// + /// The input tensor can now be quantized by clipping values to the range + /// `min_range` to `max_range`, then multiplying by scale_factor as follows: + /// + /// ```c++ + /// result = round(min(max_range, max(min_range, input)) * scale_factor) + /// ``` + /// + /// The adjusted `min_range` and `max_range` are returned as outputs 2 and 3 of + /// this operation. These outputs should be used as the range for any further + /// calculations. + /// + /// + /// *narrow_range (bool) attribute* + /// + /// If true, we do not use the minimum quantized value. + /// i.e. for int8 the quantized output, it would be restricted to the range + /// -127..127 instead of the full -128..127 range. + /// This is provided for compatibility with certain inference backends. + /// (Only applies to SCALED mode) + /// + /// + /// *axis (int) attribute* + /// + /// An optional `axis` attribute can specify a dimension index of the input tensor, + /// such that quantization ranges will be calculated and applied separately for each + /// slice of the tensor along that dimension. This is useful for per-channel + /// quantization. + /// + /// If axis is specified, min_range and max_range + /// + /// if `axis`=None, per-tensor quantization is performed as normal. + /// + /// + /// *ensure_minimum_range (float) attribute* + /// + /// Ensures the minimum quantization range is at least this value. + /// The legacy default value for this is 0.01, but it is strongly suggested to + /// set it to 0 for new uses. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantize_v2(Tensor input, Tensor min_range, Tensor max_range, TF_DataType T, string mode = "MIN_COMBINED", string round_mode = "HALF_AWAY_FROM_ZERO", bool narrow_range = false, int axis = -1, float ensure_minimum_range = 0.01f, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeV2", name) { args = new object[] { input, min_range, max_range }, attrs = new Dictionary() { ["T"] = T, ["mode"] = mode, ["round_mode"] = round_mode, ["narrow_range"] = narrow_range, ["axis"] = axis, ["ensure_minimum_range"] = ensure_minimum_range } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantize_v2_eager_fallback(input, min_range, max_range, T: T, mode: mode, round_mode: round_mode, narrow_range: narrow_range, axis: axis, ensure_minimum_range: ensure_minimum_range, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (mode is null) + { + mode = "MIN_COMBINED"; + } + if (round_mode is null) + { + round_mode = "HALF_AWAY_FROM_ZERO"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["min_range"] = min_range; + keywords["max_range"] = max_range; + keywords["T"] = T; + keywords["mode"] = mode; + keywords["round_mode"] = round_mode; + keywords["narrow_range"] = narrow_range; + keywords["axis"] = axis; + keywords["ensure_minimum_range"] = ensure_minimum_range; + var _op = tf.OpDefLib._apply_op_helper("QuantizeV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "mode", _op.get_attr("mode"), "round_mode", _op.get_attr("round_mode"), "narrow_range", _op._get_attr_bool("narrow_range"), "axis", _op._get_attr_int("axis"), "ensure_minimum_range", _op.get_attr("ensure_minimum_range") }; + _execute.record_gradient("QuantizeV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantize_v2_eager_fallback(Tensor input, Tensor min_range, Tensor max_range, TF_DataType T, string mode, string round_mode, bool narrow_range, int axis, float ensure_minimum_range, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, min_range, max_range }; + object[] _attrs = new object[] { "T", T, "mode", mode, "round_mode", round_mode, "narrow_range", narrow_range, "axis", axis, "ensure_minimum_range", ensure_minimum_range }; + var _result = _execute.execute("QuantizeV2", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizeV2", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Concatenates quantized tensors along one dimension. + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_concat(Tensor concat_dim, Tensors values, Tensors input_mins, Tensors input_maxes, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConcat", name) { args = new object[] { concat_dim, values, input_mins, input_maxes }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_concat_eager_fallback(concat_dim, values, input_mins, input_maxes, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["concat_dim"] = concat_dim; + keywords["values"] = values; + keywords["input_mins"] = input_mins; + keywords["input_maxes"] = input_maxes; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConcat", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "N", _op._get_attr_int("N"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("QuantizedConcat", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_concat_eager_fallback(Tensor concat_dim, Tensors values, Tensors input_mins, Tensors input_maxes, string name, Context ctx) + { + List _inputs_flat_list = new(); + _inputs_flat_list.Add(concat_dim); + _inputs_flat_list.AddRange(values); + _inputs_flat_list.AddRange(input_mins); + _inputs_flat_list.AddRange(input_maxes); + var _inputs_flat = _inputs_flat_list.ToArray(); + object[] _attrs = new object[] { "N", values.Length, "T", values.dtype }; + var _result = _execute.execute("QuantizedConcat", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConcat", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Quantized Instance normalization. + /// + /// + /// + /// + /// + /// + /// If True, `given_y_min` and `given_y_min` + /// and `given_y_max` are used as the output range. Otherwise, + /// the implementation computes the output range. + /// + /// + /// + /// + /// Output in `y_min` if `output_range_given` is True. + /// + /// + /// + /// + /// Output in `y_max` if `output_range_given` is True. + /// + /// + /// + /// + /// A small float number to avoid dividing by 0. + /// + /// + /// + /// + /// Minimum value of `y_max - y_min` + /// + /// + /// + public static Tensor[] quantized_instance_norm(Tensor x, Tensor x_min, Tensor x_max, bool output_range_given = false, float given_y_min = 0f, float given_y_max = 0f, float variance_epsilon = 1E-05f, float min_separation = 0.001f, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedInstanceNorm", name) { args = new object[] { x, x_min, x_max }, attrs = new Dictionary() { ["output_range_given"] = output_range_given, ["given_y_min"] = given_y_min, ["given_y_max"] = given_y_max, ["variance_epsilon"] = variance_epsilon, ["min_separation"] = min_separation } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_instance_norm_eager_fallback(x, x_min, x_max, output_range_given: output_range_given, given_y_min: given_y_min, given_y_max: given_y_max, variance_epsilon: variance_epsilon, min_separation: min_separation, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["x_min"] = x_min; + keywords["x_max"] = x_max; + keywords["output_range_given"] = output_range_given; + keywords["given_y_min"] = given_y_min; + keywords["given_y_max"] = given_y_max; + keywords["variance_epsilon"] = variance_epsilon; + keywords["min_separation"] = min_separation; + var _op = tf.OpDefLib._apply_op_helper("QuantizedInstanceNorm", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "output_range_given", _op._get_attr_bool("output_range_given"), "given_y_min", _op.get_attr("given_y_min"), "given_y_max", _op.get_attr("given_y_max"), "variance_epsilon", _op.get_attr("variance_epsilon"), "min_separation", _op.get_attr("min_separation") }; + _execute.record_gradient("QuantizedInstanceNorm", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_instance_norm_eager_fallback(Tensor x, Tensor x_min, Tensor x_max, bool output_range_given, float given_y_min, float given_y_max, float variance_epsilon, float min_separation, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, x_min, x_max }; + object[] _attrs = new object[] { "T", x.dtype, "output_range_given", output_range_given, "given_y_min", given_y_min, "given_y_max", given_y_max, "variance_epsilon", variance_epsilon, "min_separation", min_separation }; + var _result = _execute.execute("QuantizedInstanceNorm", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedInstanceNorm", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Reshapes a quantized tensor as per the Reshape op. + /// + /// + /// + /// ``` + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_reshape(Tensor tensor, Tensor shape, Tensor input_min, Tensor input_max, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedReshape", name) { args = new object[] { tensor, shape, input_min, input_max }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_reshape_eager_fallback(tensor, shape, input_min, input_max, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["shape"] = shape; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + var _op = tf.OpDefLib._apply_op_helper("QuantizedReshape", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tshape", _op._get_attr_type("Tshape") }; + _execute.record_gradient("QuantizedReshape", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_reshape_eager_fallback(Tensor tensor, Tensor shape, Tensor input_min, Tensor input_max, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, shape, input_min, input_max }; + object[] _attrs = new object[] { "T", tensor.dtype, "Tshape", shape.dtype }; + var _result = _execute.execute("QuantizedReshape", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedReshape", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Returns the rank of a tensor. + /// + /// + /// + /// This operation returns an integer representing the rank of `input`. + /// + /// For example: + /// + /// ``` + /// # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] + /// # shape of tensor 't' is [2, 2, 3] + /// rank(t) ==> 3 + /// ``` + /// + /// **Note**: The rank of a tensor is not the same as the rank of a matrix. The rank + /// of a tensor is the number of indices required to uniquely select each element + /// of the tensor. Rank is also known as "order", "degree", or "ndims." + /// + /// + /// + /// + public static Tensor rank(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Rank", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return rank_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("Rank", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Rank", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor rank_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("Rank", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Rank", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Return the same ref tensor as the input ref tensor. + /// + /// + /// + public static Tensor ref_identity(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("ref_identity op does not support eager execution. Arg input is a ref."); + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("RefIdentity", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("RefIdentity", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor ref_identity_eager_fallback(Tensor input, string name, Context ctx) + { + throw new RuntimeError($"ref_identity op does not support eager execution. Arg 'input' is a ref."); + } + /// + /// Reshapes a tensor. + /// + /// + /// + /// Given `tensor`, this operation returns a tensor that has the same values + /// as `tensor` with shape `shape`. + /// + /// If one component of 1-D tensor `shape` is the special value -1, the size of that + /// dimension is computed so that the total size remains constant. In particular, a + /// `shape` of `[-1]` flattens into 1-D. At most one component of `shape` may be + /// unknown. + /// + /// The `shape` must be 1-D and the operation returns a tensor with shape + /// `shape` filled with the values of `tensor`. In this case, the number of elements + /// implied by `shape` must be the same as the number of elements in `tensor`. + /// + /// It is an error if `shape` is not 1-D. + /// + /// For example: + /// + /// ``` + /// # tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9] + /// # tensor 't' has shape [9] + /// reshape(t, [3, 3]) ==> [[1, 2, 3], + /// [4, 5, 6], + /// [7, 8, 9]] + /// + /// # tensor 't' is [[[1, 1], [2, 2]], + /// # [[3, 3], [4, 4]]] + /// # tensor 't' has shape [2, 2, 2] + /// reshape(t, [2, 4]) ==> [[1, 1, 2, 2], + /// [3, 3, 4, 4]] + /// + /// # tensor 't' is [[[1, 1, 1], + /// # [2, 2, 2]], + /// # [[3, 3, 3], + /// # [4, 4, 4]], + /// # [[5, 5, 5], + /// # [6, 6, 6]]] + /// # tensor 't' has shape [3, 2, 3] + /// # pass '[-1]' to flatten 't' + /// reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6] + /// + /// # -1 can also be used to infer the shape + /// + /// # -1 is inferred to be 9: + /// reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], + /// [4, 4, 4, 5, 5, 5, 6, 6, 6]] + /// # -1 is inferred to be 2: + /// reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], + /// [4, 4, 4, 5, 5, 5, 6, 6, 6]] + /// # -1 is inferred to be 3: + /// reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1], + /// [2, 2, 2], + /// [3, 3, 3]], + /// [[4, 4, 4], + /// [5, 5, 5], + /// [6, 6, 6]]] + /// + /// # tensor 't' is [7] + /// # shape `[]` reshapes to a scalar + /// reshape(t, []) ==> 7 + /// ``` + /// + /// + /// + /// + /// + public static Tensor reshape(Tensor tensor, Tensor shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Reshape", name) { args = new object[] { tensor, shape }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reshape_eager_fallback(tensor, shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("Reshape", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tshape", _op._get_attr_type("Tshape") }; + _execute.record_gradient("Reshape", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reshape_eager_fallback(Tensor tensor, Tensor shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, shape }; + object[] _attrs = new object[] { "T", tensor.dtype, "Tshape", shape.dtype }; + var _result = _execute.execute("Reshape", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Reshape", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Assign `value` to the sliced l-value reference of `ref`. + /// + /// + /// + /// The values of `value` are assigned to the positions in the variable + /// `ref` that are selected by the slice parameters. The slice parameters + /// `begin, `end`, `strides`, etc. work exactly as in `StridedSlice`. + /// + /// NOTE this op currently does not support broadcasting and so `value`'s + /// shape must be exactly the shape produced by the slice of `ref`. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Operation resource_strided_slice_assign(Tensor ref_, Tensor begin, Tensor end, Tensor strides, Tensor value, int begin_mask = 0, int end_mask = 0, int ellipsis_mask = 0, int new_axis_mask = 0, int shrink_axis_mask = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceStridedSliceAssign", name) { args = new object[] { ref_, begin, end, strides, value }, attrs = new Dictionary() { ["begin_mask"] = begin_mask, ["end_mask"] = end_mask, ["ellipsis_mask"] = ellipsis_mask, ["new_axis_mask"] = new_axis_mask, ["shrink_axis_mask"] = shrink_axis_mask } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return resource_strided_slice_assign_eager_fallback(ref_, begin, end, strides, value, begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["ref"] = ref_; + keywords["begin"] = begin; + keywords["end"] = end; + keywords["strides"] = strides; + keywords["value"] = value; + keywords["begin_mask"] = begin_mask; + keywords["end_mask"] = end_mask; + keywords["ellipsis_mask"] = ellipsis_mask; + keywords["new_axis_mask"] = new_axis_mask; + keywords["shrink_axis_mask"] = shrink_axis_mask; + var _op = tf.OpDefLib._apply_op_helper("ResourceStridedSliceAssign", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Index", _op._get_attr_type("Index"), "begin_mask", _op._get_attr_int("begin_mask"), "end_mask", _op._get_attr_int("end_mask"), "ellipsis_mask", _op._get_attr_int("ellipsis_mask"), "new_axis_mask", _op._get_attr_int("new_axis_mask"), "shrink_axis_mask", _op._get_attr_int("shrink_axis_mask") }; + _execute.record_gradient("ResourceStridedSliceAssign", _op.inputs, _attrs, _result); + } + return _op; + } + + public static Operation resource_strided_slice_assign_eager_fallback(Tensor ref_, Tensor begin, Tensor end, Tensor strides, Tensor value, int begin_mask, int end_mask, int ellipsis_mask, int new_axis_mask, int shrink_axis_mask, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { ref_, begin, end, strides, value }; + object[] _attrs = new object[] { "T", value.dtype, "Index", begin.dtype, "begin_mask", begin_mask, "end_mask", end_mask, "ellipsis_mask", ellipsis_mask, "new_axis_mask", new_axis_mask, "shrink_axis_mask", shrink_axis_mask }; + var _result = _execute.execute("ResourceStridedSliceAssign", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ResourceStridedSliceAssign", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Reverses specific dimensions of a tensor. + /// + /// + /// + /// Given a `tensor`, and a `bool` tensor `dims` representing the dimensions + /// of `tensor`, this operation reverses each dimension i of `tensor` where + /// `dims[i]` is `True`. + /// + /// `tensor` can have up to 8 dimensions. The number of dimensions + /// of `tensor` must equal the number of elements in `dims`. In other words: + /// + /// `rank(tensor) = size(dims)` + /// + /// For example: + /// + /// ``` + /// # tensor 't' is [[[[ 0, 1, 2, 3], + /// # [ 4, 5, 6, 7], + /// # [ 8, 9, 10, 11]], + /// # [[12, 13, 14, 15], + /// # [16, 17, 18, 19], + /// # [20, 21, 22, 23]]]] + /// # tensor 't' shape is [1, 2, 3, 4] + /// + /// # 'dims' is [False, False, False, True] + /// reverse(t, dims) ==> [[[[ 3, 2, 1, 0], + /// [ 7, 6, 5, 4], + /// [ 11, 10, 9, 8]], + /// [[15, 14, 13, 12], + /// [19, 18, 17, 16], + /// [23, 22, 21, 20]]]] + /// + /// # 'dims' is [False, True, False, False] + /// reverse(t, dims) ==> [[[[12, 13, 14, 15], + /// [16, 17, 18, 19], + /// [20, 21, 22, 23] + /// [[ 0, 1, 2, 3], + /// [ 4, 5, 6, 7], + /// [ 8, 9, 10, 11]]]] + /// + /// # 'dims' is [False, False, True, False] + /// reverse(t, dims) ==> [[[[8, 9, 10, 11], + /// [4, 5, 6, 7], + /// [0, 1, 2, 3]] + /// [[20, 21, 22, 23], + /// [16, 17, 18, 19], + /// [12, 13, 14, 15]]]] + /// ``` + /// + /// + /// + /// + /// + public static Tensor reverse(Tensor tensor, Tensor dims, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Reverse", name) { args = new object[] { tensor, dims }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reverse_eager_fallback(tensor, dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["dims"] = dims; + var _op = tf.OpDefLib._apply_op_helper("Reverse", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Reverse", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reverse_eager_fallback(Tensor tensor, Tensor dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, dims }; + object[] _attrs = new object[] { "T", tensor.dtype }; + var _result = _execute.execute("Reverse", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Reverse", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Reverses variable length slices. + /// + /// + /// + /// This op first slices `input` along the dimension `batch_dim`, and for each + /// slice `i`, reverses the first `seq_lengths[i]` elements along + /// the dimension `seq_dim`. + /// + /// The elements of `seq_lengths` must obey `seq_lengths[i] <= input.dims[seq_dim]`, + /// and `seq_lengths` must be a vector of length `input.dims[batch_dim]`. + /// + /// The output slice `i` along dimension `batch_dim` is then given by input + /// slice `i`, with the first `seq_lengths[i]` slices along dimension + /// `seq_dim` reversed. + /// + /// For example: + /// + /// ``` + /// # Given this: + /// batch_dim = 0 + /// seq_dim = 1 + /// input.dims = (4, 8, ...) + /// seq_lengths = [7, 2, 3, 5] + /// + /// # then slices of input are reversed on seq_dim, but only up to seq_lengths: + /// output[0, 0:7, :, ...] = input[0, 7:0:-1, :, ...] + /// output[1, 0:2, :, ...] = input[1, 2:0:-1, :, ...] + /// output[2, 0:3, :, ...] = input[2, 3:0:-1, :, ...] + /// output[3, 0:5, :, ...] = input[3, 5:0:-1, :, ...] + /// + /// # while entries past seq_lens are copied through: + /// output[0, 7:, :, ...] = input[0, 7:, :, ...] + /// output[1, 2:, :, ...] = input[1, 2:, :, ...] + /// output[2, 3:, :, ...] = input[2, 3:, :, ...] + /// output[3, 2:, :, ...] = input[3, 2:, :, ...] + /// ``` + /// + /// In contrast, if: + /// + /// ``` + /// # Given this: + /// batch_dim = 2 + /// seq_dim = 0 + /// input.dims = (8, ?, 4, ...) + /// seq_lengths = [7, 2, 3, 5] + /// + /// # then slices of input are reversed on seq_dim, but only up to seq_lengths: + /// output[0:7, :, 0, :, ...] = input[7:0:-1, :, 0, :, ...] + /// output[0:2, :, 1, :, ...] = input[2:0:-1, :, 1, :, ...] + /// output[0:3, :, 2, :, ...] = input[3:0:-1, :, 2, :, ...] + /// output[0:5, :, 3, :, ...] = input[5:0:-1, :, 3, :, ...] + /// + /// # while entries past seq_lens are copied through: + /// output[7:, :, 0, :, ...] = input[7:, :, 0, :, ...] + /// output[2:, :, 1, :, ...] = input[2:, :, 1, :, ...] + /// output[3:, :, 2, :, ...] = input[3:, :, 2, :, ...] + /// output[2:, :, 3, :, ...] = input[2:, :, 3, :, ...] + /// ``` + /// + /// + /// + /// + /// + /// + /// The dimension which is partially reversed. + /// + /// + /// + /// + /// The dimension along which reversal is performed. + /// + /// + /// + public static Tensor reverse_sequence(Tensor input, Tensor seq_lengths, int seq_dim = 0, int batch_dim = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReverseSequence", name) { args = new object[] { input, seq_lengths }, attrs = new Dictionary() { ["seq_dim"] = seq_dim, ["batch_dim"] = batch_dim } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reverse_sequence_eager_fallback(input, seq_lengths, seq_dim: seq_dim, batch_dim: batch_dim, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["seq_lengths"] = seq_lengths; + keywords["seq_dim"] = seq_dim; + keywords["batch_dim"] = batch_dim; + var _op = tf.OpDefLib._apply_op_helper("ReverseSequence", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "seq_dim", _op._get_attr_int("seq_dim"), "batch_dim", _op._get_attr_int("batch_dim"), "T", _op._get_attr_type("T"), "Tlen", _op._get_attr_type("Tlen") }; + _execute.record_gradient("ReverseSequence", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reverse_sequence_eager_fallback(Tensor input, Tensor seq_lengths, int seq_dim, int batch_dim, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, seq_lengths }; + object[] _attrs = new object[] { "seq_dim", seq_dim, "batch_dim", batch_dim, "T", input.dtype, "Tlen", seq_lengths.dtype }; + var _result = _execute.execute("ReverseSequence", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReverseSequence", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Reverses specific dimensions of a tensor. + /// + /// + /// + /// Given a `tensor`, and a `int32` tensor `axis` representing the set of + /// dimensions of `tensor` to reverse. This operation reverses each dimension + /// `i` for which there exists `j` s.t. `axis[j] == i`. + /// + /// `tensor` can have up to 8 dimensions. The number of dimensions specified + /// in `axis` may be 0 or more entries. If an index is specified more than + /// once, a InvalidArgument error is raised. + /// + /// For example: + /// + /// ``` + /// # tensor 't' is [[[[ 0, 1, 2, 3], + /// # [ 4, 5, 6, 7], + /// # [ 8, 9, 10, 11]], + /// # [[12, 13, 14, 15], + /// # [16, 17, 18, 19], + /// # [20, 21, 22, 23]]]] + /// # tensor 't' shape is [1, 2, 3, 4] + /// + /// # 'dims' is [3] or 'dims' is [-1] + /// reverse(t, dims) ==> [[[[ 3, 2, 1, 0], + /// [ 7, 6, 5, 4], + /// [ 11, 10, 9, 8]], + /// [[15, 14, 13, 12], + /// [19, 18, 17, 16], + /// [23, 22, 21, 20]]]] + /// + /// # 'dims' is '[1]' (or 'dims' is '[-3]') + /// reverse(t, dims) ==> [[[[12, 13, 14, 15], + /// [16, 17, 18, 19], + /// [20, 21, 22, 23] + /// [[ 0, 1, 2, 3], + /// [ 4, 5, 6, 7], + /// [ 8, 9, 10, 11]]]] + /// + /// # 'dims' is '[2]' (or 'dims' is '[-2]') + /// reverse(t, dims) ==> [[[[8, 9, 10, 11], + /// [4, 5, 6, 7], + /// [0, 1, 2, 3]] + /// [[20, 21, 22, 23], + /// [16, 17, 18, 19], + /// [12, 13, 14, 15]]]] + /// ``` + /// + /// + /// + /// + /// + public static Tensor reverse_v2(Tensor tensor, Tensor axis, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReverseV2", name) { args = new object[] { tensor, axis }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reverse_v2_eager_fallback(tensor, axis, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["axis"] = axis; + var _op = tf.OpDefLib._apply_op_helper("ReverseV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tidx", _op._get_attr_type("Tidx"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("ReverseV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reverse_v2_eager_fallback(Tensor tensor, Tensor axis, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, axis }; + object[] _attrs = new object[] { "Tidx", axis.dtype, "T", tensor.dtype }; + var _result = _execute.execute("ReverseV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReverseV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Scatters `updates` into a tensor of shape `shape` according to `indices`. + /// + /// + /// + /// Scatter sparse `updates` according to individual values at the specified + /// `indices`. This op returns an output tensor with the `shape` you specify. This + /// op is the inverse of the `tf.gather_nd` operator which extracts values or slices + /// from a given tensor. + /// + /// This operation is similar to `tf.tensor_scatter_nd_add`, except that the tensor + /// is zero-initialized. Calling `tf.scatter_nd(indices, updates, shape)` + /// is identical to calling + /// `tf.tensor_scatter_nd_add(tf.zeros(shape, updates.dtype), indices, updates)` + /// + /// If `indices` contains duplicates, the associated `updates` are accumulated + /// (summed) into the output tensor. + /// + /// **WARNING**: For floating-point data types, the output may be nondeterministic. + /// This is because the order in which the updates are applied is nondeterministic + /// and when floating-point numbers are added in different orders the resulting + /// numerical approximation error can be slightly different. However, the output + /// will be deterministic if op determinism is enabled via + /// `tf.config.experimental.enable_op_determinism`. + /// + /// `indices` is an integer tensor containing indices into the output tensor. The + /// last dimension of `indices` can be at most the rank of `shape`: + /// + /// indices.shape[-1] <= shape.rank + /// + /// The last dimension of `indices` corresponds to indices of elements + /// (if `indices.shape[-1] = shape.rank`) or slices + /// (if `indices.shape[-1] < shape.rank`) along dimension `indices.shape[-1]` of + /// `shape`. + /// + /// `updates` is a tensor with shape: + /// + /// indices.shape[:-1] + shape[indices.shape[-1]:] + /// + /// The simplest form of the scatter op is to insert individual elements in + /// a tensor by index. Consider an example where you want to insert 4 scattered + /// elements in a rank-1 tensor with 8 elements. + /// + ///
+ /// + ///
+ /// + /// In Python, this scatter operation would look like this: + /// + /// ```python + /// indices = tf.constant([[4], [3], [1], [7]]) + /// updates = tf.constant([9, 10, 11, 12]) + /// shape = tf.constant([8]) + /// scatter = tf.scatter_nd(indices, updates, shape) + /// print(scatter) + /// ``` + /// + /// The resulting tensor would look like this: + /// + /// [0, 11, 0, 10, 9, 0, 0, 12] + /// + /// You can also insert entire slices of a higher rank tensor all at once. For + /// example, you can insert two slices in the first dimension of a rank-3 tensor + /// with two matrices of new values. + /// + ///
+ /// + ///
+ /// + /// In Python, this scatter operation would look like this: + /// + /// ```python + /// indices = tf.constant([[1], [3]]) + /// updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6], + /// [7, 7, 7, 7], [8, 8, 8, 8]], + /// [[5, 5, 5, 5], [6, 6, 6, 6], + /// [7, 7, 7, 7], [8, 8, 8, 8]]]) + /// shape = tf.constant([4, 4, 4]) + /// scatter = tf.scatter_nd(indices, updates, shape) + /// print(scatter) + /// ``` + /// + /// The resulting tensor would look like this: + /// + /// [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], + /// [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], + /// [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], + /// [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]] + /// + /// Note that on CPU, if an out of bound index is found, an error is returned. + /// On GPU, if an out of bound index is found, the index is ignored. + /// + ///
+ /// + /// + /// + /// + public static Tensor scatter_nd(Tensor indices, Tensor updates, Tensor shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ScatterNd", name) { args = new object[] { indices, updates, shape }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return scatter_nd_eager_fallback(indices, updates, shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["indices"] = indices; + keywords["updates"] = updates; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("ScatterNd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ScatterNd", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor scatter_nd_eager_fallback(Tensor indices, Tensor updates, Tensor shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { indices, updates, shape }; + object[] _attrs = new object[] { "T", updates.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ScatterNd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ScatterNd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Applies sparse addition to `input` using individual values or slices + /// + /// + /// + /// from `updates` according to indices `indices`. The updates are non-aliasing: + /// `input` is only modified in-place if no other operations will use it. + /// Otherwise, a copy of `input` is made. This operation has a gradient with + /// respect to both `input` and `updates`. + /// + /// `input` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`. + /// + /// `indices` must be integer tensor, containing indices into `input`. + /// It must be shape \([d_0, ..., d_{Q-2}, K]\) where `0 < K <= P`. + /// + /// The innermost dimension of `indices` (with length `K`) corresponds to + /// indices into elements (if `K = P`) or `(P-K)`-dimensional slices + /// (if `K < P`) along the `K`th dimension of `input`. + /// + /// `updates` is `Tensor` of rank `Q-1+P-K` with shape: + /// + /// $$[d_0, ..., d_{Q-2}, input.shape[K], ..., input.shape[P-1]].$$ + /// + /// For example, say we want to add 4 scattered elements to a rank-1 tensor to 8 + /// elements. In Python, that addition would look like this: + /// + /// input = tf.constant([1, 2, 3, 4, 5, 6, 7, 8]) + /// indices = tf.constant([[4], [3], [1], [7]]) + /// updates = tf.constant([9, 10, 11, 12]) + /// output = tf.scatter_nd_non_aliasing_add(input, indices, updates) + /// with tf.Session() as sess: + /// print(sess.run(output)) + /// + /// The resulting value `output` would look like this: + /// + /// [1, 13, 3, 14, 14, 6, 7, 20] + /// + /// See `tf.scatter_nd` for more details about how to make updates to slices. + /// + /// + /// + /// + /// + /// + public static Tensor scatter_nd_non_aliasing_add(Tensor input, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ScatterNdNonAliasingAdd", name) { args = new object[] { input, indices, updates }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return scatter_nd_non_aliasing_add_eager_fallback(input, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("ScatterNdNonAliasingAdd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ScatterNdNonAliasingAdd", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor scatter_nd_non_aliasing_add_eager_fallback(Tensor input, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, indices, updates }; + object[] _attrs = new object[] { "T", input.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ScatterNdNonAliasingAdd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ScatterNdNonAliasingAdd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the shape of a tensor. + /// + /// + /// + /// This operation returns a 1-D integer tensor representing the shape of `input`. + /// + /// For example: + /// + /// ``` + /// # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] + /// shape(t) ==> [2, 2, 3] + /// ``` + /// + /// + /// + /// + /// + public static Tensor shape(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Shape", name) { args = new object[] { input }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return shape_eager_fallback(input, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("Shape", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("Shape", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor shape_eager_fallback(Tensor input, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "out_type", out_type }; + var _result = _execute.execute("Shape", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Shape", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns shape of tensors. + /// + /// + /// + /// This operation returns N 1-D integer tensors representing shape of `input[i]s`. + /// + /// + /// + /// + /// + public static Tensor[] shape_n(Tensors input, TF_DataType out_type = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ShapeN", name) { args = new object[] { input }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return shape_n_eager_fallback(input, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("ShapeN", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "N", _op._get_attr_int("N"), "T", _op._get_attr_type("T"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("ShapeN", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] shape_n_eager_fallback(Tensors input, TF_DataType out_type, string name, Context ctx) + { + List _inputs_flat_list = new(); + _inputs_flat_list.AddRange(input); + var _inputs_flat = _inputs_flat_list.ToArray(); + object[] _attrs = new object[] { "N", input.Length, "T", input.dtype, "out_type", out_type }; + var _result = _execute.execute("ShapeN", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ShapeN", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Returns the size of a tensor. + /// + /// + /// + /// This operation returns an integer representing the number of elements in + /// `input`. + /// + /// For example: + /// + /// ``` + /// # 't' is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]] + /// size(t) ==> 12 + /// ``` + /// + /// + /// + /// + /// + public static Tensor size(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Size", name) { args = new object[] { input }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return size_eager_fallback(input, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("Size", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("Size", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor size_eager_fallback(Tensor input, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "out_type", out_type }; + var _result = _execute.execute("Size", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Size", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Return a slice from 'input'. + /// + /// + /// + /// The output tensor is a tensor with dimensions described by 'size' + /// whose values are extracted from 'input' starting at the offsets in + /// 'begin'. + /// + /// *Requirements*: + /// 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n) + /// + /// + /// + /// + /// + /// + public static Tensor slice(Tensor input, Tensor begin, Tensor size, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Slice", name) { args = new object[] { input, begin, size }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return slice_eager_fallback(input, begin, size, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["begin"] = begin; + keywords["size"] = size; + var _op = tf.OpDefLib._apply_op_helper("Slice", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Index", _op._get_attr_type("Index") }; + _execute.record_gradient("Slice", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor slice_eager_fallback(Tensor input, Tensor begin, Tensor size, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, begin, size }; + object[] _attrs = new object[] { "T", input.dtype, "Index", begin.dtype }; + var _result = _execute.execute("Slice", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Slice", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a copy of the input tensor. + /// + /// + /// + public static Tensor snapshot(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Snapshot", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return snapshot_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("Snapshot", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Snapshot", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor snapshot_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("Snapshot", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Snapshot", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// SpaceToBatch for 4-D tensors of type T. + /// + /// + /// + /// This is a legacy version of the more general SpaceToBatchND. + /// + /// Zero-pads and then rearranges (permutes) blocks of spatial data into batch. + /// More specifically, this op outputs a copy of the input tensor where values from + /// the `height` and `width` dimensions are moved to the `batch` dimension. After + /// the zero-padding, both `height` and `width` of the input must be divisible by the + /// block size. + /// + /// The attr `block_size` must be greater than one. It indicates the block size. + /// + /// * Non-overlapping blocks of size `block_size x block size` in the height and + /// width dimensions are rearranged into the batch dimension at each location. + /// * The batch of the output tensor is `batch * block_size * block_size`. + /// * Both height_pad and width_pad must be divisible by block_size. + /// + /// The shape of the output will be: + /// + /// [batch*block_size*block_size, height_pad/block_size, width_pad/block_size, + /// depth] + /// + /// Some examples: + /// + /// (1) For the following input of shape `[1, 2, 2, 1]` and block_size of 2: + /// + /// ``` + /// x = [[[[1], [2]], [[3], [4]]]] + /// ``` + /// + /// The output tensor has shape `[4, 1, 1, 1]` and value: + /// + /// ``` + /// [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] + /// ``` + /// + /// (2) For the following input of shape `[1, 2, 2, 3]` and block_size of 2: + /// + /// ``` + /// x = [[[[1, 2, 3], [4, 5, 6]], + /// [[7, 8, 9], [10, 11, 12]]]] + /// ``` + /// + /// The output tensor has shape `[4, 1, 1, 3]` and value: + /// + /// ``` + /// [[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]] + /// ``` + /// + /// (3) For the following input of shape `[1, 4, 4, 1]` and block_size of 2: + /// + /// ``` + /// x = [[[[1], [2], [3], [4]], + /// [[5], [6], [7], [8]], + /// [[9], [10], [11], [12]], + /// [[13], [14], [15], [16]]]] + /// ``` + /// + /// The output tensor has shape `[4, 2, 2, 1]` and value: + /// + /// ``` + /// x = [[[[1], [3]], [[9], [11]]], + /// [[[2], [4]], [[10], [12]]], + /// [[[5], [7]], [[13], [15]]], + /// [[[6], [8]], [[14], [16]]]] + /// ``` + /// + /// (4) For the following input of shape `[2, 2, 4, 1]` and block_size of 2: + /// + /// ``` + /// x = [[[[1], [2], [3], [4]], + /// [[5], [6], [7], [8]]], + /// [[[9], [10], [11], [12]], + /// [[13], [14], [15], [16]]]] + /// ``` + /// + /// The output tensor has shape `[8, 1, 2, 1]` and value: + /// + /// ``` + /// x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]], + /// [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]] + /// ``` + /// + /// Among others, this operation is useful for reducing atrous convolution into + /// regular convolution. + /// + /// + /// + /// + /// + /// + public static Tensor space_to_batch(Tensor input, Tensor paddings, int block_size = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SpaceToBatch", name) { args = new object[] { input, paddings }, attrs = new Dictionary() { ["block_size"] = block_size } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return space_to_batch_eager_fallback(input, paddings, block_size: block_size, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["paddings"] = paddings; + keywords["block_size"] = block_size; + var _op = tf.OpDefLib._apply_op_helper("SpaceToBatch", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tpaddings", _op._get_attr_type("Tpaddings"), "block_size", _op._get_attr_int("block_size") }; + _execute.record_gradient("SpaceToBatch", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor space_to_batch_eager_fallback(Tensor input, Tensor paddings, int block_size, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, paddings }; + object[] _attrs = new object[] { "T", input.dtype, "Tpaddings", paddings.dtype, "block_size", block_size }; + var _result = _execute.execute("SpaceToBatch", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SpaceToBatch", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// SpaceToBatch for N-D tensors of type T. + /// + /// + /// + /// This operation divides "spatial" dimensions `[1, ..., M]` of the input into a + /// grid of blocks of shape `block_shape`, and interleaves these blocks with the + /// "batch" dimension (0) such that in the output, the spatial dimensions + /// `[1, ..., M]` correspond to the position within the grid, and the batch + /// dimension combines both the position within a spatial block and the original + /// batch position. Prior to division into blocks, the spatial dimensions of the + /// input are optionally zero padded according to `paddings`. See below for a + /// precise description. + /// + /// This operation is equivalent to the following steps: + /// + /// 1. Zero-pad the start and end of dimensions `[1, ..., M]` of the + /// input according to `paddings` to produce `padded` of shape `padded_shape`. + /// + /// 2. Reshape `padded` to `reshaped_padded` of shape: + /// + /// [batch] + + /// [padded_shape[1] / block_shape[0], + /// block_shape[0], + /// ..., + /// padded_shape[M] / block_shape[M-1], + /// block_shape[M-1]] + + /// remaining_shape + /// + /// 3. Permute dimensions of `reshaped_padded` to produce + /// `permuted_reshaped_padded` of shape: + /// + /// block_shape + + /// [batch] + + /// [padded_shape[1] / block_shape[0], + /// ..., + /// padded_shape[M] / block_shape[M-1]] + + /// remaining_shape + /// + /// 4. Reshape `permuted_reshaped_padded` to flatten `block_shape` into the batch + /// dimension, producing an output tensor of shape: + /// + /// [batch * prod(block_shape)] + + /// [padded_shape[1] / block_shape[0], + /// ..., + /// padded_shape[M] / block_shape[M-1]] + + /// remaining_shape + /// + /// Some examples: + /// + /// (1) For the following input of shape `[1, 2, 2, 1]`, `block_shape = [2, 2]`, and + /// `paddings = [[0, 0], [0, 0]]`: + /// + /// ``` + /// x = [[[[1], [2]], [[3], [4]]]] + /// ``` + /// + /// The output tensor has shape `[4, 1, 1, 1]` and value: + /// + /// ``` + /// [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] + /// ``` + /// + /// (2) For the following input of shape `[1, 2, 2, 3]`, `block_shape = [2, 2]`, and + /// `paddings = [[0, 0], [0, 0]]`: + /// + /// ``` + /// x = [[[[1, 2, 3], [4, 5, 6]], + /// [[7, 8, 9], [10, 11, 12]]]] + /// ``` + /// + /// The output tensor has shape `[4, 1, 1, 3]` and value: + /// + /// ``` + /// [[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]] + /// ``` + /// + /// (3) For the following input of shape `[1, 4, 4, 1]`, `block_shape = [2, 2]`, and + /// `paddings = [[0, 0], [0, 0]]`: + /// + /// ``` + /// x = [[[[1], [2], [3], [4]], + /// [[5], [6], [7], [8]], + /// [[9], [10], [11], [12]], + /// [[13], [14], [15], [16]]]] + /// ``` + /// + /// The output tensor has shape `[4, 2, 2, 1]` and value: + /// + /// ``` + /// x = [[[[1], [3]], [[9], [11]]], + /// [[[2], [4]], [[10], [12]]], + /// [[[5], [7]], [[13], [15]]], + /// [[[6], [8]], [[14], [16]]]] + /// ``` + /// + /// (4) For the following input of shape `[2, 2, 4, 1]`, block_shape = `[2, 2]`, and + /// paddings = `[[0, 0], [2, 0]]`: + /// + /// ``` + /// x = [[[[1], [2], [3], [4]], + /// [[5], [6], [7], [8]]], + /// [[[9], [10], [11], [12]], + /// [[13], [14], [15], [16]]]] + /// ``` + /// + /// The output tensor has shape `[8, 1, 3, 1]` and value: + /// + /// ``` + /// x = [[[[0], [1], [3]]], [[[0], [9], [11]]], + /// [[[0], [2], [4]]], [[[0], [10], [12]]], + /// [[[0], [5], [7]]], [[[0], [13], [15]]], + /// [[[0], [6], [8]]], [[[0], [14], [16]]]] + /// ``` + /// + /// Among others, this operation is useful for reducing atrous convolution into + /// regular convolution. + /// + /// + /// + /// + /// + /// + public static Tensor space_to_batch_nd(Tensor input, Tensor block_shape, Tensor paddings, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SpaceToBatchND", name) { args = new object[] { input, block_shape, paddings }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return space_to_batch_nd_eager_fallback(input, block_shape, paddings, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["block_shape"] = block_shape; + keywords["paddings"] = paddings; + var _op = tf.OpDefLib._apply_op_helper("SpaceToBatchND", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tblock_shape", _op._get_attr_type("Tblock_shape"), "Tpaddings", _op._get_attr_type("Tpaddings") }; + _execute.record_gradient("SpaceToBatchND", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor space_to_batch_nd_eager_fallback(Tensor input, Tensor block_shape, Tensor paddings, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, block_shape, paddings }; + object[] _attrs = new object[] { "T", input.dtype, "Tblock_shape", block_shape.dtype, "Tpaddings", paddings.dtype }; + var _result = _execute.execute("SpaceToBatchND", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SpaceToBatchND", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// SpaceToDepth for tensors of type T. + /// + /// + /// + /// Rearranges blocks of spatial data, into depth. More specifically, + /// this op outputs a copy of the input tensor where values from the `height` + /// and `width` dimensions are moved to the `depth` dimension. + /// The attr `block_size` indicates the input block size. + /// + /// * Non-overlapping blocks of size `block_size x block size` are rearranged + /// into depth at each location. + /// * The depth of the output tensor is `block_size * block_size * input_depth`. + /// * The Y, X coordinates within each block of the input become the high order + /// component of the output channel index. + /// * The input tensor's height and width must be divisible by block_size. + /// + /// The `data_format` attr specifies the layout of the input and output tensors + /// with the following options: + /// "NHWC": `[ batch, height, width, channels ]` + /// "NCHW": `[ batch, channels, height, width ]` + /// "NCHW_VECT_C": + /// `qint8 [ batch, channels / 4, height, width, 4 ]` + /// + /// It is useful to consider the operation as transforming a 6-D Tensor. + /// e.g. for data_format = NHWC, + /// Each element in the input tensor can be specified via 6 coordinates, + /// ordered by decreasing memory layout significance as: + /// n,oY,bY,oX,bX,iC (where n=batch index, oX, oY means X or Y coordinates + /// within the output image, bX, bY means coordinates + /// within the input block, iC means input channels). + /// The output would be a transpose to the following layout: + /// n,oY,oX,bY,bX,iC + /// + /// This operation is useful for resizing the activations between convolutions + /// (but keeping all data), e.g. instead of pooling. It is also useful for training + /// purely convolutional models. + /// + /// For example, given an input of shape `[1, 2, 2, 1]`, data_format = "NHWC" and + /// block_size = 2: + /// + /// ``` + /// x = [[[[1], [2]], + /// [[3], [4]]]] + /// ``` + /// + /// This operation will output a tensor of shape `[1, 1, 1, 4]`: + /// + /// ``` + /// [[[[1, 2, 3, 4]]]] + /// ``` + /// + /// Here, the input has a batch of 1 and each batch element has shape `[2, 2, 1]`, + /// the corresponding output will have a single element (i.e. width and height are + /// both 1) and will have a depth of 4 channels (1 * block_size * block_size). + /// The output element shape is `[1, 1, 4]`. + /// + /// For an input tensor with larger depth, here of shape `[1, 2, 2, 3]`, e.g. + /// + /// ``` + /// x = [[[[1, 2, 3], [4, 5, 6]], + /// [[7, 8, 9], [10, 11, 12]]]] + /// ``` + /// + /// This operation, for block_size of 2, will return the following tensor of shape + /// `[1, 1, 1, 12]` + /// + /// ``` + /// [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]] + /// ``` + /// + /// Similarly, for the following input of shape `[1 4 4 1]`, and a block size of 2: + /// + /// ``` + /// x = [[[[1], [2], [5], [6]], + /// [[3], [4], [7], [8]], + /// [[9], [10], [13], [14]], + /// [[11], [12], [15], [16]]]] + /// ``` + /// + /// the operator will return the following tensor of shape `[1 2 2 4]`: + /// + /// ``` + /// x = [[[[1, 2, 3, 4], + /// [5, 6, 7, 8]], + /// [[9, 10, 11, 12], + /// [13, 14, 15, 16]]]] + /// ``` + /// + /// + /// + /// + /// + /// The size of the spatial block. + /// + /// + /// + /// + public static Tensor space_to_depth(Tensor input, int block_size = 0, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SpaceToDepth", name) { args = new object[] { input }, attrs = new Dictionary() { ["block_size"] = block_size, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return space_to_depth_eager_fallback(input, block_size: block_size, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["block_size"] = block_size; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("SpaceToDepth", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "block_size", _op._get_attr_int("block_size"), "data_format", _op.get_attr("data_format") }; + _execute.record_gradient("SpaceToDepth", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor space_to_depth_eager_fallback(Tensor input, int block_size, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "block_size", block_size, "data_format", data_format }; + var _result = _execute.execute("SpaceToDepth", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SpaceToDepth", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Splits a tensor into `num_split` tensors along one dimension. + /// + /// + /// + /// + /// + /// The number of ways to split. Must evenly divide + /// `value.shape[split_dim]`. + /// + /// + /// + public static Tensor[] split(Tensor split_dim, Tensor value, int num_split = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Split", name) { args = new object[] { split_dim, value }, attrs = new Dictionary() { ["num_split"] = num_split } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return split_eager_fallback(split_dim, value, num_split: num_split, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["split_dim"] = split_dim; + keywords["value"] = value; + keywords["num_split"] = num_split; + var _op = tf.OpDefLib._apply_op_helper("Split", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "num_split", _op._get_attr_int("num_split"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("Split", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] split_eager_fallback(Tensor split_dim, Tensor value, int num_split, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { split_dim, value }; + object[] _attrs = new object[] { "num_split", num_split, "T", value.dtype }; + var _result = _execute.execute("Split", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Split", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Splits a tensor into `num_split` tensors along one dimension. + /// + /// + /// + /// + /// + /// + public static Tensor[] split_v(Tensor value, Tensor size_splits, Tensor split_dim, int num_split = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SplitV", name) { args = new object[] { value, size_splits, split_dim }, attrs = new Dictionary() { ["num_split"] = num_split } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return split_v_eager_fallback(value, size_splits, split_dim, num_split: num_split, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["value"] = value; + keywords["size_splits"] = size_splits; + keywords["split_dim"] = split_dim; + keywords["num_split"] = num_split; + var _op = tf.OpDefLib._apply_op_helper("SplitV", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "num_split", _op._get_attr_int("num_split"), "T", _op._get_attr_type("T"), "Tlen", _op._get_attr_type("Tlen") }; + _execute.record_gradient("SplitV", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] split_v_eager_fallback(Tensor value, Tensor size_splits, Tensor split_dim, int num_split, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { value, size_splits, split_dim }; + object[] _attrs = new object[] { "num_split", num_split, "T", value.dtype, "Tlen", size_splits.dtype }; + var _result = _execute.execute("SplitV", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SplitV", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Removes dimensions of size 1 from the shape of a tensor. + /// + /// + /// + /// Given a tensor `input`, this operation returns a tensor of the same type with + /// all dimensions of size 1 removed. If you don't want to remove all size 1 + /// dimensions, you can remove specific size 1 dimensions by specifying + /// `squeeze_dims`. + /// + /// For example: + /// + /// ``` + /// # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] + /// shape(squeeze(t)) ==> [2, 3] + /// ``` + /// + /// Or, to remove specific size 1 dimensions: + /// + /// ``` + /// # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] + /// shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1] + /// ``` + /// + /// + /// + /// + /// + /// If specified, only squeezes the dimensions listed. The dimension + /// index starts at 0. It is an error to squeeze a dimension that is not 1. Must + /// be in the range `[-rank(input), rank(input))`. + /// + /// + /// + public static Tensor squeeze(Tensor input, int[] squeeze_dims = null, string? name = null) + { + var _ctx = tf.Context; + if (squeeze_dims is null) + { + squeeze_dims = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Squeeze", name) { args = new object[] { input }, attrs = new Dictionary() { ["squeeze_dims"] = squeeze_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return squeeze_eager_fallback(input, squeeze_dims: squeeze_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["squeeze_dims"] = squeeze_dims; + var _op = tf.OpDefLib._apply_op_helper("Squeeze", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "squeeze_dims", _op.get_attr("squeeze_dims") }; + _execute.record_gradient("Squeeze", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor squeeze_eager_fallback(Tensor input, int[] squeeze_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "squeeze_dims", squeeze_dims }; + var _result = _execute.execute("Squeeze", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Squeeze", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Stops gradient computation. + /// + /// + /// + /// When executed in a graph, this op outputs its input tensor as-is. + /// + /// When building ops to compute gradients, this op prevents the contribution of + /// its inputs to be taken into account. Normally, the gradient generator adds ops + /// to a graph to compute the derivatives of a specified 'loss' by recursively + /// finding out inputs that contributed to its computation. If you insert this op + /// in the graph it inputs are masked from the gradient generator. They are not + /// taken into account for computing gradients. + /// + /// This is useful any time you want to compute a value with TensorFlow but need + /// to pretend that the value was a constant. For example, the softmax function + /// for a vector x can be written as + /// + /// ```python + /// + /// def softmax(x): + /// numerator = tf.exp(x) + /// denominator = tf.reduce_sum(numerator) + /// return numerator / denominator + /// ``` + /// + /// This however is susceptible to overflow if the values in x are large. An + /// alternative more stable way is to subtract the maximum of x from each of the + /// values. + /// + /// ```python + /// + /// def stable_softmax(x): + /// z = x - tf.reduce_max(x) + /// numerator = tf.exp(z) + /// denominator = tf.reduce_sum(numerator) + /// return numerator / denominator + /// ``` + /// + /// However, when we backprop through the softmax to x, we dont want to backprop + /// through the `tf.reduce_max(x)` (if the max values are not unique then the + /// gradient could flow to the wrong input) calculation and treat that as a + /// constant. Therefore, we should write this out as + /// + /// ```python + /// + /// def stable_softmax(x): + /// z = x - tf.stop_gradient(tf.reduce_max(x)) + /// numerator = tf.exp(z) + /// denominator = tf.reduce_sum(numerator) + /// return numerator / denominator + /// ``` + /// + /// Some other examples include: + /// + /// * The *EM* algorithm where the *M-step* should not involve backpropagation + /// through the output of the *E-step*. + /// * Contrastive divergence training of Boltzmann machines where, when + /// differentiating the energy function, the training must not backpropagate + /// through the graph that generated the samples from the model. + /// * Adversarial training, where no backprop should happen through the adversarial + /// example generation process. + /// + /// + /// + /// + public static Tensor stop_gradient(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StopGradient", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return stop_gradient_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("StopGradient", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("StopGradient", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor stop_gradient_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("StopGradient", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("StopGradient", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Return a strided slice from `input`. + /// + /// + /// + /// Note, most python users will want to use the Python `Tensor.__getitem__` + /// or `Variable.__getitem__` rather than this op directly. + /// + /// The goal of this op is to produce a new tensor with a subset of + /// the elements from the `n` dimensional `input` tensor. The subset is chosen using + /// a sequence of `m` sparse range specifications encoded into the arguments + /// of this function. Note, in some cases + /// `m` could be equal to `n`, but this need not be the case. Each + /// range specification entry can be one of the following: + /// + /// - An ellipsis (...). Ellipses are used to imply zero or more + /// dimensions of full-dimension selection and are produced using + /// `ellipsis_mask`. For example, `foo[...]` is the identity slice. + /// + /// - A new axis. This is used to insert a new shape=1 dimension and is + /// produced using `new_axis_mask`. For example, `foo[:, ...]` where + /// `foo` is shape `(3, 4)` produces a `(1, 3, 4)` tensor. + /// + /// + /// - A range `begin:end:stride`. This is used to specify how much to choose from + /// a given dimension. `stride` can be any integer but 0. `begin` is an integer + /// which represents the index of the first value to select while `end` represents + /// the index of the last value to select. The number of values selected in each + /// dimension is `end - begin` if `stride > 0` and `begin - end` if `stride < 0`. + /// `begin` and `end` can be negative where `-1` is the last element, `-2` is + /// the second to last. `begin_mask` controls whether to replace the explicitly + /// given `begin` with an implicit effective value of `0` if `stride > 0` and + /// `-1` if `stride < 0`. `end_mask` is analogous but produces the number + /// required to create the largest open interval. For example, given a shape + /// `(3,)` tensor `foo[:]`, the effective `begin` and `end` are `0` and `3`. Do + /// not assume this is equivalent to `foo[0:-1]` which has an effective `begin` + /// and `end` of `0` and `2`. Another example is `foo[-2::-1]` which reverses the + /// first dimension of a tensor while dropping the last two (in the original + /// order elements). For example `foo = [1,2,3,4]; foo[-2::-1]` is `[4,3]`. + /// + /// - A single index. This is used to keep only elements that have a given + /// index. For example (`foo[2, :]` on a shape `(5,6)` tensor produces a + /// shape `(6,)` tensor. This is encoded in `begin` and `end` and + /// `shrink_axis_mask`. + /// + /// Each conceptual range specification is encoded in the op's argument. This + /// encoding is best understand by considering a non-trivial example. In + /// particular, + /// `foo[1, 2:4, None, ..., :-3:-1, :]` will be encoded as + /// + /// ``` + /// begin = [1, 2, x, x, 0, x] # x denotes don't care (usually 0) + /// end = [2, 4, x, x, -3, x] + /// strides = [1, 1, x, x, -1, 1] + /// begin_mask = 1<<4 | 1<<5 = 48 + /// end_mask = 1<<5 = 32 + /// ellipsis_mask = 1<<3 = 8 + /// new_axis_mask = 1<<2 = 4 + /// shrink_axis_mask = 1<<0 = 1 + /// ``` + /// + /// In this case if `foo.shape` is (5, 5, 5, 5, 5, 5) the final shape of + /// the slice becomes (2, 1, 5, 5, 2, 5). + /// Let us walk step by step through each argument specification. + /// + /// 1. The first argument in the example slice is turned into `begin = 1` and + /// `end = begin + 1 = 2`. To disambiguate from the original spec `2:4` we + /// also set the appropriate bit in `shrink_axis_mask`. + /// + /// 2. `2:4` is contributes 2, 4, 1 to begin, end, and stride. All masks have + /// zero bits contributed. + /// + /// 3. None is a synonym for `tf.newaxis`. This means insert a dimension of size 1 + /// dimension in the final shape. Dummy values are contributed to begin, + /// end and stride, while the new_axis_mask bit is set. + /// + /// 4. `...` grab the full ranges from as many dimensions as needed to + /// fully specify a slice for every dimension of the input shape. + /// + /// 5. `:-3:-1` shows the use of negative indices. A negative index `i` associated + /// with a dimension that has shape `s` is converted to a positive index + /// `s + i`. So `-1` becomes `s-1` (i.e. the last element). This conversion + /// is done internally so begin, end and strides receive x, -3, and -1. + /// The appropriate begin_mask bit is set to indicate the start range is the + /// full range (ignoring the x). + /// + /// 6. `:` indicates that the entire contents of the corresponding dimension + /// is selected. This is equivalent to `::` or `0::1`. begin, end, and strides + /// receive 0, 0, and 1, respectively. The appropriate bits in `begin_mask` and + /// `end_mask` are also set. + /// + /// *Requirements*: + /// `0 != strides[i] for i in [0, m)` + /// `ellipsis_mask must be a power of two (only one ellipsis)` + /// + /// + /// + /// + /// + /// + /// + /// + /// a bitmask where a bit i being 1 means to ignore the begin + /// value and instead use the largest interval possible. At runtime + /// begin[i] will be replaced with `[0, n-1)` if `stride[i] > 0` or + /// `[-1, n-1]` if `stride[i] < 0` + /// + /// + /// + /// + /// analogous to `begin_mask` + /// + /// + /// + /// + /// a bitmask where bit `i` being 1 means the `i`th + /// position is actually an ellipsis. One bit at most can be 1. + /// If `ellipsis_mask == 0`, then an implicit ellipsis mask of `1 << (m+1)` + /// is provided. This means that `foo[3:5] == foo[3:5, ...]`. An ellipsis + /// implicitly creates as many range specifications as necessary to fully + /// specify the sliced range for every dimension. For example for a 4-dimensional + /// tensor `foo` the slice `foo[2, ..., 5:8]` implies `foo[2, :, :, 5:8]`. + /// + /// + /// + /// + /// a bitmask where bit `i` being 1 means the `i`th + /// specification creates a new shape 1 dimension. For example + /// `foo[:4, tf.newaxis, :2]` would produce a shape `(4, 1, 2)` tensor. + /// + /// + /// + /// + /// a bitmask where bit `i` implies that the `i`th + /// specification should shrink the dimensionality. begin and end + /// must imply a slice of size 1 in the dimension. For example in + /// python one might do `foo[:, 3, :]` which would result in + /// `shrink_axis_mask` being 2. + /// + /// + /// + public static Tensor strided_slice(Tensor input, Tensor begin, Tensor end, Tensor strides, int begin_mask = 0, int end_mask = 0, int ellipsis_mask = 0, int new_axis_mask = 0, int shrink_axis_mask = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StridedSlice", name) { args = new object[] { input, begin, end, strides }, attrs = new Dictionary() { ["begin_mask"] = begin_mask, ["end_mask"] = end_mask, ["ellipsis_mask"] = ellipsis_mask, ["new_axis_mask"] = new_axis_mask, ["shrink_axis_mask"] = shrink_axis_mask } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return strided_slice_eager_fallback(input, begin, end, strides, begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["begin"] = begin; + keywords["end"] = end; + keywords["strides"] = strides; + keywords["begin_mask"] = begin_mask; + keywords["end_mask"] = end_mask; + keywords["ellipsis_mask"] = ellipsis_mask; + keywords["new_axis_mask"] = new_axis_mask; + keywords["shrink_axis_mask"] = shrink_axis_mask; + var _op = tf.OpDefLib._apply_op_helper("StridedSlice", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Index", _op._get_attr_type("Index"), "begin_mask", _op._get_attr_int("begin_mask"), "end_mask", _op._get_attr_int("end_mask"), "ellipsis_mask", _op._get_attr_int("ellipsis_mask"), "new_axis_mask", _op._get_attr_int("new_axis_mask"), "shrink_axis_mask", _op._get_attr_int("shrink_axis_mask") }; + _execute.record_gradient("StridedSlice", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor strided_slice_eager_fallback(Tensor input, Tensor begin, Tensor end, Tensor strides, int begin_mask, int end_mask, int ellipsis_mask, int new_axis_mask, int shrink_axis_mask, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, begin, end, strides }; + object[] _attrs = new object[] { "T", input.dtype, "Index", begin.dtype, "begin_mask", begin_mask, "end_mask", end_mask, "ellipsis_mask", ellipsis_mask, "new_axis_mask", new_axis_mask, "shrink_axis_mask", shrink_axis_mask }; + var _result = _execute.execute("StridedSlice", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("StridedSlice", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Assign `value` to the sliced l-value reference of `ref`. + /// + /// + /// + /// The values of `value` are assigned to the positions in the variable + /// `ref` that are selected by the slice parameters. The slice parameters + /// `begin`, `end`, `strides`, etc. work exactly as in `StridedSlice`. + /// + /// NOTE this op currently does not support broadcasting and so `value`'s + /// shape must be exactly the shape produced by the slice of `ref`. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor strided_slice_assign(Tensor ref_, Tensor begin, Tensor end, Tensor strides, Tensor value, int begin_mask = 0, int end_mask = 0, int ellipsis_mask = 0, int new_axis_mask = 0, int shrink_axis_mask = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("strided_slice_assign op does not support eager execution. Arg ref is a ref."); + } + Dictionary keywords = new(); + keywords["ref"] = ref_; + keywords["begin"] = begin; + keywords["end"] = end; + keywords["strides"] = strides; + keywords["value"] = value; + keywords["begin_mask"] = begin_mask; + keywords["end_mask"] = end_mask; + keywords["ellipsis_mask"] = ellipsis_mask; + keywords["new_axis_mask"] = new_axis_mask; + keywords["shrink_axis_mask"] = shrink_axis_mask; + var _op = tf.OpDefLib._apply_op_helper("StridedSliceAssign", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Index", _op._get_attr_type("Index"), "begin_mask", _op._get_attr_int("begin_mask"), "end_mask", _op._get_attr_int("end_mask"), "ellipsis_mask", _op._get_attr_int("ellipsis_mask"), "new_axis_mask", _op._get_attr_int("new_axis_mask"), "shrink_axis_mask", _op._get_attr_int("shrink_axis_mask") }; + _execute.record_gradient("StridedSliceAssign", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor strided_slice_assign_eager_fallback(Tensor ref_, Tensor begin, Tensor end, Tensor strides, Tensor value, int begin_mask, int end_mask, int ellipsis_mask, int new_axis_mask, int shrink_axis_mask, string name, Context ctx) + { + throw new RuntimeError($"strided_slice_assign op does not support eager execution. Arg 'ref' is a ref."); + } + /// + /// Returns the gradient of `StridedSlice`. + /// + /// + /// + /// Since `StridedSlice` cuts out pieces of its `input` which is size + /// `shape`, its gradient will have the same shape (which is passed here + /// as `shape`). The gradient will be zero in any element that the slice + /// does not select. + /// + /// Arguments are the same as StridedSliceGrad with the exception that + /// `dy` is the input gradient to be propagated and `shape` is the + /// shape of `StridedSlice`'s `input`. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor strided_slice_grad(Tensor shape, Tensor begin, Tensor end, Tensor strides, Tensor dy, int begin_mask = 0, int end_mask = 0, int ellipsis_mask = 0, int new_axis_mask = 0, int shrink_axis_mask = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StridedSliceGrad", name) { args = new object[] { shape, begin, end, strides, dy }, attrs = new Dictionary() { ["begin_mask"] = begin_mask, ["end_mask"] = end_mask, ["ellipsis_mask"] = ellipsis_mask, ["new_axis_mask"] = new_axis_mask, ["shrink_axis_mask"] = shrink_axis_mask } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return strided_slice_grad_eager_fallback(shape, begin, end, strides, dy, begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["shape"] = shape; + keywords["begin"] = begin; + keywords["end"] = end; + keywords["strides"] = strides; + keywords["dy"] = dy; + keywords["begin_mask"] = begin_mask; + keywords["end_mask"] = end_mask; + keywords["ellipsis_mask"] = ellipsis_mask; + keywords["new_axis_mask"] = new_axis_mask; + keywords["shrink_axis_mask"] = shrink_axis_mask; + var _op = tf.OpDefLib._apply_op_helper("StridedSliceGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Index", _op._get_attr_type("Index"), "begin_mask", _op._get_attr_int("begin_mask"), "end_mask", _op._get_attr_int("end_mask"), "ellipsis_mask", _op._get_attr_int("ellipsis_mask"), "new_axis_mask", _op._get_attr_int("new_axis_mask"), "shrink_axis_mask", _op._get_attr_int("shrink_axis_mask") }; + _execute.record_gradient("StridedSliceGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor strided_slice_grad_eager_fallback(Tensor shape, Tensor begin, Tensor end, Tensor strides, Tensor dy, int begin_mask, int end_mask, int ellipsis_mask, int new_axis_mask, int shrink_axis_mask, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { shape, begin, end, strides, dy }; + object[] _attrs = new object[] { "T", dy.dtype, "Index", shape.dtype, "begin_mask", begin_mask, "end_mask", end_mask, "ellipsis_mask", ellipsis_mask, "new_axis_mask", new_axis_mask, "shrink_axis_mask", shrink_axis_mask }; + var _result = _execute.execute("StridedSliceGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("StridedSliceGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Adds sparse `updates` to an existing tensor according to `indices`. + /// + /// + /// + /// This operation creates a new tensor by adding sparse `updates` to the passed + /// in `tensor`. + /// This operation is very similar to `tf.compat.v1.scatter_nd_add`, except that the + /// updates are added onto an existing tensor (as opposed to a variable). If the + /// memory for the existing tensor cannot be re-used, a copy is made and updated. + /// + /// `indices` is an integer tensor containing indices into a new tensor of shape + /// `tensor.shape`. The last dimension of `indices` can be at most the rank of + /// `tensor.shape`: + /// + /// ``` + /// indices.shape[-1] <= tensor.shape.rank + /// ``` + /// + /// The last dimension of `indices` corresponds to indices into elements + /// (if `indices.shape[-1] = tensor.shape.rank`) or slices + /// (if `indices.shape[-1] < tensor.shape.rank`) along dimension + /// `indices.shape[-1]` of `tensor.shape`. `updates` is a tensor with shape + /// + /// ``` + /// indices.shape[:-1] + tensor.shape[indices.shape[-1]:] + /// ``` + /// + /// The simplest form of `tensor_scatter_nd_add` is to add individual elements to a + /// tensor by index. For example, say we want to add 4 elements in a rank-1 + /// tensor with 8 elements. + /// + /// In Python, this scatter add operation would look like this: + /// + /// >>> indices = tf.constant([[4], [3], [1], [7]]) + /// >>> updates = tf.constant([9, 10, 11, 12]) + /// >>> tensor = tf.ones([8], dtype=tf.int32) + /// >>> updated = tf.tensor_scatter_nd_add(tensor, indices, updates) + /// >>> updated + /// + /// + /// We can also, insert entire slices of a higher rank tensor all at once. For + /// example, if we wanted to insert two slices in the first dimension of a + /// rank-3 tensor with two matrices of new values. + /// + /// In Python, this scatter add operation would look like this: + /// + /// >>> indices = tf.constant([[0], [2]]) + /// >>> updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6], + /// ... [7, 7, 7, 7], [8, 8, 8, 8]], + /// ... [[5, 5, 5, 5], [6, 6, 6, 6], + /// ... [7, 7, 7, 7], [8, 8, 8, 8]]]) + /// >>> tensor = tf.ones([4, 4, 4],dtype=tf.int32) + /// >>> updated = tf.tensor_scatter_nd_add(tensor, indices, updates) + /// >>> updated + /// + /// + /// Note: on CPU, if an out of bound index is found, an error is returned. + /// On GPU, if an out of bound index is found, the index is ignored. + /// + /// + /// + /// + /// + /// + public static Tensor tensor_scatter_add(Tensor tensor, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterAdd", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_scatter_add_eager_fallback(tensor, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("TensorScatterAdd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("TensorScatterAdd", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_scatter_add_eager_fallback(Tensor tensor, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, indices, updates }; + object[] _attrs = new object[] { "T", tensor.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("TensorScatterAdd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorScatterAdd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Apply a sparse update to a tensor taking the element-wise maximum. + /// + /// + /// + /// Returns a new tensor copied from `tensor` whose values are element-wise maximum between + /// tensor and updates according to the indices. + /// + /// >>> tensor = [0, 0, 0, 0, 0, 0, 0, 0] + /// >>> indices = [[1], [4], [5]] + /// >>> updates = [1, -1, 1] + /// >>> tf.tensor_scatter_nd_max(tensor, indices, updates).numpy() + /// array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int32) + /// + /// Refer to `tf.tensor_scatter_nd_update` for more details. + /// + /// + /// + /// + /// + /// + public static Tensor tensor_scatter_max(Tensor tensor, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterMax", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_scatter_max_eager_fallback(tensor, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("TensorScatterMax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("TensorScatterMax", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_scatter_max_eager_fallback(Tensor tensor, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, indices, updates }; + object[] _attrs = new object[] { "T", tensor.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("TensorScatterMax", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorScatterMax", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + /// + public static Tensor tensor_scatter_min(Tensor tensor, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterMin", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_scatter_min_eager_fallback(tensor, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("TensorScatterMin", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("TensorScatterMin", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_scatter_min_eager_fallback(Tensor tensor, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, indices, updates }; + object[] _attrs = new object[] { "T", tensor.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("TensorScatterMin", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorScatterMin", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Subtracts sparse `updates` from an existing tensor according to `indices`. + /// + /// + /// + /// This operation creates a new tensor by subtracting sparse `updates` from the + /// passed in `tensor`. + /// This operation is very similar to `tf.scatter_nd_sub`, except that the updates + /// are subtracted from an existing tensor (as opposed to a variable). If the memory + /// for the existing tensor cannot be re-used, a copy is made and updated. + /// + /// `indices` is an integer tensor containing indices into a new tensor of shape + /// `shape`. The last dimension of `indices` can be at most the rank of `shape`: + /// + /// indices.shape[-1] <= shape.rank + /// + /// The last dimension of `indices` corresponds to indices into elements + /// (if `indices.shape[-1] = shape.rank`) or slices + /// (if `indices.shape[-1] < shape.rank`) along dimension `indices.shape[-1]` of + /// `shape`. `updates` is a tensor with shape + /// + /// indices.shape[:-1] + shape[indices.shape[-1]:] + /// + /// The simplest form of tensor_scatter_sub is to subtract individual elements + /// from a tensor by index. For example, say we want to insert 4 scattered elements + /// in a rank-1 tensor with 8 elements. + /// + /// In Python, this scatter subtract operation would look like this: + /// + /// ```python + /// indices = tf.constant([[4], [3], [1], [7]]) + /// updates = tf.constant([9, 10, 11, 12]) + /// tensor = tf.ones([8], dtype=tf.int32) + /// updated = tf.tensor_scatter_nd_sub(tensor, indices, updates) + /// print(updated) + /// ``` + /// + /// The resulting tensor would look like this: + /// + /// [1, -10, 1, -9, -8, 1, 1, -11] + /// + /// We can also, insert entire slices of a higher rank tensor all at once. For + /// example, if we wanted to insert two slices in the first dimension of a + /// rank-3 tensor with two matrices of new values. + /// + /// In Python, this scatter add operation would look like this: + /// + /// ```python + /// indices = tf.constant([[0], [2]]) + /// updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6], + /// [7, 7, 7, 7], [8, 8, 8, 8]], + /// [[5, 5, 5, 5], [6, 6, 6, 6], + /// [7, 7, 7, 7], [8, 8, 8, 8]]]) + /// tensor = tf.ones([4, 4, 4],dtype=tf.int32) + /// updated = tf.tensor_scatter_nd_sub(tensor, indices, updates) + /// print(updated) + /// ``` + /// + /// The resulting tensor would look like this: + /// + /// [[[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]], + /// [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], + /// [[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]], + /// [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]] + /// + /// Note that on CPU, if an out of bound index is found, an error is returned. + /// On GPU, if an out of bound index is found, the index is ignored. + /// + /// + /// + /// + /// + /// + public static Tensor tensor_scatter_sub(Tensor tensor, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterSub", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_scatter_sub_eager_fallback(tensor, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("TensorScatterSub", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("TensorScatterSub", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_scatter_sub_eager_fallback(Tensor tensor, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, indices, updates }; + object[] _attrs = new object[] { "T", tensor.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("TensorScatterSub", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorScatterSub", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Scatter `updates` into an existing tensor according to `indices`. + /// + /// + /// + /// This operation creates a new tensor by applying sparse `updates` to the passed + /// in `tensor`. + /// This operation is very similar to `tf.scatter_nd`, except that the updates are + /// scattered onto an existing tensor (as opposed to a zero-tensor). If the memory + /// for the existing tensor cannot be re-used, a copy is made and updated. + /// + /// If `indices` contains duplicates, then we pick the last update for the index. + /// + /// If an out of bound index is found on CPU, an error is returned. + /// + /// **WARNING**: There are some GPU specific semantics for this operation. + /// - If an out of bound index is found, the index is ignored. + /// - The order in which updates are applied is nondeterministic, so the output + /// will be nondeterministic if `indices` contains duplicates. + /// + /// `indices` is an integer tensor containing indices into a new tensor of shape + /// `shape`. + /// + /// * `indices` must have at least 2 axes: `(num_updates, index_depth)`. + /// * The last axis of `indices` is how deep to index into `tensor` so this index + /// depth must be less than the rank of `tensor`: `indices.shape[-1] <= tensor.ndim` + /// + /// if `indices.shape[-1] = tensor.rank` this Op indexes and updates scalar elements. + /// if `indices.shape[-1] < tensor.rank` it indexes and updates slices of the input + /// `tensor`. + /// + /// Each `update` has a rank of `tensor.rank - indices.shape[-1]`. + /// The overall shape of `updates` is: + /// + /// ``` + /// indices.shape[:-1] + tensor.shape[indices.shape[-1]:] + /// ``` + /// + /// For usage examples see the python [tf.tensor_scatter_nd_update]( + /// https://www.tensorflow.org/api_docs/python/tf/tensor_scatter_nd_update) function + /// + /// + /// + /// + /// + /// + /// + public static Tensor tensor_scatter_update(Tensor tensor, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorScatterUpdate", name) { args = new object[] { tensor, indices, updates }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_scatter_update_eager_fallback(tensor, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("TensorScatterUpdate", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("TensorScatterUpdate", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_scatter_update_eager_fallback(Tensor tensor, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, indices, updates }; + object[] _attrs = new object[] { "T", tensor.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("TensorScatterUpdate", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorScatterUpdate", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Assign `value` to the sliced l-value reference of `input`. + /// + /// + /// + /// The values of `value` are assigned to the positions in the tensor `input` that + /// are selected by the slice parameters. The slice parameters `begin` `end` + /// `strides` etc. work exactly as in `StridedSlice`. + /// + /// NOTE this op currently does not support broadcasting and so `value`'s shape + /// must be exactly the shape produced by the slice of `input`. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor tensor_strided_slice_update(Tensor input, Tensor begin, Tensor end, Tensor strides, Tensor value, int begin_mask = 0, int end_mask = 0, int ellipsis_mask = 0, int new_axis_mask = 0, int shrink_axis_mask = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorStridedSliceUpdate", name) { args = new object[] { input, begin, end, strides, value }, attrs = new Dictionary() { ["begin_mask"] = begin_mask, ["end_mask"] = end_mask, ["ellipsis_mask"] = ellipsis_mask, ["new_axis_mask"] = new_axis_mask, ["shrink_axis_mask"] = shrink_axis_mask } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_strided_slice_update_eager_fallback(input, begin, end, strides, value, begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["begin"] = begin; + keywords["end"] = end; + keywords["strides"] = strides; + keywords["value"] = value; + keywords["begin_mask"] = begin_mask; + keywords["end_mask"] = end_mask; + keywords["ellipsis_mask"] = ellipsis_mask; + keywords["new_axis_mask"] = new_axis_mask; + keywords["shrink_axis_mask"] = shrink_axis_mask; + var _op = tf.OpDefLib._apply_op_helper("TensorStridedSliceUpdate", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Index", _op._get_attr_type("Index"), "begin_mask", _op._get_attr_int("begin_mask"), "end_mask", _op._get_attr_int("end_mask"), "ellipsis_mask", _op._get_attr_int("ellipsis_mask"), "new_axis_mask", _op._get_attr_int("new_axis_mask"), "shrink_axis_mask", _op._get_attr_int("shrink_axis_mask") }; + _execute.record_gradient("TensorStridedSliceUpdate", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_strided_slice_update_eager_fallback(Tensor input, Tensor begin, Tensor end, Tensor strides, Tensor value, int begin_mask, int end_mask, int ellipsis_mask, int new_axis_mask, int shrink_axis_mask, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, begin, end, strides, value }; + object[] _attrs = new object[] { "T", input.dtype, "Index", begin.dtype, "begin_mask", begin_mask, "end_mask", end_mask, "ellipsis_mask", ellipsis_mask, "new_axis_mask", new_axis_mask, "shrink_axis_mask", shrink_axis_mask }; + var _result = _execute.execute("TensorStridedSliceUpdate", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorStridedSliceUpdate", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Constructs a tensor by tiling a given tensor. + /// + /// + /// + /// This operation creates a new tensor by replicating `input` `multiples` times. + /// The output tensor's i'th dimension has `input.dims(i) * multiples[i]` elements, + /// and the values of `input` are replicated `multiples[i]` times along the 'i'th + /// dimension. For example, tiling `[a b c d]` by `[2]` produces + /// `[a b c d a b c d]`. + /// + /// >>> a = tf.constant([[1,2,3],[4,5,6]], tf.int32) + /// >>> b = tf.constant([1,2], tf.int32) + /// >>> tf.tile(a, b) + /// + /// >>> c = tf.constant([2,1], tf.int32) + /// >>> tf.tile(a, c) + /// + /// >>> d = tf.constant([2,2], tf.int32) + /// >>> tf.tile(a, d) + /// + /// + /// + /// + /// + /// + public static Tensor tile(Tensor input, Tensor multiples, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Tile", name) { args = new object[] { input, multiples }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tile_eager_fallback(input, multiples, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["multiples"] = multiples; + var _op = tf.OpDefLib._apply_op_helper("Tile", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tmultiples", _op._get_attr_type("Tmultiples") }; + _execute.record_gradient("Tile", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tile_eager_fallback(Tensor input, Tensor multiples, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, multiples }; + object[] _attrs = new object[] { "T", input.dtype, "Tmultiples", multiples.dtype }; + var _result = _execute.execute("Tile", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Tile", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the gradient of `Tile`. + /// + /// + /// + /// Since `Tile` takes an input and repeats the input `multiples` times + /// along each dimension, `TileGrad` takes in `multiples` and aggregates + /// each repeated tile of `input` into `output`. + /// + /// + /// + /// + /// + public static Tensor tile_grad(Tensor input, Tensor multiples, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TileGrad", name) { args = new object[] { input, multiples }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tile_grad_eager_fallback(input, multiples, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["multiples"] = multiples; + var _op = tf.OpDefLib._apply_op_helper("TileGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("TileGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tile_grad_eager_fallback(Tensor input, Tensor multiples, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, multiples }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("TileGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TileGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Shuffle dimensions of x according to a permutation. + /// + /// + /// + /// The output `y` has the same rank as `x`. The shapes of `x` and `y` satisfy: + /// `y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]` + /// + /// + /// + /// + /// + public static Tensor transpose(Tensor x, Tensor perm, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Transpose", name) { args = new object[] { x, perm }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return transpose_eager_fallback(x, perm, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["perm"] = perm; + var _op = tf.OpDefLib._apply_op_helper("Transpose", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tperm", _op._get_attr_type("Tperm") }; + _execute.record_gradient("Transpose", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor transpose_eager_fallback(Tensor x, Tensor perm, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, perm }; + object[] _attrs = new object[] { "T", x.dtype, "Tperm", perm.dtype }; + var _result = _execute.execute("Transpose", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Transpose", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Finds unique elements in a 1-D tensor. + /// + /// + /// + /// This operation returns a tensor `y` containing all of the unique elements of `x` + /// sorted in the same order that they occur in `x`; `x` does not need to be sorted. + /// This operation also returns a tensor `idx` the same size as `x` that contains + /// the index of each value of `x` in the unique output `y`. In other words: + /// + /// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` + /// + /// Examples: + /// + /// ``` + /// # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] + /// y, idx = unique(x) + /// y ==> [1, 2, 4, 7, 8] + /// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] + /// ``` + /// + /// ``` + /// # tensor 'x' is [4, 5, 1, 2, 3, 3, 4, 5] + /// y, idx = unique(x) + /// y ==> [4, 5, 1, 2, 3] + /// idx ==> [0, 1, 2, 3, 4, 4, 0, 1] + /// ``` + /// + /// + /// + /// + /// + public static Tensor[] unique(Tensor x, TF_DataType out_idx = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Unique", name) { args = new object[] { x }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unique_eager_fallback(x, out_idx: out_idx, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["out_idx"] = out_idx; + var _op = tf.OpDefLib._apply_op_helper("Unique", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "out_idx", _op._get_attr_type("out_idx") }; + _execute.record_gradient("Unique", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] unique_eager_fallback(Tensor x, TF_DataType out_idx, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype, "out_idx", out_idx }; + var _result = _execute.execute("Unique", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Unique", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Finds unique elements along an axis of a tensor. + /// + /// + /// + /// This operation either returns a tensor `y` containing unique elements + /// along the `axis` of a tensor. The returned unique elements is sorted + /// in the same order as they occur along `axis` in `x`. + /// This operation also returns a tensor `idx` that is the same size as + /// the number of the elements in `x` along the `axis` dimension. It + /// contains the index in the unique output `y`. + /// In other words, for an `1-D` tensor `x` with `axis = None: + /// + /// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` + /// + /// For example: + /// + /// ``` + /// # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] + /// y, idx = unique(x) + /// y ==> [1, 2, 4, 7, 8] + /// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] + /// ``` + /// + /// For an `2-D` tensor `x` with `axis = 0`: + /// + /// ``` + /// # tensor 'x' is [[1, 0, 0], + /// # [1, 0, 0], + /// # [2, 0, 0]] + /// y, idx = unique(x, axis=0) + /// y ==> [[1, 0, 0], + /// [2, 0, 0]] + /// idx ==> [0, 0, 1] + /// ``` + /// + /// For an `2-D` tensor `x` with `axis = 1`: + /// + /// ``` + /// # tensor 'x' is [[1, 0, 0], + /// # [1, 0, 0], + /// # [2, 0, 0]] + /// y, idx = unique(x, axis=1) + /// y ==> [[1, 0], + /// [1, 0], + /// [2, 0]] + /// idx ==> [0, 1, 1] + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor[] unique_v2(Tensor x, Tensor axis, TF_DataType out_idx = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UniqueV2", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unique_v2_eager_fallback(x, axis, out_idx: out_idx, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["axis"] = axis; + keywords["out_idx"] = out_idx; + var _op = tf.OpDefLib._apply_op_helper("UniqueV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Taxis", _op._get_attr_type("Taxis"), "out_idx", _op._get_attr_type("out_idx") }; + _execute.record_gradient("UniqueV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] unique_v2_eager_fallback(Tensor x, Tensor axis, TF_DataType out_idx, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, axis }; + object[] _attrs = new object[] { "T", x.dtype, "Taxis", axis.dtype, "out_idx", out_idx }; + var _result = _execute.execute("UniqueV2", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("UniqueV2", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Finds unique elements in a 1-D tensor. + /// + /// + /// + /// This operation returns a tensor `y` containing all of the unique elements of `x` + /// sorted in the same order that they occur in `x`. This operation also returns a + /// tensor `idx` the same size as `x` that contains the index of each value of `x` + /// in the unique output `y`. Finally, it returns a third tensor `count` that + /// contains the count of each element of `y` in `x`. In other words: + /// + /// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` + /// + /// For example: + /// + /// ``` + /// # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] + /// y, idx, count = unique_with_counts(x) + /// y ==> [1, 2, 4, 7, 8] + /// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] + /// count ==> [2, 1, 3, 1, 2] + /// ``` + /// + /// + /// + /// + /// + public static Tensor[] unique_with_counts(Tensor x, TF_DataType out_idx = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UniqueWithCounts", name) { args = new object[] { x }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unique_with_counts_eager_fallback(x, out_idx: out_idx, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["out_idx"] = out_idx; + var _op = tf.OpDefLib._apply_op_helper("UniqueWithCounts", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "out_idx", _op._get_attr_type("out_idx") }; + _execute.record_gradient("UniqueWithCounts", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] unique_with_counts_eager_fallback(Tensor x, TF_DataType out_idx, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype, "out_idx", out_idx }; + var _result = _execute.execute("UniqueWithCounts", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("UniqueWithCounts", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Finds unique elements along an axis of a tensor. + /// + /// + /// + /// This operation either returns a tensor `y` containing unique elements + /// along the `axis` of a tensor. The returned unique elements is sorted + /// in the same order as they occur along `axis` in `x`. + /// This operation also returns a tensor `idx` and a tensor `count` + /// that are the same size as the number of the elements in `x` along the + /// `axis` dimension. The `idx` contains the index in the unique output `y` + /// and the `count` contains the count in the unique output `y`. + /// In other words, for an `1-D` tensor `x` with `axis = None: + /// + /// `y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]` + /// + /// For example: + /// + /// ``` + /// x = tf.constant([1, 1, 2, 4, 4, 4, 7, 8, 8]) + /// y, idx, count = UniqueWithCountsV2(x, axis = [0]) + /// y ==> [1, 2, 4, 7, 8] + /// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4] + /// count ==> [2, 1, 3, 1, 2] + /// ``` + /// + /// For a `2-D` tensor `x` with `axis = 0`: + /// + /// ``` + /// x = tf.constant([[1, 0, 0], + /// [1, 0, 0], + /// [2, 0, 0]]) + /// y, idx, count = UniqueWithCountsV2(x, axis=[0]) + /// y ==> [[1, 0, 0], + /// [2, 0, 0]] + /// idx ==> [0, 0, 1] + /// count ==> [2, 1] + /// ``` + /// + /// For a `2-D` tensor `x` with `axis = 1`: + /// + /// ``` + /// x = tf.constant([[1, 0, 0], + /// [1, 0, 0], + /// [2, 0, 0]]) + /// y, idx, count = UniqueWithCountsV2(x, axis=[1]) + /// y ==> [[1, 0], + /// [1, 0], + /// [2, 0]] + /// idx ==> [0, 1, 1] + /// count ==> [1, 2] + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor[] unique_with_counts_v2(Tensor x, Tensor axis, TF_DataType out_idx = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UniqueWithCountsV2", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["out_idx"] = out_idx } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unique_with_counts_v2_eager_fallback(x, axis, out_idx: out_idx, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["axis"] = axis; + keywords["out_idx"] = out_idx; + var _op = tf.OpDefLib._apply_op_helper("UniqueWithCountsV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Taxis", _op._get_attr_type("Taxis"), "out_idx", _op._get_attr_type("out_idx") }; + _execute.record_gradient("UniqueWithCountsV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] unique_with_counts_v2_eager_fallback(Tensor x, Tensor axis, TF_DataType out_idx, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, axis }; + object[] _attrs = new object[] { "T", x.dtype, "Taxis", axis.dtype, "out_idx", out_idx }; + var _result = _execute.execute("UniqueWithCountsV2", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("UniqueWithCountsV2", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. + /// + /// + /// + /// Unpacks `num` tensors from `value` by chipping it along the `axis` dimension. + /// For example, given a tensor of shape `(A, B, C, D)`; + /// + /// If `axis == 0` then the i'th tensor in `output` is the slice `value[i, :, :, :]` + /// and each tensor in `output` will have shape `(B, C, D)`. (Note that the + /// dimension unpacked along is gone, unlike `split`). + /// + /// If `axis == 1` then the i'th tensor in `output` is the slice `value[:, i, :, :]` + /// and each tensor in `output` will have shape `(A, C, D)`. + /// Etc. + /// + /// This is the opposite of `pack`. + /// + /// + /// + /// + /// + /// + /// Dimension along which to unpack. Negative values wrap around, so the + /// valid range is `[-R, R)`. + /// + /// + /// + public static Tensor[] unpack(Tensor value, int num = 0, int axis = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Unpack", name) { args = new object[] { value }, attrs = new Dictionary() { ["num"] = num, ["axis"] = axis } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unpack_eager_fallback(value, num: num, axis: axis, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["value"] = value; + keywords["num"] = num; + keywords["axis"] = axis; + var _op = tf.OpDefLib._apply_op_helper("Unpack", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "num", _op._get_attr_int("num"), "T", _op._get_attr_type("T"), "axis", _op._get_attr_int("axis") }; + _execute.record_gradient("Unpack", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] unpack_eager_fallback(Tensor value, int num, int axis, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { value }; + object[] _attrs = new object[] { "num", num, "T", value.dtype, "axis", axis }; + var _result = _execute.execute("Unpack", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Unpack", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Converts an array of flat indices into a tuple of coordinate arrays. + /// + /// + /// + /// + /// Example: + /// + /// ``` + /// y = tf.unravel_index(indices=[2, 5, 7], dims=[3, 3]) + /// # 'dims' represent a hypothetical (3, 3) tensor of indices: + /// # [[0, 1, *2*], + /// # [3, 4, *5*], + /// # [6, *7*, 8]] + /// # For each entry from 'indices', this operation returns + /// # its coordinates (marked with '*'), such as + /// # 2 ==> (0, 2) + /// # 5 ==> (1, 2) + /// # 7 ==> (2, 1) + /// y ==> [[0, 1, 2], [2, 2, 1]] + /// ``` + /// + /// @compatibility(numpy) + /// Equivalent to np.unravel_index + /// @end_compatibility + /// + /// + /// + /// + /// + public static Tensor unravel_index(Tensor indices, Tensor dims, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnravelIndex", name) { args = new object[] { indices, dims }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unravel_index_eager_fallback(indices, dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["indices"] = indices; + keywords["dims"] = dims; + var _op = tf.OpDefLib._apply_op_helper("UnravelIndex", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("UnravelIndex", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor unravel_index_eager_fallback(Tensor indices, Tensor dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { indices, dims }; + object[] _attrs = new object[] { "Tidx", indices.dtype }; + var _result = _execute.execute("UnravelIndex", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("UnravelIndex", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Applies upper_bound(sorted_search_values, values) along each row. + /// + /// + /// + /// Each set of rows with the same index in (sorted_inputs, values) is treated + /// independently. The resulting row is the equivalent of calling + /// `np.searchsorted(sorted_inputs, values, side='right')`. + /// + /// The result is not a global index to the entire + /// `Tensor`, but rather just the index in the last dimension. + /// + /// A 2-D example: + /// sorted_sequence = [[0, 3, 9, 9, 10], + /// [1, 2, 3, 4, 5]] + /// values = [[2, 4, 9], + /// [0, 2, 6]] + /// + /// result = UpperBound(sorted_sequence, values) + /// + /// result == [[1, 2, 4], + /// [0, 2, 5]] + /// + /// + /// + /// + /// + /// + public static Tensor upper_bound(Tensor sorted_inputs, Tensor values, TF_DataType out_type = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UpperBound", name) { args = new object[] { sorted_inputs, values }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return upper_bound_eager_fallback(sorted_inputs, values, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["sorted_inputs"] = sorted_inputs; + keywords["values"] = values; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("UpperBound", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("UpperBound", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor upper_bound_eager_fallback(Tensor sorted_inputs, Tensor values, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { sorted_inputs, values }; + object[] _attrs = new object[] { "T", sorted_inputs.dtype, "out_type", out_type }; + var _result = _execute.execute("UpperBound", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("UpperBound", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns locations of nonzero / true values in a tensor. + /// + /// + /// + /// This operation returns the coordinates of true elements in `input`. The + /// coordinates are returned in a 2-D tensor where the first dimension (rows) + /// represents the number of true elements, and the second dimension (columns) + /// represents the coordinates of the true elements. Keep in mind, the shape of + /// the output tensor can vary depending on how many true values there are in + /// `input`. Indices are output in row-major order. + /// + /// For example: + /// + /// ``` + /// # 'input' tensor is [[True, False] + /// # [True, False]] + /// # 'input' has two true values, so output has two coordinates. + /// # 'input' has rank of 2, so coordinates have two indices. + /// where(input) ==> [[0, 0], + /// [1, 0]] + /// + /// # `input` tensor is [[[True, False] + /// # [True, False]] + /// # [[False, True] + /// # [False, True]] + /// # [[False, False] + /// # [False, True]]] + /// # 'input' has 5 true values, so output has 5 coordinates. + /// # 'input' has rank of 3, so coordinates have three indices. + /// where(input) ==> [[0, 0, 0], + /// [0, 1, 0], + /// [1, 0, 1], + /// [1, 1, 1], + /// [2, 1, 1]] + /// + /// # `input` tensor is [[[1.5, 0.0] + /// # [-0.5, 0.0]] + /// # [[0.0, 0.25] + /// # [0.0, 0.75]] + /// # [[0.0, 0.0] + /// # [0.0, 0.01]]] + /// # 'input' has 5 nonzero values, so output has 5 coordinates. + /// # 'input' has rank of 3, so coordinates have three indices. + /// where(input) ==> [[0, 0, 0], + /// [0, 1, 0], + /// [1, 0, 1], + /// [1, 1, 1], + /// [2, 1, 1]] + /// + /// # `input` tensor is [[[1.5 + 0.0j, 0.0 + 0.0j] + /// # [0.0 + 0.5j, 0.0 + 0.0j]] + /// # [[0.0 + 0.0j, 0.25 + 1.5j] + /// # [0.0 + 0.0j, 0.75 + 0.0j]] + /// # [[0.0 + 0.0j, 0.0 + 0.0j] + /// # [0.0 + 0.0j, 0.01 + 0.0j]]] + /// # 'input' has 5 nonzero magnitude values, so output has 5 coordinates. + /// # 'input' has rank of 3, so coordinates have three indices. + /// where(input) ==> [[0, 0, 0], + /// [0, 1, 0], + /// [1, 0, 1], + /// [1, 1, 1], + /// [2, 1, 1]] + /// ``` + /// + /// + /// + /// + public static Tensor where(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Where", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return where_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("Where", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Where", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor where_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("Where", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Where", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns a tensor of zeros with the same shape and type as x. + /// + /// + /// + public static Tensor zeros_like(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ZerosLike", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return zeros_like_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("ZerosLike", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("ZerosLike", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor zeros_like_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("ZerosLike", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ZerosLike", _inputs_flat, _attrs, _result); + } + return _result[0]; } } diff --git a/src/TensorFlowNET.Core/Operations/gen_functional_ops.cs b/src/TensorFlowNET.Core/Operations/gen_functional_ops.cs new file mode 100644 index 000000000..6ec426f58 --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/gen_functional_ops.cs @@ -0,0 +1,1089 @@ +/*Wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit.*/ + +using Tensorflow.Eager; +using Tensorflow.Contexts; +using Tensorflow.Exceptions; +using static Tensorflow.Binding; + +namespace Tensorflow; + +public static class gen_functional_ops +{ + /// + /// An n-way switch statement which calls a single branch function. + /// + /// + /// + /// An n-way switch statement, implementing the following: + /// ``` + /// switch (branch_index) { + /// case 0: + /// output = branches[0](input); + /// break; + /// case 1: + /// output = branches[1](input); + /// break; + /// ... + /// case [[nbranches-1]]: + /// default: + /// output = branches[nbranches-1](input); + /// break; + /// } + /// ``` + /// + /// + /// + /// + /// + /// A list of output types. + /// + /// + /// + /// A list of functions each of which takes 'inputs' and returns a list of + /// tensors, whose types are the same as what every other branch returns. + /// + /// + /// + /// + public static Tensor[] _case(Tensor branch_index, Tensors input, TF_DataType[] Tout, object[] branches, Shape[] output_shapes, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Case", name) { args = new object[] { branch_index, input }, attrs = new Dictionary() { ["Tout"] = Tout, ["branches"] = branches, ["output_shapes"] = output_shapes } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return case_eager_fallback(branch_index, input, Tout: Tout, branches: branches, output_shapes: output_shapes, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["branch_index"] = branch_index; + keywords["input"] = input; + keywords["Tout"] = Tout; + keywords["branches"] = branches; + keywords["output_shapes"] = output_shapes; + var _op = tf.OpDefLib._apply_op_helper("Case", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout"), "branches", _op.get_attr("branches"), "output_shapes", _op.get_attr("output_shapes") }; + _execute.record_gradient("Case", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] case_eager_fallback(Tensor branch_index, Tensor input, TF_DataType[] Tout, object[] branches, Shape[] output_shapes, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { branch_index, input }; + object[] _attrs = new object[] { "branches", branches, "output_shapes", output_shapes }; + var _result = _execute.execute("Case", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Case", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Return the index of device the op runs. + /// + /// + /// + /// Given a list of device names, this operation returns the index of the device + /// this op runs. The length of the list is returned in two cases: + /// (1) Device does not exist in the given device list. + /// (2) It is in XLA compilation. + /// + /// + /// + /// + public static Tensor device_index(string[] device_names, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DeviceIndex", name) { args = new object[] { }, attrs = new Dictionary() { ["device_names"] = device_names } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return device_index_eager_fallback(device_names: device_names, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["device_names"] = device_names; + var _op = tf.OpDefLib._apply_op_helper("DeviceIndex", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "device_names", _op.get_attr("device_names") }; + _execute.record_gradient("DeviceIndex", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor device_index_eager_fallback(string[] device_names, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "device_names", device_names }; + var _result = _execute.execute("DeviceIndex", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DeviceIndex", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// ~~%~~ This op is used as a placeholder in If branch functions. It doesn't provide a~~%~~ valid output when run, so must either be removed (e.g. replaced with a~~%~~ function input) or guaranteed not to be used (e.g. if mirroring an~~%~~ intermediate output needed for the gradient computation of the other branch).~~%~~ + /// + /// + /// The type of the output. + /// + /// + /// + /// The purported shape of the output. This is only used for shape inference; + /// the output will not necessarily have this shape. Can be a partial shape. + /// + /// + /// + public static Tensor fake_param(TF_DataType dtype, Shape shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FakeParam", name) { args = new object[] { }, attrs = new Dictionary() { ["dtype"] = dtype, ["shape"] = shape } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fake_param_eager_fallback(dtype: dtype, shape: shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["dtype"] = dtype; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("FakeParam", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape") }; + _execute.record_gradient("FakeParam", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fake_param_eager_fallback(TF_DataType dtype, Shape shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "dtype", dtype, "shape", shape }; + var _result = _execute.execute("FakeParam", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FakeParam", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Applies a for loop. + /// + /// + /// + /// ```python + /// output = input; + /// for i in range(start, limit, delta) + /// output = body(i, output); + /// ``` + /// + /// + /// + /// + /// + /// + /// + /// + /// A function that takes a list of tensors (int32, T) and returns another + /// list of tensors (T). + /// + /// + /// + public static Tensor[] _for(Tensor start, Tensor limit, Tensor delta, Tensors input, object body, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "For", name) { args = new object[] { start, limit, delta, input }, attrs = new Dictionary() { ["body"] = body } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return for_eager_fallback(start, limit, delta, input, body: body, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["start"] = start; + keywords["limit"] = limit; + keywords["delta"] = delta; + keywords["input"] = input; + keywords["body"] = body; + var _op = tf.OpDefLib._apply_op_helper("For", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op.get_attr("T"), "body", _op.get_attr("body") }; + _execute.record_gradient("For", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] for_eager_fallback(Tensor start, Tensor limit, Tensor delta, Tensor input, object body, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { start, limit, delta, input }; + object[] _attrs = new object[] { "body", body }; + var _result = _execute.execute("For", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("For", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// output = cond ? then_branch(input) : else_branch(input) + /// + /// + /// + /// + /// A list of output types. + /// + /// + /// + /// A function that takes 'inputs' and returns a list of tensors, whose + /// types are the same as what else_branch returns. + /// + /// + /// + /// + /// A function that takes 'inputs' and returns a list of tensors, whose + /// types are the same as what then_branch returns. + /// + /// + /// + /// + public static Tensor[] _if(Tensor cond, Tensors input, TF_DataType[] Tout, object then_branch, object else_branch, Shape[] output_shapes, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "If", name) { args = new object[] { cond, input }, attrs = new Dictionary() { ["Tout"] = Tout, ["then_branch"] = then_branch, ["else_branch"] = else_branch, ["output_shapes"] = output_shapes } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return if_eager_fallback(cond, input, Tout: Tout, then_branch: then_branch, else_branch: else_branch, output_shapes: output_shapes, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["cond"] = cond; + keywords["input"] = input; + keywords["Tout"] = Tout; + keywords["then_branch"] = then_branch; + keywords["else_branch"] = else_branch; + keywords["output_shapes"] = output_shapes; + var _op = tf.OpDefLib._apply_op_helper("If", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tcond", _op._get_attr_type("Tcond"), "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout"), "then_branch", _op.get_attr("then_branch"), "else_branch", _op.get_attr("else_branch"), "output_shapes", _op.get_attr("output_shapes") }; + _execute.record_gradient("If", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] if_eager_fallback(Tensor cond, Tensor input, TF_DataType[] Tout, object then_branch, object else_branch, Shape[] output_shapes, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { cond, input }; + object[] _attrs = new object[] { "Tcond", cond.dtype, "then_branch", then_branch, "else_branch", else_branch, "output_shapes", output_shapes }; + var _result = _execute.execute("If", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("If", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// returns `f(inputs)`, where `f`'s body is placed and partitioned. + /// + /// + /// + /// Asynchronously executes a function, potentially across multiple devices but + /// within a single process. The kernel places and partitions a given function's + /// underlying graph, and executes each of the partitioned subgraphs as a function. + /// + /// + /// + /// + /// A list of output types. + /// + /// + /// + /// A function that takes 'args', a list of tensors, and returns 'output', + /// another list of tensors. Input and output types are specified by 'Tin' + /// and 'Tout'. The function body of f will be placed and partitioned across + /// devices, setting this op apart from the regular Call op. + /// + /// + /// + /// + /// + /// + public static Tensor[] partitioned_call(Tensors args, TF_DataType[] Tout, object f, string config = "", string config_proto = "", string executor_type = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "PartitionedCall", name) { args = new object[] { args }, attrs = new Dictionary() { ["Tout"] = Tout, ["f"] = f, ["config"] = config, ["config_proto"] = config_proto, ["executor_type"] = executor_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return partitioned_call_eager_fallback(args, Tout: Tout, f: f, config: config, config_proto: config_proto, executor_type: executor_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (config is null) + { + config = ""; + } + if (config_proto is null) + { + config_proto = ""; + } + if (executor_type is null) + { + executor_type = ""; + } + Dictionary keywords = new(); + keywords["args"] = args; + keywords["Tout"] = Tout; + keywords["f"] = f; + keywords["config"] = config; + keywords["config_proto"] = config_proto; + keywords["executor_type"] = executor_type; + var _op = tf.OpDefLib._apply_op_helper("PartitionedCall", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout"), "f", _op.get_attr("f"), "config", _op.get_attr("config"), "config_proto", _op.get_attr("config_proto"), "executor_type", _op.get_attr("executor_type") }; + _execute.record_gradient("PartitionedCall", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] partitioned_call_eager_fallback(Tensor args, TF_DataType[] Tout, object f, string config, string config_proto, string executor_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { args }; + object[] _attrs = new object[] { "f", f, "config", config, "config_proto", config_proto, "executor_type", executor_type }; + var _result = _execute.execute("PartitionedCall", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("PartitionedCall", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Runs function `f` on a remote device indicated by `target`. + /// + /// + /// + /// + /// + /// The type list for the return values. + /// + /// + /// + /// + /// The function to run remotely. + /// + /// + /// + public static Tensor[] remote_call(Tensor target, Tensors args, TF_DataType[] Tout, object f, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RemoteCall", name) { args = new object[] { target, args }, attrs = new Dictionary() { ["Tout"] = Tout, ["f"] = f } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return remote_call_eager_fallback(target, args, Tout: Tout, f: f, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["target"] = target; + keywords["args"] = args; + keywords["Tout"] = Tout; + keywords["f"] = f; + var _op = tf.OpDefLib._apply_op_helper("RemoteCall", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout"), "f", _op.get_attr("f") }; + _execute.record_gradient("RemoteCall", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] remote_call_eager_fallback(Tensor target, Tensor args, TF_DataType[] Tout, object f, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { target, args }; + object[] _attrs = new object[] { "f", f }; + var _result = _execute.execute("RemoteCall", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("RemoteCall", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// returns `f(inputs)`, where `f`'s body is placed and partitioned. + /// + /// + /// + /// A list of output types. + /// + /// + /// + /// A function that takes 'args', a list of tensors, and returns 'output', + /// another list of tensors. Input and output types are specified by 'Tin' + /// and 'Tout'. The function body of f will be placed and partitioned across + /// devices, setting this op apart from the regular Call op. This op is + /// stateful. + /// + /// + /// + /// + /// + /// + public static Tensor[] stateful_partitioned_call(Tensors args, TF_DataType[] Tout, object f, string config = "", string config_proto = "", string executor_type = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StatefulPartitionedCall", name) { args = new object[] { args }, attrs = new Dictionary() { ["Tout"] = Tout, ["f"] = f, ["config"] = config, ["config_proto"] = config_proto, ["executor_type"] = executor_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return stateful_partitioned_call_eager_fallback(args, Tout: Tout, f: f, config: config, config_proto: config_proto, executor_type: executor_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (config is null) + { + config = ""; + } + if (config_proto is null) + { + config_proto = ""; + } + if (executor_type is null) + { + executor_type = ""; + } + Dictionary keywords = new(); + keywords["args"] = args; + keywords["Tout"] = Tout; + keywords["f"] = f; + keywords["config"] = config; + keywords["config_proto"] = config_proto; + keywords["executor_type"] = executor_type; + var _op = tf.OpDefLib._apply_op_helper("StatefulPartitionedCall", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout"), "f", _op.get_attr("f"), "config", _op.get_attr("config"), "config_proto", _op.get_attr("config_proto"), "executor_type", _op.get_attr("executor_type") }; + _execute.record_gradient("StatefulPartitionedCall", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] stateful_partitioned_call_eager_fallback(Tensor args, TF_DataType[] Tout, object f, string config, string config_proto, string executor_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { args }; + object[] _attrs = new object[] { "f", f, "config", config, "config_proto", config_proto, "executor_type", executor_type }; + var _result = _execute.execute("StatefulPartitionedCall", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("StatefulPartitionedCall", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// An n-way switch statement which calls a single branch function. + /// + /// + /// + /// An n-way switch statement, implementing the following: + /// ``` + /// switch (branch_index) { + /// case 0: + /// output = branches[0](input); + /// break; + /// case 1: + /// output = branches[1](input); + /// break; + /// ... + /// case [[nbranches-1]]: + /// default: + /// output = branches[nbranches-1](input); + /// break; + /// } + /// ``` + /// + /// This should only be used when the none of branches has stateful ops. + /// + /// + /// + /// + /// + /// A list of output types. + /// + /// + /// + /// A list of functions each of which takes 'inputs' and returns a list of + /// tensors, whose types are the same as what every other branch returns. + /// + /// + /// + /// + public static Tensor[] stateless_case(Tensor branch_index, Tensors input, TF_DataType[] Tout, object[] branches, Shape[] output_shapes, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StatelessCase", name) { args = new object[] { branch_index, input }, attrs = new Dictionary() { ["Tout"] = Tout, ["branches"] = branches, ["output_shapes"] = output_shapes } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return stateless_case_eager_fallback(branch_index, input, Tout: Tout, branches: branches, output_shapes: output_shapes, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["branch_index"] = branch_index; + keywords["input"] = input; + keywords["Tout"] = Tout; + keywords["branches"] = branches; + keywords["output_shapes"] = output_shapes; + var _op = tf.OpDefLib._apply_op_helper("StatelessCase", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout"), "branches", _op.get_attr("branches"), "output_shapes", _op.get_attr("output_shapes") }; + _execute.record_gradient("StatelessCase", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] stateless_case_eager_fallback(Tensor branch_index, Tensor input, TF_DataType[] Tout, object[] branches, Shape[] output_shapes, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { branch_index, input }; + object[] _attrs = new object[] { "branches", branches, "output_shapes", output_shapes }; + var _result = _execute.execute("StatelessCase", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("StatelessCase", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// output = cond ? then_branch(input) : else_branch(input) + /// + /// + /// + /// + /// A list of output types. + /// + /// + /// + /// A function that takes 'inputs' and returns a list of tensors, whose + /// types are the same as what else_branch returns. + /// + /// + /// + /// + /// A function that takes 'inputs' and returns a list of tensors, whose + /// types are the same as what then_branch returns. + /// + /// + /// + /// + public static Tensor[] stateless_if(Tensor cond, Tensors input, TF_DataType[] Tout, object then_branch, object else_branch, Shape[] output_shapes, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StatelessIf", name) { args = new object[] { cond, input }, attrs = new Dictionary() { ["Tout"] = Tout, ["then_branch"] = then_branch, ["else_branch"] = else_branch, ["output_shapes"] = output_shapes } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return stateless_if_eager_fallback(cond, input, Tout: Tout, then_branch: then_branch, else_branch: else_branch, output_shapes: output_shapes, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["cond"] = cond; + keywords["input"] = input; + keywords["Tout"] = Tout; + keywords["then_branch"] = then_branch; + keywords["else_branch"] = else_branch; + keywords["output_shapes"] = output_shapes; + var _op = tf.OpDefLib._apply_op_helper("StatelessIf", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tcond", _op._get_attr_type("Tcond"), "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout"), "then_branch", _op.get_attr("then_branch"), "else_branch", _op.get_attr("else_branch"), "output_shapes", _op.get_attr("output_shapes") }; + _execute.record_gradient("StatelessIf", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] stateless_if_eager_fallback(Tensor cond, Tensor input, TF_DataType[] Tout, object then_branch, object else_branch, Shape[] output_shapes, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { cond, input }; + object[] _attrs = new object[] { "Tcond", cond.dtype, "then_branch", then_branch, "else_branch", else_branch, "output_shapes", output_shapes }; + var _result = _execute.execute("StatelessIf", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("StatelessIf", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// output = input; While (Cond(output)) { output = Body(output) } + /// + /// + /// + /// + /// A function takes 'input' and returns a tensor. If the tensor is + /// a scalar of non-boolean, the scalar is converted to a boolean + /// according to the following rule: if the scalar is a numerical + /// value, non-zero means True and zero means False; if the scalar is + /// a string, non-empty means True and empty means False. If the + /// tensor is not a scalar, non-emptiness means True and False + /// otherwise. + /// + /// This should only be used when the while condition and body functions + /// do not have stateful ops. + /// + /// + /// + /// + /// A function that takes a list of tensors and returns another + /// list of tensors. Both lists have the same types as specified + /// by T. + /// + /// + /// + /// + /// + public static Tensor[] stateless_while(Tensors input, object cond, object body, Shape[] output_shapes, int parallel_iterations = 10, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "StatelessWhile", name) { args = new object[] { input }, attrs = new Dictionary() { ["cond"] = cond, ["body"] = body, ["output_shapes"] = output_shapes, ["parallel_iterations"] = parallel_iterations } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return stateless_while_eager_fallback(input, cond: cond, body: body, output_shapes: output_shapes, parallel_iterations: parallel_iterations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["cond"] = cond; + keywords["body"] = body; + keywords["output_shapes"] = output_shapes; + keywords["parallel_iterations"] = parallel_iterations; + var _op = tf.OpDefLib._apply_op_helper("StatelessWhile", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op.get_attr("T"), "cond", _op.get_attr("cond"), "body", _op.get_attr("body"), "output_shapes", _op.get_attr("output_shapes"), "parallel_iterations", _op._get_attr_int("parallel_iterations") }; + _execute.record_gradient("StatelessWhile", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] stateless_while_eager_fallback(Tensor input, object cond, object body, Shape[] output_shapes, int parallel_iterations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "cond", cond, "body", body, "output_shapes", output_shapes, "parallel_iterations", parallel_iterations }; + var _result = _execute.execute("StatelessWhile", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("StatelessWhile", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes the gradient function for function f via backpropagation. + /// + /// + /// + /// + /// the type list for the input list. + /// + /// + /// + /// + /// The function we want to compute the gradient for. + /// + /// The function 'f' must be a numerical function which takes N inputs and + /// produces M outputs. Its gradient function 'g', which is computed by + /// this SymbolicGradient op is a function taking N + M inputs and + /// produces N outputs. + /// + /// I.e. if we have + /// (y1, y2, ..., y_M) = f(x1, x2, ..., x_N), + /// then, g is + /// (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N, + /// dL/dy1, dL/dy2, ..., dL/dy_M), + /// + /// where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the + /// loss function). dL/dx_i is the partial derivative of L with respect + /// to x_i. + /// + /// (Needs some math expert to say the comment above better.) + /// + /// + /// + public static Tensor[] symbolic_gradient(Tensors input, TF_DataType[] Tout, object f, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SymbolicGradient", name) { args = new object[] { input }, attrs = new Dictionary() { ["Tout"] = Tout, ["f"] = f } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return symbolic_gradient_eager_fallback(input, Tout: Tout, f: f, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["Tout"] = Tout; + keywords["f"] = f; + var _op = tf.OpDefLib._apply_op_helper("SymbolicGradient", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tin", _op.get_attr("Tin"), "Tout", _op.get_attr("Tout"), "f", _op.get_attr("f") }; + _execute.record_gradient("SymbolicGradient", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] symbolic_gradient_eager_fallback(Tensor input, TF_DataType[] Tout, object f, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "f", f }; + var _result = _execute.execute("SymbolicGradient", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SymbolicGradient", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Converts a tensor to a scalar predicate. + /// + /// + /// + /// Converts a tensor to a scalar predicate with the following rules: + /// + /// - For 0D tensors, truthiness is determined by comparing against a "zero" + /// value. For numerical types it is the obvious zero. For strings it is the + /// empty string. + /// + /// - For >0D tensors, truthiness is determined by looking at the number of + /// elements. If has zero elements, then the result is false. Otherwise the + /// result is true. + /// + /// This matches the behavior of If and While for determining if a tensor counts + /// as true/false for a branch condition. + /// + /// + /// + /// + public static Tensor to_bool(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ToBool", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return to_bool_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("ToBool", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("ToBool", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor to_bool_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("ToBool", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ToBool", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// output = input; While (Cond(output)) { output = Body(output) } + /// + /// + /// + /// + /// A function takes 'input' and returns a tensor. If the tensor is + /// a scalar of non-boolean, the scalar is converted to a boolean + /// according to the following rule: if the scalar is a numerical + /// value, non-zero means True and zero means False; if the scalar is + /// a string, non-empty means True and empty means False. If the + /// tensor is not a scalar, non-emptiness means True and False + /// otherwise. + /// + /// + /// + /// + /// A function that takes a list of tensors and returns another + /// list of tensors. Both lists have the same types as specified + /// by T. + /// + /// + /// + /// + /// + public static Tensor[] _while(Tensors input, object cond, object body, Shape[] output_shapes, int parallel_iterations = 10, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "While", name) { args = new object[] { input }, attrs = new Dictionary() { ["cond"] = cond, ["body"] = body, ["output_shapes"] = output_shapes, ["parallel_iterations"] = parallel_iterations } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return while_eager_fallback(input, cond: cond, body: body, output_shapes: output_shapes, parallel_iterations: parallel_iterations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["cond"] = cond; + keywords["body"] = body; + keywords["output_shapes"] = output_shapes; + keywords["parallel_iterations"] = parallel_iterations; + var _op = tf.OpDefLib._apply_op_helper("While", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op.get_attr("T"), "cond", _op.get_attr("cond"), "body", _op.get_attr("body"), "output_shapes", _op.get_attr("output_shapes"), "parallel_iterations", _op._get_attr_int("parallel_iterations") }; + _execute.record_gradient("While", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] while_eager_fallback(Tensor input, object cond, object body, Shape[] output_shapes, int parallel_iterations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "cond", cond, "body", body, "output_shapes", output_shapes, "parallel_iterations", parallel_iterations }; + var _result = _execute.execute("While", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("While", _inputs_flat, _attrs, _result); + } + return _result; + } +} diff --git a/src/TensorFlowNET.Core/Operations/gen_image_ops.cs b/src/TensorFlowNET.Core/Operations/gen_image_ops.cs index 9240b5905..cbe661ae5 100644 --- a/src/TensorFlowNET.Core/Operations/gen_image_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_image_ops.cs @@ -16,18 +16,312 @@ limitations under the License. using System; using System.Linq; +using Tensorflow.Eager; using static Tensorflow.Binding; +using Tensorflow.Exceptions; +using Tensorflow.Contexts; +using System.Xml.Linq; +using Google.Protobuf; namespace Tensorflow { public class gen_image_ops { + public static Tensor adjust_contrastv2(Tensor images, Tensor contrast_factor, string name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AdjustContrastv2", name) { + args = new object[] { images, contrast_factor }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return adjust_contrastv2_eager_fallback(images, contrast_factor, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["images"] = images; + keywords["contrast_factor"] = contrast_factor; + var _op = tf.OpDefLib._apply_op_helper("AdjustContrastv2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("AdjustContrastv2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + public static Tensor adjust_contrastv2(Tensor image, float contrast_factor, string name = null) + { + return adjust_contrastv2(image, tf.convert_to_tensor(contrast_factor), name: name); + } + + public static Tensor adjust_contrastv2_eager_fallback(Tensor images, Tensor contrast_factor, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { images, contrast_factor}; + object[] _attrs = new object[] { "T", images.dtype }; + var _result = _execute.execute("AdjustContrastv2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AdjustContrastv2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + + public static Tensor adjust_hue(Tensor images, Tensor delta, string name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AdjustHue", name) { + args = new object[] { images, delta }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return adjust_hue_eager_fallback(images, delta, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["images"] = images; + keywords["delta"] = delta; + var _op = tf.OpDefLib._apply_op_helper("AdjustHue", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("AdjustHue", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor adjust_hue(Tensor images, float delta, string name = null) + => adjust_hue(images, delta, name: name); + + public static Tensor adjust_hue_eager_fallback(Tensor images, Tensor delta, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { images, delta}; + object[] _attrs = new object[] { "T", images.dtype }; + var _result = _execute.execute("AdjustHue", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AdjustHue", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + + public static Tensor adjust_saturation(Tensor images, Tensor scale, string name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AdjustSaturation", name) + { + args = new object[] { images, scale }, + attrs = new Dictionary() { } + }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return adjust_hue_eager_fallback(images, scale, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["images"] = images; + keywords["scale"] = scale; + var _op = tf.OpDefLib._apply_op_helper("AdjustSaturation", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("AdjustSaturation", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor adjust_saturation(Tensor images, float scale, string name = null) + => adjust_saturation(images, ops.convert_to_tensor(scale), name: name); + + public static Tensor adjust_saturation_eager_fallback(Tensor images, Tensor scale, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { images, scale }; + object[] _attrs = new object[] { "T", images.dtype }; + var _result = _execute.execute("AdjustSaturation", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AdjustSaturation", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + public static (Tensor, Tensor, Tensor, Tensor) combined_non_max_suppression(Tensor boxes, Tensor scores, Tensor max_output_size_per_class, Tensor max_total_size, - Tensor iou_threshold, Tensor score_threshold, bool pad_per_class, bool clip_boxes) + Tensor iou_threshold, Tensor score_threshold, bool pad_per_class = false, bool clip_boxes = true, string name = null) { - throw new NotImplementedException("combined_non_max_suppression"); + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "CombinedNonMaxSuppression", name){ + args = new object[] { + boxes, scores, max_output_size_per_class, max_total_size, iou_threshold, score_threshold, + "pad_per_class", pad_per_class, "clip_boxes", clip_boxes}, + attrs = new Dictionary() { }}); + return (_fast_path_result[0], _fast_path_result[1], _fast_path_result[2], _fast_path_result[3]); + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return combined_non_max_suppression_eager_fallback( + boxes, scores, max_output_size_per_class, max_total_size, iou_threshold, + score_threshold, pad_per_class, clip_boxes, name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["boxes"] = boxes; + keywords["scores"] = scores; + keywords["max_output_size_per_class"] = max_output_size_per_class; + keywords["max_total_size"] = max_total_size; + keywords["iou_threshold"] = iou_threshold; + keywords["score_threshold"] = score_threshold; + keywords["pad_per_class"] = pad_per_class; + keywords["clip_boxes"] = clip_boxes; + + var _op = tf.OpDefLib._apply_op_helper("CombinedNonMaxSuppression", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "pad_per_class", _op._get_attr_type("pad_per_class") ,"clip_boxes", _op._get_attr_type("clip_boxes")}; + _execute.record_gradient("CombinedNonMaxSuppression", _op.inputs, _attrs, _result); + } + return (_result[0], _result[1], _result[2], _result[3]); } + public static (Tensor, Tensor, Tensor, Tensor) combined_non_max_suppression_eager_fallback(Tensor boxes, Tensor scores, Tensor max_output_size_per_class, Tensor max_total_size, + Tensor iou_threshold, Tensor score_threshold, bool pad_per_class, bool clip_boxes, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { boxes, scores, max_output_size_per_class, max_total_size, iou_threshold, score_threshold }; + object[] _attrs = new object[] { "pad_per_class", pad_per_class, "clip_boxes", clip_boxes }; + var _result = _execute.execute("CombinedNonMaxSuppression", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("CombinedNonMaxSuppression", _inputs_flat, _attrs, _result); + } + return (_result[0], _result[1], _result[2], _result[3]); + } + + public static Tensor crop_and_resize(Tensor image, Tensor boxes, Tensor box_ind, Tensor crop_size, string method = "bilinear", float extrapolation_value = 0f, string name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "CropAndResize", name) { + args = new object[] { + image, boxes, box_ind, crop_size, "method", method, "extrapolation_value", extrapolation_value }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return crop_and_resize_eager_fallback( + image, boxes, box_ind, crop_size, method: method, extrapolation_value: extrapolation_value, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["image"] = image; + keywords["boxes"] = boxes; + keywords["box_ind"] = box_ind; + keywords["crop_size"] = crop_size; + keywords["method"] = method; + keywords["extrapolation_value"] = extrapolation_value; + var _op = tf.OpDefLib._apply_op_helper("CropAndResize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") ,"method", _op._get_attr_type("method") , + "extrapolation_value", _op.get_attr("extrapolation_value")}; + _execute.record_gradient("CropAndResize", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor crop_and_resize_eager_fallback(Tensor image, Tensor boxes, Tensor box_ind, Tensor crop_size, string method, float extrapolation_value, string name, Context ctx) + { + if (method is null) + method = "bilinear"; + //var method_cpmpat = ByteString.CopyFromUtf8(method ?? string.Empty); + //var extrapolation_value_float = (float)extrapolation_value; + + Tensor[] _inputs_flat = new Tensor[] { image, boxes, box_ind, crop_size, tf.convert_to_tensor(method), tf.convert_to_tensor(extrapolation_value) }; + object[] _attrs = new object[] { "T", image.dtype }; + var _result = _execute.execute("CropAndResize", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("CropAndResize", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + + public static Tensor convert_image_dtype(Tensor image, TF_DataType dtype, bool saturate = false, string name = null) { if (dtype == image.dtype) diff --git a/src/TensorFlowNET.Core/Operations/gen_io_ops.cs b/src/TensorFlowNET.Core/Operations/gen_io_ops.cs new file mode 100644 index 000000000..0b92ff360 --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/gen_io_ops.cs @@ -0,0 +1,2096 @@ +/*Wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit.*/ + +using Tensorflow.Eager; +using Tensorflow.Contexts; +using Tensorflow.Exceptions; +using static Tensorflow.Binding; + +namespace Tensorflow; + +public static class gen_io_ops +{ + /// + /// A Reader that outputs fixed-length records from a file. + /// + /// + /// + /// Number of bytes in the header, defaults to 0. + /// + /// + /// + /// + /// Number of bytes in the record. + /// + /// + /// + /// + /// Number of bytes in the footer, defaults to 0. + /// + /// + /// + /// + /// Number of bytes to hop before each read. Default of 0 means using + /// record_bytes. + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + public static Tensor fixed_length_record_reader(int header_bytes = 0, int record_bytes = 0, int footer_bytes = 0, int hop_bytes = 0, string container = "", string shared_name = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FixedLengthRecordReader", name) { args = new object[] { }, attrs = new Dictionary() { ["header_bytes"] = header_bytes, ["record_bytes"] = record_bytes, ["footer_bytes"] = footer_bytes, ["hop_bytes"] = hop_bytes, ["container"] = container, ["shared_name"] = shared_name } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fixed_length_record_reader_eager_fallback(header_bytes: header_bytes, record_bytes: record_bytes, footer_bytes: footer_bytes, hop_bytes: hop_bytes, container: container, shared_name: shared_name, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + Dictionary keywords = new(); + keywords["header_bytes"] = header_bytes; + keywords["record_bytes"] = record_bytes; + keywords["footer_bytes"] = footer_bytes; + keywords["hop_bytes"] = hop_bytes; + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("FixedLengthRecordReader", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "header_bytes", _op._get_attr_int("header_bytes"), "record_bytes", _op._get_attr_int("record_bytes"), "footer_bytes", _op._get_attr_int("footer_bytes"), "hop_bytes", _op._get_attr_int("hop_bytes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name") }; + _execute.record_gradient("FixedLengthRecordReader", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fixed_length_record_reader_eager_fallback(int header_bytes, int record_bytes, int footer_bytes, int hop_bytes, string container, string shared_name, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "header_bytes", header_bytes, "record_bytes", record_bytes, "footer_bytes", footer_bytes, "hop_bytes", hop_bytes, "container", container, "shared_name", shared_name }; + var _result = _execute.execute("FixedLengthRecordReader", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FixedLengthRecordReader", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A Reader that outputs fixed-length records from a file. + /// + /// + /// + /// Number of bytes in the header, defaults to 0. + /// + /// + /// + /// + /// Number of bytes in the record. + /// + /// + /// + /// + /// Number of bytes in the footer, defaults to 0. + /// + /// + /// + /// + /// Number of bytes to hop before each read. Default of 0 means using + /// record_bytes. + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + /// + /// The type of encoding for the file. Currently ZLIB and GZIP + /// are supported. Defaults to none. + /// + /// + /// + public static Tensor fixed_length_record_reader_v2(int header_bytes = 0, int record_bytes = 0, int footer_bytes = 0, int hop_bytes = 0, string container = "", string shared_name = "", string encoding = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FixedLengthRecordReaderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["header_bytes"] = header_bytes, ["record_bytes"] = record_bytes, ["footer_bytes"] = footer_bytes, ["hop_bytes"] = hop_bytes, ["container"] = container, ["shared_name"] = shared_name, ["encoding"] = encoding } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fixed_length_record_reader_v2_eager_fallback(header_bytes: header_bytes, record_bytes: record_bytes, footer_bytes: footer_bytes, hop_bytes: hop_bytes, container: container, shared_name: shared_name, encoding: encoding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + if (encoding is null) + { + encoding = ""; + } + Dictionary keywords = new(); + keywords["header_bytes"] = header_bytes; + keywords["record_bytes"] = record_bytes; + keywords["footer_bytes"] = footer_bytes; + keywords["hop_bytes"] = hop_bytes; + keywords["container"] = container; + keywords["shared_name"] = shared_name; + keywords["encoding"] = encoding; + var _op = tf.OpDefLib._apply_op_helper("FixedLengthRecordReaderV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "header_bytes", _op._get_attr_int("header_bytes"), "record_bytes", _op._get_attr_int("record_bytes"), "footer_bytes", _op._get_attr_int("footer_bytes"), "hop_bytes", _op._get_attr_int("hop_bytes"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "encoding", _op.get_attr("encoding") }; + _execute.record_gradient("FixedLengthRecordReaderV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fixed_length_record_reader_v2_eager_fallback(int header_bytes, int record_bytes, int footer_bytes, int hop_bytes, string container, string shared_name, string encoding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "header_bytes", header_bytes, "record_bytes", record_bytes, "footer_bytes", footer_bytes, "hop_bytes", hop_bytes, "container", container, "shared_name", shared_name, "encoding", encoding }; + var _result = _execute.execute("FixedLengthRecordReaderV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FixedLengthRecordReaderV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A Reader that outputs the queued work as both the key and value. + /// + /// + /// + /// To use, enqueue strings in a Queue. ReaderRead will take the front + /// work string and output (work, work). + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + public static Tensor identity_reader(string container = "", string shared_name = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IdentityReader", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return identity_reader_eager_fallback(container: container, shared_name: shared_name, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + Dictionary keywords = new(); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("IdentityReader", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name") }; + _execute.record_gradient("IdentityReader", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor identity_reader_eager_fallback(string container, string shared_name, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "container", container, "shared_name", shared_name }; + var _result = _execute.execute("IdentityReader", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("IdentityReader", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A Reader that outputs the queued work as both the key and value. + /// + /// + /// + /// To use, enqueue strings in a Queue. ReaderRead will take the front + /// work string and output (work, work). + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + public static Tensor identity_reader_v2(string container = "", string shared_name = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IdentityReaderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return identity_reader_v2_eager_fallback(container: container, shared_name: shared_name, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + Dictionary keywords = new(); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("IdentityReaderV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name") }; + _execute.record_gradient("IdentityReaderV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor identity_reader_v2_eager_fallback(string container, string shared_name, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "container", container, "shared_name", shared_name }; + var _result = _execute.execute("IdentityReaderV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("IdentityReaderV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the set of files matching one or more glob patterns. + /// + /// + /// + /// Note that this routine only supports wildcard characters in the + /// basename portion of the pattern, not in the directory portion. + /// Note also that the order of filenames returned is deterministic. + /// + /// + /// + /// + public static Tensor matching_files(Tensor pattern, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatchingFiles", name) { args = new object[] { pattern }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return matching_files_eager_fallback(pattern, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["pattern"] = pattern; + var _op = tf.OpDefLib._apply_op_helper("MatchingFiles", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("MatchingFiles", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor matching_files_eager_fallback(Tensor pattern, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { pattern }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("MatchingFiles", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatchingFiles", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Reads and outputs the entire contents of the input filename. + /// + /// + /// + public static Tensor read_file(Tensor filename, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReadFile", name) { args = new object[] { filename }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return read_file_eager_fallback(filename, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["filename"] = filename; + var _op = tf.OpDefLib._apply_op_helper("ReadFile", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReadFile", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor read_file_eager_fallback(Tensor filename, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { filename }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ReadFile", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReadFile", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the number of records this Reader has produced. + /// + /// + /// + /// This is the same as the number of ReaderRead executions that have + /// succeeded. + /// + /// + /// + /// + public static Tensor reader_num_records_produced(Tensor reader_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("reader_num_records_produced op does not support eager execution. Arg reader_handle is a ref."); + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderNumRecordsProduced", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderNumRecordsProduced", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reader_num_records_produced_eager_fallback(Tensor reader_handle, string name, Context ctx) + { + throw new RuntimeError($"reader_num_records_produced op does not support eager execution. Arg 'reader_handle' is a ref."); + } + /// + /// Returns the number of records this Reader has produced. + /// + /// + /// + /// This is the same as the number of ReaderRead executions that have + /// succeeded. + /// + /// + /// + /// + public static Tensor reader_num_records_produced_v2(Tensor reader_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderNumRecordsProducedV2", name) { args = new object[] { reader_handle }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reader_num_records_produced_v2_eager_fallback(reader_handle, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderNumRecordsProducedV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderNumRecordsProducedV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reader_num_records_produced_v2_eager_fallback(Tensor reader_handle, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { reader_handle }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ReaderNumRecordsProducedV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReaderNumRecordsProducedV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the number of work units this Reader has finished processing. + /// + /// + /// + public static Tensor reader_num_work_units_completed(Tensor reader_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("reader_num_work_units_completed op does not support eager execution. Arg reader_handle is a ref."); + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderNumWorkUnitsCompleted", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderNumWorkUnitsCompleted", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reader_num_work_units_completed_eager_fallback(Tensor reader_handle, string name, Context ctx) + { + throw new RuntimeError($"reader_num_work_units_completed op does not support eager execution. Arg 'reader_handle' is a ref."); + } + /// + /// Returns the number of work units this Reader has finished processing. + /// + /// + /// + public static Tensor reader_num_work_units_completed_v2(Tensor reader_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderNumWorkUnitsCompletedV2", name) { args = new object[] { reader_handle }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reader_num_work_units_completed_v2_eager_fallback(reader_handle, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderNumWorkUnitsCompletedV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderNumWorkUnitsCompletedV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reader_num_work_units_completed_v2_eager_fallback(Tensor reader_handle, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { reader_handle }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ReaderNumWorkUnitsCompletedV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReaderNumWorkUnitsCompletedV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the next record (key, value pair) produced by a Reader. + /// + /// + /// + /// Will dequeue from the input queue if necessary (e.g. when the + /// Reader needs to start reading from a new file since it has finished + /// with the previous file). + /// + /// + /// + /// + /// + public static Tensor[] reader_read(Tensor reader_handle, Tensor queue_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("reader_read op does not support eager execution. Arg reader_handle is a ref."); + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + keywords["queue_handle"] = queue_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderRead", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderRead", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] reader_read_eager_fallback(Tensor reader_handle, Tensor queue_handle, string name, Context ctx) + { + throw new RuntimeError($"reader_read op does not support eager execution. Arg 'reader_handle' is a ref."); + } + /// + /// Returns up to `num_records` (key, value) pairs produced by a Reader. + /// + /// + /// + /// Will dequeue from the input queue if necessary (e.g. when the + /// Reader needs to start reading from a new file since it has finished + /// with the previous file). + /// It may return less than `num_records` even before the last batch. + /// + /// + /// + /// + /// + /// + public static Tensor[] reader_read_up_to(Tensor reader_handle, Tensor queue_handle, Tensor num_records, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("reader_read_up_to op does not support eager execution. Arg reader_handle is a ref."); + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + keywords["queue_handle"] = queue_handle; + keywords["num_records"] = num_records; + var _op = tf.OpDefLib._apply_op_helper("ReaderReadUpTo", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderReadUpTo", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] reader_read_up_to_eager_fallback(Tensor reader_handle, Tensor queue_handle, Tensor num_records, string name, Context ctx) + { + throw new RuntimeError($"reader_read_up_to op does not support eager execution. Arg 'reader_handle' is a ref."); + } + /// + /// Returns up to `num_records` (key, value) pairs produced by a Reader. + /// + /// + /// + /// Will dequeue from the input queue if necessary (e.g. when the + /// Reader needs to start reading from a new file since it has finished + /// with the previous file). + /// It may return less than `num_records` even before the last batch. + /// + /// + /// + /// + /// + /// + public static Tensor[] reader_read_up_to_v2(Tensor reader_handle, Tensor queue_handle, Tensor num_records, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderReadUpToV2", name) { args = new object[] { reader_handle, queue_handle, num_records }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reader_read_up_to_v2_eager_fallback(reader_handle, queue_handle, num_records, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + keywords["queue_handle"] = queue_handle; + keywords["num_records"] = num_records; + var _op = tf.OpDefLib._apply_op_helper("ReaderReadUpToV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderReadUpToV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] reader_read_up_to_v2_eager_fallback(Tensor reader_handle, Tensor queue_handle, Tensor num_records, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { reader_handle, queue_handle, num_records }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ReaderReadUpToV2", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReaderReadUpToV2", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Returns the next record (key, value pair) produced by a Reader. + /// + /// + /// + /// Will dequeue from the input queue if necessary (e.g. when the + /// Reader needs to start reading from a new file since it has finished + /// with the previous file). + /// + /// + /// + /// + /// + public static Tensor[] reader_read_v2(Tensor reader_handle, Tensor queue_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderReadV2", name) { args = new object[] { reader_handle, queue_handle }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reader_read_v2_eager_fallback(reader_handle, queue_handle, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + keywords["queue_handle"] = queue_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderReadV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderReadV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] reader_read_v2_eager_fallback(Tensor reader_handle, Tensor queue_handle, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { reader_handle, queue_handle }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ReaderReadV2", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReaderReadV2", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Restore a Reader to its initial clean state. + /// + /// + /// + public static Operation reader_reset(Tensor reader_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("reader_reset op does not support eager execution. Arg reader_handle is a ref."); + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderReset", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderReset", _op.inputs, _attrs, _result); + } + return _op; + } + + public static Operation reader_reset_eager_fallback(Tensor reader_handle, string name, Context ctx) + { + throw new RuntimeError($"reader_reset op does not support eager execution. Arg 'reader_handle' is a ref."); + } + /// + /// Restore a Reader to its initial clean state. + /// + /// + /// + public static Operation reader_reset_v2(Tensor reader_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderResetV2", name) { args = new object[] { reader_handle }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reader_reset_v2_eager_fallback(reader_handle, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderResetV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderResetV2", _op.inputs, _attrs, _result); + } + return _op; + } + + public static Operation reader_reset_v2_eager_fallback(Tensor reader_handle, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { reader_handle }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ReaderResetV2", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReaderResetV2", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Restore a reader to a previously saved state. + /// + /// + /// + /// Not all Readers support being restored, so this can produce an + /// Unimplemented error. + /// + /// + /// + /// + /// + public static Operation reader_restore_state(Tensor reader_handle, Tensor state, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("reader_restore_state op does not support eager execution. Arg reader_handle is a ref."); + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + keywords["state"] = state; + var _op = tf.OpDefLib._apply_op_helper("ReaderRestoreState", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderRestoreState", _op.inputs, _attrs, _result); + } + return _op; + } + + public static Operation reader_restore_state_eager_fallback(Tensor reader_handle, Tensor state, string name, Context ctx) + { + throw new RuntimeError($"reader_restore_state op does not support eager execution. Arg 'reader_handle' is a ref."); + } + /// + /// Restore a reader to a previously saved state. + /// + /// + /// + /// Not all Readers support being restored, so this can produce an + /// Unimplemented error. + /// + /// + /// + /// + /// + public static Operation reader_restore_state_v2(Tensor reader_handle, Tensor state, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderRestoreStateV2", name) { args = new object[] { reader_handle, state }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reader_restore_state_v2_eager_fallback(reader_handle, state, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + keywords["state"] = state; + var _op = tf.OpDefLib._apply_op_helper("ReaderRestoreStateV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderRestoreStateV2", _op.inputs, _attrs, _result); + } + return _op; + } + + public static Operation reader_restore_state_v2_eager_fallback(Tensor reader_handle, Tensor state, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { reader_handle, state }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ReaderRestoreStateV2", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReaderRestoreStateV2", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Produce a string tensor that encodes the state of a Reader. + /// + /// + /// + /// Not all Readers support being serialized, so this can produce an + /// Unimplemented error. + /// + /// + /// + /// + public static Tensor reader_serialize_state(Tensor reader_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + throw new RuntimeError("reader_serialize_state op does not support eager execution. Arg reader_handle is a ref."); + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderSerializeState", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderSerializeState", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reader_serialize_state_eager_fallback(Tensor reader_handle, string name, Context ctx) + { + throw new RuntimeError($"reader_serialize_state op does not support eager execution. Arg 'reader_handle' is a ref."); + } + /// + /// Produce a string tensor that encodes the state of a Reader. + /// + /// + /// + /// Not all Readers support being serialized, so this can produce an + /// Unimplemented error. + /// + /// + /// + /// + public static Tensor reader_serialize_state_v2(Tensor reader_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReaderSerializeStateV2", name) { args = new object[] { reader_handle }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reader_serialize_state_v2_eager_fallback(reader_handle, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["reader_handle"] = reader_handle; + var _op = tf.OpDefLib._apply_op_helper("ReaderSerializeStateV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ReaderSerializeStateV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reader_serialize_state_v2_eager_fallback(Tensor reader_handle, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { reader_handle }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ReaderSerializeStateV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReaderSerializeStateV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Restores a tensor from checkpoint files. + /// + /// + /// + /// Reads a tensor stored in one or several files. If there are several files (for + /// instance because a tensor was saved as slices), `file_pattern` may contain + /// wildcard symbols (`*` and `?`) in the filename portion only, not in the + /// directory portion. + /// + /// If a `file_pattern` matches several files, `preferred_shard` can be used to hint + /// in which file the requested tensor is likely to be found. This op will first + /// open the file at index `preferred_shard` in the list of matching files and try + /// to restore tensors from that file. Only if some tensors or tensor slices are + /// not found in that first file, then the Op opens all the files. Setting + /// `preferred_shard` to match the value passed as the `shard` input + /// of a matching `Save` Op may speed up Restore. This attribute only affects + /// performance, not correctness. The default value -1 means files are processed in + /// order. + /// + /// See also `RestoreSlice`. + /// + /// + /// + /// + /// + /// + /// The type of the tensor to be restored. + /// + /// + /// + /// + /// Index of file to open first if multiple files match + /// `file_pattern`. + /// + /// + /// + public static Tensor restore(Tensor file_pattern, Tensor tensor_name, TF_DataType dt, int preferred_shard = -1, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Restore", name) { args = new object[] { file_pattern, tensor_name }, attrs = new Dictionary() { ["dt"] = dt, ["preferred_shard"] = preferred_shard } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return restore_eager_fallback(file_pattern, tensor_name, dt: dt, preferred_shard: preferred_shard, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["file_pattern"] = file_pattern; + keywords["tensor_name"] = tensor_name; + keywords["dt"] = dt; + keywords["preferred_shard"] = preferred_shard; + var _op = tf.OpDefLib._apply_op_helper("Restore", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dt", _op._get_attr_type("dt"), "preferred_shard", _op._get_attr_int("preferred_shard") }; + _execute.record_gradient("Restore", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor restore_eager_fallback(Tensor file_pattern, Tensor tensor_name, TF_DataType dt, int preferred_shard, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { file_pattern, tensor_name }; + object[] _attrs = new object[] { "dt", dt, "preferred_shard", preferred_shard }; + var _result = _execute.execute("Restore", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Restore", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Restores a tensor from checkpoint files. + /// + /// + /// + /// This is like `Restore` except that restored tensor can be listed as filling + /// only a slice of a larger tensor. `shape_and_slice` specifies the shape of the + /// larger tensor and the slice that the restored tensor covers. + /// + /// The `shape_and_slice` input has the same format as the + /// elements of the `shapes_and_slices` input of the `SaveSlices` op. + /// + /// + /// + /// + /// + /// + /// + /// The type of the tensor to be restored. + /// + /// + /// + /// + /// Index of file to open first if multiple files match + /// `file_pattern`. See the documentation for `Restore`. + /// + /// + /// + public static Tensor restore_slice(Tensor file_pattern, Tensor tensor_name, Tensor shape_and_slice, TF_DataType dt, int preferred_shard = -1, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RestoreSlice", name) { args = new object[] { file_pattern, tensor_name, shape_and_slice }, attrs = new Dictionary() { ["dt"] = dt, ["preferred_shard"] = preferred_shard } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return restore_slice_eager_fallback(file_pattern, tensor_name, shape_and_slice, dt: dt, preferred_shard: preferred_shard, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["file_pattern"] = file_pattern; + keywords["tensor_name"] = tensor_name; + keywords["shape_and_slice"] = shape_and_slice; + keywords["dt"] = dt; + keywords["preferred_shard"] = preferred_shard; + var _op = tf.OpDefLib._apply_op_helper("RestoreSlice", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dt", _op._get_attr_type("dt"), "preferred_shard", _op._get_attr_int("preferred_shard") }; + _execute.record_gradient("RestoreSlice", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor restore_slice_eager_fallback(Tensor file_pattern, Tensor tensor_name, Tensor shape_and_slice, TF_DataType dt, int preferred_shard, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { file_pattern, tensor_name, shape_and_slice }; + object[] _attrs = new object[] { "dt", dt, "preferred_shard", preferred_shard }; + var _result = _execute.execute("RestoreSlice", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("RestoreSlice", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Restores tensors from a V2 checkpoint. + /// + /// + /// + /// For backward compatibility with the V1 format, this Op currently allows + /// restoring from a V1 checkpoint as well: + /// - This Op first attempts to find the V2 index file pointed to by "prefix", and + /// if found proceed to read it as a V2 checkpoint; + /// - Otherwise the V1 read path is invoked. + /// Relying on this behavior is not recommended, as the ability to fall back to read + /// V1 might be deprecated and eventually removed. + /// + /// By default, restores the named tensors in full. If the caller wishes to restore + /// specific slices of stored tensors, "shape_and_slices" should be non-empty + /// strings and correspondingly well-formed. + /// + /// Callers must ensure all the named tensors are indeed stored in the checkpoint. + /// + /// + /// + /// + /// + /// + /// + /// shape {N}. The list of expected dtype for the tensors. Must match + /// those stored in the checkpoint. + /// + /// + /// + public static Tensor[] restore_v2(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, TF_DataType[] dtypes, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RestoreV2", name) { args = new object[] { prefix, tensor_names, shape_and_slices }, attrs = new Dictionary() { ["dtypes"] = dtypes } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return restore_v2_eager_fallback(prefix, tensor_names, shape_and_slices, dtypes: dtypes, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["prefix"] = prefix; + keywords["tensor_names"] = tensor_names; + keywords["shape_and_slices"] = shape_and_slices; + keywords["dtypes"] = dtypes; + var _op = tf.OpDefLib._apply_op_helper("RestoreV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtypes", _op.get_attr("dtypes") }; + _execute.record_gradient("RestoreV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] restore_v2_eager_fallback(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, TF_DataType[] dtypes, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { prefix, tensor_names, shape_and_slices }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("RestoreV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("RestoreV2", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Saves the input tensors to disk. + /// + /// + /// + /// The size of `tensor_names` must match the number of tensors in `data`. `data[i]` + /// is written to `filename` with name `tensor_names[i]`. + /// + /// See also `SaveSlices`. + /// + /// + /// + /// + /// + /// + public static Operation save(Tensor filename, Tensor tensor_names, Tensors data, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Save", name) { args = new object[] { filename, tensor_names, data }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return save_eager_fallback(filename, tensor_names, data, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["filename"] = filename; + keywords["tensor_names"] = tensor_names; + keywords["data"] = data; + var _op = tf.OpDefLib._apply_op_helper("Save", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op.get_attr("T") }; + _execute.record_gradient("Save", _op.inputs, _attrs, _result); + } + return _op; + } + + public static Operation save_eager_fallback(Tensor filename, Tensor tensor_names, Tensor data, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { filename, tensor_names, data }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("Save", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Save", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Saves input tensors slices to disk. + /// + /// + /// + /// This is like `Save` except that tensors can be listed in the saved file as being + /// a slice of a larger tensor. `shapes_and_slices` specifies the shape of the + /// larger tensor and the slice that this tensor covers. `shapes_and_slices` must + /// have as many elements as `tensor_names`. + /// + /// Elements of the `shapes_and_slices` input must either be: + /// + /// * The empty string, in which case the corresponding tensor is + /// saved normally. + /// * A string of the form `dim0 dim1 ... dimN-1 slice-spec` where the + /// `dimI` are the dimensions of the larger tensor and `slice-spec` + /// specifies what part is covered by the tensor to save. + /// + /// `slice-spec` itself is a `:`-separated list: `slice0:slice1:...:sliceN-1` + /// where each `sliceI` is either: + /// + /// * The string `-` meaning that the slice covers all indices of this dimension + /// * `start,length` where `start` and `length` are integers. In that + /// case the slice covers `length` indices starting at `start`. + /// + /// See also `Save`. + /// + /// + /// + /// + /// + /// + /// + public static Operation save_slices(Tensor filename, Tensor tensor_names, Tensor shapes_and_slices, Tensors data, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SaveSlices", name) { args = new object[] { filename, tensor_names, shapes_and_slices, data }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return save_slices_eager_fallback(filename, tensor_names, shapes_and_slices, data, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["filename"] = filename; + keywords["tensor_names"] = tensor_names; + keywords["shapes_and_slices"] = shapes_and_slices; + keywords["data"] = data; + var _op = tf.OpDefLib._apply_op_helper("SaveSlices", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op.get_attr("T") }; + _execute.record_gradient("SaveSlices", _op.inputs, _attrs, _result); + } + return _op; + } + + public static Operation save_slices_eager_fallback(Tensor filename, Tensor tensor_names, Tensor shapes_and_slices, Tensor data, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { filename, tensor_names, shapes_and_slices, data }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("SaveSlices", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SaveSlices", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Saves tensors in V2 checkpoint format. + /// + /// + /// + /// By default, saves the named tensors in full. If the caller wishes to save + /// specific slices of full tensors, "shape_and_slices" should be non-empty strings + /// and correspondingly well-formed. + /// + /// + /// + /// + /// + /// + /// + public static Operation save_v2(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, Tensors tensors, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SaveV2", name) { args = new object[] { prefix, tensor_names, shape_and_slices, tensors }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return save_v2_eager_fallback(prefix, tensor_names, shape_and_slices, tensors, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["prefix"] = prefix; + keywords["tensor_names"] = tensor_names; + keywords["shape_and_slices"] = shape_and_slices; + keywords["tensors"] = tensors; + var _op = tf.OpDefLib._apply_op_helper("SaveV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtypes", _op.get_attr("dtypes") }; + _execute.record_gradient("SaveV2", _op.inputs, _attrs, _result); + } + return _op; + } + + public static Operation save_v2_eager_fallback(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, Tensor tensors, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { prefix, tensor_names, shape_and_slices, tensors }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("SaveV2", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SaveV2", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Generate a sharded filename. The filename is printf formatted as + /// + /// + /// + /// %s-%05d-of-%05d, basename, shard, num_shards. + /// + /// + /// + /// + /// + /// + public static Tensor sharded_filename(Tensor basename, Tensor shard, Tensor num_shards, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ShardedFilename", name) { args = new object[] { basename, shard, num_shards }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sharded_filename_eager_fallback(basename, shard, num_shards, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["basename"] = basename; + keywords["shard"] = shard; + keywords["num_shards"] = num_shards; + var _op = tf.OpDefLib._apply_op_helper("ShardedFilename", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ShardedFilename", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sharded_filename_eager_fallback(Tensor basename, Tensor shard, Tensor num_shards, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { basename, shard, num_shards }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ShardedFilename", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ShardedFilename", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Generate a glob pattern matching all sharded file names. + /// + /// + /// + /// + public static Tensor sharded_filespec(Tensor basename, Tensor num_shards, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ShardedFilespec", name) { args = new object[] { basename, num_shards }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sharded_filespec_eager_fallback(basename, num_shards, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["basename"] = basename; + keywords["num_shards"] = num_shards; + var _op = tf.OpDefLib._apply_op_helper("ShardedFilespec", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ShardedFilespec", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sharded_filespec_eager_fallback(Tensor basename, Tensor num_shards, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { basename, num_shards }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ShardedFilespec", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ShardedFilespec", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A Reader that outputs the lines of a file delimited by '\n'. + /// + /// + /// + /// Number of lines to skip from the beginning of every file. + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + public static Tensor text_line_reader(int skip_header_lines = 0, string container = "", string shared_name = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TextLineReader", name) { args = new object[] { }, attrs = new Dictionary() { ["skip_header_lines"] = skip_header_lines, ["container"] = container, ["shared_name"] = shared_name } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return text_line_reader_eager_fallback(skip_header_lines: skip_header_lines, container: container, shared_name: shared_name, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + Dictionary keywords = new(); + keywords["skip_header_lines"] = skip_header_lines; + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("TextLineReader", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "skip_header_lines", _op._get_attr_int("skip_header_lines"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name") }; + _execute.record_gradient("TextLineReader", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor text_line_reader_eager_fallback(int skip_header_lines, string container, string shared_name, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "skip_header_lines", skip_header_lines, "container", container, "shared_name", shared_name }; + var _result = _execute.execute("TextLineReader", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TextLineReader", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A Reader that outputs the lines of a file delimited by '\n'. + /// + /// + /// + /// Number of lines to skip from the beginning of every file. + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + public static Tensor text_line_reader_v2(int skip_header_lines = 0, string container = "", string shared_name = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TextLineReaderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["skip_header_lines"] = skip_header_lines, ["container"] = container, ["shared_name"] = shared_name } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return text_line_reader_v2_eager_fallback(skip_header_lines: skip_header_lines, container: container, shared_name: shared_name, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + Dictionary keywords = new(); + keywords["skip_header_lines"] = skip_header_lines; + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("TextLineReaderV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "skip_header_lines", _op._get_attr_int("skip_header_lines"), "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name") }; + _execute.record_gradient("TextLineReaderV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor text_line_reader_v2_eager_fallback(int skip_header_lines, string container, string shared_name, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "skip_header_lines", skip_header_lines, "container", container, "shared_name", shared_name }; + var _result = _execute.execute("TextLineReaderV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TextLineReaderV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A Reader that outputs the entire contents of a file as a value. + /// + /// + /// + /// To use, enqueue filenames in a Queue. The output of ReaderRead will + /// be a filename (key) and the contents of that file (value). + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + public static Tensor whole_file_reader(string container = "", string shared_name = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "WholeFileReader", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return whole_file_reader_eager_fallback(container: container, shared_name: shared_name, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + Dictionary keywords = new(); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("WholeFileReader", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name") }; + _execute.record_gradient("WholeFileReader", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor whole_file_reader_eager_fallback(string container, string shared_name, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "container", container, "shared_name", shared_name }; + var _result = _execute.execute("WholeFileReader", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("WholeFileReader", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// A Reader that outputs the entire contents of a file as a value. + /// + /// + /// + /// To use, enqueue filenames in a Queue. The output of ReaderRead will + /// be a filename (key) and the contents of that file (value). + /// + /// + /// + /// + /// If non-empty, this reader is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this reader is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + public static Tensor whole_file_reader_v2(string container = "", string shared_name = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "WholeFileReaderV2", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return whole_file_reader_v2_eager_fallback(container: container, shared_name: shared_name, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + Dictionary keywords = new(); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("WholeFileReaderV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name") }; + _execute.record_gradient("WholeFileReaderV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor whole_file_reader_v2_eager_fallback(string container, string shared_name, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "container", container, "shared_name", shared_name }; + var _result = _execute.execute("WholeFileReaderV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("WholeFileReaderV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Writes `contents` to the file at input `filename`. + /// + /// + /// + /// Creates the file and recursively creates directory if it does not exist. + /// + /// + /// + /// + /// + public static Operation write_file(Tensor filename, Tensor contents, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "WriteFile", name) { args = new object[] { filename, contents }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return write_file_eager_fallback(filename, contents, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["filename"] = filename; + keywords["contents"] = contents; + var _op = tf.OpDefLib._apply_op_helper("WriteFile", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("WriteFile", _op.inputs, _attrs, _result); + } + return _op; + } + + public static Operation write_file_eager_fallback(Tensor filename, Tensor contents, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { filename, contents }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("WriteFile", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("WriteFile", _inputs_flat, _attrs, _result); + } + return null; + } +} diff --git a/src/TensorFlowNET.Core/Operations/gen_list_ops.cs b/src/TensorFlowNET.Core/Operations/gen_list_ops.cs new file mode 100644 index 000000000..59c783b24 --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/gen_list_ops.cs @@ -0,0 +1,1308 @@ +/*Wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit.*/ + +using Tensorflow.Eager; +using Tensorflow.Contexts; +using Tensorflow.Exceptions; +using static Tensorflow.Binding; + +namespace Tensorflow; + +public static class gen_list_ops +{ + /// + /// Creates and returns an empty tensor list. + /// + /// + /// + /// All list elements must be tensors of dtype element_dtype and shape compatible + /// with element_shape. + /// + /// handle: an empty tensor list. + /// element_dtype: the type of elements in the list. + /// element_shape: a shape compatible with that of elements in the list. + /// + /// + /// + /// + /// + /// + public static Tensor empty_tensor_list(Tensor element_shape, Tensor max_num_elements, TF_DataType element_dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EmptyTensorList", name) { args = new object[] { element_shape, max_num_elements }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return empty_tensor_list_eager_fallback(element_shape, max_num_elements, element_dtype: element_dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["element_shape"] = element_shape; + keywords["max_num_elements"] = max_num_elements; + keywords["element_dtype"] = element_dtype; + var _op = tf.OpDefLib._apply_op_helper("EmptyTensorList", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype"), "shape_type", _op._get_attr_type("shape_type") }; + _execute.record_gradient("EmptyTensorList", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor empty_tensor_list_eager_fallback(Tensor element_shape, Tensor max_num_elements, TF_DataType element_dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { element_shape, max_num_elements }; + object[] _attrs = new object[] { "element_dtype", element_dtype, "shape_type", element_shape.dtype }; + var _result = _execute.execute("EmptyTensorList", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("EmptyTensorList", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Concats all tensors in the list along the 0th dimension. + /// + /// + /// + /// Requires that all tensors have the same shape except the first dimension. + /// + /// input_handle: The input list. + /// tensor: The concated result. + /// lengths: Output tensor containing sizes of the 0th dimension of tensors in the list, used for computing the gradient. + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] tensor_list_concat(Tensor input_handle, TF_DataType element_dtype, Shape element_shape = null, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListConcat", name) { args = new object[] { input_handle }, attrs = new Dictionary() { ["element_dtype"] = element_dtype, ["element_shape"] = element_shape } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_concat_eager_fallback(input_handle, element_dtype: element_dtype, element_shape: element_shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["element_dtype"] = element_dtype; + keywords["element_shape"] = element_shape; + var _op = tf.OpDefLib._apply_op_helper("TensorListConcat", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype"), "element_shape", _op.get_attr("element_shape") }; + _execute.record_gradient("TensorListConcat", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] tensor_list_concat_eager_fallback(Tensor input_handle, TF_DataType element_dtype, Shape element_shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle }; + object[] _attrs = new object[] { "element_dtype", element_dtype, "element_shape", element_shape }; + var _result = _execute.execute("TensorListConcat", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListConcat", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_concat_lists(Tensor input_a, Tensor input_b, TF_DataType element_dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListConcatLists", name) { args = new object[] { input_a, input_b }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_concat_lists_eager_fallback(input_a, input_b, element_dtype: element_dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_a"] = input_a; + keywords["input_b"] = input_b; + keywords["element_dtype"] = element_dtype; + var _op = tf.OpDefLib._apply_op_helper("TensorListConcatLists", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype") }; + _execute.record_gradient("TensorListConcatLists", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_concat_lists_eager_fallback(Tensor input_a, Tensor input_b, TF_DataType element_dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_a, input_b }; + object[] _attrs = new object[] { "element_dtype", element_dtype }; + var _result = _execute.execute("TensorListConcatLists", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListConcatLists", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Concats all tensors in the list along the 0th dimension. + /// + /// + /// + /// Requires that all tensors have the same shape except the first dimension. + /// + /// input_handle: The input list. + /// element_shape: The shape of the uninitialized elements in the list. If the first + /// dimension is not -1, it is assumed that all list elements have the same + /// leading dim. + /// leading_dims: The list of leading dims of uninitialized list elements. Used if + /// the leading dim of input_handle.element_shape or the element_shape input arg + /// is not already set. + /// tensor: The concated result. + /// lengths: Output tensor containing sizes of the 0th dimension of tensors in the list, used for computing the gradient. + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] tensor_list_concat_v2(Tensor input_handle, Tensor element_shape, Tensor leading_dims, TF_DataType element_dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListConcatV2", name) { args = new object[] { input_handle, element_shape, leading_dims }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_concat_v2_eager_fallback(input_handle, element_shape, leading_dims, element_dtype: element_dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["element_shape"] = element_shape; + keywords["leading_dims"] = leading_dims; + keywords["element_dtype"] = element_dtype; + var _op = tf.OpDefLib._apply_op_helper("TensorListConcatV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype"), "shape_type", _op._get_attr_type("shape_type") }; + _execute.record_gradient("TensorListConcatV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] tensor_list_concat_v2_eager_fallback(Tensor input_handle, Tensor element_shape, Tensor leading_dims, TF_DataType element_dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle, element_shape, leading_dims }; + object[] _attrs = new object[] { "element_dtype", element_dtype, "shape_type", element_shape.dtype }; + var _result = _execute.execute("TensorListConcatV2", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListConcatV2", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// The shape of the elements of the given list, as a tensor. + /// + /// + /// + /// input_handle: the list + /// element_shape: the shape of elements of the list + /// + /// + /// + /// + /// + public static Tensor tensor_list_element_shape(Tensor input_handle, TF_DataType shape_type, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListElementShape", name) { args = new object[] { input_handle }, attrs = new Dictionary() { ["shape_type"] = shape_type } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_element_shape_eager_fallback(input_handle, shape_type: shape_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["shape_type"] = shape_type; + var _op = tf.OpDefLib._apply_op_helper("TensorListElementShape", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "shape_type", _op._get_attr_type("shape_type") }; + _execute.record_gradient("TensorListElementShape", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_element_shape_eager_fallback(Tensor input_handle, TF_DataType shape_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle }; + object[] _attrs = new object[] { "shape_type", shape_type }; + var _result = _execute.execute("TensorListElementShape", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListElementShape", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Creates a TensorList which, when stacked, has the value of `tensor`. + /// + /// + /// + /// Each tensor in the result list corresponds to one row of the input tensor. + /// + /// tensor: The input tensor. + /// output_handle: The list. + /// + /// + /// + /// + /// + public static Tensor tensor_list_from_tensor(Tensor tensor, Tensor element_shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListFromTensor", name) { args = new object[] { tensor, element_shape }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_from_tensor_eager_fallback(tensor, element_shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["element_shape"] = element_shape; + var _op = tf.OpDefLib._apply_op_helper("TensorListFromTensor", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype"), "shape_type", _op._get_attr_type("shape_type") }; + _execute.record_gradient("TensorListFromTensor", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_from_tensor_eager_fallback(Tensor tensor, Tensor element_shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, element_shape }; + object[] _attrs = new object[] { "element_dtype", tensor.dtype, "shape_type", element_shape.dtype }; + var _result = _execute.execute("TensorListFromTensor", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListFromTensor", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Creates a Tensor by indexing into the TensorList. + /// + /// + /// + /// Each row in the produced Tensor corresponds to the element in the TensorList + /// specified by the given index (see `tf.gather`). + /// + /// input_handle: The input tensor list. + /// indices: The indices used to index into the list. + /// values: The tensor. + /// + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_gather(Tensor input_handle, Tensor indices, Tensor element_shape, TF_DataType element_dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListGather", name) { args = new object[] { input_handle, indices, element_shape }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_gather_eager_fallback(input_handle, indices, element_shape, element_dtype: element_dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["indices"] = indices; + keywords["element_shape"] = element_shape; + keywords["element_dtype"] = element_dtype; + var _op = tf.OpDefLib._apply_op_helper("TensorListGather", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype") }; + _execute.record_gradient("TensorListGather", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_gather_eager_fallback(Tensor input_handle, Tensor indices, Tensor element_shape, TF_DataType element_dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle, indices, element_shape }; + object[] _attrs = new object[] { "element_dtype", element_dtype }; + var _result = _execute.execute("TensorListGather", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListGather", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_get_item(Tensor input_handle, Tensor index, Tensor element_shape, TF_DataType element_dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListGetItem", name) { args = new object[] { input_handle, index, element_shape }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_get_item_eager_fallback(input_handle, index, element_shape, element_dtype: element_dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["index"] = index; + keywords["element_shape"] = element_shape; + keywords["element_dtype"] = element_dtype; + var _op = tf.OpDefLib._apply_op_helper("TensorListGetItem", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype") }; + _execute.record_gradient("TensorListGetItem", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_get_item_eager_fallback(Tensor input_handle, Tensor index, Tensor element_shape, TF_DataType element_dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle, index, element_shape }; + object[] _attrs = new object[] { "element_dtype", element_dtype }; + var _result = _execute.execute("TensorListGetItem", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListGetItem", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the number of tensors in the input tensor list. + /// + /// + /// + /// input_handle: the input list + /// length: the number of tensors in the list + /// + /// + /// + /// + public static Tensor tensor_list_length(Tensor input_handle, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListLength", name) { args = new object[] { input_handle }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_length_eager_fallback(input_handle, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + var _op = tf.OpDefLib._apply_op_helper("TensorListLength", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("TensorListLength", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_length_eager_fallback(Tensor input_handle, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("TensorListLength", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListLength", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the last element of the input list as well as a list with all but that element. + /// + /// + /// + /// Fails if the list is empty. + /// + /// input_handle: the input list + /// tensor: the withdrawn last element of the list + /// element_dtype: the type of elements in the list + /// element_shape: the shape of the output tensor + /// + /// + /// + /// + /// + /// + public static Tensor[] tensor_list_pop_back(Tensor input_handle, Tensor element_shape, TF_DataType element_dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListPopBack", name) { args = new object[] { input_handle, element_shape }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_pop_back_eager_fallback(input_handle, element_shape, element_dtype: element_dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["element_shape"] = element_shape; + keywords["element_dtype"] = element_dtype; + var _op = tf.OpDefLib._apply_op_helper("TensorListPopBack", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype") }; + _execute.record_gradient("TensorListPopBack", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] tensor_list_pop_back_eager_fallback(Tensor input_handle, Tensor element_shape, TF_DataType element_dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle, element_shape }; + object[] _attrs = new object[] { "element_dtype", element_dtype }; + var _result = _execute.execute("TensorListPopBack", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListPopBack", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. + /// + /// + /// + /// tensor: The tensor to put on the list. + /// input_handle: The old list. + /// output_handle: A list with the elements of the old list followed by tensor. + /// element_dtype: the type of elements in the list. + /// element_shape: a shape compatible with that of elements in the list. + /// + /// + /// + /// + /// + public static Tensor tensor_list_push_back(Tensor input_handle, Tensor tensor, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListPushBack", name) { args = new object[] { input_handle, tensor }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_push_back_eager_fallback(input_handle, tensor, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["tensor"] = tensor; + var _op = tf.OpDefLib._apply_op_helper("TensorListPushBack", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype") }; + _execute.record_gradient("TensorListPushBack", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_push_back_eager_fallback(Tensor input_handle, Tensor tensor, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle, tensor }; + object[] _attrs = new object[] { "element_dtype", tensor.dtype }; + var _result = _execute.execute("TensorListPushBack", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListPushBack", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_push_back_batch(Tensor input_handles, Tensor tensor, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListPushBackBatch", name) { args = new object[] { input_handles, tensor }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_push_back_batch_eager_fallback(input_handles, tensor, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handles"] = input_handles; + keywords["tensor"] = tensor; + var _op = tf.OpDefLib._apply_op_helper("TensorListPushBackBatch", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype") }; + _execute.record_gradient("TensorListPushBackBatch", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_push_back_batch_eager_fallback(Tensor input_handles, Tensor tensor, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handles, tensor }; + object[] _attrs = new object[] { "element_dtype", tensor.dtype }; + var _result = _execute.execute("TensorListPushBackBatch", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListPushBackBatch", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// List of the given size with empty elements. + /// + /// + /// + /// element_shape: the shape of the future elements of the list + /// num_elements: the number of elements to reserve + /// handle: the output list + /// element_dtype: the desired type of elements in the list. + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_reserve(Tensor element_shape, Tensor num_elements, TF_DataType element_dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListReserve", name) { args = new object[] { element_shape, num_elements }, attrs = new Dictionary() { ["element_dtype"] = element_dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_reserve_eager_fallback(element_shape, num_elements, element_dtype: element_dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["element_shape"] = element_shape; + keywords["num_elements"] = num_elements; + keywords["element_dtype"] = element_dtype; + var _op = tf.OpDefLib._apply_op_helper("TensorListReserve", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype"), "shape_type", _op._get_attr_type("shape_type") }; + _execute.record_gradient("TensorListReserve", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_reserve_eager_fallback(Tensor element_shape, Tensor num_elements, TF_DataType element_dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { element_shape, num_elements }; + object[] _attrs = new object[] { "element_dtype", element_dtype, "shape_type", element_shape.dtype }; + var _result = _execute.execute("TensorListReserve", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListReserve", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Resizes the list. + /// + /// + /// + /// + /// input_handle: the input list + /// size: size of the output list + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_resize(Tensor input_handle, Tensor size, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListResize", name) { args = new object[] { input_handle, size }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_resize_eager_fallback(input_handle, size, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["size"] = size; + var _op = tf.OpDefLib._apply_op_helper("TensorListResize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("TensorListResize", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_resize_eager_fallback(Tensor input_handle, Tensor size, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle, size }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("TensorListResize", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListResize", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Creates a TensorList by indexing into a Tensor. + /// + /// + /// + /// Each member of the TensorList corresponds to one row of the input tensor, + /// specified by the given index (see `tf.gather`). + /// + /// tensor: The input tensor. + /// indices: The indices used to index into the list. + /// element_shape: The shape of the elements in the list (can be less specified than + /// the shape of the tensor). + /// output_handle: The TensorList. + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_scatter(Tensor tensor, Tensor indices, Tensor element_shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListScatter", name) { args = new object[] { tensor, indices, element_shape }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_scatter_eager_fallback(tensor, indices, element_shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["indices"] = indices; + keywords["element_shape"] = element_shape; + var _op = tf.OpDefLib._apply_op_helper("TensorListScatter", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype"), "shape_type", _op._get_attr_type("shape_type") }; + _execute.record_gradient("TensorListScatter", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_scatter_eager_fallback(Tensor tensor, Tensor indices, Tensor element_shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, indices, element_shape }; + object[] _attrs = new object[] { "element_dtype", tensor.dtype, "shape_type", element_shape.dtype }; + var _result = _execute.execute("TensorListScatter", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListScatter", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Scatters tensor at indices in an input list. + /// + /// + /// + /// Each member of the TensorList corresponds to one row of the input tensor, + /// specified by the given index (see `tf.gather`). + /// + /// input_handle: The list to scatter into. + /// tensor: The input tensor. + /// indices: The indices used to index into the list. + /// output_handle: The TensorList. + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_scatter_into_existing_list(Tensor input_handle, Tensor tensor, Tensor indices, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListScatterIntoExistingList", name) { args = new object[] { input_handle, tensor, indices }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_scatter_into_existing_list_eager_fallback(input_handle, tensor, indices, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["tensor"] = tensor; + keywords["indices"] = indices; + var _op = tf.OpDefLib._apply_op_helper("TensorListScatterIntoExistingList", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype") }; + _execute.record_gradient("TensorListScatterIntoExistingList", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_scatter_into_existing_list_eager_fallback(Tensor input_handle, Tensor tensor, Tensor indices, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle, tensor, indices }; + object[] _attrs = new object[] { "element_dtype", tensor.dtype }; + var _result = _execute.execute("TensorListScatterIntoExistingList", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListScatterIntoExistingList", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Creates a TensorList by indexing into a Tensor. + /// + /// + /// + /// Each member of the TensorList corresponds to one row of the input tensor, + /// specified by the given index (see `tf.gather`). + /// + /// tensor: The input tensor. + /// indices: The indices used to index into the list. + /// element_shape: The shape of the elements in the list (can be less specified than + /// the shape of the tensor). + /// num_elements: The size of the output list. Must be large enough to accommodate + /// the largest index in indices. If -1, the list is just large enough to include + /// the largest index in indices. + /// output_handle: The TensorList. + /// + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_scatter_v2(Tensor tensor, Tensor indices, Tensor element_shape, Tensor num_elements, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListScatterV2", name) { args = new object[] { tensor, indices, element_shape, num_elements }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_scatter_v2_eager_fallback(tensor, indices, element_shape, num_elements, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["indices"] = indices; + keywords["element_shape"] = element_shape; + keywords["num_elements"] = num_elements; + var _op = tf.OpDefLib._apply_op_helper("TensorListScatterV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype"), "shape_type", _op._get_attr_type("shape_type") }; + _execute.record_gradient("TensorListScatterV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_scatter_v2_eager_fallback(Tensor tensor, Tensor indices, Tensor element_shape, Tensor num_elements, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, indices, element_shape, num_elements }; + object[] _attrs = new object[] { "element_dtype", tensor.dtype, "shape_type", element_shape.dtype }; + var _result = _execute.execute("TensorListScatterV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListScatterV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_set_item(Tensor input_handle, Tensor index, Tensor item, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListSetItem", name) { args = new object[] { input_handle, index, item }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_set_item_eager_fallback(input_handle, index, item, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["index"] = index; + keywords["item"] = item; + var _op = tf.OpDefLib._apply_op_helper("TensorListSetItem", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype") }; + _execute.record_gradient("TensorListSetItem", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_set_item_eager_fallback(Tensor input_handle, Tensor index, Tensor item, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle, index, item }; + object[] _attrs = new object[] { "element_dtype", item.dtype }; + var _result = _execute.execute("TensorListSetItem", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListSetItem", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Splits a tensor into a list. + /// + /// + /// + /// list[i] corresponds to lengths[i] tensors from the input tensor. + /// The tensor must have rank at least 1 and contain exactly sum(lengths) elements. + /// + /// tensor: The input tensor. + /// element_shape: A shape compatible with that of elements in the tensor. + /// lengths: Vector of sizes of the 0th dimension of tensors in the list. + /// output_handle: The list. + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_split(Tensor tensor, Tensor element_shape, Tensor lengths, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListSplit", name) { args = new object[] { tensor, element_shape, lengths }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_split_eager_fallback(tensor, element_shape, lengths, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["tensor"] = tensor; + keywords["element_shape"] = element_shape; + keywords["lengths"] = lengths; + var _op = tf.OpDefLib._apply_op_helper("TensorListSplit", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype"), "shape_type", _op._get_attr_type("shape_type") }; + _execute.record_gradient("TensorListSplit", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_split_eager_fallback(Tensor tensor, Tensor element_shape, Tensor lengths, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { tensor, element_shape, lengths }; + object[] _attrs = new object[] { "element_dtype", tensor.dtype, "shape_type", element_shape.dtype }; + var _result = _execute.execute("TensorListSplit", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListSplit", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Stacks all tensors in the list. + /// + /// + /// + /// Requires that all tensors have the same shape. + /// + /// input_handle: the input list + /// tensor: the gathered result + /// num_elements: optional. If not -1, the number of elements in the list. + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor tensor_list_stack(Tensor input_handle, Tensor element_shape, TF_DataType element_dtype, int num_elements = -1, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TensorListStack", name) { args = new object[] { input_handle, element_shape }, attrs = new Dictionary() { ["element_dtype"] = element_dtype, ["num_elements"] = num_elements } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tensor_list_stack_eager_fallback(input_handle, element_shape, element_dtype: element_dtype, num_elements: num_elements, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input_handle"] = input_handle; + keywords["element_shape"] = element_shape; + keywords["element_dtype"] = element_dtype; + keywords["num_elements"] = num_elements; + var _op = tf.OpDefLib._apply_op_helper("TensorListStack", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "element_dtype", _op._get_attr_type("element_dtype"), "num_elements", _op._get_attr_int("num_elements") }; + _execute.record_gradient("TensorListStack", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tensor_list_stack_eager_fallback(Tensor input_handle, Tensor element_shape, TF_DataType element_dtype, int num_elements, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_handle, element_shape }; + object[] _attrs = new object[] { "element_dtype", element_dtype, "num_elements", num_elements }; + var _result = _execute.execute("TensorListStack", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TensorListStack", _inputs_flat, _attrs, _result); + } + return _result[0]; + } +} diff --git a/src/TensorFlowNET.Core/Operations/gen_logging_ops.cs b/src/TensorFlowNET.Core/Operations/gen_logging_ops.cs index 03159aaa1..d2907f090 100644 --- a/src/TensorFlowNET.Core/Operations/gen_logging_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_logging_ops.cs @@ -26,7 +26,7 @@ public static Operation assert(Tensor condition, object[] data, long summarize = if (tf.Context.executing_eagerly()) { var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo( - "Assert", name, + tf.Context, "Assert", name, new object[] { condition, data, summarize })); return results[0]; diff --git a/src/TensorFlowNET.Core/Operations/gen_math_ops.cs b/src/TensorFlowNET.Core/Operations/gen_math_ops.cs index 894f9780d..a8152a11e 100644 --- a/src/TensorFlowNET.Core/Operations/gen_math_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_math_ops.cs @@ -1,568 +1,10072 @@ -/***************************************************************************** - Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. -******************************************************************************/ - -using System; -using System.Collections; -using System.Collections.Generic; -using System.Linq; +/*Wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit.*/ + +using Tensorflow.Eager; using Tensorflow.Contexts; +using Tensorflow.Exceptions; using static Tensorflow.Binding; -namespace Tensorflow +namespace Tensorflow; + +public static class gen_math_ops { - public static partial class gen_math_ops - { - public static Tensor _all(Tensor input, Tensor axis, bool keep_dims = false, string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("All", name, args: new { input, reduction_indices = axis, keep_dims = keep_dims }); - - return _op.outputs[0]; - } - - /// - /// Add all input tensors element wise. - /// - /// - /// - /// - public static Tensor add_n(Tensor[] inputs, string name = null) - => tf.Context.ExecuteOp("AddN", name, new ExecuteOpArgs() - { - OpInputArgs = new object[] { inputs } - }); - - /// - /// Returns the index with the largest value across dimensions of a tensor. - /// - /// - /// - /// - /// - /// - public static Tensor arg_max(Tensor input, Axis dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) - => tf.Context.ExecuteOp("ArgMax", name, new ExecuteOpArgs(input, dimension) - .SetAttributes(new { output_type })); - - - /// - /// Returns the index with the smallest value across dimensions of a tensor. - /// - /// - /// - /// - /// - /// - public static Tensor arg_min(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) - => tf.Context.ExecuteOp("ArgMin", name, new ExecuteOpArgs(input, dimension) - .SetAttributes(new { output_type })); - - /// - /// Computes Psi, the derivative of Lgamma (the log of the absolute value of - /// `Gamma(x)`), element-wise. - /// - /// - /// - /// - public static Tensor digamma(Tensor x, string name = null) - => tf.OpDefLib._apply_op_helper("Digamma", name, args: new { x }).output; - - /// - /// Returns 0 if the denominator is zero. - /// - /// - /// - /// - /// - /// - /// If specified, the created operation in the graph will be this one, otherwise it will be named 'DivNoNan'. - /// - /// - /// The Operation can be fetched from the resulting Tensor, by fetching the Operation property from the result. - /// - /// - /// - /// *NOTE*: DivNoNan supports broadcasting. More about broadcasting - /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) - /// - public static Tensor div_no_nan(Tensor x, Tensor y, string name = null) - => tf.Context.ExecuteOp("DivNoNan", name, new ExecuteOpArgs(x, y)); - - public static Tensor mean(Tensor input, int axis, bool keep_dims = false, string name = null) - => mean(input, ops.convert_to_tensor(axis), keep_dims: keep_dims, name: name); - - /// - /// Computes the mean of elements across dimensions of a tensor. - /// Reduces `input` along the dimensions given in `axis`. Unless - /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in - /// `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. - /// - /// A `Tensor`. Must be one of the following types: - /// `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. - /// The tensor to reduce. - /// A `Tensor`. Must be one of the following types: `int32`, `int64`. The dimensions to reduce. - /// An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1. - /// A name for the operation (optional). - /// A `Tensor`. Has the same type as `input`. - public static Tensor mean(Tensor input, Tensor axis, bool keep_dims = false, string name = null) - => tf.Context.ExecuteOp("Mean", name, new ExecuteOpArgs(input, axis) - { - GetGradientAttrs = (op) => new - { - T = op.get_attr("T"), - Tidx = op.get_attr("Tidx"), - keep_dims = op.get_attr("keep_dims") - } - }.SetAttributes(new { keep_dims, reduction_indices = axis })); - - public static Tensor mean(Tensor[] inputs, Tensor axis, bool keep_dims = false, string name = null) - { - if (tf.Context.executing_eagerly()) - { - return mean_eager_fallback(inputs, axis, keep_dims: keep_dims, name: name, ctx: tf.Context); - } - - var _op = tf.OpDefLib._apply_op_helper("Mean", name, args: new { inputs, reduction_indices = axis, keep_dims = keep_dims }); - - return _op.output; - } - - private static Tensor mean_eager_fallback(Tensor[] inputs, Tensor axis, bool keep_dims = false, string name = null, Context ctx = null) - { - var (_attr_T, input) = tf.Runner.ArgsToMatchingEager(ctx, args: new[] { inputs }); - var (_attr_Tidx, axis1) = tf.Runner.ArgsToMatchingEager(ctx, default_dtype: tf.int32, args: new[] { axis }); - var _inputs_flat = input.concat(axis1); - var _attrs = new object[] { "keep_dims", keep_dims, "T", _attr_T, "Tidx", _attr_Tidx }; - - return tf.Runner.Execute(ctx, "Mean", 1, _inputs_flat, _attrs, name: name)[0]; - } - - public static Tensor prod(T1 input, T2 axis, bool keep_dims = false, string name = null) - => tf.Context.ExecuteOp("Prod", name, - new ExecuteOpArgs(input, axis).SetAttributes(new { keep_dims, reduction_indices = axis })); - - private static Tensor prod_eager_fallback(Tensor input_t, int[] axis, bool keep_dims, string name, Context ctx = null) - { - var (_attr_T, input) = tf.Runner.ArgsToMatchingEager(ctx, args: new[] { input_t }); - var (_attr_Tidx, axis1) = tf.Runner.ArgsToMatchingEager(ctx, default_dtype: tf.int32, args: new[] { axis }); - var _inputs_flat = input.concat(axis1); - var _attrs = new object[] { "keep_dims", keep_dims, "T", _attr_T, "Tidx", _attr_Tidx }; - - return tf.Runner.Execute(ctx, "Prod", 1, _inputs_flat, _attrs, name: name)[0]; - } - - public static Tensor acos(Tensor x, string name = null) - => tf.Context.ExecuteOp("Acos", name, new ExecuteOpArgs(x)); - - public static Tensor asin(Tensor x, string name = null) - => tf.Context.ExecuteOp("Asin", name, new ExecuteOpArgs(x)); - - public static Tensor add(Tensor x, Tensor y, string name = null) - => tf.Context.ExecuteOp("Add", name, new ExecuteOpArgs(x, y)); - - public static Tensor add(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("Add", name, new ExecuteOpArgs(x, y)); - - public static Tensor add_v2(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("AddV2", name, new ExecuteOpArgs(x, y)); - - public static Tensor atan(Tensor x, string name = null) - => tf.Context.ExecuteOp("Atan", name, new ExecuteOpArgs(x)); - - public static Tensor ceil(Tensor x, string name = null) - => tf.Context.ExecuteOp("Ceil", name, new ExecuteOpArgs(x)); - - public static Tensor sin(Tensor x, string name = null) - => tf.Context.ExecuteOp("Sin", name, new ExecuteOpArgs(x)); - - /// - /// Computes sigmoid of x element-wise. - /// - /// - /// - /// - /// If specified, the created operation in the graph will be this one, otherwise it will be named 'Sigmoid'. - /// - /// - /// The Operation can be fetched from the resulting Tensor, by fetching the Operation property from the result. - /// - /// - /// Specifically, y = 1 / (1 + exp(-x)). - /// - public static Tensor sigmoid(Tensor x, string name = "Sigmoid") - => tf.Context.ExecuteOp("Sigmoid", name, new ExecuteOpArgs(x)); + /// + /// Computes the absolute value of a tensor. + /// + /// + /// + /// Given a tensor `x`, this operation returns a tensor containing the absolute + /// value of each element in `x`. For example, if x is an input element and y is + /// an output element, this operation computes \(y = |x|\). + /// + /// + /// + /// + public static Tensor abs(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Abs", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return abs_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Abs", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Abs", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor abs_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Abs", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Abs", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the element-wise sum of a list of tensors. + /// + /// + /// + /// `tf.accumulate_n_v2` performs the same operation as `tf.add_n`, but does not + /// wait for all of its inputs to be ready before beginning to sum. This can + /// save memory if inputs are ready at different times, since minimum temporary + /// storage is proportional to the output size rather than the inputs size. + /// + /// Unlike the original `accumulate_n`, `accumulate_n_v2` is differentiable. + /// + /// Returns a `Tensor` of same shape and type as the elements of `inputs`. + /// + /// + /// + /// + /// + /// Shape of elements of `inputs`. + /// + /// + /// + public static Tensor accumulate_nv2(Tensors inputs, Shape shape, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AccumulateNV2", name) { args = new object[] { inputs }, attrs = new Dictionary() { ["shape"] = shape } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return accumulate_nv2_eager_fallback(inputs, shape: shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["inputs"] = inputs; + keywords["shape"] = shape; + var _op = tf.OpDefLib._apply_op_helper("AccumulateNV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "N", _op._get_attr_int("N"), "T", _op._get_attr_type("T"), "shape", _op.get_attr("shape") }; + _execute.record_gradient("AccumulateNV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } - /// - /// Computes the gradient of the sigmoid of x wrt its input. - /// - /// - /// - /// - /// - /// - /// If specified, the created operation in the graph will be this one, otherwise it will be named 'SigmoidGrad'. - /// - /// - /// The Operation can be fetched from the resulting Tensor, by fetching the Operation property from the result. - /// - /// - /// Specifically, grad = dy * y * (1 - y), where y = sigmoid(x), and - /// dy is the corresponding input gradient. - /// - public static Tensor sigmoid_grad(Tensor y, Tensor dy, string name = "SigmoidGrad") - => tf.Context.ExecuteOp("SigmoidGrad", name, new ExecuteOpArgs(y, dy)); + public static Tensor accumulate_nv2_eager_fallback(Tensors inputs, Shape shape, string name, Context ctx) + { + List _inputs_flat_list = new(); + _inputs_flat_list.AddRange(inputs); + var _inputs_flat = _inputs_flat_list.ToArray(); + object[] _attrs = new object[] { "N", inputs.Length, "T", inputs.dtype, "shape", shape }; + var _result = _execute.execute("AccumulateNV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AccumulateNV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes acos of x element-wise. + /// + /// + /// + /// + /// Provided an input tensor, the `tf.math.acos` operation returns the inverse cosine of each element of the tensor. If `y = tf.math.cos(x)` then, `x = tf.math.acos(y)`. + /// + /// Input range is `[-1, 1]` and the output has a range of `[0, pi]`. + /// + /// + /// + /// + /// + public static Tensor acos(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Acos", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return acos_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Acos", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Acos", _op.inputs, _attrs, _result); + } + return _result[0]; + } - public static Tensor sign(T x, string name = "Sign") - => tf.Context.ExecuteOp("Sign", name, new ExecuteOpArgs(x)); + public static Tensor acos_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Acos", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Acos", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes inverse hyperbolic cosine of x element-wise. + /// + /// + /// + /// Given an input tensor, the function computes inverse hyperbolic cosine of every element. + /// Input range is `[1, inf]`. It returns `nan` if the input lies outside the range. + /// + /// ```python + /// x = tf.constant([-2, -0.5, 1, 1.2, 200, 10000, float("inf")]) + /// tf.math.acosh(x) ==> [nan nan 0. 0.62236255 5.9914584 9.903487 inf] + /// ``` + /// + /// + /// + /// + public static Tensor acosh(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Acosh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return acosh_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Acosh", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Acosh", _op.inputs, _attrs, _result); + } + return _result[0]; + } - public static Tensor sinh(Tensor x, string name = null) - => tf.Context.ExecuteOp("Sinh", name, new ExecuteOpArgs(x)); + public static Tensor acosh_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Acosh", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Acosh", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns x + y element-wise. + /// + /// + /// + /// *NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// Given two input tensors, the `tf.add` operation computes the sum for every element in the tensor. + /// + /// Both input and output have a range `(-inf, inf)`. + /// + /// + /// + /// + /// + /// + public static Tensor add(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Add", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return add_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Add", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Add", _op.inputs, _attrs, _result); + } + return _result[0]; + } - public static Tensor cos(T x, string name = null) - => tf.Context.ExecuteOp("Cos", name, new ExecuteOpArgs(x)); + public static Tensor add_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Add", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Add", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Add all input tensors element wise. + /// + /// + /// + /// Inputs must be of same size and shape. + /// + /// ```python + /// x = [9, 7, 10] + /// tf.math.add_n(x) ==> 26 + /// ``` + /// + /// + /// + /// + public static Tensor add_n(Tensors inputs, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AddN", name) { args = new object[] { inputs }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return add_n_eager_fallback(inputs, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["inputs"] = inputs; + var _op = tf.OpDefLib._apply_op_helper("AddN", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "N", _op._get_attr_int("N"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("AddN", _op.inputs, _attrs, _result); + } + return _result[0]; + } - public static Tensor cosh(Tensor x, string name = null) - => tf.Context.ExecuteOp("Cosh", name, new ExecuteOpArgs(x)); + public static Tensor add_n_eager_fallback(Tensors inputs, string name, Context ctx) + { + List _inputs_flat_list = new(); + _inputs_flat_list.AddRange(inputs); + var _inputs_flat = _inputs_flat_list.ToArray(); + object[] _attrs = new object[] { "N", inputs.Length, "T", inputs.dtype }; + var _result = _execute.execute("AddN", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AddN", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns x + y element-wise. + /// + /// + /// + /// *NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor add_v2(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AddV2", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return add_v2_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("AddV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("AddV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } - /// - /// Computes the sum along segments of a tensor. - /// - /// - /// - /// - /// - /// - public static Tensor unsorted_segment_sum(Tensor data, Tensor segment_ids, Tensor num_segments, string name = null) + public static Tensor add_v2_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("AddV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AddV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the "logical and" of elements across dimensions of a tensor. + /// + /// + /// + /// Reduces `input` along the dimensions given in `reduction_indices`. Unless + /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in + /// `reduction_indices`. If `keep_dims` is true, the reduced dimensions are + /// retained with length 1. + /// + /// + /// + /// + /// + /// + /// If true, retain reduced dimensions with length 1. + /// + /// + /// + public static Tensor all(Tensor input, Tensor reduction_indices, bool keep_dims = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) { - var _op = tf.OpDefLib._apply_op_helper("UnsortedSegmentSum", name, new { data, segment_ids, num_segments }); - return _op.outputs[0]; + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "All", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return all_eager_fallback(input, reduction_indices, keep_dims: keep_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["reduction_indices"] = reduction_indices; + keywords["keep_dims"] = keep_dims; + var _op = tf.OpDefLib._apply_op_helper("All", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "keep_dims", _op._get_attr_bool("keep_dims"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("All", _op.inputs, _attrs, _result); } + return _result[0]; + } - public static Tensor tan(Tensor x, string name = null) - => tf.Context.ExecuteOp("Tan", name, new ExecuteOpArgs(x)); - - public static Tensor tanh(Tensor x, string name = null) - => tf.Context.ExecuteOp("Tanh", name, new ExecuteOpArgs(x)); - - /// - /// Computes the gradient for the tanh of `x` wrt its input. - /// - /// - /// - /// - /// - public static Tensor tanh_grad(Tensor y, Tensor dy, string name = null) - => tf.Context.ExecuteOp("TanhGrad", name, new ExecuteOpArgs(y, dy)); - - public static Tensor floor(Tensor x, string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("Floor", name, args: new { x }); - - return _op.outputs[0]; - } - - public static Tensor _clip_by_value(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("ClipByValue", name, args: new { t, clip_value_min, clip_value_max }); - - return _op.outputs[0]; - } - - public static Tensor greater(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("Greater", name, new ExecuteOpArgs(x, y)); - - /// - /// Computes the log of the absolute value of `Gamma(x)` element-wise. - /// - /// - /// A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. - /// - /// - /// - /// - /// The Operation can be fetched from the resulting Tensor, by fetching the Operation property from the result. - /// - public static Tensor lgamma(Tensor x, string name = null) - => tf.Context.ExecuteOp("Lgamma", name, new ExecuteOpArgs(x)); - - - public static Tensor greater_equal(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("GreaterEqual", name, new ExecuteOpArgs(x, y)); - - public static Tensor less(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("Less", name, new ExecuteOpArgs(x, y)); - - public static Tensor less_equal(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("LessEqual", name, new ExecuteOpArgs(x, y)); - - public static Tensor log1p(Tensor x, string name = null) - => tf.Context.ExecuteOp("Log1p", name, new ExecuteOpArgs(x)); - - public static Tensor logical_and(T x, T y, string name = null) - => tf.Context.ExecuteOp("LogicalAnd", name, new ExecuteOpArgs(x, y)); - - public static Tensor logical_not(Tensor x, string name = null) - => tf.Context.ExecuteOp("LogicalNot", name, new ExecuteOpArgs(x)); - - public static Tensor logical_or(Tensor x, Tensor y, string name = null) - => tf.Context.ExecuteOp("LogicalOr", name, new ExecuteOpArgs(x, y)); - - public static Tensor logical_xor(Tensor x, Tensor y, string name = "LogicalXor") - { - return logical_and( - logical_or(x, y), - logical_not(logical_and(x, y)), - name); - } + public static Tensor all_eager_fallback(Tensor input, Tensor reduction_indices, bool keep_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, reduction_indices }; + object[] _attrs = new object[] { "keep_dims", keep_dims, "Tidx", reduction_indices.dtype }; + var _result = _execute.execute("All", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("All", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the argument of a complex number. + /// + /// + /// + /// Given a tensor `input` of complex numbers, this operation returns a tensor of + /// type `float` that is the argument of each element in `input`. All elements in + /// `input` must be complex numbers of the form \(a + bj\), where *a* + /// is the real part and *b* is the imaginary part. + /// + /// The argument returned by this operation is of the form \(atan2(b, a)\). + /// + /// For example: + /// + /// ``` + /// # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] + /// tf.angle(input) ==> [2.0132, 1.056] + /// ``` + /// + /// @compatibility(numpy) + /// Equivalent to np.angle. + /// @end_compatibility + /// + /// + /// + /// + /// + public static Tensor angle(Tensor input, TF_DataType Tout = TF_DataType.TF_FLOAT, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Angle", name) { args = new object[] { input }, attrs = new Dictionary() { ["Tout"] = Tout } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return angle_eager_fallback(input, Tout: Tout, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["Tout"] = Tout; + var _op = tf.OpDefLib._apply_op_helper("Angle", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tout", _op._get_attr_type("Tout") }; + _execute.record_gradient("Angle", _op.inputs, _attrs, _result); + } + return _result[0]; + } - public static Tensor squared_difference(Tensor x, Tensor y, string name = null) - => tf.Context.ExecuteOp("SquaredDifference", name, new ExecuteOpArgs(x, y)); + public static Tensor angle_eager_fallback(Tensor input, TF_DataType Tout, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "Tout", Tout }; + var _result = _execute.execute("Angle", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Angle", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the "logical or" of elements across dimensions of a tensor. + /// + /// + /// + /// Reduces `input` along the dimensions given in `reduction_indices`. Unless + /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in + /// `reduction_indices`. If `keep_dims` is true, the reduced dimensions are + /// retained with length 1. + /// + /// + /// + /// + /// + /// + /// If true, retain reduced dimensions with length 1. + /// + /// + /// + public static Tensor any(Tensor input, Tensor reduction_indices, bool keep_dims = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Any", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return any_eager_fallback(input, reduction_indices, keep_dims: keep_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["reduction_indices"] = reduction_indices; + keywords["keep_dims"] = keep_dims; + var _op = tf.OpDefLib._apply_op_helper("Any", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "keep_dims", _op._get_attr_bool("keep_dims"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("Any", _op.inputs, _attrs, _result); + } + return _result[0]; + } - /// - /// Computes square of x element-wise. - /// - /// A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`. - /// A name for the operation (optional). - /// A `Tensor`. Has the same type as `x`. - public static Tensor square(Tensor x, string name = null) - => tf.Context.ExecuteOp("Square", name, new ExecuteOpArgs(x)); + public static Tensor any_eager_fallback(Tensor input, Tensor reduction_indices, bool keep_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, reduction_indices }; + object[] _attrs = new object[] { "keep_dims", keep_dims, "Tidx", reduction_indices.dtype }; + var _result = _execute.execute("Any", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Any", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of abs(x-y) < tolerance element-wise. + /// + /// + /// + /// + /// + public static Tensor approximate_equal(Tensor x, Tensor y, float tolerance = 1E-05f, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ApproximateEqual", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["tolerance"] = tolerance } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return approximate_equal_eager_fallback(x, y, tolerance: tolerance, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + keywords["tolerance"] = tolerance; + var _op = tf.OpDefLib._apply_op_helper("ApproximateEqual", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "tolerance", _op.get_attr("tolerance") }; + _execute.record_gradient("ApproximateEqual", _op.inputs, _attrs, _result); + } + return _result[0]; + } - /// - /// Returns which elements of x are finite. - /// - /// A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. - /// A name for the operation (optional). - /// A `Tensor` of type `bool`. - public static Tensor is_finite(Tensor x, string name = null) - => tf.Context.ExecuteOp("IsFinite", name, new ExecuteOpArgs(x)); + public static Tensor approximate_equal_eager_fallback(Tensor x, Tensor y, float tolerance, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype, "tolerance", tolerance }; + var _result = _execute.execute("ApproximateEqual", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ApproximateEqual", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the index with the largest value across dimensions of a tensor. + /// + /// + /// + /// Note that in case of ties the identity of the return value is not guaranteed. + /// + /// Usage: + /// ```python + /// import tensorflow as tf + /// a = [1, 10, 26.9, 2.8, 166.32, 62.3] + /// b = tf.math.argmax(input = a) + /// c = tf.keras.backend.eval(b) + /// # c = 4 + /// # here a[4] = 166.32 which is the largest element of a across axis 0 + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor arg_max(Tensor input, Tensor dimension, TF_DataType output_type = TF_DataType.TF_INT64, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ArgMax", name) { args = new object[] { input, dimension }, attrs = new Dictionary() { ["output_type"] = output_type } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return arg_max_eager_fallback(input, dimension, output_type: output_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["dimension"] = dimension; + keywords["output_type"] = output_type; + var _op = tf.OpDefLib._apply_op_helper("ArgMax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx"), "output_type", _op._get_attr_type("output_type") }; + _execute.record_gradient("ArgMax", _op.inputs, _attrs, _result); + } + return _result[0]; + } - public static Tensor is_nan(Tensor x, string name = null) - => tf.Context.ExecuteOp("IsNan", name, new ExecuteOpArgs(x)); - - - /// - /// Computes exponential of x element-wise. \\(y = e^x\\). - /// - /// A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. - /// A name for the operation (optional). - /// A `Tensor`. Has the same type as `x`. - public static Tensor exp(Tensor x, string name = null) - => tf.Context.ExecuteOp("Exp", name, new ExecuteOpArgs(x)); - - /// - /// Computes natural logarithm of x element-wise. - /// - /// A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`. - /// name: A name for the operation (optional). - /// A `Tensor`. Has the same type as `x`. - public static Tensor log(Tensor x, string name = null) - => tf.Context.ExecuteOp("Log", name, new ExecuteOpArgs(x)); - - public static Tensor softplus(Tensor features, string name = null) - => tf.Context.ExecuteOp("Softplus", name, new ExecuteOpArgs(features)); - - public static Tensor cast(Tensor x, TF_DataType DstT, bool Truncate = false, string name = null) - => tf.Context.ExecuteOp("Cast", name, new ExecuteOpArgs(x) - .SetAttributes(new { DstT, Truncate })); - - public static Tensor neg(Tensor x, string name = null) - => tf.Context.ExecuteOp("Neg", name, new ExecuteOpArgs(x)); - - public static Tensor sqrt(Tensor x, string name = null) - => tf.Context.ExecuteOp("Sqrt", name, new ExecuteOpArgs(x)); - - public static Tensor sub(Tensor x, Tensor y, string name = null) - => tf.Context.ExecuteOp("Sub", name, new ExecuteOpArgs(x, y)); - - public static Tensor sub(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("Sub", name, new ExecuteOpArgs(x, y)); - - /// - /// Returns the truth value of (x == y) element-wise. - /// - /// - /// - /// - /// - public static Tensor equal(Tx x, Ty y, bool incompatible_shape_error = true, string name = null) - => tf.Context.ExecuteOp("Equal", name, new ExecuteOpArgs(x, y) - .SetAttributes(new - { - incompatible_shape_error - })); - - /// - /// Returns the truth value of (x != y) element-wise. - /// - /// The type of the x. - /// The type of the y. - /// The x. - /// The y. - /// The name. - /// - public static Tensor not_equal(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("NotEqual", name, new ExecuteOpArgs(x, y)); - - public static Tensor atan2(Tensor y, Tensor x, string name = null) - => tf.Context.ExecuteOp("Atan2", name, new ExecuteOpArgs(y, x)); - - public static Tensor mul(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("Mul", name, new ExecuteOpArgs(x, y)); - - public static Tensor mul_no_nan(Tx x, Ty y, string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("MulNoNan", name, args: new { x, y }); - - return _op.outputs[0]; - } - - public static Tensor real_div(Tensor x, Tensor y, string name = null) - => tf.Context.ExecuteOp("RealDiv", name, new ExecuteOpArgs(x, y)); - - public static Tensor reciprocal(Tensor x, string name = null) - => tf.Context.ExecuteOp("Reciprocal", name, new ExecuteOpArgs(x)); - - public static Tensor floor_mod(Tensor x, Tensor y, string name = null) - => tf.Context.ExecuteOp("FloorMod", name, new ExecuteOpArgs(x, y)); - - public static Tensor floor_div(Tensor x, Tensor y, string name = null) - => tf.Context.ExecuteOp("FloorDiv", name, new ExecuteOpArgs(x, y)); - - /// - /// Multiply the matrix "a" by the matrix "b". - /// - /// - /// - /// - /// - /// - /// - public static Tensor mat_mul(Tensor a, Tensor b, bool transpose_a = false, bool transpose_b = false, string name = null) - => tf.Context.ExecuteOp("MatMul", name, new ExecuteOpArgs(a, b) - .SetAttributes(new - { - transpose_a, - transpose_b - })); - - /// - /// Returns the max of x and y (i.e. x > y ? x : y) element-wise. - /// - /// - /// - /// - /// - public static Tensor maximum(T1 x, T2 y, string name = null) - => tf.Context.ExecuteOp("Maximum", name, new ExecuteOpArgs(x, y)); - - public static Tensor minimum(T1 x, T2 y, string name = null) - => tf.Context.ExecuteOp("Minimum", name, new ExecuteOpArgs(x, y)); - - public static Tensor _abs(Tensor x, string name = null) - => tf.Context.ExecuteOp("Abs", name, new ExecuteOpArgs(x)); - - public static Tensor _any(Tx input, Ty axis, bool keep_dims = false, string name = null) - { - var _op = tf.OpDefLib._apply_op_helper("Any", name, new { input, reduction_indices = axis, keep_dims }); - - return _op.outputs[0]; - } - - /// - /// Subroutine for Min or Max functions. See _min and _max - /// - private static Tensor MinOrMax(Tx input, Ty axis, string methodName, bool keep_dims = false, string name = null) - => tf.Context.ExecuteOp(methodName, name, new ExecuteOpArgs(input, axis) - { - GetGradientAttrs = (op) => new - { - T = op.get_attr("T"), - align_corners = op.get_attr("align_corners"), - half_pixel_centers = op.get_attr("half_pixel_centers") - } - }.SetAttributes(new { keep_dims, reduction_indices = axis })); - - public static Tensor _max(Tx input, Ty axis, bool keep_dims = false, string name = null) - => MinOrMax(input, axis, "Max", keep_dims: keep_dims, name: name); - - public static Tensor _min(Tx input, Ty axis, bool keep_dims = false, string name = null) - => MinOrMax(input, axis, "Min", keep_dims: keep_dims, name: name); - - - public static Tensor pow(Tx x, Ty y, string name = null) - => tf.Context.ExecuteOp("Pow", name, new ExecuteOpArgs(x, y)); - - public static Tensor _sum(Tx input, Ty axis = default, bool keep_dims = false, string name = null) - => tf.Context.ExecuteOp("Sum", name, - new ExecuteOpArgs(input, axis).SetAttributes(new { keep_dims, reduction_indices = axis })); - - private static Tensor _sum_eager_fallback(Tensor[] inputs, Tensor axis, bool keep_dims = false, string name = null, Context ctx = null) - { - var (_attr_T, input) = tf.Runner.ArgsToMatchingEager(ctx, args: new[] { inputs }); - var (_attr_Tidx, axis1) = tf.Runner.ArgsToMatchingEager(ctx, tf.int32, new[] { axis }); - var _inputs_flat = input.concat(axis1); - var _attrs = new object[] { "keep_dims", keep_dims, "T", _attr_T, "Tidx", _attr_Tidx }; - - return tf.Runner.Execute(ctx, "Sum", 1, _inputs_flat, _attrs, name: name)[0]; - } - - /// - /// Creates a sequence of numbers. - /// - /// - /// - /// - /// - /// - public static Tensor range(Tensor start, Tensor limit, Tensor delta, string name = null) - => tf.Context.ExecuteOp("Range", name, new ExecuteOpArgs(start, limit, delta)); - - /// - /// Rounds the values of a tensor to the nearest integer, element-wise. - /// - /// - /// - /// - /// If specified, the created operation in the graph will be this one, otherwise it will be named 'Round'. - /// - /// - /// The Operation can be fetched from the resulting Tensor, by fetching the Operation property from the result. - /// - /// - /// Rounds half to even. Also known as bankers rounding. If you want to round - /// according to the current system rounding mode use std::cint. - /// - public static Tensor round(Tensor x, string name = "Round") - => tf.Context.ExecuteOp("Round", name, new ExecuteOpArgs(x)); - - /// - /// Computes reciprocal of square root of x element-wise. - /// - /// - /// - /// - public static Tensor rsqrt(Tensor x, string name = null) - => tf.Context.ExecuteOp("Rsqrt", name, new ExecuteOpArgs(x)); - - /// - /// Returns the fraction of zeros in value. - /// - /// A tensor of numeric type. - /// A name for the operation (optional). - /// The fraction of zeros in value, with type float32. - public static Tensor zero_fraction(Tensor value, string name = null) - => tf.Context.ExecuteOp("zero_fraction", name, new ExecuteOpArgs(value)); + public static Tensor arg_max_eager_fallback(Tensor input, Tensor dimension, TF_DataType output_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, dimension }; + object[] _attrs = new object[] { "T", input.dtype, "Tidx", dimension.dtype, "output_type", output_type }; + var _result = _execute.execute("ArgMax", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ArgMax", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the index with the smallest value across dimensions of a tensor. + /// + /// + /// + /// Note that in case of ties the identity of the return value is not guaranteed. + /// + /// Usage: + /// ```python + /// import tensorflow as tf + /// a = [1, 10, 26.9, 2.8, 166.32, 62.3] + /// b = tf.math.argmin(input = a) + /// c = tf.keras.backend.eval(b) + /// # c = 0 + /// # here a[0] = 1 which is the smallest element of a across axis 0 + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor arg_min(Tensor input, Tensor dimension, TF_DataType output_type = TF_DataType.TF_INT64, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ArgMin", name) { args = new object[] { input, dimension }, attrs = new Dictionary() { ["output_type"] = output_type } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return arg_min_eager_fallback(input, dimension, output_type: output_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["dimension"] = dimension; + keywords["output_type"] = output_type; + var _op = tf.OpDefLib._apply_op_helper("ArgMin", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx"), "output_type", _op._get_attr_type("output_type") }; + _execute.record_gradient("ArgMin", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor arg_min_eager_fallback(Tensor input, Tensor dimension, TF_DataType output_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, dimension }; + object[] _attrs = new object[] { "T", input.dtype, "Tidx", dimension.dtype, "output_type", output_type }; + var _result = _execute.execute("ArgMin", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ArgMin", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the trignometric inverse sine of x element-wise. + /// + /// + /// + /// The `tf.math.asin` operation returns the inverse of `tf.math.sin`, such that + /// if `y = tf.math.sin(x)` then, `x = tf.math.asin(y)`. + /// + /// **Note**: The output of `tf.math.asin` will lie within the invertible range + /// of sine, i.e [-pi/2, pi/2]. + /// + /// For example: + /// + /// ```python + /// # Note: [1.047, 0.785] ~= [(pi/3), (pi/4)] + /// x = tf.constant([1.047, 0.785]) + /// y = tf.math.sin(x) # [0.8659266, 0.7068252] + /// + /// tf.math.asin(y) # [1.047, 0.785] = x + /// ``` + /// + /// + /// + /// + /// + public static Tensor asin(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Asin", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return asin_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Asin", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Asin", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor asin_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Asin", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Asin", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes inverse hyperbolic sine of x element-wise. + /// + /// + /// + /// Given an input tensor, this function computes inverse hyperbolic sine + /// for every element in the tensor. Both input and output has a range of + /// `[-inf, inf]`. + /// + /// ```python + /// x = tf.constant([-float("inf"), -2, -0.5, 1, 1.2, 200, 10000, float("inf")]) + /// tf.math.asinh(x) ==> [-inf -1.4436355 -0.4812118 0.8813736 1.0159732 5.991471 9.903487 inf] + /// ``` + /// + /// + /// + /// + public static Tensor asinh(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Asinh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return asinh_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Asinh", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Asinh", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor asinh_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Asinh", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Asinh", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the trignometric inverse tangent of x element-wise. + /// + /// + /// + /// The `tf.math.atan` operation returns the inverse of `tf.math.tan`, such that + /// if `y = tf.math.tan(x)` then, `x = tf.math.atan(y)`. + /// + /// **Note**: The output of `tf.math.atan` will lie within the invertible range + /// of tan, i.e (-pi/2, pi/2). + /// + /// For example: + /// + /// ```python + /// # Note: [1.047, 0.785] ~= [(pi/3), (pi/4)] + /// x = tf.constant([1.047, 0.785]) + /// y = tf.math.tan(x) # [1.731261, 0.99920404] + /// + /// tf.math.atan(y) # [1.047, 0.785] = x + /// ``` + /// + /// + /// + /// + /// + public static Tensor atan(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Atan", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return atan_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Atan", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Atan", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor atan_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Atan", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Atan", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes arctangent of `y/x` element-wise, respecting signs of the arguments. + /// + /// + /// + /// This is the angle \( heta in [-pi, pi] \) such that + /// \[ x = r cos( heta) \] + /// and + /// \[ y = r sin( heta) \] + /// where \(r = sqrt{x^2 + y^2} \). + /// + /// For example: + /// + /// >>> x = [1., 1.] + /// >>> y = [1., -1.] + /// >>> print((tf.math.atan2(y,x) * (180 / np.pi)).numpy()) + /// [ 45. -45.] + /// + /// + /// + /// + /// + /// + /// + public static Tensor atan2(Tensor y, Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Atan2", name) { args = new object[] { y, x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return atan2_eager_fallback(y, x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["y"] = y; + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Atan2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Atan2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor atan2_eager_fallback(Tensor y, Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y, x }; + object[] _attrs = new object[] { "T", y.dtype }; + var _result = _execute.execute("Atan2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Atan2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes inverse hyperbolic tangent of x element-wise. + /// + /// + /// + /// Given an input tensor, this function computes inverse hyperbolic tangent + /// for every element in the tensor. Input range is `[-1,1]` and output range is + /// `[-inf, inf]`. If input is `-1`, output will be `-inf` and if the + /// input is `1`, output will be `inf`. Values outside the range will have + /// `nan` as output. + /// + /// ```python + /// x = tf.constant([-float("inf"), -1, -0.5, 1, 0, 0.5, 10, float("inf")]) + /// tf.math.atanh(x) ==> [nan -inf -0.54930615 inf 0. 0.54930615 nan nan] + /// ``` + /// + /// + /// + /// + public static Tensor atanh(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Atanh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return atanh_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Atanh", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Atanh", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor atanh_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Atanh", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Atanh", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Multiplies slices of two tensors in batches. + /// + /// + /// + /// Multiplies all slices of `Tensor` `x` and `y` (each slice can be + /// viewed as an element of a batch), and arranges the individual results + /// in a single output tensor of the same batch size. Each of the + /// individual slices can optionally be adjointed (to adjoint a matrix + /// means to transpose and conjugate it) before multiplication by setting + /// the `adj_x` or `adj_y` flag to `True`, which are by default `False`. + /// + /// The input tensors `x` and `y` are 2-D or higher with shape `[..., r_x, c_x]` + /// and `[..., r_y, c_y]`. + /// + /// The output tensor is 2-D or higher with shape `[..., r_o, c_o]`, where: + /// + /// r_o = c_x if adj_x else r_x + /// c_o = r_y if adj_y else c_y + /// + /// It is computed as: + /// + /// output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :]) + /// + /// + /// + /// + /// + /// + /// If `True`, adjoint the slices of `x`. Defaults to `False`. + /// + /// + /// + /// + /// If `True`, adjoint the slices of `y`. Defaults to `False`. + /// + /// + /// + public static Tensor batch_mat_mul(Tensor x, Tensor y, bool adj_x = false, bool adj_y = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatMul", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["adj_x"] = adj_x, ["adj_y"] = adj_y } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_mat_mul_eager_fallback(x, y, adj_x: adj_x, adj_y: adj_y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + keywords["adj_x"] = adj_x; + keywords["adj_y"] = adj_y; + var _op = tf.OpDefLib._apply_op_helper("BatchMatMul", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "adj_x", _op._get_attr_bool("adj_x"), "adj_y", _op._get_attr_bool("adj_y") }; + _execute.record_gradient("BatchMatMul", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor batch_mat_mul_eager_fallback(Tensor x, Tensor y, bool adj_x, bool adj_y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype, "adj_x", adj_x, "adj_y", adj_y }; + var _result = _execute.execute("BatchMatMul", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BatchMatMul", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Multiplies slices of two tensors in batches. + /// + /// + /// + /// Multiplies all slices of `Tensor` `x` and `y` (each slice can be + /// viewed as an element of a batch), and arranges the individual results + /// in a single output tensor of the same batch size. Each of the + /// individual slices can optionally be adjointed (to adjoint a matrix + /// means to transpose and conjugate it) before multiplication by setting + /// the `adj_x` or `adj_y` flag to `True`, which are by default `False`. + /// + /// The input tensors `x` and `y` are 2-D or higher with shape `[..., r_x, c_x]` + /// and `[..., r_y, c_y]`. + /// + /// The output tensor is 2-D or higher with shape `[..., r_o, c_o]`, where: + /// + /// r_o = c_x if adj_x else r_x + /// c_o = r_y if adj_y else c_y + /// + /// It is computed as: + /// + /// output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :]) + /// + /// *NOTE*: `BatchMatMulV2` supports broadcasting in the batch dimensions. More + /// about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html). + /// + /// + /// + /// + /// + /// + /// + /// If `True`, adjoint the slices of `x`. Defaults to `False`. + /// + /// + /// + /// + /// If `True`, adjoint the slices of `y`. Defaults to `False`. + /// + /// + /// + public static Tensor batch_mat_mul_v2(Tensor x, Tensor y, bool adj_x = false, bool adj_y = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatMulV2", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["adj_x"] = adj_x, ["adj_y"] = adj_y } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_mat_mul_v2_eager_fallback(x, y, adj_x: adj_x, adj_y: adj_y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + keywords["adj_x"] = adj_x; + keywords["adj_y"] = adj_y; + var _op = tf.OpDefLib._apply_op_helper("BatchMatMulV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "adj_x", _op._get_attr_bool("adj_x"), "adj_y", _op._get_attr_bool("adj_y") }; + _execute.record_gradient("BatchMatMulV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor batch_mat_mul_v2_eager_fallback(Tensor x, Tensor y, bool adj_x, bool adj_y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype, "adj_x", adj_x, "adj_y", adj_y }; + var _result = _execute.execute("BatchMatMulV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BatchMatMulV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Multiplies slices of two tensors in batches. + /// + /// + /// + /// Multiplies all slices of `Tensor` `x` and `y` (each slice can be + /// viewed as an element of a batch), and arranges the individual results + /// in a single output tensor of the same batch size. Each of the + /// individual slices can optionally be adjointed (to adjoint a matrix + /// means to transpose and conjugate it) before multiplication by setting + /// the `adj_x` or `adj_y` flag to `True`, which are by default `False`. + /// + /// The input tensors `x` and `y` are 2-D or higher with shape `[..., r_x, c_x]` + /// and `[..., r_y, c_y]`. + /// + /// The output tensor is 2-D or higher with shape `[..., r_o, c_o]`, where: + /// + /// r_o = c_x if adj_x else r_x + /// c_o = r_y if adj_y else c_y + /// + /// It is computed as: + /// + /// output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :]) + /// + /// *NOTE*: `BatchMatMulV3` supports broadcasting in the batch dimensions. More + /// about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html). + /// + /// + /// + /// + /// + /// + /// + /// If not spcified, Tout is the same type to input type. + /// + /// + /// + /// + /// If `True`, adjoint the slices of `x`. Defaults to `False`. + /// + /// + /// + /// + /// If `True`, adjoint the slices of `y`. Defaults to `False`. + /// + /// + /// + public static Tensor batch_mat_mul_v3(Tensor x, Tensor y, TF_DataType Tout, bool adj_x = false, bool adj_y = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchMatMulV3", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["Tout"] = Tout, ["adj_x"] = adj_x, ["adj_y"] = adj_y } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_mat_mul_v3_eager_fallback(x, y, Tout: Tout, adj_x: adj_x, adj_y: adj_y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + keywords["Tout"] = Tout; + keywords["adj_x"] = adj_x; + keywords["adj_y"] = adj_y; + var _op = tf.OpDefLib._apply_op_helper("BatchMatMulV3", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Ta", _op._get_attr_type("Ta"), "Tb", _op._get_attr_type("Tb"), "Tout", _op._get_attr_type("Tout"), "adj_x", _op._get_attr_bool("adj_x"), "adj_y", _op._get_attr_bool("adj_y") }; + _execute.record_gradient("BatchMatMulV3", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor batch_mat_mul_v3_eager_fallback(Tensor x, Tensor y, TF_DataType Tout, bool adj_x, bool adj_y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "Ta", x.dtype, "Tb", y.dtype, "Tout", Tout, "adj_x", adj_x, "adj_y", adj_y }; + var _result = _execute.execute("BatchMatMulV3", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BatchMatMulV3", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute the regularized incomplete beta integral \\(I_x(a, b)\\). + /// + /// + /// + /// The regularized incomplete beta integral is defined as: + /// + /// + /// \(I_x(a, b) = rac{B(x; a, b)}{B(a, b)}\) + /// + /// where + /// + /// + /// \(B(x; a, b) = int_0^x t^{a-1} (1 - t)^{b-1} dt\) + /// + /// + /// is the incomplete beta function and \(B(a, b)\) is the *complete* + /// beta function. + /// + /// + /// + /// + /// + /// + public static Tensor betainc(Tensor a, Tensor b, Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Betainc", name) { args = new object[] { a, b, x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return betainc_eager_fallback(a, b, x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Betainc", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Betainc", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor betainc_eager_fallback(Tensor a, Tensor b, Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b, x }; + object[] _attrs = new object[] { "T", a.dtype }; + var _result = _execute.execute("Betainc", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Betainc", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Counts the number of occurrences of each value in an integer array. + /// + /// + /// + /// Outputs a vector with length `size` and the same dtype as `weights`. If + /// `weights` are empty, then index `i` stores the number of times the value `i` is + /// counted in `arr`. If `weights` are non-empty, then index `i` stores the sum of + /// the value in `weights` at each index where the corresponding value in `arr` is + /// `i`. + /// + /// Values in `arr` outside of the range [0, size) are ignored. + /// + /// + /// + /// + /// + /// + public static Tensor bincount(Tensor arr, Tensor size, Tensor weights, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Bincount", name) { args = new object[] { arr, size, weights }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return bincount_eager_fallback(arr, size, weights, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["arr"] = arr; + keywords["size"] = size; + keywords["weights"] = weights; + var _op = tf.OpDefLib._apply_op_helper("Bincount", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Bincount", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor bincount_eager_fallback(Tensor arr, Tensor size, Tensor weights, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { arr, size, weights }; + object[] _attrs = new object[] { "T", weights.dtype }; + var _result = _execute.execute("Bincount", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Bincount", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Bucketizes 'input' based on 'boundaries'. + /// + /// + /// + /// For example, if the inputs are + /// boundaries = [0, 10, 100] + /// input = [[-5, 10000] + /// [150, 10] + /// [5, 100]] + /// + /// then the output will be + /// output = [[0, 3] + /// [3, 2] + /// [1, 3]] + /// + /// + /// + /// + /// + /// A sorted list of floats gives the boundary of the buckets. + /// + /// + /// + public static Tensor bucketize(Tensor input, float[] boundaries, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Bucketize", name) { args = new object[] { input }, attrs = new Dictionary() { ["boundaries"] = boundaries } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return bucketize_eager_fallback(input, boundaries: boundaries, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["boundaries"] = boundaries; + var _op = tf.OpDefLib._apply_op_helper("Bucketize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "boundaries", _op.get_attr("boundaries") }; + _execute.record_gradient("Bucketize", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor bucketize_eager_fallback(Tensor input, float[] boundaries, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "boundaries", boundaries }; + var _result = _execute.execute("Bucketize", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Bucketize", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Cast x of type SrcT to y of DstT. + /// + /// + /// + /// + /// + public static Tensor cast(Tensor x, TF_DataType DstT, bool Truncate = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cast", name) { args = new object[] { x }, attrs = new Dictionary() { ["DstT"] = DstT, ["Truncate"] = Truncate } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return cast_eager_fallback(x, DstT: DstT, Truncate: Truncate, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["DstT"] = DstT; + keywords["Truncate"] = Truncate; + var _op = tf.OpDefLib._apply_op_helper("Cast", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "SrcT", _op._get_attr_type("SrcT"), "DstT", _op._get_attr_type("DstT"), "Truncate", _op._get_attr_bool("Truncate") }; + _execute.record_gradient("Cast", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor cast_eager_fallback(Tensor x, TF_DataType DstT, bool Truncate, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "SrcT", x.dtype, "DstT", DstT, "Truncate", Truncate }; + var _result = _execute.execute("Cast", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Cast", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns element-wise smallest integer not less than x. + /// + /// + /// + public static Tensor ceil(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Ceil", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return ceil_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Ceil", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Ceil", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor ceil_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Ceil", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Ceil", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Clips tensor values to a specified min and max. + /// + /// + /// + /// Given a tensor `t`, this operation returns a tensor of the same type and + /// shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`. + /// Any values less than `clip_value_min` are set to `clip_value_min`. Any values + /// greater than `clip_value_max` are set to `clip_value_max`. + /// + /// + /// + /// + /// + /// + public static Tensor clip_by_value(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ClipByValue", name) { args = new object[] { t, clip_value_min, clip_value_max }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return clip_by_value_eager_fallback(t, clip_value_min, clip_value_max, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["t"] = t; + keywords["clip_value_min"] = clip_value_min; + keywords["clip_value_max"] = clip_value_max; + var _op = tf.OpDefLib._apply_op_helper("ClipByValue", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("ClipByValue", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor clip_by_value_eager_fallback(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { t, clip_value_min, clip_value_max }; + object[] _attrs = new object[] { "T", t.dtype }; + var _result = _execute.execute("ClipByValue", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ClipByValue", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Converts two real numbers to a complex number. + /// + /// + /// + /// Given a tensor `real` representing the real part of a complex number, and a + /// tensor `imag` representing the imaginary part of a complex number, this + /// operation returns complex numbers elementwise of the form \(a + bj\), where + /// *a* represents the `real` part and *b* represents the `imag` part. + /// + /// The input tensors `real` and `imag` must have the same shape. + /// + /// For example: + /// + /// ``` + /// # tensor 'real' is [2.25, 3.25] + /// # tensor `imag` is [4.75, 5.75] + /// tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]] + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor complex(Tensor real, Tensor imag, TF_DataType Tout = TF_DataType.TF_COMPLEX64, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Complex", name) { args = new object[] { real, imag }, attrs = new Dictionary() { ["Tout"] = Tout } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return complex_eager_fallback(real, imag, Tout: Tout, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["real"] = real; + keywords["imag"] = imag; + keywords["Tout"] = Tout; + var _op = tf.OpDefLib._apply_op_helper("Complex", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tout", _op._get_attr_type("Tout") }; + _execute.record_gradient("Complex", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor complex_eager_fallback(Tensor real, Tensor imag, TF_DataType Tout, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { real, imag }; + object[] _attrs = new object[] { "T", real.dtype, "Tout", Tout }; + var _result = _execute.execute("Complex", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Complex", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the complex absolute value of a tensor. + /// + /// + /// + /// Given a tensor `x` of complex numbers, this operation returns a tensor of type + /// `float` or `double` that is the absolute value of each element in `x`. All + /// elements in `x` must be complex numbers of the form \(a + bj\). The absolute + /// value is computed as \( sqrt{a^2 + b^2}\). + /// + /// For example: + /// + /// >>> x = tf.complex(3.0, 4.0) + /// >>> print((tf.raw_ops.ComplexAbs(x=x, Tout=tf.dtypes.float32, name=None)).numpy()) + /// 5.0 + /// + /// + /// + /// + /// + /// + public static Tensor complex_abs(Tensor x, TF_DataType Tout = TF_DataType.TF_FLOAT, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ComplexAbs", name) { args = new object[] { x }, attrs = new Dictionary() { ["Tout"] = Tout } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return complex_abs_eager_fallback(x, Tout: Tout, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["Tout"] = Tout; + var _op = tf.OpDefLib._apply_op_helper("ComplexAbs", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tout", _op._get_attr_type("Tout") }; + _execute.record_gradient("ComplexAbs", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor complex_abs_eager_fallback(Tensor x, TF_DataType Tout, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype, "Tout", Tout }; + var _result = _execute.execute("ComplexAbs", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ComplexAbs", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the complex conjugate of a complex number. + /// + /// + /// + /// Given a tensor `input` of complex numbers, this operation returns a tensor of + /// complex numbers that are the complex conjugate of each element in `input`. The + /// complex numbers in `input` must be of the form \(a + bj\), where *a* is the + /// real part and *b* is the imaginary part. + /// + /// The complex conjugate returned by this operation is of the form \(a - bj\). + /// + /// For example: + /// + /// ``` + /// # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] + /// tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j] + /// ``` + /// + /// + /// + /// + public static Tensor conj(Tensor input, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conj", name) { args = new object[] { input }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conj_eager_fallback(input, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + var _op = tf.OpDefLib._apply_op_helper("Conj", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Conj", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conj_eager_fallback(Tensor input, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype }; + var _result = _execute.execute("Conj", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Conj", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes cos of x element-wise. + /// + /// + /// + /// Given an input tensor, this function computes cosine of every + /// element in the tensor. Input range is `(-inf, inf)` and + /// output range is `[-1,1]`. If input lies outside the boundary, `nan` + /// is returned. + /// + /// ```python + /// x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10000, float("inf")]) + /// tf.math.cos(x) ==> [nan -0.91113025 0.87758255 0.5403023 0.36235774 0.48718765 -0.95215535 nan] + /// ``` + /// + /// + /// + /// + public static Tensor cos(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cos", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return cos_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Cos", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Cos", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor cos_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Cos", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Cos", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes hyperbolic cosine of x element-wise. + /// + /// + /// + /// Given an input tensor, this function computes hyperbolic cosine of every + /// element in the tensor. Input range is `[-inf, inf]` and output range + /// is `[1, inf]`. + /// + /// ```python + /// x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 2, 10, float("inf")]) + /// tf.math.cosh(x) ==> [inf 4.0515420e+03 1.1276259e+00 1.5430807e+00 1.8106556e+00 3.7621956e+00 1.1013233e+04 inf] + /// ``` + /// + /// + /// + /// + public static Tensor cosh(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cosh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return cosh_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Cosh", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Cosh", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor cosh_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Cosh", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Cosh", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute the pairwise cross product. + /// + /// + /// + /// `a` and `b` must be the same shape; they can either be simple 3-element vectors, + /// or any shape where the innermost dimension is 3. In the latter case, each pair + /// of corresponding 3-element vectors is cross-multiplied independently. + /// + /// + /// + /// + /// + public static Tensor cross(Tensor a, Tensor b, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cross", name) { args = new object[] { a, b }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return cross_eager_fallback(a, b, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + var _op = tf.OpDefLib._apply_op_helper("Cross", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Cross", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor cross_eager_fallback(Tensor a, Tensor b, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b }; + object[] _attrs = new object[] { "T", a.dtype }; + var _result = _execute.execute("Cross", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Cross", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute the cumulative product of the tensor `x` along `axis`. + /// + /// + /// + /// By default, this op performs an inclusive cumprod, which means that the first + /// element of the input is identical to the first element of the output: + /// + /// ```python + /// tf.cumprod([a, b, c]) # => [a, a * b, a * b * c] + /// ``` + /// + /// By setting the `exclusive` kwarg to `True`, an exclusive cumprod is + /// performed instead: + /// + /// ```python + /// tf.cumprod([a, b, c], exclusive=True) # => [1, a, a * b] + /// ``` + /// + /// By setting the `reverse` kwarg to `True`, the cumprod is performed in the + /// opposite direction: + /// + /// ```python + /// tf.cumprod([a, b, c], reverse=True) # => [a * b * c, b * c, c] + /// ``` + /// + /// This is more efficient than using separate `tf.reverse` ops. + /// + /// The `reverse` and `exclusive` kwargs can also be combined: + /// + /// ```python + /// tf.cumprod([a, b, c], exclusive=True, reverse=True) # => [b * c, c, 1] + /// ``` + /// + /// + /// + /// + /// + /// + /// If `True`, perform exclusive cumprod. + /// + /// + /// + /// + /// A `bool` (default: False). + /// + /// + /// + public static Tensor cumprod(Tensor x, Tensor axis, bool exclusive = false, bool reverse = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cumprod", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["exclusive"] = exclusive, ["reverse"] = reverse } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return cumprod_eager_fallback(x, axis, exclusive: exclusive, reverse: reverse, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["axis"] = axis; + keywords["exclusive"] = exclusive; + keywords["reverse"] = reverse; + var _op = tf.OpDefLib._apply_op_helper("Cumprod", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "exclusive", _op._get_attr_bool("exclusive"), "reverse", _op._get_attr_bool("reverse"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("Cumprod", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor cumprod_eager_fallback(Tensor x, Tensor axis, bool exclusive, bool reverse, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, axis }; + object[] _attrs = new object[] { "exclusive", exclusive, "reverse", reverse, "T", x.dtype, "Tidx", axis.dtype }; + var _result = _execute.execute("Cumprod", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Cumprod", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute the cumulative sum of the tensor `x` along `axis`. + /// + /// + /// + /// By default, this op performs an inclusive cumsum, which means that the first + /// element of the input is identical to the first element of the output: + /// + /// ```python + /// tf.cumsum([a, b, c]) # => [a, a + b, a + b + c] + /// ``` + /// + /// By setting the `exclusive` kwarg to `True`, an exclusive cumsum is + /// performed instead: + /// + /// ```python + /// tf.cumsum([a, b, c], exclusive=True) # => [0, a, a + b] + /// ``` + /// + /// By setting the `reverse` kwarg to `True`, the cumsum is performed in the + /// opposite direction: + /// + /// ```python + /// tf.cumsum([a, b, c], reverse=True) # => [a + b + c, b + c, c] + /// ``` + /// + /// This is more efficient than using separate `tf.reverse` ops. + /// + /// The `reverse` and `exclusive` kwargs can also be combined: + /// + /// ```python + /// tf.cumsum([a, b, c], exclusive=True, reverse=True) # => [b + c, c, 0] + /// ``` + /// + /// + /// + /// + /// + /// + /// If `True`, perform exclusive cumsum. + /// + /// + /// + /// + /// A `bool` (default: False). + /// + /// + /// + public static Tensor cumsum(Tensor x, Tensor axis, bool exclusive = false, bool reverse = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Cumsum", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["exclusive"] = exclusive, ["reverse"] = reverse } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return cumsum_eager_fallback(x, axis, exclusive: exclusive, reverse: reverse, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["axis"] = axis; + keywords["exclusive"] = exclusive; + keywords["reverse"] = reverse; + var _op = tf.OpDefLib._apply_op_helper("Cumsum", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "exclusive", _op._get_attr_bool("exclusive"), "reverse", _op._get_attr_bool("reverse"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("Cumsum", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor cumsum_eager_fallback(Tensor x, Tensor axis, bool exclusive, bool reverse, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, axis }; + object[] _attrs = new object[] { "exclusive", exclusive, "reverse", reverse, "T", x.dtype, "Tidx", axis.dtype }; + var _result = _execute.execute("Cumsum", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Cumsum", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute the cumulative product of the tensor `x` along `axis`. + /// + /// + /// + /// By default, this op performs an inclusive cumulative log-sum-exp, + /// which means that the first + /// element of the input is identical to the first element of the output: + /// ```python + /// tf.math.cumulative_logsumexp([a, b, c]) # => [a, log(exp(a) + exp(b)), log(exp(a) + exp(b) + exp(c))] + /// ``` + /// + /// By setting the `exclusive` kwarg to `True`, an exclusive cumulative log-sum-exp is + /// performed instead: + /// ```python + /// tf.cumulative_logsumexp([a, b, c], exclusive=True) # => [-inf, a, log(exp(a) * exp(b))] + /// ``` + /// Note that the neutral element of the log-sum-exp operation is `-inf`, + /// however, for performance reasons, the minimal value representable by the + /// floating point type is used instead. + /// + /// By setting the `reverse` kwarg to `True`, the cumulative log-sum-exp is performed in the + /// opposite direction. + /// + /// + /// + /// + /// + /// + /// If `True`, perform exclusive cumulative log-sum-exp. + /// + /// + /// + /// + /// A `bool` (default: False). + /// + /// + /// + public static Tensor cumulative_logsumexp(Tensor x, Tensor axis, bool exclusive = false, bool reverse = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "CumulativeLogsumexp", name) { args = new object[] { x, axis }, attrs = new Dictionary() { ["exclusive"] = exclusive, ["reverse"] = reverse } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return cumulative_logsumexp_eager_fallback(x, axis, exclusive: exclusive, reverse: reverse, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["axis"] = axis; + keywords["exclusive"] = exclusive; + keywords["reverse"] = reverse; + var _op = tf.OpDefLib._apply_op_helper("CumulativeLogsumexp", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "exclusive", _op._get_attr_bool("exclusive"), "reverse", _op._get_attr_bool("reverse"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("CumulativeLogsumexp", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor cumulative_logsumexp_eager_fallback(Tensor x, Tensor axis, bool exclusive, bool reverse, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, axis }; + object[] _attrs = new object[] { "exclusive", exclusive, "reverse", reverse, "T", x.dtype, "Tidx", axis.dtype }; + var _result = _execute.execute("CumulativeLogsumexp", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("CumulativeLogsumexp", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Counts the number of occurrences of each value in an integer array. + /// + /// + /// + /// Outputs a vector with length `size` and the same dtype as `weights`. If + /// `weights` are empty, then index `i` stores the number of times the value `i` is + /// counted in `arr`. If `weights` are non-empty, then index `i` stores the sum of + /// the value in `weights` at each index where the corresponding value in `arr` is + /// `i`. + /// + /// Values in `arr` outside of the range [0, size) are ignored. + /// + /// + /// + /// + /// + /// + /// + /// bool; Whether the kernel should count the appearance or number of occurrences. + /// + /// + /// + public static Tensor dense_bincount(Tensor input, Tensor size, Tensor weights, bool binary_output = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DenseBincount", name) { args = new object[] { input, size, weights }, attrs = new Dictionary() { ["binary_output"] = binary_output } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return dense_bincount_eager_fallback(input, size, weights, binary_output: binary_output, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["size"] = size; + keywords["weights"] = weights; + keywords["binary_output"] = binary_output; + var _op = tf.OpDefLib._apply_op_helper("DenseBincount", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tidx", _op._get_attr_type("Tidx"), "T", _op._get_attr_type("T"), "binary_output", _op._get_attr_bool("binary_output") }; + _execute.record_gradient("DenseBincount", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor dense_bincount_eager_fallback(Tensor input, Tensor size, Tensor weights, bool binary_output, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, size, weights }; + object[] _attrs = new object[] { "Tidx", input.dtype, "T", weights.dtype, "binary_output", binary_output }; + var _result = _execute.execute("DenseBincount", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DenseBincount", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes Psi, the derivative of Lgamma (the log of the absolute value of + /// + /// + /// + /// `Gamma(x)`), element-wise. + /// + /// + /// + /// + public static Tensor digamma(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Digamma", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return digamma_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Digamma", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Digamma", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor digamma_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Digamma", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Digamma", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns x / y element-wise. + /// + /// + /// + /// *NOTE*: `Div` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor div(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Div", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return div_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Div", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Div", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor div_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Div", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Div", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns 0 if the denominator is zero. + /// + /// + /// + /// + /// *NOTE*: `DivNoNan` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor div_no_nan(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DivNoNan", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return div_no_nan_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("DivNoNan", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("DivNoNan", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor div_no_nan_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("DivNoNan", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DivNoNan", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of (x == y) element-wise. + /// + /// + /// + /// *NOTE*: `Equal` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// ```python + /// x = tf.constant([2, 4]) + /// y = tf.constant(2) + /// tf.math.equal(x, y) ==> array([True, False]) + /// + /// x = tf.constant([2, 4]) + /// y = tf.constant([2, 4]) + /// tf.math.equal(x, y) ==> array([True, True]) + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor equal(Tensor x, Tensor y, bool incompatible_shape_error = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Equal", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["incompatible_shape_error"] = incompatible_shape_error } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return equal_eager_fallback(x, y, incompatible_shape_error: incompatible_shape_error, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + keywords["incompatible_shape_error"] = incompatible_shape_error; + var _op = tf.OpDefLib._apply_op_helper("Equal", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "incompatible_shape_error", _op._get_attr_bool("incompatible_shape_error") }; + _execute.record_gradient("Equal", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor equal_eager_fallback(Tensor x, Tensor y, bool incompatible_shape_error, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype, "incompatible_shape_error", incompatible_shape_error }; + var _result = _execute.execute("Equal", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Equal", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the [Gauss error function](https://en.wikipedia.org/wiki/Error_function) of `x` element-wise. In statistics, for non-negative values of $x$, the error function has the following interpretation: for a random variable $Y$ that is normally distributed with mean 0 and variance $1/\sqrt{2}$, $erf(x)$ is the probability that $Y$ falls in the range $[−x, x]$. + /// + /// + /// + public static Tensor erf(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Erf", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return erf_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Erf", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Erf", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor erf_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Erf", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Erf", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the complementary error function of `x` element-wise. + /// + /// + /// + public static Tensor erfc(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Erfc", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return erfc_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Erfc", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Erfc", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor erfc_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Erfc", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Erfc", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + public static Tensor erfinv(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Erfinv", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return erfinv_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Erfinv", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Erfinv", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor erfinv_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Erfinv", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Erfinv", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the euclidean norm of elements across dimensions of a tensor. + /// + /// + /// + /// Reduces `input` along the dimensions given in `reduction_indices`. Unless + /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in + /// `reduction_indices`. If `keep_dims` is true, the reduced dimensions are + /// retained with length 1. + /// + /// + /// + /// + /// + /// + /// If true, retain reduced dimensions with length 1. + /// + /// + /// + public static Tensor euclidean_norm(Tensor input, Tensor reduction_indices, bool keep_dims = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EuclideanNorm", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return euclidean_norm_eager_fallback(input, reduction_indices, keep_dims: keep_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["reduction_indices"] = reduction_indices; + keywords["keep_dims"] = keep_dims; + var _op = tf.OpDefLib._apply_op_helper("EuclideanNorm", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "keep_dims", _op._get_attr_bool("keep_dims"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("EuclideanNorm", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor euclidean_norm_eager_fallback(Tensor input, Tensor reduction_indices, bool keep_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, reduction_indices }; + object[] _attrs = new object[] { "keep_dims", keep_dims, "T", input.dtype, "Tidx", reduction_indices.dtype }; + var _result = _execute.execute("EuclideanNorm", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("EuclideanNorm", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes exponential of x element-wise. \\(y = e^x\\). + /// + /// + /// + /// This function computes the exponential of every element in the input tensor. + /// i.e. `exp(x)` or `e^(x)`, where `x` is the input tensor. + /// `e` denotes Euler's number and is approximately equal to 2.718281. + /// Output is positive for any real input. + /// + /// ```python + /// x = tf.constant(2.0) + /// tf.math.exp(x) ==> 7.389056 + /// + /// x = tf.constant([2.0, 8.0]) + /// tf.math.exp(x) ==> array([7.389056, 2980.958], dtype=float32) + /// ``` + /// + /// For complex numbers, the exponential value is calculated as follows: + /// + /// ``` + /// e^(x+iy) = e^x * e^iy = e^x * (cos y + i sin y) + /// ``` + /// + /// Let's consider complex number 1+1j as an example. + /// e^1 * (cos 1 + i sin 1) = 2.7182818284590 * (0.54030230586+0.8414709848j) + /// + /// ```python + /// x = tf.constant(1 + 1j) + /// tf.math.exp(x) ==> 1.4686939399158851+2.2873552871788423j + /// ``` + /// + /// + /// + /// + public static Tensor exp(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Exp", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return exp_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Exp", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Exp", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor exp_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Exp", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Exp", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes `exp(x) - 1` element-wise. + /// + /// + /// + /// i.e. `exp(x) - 1` or `e^(x) - 1`, where `x` is the input tensor. + /// `e` denotes Euler's number and is approximately equal to 2.718281. + /// + /// ```python + /// x = tf.constant(2.0) + /// tf.math.expm1(x) ==> 6.389056 + /// + /// x = tf.constant([2.0, 8.0]) + /// tf.math.expm1(x) ==> array([6.389056, 2979.958], dtype=float32) + /// + /// x = tf.constant(1 + 1j) + /// tf.math.expm1(x) ==> (0.46869393991588515+2.2873552871788423j) + /// ``` + /// + /// + /// + /// + public static Tensor expm1(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Expm1", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return expm1_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Expm1", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Expm1", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor expm1_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Expm1", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Expm1", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns element-wise largest integer not greater than x. + /// + /// + /// + public static Tensor floor(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Floor", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return floor_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Floor", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Floor", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor floor_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Floor", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Floor", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns x // y element-wise. + /// + /// + /// + /// *NOTE*: `FloorDiv` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor floor_div(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FloorDiv", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return floor_div_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("FloorDiv", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("FloorDiv", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor floor_div_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("FloorDiv", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FloorDiv", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns element-wise remainder of division. + /// + /// + /// + /// This follows Python semantics in that the + /// result here is consistent with a flooring divide. E.g. + /// `floor(x / y) * y + floormod(x, y) = x`, regardless of the signs of x and y. + /// + /// *NOTE*: `FloorMod` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor floor_mod(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FloorMod", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return floor_mod_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("FloorMod", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("FloorMod", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor floor_mod_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("FloorMod", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FloorMod", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of (x > y) element-wise. + /// + /// + /// + /// *NOTE*: `Greater` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// Example: + /// + /// ```python + /// x = tf.constant([5, 4, 6]) + /// y = tf.constant([5, 2, 5]) + /// tf.math.greater(x, y) ==> [False, True, True] + /// + /// x = tf.constant([5, 4, 6]) + /// y = tf.constant([5]) + /// tf.math.greater(x, y) ==> [False, False, True] + /// ``` + /// + /// + /// + /// + /// + public static Tensor greater(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Greater", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return greater_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Greater", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Greater", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor greater_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Greater", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Greater", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of (x >= y) element-wise. + /// + /// + /// + /// *NOTE*: `GreaterEqual` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// Example: + /// + /// ```python + /// x = tf.constant([5, 4, 6, 7]) + /// y = tf.constant([5, 2, 5, 10]) + /// tf.math.greater_equal(x, y) ==> [True, True, True, False] + /// + /// x = tf.constant([5, 4, 6, 7]) + /// y = tf.constant([5]) + /// tf.math.greater_equal(x, y) ==> [True, False, True, True] + /// ``` + /// + /// + /// + /// + /// + public static Tensor greater_equal(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "GreaterEqual", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return greater_equal_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("GreaterEqual", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("GreaterEqual", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor greater_equal_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("GreaterEqual", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("GreaterEqual", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Return histogram of values. + /// + /// + /// + /// Given the tensor `values`, this operation returns a rank 1 histogram counting + /// the number of entries in `values` that fall into every bin. The bins are + /// equal width and determined by the arguments `value_range` and `nbins`. + /// + /// ```python + /// # Bins will be: (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) + /// nbins = 5 + /// value_range = [0.0, 5.0] + /// new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15] + /// + /// with tf.get_default_session() as sess: + /// hist = tf.histogram_fixed_width(new_values, value_range, nbins=5) + /// variables.global_variables_initializer().run() + /// sess.run(hist) => [2, 1, 1, 0, 2] + /// ``` + /// + /// + /// + /// + /// + /// + /// + public static Tensor histogram_fixed_width(Tensor values, Tensor value_range, Tensor nbins, TF_DataType dtype = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "HistogramFixedWidth", name) { args = new object[] { values, value_range, nbins }, attrs = new Dictionary() { ["dtype"] = dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return histogram_fixed_width_eager_fallback(values, value_range, nbins, dtype: dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["values"] = values; + keywords["value_range"] = value_range; + keywords["nbins"] = nbins; + keywords["dtype"] = dtype; + var _op = tf.OpDefLib._apply_op_helper("HistogramFixedWidth", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "dtype", _op._get_attr_type("dtype") }; + _execute.record_gradient("HistogramFixedWidth", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor histogram_fixed_width_eager_fallback(Tensor values, Tensor value_range, Tensor nbins, TF_DataType dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { values, value_range, nbins }; + object[] _attrs = new object[] { "T", values.dtype, "dtype", dtype }; + var _result = _execute.execute("HistogramFixedWidth", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("HistogramFixedWidth", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute the lower regularized incomplete Gamma function `P(a, x)`. + /// + /// + /// + /// The lower regularized incomplete Gamma function is defined as: + /// + /// + /// \(P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)\) + /// + /// where + /// + /// \(gamma(a, x) = \int_{0}^{x} t^{a-1} exp(-t) dt\) + /// + /// is the lower incomplete Gamma function. + /// + /// Note, above `Q(a, x)` (`Igammac`) is the upper regularized complete + /// Gamma function. + /// + /// + /// + /// + /// + public static Tensor igamma(Tensor a, Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Igamma", name) { args = new object[] { a, x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return igamma_eager_fallback(a, x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Igamma", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Igamma", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor igamma_eager_fallback(Tensor a, Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, x }; + object[] _attrs = new object[] { "T", a.dtype }; + var _result = _execute.execute("Igamma", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Igamma", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradient of `igamma(a, x)` wrt `a`. + /// + /// + /// + /// + public static Tensor igamma_grad_a(Tensor a, Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IgammaGradA", name) { args = new object[] { a, x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return igamma_grad_a_eager_fallback(a, x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("IgammaGradA", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("IgammaGradA", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor igamma_grad_a_eager_fallback(Tensor a, Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, x }; + object[] _attrs = new object[] { "T", a.dtype }; + var _result = _execute.execute("IgammaGradA", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("IgammaGradA", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute the upper regularized incomplete Gamma function `Q(a, x)`. + /// + /// + /// + /// The upper regularized incomplete Gamma function is defined as: + /// + /// \(Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)\) + /// + /// where + /// + /// \(Gamma(a, x) = int_{x}^{infty} t^{a-1} exp(-t) dt\) + /// + /// is the upper incomplete Gamma function. + /// + /// Note, above `P(a, x)` (`Igamma`) is the lower regularized complete + /// Gamma function. + /// + /// + /// + /// + /// + public static Tensor igammac(Tensor a, Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Igammac", name) { args = new object[] { a, x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return igammac_eager_fallback(a, x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Igammac", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Igammac", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor igammac_eager_fallback(Tensor a, Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, x }; + object[] _attrs = new object[] { "T", a.dtype }; + var _result = _execute.execute("Igammac", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Igammac", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the imaginary part of a complex number. + /// + /// + /// + /// Given a tensor `input` of complex numbers, this operation returns a tensor of + /// type `float` that is the imaginary part of each element in `input`. All + /// elements in `input` must be complex numbers of the form \(a + bj\), where *a* + /// is the real part and *b* is the imaginary part returned by this operation. + /// + /// For example: + /// + /// ``` + /// # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] + /// tf.imag(input) ==> [4.75, 5.75] + /// ``` + /// + /// + /// + /// + /// + public static Tensor imag(Tensor input, TF_DataType Tout = TF_DataType.TF_FLOAT, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Imag", name) { args = new object[] { input }, attrs = new Dictionary() { ["Tout"] = Tout } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return imag_eager_fallback(input, Tout: Tout, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["Tout"] = Tout; + var _op = tf.OpDefLib._apply_op_helper("Imag", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tout", _op._get_attr_type("Tout") }; + _execute.record_gradient("Imag", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor imag_eager_fallback(Tensor input, TF_DataType Tout, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "Tout", Tout }; + var _result = _execute.execute("Imag", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Imag", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the reciprocal of x element-wise. + /// + /// + /// + /// I.e., \(y = 1 / x\). + /// + /// + /// + /// + public static Tensor inv(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Inv", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return inv_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Inv", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Inv", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor inv_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Inv", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Inv", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradient for the inverse of `x` wrt its input. + /// + /// + /// + /// Specifically, `grad = -dy * y*y`, where `y = 1/x`, and `dy` + /// is the corresponding input gradient. + /// + /// + /// + /// + /// + public static Tensor inv_grad(Tensor y, Tensor dy, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InvGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return inv_grad_eager_fallback(y, dy, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["y"] = y; + keywords["dy"] = dy; + var _op = tf.OpDefLib._apply_op_helper("InvGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("InvGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor inv_grad_eager_fallback(Tensor y, Tensor dy, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y, dy }; + object[] _attrs = new object[] { "T", y.dtype }; + var _result = _execute.execute("InvGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("InvGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns which elements of x are finite. + /// + /// + /// + /// @compatibility(numpy) + /// Equivalent to np.isfinite + /// @end_compatibility + /// + /// Example: + /// + /// ```python + /// x = tf.constant([5.0, 4.8, 6.8, np.inf, np.nan]) + /// tf.math.is_finite(x) ==> [True, True, True, False, False] + /// ``` + /// + /// + /// + /// + public static Tensor is_finite(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IsFinite", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return is_finite_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("IsFinite", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("IsFinite", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor is_finite_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("IsFinite", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("IsFinite", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns which elements of x are Inf. + /// + /// + /// + /// @compatibility(numpy) + /// Equivalent to np.isinf + /// @end_compatibility + /// + /// Example: + /// + /// ```python + /// x = tf.constant([5.0, np.inf, 6.8, np.inf]) + /// tf.math.is_inf(x) ==> [False, True, False, True] + /// ``` + /// + /// + /// + /// + public static Tensor is_inf(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IsInf", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return is_inf_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("IsInf", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("IsInf", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor is_inf_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("IsInf", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("IsInf", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns which elements of x are NaN. + /// + /// + /// + /// @compatibility(numpy) + /// Equivalent to np.isnan + /// @end_compatibility + /// + /// Example: + /// + /// ```python + /// x = tf.constant([5.0, np.nan, 6.8, np.nan, np.inf]) + /// tf.math.is_nan(x) ==> [False, True, False, True, False] + /// ``` + /// + /// + /// + /// + public static Tensor is_nan(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IsNan", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return is_nan_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("IsNan", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("IsNan", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor is_nan_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("IsNan", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("IsNan", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of (x < y) element-wise. + /// + /// + /// + /// *NOTE*: `Less` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// Example: + /// + /// ```python + /// x = tf.constant([5, 4, 6]) + /// y = tf.constant([5]) + /// tf.math.less(x, y) ==> [False, True, False] + /// + /// x = tf.constant([5, 4, 6]) + /// y = tf.constant([5, 6, 7]) + /// tf.math.less(x, y) ==> [False, True, True] + /// ``` + /// + /// + /// + /// + /// + public static Tensor less(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Less", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return less_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Less", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Less", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor less_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Less", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Less", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of (x <= y) element-wise. + /// + /// + /// + /// *NOTE*: `LessEqual` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// Example: + /// + /// ```python + /// x = tf.constant([5, 4, 6]) + /// y = tf.constant([5]) + /// tf.math.less_equal(x, y) ==> [True, True, False] + /// + /// x = tf.constant([5, 4, 6]) + /// y = tf.constant([5, 6, 6]) + /// tf.math.less_equal(x, y) ==> [True, True, True] + /// ``` + /// + /// + /// + /// + /// + public static Tensor less_equal(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LessEqual", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return less_equal_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("LessEqual", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("LessEqual", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor less_equal_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("LessEqual", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LessEqual", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the log of the absolute value of `Gamma(x)` element-wise. + /// + /// + /// + /// For positive numbers, this function computes log((input - 1)!) for every element in the tensor. + /// `lgamma(5) = log((5-1)!) = log(4!) = log(24) = 3.1780539` + /// + /// Example: + /// + /// ```python + /// x = tf.constant([0, 0.5, 1, 4.5, -4, -5.6]) + /// tf.math.lgamma(x) ==> [inf, 0.5723649, 0., 2.4537368, inf, -4.6477685] + /// ``` + /// + /// + /// + /// + public static Tensor lgamma(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Lgamma", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return lgamma_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Lgamma", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Lgamma", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor lgamma_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Lgamma", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Lgamma", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Generates values in an interval. + /// + /// + /// + /// A sequence of `num` evenly-spaced values are generated beginning at `start`. + /// If `num > 1`, the values in the sequence increase by `stop - start / num - 1`, + /// so that the last one is exactly `stop`. + /// + /// For example: + /// + /// ``` + /// tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0 11.0 12.0] + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor lin_space(Tensor start, Tensor stop, Tensor num, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LinSpace", name) { args = new object[] { start, stop, num }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return lin_space_eager_fallback(start, stop, num, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["start"] = start; + keywords["stop"] = stop; + keywords["num"] = num; + var _op = tf.OpDefLib._apply_op_helper("LinSpace", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("LinSpace", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor lin_space_eager_fallback(Tensor start, Tensor stop, Tensor num, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { start, stop, num }; + object[] _attrs = new object[] { "T", start.dtype, "Tidx", num.dtype }; + var _result = _execute.execute("LinSpace", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LinSpace", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes natural logarithm of x element-wise. + /// + /// + /// + /// I.e., \(y = log_e x\). + /// + /// Example: + /// + /// ```python + /// x = tf.constant([0, 0.5, 1, 5]) + /// tf.math.log(x) ==> [-inf, -0.6931472, 0. , 1.609438] + /// ``` + /// + /// + /// + /// + public static Tensor log(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Log", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return log_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Log", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Log", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor log_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Log", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Log", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes natural logarithm of (1 + x) element-wise. + /// + /// + /// + /// I.e., \(y = log_e (1 + x)\). + /// + /// Example: + /// + /// ```python + /// x = tf.constant([0, 0.5, 1, 5]) + /// tf.math.log1p(x) ==> [0., 0.4054651, 0.6931472, 1.7917595] + /// ``` + /// + /// + /// + /// + public static Tensor log1p(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Log1p", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return log1p_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Log1p", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Log1p", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor log1p_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Log1p", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Log1p", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of x AND y element-wise. + /// + /// + /// + /// *NOTE*: `LogicalAnd` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor logical_and(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LogicalAnd", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return logical_and_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("LogicalAnd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("LogicalAnd", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor logical_and_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("LogicalAnd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LogicalAnd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of `NOT x` element-wise. + /// + /// + /// + public static Tensor logical_not(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LogicalNot", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return logical_not_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("LogicalNot", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("LogicalNot", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor logical_not_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("LogicalNot", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LogicalNot", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of x OR y element-wise. + /// + /// + /// + /// *NOTE*: `LogicalOr` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor logical_or(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LogicalOr", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return logical_or_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("LogicalOr", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("LogicalOr", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor logical_or_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("LogicalOr", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LogicalOr", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Multiply the matrix "a" by the matrix "b". + /// + /// + /// + /// The inputs must be two-dimensional matrices and the inner dimension of + /// "a" (after being transposed if transpose_a is true) must match the + /// outer dimension of "b" (after being transposed if transposed_b is + /// true). + /// + /// *Note*: The default kernel implementation for MatMul on GPUs uses + /// cublas. + /// + /// + /// + /// + /// + /// + /// If true, "a" is transposed before multiplication. + /// + /// + /// + /// + /// If true, "b" is transposed before multiplication. + /// + /// + /// + public static Tensor mat_mul(Tensor a, Tensor b, bool transpose_a = false, bool transpose_b = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatMul", name) { args = new object[] { a, b }, attrs = new Dictionary() { ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return mat_mul_eager_fallback(a, b, transpose_a: transpose_a, transpose_b: transpose_b, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + keywords["transpose_a"] = transpose_a; + keywords["transpose_b"] = transpose_b; + var _op = tf.OpDefLib._apply_op_helper("MatMul", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MatMul", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor mat_mul_eager_fallback(Tensor a, Tensor b, bool transpose_a, bool transpose_b, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b }; + object[] _attrs = new object[] { "transpose_a", transpose_a, "transpose_b", transpose_b, "T", a.dtype }; + var _result = _execute.execute("MatMul", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MatMul", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the maximum of elements across dimensions of a tensor. + /// + /// + /// + /// Reduces `input` along the dimensions given in `reduction_indices`. Unless + /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in + /// `reduction_indices`. If `keep_dims` is true, the reduced dimensions are + /// retained with length 1. + /// + /// + /// + /// + /// + /// + /// If true, retain reduced dimensions with length 1. + /// + /// + /// + public static Tensor max(Tensor input, Tensor reduction_indices, bool keep_dims = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Max", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_eager_fallback(input, reduction_indices, keep_dims: keep_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["reduction_indices"] = reduction_indices; + keywords["keep_dims"] = keep_dims; + var _op = tf.OpDefLib._apply_op_helper("Max", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "keep_dims", _op._get_attr_bool("keep_dims"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("Max", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_eager_fallback(Tensor input, Tensor reduction_indices, bool keep_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, reduction_indices }; + object[] _attrs = new object[] { "keep_dims", keep_dims, "T", input.dtype, "Tidx", reduction_indices.dtype }; + var _result = _execute.execute("Max", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Max", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the max of x and y (i.e. x > y ? x : y) element-wise. + /// + /// + /// + /// *NOTE*: `Maximum` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor maximum(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Maximum", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return maximum_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Maximum", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Maximum", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor maximum_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Maximum", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Maximum", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the mean of elements across dimensions of a tensor. + /// + /// + /// + /// Reduces `input` along the dimensions given in `reduction_indices`. Unless + /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in + /// `reduction_indices`. If `keep_dims` is true, the reduced dimensions are + /// retained with length 1. + /// + /// + /// + /// + /// + /// + /// If true, retain reduced dimensions with length 1. + /// + /// + /// + public static Tensor mean(Tensor input, Tensor reduction_indices, bool keep_dims = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Mean", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return mean_eager_fallback(input, reduction_indices, keep_dims: keep_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["reduction_indices"] = reduction_indices; + keywords["keep_dims"] = keep_dims; + var _op = tf.OpDefLib._apply_op_helper("Mean", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "keep_dims", _op._get_attr_bool("keep_dims"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("Mean", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor mean_eager_fallback(Tensor input, Tensor reduction_indices, bool keep_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, reduction_indices }; + object[] _attrs = new object[] { "keep_dims", keep_dims, "T", input.dtype, "Tidx", reduction_indices.dtype }; + var _result = _execute.execute("Mean", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Mean", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the minimum of elements across dimensions of a tensor. + /// + /// + /// + /// Reduces `input` along the dimensions given in `reduction_indices`. Unless + /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in + /// `reduction_indices`. If `keep_dims` is true, the reduced dimensions are + /// retained with length 1. + /// + /// + /// + /// + /// + /// + /// If true, retain reduced dimensions with length 1. + /// + /// + /// + public static Tensor min(Tensor input, Tensor reduction_indices, bool keep_dims = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Min", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return min_eager_fallback(input, reduction_indices, keep_dims: keep_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["reduction_indices"] = reduction_indices; + keywords["keep_dims"] = keep_dims; + var _op = tf.OpDefLib._apply_op_helper("Min", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "keep_dims", _op._get_attr_bool("keep_dims"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("Min", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor min_eager_fallback(Tensor input, Tensor reduction_indices, bool keep_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, reduction_indices }; + object[] _attrs = new object[] { "keep_dims", keep_dims, "T", input.dtype, "Tidx", reduction_indices.dtype }; + var _result = _execute.execute("Min", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Min", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the min of x and y (i.e. x < y ? x : y) element-wise. + /// + /// + /// + /// *NOTE*: `Minimum` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor minimum(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Minimum", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return minimum_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Minimum", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Minimum", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor minimum_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Minimum", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Minimum", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns element-wise remainder of division. This emulates C semantics in that + /// + /// + /// + /// the result here is consistent with a truncating divide. E.g. + /// `tf.truncatediv(x, y) * y + truncate_mod(x, y) = x`. + /// + /// *NOTE*: `Mod` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor mod(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Mod", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return mod_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Mod", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Mod", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor mod_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Mod", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Mod", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns x * y element-wise. + /// + /// + /// + /// *NOTE*: `Mul` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor mul(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Mul", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return mul_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Mul", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Mul", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor mul_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Mul", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Mul", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns x * y element-wise. Returns zero if y is zero, even if x if infinite or NaN. + /// + /// + /// + /// *NOTE*: `MulNoNan` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor mul_no_nan(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MulNoNan", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return mul_no_nan_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("MulNoNan", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("MulNoNan", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor mul_no_nan_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("MulNoNan", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MulNoNan", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + public static Tensor ndtri(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Ndtri", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return ndtri_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Ndtri", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Ndtri", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor ndtri_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Ndtri", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Ndtri", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes numerical negative value element-wise. + /// + /// + /// + /// I.e., \(y = -x\). + /// + /// + /// + /// + public static Tensor neg(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Neg", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return neg_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Neg", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Neg", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor neg_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Neg", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Neg", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the next representable value of `x1` in the direction of `x2`, element-wise. + /// + /// + /// + /// This operation returns the same result as the C++ std::nextafter function. + /// + /// It can also return a subnormal number. + /// + /// @compatibility(cpp) + /// Equivalent to C++ std::nextafter function. + /// @end_compatibility + /// + /// + /// + /// + /// + public static Tensor next_after(Tensor x1, Tensor x2, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "NextAfter", name) { args = new object[] { x1, x2 }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return next_after_eager_fallback(x1, x2, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x1"] = x1; + keywords["x2"] = x2; + var _op = tf.OpDefLib._apply_op_helper("NextAfter", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("NextAfter", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor next_after_eager_fallback(Tensor x1, Tensor x2, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x1, x2 }; + object[] _attrs = new object[] { "T", x1.dtype }; + var _result = _execute.execute("NextAfter", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("NextAfter", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the truth value of (x != y) element-wise. + /// + /// + /// + /// *NOTE*: `NotEqual` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + /// + public static Tensor not_equal(Tensor x, Tensor y, bool incompatible_shape_error = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "NotEqual", name) { args = new object[] { x, y }, attrs = new Dictionary() { ["incompatible_shape_error"] = incompatible_shape_error } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return not_equal_eager_fallback(x, y, incompatible_shape_error: incompatible_shape_error, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + keywords["incompatible_shape_error"] = incompatible_shape_error; + var _op = tf.OpDefLib._apply_op_helper("NotEqual", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "incompatible_shape_error", _op._get_attr_bool("incompatible_shape_error") }; + _execute.record_gradient("NotEqual", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor not_equal_eager_fallback(Tensor x, Tensor y, bool incompatible_shape_error, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype, "incompatible_shape_error", incompatible_shape_error }; + var _result = _execute.execute("NotEqual", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("NotEqual", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute the polygamma function \\(\psi^{(n)}(x)\\). + /// + /// + /// + /// The polygamma function is defined as: + /// + /// + /// \(psi^{(a)}(x) = rac{d^a}{dx^a} psi(x)\) + /// + /// where \(psi(x)\) is the digamma function. + /// The polygamma function is defined only for non-negative integer orders \a\. + /// + /// + /// + /// + /// + public static Tensor polygamma(Tensor a, Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Polygamma", name) { args = new object[] { a, x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return polygamma_eager_fallback(a, x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Polygamma", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Polygamma", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor polygamma_eager_fallback(Tensor a, Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, x }; + object[] _attrs = new object[] { "T", a.dtype }; + var _result = _execute.execute("Polygamma", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Polygamma", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the power of one value to another. + /// + /// + /// + /// Given a tensor `x` and a tensor `y`, this operation computes \(x^y\) for + /// corresponding elements in `x` and `y`. For example: + /// + /// ``` + /// # tensor 'x' is [[2, 2]], [3, 3]] + /// # tensor 'y' is [[8, 16], [2, 3]] + /// tf.pow(x, y) ==> [[256, 65536], [9, 27]] + /// ``` + /// + /// + /// + /// + /// + public static Tensor pow(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Pow", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return pow_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Pow", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Pow", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor pow_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Pow", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Pow", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the product of elements across dimensions of a tensor. + /// + /// + /// + /// Reduces `input` along the dimensions given in `reduction_indices`. Unless + /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in + /// `reduction_indices`. If `keep_dims` is true, the reduced dimensions are + /// retained with length 1. + /// + /// + /// + /// + /// + /// + /// If true, retain reduced dimensions with length 1. + /// + /// + /// + public static Tensor prod(Tensor input, Tensor reduction_indices, bool keep_dims = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Prod", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return prod_eager_fallback(input, reduction_indices, keep_dims: keep_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["reduction_indices"] = reduction_indices; + keywords["keep_dims"] = keep_dims; + var _op = tf.OpDefLib._apply_op_helper("Prod", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "keep_dims", _op._get_attr_bool("keep_dims"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("Prod", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor prod_eager_fallback(Tensor input, Tensor reduction_indices, bool keep_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, reduction_indices }; + object[] _attrs = new object[] { "keep_dims", keep_dims, "T", input.dtype, "Tidx", reduction_indices.dtype }; + var _result = _execute.execute("Prod", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Prod", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Convert the quantized 'input' tensor into a lower-precision 'output', using the + /// + /// + /// + /// actual distribution of the values to maximize the usage of the lower bit depth + /// and adjusting the output min and max ranges accordingly. + /// + /// [input_min, input_max] are scalar floats that specify the range for the float + /// interpretation of the 'input' data. For example, if input_min is -1.0f and + /// input_max is 1.0f, and we are dealing with quint16 quantized data, then a 0 + /// value in the 16-bit data should be interpreted as -1.0f, and a 65535 means 1.0f. + /// + /// This operator tries to squeeze as much precision as possible into an output with + /// a lower bit depth by calculating the actual min and max values found in the + /// data. For example, maybe that quint16 input has no values lower than 16,384 and + /// none higher than 49,152. That means only half the range is actually needed, all + /// the float interpretations are between -0.5f and 0.5f, so if we want to compress + /// the data into a quint8 output, we can use that range rather than the theoretical + /// -1.0f to 1.0f that is suggested by the input min and max. + /// + /// In practice, this is most useful for taking output from operations like + /// QuantizedMatMul that can produce higher bit-depth outputs than their inputs and + /// may have large potential output ranges, but in practice have a distribution of + /// input values that only uses a small fraction of the possible range. By feeding + /// that output into this operator, we can reduce it from 32 bits down to 8 with + /// minimal loss of accuracy. + /// + /// + /// + /// + /// + /// + /// + /// The type of the output. Should be a lower bit depth than Tinput. + /// + /// + /// + public static Tensor[] quantize_down_and_shrink_range(Tensor input, Tensor input_min, Tensor input_max, TF_DataType out_type, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizeDownAndShrinkRange", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantize_down_and_shrink_range_eager_fallback(input, input_min, input_max, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("QuantizeDownAndShrinkRange", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("QuantizeDownAndShrinkRange", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantize_down_and_shrink_range_eager_fallback(Tensor input, Tensor input_min, Tensor input_max, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, input_min, input_max }; + object[] _attrs = new object[] { "Tinput", input.dtype, "out_type", out_type }; + var _result = _execute.execute("QuantizeDownAndShrinkRange", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizeDownAndShrinkRange", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Returns x + y element-wise, working on quantized buffers. + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_add(Tensor x, Tensor y, Tensor min_x, Tensor max_x, Tensor min_y, Tensor max_y, TF_DataType Toutput = TF_DataType.TF_QINT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedAdd", name) { args = new object[] { x, y, min_x, max_x, min_y, max_y }, attrs = new Dictionary() { ["Toutput"] = Toutput } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_add_eager_fallback(x, y, min_x, max_x, min_y, max_y, Toutput: Toutput, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + keywords["min_x"] = min_x; + keywords["max_x"] = max_x; + keywords["min_y"] = min_y; + keywords["max_y"] = max_y; + keywords["Toutput"] = Toutput; + var _op = tf.OpDefLib._apply_op_helper("QuantizedAdd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Toutput", _op._get_attr_type("Toutput") }; + _execute.record_gradient("QuantizedAdd", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_add_eager_fallback(Tensor x, Tensor y, Tensor min_x, Tensor max_x, Tensor min_y, Tensor max_y, TF_DataType Toutput, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y, min_x, max_x, min_y, max_y }; + object[] _attrs = new object[] { "T1", x.dtype, "T2", y.dtype, "Toutput", Toutput }; + var _result = _execute.execute("QuantizedAdd", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedAdd", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Perform a quantized matrix multiplication of `a` by the matrix `b`. + /// + /// + /// + /// The inputs must be two-dimensional matrices and the inner dimension of + /// `a` (after being transposed if `transpose_a` is non-zero) must match the + /// outer dimension of `b` (after being transposed if `transposed_b` is + /// non-zero). + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// If true, `a` is transposed before multiplication. + /// + /// + /// + /// + /// If true, `b` is transposed before multiplication. + /// + /// + /// + /// + /// The type of output produced by activation function + /// following this operation. + /// + /// + /// + public static Tensor[] quantized_mat_mul(Tensor a, Tensor b, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, TF_DataType Toutput = TF_DataType.TF_QINT32, bool transpose_a = false, bool transpose_b = false, TF_DataType Tactivation = TF_DataType.TF_QUINT8, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMul", name) { args = new object[] { a, b, min_a, max_a, min_b, max_b }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["Tactivation"] = Tactivation } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_mat_mul_eager_fallback(a, b, min_a, max_a, min_b, max_b, Toutput: Toutput, transpose_a: transpose_a, transpose_b: transpose_b, Tactivation: Tactivation, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + keywords["min_a"] = min_a; + keywords["max_a"] = max_a; + keywords["min_b"] = min_b; + keywords["max_b"] = max_b; + keywords["Toutput"] = Toutput; + keywords["transpose_a"] = transpose_a; + keywords["transpose_b"] = transpose_b; + keywords["Tactivation"] = Tactivation; + var _op = tf.OpDefLib._apply_op_helper("QuantizedMatMul", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "Tactivation", _op._get_attr_type("Tactivation") }; + _execute.record_gradient("QuantizedMatMul", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_mat_mul_eager_fallback(Tensor a, Tensor b, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, TF_DataType Toutput, bool transpose_a, bool transpose_b, TF_DataType Tactivation, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b, min_a, max_a, min_b, max_b }; + object[] _attrs = new object[] { "T1", a.dtype, "T2", b.dtype, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "Tactivation", Tactivation }; + var _result = _execute.execute("QuantizedMatMul", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedMatMul", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Returns x * y element-wise, working on quantized buffers. + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_mul(Tensor x, Tensor y, Tensor min_x, Tensor max_x, Tensor min_y, Tensor max_y, TF_DataType Toutput = TF_DataType.TF_QINT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMul", name) { args = new object[] { x, y, min_x, max_x, min_y, max_y }, attrs = new Dictionary() { ["Toutput"] = Toutput } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_mul_eager_fallback(x, y, min_x, max_x, min_y, max_y, Toutput: Toutput, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + keywords["min_x"] = min_x; + keywords["max_x"] = max_x; + keywords["min_y"] = min_y; + keywords["max_y"] = max_y; + keywords["Toutput"] = Toutput; + var _op = tf.OpDefLib._apply_op_helper("QuantizedMul", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Toutput", _op._get_attr_type("Toutput") }; + _execute.record_gradient("QuantizedMul", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_mul_eager_fallback(Tensor x, Tensor y, Tensor min_x, Tensor max_x, Tensor min_y, Tensor max_y, TF_DataType Toutput, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y, min_x, max_x, min_y, max_y }; + object[] _attrs = new object[] { "T1", x.dtype, "T2", y.dtype, "Toutput", Toutput }; + var _result = _execute.execute("QuantizedMul", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedMul", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Counts the number of occurrences of each value in an integer array. + /// + /// + /// + /// Outputs a vector with length `size` and the same dtype as `weights`. If + /// `weights` are empty, then index `i` stores the number of times the value `i` is + /// counted in `arr`. If `weights` are non-empty, then index `i` stores the sum of + /// the value in `weights` at each index where the corresponding value in `arr` is + /// `i`. + /// + /// Values in `arr` outside of the range [0, size) are ignored. + /// + /// + /// + /// + /// + /// + /// + /// + /// bool; Whether the kernel should count the appearance or number of occurrences. + /// + /// + /// + public static Tensor ragged_bincount(Tensor splits, Tensor values, Tensor size, Tensor weights, bool binary_output = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RaggedBincount", name) { args = new object[] { splits, values, size, weights }, attrs = new Dictionary() { ["binary_output"] = binary_output } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return ragged_bincount_eager_fallback(splits, values, size, weights, binary_output: binary_output, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["splits"] = splits; + keywords["values"] = values; + keywords["size"] = size; + keywords["weights"] = weights; + keywords["binary_output"] = binary_output; + var _op = tf.OpDefLib._apply_op_helper("RaggedBincount", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tidx", _op._get_attr_type("Tidx"), "T", _op._get_attr_type("T"), "binary_output", _op._get_attr_bool("binary_output") }; + _execute.record_gradient("RaggedBincount", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor ragged_bincount_eager_fallback(Tensor splits, Tensor values, Tensor size, Tensor weights, bool binary_output, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { splits, values, size, weights }; + object[] _attrs = new object[] { "Tidx", values.dtype, "T", weights.dtype, "binary_output", binary_output }; + var _result = _execute.execute("RaggedBincount", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("RaggedBincount", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Creates a sequence of numbers. + /// + /// + /// + /// This operation creates a sequence of numbers that begins at `start` and + /// extends by increments of `delta` up to but not including `limit`. + /// + /// For example: + /// + /// ``` + /// # 'start' is 3 + /// # 'limit' is 18 + /// # 'delta' is 3 + /// tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15] + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor range(Tensor start, Tensor limit, Tensor delta, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Range", name) { args = new object[] { start, limit, delta }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return range_eager_fallback(start, limit, delta, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["start"] = start; + keywords["limit"] = limit; + keywords["delta"] = delta; + var _op = tf.OpDefLib._apply_op_helper("Range", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("Range", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor range_eager_fallback(Tensor start, Tensor limit, Tensor delta, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { start, limit, delta }; + object[] _attrs = new object[] { "Tidx", start.dtype }; + var _result = _execute.execute("Range", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Range", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the real part of a complex number. + /// + /// + /// + /// Given a tensor `input` of complex numbers, this operation returns a tensor of + /// type `float` that is the real part of each element in `input`. All elements in + /// `input` must be complex numbers of the form \(a + bj\), where *a* is the real + /// part returned by this operation and *b* is the imaginary part. + /// + /// For example: + /// + /// ``` + /// # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] + /// tf.real(input) ==> [-2.25, 3.25] + /// ``` + /// + /// + /// + /// + /// + public static Tensor real(Tensor input, TF_DataType Tout = TF_DataType.TF_FLOAT, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Real", name) { args = new object[] { input }, attrs = new Dictionary() { ["Tout"] = Tout } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return real_eager_fallback(input, Tout: Tout, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["Tout"] = Tout; + var _op = tf.OpDefLib._apply_op_helper("Real", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tout", _op._get_attr_type("Tout") }; + _execute.record_gradient("Real", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor real_eager_fallback(Tensor input, TF_DataType Tout, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "Tout", Tout }; + var _result = _execute.execute("Real", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Real", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns x / y element-wise for real types. + /// + /// + /// + /// If `x` and `y` are reals, this will return the floating-point division. + /// + /// *NOTE*: `Div` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor real_div(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RealDiv", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return real_div_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("RealDiv", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("RealDiv", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor real_div_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("RealDiv", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("RealDiv", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the reciprocal of x element-wise. + /// + /// + /// + /// I.e., \(y = 1 / x\). + /// + /// + /// + /// + public static Tensor reciprocal(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Reciprocal", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reciprocal_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Reciprocal", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Reciprocal", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reciprocal_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Reciprocal", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Reciprocal", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradient for the inverse of `x` wrt its input. + /// + /// + /// + /// Specifically, `grad = -dy * y*y`, where `y = 1/x`, and `dy` + /// is the corresponding input gradient. + /// + /// + /// + /// + /// + public static Tensor reciprocal_grad(Tensor y, Tensor dy, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReciprocalGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return reciprocal_grad_eager_fallback(y, dy, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["y"] = y; + keywords["dy"] = dy; + var _op = tf.OpDefLib._apply_op_helper("ReciprocalGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("ReciprocalGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor reciprocal_grad_eager_fallback(Tensor y, Tensor dy, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y, dy }; + object[] _attrs = new object[] { "T", y.dtype }; + var _result = _execute.execute("ReciprocalGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReciprocalGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes a range that covers the actual values present in a quantized tensor. + /// + /// + /// + /// Given a quantized tensor described by `(input, input_min, input_max)`, outputs a + /// range that covers the actual values present in that tensor. This op is typically + /// used to produce the `requested_output_min` and `requested_output_max` for + /// `Requantize`. + /// + /// + /// + /// + /// + /// + public static Tensor[] requantization_range(Tensor input, Tensor input_min, Tensor input_max, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RequantizationRange", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return requantization_range_eager_fallback(input, input_min, input_max, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + var _op = tf.OpDefLib._apply_op_helper("RequantizationRange", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput") }; + _execute.record_gradient("RequantizationRange", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] requantization_range_eager_fallback(Tensor input, Tensor input_min, Tensor input_max, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, input_min, input_max }; + object[] _attrs = new object[] { "Tinput", input.dtype }; + var _result = _execute.execute("RequantizationRange", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("RequantizationRange", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes requantization range per channel. + /// + /// + /// + /// + /// + /// + /// The maximum value of the output that needs to be clipped. + /// Example: set this to 6 for Relu6. + /// + /// + /// + public static Tensor[] requantization_range_per_channel(Tensor input, Tensor input_min, Tensor input_max, float clip_value_max, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RequantizationRangePerChannel", name) { args = new object[] { input, input_min, input_max }, attrs = new Dictionary() { ["clip_value_max"] = clip_value_max } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return requantization_range_per_channel_eager_fallback(input, input_min, input_max, clip_value_max: clip_value_max, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + keywords["clip_value_max"] = clip_value_max; + var _op = tf.OpDefLib._apply_op_helper("RequantizationRangePerChannel", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "clip_value_max", _op.get_attr("clip_value_max") }; + _execute.record_gradient("RequantizationRangePerChannel", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] requantization_range_per_channel_eager_fallback(Tensor input, Tensor input_min, Tensor input_max, float clip_value_max, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, input_min, input_max }; + object[] _attrs = new object[] { "T", input.dtype, "clip_value_max", clip_value_max }; + var _result = _execute.execute("RequantizationRangePerChannel", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("RequantizationRangePerChannel", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Converts the quantized `input` tensor into a lower-precision `output`. + /// + /// + /// + /// Converts the quantized `input` tensor into a lower-precision `output`, using the + /// output range specified with `requested_output_min` and `requested_output_max`. + /// + /// `[input_min, input_max]` are scalar floats that specify the range for the float + /// interpretation of the `input` data. For example, if `input_min` is -1.0f and + /// `input_max` is 1.0f, and we are dealing with `quint16` quantized data, then a 0 + /// value in the 16-bit data should be interpreted as -1.0f, and a 65535 means 1.0f. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// The type of the output. Should be a lower bit depth than Tinput. + /// + /// + /// + public static Tensor[] requantize(Tensor input, Tensor input_min, Tensor input_max, Tensor requested_output_min, Tensor requested_output_max, TF_DataType out_type, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Requantize", name) { args = new object[] { input, input_min, input_max, requested_output_min, requested_output_max }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return requantize_eager_fallback(input, input_min, input_max, requested_output_min, requested_output_max, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + keywords["requested_output_min"] = requested_output_min; + keywords["requested_output_max"] = requested_output_max; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("Requantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("Requantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] requantize_eager_fallback(Tensor input, Tensor input_min, Tensor input_max, Tensor requested_output_min, Tensor requested_output_max, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, input_min, input_max, requested_output_min, requested_output_max }; + object[] _attrs = new object[] { "Tinput", input.dtype, "out_type", out_type }; + var _result = _execute.execute("Requantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Requantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Requantizes input with min and max values known per channel. + /// + /// + /// + /// + /// + /// + /// + /// + /// The quantized type of output tensor that needs to be converted. + /// + /// + /// + public static Tensor[] requantize_per_channel(Tensor input, Tensor input_min, Tensor input_max, Tensor requested_output_min, Tensor requested_output_max, TF_DataType out_type = TF_DataType.TF_QUINT8, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RequantizePerChannel", name) { args = new object[] { input, input_min, input_max, requested_output_min, requested_output_max }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return requantize_per_channel_eager_fallback(input, input_min, input_max, requested_output_min, requested_output_max, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["input_min"] = input_min; + keywords["input_max"] = input_max; + keywords["requested_output_min"] = requested_output_min; + keywords["requested_output_max"] = requested_output_max; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("RequantizePerChannel", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("RequantizePerChannel", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] requantize_per_channel_eager_fallback(Tensor input, Tensor input_min, Tensor input_max, Tensor requested_output_min, Tensor requested_output_max, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, input_min, input_max, requested_output_min, requested_output_max }; + object[] _attrs = new object[] { "T", input.dtype, "out_type", out_type }; + var _result = _execute.execute("RequantizePerChannel", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("RequantizePerChannel", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Returns element-wise integer closest to x. + /// + /// + /// + /// If the result is midway between two representable values, + /// the even representable is chosen. + /// For example: + /// + /// ``` + /// rint(-1.5) ==> -2.0 + /// rint(0.5000001) ==> 1.0 + /// rint([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) ==> [-2., -2., -0., 0., 2., 2., 2.] + /// ``` + /// + /// + /// + /// + public static Tensor rint(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Rint", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return rint_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Rint", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Rint", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor rint_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Rint", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Rint", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Rounds the values of a tensor to the nearest integer, element-wise. + /// + /// + /// + /// Rounds half to even. Also known as bankers rounding. If you want to round + /// according to the current system rounding mode use std::cint. + /// + /// + /// + /// + public static Tensor round(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Round", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return round_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Round", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Round", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor round_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Round", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Round", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes reciprocal of square root of x element-wise. + /// + /// + /// + /// I.e., \(y = 1 / sqrt{x}\). + /// + /// + /// + /// + public static Tensor rsqrt(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Rsqrt", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return rsqrt_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Rsqrt", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Rsqrt", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor rsqrt_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Rsqrt", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Rsqrt", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradient for the rsqrt of `x` wrt its input. + /// + /// + /// + /// Specifically, `grad = dy * -0.5 * y^3`, where `y = rsqrt(x)`, and `dy` + /// is the corresponding input gradient. + /// + /// + /// + /// + /// + public static Tensor rsqrt_grad(Tensor y, Tensor dy, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "RsqrtGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return rsqrt_grad_eager_fallback(y, dy, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["y"] = y; + keywords["dy"] = dy; + var _op = tf.OpDefLib._apply_op_helper("RsqrtGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("RsqrtGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor rsqrt_grad_eager_fallback(Tensor y, Tensor dy, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y, dy }; + object[] _attrs = new object[] { "T", y.dtype }; + var _result = _execute.execute("RsqrtGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("RsqrtGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the maximum along segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// Computes a tensor such that + /// \(output_i = max_j(data_j)\) where `max` is over `j` such + /// that `segment_ids[j] == i`. + /// + /// If the max is empty for a given segment ID `i`, `output[i] = 0`. + /// + /// Caution: On CPU, values in `segment_ids` are always validated to be sorted, + /// and an error is thrown for indices that are not increasing. On GPU, this + /// does not throw an error for unsorted indices. On GPU, out-of-order indices + /// result in safe but unspecified behavior, which may include treating + /// out-of-order indices as the same as a smaller following index. + /// + ///
+ /// + ///
+ /// + /// For example: + /// + /// >>> c = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]]) + /// >>> tf.math.segment_max(c, tf.constant([0, 0, 1])).numpy() + /// array([[4, 3, 3, 4], + /// [5, 6, 7, 8]], dtype=int32) + /// + /// + ///
+ /// + /// + /// + public static Tensor segment_max(Tensor data, Tensor segment_ids, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentMax", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return segment_max_eager_fallback(data, segment_ids, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["segment_ids"] = segment_ids; + var _op = tf.OpDefLib._apply_op_helper("SegmentMax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("SegmentMax", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor segment_max_eager_fallback(Tensor data, Tensor segment_ids, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, segment_ids }; + object[] _attrs = new object[] { "T", data.dtype, "Tindices", segment_ids.dtype }; + var _result = _execute.execute("SegmentMax", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SegmentMax", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the mean along segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// Computes a tensor such that + /// \(output_i = rac{sum_j data_j}{N}\) where `mean` is + /// over `j` such that `segment_ids[j] == i` and `N` is the total number of + /// values summed. + /// + /// If the mean is empty for a given segment ID `i`, `output[i] = 0`. + /// + /// Caution: On CPU, values in `segment_ids` are always validated to be sorted, + /// and an error is thrown for indices that are not increasing. On GPU, this + /// does not throw an error for unsorted indices. On GPU, out-of-order indices + /// result in safe but unspecified behavior, which may include treating + /// out-of-order indices as a smaller following index when computing the numerator + /// of the mean. + /// + ///
+ /// + ///
+ /// + /// For example: + /// + /// >>> c = tf.constant([[1.0,2,3,4], [4, 3, 2, 1], [5,6,7,8]]) + /// >>> tf.math.segment_mean(c, tf.constant([0, 0, 1])).numpy() + /// array([[2.5, 2.5, 2.5, 2.5], + /// [5., 6., 7., 8.]], dtype=float32) + /// + /// + ///
+ /// + /// + /// + public static Tensor segment_mean(Tensor data, Tensor segment_ids, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentMean", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return segment_mean_eager_fallback(data, segment_ids, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["segment_ids"] = segment_ids; + var _op = tf.OpDefLib._apply_op_helper("SegmentMean", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("SegmentMean", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor segment_mean_eager_fallback(Tensor data, Tensor segment_ids, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, segment_ids }; + object[] _attrs = new object[] { "T", data.dtype, "Tindices", segment_ids.dtype }; + var _result = _execute.execute("SegmentMean", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SegmentMean", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the minimum along segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// Computes a tensor such that + /// \(output_i = min_j(data_j)\) where `min` is over `j` such + /// that `segment_ids[j] == i`. + /// + /// If the min is empty for a given segment ID `i`, `output[i] = 0`. + /// + /// Caution: On CPU, values in `segment_ids` are always validated to be sorted, + /// and an error is thrown for indices that are not increasing. On GPU, this + /// does not throw an error for unsorted indices. On GPU, out-of-order indices + /// result in safe but unspecified behavior, which may include treating + /// out-of-order indices as the same as a smaller following index. + /// + ///
+ /// + ///
+ /// + /// For example: + /// + /// >>> c = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]]) + /// >>> tf.math.segment_min(c, tf.constant([0, 0, 1])).numpy() + /// array([[1, 2, 2, 1], + /// [5, 6, 7, 8]], dtype=int32) + /// + /// + ///
+ /// + /// + /// + public static Tensor segment_min(Tensor data, Tensor segment_ids, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentMin", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return segment_min_eager_fallback(data, segment_ids, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["segment_ids"] = segment_ids; + var _op = tf.OpDefLib._apply_op_helper("SegmentMin", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("SegmentMin", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor segment_min_eager_fallback(Tensor data, Tensor segment_ids, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, segment_ids }; + object[] _attrs = new object[] { "T", data.dtype, "Tindices", segment_ids.dtype }; + var _result = _execute.execute("SegmentMin", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SegmentMin", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the product along segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// Computes a tensor such that + /// \(output_i = prod_j data_j\) where the product is over `j` such + /// that `segment_ids[j] == i`. + /// + /// If the product is empty for a given segment ID `i`, `output[i] = 1`. + /// + /// Caution: On CPU, values in `segment_ids` are always validated to be sorted, + /// and an error is thrown for indices that are not increasing. On GPU, this + /// does not throw an error for unsorted indices. On GPU, out-of-order indices + /// result in safe but unspecified behavior, which may include treating + /// out-of-order indices as the same as a smaller following index. + /// + ///
+ /// + ///
+ /// + /// For example: + /// + /// >>> c = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]]) + /// >>> tf.math.segment_prod(c, tf.constant([0, 0, 1])).numpy() + /// array([[4, 6, 6, 4], + /// [5, 6, 7, 8]], dtype=int32) + /// + /// + ///
+ /// + /// + /// + public static Tensor segment_prod(Tensor data, Tensor segment_ids, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentProd", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return segment_prod_eager_fallback(data, segment_ids, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["segment_ids"] = segment_ids; + var _op = tf.OpDefLib._apply_op_helper("SegmentProd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("SegmentProd", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor segment_prod_eager_fallback(Tensor data, Tensor segment_ids, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, segment_ids }; + object[] _attrs = new object[] { "T", data.dtype, "Tindices", segment_ids.dtype }; + var _result = _execute.execute("SegmentProd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SegmentProd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the sum along segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// Computes a tensor such that + /// \(output_i = sum_j data_j\) where sum is over `j` such + /// that `segment_ids[j] == i`. + /// + /// If the sum is empty for a given segment ID `i`, `output[i] = 0`. + /// + /// Caution: On CPU, values in `segment_ids` are always validated to be sorted, + /// and an error is thrown for indices that are not increasing. On GPU, this + /// does not throw an error for unsorted indices. On GPU, out-of-order indices + /// result in safe but unspecified behavior, which may include treating + /// out-of-order indices as the same as a smaller following index. + /// + ///
+ /// + ///
+ /// + /// For example: + /// + /// >>> c = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]]) + /// >>> tf.math.segment_sum(c, tf.constant([0, 0, 1])).numpy() + /// array([[5, 5, 5, 5], + /// [5, 6, 7, 8]], dtype=int32) + /// + /// + ///
+ /// + /// + /// + public static Tensor segment_sum(Tensor data, Tensor segment_ids, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SegmentSum", name) { args = new object[] { data, segment_ids }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return segment_sum_eager_fallback(data, segment_ids, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["segment_ids"] = segment_ids; + var _op = tf.OpDefLib._apply_op_helper("SegmentSum", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("SegmentSum", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor segment_sum_eager_fallback(Tensor data, Tensor segment_ids, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, segment_ids }; + object[] _attrs = new object[] { "T", data.dtype, "Tindices", segment_ids.dtype }; + var _result = _execute.execute("SegmentSum", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SegmentSum", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Selects elements from `t` or `e`, depending on `condition`. + /// + /// + /// + /// The `t`, and `e` tensors must all have the same shape, and the + /// output will also have that shape. + /// + /// The `condition` tensor must be a scalar if `t` and `e` are scalars. + /// If `t` and `e` are vectors or higher rank, then `condition` must be either a + /// scalar, a vector with size matching the first dimension of `t`, or must have + /// the same shape as `t`. + /// + /// The `condition` tensor acts as a mask that chooses, based on the value at each + /// element, whether the corresponding element / row in the output should be + /// taken from `t` (if true) or `e` (if false). + /// + /// If `condition` is a vector and `t` and `e` are higher rank matrices, then + /// it chooses which row (outer dimension) to copy from `t` and `e`. + /// If `condition` has the same shape as `t` and `e`, then it chooses which + /// element to copy from `t` and `e`. + /// + /// For example: + /// + /// ```python + /// # 'condition' tensor is [[True, False] + /// # [False, True]] + /// # 't' is [[1, 2], + /// # [3, 4]] + /// # 'e' is [[5, 6], + /// # [7, 8]] + /// select(condition, t, e) # => [[1, 6], [7, 4]] + /// + /// + /// # 'condition' tensor is [True, False] + /// # 't' is [[1, 2], + /// # [3, 4]] + /// # 'e' is [[5, 6], + /// # [7, 8]] + /// select(condition, t, e) ==> [[1, 2], + /// [7, 8]] + /// + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor select(Tensor condition, Tensor t, Tensor e, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Select", name) { args = new object[] { condition, t, e }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return select_eager_fallback(condition, t, e, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["condition"] = condition; + keywords["t"] = t; + keywords["e"] = e; + var _op = tf.OpDefLib._apply_op_helper("Select", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Select", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor select_eager_fallback(Tensor condition, Tensor t, Tensor e, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { condition, t, e }; + object[] _attrs = new object[] { "T", t.dtype }; + var _result = _execute.execute("Select", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Select", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + /// + public static Tensor select_v2(Tensor condition, Tensor t, Tensor e, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SelectV2", name) { args = new object[] { condition, t, e }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return select_v2_eager_fallback(condition, t, e, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["condition"] = condition; + keywords["t"] = t; + keywords["e"] = e; + var _op = tf.OpDefLib._apply_op_helper("SelectV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("SelectV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor select_v2_eager_fallback(Tensor condition, Tensor t, Tensor e, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { condition, t, e }; + object[] _attrs = new object[] { "T", t.dtype }; + var _result = _execute.execute("SelectV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SelectV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes sigmoid of `x` element-wise. + /// + /// + /// + /// Specifically, `y = 1 / (1 + exp(-x))`. + /// + /// + /// + /// + public static Tensor sigmoid(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sigmoid", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sigmoid_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Sigmoid", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Sigmoid", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sigmoid_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Sigmoid", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Sigmoid", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradient of the sigmoid of `x` wrt its input. + /// + /// + /// + /// Specifically, `grad = dy * y * (1 - y)`, where `y = sigmoid(x)`, and + /// `dy` is the corresponding input gradient. + /// + /// + /// + /// + /// + public static Tensor sigmoid_grad(Tensor y, Tensor dy, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SigmoidGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sigmoid_grad_eager_fallback(y, dy, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["y"] = y; + keywords["dy"] = dy; + var _op = tf.OpDefLib._apply_op_helper("SigmoidGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("SigmoidGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sigmoid_grad_eager_fallback(Tensor y, Tensor dy, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y, dy }; + object[] _attrs = new object[] { "T", y.dtype }; + var _result = _execute.execute("SigmoidGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SigmoidGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns an element-wise indication of the sign of a number. + /// + /// + /// + /// `y = sign(x) = -1` if `x < 0`; 0 if `x == 0`; 1 if `x > 0`. + /// + /// For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y = 0`. + /// + /// Example usage: + /// >>> tf.math.sign([0., 2., -3.]) + /// + /// + /// + /// + /// + public static Tensor sign(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sign", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sign_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Sign", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Sign", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sign_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Sign", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Sign", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes sine of x element-wise. + /// + /// + /// + /// Given an input tensor, this function computes sine of every + /// element in the tensor. Input range is `(-inf, inf)` and + /// output range is `[-1,1]`. + /// + /// ```python + /// x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10, float("inf")]) + /// tf.math.sin(x) ==> [nan -0.4121185 -0.47942555 0.84147096 0.9320391 -0.87329733 -0.54402107 nan] + /// ``` + /// + /// + /// + /// + public static Tensor sin(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sin", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sin_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Sin", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Sin", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sin_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Sin", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Sin", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes hyperbolic sine of x element-wise. + /// + /// + /// + /// Given an input tensor, this function computes hyperbolic sine of every + /// element in the tensor. Input range is `[-inf,inf]` and output range + /// is `[-inf,inf]`. + /// + /// ```python + /// x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 2, 10, float("inf")]) + /// tf.math.sinh(x) ==> [-inf -4.0515420e+03 -5.2109528e-01 1.1752012e+00 1.5094614e+00 3.6268604e+00 1.1013232e+04 inf] + /// ``` + /// + /// + /// + /// + public static Tensor sinh(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sinh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sinh_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Sinh", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Sinh", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sinh_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Sinh", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Sinh", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Generates points from the Sobol sequence. + /// + /// + /// + /// Creates a Sobol sequence with `num_results` samples. Each sample has dimension + /// `dim`. Skips the first `skip` samples. + /// + /// + /// + /// + /// + /// + /// + /// The type of the sample. One of: `float32` or `float64`. + /// + /// + /// + public static Tensor sobol_sample(Tensor dim, Tensor num_results, Tensor skip, TF_DataType dtype = TF_DataType.TF_FLOAT, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SobolSample", name) { args = new object[] { dim, num_results, skip }, attrs = new Dictionary() { ["dtype"] = dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sobol_sample_eager_fallback(dim, num_results, skip, dtype: dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["dim"] = dim; + keywords["num_results"] = num_results; + keywords["skip"] = skip; + keywords["dtype"] = dtype; + var _op = tf.OpDefLib._apply_op_helper("SobolSample", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype") }; + _execute.record_gradient("SobolSample", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sobol_sample_eager_fallback(Tensor dim, Tensor num_results, Tensor skip, TF_DataType dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { dim, num_results, skip }; + object[] _attrs = new object[] { "dtype", dtype }; + var _result = _execute.execute("SobolSample", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SobolSample", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Counts the number of occurrences of each value in an integer array. + /// + /// + /// + /// Outputs a vector with length `size` and the same dtype as `weights`. If + /// `weights` are empty, then index `i` stores the number of times the value `i` is + /// counted in `arr`. If `weights` are non-empty, then index `i` stores the sum of + /// the value in `weights` at each index where the corresponding value in `arr` is + /// `i`. + /// + /// Values in `arr` outside of the range [0, size) are ignored. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// bool; Whether the kernel should count the appearance or number of occurrences. + /// + /// + /// + public static Tensor sparse_bincount(Tensor indices, Tensor values, Tensor dense_shape, Tensor size, Tensor weights, bool binary_output = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseBincount", name) { args = new object[] { indices, values, dense_shape, size, weights }, attrs = new Dictionary() { ["binary_output"] = binary_output } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_bincount_eager_fallback(indices, values, dense_shape, size, weights, binary_output: binary_output, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["indices"] = indices; + keywords["values"] = values; + keywords["dense_shape"] = dense_shape; + keywords["size"] = size; + keywords["weights"] = weights; + keywords["binary_output"] = binary_output; + var _op = tf.OpDefLib._apply_op_helper("SparseBincount", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tidx", _op._get_attr_type("Tidx"), "T", _op._get_attr_type("T"), "binary_output", _op._get_attr_bool("binary_output") }; + _execute.record_gradient("SparseBincount", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sparse_bincount_eager_fallback(Tensor indices, Tensor values, Tensor dense_shape, Tensor size, Tensor weights, bool binary_output, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { indices, values, dense_shape, size, weights }; + object[] _attrs = new object[] { "Tidx", values.dtype, "T", weights.dtype, "binary_output", binary_output }; + var _result = _execute.execute("SparseBincount", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseBincount", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Multiply matrix "a" by matrix "b". + /// + /// + /// + /// The inputs must be two-dimensional matrices and the inner dimension of "a" must + /// match the outer dimension of "b". Both "a" and "b" must be `Tensor`s not + /// `SparseTensor`s. This op is optimized for the case where at least one of "a" or + /// "b" is sparse, in the sense that they have a large proportion of zero values. + /// The breakeven for using this versus a dense matrix multiply on one platform was + /// 30% zero values in the sparse matrix. + /// + /// The gradient computation of this operation will only take advantage of sparsity + /// in the input gradient when that gradient comes from a Relu. + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor sparse_mat_mul(Tensor a, Tensor b, bool transpose_a = false, bool transpose_b = false, bool a_is_sparse = false, bool b_is_sparse = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseMatMul", name) { args = new object[] { a, b }, attrs = new Dictionary() { ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["a_is_sparse"] = a_is_sparse, ["b_is_sparse"] = b_is_sparse } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_mat_mul_eager_fallback(a, b, transpose_a: transpose_a, transpose_b: transpose_b, a_is_sparse: a_is_sparse, b_is_sparse: b_is_sparse, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + keywords["transpose_a"] = transpose_a; + keywords["transpose_b"] = transpose_b; + keywords["a_is_sparse"] = a_is_sparse; + keywords["b_is_sparse"] = b_is_sparse; + var _op = tf.OpDefLib._apply_op_helper("SparseMatMul", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "a_is_sparse", _op._get_attr_bool("a_is_sparse"), "b_is_sparse", _op._get_attr_bool("b_is_sparse"), "Ta", _op._get_attr_type("Ta"), "Tb", _op._get_attr_type("Tb") }; + _execute.record_gradient("SparseMatMul", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sparse_mat_mul_eager_fallback(Tensor a, Tensor b, bool transpose_a, bool transpose_b, bool a_is_sparse, bool b_is_sparse, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b }; + object[] _attrs = new object[] { "transpose_a", transpose_a, "transpose_b", transpose_b, "a_is_sparse", a_is_sparse, "b_is_sparse", b_is_sparse, "Ta", a.dtype, "Tb", b.dtype }; + var _result = _execute.execute("SparseMatMul", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseMatMul", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the mean along sparse segments of a tensor. + /// + /// + /// + /// See `tf.sparse.segment_sum` for usage examples. + /// + /// Like `SegmentMean`, but `segment_ids` can have rank less than `data`'s first + /// dimension, selecting a subset of dimension 0, specified by `indices`. + /// + /// + /// + /// + /// + /// + public static Tensor sparse_segment_mean(Tensor data, Tensor indices, Tensor segment_ids, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentMean", name) { args = new object[] { data, indices, segment_ids }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_segment_mean_eager_fallback(data, indices, segment_ids, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["indices"] = indices; + keywords["segment_ids"] = segment_ids; + var _op = tf.OpDefLib._apply_op_helper("SparseSegmentMean", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx"), "Tsegmentids", _op._get_attr_type("Tsegmentids") }; + _execute.record_gradient("SparseSegmentMean", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sparse_segment_mean_eager_fallback(Tensor data, Tensor indices, Tensor segment_ids, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, indices, segment_ids }; + object[] _attrs = new object[] { "T", data.dtype, "Tidx", indices.dtype, "Tsegmentids", segment_ids.dtype }; + var _result = _execute.execute("SparseSegmentMean", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseSegmentMean", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients for SparseSegmentMean. + /// + /// + /// + /// Returns tensor "output" with same shape as grad, except for dimension 0 whose + /// value is output_dim0. + /// + /// + /// + /// + /// + /// + /// + public static Tensor sparse_segment_mean_grad(Tensor grad, Tensor indices, Tensor segment_ids, Tensor output_dim0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentMeanGrad", name) { args = new object[] { grad, indices, segment_ids, output_dim0 }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_segment_mean_grad_eager_fallback(grad, indices, segment_ids, output_dim0, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["grad"] = grad; + keywords["indices"] = indices; + keywords["segment_ids"] = segment_ids; + keywords["output_dim0"] = output_dim0; + var _op = tf.OpDefLib._apply_op_helper("SparseSegmentMeanGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx"), "Tsegmentids", _op._get_attr_type("Tsegmentids") }; + _execute.record_gradient("SparseSegmentMeanGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sparse_segment_mean_grad_eager_fallback(Tensor grad, Tensor indices, Tensor segment_ids, Tensor output_dim0, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { grad, indices, segment_ids, output_dim0 }; + object[] _attrs = new object[] { "T", grad.dtype, "Tidx", indices.dtype, "Tsegmentids", segment_ids.dtype }; + var _result = _execute.execute("SparseSegmentMeanGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseSegmentMeanGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the mean along sparse segments of a tensor. + /// + /// + /// + /// Like `SparseSegmentMean`, but allows missing ids in `segment_ids`. If an id is + /// missing, the `output` tensor at that position will be zeroed. + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// + /// + /// + /// + /// + /// + public static Tensor sparse_segment_mean_with_num_segments(Tensor data, Tensor indices, Tensor segment_ids, Tensor num_segments, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentMeanWithNumSegments", name) { args = new object[] { data, indices, segment_ids, num_segments }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_segment_mean_with_num_segments_eager_fallback(data, indices, segment_ids, num_segments, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["indices"] = indices; + keywords["segment_ids"] = segment_ids; + keywords["num_segments"] = num_segments; + var _op = tf.OpDefLib._apply_op_helper("SparseSegmentMeanWithNumSegments", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx"), "Tnumsegments", _op._get_attr_type("Tnumsegments"), "Tsegmentids", _op._get_attr_type("Tsegmentids") }; + _execute.record_gradient("SparseSegmentMeanWithNumSegments", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sparse_segment_mean_with_num_segments_eager_fallback(Tensor data, Tensor indices, Tensor segment_ids, Tensor num_segments, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, indices, segment_ids, num_segments }; + object[] _attrs = new object[] { "T", data.dtype, "Tidx", indices.dtype, "Tnumsegments", num_segments.dtype, "Tsegmentids", segment_ids.dtype }; + var _result = _execute.execute("SparseSegmentMeanWithNumSegments", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseSegmentMeanWithNumSegments", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the sum along sparse segments of a tensor divided by the sqrt of N. + /// + /// + /// + /// N is the size of the segment being reduced. + /// + /// See `tf.sparse.segment_sum` for usage examples. + /// + /// + /// + /// + /// + /// + /// + public static Tensor sparse_segment_sqrt_n(Tensor data, Tensor indices, Tensor segment_ids, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentSqrtN", name) { args = new object[] { data, indices, segment_ids }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_segment_sqrt_n_eager_fallback(data, indices, segment_ids, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["indices"] = indices; + keywords["segment_ids"] = segment_ids; + var _op = tf.OpDefLib._apply_op_helper("SparseSegmentSqrtN", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx"), "Tsegmentids", _op._get_attr_type("Tsegmentids") }; + _execute.record_gradient("SparseSegmentSqrtN", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sparse_segment_sqrt_n_eager_fallback(Tensor data, Tensor indices, Tensor segment_ids, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, indices, segment_ids }; + object[] _attrs = new object[] { "T", data.dtype, "Tidx", indices.dtype, "Tsegmentids", segment_ids.dtype }; + var _result = _execute.execute("SparseSegmentSqrtN", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseSegmentSqrtN", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the sum along sparse segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// Like `SegmentSum`, but `segment_ids` can have rank less than `data`'s first + /// dimension, selecting a subset of dimension 0, specified by `indices`. + /// + /// For example: + /// + /// ```python + /// c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]]) + /// + /// # Select two rows, one segment. + /// tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0])) + /// # => [[0 0 0 0]] + /// + /// # Select two rows, two segment. + /// tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1])) + /// # => [[ 1 2 3 4] + /// # [-1 -2 -3 -4]] + /// + /// # Select all rows, two segments. + /// tf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1])) + /// # => [[0 0 0 0] + /// # [5 6 7 8]] + /// + /// # Which is equivalent to: + /// tf.segment_sum(c, tf.constant([0, 0, 1])) + /// ``` + /// + /// + /// + /// + /// + /// + public static Tensor sparse_segment_sum(Tensor data, Tensor indices, Tensor segment_ids, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentSum", name) { args = new object[] { data, indices, segment_ids }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_segment_sum_eager_fallback(data, indices, segment_ids, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["indices"] = indices; + keywords["segment_ids"] = segment_ids; + var _op = tf.OpDefLib._apply_op_helper("SparseSegmentSum", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx"), "Tsegmentids", _op._get_attr_type("Tsegmentids") }; + _execute.record_gradient("SparseSegmentSum", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sparse_segment_sum_eager_fallback(Tensor data, Tensor indices, Tensor segment_ids, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, indices, segment_ids }; + object[] _attrs = new object[] { "T", data.dtype, "Tidx", indices.dtype, "Tsegmentids", segment_ids.dtype }; + var _result = _execute.execute("SparseSegmentSum", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseSegmentSum", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients for SparseSegmentSum. + /// + /// + /// + /// Returns tensor "output" with same shape as grad, except for dimension 0 whose + /// value is output_dim0. + /// + /// + /// + /// + /// + /// + /// + public static Tensor sparse_segment_sum_grad(Tensor grad, Tensor indices, Tensor segment_ids, Tensor output_dim0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentSumGrad", name) { args = new object[] { grad, indices, segment_ids, output_dim0 }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_segment_sum_grad_eager_fallback(grad, indices, segment_ids, output_dim0, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["grad"] = grad; + keywords["indices"] = indices; + keywords["segment_ids"] = segment_ids; + keywords["output_dim0"] = output_dim0; + var _op = tf.OpDefLib._apply_op_helper("SparseSegmentSumGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx"), "Tsegmentids", _op._get_attr_type("Tsegmentids") }; + _execute.record_gradient("SparseSegmentSumGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sparse_segment_sum_grad_eager_fallback(Tensor grad, Tensor indices, Tensor segment_ids, Tensor output_dim0, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { grad, indices, segment_ids, output_dim0 }; + object[] _attrs = new object[] { "T", grad.dtype, "Tidx", indices.dtype, "Tsegmentids", segment_ids.dtype }; + var _result = _execute.execute("SparseSegmentSumGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseSegmentSumGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the sum along sparse segments of a tensor. + /// + /// + /// + /// Like `SparseSegmentSum`, but allows missing ids in `segment_ids`. If an id is + /// missing, the `output` tensor at that position will be zeroed. + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/sparse#Segmentation) + /// for an explanation of segments. + /// + /// For example: + /// + /// ```python + /// c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]]) + /// + /// tf.sparse_segment_sum_with_num_segments( + /// c, tf.constant([0, 1]), tf.constant([0, 0]), num_segments=3) + /// # => [[0 0 0 0] + /// # [0 0 0 0] + /// # [0 0 0 0]] + /// + /// tf.sparse_segment_sum_with_num_segments(c, + /// tf.constant([0, 1]), + /// tf.constant([0, 2], + /// num_segments=4)) + /// # => [[ 1 2 3 4] + /// # [ 0 0 0 0] + /// # [-1 -2 -3 -4] + /// # [ 0 0 0 0]] + /// ``` + /// + /// + /// + /// + /// + /// + /// + public static Tensor sparse_segment_sum_with_num_segments(Tensor data, Tensor indices, Tensor segment_ids, Tensor num_segments, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSegmentSumWithNumSegments", name) { args = new object[] { data, indices, segment_ids, num_segments }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_segment_sum_with_num_segments_eager_fallback(data, indices, segment_ids, num_segments, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["indices"] = indices; + keywords["segment_ids"] = segment_ids; + keywords["num_segments"] = num_segments; + var _op = tf.OpDefLib._apply_op_helper("SparseSegmentSumWithNumSegments", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx"), "Tnumsegments", _op._get_attr_type("Tnumsegments"), "Tsegmentids", _op._get_attr_type("Tsegmentids") }; + _execute.record_gradient("SparseSegmentSumWithNumSegments", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sparse_segment_sum_with_num_segments_eager_fallback(Tensor data, Tensor indices, Tensor segment_ids, Tensor num_segments, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, indices, segment_ids, num_segments }; + object[] _attrs = new object[] { "T", data.dtype, "Tidx", indices.dtype, "Tnumsegments", num_segments.dtype, "Tsegmentids", segment_ids.dtype }; + var _result = _execute.execute("SparseSegmentSumWithNumSegments", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseSegmentSumWithNumSegments", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes square root of x element-wise. + /// + /// + /// + /// I.e., \(y = sqrt{x} = x^{1/2}\). + /// + /// + /// + /// + public static Tensor sqrt(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sqrt", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sqrt_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Sqrt", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Sqrt", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sqrt_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Sqrt", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Sqrt", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradient for the sqrt of `x` wrt its input. + /// + /// + /// + /// Specifically, `grad = dy * 0.5 / y`, where `y = sqrt(x)`, and `dy` + /// is the corresponding input gradient. + /// + /// + /// + /// + /// + public static Tensor sqrt_grad(Tensor y, Tensor dy, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SqrtGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sqrt_grad_eager_fallback(y, dy, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["y"] = y; + keywords["dy"] = dy; + var _op = tf.OpDefLib._apply_op_helper("SqrtGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("SqrtGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sqrt_grad_eager_fallback(Tensor y, Tensor dy, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y, dy }; + object[] _attrs = new object[] { "T", y.dtype }; + var _result = _execute.execute("SqrtGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SqrtGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes square of x element-wise. + /// + /// + /// + /// I.e., \(y = x * x = x^2\). + /// + /// + /// + /// + public static Tensor square(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Square", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return square_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Square", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Square", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor square_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Square", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Square", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns conj(x - y)(x - y) element-wise. + /// + /// + /// + /// *NOTE*: `SquaredDifference` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor squared_difference(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SquaredDifference", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return squared_difference_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("SquaredDifference", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("SquaredDifference", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor squared_difference_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("SquaredDifference", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SquaredDifference", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns x - y element-wise. + /// + /// + /// + /// *NOTE*: `Sub` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor sub(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sub", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sub_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Sub", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Sub", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sub_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Sub", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Sub", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the sum of elements across dimensions of a tensor. + /// + /// + /// + /// Reduces `input` along the dimensions given in `reduction_indices`. Unless + /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in + /// `reduction_indices`. If `keep_dims` is true, the reduced dimensions are + /// retained with length 1. + /// + /// + /// + /// + /// + /// + /// If true, retain reduced dimensions with length 1. + /// + /// + /// + public static Tensor sum(Tensor input, Tensor reduction_indices, bool keep_dims = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Sum", name) { args = new object[] { input, reduction_indices }, attrs = new Dictionary() { ["keep_dims"] = keep_dims } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sum_eager_fallback(input, reduction_indices, keep_dims: keep_dims, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["reduction_indices"] = reduction_indices; + keywords["keep_dims"] = keep_dims; + var _op = tf.OpDefLib._apply_op_helper("Sum", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "keep_dims", _op._get_attr_bool("keep_dims"), "T", _op._get_attr_type("T"), "Tidx", _op._get_attr_type("Tidx") }; + _execute.record_gradient("Sum", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor sum_eager_fallback(Tensor input, Tensor reduction_indices, bool keep_dims, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, reduction_indices }; + object[] _attrs = new object[] { "keep_dims", keep_dims, "T", input.dtype, "Tidx", reduction_indices.dtype }; + var _result = _execute.execute("Sum", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Sum", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes tan of x element-wise. + /// + /// + /// + /// Given an input tensor, this function computes tangent of every + /// element in the tensor. Input range is `(-inf, inf)` and + /// output range is `(-inf, inf)`. If input lies outside the boundary, `nan` + /// is returned. + /// + /// ```python + /// x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10000, float("inf")]) + /// tf.math.tan(x) ==> [nan 0.45231566 -0.5463025 1.5574077 2.572152 -1.7925274 0.32097113 nan] + /// ``` + /// + /// + /// + /// + public static Tensor tan(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Tan", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tan_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Tan", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Tan", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tan_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Tan", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Tan", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes hyperbolic tangent of `x` element-wise. + /// + /// + /// + /// Given an input tensor, this function computes hyperbolic tangent of every + /// element in the tensor. Input range is `[-inf, inf]` and + /// output range is `[-1,1]`. + /// + /// >>> x = tf.constant([-float("inf"), -5, -0.5, 1, 1.2, 2, 3, float("inf")]) + /// >>> tf.math.tanh(x) + /// + /// + /// + /// + /// + /// + public static Tensor tanh(Tensor x, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Tanh", name) { args = new object[] { x }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tanh_eager_fallback(x, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + var _op = tf.OpDefLib._apply_op_helper("Tanh", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Tanh", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tanh_eager_fallback(Tensor x, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Tanh", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Tanh", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradient for the tanh of `x` wrt its input. + /// + /// + /// + /// Specifically, `grad = dy * (1 - y*y)`, where `y = tanh(x)`, and `dy` + /// is the corresponding input gradient. + /// + /// + /// + /// + /// + public static Tensor tanh_grad(Tensor y, Tensor dy, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TanhGrad", name) { args = new object[] { y, dy }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return tanh_grad_eager_fallback(y, dy, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["y"] = y; + keywords["dy"] = dy; + var _op = tf.OpDefLib._apply_op_helper("TanhGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("TanhGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor tanh_grad_eager_fallback(Tensor y, Tensor dy, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y, dy }; + object[] _attrs = new object[] { "T", y.dtype }; + var _result = _execute.execute("TanhGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TanhGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns x / y element-wise for integer types. + /// + /// + /// + /// Truncation designates that negative numbers will round fractional quantities + /// toward zero. I.e. -7 / 5 = -1. This matches C semantics but it is different + /// than Python semantics. See `FloorDiv` for a division function that matches + /// Python Semantics. + /// + /// *NOTE*: `TruncateDiv` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor truncate_div(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TruncateDiv", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return truncate_div_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("TruncateDiv", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("TruncateDiv", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor truncate_div_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("TruncateDiv", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TruncateDiv", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns element-wise remainder of division. This emulates C semantics in that + /// + /// + /// + /// the result here is consistent with a truncating divide. E.g. `truncate(x / y) * + /// y + truncate_mod(x, y) = x`. + /// + /// *NOTE*: `TruncateMod` supports broadcasting. More about broadcasting + /// [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) + /// + /// + /// + /// + /// + public static Tensor truncate_mod(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TruncateMod", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return truncate_mod_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("TruncateMod", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("TruncateMod", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor truncate_mod_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("TruncateMod", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TruncateMod", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the maximum along segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// This operator is similar to `tf.math.unsorted_segment_sum`, + /// Instead of computing the sum over segments, it computes the maximum such that: + /// + /// \(output_i = max_{j...} data[j...]\) where max is over tuples `j...` such + /// that `segment_ids[j...] == i`. + /// + /// If the maximum is empty for a given segment ID `i`, it outputs the smallest + /// possible value for the specific numeric type, + /// `output[i] = numeric_limits::lowest()`. + /// + /// If the given segment ID `i` is negative, then the corresponding value is + /// dropped, and will not be included in the result. + /// + /// Caution: On CPU, values in `segment_ids` are always validated to be less than + /// `num_segments`, and an error is thrown for out-of-bound indices. On GPU, this + /// does not throw an error for out-of-bound indices. On Gpu, out-of-bound indices + /// result in safe but unspecified behavior, which may include ignoring + /// out-of-bound indices or outputting a tensor with a 0 stored in the first + /// dimension of its shape if `num_segments` is 0. + /// + ///
+ /// + ///
+ /// + /// For example: + /// + /// >>> c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]]) + /// >>> tf.math.unsorted_segment_max(c, tf.constant([0, 1, 0]), num_segments=2).numpy() + /// array([[4, 3, 3, 4], + /// [5, 6, 7, 8]], dtype=int32) + /// + /// + ///
+ /// + /// + /// + /// + public static Tensor unsorted_segment_max(Tensor data, Tensor segment_ids, Tensor num_segments, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnsortedSegmentMax", name) { args = new object[] { data, segment_ids, num_segments }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unsorted_segment_max_eager_fallback(data, segment_ids, num_segments, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["segment_ids"] = segment_ids; + keywords["num_segments"] = num_segments; + var _op = tf.OpDefLib._apply_op_helper("UnsortedSegmentMax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "Tnumsegments", _op._get_attr_type("Tnumsegments") }; + _execute.record_gradient("UnsortedSegmentMax", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor unsorted_segment_max_eager_fallback(Tensor data, Tensor segment_ids, Tensor num_segments, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, segment_ids, num_segments }; + object[] _attrs = new object[] { "T", data.dtype, "Tindices", segment_ids.dtype, "Tnumsegments", num_segments.dtype }; + var _result = _execute.execute("UnsortedSegmentMax", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("UnsortedSegmentMax", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the minimum along segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// This operator is similar to `tf.math.unsorted_segment_sum`, + /// Instead of computing the sum over segments, it computes the minimum such that: + /// + /// \(output_i = min_{j...} data_[j...]\) where min is over tuples `j...` such + /// that `segment_ids[j...] == i`. + /// + /// If the minimum is empty for a given segment ID `i`, it outputs the largest + /// possible value for the specific numeric type, + /// `output[i] = numeric_limits::max()`. + /// + /// For example: + /// + /// >>> c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]]) + /// >>> tf.math.unsorted_segment_min(c, tf.constant([0, 1, 0]), num_segments=2).numpy() + /// array([[1, 2, 2, 1], + /// [5, 6, 7, 8]], dtype=int32) + /// + /// If the given segment ID `i` is negative, then the corresponding value is + /// dropped, and will not be included in the result. + /// + /// Caution: On CPU, values in `segment_ids` are always validated to be less than + /// `num_segments`, and an error is thrown for out-of-bound indices. On GPU, this + /// does not throw an error for out-of-bound indices. On Gpu, out-of-bound indices + /// result in safe but unspecified behavior, which may include ignoring + /// out-of-bound indices or outputting a tensor with a 0 stored in the first + /// dimension of its shape if `num_segments` is 0. + /// + /// + /// + /// + /// + /// + public static Tensor unsorted_segment_min(Tensor data, Tensor segment_ids, Tensor num_segments, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnsortedSegmentMin", name) { args = new object[] { data, segment_ids, num_segments }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unsorted_segment_min_eager_fallback(data, segment_ids, num_segments, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["segment_ids"] = segment_ids; + keywords["num_segments"] = num_segments; + var _op = tf.OpDefLib._apply_op_helper("UnsortedSegmentMin", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "Tnumsegments", _op._get_attr_type("Tnumsegments") }; + _execute.record_gradient("UnsortedSegmentMin", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor unsorted_segment_min_eager_fallback(Tensor data, Tensor segment_ids, Tensor num_segments, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, segment_ids, num_segments }; + object[] _attrs = new object[] { "T", data.dtype, "Tindices", segment_ids.dtype, "Tnumsegments", num_segments.dtype }; + var _result = _execute.execute("UnsortedSegmentMin", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("UnsortedSegmentMin", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the product along segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// This operator is similar to `tf.math.unsorted_segment_sum`, + /// Instead of computing the sum over segments, it computes the product of all + /// entries belonging to a segment such that: + /// + /// \(output_i = prod_{j...} data[j...]\) where the product is over tuples + /// `j...` such that `segment_ids[j...] == i`. + /// + /// For example: + /// + /// >>> c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]]) + /// >>> tf.math.unsorted_segment_prod(c, tf.constant([0, 1, 0]), num_segments=2).numpy() + /// array([[4, 6, 6, 4], + /// [5, 6, 7, 8]], dtype=int32) + /// + /// If there is no entry for a given segment ID `i`, it outputs 1. + /// + /// If the given segment ID `i` is negative, then the corresponding value is + /// dropped, and will not be included in the result. + /// Caution: On CPU, values in `segment_ids` are always validated to be less than + /// `num_segments`, and an error is thrown for out-of-bound indices. On GPU, this + /// does not throw an error for out-of-bound indices. On Gpu, out-of-bound indices + /// result in safe but unspecified behavior, which may include ignoring + /// out-of-bound indices or outputting a tensor with a 0 stored in the first + /// dimension of its shape if `num_segments` is 0. + /// + /// + /// + /// + /// + /// + /// + public static Tensor unsorted_segment_prod(Tensor data, Tensor segment_ids, Tensor num_segments, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnsortedSegmentProd", name) { args = new object[] { data, segment_ids, num_segments }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unsorted_segment_prod_eager_fallback(data, segment_ids, num_segments, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["segment_ids"] = segment_ids; + keywords["num_segments"] = num_segments; + var _op = tf.OpDefLib._apply_op_helper("UnsortedSegmentProd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "Tnumsegments", _op._get_attr_type("Tnumsegments") }; + _execute.record_gradient("UnsortedSegmentProd", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor unsorted_segment_prod_eager_fallback(Tensor data, Tensor segment_ids, Tensor num_segments, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, segment_ids, num_segments }; + object[] _attrs = new object[] { "T", data.dtype, "Tindices", segment_ids.dtype, "Tnumsegments", num_segments.dtype }; + var _result = _execute.execute("UnsortedSegmentProd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("UnsortedSegmentProd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the sum along segments of a tensor. + /// + /// + /// + /// Read + /// [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) + /// for an explanation of segments. + /// + /// Computes a tensor such that + /// \(output[i] = sum_{j...} data[j...]\) where the sum is over tuples `j...` such + /// that `segment_ids[j...] == i`. Unlike `SegmentSum`, `segment_ids` + /// need not be sorted and need not cover all values in the full + /// range of valid values. + /// + /// If the sum is empty for a given segment ID `i`, `output[i] = 0`. + /// If the given segment ID `i` is negative, the value is dropped and will not be + /// added to the sum of the segment. + /// + /// `num_segments` should equal the number of distinct segment IDs. + /// + /// Caution: On CPU, values in `segment_ids` are always validated to be less than + /// `num_segments`, and an error is thrown for out-of-bound indices. On GPU, this + /// does not throw an error for out-of-bound indices. On Gpu, out-of-bound indices + /// result in safe but unspecified behavior, which may include ignoring + /// out-of-bound indices or outputting a tensor with a 0 stored in the first + /// dimension of its shape if `num_segments` is 0. + /// + ///
+ /// + ///
+ /// + /// >>> c = [[1,2,3,4], [5,6,7,8], [4,3,2,1]] + /// >>> tf.math.unsorted_segment_sum(c, [0, 1, 0], num_segments=2).numpy() + /// array([[5, 5, 5, 5], + /// [5, 6, 7, 8]], dtype=int32) + /// + /// + /// + ///
+ /// + /// + /// + /// + public static Tensor unsorted_segment_sum(Tensor data, Tensor segment_ids, Tensor num_segments, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "UnsortedSegmentSum", name) { args = new object[] { data, segment_ids, num_segments }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return unsorted_segment_sum_eager_fallback(data, segment_ids, num_segments, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["data"] = data; + keywords["segment_ids"] = segment_ids; + keywords["num_segments"] = num_segments; + var _op = tf.OpDefLib._apply_op_helper("UnsortedSegmentSum", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tindices", _op._get_attr_type("Tindices"), "Tnumsegments", _op._get_attr_type("Tnumsegments") }; + _execute.record_gradient("UnsortedSegmentSum", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor unsorted_segment_sum_eager_fallback(Tensor data, Tensor segment_ids, Tensor num_segments, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { data, segment_ids, num_segments }; + object[] _attrs = new object[] { "T", data.dtype, "Tindices", segment_ids.dtype, "Tnumsegments", num_segments.dtype }; + var _result = _execute.execute("UnsortedSegmentSum", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("UnsortedSegmentSum", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns 0 if x == 0, and x / y otherwise, elementwise. + /// + /// + /// + /// + public static Tensor xdivy(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Xdivy", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return xdivy_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Xdivy", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Xdivy", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor xdivy_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Xdivy", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Xdivy", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. + /// + /// + /// + /// + public static Tensor xlog1py(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Xlog1py", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return xlog1py_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Xlog1py", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Xlog1py", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor xlog1py_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Xlog1py", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Xlog1py", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns 0 if x == 0, and x * log(y) otherwise, elementwise. + /// + /// + /// + /// + public static Tensor xlogy(Tensor x, Tensor y, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Xlogy", name) { args = new object[] { x, y }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return xlogy_eager_fallback(x, y, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["y"] = y; + var _op = tf.OpDefLib._apply_op_helper("Xlogy", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Xlogy", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor xlogy_eager_fallback(Tensor x, Tensor y, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, y }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Xlogy", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Xlogy", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Compute the Hurwitz zeta function \\(\zeta(x, q)\\). + /// + /// + /// + /// The Hurwitz zeta function is defined as: + /// + /// + /// \(zeta(x, q) = sum_{n=0}^{infty} (q + n)^{-x}\) + /// + /// + /// + /// + /// + public static Tensor zeta(Tensor x, Tensor q, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Zeta", name) { args = new object[] { x, q }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return zeta_eager_fallback(x, q, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["q"] = q; + var _op = tf.OpDefLib._apply_op_helper("Zeta", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Zeta", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor zeta_eager_fallback(Tensor x, Tensor q, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, q }; + object[] _attrs = new object[] { "T", x.dtype }; + var _result = _execute.execute("Zeta", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Zeta", _inputs_flat, _attrs, _result); + } + return _result[0]; } } diff --git a/src/TensorFlowNET.Core/Operations/gen_math_ops.eager.cs b/src/TensorFlowNET.Core/Operations/gen_math_ops.eager.cs deleted file mode 100644 index 8e6e72d12..000000000 --- a/src/TensorFlowNET.Core/Operations/gen_math_ops.eager.cs +++ /dev/null @@ -1,11 +0,0 @@ -using System; -using static Tensorflow.Binding; - -namespace Tensorflow -{ - public static partial class gen_math_ops - { - public static Tensor mul(IntPtr x, IntPtr y, string name = null) - => tf.Context.ExecuteOp("Mul", name, new ExecuteOpArgs(x, y)); - } -} diff --git a/src/TensorFlowNET.Core/Operations/gen_nn_ops.cs b/src/TensorFlowNET.Core/Operations/gen_nn_ops.cs new file mode 100644 index 000000000..59c740c46 --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/gen_nn_ops.cs @@ -0,0 +1,8493 @@ +/*Wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit.*/ + +using Tensorflow.Eager; +using Tensorflow.Contexts; +using Tensorflow.Exceptions; +using static Tensorflow.Binding; + +namespace Tensorflow; + +public static class gen_nn_ops +{ + /// + /// Returns min/max k values and their indices of the input operand in an approximate manner. + /// + /// + /// + /// See https://arxiv.org/abs/2206.14286 for the algorithm details. + /// This op is only optimized on TPU currently. + /// + /// + /// + /// + /// Specifies the number of min/max-k. + /// + /// + /// Integer dimension along which to search. Default: -1. + /// + /// + /// Recall target for the approximation. Range in (0,1] + /// + /// + /// When true, computes max-k; otherwise computes min-k. + /// + /// + /// + /// When set to a positive value, it overrides the size determined by + /// `input[reduction_dim]` for evaluating the recall. This option is useful when + /// the given `input` is only a subset of the overall computation in SPMD or + /// distributed pipelines, where the true input size cannot be deferred by the + /// `input` shape. + /// + /// + /// + /// + /// When true, aggregates approximate results to top-k. When false, returns the + /// approximate results. The number of the approximate results is implementation + /// defined and is greater equals to the specified `k`. + /// + /// + /// + public static Tensor[] approx_top_k(Tensor input, int k = 0, int reduction_dimension = -1, float recall_target = 0.95f, bool is_max_k = true, int reduction_input_size_override = -1, bool aggregate_to_topk = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ApproxTopK", name) { args = new object[] { input }, attrs = new Dictionary() { ["k"] = k, ["reduction_dimension"] = reduction_dimension, ["recall_target"] = recall_target, ["is_max_k"] = is_max_k, ["reduction_input_size_override"] = reduction_input_size_override, ["aggregate_to_topk"] = aggregate_to_topk } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return approx_top_k_eager_fallback(input, k: k, reduction_dimension: reduction_dimension, recall_target: recall_target, is_max_k: is_max_k, reduction_input_size_override: reduction_input_size_override, aggregate_to_topk: aggregate_to_topk, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["k"] = k; + keywords["reduction_dimension"] = reduction_dimension; + keywords["recall_target"] = recall_target; + keywords["is_max_k"] = is_max_k; + keywords["reduction_input_size_override"] = reduction_input_size_override; + keywords["aggregate_to_topk"] = aggregate_to_topk; + var _op = tf.OpDefLib._apply_op_helper("ApproxTopK", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "k", _op._get_attr_int("k"), "reduction_dimension", _op._get_attr_int("reduction_dimension"), "recall_target", _op.get_attr("recall_target"), "is_max_k", _op._get_attr_bool("is_max_k"), "reduction_input_size_override", _op._get_attr_int("reduction_input_size_override"), "aggregate_to_topk", _op._get_attr_bool("aggregate_to_topk"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("ApproxTopK", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] approx_top_k_eager_fallback(Tensor input, int k, int reduction_dimension, float recall_target, bool is_max_k, int reduction_input_size_override, bool aggregate_to_topk, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "k", k, "reduction_dimension", reduction_dimension, "recall_target", recall_target, "is_max_k", is_max_k, "reduction_input_size_override", reduction_input_size_override, "aggregate_to_topk", aggregate_to_topk, "T", input.dtype }; + var _result = _execute.execute("ApproxTopK", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ApproxTopK", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Performs average pooling on the input. + /// + /// + /// + /// Each entry in `output` is the mean of the corresponding size `ksize` + /// window in `value`. + /// + /// + /// + /// + /// + /// The size of the sliding window for each dimension of `value`. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of `value`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + public static Tensor avg_pool(Tensor value, int[] ksize, int[] strides, string padding, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AvgPool", name) { args = new object[] { value }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return avg_pool_eager_fallback(value, ksize: ksize, strides: strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["value"] = value; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("AvgPool", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("AvgPool", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor avg_pool_eager_fallback(Tensor value, int[] ksize, int[] strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { value }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", value.dtype }; + var _result = _execute.execute("AvgPool", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AvgPool", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Performs 3D average pooling on the input. + /// + /// + /// + /// Each entry in `output` is the mean of the corresponding size `ksize` window in + /// `value`. + /// + /// + /// + /// + /// + /// 1-D tensor of length 5. The size of the window for each dimension of + /// the input tensor. Must have `ksize[0] = ksize[4] = 1`. + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// The data format of the input and output data. With the + /// default format "NDHWC", the data is stored in the order of: + /// [batch, in_depth, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCDHW", the data storage order is: + /// [batch, in_channels, in_depth, in_height, in_width]. + /// + /// + /// + public static Tensor avg_pool3d(Tensor input, int[] ksize, int[] strides, string padding, string data_format = "NDHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AvgPool3D", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return avg_pool3d_eager_fallback(input, ksize: ksize, strides: strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NDHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("AvgPool3D", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("AvgPool3D", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor avg_pool3d_eager_fallback(Tensor input, int[] ksize, int[] strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", input.dtype }; + var _result = _execute.execute("AvgPool3D", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AvgPool3D", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients of average pooling function. + /// + /// + /// + /// + /// + /// 1-D tensor of length 5. The size of the window for each dimension of + /// the input tensor. Must have `ksize[0] = ksize[4] = 1`. + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// The data format of the input and output data. With the + /// default format "NDHWC", the data is stored in the order of: + /// [batch, in_depth, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCDHW", the data storage order is: + /// [batch, in_channels, in_depth, in_height, in_width]. + /// + /// + /// + public static Tensor avg_pool3d_grad(Tensor orig_input_shape, Tensor grad, int[] ksize, int[] strides, string padding, string data_format = "NDHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AvgPool3DGrad", name) { args = new object[] { orig_input_shape, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return avg_pool3d_grad_eager_fallback(orig_input_shape, grad, ksize: ksize, strides: strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NDHWC"; + } + Dictionary keywords = new(); + keywords["orig_input_shape"] = orig_input_shape; + keywords["grad"] = grad; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("AvgPool3DGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("AvgPool3DGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor avg_pool3d_grad_eager_fallback(Tensor orig_input_shape, Tensor grad, int[] ksize, int[] strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input_shape, grad }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", grad.dtype }; + var _result = _execute.execute("AvgPool3DGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AvgPool3DGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients of the average pooling function. + /// + /// + /// + /// + /// + /// The size of the sliding window for each dimension of the input. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the input. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + public static Tensor avg_pool_grad(Tensor orig_input_shape, Tensor grad, int[] ksize, int[] strides, string padding, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AvgPoolGrad", name) { args = new object[] { orig_input_shape, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return avg_pool_grad_eager_fallback(orig_input_shape, grad, ksize: ksize, strides: strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["orig_input_shape"] = orig_input_shape; + keywords["grad"] = grad; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("AvgPoolGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("AvgPoolGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor avg_pool_grad_eager_fallback(Tensor orig_input_shape, Tensor grad, int[] ksize, int[] strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input_shape, grad }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", grad.dtype }; + var _result = _execute.execute("AvgPoolGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AvgPoolGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Batch normalization. + /// + /// + /// + /// This op is deprecated. Prefer `tf.nn.batch_normalization`. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// A small float number to avoid dividing by 0. + /// + /// + /// + /// + /// A bool indicating whether the resulted tensor + /// needs to be multiplied with gamma. + /// + /// + /// + public static Tensor batch_norm_with_global_normalization(Tensor t, Tensor m, Tensor v, Tensor beta, Tensor gamma, float variance_epsilon, bool scale_after_normalization, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchNormWithGlobalNormalization", name) { args = new object[] { t, m, v, beta, gamma }, attrs = new Dictionary() { ["variance_epsilon"] = variance_epsilon, ["scale_after_normalization"] = scale_after_normalization } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_norm_with_global_normalization_eager_fallback(t, m, v, beta, gamma, variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["t"] = t; + keywords["m"] = m; + keywords["v"] = v; + keywords["beta"] = beta; + keywords["gamma"] = gamma; + keywords["variance_epsilon"] = variance_epsilon; + keywords["scale_after_normalization"] = scale_after_normalization; + var _op = tf.OpDefLib._apply_op_helper("BatchNormWithGlobalNormalization", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "variance_epsilon", _op.get_attr("variance_epsilon"), "scale_after_normalization", _op._get_attr_bool("scale_after_normalization") }; + _execute.record_gradient("BatchNormWithGlobalNormalization", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor batch_norm_with_global_normalization_eager_fallback(Tensor t, Tensor m, Tensor v, Tensor beta, Tensor gamma, float variance_epsilon, bool scale_after_normalization, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { t, m, v, beta, gamma }; + object[] _attrs = new object[] { "T", t.dtype, "variance_epsilon", variance_epsilon, "scale_after_normalization", scale_after_normalization }; + var _result = _execute.execute("BatchNormWithGlobalNormalization", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BatchNormWithGlobalNormalization", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Gradients for batch normalization. + /// + /// + /// + /// This op is deprecated. See `tf.nn.batch_normalization`. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// A small float number to avoid dividing by 0. + /// + /// + /// + /// + /// A bool indicating whether the resulted tensor + /// needs to be multiplied with gamma. + /// + /// + /// + public static Tensor[] batch_norm_with_global_normalization_grad(Tensor t, Tensor m, Tensor v, Tensor gamma, Tensor backprop, float variance_epsilon, bool scale_after_normalization, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BatchNormWithGlobalNormalizationGrad", name) { args = new object[] { t, m, v, gamma, backprop }, attrs = new Dictionary() { ["variance_epsilon"] = variance_epsilon, ["scale_after_normalization"] = scale_after_normalization } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return batch_norm_with_global_normalization_grad_eager_fallback(t, m, v, gamma, backprop, variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["t"] = t; + keywords["m"] = m; + keywords["v"] = v; + keywords["gamma"] = gamma; + keywords["backprop"] = backprop; + keywords["variance_epsilon"] = variance_epsilon; + keywords["scale_after_normalization"] = scale_after_normalization; + var _op = tf.OpDefLib._apply_op_helper("BatchNormWithGlobalNormalizationGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "variance_epsilon", _op.get_attr("variance_epsilon"), "scale_after_normalization", _op._get_attr_bool("scale_after_normalization") }; + _execute.record_gradient("BatchNormWithGlobalNormalizationGrad", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] batch_norm_with_global_normalization_grad_eager_fallback(Tensor t, Tensor m, Tensor v, Tensor gamma, Tensor backprop, float variance_epsilon, bool scale_after_normalization, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { t, m, v, gamma, backprop }; + object[] _attrs = new object[] { "T", t.dtype, "variance_epsilon", variance_epsilon, "scale_after_normalization", scale_after_normalization }; + var _result = _execute.execute("BatchNormWithGlobalNormalizationGrad", 5, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BatchNormWithGlobalNormalizationGrad", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Adds `bias` to `value`. + /// + /// + /// + /// This is a special case of `tf.add` where `bias` is restricted to be 1-D. + /// Broadcasting is supported, so `value` may have any number of dimensions. + /// + /// + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the bias tensor will be added to the last dimension + /// of the value tensor. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// The tensor will be added to "in_channels", the third-to-the-last + /// dimension. + /// + /// + /// + public static Tensor bias_add(Tensor value, Tensor bias, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BiasAdd", name) { args = new object[] { value, bias }, attrs = new Dictionary() { ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return bias_add_eager_fallback(value, bias, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["value"] = value; + keywords["bias"] = bias; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("BiasAdd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "data_format", _op.get_attr("data_format") }; + _execute.record_gradient("BiasAdd", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor bias_add_eager_fallback(Tensor value, Tensor bias, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { value, bias }; + object[] _attrs = new object[] { "T", value.dtype, "data_format", data_format }; + var _result = _execute.execute("BiasAdd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BiasAdd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// The backward operation for "BiasAdd" on the "bias" tensor. + /// + /// + /// + /// It accumulates all the values from out_backprop into the feature dimension. + /// For NHWC data format, the feature dimension is the last. For NCHW data format, + /// the feature dimension is the third-to-last. + /// + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the bias tensor will be added to the last dimension + /// of the value tensor. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// The tensor will be added to "in_channels", the third-to-the-last + /// dimension. + /// + /// + /// + public static Tensor bias_add_grad(Tensor out_backprop, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BiasAddGrad", name) { args = new object[] { out_backprop }, attrs = new Dictionary() { ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return bias_add_grad_eager_fallback(out_backprop, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["out_backprop"] = out_backprop; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("BiasAddGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "data_format", _op.get_attr("data_format") }; + _execute.record_gradient("BiasAddGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor bias_add_grad_eager_fallback(Tensor out_backprop, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { out_backprop }; + object[] _attrs = new object[] { "T", out_backprop.dtype, "data_format", data_format }; + var _result = _execute.execute("BiasAddGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BiasAddGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Adds `bias` to `value`. + /// + /// + /// + /// This is a deprecated version of BiasAdd and will be soon removed. + /// + /// This is a special case of `tf.add` where `bias` is restricted to be 1-D. + /// Broadcasting is supported, so `value` may have any number of dimensions. + /// + /// + /// + /// + /// + public static Tensor bias_add_v1(Tensor value, Tensor bias, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "BiasAddV1", name) { args = new object[] { value, bias }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return bias_add_v1_eager_fallback(value, bias, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["value"] = value; + keywords["bias"] = bias; + var _op = tf.OpDefLib._apply_op_helper("BiasAddV1", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("BiasAddV1", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor bias_add_v1_eager_fallback(Tensor value, Tensor bias, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { value, bias }; + object[] _attrs = new object[] { "T", value.dtype }; + var _result = _execute.execute("BiasAddV1", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("BiasAddV1", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes a 2-D convolution given 4-D `input` and `filter` tensors. + /// + /// + /// + /// Given an input tensor of shape `[batch, in_height, in_width, in_channels]` + /// and a filter / kernel tensor of shape + /// `[filter_height, filter_width, in_channels, out_channels]`, this op + /// performs the following: + /// + /// 1. Flattens the filter to a 2-D matrix with shape + /// `[filter_height * filter_width * in_channels, output_channels]`. + /// 2. Extracts image patches from the input tensor to form a *virtual* + /// tensor of shape `[batch, out_height, out_width, + /// filter_height * filter_width * in_channels]`. + /// 3. For each patch, right-multiplies the filter matrix and the image patch + /// vector. + /// + /// In detail, with the default NHWC format, + /// + /// output[b, i, j, k] = + /// sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] * + /// filter[di, dj, q, k] + /// + /// Must have `strides[0] = strides[3] = 1`. For the most common case of the same + /// horizontal and vertices strides, `strides = [1, stride, stride, 1]`. + /// + /// + /// + /// + /// + /// + /// 1-D tensor of length 4. The stride of the sliding window for each + /// dimension of `input`. The dimension order is determined by the value of + /// `data_format`, see below for details. + /// + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith + /// dimension, the amount of padding inserted before and after the dimension is + /// `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If + /// `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, height, width, channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, channels, height, width]. + /// + /// + /// + /// + /// 1-D tensor of length 4. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each + /// filter element on that dimension. The dimension order is determined by the + /// value of `data_format`, see above for details. Dilations in the batch and + /// depth dimensions must be 1. + /// + /// + /// + public static Tensor conv2d(Tensor input, Tensor filter, int[] strides, string padding, bool use_cudnn_on_gpu = true, int[] explicit_paddings = null, string data_format = "NHWC", int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (explicit_paddings is null) + { + explicit_paddings = new int[] { }; + } + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv2D", name) { args = new object[] { input, filter }, attrs = new Dictionary() { ["strides"] = strides, ["use_cudnn_on_gpu"] = use_cudnn_on_gpu, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conv2d_eager_fallback(input, filter, strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["strides"] = strides; + keywords["use_cudnn_on_gpu"] = use_cudnn_on_gpu; + keywords["padding"] = padding; + keywords["explicit_paddings"] = explicit_paddings; + keywords["data_format"] = data_format; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("Conv2D", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "use_cudnn_on_gpu", _op._get_attr_bool("use_cudnn_on_gpu"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("Conv2D", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conv2d_eager_fallback(Tensor input, Tensor filter, int[] strides, bool use_cudnn_on_gpu, string padding, int[] explicit_paddings, string data_format, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations }; + var _result = _execute.execute("Conv2D", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Conv2D", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradients of convolution with respect to the filter. + /// + /// + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the input + /// of the convolution. Must be in the same order as the dimension specified with + /// format. + /// + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith + /// dimension, the amount of padding inserted before and after the dimension is + /// `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If + /// `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + /// + /// 1-D tensor of length 4. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each filter + /// element on that dimension. The dimension order is determined by the value of + /// `data_format`, see above for details. Dilations in the batch and depth + /// dimensions must be 1. + /// + /// + /// + public static Tensor conv2d_backprop_filter(Tensor input, Tensor filter_sizes, Tensor out_backprop, int[] strides, string padding, bool use_cudnn_on_gpu = true, int[] explicit_paddings = null, string data_format = "NHWC", int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (explicit_paddings is null) + { + explicit_paddings = new int[] { }; + } + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv2DBackpropFilter", name) { args = new object[] { input, filter_sizes, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["use_cudnn_on_gpu"] = use_cudnn_on_gpu, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conv2d_backprop_filter_eager_fallback(input, filter_sizes, out_backprop, strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter_sizes"] = filter_sizes; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["use_cudnn_on_gpu"] = use_cudnn_on_gpu; + keywords["padding"] = padding; + keywords["explicit_paddings"] = explicit_paddings; + keywords["data_format"] = data_format; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("Conv2DBackpropFilter", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "use_cudnn_on_gpu", _op._get_attr_bool("use_cudnn_on_gpu"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("Conv2DBackpropFilter", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conv2d_backprop_filter_eager_fallback(Tensor input, Tensor filter_sizes, Tensor out_backprop, int[] strides, bool use_cudnn_on_gpu, string padding, int[] explicit_paddings, string data_format, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter_sizes, out_backprop }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations }; + var _result = _execute.execute("Conv2DBackpropFilter", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Conv2DBackpropFilter", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradients of convolution with respect to the input. + /// + /// + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the input + /// of the convolution. Must be in the same order as the dimension specified with + /// format. + /// + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// If `padding` is `"EXPLICIT"`, the list of explicit padding amounts. For the ith + /// dimension, the amount of padding inserted before and after the dimension is + /// `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If + /// `padding` is not `"EXPLICIT"`, `explicit_paddings` must be empty. + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + /// + /// 1-D tensor of length 4. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each filter + /// element on that dimension. The dimension order is determined by the value of + /// `data_format`, see above for details. Dilations in the batch and depth + /// dimensions must be 1. + /// + /// + /// + public static Tensor conv2d_backprop_input(Tensor input_sizes, Tensor filter, Tensor out_backprop, int[] strides, string padding, bool use_cudnn_on_gpu = true, int[] explicit_paddings = null, string data_format = "NHWC", int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (explicit_paddings is null) + { + explicit_paddings = new int[] { }; + } + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv2DBackpropInput", name) { args = new object[] { input_sizes, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["use_cudnn_on_gpu"] = use_cudnn_on_gpu, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conv2d_backprop_input_eager_fallback(input_sizes, filter, out_backprop, strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input_sizes"] = input_sizes; + keywords["filter"] = filter; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["use_cudnn_on_gpu"] = use_cudnn_on_gpu; + keywords["padding"] = padding; + keywords["explicit_paddings"] = explicit_paddings; + keywords["data_format"] = data_format; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("Conv2DBackpropInput", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "use_cudnn_on_gpu", _op._get_attr_bool("use_cudnn_on_gpu"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("Conv2DBackpropInput", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conv2d_backprop_input_eager_fallback(Tensor input_sizes, Tensor filter, Tensor out_backprop, int[] strides, bool use_cudnn_on_gpu, string padding, int[] explicit_paddings, string data_format, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_sizes, filter, out_backprop }; + object[] _attrs = new object[] { "T", filter.dtype, "strides", strides, "use_cudnn_on_gpu", use_cudnn_on_gpu, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations }; + var _result = _execute.execute("Conv2DBackpropInput", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Conv2DBackpropInput", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes a 3-D convolution given 5-D `input` and `filter` tensors. + /// + /// + /// + /// In signal processing, cross-correlation is a measure of similarity of + /// two waveforms as a function of a time-lag applied to one of them. This + /// is also known as a sliding dot product or sliding inner-product. + /// + /// Our Conv3D implements a form of cross-correlation. + /// + /// + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// The data format of the input and output data. With the + /// default format "NDHWC", the data is stored in the order of: + /// [batch, in_depth, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCDHW", the data storage order is: + /// [batch, in_channels, in_depth, in_height, in_width]. + /// + /// + /// + /// + /// 1-D tensor of length 5. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each + /// filter element on that dimension. The dimension order is determined by the + /// value of `data_format`, see above for details. Dilations in the batch and + /// depth dimensions must be 1. + /// + /// + /// + public static Tensor conv3d(Tensor input, Tensor filter, int[] strides, string padding, string data_format = "NDHWC", int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3D", name) { args = new object[] { input, filter }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conv3d_eager_fallback(input, filter, strides: strides, padding: padding, data_format: data_format, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NDHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("Conv3D", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("Conv3D", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conv3d_eager_fallback(Tensor input, Tensor filter, int[] strides, string padding, string data_format, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "padding", padding, "data_format", data_format, "dilations", dilations }; + var _result = _execute.execute("Conv3D", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Conv3D", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradients of 3-D convolution with respect to the filter. + /// + /// + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + public static Tensor conv3d_backprop_filter(Tensor input, Tensor filter, Tensor out_backprop, int[] strides, string padding, int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3DBackpropFilter", name) { args = new object[] { input, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conv3d_backprop_filter_eager_fallback(input, filter, out_backprop, strides: strides, padding: padding, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("Conv3DBackpropFilter", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("Conv3DBackpropFilter", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conv3d_backprop_filter_eager_fallback(Tensor input, Tensor filter, Tensor out_backprop, int[] strides, string padding, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, out_backprop }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "padding", padding, "dilations", dilations }; + var _result = _execute.execute("Conv3DBackpropFilter", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Conv3DBackpropFilter", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradients of 3-D convolution with respect to the filter. + /// + /// + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// The data format of the input and output data. With the + /// default format "NDHWC", the data is stored in the order of: + /// [batch, in_depth, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCDHW", the data storage order is: + /// [batch, in_channels, in_depth, in_height, in_width]. + /// + /// + /// + /// + /// 1-D tensor of length 5. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each + /// filter element on that dimension. The dimension order is determined by the + /// value of `data_format`, see above for details. Dilations in the batch and + /// depth dimensions must be 1. + /// + /// + /// + public static Tensor conv3d_backprop_filter_v2(Tensor input, Tensor filter_sizes, Tensor out_backprop, int[] strides, string padding, string data_format = "NDHWC", int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3DBackpropFilterV2", name) { args = new object[] { input, filter_sizes, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conv3d_backprop_filter_v2_eager_fallback(input, filter_sizes, out_backprop, strides: strides, padding: padding, data_format: data_format, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NDHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter_sizes"] = filter_sizes; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("Conv3DBackpropFilterV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("Conv3DBackpropFilterV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conv3d_backprop_filter_v2_eager_fallback(Tensor input, Tensor filter_sizes, Tensor out_backprop, int[] strides, string padding, string data_format, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter_sizes, out_backprop }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "padding", padding, "data_format", data_format, "dilations", dilations }; + var _result = _execute.execute("Conv3DBackpropFilterV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Conv3DBackpropFilterV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradients of 3-D convolution with respect to the input. + /// + /// + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + public static Tensor conv3d_backprop_input(Tensor input, Tensor filter, Tensor out_backprop, int[] strides, string padding, int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3DBackpropInput", name) { args = new object[] { input, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conv3d_backprop_input_eager_fallback(input, filter, out_backprop, strides: strides, padding: padding, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("Conv3DBackpropInput", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("Conv3DBackpropInput", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conv3d_backprop_input_eager_fallback(Tensor input, Tensor filter, Tensor out_backprop, int[] strides, string padding, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, out_backprop }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "padding", padding, "dilations", dilations }; + var _result = _execute.execute("Conv3DBackpropInput", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Conv3DBackpropInput", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradients of 3-D convolution with respect to the input. + /// + /// + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// The data format of the input and output data. With the + /// default format "NDHWC", the data is stored in the order of: + /// [batch, in_depth, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCDHW", the data storage order is: + /// [batch, in_channels, in_depth, in_height, in_width]. + /// + /// + /// + /// + /// 1-D tensor of length 5. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each + /// filter element on that dimension. The dimension order is determined by the + /// value of `data_format`, see above for details. Dilations in the batch and + /// depth dimensions must be 1. + /// + /// + /// + public static Tensor conv3d_backprop_input_v2(Tensor input_sizes, Tensor filter, Tensor out_backprop, int[] strides, string padding, string data_format = "NDHWC", int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Conv3DBackpropInputV2", name) { args = new object[] { input_sizes, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return conv3d_backprop_input_v2_eager_fallback(input_sizes, filter, out_backprop, strides: strides, padding: padding, data_format: data_format, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NDHWC"; + } + Dictionary keywords = new(); + keywords["input_sizes"] = input_sizes; + keywords["filter"] = filter; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("Conv3DBackpropInputV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations"), "Tshape", _op._get_attr_type("Tshape") }; + _execute.record_gradient("Conv3DBackpropInputV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor conv3d_backprop_input_v2_eager_fallback(Tensor input_sizes, Tensor filter, Tensor out_backprop, int[] strides, string padding, string data_format, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_sizes, filter, out_backprop }; + object[] _attrs = new object[] { "T", filter.dtype, "strides", strides, "padding", padding, "data_format", data_format, "dilations", dilations, "Tshape", input_sizes.dtype }; + var _result = _execute.execute("Conv3DBackpropInputV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Conv3DBackpropInputV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the dimension index in the destination data format given the one in + /// + /// + /// + /// the source data format. + /// + /// + /// + /// + /// + /// source data format. + /// + /// + /// + /// + /// destination data format. + /// + /// + /// + public static Tensor data_format_dim_map(Tensor x, string src_format = "NHWC", string dst_format = "NCHW", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DataFormatDimMap", name) { args = new object[] { x }, attrs = new Dictionary() { ["src_format"] = src_format, ["dst_format"] = dst_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return data_format_dim_map_eager_fallback(x, src_format: src_format, dst_format: dst_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (src_format is null) + { + src_format = "NHWC"; + } + if (dst_format is null) + { + dst_format = "NCHW"; + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["src_format"] = src_format; + keywords["dst_format"] = dst_format; + var _op = tf.OpDefLib._apply_op_helper("DataFormatDimMap", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "src_format", _op.get_attr("src_format"), "dst_format", _op.get_attr("dst_format") }; + _execute.record_gradient("DataFormatDimMap", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor data_format_dim_map_eager_fallback(Tensor x, string src_format, string dst_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype, "src_format", src_format, "dst_format", dst_format }; + var _result = _execute.execute("DataFormatDimMap", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DataFormatDimMap", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Permute input tensor from `src_format` to `dst_format`. + /// + /// + /// + /// Given source and destination format strings of length n=4 or 5, the input + /// tensor must be a vector of size n or n-2, or a 2D tensor of shape + /// (n, 2) or (n-2, 2). + /// + /// If the first dimension of the input tensor is n-2, it is assumed that + /// non-spatial dimensions are omitted (i.e `N`, `C`). + /// + /// For example, with `src_format` of `NHWC`, `dst_format` of `NCHW`, and input: + /// ``` + /// [1, 2, 3, 4] + /// ``` + /// , the output will be: + /// ``` + /// [1, 4, 2, 3] + /// ``` + /// With `src_format` of `NDHWC`, `dst_format` of `NCDHW`, and input: + /// ``` + /// [[1, 6], [2, 7], [3, 8], [4, 9], [5, 10]] + /// ``` + /// , the output will be: + /// ``` + /// [[1, 6], [5, 10], [2, 7], [3, 8], [4, 9]] + /// ``` + /// With `src_format` of `NHWC`, `dst_format` of `NCHW`, and input: + /// ``` + /// [1, 2] + /// ``` + /// , the output will be: + /// ``` + /// [1, 2] + /// ``` + /// + /// + /// + /// + /// + /// source data format. + /// + /// + /// + /// + /// destination data format. + /// + /// + /// + public static Tensor data_format_vec_permute(Tensor x, string src_format = "NHWC", string dst_format = "NCHW", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DataFormatVecPermute", name) { args = new object[] { x }, attrs = new Dictionary() { ["src_format"] = src_format, ["dst_format"] = dst_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return data_format_vec_permute_eager_fallback(x, src_format: src_format, dst_format: dst_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (src_format is null) + { + src_format = "NHWC"; + } + if (dst_format is null) + { + dst_format = "NCHW"; + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["src_format"] = src_format; + keywords["dst_format"] = dst_format; + var _op = tf.OpDefLib._apply_op_helper("DataFormatVecPermute", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "src_format", _op.get_attr("src_format"), "dst_format", _op.get_attr("dst_format") }; + _execute.record_gradient("DataFormatVecPermute", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor data_format_vec_permute_eager_fallback(Tensor x, string src_format, string dst_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x }; + object[] _attrs = new object[] { "T", x.dtype, "src_format", src_format, "dst_format", dst_format }; + var _result = _execute.execute("DataFormatVecPermute", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DataFormatVecPermute", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. + /// + /// + /// + /// Given an input tensor of shape `[batch, in_height, in_width, in_channels]` + /// and a filter / kernel tensor of shape + /// `[filter_height, filter_width, in_channels, channel_multiplier]`, containing + /// `in_channels` convolutional filters of depth 1, `depthwise_conv2d` applies + /// a different filter to each input channel (expanding from 1 channel to + /// `channel_multiplier` channels for each), then concatenates the results + /// together. Thus, the output has `in_channels * channel_multiplier` channels. + /// + /// ``` + /// for k in 0..in_channels-1 + /// for q in 0..channel_multiplier-1 + /// output[b, i, j, k * channel_multiplier + q] = + /// sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] * + /// filter[di, dj, k, q] + /// ``` + /// + /// Must have `strides[0] = strides[3] = 1`. For the most common case of the same + /// horizontal and vertices strides, `strides = [1, stride, stride, 1]`. + /// + /// + /// + /// + /// + /// + /// 1-D of length 4. The stride of the sliding window for each dimension + /// of `input`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, height, width, channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, channels, height, width]. + /// + /// + /// + /// + /// 1-D tensor of length 4. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each filter + /// element on that dimension. The dimension order is determined by the value of + /// `data_format`, see above for details. Dilations in the batch and depth + /// dimensions must be 1. + /// + /// + /// + public static Tensor depthwise_conv2d_native(Tensor input, Tensor filter, int[] strides, string padding, int[] explicit_paddings = null, string data_format = "NHWC", int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (explicit_paddings is null) + { + explicit_paddings = new int[] { }; + } + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DepthwiseConv2dNative", name) { args = new object[] { input, filter }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return depthwise_conv2d_native_eager_fallback(input, filter, strides: strides, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["explicit_paddings"] = explicit_paddings; + keywords["data_format"] = data_format; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("DepthwiseConv2dNative", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("DepthwiseConv2dNative", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor depthwise_conv2d_native_eager_fallback(Tensor input, Tensor filter, int[] strides, string padding, int[] explicit_paddings, string data_format, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations }; + var _result = _execute.execute("DepthwiseConv2dNative", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DepthwiseConv2dNative", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradients of depthwise convolution with respect to the filter. + /// + /// + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the input + /// of the convolution. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, height, width, channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, channels, height, width]. + /// + /// + /// + /// + /// 1-D tensor of length 4. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each filter + /// element on that dimension. The dimension order is determined by the value of + /// `data_format`, see above for details. Dilations in the batch and depth + /// dimensions must be 1. + /// + /// + /// + public static Tensor depthwise_conv2d_native_backprop_filter(Tensor input, Tensor filter_sizes, Tensor out_backprop, int[] strides, string padding, int[] explicit_paddings = null, string data_format = "NHWC", int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (explicit_paddings is null) + { + explicit_paddings = new int[] { }; + } + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DepthwiseConv2dNativeBackpropFilter", name) { args = new object[] { input, filter_sizes, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return depthwise_conv2d_native_backprop_filter_eager_fallback(input, filter_sizes, out_backprop, strides: strides, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter_sizes"] = filter_sizes; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["explicit_paddings"] = explicit_paddings; + keywords["data_format"] = data_format; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("DepthwiseConv2dNativeBackpropFilter", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("DepthwiseConv2dNativeBackpropFilter", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor depthwise_conv2d_native_backprop_filter_eager_fallback(Tensor input, Tensor filter_sizes, Tensor out_backprop, int[] strides, string padding, int[] explicit_paddings, string data_format, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter_sizes, out_backprop }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations }; + var _result = _execute.execute("DepthwiseConv2dNativeBackpropFilter", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DepthwiseConv2dNativeBackpropFilter", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradients of depthwise convolution with respect to the input. + /// + /// + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the input + /// of the convolution. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, height, width, channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, channels, height, width]. + /// + /// + /// + /// + /// 1-D tensor of length 4. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each filter + /// element on that dimension. The dimension order is determined by the value of + /// `data_format`, see above for details. Dilations in the batch and depth + /// dimensions must be 1. + /// + /// + /// + public static Tensor depthwise_conv2d_native_backprop_input(Tensor input_sizes, Tensor filter, Tensor out_backprop, int[] strides, string padding, int[] explicit_paddings = null, string data_format = "NHWC", int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (explicit_paddings is null) + { + explicit_paddings = new int[] { }; + } + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DepthwiseConv2dNativeBackpropInput", name) { args = new object[] { input_sizes, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format, ["dilations"] = dilations } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return depthwise_conv2d_native_backprop_input_eager_fallback(input_sizes, filter, out_backprop, strides: strides, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input_sizes"] = input_sizes; + keywords["filter"] = filter; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["explicit_paddings"] = explicit_paddings; + keywords["data_format"] = data_format; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("DepthwiseConv2dNativeBackpropInput", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("DepthwiseConv2dNativeBackpropInput", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor depthwise_conv2d_native_backprop_input_eager_fallback(Tensor input_sizes, Tensor filter, Tensor out_backprop, int[] strides, string padding, int[] explicit_paddings, string data_format, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input_sizes, filter, out_backprop }; + object[] _attrs = new object[] { "T", filter.dtype, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "dilations", dilations }; + var _result = _execute.execute("DepthwiseConv2dNativeBackpropInput", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DepthwiseConv2dNativeBackpropInput", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. + /// + /// + /// + /// The `input` tensor has shape `[batch, in_height, in_width, depth]` and the + /// `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each + /// input channel is processed independently of the others with its own structuring + /// function. The `output` tensor has shape + /// `[batch, out_height, out_width, depth]`. The spatial dimensions of the output + /// tensor depend on the `padding` algorithm. We currently only support the default + /// "NHWC" `data_format`. + /// + /// In detail, the grayscale morphological 2-D dilation is the max-sum correlation + /// (for consistency with `conv2d`, we use unmirrored filters): + /// + /// output[b, y, x, c] = + /// max_{dy, dx} input[b, + /// strides[1] * y + rates[1] * dy, + /// strides[2] * x + rates[2] * dx, + /// c] + + /// filter[dy, dx, c] + /// + /// Max-pooling is a special case when the filter has size equal to the pooling + /// kernel size and contains all zeros. + /// + /// Note on duality: The dilation of `input` by the `filter` is equal to the + /// negation of the erosion of `-input` by the reflected `filter`. + /// + /// + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the input + /// tensor. Must be: `[1, stride_height, stride_width, 1]`. + /// + /// + /// + /// + /// The input stride for atrous morphological dilation. Must be: + /// `[1, rate_height, rate_width, 1]`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + public static Tensor dilation2d(Tensor input, Tensor filter, int[] strides, int[] rates, string padding, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Dilation2D", name) { args = new object[] { input, filter }, attrs = new Dictionary() { ["strides"] = strides, ["rates"] = rates, ["padding"] = padding } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return dilation2d_eager_fallback(input, filter, strides: strides, rates: rates, padding: padding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["strides"] = strides; + keywords["rates"] = rates; + keywords["padding"] = padding; + var _op = tf.OpDefLib._apply_op_helper("Dilation2D", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "rates", _op.get_attr("rates"), "padding", _op.get_attr("padding") }; + _execute.record_gradient("Dilation2D", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor dilation2d_eager_fallback(Tensor input, Tensor filter, int[] strides, int[] rates, string padding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "rates", rates, "padding", padding }; + var _result = _execute.execute("Dilation2D", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Dilation2D", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradient of morphological 2-D dilation with respect to the filter. + /// + /// + /// + /// + /// + /// + /// 1-D of length 4. The stride of the sliding window for each dimension of + /// the input tensor. Must be: `[1, stride_height, stride_width, 1]`. + /// + /// + /// + /// + /// 1-D of length 4. The input stride for atrous morphological dilation. + /// Must be: `[1, rate_height, rate_width, 1]`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + public static Tensor dilation2d_backprop_filter(Tensor input, Tensor filter, Tensor out_backprop, int[] strides, int[] rates, string padding, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Dilation2DBackpropFilter", name) { args = new object[] { input, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["rates"] = rates, ["padding"] = padding } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return dilation2d_backprop_filter_eager_fallback(input, filter, out_backprop, strides: strides, rates: rates, padding: padding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["rates"] = rates; + keywords["padding"] = padding; + var _op = tf.OpDefLib._apply_op_helper("Dilation2DBackpropFilter", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "rates", _op.get_attr("rates"), "padding", _op.get_attr("padding") }; + _execute.record_gradient("Dilation2DBackpropFilter", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor dilation2d_backprop_filter_eager_fallback(Tensor input, Tensor filter, Tensor out_backprop, int[] strides, int[] rates, string padding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, out_backprop }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "rates", rates, "padding", padding }; + var _result = _execute.execute("Dilation2DBackpropFilter", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Dilation2DBackpropFilter", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the gradient of morphological 2-D dilation with respect to the input. + /// + /// + /// + /// + /// + /// + /// 1-D of length 4. The stride of the sliding window for each dimension of + /// the input tensor. Must be: `[1, stride_height, stride_width, 1]`. + /// + /// + /// + /// + /// 1-D of length 4. The input stride for atrous morphological dilation. + /// Must be: `[1, rate_height, rate_width, 1]`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + public static Tensor dilation2d_backprop_input(Tensor input, Tensor filter, Tensor out_backprop, int[] strides, int[] rates, string padding, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Dilation2DBackpropInput", name) { args = new object[] { input, filter, out_backprop }, attrs = new Dictionary() { ["strides"] = strides, ["rates"] = rates, ["padding"] = padding } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return dilation2d_backprop_input_eager_fallback(input, filter, out_backprop, strides: strides, rates: rates, padding: padding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["out_backprop"] = out_backprop; + keywords["strides"] = strides; + keywords["rates"] = rates; + keywords["padding"] = padding; + var _op = tf.OpDefLib._apply_op_helper("Dilation2DBackpropInput", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "strides", _op.get_attr("strides"), "rates", _op.get_attr("rates"), "padding", _op.get_attr("padding") }; + _execute.record_gradient("Dilation2DBackpropInput", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor dilation2d_backprop_input_eager_fallback(Tensor input, Tensor filter, Tensor out_backprop, int[] strides, int[] rates, string padding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, out_backprop }; + object[] _attrs = new object[] { "T", input.dtype, "strides", strides, "rates", rates, "padding", padding }; + var _result = _execute.execute("Dilation2DBackpropInput", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Dilation2DBackpropInput", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes the exponential linear function. + /// + /// + /// + /// The ELU function is defined as: + /// + /// * $ e ^ x - 1 $ if $ x < 0 $ + /// * $ x $ if $ x >= 0 $ + /// + /// Examples: + /// + /// >>> tf.nn.elu(1.0) + /// + /// >>> tf.nn.elu(0.0) + /// + /// >>> tf.nn.elu(-1000.0) + /// + /// + /// See [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) + /// ](http://arxiv.org/abs/1511.07289) + /// + /// + /// + /// + public static Tensor elu(Tensor features, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Elu", name) { args = new object[] { features }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return elu_eager_fallback(features, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + var _op = tf.OpDefLib._apply_op_helper("Elu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Elu", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor elu_eager_fallback(Tensor features, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features }; + object[] _attrs = new object[] { "T", features.dtype }; + var _result = _execute.execute("Elu", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Elu", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients for the exponential linear (Elu) operation. + /// + /// + /// + /// + public static Tensor elu_grad(Tensor gradients, Tensor outputs, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "EluGrad", name) { args = new object[] { gradients, outputs }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return elu_grad_eager_fallback(gradients, outputs, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["gradients"] = gradients; + keywords["outputs"] = outputs; + var _op = tf.OpDefLib._apply_op_helper("EluGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("EluGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor elu_grad_eager_fallback(Tensor gradients, Tensor outputs, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { gradients, outputs }; + object[] _attrs = new object[] { "T", gradients.dtype }; + var _result = _execute.execute("EluGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("EluGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Performs fractional average pooling on the input. + /// + /// + /// + /// Fractional average pooling is similar to Fractional max pooling in the pooling + /// region generation step. The only difference is that after pooling regions are + /// generated, a mean operation is performed instead of a max operation in each + /// pooling region. + /// + /// + /// + /// + /// + /// Pooling ratio for each dimension of `value`, currently only + /// supports row and col dimension and should be >= 1.0. For example, a valid + /// pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements + /// must be 1.0 because we don't allow pooling on batch and channels + /// dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions + /// respectively. + /// + /// + /// + /// + /// When set to True, generates the pooling sequence in a + /// pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin + /// Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for + /// difference between pseudorandom and random. + /// + /// + /// + /// + /// When set to True, it means when pooling, the values at the boundary + /// of adjacent pooling cells are used by both cells. For example: + /// + /// `index 0 1 2 3 4` + /// + /// `value 20 5 16 3 7` + /// + /// If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. + /// The result would be [41/3, 26/3] for fractional avg pooling. + /// + /// + /// + /// + /// When set to True, a fixed pooling region will be used when + /// iterating over a FractionalAvgPool node in the computation graph. Mainly used + /// in unit test to make FractionalAvgPool deterministic. + /// + /// + /// + /// + /// If either seed or seed2 are set to be non-zero, the random number + /// generator is seeded by the given seed. Otherwise, it is seeded by a + /// random seed. + /// + /// + /// + /// + /// An second seed to avoid seed collision. + /// + /// + /// + public static Tensor[] fractional_avg_pool(Tensor value, float[] pooling_ratio, bool pseudo_random = false, bool overlapping = false, bool deterministic = false, int seed = 0, int seed2 = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FractionalAvgPool", name) { args = new object[] { value }, attrs = new Dictionary() { ["pooling_ratio"] = pooling_ratio, ["pseudo_random"] = pseudo_random, ["overlapping"] = overlapping, ["deterministic"] = deterministic, ["seed"] = seed, ["seed2"] = seed2 } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fractional_avg_pool_eager_fallback(value, pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["value"] = value; + keywords["pooling_ratio"] = pooling_ratio; + keywords["pseudo_random"] = pseudo_random; + keywords["overlapping"] = overlapping; + keywords["deterministic"] = deterministic; + keywords["seed"] = seed; + keywords["seed2"] = seed2; + var _op = tf.OpDefLib._apply_op_helper("FractionalAvgPool", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "pooling_ratio", _op.get_attr("pooling_ratio"), "pseudo_random", _op._get_attr_bool("pseudo_random"), "overlapping", _op._get_attr_bool("overlapping"), "deterministic", _op._get_attr_bool("deterministic"), "seed", _op._get_attr_int("seed"), "seed2", _op._get_attr_int("seed2"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("FractionalAvgPool", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fractional_avg_pool_eager_fallback(Tensor value, float[] pooling_ratio, bool pseudo_random, bool overlapping, bool deterministic, int seed, int seed2, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { value }; + object[] _attrs = new object[] { "pooling_ratio", pooling_ratio, "pseudo_random", pseudo_random, "overlapping", overlapping, "deterministic", deterministic, "seed", seed, "seed2", seed2, "T", value.dtype }; + var _result = _execute.execute("FractionalAvgPool", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FractionalAvgPool", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes gradient of the FractionalAvgPool function. + /// + /// + /// + /// Unlike FractionalMaxPoolGrad, we don't need to find arg_max for + /// FractionalAvgPoolGrad, we just need to evenly back-propagate each element of + /// out_backprop to those indices that form the same pooling cell. Therefore, we + /// just need to know the shape of original input tensor, instead of the whole + /// tensor. + /// + /// + /// + /// + /// + /// + /// + /// + /// When set to True, it means when pooling, the values at the boundary + /// of adjacent pooling cells are used by both cells. For example: + /// + /// `index 0 1 2 3 4` + /// + /// `value 20 5 16 3 7` + /// + /// If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. + /// The result would be [41/3, 26/3] for fractional avg pooling. + /// + /// + /// + public static Tensor fractional_avg_pool_grad(Tensor orig_input_tensor_shape, Tensor out_backprop, Tensor row_pooling_sequence, Tensor col_pooling_sequence, bool overlapping = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FractionalAvgPoolGrad", name) { args = new object[] { orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence }, attrs = new Dictionary() { ["overlapping"] = overlapping } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fractional_avg_pool_grad_eager_fallback(orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence, overlapping: overlapping, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["orig_input_tensor_shape"] = orig_input_tensor_shape; + keywords["out_backprop"] = out_backprop; + keywords["row_pooling_sequence"] = row_pooling_sequence; + keywords["col_pooling_sequence"] = col_pooling_sequence; + keywords["overlapping"] = overlapping; + var _op = tf.OpDefLib._apply_op_helper("FractionalAvgPoolGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "overlapping", _op._get_attr_bool("overlapping"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("FractionalAvgPoolGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fractional_avg_pool_grad_eager_fallback(Tensor orig_input_tensor_shape, Tensor out_backprop, Tensor row_pooling_sequence, Tensor col_pooling_sequence, bool overlapping, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence }; + object[] _attrs = new object[] { "overlapping", overlapping, "T", out_backprop.dtype }; + var _result = _execute.execute("FractionalAvgPoolGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FractionalAvgPoolGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Performs fractional max pooling on the input. + /// + /// + /// + /// Fractional max pooling is slightly different than regular max pooling. In + /// regular max pooling, you downsize an input set by taking the maximum value of + /// smaller N x N subsections of the set (often 2x2), and try to reduce the set by + /// a factor of N, where N is an integer. Fractional max pooling, as you might + /// expect from the word "fractional", means that the overall reduction ratio N + /// does not have to be an integer. + /// + /// The sizes of the pooling regions are generated randomly but are fairly uniform. + /// For example, let's look at the height dimension, and the constraints on the + /// list of rows that will be pool boundaries. + /// + /// First we define the following: + /// + /// 1. input_row_length : the number of rows from the input set + /// 2. output_row_length : which will be smaller than the input + /// 3. alpha = input_row_length / output_row_length : our reduction ratio + /// 4. K = floor(alpha) + /// 5. row_pooling_sequence : this is the result list of pool boundary rows + /// + /// Then, row_pooling_sequence should satisfy: + /// + /// 1. a[0] = 0 : the first value of the sequence is 0 + /// 2. a[end] = input_row_length : the last value of the sequence is the size + /// 3. K <= (a[i+1] - a[i]) <= K+1 : all intervals are K or K+1 size + /// 4. length(row_pooling_sequence) = output_row_length+1 + /// + /// For more details on fractional max pooling, see this paper: + /// [Benjamin Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) + /// + /// + /// + /// + /// + /// Pooling ratio for each dimension of `value`, currently only + /// supports row and col dimension and should be >= 1.0. For example, a valid + /// pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements + /// must be 1.0 because we don't allow pooling on batch and channels + /// dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions + /// respectively. + /// + /// + /// + /// + /// When set to True, generates the pooling sequence in a + /// pseudorandom fashion, otherwise, in a random fashion. Check paper [Benjamin + /// Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for + /// difference between pseudorandom and random. + /// + /// + /// + /// + /// When set to True, it means when pooling, the values at the boundary + /// of adjacent pooling cells are used by both cells. For example: + /// + /// `index 0 1 2 3 4` + /// + /// `value 20 5 16 3 7` + /// + /// If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. + /// The result would be [20, 16] for fractional max pooling. + /// + /// + /// + /// + /// When set to True, a fixed pooling region will be used when + /// iterating over a FractionalMaxPool node in the computation graph. Mainly used + /// in unit test to make FractionalMaxPool deterministic. + /// + /// + /// + /// + /// If either seed or seed2 are set to be non-zero, the random number + /// generator is seeded by the given seed. Otherwise, it is seeded by a + /// random seed. + /// + /// + /// + /// + /// An second seed to avoid seed collision. + /// + /// + /// + public static Tensor[] fractional_max_pool(Tensor value, float[] pooling_ratio, bool pseudo_random = false, bool overlapping = false, bool deterministic = false, int seed = 0, int seed2 = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FractionalMaxPool", name) { args = new object[] { value }, attrs = new Dictionary() { ["pooling_ratio"] = pooling_ratio, ["pseudo_random"] = pseudo_random, ["overlapping"] = overlapping, ["deterministic"] = deterministic, ["seed"] = seed, ["seed2"] = seed2 } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fractional_max_pool_eager_fallback(value, pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["value"] = value; + keywords["pooling_ratio"] = pooling_ratio; + keywords["pseudo_random"] = pseudo_random; + keywords["overlapping"] = overlapping; + keywords["deterministic"] = deterministic; + keywords["seed"] = seed; + keywords["seed2"] = seed2; + var _op = tf.OpDefLib._apply_op_helper("FractionalMaxPool", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "pooling_ratio", _op.get_attr("pooling_ratio"), "pseudo_random", _op._get_attr_bool("pseudo_random"), "overlapping", _op._get_attr_bool("overlapping"), "deterministic", _op._get_attr_bool("deterministic"), "seed", _op._get_attr_int("seed"), "seed2", _op._get_attr_int("seed2"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("FractionalMaxPool", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fractional_max_pool_eager_fallback(Tensor value, float[] pooling_ratio, bool pseudo_random, bool overlapping, bool deterministic, int seed, int seed2, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { value }; + object[] _attrs = new object[] { "pooling_ratio", pooling_ratio, "pseudo_random", pseudo_random, "overlapping", overlapping, "deterministic", deterministic, "seed", seed, "seed2", seed2, "T", value.dtype }; + var _result = _execute.execute("FractionalMaxPool", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FractionalMaxPool", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes gradient of the FractionalMaxPool function. + /// + /// + /// + /// + /// + /// + /// + /// + /// When set to True, it means when pooling, the values at the boundary + /// of adjacent pooling cells are used by both cells. For example: + /// + /// `index 0 1 2 3 4` + /// + /// `value 20 5 16 3 7` + /// + /// If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. + /// The result would be [20, 16] for fractional max pooling. + /// + /// + /// + public static Tensor fractional_max_pool_grad(Tensor orig_input, Tensor orig_output, Tensor out_backprop, Tensor row_pooling_sequence, Tensor col_pooling_sequence, bool overlapping = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FractionalMaxPoolGrad", name) { args = new object[] { orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence }, attrs = new Dictionary() { ["overlapping"] = overlapping } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fractional_max_pool_grad_eager_fallback(orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence, overlapping: overlapping, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["orig_input"] = orig_input; + keywords["orig_output"] = orig_output; + keywords["out_backprop"] = out_backprop; + keywords["row_pooling_sequence"] = row_pooling_sequence; + keywords["col_pooling_sequence"] = col_pooling_sequence; + keywords["overlapping"] = overlapping; + var _op = tf.OpDefLib._apply_op_helper("FractionalMaxPoolGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "overlapping", _op._get_attr_bool("overlapping"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("FractionalMaxPoolGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fractional_max_pool_grad_eager_fallback(Tensor orig_input, Tensor orig_output, Tensor out_backprop, Tensor row_pooling_sequence, Tensor col_pooling_sequence, bool overlapping, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence }; + object[] _attrs = new object[] { "overlapping", overlapping, "T", orig_input.dtype }; + var _result = _execute.execute("FractionalMaxPoolGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FractionalMaxPoolGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Batch normalization. + /// + /// + /// + /// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". + /// The size of 1D Tensors matches the dimension C of the 4D Tensors. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// A small float number added to the variance of x. + /// + /// + /// + /// + /// + /// The data format for x and y. Either "NHWC" (default) or "NCHW". + /// + /// + /// + /// + /// A bool value to indicate the operation is for training (default) + /// or inference. + /// + /// + /// + public static Tensor[] fused_batch_norm(Tensor x, Tensor scale, Tensor offset, Tensor mean, Tensor variance, float epsilon = 0.0001f, float exponential_avg_factor = 1f, string data_format = "NHWC", bool is_training = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNorm", name) { args = new object[] { x, scale, offset, mean, variance }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["exponential_avg_factor"] = exponential_avg_factor, ["data_format"] = data_format, ["is_training"] = is_training } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fused_batch_norm_eager_fallback(x, scale, offset, mean, variance, epsilon: epsilon, exponential_avg_factor: exponential_avg_factor, data_format: data_format, is_training: is_training, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["scale"] = scale; + keywords["offset"] = offset; + keywords["mean"] = mean; + keywords["variance"] = variance; + keywords["epsilon"] = epsilon; + keywords["exponential_avg_factor"] = exponential_avg_factor; + keywords["data_format"] = data_format; + keywords["is_training"] = is_training; + var _op = tf.OpDefLib._apply_op_helper("FusedBatchNorm", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "epsilon", _op.get_attr("epsilon"), "exponential_avg_factor", _op.get_attr("exponential_avg_factor"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training") }; + _execute.record_gradient("FusedBatchNorm", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fused_batch_norm_eager_fallback(Tensor x, Tensor scale, Tensor offset, Tensor mean, Tensor variance, float epsilon, float exponential_avg_factor, string data_format, bool is_training, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, scale, offset, mean, variance }; + object[] _attrs = new object[] { "T", x.dtype, "epsilon", epsilon, "exponential_avg_factor", exponential_avg_factor, "data_format", data_format, "is_training", is_training }; + var _result = _execute.execute("FusedBatchNorm", 5, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FusedBatchNorm", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Gradient for batch normalization. + /// + /// + /// + /// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". + /// The size of 1D Tensors matches the dimension C of the 4D Tensors. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// A small float number added to the variance of x. + /// + /// + /// + /// + /// The data format for y_backprop, x, x_backprop. + /// Either "NHWC" (default) or "NCHW". + /// + /// + /// + /// + /// A bool value to indicate the operation is for training (default) + /// or inference. + /// + /// + /// + public static Tensor[] fused_batch_norm_grad(Tensor y_backprop, Tensor x, Tensor scale, Tensor reserve_space_1, Tensor reserve_space_2, float epsilon = 0.0001f, string data_format = "NHWC", bool is_training = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormGrad", name) { args = new object[] { y_backprop, x, scale, reserve_space_1, reserve_space_2 }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["data_format"] = data_format, ["is_training"] = is_training } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fused_batch_norm_grad_eager_fallback(y_backprop, x, scale, reserve_space_1, reserve_space_2, epsilon: epsilon, data_format: data_format, is_training: is_training, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["y_backprop"] = y_backprop; + keywords["x"] = x; + keywords["scale"] = scale; + keywords["reserve_space_1"] = reserve_space_1; + keywords["reserve_space_2"] = reserve_space_2; + keywords["epsilon"] = epsilon; + keywords["data_format"] = data_format; + keywords["is_training"] = is_training; + var _op = tf.OpDefLib._apply_op_helper("FusedBatchNormGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "epsilon", _op.get_attr("epsilon"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training") }; + _execute.record_gradient("FusedBatchNormGrad", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fused_batch_norm_grad_eager_fallback(Tensor y_backprop, Tensor x, Tensor scale, Tensor reserve_space_1, Tensor reserve_space_2, float epsilon, string data_format, bool is_training, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y_backprop, x, scale, reserve_space_1, reserve_space_2 }; + object[] _attrs = new object[] { "T", y_backprop.dtype, "epsilon", epsilon, "data_format", data_format, "is_training", is_training }; + var _result = _execute.execute("FusedBatchNormGrad", 5, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FusedBatchNormGrad", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Gradient for batch normalization. + /// + /// + /// + /// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". + /// The size of 1D Tensors matches the dimension C of the 4D Tensors. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// A small float number added to the variance of x. + /// + /// + /// + /// + /// The data format for y_backprop, x, x_backprop. + /// Either "NHWC" (default) or "NCHW". + /// + /// + /// + /// + /// A bool value to indicate the operation is for training (default) + /// or inference. + /// + /// + /// + public static Tensor[] fused_batch_norm_grad_v2(Tensor y_backprop, Tensor x, Tensor scale, Tensor reserve_space_1, Tensor reserve_space_2, float epsilon = 0.0001f, string data_format = "NHWC", bool is_training = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormGradV2", name) { args = new object[] { y_backprop, x, scale, reserve_space_1, reserve_space_2 }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["data_format"] = data_format, ["is_training"] = is_training } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fused_batch_norm_grad_v2_eager_fallback(y_backprop, x, scale, reserve_space_1, reserve_space_2, epsilon: epsilon, data_format: data_format, is_training: is_training, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["y_backprop"] = y_backprop; + keywords["x"] = x; + keywords["scale"] = scale; + keywords["reserve_space_1"] = reserve_space_1; + keywords["reserve_space_2"] = reserve_space_2; + keywords["epsilon"] = epsilon; + keywords["data_format"] = data_format; + keywords["is_training"] = is_training; + var _op = tf.OpDefLib._apply_op_helper("FusedBatchNormGradV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "U", _op._get_attr_type("U"), "epsilon", _op.get_attr("epsilon"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training") }; + _execute.record_gradient("FusedBatchNormGradV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fused_batch_norm_grad_v2_eager_fallback(Tensor y_backprop, Tensor x, Tensor scale, Tensor reserve_space_1, Tensor reserve_space_2, float epsilon, string data_format, bool is_training, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y_backprop, x, scale, reserve_space_1, reserve_space_2 }; + object[] _attrs = new object[] { "T", y_backprop.dtype, "U", reserve_space_1.dtype, "epsilon", epsilon, "data_format", data_format, "is_training", is_training }; + var _result = _execute.execute("FusedBatchNormGradV2", 5, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FusedBatchNormGradV2", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Gradient for batch normalization. + /// + /// + /// + /// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". + /// The size of 1D Tensors matches the dimension C of the 4D Tensors. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// A small float number added to the variance of x. + /// + /// + /// + /// + /// The data format for y_backprop, x, x_backprop. + /// Either "NHWC" (default) or "NCHW". + /// + /// + /// + /// + /// A bool value to indicate the operation is for training (default) + /// or inference. + /// + /// + /// + public static Tensor[] fused_batch_norm_grad_v3(Tensor y_backprop, Tensor x, Tensor scale, Tensor reserve_space_1, Tensor reserve_space_2, Tensor reserve_space_3, float epsilon = 0.0001f, string data_format = "NHWC", bool is_training = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormGradV3", name) { args = new object[] { y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3 }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["data_format"] = data_format, ["is_training"] = is_training } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fused_batch_norm_grad_v3_eager_fallback(y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3, epsilon: epsilon, data_format: data_format, is_training: is_training, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["y_backprop"] = y_backprop; + keywords["x"] = x; + keywords["scale"] = scale; + keywords["reserve_space_1"] = reserve_space_1; + keywords["reserve_space_2"] = reserve_space_2; + keywords["reserve_space_3"] = reserve_space_3; + keywords["epsilon"] = epsilon; + keywords["data_format"] = data_format; + keywords["is_training"] = is_training; + var _op = tf.OpDefLib._apply_op_helper("FusedBatchNormGradV3", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "U", _op._get_attr_type("U"), "epsilon", _op.get_attr("epsilon"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training") }; + _execute.record_gradient("FusedBatchNormGradV3", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fused_batch_norm_grad_v3_eager_fallback(Tensor y_backprop, Tensor x, Tensor scale, Tensor reserve_space_1, Tensor reserve_space_2, Tensor reserve_space_3, float epsilon, string data_format, bool is_training, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3 }; + object[] _attrs = new object[] { "T", y_backprop.dtype, "U", reserve_space_1.dtype, "epsilon", epsilon, "data_format", data_format, "is_training", is_training }; + var _result = _execute.execute("FusedBatchNormGradV3", 5, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FusedBatchNormGradV3", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Batch normalization. + /// + /// + /// + /// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". + /// The size of 1D Tensors matches the dimension C of the 4D Tensors. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// A small float number added to the variance of x. + /// + /// + /// + /// + /// + /// The data format for x and y. Either "NHWC" (default) or "NCHW". + /// + /// + /// + /// + /// A bool value to indicate the operation is for training (default) + /// or inference. + /// + /// + /// + public static Tensor[] fused_batch_norm_v2(Tensor x, Tensor scale, Tensor offset, Tensor mean, Tensor variance, float epsilon = 0.0001f, float exponential_avg_factor = 1f, string data_format = "NHWC", bool is_training = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormV2", name) { args = new object[] { x, scale, offset, mean, variance }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["exponential_avg_factor"] = exponential_avg_factor, ["data_format"] = data_format, ["is_training"] = is_training } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fused_batch_norm_v2_eager_fallback(x, scale, offset, mean, variance, epsilon: epsilon, exponential_avg_factor: exponential_avg_factor, data_format: data_format, is_training: is_training, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["scale"] = scale; + keywords["offset"] = offset; + keywords["mean"] = mean; + keywords["variance"] = variance; + keywords["epsilon"] = epsilon; + keywords["exponential_avg_factor"] = exponential_avg_factor; + keywords["data_format"] = data_format; + keywords["is_training"] = is_training; + var _op = tf.OpDefLib._apply_op_helper("FusedBatchNormV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "U", _op._get_attr_type("U"), "epsilon", _op.get_attr("epsilon"), "exponential_avg_factor", _op.get_attr("exponential_avg_factor"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training") }; + _execute.record_gradient("FusedBatchNormV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fused_batch_norm_v2_eager_fallback(Tensor x, Tensor scale, Tensor offset, Tensor mean, Tensor variance, float epsilon, float exponential_avg_factor, string data_format, bool is_training, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, scale, offset, mean, variance }; + object[] _attrs = new object[] { "T", x.dtype, "U", scale.dtype, "epsilon", epsilon, "exponential_avg_factor", exponential_avg_factor, "data_format", data_format, "is_training", is_training }; + var _result = _execute.execute("FusedBatchNormV2", 5, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FusedBatchNormV2", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Batch normalization. + /// + /// + /// + /// Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". + /// The size of 1D Tensors matches the dimension C of the 4D Tensors. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// A small float number added to the variance of x. + /// + /// + /// + /// + /// + /// The data format for x and y. Either "NHWC" (default) or "NCHW". + /// + /// + /// + /// + /// A bool value to indicate the operation is for training (default) + /// or inference. + /// + /// + /// + public static Tensor[] fused_batch_norm_v3(Tensor x, Tensor scale, Tensor offset, Tensor mean, Tensor variance, float epsilon = 0.0001f, float exponential_avg_factor = 1f, string data_format = "NHWC", bool is_training = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedBatchNormV3", name) { args = new object[] { x, scale, offset, mean, variance }, attrs = new Dictionary() { ["epsilon"] = epsilon, ["exponential_avg_factor"] = exponential_avg_factor, ["data_format"] = data_format, ["is_training"] = is_training } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fused_batch_norm_v3_eager_fallback(x, scale, offset, mean, variance, epsilon: epsilon, exponential_avg_factor: exponential_avg_factor, data_format: data_format, is_training: is_training, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["x"] = x; + keywords["scale"] = scale; + keywords["offset"] = offset; + keywords["mean"] = mean; + keywords["variance"] = variance; + keywords["epsilon"] = epsilon; + keywords["exponential_avg_factor"] = exponential_avg_factor; + keywords["data_format"] = data_format; + keywords["is_training"] = is_training; + var _op = tf.OpDefLib._apply_op_helper("FusedBatchNormV3", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "U", _op._get_attr_type("U"), "epsilon", _op.get_attr("epsilon"), "exponential_avg_factor", _op.get_attr("exponential_avg_factor"), "data_format", _op.get_attr("data_format"), "is_training", _op._get_attr_bool("is_training") }; + _execute.record_gradient("FusedBatchNormV3", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] fused_batch_norm_v3_eager_fallback(Tensor x, Tensor scale, Tensor offset, Tensor mean, Tensor variance, float epsilon, float exponential_avg_factor, string data_format, bool is_training, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { x, scale, offset, mean, variance }; + object[] _attrs = new object[] { "T", x.dtype, "U", scale.dtype, "epsilon", epsilon, "exponential_avg_factor", exponential_avg_factor, "data_format", data_format, "is_training", is_training }; + var _result = _execute.execute("FusedBatchNormV3", 6, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FusedBatchNormV3", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Performs a padding as a preprocess during a convolution. + /// + /// + /// + /// Similar to FusedResizeAndPadConv2d, this op allows for an optimized + /// implementation where the spatial padding transformation stage is fused with the + /// im2col lookup, but in this case without the bilinear filtering required for + /// resizing. Fusing the padding prevents the need to write out the intermediate + /// results as whole tensors, reducing memory pressure, and we can get some latency + /// gains by merging the transformation calculations. + /// The data_format attribute for Conv2D isn't supported by this op, and 'NHWC' + /// order is used instead. + /// Internally this op uses a single per-graph scratch buffer, which means that it + /// will block if multiple versions are being run in parallel. This is because this + /// operator is primarily an optimization to minimize memory usage. + /// + /// + /// + /// + /// + /// + /// + /// + /// 1-D of length 4. The stride of the sliding window for each dimension + /// of `input`. Must be in the same order as the dimension specified with format. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + public static Tensor fused_pad_conv2d(Tensor input, Tensor paddings, Tensor filter, string mode, int[] strides, string padding, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedPadConv2D", name) { args = new object[] { input, paddings, filter }, attrs = new Dictionary() { ["mode"] = mode, ["strides"] = strides, ["padding"] = padding } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fused_pad_conv2d_eager_fallback(input, paddings, filter, mode: mode, strides: strides, padding: padding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["paddings"] = paddings; + keywords["filter"] = filter; + keywords["mode"] = mode; + keywords["strides"] = strides; + keywords["padding"] = padding; + var _op = tf.OpDefLib._apply_op_helper("FusedPadConv2D", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "mode", _op.get_attr("mode"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding") }; + _execute.record_gradient("FusedPadConv2D", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fused_pad_conv2d_eager_fallback(Tensor input, Tensor paddings, Tensor filter, string mode, int[] strides, string padding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, paddings, filter }; + object[] _attrs = new object[] { "T", input.dtype, "mode", mode, "strides", strides, "padding", padding }; + var _result = _execute.execute("FusedPadConv2D", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FusedPadConv2D", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Performs a resize and padding as a preprocess during a convolution. + /// + /// + /// + /// It's often possible to do spatial transformations more efficiently as part of + /// the packing stage of a convolution, so this op allows for an optimized + /// implementation where these stages are fused together. This prevents the need to + /// write out the intermediate results as whole tensors, reducing memory pressure, + /// and we can get some latency gains by merging the transformation calculations. + /// The data_format attribute for Conv2D isn't supported by this op, and defaults to + /// 'NHWC' order. + /// Internally this op uses a single per-graph scratch buffer, which means that it + /// will block if multiple versions are being run in parallel. This is because this + /// operator is primarily an optimization to minimize memory usage. + /// + /// + /// + /// + /// + /// + /// + /// + /// If true, the centers of the 4 corner pixels of the input and output tensors are + /// aligned, preserving the values at the corner pixels. Defaults to false. + /// + /// + /// + /// + /// + /// 1-D of length 4. The stride of the sliding window for each dimension + /// of `input`. Must be in the same order as the dimension specified with format. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + public static Tensor fused_resize_and_pad_conv2d(Tensor input, Tensor size, Tensor paddings, Tensor filter, string mode, int[] strides, string padding, bool resize_align_corners = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "FusedResizeAndPadConv2D", name) { args = new object[] { input, size, paddings, filter }, attrs = new Dictionary() { ["resize_align_corners"] = resize_align_corners, ["mode"] = mode, ["strides"] = strides, ["padding"] = padding } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return fused_resize_and_pad_conv2d_eager_fallback(input, size, paddings, filter, resize_align_corners: resize_align_corners, mode: mode, strides: strides, padding: padding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["size"] = size; + keywords["paddings"] = paddings; + keywords["filter"] = filter; + keywords["resize_align_corners"] = resize_align_corners; + keywords["mode"] = mode; + keywords["strides"] = strides; + keywords["padding"] = padding; + var _op = tf.OpDefLib._apply_op_helper("FusedResizeAndPadConv2D", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "resize_align_corners", _op._get_attr_bool("resize_align_corners"), "mode", _op.get_attr("mode"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding") }; + _execute.record_gradient("FusedResizeAndPadConv2D", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor fused_resize_and_pad_conv2d_eager_fallback(Tensor input, Tensor size, Tensor paddings, Tensor filter, bool resize_align_corners, string mode, int[] strides, string padding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, size, paddings, filter }; + object[] _attrs = new object[] { "T", input.dtype, "resize_align_corners", resize_align_corners, "mode", mode, "strides", strides, "padding", padding }; + var _result = _execute.execute("FusedResizeAndPadConv2D", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("FusedResizeAndPadConv2D", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Says whether the targets are in the top `K` predictions. + /// + /// + /// + /// This outputs a `batch_size` bool array, an entry `out[i]` is `true` if the + /// prediction for the target class is among the top `k` predictions among + /// all predictions for example `i`. Note that the behavior of `InTopK` differs + /// from the `TopK` op in its handling of ties; if multiple classes have the + /// same prediction value and straddle the top-`k` boundary, all of those + /// classes are considered to be in the top `k`. + /// + /// More formally, let + /// + /// \(predictions_i\) be the predictions for all classes for example `i`, + /// \(targets_i\) be the target class for example `i`, + /// \(out_i\) be the output for example `i`, + /// + /// $$out_i = predictions_{i, targets_i} in TopKIncludingTies(predictions_i)$$ + /// + /// + /// + /// + /// + /// + /// Number of top elements to look at for computing precision. + /// + /// + /// + public static Tensor in_top_k(Tensor predictions, Tensor targets, int k = 0, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InTopK", name) { args = new object[] { predictions, targets }, attrs = new Dictionary() { ["k"] = k } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return in_top_k_eager_fallback(predictions, targets, k: k, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["predictions"] = predictions; + keywords["targets"] = targets; + keywords["k"] = k; + var _op = tf.OpDefLib._apply_op_helper("InTopK", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "k", _op._get_attr_int("k"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("InTopK", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor in_top_k_eager_fallback(Tensor predictions, Tensor targets, int k, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { predictions, targets }; + object[] _attrs = new object[] { "k", k, "T", targets.dtype }; + var _result = _execute.execute("InTopK", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("InTopK", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Says whether the targets are in the top `K` predictions. + /// + /// + /// + /// This outputs a `batch_size` bool array, an entry `out[i]` is `true` if the + /// prediction for the target class is among the top `k` predictions among + /// all predictions for example `i`. Note that the behavior of `InTopK` differs + /// from the `TopK` op in its handling of ties; if multiple classes have the + /// same prediction value and straddle the top-`k` boundary, all of those + /// classes are considered to be in the top `k`. + /// + /// More formally, let + /// + /// \(predictions_i\) be the predictions for all classes for example `i`, + /// \(targets_i\) be the target class for example `i`, + /// \(out_i\) be the output for example `i`, + /// + /// $$out_i = predictions_{i, targets_i} in TopKIncludingTies(predictions_i)$$ + /// + /// + /// + /// + /// + /// + public static Tensor in_top_kv2(Tensor predictions, Tensor targets, Tensor k, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "InTopKV2", name) { args = new object[] { predictions, targets, k }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return in_top_kv2_eager_fallback(predictions, targets, k, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["predictions"] = predictions; + keywords["targets"] = targets; + keywords["k"] = k; + var _op = tf.OpDefLib._apply_op_helper("InTopKV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("InTopKV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor in_top_kv2_eager_fallback(Tensor predictions, Tensor targets, Tensor k, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { predictions, targets, k }; + object[] _attrs = new object[] { "T", targets.dtype }; + var _result = _execute.execute("InTopKV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("InTopKV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Solves a batch of isotonic regression problems. + /// + /// + /// + /// Dtype of output. + /// + /// + public static Tensor[] isotonic_regression(Tensor input, TF_DataType output_dtype = TF_DataType.TF_FLOAT, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "IsotonicRegression", name) { args = new object[] { input }, attrs = new Dictionary() { ["output_dtype"] = output_dtype } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return isotonic_regression_eager_fallback(input, output_dtype: output_dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["output_dtype"] = output_dtype; + var _op = tf.OpDefLib._apply_op_helper("IsotonicRegression", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "output_dtype", _op._get_attr_type("output_dtype") }; + _execute.record_gradient("IsotonicRegression", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] isotonic_regression_eager_fallback(Tensor input, TF_DataType output_dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "output_dtype", output_dtype }; + var _result = _execute.execute("IsotonicRegression", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("IsotonicRegression", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Local Response Normalization. + /// + /// + /// + /// The 4-D `input` tensor is treated as a 3-D array of 1-D vectors (along the last + /// dimension), and each vector is normalized independently. Within a given vector, + /// each component is divided by the weighted, squared sum of inputs within + /// `depth_radius`. In detail, + /// + /// sqr_sum[a, b, c, d] = + /// sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2) + /// output = input / (bias + alpha * sqr_sum) ** beta + /// + /// For details, see [Krizhevsky et al., ImageNet classification with deep + /// convolutional neural networks (NIPS 2012)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks). + /// + /// + /// + /// + /// + /// 0-D. Half-width of the 1-D normalization window. + /// + /// + /// + /// + /// An offset (usually positive to avoid dividing by 0). + /// + /// + /// + /// + /// A scale factor, usually positive. + /// + /// + /// + /// + /// An exponent. + /// + /// + /// + public static Tensor lrn(Tensor input, int depth_radius = 5, float bias = 1f, float alpha = 1f, float beta = 0.5f, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LRN", name) { args = new object[] { input }, attrs = new Dictionary() { ["depth_radius"] = depth_radius, ["bias"] = bias, ["alpha"] = alpha, ["beta"] = beta } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return lrn_eager_fallback(input, depth_radius: depth_radius, bias: bias, alpha: alpha, beta: beta, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["depth_radius"] = depth_radius; + keywords["bias"] = bias; + keywords["alpha"] = alpha; + keywords["beta"] = beta; + var _op = tf.OpDefLib._apply_op_helper("LRN", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "depth_radius", _op._get_attr_int("depth_radius"), "bias", _op.get_attr("bias"), "alpha", _op.get_attr("alpha"), "beta", _op.get_attr("beta"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("LRN", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor lrn_eager_fallback(Tensor input, int depth_radius, float bias, float alpha, float beta, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "depth_radius", depth_radius, "bias", bias, "alpha", alpha, "beta", beta, "T", input.dtype }; + var _result = _execute.execute("LRN", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LRN", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes rectified linear: `max(features, features * alpha)`. + /// + /// + /// + /// + public static Tensor leaky_relu(Tensor features, float alpha = 0.2f, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LeakyRelu", name) { args = new object[] { features }, attrs = new Dictionary() { ["alpha"] = alpha } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return leaky_relu_eager_fallback(features, alpha: alpha, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + keywords["alpha"] = alpha; + var _op = tf.OpDefLib._apply_op_helper("LeakyRelu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "alpha", _op.get_attr("alpha"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("LeakyRelu", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor leaky_relu_eager_fallback(Tensor features, float alpha, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features }; + object[] _attrs = new object[] { "alpha", alpha, "T", features.dtype }; + var _result = _execute.execute("LeakyRelu", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LeakyRelu", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes rectified linear gradients for a LeakyRelu operation. + /// + /// + /// + /// + /// + public static Tensor leaky_relu_grad(Tensor gradients, Tensor features, float alpha = 0.2f, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LeakyReluGrad", name) { args = new object[] { gradients, features }, attrs = new Dictionary() { ["alpha"] = alpha } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return leaky_relu_grad_eager_fallback(gradients, features, alpha: alpha, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["gradients"] = gradients; + keywords["features"] = features; + keywords["alpha"] = alpha; + var _op = tf.OpDefLib._apply_op_helper("LeakyReluGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "alpha", _op.get_attr("alpha"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("LeakyReluGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor leaky_relu_grad_eager_fallback(Tensor gradients, Tensor features, float alpha, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { gradients, features }; + object[] _attrs = new object[] { "alpha", alpha, "T", gradients.dtype }; + var _result = _execute.execute("LeakyReluGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LeakyReluGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes log softmax activations. + /// + /// + /// + /// For each batch `i` and class `j` we have + /// + /// logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i]))) + /// + /// + /// + /// + public static Tensor log_softmax(Tensor logits, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "LogSoftmax", name) { args = new object[] { logits }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return log_softmax_eager_fallback(logits, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["logits"] = logits; + var _op = tf.OpDefLib._apply_op_helper("LogSoftmax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("LogSoftmax", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor log_softmax_eager_fallback(Tensor logits, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { logits }; + object[] _attrs = new object[] { "T", logits.dtype }; + var _result = _execute.execute("LogSoftmax", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("LogSoftmax", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Performs max pooling on the input. + /// + /// + /// + /// + /// The size of the window for each dimension of the input tensor. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the + /// input tensor. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + public static Tensor max_pool(Tensor input, int[] ksize, int[] strides, string padding, int[] explicit_paddings = null, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (explicit_paddings is null) + { + explicit_paddings = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPool", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool_eager_fallback(input, ksize: ksize, strides: strides, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["explicit_paddings"] = explicit_paddings; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("MaxPool", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format") }; + _execute.record_gradient("MaxPool", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool_eager_fallback(Tensor input, int[] ksize, int[] strides, string padding, int[] explicit_paddings, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "T", input.dtype, "ksize", ksize, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format }; + var _result = _execute.execute("MaxPool", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPool", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Performs 3D max pooling on the input. + /// + /// + /// + /// + /// 1-D tensor of length 5. The size of the window for each dimension of + /// the input tensor. Must have `ksize[0] = ksize[4] = 1`. + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// The data format of the input and output data. With the + /// default format "NDHWC", the data is stored in the order of: + /// [batch, in_depth, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCDHW", the data storage order is: + /// [batch, in_channels, in_depth, in_height, in_width]. + /// + /// + /// + public static Tensor max_pool3d(Tensor input, int[] ksize, int[] strides, string padding, string data_format = "NDHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPool3D", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool3d_eager_fallback(input, ksize: ksize, strides: strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NDHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("MaxPool3D", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MaxPool3D", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool3d_eager_fallback(Tensor input, int[] ksize, int[] strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", input.dtype }; + var _result = _execute.execute("MaxPool3D", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPool3D", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients of 3D max pooling function. + /// + /// + /// + /// + /// + /// + /// 1-D tensor of length 5. The size of the window for each dimension of + /// the input tensor. Must have `ksize[0] = ksize[4] = 1`. + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// The data format of the input and output data. With the + /// default format "NDHWC", the data is stored in the order of: + /// [batch, in_depth, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCDHW", the data storage order is: + /// [batch, in_channels, in_depth, in_height, in_width]. + /// + /// + /// + public static Tensor max_pool3d_grad(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, string data_format = "NDHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPool3DGrad", name) { args = new object[] { orig_input, orig_output, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool3d_grad_eager_fallback(orig_input, orig_output, grad, ksize: ksize, strides: strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NDHWC"; + } + Dictionary keywords = new(); + keywords["orig_input"] = orig_input; + keywords["orig_output"] = orig_output; + keywords["grad"] = grad; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("MaxPool3DGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T"), "TInput", _op._get_attr_type("TInput") }; + _execute.record_gradient("MaxPool3DGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool3d_grad_eager_fallback(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input, orig_output, grad }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", grad.dtype, "TInput", orig_input.dtype }; + var _result = _execute.execute("MaxPool3DGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPool3DGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes second-order gradients of the maxpooling function. + /// + /// + /// + /// + /// + /// + /// 1-D tensor of length 5. The size of the window for each dimension of + /// the input tensor. Must have `ksize[0] = ksize[4] = 1`. + /// + /// + /// + /// + /// 1-D tensor of length 5. The stride of the sliding window for each + /// dimension of `input`. Must have `strides[0] = strides[4] = 1`. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// The data format of the input and output data. With the + /// default format "NDHWC", the data is stored in the order of: + /// [batch, in_depth, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCDHW", the data storage order is: + /// [batch, in_channels, in_depth, in_height, in_width]. + /// + /// + /// + public static Tensor max_pool3d_grad_grad(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, string data_format = "NDHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPool3DGradGrad", name) { args = new object[] { orig_input, orig_output, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool3d_grad_grad_eager_fallback(orig_input, orig_output, grad, ksize: ksize, strides: strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NDHWC"; + } + Dictionary keywords = new(); + keywords["orig_input"] = orig_input; + keywords["orig_output"] = orig_output; + keywords["grad"] = grad; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("MaxPool3DGradGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MaxPool3DGradGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool3d_grad_grad_eager_fallback(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input, orig_output, grad }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", orig_input.dtype }; + var _result = _execute.execute("MaxPool3DGradGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPool3DGradGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients of the maxpooling function. + /// + /// + /// + /// + /// + /// + /// The size of the window for each dimension of the input tensor. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the + /// input tensor. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + public static Tensor max_pool_grad(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, int[] explicit_paddings = null, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (explicit_paddings is null) + { + explicit_paddings = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGrad", name) { args = new object[] { orig_input, orig_output, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["explicit_paddings"] = explicit_paddings, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool_grad_eager_fallback(orig_input, orig_output, grad, ksize: ksize, strides: strides, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["orig_input"] = orig_input; + keywords["orig_output"] = orig_output; + keywords["grad"] = grad; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["explicit_paddings"] = explicit_paddings; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("MaxPoolGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "explicit_paddings", _op.get_attr("explicit_paddings"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MaxPoolGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool_grad_eager_fallback(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, int[] explicit_paddings, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input, orig_output, grad }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "explicit_paddings", explicit_paddings, "data_format", data_format, "T", orig_input.dtype }; + var _result = _execute.execute("MaxPoolGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPoolGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes second-order gradients of the maxpooling function. + /// + /// + /// + /// + /// + /// + /// The size of the window for each dimension of the input tensor. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the + /// input tensor. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + public static Tensor max_pool_grad_grad(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradGrad", name) { args = new object[] { orig_input, orig_output, grad }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool_grad_grad_eager_fallback(orig_input, orig_output, grad, ksize: ksize, strides: strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["orig_input"] = orig_input; + keywords["orig_output"] = orig_output; + keywords["grad"] = grad; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("MaxPoolGradGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MaxPoolGradGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool_grad_grad_eager_fallback(Tensor orig_input, Tensor orig_output, Tensor grad, int[] ksize, int[] strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input, orig_output, grad }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "data_format", data_format, "T", orig_input.dtype }; + var _result = _execute.execute("MaxPoolGradGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPoolGradGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes second-order gradients of the maxpooling function. + /// + /// + /// + /// + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + public static Tensor max_pool_grad_grad_v2(Tensor orig_input, Tensor orig_output, Tensor grad, Tensor ksize, Tensor strides, string padding, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradGradV2", name) { args = new object[] { orig_input, orig_output, grad, ksize, strides }, attrs = new Dictionary() { ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool_grad_grad_v2_eager_fallback(orig_input, orig_output, grad, ksize, strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["orig_input"] = orig_input; + keywords["orig_output"] = orig_output; + keywords["grad"] = grad; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("MaxPoolGradGradV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MaxPoolGradGradV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool_grad_grad_v2_eager_fallback(Tensor orig_input, Tensor orig_output, Tensor grad, Tensor ksize, Tensor strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input, orig_output, grad, ksize, strides }; + object[] _attrs = new object[] { "padding", padding, "data_format", data_format, "T", orig_input.dtype }; + var _result = _execute.execute("MaxPoolGradGradV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPoolGradGradV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes second-order gradients of the maxpooling function. + /// + /// + /// + /// + /// + /// + /// The size of the window for each dimension of the input tensor. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the + /// input tensor. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// Whether to include batch dimension in flattened index of `argmax`. + /// + /// + /// + public static Tensor max_pool_grad_grad_with_argmax(Tensor input, Tensor grad, Tensor argmax, int[] ksize, int[] strides, string padding, bool include_batch_in_index = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradGradWithArgmax", name) { args = new object[] { input, grad, argmax }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["include_batch_in_index"] = include_batch_in_index } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool_grad_grad_with_argmax_eager_fallback(input, grad, argmax, ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["grad"] = grad; + keywords["argmax"] = argmax; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["include_batch_in_index"] = include_batch_in_index; + var _op = tf.OpDefLib._apply_op_helper("MaxPoolGradGradWithArgmax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "include_batch_in_index", _op._get_attr_bool("include_batch_in_index"), "Targmax", _op._get_attr_type("Targmax"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MaxPoolGradGradWithArgmax", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool_grad_grad_with_argmax_eager_fallback(Tensor input, Tensor grad, Tensor argmax, int[] ksize, int[] strides, string padding, bool include_batch_in_index, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, grad, argmax }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "include_batch_in_index", include_batch_in_index, "Targmax", argmax.dtype, "T", input.dtype }; + var _result = _execute.execute("MaxPoolGradGradWithArgmax", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPoolGradGradWithArgmax", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients of the maxpooling function. + /// + /// + /// + /// + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + public static Tensor max_pool_grad_v2(Tensor orig_input, Tensor orig_output, Tensor grad, Tensor ksize, Tensor strides, string padding, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradV2", name) { args = new object[] { orig_input, orig_output, grad, ksize, strides }, attrs = new Dictionary() { ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool_grad_v2_eager_fallback(orig_input, orig_output, grad, ksize, strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["orig_input"] = orig_input; + keywords["orig_output"] = orig_output; + keywords["grad"] = grad; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("MaxPoolGradV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MaxPoolGradV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool_grad_v2_eager_fallback(Tensor orig_input, Tensor orig_output, Tensor grad, Tensor ksize, Tensor strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { orig_input, orig_output, grad, ksize, strides }; + object[] _attrs = new object[] { "padding", padding, "data_format", data_format, "T", orig_input.dtype }; + var _result = _execute.execute("MaxPoolGradV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPoolGradV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients of the maxpooling function. + /// + /// + /// + /// + /// + /// + /// The size of the window for each dimension of the input tensor. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the + /// input tensor. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// Whether to include batch dimension in flattened index of `argmax`. + /// + /// + /// + public static Tensor max_pool_grad_with_argmax(Tensor input, Tensor grad, Tensor argmax, int[] ksize, int[] strides, string padding, bool include_batch_in_index = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolGradWithArgmax", name) { args = new object[] { input, grad, argmax }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding, ["include_batch_in_index"] = include_batch_in_index } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool_grad_with_argmax_eager_fallback(input, grad, argmax, ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["grad"] = grad; + keywords["argmax"] = argmax; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["include_batch_in_index"] = include_batch_in_index; + var _op = tf.OpDefLib._apply_op_helper("MaxPoolGradWithArgmax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "include_batch_in_index", _op._get_attr_bool("include_batch_in_index"), "Targmax", _op._get_attr_type("Targmax"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MaxPoolGradWithArgmax", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool_grad_with_argmax_eager_fallback(Tensor input, Tensor grad, Tensor argmax, int[] ksize, int[] strides, string padding, bool include_batch_in_index, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, grad, argmax }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "padding", padding, "include_batch_in_index", include_batch_in_index, "Targmax", argmax.dtype, "T", input.dtype }; + var _result = _execute.execute("MaxPoolGradWithArgmax", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPoolGradWithArgmax", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Performs max pooling on the input. + /// + /// + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// Specify the data format of the input and output data. With the + /// default format "NHWC", the data is stored in the order of: + /// [batch, in_height, in_width, in_channels]. + /// Alternatively, the format could be "NCHW", the data storage order of: + /// [batch, in_channels, in_height, in_width]. + /// + /// + /// + public static Tensor max_pool_v2(Tensor input, Tensor ksize, Tensor strides, string padding, string data_format = "NHWC", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolV2", name) { args = new object[] { input, ksize, strides }, attrs = new Dictionary() { ["padding"] = padding, ["data_format"] = data_format } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool_v2_eager_fallback(input, ksize, strides, padding: padding, data_format: data_format, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (data_format is null) + { + data_format = "NHWC"; + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["data_format"] = data_format; + var _op = tf.OpDefLib._apply_op_helper("MaxPoolV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "padding", _op.get_attr("padding"), "data_format", _op.get_attr("data_format") }; + _execute.record_gradient("MaxPoolV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor max_pool_v2_eager_fallback(Tensor input, Tensor ksize, Tensor strides, string padding, string data_format, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, ksize, strides }; + object[] _attrs = new object[] { "T", input.dtype, "padding", padding, "data_format", data_format }; + var _result = _execute.execute("MaxPoolV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPoolV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Performs max pooling on the input and outputs both max values and indices. + /// + /// + /// + /// The indices in `argmax` are flattened, so that a maximum value at position + /// `[b, y, x, c]` becomes flattened index: + /// `(y * width + x) * channels + c` if `include_batch_in_index` is False; + /// `((b * height + y) * width + x) * channels + c` if `include_batch_in_index` is True. + /// + /// The indices returned are always in `[0, height) x [0, width)` before flattening, + /// even if padding is involved and the mathematically correct answer is outside + /// (either negative or too large). This is a bug, but fixing it is difficult to do + /// in a safe backwards compatible way, especially due to flattening. + /// + /// + /// + /// + /// + /// The size of the window for each dimension of the input tensor. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the + /// input tensor. + /// + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// Whether to include batch dimension in flattened index of `argmax`. + /// + /// + /// + public static Tensor[] max_pool_with_argmax(Tensor input, int[] ksize, int[] strides, string padding, TF_DataType Targmax = TF_DataType.TF_INT64, bool include_batch_in_index = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MaxPoolWithArgmax", name) { args = new object[] { input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["Targmax"] = Targmax, ["padding"] = padding, ["include_batch_in_index"] = include_batch_in_index } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return max_pool_with_argmax_eager_fallback(input, ksize: ksize, strides: strides, Targmax: Targmax, padding: padding, include_batch_in_index: include_batch_in_index, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["Targmax"] = Targmax; + keywords["padding"] = padding; + keywords["include_batch_in_index"] = include_batch_in_index; + var _op = tf.OpDefLib._apply_op_helper("MaxPoolWithArgmax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "Targmax", _op._get_attr_type("Targmax"), "padding", _op.get_attr("padding"), "include_batch_in_index", _op._get_attr_bool("include_batch_in_index"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("MaxPoolWithArgmax", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] max_pool_with_argmax_eager_fallback(Tensor input, int[] ksize, int[] strides, TF_DataType Targmax, string padding, bool include_batch_in_index, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "ksize", ksize, "strides", strides, "Targmax", Targmax, "padding", padding, "include_batch_in_index", include_batch_in_index, "T", input.dtype }; + var _result = _execute.execute("MaxPoolWithArgmax", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MaxPoolWithArgmax", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Finds values of the `n`-th order statistic for the last dimension. + /// + /// + /// + /// If the input is a vector (rank-1), finds the entries which is the nth-smallest + /// value in the vector and outputs their values as scalar tensor. + /// + /// For matrices (resp. higher rank input), computes the entries which is the + /// nth-smallest value in each row (resp. vector along the last dimension). Thus, + /// + /// values.shape = input.shape[:-1] + /// + /// + /// + /// + /// + /// + /// When set to True, find the nth-largest value in the vector and vice + /// versa. + /// + /// + /// + public static Tensor nth_element(Tensor input, Tensor n, bool reverse = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "NthElement", name) { args = new object[] { input, n }, attrs = new Dictionary() { ["reverse"] = reverse } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return nth_element_eager_fallback(input, n, reverse: reverse, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["n"] = n; + keywords["reverse"] = reverse; + var _op = tf.OpDefLib._apply_op_helper("NthElement", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "reverse", _op._get_attr_bool("reverse"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("NthElement", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor nth_element_eager_fallback(Tensor input, Tensor n, bool reverse, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, n }; + object[] _attrs = new object[] { "reverse", reverse, "T", input.dtype }; + var _result = _execute.execute("NthElement", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("NthElement", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Produces the average pool of the input tensor for quantized types. + /// + /// + /// + /// + /// + /// + /// The size of the window for each dimension of the input tensor. + /// The length must be 4 to match the number of dimensions of the input. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the input + /// tensor. The length must be 4 to match the number of dimensions of the input. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + public static Tensor[] quantized_avg_pool(Tensor input, Tensor min_input, Tensor max_input, int[] ksize, int[] strides, string padding, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedAvgPool", name) { args = new object[] { input, min_input, max_input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_avg_pool_eager_fallback(input, min_input, max_input, ksize: ksize, strides: strides, padding: padding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + var _op = tf.OpDefLib._apply_op_helper("QuantizedAvgPool", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding") }; + _execute.record_gradient("QuantizedAvgPool", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_avg_pool_eager_fallback(Tensor input, Tensor min_input, Tensor max_input, int[] ksize, int[] strides, string padding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, min_input, max_input }; + object[] _attrs = new object[] { "T", input.dtype, "ksize", ksize, "strides", strides, "padding", padding }; + var _result = _execute.execute("QuantizedAvgPool", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedAvgPool", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Quantized Batch normalization. + /// + /// + /// + /// This op is deprecated and will be removed in the future. Prefer + /// `tf.nn.batch_normalization`. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// A small float number to avoid dividing by 0. + /// + /// + /// + /// + /// A bool indicating whether the resulted tensor + /// needs to be multiplied with gamma. + /// + /// + /// + public static Tensor[] quantized_batch_norm_with_global_normalization(Tensor t, Tensor t_min, Tensor t_max, Tensor m, Tensor m_min, Tensor m_max, Tensor v, Tensor v_min, Tensor v_max, Tensor beta, Tensor beta_min, Tensor beta_max, Tensor gamma, Tensor gamma_min, Tensor gamma_max, TF_DataType out_type, float variance_epsilon, bool scale_after_normalization, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedBatchNormWithGlobalNormalization", name) { args = new object[] { t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max }, attrs = new Dictionary() { ["out_type"] = out_type, ["variance_epsilon"] = variance_epsilon, ["scale_after_normalization"] = scale_after_normalization } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_batch_norm_with_global_normalization_eager_fallback(t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max, out_type: out_type, variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["t"] = t; + keywords["t_min"] = t_min; + keywords["t_max"] = t_max; + keywords["m"] = m; + keywords["m_min"] = m_min; + keywords["m_max"] = m_max; + keywords["v"] = v; + keywords["v_min"] = v_min; + keywords["v_max"] = v_max; + keywords["beta"] = beta; + keywords["beta_min"] = beta_min; + keywords["beta_max"] = beta_max; + keywords["gamma"] = gamma; + keywords["gamma_min"] = gamma_min; + keywords["gamma_max"] = gamma_max; + keywords["out_type"] = out_type; + keywords["variance_epsilon"] = variance_epsilon; + keywords["scale_after_normalization"] = scale_after_normalization; + var _op = tf.OpDefLib._apply_op_helper("QuantizedBatchNormWithGlobalNormalization", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type"), "variance_epsilon", _op.get_attr("variance_epsilon"), "scale_after_normalization", _op._get_attr_bool("scale_after_normalization") }; + _execute.record_gradient("QuantizedBatchNormWithGlobalNormalization", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_batch_norm_with_global_normalization_eager_fallback(Tensor t, Tensor t_min, Tensor t_max, Tensor m, Tensor m_min, Tensor m_max, Tensor v, Tensor v_min, Tensor v_max, Tensor beta, Tensor beta_min, Tensor beta_max, Tensor gamma, Tensor gamma_min, Tensor gamma_max, TF_DataType out_type, float variance_epsilon, bool scale_after_normalization, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max }; + object[] _attrs = new object[] { "Tinput", t.dtype, "out_type", out_type, "variance_epsilon", variance_epsilon, "scale_after_normalization", scale_after_normalization }; + var _result = _execute.execute("QuantizedBatchNormWithGlobalNormalization", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedBatchNormWithGlobalNormalization", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Adds Tensor 'bias' to Tensor 'input' for Quantized types. + /// + /// + /// + /// Broadcasts the values of bias on dimensions 0..N-2 of 'input'. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_bias_add(Tensor input, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_bias, Tensor max_bias, TF_DataType out_type, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedBiasAdd", name) { args = new object[] { input, bias, min_input, max_input, min_bias, max_bias }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_bias_add_eager_fallback(input, bias, min_input, max_input, min_bias, max_bias, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_bias"] = min_bias; + keywords["max_bias"] = max_bias; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("QuantizedBiasAdd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("QuantizedBiasAdd", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_bias_add_eager_fallback(Tensor input, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_bias, Tensor max_bias, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, bias, min_input, max_input, min_bias, max_bias }; + object[] _attrs = new object[] { "T1", input.dtype, "T2", bias.dtype, "out_type", out_type }; + var _result = _execute.execute("QuantizedBiasAdd", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedBiasAdd", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes a 2D convolution given quantized 4D input and filter tensors. + /// + /// + /// + /// The inputs are quantized tensors where the lowest value represents the real + /// number of the associated minimum, and the highest represents the maximum. + /// This means that you can only interpret the quantized output in the same way, by + /// taking the returned minimum and maximum values into account. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the input + /// tensor. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + /// + /// 1-D tensor of length 4. The dilation factor for each dimension of + /// `input`. If set to k > 1, there will be k-1 skipped cells between each + /// filter element on that dimension. The dimension order is determined by the + /// value of `data_format`, see above for details. Dilations in the batch and + /// depth dimensions must be 1. + /// + /// + /// + public static Tensor[] quantized_conv2d(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT32, int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2D", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_eager_fallback(input, filter, min_input, max_input, min_filter, max_filter, out_type: out_type, strides: strides, padding: padding, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2D", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("QuantizedConv2D", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_eager_fallback(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, TF_DataType out_type, int[] strides, string padding, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, min_input, max_input, min_filter, max_filter }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations }; + var _result = _execute.execute("QuantizedConv2D", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2D", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_and_relu(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT32, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DAndRelu", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_and_relu_eager_fallback(input, filter, min_input, max_input, min_filter, max_filter, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DAndRelu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DAndRelu", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_and_relu_eager_fallback(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, min_input, max_input, min_filter, max_filter }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DAndRelu", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DAndRelu", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_and_relu_and_requantize(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QUINT8, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DAndReluAndRequantize", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_and_relu_and_requantize_eager_fallback(input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DAndReluAndRequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DAndReluAndRequantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_and_relu_and_requantize_eager_fallback(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DAndReluAndRequantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DAndReluAndRequantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_and_requantize(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT8, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DAndRequantize", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_and_requantize_eager_fallback(input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DAndRequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DAndRequantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_and_requantize_eager_fallback(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DAndRequantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DAndRequantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes QuantizedConv2D per channel. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// The quantized type of output tensor that needs to be converted. + /// + /// + /// + /// list of stride values. + /// + /// + /// + /// list of dilation values. + /// + /// + public static Tensor[] quantized_conv2d_per_channel(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT32, int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DPerChannel", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_per_channel_eager_fallback(input, filter, min_input, max_input, min_filter, max_filter, out_type: out_type, strides: strides, padding: padding, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DPerChannel", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("QuantizedConv2DPerChannel", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_per_channel_eager_fallback(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, TF_DataType out_type, int[] strides, string padding, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, min_input, max_input, min_filter, max_filter }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations }; + var _result = _execute.execute("QuantizedConv2DPerChannel", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DPerChannel", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_with_bias(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT32, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBias", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_with_bias_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DWithBias", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DWithBias", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_with_bias_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DWithBias", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DWithBias", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_with_bias_and_relu(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT32, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasAndRelu", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_with_bias_and_relu_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DWithBiasAndRelu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DWithBiasAndRelu", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_with_bias_and_relu_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DWithBiasAndRelu", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DWithBiasAndRelu", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_with_bias_and_relu_and_requantize(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QUINT8, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasAndReluAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_with_bias_and_relu_and_requantize_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DWithBiasAndReluAndRequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DWithBiasAndReluAndRequantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_with_bias_and_relu_and_requantize_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "Tbias", bias.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DWithBiasAndReluAndRequantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DWithBiasAndReluAndRequantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_with_bias_and_requantize(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT8, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_with_bias_and_requantize_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DWithBiasAndRequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DWithBiasAndRequantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_with_bias_and_requantize_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "Tbias", bias.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DWithBiasAndRequantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DWithBiasAndRequantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, Tensor summand, Tensor min_summand, Tensor max_summand, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QUINT8, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["summand"] = summand; + keywords["min_summand"] = min_summand; + keywords["max_summand"] = max_summand; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "Tsummand", _op._get_attr_type("Tsummand"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, Tensor summand, Tensor min_summand, Tensor max_summand, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "Tbias", bias.dtype, "Tsummand", summand.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_with_bias_sum_and_relu(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor summand, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT32, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasSumAndRelu", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, summand }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_with_bias_sum_and_relu_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, summand, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["summand"] = summand; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DWithBiasSumAndRelu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DWithBiasSumAndRelu", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_with_bias_sum_and_relu_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor summand, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter, summand }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DWithBiasSumAndRelu", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DWithBiasSumAndRelu", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_conv2d_with_bias_sum_and_relu_and_requantize(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, Tensor summand, Tensor min_summand, Tensor max_summand, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QUINT8, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedConv2DWithBiasSumAndReluAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_conv2d_with_bias_sum_and_relu_and_requantize_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["summand"] = summand; + keywords["min_summand"] = min_summand; + keywords["max_summand"] = max_summand; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedConv2DWithBiasSumAndReluAndRequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "Tsummand", _op._get_attr_type("Tsummand"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedConv2DWithBiasSumAndReluAndRequantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_conv2d_with_bias_sum_and_relu_and_requantize_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, Tensor summand, Tensor min_summand, Tensor max_summand, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "Tbias", bias.dtype, "Tsummand", summand.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedConv2DWithBiasSumAndReluAndRequantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedConv2DWithBiasSumAndReluAndRequantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes quantized depthwise Conv2D. + /// + /// + /// + /// + /// + /// + /// + /// + /// The type of the output. + /// + /// + /// List of stride values. + /// + /// + /// + /// List of dilation values. + /// + /// + public static Tensor[] quantized_depthwise_conv2d(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT32, int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedDepthwiseConv2D", name) { args = new object[] { input, filter, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_depthwise_conv2d_eager_fallback(input, filter, min_input, max_input, min_filter, max_filter, out_type: out_type, strides: strides, padding: padding, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("QuantizedDepthwiseConv2D", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("QuantizedDepthwiseConv2D", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_depthwise_conv2d_eager_fallback(Tensor input, Tensor filter, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, TF_DataType out_type, int[] strides, string padding, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, min_input, max_input, min_filter, max_filter }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations }; + var _result = _execute.execute("QuantizedDepthwiseConv2D", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedDepthwiseConv2D", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes quantized depthwise Conv2D with Bias. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// The type of the output. + /// + /// + /// List of stride values. + /// + /// + /// + /// List of dilation values. + /// + /// + public static Tensor[] quantized_depthwise_conv2d_with_bias(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT32, int[] dilations = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedDepthwiseConv2DWithBias", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_depthwise_conv2d_with_bias_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, out_type: out_type, strides: strides, padding: padding, dilations: dilations, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + var _op = tf.OpDefLib._apply_op_helper("QuantizedDepthwiseConv2DWithBias", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations") }; + _execute.record_gradient("QuantizedDepthwiseConv2DWithBias", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_depthwise_conv2d_with_bias_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, TF_DataType out_type, int[] strides, string padding, int[] dilations, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations }; + var _result = _execute.execute("QuantizedDepthwiseConv2DWithBias", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedDepthwiseConv2DWithBias", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes quantized depthwise Conv2D with Bias and Relu. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// The type of the output. + /// + /// + /// List of stride values. + /// + /// + /// + /// List of dilation values. + /// + /// + /// + public static Tensor[] quantized_depthwise_conv2d_with_bias_and_relu(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QINT32, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedDepthwiseConv2DWithBiasAndRelu", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_depthwise_conv2d_with_bias_and_relu_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedDepthwiseConv2DWithBiasAndRelu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedDepthwiseConv2DWithBiasAndRelu", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_depthwise_conv2d_with_bias_and_relu_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedDepthwiseConv2DWithBiasAndRelu", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedDepthwiseConv2DWithBiasAndRelu", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes quantized depthwise Conv2D with Bias, Relu and Requantize. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// The type of the output. + /// + /// + /// List of stride values. + /// + /// + /// + /// List of dilation values. + /// + /// + /// + public static Tensor[] quantized_depthwise_conv2d_with_bias_and_relu_and_requantize(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, int[] strides, string padding, TF_DataType out_type = TF_DataType.TF_QUINT8, int[] dilations = null, int[] padding_list = null, string? name = null) + { + var _ctx = tf.Context; + if (dilations is null) + { + dilations = new int[] { 1, 1, 1, 1 }; + } + if (padding_list is null) + { + padding_list = new int[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", name) { args = new object[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["out_type"] = out_type, ["strides"] = strides, ["padding"] = padding, ["dilations"] = dilations, ["padding_list"] = padding_list } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_depthwise_conv2d_with_bias_and_relu_and_requantize_eager_fallback(input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["filter"] = filter; + keywords["bias"] = bias; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["min_filter"] = min_filter; + keywords["max_filter"] = max_filter; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["out_type"] = out_type; + keywords["strides"] = strides; + keywords["padding"] = padding; + keywords["dilations"] = dilations; + keywords["padding_list"] = padding_list; + var _op = tf.OpDefLib._apply_op_helper("QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "Tfilter", _op._get_attr_type("Tfilter"), "Tbias", _op._get_attr_type("Tbias"), "out_type", _op._get_attr_type("out_type"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding"), "dilations", _op.get_attr("dilations"), "padding_list", _op.get_attr("padding_list") }; + _execute.record_gradient("QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_depthwise_conv2d_with_bias_and_relu_and_requantize_eager_fallback(Tensor input, Tensor filter, Tensor bias, Tensor min_input, Tensor max_input, Tensor min_filter, Tensor max_filter, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType out_type, int[] strides, string padding, int[] dilations, int[] padding_list, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output }; + object[] _attrs = new object[] { "Tinput", input.dtype, "Tfilter", filter.dtype, "Tbias", bias.dtype, "out_type", out_type, "strides", strides, "padding", padding, "dilations", dilations, "padding_list", padding_list }; + var _result = _execute.execute("QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// ~~%~~Performs a quantized matrix multiplication of `a` by the matrix `b` with bias~~%~~add.~~%~~ + /// + /// + /// + /// The inputs must be two-dimensional matrices and 1D bias vector. And the inner + /// dimension of `a` (after being transposed if `transpose_a` is non-zero) must + /// match the outer dimension of `b` (after being transposed if `transposed_b` is + /// non-zero). Then do broadcast add operation with bias values on the matrix + /// multiplication result. The bias size must match inner dimension of `b`. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// If true, `a` is transposed before multiplication. + /// + /// + /// If true, `b` is transposed before multiplication. + /// + /// + /// + /// Input data quantization mode. Either MIN_FIRST(default) or SCALED. + /// + /// + /// + public static Tensor[] quantized_mat_mul_with_bias(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, TF_DataType Toutput = TF_DataType.TF_QINT32, bool transpose_a = false, bool transpose_b = false, string input_quant_mode = "MIN_FIRST", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBias", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_mat_mul_with_bias_eager_fallback(a, b, bias, min_a, max_a, min_b, max_b, Toutput: Toutput, transpose_a: transpose_a, transpose_b: transpose_b, input_quant_mode: input_quant_mode, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (input_quant_mode is null) + { + input_quant_mode = "MIN_FIRST"; + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + keywords["bias"] = bias; + keywords["min_a"] = min_a; + keywords["max_a"] = max_a; + keywords["min_b"] = min_b; + keywords["max_b"] = max_b; + keywords["Toutput"] = Toutput; + keywords["transpose_a"] = transpose_a; + keywords["transpose_b"] = transpose_b; + keywords["input_quant_mode"] = input_quant_mode; + var _op = tf.OpDefLib._apply_op_helper("QuantizedMatMulWithBias", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Tbias", _op._get_attr_type("Tbias"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode") }; + _execute.record_gradient("QuantizedMatMulWithBias", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_mat_mul_with_bias_eager_fallback(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, TF_DataType Toutput, bool transpose_a, bool transpose_b, string input_quant_mode, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b, bias, min_a, max_a, min_b, max_b }; + object[] _attrs = new object[] { "T1", a.dtype, "T2", b.dtype, "Tbias", bias.dtype, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode }; + var _result = _execute.execute("QuantizedMatMulWithBias", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedMatMulWithBias", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor quantized_mat_mul_with_bias_and_dequantize(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType Toutput, bool transpose_a = false, bool transpose_b = false, string input_quant_mode = "MIN_FIRST", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBiasAndDequantize", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_mat_mul_with_bias_and_dequantize_eager_fallback(a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output, Toutput: Toutput, transpose_a: transpose_a, transpose_b: transpose_b, input_quant_mode: input_quant_mode, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (input_quant_mode is null) + { + input_quant_mode = "MIN_FIRST"; + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + keywords["bias"] = bias; + keywords["min_a"] = min_a; + keywords["max_a"] = max_a; + keywords["min_b"] = min_b; + keywords["max_b"] = max_b; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["Toutput"] = Toutput; + keywords["transpose_a"] = transpose_a; + keywords["transpose_b"] = transpose_b; + keywords["input_quant_mode"] = input_quant_mode; + var _op = tf.OpDefLib._apply_op_helper("QuantizedMatMulWithBiasAndDequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Tbias", _op._get_attr_type("Tbias"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode") }; + _execute.record_gradient("QuantizedMatMulWithBiasAndDequantize", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor quantized_mat_mul_with_bias_and_dequantize_eager_fallback(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType Toutput, bool transpose_a, bool transpose_b, string input_quant_mode, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output }; + object[] _attrs = new object[] { "T1", a.dtype, "T2", b.dtype, "Tbias", bias.dtype, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode }; + var _result = _execute.execute("QuantizedMatMulWithBiasAndDequantize", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedMatMulWithBiasAndDequantize", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// ~~%~~Perform a quantized matrix multiplication of `a` by the matrix `b` with bias~~%~~add and relu fusion.~~%~~ + /// + /// + /// + /// The inputs must be two-dimensional matrices and 1D bias vector. And the inner + /// dimension of `a` (after being transposed if `transpose_a` is non-zero) must + /// match the outer dimension of `b` (after being transposed if `transposed_b` is + /// non-zero). Then do broadcast add operation with bias values on the matrix + /// multiplication result. The bias size must match inner dimension of `b`. Then do + /// relu activation to get non-negative result. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// If true, `a` is transposed before multiplication. + /// + /// + /// If true, `b` is transposed before multiplication. + /// + /// + /// + /// Input data quantization mode. Either MIN_FIRST(default) or SCALED. + /// + /// + /// + public static Tensor[] quantized_mat_mul_with_bias_and_relu(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, TF_DataType Toutput = TF_DataType.TF_QINT32, bool transpose_a = false, bool transpose_b = false, string input_quant_mode = "MIN_FIRST", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBiasAndRelu", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_mat_mul_with_bias_and_relu_eager_fallback(a, b, bias, min_a, max_a, min_b, max_b, Toutput: Toutput, transpose_a: transpose_a, transpose_b: transpose_b, input_quant_mode: input_quant_mode, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (input_quant_mode is null) + { + input_quant_mode = "MIN_FIRST"; + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + keywords["bias"] = bias; + keywords["min_a"] = min_a; + keywords["max_a"] = max_a; + keywords["min_b"] = min_b; + keywords["max_b"] = max_b; + keywords["Toutput"] = Toutput; + keywords["transpose_a"] = transpose_a; + keywords["transpose_b"] = transpose_b; + keywords["input_quant_mode"] = input_quant_mode; + var _op = tf.OpDefLib._apply_op_helper("QuantizedMatMulWithBiasAndRelu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode") }; + _execute.record_gradient("QuantizedMatMulWithBiasAndRelu", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_mat_mul_with_bias_and_relu_eager_fallback(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, TF_DataType Toutput, bool transpose_a, bool transpose_b, string input_quant_mode, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b, bias, min_a, max_a, min_b, max_b }; + object[] _attrs = new object[] { "T1", a.dtype, "T2", b.dtype, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode }; + var _result = _execute.execute("QuantizedMatMulWithBiasAndRelu", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedMatMulWithBiasAndRelu", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// ~~%~~Perform a quantized matrix multiplication of `a` by the matrix `b` with bias~~%~~add and relu and requantize fusion.~~%~~ + /// + /// + /// + /// The inputs must be two-dimensional matrices and 1D bias vector. And the inner + /// dimension of `a` (after being transposed if `transpose_a` is non-zero) must + /// match the outer dimension of `b` (after being transposed if `transposed_b` is + /// non-zero). Then do broadcast add operation with bias values on the matrix + /// multiplication result. The bias size must match inner dimension of `b`. Then do + /// relu activation to get non-negative result. Then do requantize operation to get + /// final uint8 result. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// If true, `a` is transposed before multiplication. + /// + /// + /// If true, `b` is transposed before multiplication. + /// + /// + /// + /// Input data quantization mode. Either MIN_FIRST(default) or SCALED. + /// + /// + /// + public static Tensor[] quantized_mat_mul_with_bias_and_relu_and_requantize(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType Toutput = TF_DataType.TF_QUINT8, bool transpose_a = false, bool transpose_b = false, string input_quant_mode = "MIN_FIRST", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBiasAndReluAndRequantize", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_mat_mul_with_bias_and_relu_and_requantize_eager_fallback(a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output, Toutput: Toutput, transpose_a: transpose_a, transpose_b: transpose_b, input_quant_mode: input_quant_mode, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (input_quant_mode is null) + { + input_quant_mode = "MIN_FIRST"; + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + keywords["bias"] = bias; + keywords["min_a"] = min_a; + keywords["max_a"] = max_a; + keywords["min_b"] = min_b; + keywords["max_b"] = max_b; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["Toutput"] = Toutput; + keywords["transpose_a"] = transpose_a; + keywords["transpose_b"] = transpose_b; + keywords["input_quant_mode"] = input_quant_mode; + var _op = tf.OpDefLib._apply_op_helper("QuantizedMatMulWithBiasAndReluAndRequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Tbias", _op._get_attr_type("Tbias"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode") }; + _execute.record_gradient("QuantizedMatMulWithBiasAndReluAndRequantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_mat_mul_with_bias_and_relu_and_requantize_eager_fallback(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType Toutput, bool transpose_a, bool transpose_b, string input_quant_mode, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output }; + object[] _attrs = new object[] { "T1", a.dtype, "T2", b.dtype, "Tbias", bias.dtype, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode }; + var _result = _execute.execute("QuantizedMatMulWithBiasAndReluAndRequantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedMatMulWithBiasAndReluAndRequantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_mat_mul_with_bias_and_requantize(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType Toutput = TF_DataType.TF_QUINT8, bool transpose_a = false, bool transpose_b = false, string input_quant_mode = "MIN_FIRST", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMatMulWithBiasAndRequantize", name) { args = new object[] { a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output }, attrs = new Dictionary() { ["Toutput"] = Toutput, ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b, ["input_quant_mode"] = input_quant_mode } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_mat_mul_with_bias_and_requantize_eager_fallback(a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output, Toutput: Toutput, transpose_a: transpose_a, transpose_b: transpose_b, input_quant_mode: input_quant_mode, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (input_quant_mode is null) + { + input_quant_mode = "MIN_FIRST"; + } + Dictionary keywords = new(); + keywords["a"] = a; + keywords["b"] = b; + keywords["bias"] = bias; + keywords["min_a"] = min_a; + keywords["max_a"] = max_a; + keywords["min_b"] = min_b; + keywords["max_b"] = max_b; + keywords["min_freezed_output"] = min_freezed_output; + keywords["max_freezed_output"] = max_freezed_output; + keywords["Toutput"] = Toutput; + keywords["transpose_a"] = transpose_a; + keywords["transpose_b"] = transpose_b; + keywords["input_quant_mode"] = input_quant_mode; + var _op = tf.OpDefLib._apply_op_helper("QuantizedMatMulWithBiasAndRequantize", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T1", _op._get_attr_type("T1"), "T2", _op._get_attr_type("T2"), "Tbias", _op._get_attr_type("Tbias"), "Toutput", _op._get_attr_type("Toutput"), "transpose_a", _op._get_attr_bool("transpose_a"), "transpose_b", _op._get_attr_bool("transpose_b"), "input_quant_mode", _op.get_attr("input_quant_mode") }; + _execute.record_gradient("QuantizedMatMulWithBiasAndRequantize", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_mat_mul_with_bias_and_requantize_eager_fallback(Tensor a, Tensor b, Tensor bias, Tensor min_a, Tensor max_a, Tensor min_b, Tensor max_b, Tensor min_freezed_output, Tensor max_freezed_output, TF_DataType Toutput, bool transpose_a, bool transpose_b, string input_quant_mode, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { a, b, bias, min_a, max_a, min_b, max_b, min_freezed_output, max_freezed_output }; + object[] _attrs = new object[] { "T1", a.dtype, "T2", b.dtype, "Tbias", bias.dtype, "Toutput", Toutput, "transpose_a", transpose_a, "transpose_b", transpose_b, "input_quant_mode", input_quant_mode }; + var _result = _execute.execute("QuantizedMatMulWithBiasAndRequantize", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedMatMulWithBiasAndRequantize", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Produces the max pool of the input tensor for quantized types. + /// + /// + /// + /// + /// + /// + /// The size of the window for each dimension of the input tensor. + /// The length must be 4 to match the number of dimensions of the input. + /// + /// + /// + /// + /// The stride of the sliding window for each dimension of the input + /// tensor. The length must be 4 to match the number of dimensions of the input. + /// + /// + /// + /// + /// The type of padding algorithm to use. + /// + /// + /// + public static Tensor[] quantized_max_pool(Tensor input, Tensor min_input, Tensor max_input, int[] ksize, int[] strides, string padding, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedMaxPool", name) { args = new object[] { input, min_input, max_input }, attrs = new Dictionary() { ["ksize"] = ksize, ["strides"] = strides, ["padding"] = padding } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_max_pool_eager_fallback(input, min_input, max_input, ksize: ksize, strides: strides, padding: padding, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["min_input"] = min_input; + keywords["max_input"] = max_input; + keywords["ksize"] = ksize; + keywords["strides"] = strides; + keywords["padding"] = padding; + var _op = tf.OpDefLib._apply_op_helper("QuantizedMaxPool", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "ksize", _op.get_attr("ksize"), "strides", _op.get_attr("strides"), "padding", _op.get_attr("padding") }; + _execute.record_gradient("QuantizedMaxPool", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_max_pool_eager_fallback(Tensor input, Tensor min_input, Tensor max_input, int[] ksize, int[] strides, string padding, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, min_input, max_input }; + object[] _attrs = new object[] { "T", input.dtype, "ksize", ksize, "strides", strides, "padding", padding }; + var _result = _execute.execute("QuantizedMaxPool", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedMaxPool", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes Quantized Rectified Linear: `max(features, 0)` + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_relu(Tensor features, Tensor min_features, Tensor max_features, TF_DataType out_type = TF_DataType.TF_QUINT8, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedRelu", name) { args = new object[] { features, min_features, max_features }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_relu_eager_fallback(features, min_features, max_features, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + keywords["min_features"] = min_features; + keywords["max_features"] = max_features; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("QuantizedRelu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("QuantizedRelu", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_relu_eager_fallback(Tensor features, Tensor min_features, Tensor max_features, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features, min_features, max_features }; + object[] _attrs = new object[] { "Tinput", features.dtype, "out_type", out_type }; + var _result = _execute.execute("QuantizedRelu", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedRelu", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_relu6(Tensor features, Tensor min_features, Tensor max_features, TF_DataType out_type = TF_DataType.TF_QUINT8, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedRelu6", name) { args = new object[] { features, min_features, max_features }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_relu6_eager_fallback(features, min_features, max_features, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + keywords["min_features"] = min_features; + keywords["max_features"] = max_features; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("QuantizedRelu6", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("QuantizedRelu6", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_relu6_eager_fallback(Tensor features, Tensor min_features, Tensor max_features, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features, min_features, max_features }; + object[] _attrs = new object[] { "Tinput", features.dtype, "out_type", out_type }; + var _result = _execute.execute("QuantizedRelu6", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedRelu6", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` + /// + /// + /// + /// + /// + /// + /// + public static Tensor[] quantized_relu_x(Tensor features, Tensor max_value, Tensor min_features, Tensor max_features, TF_DataType out_type = TF_DataType.TF_QUINT8, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "QuantizedReluX", name) { args = new object[] { features, max_value, min_features, max_features }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return quantized_relu_x_eager_fallback(features, max_value, min_features, max_features, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + keywords["max_value"] = max_value; + keywords["min_features"] = min_features; + keywords["max_features"] = max_features; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("QuantizedReluX", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "Tinput", _op._get_attr_type("Tinput"), "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("QuantizedReluX", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] quantized_relu_x_eager_fallback(Tensor features, Tensor max_value, Tensor min_features, Tensor max_features, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features, max_value, min_features, max_features }; + object[] _attrs = new object[] { "Tinput", features.dtype, "out_type", out_type }; + var _result = _execute.execute("QuantizedReluX", 3, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("QuantizedReluX", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Computes rectified linear: `max(features, 0)`. + /// + /// + /// + /// See: https://en.wikipedia.org/wiki/Rectifier_(neural_networks) + /// Example usage: + /// >>> tf.nn.relu([-2., 0., 3.]).numpy() + /// array([0., 0., 3.], dtype=float32) + /// + /// + /// + /// + public static Tensor relu(Tensor features, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Relu", name) { args = new object[] { features }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return relu_eager_fallback(features, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + var _op = tf.OpDefLib._apply_op_helper("Relu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Relu", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor relu_eager_fallback(Tensor features, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features }; + object[] _attrs = new object[] { "T", features.dtype }; + var _result = _execute.execute("Relu", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Relu", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes rectified linear 6: `min(max(features, 0), 6)`. + /// + /// + /// + public static Tensor relu6(Tensor features, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Relu6", name) { args = new object[] { features }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return relu6_eager_fallback(features, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + var _op = tf.OpDefLib._apply_op_helper("Relu6", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Relu6", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor relu6_eager_fallback(Tensor features, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features }; + object[] _attrs = new object[] { "T", features.dtype }; + var _result = _execute.execute("Relu6", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Relu6", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes rectified linear gradients for a Relu operation. + /// + /// + /// + /// + public static Tensor relu_grad(Tensor gradients, Tensor features, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReluGrad", name) { args = new object[] { gradients, features }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return relu_grad_eager_fallback(gradients, features, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["gradients"] = gradients; + keywords["features"] = features; + var _op = tf.OpDefLib._apply_op_helper("ReluGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("ReluGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor relu_grad_eager_fallback(Tensor gradients, Tensor features, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { gradients, features }; + object[] _attrs = new object[] { "T", gradients.dtype }; + var _result = _execute.execute("ReluGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReluGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)` + /// + /// + /// + /// if < 0, `scale * features` otherwise. + /// + /// To be used together with + /// `initializer = tf.variance_scaling_initializer(factor=1.0, mode='FAN_IN')`. + /// For correct dropout, use `tf.contrib.nn.alpha_dropout`. + /// + /// See [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) + /// + /// + /// + /// + public static Tensor selu(Tensor features, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Selu", name) { args = new object[] { features }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return selu_eager_fallback(features, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + var _op = tf.OpDefLib._apply_op_helper("Selu", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Selu", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor selu_eager_fallback(Tensor features, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features }; + object[] _attrs = new object[] { "T", features.dtype }; + var _result = _execute.execute("Selu", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Selu", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes gradients for the scaled exponential linear (Selu) operation. + /// + /// + /// + /// + public static Tensor selu_grad(Tensor gradients, Tensor outputs, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SeluGrad", name) { args = new object[] { gradients, outputs }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return selu_grad_eager_fallback(gradients, outputs, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["gradients"] = gradients; + keywords["outputs"] = outputs; + var _op = tf.OpDefLib._apply_op_helper("SeluGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("SeluGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor selu_grad_eager_fallback(Tensor gradients, Tensor outputs, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { gradients, outputs }; + object[] _attrs = new object[] { "T", gradients.dtype }; + var _result = _execute.execute("SeluGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SeluGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes softmax activations. + /// + /// + /// + /// For each batch `i` and class `j` we have + /// + /// $$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$ + /// + /// + /// + /// + public static Tensor softmax(Tensor logits, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Softmax", name) { args = new object[] { logits }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return softmax_eager_fallback(logits, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["logits"] = logits; + var _op = tf.OpDefLib._apply_op_helper("Softmax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Softmax", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor softmax_eager_fallback(Tensor logits, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { logits }; + object[] _attrs = new object[] { "T", logits.dtype }; + var _result = _execute.execute("Softmax", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Softmax", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes softmax cross entropy cost and gradients to backpropagate. + /// + /// + /// + /// Inputs are the logits, not probabilities. + /// + /// + /// + /// + /// + public static Tensor[] softmax_cross_entropy_with_logits(Tensor features, Tensor labels, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SoftmaxCrossEntropyWithLogits", name) { args = new object[] { features, labels }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return softmax_cross_entropy_with_logits_eager_fallback(features, labels, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + keywords["labels"] = labels; + var _op = tf.OpDefLib._apply_op_helper("SoftmaxCrossEntropyWithLogits", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("SoftmaxCrossEntropyWithLogits", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] softmax_cross_entropy_with_logits_eager_fallback(Tensor features, Tensor labels, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features, labels }; + object[] _attrs = new object[] { "T", features.dtype }; + var _result = _execute.execute("SoftmaxCrossEntropyWithLogits", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SoftmaxCrossEntropyWithLogits", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// + /// + /// + /// + public static Tensor softplus(Tensor features, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Softplus", name) { args = new object[] { features }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return softplus_eager_fallback(features, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + var _op = tf.OpDefLib._apply_op_helper("Softplus", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Softplus", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor softplus_eager_fallback(Tensor features, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features }; + object[] _attrs = new object[] { "T", features.dtype }; + var _result = _execute.execute("Softplus", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Softplus", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes softplus gradients for a softplus operation. + /// + /// + /// + /// + public static Tensor softplus_grad(Tensor gradients, Tensor features, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SoftplusGrad", name) { args = new object[] { gradients, features }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return softplus_grad_eager_fallback(gradients, features, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["gradients"] = gradients; + keywords["features"] = features; + var _op = tf.OpDefLib._apply_op_helper("SoftplusGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("SoftplusGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor softplus_grad_eager_fallback(Tensor gradients, Tensor features, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { gradients, features }; + object[] _attrs = new object[] { "T", gradients.dtype }; + var _result = _execute.execute("SoftplusGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SoftplusGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes softsign: `features / (abs(features) + 1)`. + /// + /// + /// + public static Tensor softsign(Tensor features, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "Softsign", name) { args = new object[] { features }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return softsign_eager_fallback(features, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + var _op = tf.OpDefLib._apply_op_helper("Softsign", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("Softsign", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor softsign_eager_fallback(Tensor features, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features }; + object[] _attrs = new object[] { "T", features.dtype }; + var _result = _execute.execute("Softsign", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("Softsign", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes softsign gradients for a softsign operation. + /// + /// + /// + /// + public static Tensor softsign_grad(Tensor gradients, Tensor features, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SoftsignGrad", name) { args = new object[] { gradients, features }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return softsign_grad_eager_fallback(gradients, features, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["gradients"] = gradients; + keywords["features"] = features; + var _op = tf.OpDefLib._apply_op_helper("SoftsignGrad", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T") }; + _execute.record_gradient("SoftsignGrad", _op.inputs, _attrs, _result); + } + return _result[0]; + } + + public static Tensor softsign_grad_eager_fallback(Tensor gradients, Tensor features, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { gradients, features }; + object[] _attrs = new object[] { "T", gradients.dtype }; + var _result = _execute.execute("SoftsignGrad", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SoftsignGrad", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Computes softmax cross entropy cost and gradients to backpropagate. + /// + /// + /// + /// Unlike `SoftmaxCrossEntropyWithLogits`, this operation does not accept + /// a matrix of label probabilities, but rather a single label per row + /// of features. This label is considered to have probability 1.0 for the + /// given row. + /// + /// Inputs are the logits, not probabilities. + /// + /// + /// + /// + /// + public static Tensor[] sparse_softmax_cross_entropy_with_logits(Tensor features, Tensor labels, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "SparseSoftmaxCrossEntropyWithLogits", name) { args = new object[] { features, labels }, attrs = new Dictionary() { } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return sparse_softmax_cross_entropy_with_logits_eager_fallback(features, labels, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["features"] = features; + keywords["labels"] = labels; + var _op = tf.OpDefLib._apply_op_helper("SparseSoftmaxCrossEntropyWithLogits", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "T", _op._get_attr_type("T"), "Tlabels", _op._get_attr_type("Tlabels") }; + _execute.record_gradient("SparseSoftmaxCrossEntropyWithLogits", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] sparse_softmax_cross_entropy_with_logits_eager_fallback(Tensor features, Tensor labels, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { features, labels }; + object[] _attrs = new object[] { "T", features.dtype, "Tlabels", labels.dtype }; + var _result = _execute.execute("SparseSoftmaxCrossEntropyWithLogits", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("SparseSoftmaxCrossEntropyWithLogits", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Finds values and indices of the `k` largest elements for the last dimension. + /// + /// + /// + /// If the input is a vector (rank-1), finds the `k` largest entries in the vector + /// and outputs their values and indices as vectors. Thus `values[j]` is the + /// `j`-th largest entry in `input`, and its index is `indices[j]`. + /// + /// For matrices (resp. higher rank input), computes the top `k` entries in each + /// row (resp. vector along the last dimension). Thus, + /// + /// values.shape = indices.shape = input.shape[:-1] + [k] + /// + /// If two elements are equal, the lower-index element appears first. + /// + /// If `k` varies dynamically, use `TopKV2` below. + /// + /// + /// + /// + /// + /// Number of top elements to look for along the last dimension (along each + /// row for matrices). + /// + /// + /// + /// + /// If true the resulting `k` elements will be sorted by the values in + /// descending order. + /// + /// + /// + public static Tensor[] top_k(Tensor input, int k = 0, bool sorted = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TopK", name) { args = new object[] { input }, attrs = new Dictionary() { ["k"] = k, ["sorted"] = sorted } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return top_k_eager_fallback(input, k: k, sorted: sorted, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["k"] = k; + keywords["sorted"] = sorted; + var _op = tf.OpDefLib._apply_op_helper("TopK", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "k", _op._get_attr_int("k"), "sorted", _op._get_attr_bool("sorted"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("TopK", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] top_k_eager_fallback(Tensor input, int k, bool sorted, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "k", k, "sorted", sorted, "T", input.dtype }; + var _result = _execute.execute("TopK", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TopK", _inputs_flat, _attrs, _result); + } + return _result; + } + /// + /// Finds values and indices of the `k` largest elements for the last dimension. + /// + /// + /// + /// If the input is a vector (rank-1), finds the `k` largest entries in the vector + /// and outputs their values and indices as vectors. Thus `values[j]` is the + /// `j`-th largest entry in `input`, and its index is `indices[j]`. + /// + /// For matrices (resp. higher rank input), computes the top `k` entries in each + /// row (resp. vector along the last dimension). Thus, + /// + /// values.shape = indices.shape = input.shape[:-1] + [k] + /// + /// If two elements are equal, the lower-index element appears first. + /// + /// + /// + /// + /// + /// + /// If true the resulting `k` elements will be sorted by the values in + /// descending order. + /// + /// + /// + public static Tensor[] top_kv2(Tensor input, Tensor k, bool sorted = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "TopKV2", name) { args = new object[] { input, k }, attrs = new Dictionary() { ["sorted"] = sorted } }); + return _fast_path_result; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return top_kv2_eager_fallback(input, k, sorted: sorted, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["k"] = k; + keywords["sorted"] = sorted; + var _op = tf.OpDefLib._apply_op_helper("TopKV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "sorted", _op._get_attr_bool("sorted"), "T", _op._get_attr_type("T") }; + _execute.record_gradient("TopKV2", _op.inputs, _attrs, _result); + } + return _result; + } + + public static Tensor[] top_kv2_eager_fallback(Tensor input, Tensor k, bool sorted, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input, k }; + object[] _attrs = new object[] { "sorted", sorted, "T", input.dtype }; + var _result = _execute.execute("TopKV2", 2, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("TopKV2", _inputs_flat, _attrs, _result); + } + return _result; + } +} diff --git a/src/TensorFlowNET.Core/Operations/gen_ops.cs b/src/TensorFlowNET.Core/Operations/gen_ops.cs index 11cb6de8e..5fa4c97dd 100644 --- a/src/TensorFlowNET.Core/Operations/gen_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_ops.cs @@ -1,6 +1,9 @@ using System; using System.Collections.Generic; using System.Linq; +using System.Xml.Linq; +using Tensorflow.Contexts; +using Tensorflow.Eager; using static Tensorflow.Binding; namespace Tensorflow.Operations @@ -727,12 +730,7 @@ public static (Tensor sampled_candidates, Tensor true_expected_count, Tensor sam /// public static Tensor angle(Tensor input, TF_DataType? Tout = null, string name = "Angle") { - var dict = new Dictionary(); - dict["input"] = input; - if (Tout.HasValue) - dict["Tout"] = Tout.Value; - var op = tf.OpDefLib._apply_op_helper("Angle", name: name, keywords: dict); - return op.output; + return tf.Context.ExecuteOp("Angle", name, new ExecuteOpArgs(input).SetAttributes(new { Tout = Tout })); } /// @@ -4973,15 +4971,14 @@ public static Tensor compare_and_bitpack(Tensor input, Tensor threshold, string /// tf.complex(real, imag) ==&gt; [[2.25 + 4.75j], [3.25 + 5.75j]] /// /// - public static Tensor complex(Tensor real, Tensor imag, TF_DataType? Tout = null, string name = "Complex") + public static Tensor complex(Tensor real, Tensor imag, TF_DataType? a_Tout = null, string name = "Complex") { - var dict = new Dictionary(); - dict["real"] = real; - dict["imag"] = imag; - if (Tout.HasValue) - dict["Tout"] = Tout.Value; - var op = tf.OpDefLib._apply_op_helper("Complex", name: name, keywords: dict); - return op.output; + TF_DataType Tin = real.GetDataType(); + if (a_Tout is null) + { + a_Tout = (Tin == TF_DataType.TF_DOUBLE)? TF_DataType.TF_COMPLEX128: TF_DataType.TF_COMPLEX64; + } + return tf.Context.ExecuteOp("Complex", name, new ExecuteOpArgs(real, imag).SetAttributes(new { T=Tin, Tout=a_Tout })); } /// @@ -5005,12 +5002,7 @@ public static Tensor complex(Tensor real, Tensor imag, TF_DataType? Tout = null, /// public static Tensor complex_abs(Tensor x, TF_DataType? Tout = null, string name = "ComplexAbs") { - var dict = new Dictionary(); - dict["x"] = x; - if (Tout.HasValue) - dict["Tout"] = Tout.Value; - var op = tf.OpDefLib._apply_op_helper("ComplexAbs", name: name, keywords: dict); - return op.output; + return tf.Context.ExecuteOp("ComplexAbs", name, new ExecuteOpArgs(x).SetAttributes(new { Tout = Tout })); } /// @@ -5310,10 +5302,7 @@ public static Tensor configure_distributed_t_p_u(string embedding_config = null, /// public static Tensor conj(Tensor input, string name = "Conj") { - var dict = new Dictionary(); - dict["input"] = input; - var op = tf.OpDefLib._apply_op_helper("Conj", name: name, keywords: dict); - return op.output; + return tf.Context.ExecuteOp("Conj", name, new ExecuteOpArgs(new object[] { input })); } /// @@ -10061,13 +10050,51 @@ public static Tensor encode_wav(Tensor audio, Tensor sample_rate, string name = /// public static Tensor ensure_shape(Tensor input, Shape shape, string name = "EnsureShape") { + var ctx = tf.Context; + if (ctx.executing_eagerly()) + { + try + { + var _result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(tf.Context, "EnsureShape", name, input, shape)); + return _result[0]; + } + catch (Exception) + { + + } + try + { + return ensure_shape_eager_fallback(input, shape, name, ctx); + } + catch (Exception) + { + + } + } + var dict = new Dictionary(); dict["input"] = input; dict["shape"] = shape; var op = tf.OpDefLib._apply_op_helper("EnsureShape", name: name, keywords: dict); + if (_execute.must_record_gradient()) + { + throw new NotImplementedException(); + } return op.output; } + public static Tensor ensure_shape_eager_fallback(Tensor input, Shape shape, string name, Context ctx) + { + object[] attrs = new object[4] { "shape", shape, "T", input.dtype.as_datatype_enum() }; + var _result = _execute.execute("EnsureShape", 1, new Tensor[] { input }, + attrs, ctx, name); + if (_execute.must_record_gradient()) + { + throw new NotImplementedException(); + } + return _result[0]; + } + /// /// Creates or finds a child frame, and makes data available to the child frame. /// @@ -10486,10 +10513,7 @@ public static Tensor extract_jpeg_shape(Tensor contents, TF_DataType? output_typ /// public static Tensor f_f_t(Tensor input, string name = "FFT") { - var dict = new Dictionary(); - dict["input"] = input; - var op = tf.OpDefLib._apply_op_helper("FFT", name: name, keywords: dict); - return op.output; + return tf.Context.ExecuteOp("FFT", name, new ExecuteOpArgs(input)); } /// @@ -10516,10 +10540,7 @@ public static Tensor f_f_t(Tensor input, string name = "FFT") /// public static Tensor f_f_t2d(Tensor input, string name = "FFT2D") { - var dict = new Dictionary(); - dict["input"] = input; - var op = tf.OpDefLib._apply_op_helper("FFT2D", name: name, keywords: dict); - return op.output; + return tf.Context.ExecuteOp("FFT2D", name, new ExecuteOpArgs(input)); } /// @@ -10546,10 +10567,7 @@ public static Tensor f_f_t2d(Tensor input, string name = "FFT2D") /// public static Tensor f_f_t3d(Tensor input, string name = "FFT3D") { - var dict = new Dictionary(); - dict["input"] = input; - var op = tf.OpDefLib._apply_op_helper("FFT3D", name: name, keywords: dict); - return op.output; + return tf.Context.ExecuteOp("FFT3D", name, new ExecuteOpArgs(input)); } /// @@ -12872,10 +12890,7 @@ public static Tensor host_const(Tensor value, TF_DataType dtype, string name = " /// public static Tensor i_f_f_t(Tensor input, string name = "IFFT") { - var dict = new Dictionary(); - dict["input"] = input; - var op = tf.OpDefLib._apply_op_helper("IFFT", name: name, keywords: dict); - return op.output; + return tf.Context.ExecuteOp("IFFT", name, new ExecuteOpArgs(input)); } /// @@ -12902,10 +12917,7 @@ public static Tensor i_f_f_t(Tensor input, string name = "IFFT") /// public static Tensor i_f_f_t2d(Tensor input, string name = "IFFT2D") { - var dict = new Dictionary(); - dict["input"] = input; - var op = tf.OpDefLib._apply_op_helper("IFFT2D", name: name, keywords: dict); - return op.output; + return tf.Context.ExecuteOp("IFFT2D", name, new ExecuteOpArgs(input)); } /// @@ -12932,10 +12944,7 @@ public static Tensor i_f_f_t2d(Tensor input, string name = "IFFT2D") /// public static Tensor i_f_f_t3d(Tensor input, string name = "IFFT3D") { - var dict = new Dictionary(); - dict["input"] = input; - var op = tf.OpDefLib._apply_op_helper("IFFT3D", name: name, keywords: dict); - return op.output; + return tf.Context.ExecuteOp("IFFT3D", name, new ExecuteOpArgs(input)); } /// @@ -13322,14 +13331,12 @@ public static Tensor igammac(Tensor a, Tensor x, string name = "Igammac") /// tf.imag(input) ==&gt; [4.75, 5.75] /// /// - public static Tensor imag(Tensor input, TF_DataType? Tout = null, string name = "Imag") + public static Tensor imag(Tensor input, TF_DataType? a_Tout = null, string name = "Imag") { - var dict = new Dictionary(); - dict["input"] = input; - if (Tout.HasValue) - dict["Tout"] = Tout.Value; - var op = tf.OpDefLib._apply_op_helper("Imag", name: name, keywords: dict); - return op.output; + TF_DataType Tin = input.GetDataType(); + return tf.Context.ExecuteOp("Imag", name, new ExecuteOpArgs(input).SetAttributes(new { T = Tin, Tout = a_Tout })); + + // return tf.Context.ExecuteOp("Imag", name, new ExecuteOpArgs(new object[] { input })); } /// @@ -17182,17 +17189,47 @@ public static Tensor merge_summary(Tensor[] inputs, string name = "MergeSummary" /// path in the input checkpoint_prefixes. This is useful when those paths are non /// user-facing temporary locations. /// - public static Operation merge_v2checkpoints(Tensor checkpoint_prefixes, Tensor destination_prefix, bool? delete_old_dirs = null, string name = "MergeV2Checkpoints") - { + public static Operation merge_v2_checkpoints(Tensor[] checkpoint_prefixes, Tensor destination_prefix, bool delete_old_dirs = true, bool allow_missing_files = false, string name = "MergeV2Checkpoints") + { + var ctx = tf.Context; + if (ctx.executing_eagerly()) + { + var result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(tf.Context, "MergeV2Checkpoints", name, + checkpoint_prefixes, destination_prefix, "delete_old_dirs", delete_old_dirs, "allow_missing_files", allow_missing_files)); + result = null; + return null; + //try + //{ + // var result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("MergeV2Checkpoints", name, + // new object[] { checkpoint_prefixes, destination_prefix, "delete_old_dirs", delete_old_dirs, "allow_missing_files", allow_missing_files })); + // result = null; + // return null; + //} + //catch (System.Exception) + //{ + // return merge_v2_checkpoints_eager_fallback(checkpoint_prefixes, destination_prefix, delete_old_dirs: delete_old_dirs, + // allow_missing_files: allow_missing_files, name: name, ctx: ctx); + //} + } var dict = new Dictionary(); dict["checkpoint_prefixes"] = checkpoint_prefixes; dict["destination_prefix"] = destination_prefix; - if (delete_old_dirs.HasValue) - dict["delete_old_dirs"] = delete_old_dirs.Value; + dict["delete_old_dirs"] = delete_old_dirs; var op = tf.OpDefLib._apply_op_helper("MergeV2Checkpoints", name: name, keywords: dict); return op; } + //public static Operation merge_v2_checkpoints_eager_fallback(Tensor[] checkpoint_prefixes, Tensor destination_prefix, bool delete_old_dirs, bool allow_missing_files, string name, Context ctx) + //{ + // checkpoint_prefixes = ops.convert_to_tensor(checkpoint_prefixes, TF_DataType.TF_STRING); + // destination_prefix = ops.convert_to_tensor(destination_prefix, TF_DataType.TF_STRING); + // var inputs_flat = new Tensor[] { checkpoint_prefixes, destination_prefix }; + // var attrs = new object[] { "delete_old_dirs", delete_old_dirs, "allow_missing_files", allow_missing_files }; + // var result = execute.quick_execute("MergeV2Checkpoints", 0, inputs_flat, attrs, ctx, name); + // result = null; + // return null; + //} + /// /// Transforms a spectrogram into a form that's useful for speech recognition. /// @@ -23830,14 +23867,12 @@ public static Tensor reader_serialize_state_v2(Tensor reader_handle, string name /// tf.real(input) ==&gt; [-2.25, 3.25] /// /// - public static Tensor real(Tensor input, TF_DataType? Tout = null, string name = "Real") + public static Tensor real(Tensor input, TF_DataType? a_Tout = null, string name = "Real") { - var dict = new Dictionary(); - dict["input"] = input; - if (Tout.HasValue) - dict["Tout"] = Tout.Value; - var op = tf.OpDefLib._apply_op_helper("Real", name: name, keywords: dict); - return op.output; + TF_DataType Tin = input.GetDataType(); + return tf.Context.ExecuteOp("Real", name, new ExecuteOpArgs(input).SetAttributes(new { T = Tin, Tout = a_Tout })); + +// return tf.Context.ExecuteOp("Real", name, new ExecuteOpArgs(new object[] {input})); } /// @@ -24259,6 +24294,12 @@ public static (Tensor output_false, Tensor output_true) ref_switch(Tensor data, /// public static Tensor regex_full_match(Tensor input, Tensor pattern, string name = "RegexFullMatch") { + var ctx = tf.Context; + if (ctx.executing_eagerly()) + { + var result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(tf.Context, "RegexFullMatch", name, input, pattern)); + return result[0]; + } var dict = new Dictionary(); dict["input"] = input; dict["pattern"] = pattern; @@ -27150,8 +27191,33 @@ public static Tensor restore_slice(Tensor file_pattern, Tensor tensor_name, Tens /// /// Callers must ensure all the named tensors are indeed stored in the checkpoint. /// - public static Tensor[] restore_v2(Tensor prefix, Tensor tensor_names, Tensor shape_and_slices, TF_DataType[] dtypes, string name = "RestoreV2") - { + public static Tensor[] restore_v2(Tensor prefix, string[] tensor_names, string[] shape_and_slices, TF_DataType[] dtypes, string name = "RestoreV2") + { + var ctx = tf.Context; + if (ctx.executing_eagerly()) + { + try + { + Dictionary attrs = new(); + attrs["dtypes"] = dtypes; + var result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo( + tf.Context, "RestoreV2", name, prefix, tensor_names, shape_and_slices + ) + { attrs = attrs }); + return result; + } + catch (Exception) + { + try + { + return restore_v2_eager_fallback(prefix, tensor_names, shape_and_slices, dtypes, name, ctx); + } + catch (Exception) + { + + } + } + } var dict = new Dictionary(); dict["prefix"] = prefix; dict["tensor_names"] = tensor_names; @@ -27163,6 +27229,22 @@ public static Tensor[] restore_v2(Tensor prefix, Tensor tensor_names, Tensor sha return (tensors); } + public static Tensor[] restore_v2_eager_fallback(Tensor prefix, string[] tensor_names, string[] shape_and_slices, TF_DataType[] dtypes, string name, Context ctx) + { + prefix = ops.convert_to_tensor(prefix, TF_DataType.TF_STRING); + var tensor_names_tensor = ops.convert_to_tensor(tensor_names, TF_DataType.TF_STRING); + var shape_and_slices_tensor = ops.convert_to_tensor(shape_and_slices, TF_DataType.TF_STRING); + object[] attrs = new object[] { "dtypes", dtypes }; + Tensor[] inputs_flat = new Tensor[] { prefix, tensor_names_tensor, shape_and_slices_tensor }; + var result = _execute.quick_execute("RestoreV2", dtypes.Length, inputs_flat, attrs, ctx, name); + + if (_execute.must_record_gradient()) + { + // TODO(Rinne); record the gradient + } + return result; + } + /// /// Reverses specific dimensions of a tensor. /// @@ -29461,7 +29543,7 @@ public static (Tensor e, Tensor v) self_adjoint_eig_v2(Tensor input, bool? compu /// if &lt; 0, scale * features otherwise. /// /// To be used together with - /// initializer = tf.variance_scaling_initializer(factor=1.0, mode='FAN_IN'). + /// initializer = tf.variance_scaling_initializer(scale=1.0, mode='fan_in'). /// For correct dropout, use tf.contrib.nn.alpha_dropout. /// /// See [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) @@ -29744,6 +29826,12 @@ public static Tensor[] shape_n(Tensor[] input, TF_DataType? out_type = null, str /// public static Tensor sharded_filename(Tensor basename, Tensor shard, Tensor num_shards, string name = "ShardedFilename") { + var ctx = tf.Context; + if (ctx.executing_eagerly()) + { + var result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(tf.Context, "ShardedFilename", name, basename, shard, num_shards)); + return result[0]; + } var dict = new Dictionary(); dict["basename"] = basename; dict["shard"] = shard; @@ -34668,6 +34756,12 @@ public static Tensor strided_slice_grad(Tensor shape, Tensor begin, Tensor end, /// public static Tensor string_join(Tensor[] inputs, string separator = null, string name = "StringJoin") { + var ctx = tf.Context; + if (ctx.executing_eagerly()) + { + var result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(tf.Context, "StringJoin", name, inputs, "separator", separator)); + return result[0]; + } var dict = new Dictionary(); dict["inputs"] = inputs; if (separator != null) diff --git a/src/TensorFlowNET.Core/Operations/gen_random_ops.cs b/src/TensorFlowNET.Core/Operations/gen_random_ops.cs index 0edea3aac..a6cc47182 100644 --- a/src/TensorFlowNET.Core/Operations/gen_random_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_random_ops.cs @@ -13,7 +13,10 @@ You may obtain a copy of the License at See the License for the specific language governing permissions and limitations under the License. ******************************************************************************/ +using static Tensorflow.ApiDef.Types; +using System.Reflection; using static Tensorflow.Binding; +using System.Xml.Linq; namespace Tensorflow { @@ -85,6 +88,15 @@ public static Tensor truncated_normal(Tensor shape, TF_DataType dtype, int? seed int? seed2 = 0, string name = null) => tf.Context.ExecuteOp("TruncatedNormal", name, new ExecuteOpArgs(shape) .SetAttributes(new { dtype, seed = seed ?? 0, seed2 = seed2 ?? 0 })); + public static Tensor stateless_random_normal_v2(Tensor shape, Tensor key, Tensor counter, + int alg, TF_DataType dtype, string name = null) + => tf.Context.ExecuteOp("StatelessRandomNormalV2", name, + new ExecuteOpArgs(shape, key, counter, alg) + .SetAttributes(new { dtype })); + + public static Tensors stateless_random_get_key_counter(int[] seed, string name = null) + => tf.Context.ExecuteOp("StatelessRandomGetKeyCounter", name, + new ExecuteOpArgs(seed)); public static Tensor multinomial(Tensor logits, int num_samples, int? seed = 0, int? seed2 = 0, TF_DataType output_dtype = TF_DataType.TF_INT64, string name = null) diff --git a/src/TensorFlowNET.Core/Operations/gen_resource_variable_ops.cs b/src/TensorFlowNET.Core/Operations/gen_resource_variable_ops.cs index 330903252..db5f6813c 100644 --- a/src/TensorFlowNET.Core/Operations/gen_resource_variable_ops.cs +++ b/src/TensorFlowNET.Core/Operations/gen_resource_variable_ops.cs @@ -1,158 +1,1523 @@ -/***************************************************************************** - Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. -******************************************************************************/ +/*Wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit.*/ +using Tensorflow.Eager; +using Tensorflow.Contexts; +using Tensorflow.Exceptions; using static Tensorflow.Binding; -namespace Tensorflow +namespace Tensorflow; + +public static class gen_resource_variable_ops { - public static class gen_resource_variable_ops + /// + /// Adds a value to the current value of a variable. + /// + /// + /// + /// Any ReadVariableOp with a control dependency on this op is guaranteed to + /// see the incremented value or a subsequent newer one. + /// + /// + /// + /// + /// + public static Operation assign_add_variable_op(Tensor resource, Tensor value, string? name = null) { - public static Operation assign_sub_variable_op(Tensor resource, Tensor value, string name = null) + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) { - if (tf.Context.executing_eagerly()) + try { - tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo( - "AssignSubVariableOp", name, resource, value)); - + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AssignAddVariableOp", name) { args = new object[] { resource, value }, attrs = new Dictionary() { } }); return null; } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return assign_add_variable_op_eager_fallback(resource, value, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["value"] = value; + var _op = tf.OpDefLib._apply_op_helper("AssignAddVariableOp", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype") }; + _execute.record_gradient("AssignAddVariableOp", _op.inputs, _attrs, _result); + } + return _op; + } - return null; + public static Operation assign_add_variable_op_eager_fallback(Tensor resource, Tensor value, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, value }; + object[] _attrs = new object[] { "dtype", value.dtype }; + var _result = _execute.execute("AssignAddVariableOp", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AssignAddVariableOp", _inputs_flat, _attrs, _result); } + return null; + } + /// + /// Subtracts a value from the current value of a variable. + /// + /// + /// + /// Any ReadVariableOp with a control dependency on this op is guaranteed to + /// see the decremented value or a subsequent newer one. + /// + /// + /// + /// + /// + public static Operation assign_sub_variable_op(Tensor resource, Tensor value, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AssignSubVariableOp", name) { args = new object[] { resource, value }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return assign_sub_variable_op_eager_fallback(resource, value, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["value"] = value; + var _op = tf.OpDefLib._apply_op_helper("AssignSubVariableOp", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype") }; + _execute.record_gradient("AssignSubVariableOp", _op.inputs, _attrs, _result); + } + return _op; + } - /// - /// Adds a value to the current value of a variable. - /// - /// - /// - /// - /// - public static Operation assign_add_variable_op(Tensor resource, Tensor value, string name = null) + public static Operation assign_sub_variable_op_eager_fallback(Tensor resource, Tensor value, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, value }; + object[] _attrs = new object[] { "dtype", value.dtype }; + var _result = _execute.execute("AssignSubVariableOp", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AssignSubVariableOp", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Assigns a new value to a variable. + /// + /// + /// + /// Any ReadVariableOp with a control dependency on this op is guaranteed to return + /// this value or a subsequent newer value of the variable. + /// + /// + /// + /// + /// + /// + public static Operation assign_variable_op(Tensor resource, Tensor value, bool validate_shape = false, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) { - if (tf.Context.executing_eagerly()) + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "AssignVariableOp", name) { args = new object[] { resource, value }, attrs = new Dictionary() { ["validate_shape"] = validate_shape } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) { - tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("AssignAddVariableOp", name, - resource, value)); + } + try + { + return assign_variable_op_eager_fallback(resource, value, validate_shape: validate_shape, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["value"] = value; + keywords["validate_shape"] = validate_shape; + var _op = tf.OpDefLib._apply_op_helper("AssignVariableOp", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "validate_shape", _op._get_attr_bool("validate_shape") }; + _execute.record_gradient("AssignVariableOp", _op.inputs, _attrs, _result); + } + return _op; + } + public static Operation assign_variable_op_eager_fallback(Tensor resource, Tensor value, bool validate_shape, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, value }; + object[] _attrs = new object[] { "dtype", value.dtype, "validate_shape", validate_shape }; + var _result = _execute.execute("AssignVariableOp", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("AssignVariableOp", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// This op consumes a lock created by `MutexLock`. + /// + /// + /// + /// This op exists to consume a tensor created by `MutexLock` (other than + /// direct control dependencies). It should be the only that consumes the tensor, + /// and will raise an error if it is not. Its only purpose is to keep the + /// mutex lock tensor alive until it is consumed by this op. + /// + /// **NOTE**: This operation must run on the same device as its input. This may + /// be enforced via the `colocate_with` mechanism. + /// + /// + /// + /// + public static Operation consume_mutex_lock(Tensor mutex_lock, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ConsumeMutexLock", name) { args = new object[] { mutex_lock }, attrs = new Dictionary() { } }); return null; } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return consume_mutex_lock_eager_fallback(mutex_lock, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["mutex_lock"] = mutex_lock; + var _op = tf.OpDefLib._apply_op_helper("ConsumeMutexLock", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("ConsumeMutexLock", _op.inputs, _attrs, _result); + } + return _op; + } - var _op = tf.OpDefLib._apply_op_helper("AssignAddVariableOp", name, new { resource, value }); + public static Operation consume_mutex_lock_eager_fallback(Tensor mutex_lock, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { mutex_lock }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("ConsumeMutexLock", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ConsumeMutexLock", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Deletes the resource specified by the handle. + /// + /// + /// + /// All subsequent operations using the resource will result in a NotFound + /// error status. + /// + /// + /// + /// + /// + /// whether to ignore the error when the resource + /// doesn't exist. + /// + /// + /// + public static Operation destroy_resource_op(Tensor resource, bool ignore_lookup_error = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DestroyResourceOp", name) { args = new object[] { resource }, attrs = new Dictionary() { ["ignore_lookup_error"] = ignore_lookup_error } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return destroy_resource_op_eager_fallback(resource, ignore_lookup_error: ignore_lookup_error, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["ignore_lookup_error"] = ignore_lookup_error; + var _op = tf.OpDefLib._apply_op_helper("DestroyResourceOp", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "ignore_lookup_error", _op._get_attr_bool("ignore_lookup_error") }; + _execute.record_gradient("DestroyResourceOp", _op.inputs, _attrs, _result); + } + return _op; + } - return _op; + public static Operation destroy_resource_op_eager_fallback(Tensor resource, bool ignore_lookup_error, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource }; + object[] _attrs = new object[] { "ignore_lookup_error", ignore_lookup_error }; + var _result = _execute.execute("DestroyResourceOp", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("DestroyResourceOp", _inputs_flat, _attrs, _result); } + return null; + } + /// + /// Turns off the copy-on-read mode. + /// + /// + /// + /// Turns off the copy-on-read mode of a resource variable. If the variable is not in copy-on-read mode, this op has no effect. + /// + /// + /// + /// + public static Operation disable_copy_on_read(Tensor resource, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "DisableCopyOnRead", name) { args = new object[] { resource }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return disable_copy_on_read_eager_fallback(resource, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + var _op = tf.OpDefLib._apply_op_helper("DisableCopyOnRead", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("DisableCopyOnRead", _op.inputs, _attrs, _result); + } + return _op; + } - public static Operation assign_variable_op(Tensor resource, Tensor value, string name = null) + public static Operation disable_copy_on_read_eager_fallback(Tensor resource, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("DisableCopyOnRead", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - if (tf.Context.executing_eagerly()) + _execute.record_gradient("DisableCopyOnRead", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Locks a mutex resource. The output is the lock. So long as the lock tensor + /// + /// + /// + /// is alive, any other request to use `MutexLock` with this mutex will wait. + /// + /// This is particularly useful for creating a critical section when used in + /// conjunction with `MutexLockIdentity`: + /// + /// ```python + /// + /// mutex = mutex_v2( + /// shared_name=handle_name, container=container, name=name) + /// + /// def execute_in_critical_section(fn, *args, **kwargs): + /// lock = gen_resource_variable_ops.mutex_lock(mutex) + /// + /// with ops.control_dependencies([lock]): + /// r = fn(*args, **kwargs) + /// + /// with ops.control_dependencies(nest.flatten(r)): + /// with ops.colocate_with(mutex): + /// ensure_lock_exists = mutex_lock_identity(lock) + /// + /// # Make sure that if any element of r is accessed, all of + /// # them are executed together. + /// r = nest.map_structure(tf.identity, r) + /// + /// with ops.control_dependencies([ensure_lock_exists]): + /// return nest.map_structure(tf.identity, r) + /// ``` + /// + /// While `fn` is running in the critical section, no other functions which wish to + /// use this critical section may run. + /// + /// Often the use case is that two executions of the same graph, in parallel, + /// wish to run `fn`; and we wish to ensure that only one of them executes + /// at a time. This is especially important if `fn` modifies one or more + /// variables at a time. + /// + /// It is also useful if two separate functions must share a resource, but we + /// wish to ensure the usage is exclusive. + /// + /// + /// + /// + public static Tensor mutex_lock(Tensor mutex, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MutexLock", name) { args = new object[] { mutex }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try { - tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("AssignVariableOp", name, - resource, value)); + return mutex_lock_eager_fallback(mutex, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["mutex"] = mutex; + var _op = tf.OpDefLib._apply_op_helper("MutexLock", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("MutexLock", _op.inputs, _attrs, _result); + } + return _result[0]; + } - return null; + public static Tensor mutex_lock_eager_fallback(Tensor mutex, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { mutex }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("MutexLock", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MutexLock", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Creates a Mutex resource that can be locked by `MutexLock`. + /// + /// + /// + /// If non-empty, this variable is placed in the given container. + /// Otherwise, a default container is used. + /// + /// + /// + /// + /// If non-empty, this variable is named in the given bucket + /// with this shared_name. Otherwise, the node name is used instead. + /// + /// + /// + public static Tensor mutex_v2(string container = "", string shared_name = "", string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MutexV2", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { } + try + { + return mutex_v2_eager_fallback(container: container, shared_name: shared_name, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + Dictionary keywords = new(); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + var _op = tf.OpDefLib._apply_op_helper("MutexV2", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name") }; + _execute.record_gradient("MutexV2", _op.inputs, _attrs, _result); + } + return _result[0]; + } - var _op = tf.OpDefLib._apply_op_helper("AssignVariableOp", name, new { resource, value }); + public static Tensor mutex_v2_eager_fallback(string container, string shared_name, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "container", container, "shared_name", shared_name }; + var _result = _execute.execute("MutexV2", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("MutexV2", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Reads the value of a variable. + /// + /// + /// + /// The tensor returned by this operation is immutable. + /// + /// The value returned by this operation is guaranteed to be influenced by all the + /// writes on which this operation depends directly or indirectly, and to not be + /// influenced by any of the writes which depend directly or indirectly on this + /// operation. + /// + /// + /// + /// + /// + /// the dtype of the value. + /// + /// + /// + public static Tensor read_variable_op(Tensor resource, TF_DataType dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ReadVariableOp", name) { args = new object[] { resource }, attrs = new Dictionary() { ["dtype"] = dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return read_variable_op_eager_fallback(resource, dtype: dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["dtype"] = dtype; + var _op = tf.OpDefLib._apply_op_helper("ReadVariableOp", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype") }; + _execute.record_gradient("ReadVariableOp", _op.inputs, _attrs, _result); + } + return _result[0]; + } - return _op; + public static Tensor read_variable_op_eager_fallback(Tensor resource, TF_DataType dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource }; + object[] _attrs = new object[] { "dtype", dtype }; + var _result = _execute.execute("ReadVariableOp", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ReadVariableOp", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Gather slices from the variable pointed to by `resource` according to `indices`. + /// + /// + /// + /// `indices` must be an integer tensor of any dimension (usually 0-D or 1-D). + /// Produces an output tensor with shape `indices.shape + params.shape[1:]` where: + /// + /// ```python + /// # Scalar indices + /// output[:, ..., :] = params[indices, :, ... :] + /// + /// # Vector indices + /// output[i, :, ..., :] = params[indices[i], :, ... :] + /// + /// # Higher rank indices + /// output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :] + /// ``` + /// + /// + /// + /// + /// + /// + /// + /// + public static Tensor resource_gather(Tensor resource, Tensor indices, TF_DataType dtype, int batch_dims = 0, bool validate_indices = true, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceGather", name) { args = new object[] { resource, indices }, attrs = new Dictionary() { ["batch_dims"] = batch_dims, ["validate_indices"] = validate_indices, ["dtype"] = dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return resource_gather_eager_fallback(resource, indices, batch_dims: batch_dims, validate_indices: validate_indices, dtype: dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["indices"] = indices; + keywords["batch_dims"] = batch_dims; + keywords["validate_indices"] = validate_indices; + keywords["dtype"] = dtype; + var _op = tf.OpDefLib._apply_op_helper("ResourceGather", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "batch_dims", _op._get_attr_int("batch_dims"), "validate_indices", _op._get_attr_bool("validate_indices"), "dtype", _op._get_attr_type("dtype"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ResourceGather", _op.inputs, _attrs, _result); } + return _result[0]; + } - public static Tensor var_is_initialized_op(Tensor resource, string name = null) + public static Tensor resource_gather_eager_fallback(Tensor resource, Tensor indices, int batch_dims, bool validate_indices, TF_DataType dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, indices }; + object[] _attrs = new object[] { "batch_dims", batch_dims, "validate_indices", validate_indices, "dtype", dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ResourceGather", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - if (tf.Context.executing_eagerly()) + _execute.record_gradient("ResourceGather", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// + /// + /// + /// + /// + /// + public static Tensor resource_gather_nd(Tensor resource, Tensor indices, TF_DataType dtype, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try { - var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("VarIsInitializedOp", name, - resource)); + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceGatherNd", name) { args = new object[] { resource, indices }, attrs = new Dictionary() { ["dtype"] = dtype } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return resource_gather_nd_eager_fallback(resource, indices, dtype: dtype, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["indices"] = indices; + keywords["dtype"] = dtype; + var _op = tf.OpDefLib._apply_op_helper("ResourceGatherNd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ResourceGatherNd", _op.inputs, _attrs, _result); + } + return _result[0]; + } - return results[0]; + public static Tensor resource_gather_nd_eager_fallback(Tensor resource, Tensor indices, TF_DataType dtype, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, indices }; + object[] _attrs = new object[] { "dtype", dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ResourceGatherNd", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ResourceGatherNd", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Adds sparse updates to the variable referenced by `resource`. + /// + /// + /// + /// This operation computes + /// + /// # Scalar indices + /// ref[indices, ...] += updates[...] + /// + /// # Vector indices (for each i) + /// ref[indices[i], ...] += updates[i, ...] + /// + /// # High rank indices (for each i, ..., j) + /// ref[indices[i, ..., j], ...] += updates[i, ..., j, ...] + /// + /// Duplicate entries are handled correctly: if multiple `indices` reference + /// the same location, their contributions add. + /// + /// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. + /// + ///
+ /// + ///
+ /// + ///
+ /// + /// + /// + /// + public static Operation resource_scatter_add(Tensor resource, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceScatterAdd", name) { args = new object[] { resource, indices, updates }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; } + catch (Exception) + { + } + try + { + return resource_scatter_add_eager_fallback(resource, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("ResourceScatterAdd", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ResourceScatterAdd", _op.inputs, _attrs, _result); + } + return _op; + } - var _op = tf.OpDefLib._apply_op_helper("VarIsInitializedOp", name, new { resource }); + public static Operation resource_scatter_add_eager_fallback(Tensor resource, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, indices, updates }; + object[] _attrs = new object[] { "dtype", updates.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ResourceScatterAdd", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ResourceScatterAdd", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Divides sparse updates into the variable referenced by `resource`. + /// + /// + /// + /// This operation computes + /// + /// # Scalar indices + /// ref[indices, ...] /= updates[...] + /// + /// # Vector indices (for each i) + /// ref[indices[i], ...] /= updates[i, ...] + /// + /// # High rank indices (for each i, ..., j) + /// ref[indices[i, ..., j], ...] /= updates[i, ..., j, ...] + /// + /// Duplicate entries are handled correctly: if multiple `indices` reference + /// the same location, their contributions multiply. + /// + /// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. + /// + ///
+ /// + ///
+ /// + ///
+ /// + /// + /// + /// + public static Operation resource_scatter_div(Tensor resource, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceScatterDiv", name) { args = new object[] { resource, indices, updates }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return resource_scatter_div_eager_fallback(resource, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("ResourceScatterDiv", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ResourceScatterDiv", _op.inputs, _attrs, _result); + } + return _op; + } - return _op.output; + public static Operation resource_scatter_div_eager_fallback(Tensor resource, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, indices, updates }; + object[] _attrs = new object[] { "dtype", updates.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ResourceScatterDiv", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ResourceScatterDiv", _inputs_flat, _attrs, _result); } + return null; + } + /// + /// Reduces sparse updates into the variable referenced by `resource` using the `max` operation. + /// + /// + /// + /// This operation computes + /// + /// # Scalar indices + /// ref[indices, ...] = max(ref[indices, ...], updates[...]) + /// + /// # Vector indices (for each i) + /// ref[indices[i], ...] = max(ref[indices[i], ...], updates[i, ...]) + /// + /// # High rank indices (for each i, ..., j) + /// ref[indices[i, ..., j], ...] = max(ref[indices[i, ..., j], ...], updates[i, ..., j, ...]) + /// + /// Duplicate entries are handled correctly: if multiple `indices` reference + /// the same location, their contributions are combined. + /// + /// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. + /// + ///
+ /// + ///
+ /// + ///
+ /// + /// + /// + /// + public static Operation resource_scatter_max(Tensor resource, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceScatterMax", name) { args = new object[] { resource, indices, updates }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return resource_scatter_max_eager_fallback(resource, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("ResourceScatterMax", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ResourceScatterMax", _op.inputs, _attrs, _result); + } + return _op; + } - /// - /// Creates a handle to a Variable resource. - /// - /// - /// - /// - /// - /// - /// - public static Tensor var_handle_op(TF_DataType dtype, Shape shape, - string container = "", string shared_name = "", string name = null) + public static Operation resource_scatter_max_eager_fallback(Tensor resource, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, indices, updates }; + object[] _attrs = new object[] { "dtype", updates.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ResourceScatterMax", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - if (tf.Context.executing_eagerly()) + _execute.record_gradient("ResourceScatterMax", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Reduces sparse updates into the variable referenced by `resource` using the `min` operation. + /// + /// + /// + /// This operation computes + /// + /// # Scalar indices + /// ref[indices, ...] = min(ref[indices, ...], updates[...]) + /// + /// # Vector indices (for each i) + /// ref[indices[i], ...] = min(ref[indices[i], ...], updates[i, ...]) + /// + /// # High rank indices (for each i, ..., j) + /// ref[indices[i, ..., j], ...] = min(ref[indices[i, ..., j], ...], updates[i, ..., j, ...]) + /// + /// Duplicate entries are handled correctly: if multiple `indices` reference + /// the same location, their contributions are combined. + /// + /// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. + /// + ///
+ /// + ///
+ /// + ///
+ /// + /// + /// + /// + public static Operation resource_scatter_min(Tensor resource, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceScatterMin", name) { args = new object[] { resource, indices, updates }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return resource_scatter_min_eager_fallback(resource, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) { - var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("VarHandleOp", name) - { - attrs = ConvertToDict(new - { - dtype, - shape = shape.dims, - container, - shared_name, - allowed_devices = new string[0] - }) - }); + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("ResourceScatterMin", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ResourceScatterMin", _op.inputs, _attrs, _result); + } + return _op; + } - return results[0]; + public static Operation resource_scatter_min_eager_fallback(Tensor resource, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, indices, updates }; + object[] _attrs = new object[] { "dtype", updates.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ResourceScatterMin", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ResourceScatterMin", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Multiplies sparse updates into the variable referenced by `resource`. + /// + /// + /// + /// This operation computes + /// + /// # Scalar indices + /// ref[indices, ...] *= updates[...] + /// + /// # Vector indices (for each i) + /// ref[indices[i], ...] *= updates[i, ...] + /// + /// # High rank indices (for each i, ..., j) + /// ref[indices[i, ..., j], ...] *= updates[i, ..., j, ...] + /// + /// Duplicate entries are handled correctly: if multiple `indices` reference + /// the same location, their contributions multiply. + /// + /// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. + /// + ///
+ /// + ///
+ /// + ///
+ /// + /// + /// + /// + public static Operation resource_scatter_mul(Tensor resource, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceScatterMul", name) { args = new object[] { resource, indices, updates }, attrs = new Dictionary() { } }); + return null; } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return resource_scatter_mul_eager_fallback(resource, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("ResourceScatterMul", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ResourceScatterMul", _op.inputs, _attrs, _result); + } + return _op; + } - var _op = tf.OpDefLib._apply_op_helper("VarHandleOp", name, new + public static Operation resource_scatter_mul_eager_fallback(Tensor resource, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, indices, updates }; + object[] _attrs = new object[] { "dtype", updates.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ResourceScatterMul", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ResourceScatterMul", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Subtracts sparse updates from the variable referenced by `resource`. + /// + /// + /// + /// This operation computes + /// + /// # Scalar indices + /// ref[indices, ...] -= updates[...] + /// + /// # Vector indices (for each i) + /// ref[indices[i], ...] -= updates[i, ...] + /// + /// # High rank indices (for each i, ..., j) + /// ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...] + /// + /// Duplicate entries are handled correctly: if multiple `indices` reference + /// the same location, their contributions add. + /// + /// Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`. + /// + ///
+ /// + ///
+ /// + ///
+ /// + /// + /// + /// + public static Operation resource_scatter_sub(Tensor resource, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceScatterSub", name) { args = new object[] { resource, indices, updates }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return resource_scatter_sub_eager_fallback(resource, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) { - dtype, - shape, - container, - shared_name - }); + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("ResourceScatterSub", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ResourceScatterSub", _op.inputs, _attrs, _result); + } + return _op; + } - return _op.output; + public static Operation resource_scatter_sub_eager_fallback(Tensor resource, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, indices, updates }; + object[] _attrs = new object[] { "dtype", updates.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ResourceScatterSub", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ResourceScatterSub", _inputs_flat, _attrs, _result); } + return null; + } + /// + /// Assigns sparse updates to the variable referenced by `resource`. + /// + /// + /// + /// This operation computes + /// + /// # Scalar indices + /// ref[indices, ...] = updates[...] + /// + /// # Vector indices (for each i) + /// ref[indices[i], ...] = updates[i, ...] + /// + /// # High rank indices (for each i, ..., j) + /// ref[indices[i, ..., j], ...] = updates[i, ..., j, ...] + /// + /// + /// + /// + /// + /// + public static Operation resource_scatter_update(Tensor resource, Tensor indices, Tensor updates, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "ResourceScatterUpdate", name) { args = new object[] { resource, indices, updates }, attrs = new Dictionary() { } }); + return null; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return resource_scatter_update_eager_fallback(resource, indices, updates, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + keywords["indices"] = indices; + keywords["updates"] = updates; + var _op = tf.OpDefLib._apply_op_helper("ResourceScatterUpdate", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "dtype", _op._get_attr_type("dtype"), "Tindices", _op._get_attr_type("Tindices") }; + _execute.record_gradient("ResourceScatterUpdate", _op.inputs, _attrs, _result); + } + return _op; + } - public static Tensor destroy_resource_op(Tensor resource, bool ignore_lookup_error = true, string name = null) - => tf.Context.ExecuteOp("DestroyResourceOp", name, - new ExecuteOpArgs(resource).SetAttributes(new { ignore_lookup_error })); + public static Operation resource_scatter_update_eager_fallback(Tensor resource, Tensor indices, Tensor updates, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource, indices, updates }; + object[] _attrs = new object[] { "dtype", updates.dtype, "Tindices", indices.dtype }; + var _result = _execute.execute("ResourceScatterUpdate", 0, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("ResourceScatterUpdate", _inputs_flat, _attrs, _result); + } + return null; + } + /// + /// Creates a handle to a Variable resource. + /// + /// + /// + /// the container this variable is placed in. + /// + /// + /// + /// + /// the name by which this variable is referred to. + /// + /// + /// + /// + /// the type of this variable. Must agree with the dtypes + /// of all ops using this variable. + /// + /// + /// + /// + /// The (possibly partially specified) shape of this variable. + /// + /// + /// + /// + /// DEPRECATED. The allowed devices containing the resource variable. Set when the + /// output ResourceHandle represents a per-replica/partitioned resource variable. + /// + /// + /// + public static Tensor var_handle_op(TF_DataType dtype, Shape shape, string container = "", string shared_name = "", string[] allowed_devices = null, string? name = null) + { + var _ctx = tf.Context; + if (allowed_devices is null) + { + allowed_devices = new string[] { }; + } + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "VarHandleOp", name) { args = new object[] { }, attrs = new Dictionary() { ["container"] = container, ["shared_name"] = shared_name, ["dtype"] = dtype, ["shape"] = shape, ["allowed_devices"] = allowed_devices } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return var_handle_op_eager_fallback(container: container, shared_name: shared_name, dtype: dtype, shape: shape, allowed_devices: allowed_devices, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + if (container is null) + { + container = ""; + } + if (shared_name is null) + { + shared_name = ""; + } + Dictionary keywords = new(); + keywords["container"] = container; + keywords["shared_name"] = shared_name; + keywords["dtype"] = dtype; + keywords["shape"] = shape; + keywords["allowed_devices"] = allowed_devices; + var _op = tf.OpDefLib._apply_op_helper("VarHandleOp", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "container", _op.get_attr("container"), "shared_name", _op.get_attr("shared_name"), "dtype", _op._get_attr_type("dtype"), "shape", _op.get_attr("shape"), "allowed_devices", _op.get_attr("allowed_devices") }; + _execute.record_gradient("VarHandleOp", _op.inputs, _attrs, _result); + } + return _result[0]; + } - /// - /// Reads the value of a variable. - /// - /// - /// - /// - /// - public static Tensor read_variable_op(Tensor resource, TF_DataType dtype, string name = null) - => tf.Context.ExecuteOp("ReadVariableOp", name, new ExecuteOpArgs(resource) - .SetAttributes(new { dtype })); + public static Tensor var_handle_op_eager_fallback(string container, string shared_name, TF_DataType dtype, Shape shape, string[] allowed_devices, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { }; + object[] _attrs = new object[] { "container", container, "shared_name", shared_name, "dtype", dtype, "shape", shape, "allowed_devices", allowed_devices }; + var _result = _execute.execute("VarHandleOp", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("VarHandleOp", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Checks whether a resource handle-based variable has been initialized. + /// + /// + /// + public static Tensor var_is_initialized_op(Tensor resource, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "VarIsInitializedOp", name) { args = new object[] { resource }, attrs = new Dictionary() { } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) + { + throw ex; + } + catch (Exception) + { + } + try + { + return var_is_initialized_op_eager_fallback(resource, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["resource"] = resource; + var _op = tf.OpDefLib._apply_op_helper("VarIsInitializedOp", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { }; + _execute.record_gradient("VarIsInitializedOp", _op.inputs, _attrs, _result); + } + return _result[0]; + } - public static Tensor resource_gather(Tensor resource, Tensor indices, TF_DataType dtype, - int batch_dims = 0, bool validate_indices = true, string name = null) + public static Tensor var_is_initialized_op_eager_fallback(Tensor resource, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { resource }; + object[] _attrs = new object[] { }; + var _result = _execute.execute("VarIsInitializedOp", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) { - var _op = tf.OpDefLib._apply_op_helper("ResourceGather", name, new + _execute.record_gradient("VarIsInitializedOp", _inputs_flat, _attrs, _result); + } + return _result[0]; + } + /// + /// Returns the shape of the variable pointed to by `resource`. + /// + /// + /// + /// This operation returns a 1-D integer tensor representing the shape of `input`. + /// + /// For example: + /// + /// ``` + /// # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] + /// shape(t) ==> [2, 2, 3] + /// ``` + /// + /// + /// + /// + /// + public static Tensor variable_shape(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string? name = null) + { + var _ctx = tf.Context; + if (_ctx.executing_eagerly()) + { + try + { + var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "VariableShape", name) { args = new object[] { input }, attrs = new Dictionary() { ["out_type"] = out_type } }); + return _fast_path_result[0]; + } + catch (NotOkStatusException ex) { - resource, - indices, - dtype, - batch_dims, - validate_indices - }); + throw ex; + } + catch (Exception) + { + } + try + { + return variable_shape_eager_fallback(input, out_type: out_type, name: name, ctx: _ctx); + } + catch (Exception) + { + } + } + Dictionary keywords = new(); + keywords["input"] = input; + keywords["out_type"] = out_type; + var _op = tf.OpDefLib._apply_op_helper("VariableShape", name, keywords); + var _result = _op.outputs; + if (_execute.must_record_gradient()) + { + object[] _attrs = new object[] { "out_type", _op._get_attr_type("out_type") }; + _execute.record_gradient("VariableShape", _op.inputs, _attrs, _result); + } + return _result[0]; + } - return _op.output; + public static Tensor variable_shape_eager_fallback(Tensor input, TF_DataType out_type, string name, Context ctx) + { + Tensor[] _inputs_flat = new Tensor[] { input }; + object[] _attrs = new object[] { "out_type", out_type }; + var _result = _execute.execute("VariableShape", 1, inputs: _inputs_flat, attrs: _attrs, ctx: ctx, name: name); + if (_execute.must_record_gradient()) + { + _execute.record_gradient("VariableShape", _inputs_flat, _attrs, _result); } + return _result[0]; } } diff --git a/src/TensorFlowNET.Core/Operations/handle_data_util.cs b/src/TensorFlowNET.Core/Operations/handle_data_util.cs new file mode 100644 index 000000000..363d3144e --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/handle_data_util.cs @@ -0,0 +1,60 @@ +using Google.Protobuf; +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Eager; +using static Tensorflow.CppShapeInferenceResult.Types; + +namespace Tensorflow.Operations +{ + public static class handle_data_util + { + public static void copy_handle_data(Tensor source_t, Tensor target_t) + { + if(target_t.dtype == dtypes.resource || target_t.dtype == dtypes.variant) + { + HandleData handle_data; + if(source_t is EagerTensor) + { + handle_data = source_t.HandleData; + } + else + { + handle_data = ops.get_resource_handle_data(source_t); + } + if(handle_data is not null && handle_data.IsSet && handle_data.ShapeAndType is not null + && handle_data.ShapeAndType.Count > 0) + { + set_handle_data(target_t, handle_data); + } + } + } + + public static HandleData create_handle_data(Shape shape, TF_DataType dtype) + { + HandleData handle_data = new(); + handle_data.IsSet = true; + handle_data.ShapeAndType.Add(new HandleShapeAndType() + { + Shape = shape.as_proto(), + Dtype = dtype.as_datatype_enum() + }); + return handle_data; + } + + public static void set_handle_data(Tensor target_t, HandleData handle_data) + { + if(target_t is EagerTensor) + { + target_t.HandleData = handle_data; + return; + } + Status status = new(); + var proto = handle_data.ToByteArray(); + c_api.TF_SetHandleShapeAndType(target_t.graph.c_graph, target_t._as_tf_output(), proto, proto.Length, status); + status.Check(true); + } + + public static HandleData get_resource_handle_data(Tensor graph_op) => ops.get_resource_handle_data(graph_op); + } +} diff --git a/src/TensorFlowNET.Core/Operations/image_ops_impl.cs b/src/TensorFlowNET.Core/Operations/image_ops_impl.cs index de74b2814..f1aff28ee 100644 --- a/src/TensorFlowNET.Core/Operations/image_ops_impl.cs +++ b/src/TensorFlowNET.Core/Operations/image_ops_impl.cs @@ -102,25 +102,31 @@ internal static Operation[] _CheckAtLeast3DImage(Tensor image, bool require_stat { throw new ValueError("\'image\' must be fully defined."); } - for (int x = 1; x < 4; x++) + var dims = new Shape(new[] { + image_shape.dims[image_shape.dims.Length - 3], + image_shape.dims[image_shape.dims.Length - 2], + image_shape.dims[image_shape.dims.Length - 1]}); + foreach (var dim in dims.dims) { - if (image_shape.dims[x] == 0) + if (dim == 0) { - throw new ValueError(String.Format("inner 3 dims of \'image.shape\' must be > 0: {0}", image_shape)); + throw new ValueError("inner 3 dimensions of \'image\' must be > 0: " + image_shape); } } var image_shape_last_three_elements = new Shape(new[] { - image_shape.dims[image_shape.dims.Length - 1], + image_shape.dims[image_shape.dims.Length - 3], image_shape.dims[image_shape.dims.Length - 2], - image_shape.dims[image_shape.dims.Length - 3]}); + image_shape.dims[image_shape.dims.Length - 1]}); if (!image_shape_last_three_elements.IsFullyDefined) { Tensor image_shape_ = array_ops.shape(image); - var image_shape_return = tf.constant(new[] { - image_shape_.dims[image_shape.dims.Length - 1], - image_shape_.dims[image_shape.dims.Length - 2], - image_shape_.dims[image_shape.dims.Length - 3]}); + var image_shape_return = tf.slice(image_shape_, new[] { Math.Max(image_shape.dims.Length - 3, 0) }, new[] { 3 }); + + //var image_shape_return = tf.constant(new[] { + // image_shape_.dims[image_shape_.dims.Length - 3], + // image_shape_.dims[image_shape_.dims.Length - 2], + // image_shape_.dims[image_shape_.dims.Length - 1]}); return new Operation[] { check_ops.assert_positive( @@ -177,11 +183,11 @@ internal static Tensor _random_flip(Tensor image, int flip_index, int seed, stri if (shape.ndim == 3 || shape.ndim == Unknown) { Tensor uniform_random = random_ops.random_uniform(new int[] { }, 0f, 1.0f, seed: seed); - var mirror_cond = gen_math_ops.less(uniform_random, .5); + var mirror_cond = gen_math_ops.less(uniform_random, ops.convert_to_tensor(.5)); var result = control_flow_ops.cond( pred: mirror_cond, - true_fn: () => gen_array_ops.reverse(image, new { flip_index }), + true_fn: () => gen_array_ops.reverse(image, ops.convert_to_tensor(new int[] { flip_index })), false_fn: () => image, name: scope ); @@ -197,7 +203,7 @@ internal static Tensor _random_flip(Tensor image, int flip_index, int seed, stri var flips = math_ops.round( array_ops.reshape(uniform_random, shape: array_ops.constant(value: new object[] { batch_size[0], 1, 1, 1 }))); flips = math_ops.cast(flips, image.dtype); - var flipped_input = gen_array_ops.reverse(image, new int[] { flip_index + 1 }); + var flipped_input = gen_array_ops.reverse(image, ops.convert_to_tensor(new int[] { flip_index + 1 })); return flips * flipped_input + (1 - flips) * image; } else @@ -211,7 +217,7 @@ public static Tensor flip_left_right(Tensor image) => _flip(image, 1, "flip_left_right"); public static Tensor flip_up_down(Tensor image) - => _flip(image, 1, "flip_up_down"); + => _flip(image, 0, "flip_up_down"); internal static Tensor _flip(Tensor image, int flip_index, string scope_name) { @@ -222,11 +228,11 @@ internal static Tensor _flip(Tensor image, int flip_index, string scope_name) Shape shape = image.shape; if (shape.ndim == 3 || shape.ndim == Unknown) { - return fix_image_flip_shape(image, gen_array_ops.reverse(image, new { flip_index })); + return fix_image_flip_shape(image, gen_array_ops.reverse_v2(image, ops.convert_to_tensor(new int[] { flip_index }))); } else if (shape.ndim == 4) { - return gen_array_ops.reverse(image, new[] { flip_index + 1 }); + return gen_array_ops.reverse_v2(image, ops.convert_to_tensor(new[] { flip_index + 1 })); } else { @@ -268,15 +274,15 @@ internal static Tensor _rot90_3D(Tensor image, int k, string name_scope) { Tensor _rot90() { - return array_ops.transpose(gen_array_ops.reverse(image, new[] { 1, 0, 2 }), new int[] { 1 }); + return array_ops.transpose(gen_array_ops.reverse(image, ops.convert_to_tensor(new[] { 1, 0, 2 })), new int[] { 1 }); }; Tensor _rot180() { - return gen_array_ops.reverse(image, new[] { 0, 1 }); + return gen_array_ops.reverse(image, ops.convert_to_tensor(new[] { 0, 1 })); }; Tensor _rot270() { - return gen_array_ops.reverse(array_ops.transpose(image, new[] { 1, 0, 2 }), new[] { 1 }); + return gen_array_ops.reverse(array_ops.transpose(image, new[] { 1, 0, 2 }), ops.convert_to_tensor(new[] { 1 })); }; var cases = new[] {math_ops.equal(k, 1), _rot90(), @@ -542,32 +548,32 @@ public static Tensor crop_to_bounding_box(Tensor image, int offset_height, int o image_shape)); } - var assert_ops = _CheckAtLeast3DImage(image, require_static: false); + var assert_ops = _CheckAtLeast3DImage(image, require_static: false).ToList(); // batch: [0], height: [1], width: [2], depth: [3] var bhwd = _ImageDimensions(image, rank: 4); - assert_ops[assert_ops.Length] = _assert(check_ops.assert_greater_equal(tf.constant(offset_height), + assert_ops.Add(_assert(check_ops.assert_greater_equal(tf.constant(offset_height), tf.constant(0)), typeof(ValueError), - "offset_height must be >= 0."); - assert_ops[assert_ops.Length] = _assert(check_ops.assert_greater_equal(tf.constant(offset_width), + "offset_height must be >= 0.")); + assert_ops.Add(_assert(check_ops.assert_greater_equal(tf.constant(offset_width), tf.constant(0)), typeof(ValueError), - "offset_width must be >= 0."); - assert_ops[assert_ops.Length] = _assert(check_ops.assert_less(tf.constant(0), + "offset_width must be >= 0.")); + assert_ops.Add(_assert(check_ops.assert_less(tf.constant(0), tf.constant(target_width)), typeof(ValueError), - "target_width must be > 0."); - assert_ops[assert_ops.Length] = _assert(check_ops.assert_less(tf.constant(0), + "target_width must be > 0.")); + assert_ops.Add(_assert(check_ops.assert_less(tf.constant(0), tf.constant(target_height)), typeof(ValueError), - "target_height must be > 0."); - assert_ops[assert_ops.Length] = _assert(check_ops.assert_greater_equal(tf.constant(bhwd[2]), + "target_height must be > 0.")); + assert_ops.Add(_assert(check_ops.assert_greater_equal(tf.constant(bhwd[2]), tf.constant(target_width + offset_width)), typeof(ValueError), - "width must be >= target + offset."); - assert_ops[assert_ops.Length] = _assert(check_ops.assert_greater_equal(tf.constant(bhwd[1]), + "width must be >= target + offset.")); + assert_ops.Add(_assert(check_ops.assert_greater_equal(tf.constant(bhwd[1]), tf.constant(target_height + offset_height)), typeof(ValueError), - "height must be >= target + offset."); - image = control_flow_ops.with_dependencies(assert_ops, image); + "height must be >= target + offset.")); + image = control_flow_ops.with_dependencies(assert_ops.ToArray(), image); var cropped = array_ops.slice( image, array_ops.stack(new[] { 0, offset_height, offset_width, 0 }), @@ -575,12 +581,16 @@ public static Tensor crop_to_bounding_box(Tensor image, int offset_height, int o Shape cropped_shape_result() { - long[] i_remnants = { }; + long[] i_remnants = new long[4]; + int idx = 0; foreach (var i in new[] { bhwd[0], target_height, target_width, bhwd[3] }) + { if (_is_tensor(i)) - return null; + i_remnants[idx] = -1; else - i_remnants[i_remnants.Length] = i; + i_remnants[idx] = i; + idx++; + } return new Shape(i_remnants); }; var cropped_shape = cropped_shape_result(); @@ -961,9 +971,9 @@ public static Tensor per_image_standardization(Tensor image) if (Array.Exists(new[] { dtypes.float16, dtypes.float32 }, orig_dtype => orig_dtype == orig_dtype)) image = convert_image_dtype(image, dtypes.float32); - var num_pixels_ = array_ops.shape(image).dims; - num_pixels_ = num_pixels_.Skip(num_pixels_.Length - 3).Take(num_pixels_.Length - (num_pixels_.Length - 3)).ToArray(); - Tensor num_pixels = math_ops.reduce_prod(new Tensor(num_pixels_)); + var x = image.shape["-3:"]; + var num_pixels = math_ops.reduce_prod(x); + Tensor image_mean = math_ops.reduce_mean(image, axis: new(-1, -2, -3), keepdims: true); var stddev = math_ops.reduce_std(image, axis: new(-1, -2, -3), keepdims: true); @@ -1385,7 +1395,7 @@ internal static (Tensor, Tensor, Operation[]) _verify_compatible_image_shapes(Te Operation[] checks = new Operation[] { }; checks.append( control_flow_ops.Assert( - gen_math_ops.greater_equal(array_ops.size(shape1_tensor), 3), new[] { shape1, shape2 }, + gen_math_ops.greater_equal(array_ops.size(shape1_tensor), ops.convert_to_tensor(3)), new[] { shape1, shape2 }, summarize: 10)); checks.append( control_flow_ops.Assert( @@ -1758,8 +1768,8 @@ internal static (Tensor, Tensor, Tensor, Tensor) _cross_suppression(Tensor boxes { var batch_size = array_ops.shape(boxes)[0]; var new_slice = array_ops.slice( - boxes, new object[] { 0, inner_idx * tile_size, 0 }, - new object[] { batch_size, tile_size, 4 }); + boxes, new Tensor[] { ops.convert_to_tensor(0), ops.convert_to_tensor(inner_idx * tile_size), ops.convert_to_tensor(0) }, + new Tensor[] { ops.convert_to_tensor(batch_size), ops.convert_to_tensor(tile_size), ops.convert_to_tensor(4) }); var iou = _bbox_overlap(new_slice, box_slice); var box_slice_after_suppression = array_ops.expand_dims( math_ops.cast(math_ops.reduce_all(iou < iou_threshold, new(1)), @@ -1774,10 +1784,10 @@ internal static Tensor _bbox_overlap(Tensor boxes_a, Tensor boxes_b) { // a_y_min: [0], a_x_min: [1], a_y_max: [2], a_x_max[3] var a_xy_minmax = array_ops.split( - value: boxes_a, num_split: 4, axis: 2); + value: boxes_a, num_or_size_splits: 4, axis: ops.convert_to_tensor(2)); // b_y_min: [0], b_x_min: [1], b_y_max: [2], b_x_max[3] var b_xy_minmax = array_ops.split( - value: boxes_b, num_split: 4, axis: 2); + value: boxes_b, num_or_size_splits: 4, axis: ops.convert_to_tensor(2)); var i_xmin = math_ops.maximum( a_xy_minmax[1], array_ops.transpose(b_xy_minmax[1], new[] { 0, 2, 1 })); @@ -1812,8 +1822,8 @@ internal static (Tensor, float, Tensor, int) _suppression_loop_body(Tensor boxes (Tensor, Tensor, Tensor, Tensor) cross_suppression_func(Tensor boxes, Tensor box_slice, Tensor iou_threshold, Tensor inner_idx, int tile_size) => _cross_suppression(boxes, box_slice, iou_threshold, inner_idx, tile_size); - var box_slice = array_ops.slice(boxes, new[] { 0, idx * tile_size, 0 }, - new[] { batch_size, tile_size, 4 }); + var box_slice = array_ops.slice(boxes, new Tensor[]{ ops.convert_to_tensor(0), ops.convert_to_tensor(idx * tile_size), ops.convert_to_tensor(0) }, + new Tensor[] { ops.convert_to_tensor(batch_size), ops.convert_to_tensor(tile_size), ops.convert_to_tensor(4) }); var iou = _bbox_overlap(box_slice, box_slice); var mask = array_ops.expand_dims( @@ -1939,7 +1949,7 @@ public static (Tensor, Tensor) non_max_suppression_padded_v2(Tensor boxes, Tenso using (ops.name_scope("canonicalize_coordinates")) { // y_1 = [0], x_1 = [1], y_2 = [2], x_2 = [3] - var yx = array_ops.split(value: boxes, num_split: 4, axis: 2); + var yx = array_ops.split(value: boxes, num_or_size_splits: 4, axis: ops.convert_to_tensor(2)); var y_1_is_min = math_ops.reduce_all( gen_math_ops.less_equal(yx[0][0, 0, 0], yx[2][0, 0, 0])); var y_minmax = control_flow_ops.cond( @@ -2042,6 +2052,22 @@ internal static (Tensor, Tensor) non_max_suppression_padded_v1(Tensor boxes, Ten }); } + public static Tensor encode_jpeg(Tensor contents, string name = null) + { + return tf_with(ops.name_scope(name, "encode_jpeg"), scope => + { + return gen_ops.encode_jpeg(contents, name:name); + }); + } + + public static Tensor encode_png(Tensor contents, string name = null) + { + return tf_with(ops.name_scope(name, "encode_png"), scope => + { + return gen_ops.encode_png(contents, name: name); + }); + } + public static Tensor is_jpeg(Tensor contents, string name = null) { return tf_with(ops.name_scope(name, "is_jpeg"), scope => diff --git a/src/TensorFlowNET.Core/Operations/io_ops.cs b/src/TensorFlowNET.Core/Operations/io_ops.cs index 4f276e36c..0b77689d5 100644 --- a/src/TensorFlowNET.Core/Operations/io_ops.cs +++ b/src/TensorFlowNET.Core/Operations/io_ops.cs @@ -14,7 +14,9 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Linq; using Tensorflow.Contexts; +using Tensorflow.Eager; using static Tensorflow.Binding; namespace Tensorflow @@ -23,13 +25,44 @@ public class io_ops { public Operation save_v2(Tensor prefix, string[] tensor_names, string[] shape_and_slices, Tensor[] tensors, string name = null) { + var ctx = tf.Context; + if (ctx.executing_eagerly()) + { + try + { + var result = tf.Runner.TFE_FastPathExecute( + new FastPathOpExecInfo(tf.Context, "SaveV2", name, new object[] { prefix, tensor_names, shape_and_slices, tensors })); + result = null; + return null; + } + catch (System.Exception) + { + return save_v2_eager_fallback(prefix, tensor_names, shape_and_slices, tensors, name, ctx); + } + } var _op = tf.OpDefLib._apply_op_helper("SaveV2", name: name, args: new { prefix, tensor_names, shape_and_slices, tensors }); return _op; } + public Operation save_v2_eager_fallback(Tensor prefix, string[] tensor_names, string[] shape_and_slices, Tensor[] tensors, string name, Context ctx) + { + DataType[] attr_dtypes; + (attr_dtypes, tensors) = _execute.onvert_to_mixed_eager_tensors(tensors, ctx); + prefix = ops.convert_to_tensor(prefix, TF_DataType.TF_STRING); + var tensor_names_tensor = ops.convert_to_tensor(tensor_names, TF_DataType.TF_STRING); + var shape_and_slices_tensor = ops.convert_to_tensor(shape_and_slices, TF_DataType.TF_STRING); + var inputs_flat = tensors.Concat(new Tensor[] { prefix, tensor_names_tensor, shape_and_slices_tensor }).ToArray(); + var attrs = new object[] { "dtypes", attr_dtypes }; + + var result = _execute.quick_execute("SaveV2", 0, inputs_flat, attrs, ctx, name); + result = null; + return null; + } + public Tensor[] restore_v2(Tensor prefix, string[] tensor_names, string[] shape_and_slices, TF_DataType[] dtypes, string name = null) { + // Note: this implementation is not correct in many cases, please consider using `gen_ops.restore_v2`. var _op = tf.OpDefLib._apply_op_helper("RestoreV2", name: name, args: new { prefix, tensor_names, shape_and_slices, dtypes }); return _op.outputs; diff --git a/src/TensorFlowNET.Core/Operations/linalg_ops.cs b/src/TensorFlowNET.Core/Operations/linalg_ops.cs index 024ea14d9..42da1a279 100644 --- a/src/TensorFlowNET.Core/Operations/linalg_ops.cs +++ b/src/TensorFlowNET.Core/Operations/linalg_ops.cs @@ -129,5 +129,12 @@ public Tensor matrix_triangular_solve(Tensor matrix, Tensor rhs, bool lower = tr lower, adjoint })); + + public Tensors qr(Tensor input, bool full_matrices = false, string name = null) + => tf.Context.ExecuteOp("Qr", name, + new ExecuteOpArgs(input).SetAttributes(new + { + full_matrices + })); } } diff --git a/src/TensorFlowNET.Core/Operations/list_ops.cs b/src/TensorFlowNET.Core/Operations/list_ops.cs new file mode 100644 index 000000000..3791a2c19 --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/list_ops.cs @@ -0,0 +1,111 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Eager; + +namespace Tensorflow.Operations +{ + internal class list_ops + { + private static void _set_handle_data(Tensor list_handle, Shape element_shape, TF_DataType element_dtype) + { + if(list_handle is EagerTensor eagerTensor) + { + var handle_data = new CppShapeInferenceResult.Types.HandleData(); + handle_data.IsSet = true; + handle_data.ShapeAndType.Add(new CppShapeInferenceResult.Types.HandleShapeAndType() + { + Shape = element_shape.as_proto(), + Dtype = element_dtype.as_datatype_enum(), + Type = new FullTypeDef() { TypeId = FullTypeId.TftArray } + }); + list_handle.HandleData = handle_data; + } + } + + private static Tensor _build_element_shape(Shape? shape) + { + if(shape is null || shape.IsNull) + { + return ops.convert_to_tensor(-1); + } + else + { + return ops.convert_to_tensor(shape, dtype: dtypes.int32); + } + } + + public static Tensor tensor_list_reserve(Shape? shape, Tensor num_elements, TF_DataType element_dtype, string name = null) + { + var result = gen_list_ops.tensor_list_reserve(_build_element_shape(shape), num_elements, element_dtype, name); + _set_handle_data(result, shape, element_dtype); + return result; + } + + public static Tensor tensor_list_from_tensor(Tensor tensor, Shape element_shape, string? name = null) + { + var result = gen_list_ops.tensor_list_from_tensor(tensor, _build_element_shape(element_shape), name); + _set_handle_data(result, tensor.shape, tensor.dtype); + return result; + } + + public static Tensor tensor_list_get_item(Tensor input_handle, Tensor index, TF_DataType element_dtype, + Shape? element_shape = null, string? name = null) + { + return gen_list_ops.tensor_list_get_item(input_handle, index, _build_element_shape(element_shape), + element_dtype, name); + } + + public static Tensor tensor_list_set_item(Tensor input_handle, Tensor index, Tensor item, + bool resize_if_index_out_of_bounds = false, string? name = null) + { + if (resize_if_index_out_of_bounds) + { + var input_list_size = gen_list_ops.tensor_list_length(input_handle); + input_handle = control_flow_ops.cond(index >= input_list_size, + () => gen_list_ops.tensor_list_resize(input_handle, index + 1), + () => input_handle); + } + var output_handle = gen_list_ops.tensor_list_set_item(input_handle, index, item, name); + handle_data_util.copy_handle_data(input_handle, output_handle); + return output_handle; + } + + public static Tensor tensor_list_stack(Tensor input_handle, TF_DataType element_dtype, int num_elements = -1, + Shape? element_shape = null, string? name = null) + { + return gen_list_ops.tensor_list_stack(input_handle, _build_element_shape(element_shape), element_dtype, num_elements, name); + } + + public static Tensor tensor_list_gather(Tensor input_handle, Tensor indices, TF_DataType element_dtype, + Shape? element_shape = null, string? name = null) + { + return gen_list_ops.tensor_list_gather(input_handle, indices, _build_element_shape(element_shape), element_dtype, name); + } + + public static Tensor tensor_list_scatter(Tensor tensor, Tensor indices, Shape? element_shape = null, Tensor? input_handle = null, + string? name = null) + { + if(input_handle is not null) + { + var output_handle = gen_list_ops.tensor_list_scatter_into_existing_list(input_handle, tensor, indices, name); + handle_data_util.copy_handle_data(input_handle, output_handle); + return output_handle; + } + else + { + var output_handle = gen_list_ops.tensor_list_scatter_v2(tensor, indices, _build_element_shape(element_shape), + constant_op.constant(-1), name); + _set_handle_data(output_handle, element_shape, tensor.dtype); + return output_handle; + } + } + + public static Tensor empty_tensor_list(Shape? element_shape, TF_DataType element_dtype, int max_num_elements = -1, + string? name = null) + { + return gen_list_ops.empty_tensor_list(_build_element_shape(element_shape), element_dtype: element_dtype, + max_num_elements: ops.convert_to_tensor(max_num_elements, dtype: dtypes.int32), name: name); + } + } +} diff --git a/src/TensorFlowNET.Core/Operations/logging_ops.cs b/src/TensorFlowNET.Core/Operations/logging_ops.cs index e38e60b5b..3303cadc3 100644 --- a/src/TensorFlowNET.Core/Operations/logging_ops.cs +++ b/src/TensorFlowNET.Core/Operations/logging_ops.cs @@ -30,7 +30,7 @@ public Tensor print_v2(Tensor input, string output_stream = "stderr", string end name: name); return tf.Context.ExecuteOp("PrintV2", name, new ExecuteOpArgs(formatted_string) - .SetAttributes(new { output_stream, end })); + .SetAttributes(new { output_stream, end })).SingleOrNull; } } } diff --git a/src/TensorFlowNET.Core/Operations/math_ops.cs b/src/TensorFlowNET.Core/Operations/math_ops.cs index 861dba18b..e77df702f 100644 --- a/src/TensorFlowNET.Core/Operations/math_ops.cs +++ b/src/TensorFlowNET.Core/Operations/math_ops.cs @@ -20,6 +20,8 @@ limitations under the License. using System.Linq; using Tensorflow.Framework; using static Tensorflow.Binding; +using Tensorflow.Operations; +using System.Runtime.CompilerServices; namespace Tensorflow { @@ -35,20 +37,21 @@ public static Tensor abs(Tensor x, string name = null) name = scope; x = ops.convert_to_tensor(x, name: "x"); if (x.dtype.is_complex()) - throw new NotImplementedException("math_ops.abs for dtype.is_complex"); - //return gen_math_ops.complex_abs(x, Tout: x.dtype.real_dtype, name: name); - return gen_math_ops._abs(x, name: name); + { + return gen_ops.complex_abs(x, Tout: x.dtype.real_dtype(), name: name); + } + return gen_math_ops.abs(x, name: name); }); } public static Tensor add(Tx x, Ty y, string name = null) - => gen_math_ops.add(x, y, name); + => gen_math_ops.add(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); public static Tensor add_v2(Tensor x, Tensor y, string name = null) => tf.Context.ExecuteOp("AddV2", name, new ExecuteOpArgs(x, y)); public static Tensor add_v2(Tx x, Ty y, string name = null) - => gen_math_ops.add_v2(x, y, name); + => gen_math_ops.add_v2(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); /// /// Adds all input tensors element-wise. @@ -74,6 +77,9 @@ public static Tensor add_n(Tensor[] inputs, string name = null) public static Tensor argmax(Tensor input, Axis dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) => gen_math_ops.arg_max(input, dimension, output_type: output_type, name: name); + public static Tensor argmin(Tensor input, Axis dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) + => gen_math_ops.arg_min(input, dimension, output_type: output_type, name: name); + public static Tensor round(Tensor x, string name = null) { x = ops.convert_to_tensor(x, name: "x"); @@ -252,9 +258,9 @@ public static Tensor einsum(string equation, Tensors inputs, string name = null) } public static Tensor greater_equal(Tx x, Ty y, string name = null) - => gen_math_ops.greater_equal(x, y, name: name); + => gen_math_ops.greater_equal(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); public static Tensor equal(Tx x, Ty y, string name = null) - => gen_math_ops.equal(x, y, name: name); + => gen_math_ops.equal(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); /// /// Computes the Gauss error function of `x` element-wise. @@ -266,19 +272,19 @@ public static Tensor erf(Tensor x, string name = null) => tf.Context.ExecuteOp("Erf", name, new ExecuteOpArgs(x)); public static Tensor sqrt(Tensor x, string name = null) - => gen_math_ops.sqrt(x, name: name); + => tf.Context.ExecuteOp("Sqrt", name, new ExecuteOpArgs(x)); public static Tensor multiply(Tensor x, Tensor y, string name = null) => tf.Context.ExecuteOp("Mul", name, new ExecuteOpArgs(x, y)); public static Tensor multiply(Tx x, Ty y, string name = null) - => gen_math_ops.mul(x, y, name: name); + => gen_math_ops.mul(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); public static Tensor not_equal(Tx x, Ty y, string name = null) - => gen_math_ops.not_equal(x, y, name: name); + => gen_math_ops.not_equal(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); public static Tensor mul_no_nan(Tx x, Ty y, string name = null) - => gen_math_ops.mul_no_nan(x, y, name: name); + => gen_math_ops.mul_no_nan(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); public static Tensor scalar_mul(Tscale scale, Tx x, string name = null) => tf.Context.ExecuteOp("Mul", name, new ExecuteOpArgs(scale, x)); @@ -394,7 +400,7 @@ public static Tensor sigmoid(T x, string name = null) }); public static Tensor sign(T x, string name = null) - => gen_math_ops.sign(x, name: name); + => gen_math_ops.sign(ops.convert_to_tensor(x), name: name); public static Tensor sin(Tensor x, string name = null) => tf.Context.ExecuteOp("Sin", name, new ExecuteOpArgs(x)); @@ -419,7 +425,7 @@ public static Tensor square(Tensor x, string name = null) public static Tensor subtract(Tx x, Ty y, string name = null) { - return gen_math_ops.sub(x, y, name); + return gen_math_ops.sub(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name); } public static Tensor log(Tensor x, string name = null) @@ -453,8 +459,8 @@ public static Tensor linspace(Tensor start, Tensor stop, int num = 50, string na var axis_tensor = array_ops.where_v2(constant_op.constant(axis >= 0), x: axis, y: ndims + axis); // The purpose is to avoid having negative values when repeating. - var num_fill = gen_math_ops.maximum(num_int_tensor - 2, 0); - var n_steps = gen_math_ops.maximum(num_int_tensor - 1, 1); + var num_fill = gen_math_ops.maximum(num_int_tensor - 2, ops.convert_to_tensor(0)); + var n_steps = gen_math_ops.maximum(num_int_tensor - 1, ops.convert_to_tensor(1)); var delta = (expanded_stop - expanded_start) / cast(n_steps, expanded_stop.dtype); var range_end = array_ops.where_v2(num_int_tensor >= 0, n_steps, -1); @@ -501,7 +507,7 @@ public static Tensor reduced_shape(Tensor input_shape, Tensor axes) var axes_shape = array_ops.shape(axes); var rng = math_ops.range(input_rank); var a1 = new Tensor[] { rng, axes }; - var fill = gen_array_ops.fill(axes_shape, 1); + var fill = gen_array_ops.fill(axes_shape, ops.convert_to_tensor(1)); var a2 = new Tensor[] { input_shape, fill }; return gen_data_flow_ops.dynamic_stitch(a1, a2); @@ -526,7 +532,7 @@ public static Tensor reciprocal(Tensor x, string name = null) /// public static Tensor reduce_all(Tensor input_tensor, Axis? axis = null, bool keepdims = false, string name = null) { - var all = gen_math_ops._all(input_tensor, + var all = gen_math_ops.all(input_tensor, _ReductionDims(input_tensor, axis), keepdims, name: name); @@ -579,23 +585,34 @@ public static Tensor reduce_logsumexp(Tensor input_tensor, Axis axis = null, boo public static Tensor reduce_any(Tensor input_tensor, Axis axis = null, bool keepdims = false, string name = null) { var r = _ReductionDims(input_tensor, axis); - var max = (axis != null) ? gen_math_ops._any(input_tensor, axis, keepdims, name) : - gen_math_ops._any(input_tensor, r, keepdims, name); + var max = (axis != null) ? gen_math_ops.any(input_tensor, axis, keepdims, name) : + gen_math_ops.any(input_tensor, r, keepdims, name); return _may_reduce_to_scalar(keepdims, axis, max); } + public static Tensor reduce_euclidean_norm(Tensor input_tensor, Axis axis = null, bool keepdims = false, string name = null) + { + var r = _ReductionDims(input_tensor, axis); + var distance = tf.Context.ExecuteOp("EuclideanNorm", name, + new ExecuteOpArgs(input_tensor, r).SetAttributes(new + { + keep_dims = keepdims + })); + return _may_reduce_to_scalar(keepdims, axis, distance); + } + public static Tensor reduce_max(Tensor input_tensor, Axis axis = null, bool keepdims = false, string name = null) { var r = _ReductionDims(input_tensor, axis); - var max = (axis != null) ? gen_math_ops._max(input_tensor, axis, keepdims, name) : - gen_math_ops._max(input_tensor, r, keepdims, name); + var max = (axis != null) ? gen_math_ops.max(input_tensor, axis, keepdims, name) : + gen_math_ops.max(input_tensor, r, keepdims, name); return _may_reduce_to_scalar(keepdims, axis, max); } public static Tensor reduce_min(Tensor input_tensor, Axis axis = null, bool keepdims = false, string name = null) { var r = _ReductionDims(input_tensor, axis); - var min = gen_math_ops._min(input_tensor, r, keepdims, name); + var min = gen_math_ops.min(input_tensor, r, keepdims, name); return _may_reduce_to_scalar(keepdims, axis, min); } @@ -641,7 +658,7 @@ public static Tensor __case__(Tensor x, TF_DataType dtype, string name = null) public static Tensor reduce_sum(Tensor input_tensor, Tensor axis = null, bool keepdims = false, string name = null) { var r = _ReductionDims(input_tensor, axis); - var m = gen_math_ops._sum(input_tensor, r, keep_dims: keepdims, name: name); + var m = gen_math_ops.sum(input_tensor, r, keep_dims: keepdims, name: name); return _may_reduce_to_scalar(keepdims, axis, m); } @@ -750,10 +767,10 @@ public static Tensor floordiv(Tensor x, Tensor y, string name = null) } public static Tensor minimum(Tx x, Ty y, string name = null) - => gen_math_ops.minimum(x, y, name: name); + => gen_math_ops.minimum(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); public static Tensor maximum(Tx x, Ty y, string name = null) - => gen_math_ops.maximum(x, y, name: name); + => gen_math_ops.maximum(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); /// /// Multiplies matrix `a` by matrix `b`, producing `a` * `b`. @@ -777,10 +794,7 @@ public static Tensor matmul(Tensor a, Tensor b, bool adjoint_a = false, bool adjoint_b = false, bool a_is_sparse = false, bool b_is_sparse = false, string name = null) - { - Tensor result = null; - - tf_with(ops.name_scope(name, "MatMul", new Tensor[] { a, b }), scope => + => tf_with(ops.name_scope(name, "MatMul", (a, b)), scope => { name = scope; @@ -801,12 +815,10 @@ public static Tensor matmul(Tensor a, Tensor b, transpose_b = true; } - result = gen_math_ops.mat_mul(a, b, transpose_a, transpose_b, name); + return tf.Context.ExecuteOp("MatMul", name, new ExecuteOpArgs(a, b) + .SetAttributes(new { transpose_a, transpose_b })); }); - return result; - } - public static Tensor batch_matmul(Tensor x, Tensor y, bool adj_x = false, bool adj_y = false, string name = null) @@ -821,6 +833,18 @@ public static Tensor batch_matmul(Tensor x, Tensor y, .SetAttributes(new { adj_x, adj_y })); }); + public static Tensor count_nonzero_v2(Tensor input, + Axis? axis, + bool keepdims = false, + string name = null, + TF_DataType dtype = TF_DataType.TF_INT64) + => tf_with(ops.name_scope(name, "count_nonzero", input), scope => + { + name = scope; + var zero = array_ops.zeros(Shape.Scalar, dtype: input.dtype); + return reduce_sum(cast(gen_math_ops.not_equal(input, zero), dtype), axis: axis, keepdims: keepdims); + }); + public static Tensor bincount(Tensor arr, Tensor weights = null, Tensor minlength = null, Tensor maxlength = null, @@ -839,10 +863,24 @@ public static Tensor bincount(Tensor arr, Tensor weights = null, output_size = math_ops.maximum(minlength, output_size); if (maxlength != null) output_size = math_ops.minimum(maxlength, output_size); - var weights = constant_op.constant(new long[0], dtype: dtype); + weights = weights ?? constant_op.constant(new int[0], dtype: dtype); return tf.Context.ExecuteOp("Bincount", name, new ExecuteOpArgs(arr, output_size, weights)); } + else + { + var array_is_nonempty = math_ops.reduce_prod(array_ops.shape(arr)) > 0; + var output_size = math_ops.cast(array_is_nonempty, arr.dtype) * (math_ops.reduce_max(arr) + 1); + if (minlength != null) + output_size = math_ops.maximum(minlength, output_size); + if (maxlength != null) + output_size = math_ops.minimum(maxlength, output_size); + weights = weights ?? array_ops.constant(new int[0], dtype: dtype); + return tf.Context.ExecuteOp("DenseBincount", name, + new ExecuteOpArgs(arr, output_size, weights, binary_output) + .SetAttributes(new { binary_output })); + } + throw new NotImplementedException(""); }); @@ -877,13 +915,29 @@ public static Tensor tensordot(Tensor a, Tensor b, NDArray axes, string name = n var (a_reshape, a_free_dims, a_free_dims_static) = _tensordot_reshape(a, a_axes); var (b_reshape, b_free_dims, b_free_dims_static) = _tensordot_reshape(b, b_axes, true); var ab_matmul = matmul(a_reshape, b_reshape); - var dims = new List(); - dims.AddRange(a_free_dims); - dims.AddRange(b_free_dims); - if (ab_matmul.shape.Equals(dims)) - return ab_matmul; + if(a_free_dims is int[] a_free_dims_list && b_free_dims is int[] b_free_dims_list) + { + var total_free_dims = a_free_dims_list.Concat(b_free_dims_list).ToArray(); + if (ab_matmul.shape.IsFullyDefined && ab_matmul.shape.as_int_list().SequenceEqual(total_free_dims)) + { + return ab_matmul; + } + else + { + return array_ops.reshape(ab_matmul, ops.convert_to_tensor(total_free_dims), name); + } + } else - return array_ops.reshape(ab_matmul, tf.constant(dims.ToArray()), name: name); + { + var a_free_dims_tensor = ops.convert_to_tensor(a_free_dims, dtype: dtypes.int32); + var b_free_dims_tensor = ops.convert_to_tensor(b_free_dims, dtype: dtypes.int32); + var product = array_ops.reshape(ab_matmul, array_ops.concat(new[] { a_free_dims_tensor, b_free_dims_tensor }, 0), name); + if(a_free_dims_static is not null && b_free_dims_static is not null) + { + product.shape = new Shape(a_free_dims_static.Concat(b_free_dims_static).ToArray()); + } + return product; + } }); } @@ -899,14 +953,42 @@ public static Tensor tensordot(Tensor a, Tensor b, NDArray axes, string name = n return (Binding.range(a.shape.ndim - axe, a.shape.ndim).ToArray(), Binding.range(0, axe).ToArray()); } - else + else if(axes.rank == 1) { + if (axes.shape[0] != 2) + { + throw new ValueError($"`axes` must be an integer or have length 2. Received {axes}."); + } (int a_axe, int b_axe) = (axes[0], axes[1]); return (new[] { a_axe }, new[] { b_axe }); } + else if(axes.rank == 2) + { + if (axes.shape[0] != 2) + { + throw new ValueError($"`axes` must be an integer or have length 2. Received {axes}."); + } + int[] a_axes = new int[axes.shape[1]]; + int[] b_axes = new int[axes.shape[1]]; + for(int i = 0; i < a_axes.Length; i++) + { + a_axes[i] = axes[0, i]; + b_axes[i] = axes[1, i]; + if (a_axes[i] == -1 || b_axes[i] == -1) + { + throw new ValueError($"Different number of contraction axes `a` and `b`," + + $"{len(a_axes)} != {len(b_axes)}."); + } + } + return (a_axes, b_axes); + } + else + { + throw new ValueError($"Invalid rank {axes.rank} to make tensor dot."); + } } - static (Tensor, int[], int[]) _tensordot_reshape(Tensor a, int[] axes, bool flipped = false) + static (Tensor, object, int[]) _tensordot_reshape(Tensor a, int[] axes, bool flipped = false) { if (a.shape.IsFullyDefined && isinstance(axes, (typeof(int[]), typeof(Tuple)))) { @@ -949,6 +1031,58 @@ public static Tensor tensordot(Tensor a, Tensor b, NDArray axes, string name = n var reshaped_a = array_ops.reshape(a_trans, new_shape); return (reshaped_a, free_dims, free_dims); } + else + { + int[] free_dims_static; + Tensor converted_shape_a, converted_axes, converted_free; + if (a.shape.ndim != -1) + { + var shape_a = a.shape.as_int_list(); + for(int i = 0; i < axes.Length; i++) + { + if (axes[i] < 0) + { + axes[i] += shape_a.Length; + } + } + var free = Enumerable.Range(0, shape_a.Length).Where(i => !axes.Contains(i)).ToArray(); + + var axes_dims = axes.Select(i => shape_a[i]); + var free_dims = free.Select(i => shape_a[i]).ToArray(); + free_dims_static = free_dims; + converted_axes = ops.convert_to_tensor(axes, dtypes.int32, "axes"); + converted_free = ops.convert_to_tensor(free, dtypes.int32, "free"); + converted_shape_a = array_ops.shape(a); + } + else + { + free_dims_static = null; + converted_shape_a = array_ops.shape(a); + var rank_a = array_ops.rank(a); + converted_axes = ops.convert_to_tensor(axes, dtypes.int32, "axes"); + converted_axes = array_ops.where_v2(converted_axes >= 0, converted_axes, converted_axes + rank_a); + (converted_free, var _) = gen_ops.list_diff(gen_math_ops.range(ops.convert_to_tensor(0), rank_a, ops.convert_to_tensor(1)), + converted_axes, dtypes.int32); + } + var converted_free_dims = array_ops.gather(converted_shape_a, converted_free); + var converted_axes_dims = array_ops.gather(converted_shape_a, converted_axes); + var prod_free_dims = reduce_prod(converted_free_dims); + var prod_axes_dims = reduce_prod(converted_axes_dims); + Tensor reshaped_a; + if (flipped) + { + var perm = array_ops.concat(new[] { converted_axes, converted_free }, 0); + var new_shape = array_ops.stack(new[] { prod_axes_dims, prod_free_dims }); + reshaped_a = array_ops.reshape(array_ops.transpose(a, perm), new_shape); + } + else + { + var perm = array_ops.concat(new[] { converted_free, converted_axes }, 0); + var new_shape = array_ops.stack(new[] { prod_free_dims, prod_axes_dims }); + reshaped_a = array_ops.reshape(array_ops.transpose(a, perm), new_shape); + } + return (reshaped_a, converted_free_dims, free_dims_static); + } throw new NotImplementedException("_tensordot_reshape"); } diff --git a/src/TensorFlowNET.Core/Operations/nn_impl.py.cs b/src/TensorFlowNET.Core/Operations/nn_impl.py.cs index d24e81ef4..ca4b885f7 100644 --- a/src/TensorFlowNET.Core/Operations/nn_impl.py.cs +++ b/src/TensorFlowNET.Core/Operations/nn_impl.py.cs @@ -236,7 +236,7 @@ public static Tensor zero_fraction(Tensor value, string name = null) Tensor size = array_ops.size(value, out_type: dtypes.int64); Tensor zero_fraction_float32 = null; - size = gen_math_ops.less_equal(size, dtypes.int32.max()); + size = gen_math_ops.less_equal(size, ops.convert_to_tensor(dtypes.int32.max())); Tensor num_nonzero = control_flow_ops.cond( size, () => math_ops.cast(_count_nonzero(value, dtype: dtypes.int32), TF_DataType.TF_INT64), diff --git a/src/TensorFlowNET.Core/Operations/nn_ops.cs b/src/TensorFlowNET.Core/Operations/nn_ops.cs index 307b1f8af..00d7d316b 100644 --- a/src/TensorFlowNET.Core/Operations/nn_ops.cs +++ b/src/TensorFlowNET.Core/Operations/nn_ops.cs @@ -55,7 +55,7 @@ public static Tensor bias_add(Tensor value, return tf_with(ops.name_scope(name, "BiasAdd", new { value, bias }), scope => { name = scope; - return gen_nn_ops.bias_add(value, bias, data_format: data_format, name: name); + return gen_nn_ops.bias_add(value, ops.convert_to_tensor(bias), data_format: data_format, name: name); }); } @@ -109,11 +109,15 @@ private static Tensor _get_noise_shape(Tensor x, Tensor noise_shape) return noise_shape; } + public static Tensors top_kv2(Tensor input, int k, bool sorted = true, string name = null) + => tf.Context.ExecuteOp("TopKV2", name, new ExecuteOpArgs(input, k) + .SetAttributes(new { sorted })); + public static Tensor in_top_k(Tensor predictions, Tensor targets, int k, string name = null) { return tf_with(ops.name_scope(name, "in_top_k"), delegate { - return gen_nn_ops.in_top_kv2(predictions, targets, k, name: name); + return gen_nn_ops.in_top_kv2(predictions, targets, ops.convert_to_tensor(k), name: name); }); } @@ -128,6 +132,9 @@ public static Tensor softmax(Tensor logits, int axis = -1, string name = null) return _softmax(logits, gen_nn_ops.softmax, axis, name); } + public static Tensor softplus(Tensor features, string name = null) + => tf.Context.ExecuteOp("Softplus", name, new ExecuteOpArgs(features)); + public static Tensor l2_loss(Tensor t, string name = null) => tf.Context.ExecuteOp("L2Loss", name, new ExecuteOpArgs(t)); @@ -215,8 +222,8 @@ public static Tensor sparse_softmax_cross_entropy_with_logits(Tensor labels = nu // Check if no reshapes are required. if (logits.shape.ndim == 2) { - var (cost, _) = gen_nn_ops.sparse_softmax_cross_entropy_with_logits( - precise_logits, labels, name: name); + var cost = gen_nn_ops.sparse_softmax_cross_entropy_with_logits( + precise_logits, labels, name: name)[0]; if (logits.dtype == dtypes.float16) return math_ops.cast(cost, dtypes.float32); else @@ -254,7 +261,8 @@ public static Tensor softmax_cross_entropy_with_logits_v2_helper(Tensor labels, // The second output tensor contains the gradients. We use it in // _CrossEntropyGrad() in nn_grad but not here. - var (cost, unused_backprop) = gen_nn_ops.softmax_cross_entropy_with_logits(precise_logits, labels, name: name); + var entropy = gen_nn_ops.softmax_cross_entropy_with_logits(precise_logits, labels, name: name); + var (cost, unused_backprop) = (entropy[0], entropy[1]); // The output cost shape should be the input minus axis. var output_shape = array_ops.slice(input_shape, diff --git a/src/TensorFlowNET.Core/Operations/resource_variable_ops.cs b/src/TensorFlowNET.Core/Operations/resource_variable_ops.cs index ee751acf4..c06e822d2 100644 --- a/src/TensorFlowNET.Core/Operations/resource_variable_ops.cs +++ b/src/TensorFlowNET.Core/Operations/resource_variable_ops.cs @@ -17,7 +17,15 @@ limitations under the License. using System; using System.Linq; using Tensorflow.Framework; +using Tensorflow.Train; +using Tensorflow.Training.Saving.SavedModel; +using Tensorflow.Variables; using static Tensorflow.CppShapeInferenceResult.Types; +using static Tensorflow.Binding; +using Tensorflow.Operations; +using System.Buffers; +using Tensorflow.Eager; +using Tensorflow.Graphs; namespace Tensorflow { @@ -28,15 +36,16 @@ public static class resource_variable_ops { public static Operation shape_safe_assign_variable_handle(Tensor handle, int[] shape, Tensor value, string name = null) { + // TODO(Rinne): deal with `_handle_graph`. var value_tensor = ops.convert_to_tensor(value); return gen_resource_variable_ops.assign_variable_op(handle, value_tensor, name: name); } - public static bool is_resource_variable(IVariableV1 var) + public static bool is_resource_variable(object var) { - return var is ResourceVariable; + return var is BaseResourceVariable; } /// @@ -70,6 +79,18 @@ public static Tensor variable_handle_from_shape_and_dtype(Shape shape, TF_DataTy string shared_name, string name, bool graph_mode, Tensor initial_value = null) { var container = ops.get_default_graph().Container; + if(container is null) + { + container = ""; + } + if (!graph_mode) + { + if(shared_name is not null) + { + throw new Exception("Using an explicit shared_name is not allowed when executing eagerly."); + } + shared_name = tf.Context.anonymous_name(); + } var handle = gen_resource_variable_ops.var_handle_op(shape: shape, dtype: dtype, shared_name: shared_name, @@ -87,26 +108,20 @@ public static Tensor variable_handle_from_shape_and_dtype(Shape shape, TF_DataTy } else { - // We do not want two distinct ResourceVariable objects for the same - // underlying resource in the runtime. - // When in eager mode, explicitly ensure so here. When in graph mode, it's - // ensured by always generating different variable names. - var exists = gen_resource_variable_ops.var_is_initialized_op(handle); - - // We create an assert Op instead of checking right away in order to be - // compatible with ASYNC execution mode. Further, since not all devices - // support string tensors, we encode the assertion string in the Op name - /*gen_logging_ops.assert(gen_math_ops.logical_not(exists), - new[] { exists }, - name: "EagerVariableNameReuse");*/ - - var handle_data = new HandleData(); - handle_data.IsSet = true; - handle_data.ShapeAndType.Add(new HandleShapeAndType + var handle_data = handle_data_util.create_handle_data(shape, dtype); + if (initial_value is not null && initial_value.dtype == dtypes.variant) { - Dtype = dtype.as_datatype_enum(), - Shape = shape.as_proto() - }); + var extra_handle_data = get_eager_safe_handle_data(initial_value); + if (extra_handle_data is not null && extra_handle_data.IsSet) + { + if (!handle_data.IsSet || handle_data.ShapeAndType.Count != 1) + { + throw new RuntimeError($"Expected VarHandleOp to return a length==1 shape_and_type, " + + $"but saw: '{handle_data}'"); + } + handle_data.ShapeAndType.AddRange(extra_handle_data.ShapeAndType); + } + } _set_handle_shapes_and_types(handle, handle_data, graph_mode); return handle; } @@ -118,7 +133,7 @@ public static Tensor variable_handle_from_shape_and_dtype(Shape shape, TF_DataTy /// /// /// - private static void _set_handle_shapes_and_types(Tensor tensor, HandleData handle_data, bool graph_mode) + internal unsafe static void _set_handle_shapes_and_types(Tensor tensor, HandleData handle_data, bool graph_mode) { if (!graph_mode) return; @@ -136,6 +151,47 @@ private static void _set_handle_shapes_and_types(Tensor tensor, HandleData handl ranks[i] = shapeAndType.Shape.UnknownRank ? -1 : shapeAndType.Shape.Dim.Count; var dims = shapeAndType.Shape.Dim.Select(x => x.Size).ToArray(); } + + //tensor.HandleData = handle_data; + //if (!graph_mode) + // return; + + //var shapes = handle_data.ShapeAndType.Select(x => x.Shape); + //var types = handle_data.ShapeAndType.Select(x => x.Dtype).ToArray(); + //var ranks = shapes.Select(s => s.UnknownRank ? -1 : s.Dim.Count).ToArray(); + //var converted_shapes = shapes.Select>(s => + //{ + // if (!s.UnknownRank) + // { + // return s.Dim.Select(d => (int)d.Size).ToArray(); + // } + // else + // { + // return Memory.Empty; + // } + //}).ToArray(); + + //List handles = new(); + //IntPtr[] shapes_with_ptr = new IntPtr[converted_shapes.Length]; + //foreach(var (i, m) in enumerate(converted_shapes)) + //{ + // if(m.IsEmpty) + // { + // shapes_with_ptr[i] = IntPtr.Zero; + // } + // else + // { + // var handle = m.Pin(); + // handles.Add(handle); + // shapes_with_ptr[i] = new IntPtr(handle.Pointer); + // } + //} + + //Status status = new(); + //// TODO(Rinne): enable it. + //c_api.TF_GraphSetOutputHandleShapesAndTypes(tensor.op.graph.c_graph, tensor._as_tf_output(), + // shapes_with_ptr.Length, shapes_with_ptr, ranks, types, status); + //handles = null; } /// @@ -154,7 +210,75 @@ private static HandleData _combine_handle_data(Tensor handle, Tensor initial_val throw new NotImplementedException(""); } - private static HandleData get_eager_safe_handle_data(Tensor handle) + /// + /// Copies an existing variable to a new graph, with no initializer. + /// + /// + public static UninitializedVariable copy_to_graph_uninitialized(ResourceVariable variable) + { + var new_variable = new UninitializedVariable( + trainable: variable.Trainable, + shape: variable.shape, + dtype: variable.dtype, + name: variable.SharedName, + aggregation: variable.Aggregation, + extra_handle_data: null); + new_variable._maybe_initialize_trackable(); + return new_variable; + } + + /// + /// Writes additional information of the variable into the SavedObject proto. + /// + /// + /// + /// + /// + public static void write_object_proto_for_resource_variable(BaseResourceVariable resource_variable, SavedObject proto, SaveOptions options, bool enforcing_naming = true) + { + // lack of API: `proto.Variable.SetInParent()`. + if(enforcing_naming && !resource_variable.Name.EndsWith(":0")) + { + throw new ValueError($"Cowardly refusing to save variable {resource_variable.Name} because of " + + $"unexpected suffix in the name (expected ':0') which won't be restored."); + } + if(proto.Variable is null) + { + proto.Variable = new SavedVariable(); + } + proto.Variable.Name = meta_graph.op_name(resource_variable.Name); + proto.Variable.Trainable = resource_variable.Trainable; + proto.Variable.Dtype = resource_variable.dtype.as_datatype_enum(); + // TODO: lack of API `proto.Variable.Synchronization = resource_variable.synchronization.value`. + proto.Variable.Aggregation = resource_variable.Aggregation; + proto.Variable.Shape = resource_variable.shape.as_proto(); + + if (options.experimental_variable_policy.save_variable_devices()) + { + if (!string.IsNullOrEmpty(resource_variable.Device)) + { + proto.Variable.Device = resource_variable.Device; + } + } + } + + public static void _maybe_set_handle_data(TF_DataType dtype, Tensor handle, Tensor tensor) + { + if(dtype == dtypes.variant) + { + var handle_data = get_eager_safe_handle_data(handle); + if(handle_data.IsSet && handle_data.ShapeAndType.Count > 1) + { + tensor.HandleData = new HandleData() + { + IsSet = true + }; + tensor.HandleData.ShapeAndType.AddRange(handle_data.ShapeAndType.Skip(1)); + } + } + } + + public static HandleData get_eager_safe_handle_data(Tensor handle) { if (handle.Handle == null) { @@ -170,6 +294,27 @@ private static HandleData get_eager_safe_handle_data(Tensor handle) { return HandleData.Parser.ParseFrom(handle.BufferToArray()); } + //if(handle is EagerTensor) + //{ + // return handle.HandleData; + //} + //else + //{ + // return handle_data_util.get_resource_handle_data(handle); + //} + } + + public static void variable_accessed(IVariableV1 variable) + { + if (ops.get_default_graph() is FuncGraph func_graph) + { + func_graph.watch_variable(variable); + } + if (variable.Trainable) + { + foreach (var tape in tf.GetTapeSet()) + tape.VariableAccessed(variable); + } } } } diff --git a/src/TensorFlowNET.Core/Operations/sort_ops.cs b/src/TensorFlowNET.Core/Operations/sort_ops.cs index 1dcaf1f84..db38a073b 100644 --- a/src/TensorFlowNET.Core/Operations/sort_ops.cs +++ b/src/TensorFlowNET.Core/Operations/sort_ops.cs @@ -44,7 +44,32 @@ public static Tensor argsort(Tensor values, Axis axis = null, string direction = { sorted = true })); - return indices; + return indices.Single; + } + + public static Tensor sort(Tensor values, Axis axis, string direction = "ASCENDING", string? name = null) + { + var k = array_ops.shape(values)[axis]; + values = -values; + var static_rank = values.shape.ndim; + var top_k_input = values; + if (axis == -1 || axis + 1 == values.shape.ndim) + { + } + else + { + if (axis == 0 && static_rank == 2) + top_k_input = array_ops.transpose(values, new[] { 1, 0 }); + else + throw new NotImplementedException(""); + } + + (values, _) = tf.Context.ExecuteOp("TopKV2", name, + new ExecuteOpArgs(top_k_input, k).SetAttributes(new + { + sorted = true + })); + return -values; } public Tensor matrix_inverse(Tensor input, bool adjoint = false, string name = null) diff --git a/src/TensorFlowNET.Core/Operations/stateless_random_ops.cs b/src/TensorFlowNET.Core/Operations/stateless_random_ops.cs new file mode 100644 index 000000000..e9718770c --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/stateless_random_ops.cs @@ -0,0 +1,62 @@ +/***************************************************************************** + Copyright 2023 Haiping Chen. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +******************************************************************************/ + +using static Tensorflow.ApiDef.Types; +using System.Reflection; +using static Tensorflow.Binding; +using System; + +namespace Tensorflow; + +public class stateless_random_ops +{ + public static Tensor stateless_random_normal(Shape shape, + float mean = 0.0f, + float stddev = 1.0f, + TF_DataType dtype = TF_DataType.TF_FLOAT, + int[]? seed = null, + string name = null) + { + return tf_with(ops.name_scope(name, "stateless_random_normal", new { shape, seed, mean, stddev }), scope => + { + name = scope; + var shape_tensor = _ShapeTensor(shape); + var mean_tensor = ops.convert_to_tensor(mean, dtype: dtype, name: "mean"); + var stddev_tensor = ops.convert_to_tensor(stddev, dtype: dtype, name: "stddev"); + + if (seed == null) + { + seed = new[] { new Random().Next(), 0 }; + } + var (key, counter) = _get_key_counter(seed, 3); + var rnd = gen_random_ops.stateless_random_normal_v2(shape: shape_tensor, key: key, counter: counter, dtype: dtype, alg: 3); + var value = math_ops.add(rnd * stddev, mean_tensor, name: name); + // tensor_util.maybe_set_static_shape(value, shape) + return value; + }); + } + + private static Tensor _ShapeTensor(int[] shape) + { + return ops.convert_to_tensor(shape, name: "shape"); + } + + private static (Tensor, Tensor) _get_key_counter(int[] seed, int alg) + { + var results = gen_random_ops.stateless_random_get_key_counter(seed); + return (results[0], results[1]); + } +} diff --git a/src/TensorFlowNET.Core/Operations/tensor_array_ops.cs b/src/TensorFlowNET.Core/Operations/tensor_array_ops.cs index 7d2da544c..6be0706c2 100644 --- a/src/TensorFlowNET.Core/Operations/tensor_array_ops.cs +++ b/src/TensorFlowNET.Core/Operations/tensor_array_ops.cs @@ -13,11 +13,23 @@ public class tensor_array_ops /// public static TensorArray build_ta_with_new_flow(TensorArray old_ta, Tensor flow) { - var new_ta = tf.TensorArray( - dtype: old_ta.dtype, - infer_shape: old_ta.infer_shape, + if (!tf.Context.executing_eagerly() && old_ta is not _GraphTensorArrayV2 && control_flow_util.EnableControlFlowV2(ops.get_default_graph())) + { + throw new NotImplementedException("Attempting to build a graph-mode TF2-style " + + "TensorArray from either an eager-mode " + + "TensorArray or a TF1-style TensorArray. " + + "This is not currently supported. You may be " + + "attempting to capture a TensorArray " + + "inside a tf.function or tf.data map function. " + + "Instead, construct a new TensorArray inside " + + "the function."); + } + var new_ta = TensorArray.Create(old_ta.dtype, handle: old_ta.handle, flow: flow, infer_shape: old_ta.infer_shape, colocate_with_first_write_call: old_ta.colocate_with_first_write_call); - + new_ta._dynamic_size = old_ta._dynamic_size; + new_ta._size = old_ta._size; + new_ta._colocate_with = old_ta._colocate_with; + new_ta._element_shape = old_ta._element_shape; return new_ta; } diff --git a/src/TensorFlowNET.Core/Operations/while_v2.cs b/src/TensorFlowNET.Core/Operations/while_v2.cs new file mode 100644 index 000000000..aae15b77d --- /dev/null +++ b/src/TensorFlowNET.Core/Operations/while_v2.cs @@ -0,0 +1,400 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Text; +using Tensorflow.Common.Extensions; +using Tensorflow.Common.Types; +using Tensorflow.Eager; +using Tensorflow.Framework; +using Tensorflow.Framework.Models; +using Tensorflow.Graphs; +using static Tensorflow.Binding; + +namespace Tensorflow.Operations +{ + class _OperationWithOutputs : Operation + { + public _OperationWithOutputs(IntPtr handle, Graph g = null) + { + _handle = handle; + _graph = g; + _outputs = null; + g._add_op(this); + } + } + internal class while_v2 + { + public static Tensor[] while_loop(Func cond, + Func body, + Tensors loop_vars, + int maximum_iterations = -1, + int parallel_iterations = 10, + string name = null, + bool back_prop = true, + bool return_same_structure = true) + { + var orig_loop_vars = loop_vars; + var flat_orig_loop_vars = orig_loop_vars.Flatten().ToArray(); + int len_orig_loop_vars = orig_loop_vars.Length; + + loop_vars = _tensor_array_to_flow(loop_vars); + loop_vars = Nest.MapStructure(x => _convert_to_tensor_or_indexed_slices(x), loop_vars).ToTensors(); + + var loop_vars_signature = Nest.MapStructure(x => new TensorSpec(x.shape, x.dtype), loop_vars); + + var flat_shape_invariants = Nest.Flatten(loop_vars_signature).Select(x => x.shape).ToArray(); + + if(string.IsNullOrEmpty(name)) + { + name = "while"; + } + + return tf_with(ops.name_scope(name), nameScopeWhile => + { + string scope = (nameScopeWhile as ops.NameScope).scope_name; + string cond_name = control_flow_util.unique_fn_name(scope, "cond"); + string body_name = control_flow_util.unique_fn_name(scope, "body"); + + var maximum_iterations_loop_var = _build_maximum_iterations_loop_var(maximum_iterations); + var loop_counter = constant_op.constant(0, maximum_iterations == -1 ? TF_DataType.DtInvalid : maximum_iterations_loop_var.dtype, + name: "loop_counter"); + loop_vars = new Tensor[] { loop_counter, maximum_iterations_loop_var }.Concat(loop_vars).ToArray(); + + var func_graph_signature = new TensorSpec[] {TensorSpec.FromTensor(loop_counter),TensorSpec.FromTensor(maximum_iterations_loop_var)} + .Concat(loop_vars_signature.Flatten()).ToArray(); + + // TODO(Rinne): possible wrong implemenation here. + var add_control_dependencies = false; + + object[] wrapped_cond(object[] inputs) + { + Tensor loop_counter = (Tensor)inputs[0]; + Tensor maximum_iterations_arg = (Tensor)inputs[1]; + Tensor[] args = inputs.Skip(2).Select(x => (Tensor)x).ToArray(); + var pred = cond(_pack_sequence_as(loop_vars_signature, flat_orig_loop_vars, args)); + if(pred.shape.IsNull || pred.shape.ndim > 0) + { + pred = array_ops.squeeze(pred); + } + if(maximum_iterations == -1) + { + return new object[] { pred }; + } + else + { + return new object[] { math_ops.logical_and(loop_counter < maximum_iterations_arg, pred) }; + } + } + + var cond_graph = FuncGraph.func_graph_from_func(cond_name, wrapped_cond, null, + null, signature: func_graph_signature, add_control_dependencies: add_control_dependencies); + + bool stateful_parallelism = false; + + object[] wrapped_body(object[] inputs) + { + Tensor loop_counter = (Tensor)inputs[0]; + Tensor maximum_iterations_arg = (Tensor)inputs[1]; + Tensor[] args = inputs.Skip(2).Select(x => (Tensor)x).ToArray(); + + _copy_handle_data(loop_vars.Flatten().Skip(2), args); + + foreach(var t in cond_graph.external_captures) + { + var graph = (FuncGraph)(ops.get_default_graph()); + graph.capture(t); + } + + var outputs = body(_pack_sequence_as(loop_vars_signature, flat_orig_loop_vars, args)); + outputs = _tensor_array_to_flow(outputs); + + return new object[] { loop_counter + 1, maximum_iterations_arg }.Concat(outputs).ToArray(); + } + + var body_graph = FuncGraph.func_graph_from_func(body_name, wrapped_body, null, null, func_graph_signature, + add_control_dependencies: add_control_dependencies, acd_record_initial_resource_uses: stateful_parallelism); + + // TODO(Rinne): possible wrong implementation here. + NestList loop_vars_list = new(new Tensors[] { loop_vars, body_graph.external_captures.ToTensors() }); + body_graph.Outputs.AddRange(body_graph.internal_captures); + + cond_graph.as_default(); + int num_cond_captures = cond_graph.external_captures.Length; + Debug.Assert(cond_graph.external_captures.SequenceEqual(body_graph.external_captures.Take(num_cond_captures).ToArray())); + _duplicate_body_captures_in_cond(cond_graph, body_graph.external_captures.Skip(num_cond_captures).ToArray()); + cond_graph.Exit(); + + int first_loop_var_index = 2; + + int num_flattened_oututs = orig_loop_vars.Length; + int num_original_outputs = body_graph.Outputs.Length; + if (back_prop && control_flow_util.output_all_intermediates()) + { + var intermediate_tensors = _get_intermediates(body_graph); + + foreach(var intermediate_tensor in intermediate_tensors) + { + var tensor_list = list_ops.empty_tensor_list(intermediate_tensor.shape, intermediate_tensor.dtype, maximum_iterations); + loop_vars_list.Values.Add(tensor_list); + + cond_graph.as_default(); + cond_graph.capture(tensor_list); + cond_graph.Exit(); + + body_graph.as_default(); + var appended_tensor_list = gen_ops.tensor_list_push_back(tensor_list, intermediate_tensor); + body_graph.Outputs.Add(appended_tensor_list); + body_graph.Exit(); + } + } + + List flattened_loop_vars = new(); + foreach(var item in loop_vars_list.Values) + { + flattened_loop_vars.AddRange(item.Flatten()); + } + // skip the check + + // TODO(Rinne): deal with control dependencies + var output_shapes = body_graph.Outputs.Select(t => t.shape).ToArray(); + var span = new Span(output_shapes).Slice(first_loop_var_index, num_flattened_oututs); + for(int i = 0; i < span.Length; i++) + { + span[i] = flat_shape_invariants[i]; + } + + Tensor[] outputs = _build_while_op(flattened_loop_vars.ToArray(), cond_graph, body_graph, output_shapes, parallel_iterations, + (nameScopeWhile as ops.NameScope).scope_name, num_original_outputs, stateful_parallelism); + + if (!ops.get_default_graph().building_function) + { + outputs = outputs.Select(t => array_ops.identity(t)).ToArray(); + } + + var output_loop_vars = outputs.Skip(first_loop_var_index).Take(num_flattened_oututs).ToArray(); + + if (!back_prop) + { + output_loop_vars = output_loop_vars.Select(t => array_ops.stop_gradient(t)).ToArray(); + } + outputs = _pack_sequence_as(loop_vars_signature, flat_orig_loop_vars, output_loop_vars); + + return outputs; + }); + } + + private static Tensors _tensor_array_to_flow(Tensors loop_vars) + { + if(loop_vars.NestType == NestType.Node) + { + if(loop_vars.NodeValue is FakeTensorByTensorArray fake) + { + return new Tensors(fake.TensorArray.flow); + } + else + { + return new Tensors(loop_vars.NodeValue!); + } + } + else if(loop_vars.NestType == NestType.List) + { + List> list = new(); + foreach(var item in loop_vars.ListValue!) + { + if(item.NestType == NestType.Node) + { + var nested = item.AsNest(); + if (nested.NodeValue is FakeTensorByTensorArray fake) + { + list.Add(new Nest(fake.TensorArray.flow)); + } + else + { + list.Add(new Nest(nested.NodeValue!)); + } + } + else + { + list.Add(new Nest(item.AsNest())); + } + } + return Tensors.FromNest(new Nest(list)); + } + else + { + throw new NotImplementedException(); + } + } + + private static Tensor[] _build_while_op(Tensor[] loop_vars, FuncGraph cond_graph, FuncGraph body_graph, + Shape[] output_shapes, int parallel_iterations, string name, int num_original_outputs, bool stateful_parallelism) + { + var cond_stateful_ops = cond_graph.get_operations().Select(x => x.op); + var body_stateful_ops = body_graph.get_operations().Select(x => x.op); + + bool is_stateful = cond_stateful_ops.Count() > 0 || body_stateful_ops.Count() > 0; + + Tensor[] _make_op(Tensor[] inputs) + { + Tensor[] outputs; + if (is_stateful) + { + outputs = gen_functional_ops._while( + inputs, + control_flow_util.create_new_tf_function(cond_graph), + control_flow_util.create_new_tf_function(body_graph), + output_shapes, + parallel_iterations, + name + ); + } + else + { + outputs = gen_functional_ops.stateless_while( + inputs, + control_flow_util.create_new_tf_function(cond_graph), + control_flow_util.create_new_tf_function(body_graph), + output_shapes, + parallel_iterations, + name + ); + } + var (while_op, tensors) = control_flow_util.get_op_and_outputs(outputs); + _copy_handle_data(body_graph.Outputs, tensors); + _set_read_only_resource_inputs_attr(while_op, new FuncGraph[]{cond_graph, body_graph}); + while_op._set_attr("_num_original_outputs", new AttrValue() { I = num_original_outputs }); + while_op._set_attr("_stateful_parallelism", new AttrValue() { B = stateful_parallelism }); + + cond_graph.outer_graph = ops.get_default_graph(); + body_graph.outer_graph = ops.get_default_graph(); + // TODO(Rinne): set the two graphs to while_op + return tensors; + } + + return control_flow_util.run_as_function_for_tape_gradients(_make_op, loop_vars); + } + + /// + /// Sets the list of resource inputs which are read-only. This is used by AutomaticControlDependencies. + /// + /// + /// + private static void _set_read_only_resource_inputs_attr(Operation op, FuncGraph[] branch_graphs) + { + List read_only_indices = Enumerable.Range(0, op.inputs.Length).ToList(); + foreach(var branch_graph in branch_graphs) + { + if (read_only_indices.Count == 0) + { + break; + } + var branch_read_only_indices = auto_control_deps_utils.get_read_only_resource_input_indices_graph(branch_graph); + read_only_indices = read_only_indices.Intersect(branch_read_only_indices).ToList(); + } + AttrValue.Types.ListValue listValue = new(); + listValue.I.AddRange(read_only_indices.OrderBy(x => x).Select(x => (long)x)); + op._set_attr(auto_control_deps_utils.READ_ONLY_RESOURCE_INPUTS_ATTR, new AttrValue() + { + List = listValue + }); + } + + private static Tensors _pack_sequence_as(INestStructure loop_vars_signature, Tensor[] flat_orig_loop_vars, Tensor[] loop_vars) + { + var flattened_loop_vars = zip(loop_vars, flat_orig_loop_vars).Select<(Tensor, Tensor), Tensor>(item => + { + var (flow, y) = item; + if (y is FakeTensorByTensorArray ta) + { + return new FakeTensorByTensorArray(tensor_array_ops.build_ta_with_new_flow(ta.TensorArray, flow)); + } + else + { + return flow; + } + }).ToArray(); + return Nest.PackSequenceAs(loop_vars_signature, flattened_loop_vars).ToTensors(); + } + + private static Tensor[] _get_intermediates(FuncGraph func_graph) + { + List intermediates = new(); + var reversed_captures = func_graph.captures.ToDictionary(x => x.Item2, x => x.Item1); + + foreach(var op in func_graph.get_operations()) + { + Debug.Assert(op is Operation); + var oper = (Operation)op; + if(oper.type == "Identity" || oper.type == "MutexLock") + { + continue; + } + foreach(var o in op.outputs) + { + if(o != func_graph.Inputs[0] && o.dtype != dtypes.resource && !reversed_captures.ContainsKey(o)) + { + intermediates.Add(o); + } + } + } + return intermediates.ToArray(); + } + + private static void _duplicate_body_captures_in_cond(FuncGraph cond_graph, Tensor[] body_graph_captures) + { + var types = body_graph_captures.Select(t => t.dtype).ToList(); + var c_graph = cond_graph.c_graph; + var placeholders = types.Select(x => CreatePlaceholder(c_graph, _build_cond_placeholders_name_prefix(cond_graph), x)).ToList(); + + var placeholder_ops = placeholders.Select(ph => new _OperationWithOutputs(ph.oper, cond_graph)).ToList(); + + List tensors = new(); + foreach(var (op, ph, dtype) in zip(placeholder_ops, placeholders, types)) + { + var tensor = Tensor._create_with_tf_output(op, 0, dtype, ph); + op._outputs = new Tensor[] { tensor }; + tensors.Add(tensor); + } + + var tuples = zip(body_graph_captures, tensors).ToList(); + var keys = body_graph_captures.Select(t => t.Id).ToList(); + cond_graph._captures.Update(zip(keys, tuples).ToDictionary(x => x.Item1, x => x.Item2)); + cond_graph.Inputs.AddRange(tensors); + } + + private static TF_Output CreatePlaceholder(SafeGraphHandle graph, string name, TF_DataType dtype) + { + var desc = c_api.TF_NewOperation(graph, "Placeholder", name); + c_api.TF_SetAttrType(desc, "dtype", dtype); + var op = c_api.TF_FinishOperation(desc, tf.Status); + tf.Status.Check(true); + var output = new TF_Output(); + output.oper = op; + output.index = 0; + return output; + } + + private static string _build_cond_placeholders_name_prefix(FuncGraph cond_graph) + { + return cond_graph.unique_name(cond_graph.Name + "___redundant_placeholder"); + } + + private static Tensor _convert_to_tensor_or_indexed_slices(Tensor value) + { + return ops.convert_to_tensor(value, as_ref: false); + } + + private static Tensor _build_maximum_iterations_loop_var(int maximum_iterations = -1) + { + return ops.convert_to_tensor(maximum_iterations, dtypes.int32, "maximum_iterations"); + } + + private static void _copy_handle_data(IEnumerable src_tensors, IEnumerable dst_tensors) + { + foreach(var (src_t, dst_t) in zip(src_tensors, dst_tensors)) + { + handle_data_util.copy_handle_data(src_t, dst_t); + } + } + } +} diff --git a/src/TensorFlowNET.Core/Protobuf/AllocationDescription.cs b/src/TensorFlowNET.Core/Protobuf/AllocationDescription.cs index fe484d997..bac94eb7e 100644 --- a/src/TensorFlowNET.Core/Protobuf/AllocationDescription.cs +++ b/src/TensorFlowNET.Core/Protobuf/AllocationDescription.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/allocation_description.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -43,23 +43,31 @@ static AllocationDescriptionReflection() { } #region Messages - public sealed partial class AllocationDescription : pb::IMessage { + public sealed partial class AllocationDescription : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AllocationDescription()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.AllocationDescriptionReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AllocationDescription() { OnConstruction(); } @@ -67,6 +75,7 @@ public AllocationDescription() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AllocationDescription(AllocationDescription other) : this() { requestedBytes_ = other.requestedBytes_; allocatedBytes_ = other.allocatedBytes_; @@ -78,6 +87,7 @@ public AllocationDescription(AllocationDescription other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AllocationDescription Clone() { return new AllocationDescription(this); } @@ -89,6 +99,7 @@ public AllocationDescription Clone() { /// Total number of bytes requested /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long RequestedBytes { get { return requestedBytes_; } set { @@ -103,6 +114,7 @@ public long RequestedBytes { /// Total number of bytes allocated if known /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllocatedBytes { get { return allocatedBytes_; } set { @@ -117,6 +129,7 @@ public long AllocatedBytes { /// Name of the allocator used /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string AllocatorName { get { return allocatorName_; } set { @@ -131,6 +144,7 @@ public string AllocatorName { /// Identifier of the allocated buffer if known /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllocationId { get { return allocationId_; } set { @@ -145,6 +159,7 @@ public long AllocationId { /// Set if this tensor only has one remaining reference /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool HasSingleReference { get { return hasSingleReference_; } set { @@ -159,6 +174,7 @@ public bool HasSingleReference { /// Address of the allocation. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ulong Ptr { get { return ptr_; } set { @@ -167,11 +183,13 @@ public ulong Ptr { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AllocationDescription); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AllocationDescription other) { if (ReferenceEquals(other, null)) { return false; @@ -189,6 +207,7 @@ public bool Equals(AllocationDescription other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (RequestedBytes != 0L) hash ^= RequestedBytes.GetHashCode(); @@ -204,12 +223,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (RequestedBytes != 0L) { output.WriteRawTag(8); output.WriteInt64(RequestedBytes); @@ -237,9 +261,45 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (RequestedBytes != 0L) { + output.WriteRawTag(8); + output.WriteInt64(RequestedBytes); + } + if (AllocatedBytes != 0L) { + output.WriteRawTag(16); + output.WriteInt64(AllocatedBytes); + } + if (AllocatorName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(AllocatorName); + } + if (AllocationId != 0L) { + output.WriteRawTag(32); + output.WriteInt64(AllocationId); + } + if (HasSingleReference != false) { + output.WriteRawTag(40); + output.WriteBool(HasSingleReference); + } + if (Ptr != 0UL) { + output.WriteRawTag(48); + output.WriteUInt64(Ptr); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (RequestedBytes != 0L) { @@ -267,6 +327,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AllocationDescription other) { if (other == null) { return; @@ -293,7 +354,11 @@ public void MergeFrom(AllocationDescription other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -326,7 +391,47 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + RequestedBytes = input.ReadInt64(); + break; + } + case 16: { + AllocatedBytes = input.ReadInt64(); + break; + } + case 26: { + AllocatorName = input.ReadString(); + break; + } + case 32: { + AllocationId = input.ReadInt64(); + break; + } + case 40: { + HasSingleReference = input.ReadBool(); + break; + } + case 48: { + Ptr = input.ReadUInt64(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/ApiDef.cs b/src/TensorFlowNET.Core/Protobuf/ApiDef.cs index 57c5898d9..b7bc58294 100644 --- a/src/TensorFlowNET.Core/Protobuf/ApiDef.cs +++ b/src/TensorFlowNET.Core/Protobuf/ApiDef.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/api_def.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -69,7 +69,7 @@ static ApiDefReflection() { /// common ApiDefs which it can either replace or modify. /// /// We separate the API definition from the OpDef so we can evolve the - /// API while remaining backwards compatible when interpretting old + /// API while remaining backwards compatible when interpreting old /// graphs. Overrides go in an "api_def.pbtxt" file with a text-format /// ApiDefs message. /// @@ -78,23 +78,31 @@ static ApiDefReflection() { /// need to wait until a major release of TensorFlow to avoid breaking /// our compatibility promises. ///
- public sealed partial class ApiDef : pb::IMessage { + public sealed partial class ApiDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ApiDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ApiDefReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ApiDef() { OnConstruction(); } @@ -102,6 +110,7 @@ public ApiDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ApiDef(ApiDef other) : this() { graphOpName_ = other.graphOpName_; deprecationMessage_ = other.deprecationMessage_; @@ -120,6 +129,7 @@ public ApiDef(ApiDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ApiDef Clone() { return new ApiDef(this); } @@ -131,6 +141,7 @@ public ApiDef Clone() { /// Name of the op (in the OpDef) to specify the API for. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string GraphOpName { get { return graphOpName_; } set { @@ -147,6 +158,7 @@ public string GraphOpName { /// The message should indicate alternative op to use, if any. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string DeprecationMessage { get { return deprecationMessage_; } set { @@ -163,6 +175,7 @@ public string DeprecationMessage { /// deprecated in versions before that. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int DeprecationVersion { get { return deprecationVersion_; } set { @@ -174,6 +187,7 @@ public int DeprecationVersion { public const int VisibilityFieldNumber = 2; private global::Tensorflow.ApiDef.Types.Visibility visibility_ = global::Tensorflow.ApiDef.Types.Visibility.DefaultVisibility; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.ApiDef.Types.Visibility Visibility { get { return visibility_; } set { @@ -187,6 +201,7 @@ public int DeprecationVersion { = pb::FieldCodec.ForMessage(26, global::Tensorflow.ApiDef.Types.Endpoint.Parser); private readonly pbc::RepeatedField endpoint_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Endpoint { get { return endpoint_; } } @@ -197,6 +212,7 @@ public int DeprecationVersion { = pb::FieldCodec.ForMessage(34, global::Tensorflow.ApiDef.Types.Arg.Parser); private readonly pbc::RepeatedField inArg_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField InArg { get { return inArg_; } } @@ -207,6 +223,7 @@ public int DeprecationVersion { = pb::FieldCodec.ForMessage(42, global::Tensorflow.ApiDef.Types.Arg.Parser); private readonly pbc::RepeatedField outArg_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField OutArg { get { return outArg_; } } @@ -222,6 +239,7 @@ public int DeprecationVersion { /// or match size of in_arg. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ArgOrder { get { return argOrder_; } } @@ -232,6 +250,7 @@ public int DeprecationVersion { = pb::FieldCodec.ForMessage(50, global::Tensorflow.ApiDef.Types.Attr.Parser); private readonly pbc::RepeatedField attr_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Attr { get { return attr_; } } @@ -243,6 +262,7 @@ public int DeprecationVersion { /// One-line human-readable description of what the Op does. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Summary { get { return summary_; } set { @@ -257,6 +277,7 @@ public string Summary { /// Additional, longer human-readable description of what the Op does. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Description { get { return description_; } set { @@ -272,6 +293,7 @@ public string Description { /// or end. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string DescriptionPrefix { get { return descriptionPrefix_; } set { @@ -283,6 +305,7 @@ public string DescriptionPrefix { public const int DescriptionSuffixFieldNumber = 10; private string descriptionSuffix_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string DescriptionSuffix { get { return descriptionSuffix_; } set { @@ -291,11 +314,13 @@ public string DescriptionSuffix { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ApiDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ApiDef other) { if (ReferenceEquals(other, null)) { return false; @@ -320,6 +345,7 @@ public bool Equals(ApiDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (GraphOpName.Length != 0) hash ^= GraphOpName.GetHashCode(); @@ -342,12 +368,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (GraphOpName.Length != 0) { output.WriteRawTag(10); output.WriteString(GraphOpName); @@ -388,9 +419,58 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (GraphOpName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(GraphOpName); + } + if (Visibility != global::Tensorflow.ApiDef.Types.Visibility.DefaultVisibility) { + output.WriteRawTag(16); + output.WriteEnum((int) Visibility); + } + endpoint_.WriteTo(ref output, _repeated_endpoint_codec); + inArg_.WriteTo(ref output, _repeated_inArg_codec); + outArg_.WriteTo(ref output, _repeated_outArg_codec); + attr_.WriteTo(ref output, _repeated_attr_codec); + if (Summary.Length != 0) { + output.WriteRawTag(58); + output.WriteString(Summary); + } + if (Description.Length != 0) { + output.WriteRawTag(66); + output.WriteString(Description); + } + if (DescriptionPrefix.Length != 0) { + output.WriteRawTag(74); + output.WriteString(DescriptionPrefix); + } + if (DescriptionSuffix.Length != 0) { + output.WriteRawTag(82); + output.WriteString(DescriptionSuffix); + } + argOrder_.WriteTo(ref output, _repeated_argOrder_codec); + if (DeprecationMessage.Length != 0) { + output.WriteRawTag(98); + output.WriteString(DeprecationMessage); + } + if (DeprecationVersion != 0) { + output.WriteRawTag(104); + output.WriteInt32(DeprecationVersion); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (GraphOpName.Length != 0) { @@ -429,6 +509,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ApiDef other) { if (other == null) { return; @@ -466,7 +547,11 @@ public void MergeFrom(ApiDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -527,11 +612,80 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + GraphOpName = input.ReadString(); + break; + } + case 16: { + Visibility = (global::Tensorflow.ApiDef.Types.Visibility) input.ReadEnum(); + break; + } + case 26: { + endpoint_.AddEntriesFrom(ref input, _repeated_endpoint_codec); + break; + } + case 34: { + inArg_.AddEntriesFrom(ref input, _repeated_inArg_codec); + break; + } + case 42: { + outArg_.AddEntriesFrom(ref input, _repeated_outArg_codec); + break; + } + case 50: { + attr_.AddEntriesFrom(ref input, _repeated_attr_codec); + break; + } + case 58: { + Summary = input.ReadString(); + break; + } + case 66: { + Description = input.ReadString(); + break; + } + case 74: { + DescriptionPrefix = input.ReadString(); + break; + } + case 82: { + DescriptionSuffix = input.ReadString(); + break; + } + case 90: { + argOrder_.AddEntriesFrom(ref input, _repeated_argOrder_codec); + break; + } + case 98: { + DeprecationMessage = input.ReadString(); + break; + } + case 104: { + DeprecationVersion = input.ReadInt32(); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the ApiDef message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { public enum Visibility { /// @@ -561,23 +715,31 @@ public enum Visibility { /// "canonical" endpoint, and should not be deprecated (unless all /// endpoints are deprecated). /// - public sealed partial class Endpoint : pb::IMessage { + public sealed partial class Endpoint : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Endpoint()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ApiDef.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Endpoint() { OnConstruction(); } @@ -585,6 +747,7 @@ public Endpoint() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Endpoint(Endpoint other) : this() { name_ = other.name_; deprecated_ = other.deprecated_; @@ -593,6 +756,7 @@ public Endpoint(Endpoint other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Endpoint Clone() { return new Endpoint(this); } @@ -606,6 +770,7 @@ public Endpoint Clone() { /// use a snake_case convention instead of CamelCase. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -622,6 +787,7 @@ public string Name { /// endpoints are deprecated, set deprecation_message in ApiDef instead. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Deprecated { get { return deprecated_; } set { @@ -638,6 +804,7 @@ public bool Deprecated { /// deprecated in versions before that. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int DeprecationVersion { get { return deprecationVersion_; } set { @@ -646,11 +813,13 @@ public int DeprecationVersion { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Endpoint); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Endpoint other) { if (ReferenceEquals(other, null)) { return false; @@ -665,6 +834,7 @@ public bool Equals(Endpoint other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -677,12 +847,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -698,9 +873,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (Deprecated != false) { + output.WriteRawTag(24); + output.WriteBool(Deprecated); + } + if (DeprecationVersion != 0) { + output.WriteRawTag(32); + output.WriteInt32(DeprecationVersion); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -719,6 +918,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Endpoint other) { if (other == null) { return; @@ -736,7 +936,11 @@ public void MergeFrom(Endpoint other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -757,27 +961,63 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 24: { + Deprecated = input.ReadBool(); + break; + } + case 32: { + DeprecationVersion = input.ReadInt32(); + break; + } + } + } } + #endif } - public sealed partial class Arg : pb::IMessage { + public sealed partial class Arg : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Arg()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ApiDef.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Arg() { OnConstruction(); } @@ -785,6 +1025,7 @@ public Arg() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Arg(Arg other) : this() { name_ = other.name_; renameTo_ = other.renameTo_; @@ -793,6 +1034,7 @@ public Arg(Arg other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Arg Clone() { return new Arg(this); } @@ -801,6 +1043,7 @@ public Arg Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -817,6 +1060,7 @@ public string Name { /// will also be replaced in the summary & description fields. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string RenameTo { get { return renameTo_; } set { @@ -833,6 +1077,7 @@ public string RenameTo { /// them entirely) as can be done with op descriptions. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Description { get { return description_; } set { @@ -841,11 +1086,13 @@ public string Description { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Arg); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Arg other) { if (ReferenceEquals(other, null)) { return false; @@ -860,6 +1107,7 @@ public bool Equals(Arg other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -872,12 +1120,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -893,9 +1146,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (RenameTo.Length != 0) { + output.WriteRawTag(18); + output.WriteString(RenameTo); + } + if (Description.Length != 0) { + output.WriteRawTag(26); + output.WriteString(Description); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -914,6 +1191,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Arg other) { if (other == null) { return; @@ -931,7 +1209,11 @@ public void MergeFrom(Arg other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -952,8 +1234,36 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + RenameTo = input.ReadString(); + break; + } + case 26: { + Description = input.ReadString(); + break; + } + } + } + } + #endif + } /// @@ -961,23 +1271,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// Op. That is to say, this describes the attr fields that will /// be specified in the NodeDef. /// - public sealed partial class Attr : pb::IMessage { + public sealed partial class Attr : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Attr()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ApiDef.Descriptor.NestedTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Attr() { OnConstruction(); } @@ -985,6 +1303,7 @@ public Attr() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Attr(Attr other) : this() { name_ = other.name_; renameTo_ = other.renameTo_; @@ -994,6 +1313,7 @@ public Attr(Attr other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Attr Clone() { return new Attr(this); } @@ -1002,6 +1322,7 @@ public Attr Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -1018,6 +1339,7 @@ public string Name { /// will also be replaced in the summary & description fields. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string RenameTo { get { return renameTo_; } set { @@ -1035,6 +1357,7 @@ public string RenameTo { /// GraphDefs. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.AttrValue DefaultValue { get { return defaultValue_; } set { @@ -1050,6 +1373,7 @@ public string RenameTo { /// way of modifying attr descriptions as can be done with op descriptions. ///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Description { get { return description_; } set { @@ -1058,11 +1382,13 @@ public string Description { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Attr); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Attr other) { if (ReferenceEquals(other, null)) { return false; @@ -1078,6 +1404,7 @@ public bool Equals(Attr other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -1091,12 +1418,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -1116,9 +1448,37 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (RenameTo.Length != 0) { + output.WriteRawTag(18); + output.WriteString(RenameTo); + } + if (defaultValue_ != null) { + output.WriteRawTag(26); + output.WriteMessage(DefaultValue); + } + if (Description.Length != 0) { + output.WriteRawTag(34); + output.WriteString(Description); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -1140,6 +1500,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Attr other) { if (other == null) { return; @@ -1163,7 +1524,11 @@ public void MergeFrom(Attr other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1191,7 +1556,42 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + RenameTo = input.ReadString(); + break; + } + case 26: { + if (defaultValue_ == null) { + DefaultValue = new global::Tensorflow.AttrValue(); + } + input.ReadMessage(DefaultValue); + break; + } + case 34: { + Description = input.ReadString(); + break; + } + } + } } + #endif } @@ -1200,23 +1600,31 @@ public void MergeFrom(pb::CodedInputStream input) { } - public sealed partial class ApiDefs : pb::IMessage { + public sealed partial class ApiDefs : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ApiDefs()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ApiDefReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ApiDefs() { OnConstruction(); } @@ -1224,12 +1632,14 @@ public ApiDefs() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ApiDefs(ApiDefs other) : this() { op_ = other.op_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ApiDefs Clone() { return new ApiDefs(this); } @@ -1240,16 +1650,19 @@ public ApiDefs Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.ApiDef.Parser); private readonly pbc::RepeatedField op_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Op { get { return op_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ApiDefs); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ApiDefs other) { if (ReferenceEquals(other, null)) { return false; @@ -1262,6 +1675,7 @@ public bool Equals(ApiDefs other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= op_.GetHashCode(); @@ -1272,19 +1686,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else op_.WriteTo(output, _repeated_op_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + op_.WriteTo(ref output, _repeated_op_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += op_.CalculateSize(_repeated_op_codec); @@ -1295,6 +1727,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ApiDefs other) { if (other == null) { return; @@ -1304,7 +1737,11 @@ public void MergeFrom(ApiDefs other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1317,7 +1754,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + op_.AddEntriesFrom(ref input, _repeated_op_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/AttrValue.cs b/src/TensorFlowNET.Core/Protobuf/AttrValue.cs index 2a737f697..fbccba222 100644 --- a/src/TensorFlowNET.Core/Protobuf/AttrValue.cs +++ b/src/TensorFlowNET.Core/Protobuf/AttrValue.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/attr_value.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -63,23 +63,31 @@ static AttrValueReflection() { /// Comment indicates the corresponding attr type. Only the field matching the /// attr type may be filled. /// - public sealed partial class AttrValue : pb::IMessage { + public sealed partial class AttrValue : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AttrValue()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.AttrValueReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrValue() { OnConstruction(); } @@ -87,6 +95,7 @@ public AttrValue() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrValue(AttrValue other) : this() { switch (other.ValueCase) { case ValueOneofCase.S: @@ -125,6 +134,7 @@ public AttrValue(AttrValue other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrValue Clone() { return new AttrValue(this); } @@ -135,6 +145,7 @@ public AttrValue Clone() { /// "string" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString S { get { return valueCase_ == ValueOneofCase.S ? (pb::ByteString) value_ : pb::ByteString.Empty; } set { @@ -149,6 +160,7 @@ public AttrValue Clone() { /// "int" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long I { get { return valueCase_ == ValueOneofCase.I ? (long) value_ : 0L; } set { @@ -163,6 +175,7 @@ public long I { /// "float" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public float F { get { return valueCase_ == ValueOneofCase.F ? (float) value_ : 0F; } set { @@ -177,6 +190,7 @@ public float F { /// "bool" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool B { get { return valueCase_ == ValueOneofCase.B ? (bool) value_ : false; } set { @@ -191,6 +205,7 @@ public bool B { /// "type" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Type { get { return valueCase_ == ValueOneofCase.Type ? (global::Tensorflow.DataType) value_ : global::Tensorflow.DataType.DtInvalid; } set { @@ -205,6 +220,7 @@ public bool B { /// "shape" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto Shape { get { return valueCase_ == ValueOneofCase.Shape ? (global::Tensorflow.TensorShapeProto) value_ : null; } set { @@ -219,6 +235,7 @@ public bool B { /// "tensor" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorProto Tensor { get { return valueCase_ == ValueOneofCase.Tensor ? (global::Tensorflow.TensorProto) value_ : null; } set { @@ -233,6 +250,7 @@ public bool B { /// any "list(...)" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.AttrValue.Types.ListValue List { get { return valueCase_ == ValueOneofCase.List ? (global::Tensorflow.AttrValue.Types.ListValue) value_ : null; } set { @@ -250,6 +268,7 @@ public bool B { /// that attr in the instantiation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.NameAttrList Func { get { return valueCase_ == ValueOneofCase.Func ? (global::Tensorflow.NameAttrList) value_ : null; } set { @@ -270,6 +289,7 @@ public bool B { /// given the value "bar". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Placeholder { get { return valueCase_ == ValueOneofCase.Placeholder ? (string) value_ : ""; } set { @@ -295,22 +315,26 @@ public enum ValueOneofCase { } private ValueOneofCase valueCase_ = ValueOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ValueOneofCase ValueCase { get { return valueCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearValue() { valueCase_ = ValueOneofCase.None; value_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AttrValue); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AttrValue other) { if (ReferenceEquals(other, null)) { return false; @@ -333,6 +357,7 @@ public bool Equals(AttrValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (valueCase_ == ValueOneofCase.S) hash ^= S.GetHashCode(); @@ -353,12 +378,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (valueCase_ == ValueOneofCase.List) { output.WriteRawTag(10); output.WriteMessage(List); @@ -402,9 +432,61 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (valueCase_ == ValueOneofCase.List) { + output.WriteRawTag(10); + output.WriteMessage(List); + } + if (valueCase_ == ValueOneofCase.S) { + output.WriteRawTag(18); + output.WriteBytes(S); + } + if (valueCase_ == ValueOneofCase.I) { + output.WriteRawTag(24); + output.WriteInt64(I); + } + if (valueCase_ == ValueOneofCase.F) { + output.WriteRawTag(37); + output.WriteFloat(F); + } + if (valueCase_ == ValueOneofCase.B) { + output.WriteRawTag(40); + output.WriteBool(B); + } + if (valueCase_ == ValueOneofCase.Type) { + output.WriteRawTag(48); + output.WriteEnum((int) Type); + } + if (valueCase_ == ValueOneofCase.Shape) { + output.WriteRawTag(58); + output.WriteMessage(Shape); + } + if (valueCase_ == ValueOneofCase.Tensor) { + output.WriteRawTag(66); + output.WriteMessage(Tensor); + } + if (valueCase_ == ValueOneofCase.Placeholder) { + output.WriteRawTag(74); + output.WriteString(Placeholder); + } + if (valueCase_ == ValueOneofCase.Func) { + output.WriteRawTag(82); + output.WriteMessage(Func); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (valueCase_ == ValueOneofCase.S) { @@ -444,6 +526,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AttrValue other) { if (other == null) { return; @@ -497,7 +580,11 @@ public void MergeFrom(AttrValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -567,32 +654,118 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + global::Tensorflow.AttrValue.Types.ListValue subBuilder = new global::Tensorflow.AttrValue.Types.ListValue(); + if (valueCase_ == ValueOneofCase.List) { + subBuilder.MergeFrom(List); + } + input.ReadMessage(subBuilder); + List = subBuilder; + break; + } + case 18: { + S = input.ReadBytes(); + break; + } + case 24: { + I = input.ReadInt64(); + break; + } + case 37: { + F = input.ReadFloat(); + break; + } + case 40: { + B = input.ReadBool(); + break; + } + case 48: { + value_ = input.ReadEnum(); + valueCase_ = ValueOneofCase.Type; + break; + } + case 58: { + global::Tensorflow.TensorShapeProto subBuilder = new global::Tensorflow.TensorShapeProto(); + if (valueCase_ == ValueOneofCase.Shape) { + subBuilder.MergeFrom(Shape); + } + input.ReadMessage(subBuilder); + Shape = subBuilder; + break; + } + case 66: { + global::Tensorflow.TensorProto subBuilder = new global::Tensorflow.TensorProto(); + if (valueCase_ == ValueOneofCase.Tensor) { + subBuilder.MergeFrom(Tensor); + } + input.ReadMessage(subBuilder); + Tensor = subBuilder; + break; + } + case 74: { + Placeholder = input.ReadString(); + break; + } + case 82: { + global::Tensorflow.NameAttrList subBuilder = new global::Tensorflow.NameAttrList(); + if (valueCase_ == ValueOneofCase.Func) { + subBuilder.MergeFrom(Func); + } + input.ReadMessage(subBuilder); + Func = subBuilder; + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the AttrValue message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// LINT.IfChange /// - public sealed partial class ListValue : pb::IMessage { + public sealed partial class ListValue : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ListValue()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.AttrValue.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ListValue() { OnConstruction(); } @@ -600,6 +773,7 @@ public ListValue() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ListValue(ListValue other) : this() { s_ = other.s_.Clone(); i_ = other.i_.Clone(); @@ -613,6 +787,7 @@ public ListValue(ListValue other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ListValue Clone() { return new ListValue(this); } @@ -626,6 +801,7 @@ public ListValue Clone() { /// "list(string)" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField S { get { return s_; } } @@ -639,6 +815,7 @@ public ListValue Clone() { /// "list(int)" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField I { get { return i_; } } @@ -652,6 +829,7 @@ public ListValue Clone() { /// "list(float)" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField F { get { return f_; } } @@ -665,6 +843,7 @@ public ListValue Clone() { /// "list(bool)" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField B { get { return b_; } } @@ -678,6 +857,7 @@ public ListValue Clone() { /// "list(type)" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Type { get { return type_; } } @@ -691,6 +871,7 @@ public ListValue Clone() { /// "list(shape)" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Shape { get { return shape_; } } @@ -704,6 +885,7 @@ public ListValue Clone() { /// "list(tensor)" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Tensor { get { return tensor_; } } @@ -717,16 +899,19 @@ public ListValue Clone() { /// "list(attr)" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Func { get { return func_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ListValue); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ListValue other) { if (ReferenceEquals(other, null)) { return false; @@ -746,6 +931,7 @@ public bool Equals(ListValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= s_.GetHashCode(); @@ -763,12 +949,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else s_.WriteTo(output, _repeated_s_codec); i_.WriteTo(output, _repeated_i_codec); f_.WriteTo(output, _repeated_f_codec); @@ -780,9 +971,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + s_.WriteTo(ref output, _repeated_s_codec); + i_.WriteTo(ref output, _repeated_i_codec); + f_.WriteTo(ref output, _repeated_f_codec); + b_.WriteTo(ref output, _repeated_b_codec); + type_.WriteTo(ref output, _repeated_type_codec); + shape_.WriteTo(ref output, _repeated_shape_codec); + tensor_.WriteTo(ref output, _repeated_tensor_codec); + func_.WriteTo(ref output, _repeated_func_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += s_.CalculateSize(_repeated_s_codec); @@ -800,6 +1011,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ListValue other) { if (other == null) { return; @@ -816,7 +1028,11 @@ public void MergeFrom(ListValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -861,7 +1077,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 18: { + s_.AddEntriesFrom(ref input, _repeated_s_codec); + break; + } + case 26: + case 24: { + i_.AddEntriesFrom(ref input, _repeated_i_codec); + break; + } + case 34: + case 37: { + f_.AddEntriesFrom(ref input, _repeated_f_codec); + break; + } + case 42: + case 40: { + b_.AddEntriesFrom(ref input, _repeated_b_codec); + break; + } + case 50: + case 48: { + type_.AddEntriesFrom(ref input, _repeated_type_codec); + break; + } + case 58: { + shape_.AddEntriesFrom(ref input, _repeated_shape_codec); + break; + } + case 66: { + tensor_.AddEntriesFrom(ref input, _repeated_tensor_codec); + break; + } + case 74: { + func_.AddEntriesFrom(ref input, _repeated_func_codec); + break; + } + } + } } + #endif } @@ -874,23 +1142,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// A list of attr names and their values. The whole list is attached /// with a string name. E.g., MatMul[T=float]. /// - public sealed partial class NameAttrList : pb::IMessage { + public sealed partial class NameAttrList : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new NameAttrList()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.AttrValueReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NameAttrList() { OnConstruction(); } @@ -898,6 +1174,7 @@ public NameAttrList() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NameAttrList(NameAttrList other) : this() { name_ = other.name_; attr_ = other.attr_.Clone(); @@ -905,6 +1182,7 @@ public NameAttrList(NameAttrList other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NameAttrList Clone() { return new NameAttrList(this); } @@ -913,6 +1191,7 @@ public NameAttrList Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -926,16 +1205,19 @@ public string Name { = new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForMessage(18, global::Tensorflow.AttrValue.Parser), 18); private readonly pbc::MapField attr_ = new pbc::MapField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField Attr { get { return attr_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as NameAttrList); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(NameAttrList other) { if (ReferenceEquals(other, null)) { return false; @@ -949,6 +1231,7 @@ public bool Equals(NameAttrList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -960,12 +1243,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -974,9 +1262,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + attr_.WriteTo(ref output, _map_attr_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -990,6 +1295,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(NameAttrList other) { if (other == null) { return; @@ -1002,7 +1308,11 @@ public void MergeFrom(NameAttrList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1019,7 +1329,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + attr_.AddEntriesFrom(ref input, _map_attr_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/CheckpointState.cs b/src/TensorFlowNET.Core/Protobuf/CheckpointState.cs index 42cefa714..26d929e24 100644 --- a/src/TensorFlowNET.Core/Protobuf/CheckpointState.cs +++ b/src/TensorFlowNET.Core/Protobuf/CheckpointState.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/python/training/checkpoint_state.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -43,23 +43,31 @@ static CheckpointStateReflection() { /// /// Protocol buffer representing the checkpoint state. /// - public sealed partial class CheckpointState : pb::IMessage { + public sealed partial class CheckpointState : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CheckpointState()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CheckpointStateReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CheckpointState() { OnConstruction(); } @@ -67,6 +75,7 @@ public CheckpointState() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CheckpointState(CheckpointState other) : this() { modelCheckpointPath_ = other.modelCheckpointPath_; allModelCheckpointPaths_ = other.allModelCheckpointPaths_.Clone(); @@ -76,6 +85,7 @@ public CheckpointState(CheckpointState other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CheckpointState Clone() { return new CheckpointState(this); } @@ -87,6 +97,7 @@ public CheckpointState Clone() { /// Path to the most-recent model checkpoint. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string ModelCheckpointPath { get { return modelCheckpointPath_; } set { @@ -106,6 +117,7 @@ public string ModelCheckpointPath { /// this list. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField AllModelCheckpointPaths { get { return allModelCheckpointPaths_; } } @@ -120,6 +132,7 @@ public string ModelCheckpointPath { /// when each checkpoint was created. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField AllModelCheckpointTimestamps { get { return allModelCheckpointTimestamps_; } } @@ -132,6 +145,7 @@ public string ModelCheckpointPath { /// checkpoint. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public double LastPreservedTimestamp { get { return lastPreservedTimestamp_; } set { @@ -140,11 +154,13 @@ public double LastPreservedTimestamp { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CheckpointState); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CheckpointState other) { if (ReferenceEquals(other, null)) { return false; @@ -160,6 +176,7 @@ public bool Equals(CheckpointState other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (ModelCheckpointPath.Length != 0) hash ^= ModelCheckpointPath.GetHashCode(); @@ -173,12 +190,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (ModelCheckpointPath.Length != 0) { output.WriteRawTag(10); output.WriteString(ModelCheckpointPath); @@ -192,9 +214,31 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ModelCheckpointPath.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ModelCheckpointPath); + } + allModelCheckpointPaths_.WriteTo(ref output, _repeated_allModelCheckpointPaths_codec); + allModelCheckpointTimestamps_.WriteTo(ref output, _repeated_allModelCheckpointTimestamps_codec); + if (LastPreservedTimestamp != 0D) { + output.WriteRawTag(33); + output.WriteDouble(LastPreservedTimestamp); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (ModelCheckpointPath.Length != 0) { @@ -212,6 +256,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CheckpointState other) { if (other == null) { return; @@ -228,7 +273,11 @@ public void MergeFrom(CheckpointState other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -254,7 +303,40 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + ModelCheckpointPath = input.ReadString(); + break; + } + case 18: { + allModelCheckpointPaths_.AddEntriesFrom(ref input, _repeated_allModelCheckpointPaths_codec); + break; + } + case 26: + case 25: { + allModelCheckpointTimestamps_.AddEntriesFrom(ref input, _repeated_allModelCheckpointTimestamps_codec); + break; + } + case 33: { + LastPreservedTimestamp = input.ReadDouble(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Cluster.cs b/src/TensorFlowNET.Core/Protobuf/Cluster.cs index ca645ec1c..4c398c824 100644 --- a/src/TensorFlowNET.Core/Protobuf/Cluster.cs +++ b/src/TensorFlowNET.Core/Protobuf/Cluster.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/cluster.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -47,23 +47,31 @@ static ClusterReflection() { /// /// Defines a single job in a TensorFlow cluster. /// - public sealed partial class JobDef : pb::IMessage { + public sealed partial class JobDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new JobDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ClusterReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public JobDef() { OnConstruction(); } @@ -71,6 +79,7 @@ public JobDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public JobDef(JobDef other) : this() { name_ = other.name_; tasks_ = other.tasks_.Clone(); @@ -78,6 +87,7 @@ public JobDef(JobDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public JobDef Clone() { return new JobDef(this); } @@ -89,6 +99,7 @@ public JobDef Clone() { /// The name of this job. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -109,16 +120,19 @@ public string Name { /// "/job:worker/task:7" will be assigned to "example.org:2222". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField Tasks { get { return tasks_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as JobDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(JobDef other) { if (ReferenceEquals(other, null)) { return false; @@ -132,6 +146,7 @@ public bool Equals(JobDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -143,12 +158,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -157,9 +177,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + tasks_.WriteTo(ref output, _map_tasks_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -173,6 +210,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(JobDef other) { if (other == null) { return; @@ -185,7 +223,11 @@ public void MergeFrom(JobDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -202,30 +244,62 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + tasks_.AddEntriesFrom(ref input, _map_tasks_codec); + break; + } + } + } } + #endif } /// /// Defines a TensorFlow cluster as a set of jobs. /// - public sealed partial class ClusterDef : pb::IMessage { + public sealed partial class ClusterDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ClusterDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ClusterReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ClusterDef() { OnConstruction(); } @@ -233,12 +307,14 @@ public ClusterDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ClusterDef(ClusterDef other) : this() { job_ = other.job_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ClusterDef Clone() { return new ClusterDef(this); } @@ -252,16 +328,19 @@ public ClusterDef Clone() { /// The jobs that comprise the cluster. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Job { get { return job_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ClusterDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ClusterDef other) { if (ReferenceEquals(other, null)) { return false; @@ -274,6 +353,7 @@ public bool Equals(ClusterDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= job_.GetHashCode(); @@ -284,19 +364,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else job_.WriteTo(output, _repeated_job_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + job_.WriteTo(ref output, _repeated_job_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += job_.CalculateSize(_repeated_job_codec); @@ -307,6 +405,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ClusterDef other) { if (other == null) { return; @@ -316,7 +415,11 @@ public void MergeFrom(ClusterDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -329,7 +432,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + job_.AddEntriesFrom(ref input, _repeated_job_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Config.cs b/src/TensorFlowNET.Core/Protobuf/Config.cs index cd34fd784..de7b38637 100644 --- a/src/TensorFlowNET.Core/Protobuf/Config.cs +++ b/src/TensorFlowNET.Core/Protobuf/Config.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/config.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -28,139 +28,145 @@ static ConfigReflection() { "b3JmbG93Gip0ZW5zb3JmbG93L2NvcmUvZnJhbWV3b3JrL2Nvc3RfZ3JhcGgu", "cHJvdG8aJXRlbnNvcmZsb3cvY29yZS9mcmFtZXdvcmsvZ3JhcGgucHJvdG8a", "KnRlbnNvcmZsb3cvY29yZS9mcmFtZXdvcmsvc3RlcF9zdGF0cy5wcm90bxom", - "dGVuc29yZmxvdy9jb3JlL3Byb3RvYnVmL2NsdXN0ZXIucHJvdG8aJHRlbnNv", - "cmZsb3cvY29yZS9wcm90b2J1Zi9kZWJ1Zy5wcm90bxoudGVuc29yZmxvdy9j", - "b3JlL3Byb3RvYnVmL3Jld3JpdGVyX2NvbmZpZy5wcm90byKRBgoKR1BVT3B0", - "aW9ucxInCh9wZXJfcHJvY2Vzc19ncHVfbWVtb3J5X2ZyYWN0aW9uGAEgASgB", - "EhQKDGFsbG93X2dyb3d0aBgEIAEoCBIWCg5hbGxvY2F0b3JfdHlwZRgCIAEo", - "CRIfChdkZWZlcnJlZF9kZWxldGlvbl9ieXRlcxgDIAEoAxIbChN2aXNpYmxl", - "X2RldmljZV9saXN0GAUgASgJEiIKGnBvbGxpbmdfYWN0aXZlX2RlbGF5X3Vz", - "ZWNzGAYgASgFEiQKHHBvbGxpbmdfaW5hY3RpdmVfZGVsYXlfbXNlY3MYByAB", - "KAUSHAoUZm9yY2VfZ3B1X2NvbXBhdGlibGUYCCABKAgSOQoMZXhwZXJpbWVu", - "dGFsGAkgASgLMiMudGVuc29yZmxvdy5HUFVPcHRpb25zLkV4cGVyaW1lbnRh", - "bBrKAwoMRXhwZXJpbWVudGFsEksKD3ZpcnR1YWxfZGV2aWNlcxgBIAMoCzIy", - "LnRlbnNvcmZsb3cuR1BVT3B0aW9ucy5FeHBlcmltZW50YWwuVmlydHVhbERl", - "dmljZXMSGgoSdXNlX3VuaWZpZWRfbWVtb3J5GAIgASgIEiMKG251bV9kZXZf", - "dG9fZGV2X2NvcHlfc3RyZWFtcxgDIAEoBRIdChVjb2xsZWN0aXZlX3Jpbmdf", - "b3JkZXIYBCABKAkSHQoVdGltZXN0YW1wZWRfYWxsb2NhdG9yGAUgASgIEiMK", - "G2tlcm5lbF90cmFja2VyX21heF9pbnRlcnZhbBgHIAEoBRIgChhrZXJuZWxf", - "dHJhY2tlcl9tYXhfYnl0ZXMYCCABKAUSIgoaa2VybmVsX3RyYWNrZXJfbWF4", - "X3BlbmRpbmcYCSABKAUSJwofaW50ZXJuYWxfZnJhZ21lbnRhdGlvbl9mcmFj", - "dGlvbhgKIAEoARIdChV1c2VfY3VkYV9tYWxsb2NfYXN5bmMYCyABKAgaOwoO", - "VmlydHVhbERldmljZXMSFwoPbWVtb3J5X2xpbWl0X21iGAEgAygCEhAKCHBy", - "aW9yaXR5GAIgAygFIoUDChBPcHRpbWl6ZXJPcHRpb25zEisKI2RvX2NvbW1v", - "bl9zdWJleHByZXNzaW9uX2VsaW1pbmF0aW9uGAEgASgIEhsKE2RvX2NvbnN0", - "YW50X2ZvbGRpbmcYAiABKAgSJAocbWF4X2ZvbGRlZF9jb25zdGFudF9pbl9i", - "eXRlcxgGIAEoAxIcChRkb19mdW5jdGlvbl9pbmxpbmluZxgEIAEoCBI1Cglv", - "cHRfbGV2ZWwYAyABKA4yIi50ZW5zb3JmbG93Lk9wdGltaXplck9wdGlvbnMu", - "TGV2ZWwSRQoQZ2xvYmFsX2ppdF9sZXZlbBgFIAEoDjIrLnRlbnNvcmZsb3cu", - "T3B0aW1pemVyT3B0aW9ucy5HbG9iYWxKaXRMZXZlbCIgCgVMZXZlbBIGCgJM", - "MRAAEg8KAkwwEP///////////wEiQwoOR2xvYmFsSml0TGV2ZWwSCwoHREVG", - "QVVMVBAAEhAKA09GRhD///////////8BEggKBE9OXzEQARIICgRPTl8yEAIi", - "7gIKDEdyYXBoT3B0aW9ucxIeChZlbmFibGVfcmVjdl9zY2hlZHVsaW5nGAIg", - "ASgIEjcKEW9wdGltaXplcl9vcHRpb25zGAMgASgLMhwudGVuc29yZmxvdy5P", - "cHRpbWl6ZXJPcHRpb25zEhgKEGJ1aWxkX2Nvc3RfbW9kZWwYBCABKAMSHgoW", - "YnVpbGRfY29zdF9tb2RlbF9hZnRlchgJIAEoAxIUCgxpbmZlcl9zaGFwZXMY", - "BSABKAgSGgoScGxhY2VfcHJ1bmVkX2dyYXBoGAYgASgIEiAKGGVuYWJsZV9i", - "ZmxvYXQxNl9zZW5kcmVjdhgHIAEoCBIVCg10aW1lbGluZV9zdGVwGAggASgF", - "EjMKD3Jld3JpdGVfb3B0aW9ucxgKIAEoCzIaLnRlbnNvcmZsb3cuUmV3cml0", - "ZXJDb25maWdKBAgBEAJSJXNraXBfY29tbW9uX3N1YmV4cHJlc3Npb25fZWxp", - "bWluYXRpb24iQQoVVGhyZWFkUG9vbE9wdGlvblByb3RvEhMKC251bV90aHJl", - "YWRzGAEgASgFEhMKC2dsb2JhbF9uYW1lGAIgASgJItUBCgpSUENPcHRpb25z", - "EiQKHHVzZV9ycGNfZm9yX2lucHJvY2Vzc19tYXN0ZXIYASABKAgSHQoVY29t", - "cHJlc3Npb25fYWxnb3JpdGhtGAIgASgJEhkKEWNvbXByZXNzaW9uX2xldmVs", - "GAMgASgFEhoKEmNhY2hlX3JwY19yZXNwb25zZRgEIAEoCBIqCiJkaXNhYmxl", - "X3Nlc3Npb25fY29ubmVjdGlvbl9zaGFyaW5nGAUgASgIEh8KF251bV9jaGFu", - "bmVsc19wZXJfdGFyZ2V0GAYgASgFIjAKD1Nlc3Npb25NZXRhZGF0YRIMCgRu", - "YW1lGAEgASgJEg8KB3ZlcnNpb24YAiABKAMi2A0KC0NvbmZpZ1Byb3RvEj4K", - "DGRldmljZV9jb3VudBgBIAMoCzIoLnRlbnNvcmZsb3cuQ29uZmlnUHJvdG8u", - "RGV2aWNlQ291bnRFbnRyeRIkChxpbnRyYV9vcF9wYXJhbGxlbGlzbV90aHJl", - "YWRzGAIgASgFEiQKHGludGVyX29wX3BhcmFsbGVsaXNtX3RocmVhZHMYBSAB", - "KAUSHwoXdXNlX3Blcl9zZXNzaW9uX3RocmVhZHMYCSABKAgSRwocc2Vzc2lv", - "bl9pbnRlcl9vcF90aHJlYWRfcG9vbBgMIAMoCzIhLnRlbnNvcmZsb3cuVGhy", - "ZWFkUG9vbE9wdGlvblByb3RvEhgKEHBsYWNlbWVudF9wZXJpb2QYAyABKAUS", - "FgoOZGV2aWNlX2ZpbHRlcnMYBCADKAkSKwoLZ3B1X29wdGlvbnMYBiABKAsy", - "Fi50ZW5zb3JmbG93LkdQVU9wdGlvbnMSHAoUYWxsb3dfc29mdF9wbGFjZW1l", - "bnQYByABKAgSHAoUbG9nX2RldmljZV9wbGFjZW1lbnQYCCABKAgSLwoNZ3Jh", - "cGhfb3B0aW9ucxgKIAEoCzIYLnRlbnNvcmZsb3cuR3JhcGhPcHRpb25zEh8K", - "F29wZXJhdGlvbl90aW1lb3V0X2luX21zGAsgASgDEisKC3JwY19vcHRpb25z", - "GA0gASgLMhYudGVuc29yZmxvdy5SUENPcHRpb25zEisKC2NsdXN0ZXJfZGVm", - "GA4gASgLMhYudGVuc29yZmxvdy5DbHVzdGVyRGVmEh0KFWlzb2xhdGVfc2Vz", - "c2lvbl9zdGF0ZRgPIAEoCBIoCiBzaGFyZV9jbHVzdGVyX2RldmljZXNfaW5f", - "c2Vzc2lvbhgRIAEoCBI6CgxleHBlcmltZW50YWwYECABKAsyJC50ZW5zb3Jm", - "bG93LkNvbmZpZ1Byb3RvLkV4cGVyaW1lbnRhbBoyChBEZXZpY2VDb3VudEVu", - "dHJ5EgsKA2tleRgBIAEoCRINCgV2YWx1ZRgCIAEoBToCOAEa0gcKDEV4cGVy", - "aW1lbnRhbBIfChdjb2xsZWN0aXZlX2dyb3VwX2xlYWRlchgBIAEoCRIVCg1l", - "eGVjdXRvcl90eXBlGAMgASgJEhoKEnJlY3ZfYnVmX21heF9jaHVuaxgEIAEo", - "BRIZChF1c2VfbnVtYV9hZmZpbml0eRgFIAEoCBI1Ci1jb2xsZWN0aXZlX2Rl", - "dGVybWluaXN0aWNfc2VxdWVudGlhbF9leGVjdXRpb24YBiABKAgSFwoPY29s", - "bGVjdGl2ZV9uY2NsGAcgASgIEjYKLnNoYXJlX3Nlc3Npb25fc3RhdGVfaW5f", - "Y2x1c3RlcnNwZWNfcHJvcGFnYXRpb24YCCABKAgSHwoXZGlzYWJsZV90aHJl", - "YWRfc3Bpbm5pbmcYCSABKAgSKAogc2hhcmVfY2x1c3Rlcl9kZXZpY2VzX2lu", - "X3Nlc3Npb24YCiABKAgSNQoQc2Vzc2lvbl9tZXRhZGF0YRgLIAEoCzIbLnRl", - "bnNvcmZsb3cuU2Vzc2lvbk1ldGFkYXRhEiEKGW9wdGltaXplX2Zvcl9zdGF0", - "aWNfZ3JhcGgYDCABKAgSGgoSZW5hYmxlX21saXJfYnJpZGdlGA0gASgIElMK", - "E21saXJfYnJpZGdlX3JvbGxvdXQYESABKA4yNi50ZW5zb3JmbG93LkNvbmZp", - "Z1Byb3RvLkV4cGVyaW1lbnRhbC5NbGlyQnJpZGdlUm9sbG91dBImCh5lbmFi", - "bGVfbWxpcl9ncmFwaF9vcHRpbWl6YXRpb24YECABKAgSJwofZGlzYWJsZV9v", - "dXRwdXRfcGFydGl0aW9uX2dyYXBocxgOIAEoCBIjCht4bGFfZnVzaW9uX2F1", - "dG90dW5lcl90aHJlc2gYDyABKAMSEAoIdXNlX3RmcnQYEiABKAgSHAoUY29v", - "cmRpbmF0aW9uX3NlcnZpY2UYEyABKAkSLAokZmV0Y2hfcmVtb3RlX2Rldmlj", - "ZXNfaW5fbXVsdGlfY2xpZW50GBQgASgIItoBChFNbGlyQnJpZGdlUm9sbG91", - "dBIjCh9NTElSX0JSSURHRV9ST0xMT1VUX1VOU1BFQ0lGSUVEEAASHwobTUxJ", - "Ul9CUklER0VfUk9MTE9VVF9FTkFCTEVEEAESIAocTUxJUl9CUklER0VfUk9M", - "TE9VVF9ESVNBQkxFRBACEikKJU1MSVJfQlJJREdFX1JPTExPVVRfU0FGRV9N", - "T0RFX0VOQUJMRUQQAxIyCi5NTElSX0JSSURHRV9ST0xMT1VUX1NBRkVfTU9E", - "RV9GQUxMQkFDS19FTkFCTEVEEARKBAgCEAMi4QQKClJ1bk9wdGlvbnMSNgoL", - "dHJhY2VfbGV2ZWwYASABKA4yIS50ZW5zb3JmbG93LlJ1bk9wdGlvbnMuVHJh", - "Y2VMZXZlbBIVCg10aW1lb3V0X2luX21zGAIgASgDEhwKFGludGVyX29wX3Ro", - "cmVhZF9wb29sGAMgASgFEh8KF291dHB1dF9wYXJ0aXRpb25fZ3JhcGhzGAUg", - "ASgIEi8KDWRlYnVnX29wdGlvbnMYBiABKAsyGC50ZW5zb3JmbG93LkRlYnVn", - "T3B0aW9ucxIqCiJyZXBvcnRfdGVuc29yX2FsbG9jYXRpb25zX3Vwb25fb29t", - "GAcgASgIEjkKDGV4cGVyaW1lbnRhbBgIIAEoCzIjLnRlbnNvcmZsb3cuUnVu", - "T3B0aW9ucy5FeHBlcmltZW50YWwa0gEKDEV4cGVyaW1lbnRhbBIcChRjb2xs", - "ZWN0aXZlX2dyYXBoX2tleRgBIAEoAxIcChR1c2VfcnVuX2hhbmRsZXJfcG9v", - "bBgCIAEoCBJbChhydW5faGFuZGxlcl9wb29sX29wdGlvbnMYAyABKAsyOS50", - "ZW5zb3JmbG93LlJ1bk9wdGlvbnMuRXhwZXJpbWVudGFsLlJ1bkhhbmRsZXJQ", - "b29sT3B0aW9ucxopChVSdW5IYW5kbGVyUG9vbE9wdGlvbnMSEAoIcHJpb3Jp", - "dHkYASABKAMiUgoKVHJhY2VMZXZlbBIMCghOT19UUkFDRRAAEhIKDlNPRlRX", - "QVJFX1RSQUNFEAESEgoOSEFSRFdBUkVfVFJBQ0UQAhIOCgpGVUxMX1RSQUNF", - "EANKBAgEEAUihwMKC1J1bk1ldGFkYXRhEikKCnN0ZXBfc3RhdHMYASABKAsy", - "FS50ZW5zb3JmbG93LlN0ZXBTdGF0cxIsCgpjb3N0X2dyYXBoGAIgASgLMhgu", - "dGVuc29yZmxvdy5Db3N0R3JhcGhEZWYSLgoQcGFydGl0aW9uX2dyYXBocxgD", - "IAMoCzIULnRlbnNvcmZsb3cuR3JhcGhEZWYSPwoPZnVuY3Rpb25fZ3JhcGhz", - "GAQgAygLMiYudGVuc29yZmxvdy5SdW5NZXRhZGF0YS5GdW5jdGlvbkdyYXBo", - "cxqtAQoORnVuY3Rpb25HcmFwaHMSLgoQcGFydGl0aW9uX2dyYXBocxgBIAMo", - "CzIULnRlbnNvcmZsb3cuR3JhcGhEZWYSNAoWcHJlX29wdGltaXphdGlvbl9n", - "cmFwaBgCIAEoCzIULnRlbnNvcmZsb3cuR3JhcGhEZWYSNQoXcG9zdF9vcHRp", - "bWl6YXRpb25fZ3JhcGgYAyABKAsyFC50ZW5zb3JmbG93LkdyYXBoRGVmIjoK", - "EFRlbnNvckNvbm5lY3Rpb24SEwoLZnJvbV90ZW5zb3IYASABKAkSEQoJdG9f", - "dGVuc29yGAIgASgJIrADCg9DYWxsYWJsZU9wdGlvbnMSDAoEZmVlZBgBIAMo", - "CRINCgVmZXRjaBgCIAMoCRIOCgZ0YXJnZXQYAyADKAkSKwoLcnVuX29wdGlv", - "bnMYBCABKAsyFi50ZW5zb3JmbG93LlJ1bk9wdGlvbnMSNwoRdGVuc29yX2Nv", - "bm5lY3Rpb24YBSADKAsyHC50ZW5zb3JmbG93LlRlbnNvckNvbm5lY3Rpb24S", - "QgoMZmVlZF9kZXZpY2VzGAYgAygLMiwudGVuc29yZmxvdy5DYWxsYWJsZU9w", - "dGlvbnMuRmVlZERldmljZXNFbnRyeRJECg1mZXRjaF9kZXZpY2VzGAcgAygL", - "Mi0udGVuc29yZmxvdy5DYWxsYWJsZU9wdGlvbnMuRmV0Y2hEZXZpY2VzRW50", - "cnkSFwoPZmV0Y2hfc2tpcF9zeW5jGAggASgIGjIKEEZlZWREZXZpY2VzRW50", - "cnkSCwoDa2V5GAEgASgJEg0KBXZhbHVlGAIgASgJOgI4ARozChFGZXRjaERl", - "dmljZXNFbnRyeRILCgNrZXkYASABKAkSDQoFdmFsdWUYAiABKAk6AjgBQoQB", - "ChhvcmcudGVuc29yZmxvdy5mcmFtZXdvcmtCDENvbmZpZ1Byb3Rvc1ABWlVn", - "aXRodWIuY29tL3RlbnNvcmZsb3cvdGVuc29yZmxvdy90ZW5zb3JmbG93L2dv", - "L2NvcmUvcHJvdG9idWYvZm9yX2NvcmVfcHJvdG9zX2dvX3Byb3Rv+AEBYgZw", - "cm90bzM=")); + "dGVuc29yZmxvdy9jb3JlL3Byb3RvYnVmL2NsdXN0ZXIucHJvdG8aMnRlbnNv", + "cmZsb3cvY29yZS9wcm90b2J1Zi9jb29yZGluYXRpb25fY29uZmlnLnByb3Rv", + "GiR0ZW5zb3JmbG93L2NvcmUvcHJvdG9idWYvZGVidWcucHJvdG8aLnRlbnNv", + "cmZsb3cvY29yZS9wcm90b2J1Zi9yZXdyaXRlcl9jb25maWcucHJvdG8i1wYK", + "CkdQVU9wdGlvbnMSJwofcGVyX3Byb2Nlc3NfZ3B1X21lbW9yeV9mcmFjdGlv", + "bhgBIAEoARIUCgxhbGxvd19ncm93dGgYBCABKAgSFgoOYWxsb2NhdG9yX3R5", + "cGUYAiABKAkSHwoXZGVmZXJyZWRfZGVsZXRpb25fYnl0ZXMYAyABKAMSGwoT", + "dmlzaWJsZV9kZXZpY2VfbGlzdBgFIAEoCRIiChpwb2xsaW5nX2FjdGl2ZV9k", + "ZWxheV91c2VjcxgGIAEoBRIkChxwb2xsaW5nX2luYWN0aXZlX2RlbGF5X21z", + "ZWNzGAcgASgFEhwKFGZvcmNlX2dwdV9jb21wYXRpYmxlGAggASgIEjkKDGV4", + "cGVyaW1lbnRhbBgJIAEoCzIjLnRlbnNvcmZsb3cuR1BVT3B0aW9ucy5FeHBl", + "cmltZW50YWwakAQKDEV4cGVyaW1lbnRhbBJLCg92aXJ0dWFsX2RldmljZXMY", + "ASADKAsyMi50ZW5zb3JmbG93LkdQVU9wdGlvbnMuRXhwZXJpbWVudGFsLlZp", + "cnR1YWxEZXZpY2VzEhoKEnVzZV91bmlmaWVkX21lbW9yeRgCIAEoCBIjChtu", + "dW1fZGV2X3RvX2Rldl9jb3B5X3N0cmVhbXMYAyABKAUSHQoVY29sbGVjdGl2", + "ZV9yaW5nX29yZGVyGAQgASgJEh0KFXRpbWVzdGFtcGVkX2FsbG9jYXRvchgF", + "IAEoCBIjChtrZXJuZWxfdHJhY2tlcl9tYXhfaW50ZXJ2YWwYByABKAUSIAoY", + "a2VybmVsX3RyYWNrZXJfbWF4X2J5dGVzGAggASgFEiIKGmtlcm5lbF90cmFj", + "a2VyX21heF9wZW5kaW5nGAkgASgFEicKH2ludGVybmFsX2ZyYWdtZW50YXRp", + "b25fZnJhY3Rpb24YCiABKAESHQoVdXNlX2N1ZGFfbWFsbG9jX2FzeW5jGAsg", + "ASgIEiwKJGRpc2FsbG93X3JldHJ5X29uX2FsbG9jYXRpb25fZmFpbHVyZRgM", + "IAEoCBpTCg5WaXJ0dWFsRGV2aWNlcxIXCg9tZW1vcnlfbGltaXRfbWIYASAD", + "KAISEAoIcHJpb3JpdHkYAiADKAUSFgoOZGV2aWNlX29yZGluYWwYAyADKAUi", + "nQMKEE9wdGltaXplck9wdGlvbnMSKwojZG9fY29tbW9uX3N1YmV4cHJlc3Np", + "b25fZWxpbWluYXRpb24YASABKAgSGwoTZG9fY29uc3RhbnRfZm9sZGluZxgC", + "IAEoCBIkChxtYXhfZm9sZGVkX2NvbnN0YW50X2luX2J5dGVzGAYgASgDEhwK", + "FGRvX2Z1bmN0aW9uX2lubGluaW5nGAQgASgIEjUKCW9wdF9sZXZlbBgDIAEo", + "DjIiLnRlbnNvcmZsb3cuT3B0aW1pemVyT3B0aW9ucy5MZXZlbBJFChBnbG9i", + "YWxfaml0X2xldmVsGAUgASgOMisudGVuc29yZmxvdy5PcHRpbWl6ZXJPcHRp", + "b25zLkdsb2JhbEppdExldmVsEhYKDmNwdV9nbG9iYWxfaml0GAcgASgIIiAK", + "BUxldmVsEgYKAkwxEAASDwoCTDAQ////////////ASJDCg5HbG9iYWxKaXRM", + "ZXZlbBILCgdERUZBVUxUEAASEAoDT0ZGEP///////////wESCAoET05fMRAB", + "EggKBE9OXzIQAiLuAgoMR3JhcGhPcHRpb25zEh4KFmVuYWJsZV9yZWN2X3Nj", + "aGVkdWxpbmcYAiABKAgSNwoRb3B0aW1pemVyX29wdGlvbnMYAyABKAsyHC50", + "ZW5zb3JmbG93Lk9wdGltaXplck9wdGlvbnMSGAoQYnVpbGRfY29zdF9tb2Rl", + "bBgEIAEoAxIeChZidWlsZF9jb3N0X21vZGVsX2FmdGVyGAkgASgDEhQKDGlu", + "ZmVyX3NoYXBlcxgFIAEoCBIaChJwbGFjZV9wcnVuZWRfZ3JhcGgYBiABKAgS", + "IAoYZW5hYmxlX2JmbG9hdDE2X3NlbmRyZWN2GAcgASgIEhUKDXRpbWVsaW5l", + "X3N0ZXAYCCABKAUSMwoPcmV3cml0ZV9vcHRpb25zGAogASgLMhoudGVuc29y", + "Zmxvdy5SZXdyaXRlckNvbmZpZ0oECAEQAlIlc2tpcF9jb21tb25fc3ViZXhw", + "cmVzc2lvbl9lbGltaW5hdGlvbiJBChVUaHJlYWRQb29sT3B0aW9uUHJvdG8S", + "EwoLbnVtX3RocmVhZHMYASABKAUSEwoLZ2xvYmFsX25hbWUYAiABKAki1QEK", + "ClJQQ09wdGlvbnMSJAocdXNlX3JwY19mb3JfaW5wcm9jZXNzX21hc3RlchgB", + "IAEoCBIdChVjb21wcmVzc2lvbl9hbGdvcml0aG0YAiABKAkSGQoRY29tcHJl", + "c3Npb25fbGV2ZWwYAyABKAUSGgoSY2FjaGVfcnBjX3Jlc3BvbnNlGAQgASgI", + "EioKImRpc2FibGVfc2Vzc2lvbl9jb25uZWN0aW9uX3NoYXJpbmcYBSABKAgS", + "HwoXbnVtX2NoYW5uZWxzX3Blcl90YXJnZXQYBiABKAUiMAoPU2Vzc2lvbk1l", + "dGFkYXRhEgwKBG5hbWUYASABKAkSDwoHdmVyc2lvbhgCIAEoAyKuDgoLQ29u", + "ZmlnUHJvdG8SPgoMZGV2aWNlX2NvdW50GAEgAygLMigudGVuc29yZmxvdy5D", + "b25maWdQcm90by5EZXZpY2VDb3VudEVudHJ5EiQKHGludHJhX29wX3BhcmFs", + "bGVsaXNtX3RocmVhZHMYAiABKAUSJAocaW50ZXJfb3BfcGFyYWxsZWxpc21f", + "dGhyZWFkcxgFIAEoBRIfChd1c2VfcGVyX3Nlc3Npb25fdGhyZWFkcxgJIAEo", + "CBJHChxzZXNzaW9uX2ludGVyX29wX3RocmVhZF9wb29sGAwgAygLMiEudGVu", + "c29yZmxvdy5UaHJlYWRQb29sT3B0aW9uUHJvdG8SGAoQcGxhY2VtZW50X3Bl", + "cmlvZBgDIAEoBRIWCg5kZXZpY2VfZmlsdGVycxgEIAMoCRIrCgtncHVfb3B0", + "aW9ucxgGIAEoCzIWLnRlbnNvcmZsb3cuR1BVT3B0aW9ucxIcChRhbGxvd19z", + "b2Z0X3BsYWNlbWVudBgHIAEoCBIcChRsb2dfZGV2aWNlX3BsYWNlbWVudBgI", + "IAEoCBIvCg1ncmFwaF9vcHRpb25zGAogASgLMhgudGVuc29yZmxvdy5HcmFw", + "aE9wdGlvbnMSHwoXb3BlcmF0aW9uX3RpbWVvdXRfaW5fbXMYCyABKAMSKwoL", + "cnBjX29wdGlvbnMYDSABKAsyFi50ZW5zb3JmbG93LlJQQ09wdGlvbnMSKwoL", + "Y2x1c3Rlcl9kZWYYDiABKAsyFi50ZW5zb3JmbG93LkNsdXN0ZXJEZWYSHQoV", + "aXNvbGF0ZV9zZXNzaW9uX3N0YXRlGA8gASgIEigKIHNoYXJlX2NsdXN0ZXJf", + "ZGV2aWNlc19pbl9zZXNzaW9uGBEgASgIEjoKDGV4cGVyaW1lbnRhbBgQIAEo", + "CzIkLnRlbnNvcmZsb3cuQ29uZmlnUHJvdG8uRXhwZXJpbWVudGFsGjIKEERl", + "dmljZUNvdW50RW50cnkSCwoDa2V5GAEgASgJEg0KBXZhbHVlGAIgASgFOgI4", + "ARqoCAoMRXhwZXJpbWVudGFsEh8KF2NvbGxlY3RpdmVfZ3JvdXBfbGVhZGVy", + "GAEgASgJEhUKDWV4ZWN1dG9yX3R5cGUYAyABKAkSGgoScmVjdl9idWZfbWF4", + "X2NodW5rGAQgASgFEhkKEXVzZV9udW1hX2FmZmluaXR5GAUgASgIEjUKLWNv", + "bGxlY3RpdmVfZGV0ZXJtaW5pc3RpY19zZXF1ZW50aWFsX2V4ZWN1dGlvbhgG", + "IAEoCBIXCg9jb2xsZWN0aXZlX25jY2wYByABKAgSNgouc2hhcmVfc2Vzc2lv", + "bl9zdGF0ZV9pbl9jbHVzdGVyc3BlY19wcm9wYWdhdGlvbhgIIAEoCBIfChdk", + "aXNhYmxlX3RocmVhZF9zcGlubmluZxgJIAEoCBIoCiBzaGFyZV9jbHVzdGVy", + "X2RldmljZXNfaW5fc2Vzc2lvbhgKIAEoCBI1ChBzZXNzaW9uX21ldGFkYXRh", + "GAsgASgLMhsudGVuc29yZmxvdy5TZXNzaW9uTWV0YWRhdGESIQoZb3B0aW1p", + "emVfZm9yX3N0YXRpY19ncmFwaBgMIAEoCBIaChJlbmFibGVfbWxpcl9icmlk", + "Z2UYDSABKAgSUwoTbWxpcl9icmlkZ2Vfcm9sbG91dBgRIAEoDjI2LnRlbnNv", + "cmZsb3cuQ29uZmlnUHJvdG8uRXhwZXJpbWVudGFsLk1saXJCcmlkZ2VSb2xs", + "b3V0EiYKHmVuYWJsZV9tbGlyX2dyYXBoX29wdGltaXphdGlvbhgQIAEoCBIn", + "Ch9kaXNhYmxlX291dHB1dF9wYXJ0aXRpb25fZ3JhcGhzGA4gASgIEiMKG3hs", + "YV9mdXNpb25fYXV0b3R1bmVyX3RocmVzaBgPIAEoAxIQCgh1c2VfdGZydBgS", + "IAEoCBInCh9kaXNhYmxlX2Z1bmN0aW9uYWxfb3BzX2xvd2VyaW5nGBUgASgI", + "EicKH3hsYV9wcmVmZXJfc2luZ2xlX2dyYXBoX2NsdXN0ZXIYFiABKAgSQgoT", + "Y29vcmRpbmF0aW9uX2NvbmZpZxgXIAEoCzIlLnRlbnNvcmZsb3cuQ29vcmRp", + "bmF0aW9uU2VydmljZUNvbmZpZyLaAQoRTWxpckJyaWRnZVJvbGxvdXQSIwof", + "TUxJUl9CUklER0VfUk9MTE9VVF9VTlNQRUNJRklFRBAAEh8KG01MSVJfQlJJ", + "REdFX1JPTExPVVRfRU5BQkxFRBABEiAKHE1MSVJfQlJJREdFX1JPTExPVVRf", + "RElTQUJMRUQQAhIpCiVNTElSX0JSSURHRV9ST0xMT1VUX1NBRkVfTU9ERV9F", + "TkFCTEVEEAMSMgouTUxJUl9CUklER0VfUk9MTE9VVF9TQUZFX01PREVfRkFM", + "TEJBQ0tfRU5BQkxFRBAESgQIAhADSgQIExAUSgQIFBAVIuEECgpSdW5PcHRp", + "b25zEjYKC3RyYWNlX2xldmVsGAEgASgOMiEudGVuc29yZmxvdy5SdW5PcHRp", + "b25zLlRyYWNlTGV2ZWwSFQoNdGltZW91dF9pbl9tcxgCIAEoAxIcChRpbnRl", + "cl9vcF90aHJlYWRfcG9vbBgDIAEoBRIfChdvdXRwdXRfcGFydGl0aW9uX2dy", + "YXBocxgFIAEoCBIvCg1kZWJ1Z19vcHRpb25zGAYgASgLMhgudGVuc29yZmxv", + "dy5EZWJ1Z09wdGlvbnMSKgoicmVwb3J0X3RlbnNvcl9hbGxvY2F0aW9uc191", + "cG9uX29vbRgHIAEoCBI5CgxleHBlcmltZW50YWwYCCABKAsyIy50ZW5zb3Jm", + "bG93LlJ1bk9wdGlvbnMuRXhwZXJpbWVudGFsGtIBCgxFeHBlcmltZW50YWwS", + "HAoUY29sbGVjdGl2ZV9ncmFwaF9rZXkYASABKAMSHAoUdXNlX3J1bl9oYW5k", + "bGVyX3Bvb2wYAiABKAgSWwoYcnVuX2hhbmRsZXJfcG9vbF9vcHRpb25zGAMg", + "ASgLMjkudGVuc29yZmxvdy5SdW5PcHRpb25zLkV4cGVyaW1lbnRhbC5SdW5I", + "YW5kbGVyUG9vbE9wdGlvbnMaKQoVUnVuSGFuZGxlclBvb2xPcHRpb25zEhAK", + "CHByaW9yaXR5GAEgASgDIlIKClRyYWNlTGV2ZWwSDAoITk9fVFJBQ0UQABIS", + "Cg5TT0ZUV0FSRV9UUkFDRRABEhIKDkhBUkRXQVJFX1RSQUNFEAISDgoKRlVM", + "TF9UUkFDRRADSgQIBBAFIr4DCgtSdW5NZXRhZGF0YRIpCgpzdGVwX3N0YXRz", + "GAEgASgLMhUudGVuc29yZmxvdy5TdGVwU3RhdHMSLAoKY29zdF9ncmFwaBgC", + "IAEoCzIYLnRlbnNvcmZsb3cuQ29zdEdyYXBoRGVmEi4KEHBhcnRpdGlvbl9n", + "cmFwaHMYAyADKAsyFC50ZW5zb3JmbG93LkdyYXBoRGVmEj8KD2Z1bmN0aW9u", + "X2dyYXBocxgEIAMoCzImLnRlbnNvcmZsb3cuUnVuTWV0YWRhdGEuRnVuY3Rp", + "b25HcmFwaHMSNQoQc2Vzc2lvbl9tZXRhZGF0YRgFIAEoCzIbLnRlbnNvcmZs", + "b3cuU2Vzc2lvbk1ldGFkYXRhGq0BCg5GdW5jdGlvbkdyYXBocxIuChBwYXJ0", + "aXRpb25fZ3JhcGhzGAEgAygLMhQudGVuc29yZmxvdy5HcmFwaERlZhI0ChZw", + "cmVfb3B0aW1pemF0aW9uX2dyYXBoGAIgASgLMhQudGVuc29yZmxvdy5HcmFw", + "aERlZhI1Chdwb3N0X29wdGltaXphdGlvbl9ncmFwaBgDIAEoCzIULnRlbnNv", + "cmZsb3cuR3JhcGhEZWYiOgoQVGVuc29yQ29ubmVjdGlvbhITCgtmcm9tX3Rl", + "bnNvchgBIAEoCRIRCgl0b190ZW5zb3IYAiABKAkisAMKD0NhbGxhYmxlT3B0", + "aW9ucxIMCgRmZWVkGAEgAygJEg0KBWZldGNoGAIgAygJEg4KBnRhcmdldBgD", + "IAMoCRIrCgtydW5fb3B0aW9ucxgEIAEoCzIWLnRlbnNvcmZsb3cuUnVuT3B0", + "aW9ucxI3ChF0ZW5zb3JfY29ubmVjdGlvbhgFIAMoCzIcLnRlbnNvcmZsb3cu", + "VGVuc29yQ29ubmVjdGlvbhJCCgxmZWVkX2RldmljZXMYBiADKAsyLC50ZW5z", + "b3JmbG93LkNhbGxhYmxlT3B0aW9ucy5GZWVkRGV2aWNlc0VudHJ5EkQKDWZl", + "dGNoX2RldmljZXMYByADKAsyLS50ZW5zb3JmbG93LkNhbGxhYmxlT3B0aW9u", + "cy5GZXRjaERldmljZXNFbnRyeRIXCg9mZXRjaF9za2lwX3N5bmMYCCABKAga", + "MgoQRmVlZERldmljZXNFbnRyeRILCgNrZXkYASABKAkSDQoFdmFsdWUYAiAB", + "KAk6AjgBGjMKEUZldGNoRGV2aWNlc0VudHJ5EgsKA2tleRgBIAEoCRINCgV2", + "YWx1ZRgCIAEoCToCOAFChAEKGG9yZy50ZW5zb3JmbG93LmZyYW1ld29ya0IM", + "Q29uZmlnUHJvdG9zUAFaVWdpdGh1Yi5jb20vdGVuc29yZmxvdy90ZW5zb3Jm", + "bG93L3RlbnNvcmZsb3cvZ28vY29yZS9wcm90b2J1Zi9mb3JfY29yZV9wcm90", + "b3NfZ29fcHJvdG/4AQFiBnByb3RvMw==")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, - new pbr::FileDescriptor[] { global::Tensorflow.CostGraphReflection.Descriptor, global::Tensorflow.GraphReflection.Descriptor, global::Tensorflow.StepStatsReflection.Descriptor, global::Tensorflow.ClusterReflection.Descriptor, global::Tensorflow.DebugReflection.Descriptor, global::Tensorflow.RewriterConfigReflection.Descriptor, }, + new pbr::FileDescriptor[] { global::Tensorflow.CostGraphReflection.Descriptor, global::Tensorflow.GraphReflection.Descriptor, global::Tensorflow.StepStatsReflection.Descriptor, global::Tensorflow.ClusterReflection.Descriptor, global::Tensorflow.CoordinationConfigReflection.Descriptor, global::Tensorflow.DebugReflection.Descriptor, global::Tensorflow.RewriterConfigReflection.Descriptor, }, new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GPUOptions), global::Tensorflow.GPUOptions.Parser, new[]{ "PerProcessGpuMemoryFraction", "AllowGrowth", "AllocatorType", "DeferredDeletionBytes", "VisibleDeviceList", "PollingActiveDelayUsecs", "PollingInactiveDelayMsecs", "ForceGpuCompatible", "Experimental" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GPUOptions.Types.Experimental), global::Tensorflow.GPUOptions.Types.Experimental.Parser, new[]{ "VirtualDevices", "UseUnifiedMemory", "NumDevToDevCopyStreams", "CollectiveRingOrder", "TimestampedAllocator", "KernelTrackerMaxInterval", "KernelTrackerMaxBytes", "KernelTrackerMaxPending", "InternalFragmentationFraction", "UseCudaMallocAsync" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GPUOptions.Types.Experimental.Types.VirtualDevices), global::Tensorflow.GPUOptions.Types.Experimental.Types.VirtualDevices.Parser, new[]{ "MemoryLimitMb", "Priority" }, null, null, null, null)})}), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.OptimizerOptions), global::Tensorflow.OptimizerOptions.Parser, new[]{ "DoCommonSubexpressionElimination", "DoConstantFolding", "MaxFoldedConstantInBytes", "DoFunctionInlining", "OptLevel", "GlobalJitLevel" }, null, new[]{ typeof(global::Tensorflow.OptimizerOptions.Types.Level), typeof(global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel) }, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GPUOptions), global::Tensorflow.GPUOptions.Parser, new[]{ "PerProcessGpuMemoryFraction", "AllowGrowth", "AllocatorType", "DeferredDeletionBytes", "VisibleDeviceList", "PollingActiveDelayUsecs", "PollingInactiveDelayMsecs", "ForceGpuCompatible", "Experimental" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GPUOptions.Types.Experimental), global::Tensorflow.GPUOptions.Types.Experimental.Parser, new[]{ "VirtualDevices", "UseUnifiedMemory", "NumDevToDevCopyStreams", "CollectiveRingOrder", "TimestampedAllocator", "KernelTrackerMaxInterval", "KernelTrackerMaxBytes", "KernelTrackerMaxPending", "InternalFragmentationFraction", "UseCudaMallocAsync", "DisallowRetryOnAllocationFailure" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GPUOptions.Types.Experimental.Types.VirtualDevices), global::Tensorflow.GPUOptions.Types.Experimental.Types.VirtualDevices.Parser, new[]{ "MemoryLimitMb", "Priority", "DeviceOrdinal" }, null, null, null, null)})}), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.OptimizerOptions), global::Tensorflow.OptimizerOptions.Parser, new[]{ "DoCommonSubexpressionElimination", "DoConstantFolding", "MaxFoldedConstantInBytes", "DoFunctionInlining", "OptLevel", "GlobalJitLevel", "CpuGlobalJit" }, null, new[]{ typeof(global::Tensorflow.OptimizerOptions.Types.Level), typeof(global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel) }, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GraphOptions), global::Tensorflow.GraphOptions.Parser, new[]{ "EnableRecvScheduling", "OptimizerOptions", "BuildCostModel", "BuildCostModelAfter", "InferShapes", "PlacePrunedGraph", "EnableBfloat16Sendrecv", "TimelineStep", "RewriteOptions" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ThreadPoolOptionProto), global::Tensorflow.ThreadPoolOptionProto.Parser, new[]{ "NumThreads", "GlobalName" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RPCOptions), global::Tensorflow.RPCOptions.Parser, new[]{ "UseRpcForInprocessMaster", "CompressionAlgorithm", "CompressionLevel", "CacheRpcResponse", "DisableSessionConnectionSharing", "NumChannelsPerTarget" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SessionMetadata), global::Tensorflow.SessionMetadata.Parser, new[]{ "Name", "Version" }, null, null, null, null), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ConfigProto), global::Tensorflow.ConfigProto.Parser, new[]{ "DeviceCount", "IntraOpParallelismThreads", "InterOpParallelismThreads", "UsePerSessionThreads", "SessionInterOpThreadPool", "PlacementPeriod", "DeviceFilters", "GpuOptions", "AllowSoftPlacement", "LogDevicePlacement", "GraphOptions", "OperationTimeoutInMs", "RpcOptions", "ClusterDef", "IsolateSessionState", "ShareClusterDevicesInSession", "Experimental" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ConfigProto.Types.Experimental), global::Tensorflow.ConfigProto.Types.Experimental.Parser, new[]{ "CollectiveGroupLeader", "ExecutorType", "RecvBufMaxChunk", "UseNumaAffinity", "CollectiveDeterministicSequentialExecution", "CollectiveNccl", "ShareSessionStateInClusterspecPropagation", "DisableThreadSpinning", "ShareClusterDevicesInSession", "SessionMetadata", "OptimizeForStaticGraph", "EnableMlirBridge", "MlirBridgeRollout", "EnableMlirGraphOptimization", "DisableOutputPartitionGraphs", "XlaFusionAutotunerThresh", "UseTfrt", "CoordinationService", "FetchRemoteDevicesInMultiClient" }, null, new[]{ typeof(global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout) }, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ConfigProto), global::Tensorflow.ConfigProto.Parser, new[]{ "DeviceCount", "IntraOpParallelismThreads", "InterOpParallelismThreads", "UsePerSessionThreads", "SessionInterOpThreadPool", "PlacementPeriod", "DeviceFilters", "GpuOptions", "AllowSoftPlacement", "LogDevicePlacement", "GraphOptions", "OperationTimeoutInMs", "RpcOptions", "ClusterDef", "IsolateSessionState", "ShareClusterDevicesInSession", "Experimental" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ConfigProto.Types.Experimental), global::Tensorflow.ConfigProto.Types.Experimental.Parser, new[]{ "CollectiveGroupLeader", "ExecutorType", "RecvBufMaxChunk", "UseNumaAffinity", "CollectiveDeterministicSequentialExecution", "CollectiveNccl", "ShareSessionStateInClusterspecPropagation", "DisableThreadSpinning", "ShareClusterDevicesInSession", "SessionMetadata", "OptimizeForStaticGraph", "EnableMlirBridge", "MlirBridgeRollout", "EnableMlirGraphOptimization", "DisableOutputPartitionGraphs", "XlaFusionAutotunerThresh", "UseTfrt", "DisableFunctionalOpsLowering", "XlaPreferSingleGraphCluster", "CoordinationConfig" }, null, new[]{ typeof(global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout) }, null, null)}), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunOptions), global::Tensorflow.RunOptions.Parser, new[]{ "TraceLevel", "TimeoutInMs", "InterOpThreadPool", "OutputPartitionGraphs", "DebugOptions", "ReportTensorAllocationsUponOom", "Experimental" }, null, new[]{ typeof(global::Tensorflow.RunOptions.Types.TraceLevel) }, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunOptions.Types.Experimental), global::Tensorflow.RunOptions.Types.Experimental.Parser, new[]{ "CollectiveGraphKey", "UseRunHandlerPool", "RunHandlerPoolOptions" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions), global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions.Parser, new[]{ "Priority" }, null, null, null, null)})}), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunMetadata), global::Tensorflow.RunMetadata.Parser, new[]{ "StepStats", "CostGraph", "PartitionGraphs", "FunctionGraphs" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunMetadata.Types.FunctionGraphs), global::Tensorflow.RunMetadata.Types.FunctionGraphs.Parser, new[]{ "PartitionGraphs", "PreOptimizationGraph", "PostOptimizationGraph" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunMetadata), global::Tensorflow.RunMetadata.Parser, new[]{ "StepStats", "CostGraph", "PartitionGraphs", "FunctionGraphs", "SessionMetadata" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunMetadata.Types.FunctionGraphs), global::Tensorflow.RunMetadata.Types.FunctionGraphs.Parser, new[]{ "PartitionGraphs", "PreOptimizationGraph", "PostOptimizationGraph" }, null, null, null, null)}), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TensorConnection), global::Tensorflow.TensorConnection.Parser, new[]{ "FromTensor", "ToTensor" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CallableOptions), global::Tensorflow.CallableOptions.Parser, new[]{ "Feed", "Fetch", "Target", "RunOptions", "TensorConnection", "FeedDevices", "FetchDevices", "FetchSkipSync" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, null, }) })); @@ -169,23 +175,31 @@ static ConfigReflection() { } #region Messages - public sealed partial class GPUOptions : pb::IMessage { + public sealed partial class GPUOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GPUOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GPUOptions() { OnConstruction(); } @@ -193,6 +207,7 @@ public GPUOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GPUOptions(GPUOptions other) : this() { perProcessGpuMemoryFraction_ = other.perProcessGpuMemoryFraction_; allowGrowth_ = other.allowGrowth_; @@ -207,6 +222,7 @@ public GPUOptions(GPUOptions other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GPUOptions Clone() { return new GPUOptions(this); } @@ -234,6 +250,7 @@ public GPUOptions Clone() { /// for the detailed requirements. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public double PerProcessGpuMemoryFraction { get { return perProcessGpuMemoryFraction_; } set { @@ -249,6 +266,7 @@ public double PerProcessGpuMemoryFraction { /// GPU memory region, instead starting small and growing as needed. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool AllowGrowth { get { return allowGrowth_; } set { @@ -270,6 +288,7 @@ public bool AllowGrowth { /// version of dlmalloc. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string AllocatorType { get { return allocatorType_; } set { @@ -286,6 +305,7 @@ public string AllocatorType { /// a reasonable default (several MBs). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long DeferredDeletionBytes { get { return deferredDeletionBytes_; } set { @@ -320,6 +340,7 @@ public long DeferredDeletionBytes { /// for more information. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string VisibleDeviceList { get { return visibleDeviceList_; } set { @@ -336,6 +357,7 @@ public string VisibleDeviceList { /// set or set to 0, gets set to a non-zero default. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int PollingActiveDelayUsecs { get { return pollingActiveDelayUsecs_; } set { @@ -350,6 +372,7 @@ public int PollingActiveDelayUsecs { /// This field is deprecated and ignored. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int PollingInactiveDelayMsecs { get { return pollingInactiveDelayMsecs_; } set { @@ -373,6 +396,7 @@ public int PollingInactiveDelayMsecs { /// the overall host system performance. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool ForceGpuCompatible { get { return forceGpuCompatible_; } set { @@ -389,6 +413,7 @@ public bool ForceGpuCompatible { /// https://www.tensorflow.org/guide/version_compat. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.GPUOptions.Types.Experimental Experimental { get { return experimental_; } set { @@ -397,11 +422,13 @@ public bool ForceGpuCompatible { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GPUOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GPUOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -422,6 +449,7 @@ public bool Equals(GPUOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (PerProcessGpuMemoryFraction != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(PerProcessGpuMemoryFraction); @@ -440,12 +468,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (PerProcessGpuMemoryFraction != 0D) { output.WriteRawTag(9); output.WriteDouble(PerProcessGpuMemoryFraction); @@ -485,9 +518,57 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (PerProcessGpuMemoryFraction != 0D) { + output.WriteRawTag(9); + output.WriteDouble(PerProcessGpuMemoryFraction); + } + if (AllocatorType.Length != 0) { + output.WriteRawTag(18); + output.WriteString(AllocatorType); + } + if (DeferredDeletionBytes != 0L) { + output.WriteRawTag(24); + output.WriteInt64(DeferredDeletionBytes); + } + if (AllowGrowth != false) { + output.WriteRawTag(32); + output.WriteBool(AllowGrowth); + } + if (VisibleDeviceList.Length != 0) { + output.WriteRawTag(42); + output.WriteString(VisibleDeviceList); + } + if (PollingActiveDelayUsecs != 0) { + output.WriteRawTag(48); + output.WriteInt32(PollingActiveDelayUsecs); + } + if (PollingInactiveDelayMsecs != 0) { + output.WriteRawTag(56); + output.WriteInt32(PollingInactiveDelayMsecs); + } + if (ForceGpuCompatible != false) { + output.WriteRawTag(64); + output.WriteBool(ForceGpuCompatible); + } + if (experimental_ != null) { + output.WriteRawTag(74); + output.WriteMessage(Experimental); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (PerProcessGpuMemoryFraction != 0D) { @@ -524,6 +605,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GPUOptions other) { if (other == null) { return; @@ -562,7 +644,11 @@ public void MergeFrom(GPUOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -610,29 +696,93 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 9: { + PerProcessGpuMemoryFraction = input.ReadDouble(); + break; + } + case 18: { + AllocatorType = input.ReadString(); + break; + } + case 24: { + DeferredDeletionBytes = input.ReadInt64(); + break; + } + case 32: { + AllowGrowth = input.ReadBool(); + break; + } + case 42: { + VisibleDeviceList = input.ReadString(); + break; + } + case 48: { + PollingActiveDelayUsecs = input.ReadInt32(); + break; + } + case 56: { + PollingInactiveDelayMsecs = input.ReadInt32(); + break; + } + case 64: { + ForceGpuCompatible = input.ReadBool(); + break; + } + case 74: { + if (experimental_ == null) { + Experimental = new global::Tensorflow.GPUOptions.Types.Experimental(); + } + input.ReadMessage(Experimental); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the GPUOptions message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class Experimental : pb::IMessage { + public sealed partial class Experimental : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Experimental()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GPUOptions.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Experimental() { OnConstruction(); } @@ -640,6 +790,7 @@ public Experimental() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Experimental(Experimental other) : this() { virtualDevices_ = other.virtualDevices_.Clone(); useUnifiedMemory_ = other.useUnifiedMemory_; @@ -651,10 +802,12 @@ public Experimental(Experimental other) : this() { kernelTrackerMaxPending_ = other.kernelTrackerMaxPending_; internalFragmentationFraction_ = other.internalFragmentationFraction_; useCudaMallocAsync_ = other.useCudaMallocAsync_; + disallowRetryOnAllocationFailure_ = other.disallowRetryOnAllocationFailure_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Experimental Clone() { return new Experimental(this); } @@ -672,15 +825,30 @@ public Experimental Clone() { /// "visible_device_list" filtering if it is set), and the string represented /// device names (e.g. /device:GPU:<id>) will refer to the virtual /// devices and have the <id> field assigned sequentially starting from 0, - /// according to the order they appear in this list and the "memory_limit" - /// list inside each element. For example, + /// according to the order of the virtual devices determined by + /// device_ordinal and the location in the virtual device list. + /// + /// For example, /// visible_device_list = "1,0" /// virtual_devices { memory_limit: 1GB memory_limit: 2GB } - /// virtual_devices {} - /// will create three virtual devices as: + /// virtual_devices { memory_limit: 3GB memory_limit: 4GB } + /// will create 4 virtual devices as: /// /device:GPU:0 -> visible GPU 1 with 1GB memory /// /device:GPU:1 -> visible GPU 1 with 2GB memory - /// /device:GPU:2 -> visible GPU 0 with all available memory + /// /device:GPU:2 -> visible GPU 0 with 3GB memory + /// /device:GPU:3 -> visible GPU 0 with 4GB memory + /// + /// but + /// visible_device_list = "1,0" + /// virtual_devices { memory_limit: 1GB memory_limit: 2GB + /// device_ordinal: 10 device_ordinal: 20} + /// virtual_devices { memory_limit: 3GB memory_limit: 4GB + /// device_ordinal: 10 device_ordinal: 20} + /// will create 4 virtual devices as: + /// /device:GPU:0 -> visible GPU 1 with 1GB memory (ordinal 10) + /// /device:GPU:1 -> visible GPU 0 with 3GB memory (ordinal 10) + /// /device:GPU:2 -> visible GPU 1 with 2GB memory (ordinal 20) + /// /device:GPU:3 -> visible GPU 0 with 4GB memory (ordinal 20) /// /// NOTE: /// 1. It's invalid to set both this and "per_process_gpu_memory_fraction" @@ -690,6 +858,7 @@ public Experimental Clone() { /// result in undefined behavior. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField VirtualDevices { get { return virtualDevices_; } } @@ -707,6 +876,7 @@ public Experimental Clone() { /// than 1.0 per process memory fraction. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool UseUnifiedMemory { get { return useUnifiedMemory_; } set { @@ -723,6 +893,7 @@ public bool UseUnifiedMemory { /// converted to 1. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NumDevToDevCopyStreams { get { return numDevToDevCopyStreams_; } set { @@ -742,6 +913,7 @@ public int NumDevToDevCopyStreams { /// generation in OrderTaskDeviceMap() during CollectiveParam resolution. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string CollectiveRingOrder { get { return collectiveRingOrder_; } set { @@ -759,6 +931,7 @@ public string CollectiveRingOrder { /// is really not subject to pending use. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool TimestampedAllocator { get { return timestampedAllocator_; } set { @@ -778,6 +951,7 @@ public bool TimestampedAllocator { /// is inserted after every n kernels without an event. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int KernelTrackerMaxInterval { get { return kernelTrackerMaxInterval_; } set { @@ -796,6 +970,7 @@ public int KernelTrackerMaxInterval { /// the pending limit. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int KernelTrackerMaxBytes { get { return kernelTrackerMaxBytes_; } set { @@ -813,6 +988,7 @@ public int KernelTrackerMaxBytes { /// completes. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int KernelTrackerMaxPending { get { return kernelTrackerMaxPending_; } set { @@ -835,6 +1011,7 @@ public int KernelTrackerMaxPending { /// memory size. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public double InternalFragmentationFraction { get { return internalFragmentationFraction_; } set { @@ -849,6 +1026,7 @@ public double InternalFragmentationFraction { /// When true, use CUDA cudaMallocAsync API instead of TF gpu allocator. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool UseCudaMallocAsync { get { return useCudaMallocAsync_; } set { @@ -856,12 +1034,31 @@ public bool UseCudaMallocAsync { } } + /// Field number for the "disallow_retry_on_allocation_failure" field. + public const int DisallowRetryOnAllocationFailureFieldNumber = 12; + private bool disallowRetryOnAllocationFailure_; + /// + /// By default, BFCAllocator may sleep when it runs out of memory, in the + /// hopes that another thread will free up memory in the meantime. Setting + /// this to true disables the sleep; instead we'll OOM immediately. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool DisallowRetryOnAllocationFailure { + get { return disallowRetryOnAllocationFailure_; } + set { + disallowRetryOnAllocationFailure_ = value; + } + } + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Experimental); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Experimental other) { if (ReferenceEquals(other, null)) { return false; @@ -879,10 +1076,12 @@ public bool Equals(Experimental other) { if (KernelTrackerMaxPending != other.KernelTrackerMaxPending) return false; if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(InternalFragmentationFraction, other.InternalFragmentationFraction)) return false; if (UseCudaMallocAsync != other.UseCudaMallocAsync) return false; + if (DisallowRetryOnAllocationFailure != other.DisallowRetryOnAllocationFailure) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= virtualDevices_.GetHashCode(); @@ -895,6 +1094,7 @@ public override int GetHashCode() { if (KernelTrackerMaxPending != 0) hash ^= KernelTrackerMaxPending.GetHashCode(); if (InternalFragmentationFraction != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(InternalFragmentationFraction); if (UseCudaMallocAsync != false) hash ^= UseCudaMallocAsync.GetHashCode(); + if (DisallowRetryOnAllocationFailure != false) hash ^= DisallowRetryOnAllocationFailure.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -902,12 +1102,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else virtualDevices_.WriteTo(output, _repeated_virtualDevices_codec); if (UseUnifiedMemory != false) { output.WriteRawTag(16); @@ -945,12 +1150,69 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(88); output.WriteBool(UseCudaMallocAsync); } + if (DisallowRetryOnAllocationFailure != false) { + output.WriteRawTag(96); + output.WriteBool(DisallowRetryOnAllocationFailure); + } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + virtualDevices_.WriteTo(ref output, _repeated_virtualDevices_codec); + if (UseUnifiedMemory != false) { + output.WriteRawTag(16); + output.WriteBool(UseUnifiedMemory); + } + if (NumDevToDevCopyStreams != 0) { + output.WriteRawTag(24); + output.WriteInt32(NumDevToDevCopyStreams); + } + if (CollectiveRingOrder.Length != 0) { + output.WriteRawTag(34); + output.WriteString(CollectiveRingOrder); + } + if (TimestampedAllocator != false) { + output.WriteRawTag(40); + output.WriteBool(TimestampedAllocator); + } + if (KernelTrackerMaxInterval != 0) { + output.WriteRawTag(56); + output.WriteInt32(KernelTrackerMaxInterval); + } + if (KernelTrackerMaxBytes != 0) { + output.WriteRawTag(64); + output.WriteInt32(KernelTrackerMaxBytes); + } + if (KernelTrackerMaxPending != 0) { + output.WriteRawTag(72); + output.WriteInt32(KernelTrackerMaxPending); + } + if (InternalFragmentationFraction != 0D) { + output.WriteRawTag(81); + output.WriteDouble(InternalFragmentationFraction); + } + if (UseCudaMallocAsync != false) { + output.WriteRawTag(88); + output.WriteBool(UseCudaMallocAsync); + } + if (DisallowRetryOnAllocationFailure != false) { + output.WriteRawTag(96); + output.WriteBool(DisallowRetryOnAllocationFailure); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += virtualDevices_.CalculateSize(_repeated_virtualDevices_codec); @@ -981,6 +1243,9 @@ public int CalculateSize() { if (UseCudaMallocAsync != false) { size += 1 + 1; } + if (DisallowRetryOnAllocationFailure != false) { + size += 1 + 1; + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -988,6 +1253,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Experimental other) { if (other == null) { return; @@ -1020,11 +1286,18 @@ public void MergeFrom(Experimental other) { if (other.UseCudaMallocAsync != false) { UseCudaMallocAsync = other.UseCudaMallocAsync; } + if (other.DisallowRetryOnAllocationFailure != false) { + DisallowRetryOnAllocationFailure = other.DisallowRetryOnAllocationFailure; + } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1071,35 +1344,108 @@ public void MergeFrom(pb::CodedInputStream input) { UseCudaMallocAsync = input.ReadBool(); break; } + case 96: { + DisallowRetryOnAllocationFailure = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + virtualDevices_.AddEntriesFrom(ref input, _repeated_virtualDevices_codec); + break; + } + case 16: { + UseUnifiedMemory = input.ReadBool(); + break; + } + case 24: { + NumDevToDevCopyStreams = input.ReadInt32(); + break; + } + case 34: { + CollectiveRingOrder = input.ReadString(); + break; + } + case 40: { + TimestampedAllocator = input.ReadBool(); + break; + } + case 56: { + KernelTrackerMaxInterval = input.ReadInt32(); + break; + } + case 64: { + KernelTrackerMaxBytes = input.ReadInt32(); + break; + } + case 72: { + KernelTrackerMaxPending = input.ReadInt32(); + break; + } + case 81: { + InternalFragmentationFraction = input.ReadDouble(); + break; + } + case 88: { + UseCudaMallocAsync = input.ReadBool(); + break; + } + case 96: { + DisallowRetryOnAllocationFailure = input.ReadBool(); + break; + } } } } + #endif #region Nested types /// Container for nested types declared in the Experimental message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Configuration for breaking down a visible GPU into multiple "virtual" /// devices. /// - public sealed partial class VirtualDevices : pb::IMessage { + public sealed partial class VirtualDevices : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new VirtualDevices()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GPUOptions.Types.Experimental.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VirtualDevices() { OnConstruction(); } @@ -1107,13 +1453,16 @@ public VirtualDevices() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VirtualDevices(VirtualDevices other) : this() { memoryLimitMb_ = other.memoryLimitMb_.Clone(); priority_ = other.priority_.Clone(); + deviceOrdinal_ = other.deviceOrdinal_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VirtualDevices Clone() { return new VirtualDevices(this); } @@ -1134,6 +1483,7 @@ public VirtualDevices Clone() { /// "visible_device_list" above for more information. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField MemoryLimitMb { get { return memoryLimitMb_; } } @@ -1156,16 +1506,36 @@ public VirtualDevices Clone() { /// of this must match with the above memory_limit_mb. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Priority { get { return priority_; } } + /// Field number for the "device_ordinal" field. + public const int DeviceOrdinalFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_deviceOrdinal_codec + = pb::FieldCodec.ForInt32(26); + private readonly pbc::RepeatedField deviceOrdinal_ = new pbc::RepeatedField(); + /// + /// Virtual Device ordinal number determines the device ID of the device. + /// A Virtual device with a lower ordinal number always receives the a + /// smaller device id. The phyiscal device id and location in the + /// virtual device list is used to break ties. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField DeviceOrdinal { + get { return deviceOrdinal_; } + } + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as VirtualDevices); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(VirtualDevices other) { if (ReferenceEquals(other, null)) { return false; @@ -1175,14 +1545,17 @@ public bool Equals(VirtualDevices other) { } if(!memoryLimitMb_.Equals(other.memoryLimitMb_)) return false; if(!priority_.Equals(other.priority_)) return false; + if(!deviceOrdinal_.Equals(other.deviceOrdinal_)) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= memoryLimitMb_.GetHashCode(); hash ^= priority_.GetHashCode(); + hash ^= deviceOrdinal_.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -1190,24 +1563,46 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else memoryLimitMb_.WriteTo(output, _repeated_memoryLimitMb_codec); priority_.WriteTo(output, _repeated_priority_codec); + deviceOrdinal_.WriteTo(output, _repeated_deviceOrdinal_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + memoryLimitMb_.WriteTo(ref output, _repeated_memoryLimitMb_codec); + priority_.WriteTo(ref output, _repeated_priority_codec); + deviceOrdinal_.WriteTo(ref output, _repeated_deviceOrdinal_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += memoryLimitMb_.CalculateSize(_repeated_memoryLimitMb_codec); size += priority_.CalculateSize(_repeated_priority_codec); + size += deviceOrdinal_.CalculateSize(_repeated_deviceOrdinal_codec); if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -1215,17 +1610,23 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(VirtualDevices other) { if (other == null) { return; } memoryLimitMb_.Add(other.memoryLimitMb_); priority_.Add(other.priority_); + deviceOrdinal_.Add(other.deviceOrdinal_); _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1242,9 +1643,45 @@ public void MergeFrom(pb::CodedInputStream input) { priority_.AddEntriesFrom(input, _repeated_priority_codec); break; } + case 26: + case 24: { + deviceOrdinal_.AddEntriesFrom(input, _repeated_deviceOrdinal_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 13: { + memoryLimitMb_.AddEntriesFrom(ref input, _repeated_memoryLimitMb_codec); + break; + } + case 18: + case 16: { + priority_.AddEntriesFrom(ref input, _repeated_priority_codec); + break; + } + case 26: + case 24: { + deviceOrdinal_.AddEntriesFrom(ref input, _repeated_deviceOrdinal_codec); + break; + } } } } + #endif } @@ -1261,23 +1698,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// /// Options passed to the graph optimizer /// - public sealed partial class OptimizerOptions : pb::IMessage { + public sealed partial class OptimizerOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new OptimizerOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OptimizerOptions() { OnConstruction(); } @@ -1285,6 +1730,7 @@ public OptimizerOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OptimizerOptions(OptimizerOptions other) : this() { doCommonSubexpressionElimination_ = other.doCommonSubexpressionElimination_; doConstantFolding_ = other.doConstantFolding_; @@ -1292,10 +1738,12 @@ public OptimizerOptions(OptimizerOptions other) : this() { doFunctionInlining_ = other.doFunctionInlining_; optLevel_ = other.optLevel_; globalJitLevel_ = other.globalJitLevel_; + cpuGlobalJit_ = other.cpuGlobalJit_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OptimizerOptions Clone() { return new OptimizerOptions(this); } @@ -1310,6 +1758,7 @@ public OptimizerOptions Clone() { /// set to L0. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool DoCommonSubexpressionElimination { get { return doCommonSubexpressionElimination_; } set { @@ -1326,6 +1775,7 @@ public bool DoCommonSubexpressionElimination { /// order to disable constant folding the opt_level has to be set to L0. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool DoConstantFolding { get { return doConstantFolding_; } set { @@ -1344,6 +1794,7 @@ public bool DoConstantFolding { /// is disabled, this value is ignored. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long MaxFoldedConstantInBytes { get { return maxFoldedConstantInBytes_; } set { @@ -1358,6 +1809,7 @@ public long MaxFoldedConstantInBytes { /// If true, perform function inlining on the graph. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool DoFunctionInlining { get { return doFunctionInlining_; } set { @@ -1373,6 +1825,7 @@ public bool DoFunctionInlining { /// logical OR of the flags that this level implies and any flags already set. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.OptimizerOptions.Types.Level OptLevel { get { return optLevel_; } set { @@ -1384,6 +1837,7 @@ public bool DoFunctionInlining { public const int GlobalJitLevelFieldNumber = 5; private global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel globalJitLevel_ = global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel GlobalJitLevel { get { return globalJitLevel_; } set { @@ -1391,12 +1845,31 @@ public bool DoFunctionInlining { } } + /// Field number for the "cpu_global_jit" field. + public const int CpuGlobalJitFieldNumber = 7; + private bool cpuGlobalJit_; + /// + /// CPU code will be autoclustered only if global_jit_level >= ON_1 and either: + /// - this flag is true, or + /// - TF_XLA_FLAGS contains --tf_xla_cpu_global_jit=true. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool CpuGlobalJit { + get { return cpuGlobalJit_; } + set { + cpuGlobalJit_ = value; + } + } + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as OptimizerOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(OptimizerOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -1410,10 +1883,12 @@ public bool Equals(OptimizerOptions other) { if (DoFunctionInlining != other.DoFunctionInlining) return false; if (OptLevel != other.OptLevel) return false; if (GlobalJitLevel != other.GlobalJitLevel) return false; + if (CpuGlobalJit != other.CpuGlobalJit) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (DoCommonSubexpressionElimination != false) hash ^= DoCommonSubexpressionElimination.GetHashCode(); @@ -1422,6 +1897,7 @@ public override int GetHashCode() { if (DoFunctionInlining != false) hash ^= DoFunctionInlining.GetHashCode(); if (OptLevel != global::Tensorflow.OptimizerOptions.Types.Level.L1) hash ^= OptLevel.GetHashCode(); if (GlobalJitLevel != global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default) hash ^= GlobalJitLevel.GetHashCode(); + if (CpuGlobalJit != false) hash ^= CpuGlobalJit.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -1429,12 +1905,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (DoCommonSubexpressionElimination != false) { output.WriteRawTag(8); output.WriteBool(DoCommonSubexpressionElimination); @@ -1459,24 +1940,68 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(48); output.WriteInt64(MaxFoldedConstantInBytes); } + if (CpuGlobalJit != false) { + output.WriteRawTag(56); + output.WriteBool(CpuGlobalJit); + } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public int CalculateSize() { - int size = 0; + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { if (DoCommonSubexpressionElimination != false) { - size += 1 + 1; + output.WriteRawTag(8); + output.WriteBool(DoCommonSubexpressionElimination); } if (DoConstantFolding != false) { - size += 1 + 1; - } - if (MaxFoldedConstantInBytes != 0L) { - size += 1 + pb::CodedOutputStream.ComputeInt64Size(MaxFoldedConstantInBytes); + output.WriteRawTag(16); + output.WriteBool(DoConstantFolding); } - if (DoFunctionInlining != false) { + if (OptLevel != global::Tensorflow.OptimizerOptions.Types.Level.L1) { + output.WriteRawTag(24); + output.WriteEnum((int) OptLevel); + } + if (DoFunctionInlining != false) { + output.WriteRawTag(32); + output.WriteBool(DoFunctionInlining); + } + if (GlobalJitLevel != global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default) { + output.WriteRawTag(40); + output.WriteEnum((int) GlobalJitLevel); + } + if (MaxFoldedConstantInBytes != 0L) { + output.WriteRawTag(48); + output.WriteInt64(MaxFoldedConstantInBytes); + } + if (CpuGlobalJit != false) { + output.WriteRawTag(56); + output.WriteBool(CpuGlobalJit); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (DoCommonSubexpressionElimination != false) { + size += 1 + 1; + } + if (DoConstantFolding != false) { + size += 1 + 1; + } + if (MaxFoldedConstantInBytes != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(MaxFoldedConstantInBytes); + } + if (DoFunctionInlining != false) { size += 1 + 1; } if (OptLevel != global::Tensorflow.OptimizerOptions.Types.Level.L1) { @@ -1485,6 +2010,9 @@ public int CalculateSize() { if (GlobalJitLevel != global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default) { size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) GlobalJitLevel); } + if (CpuGlobalJit != false) { + size += 1 + 1; + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -1492,6 +2020,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(OptimizerOptions other) { if (other == null) { return; @@ -1514,11 +2043,18 @@ public void MergeFrom(OptimizerOptions other) { if (other.GlobalJitLevel != global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default) { GlobalJitLevel = other.GlobalJitLevel; } + if (other.CpuGlobalJit != false) { + CpuGlobalJit = other.CpuGlobalJit; + } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1549,13 +2085,62 @@ public void MergeFrom(pb::CodedInputStream input) { MaxFoldedConstantInBytes = input.ReadInt64(); break; } + case 56: { + CpuGlobalJit = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + DoCommonSubexpressionElimination = input.ReadBool(); + break; + } + case 16: { + DoConstantFolding = input.ReadBool(); + break; + } + case 24: { + OptLevel = (global::Tensorflow.OptimizerOptions.Types.Level) input.ReadEnum(); + break; + } + case 32: { + DoFunctionInlining = input.ReadBool(); + break; + } + case 40: { + GlobalJitLevel = (global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel) input.ReadEnum(); + break; + } + case 48: { + MaxFoldedConstantInBytes = input.ReadInt64(); + break; + } + case 56: { + CpuGlobalJit = input.ReadBool(); + break; + } } } } + #endif #region Nested types /// Container for nested types declared in the OptimizerOptions message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Optimization level @@ -1598,23 +2183,31 @@ public enum GlobalJitLevel { } - public sealed partial class GraphOptions : pb::IMessage { + public sealed partial class GraphOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphOptions() { OnConstruction(); } @@ -1622,6 +2215,7 @@ public GraphOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphOptions(GraphOptions other) : this() { enableRecvScheduling_ = other.enableRecvScheduling_; optimizerOptions_ = other.optimizerOptions_ != null ? other.optimizerOptions_.Clone() : null; @@ -1636,6 +2230,7 @@ public GraphOptions(GraphOptions other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphOptions Clone() { return new GraphOptions(this); } @@ -1648,6 +2243,7 @@ public GraphOptions Clone() { /// (Currently ignored.) /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool EnableRecvScheduling { get { return enableRecvScheduling_; } set { @@ -1662,6 +2258,7 @@ public bool EnableRecvScheduling { /// Options controlling how graph is optimized. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.OptimizerOptions OptimizerOptions { get { return optimizerOptions_; } set { @@ -1678,6 +2275,7 @@ public bool EnableRecvScheduling { /// no cost model. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long BuildCostModel { get { return buildCostModel_; } set { @@ -1693,6 +2291,7 @@ public long BuildCostModel { /// cost model. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long BuildCostModelAfter { get { return buildCostModelAfter_; } set { @@ -1708,6 +2307,7 @@ public long BuildCostModelAfter { /// be statically inferred. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool InferShapes { get { return inferShapes_; } set { @@ -1728,6 +2328,7 @@ public bool InferShapes { /// constraints are unsatisfiable. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool PlacePrunedGraph { get { return placePrunedGraph_; } set { @@ -1742,6 +2343,7 @@ public bool PlacePrunedGraph { /// If true, transfer float values between processes as bfloat16. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool EnableBfloat16Sendrecv { get { return enableBfloat16Sendrecv_; } set { @@ -1757,6 +2359,7 @@ public bool EnableBfloat16Sendrecv { /// EXPERIMENTAL: This currently has no effect in MasterSession. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int TimelineStep { get { return timelineStep_; } set { @@ -1773,6 +2376,7 @@ public int TimelineStep { /// stability guarantee if you import RewriterConfig explicitly). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig RewriteOptions { get { return rewriteOptions_; } set { @@ -1781,11 +2385,13 @@ public int TimelineStep { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -1806,6 +2412,7 @@ public bool Equals(GraphOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (EnableRecvScheduling != false) hash ^= EnableRecvScheduling.GetHashCode(); @@ -1824,12 +2431,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (EnableRecvScheduling != false) { output.WriteRawTag(16); output.WriteBool(EnableRecvScheduling); @@ -1869,9 +2481,57 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (EnableRecvScheduling != false) { + output.WriteRawTag(16); + output.WriteBool(EnableRecvScheduling); + } + if (optimizerOptions_ != null) { + output.WriteRawTag(26); + output.WriteMessage(OptimizerOptions); + } + if (BuildCostModel != 0L) { + output.WriteRawTag(32); + output.WriteInt64(BuildCostModel); + } + if (InferShapes != false) { + output.WriteRawTag(40); + output.WriteBool(InferShapes); + } + if (PlacePrunedGraph != false) { + output.WriteRawTag(48); + output.WriteBool(PlacePrunedGraph); + } + if (EnableBfloat16Sendrecv != false) { + output.WriteRawTag(56); + output.WriteBool(EnableBfloat16Sendrecv); + } + if (TimelineStep != 0) { + output.WriteRawTag(64); + output.WriteInt32(TimelineStep); + } + if (BuildCostModelAfter != 0L) { + output.WriteRawTag(72); + output.WriteInt64(BuildCostModelAfter); + } + if (rewriteOptions_ != null) { + output.WriteRawTag(82); + output.WriteMessage(RewriteOptions); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (EnableRecvScheduling != false) { @@ -1908,6 +2568,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphOptions other) { if (other == null) { return; @@ -1949,7 +2610,11 @@ public void MergeFrom(GraphOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2000,27 +2665,93 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 16: { + EnableRecvScheduling = input.ReadBool(); + break; + } + case 26: { + if (optimizerOptions_ == null) { + OptimizerOptions = new global::Tensorflow.OptimizerOptions(); + } + input.ReadMessage(OptimizerOptions); + break; + } + case 32: { + BuildCostModel = input.ReadInt64(); + break; + } + case 40: { + InferShapes = input.ReadBool(); + break; + } + case 48: { + PlacePrunedGraph = input.ReadBool(); + break; + } + case 56: { + EnableBfloat16Sendrecv = input.ReadBool(); + break; + } + case 64: { + TimelineStep = input.ReadInt32(); + break; + } + case 72: { + BuildCostModelAfter = input.ReadInt64(); + break; + } + case 82: { + if (rewriteOptions_ == null) { + RewriteOptions = new global::Tensorflow.RewriterConfig(); + } + input.ReadMessage(RewriteOptions); + break; + } + } + } } + #endif } - public sealed partial class ThreadPoolOptionProto : pb::IMessage { + public sealed partial class ThreadPoolOptionProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ThreadPoolOptionProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ThreadPoolOptionProto() { OnConstruction(); } @@ -2028,6 +2759,7 @@ public ThreadPoolOptionProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ThreadPoolOptionProto(ThreadPoolOptionProto other) : this() { numThreads_ = other.numThreads_; globalName_ = other.globalName_; @@ -2035,6 +2767,7 @@ public ThreadPoolOptionProto(ThreadPoolOptionProto other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ThreadPoolOptionProto Clone() { return new ThreadPoolOptionProto(this); } @@ -2049,6 +2782,7 @@ public ThreadPoolOptionProto Clone() { /// (see the declaration of the specific field for more info). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NumThreads { get { return numThreads_; } set { @@ -2077,6 +2811,7 @@ public int NumThreads { /// - threadpools created this way are never garbage collected. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string GlobalName { get { return globalName_; } set { @@ -2085,11 +2820,13 @@ public string GlobalName { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ThreadPoolOptionProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ThreadPoolOptionProto other) { if (ReferenceEquals(other, null)) { return false; @@ -2103,6 +2840,7 @@ public bool Equals(ThreadPoolOptionProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (NumThreads != 0) hash ^= NumThreads.GetHashCode(); @@ -2114,12 +2852,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (NumThreads != 0) { output.WriteRawTag(8); output.WriteInt32(NumThreads); @@ -2131,9 +2874,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (NumThreads != 0) { + output.WriteRawTag(8); + output.WriteInt32(NumThreads); + } + if (GlobalName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(GlobalName); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (NumThreads != 0) { @@ -2149,6 +2912,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ThreadPoolOptionProto other) { if (other == null) { return; @@ -2163,7 +2927,11 @@ public void MergeFrom(ThreadPoolOptionProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2180,27 +2948,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + NumThreads = input.ReadInt32(); + break; + } + case 18: { + GlobalName = input.ReadString(); + break; + } + } + } } + #endif } - public sealed partial class RPCOptions : pb::IMessage { + public sealed partial class RPCOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RPCOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[4]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RPCOptions() { OnConstruction(); } @@ -2208,6 +3008,7 @@ public RPCOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RPCOptions(RPCOptions other) : this() { useRpcForInprocessMaster_ = other.useRpcForInprocessMaster_; compressionAlgorithm_ = other.compressionAlgorithm_; @@ -2219,6 +3020,7 @@ public RPCOptions(RPCOptions other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RPCOptions Clone() { return new RPCOptions(this); } @@ -2234,6 +3036,7 @@ public RPCOptions Clone() { /// stack. This option is primarily for used testing the RPC stack. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool UseRpcForInprocessMaster { get { return useRpcForInprocessMaster_; } set { @@ -2248,6 +3051,7 @@ public bool UseRpcForInprocessMaster { /// The compression algorithm to be used. One of "deflate", "gzip". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string CompressionAlgorithm { get { return compressionAlgorithm_; } set { @@ -2263,6 +3067,7 @@ public string CompressionAlgorithm { /// From 0 (no compression), up to 3. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CompressionLevel { get { return compressionLevel_; } set { @@ -2282,6 +3087,7 @@ public int CompressionLevel { /// initializations) in the face of some network errors during RecvTensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool CacheRpcResponse { get { return cacheRpcResponse_; } set { @@ -2296,6 +3102,7 @@ public bool CacheRpcResponse { /// Disables TCP connection sharing when opening a new RPC channel. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool DisableSessionConnectionSharing { get { return disableSessionConnectionSharing_; } set { @@ -2315,6 +3122,7 @@ public bool DisableSessionConnectionSharing { /// transfers to the same target overlapping in time. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NumChannelsPerTarget { get { return numChannelsPerTarget_; } set { @@ -2323,11 +3131,13 @@ public int NumChannelsPerTarget { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as RPCOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(RPCOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -2345,6 +3155,7 @@ public bool Equals(RPCOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (UseRpcForInprocessMaster != false) hash ^= UseRpcForInprocessMaster.GetHashCode(); @@ -2360,12 +3171,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (UseRpcForInprocessMaster != false) { output.WriteRawTag(8); output.WriteBool(UseRpcForInprocessMaster); @@ -2393,9 +3209,45 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (UseRpcForInprocessMaster != false) { + output.WriteRawTag(8); + output.WriteBool(UseRpcForInprocessMaster); + } + if (CompressionAlgorithm.Length != 0) { + output.WriteRawTag(18); + output.WriteString(CompressionAlgorithm); + } + if (CompressionLevel != 0) { + output.WriteRawTag(24); + output.WriteInt32(CompressionLevel); + } + if (CacheRpcResponse != false) { + output.WriteRawTag(32); + output.WriteBool(CacheRpcResponse); + } + if (DisableSessionConnectionSharing != false) { + output.WriteRawTag(40); + output.WriteBool(DisableSessionConnectionSharing); + } + if (NumChannelsPerTarget != 0) { + output.WriteRawTag(48); + output.WriteInt32(NumChannelsPerTarget); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (UseRpcForInprocessMaster != false) { @@ -2423,6 +3275,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(RPCOptions other) { if (other == null) { return; @@ -2449,7 +3302,11 @@ public void MergeFrom(RPCOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2482,37 +3339,85 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } - } - - /// - /// Metadata about the session. - /// - /// This can be used by the runtime and the Ops for debugging, monitoring, etc. - /// - /// The (name, version) tuple is expected to be a unique identifier for - /// sessions within the same process. - /// - /// NOTE: This is currently used and propagated only by the direct session. - /// - public sealed partial class SessionMetadata : pb::IMessage { - private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SessionMetadata()); - private pb::UnknownFieldSet _unknownFields; - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public static pb::MessageParser Parser { get { return _parser; } } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public static pbr::MessageDescriptor Descriptor { - get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[5]; } - } - + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - pbr::MessageDescriptor pb::IMessage.Descriptor { - get { return Descriptor; } - } + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + UseRpcForInprocessMaster = input.ReadBool(); + break; + } + case 18: { + CompressionAlgorithm = input.ReadString(); + break; + } + case 24: { + CompressionLevel = input.ReadInt32(); + break; + } + case 32: { + CacheRpcResponse = input.ReadBool(); + break; + } + case 40: { + DisableSessionConnectionSharing = input.ReadBool(); + break; + } + case 48: { + NumChannelsPerTarget = input.ReadInt32(); + break; + } + } + } + } + #endif + + } + + /// + /// Metadata about the session. + /// + /// This can be used by the runtime and the Ops for debugging, monitoring, etc. + /// + /// The (name, version) tuple is expected to be a unique identifier for + /// sessions within the same process. + /// + /// NOTE: This is currently used and propagated only by the direct session. + /// + public sealed partial class SessionMetadata : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SessionMetadata()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[5]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SessionMetadata() { OnConstruction(); } @@ -2520,6 +3425,7 @@ public SessionMetadata() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SessionMetadata(SessionMetadata other) : this() { name_ = other.name_; version_ = other.version_; @@ -2527,6 +3433,7 @@ public SessionMetadata(SessionMetadata other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SessionMetadata Clone() { return new SessionMetadata(this); } @@ -2535,6 +3442,7 @@ public SessionMetadata Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -2549,6 +3457,7 @@ public string Name { /// The version is optional. If set, needs to be >= 0. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Version { get { return version_; } set { @@ -2557,11 +3466,13 @@ public long Version { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SessionMetadata); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SessionMetadata other) { if (ReferenceEquals(other, null)) { return false; @@ -2575,6 +3486,7 @@ public bool Equals(SessionMetadata other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -2586,12 +3498,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -2603,9 +3520,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (Version != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Version); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -2621,6 +3558,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SessionMetadata other) { if (other == null) { return; @@ -2635,7 +3573,11 @@ public void MergeFrom(SessionMetadata other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2652,7 +3594,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 16: { + Version = input.ReadInt64(); + break; + } + } + } } + #endif } @@ -2660,23 +3626,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// Session configuration parameters. /// The system picks appropriate values for fields that are not set. /// - public sealed partial class ConfigProto : pb::IMessage { + public sealed partial class ConfigProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ConfigProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[6]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ConfigProto() { OnConstruction(); } @@ -2684,6 +3658,7 @@ public ConfigProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ConfigProto(ConfigProto other) : this() { deviceCount_ = other.deviceCount_.Clone(); intraOpParallelismThreads_ = other.intraOpParallelismThreads_; @@ -2706,6 +3681,7 @@ public ConfigProto(ConfigProto other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ConfigProto Clone() { return new ConfigProto(this); } @@ -2722,6 +3698,7 @@ public ConfigProto Clone() { /// number. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField DeviceCount { get { return deviceCount_; } } @@ -2746,6 +3723,7 @@ public ConfigProto Clone() { /// instance, then this option will be ignored altogether. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int IntraOpParallelismThreads { get { return intraOpParallelismThreads_; } set { @@ -2768,6 +3746,7 @@ public int IntraOpParallelismThreads { /// true or session_inter_op_thread_pool is configured. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int InterOpParallelismThreads { get { return interOpParallelismThreads_; } set { @@ -2790,6 +3769,7 @@ public int InterOpParallelismThreads { /// inter_op_parallelism_threads. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool UsePerSessionThreads { get { return usePerSessionThreads_; } set { @@ -2824,6 +3804,7 @@ public bool UsePerSessionThreads { /// pool. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField SessionInterOpThreadPool { get { return sessionInterOpThreadPool_; } } @@ -2837,6 +3818,7 @@ public bool UsePerSessionThreads { /// typically slows down automatically). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int PlacementPeriod { get { return placementPeriod_; } set { @@ -2855,6 +3837,7 @@ public int PlacementPeriod { /// "/job:worker/replica:3", etc. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField DeviceFilters { get { return deviceFilters_; } } @@ -2866,6 +3849,7 @@ public int PlacementPeriod { /// Options that apply to all GPUs. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.GPUOptions GpuOptions { get { return gpuOptions_; } set { @@ -2886,6 +3870,7 @@ public int PlacementPeriod { /// 3. need to co-locate with reftype input(s) which are from CPU. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool AllowSoftPlacement { get { return allowSoftPlacement_; } set { @@ -2900,6 +3885,7 @@ public bool AllowSoftPlacement { /// Whether device placements should be logged. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool LogDevicePlacement { get { return logDevicePlacement_; } set { @@ -2914,6 +3900,7 @@ public bool LogDevicePlacement { /// Options that apply to all graphs. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.GraphOptions GraphOptions { get { return graphOptions_; } set { @@ -2930,6 +3917,7 @@ public bool LogDevicePlacement { /// deadline for all blocking operations. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long OperationTimeoutInMs { get { return operationTimeoutInMs_; } set { @@ -2944,6 +3932,7 @@ public long OperationTimeoutInMs { /// Options that apply when this session uses the distributed runtime. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RPCOptions RpcOptions { get { return rpcOptions_; } set { @@ -2958,6 +3947,7 @@ public long OperationTimeoutInMs { /// Optional list of all workers to use in this session. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.ClusterDef ClusterDef { get { return clusterDef_; } set { @@ -2974,6 +3964,7 @@ public long OperationTimeoutInMs { /// enabled, this field is ignored and sessions are always isolated. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsolateSessionState { get { return isolateSessionState_; } set { @@ -2991,6 +3982,7 @@ public bool IsolateSessionState { /// (for example during a PartitionedCallOp). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool ShareClusterDevicesInSession { get { return shareClusterDevicesInSession_; } set { @@ -3002,6 +3994,7 @@ public bool ShareClusterDevicesInSession { public const int ExperimentalFieldNumber = 16; private global::Tensorflow.ConfigProto.Types.Experimental experimental_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.ConfigProto.Types.Experimental Experimental { get { return experimental_; } set { @@ -3010,11 +4003,13 @@ public bool ShareClusterDevicesInSession { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ConfigProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ConfigProto other) { if (ReferenceEquals(other, null)) { return false; @@ -3043,6 +4038,7 @@ public bool Equals(ConfigProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= DeviceCount.GetHashCode(); @@ -3069,12 +4065,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else deviceCount_.WriteTo(output, _map_deviceCount_codec); if (IntraOpParallelismThreads != 0) { output.WriteRawTag(16); @@ -3137,9 +4138,80 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + deviceCount_.WriteTo(ref output, _map_deviceCount_codec); + if (IntraOpParallelismThreads != 0) { + output.WriteRawTag(16); + output.WriteInt32(IntraOpParallelismThreads); + } + if (PlacementPeriod != 0) { + output.WriteRawTag(24); + output.WriteInt32(PlacementPeriod); + } + deviceFilters_.WriteTo(ref output, _repeated_deviceFilters_codec); + if (InterOpParallelismThreads != 0) { + output.WriteRawTag(40); + output.WriteInt32(InterOpParallelismThreads); + } + if (gpuOptions_ != null) { + output.WriteRawTag(50); + output.WriteMessage(GpuOptions); + } + if (AllowSoftPlacement != false) { + output.WriteRawTag(56); + output.WriteBool(AllowSoftPlacement); + } + if (LogDevicePlacement != false) { + output.WriteRawTag(64); + output.WriteBool(LogDevicePlacement); + } + if (UsePerSessionThreads != false) { + output.WriteRawTag(72); + output.WriteBool(UsePerSessionThreads); + } + if (graphOptions_ != null) { + output.WriteRawTag(82); + output.WriteMessage(GraphOptions); + } + if (OperationTimeoutInMs != 0L) { + output.WriteRawTag(88); + output.WriteInt64(OperationTimeoutInMs); + } + sessionInterOpThreadPool_.WriteTo(ref output, _repeated_sessionInterOpThreadPool_codec); + if (rpcOptions_ != null) { + output.WriteRawTag(106); + output.WriteMessage(RpcOptions); + } + if (clusterDef_ != null) { + output.WriteRawTag(114); + output.WriteMessage(ClusterDef); + } + if (IsolateSessionState != false) { + output.WriteRawTag(120); + output.WriteBool(IsolateSessionState); + } + if (experimental_ != null) { + output.WriteRawTag(130, 1); + output.WriteMessage(Experimental); + } + if (ShareClusterDevicesInSession != false) { + output.WriteRawTag(136, 1); + output.WriteBool(ShareClusterDevicesInSession); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += deviceCount_.CalculateSize(_map_deviceCount_codec); @@ -3194,6 +4266,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ConfigProto other) { if (other == null) { return; @@ -3262,7 +4335,11 @@ public void MergeFrom(ConfigProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -3354,34 +4431,142 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + deviceCount_.AddEntriesFrom(ref input, _map_deviceCount_codec); + break; + } + case 16: { + IntraOpParallelismThreads = input.ReadInt32(); + break; + } + case 24: { + PlacementPeriod = input.ReadInt32(); + break; + } + case 34: { + deviceFilters_.AddEntriesFrom(ref input, _repeated_deviceFilters_codec); + break; + } + case 40: { + InterOpParallelismThreads = input.ReadInt32(); + break; + } + case 50: { + if (gpuOptions_ == null) { + GpuOptions = new global::Tensorflow.GPUOptions(); + } + input.ReadMessage(GpuOptions); + break; + } + case 56: { + AllowSoftPlacement = input.ReadBool(); + break; + } + case 64: { + LogDevicePlacement = input.ReadBool(); + break; + } + case 72: { + UsePerSessionThreads = input.ReadBool(); + break; + } + case 82: { + if (graphOptions_ == null) { + GraphOptions = new global::Tensorflow.GraphOptions(); + } + input.ReadMessage(GraphOptions); + break; + } + case 88: { + OperationTimeoutInMs = input.ReadInt64(); + break; + } + case 98: { + sessionInterOpThreadPool_.AddEntriesFrom(ref input, _repeated_sessionInterOpThreadPool_codec); + break; + } + case 106: { + if (rpcOptions_ == null) { + RpcOptions = new global::Tensorflow.RPCOptions(); + } + input.ReadMessage(RpcOptions); + break; + } + case 114: { + if (clusterDef_ == null) { + ClusterDef = new global::Tensorflow.ClusterDef(); + } + input.ReadMessage(ClusterDef); + break; + } + case 120: { + IsolateSessionState = input.ReadBool(); + break; + } + case 130: { + if (experimental_ == null) { + Experimental = new global::Tensorflow.ConfigProto.Types.Experimental(); + } + input.ReadMessage(Experimental); + break; + } + case 136: { + ShareClusterDevicesInSession = input.ReadBool(); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the ConfigProto message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Everything inside Experimental is subject to change and is not subject /// to API stability guarantees in /// https://www.tensorflow.org/guide/version_compat. /// - public sealed partial class Experimental : pb::IMessage { + public sealed partial class Experimental : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Experimental()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigProto.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Experimental() { OnConstruction(); } @@ -3389,6 +4574,7 @@ public Experimental() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Experimental(Experimental other) : this() { collectiveGroupLeader_ = other.collectiveGroupLeader_; executorType_ = other.executorType_; @@ -3407,12 +4593,14 @@ public Experimental(Experimental other) : this() { disableOutputPartitionGraphs_ = other.disableOutputPartitionGraphs_; xlaFusionAutotunerThresh_ = other.xlaFusionAutotunerThresh_; useTfrt_ = other.useTfrt_; - coordinationService_ = other.coordinationService_; - fetchRemoteDevicesInMultiClient_ = other.fetchRemoteDevicesInMultiClient_; + disableFunctionalOpsLowering_ = other.disableFunctionalOpsLowering_; + xlaPreferSingleGraphCluster_ = other.xlaPreferSingleGraphCluster_; + coordinationConfig_ = other.coordinationConfig_ != null ? other.coordinationConfig_.Clone() : null; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Experimental Clone() { return new Experimental(this); } @@ -3424,6 +4612,7 @@ public Experimental Clone() { /// Task name for group resolution. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string CollectiveGroupLeader { get { return collectiveGroupLeader_; } set { @@ -3439,6 +4628,7 @@ public string CollectiveGroupLeader { /// if it is an empty string or "DEFAULT" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string ExecutorType { get { return executorType_; } set { @@ -3455,6 +4645,7 @@ public string ExecutorType { /// Any negative value indicates no max, i.e. one chunk only. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int RecvBufMaxChunk { get { return recvBufMaxChunk_; } set { @@ -3471,6 +4662,7 @@ public int RecvBufMaxChunk { /// existence of as many CPU devices as there are available NUMA nodes. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool UseNumaAffinity { get { return useNumaAffinity_; } set { @@ -3486,6 +4678,7 @@ public bool UseNumaAffinity { /// for potentially concurrent collective instances. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool CollectiveDeterministicSequentialExecution { get { return collectiveDeterministicSequentialExecution_; } set { @@ -3501,6 +4694,7 @@ public bool CollectiveDeterministicSequentialExecution { /// experimental. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool CollectiveNccl { get { return collectiveNccl_; } set { @@ -3534,6 +4728,7 @@ public bool CollectiveNccl { /// isolate_session_state and ClusterSpec propagation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool ShareSessionStateInClusterspecPropagation { get { return shareSessionStateInClusterspecPropagation_; } set { @@ -3551,6 +4746,7 @@ public bool ShareSessionStateInClusterspecPropagation { /// CPU usage. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool DisableThreadSpinning { get { return disableThreadSpinning_; } set { @@ -3566,6 +4762,7 @@ public bool DisableThreadSpinning { /// ConfigProto.share_cluster_devices_in_session instead. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool ShareClusterDevicesInSession { get { return shareClusterDevicesInSession_; } set { @@ -3585,6 +4782,7 @@ public bool ShareClusterDevicesInSession { /// NOTE: This is currently used and propagated only by the direct session. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SessionMetadata SessionMetadata { get { return sessionMetadata_; } set { @@ -3604,6 +4802,7 @@ public bool ShareClusterDevicesInSession { /// Session::Extend() may not be supported. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool OptimizeForStaticGraph { get { return optimizeForStaticGraph_; } set { @@ -3631,6 +4830,7 @@ public bool OptimizeForStaticGraph { /// to lower the encapsulated graph to a particular device. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool EnableMlirBridge { get { return enableMlirBridge_; } set { @@ -3648,6 +4848,7 @@ public bool EnableMlirBridge { /// Whether to enable the MLIR-based TF->XLA bridge. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout MlirBridgeRollout { get { return mlirBridgeRollout_; } set { @@ -3666,6 +4867,7 @@ public bool EnableMlirBridge { /// new passes that are replacing existing optimizations in Grappler. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool EnableMlirGraphOptimization { get { return enableMlirGraphOptimization_; } set { @@ -3684,6 +4886,7 @@ public bool EnableMlirGraphOptimization { /// `RunOptions.output_partition_graphs` options must not be set. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool DisableOutputPartitionGraphs { get { return disableOutputPartitionGraphs_; } set { @@ -3702,6 +4905,7 @@ public bool DisableOutputPartitionGraphs { /// search on the compiler parameters. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long XlaFusionAutotunerThresh { get { return xlaFusionAutotunerThresh_; } set { @@ -3716,6 +4920,7 @@ public long XlaFusionAutotunerThresh { /// Whether runtime execution uses TFRT. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool UseTfrt { get { return useTfrt_; } set { @@ -3723,44 +4928,62 @@ public bool UseTfrt { } } - /// Field number for the "coordination_service" field. - public const int CoordinationServiceFieldNumber = 19; - private string coordinationService_ = ""; + /// Field number for the "disable_functional_ops_lowering" field. + public const int DisableFunctionalOpsLoweringFieldNumber = 21; + private bool disableFunctionalOpsLowering_; + /// + /// Whether functional control flow op lowering should be disabled. This is + /// useful when executing within a portable runtime where control flow op + /// kernels may not be loaded due to selective registration. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool DisableFunctionalOpsLowering { + get { return disableFunctionalOpsLowering_; } + set { + disableFunctionalOpsLowering_ = value; + } + } + + /// Field number for the "xla_prefer_single_graph_cluster" field. + public const int XlaPreferSingleGraphClusterFieldNumber = 22; + private bool xlaPreferSingleGraphCluster_; /// - /// Distributed coordination service to be enabled if set. - /// Currently only effective in multi-client setup. + /// Provides a hint to XLA auto clustering to prefer forming a single large + /// cluster that encompases most of the graph. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public string CoordinationService { - get { return coordinationService_; } + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaPreferSingleGraphCluster { + get { return xlaPreferSingleGraphCluster_; } set { - coordinationService_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + xlaPreferSingleGraphCluster_ = value; } } - /// Field number for the "fetch_remote_devices_in_multi_client" field. - public const int FetchRemoteDevicesInMultiClientFieldNumber = 20; - private bool fetchRemoteDevicesInMultiClient_; + /// Field number for the "coordination_config" field. + public const int CoordinationConfigFieldNumber = 23; + private global::Tensorflow.CoordinationServiceConfig coordinationConfig_; /// - /// Whether the remote devices in the cluster should be fetched during setup - /// of multi-client cluster. If enabled, the workers will run an extra device - /// information exchange step during startup and the workers' EagerContexts - /// will become aware of remote devices in the cluster as well. + /// Distributed coordination service configurations. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public bool FetchRemoteDevicesInMultiClient { - get { return fetchRemoteDevicesInMultiClient_; } + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinationServiceConfig CoordinationConfig { + get { return coordinationConfig_; } set { - fetchRemoteDevicesInMultiClient_ = value; + coordinationConfig_ = value; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Experimental); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Experimental other) { if (ReferenceEquals(other, null)) { return false; @@ -3785,12 +5008,14 @@ public bool Equals(Experimental other) { if (DisableOutputPartitionGraphs != other.DisableOutputPartitionGraphs) return false; if (XlaFusionAutotunerThresh != other.XlaFusionAutotunerThresh) return false; if (UseTfrt != other.UseTfrt) return false; - if (CoordinationService != other.CoordinationService) return false; - if (FetchRemoteDevicesInMultiClient != other.FetchRemoteDevicesInMultiClient) return false; + if (DisableFunctionalOpsLowering != other.DisableFunctionalOpsLowering) return false; + if (XlaPreferSingleGraphCluster != other.XlaPreferSingleGraphCluster) return false; + if (!object.Equals(CoordinationConfig, other.CoordinationConfig)) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (CollectiveGroupLeader.Length != 0) hash ^= CollectiveGroupLeader.GetHashCode(); @@ -3810,8 +5035,9 @@ public override int GetHashCode() { if (DisableOutputPartitionGraphs != false) hash ^= DisableOutputPartitionGraphs.GetHashCode(); if (XlaFusionAutotunerThresh != 0L) hash ^= XlaFusionAutotunerThresh.GetHashCode(); if (UseTfrt != false) hash ^= UseTfrt.GetHashCode(); - if (CoordinationService.Length != 0) hash ^= CoordinationService.GetHashCode(); - if (FetchRemoteDevicesInMultiClient != false) hash ^= FetchRemoteDevicesInMultiClient.GetHashCode(); + if (DisableFunctionalOpsLowering != false) hash ^= DisableFunctionalOpsLowering.GetHashCode(); + if (XlaPreferSingleGraphCluster != false) hash ^= XlaPreferSingleGraphCluster.GetHashCode(); + if (coordinationConfig_ != null) hash ^= CoordinationConfig.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -3819,12 +5045,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (CollectiveGroupLeader.Length != 0) { output.WriteRawTag(10); output.WriteString(CollectiveGroupLeader); @@ -3893,28 +5124,124 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(144, 1); output.WriteBool(UseTfrt); } - if (CoordinationService.Length != 0) { - output.WriteRawTag(154, 1); - output.WriteString(CoordinationService); + if (DisableFunctionalOpsLowering != false) { + output.WriteRawTag(168, 1); + output.WriteBool(DisableFunctionalOpsLowering); } - if (FetchRemoteDevicesInMultiClient != false) { - output.WriteRawTag(160, 1); - output.WriteBool(FetchRemoteDevicesInMultiClient); + if (XlaPreferSingleGraphCluster != false) { + output.WriteRawTag(176, 1); + output.WriteBool(XlaPreferSingleGraphCluster); + } + if (coordinationConfig_ != null) { + output.WriteRawTag(186, 1); + output.WriteMessage(CoordinationConfig); } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public int CalculateSize() { - int size = 0; + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { if (CollectiveGroupLeader.Length != 0) { - size += 1 + pb::CodedOutputStream.ComputeStringSize(CollectiveGroupLeader); + output.WriteRawTag(10); + output.WriteString(CollectiveGroupLeader); } if (ExecutorType.Length != 0) { - size += 1 + pb::CodedOutputStream.ComputeStringSize(ExecutorType); - } + output.WriteRawTag(26); + output.WriteString(ExecutorType); + } + if (RecvBufMaxChunk != 0) { + output.WriteRawTag(32); + output.WriteInt32(RecvBufMaxChunk); + } + if (UseNumaAffinity != false) { + output.WriteRawTag(40); + output.WriteBool(UseNumaAffinity); + } + if (CollectiveDeterministicSequentialExecution != false) { + output.WriteRawTag(48); + output.WriteBool(CollectiveDeterministicSequentialExecution); + } + if (CollectiveNccl != false) { + output.WriteRawTag(56); + output.WriteBool(CollectiveNccl); + } + if (ShareSessionStateInClusterspecPropagation != false) { + output.WriteRawTag(64); + output.WriteBool(ShareSessionStateInClusterspecPropagation); + } + if (DisableThreadSpinning != false) { + output.WriteRawTag(72); + output.WriteBool(DisableThreadSpinning); + } + if (ShareClusterDevicesInSession != false) { + output.WriteRawTag(80); + output.WriteBool(ShareClusterDevicesInSession); + } + if (sessionMetadata_ != null) { + output.WriteRawTag(90); + output.WriteMessage(SessionMetadata); + } + if (OptimizeForStaticGraph != false) { + output.WriteRawTag(96); + output.WriteBool(OptimizeForStaticGraph); + } + if (EnableMlirBridge != false) { + output.WriteRawTag(104); + output.WriteBool(EnableMlirBridge); + } + if (DisableOutputPartitionGraphs != false) { + output.WriteRawTag(112); + output.WriteBool(DisableOutputPartitionGraphs); + } + if (XlaFusionAutotunerThresh != 0L) { + output.WriteRawTag(120); + output.WriteInt64(XlaFusionAutotunerThresh); + } + if (EnableMlirGraphOptimization != false) { + output.WriteRawTag(128, 1); + output.WriteBool(EnableMlirGraphOptimization); + } + if (MlirBridgeRollout != global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout.Unspecified) { + output.WriteRawTag(136, 1); + output.WriteEnum((int) MlirBridgeRollout); + } + if (UseTfrt != false) { + output.WriteRawTag(144, 1); + output.WriteBool(UseTfrt); + } + if (DisableFunctionalOpsLowering != false) { + output.WriteRawTag(168, 1); + output.WriteBool(DisableFunctionalOpsLowering); + } + if (XlaPreferSingleGraphCluster != false) { + output.WriteRawTag(176, 1); + output.WriteBool(XlaPreferSingleGraphCluster); + } + if (coordinationConfig_ != null) { + output.WriteRawTag(186, 1); + output.WriteMessage(CoordinationConfig); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (CollectiveGroupLeader.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(CollectiveGroupLeader); + } + if (ExecutorType.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ExecutorType); + } if (RecvBufMaxChunk != 0) { size += 1 + pb::CodedOutputStream.ComputeInt32Size(RecvBufMaxChunk); } @@ -3960,12 +5287,15 @@ public int CalculateSize() { if (UseTfrt != false) { size += 2 + 1; } - if (CoordinationService.Length != 0) { - size += 2 + pb::CodedOutputStream.ComputeStringSize(CoordinationService); + if (DisableFunctionalOpsLowering != false) { + size += 2 + 1; } - if (FetchRemoteDevicesInMultiClient != false) { + if (XlaPreferSingleGraphCluster != false) { size += 2 + 1; } + if (coordinationConfig_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(CoordinationConfig); + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -3973,6 +5303,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Experimental other) { if (other == null) { return; @@ -4031,17 +5362,27 @@ public void MergeFrom(Experimental other) { if (other.UseTfrt != false) { UseTfrt = other.UseTfrt; } - if (other.CoordinationService.Length != 0) { - CoordinationService = other.CoordinationService; + if (other.DisableFunctionalOpsLowering != false) { + DisableFunctionalOpsLowering = other.DisableFunctionalOpsLowering; } - if (other.FetchRemoteDevicesInMultiClient != false) { - FetchRemoteDevicesInMultiClient = other.FetchRemoteDevicesInMultiClient; + if (other.XlaPreferSingleGraphCluster != false) { + XlaPreferSingleGraphCluster = other.XlaPreferSingleGraphCluster; + } + if (other.coordinationConfig_ != null) { + if (coordinationConfig_ == null) { + CoordinationConfig = new global::Tensorflow.CoordinationServiceConfig(); + } + CoordinationConfig.MergeFrom(other.CoordinationConfig); } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -4119,21 +5460,131 @@ public void MergeFrom(pb::CodedInputStream input) { UseTfrt = input.ReadBool(); break; } - case 154: { - CoordinationService = input.ReadString(); + case 168: { + DisableFunctionalOpsLowering = input.ReadBool(); + break; + } + case 176: { + XlaPreferSingleGraphCluster = input.ReadBool(); + break; + } + case 186: { + if (coordinationConfig_ == null) { + CoordinationConfig = new global::Tensorflow.CoordinationServiceConfig(); + } + input.ReadMessage(CoordinationConfig); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + CollectiveGroupLeader = input.ReadString(); + break; + } + case 26: { + ExecutorType = input.ReadString(); + break; + } + case 32: { + RecvBufMaxChunk = input.ReadInt32(); + break; + } + case 40: { + UseNumaAffinity = input.ReadBool(); + break; + } + case 48: { + CollectiveDeterministicSequentialExecution = input.ReadBool(); + break; + } + case 56: { + CollectiveNccl = input.ReadBool(); + break; + } + case 64: { + ShareSessionStateInClusterspecPropagation = input.ReadBool(); + break; + } + case 72: { + DisableThreadSpinning = input.ReadBool(); + break; + } + case 80: { + ShareClusterDevicesInSession = input.ReadBool(); + break; + } + case 90: { + if (sessionMetadata_ == null) { + SessionMetadata = new global::Tensorflow.SessionMetadata(); + } + input.ReadMessage(SessionMetadata); + break; + } + case 96: { + OptimizeForStaticGraph = input.ReadBool(); + break; + } + case 104: { + EnableMlirBridge = input.ReadBool(); + break; + } + case 112: { + DisableOutputPartitionGraphs = input.ReadBool(); + break; + } + case 120: { + XlaFusionAutotunerThresh = input.ReadInt64(); + break; + } + case 128: { + EnableMlirGraphOptimization = input.ReadBool(); + break; + } + case 136: { + MlirBridgeRollout = (global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout) input.ReadEnum(); + break; + } + case 144: { + UseTfrt = input.ReadBool(); + break; + } + case 168: { + DisableFunctionalOpsLowering = input.ReadBool(); break; } - case 160: { - FetchRemoteDevicesInMultiClient = input.ReadBool(); + case 176: { + XlaPreferSingleGraphCluster = input.ReadBool(); + break; + } + case 186: { + if (coordinationConfig_ == null) { + CoordinationConfig = new global::Tensorflow.CoordinationServiceConfig(); + } + input.ReadMessage(CoordinationConfig); break; } } } } + #endif #region Nested types /// Container for nested types declared in the Experimental message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// An enum that describes the state of the MLIR bridge rollout. @@ -4183,23 +5634,31 @@ public enum MlirBridgeRollout { /// /// Options for a single Run() call. /// - public sealed partial class RunOptions : pb::IMessage { + public sealed partial class RunOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RunOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[7]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RunOptions() { OnConstruction(); } @@ -4207,6 +5666,7 @@ public RunOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RunOptions(RunOptions other) : this() { traceLevel_ = other.traceLevel_; timeoutInMs_ = other.timeoutInMs_; @@ -4219,6 +5679,7 @@ public RunOptions(RunOptions other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RunOptions Clone() { return new RunOptions(this); } @@ -4227,6 +5688,7 @@ public RunOptions Clone() { public const int TraceLevelFieldNumber = 1; private global::Tensorflow.RunOptions.Types.TraceLevel traceLevel_ = global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RunOptions.Types.TraceLevel TraceLevel { get { return traceLevel_; } set { @@ -4241,6 +5703,7 @@ public RunOptions Clone() { /// Time to wait for operation to complete in milliseconds. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long TimeoutInMs { get { return timeoutInMs_; } set { @@ -4260,6 +5723,7 @@ public long TimeoutInMs { /// comparable with the overhead of Session::Run(). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int InterOpThreadPool { get { return interOpThreadPool_; } set { @@ -4275,6 +5739,7 @@ public int InterOpThreadPool { /// outputted via RunMetadata. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool OutputPartitionGraphs { get { return outputPartitionGraphs_; } set { @@ -4289,6 +5754,7 @@ public bool OutputPartitionGraphs { /// EXPERIMENTAL. Options used to initialize DebuggerState, if enabled. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DebugOptions DebugOptions { get { return debugOptions_; } set { @@ -4307,6 +5773,7 @@ public bool OutputPartitionGraphs { /// Enabling this option can slow down the Run() call. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool ReportTensorAllocationsUponOom { get { return reportTensorAllocationsUponOom_; } set { @@ -4318,6 +5785,7 @@ public bool ReportTensorAllocationsUponOom { public const int ExperimentalFieldNumber = 8; private global::Tensorflow.RunOptions.Types.Experimental experimental_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RunOptions.Types.Experimental Experimental { get { return experimental_; } set { @@ -4326,11 +5794,13 @@ public bool ReportTensorAllocationsUponOom { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as RunOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(RunOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -4349,6 +5819,7 @@ public bool Equals(RunOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (TraceLevel != global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace) hash ^= TraceLevel.GetHashCode(); @@ -4365,12 +5836,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (TraceLevel != global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace) { output.WriteRawTag(8); output.WriteEnum((int) TraceLevel); @@ -4402,9 +5878,49 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (TraceLevel != global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace) { + output.WriteRawTag(8); + output.WriteEnum((int) TraceLevel); + } + if (TimeoutInMs != 0L) { + output.WriteRawTag(16); + output.WriteInt64(TimeoutInMs); + } + if (InterOpThreadPool != 0) { + output.WriteRawTag(24); + output.WriteInt32(InterOpThreadPool); + } + if (OutputPartitionGraphs != false) { + output.WriteRawTag(40); + output.WriteBool(OutputPartitionGraphs); + } + if (debugOptions_ != null) { + output.WriteRawTag(50); + output.WriteMessage(DebugOptions); + } + if (ReportTensorAllocationsUponOom != false) { + output.WriteRawTag(56); + output.WriteBool(ReportTensorAllocationsUponOom); + } + if (experimental_ != null) { + output.WriteRawTag(66); + output.WriteMessage(Experimental); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (TraceLevel != global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace) { @@ -4435,6 +5951,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(RunOptions other) { if (other == null) { return; @@ -4470,7 +5987,11 @@ public void MergeFrom(RunOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -4513,11 +6034,62 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + TraceLevel = (global::Tensorflow.RunOptions.Types.TraceLevel) input.ReadEnum(); + break; + } + case 16: { + TimeoutInMs = input.ReadInt64(); + break; + } + case 24: { + InterOpThreadPool = input.ReadInt32(); + break; + } + case 40: { + OutputPartitionGraphs = input.ReadBool(); + break; + } + case 50: { + if (debugOptions_ == null) { + DebugOptions = new global::Tensorflow.DebugOptions(); + } + input.ReadMessage(DebugOptions); + break; + } + case 56: { + ReportTensorAllocationsUponOom = input.ReadBool(); + break; + } + case 66: { + if (experimental_ == null) { + Experimental = new global::Tensorflow.RunOptions.Types.Experimental(); + } + input.ReadMessage(Experimental); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the RunOptions message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// TODO(pbar) Turn this into a TraceOptions proto which allows @@ -4535,23 +6107,31 @@ public enum TraceLevel { /// to API stability guarantees in /// https://www.tensorflow.org/guide/version_compat. /// - public sealed partial class Experimental : pb::IMessage { + public sealed partial class Experimental : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Experimental()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.RunOptions.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Experimental() { OnConstruction(); } @@ -4559,6 +6139,7 @@ public Experimental() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Experimental(Experimental other) : this() { collectiveGraphKey_ = other.collectiveGraphKey_; useRunHandlerPool_ = other.useRunHandlerPool_; @@ -4567,6 +6148,7 @@ public Experimental(Experimental other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Experimental Clone() { return new Experimental(this); } @@ -4581,6 +6163,7 @@ public Experimental Clone() { /// run disjoint graphs). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long CollectiveGraphKey { get { return collectiveGraphKey_; } set { @@ -4598,6 +6181,7 @@ public long CollectiveGraphKey { /// Consider using this option for CPU-bound workloads like inference. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool UseRunHandlerPool { get { return useRunHandlerPool_; } set { @@ -4609,6 +6193,7 @@ public bool UseRunHandlerPool { public const int RunHandlerPoolOptionsFieldNumber = 3; private global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions runHandlerPoolOptions_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions RunHandlerPoolOptions { get { return runHandlerPoolOptions_; } set { @@ -4617,11 +6202,13 @@ public bool UseRunHandlerPool { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Experimental); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Experimental other) { if (ReferenceEquals(other, null)) { return false; @@ -4636,24 +6223,52 @@ public bool Equals(Experimental other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (CollectiveGraphKey != 0L) hash ^= CollectiveGraphKey.GetHashCode(); if (UseRunHandlerPool != false) hash ^= UseRunHandlerPool.GetHashCode(); if (runHandlerPoolOptions_ != null) hash ^= RunHandlerPoolOptions.GetHashCode(); if (_unknownFields != null) { - hash ^= _unknownFields.GetHashCode(); + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (CollectiveGraphKey != 0L) { + output.WriteRawTag(8); + output.WriteInt64(CollectiveGraphKey); + } + if (UseRunHandlerPool != false) { + output.WriteRawTag(16); + output.WriteBool(UseRunHandlerPool); + } + if (runHandlerPoolOptions_ != null) { + output.WriteRawTag(26); + output.WriteMessage(RunHandlerPoolOptions); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); } - return hash; - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public override string ToString() { - return pb::JsonFormatter.ToDiagnosticString(this); + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public void WriteTo(pb::CodedOutputStream output) { + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { if (CollectiveGraphKey != 0L) { output.WriteRawTag(8); output.WriteInt64(CollectiveGraphKey); @@ -4667,11 +6282,13 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteMessage(RunHandlerPoolOptions); } if (_unknownFields != null) { - _unknownFields.WriteTo(output); + _unknownFields.WriteTo(ref output); } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (CollectiveGraphKey != 0L) { @@ -4690,6 +6307,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Experimental other) { if (other == null) { return; @@ -4710,7 +6328,11 @@ public void MergeFrom(Experimental other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -4734,32 +6356,72 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + CollectiveGraphKey = input.ReadInt64(); + break; + } + case 16: { + UseRunHandlerPool = input.ReadBool(); + break; + } + case 26: { + if (runHandlerPoolOptions_ == null) { + RunHandlerPoolOptions = new global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions(); + } + input.ReadMessage(RunHandlerPoolOptions); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the Experimental message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Options for run handler thread pool. /// - public sealed partial class RunHandlerPoolOptions : pb::IMessage { + public sealed partial class RunHandlerPoolOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RunHandlerPoolOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.RunOptions.Types.Experimental.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RunHandlerPoolOptions() { OnConstruction(); } @@ -4767,12 +6429,14 @@ public RunHandlerPoolOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RunHandlerPoolOptions(RunHandlerPoolOptions other) : this() { priority_ = other.priority_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RunHandlerPoolOptions Clone() { return new RunHandlerPoolOptions(this); } @@ -4785,6 +6449,7 @@ public RunHandlerPoolOptions Clone() { /// based on the priority number. The larger number means higher priority. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Priority { get { return priority_; } set { @@ -4793,11 +6458,13 @@ public long Priority { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as RunHandlerPoolOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(RunHandlerPoolOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -4810,6 +6477,7 @@ public bool Equals(RunHandlerPoolOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Priority != 0L) hash ^= Priority.GetHashCode(); @@ -4820,12 +6488,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Priority != 0L) { output.WriteRawTag(8); output.WriteInt64(Priority); @@ -4833,9 +6506,25 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Priority != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Priority); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Priority != 0L) { @@ -4848,6 +6537,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(RunHandlerPoolOptions other) { if (other == null) { return; @@ -4859,7 +6549,11 @@ public void MergeFrom(RunHandlerPoolOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -4872,7 +6566,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Priority = input.ReadInt64(); + break; + } + } + } } + #endif } @@ -4889,23 +6603,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// /// Metadata output (i.e., non-Tensor) for a single Run() call. /// - public sealed partial class RunMetadata : pb::IMessage { + public sealed partial class RunMetadata : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RunMetadata()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[8]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RunMetadata() { OnConstruction(); } @@ -4913,15 +6635,18 @@ public RunMetadata() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RunMetadata(RunMetadata other) : this() { stepStats_ = other.stepStats_ != null ? other.stepStats_.Clone() : null; costGraph_ = other.costGraph_ != null ? other.costGraph_.Clone() : null; partitionGraphs_ = other.partitionGraphs_.Clone(); functionGraphs_ = other.functionGraphs_.Clone(); + sessionMetadata_ = other.sessionMetadata_ != null ? other.sessionMetadata_.Clone() : null; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RunMetadata Clone() { return new RunMetadata(this); } @@ -4935,6 +6660,7 @@ public RunMetadata Clone() { /// EXPERIMENTAL: The format and set of events may change in future versions. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.StepStats StepStats { get { return stepStats_; } set { @@ -4949,6 +6675,7 @@ public RunMetadata Clone() { /// The cost graph for the computation defined by the run call. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.CostGraphDef CostGraph { get { return costGraph_; } set { @@ -4965,6 +6692,7 @@ public RunMetadata Clone() { /// Graphs of the partitions executed by executors. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField PartitionGraphs { get { return partitionGraphs_; } } @@ -4987,16 +6715,34 @@ public RunMetadata Clone() { /// optimization passes might change the structure of the graph significantly). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField FunctionGraphs { get { return functionGraphs_; } } + /// Field number for the "session_metadata" field. + public const int SessionMetadataFieldNumber = 5; + private global::Tensorflow.SessionMetadata sessionMetadata_; + /// + /// Metadata about the session. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.SessionMetadata SessionMetadata { + get { return sessionMetadata_; } + set { + sessionMetadata_ = value; + } + } + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as RunMetadata); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(RunMetadata other) { if (ReferenceEquals(other, null)) { return false; @@ -5008,16 +6754,19 @@ public bool Equals(RunMetadata other) { if (!object.Equals(CostGraph, other.CostGraph)) return false; if(!partitionGraphs_.Equals(other.partitionGraphs_)) return false; if(!functionGraphs_.Equals(other.functionGraphs_)) return false; + if (!object.Equals(SessionMetadata, other.SessionMetadata)) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (stepStats_ != null) hash ^= StepStats.GetHashCode(); if (costGraph_ != null) hash ^= CostGraph.GetHashCode(); hash ^= partitionGraphs_.GetHashCode(); hash ^= functionGraphs_.GetHashCode(); + if (sessionMetadata_ != null) hash ^= SessionMetadata.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -5025,12 +6774,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (stepStats_ != null) { output.WriteRawTag(10); output.WriteMessage(StepStats); @@ -5041,12 +6795,42 @@ public void WriteTo(pb::CodedOutputStream output) { } partitionGraphs_.WriteTo(output, _repeated_partitionGraphs_codec); functionGraphs_.WriteTo(output, _repeated_functionGraphs_codec); + if (sessionMetadata_ != null) { + output.WriteRawTag(42); + output.WriteMessage(SessionMetadata); + } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (stepStats_ != null) { + output.WriteRawTag(10); + output.WriteMessage(StepStats); + } + if (costGraph_ != null) { + output.WriteRawTag(18); + output.WriteMessage(CostGraph); + } + partitionGraphs_.WriteTo(ref output, _repeated_partitionGraphs_codec); + functionGraphs_.WriteTo(ref output, _repeated_functionGraphs_codec); + if (sessionMetadata_ != null) { + output.WriteRawTag(42); + output.WriteMessage(SessionMetadata); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (stepStats_ != null) { @@ -5057,6 +6841,9 @@ public int CalculateSize() { } size += partitionGraphs_.CalculateSize(_repeated_partitionGraphs_codec); size += functionGraphs_.CalculateSize(_repeated_functionGraphs_codec); + if (sessionMetadata_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SessionMetadata); + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -5064,6 +6851,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(RunMetadata other) { if (other == null) { return; @@ -5082,11 +6870,21 @@ public void MergeFrom(RunMetadata other) { } partitionGraphs_.Add(other.partitionGraphs_); functionGraphs_.Add(other.functionGraphs_); + if (other.sessionMetadata_ != null) { + if (sessionMetadata_ == null) { + SessionMetadata = new global::Tensorflow.SessionMetadata(); + } + SessionMetadata.MergeFrom(other.SessionMetadata); + } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -5115,31 +6913,92 @@ public void MergeFrom(pb::CodedInputStream input) { functionGraphs_.AddEntriesFrom(input, _repeated_functionGraphs_codec); break; } + case 42: { + if (sessionMetadata_ == null) { + SessionMetadata = new global::Tensorflow.SessionMetadata(); + } + input.ReadMessage(SessionMetadata); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (stepStats_ == null) { + StepStats = new global::Tensorflow.StepStats(); + } + input.ReadMessage(StepStats); + break; + } + case 18: { + if (costGraph_ == null) { + CostGraph = new global::Tensorflow.CostGraphDef(); + } + input.ReadMessage(CostGraph); + break; + } + case 26: { + partitionGraphs_.AddEntriesFrom(ref input, _repeated_partitionGraphs_codec); + break; + } + case 34: { + functionGraphs_.AddEntriesFrom(ref input, _repeated_functionGraphs_codec); + break; + } + case 42: { + if (sessionMetadata_ == null) { + SessionMetadata = new global::Tensorflow.SessionMetadata(); + } + input.ReadMessage(SessionMetadata); + break; + } } } } + #endif #region Nested types /// Container for nested types declared in the RunMetadata message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class FunctionGraphs : pb::IMessage { + public sealed partial class FunctionGraphs : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new FunctionGraphs()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.RunMetadata.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionGraphs() { OnConstruction(); } @@ -5147,6 +7006,7 @@ public FunctionGraphs() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionGraphs(FunctionGraphs other) : this() { partitionGraphs_ = other.partitionGraphs_.Clone(); preOptimizationGraph_ = other.preOptimizationGraph_ != null ? other.preOptimizationGraph_.Clone() : null; @@ -5155,6 +7015,7 @@ public FunctionGraphs(FunctionGraphs other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionGraphs Clone() { return new FunctionGraphs(this); } @@ -5168,6 +7029,7 @@ public FunctionGraphs Clone() { /// TODO(nareshmodi): Include some sort of function/cache-key identifier? /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField PartitionGraphs { get { return partitionGraphs_; } } @@ -5176,6 +7038,7 @@ public FunctionGraphs Clone() { public const int PreOptimizationGraphFieldNumber = 2; private global::Tensorflow.GraphDef preOptimizationGraph_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.GraphDef PreOptimizationGraph { get { return preOptimizationGraph_; } set { @@ -5187,6 +7050,7 @@ public FunctionGraphs Clone() { public const int PostOptimizationGraphFieldNumber = 3; private global::Tensorflow.GraphDef postOptimizationGraph_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.GraphDef PostOptimizationGraph { get { return postOptimizationGraph_; } set { @@ -5195,11 +7059,13 @@ public FunctionGraphs Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as FunctionGraphs); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(FunctionGraphs other) { if (ReferenceEquals(other, null)) { return false; @@ -5214,6 +7080,7 @@ public bool Equals(FunctionGraphs other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= partitionGraphs_.GetHashCode(); @@ -5226,12 +7093,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else partitionGraphs_.WriteTo(output, _repeated_partitionGraphs_codec); if (preOptimizationGraph_ != null) { output.WriteRawTag(18); @@ -5244,9 +7116,30 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + partitionGraphs_.WriteTo(ref output, _repeated_partitionGraphs_codec); + if (preOptimizationGraph_ != null) { + output.WriteRawTag(18); + output.WriteMessage(PreOptimizationGraph); + } + if (postOptimizationGraph_ != null) { + output.WriteRawTag(26); + output.WriteMessage(PostOptimizationGraph); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += partitionGraphs_.CalculateSize(_repeated_partitionGraphs_codec); @@ -5263,6 +7156,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(FunctionGraphs other) { if (other == null) { return; @@ -5284,7 +7178,11 @@ public void MergeFrom(FunctionGraphs other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -5311,7 +7209,41 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + partitionGraphs_.AddEntriesFrom(ref input, _repeated_partitionGraphs_codec); + break; + } + case 18: { + if (preOptimizationGraph_ == null) { + PreOptimizationGraph = new global::Tensorflow.GraphDef(); + } + input.ReadMessage(PreOptimizationGraph); + break; + } + case 26: { + if (postOptimizationGraph_ == null) { + PostOptimizationGraph = new global::Tensorflow.GraphDef(); + } + input.ReadMessage(PostOptimizationGraph); + break; + } + } + } } + #endif } @@ -5323,23 +7255,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// /// Defines a connection between two tensors in a `GraphDef`. /// - public sealed partial class TensorConnection : pb::IMessage { + public sealed partial class TensorConnection : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TensorConnection()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[9]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorConnection() { OnConstruction(); } @@ -5347,6 +7287,7 @@ public TensorConnection() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorConnection(TensorConnection other) : this() { fromTensor_ = other.fromTensor_; toTensor_ = other.toTensor_; @@ -5354,6 +7295,7 @@ public TensorConnection(TensorConnection other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorConnection Clone() { return new TensorConnection(this); } @@ -5366,6 +7308,7 @@ public TensorConnection Clone() { /// the tensor named in `to_tensor`. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string FromTensor { get { return fromTensor_; } set { @@ -5381,6 +7324,7 @@ public string FromTensor { /// value of the tensor named in `from_tensor`. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string ToTensor { get { return toTensor_; } set { @@ -5389,11 +7333,13 @@ public string ToTensor { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TensorConnection); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TensorConnection other) { if (ReferenceEquals(other, null)) { return false; @@ -5407,6 +7353,7 @@ public bool Equals(TensorConnection other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (FromTensor.Length != 0) hash ^= FromTensor.GetHashCode(); @@ -5418,12 +7365,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (FromTensor.Length != 0) { output.WriteRawTag(10); output.WriteString(FromTensor); @@ -5435,9 +7387,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (FromTensor.Length != 0) { + output.WriteRawTag(10); + output.WriteString(FromTensor); + } + if (ToTensor.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ToTensor); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (FromTensor.Length != 0) { @@ -5453,6 +7425,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TensorConnection other) { if (other == null) { return; @@ -5467,7 +7440,11 @@ public void MergeFrom(TensorConnection other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -5484,7 +7461,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + FromTensor = input.ReadString(); + break; + } + case 18: { + ToTensor = input.ReadString(); + break; + } + } + } } + #endif } @@ -5494,23 +7495,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// /// Compare with the arguments to `Session::Run()`. /// - public sealed partial class CallableOptions : pb::IMessage { + public sealed partial class CallableOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CallableOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[10]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CallableOptions() { OnConstruction(); } @@ -5518,6 +7527,7 @@ public CallableOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CallableOptions(CallableOptions other) : this() { feed_ = other.feed_.Clone(); fetch_ = other.fetch_.Clone(); @@ -5531,6 +7541,7 @@ public CallableOptions(CallableOptions other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CallableOptions Clone() { return new CallableOptions(this); } @@ -5544,6 +7555,7 @@ public CallableOptions Clone() { /// Tensors to be fed in the callable. Each feed is the name of a tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Feed { get { return feed_; } } @@ -5559,6 +7571,7 @@ public CallableOptions Clone() { /// order of specified fetches does not change the execution order. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Fetch { get { return fetch_; } } @@ -5573,6 +7586,7 @@ public CallableOptions Clone() { /// callable but their outputs will not be returned. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Target { get { return target_; } } @@ -5584,6 +7598,7 @@ public CallableOptions Clone() { /// Options that will be applied to each run. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RunOptions RunOptions { get { return runOptions_; } set { @@ -5602,6 +7617,7 @@ public CallableOptions Clone() { /// in the callable. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField TensorConnection { get { return tensorConnection_; } } @@ -5661,6 +7677,7 @@ public CallableOptions Clone() { /// cuStreamSynchronize()). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField FeedDevices { get { return feedDevices_; } } @@ -5671,6 +7688,7 @@ public CallableOptions Clone() { = new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForString(18, ""), 58); private readonly pbc::MapField fetchDevices_ = new pbc::MapField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField FetchDevices { get { return fetchDevices_; } } @@ -5691,6 +7709,7 @@ public CallableOptions Clone() { /// `feed_devices` with the same corresponding device name. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool FetchSkipSync { get { return fetchSkipSync_; } set { @@ -5699,11 +7718,13 @@ public bool FetchSkipSync { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CallableOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CallableOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -5723,6 +7744,7 @@ public bool Equals(CallableOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= feed_.GetHashCode(); @@ -5740,12 +7762,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else feed_.WriteTo(output, _repeated_feed_codec); fetch_.WriteTo(output, _repeated_fetch_codec); target_.WriteTo(output, _repeated_target_codec); @@ -5763,9 +7790,35 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + feed_.WriteTo(ref output, _repeated_feed_codec); + fetch_.WriteTo(ref output, _repeated_fetch_codec); + target_.WriteTo(ref output, _repeated_target_codec); + if (runOptions_ != null) { + output.WriteRawTag(34); + output.WriteMessage(RunOptions); + } + tensorConnection_.WriteTo(ref output, _repeated_tensorConnection_codec); + feedDevices_.WriteTo(ref output, _map_feedDevices_codec); + fetchDevices_.WriteTo(ref output, _map_fetchDevices_codec); + if (FetchSkipSync != false) { + output.WriteRawTag(64); + output.WriteBool(FetchSkipSync); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += feed_.CalculateSize(_repeated_feed_codec); @@ -5787,6 +7840,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CallableOptions other) { if (other == null) { return; @@ -5810,7 +7864,11 @@ public void MergeFrom(CallableOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -5854,7 +7912,58 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + feed_.AddEntriesFrom(ref input, _repeated_feed_codec); + break; + } + case 18: { + fetch_.AddEntriesFrom(ref input, _repeated_fetch_codec); + break; + } + case 26: { + target_.AddEntriesFrom(ref input, _repeated_target_codec); + break; + } + case 34: { + if (runOptions_ == null) { + RunOptions = new global::Tensorflow.RunOptions(); + } + input.ReadMessage(RunOptions); + break; + } + case 42: { + tensorConnection_.AddEntriesFrom(ref input, _repeated_tensorConnection_codec); + break; + } + case 50: { + feedDevices_.AddEntriesFrom(ref input, _map_feedDevices_codec); + break; + } + case 58: { + fetchDevices_.AddEntriesFrom(ref input, _map_fetchDevices_codec); + break; + } + case 64: { + FetchSkipSync = input.ReadBool(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/ControlFlow.cs b/src/TensorFlowNET.Core/Protobuf/ControlFlow.cs index a3ed1eecd..3ede374cb 100644 --- a/src/TensorFlowNET.Core/Protobuf/ControlFlow.cs +++ b/src/TensorFlowNET.Core/Protobuf/ControlFlow.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/control_flow.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -64,23 +64,31 @@ static ControlFlowReflection() { /// /// Protocol buffer representing the values in ControlFlowContext. /// - public sealed partial class ValuesDef : pb::IMessage { + public sealed partial class ValuesDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ValuesDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ControlFlowReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ValuesDef() { OnConstruction(); } @@ -88,6 +96,7 @@ public ValuesDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ValuesDef(ValuesDef other) : this() { values_ = other.values_.Clone(); externalValues_ = other.externalValues_.Clone(); @@ -95,6 +104,7 @@ public ValuesDef(ValuesDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ValuesDef Clone() { return new ValuesDef(this); } @@ -108,6 +118,7 @@ public ValuesDef Clone() { /// Value names that have been seen in this context. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Values { get { return values_; } } @@ -121,16 +132,19 @@ public ValuesDef Clone() { /// Value names referenced by but external to this context. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField ExternalValues { get { return externalValues_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ValuesDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ValuesDef other) { if (ReferenceEquals(other, null)) { return false; @@ -144,6 +158,7 @@ public bool Equals(ValuesDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= values_.GetHashCode(); @@ -155,20 +170,39 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else values_.WriteTo(output, _repeated_values_codec); externalValues_.WriteTo(output, _map_externalValues_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + values_.WriteTo(ref output, _repeated_values_codec); + externalValues_.WriteTo(ref output, _map_externalValues_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += values_.CalculateSize(_repeated_values_codec); @@ -180,6 +214,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ValuesDef other) { if (other == null) { return; @@ -190,7 +225,11 @@ public void MergeFrom(ValuesDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -207,7 +246,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + values_.AddEntriesFrom(ref input, _repeated_values_codec); + break; + } + case 18: { + externalValues_.AddEntriesFrom(ref input, _map_externalValues_codec); + break; + } + } + } } + #endif } @@ -215,23 +278,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// Container for any kind of control flow context. Any other control flow /// contexts that are added below should also be added here. /// - public sealed partial class ControlFlowContextDef : pb::IMessage { + public sealed partial class ControlFlowContextDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ControlFlowContextDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ControlFlowReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ControlFlowContextDef() { OnConstruction(); } @@ -239,6 +310,7 @@ public ControlFlowContextDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ControlFlowContextDef(ControlFlowContextDef other) : this() { switch (other.CtxtCase) { case CtxtOneofCase.CondCtxt: @@ -253,6 +325,7 @@ public ControlFlowContextDef(ControlFlowContextDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ControlFlowContextDef Clone() { return new ControlFlowContextDef(this); } @@ -260,6 +333,7 @@ public ControlFlowContextDef Clone() { /// Field number for the "cond_ctxt" field. public const int CondCtxtFieldNumber = 1; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.CondContextDef CondCtxt { get { return ctxtCase_ == CtxtOneofCase.CondCtxt ? (global::Tensorflow.CondContextDef) ctxt_ : null; } set { @@ -271,6 +345,7 @@ public ControlFlowContextDef Clone() { /// Field number for the "while_ctxt" field. public const int WhileCtxtFieldNumber = 2; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.WhileContextDef WhileCtxt { get { return ctxtCase_ == CtxtOneofCase.WhileCtxt ? (global::Tensorflow.WhileContextDef) ctxt_ : null; } set { @@ -288,22 +363,26 @@ public enum CtxtOneofCase { } private CtxtOneofCase ctxtCase_ = CtxtOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CtxtOneofCase CtxtCase { get { return ctxtCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearCtxt() { ctxtCase_ = CtxtOneofCase.None; ctxt_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ControlFlowContextDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ControlFlowContextDef other) { if (ReferenceEquals(other, null)) { return false; @@ -318,6 +397,7 @@ public bool Equals(ControlFlowContextDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (ctxtCase_ == CtxtOneofCase.CondCtxt) hash ^= CondCtxt.GetHashCode(); @@ -330,12 +410,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (ctxtCase_ == CtxtOneofCase.CondCtxt) { output.WriteRawTag(10); output.WriteMessage(CondCtxt); @@ -347,9 +432,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ctxtCase_ == CtxtOneofCase.CondCtxt) { + output.WriteRawTag(10); + output.WriteMessage(CondCtxt); + } + if (ctxtCase_ == CtxtOneofCase.WhileCtxt) { + output.WriteRawTag(18); + output.WriteMessage(WhileCtxt); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (ctxtCase_ == CtxtOneofCase.CondCtxt) { @@ -365,6 +470,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ControlFlowContextDef other) { if (other == null) { return; @@ -388,7 +494,11 @@ public void MergeFrom(ControlFlowContextDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -415,30 +525,72 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + global::Tensorflow.CondContextDef subBuilder = new global::Tensorflow.CondContextDef(); + if (ctxtCase_ == CtxtOneofCase.CondCtxt) { + subBuilder.MergeFrom(CondCtxt); + } + input.ReadMessage(subBuilder); + CondCtxt = subBuilder; + break; + } + case 18: { + global::Tensorflow.WhileContextDef subBuilder = new global::Tensorflow.WhileContextDef(); + if (ctxtCase_ == CtxtOneofCase.WhileCtxt) { + subBuilder.MergeFrom(WhileCtxt); + } + input.ReadMessage(subBuilder); + WhileCtxt = subBuilder; + break; + } + } + } + } + #endif + } /// /// Protocol buffer representing a CondContext object. /// - public sealed partial class CondContextDef : pb::IMessage { + public sealed partial class CondContextDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CondContextDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ControlFlowReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CondContextDef() { OnConstruction(); } @@ -446,6 +598,7 @@ public CondContextDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CondContextDef(CondContextDef other) : this() { contextName_ = other.contextName_; predName_ = other.predName_; @@ -457,6 +610,7 @@ public CondContextDef(CondContextDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CondContextDef Clone() { return new CondContextDef(this); } @@ -468,6 +622,7 @@ public CondContextDef Clone() { /// Name of the context. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string ContextName { get { return contextName_; } set { @@ -482,6 +637,7 @@ public string ContextName { /// Name of the pred tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string PredName { get { return predName_; } set { @@ -496,6 +652,7 @@ public string PredName { /// Name of the pivot tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string PivotName { get { return pivotName_; } set { @@ -510,6 +667,7 @@ public string PivotName { /// Branch prediction. 0 or 1. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Branch { get { return branch_; } set { @@ -524,6 +682,7 @@ public int Branch { /// Values and external values in control flow context. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.ValuesDef ValuesDef { get { return valuesDef_; } set { @@ -540,16 +699,19 @@ public int Branch { /// Contexts contained inside this context (e.g. nested conds). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField NestedContexts { get { return nestedContexts_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CondContextDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CondContextDef other) { if (ReferenceEquals(other, null)) { return false; @@ -567,6 +729,7 @@ public bool Equals(CondContextDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (ContextName.Length != 0) hash ^= ContextName.GetHashCode(); @@ -582,12 +745,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (ContextName.Length != 0) { output.WriteRawTag(10); output.WriteString(ContextName); @@ -612,9 +780,42 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ContextName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ContextName); + } + if (PredName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(PredName); + } + if (PivotName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(PivotName); + } + if (Branch != 0) { + output.WriteRawTag(32); + output.WriteInt32(Branch); + } + if (valuesDef_ != null) { + output.WriteRawTag(42); + output.WriteMessage(ValuesDef); + } + nestedContexts_.WriteTo(ref output, _repeated_nestedContexts_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (ContextName.Length != 0) { @@ -640,6 +841,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CondContextDef other) { if (other == null) { return; @@ -667,7 +869,11 @@ public void MergeFrom(CondContextDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -703,30 +909,81 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + ContextName = input.ReadString(); + break; + } + case 18: { + PredName = input.ReadString(); + break; + } + case 26: { + PivotName = input.ReadString(); + break; + } + case 32: { + Branch = input.ReadInt32(); + break; + } + case 42: { + if (valuesDef_ == null) { + ValuesDef = new global::Tensorflow.ValuesDef(); + } + input.ReadMessage(ValuesDef); + break; + } + case 50: { + nestedContexts_.AddEntriesFrom(ref input, _repeated_nestedContexts_codec); + break; + } + } + } } + #endif } /// /// Protocol buffer representing a WhileContext object. /// - public sealed partial class WhileContextDef : pb::IMessage { + public sealed partial class WhileContextDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WhileContextDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ControlFlowReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WhileContextDef() { OnConstruction(); } @@ -734,6 +991,7 @@ public WhileContextDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WhileContextDef(WhileContextDef other) : this() { contextName_ = other.contextName_; parallelIterations_ = other.parallelIterations_; @@ -751,6 +1009,7 @@ public WhileContextDef(WhileContextDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WhileContextDef Clone() { return new WhileContextDef(this); } @@ -762,6 +1021,7 @@ public WhileContextDef Clone() { /// Name of the context. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string ContextName { get { return contextName_; } set { @@ -776,6 +1036,7 @@ public string ContextName { /// The number of iterations allowed to run in parallel. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int ParallelIterations { get { return parallelIterations_; } set { @@ -790,6 +1051,7 @@ public int ParallelIterations { /// Whether backprop is enabled for this while loop. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool BackProp { get { return backProp_; } set { @@ -804,6 +1066,7 @@ public bool BackProp { /// Whether GPU-CPU memory swap is enabled for this loop. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool SwapMemory { get { return swapMemory_; } set { @@ -818,6 +1081,7 @@ public bool SwapMemory { /// Name of the pivot tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string PivotName { get { return pivotName_; } set { @@ -832,6 +1096,7 @@ public string PivotName { /// Name of the pivot_for_pred tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string PivotForPredName { get { return pivotForPredName_; } set { @@ -846,6 +1111,7 @@ public string PivotForPredName { /// Name of the pivot_for_body tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string PivotForBodyName { get { return pivotForBodyName_; } set { @@ -862,6 +1128,7 @@ public string PivotForBodyName { /// List of names for exit tensors. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField LoopExitNames { get { return loopExitNames_; } } @@ -875,6 +1142,7 @@ public string PivotForBodyName { /// List of names for enter tensors. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField LoopEnterNames { get { return loopEnterNames_; } } @@ -886,6 +1154,7 @@ public string PivotForBodyName { /// Values and external values in control flow context. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.ValuesDef ValuesDef { get { return valuesDef_; } set { @@ -900,6 +1169,7 @@ public string PivotForBodyName { /// Optional name of the maximum_iterations tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string MaximumIterationsName { get { return maximumIterationsName_; } set { @@ -916,16 +1186,19 @@ public string MaximumIterationsName { /// Contexts contained inside this context (e.g. nested whiles). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField NestedContexts { get { return nestedContexts_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as WhileContextDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(WhileContextDef other) { if (ReferenceEquals(other, null)) { return false; @@ -949,6 +1222,7 @@ public bool Equals(WhileContextDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (ContextName.Length != 0) hash ^= ContextName.GetHashCode(); @@ -970,12 +1244,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (ContextName.Length != 0) { output.WriteRawTag(10); output.WriteString(ContextName); @@ -1018,9 +1297,60 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ContextName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ContextName); + } + if (ParallelIterations != 0) { + output.WriteRawTag(16); + output.WriteInt32(ParallelIterations); + } + if (BackProp != false) { + output.WriteRawTag(24); + output.WriteBool(BackProp); + } + if (SwapMemory != false) { + output.WriteRawTag(32); + output.WriteBool(SwapMemory); + } + if (PivotName.Length != 0) { + output.WriteRawTag(42); + output.WriteString(PivotName); + } + if (PivotForPredName.Length != 0) { + output.WriteRawTag(50); + output.WriteString(PivotForPredName); + } + if (PivotForBodyName.Length != 0) { + output.WriteRawTag(58); + output.WriteString(PivotForBodyName); + } + loopExitNames_.WriteTo(ref output, _repeated_loopExitNames_codec); + if (valuesDef_ != null) { + output.WriteRawTag(74); + output.WriteMessage(ValuesDef); + } + loopEnterNames_.WriteTo(ref output, _repeated_loopEnterNames_codec); + if (MaximumIterationsName.Length != 0) { + output.WriteRawTag(90); + output.WriteString(MaximumIterationsName); + } + nestedContexts_.WriteTo(ref output, _repeated_nestedContexts_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (ContextName.Length != 0) { @@ -1060,6 +1390,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(WhileContextDef other) { if (other == null) { return; @@ -1101,7 +1432,11 @@ public void MergeFrom(WhileContextDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1161,7 +1496,74 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + ContextName = input.ReadString(); + break; + } + case 16: { + ParallelIterations = input.ReadInt32(); + break; + } + case 24: { + BackProp = input.ReadBool(); + break; + } + case 32: { + SwapMemory = input.ReadBool(); + break; + } + case 42: { + PivotName = input.ReadString(); + break; + } + case 50: { + PivotForPredName = input.ReadString(); + break; + } + case 58: { + PivotForBodyName = input.ReadString(); + break; + } + case 66: { + loopExitNames_.AddEntriesFrom(ref input, _repeated_loopExitNames_codec); + break; + } + case 74: { + if (valuesDef_ == null) { + ValuesDef = new global::Tensorflow.ValuesDef(); + } + input.ReadMessage(ValuesDef); + break; + } + case 82: { + loopEnterNames_.AddEntriesFrom(ref input, _repeated_loopEnterNames_codec); + break; + } + case 90: { + MaximumIterationsName = input.ReadString(); + break; + } + case 98: { + nestedContexts_.AddEntriesFrom(ref input, _repeated_nestedContexts_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/CoordinationConfig.cs b/src/TensorFlowNET.Core/Protobuf/CoordinationConfig.cs new file mode 100644 index 000000000..c949067cd --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/CoordinationConfig.cs @@ -0,0 +1,791 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/protobuf/coordination_config.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Tensorflow { + + /// Holder for reflection information generated from tensorflow/core/protobuf/coordination_config.proto + public static partial class CoordinationConfigReflection { + + #region Descriptor + /// File descriptor for tensorflow/core/protobuf/coordination_config.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static CoordinationConfigReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "CjJ0ZW5zb3JmbG93L2NvcmUvcHJvdG9idWYvY29vcmRpbmF0aW9uX2NvbmZp", + "Zy5wcm90bxIKdGVuc29yZmxvdyIxCg5Db29yZGluYXRlZEpvYhIMCgRuYW1l", + "GAEgASgJEhEKCW51bV90YXNrcxgCIAEoBSLdAgoZQ29vcmRpbmF0aW9uU2Vy", + "dmljZUNvbmZpZxIUCgxzZXJ2aWNlX3R5cGUYASABKAkSFgoOc2VydmljZV9s", + "ZWFkZXIYAiABKAkSGwoTZW5hYmxlX2hlYWx0aF9jaGVjaxgDIAEoCBImCh5j", + "bHVzdGVyX3JlZ2lzdGVyX3RpbWVvdXRfaW5fbXMYBCABKAMSHwoXaGVhcnRi", + "ZWF0X3RpbWVvdXRfaW5fbXMYBSABKAMSOAoUY29vcmRpbmF0ZWRfam9iX2xp", + "c3QYCiADKAsyGi50ZW5zb3JmbG93LkNvb3JkaW5hdGVkSm9iEiYKHnNodXRk", + "b3duX2JhcnJpZXJfdGltZW91dF9pbl9tcxgHIAEoAxIqCiJhZ2VudF9kZXN0", + "cnVjdGlvbl93aXRob3V0X3NodXRkb3duGAggASgIEhgKEHJlY292ZXJhYmxl", + "X2pvYnMYCSADKAlKBAgGEAdCV1pVZ2l0aHViLmNvbS90ZW5zb3JmbG93L3Rl", + "bnNvcmZsb3cvdGVuc29yZmxvdy9nby9jb3JlL3Byb3RvYnVmL2Zvcl9jb3Jl", + "X3Byb3Rvc19nb19wcm90b2IGcHJvdG8z")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { }, + new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CoordinatedJob), global::Tensorflow.CoordinatedJob.Parser, new[]{ "Name", "NumTasks" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CoordinationServiceConfig), global::Tensorflow.CoordinationServiceConfig.Parser, new[]{ "ServiceType", "ServiceLeader", "EnableHealthCheck", "ClusterRegisterTimeoutInMs", "HeartbeatTimeoutInMs", "CoordinatedJobList", "ShutdownBarrierTimeoutInMs", "AgentDestructionWithoutShutdown", "RecoverableJobs" }, null, null, null, null) + })); + } + #endregion + + } + #region Messages + /// + /// Represents a job type and the number of tasks under this job. + /// For example, ("worker", 20) implies that there will be 20 worker tasks. + /// + public sealed partial class CoordinatedJob : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CoordinatedJob()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationConfigReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinatedJob() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinatedJob(CoordinatedJob other) : this() { + name_ = other.name_; + numTasks_ = other.numTasks_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinatedJob Clone() { + return new CoordinatedJob(this); + } + + /// Field number for the "name" field. + public const int NameFieldNumber = 1; + private string name_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Name { + get { return name_; } + set { + name_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "num_tasks" field. + public const int NumTasksFieldNumber = 2; + private int numTasks_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int NumTasks { + get { return numTasks_; } + set { + numTasks_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CoordinatedJob); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CoordinatedJob other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Name != other.Name) return false; + if (NumTasks != other.NumTasks) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Name.Length != 0) hash ^= Name.GetHashCode(); + if (NumTasks != 0) hash ^= NumTasks.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (NumTasks != 0) { + output.WriteRawTag(16); + output.WriteInt32(NumTasks); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (NumTasks != 0) { + output.WriteRawTag(16); + output.WriteInt32(NumTasks); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Name.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Name); + } + if (NumTasks != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(NumTasks); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CoordinatedJob other) { + if (other == null) { + return; + } + if (other.Name.Length != 0) { + Name = other.Name; + } + if (other.NumTasks != 0) { + NumTasks = other.NumTasks; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 16: { + NumTasks = input.ReadInt32(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 16: { + NumTasks = input.ReadInt32(); + break; + } + } + } + } + #endif + + } + + /// + /// Coordination service configuration parameters. + /// The system picks appropriate values for fields that are not set. + /// + public sealed partial class CoordinationServiceConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CoordinationServiceConfig()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationConfigReflection.Descriptor.MessageTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinationServiceConfig() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinationServiceConfig(CoordinationServiceConfig other) : this() { + serviceType_ = other.serviceType_; + serviceLeader_ = other.serviceLeader_; + enableHealthCheck_ = other.enableHealthCheck_; + clusterRegisterTimeoutInMs_ = other.clusterRegisterTimeoutInMs_; + heartbeatTimeoutInMs_ = other.heartbeatTimeoutInMs_; + coordinatedJobList_ = other.coordinatedJobList_.Clone(); + shutdownBarrierTimeoutInMs_ = other.shutdownBarrierTimeoutInMs_; + agentDestructionWithoutShutdown_ = other.agentDestructionWithoutShutdown_; + recoverableJobs_ = other.recoverableJobs_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinationServiceConfig Clone() { + return new CoordinationServiceConfig(this); + } + + /// Field number for the "service_type" field. + public const int ServiceTypeFieldNumber = 1; + private string serviceType_ = ""; + /// + /// Type of coordination service implementation to enable. + /// For example, setting the service type as "standalone" starts a service + /// instance on the leader task to provide the coordination services such as + /// heartbeats and consistent key-value store. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ServiceType { + get { return serviceType_; } + set { + serviceType_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "service_leader" field. + public const int ServiceLeaderFieldNumber = 2; + private string serviceLeader_ = ""; + /// + /// Address where the coordination service instance is hosted. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ServiceLeader { + get { return serviceLeader_; } + set { + serviceLeader_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "enable_health_check" field. + public const int EnableHealthCheckFieldNumber = 3; + private bool enableHealthCheck_; + /// + /// Whether to enable the health check mechanism. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool EnableHealthCheck { + get { return enableHealthCheck_; } + set { + enableHealthCheck_ = value; + } + } + + /// Field number for the "cluster_register_timeout_in_ms" field. + public const int ClusterRegisterTimeoutInMsFieldNumber = 4; + private long clusterRegisterTimeoutInMs_; + /// + /// Maximum wait time for all members in the cluster to be registered. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ClusterRegisterTimeoutInMs { + get { return clusterRegisterTimeoutInMs_; } + set { + clusterRegisterTimeoutInMs_ = value; + } + } + + /// Field number for the "heartbeat_timeout_in_ms" field. + public const int HeartbeatTimeoutInMsFieldNumber = 5; + private long heartbeatTimeoutInMs_; + /// + /// Heartbeat timeout, if a task does not record heartbeat in this time + /// window, it will be considered disconnected. + /// Note: This is also used as a grace period to accept any heartbeats after + /// the agent has disconnected, to account for the lag time between the service + /// recording the state change and the agent stopping heartbeats. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long HeartbeatTimeoutInMs { + get { return heartbeatTimeoutInMs_; } + set { + heartbeatTimeoutInMs_ = value; + } + } + + /// Field number for the "coordinated_job_list" field. + public const int CoordinatedJobListFieldNumber = 10; + private static readonly pb::FieldCodec _repeated_coordinatedJobList_codec + = pb::FieldCodec.ForMessage(82, global::Tensorflow.CoordinatedJob.Parser); + private readonly pbc::RepeatedField coordinatedJobList_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField CoordinatedJobList { + get { return coordinatedJobList_; } + } + + /// Field number for the "shutdown_barrier_timeout_in_ms" field. + public const int ShutdownBarrierTimeoutInMsFieldNumber = 7; + private long shutdownBarrierTimeoutInMs_; + /// + /// Denotes how long to wait for all coordination agents to reach the barriers + /// (after the first shutdown request) before disconnecting together. If + /// set to 0, no barrier is imposed upon shutdown and each worker can + /// disconnect individually. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ShutdownBarrierTimeoutInMs { + get { return shutdownBarrierTimeoutInMs_; } + set { + shutdownBarrierTimeoutInMs_ = value; + } + } + + /// Field number for the "agent_destruction_without_shutdown" field. + public const int AgentDestructionWithoutShutdownFieldNumber = 8; + private bool agentDestructionWithoutShutdown_; + /// + /// If set, agents do not make an explicit Shutdown() call. Service will only + /// find out about the disconnecte agent via stale heartbeats. Used for + /// testing. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool AgentDestructionWithoutShutdown { + get { return agentDestructionWithoutShutdown_; } + set { + agentDestructionWithoutShutdown_ = value; + } + } + + /// Field number for the "recoverable_jobs" field. + public const int RecoverableJobsFieldNumber = 9; + private static readonly pb::FieldCodec _repeated_recoverableJobs_codec + = pb::FieldCodec.ForString(74); + private readonly pbc::RepeatedField recoverableJobs_ = new pbc::RepeatedField(); + /// + /// The list of jobs which are recoverable. If a task in this list fails, + /// it will not propagate error to other tasks. + /// If empty, no jobs will be recoverable and every task failure will cause + /// error propagation to other tasks. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField RecoverableJobs { + get { return recoverableJobs_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CoordinationServiceConfig); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CoordinationServiceConfig other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ServiceType != other.ServiceType) return false; + if (ServiceLeader != other.ServiceLeader) return false; + if (EnableHealthCheck != other.EnableHealthCheck) return false; + if (ClusterRegisterTimeoutInMs != other.ClusterRegisterTimeoutInMs) return false; + if (HeartbeatTimeoutInMs != other.HeartbeatTimeoutInMs) return false; + if(!coordinatedJobList_.Equals(other.coordinatedJobList_)) return false; + if (ShutdownBarrierTimeoutInMs != other.ShutdownBarrierTimeoutInMs) return false; + if (AgentDestructionWithoutShutdown != other.AgentDestructionWithoutShutdown) return false; + if(!recoverableJobs_.Equals(other.recoverableJobs_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ServiceType.Length != 0) hash ^= ServiceType.GetHashCode(); + if (ServiceLeader.Length != 0) hash ^= ServiceLeader.GetHashCode(); + if (EnableHealthCheck != false) hash ^= EnableHealthCheck.GetHashCode(); + if (ClusterRegisterTimeoutInMs != 0L) hash ^= ClusterRegisterTimeoutInMs.GetHashCode(); + if (HeartbeatTimeoutInMs != 0L) hash ^= HeartbeatTimeoutInMs.GetHashCode(); + hash ^= coordinatedJobList_.GetHashCode(); + if (ShutdownBarrierTimeoutInMs != 0L) hash ^= ShutdownBarrierTimeoutInMs.GetHashCode(); + if (AgentDestructionWithoutShutdown != false) hash ^= AgentDestructionWithoutShutdown.GetHashCode(); + hash ^= recoverableJobs_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ServiceType.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ServiceType); + } + if (ServiceLeader.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ServiceLeader); + } + if (EnableHealthCheck != false) { + output.WriteRawTag(24); + output.WriteBool(EnableHealthCheck); + } + if (ClusterRegisterTimeoutInMs != 0L) { + output.WriteRawTag(32); + output.WriteInt64(ClusterRegisterTimeoutInMs); + } + if (HeartbeatTimeoutInMs != 0L) { + output.WriteRawTag(40); + output.WriteInt64(HeartbeatTimeoutInMs); + } + if (ShutdownBarrierTimeoutInMs != 0L) { + output.WriteRawTag(56); + output.WriteInt64(ShutdownBarrierTimeoutInMs); + } + if (AgentDestructionWithoutShutdown != false) { + output.WriteRawTag(64); + output.WriteBool(AgentDestructionWithoutShutdown); + } + recoverableJobs_.WriteTo(output, _repeated_recoverableJobs_codec); + coordinatedJobList_.WriteTo(output, _repeated_coordinatedJobList_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ServiceType.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ServiceType); + } + if (ServiceLeader.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ServiceLeader); + } + if (EnableHealthCheck != false) { + output.WriteRawTag(24); + output.WriteBool(EnableHealthCheck); + } + if (ClusterRegisterTimeoutInMs != 0L) { + output.WriteRawTag(32); + output.WriteInt64(ClusterRegisterTimeoutInMs); + } + if (HeartbeatTimeoutInMs != 0L) { + output.WriteRawTag(40); + output.WriteInt64(HeartbeatTimeoutInMs); + } + if (ShutdownBarrierTimeoutInMs != 0L) { + output.WriteRawTag(56); + output.WriteInt64(ShutdownBarrierTimeoutInMs); + } + if (AgentDestructionWithoutShutdown != false) { + output.WriteRawTag(64); + output.WriteBool(AgentDestructionWithoutShutdown); + } + recoverableJobs_.WriteTo(ref output, _repeated_recoverableJobs_codec); + coordinatedJobList_.WriteTo(ref output, _repeated_coordinatedJobList_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ServiceType.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ServiceType); + } + if (ServiceLeader.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ServiceLeader); + } + if (EnableHealthCheck != false) { + size += 1 + 1; + } + if (ClusterRegisterTimeoutInMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ClusterRegisterTimeoutInMs); + } + if (HeartbeatTimeoutInMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(HeartbeatTimeoutInMs); + } + size += coordinatedJobList_.CalculateSize(_repeated_coordinatedJobList_codec); + if (ShutdownBarrierTimeoutInMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ShutdownBarrierTimeoutInMs); + } + if (AgentDestructionWithoutShutdown != false) { + size += 1 + 1; + } + size += recoverableJobs_.CalculateSize(_repeated_recoverableJobs_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CoordinationServiceConfig other) { + if (other == null) { + return; + } + if (other.ServiceType.Length != 0) { + ServiceType = other.ServiceType; + } + if (other.ServiceLeader.Length != 0) { + ServiceLeader = other.ServiceLeader; + } + if (other.EnableHealthCheck != false) { + EnableHealthCheck = other.EnableHealthCheck; + } + if (other.ClusterRegisterTimeoutInMs != 0L) { + ClusterRegisterTimeoutInMs = other.ClusterRegisterTimeoutInMs; + } + if (other.HeartbeatTimeoutInMs != 0L) { + HeartbeatTimeoutInMs = other.HeartbeatTimeoutInMs; + } + coordinatedJobList_.Add(other.coordinatedJobList_); + if (other.ShutdownBarrierTimeoutInMs != 0L) { + ShutdownBarrierTimeoutInMs = other.ShutdownBarrierTimeoutInMs; + } + if (other.AgentDestructionWithoutShutdown != false) { + AgentDestructionWithoutShutdown = other.AgentDestructionWithoutShutdown; + } + recoverableJobs_.Add(other.recoverableJobs_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + ServiceType = input.ReadString(); + break; + } + case 18: { + ServiceLeader = input.ReadString(); + break; + } + case 24: { + EnableHealthCheck = input.ReadBool(); + break; + } + case 32: { + ClusterRegisterTimeoutInMs = input.ReadInt64(); + break; + } + case 40: { + HeartbeatTimeoutInMs = input.ReadInt64(); + break; + } + case 56: { + ShutdownBarrierTimeoutInMs = input.ReadInt64(); + break; + } + case 64: { + AgentDestructionWithoutShutdown = input.ReadBool(); + break; + } + case 74: { + recoverableJobs_.AddEntriesFrom(input, _repeated_recoverableJobs_codec); + break; + } + case 82: { + coordinatedJobList_.AddEntriesFrom(input, _repeated_coordinatedJobList_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + ServiceType = input.ReadString(); + break; + } + case 18: { + ServiceLeader = input.ReadString(); + break; + } + case 24: { + EnableHealthCheck = input.ReadBool(); + break; + } + case 32: { + ClusterRegisterTimeoutInMs = input.ReadInt64(); + break; + } + case 40: { + HeartbeatTimeoutInMs = input.ReadInt64(); + break; + } + case 56: { + ShutdownBarrierTimeoutInMs = input.ReadInt64(); + break; + } + case 64: { + AgentDestructionWithoutShutdown = input.ReadBool(); + break; + } + case 74: { + recoverableJobs_.AddEntriesFrom(ref input, _repeated_recoverableJobs_codec); + break; + } + case 82: { + coordinatedJobList_.AddEntriesFrom(ref input, _repeated_coordinatedJobList_codec); + break; + } + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/CoordinationService.cs b/src/TensorFlowNET.Core/Protobuf/CoordinationService.cs new file mode 100644 index 000000000..a974d724d --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/CoordinationService.cs @@ -0,0 +1,7964 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/protobuf/coordination_service.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Tensorflow { + + /// Holder for reflection information generated from tensorflow/core/protobuf/coordination_service.proto + public static partial class CoordinationServiceReflection { + + #region Descriptor + /// File descriptor for tensorflow/core/protobuf/coordination_service.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static CoordinationServiceReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "CjN0ZW5zb3JmbG93L2NvcmUvcHJvdG9idWYvY29vcmRpbmF0aW9uX3NlcnZp", + "Y2UucHJvdG8SCnRlbnNvcmZsb3caN3RlbnNvcmZsb3cvY29tcGlsZXIveGxh", + "L3BqcnQvZGlzdHJpYnV0ZWQvcHJvdG9jb2wucHJvdG8aMXRlbnNvcmZsb3cv", + "Y29yZS9mcmFtZXdvcmsvZGV2aWNlX2F0dHJpYnV0ZXMucHJvdG8iNAoPQ29v", + "cmRpbmF0ZWRUYXNrEhAKCGpvYl9uYW1lGAEgASgJEg8KB3Rhc2tfaWQYAiAB", + "KAUicwoYQ29vcmRpbmF0aW9uU2VydmljZUVycm9yEhkKEWlzX3JlcG9ydGVk", + "X2Vycm9yGAMgASgIEjAKC3NvdXJjZV90YXNrGAQgASgLMhsudGVuc29yZmxv", + "dy5Db29yZGluYXRlZFRhc2tKBAgBEAJKBAgCEAMi3gEKGENvb3JkaW5hdGVk", + "VGFza1N0YXRlSW5mbxIpCgR0YXNrGAEgASgLMhsudGVuc29yZmxvdy5Db29y", + "ZGluYXRlZFRhc2sSLwoFc3RhdGUYAiABKA4yIC50ZW5zb3JmbG93LkNvb3Jk", + "aW5hdGVkVGFza1N0YXRlEhIKCmVycm9yX2NvZGUYAyABKAUSFQoNZXJyb3Jf", + "bWVzc2FnZRgEIAEoCRI7Cg1lcnJvcl9wYXlsb2FkGAUgASgLMiQudGVuc29y", + "Zmxvdy5Db29yZGluYXRpb25TZXJ2aWNlRXJyb3IiPQoMVGZEZXZpY2VMaXN0", + "Ei0KB2RldmljZXMYASADKAsyHC50ZW5zb3JmbG93LkRldmljZUF0dHJpYnV0", + "ZXMiOgoNWGxhRGV2aWNlTGlzdBIpCgdkZXZpY2VzGAEgASgLMhgueGxhLkds", + "b2JhbFRvcG9sb2d5UHJvdG8ieQodQ29vcmRpbmF0aW9uU2VydmljZURldmlj", + "ZUluZm8SJgoCdGYYASABKAsyGC50ZW5zb3JmbG93LlRmRGV2aWNlTGlzdEgA", + "EigKA3hsYRgCIAEoCzIZLnRlbnNvcmZsb3cuWGxhRGV2aWNlTGlzdEgAQgYK", + "BHR5cGUibgoTUmVnaXN0ZXJUYXNrUmVxdWVzdBITCgtpbmNhcm5hdGlvbhgD", + "IAEoBhIwCgtzb3VyY2VfdGFzaxgFIAEoCzIbLnRlbnNvcmZsb3cuQ29vcmRp", + "bmF0ZWRUYXNrSgQIARACSgQIAhADSgQIBBAFIjIKFFJlZ2lzdGVyVGFza1Jl", + "c3BvbnNlEhoKEmxlYWRlcl9pbmNhcm5hdGlvbhgBIAEoBiJlChBIZWFydGJl", + "YXRSZXF1ZXN0EhMKC2luY2FybmF0aW9uGAMgASgGEjAKC3NvdXJjZV90YXNr", + "GAQgASgLMhsudGVuc29yZmxvdy5Db29yZGluYXRlZFRhc2tKBAgBEAJKBAgC", + "EAMiLwoRSGVhcnRiZWF0UmVzcG9uc2USGgoSbGVhZGVyX2luY2FybmF0aW9u", + "GAEgASgGIqIBChZXYWl0Rm9yQWxsVGFza3NSZXF1ZXN0EkQKEWxvY2FsX2Rl", + "dmljZV9pbmZvGAQgASgLMikudGVuc29yZmxvdy5Db29yZGluYXRpb25TZXJ2", + "aWNlRGV2aWNlSW5mbxIwCgtzb3VyY2VfdGFzaxgFIAEoCzIbLnRlbnNvcmZs", + "b3cuQ29vcmRpbmF0ZWRUYXNrSgQIARACSgQIAhADSgQIAxAEIoMBChdXYWl0", + "Rm9yQWxsVGFza3NSZXNwb25zZRIaChJsZWFkZXJfaW5jYXJuYXRpb24YASAB", + "KAYSRgoTY2x1c3Rlcl9kZXZpY2VfaW5mbxgDIAEoCzIpLnRlbnNvcmZsb3cu", + "Q29vcmRpbmF0aW9uU2VydmljZURldmljZUluZm9KBAgCEAMiRwoTU2h1dGRv", + "d25UYXNrUmVxdWVzdBIwCgtzb3VyY2VfdGFzaxgBIAEoCzIbLnRlbnNvcmZs", + "b3cuQ29vcmRpbmF0ZWRUYXNrIhYKFFNodXRkb3duVGFza1Jlc3BvbnNlIkQK", + "EFJlc2V0VGFza1JlcXVlc3QSMAoLc291cmNlX3Rhc2sYASABKAsyGy50ZW5z", + "b3JmbG93LkNvb3JkaW5hdGVkVGFzayITChFSZXNldFRhc2tSZXNwb25zZSKO", + "AQoYUmVwb3J0RXJyb3JUb1Rhc2tSZXF1ZXN0EhIKCmVycm9yX2NvZGUYASAB", + "KAUSFQoNZXJyb3JfbWVzc2FnZRgCIAEoCRI7Cg1lcnJvcl9wYXlsb2FkGAUg", + "ASgLMiQudGVuc29yZmxvdy5Db29yZGluYXRpb25TZXJ2aWNlRXJyb3JKBAgD", + "EARKBAgEEAUiGwoZUmVwb3J0RXJyb3JUb1Rhc2tSZXNwb25zZSKHAQobUmVw", + "b3J0RXJyb3JUb1NlcnZpY2VSZXF1ZXN0EhIKCmVycm9yX2NvZGUYASABKAUS", + "FQoNZXJyb3JfbWVzc2FnZRgCIAEoCRIxCgxlcnJvcl9vcmlnaW4YBSABKAsy", + "Gy50ZW5zb3JmbG93LkNvb3JkaW5hdGVkVGFza0oECAMQBEoECAQQBSIeChxS", + "ZXBvcnRFcnJvclRvU2VydmljZVJlc3BvbnNlIkcKE0dldFRhc2tTdGF0ZVJl", + "cXVlc3QSMAoLc291cmNlX3Rhc2sYASADKAsyGy50ZW5zb3JmbG93LkNvb3Jk", + "aW5hdGVkVGFzayJQChRHZXRUYXNrU3RhdGVSZXNwb25zZRI4Cgp0YXNrX3N0", + "YXRlGAEgAygLMiQudGVuc29yZmxvdy5Db29yZGluYXRlZFRhc2tTdGF0ZUlu", + "Zm8iKwoNS2V5VmFsdWVFbnRyeRILCgNrZXkYASABKAkSDQoFdmFsdWUYAiAB", + "KAwiPgoVSW5zZXJ0S2V5VmFsdWVSZXF1ZXN0EiUKAmt2GAEgASgLMhkudGVu", + "c29yZmxvdy5LZXlWYWx1ZUVudHJ5IhgKFkluc2VydEtleVZhbHVlUmVzcG9u", + "c2UiIQoSR2V0S2V5VmFsdWVSZXF1ZXN0EgsKA2tleRgBIAEoCSI8ChNHZXRL", + "ZXlWYWx1ZVJlc3BvbnNlEiUKAmt2GAEgASgLMhkudGVuc29yZmxvdy5LZXlW", + "YWx1ZUVudHJ5IiQKFVRyeUdldEtleVZhbHVlUmVxdWVzdBILCgNrZXkYASAB", + "KAkiPwoWVHJ5R2V0S2V5VmFsdWVSZXNwb25zZRIlCgJrdhgBIAEoCzIZLnRl", + "bnNvcmZsb3cuS2V5VmFsdWVFbnRyeSIuChVHZXRLZXlWYWx1ZURpclJlcXVl", + "c3QSFQoNZGlyZWN0b3J5X2tleRgBIAEoCSJWChZHZXRLZXlWYWx1ZURpclJl", + "c3BvbnNlEhUKDWRpcmVjdG9yeV9rZXkYASABKAkSJQoCa3YYAiADKAsyGS50", + "ZW5zb3JmbG93LktleVZhbHVlRW50cnkiOgoVRGVsZXRlS2V5VmFsdWVSZXF1", + "ZXN0EgsKA2tleRgBIAEoCRIUCgxpc19kaXJlY3RvcnkYAiABKAgiGAoWRGVs", + "ZXRlS2V5VmFsdWVSZXNwb25zZSKhAQoOQmFycmllclJlcXVlc3QSEgoKYmFy", + "cmllcl9pZBgBIAEoCRIdChViYXJyaWVyX3RpbWVvdXRfaW5fbXMYAiABKAMS", + "KgoFdGFza3MYAyADKAsyGy50ZW5zb3JmbG93LkNvb3JkaW5hdGVkVGFzaxIw", + "Cgtzb3VyY2VfdGFzaxgEIAEoCzIbLnRlbnNvcmZsb3cuQ29vcmRpbmF0ZWRU", + "YXNrIhEKD0JhcnJpZXJSZXNwb25zZSJcChRDYW5jZWxCYXJyaWVyUmVxdWVz", + "dBISCgpiYXJyaWVyX2lkGAEgASgJEjAKC3NvdXJjZV90YXNrGAIgASgLMhsu", + "dGVuc29yZmxvdy5Db29yZGluYXRlZFRhc2siFwoVQ2FuY2VsQmFycmllclJl", + "c3BvbnNlKpgBChRDb29yZGluYXRlZFRhc2tTdGF0ZRIZChVUQVNLU1RBVEVf", + "VU5TUEVDSUZJRUQQABIbChdUQVNLU1RBVEVfVU5JTklUSUFMSVpFRBABEhoK", + "FlRBU0tTVEFURV9ESVNDT05ORUNURUQQAhIXChNUQVNLU1RBVEVfQ09OTkVD", + "VEVEEAMSEwoPVEFTS1NUQVRFX0VSUk9SEAQymQoKE0Nvb3JkaW5hdGlvblNl", + "cnZpY2USUQoMUmVnaXN0ZXJUYXNrEh8udGVuc29yZmxvdy5SZWdpc3RlclRh", + "c2tSZXF1ZXN0GiAudGVuc29yZmxvdy5SZWdpc3RlclRhc2tSZXNwb25zZRJI", + "CglIZWFydGJlYXQSHC50ZW5zb3JmbG93LkhlYXJ0YmVhdFJlcXVlc3QaHS50", + "ZW5zb3JmbG93LkhlYXJ0YmVhdFJlc3BvbnNlEloKD1dhaXRGb3JBbGxUYXNr", + "cxIiLnRlbnNvcmZsb3cuV2FpdEZvckFsbFRhc2tzUmVxdWVzdBojLnRlbnNv", + "cmZsb3cuV2FpdEZvckFsbFRhc2tzUmVzcG9uc2USUQoMU2h1dGRvd25UYXNr", + "Eh8udGVuc29yZmxvdy5TaHV0ZG93blRhc2tSZXF1ZXN0GiAudGVuc29yZmxv", + "dy5TaHV0ZG93blRhc2tSZXNwb25zZRJICglSZXNldFRhc2sSHC50ZW5zb3Jm", + "bG93LlJlc2V0VGFza1JlcXVlc3QaHS50ZW5zb3JmbG93LlJlc2V0VGFza1Jl", + "c3BvbnNlEmAKEVJlcG9ydEVycm9yVG9UYXNrEiQudGVuc29yZmxvdy5SZXBv", + "cnRFcnJvclRvVGFza1JlcXVlc3QaJS50ZW5zb3JmbG93LlJlcG9ydEVycm9y", + "VG9UYXNrUmVzcG9uc2USaQoUUmVwb3J0RXJyb3JUb1NlcnZpY2USJy50ZW5z", + "b3JmbG93LlJlcG9ydEVycm9yVG9TZXJ2aWNlUmVxdWVzdBooLnRlbnNvcmZs", + "b3cuUmVwb3J0RXJyb3JUb1NlcnZpY2VSZXNwb25zZRJRCgxHZXRUYXNrU3Rh", + "dGUSHy50ZW5zb3JmbG93LkdldFRhc2tTdGF0ZVJlcXVlc3QaIC50ZW5zb3Jm", + "bG93LkdldFRhc2tTdGF0ZVJlc3BvbnNlElcKDkluc2VydEtleVZhbHVlEiEu", + "dGVuc29yZmxvdy5JbnNlcnRLZXlWYWx1ZVJlcXVlc3QaIi50ZW5zb3JmbG93", + "Lkluc2VydEtleVZhbHVlUmVzcG9uc2USTgoLR2V0S2V5VmFsdWUSHi50ZW5z", + "b3JmbG93LkdldEtleVZhbHVlUmVxdWVzdBofLnRlbnNvcmZsb3cuR2V0S2V5", + "VmFsdWVSZXNwb25zZRJXCg5UcnlHZXRLZXlWYWx1ZRIhLnRlbnNvcmZsb3cu", + "VHJ5R2V0S2V5VmFsdWVSZXF1ZXN0GiIudGVuc29yZmxvdy5UcnlHZXRLZXlW", + "YWx1ZVJlc3BvbnNlElcKDkdldEtleVZhbHVlRGlyEiEudGVuc29yZmxvdy5H", + "ZXRLZXlWYWx1ZURpclJlcXVlc3QaIi50ZW5zb3JmbG93LkdldEtleVZhbHVl", + "RGlyUmVzcG9uc2USVwoORGVsZXRlS2V5VmFsdWUSIS50ZW5zb3JmbG93LkRl", + "bGV0ZUtleVZhbHVlUmVxdWVzdBoiLnRlbnNvcmZsb3cuRGVsZXRlS2V5VmFs", + "dWVSZXNwb25zZRJCCgdCYXJyaWVyEhoudGVuc29yZmxvdy5CYXJyaWVyUmVx", + "dWVzdBobLnRlbnNvcmZsb3cuQmFycmllclJlc3BvbnNlElQKDUNhbmNlbEJh", + "cnJpZXISIC50ZW5zb3JmbG93LkNhbmNlbEJhcnJpZXJSZXF1ZXN0GiEudGVu", + "c29yZmxvdy5DYW5jZWxCYXJyaWVyUmVzcG9uc2VCV1pVZ2l0aHViLmNvbS90", + "ZW5zb3JmbG93L3RlbnNvcmZsb3cvdGVuc29yZmxvdy9nby9jb3JlL3Byb3Rv", + "YnVmL2Zvcl9jb3JlX3Byb3Rvc19nb19wcm90b2IGcHJvdG8z")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { global::Xla.ProtocolReflection.Descriptor, global::Tensorflow.DeviceAttributesReflection.Descriptor, }, + new pbr::GeneratedClrTypeInfo(new[] {typeof(global::Tensorflow.CoordinatedTaskState), }, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CoordinatedTask), global::Tensorflow.CoordinatedTask.Parser, new[]{ "JobName", "TaskId" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CoordinationServiceError), global::Tensorflow.CoordinationServiceError.Parser, new[]{ "IsReportedError", "SourceTask" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CoordinatedTaskStateInfo), global::Tensorflow.CoordinatedTaskStateInfo.Parser, new[]{ "Task", "State", "ErrorCode", "ErrorMessage", "ErrorPayload" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TfDeviceList), global::Tensorflow.TfDeviceList.Parser, new[]{ "Devices" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.XlaDeviceList), global::Tensorflow.XlaDeviceList.Parser, new[]{ "Devices" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CoordinationServiceDeviceInfo), global::Tensorflow.CoordinationServiceDeviceInfo.Parser, new[]{ "Tf", "Xla" }, new[]{ "Type" }, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RegisterTaskRequest), global::Tensorflow.RegisterTaskRequest.Parser, new[]{ "Incarnation", "SourceTask" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RegisterTaskResponse), global::Tensorflow.RegisterTaskResponse.Parser, new[]{ "LeaderIncarnation" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.HeartbeatRequest), global::Tensorflow.HeartbeatRequest.Parser, new[]{ "Incarnation", "SourceTask" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.HeartbeatResponse), global::Tensorflow.HeartbeatResponse.Parser, new[]{ "LeaderIncarnation" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.WaitForAllTasksRequest), global::Tensorflow.WaitForAllTasksRequest.Parser, new[]{ "LocalDeviceInfo", "SourceTask" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.WaitForAllTasksResponse), global::Tensorflow.WaitForAllTasksResponse.Parser, new[]{ "LeaderIncarnation", "ClusterDeviceInfo" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ShutdownTaskRequest), global::Tensorflow.ShutdownTaskRequest.Parser, new[]{ "SourceTask" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ShutdownTaskResponse), global::Tensorflow.ShutdownTaskResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ResetTaskRequest), global::Tensorflow.ResetTaskRequest.Parser, new[]{ "SourceTask" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ResetTaskResponse), global::Tensorflow.ResetTaskResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ReportErrorToTaskRequest), global::Tensorflow.ReportErrorToTaskRequest.Parser, new[]{ "ErrorCode", "ErrorMessage", "ErrorPayload" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ReportErrorToTaskResponse), global::Tensorflow.ReportErrorToTaskResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ReportErrorToServiceRequest), global::Tensorflow.ReportErrorToServiceRequest.Parser, new[]{ "ErrorCode", "ErrorMessage", "ErrorOrigin" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ReportErrorToServiceResponse), global::Tensorflow.ReportErrorToServiceResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GetTaskStateRequest), global::Tensorflow.GetTaskStateRequest.Parser, new[]{ "SourceTask" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GetTaskStateResponse), global::Tensorflow.GetTaskStateResponse.Parser, new[]{ "TaskState" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.KeyValueEntry), global::Tensorflow.KeyValueEntry.Parser, new[]{ "Key", "Value" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.InsertKeyValueRequest), global::Tensorflow.InsertKeyValueRequest.Parser, new[]{ "Kv" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.InsertKeyValueResponse), global::Tensorflow.InsertKeyValueResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GetKeyValueRequest), global::Tensorflow.GetKeyValueRequest.Parser, new[]{ "Key" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GetKeyValueResponse), global::Tensorflow.GetKeyValueResponse.Parser, new[]{ "Kv" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TryGetKeyValueRequest), global::Tensorflow.TryGetKeyValueRequest.Parser, new[]{ "Key" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TryGetKeyValueResponse), global::Tensorflow.TryGetKeyValueResponse.Parser, new[]{ "Kv" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GetKeyValueDirRequest), global::Tensorflow.GetKeyValueDirRequest.Parser, new[]{ "DirectoryKey" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GetKeyValueDirResponse), global::Tensorflow.GetKeyValueDirResponse.Parser, new[]{ "DirectoryKey", "Kv" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.DeleteKeyValueRequest), global::Tensorflow.DeleteKeyValueRequest.Parser, new[]{ "Key", "IsDirectory" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.DeleteKeyValueResponse), global::Tensorflow.DeleteKeyValueResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.BarrierRequest), global::Tensorflow.BarrierRequest.Parser, new[]{ "BarrierId", "BarrierTimeoutInMs", "Tasks", "SourceTask" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.BarrierResponse), global::Tensorflow.BarrierResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CancelBarrierRequest), global::Tensorflow.CancelBarrierRequest.Parser, new[]{ "BarrierId", "SourceTask" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CancelBarrierResponse), global::Tensorflow.CancelBarrierResponse.Parser, null, null, null, null, null) + })); + } + #endregion + + } + #region Enums + /// + /// Represents the state of a remote worker + /// + public enum CoordinatedTaskState { + /// + /// TASKSTATE_UNSPECIFIED is an invalid state such that indicates a bug. + /// + [pbr::OriginalName("TASKSTATE_UNSPECIFIED")] TaskstateUnspecified = 0, + /// + /// TASKSTATE_UNINITIALIZED is an agent-only state. While the agent is + /// disconnected, the service has no way of knowing if the task is + /// initialized/uninitialized. + /// + [pbr::OriginalName("TASKSTATE_UNINITIALIZED")] TaskstateUninitialized = 1, + [pbr::OriginalName("TASKSTATE_DISCONNECTED")] TaskstateDisconnected = 2, + [pbr::OriginalName("TASKSTATE_CONNECTED")] TaskstateConnected = 3, + [pbr::OriginalName("TASKSTATE_ERROR")] TaskstateError = 4, + } + + #endregion + + #region Messages + /// + /// Represents a remote worker task, specified by job name and task id. + /// + public sealed partial class CoordinatedTask : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CoordinatedTask()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinatedTask() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinatedTask(CoordinatedTask other) : this() { + jobName_ = other.jobName_; + taskId_ = other.taskId_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinatedTask Clone() { + return new CoordinatedTask(this); + } + + /// Field number for the "job_name" field. + public const int JobNameFieldNumber = 1; + private string jobName_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string JobName { + get { return jobName_; } + set { + jobName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "task_id" field. + public const int TaskIdFieldNumber = 2; + private int taskId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int TaskId { + get { return taskId_; } + set { + taskId_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CoordinatedTask); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CoordinatedTask other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (JobName != other.JobName) return false; + if (TaskId != other.TaskId) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (JobName.Length != 0) hash ^= JobName.GetHashCode(); + if (TaskId != 0) hash ^= TaskId.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (JobName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(JobName); + } + if (TaskId != 0) { + output.WriteRawTag(16); + output.WriteInt32(TaskId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (JobName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(JobName); + } + if (TaskId != 0) { + output.WriteRawTag(16); + output.WriteInt32(TaskId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (JobName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(JobName); + } + if (TaskId != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(TaskId); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CoordinatedTask other) { + if (other == null) { + return; + } + if (other.JobName.Length != 0) { + JobName = other.JobName; + } + if (other.TaskId != 0) { + TaskId = other.TaskId; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + JobName = input.ReadString(); + break; + } + case 16: { + TaskId = input.ReadInt32(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + JobName = input.ReadString(); + break; + } + case 16: { + TaskId = input.ReadInt32(); + break; + } + } + } + } + #endif + + } + + /// + /// Status payload for all coordination service errors. + /// Note: an empty proto may be set if the error is triggered by the task's own + /// agent calls (i.e. not propagated by the service from another remote task). + /// + public sealed partial class CoordinationServiceError : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CoordinationServiceError()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinationServiceError() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinationServiceError(CoordinationServiceError other) : this() { + isReportedError_ = other.isReportedError_; + sourceTask_ = other.sourceTask_ != null ? other.sourceTask_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinationServiceError Clone() { + return new CoordinationServiceError(this); + } + + /// Field number for the "is_reported_error" field. + public const int IsReportedErrorFieldNumber = 3; + private bool isReportedError_; + /// + /// If true, error is reported via the agent API by the user (and not an + /// internal service error). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsReportedError { + get { return isReportedError_; } + set { + isReportedError_ = value; + } + } + + /// Field number for the "source_task" field. + public const int SourceTaskFieldNumber = 4; + private global::Tensorflow.CoordinatedTask sourceTask_; + /// + /// Denotes which task hit the error. If unset, the error originated from the + /// same task that is processing this error. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask SourceTask { + get { return sourceTask_; } + set { + sourceTask_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CoordinationServiceError); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CoordinationServiceError other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (IsReportedError != other.IsReportedError) return false; + if (!object.Equals(SourceTask, other.SourceTask)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (IsReportedError != false) hash ^= IsReportedError.GetHashCode(); + if (sourceTask_ != null) hash ^= SourceTask.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (IsReportedError != false) { + output.WriteRawTag(24); + output.WriteBool(IsReportedError); + } + if (sourceTask_ != null) { + output.WriteRawTag(34); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (IsReportedError != false) { + output.WriteRawTag(24); + output.WriteBool(IsReportedError); + } + if (sourceTask_ != null) { + output.WriteRawTag(34); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (IsReportedError != false) { + size += 1 + 1; + } + if (sourceTask_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SourceTask); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CoordinationServiceError other) { + if (other == null) { + return; + } + if (other.IsReportedError != false) { + IsReportedError = other.IsReportedError; + } + if (other.sourceTask_ != null) { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + SourceTask.MergeFrom(other.SourceTask); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 24: { + IsReportedError = input.ReadBool(); + break; + } + case 34: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 24: { + IsReportedError = input.ReadBool(); + break; + } + case 34: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + } + #endif + + } + + public sealed partial class CoordinatedTaskStateInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CoordinatedTaskStateInfo()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[2]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinatedTaskStateInfo() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinatedTaskStateInfo(CoordinatedTaskStateInfo other) : this() { + task_ = other.task_ != null ? other.task_.Clone() : null; + state_ = other.state_; + errorCode_ = other.errorCode_; + errorMessage_ = other.errorMessage_; + errorPayload_ = other.errorPayload_ != null ? other.errorPayload_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinatedTaskStateInfo Clone() { + return new CoordinatedTaskStateInfo(this); + } + + /// Field number for the "task" field. + public const int TaskFieldNumber = 1; + private global::Tensorflow.CoordinatedTask task_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask Task { + get { return task_; } + set { + task_ = value; + } + } + + /// Field number for the "state" field. + public const int StateFieldNumber = 2; + private global::Tensorflow.CoordinatedTaskState state_ = global::Tensorflow.CoordinatedTaskState.TaskstateUnspecified; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTaskState State { + get { return state_; } + set { + state_ = value; + } + } + + /// Field number for the "error_code" field. + public const int ErrorCodeFieldNumber = 3; + private int errorCode_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int ErrorCode { + get { return errorCode_; } + set { + errorCode_ = value; + } + } + + /// Field number for the "error_message" field. + public const int ErrorMessageFieldNumber = 4; + private string errorMessage_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ErrorMessage { + get { return errorMessage_; } + set { + errorMessage_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "error_payload" field. + public const int ErrorPayloadFieldNumber = 5; + private global::Tensorflow.CoordinationServiceError errorPayload_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinationServiceError ErrorPayload { + get { return errorPayload_; } + set { + errorPayload_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CoordinatedTaskStateInfo); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CoordinatedTaskStateInfo other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Task, other.Task)) return false; + if (State != other.State) return false; + if (ErrorCode != other.ErrorCode) return false; + if (ErrorMessage != other.ErrorMessage) return false; + if (!object.Equals(ErrorPayload, other.ErrorPayload)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (task_ != null) hash ^= Task.GetHashCode(); + if (State != global::Tensorflow.CoordinatedTaskState.TaskstateUnspecified) hash ^= State.GetHashCode(); + if (ErrorCode != 0) hash ^= ErrorCode.GetHashCode(); + if (ErrorMessage.Length != 0) hash ^= ErrorMessage.GetHashCode(); + if (errorPayload_ != null) hash ^= ErrorPayload.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (task_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Task); + } + if (State != global::Tensorflow.CoordinatedTaskState.TaskstateUnspecified) { + output.WriteRawTag(16); + output.WriteEnum((int) State); + } + if (ErrorCode != 0) { + output.WriteRawTag(24); + output.WriteInt32(ErrorCode); + } + if (ErrorMessage.Length != 0) { + output.WriteRawTag(34); + output.WriteString(ErrorMessage); + } + if (errorPayload_ != null) { + output.WriteRawTag(42); + output.WriteMessage(ErrorPayload); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (task_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Task); + } + if (State != global::Tensorflow.CoordinatedTaskState.TaskstateUnspecified) { + output.WriteRawTag(16); + output.WriteEnum((int) State); + } + if (ErrorCode != 0) { + output.WriteRawTag(24); + output.WriteInt32(ErrorCode); + } + if (ErrorMessage.Length != 0) { + output.WriteRawTag(34); + output.WriteString(ErrorMessage); + } + if (errorPayload_ != null) { + output.WriteRawTag(42); + output.WriteMessage(ErrorPayload); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (task_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Task); + } + if (State != global::Tensorflow.CoordinatedTaskState.TaskstateUnspecified) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) State); + } + if (ErrorCode != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(ErrorCode); + } + if (ErrorMessage.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ErrorMessage); + } + if (errorPayload_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ErrorPayload); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CoordinatedTaskStateInfo other) { + if (other == null) { + return; + } + if (other.task_ != null) { + if (task_ == null) { + Task = new global::Tensorflow.CoordinatedTask(); + } + Task.MergeFrom(other.Task); + } + if (other.State != global::Tensorflow.CoordinatedTaskState.TaskstateUnspecified) { + State = other.State; + } + if (other.ErrorCode != 0) { + ErrorCode = other.ErrorCode; + } + if (other.ErrorMessage.Length != 0) { + ErrorMessage = other.ErrorMessage; + } + if (other.errorPayload_ != null) { + if (errorPayload_ == null) { + ErrorPayload = new global::Tensorflow.CoordinationServiceError(); + } + ErrorPayload.MergeFrom(other.ErrorPayload); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (task_ == null) { + Task = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(Task); + break; + } + case 16: { + State = (global::Tensorflow.CoordinatedTaskState) input.ReadEnum(); + break; + } + case 24: { + ErrorCode = input.ReadInt32(); + break; + } + case 34: { + ErrorMessage = input.ReadString(); + break; + } + case 42: { + if (errorPayload_ == null) { + ErrorPayload = new global::Tensorflow.CoordinationServiceError(); + } + input.ReadMessage(ErrorPayload); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (task_ == null) { + Task = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(Task); + break; + } + case 16: { + State = (global::Tensorflow.CoordinatedTaskState) input.ReadEnum(); + break; + } + case 24: { + ErrorCode = input.ReadInt32(); + break; + } + case 34: { + ErrorMessage = input.ReadString(); + break; + } + case 42: { + if (errorPayload_ == null) { + ErrorPayload = new global::Tensorflow.CoordinationServiceError(); + } + input.ReadMessage(ErrorPayload); + break; + } + } + } + } + #endif + + } + + /// + /// Represent device information from different runtimes. + /// + public sealed partial class TfDeviceList : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TfDeviceList()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[3]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TfDeviceList() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TfDeviceList(TfDeviceList other) : this() { + devices_ = other.devices_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TfDeviceList Clone() { + return new TfDeviceList(this); + } + + /// Field number for the "devices" field. + public const int DevicesFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_devices_codec + = pb::FieldCodec.ForMessage(10, global::Tensorflow.DeviceAttributes.Parser); + private readonly pbc::RepeatedField devices_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Devices { + get { return devices_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TfDeviceList); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TfDeviceList other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!devices_.Equals(other.devices_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= devices_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + devices_.WriteTo(output, _repeated_devices_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + devices_.WriteTo(ref output, _repeated_devices_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += devices_.CalculateSize(_repeated_devices_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TfDeviceList other) { + if (other == null) { + return; + } + devices_.Add(other.devices_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + devices_.AddEntriesFrom(input, _repeated_devices_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + devices_.AddEntriesFrom(ref input, _repeated_devices_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class XlaDeviceList : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new XlaDeviceList()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[4]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaDeviceList() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaDeviceList(XlaDeviceList other) : this() { + devices_ = other.devices_ != null ? other.devices_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaDeviceList Clone() { + return new XlaDeviceList(this); + } + + /// Field number for the "devices" field. + public const int DevicesFieldNumber = 1; + private global::Xla.GlobalTopologyProto devices_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalTopologyProto Devices { + get { return devices_; } + set { + devices_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as XlaDeviceList); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(XlaDeviceList other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Devices, other.Devices)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (devices_ != null) hash ^= Devices.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (devices_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Devices); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (devices_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Devices); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (devices_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Devices); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(XlaDeviceList other) { + if (other == null) { + return; + } + if (other.devices_ != null) { + if (devices_ == null) { + Devices = new global::Xla.GlobalTopologyProto(); + } + Devices.MergeFrom(other.Devices); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (devices_ == null) { + Devices = new global::Xla.GlobalTopologyProto(); + } + input.ReadMessage(Devices); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (devices_ == null) { + Devices = new global::Xla.GlobalTopologyProto(); + } + input.ReadMessage(Devices); + break; + } + } + } + } + #endif + + } + + public sealed partial class CoordinationServiceDeviceInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CoordinationServiceDeviceInfo()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[5]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinationServiceDeviceInfo() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinationServiceDeviceInfo(CoordinationServiceDeviceInfo other) : this() { + switch (other.TypeCase) { + case TypeOneofCase.Tf: + Tf = other.Tf.Clone(); + break; + case TypeOneofCase.Xla: + Xla = other.Xla.Clone(); + break; + } + + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CoordinationServiceDeviceInfo Clone() { + return new CoordinationServiceDeviceInfo(this); + } + + /// Field number for the "tf" field. + public const int TfFieldNumber = 1; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.TfDeviceList Tf { + get { return typeCase_ == TypeOneofCase.Tf ? (global::Tensorflow.TfDeviceList) type_ : null; } + set { + type_ = value; + typeCase_ = value == null ? TypeOneofCase.None : TypeOneofCase.Tf; + } + } + + /// Field number for the "xla" field. + public const int XlaFieldNumber = 2; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.XlaDeviceList Xla { + get { return typeCase_ == TypeOneofCase.Xla ? (global::Tensorflow.XlaDeviceList) type_ : null; } + set { + type_ = value; + typeCase_ = value == null ? TypeOneofCase.None : TypeOneofCase.Xla; + } + } + + private object type_; + /// Enum of possible cases for the "type" oneof. + public enum TypeOneofCase { + None = 0, + Tf = 1, + Xla = 2, + } + private TypeOneofCase typeCase_ = TypeOneofCase.None; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TypeOneofCase TypeCase { + get { return typeCase_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void ClearType() { + typeCase_ = TypeOneofCase.None; + type_ = null; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CoordinationServiceDeviceInfo); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CoordinationServiceDeviceInfo other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Tf, other.Tf)) return false; + if (!object.Equals(Xla, other.Xla)) return false; + if (TypeCase != other.TypeCase) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (typeCase_ == TypeOneofCase.Tf) hash ^= Tf.GetHashCode(); + if (typeCase_ == TypeOneofCase.Xla) hash ^= Xla.GetHashCode(); + hash ^= (int) typeCase_; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (typeCase_ == TypeOneofCase.Tf) { + output.WriteRawTag(10); + output.WriteMessage(Tf); + } + if (typeCase_ == TypeOneofCase.Xla) { + output.WriteRawTag(18); + output.WriteMessage(Xla); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (typeCase_ == TypeOneofCase.Tf) { + output.WriteRawTag(10); + output.WriteMessage(Tf); + } + if (typeCase_ == TypeOneofCase.Xla) { + output.WriteRawTag(18); + output.WriteMessage(Xla); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (typeCase_ == TypeOneofCase.Tf) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Tf); + } + if (typeCase_ == TypeOneofCase.Xla) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Xla); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CoordinationServiceDeviceInfo other) { + if (other == null) { + return; + } + switch (other.TypeCase) { + case TypeOneofCase.Tf: + if (Tf == null) { + Tf = new global::Tensorflow.TfDeviceList(); + } + Tf.MergeFrom(other.Tf); + break; + case TypeOneofCase.Xla: + if (Xla == null) { + Xla = new global::Tensorflow.XlaDeviceList(); + } + Xla.MergeFrom(other.Xla); + break; + } + + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + global::Tensorflow.TfDeviceList subBuilder = new global::Tensorflow.TfDeviceList(); + if (typeCase_ == TypeOneofCase.Tf) { + subBuilder.MergeFrom(Tf); + } + input.ReadMessage(subBuilder); + Tf = subBuilder; + break; + } + case 18: { + global::Tensorflow.XlaDeviceList subBuilder = new global::Tensorflow.XlaDeviceList(); + if (typeCase_ == TypeOneofCase.Xla) { + subBuilder.MergeFrom(Xla); + } + input.ReadMessage(subBuilder); + Xla = subBuilder; + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + global::Tensorflow.TfDeviceList subBuilder = new global::Tensorflow.TfDeviceList(); + if (typeCase_ == TypeOneofCase.Tf) { + subBuilder.MergeFrom(Tf); + } + input.ReadMessage(subBuilder); + Tf = subBuilder; + break; + } + case 18: { + global::Tensorflow.XlaDeviceList subBuilder = new global::Tensorflow.XlaDeviceList(); + if (typeCase_ == TypeOneofCase.Xla) { + subBuilder.MergeFrom(Xla); + } + input.ReadMessage(subBuilder); + Xla = subBuilder; + break; + } + } + } + } + #endif + + } + + /// + /// Request and response messages for registering a task to the cluster leader. + /// A task is uniquely represented by its `job_name`, `task_id` and + /// `incarnation`. Leader responds with its `incarnation` to identify a leader + /// process. + /// + public sealed partial class RegisterTaskRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RegisterTaskRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[6]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public RegisterTaskRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public RegisterTaskRequest(RegisterTaskRequest other) : this() { + incarnation_ = other.incarnation_; + sourceTask_ = other.sourceTask_ != null ? other.sourceTask_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public RegisterTaskRequest Clone() { + return new RegisterTaskRequest(this); + } + + /// Field number for the "incarnation" field. + public const int IncarnationFieldNumber = 3; + private ulong incarnation_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong Incarnation { + get { return incarnation_; } + set { + incarnation_ = value; + } + } + + /// Field number for the "source_task" field. + public const int SourceTaskFieldNumber = 5; + private global::Tensorflow.CoordinatedTask sourceTask_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask SourceTask { + get { return sourceTask_; } + set { + sourceTask_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as RegisterTaskRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(RegisterTaskRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Incarnation != other.Incarnation) return false; + if (!object.Equals(SourceTask, other.SourceTask)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Incarnation != 0UL) hash ^= Incarnation.GetHashCode(); + if (sourceTask_ != null) hash ^= SourceTask.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Incarnation != 0UL) { + output.WriteRawTag(25); + output.WriteFixed64(Incarnation); + } + if (sourceTask_ != null) { + output.WriteRawTag(42); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Incarnation != 0UL) { + output.WriteRawTag(25); + output.WriteFixed64(Incarnation); + } + if (sourceTask_ != null) { + output.WriteRawTag(42); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Incarnation != 0UL) { + size += 1 + 8; + } + if (sourceTask_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SourceTask); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(RegisterTaskRequest other) { + if (other == null) { + return; + } + if (other.Incarnation != 0UL) { + Incarnation = other.Incarnation; + } + if (other.sourceTask_ != null) { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + SourceTask.MergeFrom(other.SourceTask); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 25: { + Incarnation = input.ReadFixed64(); + break; + } + case 42: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 25: { + Incarnation = input.ReadFixed64(); + break; + } + case 42: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + } + #endif + + } + + public sealed partial class RegisterTaskResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RegisterTaskResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[7]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public RegisterTaskResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public RegisterTaskResponse(RegisterTaskResponse other) : this() { + leaderIncarnation_ = other.leaderIncarnation_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public RegisterTaskResponse Clone() { + return new RegisterTaskResponse(this); + } + + /// Field number for the "leader_incarnation" field. + public const int LeaderIncarnationFieldNumber = 1; + private ulong leaderIncarnation_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong LeaderIncarnation { + get { return leaderIncarnation_; } + set { + leaderIncarnation_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as RegisterTaskResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(RegisterTaskResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (LeaderIncarnation != other.LeaderIncarnation) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (LeaderIncarnation != 0UL) hash ^= LeaderIncarnation.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (LeaderIncarnation != 0UL) { + output.WriteRawTag(9); + output.WriteFixed64(LeaderIncarnation); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (LeaderIncarnation != 0UL) { + output.WriteRawTag(9); + output.WriteFixed64(LeaderIncarnation); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (LeaderIncarnation != 0UL) { + size += 1 + 8; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(RegisterTaskResponse other) { + if (other == null) { + return; + } + if (other.LeaderIncarnation != 0UL) { + LeaderIncarnation = other.LeaderIncarnation; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 9: { + LeaderIncarnation = input.ReadFixed64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 9: { + LeaderIncarnation = input.ReadFixed64(); + break; + } + } + } + } + #endif + + } + + /// + /// Request and response messages for sending heartbeats. + /// + public sealed partial class HeartbeatRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HeartbeatRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[8]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatRequest(HeartbeatRequest other) : this() { + incarnation_ = other.incarnation_; + sourceTask_ = other.sourceTask_ != null ? other.sourceTask_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatRequest Clone() { + return new HeartbeatRequest(this); + } + + /// Field number for the "incarnation" field. + public const int IncarnationFieldNumber = 3; + private ulong incarnation_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong Incarnation { + get { return incarnation_; } + set { + incarnation_ = value; + } + } + + /// Field number for the "source_task" field. + public const int SourceTaskFieldNumber = 4; + private global::Tensorflow.CoordinatedTask sourceTask_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask SourceTask { + get { return sourceTask_; } + set { + sourceTask_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HeartbeatRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HeartbeatRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Incarnation != other.Incarnation) return false; + if (!object.Equals(SourceTask, other.SourceTask)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Incarnation != 0UL) hash ^= Incarnation.GetHashCode(); + if (sourceTask_ != null) hash ^= SourceTask.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Incarnation != 0UL) { + output.WriteRawTag(25); + output.WriteFixed64(Incarnation); + } + if (sourceTask_ != null) { + output.WriteRawTag(34); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Incarnation != 0UL) { + output.WriteRawTag(25); + output.WriteFixed64(Incarnation); + } + if (sourceTask_ != null) { + output.WriteRawTag(34); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Incarnation != 0UL) { + size += 1 + 8; + } + if (sourceTask_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SourceTask); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HeartbeatRequest other) { + if (other == null) { + return; + } + if (other.Incarnation != 0UL) { + Incarnation = other.Incarnation; + } + if (other.sourceTask_ != null) { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + SourceTask.MergeFrom(other.SourceTask); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 25: { + Incarnation = input.ReadFixed64(); + break; + } + case 34: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 25: { + Incarnation = input.ReadFixed64(); + break; + } + case 34: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + } + #endif + + } + + public sealed partial class HeartbeatResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HeartbeatResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[9]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatResponse(HeartbeatResponse other) : this() { + leaderIncarnation_ = other.leaderIncarnation_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatResponse Clone() { + return new HeartbeatResponse(this); + } + + /// Field number for the "leader_incarnation" field. + public const int LeaderIncarnationFieldNumber = 1; + private ulong leaderIncarnation_; + /// + /// If there are failures in cluster, use additional metadata in response to + /// broadcast error code and message to other tasks. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong LeaderIncarnation { + get { return leaderIncarnation_; } + set { + leaderIncarnation_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HeartbeatResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HeartbeatResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (LeaderIncarnation != other.LeaderIncarnation) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (LeaderIncarnation != 0UL) hash ^= LeaderIncarnation.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (LeaderIncarnation != 0UL) { + output.WriteRawTag(9); + output.WriteFixed64(LeaderIncarnation); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (LeaderIncarnation != 0UL) { + output.WriteRawTag(9); + output.WriteFixed64(LeaderIncarnation); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (LeaderIncarnation != 0UL) { + size += 1 + 8; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HeartbeatResponse other) { + if (other == null) { + return; + } + if (other.LeaderIncarnation != 0UL) { + LeaderIncarnation = other.LeaderIncarnation; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 9: { + LeaderIncarnation = input.ReadFixed64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 9: { + LeaderIncarnation = input.ReadFixed64(); + break; + } + } + } + } + #endif + + } + + /// + /// Request and response messages for waiting for all tasks. + /// + public sealed partial class WaitForAllTasksRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WaitForAllTasksRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[10]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForAllTasksRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForAllTasksRequest(WaitForAllTasksRequest other) : this() { + localDeviceInfo_ = other.localDeviceInfo_ != null ? other.localDeviceInfo_.Clone() : null; + sourceTask_ = other.sourceTask_ != null ? other.sourceTask_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForAllTasksRequest Clone() { + return new WaitForAllTasksRequest(this); + } + + /// Field number for the "local_device_info" field. + public const int LocalDeviceInfoFieldNumber = 4; + private global::Tensorflow.CoordinationServiceDeviceInfo localDeviceInfo_; + /// + /// All local device attributes on the request sender. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinationServiceDeviceInfo LocalDeviceInfo { + get { return localDeviceInfo_; } + set { + localDeviceInfo_ = value; + } + } + + /// Field number for the "source_task" field. + public const int SourceTaskFieldNumber = 5; + private global::Tensorflow.CoordinatedTask sourceTask_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask SourceTask { + get { return sourceTask_; } + set { + sourceTask_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as WaitForAllTasksRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(WaitForAllTasksRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(LocalDeviceInfo, other.LocalDeviceInfo)) return false; + if (!object.Equals(SourceTask, other.SourceTask)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (localDeviceInfo_ != null) hash ^= LocalDeviceInfo.GetHashCode(); + if (sourceTask_ != null) hash ^= SourceTask.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (localDeviceInfo_ != null) { + output.WriteRawTag(34); + output.WriteMessage(LocalDeviceInfo); + } + if (sourceTask_ != null) { + output.WriteRawTag(42); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (localDeviceInfo_ != null) { + output.WriteRawTag(34); + output.WriteMessage(LocalDeviceInfo); + } + if (sourceTask_ != null) { + output.WriteRawTag(42); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (localDeviceInfo_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(LocalDeviceInfo); + } + if (sourceTask_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SourceTask); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(WaitForAllTasksRequest other) { + if (other == null) { + return; + } + if (other.localDeviceInfo_ != null) { + if (localDeviceInfo_ == null) { + LocalDeviceInfo = new global::Tensorflow.CoordinationServiceDeviceInfo(); + } + LocalDeviceInfo.MergeFrom(other.LocalDeviceInfo); + } + if (other.sourceTask_ != null) { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + SourceTask.MergeFrom(other.SourceTask); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 34: { + if (localDeviceInfo_ == null) { + LocalDeviceInfo = new global::Tensorflow.CoordinationServiceDeviceInfo(); + } + input.ReadMessage(LocalDeviceInfo); + break; + } + case 42: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 34: { + if (localDeviceInfo_ == null) { + LocalDeviceInfo = new global::Tensorflow.CoordinationServiceDeviceInfo(); + } + input.ReadMessage(LocalDeviceInfo); + break; + } + case 42: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + } + #endif + + } + + public sealed partial class WaitForAllTasksResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WaitForAllTasksResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[11]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForAllTasksResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForAllTasksResponse(WaitForAllTasksResponse other) : this() { + leaderIncarnation_ = other.leaderIncarnation_; + clusterDeviceInfo_ = other.clusterDeviceInfo_ != null ? other.clusterDeviceInfo_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForAllTasksResponse Clone() { + return new WaitForAllTasksResponse(this); + } + + /// Field number for the "leader_incarnation" field. + public const int LeaderIncarnationFieldNumber = 1; + private ulong leaderIncarnation_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong LeaderIncarnation { + get { return leaderIncarnation_; } + set { + leaderIncarnation_ = value; + } + } + + /// Field number for the "cluster_device_info" field. + public const int ClusterDeviceInfoFieldNumber = 3; + private global::Tensorflow.CoordinationServiceDeviceInfo clusterDeviceInfo_; + /// + /// All devices in the cluster. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinationServiceDeviceInfo ClusterDeviceInfo { + get { return clusterDeviceInfo_; } + set { + clusterDeviceInfo_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as WaitForAllTasksResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(WaitForAllTasksResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (LeaderIncarnation != other.LeaderIncarnation) return false; + if (!object.Equals(ClusterDeviceInfo, other.ClusterDeviceInfo)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (LeaderIncarnation != 0UL) hash ^= LeaderIncarnation.GetHashCode(); + if (clusterDeviceInfo_ != null) hash ^= ClusterDeviceInfo.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (LeaderIncarnation != 0UL) { + output.WriteRawTag(9); + output.WriteFixed64(LeaderIncarnation); + } + if (clusterDeviceInfo_ != null) { + output.WriteRawTag(26); + output.WriteMessage(ClusterDeviceInfo); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (LeaderIncarnation != 0UL) { + output.WriteRawTag(9); + output.WriteFixed64(LeaderIncarnation); + } + if (clusterDeviceInfo_ != null) { + output.WriteRawTag(26); + output.WriteMessage(ClusterDeviceInfo); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (LeaderIncarnation != 0UL) { + size += 1 + 8; + } + if (clusterDeviceInfo_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ClusterDeviceInfo); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(WaitForAllTasksResponse other) { + if (other == null) { + return; + } + if (other.LeaderIncarnation != 0UL) { + LeaderIncarnation = other.LeaderIncarnation; + } + if (other.clusterDeviceInfo_ != null) { + if (clusterDeviceInfo_ == null) { + ClusterDeviceInfo = new global::Tensorflow.CoordinationServiceDeviceInfo(); + } + ClusterDeviceInfo.MergeFrom(other.ClusterDeviceInfo); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 9: { + LeaderIncarnation = input.ReadFixed64(); + break; + } + case 26: { + if (clusterDeviceInfo_ == null) { + ClusterDeviceInfo = new global::Tensorflow.CoordinationServiceDeviceInfo(); + } + input.ReadMessage(ClusterDeviceInfo); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 9: { + LeaderIncarnation = input.ReadFixed64(); + break; + } + case 26: { + if (clusterDeviceInfo_ == null) { + ClusterDeviceInfo = new global::Tensorflow.CoordinationServiceDeviceInfo(); + } + input.ReadMessage(ClusterDeviceInfo); + break; + } + } + } + } + #endif + + } + + /// + /// Request and response messages for disconnecting a task from the service. + /// + public sealed partial class ShutdownTaskRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ShutdownTaskRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[12]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownTaskRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownTaskRequest(ShutdownTaskRequest other) : this() { + sourceTask_ = other.sourceTask_ != null ? other.sourceTask_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownTaskRequest Clone() { + return new ShutdownTaskRequest(this); + } + + /// Field number for the "source_task" field. + public const int SourceTaskFieldNumber = 1; + private global::Tensorflow.CoordinatedTask sourceTask_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask SourceTask { + get { return sourceTask_; } + set { + sourceTask_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ShutdownTaskRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ShutdownTaskRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(SourceTask, other.SourceTask)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (sourceTask_ != null) hash ^= SourceTask.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (sourceTask_ != null) { + output.WriteRawTag(10); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (sourceTask_ != null) { + output.WriteRawTag(10); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (sourceTask_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SourceTask); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ShutdownTaskRequest other) { + if (other == null) { + return; + } + if (other.sourceTask_ != null) { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + SourceTask.MergeFrom(other.SourceTask); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + } + #endif + + } + + public sealed partial class ShutdownTaskResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ShutdownTaskResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[13]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownTaskResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownTaskResponse(ShutdownTaskResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownTaskResponse Clone() { + return new ShutdownTaskResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ShutdownTaskResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ShutdownTaskResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ShutdownTaskResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + /// + /// Request and response messages for resetting a task state in the service. + /// + public sealed partial class ResetTaskRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ResetTaskRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[14]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetTaskRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetTaskRequest(ResetTaskRequest other) : this() { + sourceTask_ = other.sourceTask_ != null ? other.sourceTask_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetTaskRequest Clone() { + return new ResetTaskRequest(this); + } + + /// Field number for the "source_task" field. + public const int SourceTaskFieldNumber = 1; + private global::Tensorflow.CoordinatedTask sourceTask_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask SourceTask { + get { return sourceTask_; } + set { + sourceTask_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ResetTaskRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ResetTaskRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(SourceTask, other.SourceTask)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (sourceTask_ != null) hash ^= SourceTask.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (sourceTask_ != null) { + output.WriteRawTag(10); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (sourceTask_ != null) { + output.WriteRawTag(10); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (sourceTask_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SourceTask); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ResetTaskRequest other) { + if (other == null) { + return; + } + if (other.sourceTask_ != null) { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + SourceTask.MergeFrom(other.SourceTask); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + } + #endif + + } + + public sealed partial class ResetTaskResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ResetTaskResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[15]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetTaskResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetTaskResponse(ResetTaskResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetTaskResponse Clone() { + return new ResetTaskResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ResetTaskResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ResetTaskResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ResetTaskResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + /// + /// Request and response messages for reporting errors to task. + /// + public sealed partial class ReportErrorToTaskRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ReportErrorToTaskRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[16]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToTaskRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToTaskRequest(ReportErrorToTaskRequest other) : this() { + errorCode_ = other.errorCode_; + errorMessage_ = other.errorMessage_; + errorPayload_ = other.errorPayload_ != null ? other.errorPayload_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToTaskRequest Clone() { + return new ReportErrorToTaskRequest(this); + } + + /// Field number for the "error_code" field. + public const int ErrorCodeFieldNumber = 1; + private int errorCode_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int ErrorCode { + get { return errorCode_; } + set { + errorCode_ = value; + } + } + + /// Field number for the "error_message" field. + public const int ErrorMessageFieldNumber = 2; + private string errorMessage_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ErrorMessage { + get { return errorMessage_; } + set { + errorMessage_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "error_payload" field. + public const int ErrorPayloadFieldNumber = 5; + private global::Tensorflow.CoordinationServiceError errorPayload_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinationServiceError ErrorPayload { + get { return errorPayload_; } + set { + errorPayload_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ReportErrorToTaskRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ReportErrorToTaskRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ErrorCode != other.ErrorCode) return false; + if (ErrorMessage != other.ErrorMessage) return false; + if (!object.Equals(ErrorPayload, other.ErrorPayload)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ErrorCode != 0) hash ^= ErrorCode.GetHashCode(); + if (ErrorMessage.Length != 0) hash ^= ErrorMessage.GetHashCode(); + if (errorPayload_ != null) hash ^= ErrorPayload.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ErrorCode != 0) { + output.WriteRawTag(8); + output.WriteInt32(ErrorCode); + } + if (ErrorMessage.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ErrorMessage); + } + if (errorPayload_ != null) { + output.WriteRawTag(42); + output.WriteMessage(ErrorPayload); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ErrorCode != 0) { + output.WriteRawTag(8); + output.WriteInt32(ErrorCode); + } + if (ErrorMessage.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ErrorMessage); + } + if (errorPayload_ != null) { + output.WriteRawTag(42); + output.WriteMessage(ErrorPayload); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ErrorCode != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(ErrorCode); + } + if (ErrorMessage.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ErrorMessage); + } + if (errorPayload_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ErrorPayload); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ReportErrorToTaskRequest other) { + if (other == null) { + return; + } + if (other.ErrorCode != 0) { + ErrorCode = other.ErrorCode; + } + if (other.ErrorMessage.Length != 0) { + ErrorMessage = other.ErrorMessage; + } + if (other.errorPayload_ != null) { + if (errorPayload_ == null) { + ErrorPayload = new global::Tensorflow.CoordinationServiceError(); + } + ErrorPayload.MergeFrom(other.ErrorPayload); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + ErrorCode = input.ReadInt32(); + break; + } + case 18: { + ErrorMessage = input.ReadString(); + break; + } + case 42: { + if (errorPayload_ == null) { + ErrorPayload = new global::Tensorflow.CoordinationServiceError(); + } + input.ReadMessage(ErrorPayload); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + ErrorCode = input.ReadInt32(); + break; + } + case 18: { + ErrorMessage = input.ReadString(); + break; + } + case 42: { + if (errorPayload_ == null) { + ErrorPayload = new global::Tensorflow.CoordinationServiceError(); + } + input.ReadMessage(ErrorPayload); + break; + } + } + } + } + #endif + + } + + public sealed partial class ReportErrorToTaskResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ReportErrorToTaskResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[17]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToTaskResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToTaskResponse(ReportErrorToTaskResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToTaskResponse Clone() { + return new ReportErrorToTaskResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ReportErrorToTaskResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ReportErrorToTaskResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ReportErrorToTaskResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + /// + /// Request and response messages for reporting errors to service instance. + /// + public sealed partial class ReportErrorToServiceRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ReportErrorToServiceRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[18]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToServiceRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToServiceRequest(ReportErrorToServiceRequest other) : this() { + errorCode_ = other.errorCode_; + errorMessage_ = other.errorMessage_; + errorOrigin_ = other.errorOrigin_ != null ? other.errorOrigin_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToServiceRequest Clone() { + return new ReportErrorToServiceRequest(this); + } + + /// Field number for the "error_code" field. + public const int ErrorCodeFieldNumber = 1; + private int errorCode_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int ErrorCode { + get { return errorCode_; } + set { + errorCode_ = value; + } + } + + /// Field number for the "error_message" field. + public const int ErrorMessageFieldNumber = 2; + private string errorMessage_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ErrorMessage { + get { return errorMessage_; } + set { + errorMessage_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "error_origin" field. + public const int ErrorOriginFieldNumber = 5; + private global::Tensorflow.CoordinatedTask errorOrigin_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask ErrorOrigin { + get { return errorOrigin_; } + set { + errorOrigin_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ReportErrorToServiceRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ReportErrorToServiceRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ErrorCode != other.ErrorCode) return false; + if (ErrorMessage != other.ErrorMessage) return false; + if (!object.Equals(ErrorOrigin, other.ErrorOrigin)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ErrorCode != 0) hash ^= ErrorCode.GetHashCode(); + if (ErrorMessage.Length != 0) hash ^= ErrorMessage.GetHashCode(); + if (errorOrigin_ != null) hash ^= ErrorOrigin.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ErrorCode != 0) { + output.WriteRawTag(8); + output.WriteInt32(ErrorCode); + } + if (ErrorMessage.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ErrorMessage); + } + if (errorOrigin_ != null) { + output.WriteRawTag(42); + output.WriteMessage(ErrorOrigin); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ErrorCode != 0) { + output.WriteRawTag(8); + output.WriteInt32(ErrorCode); + } + if (ErrorMessage.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ErrorMessage); + } + if (errorOrigin_ != null) { + output.WriteRawTag(42); + output.WriteMessage(ErrorOrigin); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ErrorCode != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(ErrorCode); + } + if (ErrorMessage.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ErrorMessage); + } + if (errorOrigin_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ErrorOrigin); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ReportErrorToServiceRequest other) { + if (other == null) { + return; + } + if (other.ErrorCode != 0) { + ErrorCode = other.ErrorCode; + } + if (other.ErrorMessage.Length != 0) { + ErrorMessage = other.ErrorMessage; + } + if (other.errorOrigin_ != null) { + if (errorOrigin_ == null) { + ErrorOrigin = new global::Tensorflow.CoordinatedTask(); + } + ErrorOrigin.MergeFrom(other.ErrorOrigin); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + ErrorCode = input.ReadInt32(); + break; + } + case 18: { + ErrorMessage = input.ReadString(); + break; + } + case 42: { + if (errorOrigin_ == null) { + ErrorOrigin = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(ErrorOrigin); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + ErrorCode = input.ReadInt32(); + break; + } + case 18: { + ErrorMessage = input.ReadString(); + break; + } + case 42: { + if (errorOrigin_ == null) { + ErrorOrigin = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(ErrorOrigin); + break; + } + } + } + } + #endif + + } + + public sealed partial class ReportErrorToServiceResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ReportErrorToServiceResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[19]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToServiceResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToServiceResponse(ReportErrorToServiceResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReportErrorToServiceResponse Clone() { + return new ReportErrorToServiceResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ReportErrorToServiceResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ReportErrorToServiceResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ReportErrorToServiceResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + /// + /// Request and response messages for getting state of a remote task. + /// + public sealed partial class GetTaskStateRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetTaskStateRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[20]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetTaskStateRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetTaskStateRequest(GetTaskStateRequest other) : this() { + sourceTask_ = other.sourceTask_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetTaskStateRequest Clone() { + return new GetTaskStateRequest(this); + } + + /// Field number for the "source_task" field. + public const int SourceTaskFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_sourceTask_codec + = pb::FieldCodec.ForMessage(10, global::Tensorflow.CoordinatedTask.Parser); + private readonly pbc::RepeatedField sourceTask_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField SourceTask { + get { return sourceTask_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetTaskStateRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetTaskStateRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!sourceTask_.Equals(other.sourceTask_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= sourceTask_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + sourceTask_.WriteTo(output, _repeated_sourceTask_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + sourceTask_.WriteTo(ref output, _repeated_sourceTask_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += sourceTask_.CalculateSize(_repeated_sourceTask_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetTaskStateRequest other) { + if (other == null) { + return; + } + sourceTask_.Add(other.sourceTask_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + sourceTask_.AddEntriesFrom(input, _repeated_sourceTask_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + sourceTask_.AddEntriesFrom(ref input, _repeated_sourceTask_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class GetTaskStateResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetTaskStateResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[21]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetTaskStateResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetTaskStateResponse(GetTaskStateResponse other) : this() { + taskState_ = other.taskState_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetTaskStateResponse Clone() { + return new GetTaskStateResponse(this); + } + + /// Field number for the "task_state" field. + public const int TaskStateFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_taskState_codec + = pb::FieldCodec.ForMessage(10, global::Tensorflow.CoordinatedTaskStateInfo.Parser); + private readonly pbc::RepeatedField taskState_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField TaskState { + get { return taskState_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetTaskStateResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetTaskStateResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!taskState_.Equals(other.taskState_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= taskState_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + taskState_.WriteTo(output, _repeated_taskState_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + taskState_.WriteTo(ref output, _repeated_taskState_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += taskState_.CalculateSize(_repeated_taskState_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetTaskStateResponse other) { + if (other == null) { + return; + } + taskState_.Add(other.taskState_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + taskState_.AddEntriesFrom(input, _repeated_taskState_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + taskState_.AddEntriesFrom(ref input, _repeated_taskState_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Message for configuration key value. + /// Key is structured like Unix file system, with multiple levels of directory + /// names separated by the slash ('/') characters. + /// + public sealed partial class KeyValueEntry : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new KeyValueEntry()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[22]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueEntry() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueEntry(KeyValueEntry other) : this() { + key_ = other.key_; + value_ = other.value_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueEntry Clone() { + return new KeyValueEntry(this); + } + + /// Field number for the "key" field. + public const int KeyFieldNumber = 1; + private string key_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Key { + get { return key_; } + set { + key_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "value" field. + public const int ValueFieldNumber = 2; + private pb::ByteString value_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString Value { + get { return value_; } + set { + value_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as KeyValueEntry); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(KeyValueEntry other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Key != other.Key) return false; + if (Value != other.Value) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Key.Length != 0) hash ^= Key.GetHashCode(); + if (Value.Length != 0) hash ^= Value.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Key.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Key); + } + if (Value.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Value); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Key.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Key); + } + if (Value.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Value); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Key.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Key); + } + if (Value.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(Value); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(KeyValueEntry other) { + if (other == null) { + return; + } + if (other.Key.Length != 0) { + Key = other.Key; + } + if (other.Value.Length != 0) { + Value = other.Value; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Key = input.ReadString(); + break; + } + case 18: { + Value = input.ReadBytes(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Key = input.ReadString(); + break; + } + case 18: { + Value = input.ReadBytes(); + break; + } + } + } + } + #endif + + } + + /// + /// Request and response messages for inserting configuration key-value data. + /// + public sealed partial class InsertKeyValueRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new InsertKeyValueRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[23]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public InsertKeyValueRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public InsertKeyValueRequest(InsertKeyValueRequest other) : this() { + kv_ = other.kv_ != null ? other.kv_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public InsertKeyValueRequest Clone() { + return new InsertKeyValueRequest(this); + } + + /// Field number for the "kv" field. + public const int KvFieldNumber = 1; + private global::Tensorflow.KeyValueEntry kv_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.KeyValueEntry Kv { + get { return kv_; } + set { + kv_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as InsertKeyValueRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(InsertKeyValueRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Kv, other.Kv)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (kv_ != null) hash ^= Kv.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (kv_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Kv); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (kv_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Kv); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (kv_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Kv); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(InsertKeyValueRequest other) { + if (other == null) { + return; + } + if (other.kv_ != null) { + if (kv_ == null) { + Kv = new global::Tensorflow.KeyValueEntry(); + } + Kv.MergeFrom(other.Kv); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (kv_ == null) { + Kv = new global::Tensorflow.KeyValueEntry(); + } + input.ReadMessage(Kv); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (kv_ == null) { + Kv = new global::Tensorflow.KeyValueEntry(); + } + input.ReadMessage(Kv); + break; + } + } + } + } + #endif + + } + + public sealed partial class InsertKeyValueResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new InsertKeyValueResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[24]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public InsertKeyValueResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public InsertKeyValueResponse(InsertKeyValueResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public InsertKeyValueResponse Clone() { + return new InsertKeyValueResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as InsertKeyValueResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(InsertKeyValueResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(InsertKeyValueResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + /// + /// Request and response messages for getting configuration key-value data. + /// + public sealed partial class GetKeyValueRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetKeyValueRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[25]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueRequest(GetKeyValueRequest other) : this() { + key_ = other.key_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueRequest Clone() { + return new GetKeyValueRequest(this); + } + + /// Field number for the "key" field. + public const int KeyFieldNumber = 1; + private string key_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Key { + get { return key_; } + set { + key_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetKeyValueRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetKeyValueRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Key != other.Key) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Key.Length != 0) hash ^= Key.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Key.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Key); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Key.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Key); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Key.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Key); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetKeyValueRequest other) { + if (other == null) { + return; + } + if (other.Key.Length != 0) { + Key = other.Key; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Key = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Key = input.ReadString(); + break; + } + } + } + } + #endif + + } + + public sealed partial class GetKeyValueResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetKeyValueResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[26]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueResponse(GetKeyValueResponse other) : this() { + kv_ = other.kv_ != null ? other.kv_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueResponse Clone() { + return new GetKeyValueResponse(this); + } + + /// Field number for the "kv" field. + public const int KvFieldNumber = 1; + private global::Tensorflow.KeyValueEntry kv_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.KeyValueEntry Kv { + get { return kv_; } + set { + kv_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetKeyValueResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetKeyValueResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Kv, other.Kv)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (kv_ != null) hash ^= Kv.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (kv_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Kv); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (kv_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Kv); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (kv_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Kv); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetKeyValueResponse other) { + if (other == null) { + return; + } + if (other.kv_ != null) { + if (kv_ == null) { + Kv = new global::Tensorflow.KeyValueEntry(); + } + Kv.MergeFrom(other.Kv); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (kv_ == null) { + Kv = new global::Tensorflow.KeyValueEntry(); + } + input.ReadMessage(Kv); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (kv_ == null) { + Kv = new global::Tensorflow.KeyValueEntry(); + } + input.ReadMessage(Kv); + break; + } + } + } + } + #endif + + } + + public sealed partial class TryGetKeyValueRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TryGetKeyValueRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[27]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TryGetKeyValueRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TryGetKeyValueRequest(TryGetKeyValueRequest other) : this() { + key_ = other.key_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TryGetKeyValueRequest Clone() { + return new TryGetKeyValueRequest(this); + } + + /// Field number for the "key" field. + public const int KeyFieldNumber = 1; + private string key_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Key { + get { return key_; } + set { + key_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TryGetKeyValueRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TryGetKeyValueRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Key != other.Key) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Key.Length != 0) hash ^= Key.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Key.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Key); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Key.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Key); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Key.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Key); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TryGetKeyValueRequest other) { + if (other == null) { + return; + } + if (other.Key.Length != 0) { + Key = other.Key; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Key = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Key = input.ReadString(); + break; + } + } + } + } + #endif + + } + + public sealed partial class TryGetKeyValueResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TryGetKeyValueResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[28]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TryGetKeyValueResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TryGetKeyValueResponse(TryGetKeyValueResponse other) : this() { + kv_ = other.kv_ != null ? other.kv_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TryGetKeyValueResponse Clone() { + return new TryGetKeyValueResponse(this); + } + + /// Field number for the "kv" field. + public const int KvFieldNumber = 1; + private global::Tensorflow.KeyValueEntry kv_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.KeyValueEntry Kv { + get { return kv_; } + set { + kv_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TryGetKeyValueResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TryGetKeyValueResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Kv, other.Kv)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (kv_ != null) hash ^= Kv.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (kv_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Kv); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (kv_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Kv); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (kv_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Kv); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TryGetKeyValueResponse other) { + if (other == null) { + return; + } + if (other.kv_ != null) { + if (kv_ == null) { + Kv = new global::Tensorflow.KeyValueEntry(); + } + Kv.MergeFrom(other.Kv); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (kv_ == null) { + Kv = new global::Tensorflow.KeyValueEntry(); + } + input.ReadMessage(Kv); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (kv_ == null) { + Kv = new global::Tensorflow.KeyValueEntry(); + } + input.ReadMessage(Kv); + break; + } + } + } + } + #endif + + } + + public sealed partial class GetKeyValueDirRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetKeyValueDirRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[29]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueDirRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueDirRequest(GetKeyValueDirRequest other) : this() { + directoryKey_ = other.directoryKey_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueDirRequest Clone() { + return new GetKeyValueDirRequest(this); + } + + /// Field number for the "directory_key" field. + public const int DirectoryKeyFieldNumber = 1; + private string directoryKey_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string DirectoryKey { + get { return directoryKey_; } + set { + directoryKey_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetKeyValueDirRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetKeyValueDirRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (DirectoryKey != other.DirectoryKey) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (DirectoryKey.Length != 0) hash ^= DirectoryKey.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (DirectoryKey.Length != 0) { + output.WriteRawTag(10); + output.WriteString(DirectoryKey); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (DirectoryKey.Length != 0) { + output.WriteRawTag(10); + output.WriteString(DirectoryKey); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (DirectoryKey.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(DirectoryKey); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetKeyValueDirRequest other) { + if (other == null) { + return; + } + if (other.DirectoryKey.Length != 0) { + DirectoryKey = other.DirectoryKey; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + DirectoryKey = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + DirectoryKey = input.ReadString(); + break; + } + } + } + } + #endif + + } + + public sealed partial class GetKeyValueDirResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetKeyValueDirResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[30]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueDirResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueDirResponse(GetKeyValueDirResponse other) : this() { + directoryKey_ = other.directoryKey_; + kv_ = other.kv_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetKeyValueDirResponse Clone() { + return new GetKeyValueDirResponse(this); + } + + /// Field number for the "directory_key" field. + public const int DirectoryKeyFieldNumber = 1; + private string directoryKey_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string DirectoryKey { + get { return directoryKey_; } + set { + directoryKey_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "kv" field. + public const int KvFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_kv_codec + = pb::FieldCodec.ForMessage(18, global::Tensorflow.KeyValueEntry.Parser); + private readonly pbc::RepeatedField kv_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Kv { + get { return kv_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetKeyValueDirResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetKeyValueDirResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (DirectoryKey != other.DirectoryKey) return false; + if(!kv_.Equals(other.kv_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (DirectoryKey.Length != 0) hash ^= DirectoryKey.GetHashCode(); + hash ^= kv_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (DirectoryKey.Length != 0) { + output.WriteRawTag(10); + output.WriteString(DirectoryKey); + } + kv_.WriteTo(output, _repeated_kv_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (DirectoryKey.Length != 0) { + output.WriteRawTag(10); + output.WriteString(DirectoryKey); + } + kv_.WriteTo(ref output, _repeated_kv_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (DirectoryKey.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(DirectoryKey); + } + size += kv_.CalculateSize(_repeated_kv_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetKeyValueDirResponse other) { + if (other == null) { + return; + } + if (other.DirectoryKey.Length != 0) { + DirectoryKey = other.DirectoryKey; + } + kv_.Add(other.kv_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + DirectoryKey = input.ReadString(); + break; + } + case 18: { + kv_.AddEntriesFrom(input, _repeated_kv_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + DirectoryKey = input.ReadString(); + break; + } + case 18: { + kv_.AddEntriesFrom(ref input, _repeated_kv_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Request and response messages for deleting configuration key-value data. + /// When is_directory is true, delete key-values recursively under `key`. + /// + public sealed partial class DeleteKeyValueRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeleteKeyValueRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[31]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeleteKeyValueRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeleteKeyValueRequest(DeleteKeyValueRequest other) : this() { + key_ = other.key_; + isDirectory_ = other.isDirectory_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeleteKeyValueRequest Clone() { + return new DeleteKeyValueRequest(this); + } + + /// Field number for the "key" field. + public const int KeyFieldNumber = 1; + private string key_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Key { + get { return key_; } + set { + key_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "is_directory" field. + public const int IsDirectoryFieldNumber = 2; + private bool isDirectory_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsDirectory { + get { return isDirectory_; } + set { + isDirectory_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DeleteKeyValueRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DeleteKeyValueRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Key != other.Key) return false; + if (IsDirectory != other.IsDirectory) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Key.Length != 0) hash ^= Key.GetHashCode(); + if (IsDirectory != false) hash ^= IsDirectory.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Key.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Key); + } + if (IsDirectory != false) { + output.WriteRawTag(16); + output.WriteBool(IsDirectory); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Key.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Key); + } + if (IsDirectory != false) { + output.WriteRawTag(16); + output.WriteBool(IsDirectory); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Key.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Key); + } + if (IsDirectory != false) { + size += 1 + 1; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DeleteKeyValueRequest other) { + if (other == null) { + return; + } + if (other.Key.Length != 0) { + Key = other.Key; + } + if (other.IsDirectory != false) { + IsDirectory = other.IsDirectory; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Key = input.ReadString(); + break; + } + case 16: { + IsDirectory = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Key = input.ReadString(); + break; + } + case 16: { + IsDirectory = input.ReadBool(); + break; + } + } + } + } + #endif + + } + + public sealed partial class DeleteKeyValueResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeleteKeyValueResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[32]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeleteKeyValueResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeleteKeyValueResponse(DeleteKeyValueResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeleteKeyValueResponse Clone() { + return new DeleteKeyValueResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DeleteKeyValueResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DeleteKeyValueResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DeleteKeyValueResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + /// + /// Request and response messages for generic sync barriers. + /// + public sealed partial class BarrierRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new BarrierRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[33]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BarrierRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BarrierRequest(BarrierRequest other) : this() { + barrierId_ = other.barrierId_; + barrierTimeoutInMs_ = other.barrierTimeoutInMs_; + tasks_ = other.tasks_.Clone(); + sourceTask_ = other.sourceTask_ != null ? other.sourceTask_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BarrierRequest Clone() { + return new BarrierRequest(this); + } + + /// Field number for the "barrier_id" field. + public const int BarrierIdFieldNumber = 1; + private string barrierId_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string BarrierId { + get { return barrierId_; } + set { + barrierId_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "barrier_timeout_in_ms" field. + public const int BarrierTimeoutInMsFieldNumber = 2; + private long barrierTimeoutInMs_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long BarrierTimeoutInMs { + get { return barrierTimeoutInMs_; } + set { + barrierTimeoutInMs_ = value; + } + } + + /// Field number for the "tasks" field. + public const int TasksFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_tasks_codec + = pb::FieldCodec.ForMessage(26, global::Tensorflow.CoordinatedTask.Parser); + private readonly pbc::RepeatedField tasks_ = new pbc::RepeatedField(); + /// + /// Denotes list of tasks that will wait for the barrier. If unspecified, it + /// implies that the entire cluster is participating in the barrier. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Tasks { + get { return tasks_; } + } + + /// Field number for the "source_task" field. + public const int SourceTaskFieldNumber = 4; + private global::Tensorflow.CoordinatedTask sourceTask_; + /// + /// Task that is making the request. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask SourceTask { + get { return sourceTask_; } + set { + sourceTask_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as BarrierRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(BarrierRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (BarrierId != other.BarrierId) return false; + if (BarrierTimeoutInMs != other.BarrierTimeoutInMs) return false; + if(!tasks_.Equals(other.tasks_)) return false; + if (!object.Equals(SourceTask, other.SourceTask)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (BarrierId.Length != 0) hash ^= BarrierId.GetHashCode(); + if (BarrierTimeoutInMs != 0L) hash ^= BarrierTimeoutInMs.GetHashCode(); + hash ^= tasks_.GetHashCode(); + if (sourceTask_ != null) hash ^= SourceTask.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (BarrierId.Length != 0) { + output.WriteRawTag(10); + output.WriteString(BarrierId); + } + if (BarrierTimeoutInMs != 0L) { + output.WriteRawTag(16); + output.WriteInt64(BarrierTimeoutInMs); + } + tasks_.WriteTo(output, _repeated_tasks_codec); + if (sourceTask_ != null) { + output.WriteRawTag(34); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (BarrierId.Length != 0) { + output.WriteRawTag(10); + output.WriteString(BarrierId); + } + if (BarrierTimeoutInMs != 0L) { + output.WriteRawTag(16); + output.WriteInt64(BarrierTimeoutInMs); + } + tasks_.WriteTo(ref output, _repeated_tasks_codec); + if (sourceTask_ != null) { + output.WriteRawTag(34); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (BarrierId.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(BarrierId); + } + if (BarrierTimeoutInMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(BarrierTimeoutInMs); + } + size += tasks_.CalculateSize(_repeated_tasks_codec); + if (sourceTask_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SourceTask); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(BarrierRequest other) { + if (other == null) { + return; + } + if (other.BarrierId.Length != 0) { + BarrierId = other.BarrierId; + } + if (other.BarrierTimeoutInMs != 0L) { + BarrierTimeoutInMs = other.BarrierTimeoutInMs; + } + tasks_.Add(other.tasks_); + if (other.sourceTask_ != null) { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + SourceTask.MergeFrom(other.SourceTask); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + BarrierId = input.ReadString(); + break; + } + case 16: { + BarrierTimeoutInMs = input.ReadInt64(); + break; + } + case 26: { + tasks_.AddEntriesFrom(input, _repeated_tasks_codec); + break; + } + case 34: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + BarrierId = input.ReadString(); + break; + } + case 16: { + BarrierTimeoutInMs = input.ReadInt64(); + break; + } + case 26: { + tasks_.AddEntriesFrom(ref input, _repeated_tasks_codec); + break; + } + case 34: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + } + #endif + + } + + public sealed partial class BarrierResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new BarrierResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[34]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BarrierResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BarrierResponse(BarrierResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BarrierResponse Clone() { + return new BarrierResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as BarrierResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(BarrierResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(BarrierResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + /// + /// Request and response messages for cancelling generic sync barriers. + /// + public sealed partial class CancelBarrierRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CancelBarrierRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[35]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CancelBarrierRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CancelBarrierRequest(CancelBarrierRequest other) : this() { + barrierId_ = other.barrierId_; + sourceTask_ = other.sourceTask_ != null ? other.sourceTask_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CancelBarrierRequest Clone() { + return new CancelBarrierRequest(this); + } + + /// Field number for the "barrier_id" field. + public const int BarrierIdFieldNumber = 1; + private string barrierId_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string BarrierId { + get { return barrierId_; } + set { + barrierId_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "source_task" field. + public const int SourceTaskFieldNumber = 2; + private global::Tensorflow.CoordinatedTask sourceTask_; + /// + /// Task that is making the request. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.CoordinatedTask SourceTask { + get { return sourceTask_; } + set { + sourceTask_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CancelBarrierRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CancelBarrierRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (BarrierId != other.BarrierId) return false; + if (!object.Equals(SourceTask, other.SourceTask)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (BarrierId.Length != 0) hash ^= BarrierId.GetHashCode(); + if (sourceTask_ != null) hash ^= SourceTask.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (BarrierId.Length != 0) { + output.WriteRawTag(10); + output.WriteString(BarrierId); + } + if (sourceTask_ != null) { + output.WriteRawTag(18); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (BarrierId.Length != 0) { + output.WriteRawTag(10); + output.WriteString(BarrierId); + } + if (sourceTask_ != null) { + output.WriteRawTag(18); + output.WriteMessage(SourceTask); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (BarrierId.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(BarrierId); + } + if (sourceTask_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SourceTask); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CancelBarrierRequest other) { + if (other == null) { + return; + } + if (other.BarrierId.Length != 0) { + BarrierId = other.BarrierId; + } + if (other.sourceTask_ != null) { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + SourceTask.MergeFrom(other.SourceTask); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + BarrierId = input.ReadString(); + break; + } + case 18: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + BarrierId = input.ReadString(); + break; + } + case 18: { + if (sourceTask_ == null) { + SourceTask = new global::Tensorflow.CoordinatedTask(); + } + input.ReadMessage(SourceTask); + break; + } + } + } + } + #endif + + } + + public sealed partial class CancelBarrierResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CancelBarrierResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.CoordinationServiceReflection.Descriptor.MessageTypes[36]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CancelBarrierResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CancelBarrierResponse(CancelBarrierResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CancelBarrierResponse Clone() { + return new CancelBarrierResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CancelBarrierResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CancelBarrierResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CancelBarrierResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/CostGraph.cs b/src/TensorFlowNET.Core/Protobuf/CostGraph.cs index c3b91d8e3..fc655d400 100644 --- a/src/TensorFlowNET.Core/Protobuf/CostGraph.cs +++ b/src/TensorFlowNET.Core/Protobuf/CostGraph.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/cost_graph.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -62,23 +62,31 @@ static CostGraphReflection() { } #region Messages - public sealed partial class CostGraphDef : pb::IMessage { + public sealed partial class CostGraphDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CostGraphDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CostGraphReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CostGraphDef() { OnConstruction(); } @@ -86,6 +94,7 @@ public CostGraphDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CostGraphDef(CostGraphDef other) : this() { node_ = other.node_.Clone(); cost_ = other.cost_.Clone(); @@ -93,6 +102,7 @@ public CostGraphDef(CostGraphDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CostGraphDef Clone() { return new CostGraphDef(this); } @@ -103,6 +113,7 @@ public CostGraphDef Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.CostGraphDef.Types.Node.Parser); private readonly pbc::RepeatedField node_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Node { get { return node_; } } @@ -113,16 +124,19 @@ public CostGraphDef Clone() { = pb::FieldCodec.ForMessage(18, global::Tensorflow.CostGraphDef.Types.AggregatedCost.Parser); private readonly pbc::RepeatedField cost_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Cost { get { return cost_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CostGraphDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CostGraphDef other) { if (ReferenceEquals(other, null)) { return false; @@ -136,6 +150,7 @@ public bool Equals(CostGraphDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= node_.GetHashCode(); @@ -147,20 +162,39 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else node_.WriteTo(output, _repeated_node_codec); cost_.WriteTo(output, _repeated_cost_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + node_.WriteTo(ref output, _repeated_node_codec); + cost_.WriteTo(ref output, _repeated_cost_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += node_.CalculateSize(_repeated_node_codec); @@ -172,6 +206,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CostGraphDef other) { if (other == null) { return; @@ -182,7 +217,11 @@ public void MergeFrom(CostGraphDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -199,29 +238,62 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + node_.AddEntriesFrom(ref input, _repeated_node_codec); + break; + } + case 18: { + cost_.AddEntriesFrom(ref input, _repeated_cost_codec); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the CostGraphDef message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class Node : pb::IMessage { + public sealed partial class Node : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Node()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CostGraphDef.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Node() { OnConstruction(); } @@ -229,6 +301,7 @@ public Node() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Node(Node other) : this() { name_ = other.name_; device_ = other.device_; @@ -250,6 +323,7 @@ public Node(Node other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Node Clone() { return new Node(this); } @@ -261,6 +335,7 @@ public Node Clone() { /// The name of the node. Names are globally unique. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -276,6 +351,7 @@ public string Name { /// default partition or partitioning hasn't been run yet. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Device { get { return device_; } set { @@ -290,6 +366,7 @@ public string Device { /// The id of the node. Node ids are only unique inside a partition. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Id { get { return id_; } set { @@ -303,6 +380,7 @@ public int Id { = pb::FieldCodec.ForMessage(34, global::Tensorflow.CostGraphDef.Types.Node.Types.InputInfo.Parser); private readonly pbc::RepeatedField inputInfo_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField InputInfo { get { return inputInfo_; } } @@ -313,6 +391,7 @@ public int Id { = pb::FieldCodec.ForMessage(42, global::Tensorflow.CostGraphDef.Types.Node.Types.OutputInfo.Parser); private readonly pbc::RepeatedField outputInfo_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField OutputInfo { get { return outputInfo_; } } @@ -324,6 +403,7 @@ public int Id { /// Temporary memory used by this node. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long TemporaryMemorySize { get { return temporaryMemorySize_; } set { @@ -338,6 +418,7 @@ public long TemporaryMemorySize { /// Persistent memory used by this node. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long PersistentMemorySize { get { return persistentMemorySize_; } set { @@ -350,6 +431,7 @@ public long PersistentMemorySize { private long hostTempMemorySize_; [global::System.ObsoleteAttribute] [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long HostTempMemorySize { get { return hostTempMemorySize_; } set { @@ -362,6 +444,7 @@ public long HostTempMemorySize { private long deviceTempMemorySize_; [global::System.ObsoleteAttribute] [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long DeviceTempMemorySize { get { return deviceTempMemorySize_; } set { @@ -374,6 +457,7 @@ public long DeviceTempMemorySize { private long devicePersistentMemorySize_; [global::System.ObsoleteAttribute] [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long DevicePersistentMemorySize { get { return devicePersistentMemorySize_; } set { @@ -388,6 +472,7 @@ public long DevicePersistentMemorySize { /// Estimate of the computational cost of this node, in microseconds. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long ComputeCost { get { return computeCost_; } set { @@ -403,6 +488,7 @@ public long ComputeCost { /// microseconds. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long ComputeTime { get { return computeTime_; } set { @@ -418,6 +504,7 @@ public long ComputeTime { /// microseconds. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long MemoryTime { get { return memoryTime_; } set { @@ -433,6 +520,7 @@ public long MemoryTime { /// node is part of the "final output". Nodes may depend on final nodes. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsFinal { get { return isFinal_; } set { @@ -449,6 +537,7 @@ public bool IsFinal { /// Ids of the control inputs for this node. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ControlInput { get { return controlInput_; } } @@ -460,6 +549,7 @@ public bool IsFinal { /// Are the costs inaccurate? /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Inaccurate { get { return inaccurate_; } set { @@ -468,11 +558,13 @@ public bool Inaccurate { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Node); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Node other) { if (ReferenceEquals(other, null)) { return false; @@ -500,6 +592,7 @@ public bool Equals(Node other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -525,12 +618,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -589,9 +687,76 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (Device.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Device); + } + if (Id != 0) { + output.WriteRawTag(24); + output.WriteInt32(Id); + } + inputInfo_.WriteTo(ref output, _repeated_inputInfo_codec); + outputInfo_.WriteTo(ref output, _repeated_outputInfo_codec); + if (TemporaryMemorySize != 0L) { + output.WriteRawTag(48); + output.WriteInt64(TemporaryMemorySize); + } + if (IsFinal != false) { + output.WriteRawTag(56); + output.WriteBool(IsFinal); + } + controlInput_.WriteTo(ref output, _repeated_controlInput_codec); + if (ComputeCost != 0L) { + output.WriteRawTag(72); + output.WriteInt64(ComputeCost); + } + if (HostTempMemorySize != 0L) { + output.WriteRawTag(80); + output.WriteInt64(HostTempMemorySize); + } + if (DeviceTempMemorySize != 0L) { + output.WriteRawTag(88); + output.WriteInt64(DeviceTempMemorySize); + } + if (PersistentMemorySize != 0L) { + output.WriteRawTag(96); + output.WriteInt64(PersistentMemorySize); + } + if (ComputeTime != 0L) { + output.WriteRawTag(112); + output.WriteInt64(ComputeTime); + } + if (MemoryTime != 0L) { + output.WriteRawTag(120); + output.WriteInt64(MemoryTime); + } + if (DevicePersistentMemorySize != 0L) { + output.WriteRawTag(128, 1); + output.WriteInt64(DevicePersistentMemorySize); + } + if (Inaccurate != false) { + output.WriteRawTag(136, 1); + output.WriteBool(Inaccurate); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -643,6 +808,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Node other) { if (other == null) { return; @@ -693,7 +859,11 @@ public void MergeFrom(Node other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -767,34 +937,124 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + Device = input.ReadString(); + break; + } + case 24: { + Id = input.ReadInt32(); + break; + } + case 34: { + inputInfo_.AddEntriesFrom(ref input, _repeated_inputInfo_codec); + break; + } + case 42: { + outputInfo_.AddEntriesFrom(ref input, _repeated_outputInfo_codec); + break; + } + case 48: { + TemporaryMemorySize = input.ReadInt64(); + break; + } + case 56: { + IsFinal = input.ReadBool(); + break; + } + case 66: + case 64: { + controlInput_.AddEntriesFrom(ref input, _repeated_controlInput_codec); + break; + } + case 72: { + ComputeCost = input.ReadInt64(); + break; + } + case 80: { + HostTempMemorySize = input.ReadInt64(); + break; + } + case 88: { + DeviceTempMemorySize = input.ReadInt64(); + break; + } + case 96: { + PersistentMemorySize = input.ReadInt64(); + break; + } + case 112: { + ComputeTime = input.ReadInt64(); + break; + } + case 120: { + MemoryTime = input.ReadInt64(); + break; + } + case 128: { + DevicePersistentMemorySize = input.ReadInt64(); + break; + } + case 136: { + Inaccurate = input.ReadBool(); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the Node message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Inputs of this node. They must be executed before this node can be /// executed. An input is a particular output of another node, specified /// by the node id and the output index. /// - public sealed partial class InputInfo : pb::IMessage { + public sealed partial class InputInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new InputInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CostGraphDef.Types.Node.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public InputInfo() { OnConstruction(); } @@ -802,6 +1062,7 @@ public InputInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public InputInfo(InputInfo other) : this() { precedingNode_ = other.precedingNode_; precedingPort_ = other.precedingPort_; @@ -809,6 +1070,7 @@ public InputInfo(InputInfo other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public InputInfo Clone() { return new InputInfo(this); } @@ -817,6 +1079,7 @@ public InputInfo Clone() { public const int PrecedingNodeFieldNumber = 1; private int precedingNode_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int PrecedingNode { get { return precedingNode_; } set { @@ -828,6 +1091,7 @@ public int PrecedingNode { public const int PrecedingPortFieldNumber = 2; private int precedingPort_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int PrecedingPort { get { return precedingPort_; } set { @@ -836,11 +1100,13 @@ public int PrecedingPort { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as InputInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(InputInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -854,6 +1120,7 @@ public bool Equals(InputInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (PrecedingNode != 0) hash ^= PrecedingNode.GetHashCode(); @@ -865,12 +1132,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (PrecedingNode != 0) { output.WriteRawTag(8); output.WriteInt32(PrecedingNode); @@ -882,9 +1154,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (PrecedingNode != 0) { + output.WriteRawTag(8); + output.WriteInt32(PrecedingNode); + } + if (PrecedingPort != 0) { + output.WriteRawTag(16); + output.WriteInt32(PrecedingPort); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (PrecedingNode != 0) { @@ -900,6 +1192,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(InputInfo other) { if (other == null) { return; @@ -914,7 +1207,11 @@ public void MergeFrom(InputInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -931,30 +1228,62 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + PrecedingNode = input.ReadInt32(); + break; + } + case 16: { + PrecedingPort = input.ReadInt32(); + break; + } + } + } } + #endif } /// /// Outputs of this node. /// - public sealed partial class OutputInfo : pb::IMessage { + public sealed partial class OutputInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new OutputInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CostGraphDef.Types.Node.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OutputInfo() { OnConstruction(); } @@ -962,6 +1291,7 @@ public OutputInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OutputInfo(OutputInfo other) : this() { size_ = other.size_; aliasInputPort_ = other.aliasInputPort_; @@ -971,6 +1301,7 @@ public OutputInfo(OutputInfo other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OutputInfo Clone() { return new OutputInfo(this); } @@ -979,6 +1310,7 @@ public OutputInfo Clone() { public const int SizeFieldNumber = 1; private long size_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Size { get { return size_; } set { @@ -995,6 +1327,7 @@ public long Size { /// those pointers. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AliasInputPort { get { return aliasInputPort_; } set { @@ -1006,6 +1339,7 @@ public long AliasInputPort { public const int ShapeFieldNumber = 3; private global::Tensorflow.TensorShapeProto shape_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto Shape { get { return shape_; } set { @@ -1017,6 +1351,7 @@ public long AliasInputPort { public const int DtypeFieldNumber = 4; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -1025,11 +1360,13 @@ public long AliasInputPort { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as OutputInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(OutputInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -1045,6 +1382,7 @@ public bool Equals(OutputInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Size != 0L) hash ^= Size.GetHashCode(); @@ -1058,12 +1396,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Size != 0L) { output.WriteRawTag(8); output.WriteInt64(Size); @@ -1083,9 +1426,37 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Size != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Size); + } + if (AliasInputPort != 0L) { + output.WriteRawTag(16); + output.WriteInt64(AliasInputPort); + } + if (shape_ != null) { + output.WriteRawTag(26); + output.WriteMessage(Shape); + } + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(32); + output.WriteEnum((int) Dtype); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Size != 0L) { @@ -1107,6 +1478,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(OutputInfo other) { if (other == null) { return; @@ -1130,7 +1502,11 @@ public void MergeFrom(OutputInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1158,8 +1534,43 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Size = input.ReadInt64(); + break; + } + case 16: { + AliasInputPort = input.ReadInt64(); + break; + } + case 26: { + if (shape_ == null) { + Shape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 32: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + } + } + } + #endif + } } @@ -1170,23 +1581,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// /// Total cost of this graph, typically used for balancing decisions. /// - public sealed partial class AggregatedCost : pb::IMessage { + public sealed partial class AggregatedCost : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AggregatedCost()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CostGraphDef.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AggregatedCost() { OnConstruction(); } @@ -1194,6 +1613,7 @@ public AggregatedCost() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AggregatedCost(AggregatedCost other) : this() { cost_ = other.cost_; dimension_ = other.dimension_; @@ -1201,6 +1621,7 @@ public AggregatedCost(AggregatedCost other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AggregatedCost Clone() { return new AggregatedCost(this); } @@ -1212,6 +1633,7 @@ public AggregatedCost Clone() { /// Aggregated cost value. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public float Cost { get { return cost_; } set { @@ -1226,6 +1648,7 @@ public float Cost { /// Aggregated cost dimension (e.g. 'memory', 'compute', 'network'). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Dimension { get { return dimension_; } set { @@ -1234,11 +1657,13 @@ public string Dimension { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AggregatedCost); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AggregatedCost other) { if (ReferenceEquals(other, null)) { return false; @@ -1252,6 +1677,7 @@ public bool Equals(AggregatedCost other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Cost != 0F) hash ^= pbc::ProtobufEqualityComparers.BitwiseSingleEqualityComparer.GetHashCode(Cost); @@ -1263,12 +1689,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Cost != 0F) { output.WriteRawTag(13); output.WriteFloat(Cost); @@ -1280,9 +1711,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Cost != 0F) { + output.WriteRawTag(13); + output.WriteFloat(Cost); + } + if (Dimension.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Dimension); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Cost != 0F) { @@ -1298,6 +1749,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AggregatedCost other) { if (other == null) { return; @@ -1312,7 +1764,11 @@ public void MergeFrom(AggregatedCost other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1329,7 +1785,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 13: { + Cost = input.ReadFloat(); + break; + } + case 18: { + Dimension = input.ReadString(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/CppShapeInference.cs b/src/TensorFlowNET.Core/Protobuf/CppShapeInference.cs index f76bf2f02..c6de97c6b 100644 --- a/src/TensorFlowNET.Core/Protobuf/CppShapeInference.cs +++ b/src/TensorFlowNET.Core/Protobuf/CppShapeInference.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/python/framework/cpp_shape_inference.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -55,23 +55,31 @@ static CppShapeInferenceReflection() { } #region Messages - public sealed partial class CppShapeInferenceResult : pb::IMessage { + public sealed partial class CppShapeInferenceResult : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CppShapeInferenceResult()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CppShapeInferenceReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CppShapeInferenceResult() { OnConstruction(); } @@ -79,6 +87,7 @@ public CppShapeInferenceResult() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CppShapeInferenceResult(CppShapeInferenceResult other) : this() { shape_ = other.shape_ != null ? other.shape_.Clone() : null; handleData_ = other.handleData_ != null ? other.handleData_.Clone() : null; @@ -86,6 +95,7 @@ public CppShapeInferenceResult(CppShapeInferenceResult other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CppShapeInferenceResult Clone() { return new CppShapeInferenceResult(this); } @@ -94,6 +104,7 @@ public CppShapeInferenceResult Clone() { public const int ShapeFieldNumber = 1; private global::Tensorflow.TensorShapeProto shape_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto Shape { get { return shape_; } set { @@ -105,6 +116,7 @@ public CppShapeInferenceResult Clone() { public const int HandleDataFieldNumber = 4; private global::Tensorflow.CppShapeInferenceResult.Types.HandleData handleData_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.CppShapeInferenceResult.Types.HandleData HandleData { get { return handleData_; } set { @@ -113,11 +125,13 @@ public CppShapeInferenceResult Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CppShapeInferenceResult); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CppShapeInferenceResult other) { if (ReferenceEquals(other, null)) { return false; @@ -131,6 +145,7 @@ public bool Equals(CppShapeInferenceResult other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (shape_ != null) hash ^= Shape.GetHashCode(); @@ -142,12 +157,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (shape_ != null) { output.WriteRawTag(10); output.WriteMessage(Shape); @@ -159,9 +179,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (shape_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Shape); + } + if (handleData_ != null) { + output.WriteRawTag(34); + output.WriteMessage(HandleData); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (shape_ != null) { @@ -177,6 +217,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CppShapeInferenceResult other) { if (other == null) { return; @@ -197,7 +238,11 @@ public void MergeFrom(CppShapeInferenceResult other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -220,29 +265,68 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (shape_ == null) { + Shape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 34: { + if (handleData_ == null) { + HandleData = new global::Tensorflow.CppShapeInferenceResult.Types.HandleData(); + } + input.ReadMessage(HandleData); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the CppShapeInferenceResult message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class HandleShapeAndType : pb::IMessage { + public sealed partial class HandleShapeAndType : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HandleShapeAndType()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CppShapeInferenceResult.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public HandleShapeAndType() { OnConstruction(); } @@ -250,6 +334,7 @@ public HandleShapeAndType() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public HandleShapeAndType(HandleShapeAndType other) : this() { shape_ = other.shape_ != null ? other.shape_.Clone() : null; dtype_ = other.dtype_; @@ -258,6 +343,7 @@ public HandleShapeAndType(HandleShapeAndType other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public HandleShapeAndType Clone() { return new HandleShapeAndType(this); } @@ -266,6 +352,7 @@ public HandleShapeAndType Clone() { public const int ShapeFieldNumber = 1; private global::Tensorflow.TensorShapeProto shape_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto Shape { get { return shape_; } set { @@ -277,6 +364,7 @@ public HandleShapeAndType Clone() { public const int DtypeFieldNumber = 2; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -288,6 +376,7 @@ public HandleShapeAndType Clone() { public const int TypeFieldNumber = 4; private global::Tensorflow.FullTypeDef type_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.FullTypeDef Type { get { return type_; } set { @@ -296,11 +385,13 @@ public HandleShapeAndType Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as HandleShapeAndType); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(HandleShapeAndType other) { if (ReferenceEquals(other, null)) { return false; @@ -315,6 +406,7 @@ public bool Equals(HandleShapeAndType other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (shape_ != null) hash ^= Shape.GetHashCode(); @@ -327,12 +419,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (shape_ != null) { output.WriteRawTag(10); output.WriteMessage(Shape); @@ -348,9 +445,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (shape_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Shape); + } + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(16); + output.WriteEnum((int) Dtype); + } + if (type_ != null) { + output.WriteRawTag(34); + output.WriteMessage(Type); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (shape_ != null) { @@ -369,6 +490,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(HandleShapeAndType other) { if (other == null) { return; @@ -392,7 +514,11 @@ public void MergeFrom(HandleShapeAndType other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -419,27 +545,69 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (shape_ == null) { + Shape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 16: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + case 34: { + if (type_ == null) { + Type = new global::Tensorflow.FullTypeDef(); + } + input.ReadMessage(Type); + break; + } + } + } + } + #endif + } - public sealed partial class HandleData : pb::IMessage { + public sealed partial class HandleData : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HandleData()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CppShapeInferenceResult.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public HandleData() { OnConstruction(); } @@ -447,6 +615,7 @@ public HandleData() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public HandleData(HandleData other) : this() { isSet_ = other.isSet_; shapeAndType_ = other.shapeAndType_.Clone(); @@ -454,6 +623,7 @@ public HandleData(HandleData other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public HandleData Clone() { return new HandleData(this); } @@ -462,6 +632,7 @@ public HandleData Clone() { public const int IsSetFieldNumber = 1; private bool isSet_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsSet { get { return isSet_; } set { @@ -478,16 +649,19 @@ public bool IsSet { /// Only valid if <is_set>. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ShapeAndType { get { return shapeAndType_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as HandleData); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(HandleData other) { if (ReferenceEquals(other, null)) { return false; @@ -501,6 +675,7 @@ public bool Equals(HandleData other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (IsSet != false) hash ^= IsSet.GetHashCode(); @@ -512,12 +687,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (IsSet != false) { output.WriteRawTag(8); output.WriteBool(IsSet); @@ -526,9 +706,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (IsSet != false) { + output.WriteRawTag(8); + output.WriteBool(IsSet); + } + shapeAndType_.WriteTo(ref output, _repeated_shapeAndType_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (IsSet != false) { @@ -542,6 +739,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(HandleData other) { if (other == null) { return; @@ -554,7 +752,11 @@ public void MergeFrom(HandleData other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -571,8 +773,32 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + IsSet = input.ReadBool(); + break; + } + case 18: { + shapeAndType_.AddEntriesFrom(ref input, _repeated_shapeAndType_codec); + break; + } + } + } + } + #endif + } } @@ -580,23 +806,31 @@ public void MergeFrom(pb::CodedInputStream input) { } - public sealed partial class CppShapeInferenceInputsNeeded : pb::IMessage { + public sealed partial class CppShapeInferenceInputsNeeded : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CppShapeInferenceInputsNeeded()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CppShapeInferenceReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CppShapeInferenceInputsNeeded() { OnConstruction(); } @@ -604,6 +838,7 @@ public CppShapeInferenceInputsNeeded() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CppShapeInferenceInputsNeeded(CppShapeInferenceInputsNeeded other) : this() { inputTensorsNeeded_ = other.inputTensorsNeeded_.Clone(); inputTensorsAsShapesNeeded_ = other.inputTensorsAsShapesNeeded_.Clone(); @@ -611,6 +846,7 @@ public CppShapeInferenceInputsNeeded(CppShapeInferenceInputsNeeded other) : this } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CppShapeInferenceInputsNeeded Clone() { return new CppShapeInferenceInputsNeeded(this); } @@ -621,6 +857,7 @@ public CppShapeInferenceInputsNeeded Clone() { = pb::FieldCodec.ForInt32(10); private readonly pbc::RepeatedField inputTensorsNeeded_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField InputTensorsNeeded { get { return inputTensorsNeeded_; } } @@ -631,16 +868,19 @@ public CppShapeInferenceInputsNeeded Clone() { = pb::FieldCodec.ForInt32(18); private readonly pbc::RepeatedField inputTensorsAsShapesNeeded_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField InputTensorsAsShapesNeeded { get { return inputTensorsAsShapesNeeded_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CppShapeInferenceInputsNeeded); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CppShapeInferenceInputsNeeded other) { if (ReferenceEquals(other, null)) { return false; @@ -654,6 +894,7 @@ public bool Equals(CppShapeInferenceInputsNeeded other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= inputTensorsNeeded_.GetHashCode(); @@ -665,20 +906,39 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else inputTensorsNeeded_.WriteTo(output, _repeated_inputTensorsNeeded_codec); inputTensorsAsShapesNeeded_.WriteTo(output, _repeated_inputTensorsAsShapesNeeded_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + inputTensorsNeeded_.WriteTo(ref output, _repeated_inputTensorsNeeded_codec); + inputTensorsAsShapesNeeded_.WriteTo(ref output, _repeated_inputTensorsAsShapesNeeded_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += inputTensorsNeeded_.CalculateSize(_repeated_inputTensorsNeeded_codec); @@ -690,6 +950,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CppShapeInferenceInputsNeeded other) { if (other == null) { return; @@ -700,7 +961,11 @@ public void MergeFrom(CppShapeInferenceInputsNeeded other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -719,7 +984,33 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + inputTensorsNeeded_.AddEntriesFrom(ref input, _repeated_inputTensorsNeeded_codec); + break; + } + case 18: + case 16: { + inputTensorsAsShapesNeeded_.AddEntriesFrom(ref input, _repeated_inputTensorsAsShapesNeeded_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/DataService.cs b/src/TensorFlowNET.Core/Protobuf/DataService.cs new file mode 100644 index 000000000..ca59a471d --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/DataService.cs @@ -0,0 +1,1041 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/protobuf/data_service.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Tensorflow.Data { + + /// Holder for reflection information generated from tensorflow/core/protobuf/data_service.proto + public static partial class DataServiceReflection { + + #region Descriptor + /// File descriptor for tensorflow/core/protobuf/data_service.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static DataServiceReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "Cit0ZW5zb3JmbG93L2NvcmUvcHJvdG9idWYvZGF0YV9zZXJ2aWNlLnByb3Rv", + "Eg90ZW5zb3JmbG93LmRhdGEitwEKEVByb2Nlc3NpbmdNb2RlRGVmEkoKD3No", + "YXJkaW5nX3BvbGljeRgBIAEoDjIxLnRlbnNvcmZsb3cuZGF0YS5Qcm9jZXNz", + "aW5nTW9kZURlZi5TaGFyZGluZ1BvbGljeSJWCg5TaGFyZGluZ1BvbGljeRIH", + "CgNPRkYQABILCgdEWU5BTUlDEAESCAoERklMRRACEggKBERBVEEQAxIQCgxG", + "SUxFX09SX0RBVEEQBBIICgRISU5UEAUi+wEKE0RhdGFTZXJ2aWNlTWV0YWRh", + "dGESFgoMZWxlbWVudF9zcGVjGAEgASgMSAASRQoLY29tcHJlc3Npb24YAiAB", + "KA4yMC50ZW5zb3JmbG93LmRhdGEuRGF0YVNlcnZpY2VNZXRhZGF0YS5Db21w", + "cmVzc2lvbhITCgtjYXJkaW5hbGl0eRgDIAEoAyJXCgtDb21wcmVzc2lvbhIb", + "ChdDT01QUkVTU0lPTl9VTlNQRUNJRklFRBAAEhMKD0NPTVBSRVNTSU9OX09G", + "RhABEhYKEkNPTVBSRVNTSU9OX1NOQVBQWRACQhcKFW9wdGlvbmFsX2VsZW1l", + "bnRfc3BlYyIuChhDcm9zc1RyYWluZXJDYWNoZU9wdGlvbnMSEgoKdHJhaW5l", + "cl9pZBgBIAEoCSJNChFEYXRhU2VydmljZUNvbmZpZxI4Cg9kZXBsb3ltZW50", + "X21vZGUYASABKA4yHy50ZW5zb3JmbG93LmRhdGEuRGVwbG95bWVudE1vZGUq", + "iAEKDkRlcGxveW1lbnRNb2RlEh8KG0RFUExPWU1FTlRfTU9ERV9VTlNQRUNJ", + "RklFRBAAEh0KGURFUExPWU1FTlRfTU9ERV9DT0xPQ0FURUQQARIaChZERVBM", + "T1lNRU5UX01PREVfUkVNT1RFEAISGgoWREVQTE9ZTUVOVF9NT0RFX0hZQlJJ", + "RBADQldaVWdpdGh1Yi5jb20vdGVuc29yZmxvdy90ZW5zb3JmbG93L3RlbnNv", + "cmZsb3cvZ28vY29yZS9wcm90b2J1Zi9mb3JfY29yZV9wcm90b3NfZ29fcHJv", + "dG9iBnByb3RvMw==")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { }, + new pbr::GeneratedClrTypeInfo(new[] {typeof(global::Tensorflow.Data.DeploymentMode), }, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.Data.ProcessingModeDef), global::Tensorflow.Data.ProcessingModeDef.Parser, new[]{ "ShardingPolicy" }, null, new[]{ typeof(global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy) }, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.Data.DataServiceMetadata), global::Tensorflow.Data.DataServiceMetadata.Parser, new[]{ "ElementSpec", "Compression", "Cardinality" }, new[]{ "OptionalElementSpec" }, new[]{ typeof(global::Tensorflow.Data.DataServiceMetadata.Types.Compression) }, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.Data.CrossTrainerCacheOptions), global::Tensorflow.Data.CrossTrainerCacheOptions.Parser, new[]{ "TrainerId" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.Data.DataServiceConfig), global::Tensorflow.Data.DataServiceConfig.Parser, new[]{ "DeploymentMode" }, null, null, null, null) + })); + } + #endregion + + } + #region Enums + /// + /// tf.data service deployment mode. + /// + public enum DeploymentMode { + [pbr::OriginalName("DEPLOYMENT_MODE_UNSPECIFIED")] Unspecified = 0, + /// + /// tf.data service workers colocate with TF workers. + /// + [pbr::OriginalName("DEPLOYMENT_MODE_COLOCATED")] Colocated = 1, + /// + /// tf.data service workers run in dedicated tf.data hosts. + /// + [pbr::OriginalName("DEPLOYMENT_MODE_REMOTE")] Remote = 2, + /// + /// tf.data service workers run in colocated TF hosts and dedicated tf.data + /// hosts. + /// + [pbr::OriginalName("DEPLOYMENT_MODE_HYBRID")] Hybrid = 3, + } + + #endregion + + #region Messages + /// + /// Next tag: 2 + /// + public sealed partial class ProcessingModeDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ProcessingModeDef()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.Data.DataServiceReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProcessingModeDef() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProcessingModeDef(ProcessingModeDef other) : this() { + shardingPolicy_ = other.shardingPolicy_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProcessingModeDef Clone() { + return new ProcessingModeDef(this); + } + + /// Field number for the "sharding_policy" field. + public const int ShardingPolicyFieldNumber = 1; + private global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy shardingPolicy_ = global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy.Off; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy ShardingPolicy { + get { return shardingPolicy_; } + set { + shardingPolicy_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ProcessingModeDef); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ProcessingModeDef other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ShardingPolicy != other.ShardingPolicy) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ShardingPolicy != global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy.Off) hash ^= ShardingPolicy.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ShardingPolicy != global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy.Off) { + output.WriteRawTag(8); + output.WriteEnum((int) ShardingPolicy); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ShardingPolicy != global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy.Off) { + output.WriteRawTag(8); + output.WriteEnum((int) ShardingPolicy); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ShardingPolicy != global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy.Off) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) ShardingPolicy); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ProcessingModeDef other) { + if (other == null) { + return; + } + if (other.ShardingPolicy != global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy.Off) { + ShardingPolicy = other.ShardingPolicy; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + ShardingPolicy = (global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + ShardingPolicy = (global::Tensorflow.Data.ProcessingModeDef.Types.ShardingPolicy) input.ReadEnum(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the ProcessingModeDef message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Specifies how data is sharded among tf.data service workers. + /// + public enum ShardingPolicy { + /// + /// No sharding will be performed. Each worker produces the entire dataset + /// without any sharding. With this mode, the best practice is to shuffle the + /// dataset nondeterministically so that workers process the dataset in + /// different orders. + /// + [pbr::OriginalName("OFF")] Off = 0, + /// + /// The input dataset is dynamically split among workers at runtime. Each + /// worker gets the next split when it reads data from the dispatcher. There + /// is no fixed sharding with this mode. + /// + [pbr::OriginalName("DYNAMIC")] Dynamic = 1, + /// + /// The following are static sharding policies. The semantics are similar to + /// `tf.data.experimental.AutoShardPolicy`. These policies require: + /// * The tf.data service cluster has a fixed size, and you need to specify + /// the workers in DispatcherConfig. + /// * Each client only reads from the local tf.data service worker. + /// + /// Shards by input files (each worker will get a set of files to process). + /// When this option is selected, make sure that there is at least as many + /// files as workers. If there are fewer input files than workers, a runtime + /// error will be raised. + /// + [pbr::OriginalName("FILE")] File = 2, + /// + /// Shards by elements produced by the dataset. Each worker will process the + /// whole dataset and discard the portion that is not for itself. Note that + /// for this mode to correctly partitions the dataset elements, the dataset + /// needs to produce elements in a deterministic order. + /// + [pbr::OriginalName("DATA")] Data = 3, + /// + /// Attempts FILE-based sharding, falling back to DATA-based sharding on + /// failures. + /// + [pbr::OriginalName("FILE_OR_DATA")] FileOrData = 4, + /// + /// Looks for the presence of `shard(SHARD_HINT, ...)` which is treated as a + /// placeholder to replace with `shard(num_workers, worker_index)`. + /// + [pbr::OriginalName("HINT")] Hint = 5, + } + + } + #endregion + + } + + /// + /// Metadata related to tf.data service datasets. + /// Next tag: 4 + /// + public sealed partial class DataServiceMetadata : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DataServiceMetadata()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.Data.DataServiceReflection.Descriptor.MessageTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DataServiceMetadata() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DataServiceMetadata(DataServiceMetadata other) : this() { + compression_ = other.compression_; + cardinality_ = other.cardinality_; + switch (other.OptionalElementSpecCase) { + case OptionalElementSpecOneofCase.ElementSpec: + ElementSpec = other.ElementSpec; + break; + } + + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DataServiceMetadata Clone() { + return new DataServiceMetadata(this); + } + + /// Field number for the "element_spec" field. + public const int ElementSpecFieldNumber = 1; + /// + /// Serialized element spec. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString ElementSpec { + get { return optionalElementSpecCase_ == OptionalElementSpecOneofCase.ElementSpec ? (pb::ByteString) optionalElementSpec_ : pb::ByteString.Empty; } + set { + optionalElementSpec_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + optionalElementSpecCase_ = OptionalElementSpecOneofCase.ElementSpec; + } + } + + /// Field number for the "compression" field. + public const int CompressionFieldNumber = 2; + private global::Tensorflow.Data.DataServiceMetadata.Types.Compression compression_ = global::Tensorflow.Data.DataServiceMetadata.Types.Compression.Unspecified; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.Data.DataServiceMetadata.Types.Compression Compression { + get { return compression_; } + set { + compression_ = value; + } + } + + /// Field number for the "cardinality" field. + public const int CardinalityFieldNumber = 3; + private long cardinality_; + /// + /// Cardinality of the dataset. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Cardinality { + get { return cardinality_; } + set { + cardinality_ = value; + } + } + + private object optionalElementSpec_; + /// Enum of possible cases for the "optional_element_spec" oneof. + public enum OptionalElementSpecOneofCase { + None = 0, + ElementSpec = 1, + } + private OptionalElementSpecOneofCase optionalElementSpecCase_ = OptionalElementSpecOneofCase.None; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public OptionalElementSpecOneofCase OptionalElementSpecCase { + get { return optionalElementSpecCase_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void ClearOptionalElementSpec() { + optionalElementSpecCase_ = OptionalElementSpecOneofCase.None; + optionalElementSpec_ = null; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DataServiceMetadata); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DataServiceMetadata other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ElementSpec != other.ElementSpec) return false; + if (Compression != other.Compression) return false; + if (Cardinality != other.Cardinality) return false; + if (OptionalElementSpecCase != other.OptionalElementSpecCase) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (optionalElementSpecCase_ == OptionalElementSpecOneofCase.ElementSpec) hash ^= ElementSpec.GetHashCode(); + if (Compression != global::Tensorflow.Data.DataServiceMetadata.Types.Compression.Unspecified) hash ^= Compression.GetHashCode(); + if (Cardinality != 0L) hash ^= Cardinality.GetHashCode(); + hash ^= (int) optionalElementSpecCase_; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (optionalElementSpecCase_ == OptionalElementSpecOneofCase.ElementSpec) { + output.WriteRawTag(10); + output.WriteBytes(ElementSpec); + } + if (Compression != global::Tensorflow.Data.DataServiceMetadata.Types.Compression.Unspecified) { + output.WriteRawTag(16); + output.WriteEnum((int) Compression); + } + if (Cardinality != 0L) { + output.WriteRawTag(24); + output.WriteInt64(Cardinality); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (optionalElementSpecCase_ == OptionalElementSpecOneofCase.ElementSpec) { + output.WriteRawTag(10); + output.WriteBytes(ElementSpec); + } + if (Compression != global::Tensorflow.Data.DataServiceMetadata.Types.Compression.Unspecified) { + output.WriteRawTag(16); + output.WriteEnum((int) Compression); + } + if (Cardinality != 0L) { + output.WriteRawTag(24); + output.WriteInt64(Cardinality); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (optionalElementSpecCase_ == OptionalElementSpecOneofCase.ElementSpec) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(ElementSpec); + } + if (Compression != global::Tensorflow.Data.DataServiceMetadata.Types.Compression.Unspecified) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) Compression); + } + if (Cardinality != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Cardinality); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DataServiceMetadata other) { + if (other == null) { + return; + } + if (other.Compression != global::Tensorflow.Data.DataServiceMetadata.Types.Compression.Unspecified) { + Compression = other.Compression; + } + if (other.Cardinality != 0L) { + Cardinality = other.Cardinality; + } + switch (other.OptionalElementSpecCase) { + case OptionalElementSpecOneofCase.ElementSpec: + ElementSpec = other.ElementSpec; + break; + } + + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + ElementSpec = input.ReadBytes(); + break; + } + case 16: { + Compression = (global::Tensorflow.Data.DataServiceMetadata.Types.Compression) input.ReadEnum(); + break; + } + case 24: { + Cardinality = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + ElementSpec = input.ReadBytes(); + break; + } + case 16: { + Compression = (global::Tensorflow.Data.DataServiceMetadata.Types.Compression) input.ReadEnum(); + break; + } + case 24: { + Cardinality = input.ReadInt64(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the DataServiceMetadata message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + public enum Compression { + [pbr::OriginalName("COMPRESSION_UNSPECIFIED")] Unspecified = 0, + /// + /// No compression. + /// + [pbr::OriginalName("COMPRESSION_OFF")] Off = 1, + /// + /// Snappy compression as defined in tensorflow/core/platform/snappy.h. + /// + [pbr::OriginalName("COMPRESSION_SNAPPY")] Snappy = 2, + } + + } + #endregion + + } + + public sealed partial class CrossTrainerCacheOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CrossTrainerCacheOptions()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.Data.DataServiceReflection.Descriptor.MessageTypes[2]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CrossTrainerCacheOptions() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CrossTrainerCacheOptions(CrossTrainerCacheOptions other) : this() { + trainerId_ = other.trainerId_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CrossTrainerCacheOptions Clone() { + return new CrossTrainerCacheOptions(this); + } + + /// Field number for the "trainer_id" field. + public const int TrainerIdFieldNumber = 1; + private string trainerId_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string TrainerId { + get { return trainerId_; } + set { + trainerId_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CrossTrainerCacheOptions); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CrossTrainerCacheOptions other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (TrainerId != other.TrainerId) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (TrainerId.Length != 0) hash ^= TrainerId.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (TrainerId.Length != 0) { + output.WriteRawTag(10); + output.WriteString(TrainerId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (TrainerId.Length != 0) { + output.WriteRawTag(10); + output.WriteString(TrainerId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (TrainerId.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(TrainerId); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CrossTrainerCacheOptions other) { + if (other == null) { + return; + } + if (other.TrainerId.Length != 0) { + TrainerId = other.TrainerId; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + TrainerId = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + TrainerId = input.ReadString(); + break; + } + } + } + } + #endif + + } + + /// + /// Data service config available to the client through GetDataServiceConfig RPC. + /// Next tag: 2 + /// + public sealed partial class DataServiceConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DataServiceConfig()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.Data.DataServiceReflection.Descriptor.MessageTypes[3]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DataServiceConfig() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DataServiceConfig(DataServiceConfig other) : this() { + deploymentMode_ = other.deploymentMode_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DataServiceConfig Clone() { + return new DataServiceConfig(this); + } + + /// Field number for the "deployment_mode" field. + public const int DeploymentModeFieldNumber = 1; + private global::Tensorflow.Data.DeploymentMode deploymentMode_ = global::Tensorflow.Data.DeploymentMode.Unspecified; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.Data.DeploymentMode DeploymentMode { + get { return deploymentMode_; } + set { + deploymentMode_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DataServiceConfig); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DataServiceConfig other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (DeploymentMode != other.DeploymentMode) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) hash ^= DeploymentMode.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) { + output.WriteRawTag(8); + output.WriteEnum((int) DeploymentMode); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) { + output.WriteRawTag(8); + output.WriteEnum((int) DeploymentMode); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) DeploymentMode); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DataServiceConfig other) { + if (other == null) { + return; + } + if (other.DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) { + DeploymentMode = other.DeploymentMode; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + DeploymentMode = (global::Tensorflow.Data.DeploymentMode) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + DeploymentMode = (global::Tensorflow.Data.DeploymentMode) input.ReadEnum(); + break; + } + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/Debug.cs b/src/TensorFlowNET.Core/Protobuf/Debug.cs index 5ef4662f2..85b3bc6cc 100644 --- a/src/TensorFlowNET.Core/Protobuf/Debug.cs +++ b/src/TensorFlowNET.Core/Protobuf/Debug.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/debug.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -55,23 +55,31 @@ static DebugReflection() { /// /// Option for watching a node in TensorFlow Debugger (tfdbg). /// - public sealed partial class DebugTensorWatch : pb::IMessage { + public sealed partial class DebugTensorWatch : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DebugTensorWatch()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.DebugReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebugTensorWatch() { OnConstruction(); } @@ -79,6 +87,7 @@ public DebugTensorWatch() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebugTensorWatch(DebugTensorWatch other) : this() { nodeName_ = other.nodeName_; outputSlot_ = other.outputSlot_; @@ -89,6 +98,7 @@ public DebugTensorWatch(DebugTensorWatch other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebugTensorWatch Clone() { return new DebugTensorWatch(this); } @@ -102,6 +112,7 @@ public DebugTensorWatch Clone() { /// general. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string NodeName { get { return nodeName_; } set { @@ -120,6 +131,7 @@ public string NodeName { /// errors currently. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int OutputSlot { get { return outputSlot_; } set { @@ -138,6 +150,7 @@ public int OutputSlot { /// e.g., {"DebugIdentity", "DebugNanCount"} /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField DebugOps { get { return debugOps_; } } @@ -170,6 +183,7 @@ public int OutputSlot { /// TODO(cais): More visible documentation of this in g3docs. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField DebugUrls { get { return debugUrls_; } } @@ -182,6 +196,7 @@ public int OutputSlot { /// incompatibility). Instead, just log the failure. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool TolerateDebugOpCreationFailures { get { return tolerateDebugOpCreationFailures_; } set { @@ -190,11 +205,13 @@ public bool TolerateDebugOpCreationFailures { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as DebugTensorWatch); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(DebugTensorWatch other) { if (ReferenceEquals(other, null)) { return false; @@ -211,6 +228,7 @@ public bool Equals(DebugTensorWatch other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (NodeName.Length != 0) hash ^= NodeName.GetHashCode(); @@ -225,12 +243,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (NodeName.Length != 0) { output.WriteRawTag(10); output.WriteString(NodeName); @@ -248,9 +271,35 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (NodeName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(NodeName); + } + if (OutputSlot != 0) { + output.WriteRawTag(16); + output.WriteInt32(OutputSlot); + } + debugOps_.WriteTo(ref output, _repeated_debugOps_codec); + debugUrls_.WriteTo(ref output, _repeated_debugUrls_codec); + if (TolerateDebugOpCreationFailures != false) { + output.WriteRawTag(40); + output.WriteBool(TolerateDebugOpCreationFailures); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (NodeName.Length != 0) { @@ -271,6 +320,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(DebugTensorWatch other) { if (other == null) { return; @@ -290,7 +340,11 @@ public void MergeFrom(DebugTensorWatch other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -319,30 +373,74 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + NodeName = input.ReadString(); + break; + } + case 16: { + OutputSlot = input.ReadInt32(); + break; + } + case 26: { + debugOps_.AddEntriesFrom(ref input, _repeated_debugOps_codec); + break; + } + case 34: { + debugUrls_.AddEntriesFrom(ref input, _repeated_debugUrls_codec); + break; + } + case 40: { + TolerateDebugOpCreationFailures = input.ReadBool(); + break; + } + } + } } + #endif } /// /// Options for initializing DebuggerState in TensorFlow Debugger (tfdbg). /// - public sealed partial class DebugOptions : pb::IMessage { + public sealed partial class DebugOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DebugOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.DebugReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebugOptions() { OnConstruction(); } @@ -350,6 +448,7 @@ public DebugOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebugOptions(DebugOptions other) : this() { debugTensorWatchOpts_ = other.debugTensorWatchOpts_.Clone(); globalStep_ = other.globalStep_; @@ -358,6 +457,7 @@ public DebugOptions(DebugOptions other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebugOptions Clone() { return new DebugOptions(this); } @@ -371,6 +471,7 @@ public DebugOptions Clone() { /// Debugging options /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField DebugTensorWatchOpts { get { return debugTensorWatchOpts_; } } @@ -384,6 +485,7 @@ public DebugOptions Clone() { /// step count. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long GlobalStep { get { return globalStep_; } set { @@ -401,6 +503,7 @@ public long GlobalStep { /// are cleaned up from the disk after each Session.run. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool ResetDiskByteUsage { get { return resetDiskByteUsage_; } set { @@ -409,11 +512,13 @@ public bool ResetDiskByteUsage { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as DebugOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(DebugOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -428,6 +533,7 @@ public bool Equals(DebugOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= debugTensorWatchOpts_.GetHashCode(); @@ -440,12 +546,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else debugTensorWatchOpts_.WriteTo(output, _repeated_debugTensorWatchOpts_codec); if (GlobalStep != 0L) { output.WriteRawTag(80); @@ -458,9 +569,30 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + debugTensorWatchOpts_.WriteTo(ref output, _repeated_debugTensorWatchOpts_codec); + if (GlobalStep != 0L) { + output.WriteRawTag(80); + output.WriteInt64(GlobalStep); + } + if (ResetDiskByteUsage != false) { + output.WriteRawTag(88); + output.WriteBool(ResetDiskByteUsage); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += debugTensorWatchOpts_.CalculateSize(_repeated_debugTensorWatchOpts_codec); @@ -477,6 +609,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(DebugOptions other) { if (other == null) { return; @@ -492,7 +625,11 @@ public void MergeFrom(DebugOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -513,27 +650,63 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 34: { + debugTensorWatchOpts_.AddEntriesFrom(ref input, _repeated_debugTensorWatchOpts_codec); + break; + } + case 80: { + GlobalStep = input.ReadInt64(); + break; + } + case 88: { + ResetDiskByteUsage = input.ReadBool(); + break; + } + } + } + } + #endif + } - public sealed partial class DebuggedSourceFile : pb::IMessage { + public sealed partial class DebuggedSourceFile : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DebuggedSourceFile()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.DebugReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebuggedSourceFile() { OnConstruction(); } @@ -541,6 +714,7 @@ public DebuggedSourceFile() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebuggedSourceFile(DebuggedSourceFile other) : this() { host_ = other.host_; filePath_ = other.filePath_; @@ -551,6 +725,7 @@ public DebuggedSourceFile(DebuggedSourceFile other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebuggedSourceFile Clone() { return new DebuggedSourceFile(this); } @@ -562,6 +737,7 @@ public DebuggedSourceFile Clone() { /// The host name on which a source code file is located. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Host { get { return host_; } set { @@ -576,6 +752,7 @@ public string Host { /// Path to the source code file. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string FilePath { get { return filePath_; } set { @@ -590,6 +767,7 @@ public string FilePath { /// The timestamp at which the source code file is last modified. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long LastModified { get { return lastModified_; } set { @@ -604,6 +782,7 @@ public long LastModified { /// Byte size of the file. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Bytes { get { return bytes_; } set { @@ -620,16 +799,19 @@ public long Bytes { /// Line-by-line content of the source code file. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Lines { get { return lines_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as DebuggedSourceFile); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(DebuggedSourceFile other) { if (ReferenceEquals(other, null)) { return false; @@ -646,6 +828,7 @@ public bool Equals(DebuggedSourceFile other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Host.Length != 0) hash ^= Host.GetHashCode(); @@ -660,12 +843,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Host.Length != 0) { output.WriteRawTag(10); output.WriteString(Host); @@ -686,9 +874,38 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Host.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Host); + } + if (FilePath.Length != 0) { + output.WriteRawTag(18); + output.WriteString(FilePath); + } + if (LastModified != 0L) { + output.WriteRawTag(24); + output.WriteInt64(LastModified); + } + if (Bytes != 0L) { + output.WriteRawTag(32); + output.WriteInt64(Bytes); + } + lines_.WriteTo(ref output, _repeated_lines_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Host.Length != 0) { @@ -711,6 +928,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(DebuggedSourceFile other) { if (other == null) { return; @@ -732,7 +950,11 @@ public void MergeFrom(DebuggedSourceFile other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -761,27 +983,71 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Host = input.ReadString(); + break; + } + case 18: { + FilePath = input.ReadString(); + break; + } + case 24: { + LastModified = input.ReadInt64(); + break; + } + case 32: { + Bytes = input.ReadInt64(); + break; + } + case 42: { + lines_.AddEntriesFrom(ref input, _repeated_lines_codec); + break; + } + } + } + } + #endif + } - public sealed partial class DebuggedSourceFiles : pb::IMessage { + public sealed partial class DebuggedSourceFiles : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DebuggedSourceFiles()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.DebugReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebuggedSourceFiles() { OnConstruction(); } @@ -789,12 +1055,14 @@ public DebuggedSourceFiles() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebuggedSourceFiles(DebuggedSourceFiles other) : this() { sourceFiles_ = other.sourceFiles_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DebuggedSourceFiles Clone() { return new DebuggedSourceFiles(this); } @@ -808,16 +1076,19 @@ public DebuggedSourceFiles Clone() { /// A collection of source code files. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField SourceFiles { get { return sourceFiles_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as DebuggedSourceFiles); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(DebuggedSourceFiles other) { if (ReferenceEquals(other, null)) { return false; @@ -830,6 +1101,7 @@ public bool Equals(DebuggedSourceFiles other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= sourceFiles_.GetHashCode(); @@ -840,19 +1112,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else sourceFiles_.WriteTo(output, _repeated_sourceFiles_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + sourceFiles_.WriteTo(ref output, _repeated_sourceFiles_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += sourceFiles_.CalculateSize(_repeated_sourceFiles_codec); @@ -863,6 +1153,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(DebuggedSourceFiles other) { if (other == null) { return; @@ -872,7 +1163,11 @@ public void MergeFrom(DebuggedSourceFiles other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -885,7 +1180,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + sourceFiles_.AddEntriesFrom(ref input, _repeated_sourceFiles_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/DeviceAttributes.cs b/src/TensorFlowNET.Core/Protobuf/DeviceAttributes.cs index ec0d7c84c..81d17e932 100644 --- a/src/TensorFlowNET.Core/Protobuf/DeviceAttributes.cs +++ b/src/TensorFlowNET.Core/Protobuf/DeviceAttributes.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/device_attributes.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -30,44 +30,53 @@ static DeviceAttributesReflection() { "OAoKTG9jYWxMaW5rcxIqCgRsaW5rGAEgAygLMhwudGVuc29yZmxvdy5JbnRl", "cmNvbm5lY3RMaW5rIloKDkRldmljZUxvY2FsaXR5Eg4KBmJ1c19pZBgBIAEo", "BRIRCgludW1hX25vZGUYAiABKAUSJQoFbGlua3MYAyABKAsyFi50ZW5zb3Jm", - "bG93LkxvY2FsTGlua3MirAEKEERldmljZUF0dHJpYnV0ZXMSDAoEbmFtZRgB", + "bG93LkxvY2FsTGlua3MiwwEKEERldmljZUF0dHJpYnV0ZXMSDAoEbmFtZRgB", "IAEoCRITCgtkZXZpY2VfdHlwZRgCIAEoCRIUCgxtZW1vcnlfbGltaXQYBCAB", "KAMSLAoIbG9jYWxpdHkYBSABKAsyGi50ZW5zb3JmbG93LkRldmljZUxvY2Fs", "aXR5EhMKC2luY2FybmF0aW9uGAYgASgGEhwKFHBoeXNpY2FsX2RldmljZV9k", - "ZXNjGAcgASgJQpEBChhvcmcudGVuc29yZmxvdy5mcmFtZXdvcmtCFkRldmlj", - "ZUF0dHJpYnV0ZXNQcm90b3NQAVpYZ2l0aHViLmNvbS90ZW5zb3JmbG93L3Rl", - "bnNvcmZsb3cvdGVuc29yZmxvdy9nby9jb3JlL2ZyYW1ld29yay9kZXZpY2Vf", - "YXR0cmlidXRlc19nb19wcm90b/gBAWIGcHJvdG8z")); + "ZXNjGAcgASgJEhUKDXhsYV9nbG9iYWxfaWQYCCABKANCkQEKGG9yZy50ZW5z", + "b3JmbG93LmZyYW1ld29ya0IWRGV2aWNlQXR0cmlidXRlc1Byb3Rvc1ABWlhn", + "aXRodWIuY29tL3RlbnNvcmZsb3cvdGVuc29yZmxvdy90ZW5zb3JmbG93L2dv", + "L2NvcmUvZnJhbWV3b3JrL2RldmljZV9hdHRyaWJ1dGVzX2dvX3Byb3Rv+AEB", + "YgZwcm90bzM=")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, new pbr::FileDescriptor[] { }, new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.InterconnectLink), global::Tensorflow.InterconnectLink.Parser, new[]{ "DeviceId", "Type", "Strength" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.LocalLinks), global::Tensorflow.LocalLinks.Parser, new[]{ "Link" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.DeviceLocality), global::Tensorflow.DeviceLocality.Parser, new[]{ "BusId", "NumaNode", "Links" }, null, null, null, null), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.DeviceAttributes), global::Tensorflow.DeviceAttributes.Parser, new[]{ "Name", "DeviceType", "MemoryLimit", "Locality", "Incarnation", "PhysicalDeviceDesc" }, null, null, null, null) + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.DeviceAttributes), global::Tensorflow.DeviceAttributes.Parser, new[]{ "Name", "DeviceType", "MemoryLimit", "Locality", "Incarnation", "PhysicalDeviceDesc", "XlaGlobalId" }, null, null, null, null) })); } #endregion } #region Messages - public sealed partial class InterconnectLink : pb::IMessage { + public sealed partial class InterconnectLink : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new InterconnectLink()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.DeviceAttributesReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public InterconnectLink() { OnConstruction(); } @@ -75,6 +84,7 @@ public InterconnectLink() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public InterconnectLink(InterconnectLink other) : this() { deviceId_ = other.deviceId_; type_ = other.type_; @@ -83,6 +93,7 @@ public InterconnectLink(InterconnectLink other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public InterconnectLink Clone() { return new InterconnectLink(this); } @@ -91,6 +102,7 @@ public InterconnectLink Clone() { public const int DeviceIdFieldNumber = 1; private int deviceId_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int DeviceId { get { return deviceId_; } set { @@ -102,6 +114,7 @@ public int DeviceId { public const int TypeFieldNumber = 2; private string type_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Type { get { return type_; } set { @@ -113,6 +126,7 @@ public string Type { public const int StrengthFieldNumber = 3; private int strength_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Strength { get { return strength_; } set { @@ -121,11 +135,13 @@ public int Strength { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as InterconnectLink); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(InterconnectLink other) { if (ReferenceEquals(other, null)) { return false; @@ -140,6 +156,7 @@ public bool Equals(InterconnectLink other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (DeviceId != 0) hash ^= DeviceId.GetHashCode(); @@ -152,12 +169,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (DeviceId != 0) { output.WriteRawTag(8); output.WriteInt32(DeviceId); @@ -173,9 +195,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (DeviceId != 0) { + output.WriteRawTag(8); + output.WriteInt32(DeviceId); + } + if (Type.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Type); + } + if (Strength != 0) { + output.WriteRawTag(24); + output.WriteInt32(Strength); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (DeviceId != 0) { @@ -194,6 +240,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(InterconnectLink other) { if (other == null) { return; @@ -211,7 +258,11 @@ public void MergeFrom(InterconnectLink other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -232,27 +283,63 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + DeviceId = input.ReadInt32(); + break; + } + case 18: { + Type = input.ReadString(); + break; + } + case 24: { + Strength = input.ReadInt32(); + break; + } + } + } + } + #endif + } - public sealed partial class LocalLinks : pb::IMessage { + public sealed partial class LocalLinks : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new LocalLinks()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.DeviceAttributesReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public LocalLinks() { OnConstruction(); } @@ -260,12 +347,14 @@ public LocalLinks() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public LocalLinks(LocalLinks other) : this() { link_ = other.link_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public LocalLinks Clone() { return new LocalLinks(this); } @@ -276,16 +365,19 @@ public LocalLinks Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.InterconnectLink.Parser); private readonly pbc::RepeatedField link_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Link { get { return link_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as LocalLinks); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(LocalLinks other) { if (ReferenceEquals(other, null)) { return false; @@ -298,6 +390,7 @@ public bool Equals(LocalLinks other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= link_.GetHashCode(); @@ -308,19 +401,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else link_.WriteTo(output, _repeated_link_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + link_.WriteTo(ref output, _repeated_link_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += link_.CalculateSize(_repeated_link_codec); @@ -331,6 +442,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(LocalLinks other) { if (other == null) { return; @@ -340,7 +452,11 @@ public void MergeFrom(LocalLinks other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -353,27 +469,55 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + link_.AddEntriesFrom(ref input, _repeated_link_codec); + break; + } + } + } } + #endif } - public sealed partial class DeviceLocality : pb::IMessage { + public sealed partial class DeviceLocality : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeviceLocality()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.DeviceAttributesReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DeviceLocality() { OnConstruction(); } @@ -381,6 +525,7 @@ public DeviceLocality() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DeviceLocality(DeviceLocality other) : this() { busId_ = other.busId_; numaNode_ = other.numaNode_; @@ -389,6 +534,7 @@ public DeviceLocality(DeviceLocality other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DeviceLocality Clone() { return new DeviceLocality(this); } @@ -401,6 +547,7 @@ public DeviceLocality Clone() { /// no specific locality. Specific localities are indexed from 1. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int BusId { get { return busId_; } set { @@ -415,6 +562,7 @@ public int BusId { /// Optional NUMA locality of device. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NumaNode { get { return numaNode_; } set { @@ -429,6 +577,7 @@ public int NumaNode { /// Optional local interconnect links to other devices. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.LocalLinks Links { get { return links_; } set { @@ -437,11 +586,13 @@ public int NumaNode { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as DeviceLocality); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(DeviceLocality other) { if (ReferenceEquals(other, null)) { return false; @@ -456,6 +607,7 @@ public bool Equals(DeviceLocality other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (BusId != 0) hash ^= BusId.GetHashCode(); @@ -468,12 +620,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (BusId != 0) { output.WriteRawTag(8); output.WriteInt32(BusId); @@ -489,9 +646,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (BusId != 0) { + output.WriteRawTag(8); + output.WriteInt32(BusId); + } + if (NumaNode != 0) { + output.WriteRawTag(16); + output.WriteInt32(NumaNode); + } + if (links_ != null) { + output.WriteRawTag(26); + output.WriteMessage(Links); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (BusId != 0) { @@ -510,6 +691,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(DeviceLocality other) { if (other == null) { return; @@ -530,7 +712,11 @@ public void MergeFrom(DeviceLocality other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -554,27 +740,66 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + BusId = input.ReadInt32(); + break; + } + case 16: { + NumaNode = input.ReadInt32(); + break; + } + case 26: { + if (links_ == null) { + Links = new global::Tensorflow.LocalLinks(); + } + input.ReadMessage(Links); + break; + } + } + } } + #endif } - public sealed partial class DeviceAttributes : pb::IMessage { + public sealed partial class DeviceAttributes : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeviceAttributes()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.DeviceAttributesReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DeviceAttributes() { OnConstruction(); } @@ -582,6 +807,7 @@ public DeviceAttributes() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DeviceAttributes(DeviceAttributes other) : this() { name_ = other.name_; deviceType_ = other.deviceType_; @@ -589,10 +815,12 @@ public DeviceAttributes(DeviceAttributes other) : this() { locality_ = other.locality_ != null ? other.locality_.Clone() : null; incarnation_ = other.incarnation_; physicalDeviceDesc_ = other.physicalDeviceDesc_; + xlaGlobalId_ = other.xlaGlobalId_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DeviceAttributes Clone() { return new DeviceAttributes(this); } @@ -604,6 +832,7 @@ public DeviceAttributes Clone() { /// Fully specified name of the device within a cluster. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -618,6 +847,7 @@ public string Name { /// String representation of device_type. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string DeviceType { get { return deviceType_; } set { @@ -632,6 +862,7 @@ public string DeviceType { /// Memory capacity of device in bytes. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long MemoryLimit { get { return memoryLimit_; } set { @@ -647,6 +878,7 @@ public long MemoryLimit { /// for supporting efficient data transfers. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DeviceLocality Locality { get { return locality_; } set { @@ -662,6 +894,7 @@ public long MemoryLimit { /// initialized. "incarnation" should never be 0. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ulong Incarnation { get { return incarnation_; } set { @@ -676,6 +909,7 @@ public ulong Incarnation { /// String representation of the physical device that this device maps to. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string PhysicalDeviceDesc { get { return physicalDeviceDesc_; } set { @@ -683,12 +917,31 @@ public string PhysicalDeviceDesc { } } + /// Field number for the "xla_global_id" field. + public const int XlaGlobalIdFieldNumber = 8; + private long xlaGlobalId_; + /// + /// A physical device ID for use in XLA DeviceAssignments, unique across + /// clients in a multi-client setup. Set to -1 if unavailable, non-negative + /// otherwise. + /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long XlaGlobalId { + get { return xlaGlobalId_; } + set { + xlaGlobalId_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as DeviceAttributes); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(DeviceAttributes other) { if (ReferenceEquals(other, null)) { return false; @@ -702,10 +955,12 @@ public bool Equals(DeviceAttributes other) { if (!object.Equals(Locality, other.Locality)) return false; if (Incarnation != other.Incarnation) return false; if (PhysicalDeviceDesc != other.PhysicalDeviceDesc) return false; + if (XlaGlobalId != other.XlaGlobalId) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -714,6 +969,7 @@ public override int GetHashCode() { if (locality_ != null) hash ^= Locality.GetHashCode(); if (Incarnation != 0UL) hash ^= Incarnation.GetHashCode(); if (PhysicalDeviceDesc.Length != 0) hash ^= PhysicalDeviceDesc.GetHashCode(); + if (XlaGlobalId != 0L) hash ^= XlaGlobalId.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -721,12 +977,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -751,12 +1012,56 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(58); output.WriteString(PhysicalDeviceDesc); } + if (XlaGlobalId != 0L) { + output.WriteRawTag(64); + output.WriteInt64(XlaGlobalId); + } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (DeviceType.Length != 0) { + output.WriteRawTag(18); + output.WriteString(DeviceType); + } + if (MemoryLimit != 0L) { + output.WriteRawTag(32); + output.WriteInt64(MemoryLimit); + } + if (locality_ != null) { + output.WriteRawTag(42); + output.WriteMessage(Locality); + } + if (Incarnation != 0UL) { + output.WriteRawTag(49); + output.WriteFixed64(Incarnation); + } + if (PhysicalDeviceDesc.Length != 0) { + output.WriteRawTag(58); + output.WriteString(PhysicalDeviceDesc); + } + if (XlaGlobalId != 0L) { + output.WriteRawTag(64); + output.WriteInt64(XlaGlobalId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -777,6 +1082,9 @@ public int CalculateSize() { if (PhysicalDeviceDesc.Length != 0) { size += 1 + pb::CodedOutputStream.ComputeStringSize(PhysicalDeviceDesc); } + if (XlaGlobalId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(XlaGlobalId); + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -784,6 +1092,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(DeviceAttributes other) { if (other == null) { return; @@ -809,11 +1118,18 @@ public void MergeFrom(DeviceAttributes other) { if (other.PhysicalDeviceDesc.Length != 0) { PhysicalDeviceDesc = other.PhysicalDeviceDesc; } + if (other.XlaGlobalId != 0L) { + XlaGlobalId = other.XlaGlobalId; + } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -847,9 +1163,60 @@ public void MergeFrom(pb::CodedInputStream input) { PhysicalDeviceDesc = input.ReadString(); break; } + case 64: { + XlaGlobalId = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + DeviceType = input.ReadString(); + break; + } + case 32: { + MemoryLimit = input.ReadInt64(); + break; + } + case 42: { + if (locality_ == null) { + Locality = new global::Tensorflow.DeviceLocality(); + } + input.ReadMessage(Locality); + break; + } + case 49: { + Incarnation = input.ReadFixed64(); + break; + } + case 58: { + PhysicalDeviceDesc = input.ReadString(); + break; + } + case 64: { + XlaGlobalId = input.ReadInt64(); + break; + } } } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Event.cs b/src/TensorFlowNET.Core/Protobuf/Event.cs index 131861687..cd80bf37d 100644 --- a/src/TensorFlowNET.Core/Protobuf/Event.cs +++ b/src/TensorFlowNET.Core/Protobuf/Event.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/util/event.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -110,23 +110,31 @@ public enum WorkerShutdownMode { /// Protocol buffer representing an event that happened during /// the execution of a Brain model. /// - public sealed partial class Event : pb::IMessage { + public sealed partial class Event : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Event()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.EventReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Event() { OnConstruction(); } @@ -134,6 +142,7 @@ public Event() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Event(Event other) : this() { wallTime_ = other.wallTime_; step_ = other.step_; @@ -165,6 +174,7 @@ public Event(Event other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Event Clone() { return new Event(this); } @@ -176,6 +186,7 @@ public Event Clone() { /// Timestamp of the event. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public double WallTime { get { return wallTime_; } set { @@ -190,6 +201,7 @@ public double WallTime { /// Global step of the event. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Step { get { return step_; } set { @@ -206,6 +218,7 @@ public long Step { /// start with "brain.Event:". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string FileVersion { get { return whatCase_ == WhatOneofCase.FileVersion ? (string) what_ : ""; } set { @@ -220,6 +233,7 @@ public string FileVersion { /// An encoded version of a GraphDef. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString GraphDef { get { return whatCase_ == WhatOneofCase.GraphDef ? (pb::ByteString) what_ : pb::ByteString.Empty; } set { @@ -234,6 +248,7 @@ public string FileVersion { /// A summary was generated. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.Summary Summary { get { return whatCase_ == WhatOneofCase.Summary ? (global::Tensorflow.Summary) what_ : null; } set { @@ -251,6 +266,7 @@ public string FileVersion { /// [global::System.ObsoleteAttribute] [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.LogMessage LogMessage { get { return whatCase_ == WhatOneofCase.LogMessage ? (global::Tensorflow.LogMessage) what_ : null; } set { @@ -265,6 +281,7 @@ public string FileVersion { /// The state of the session which can be used for restarting after crashes. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SessionLog SessionLog { get { return whatCase_ == WhatOneofCase.SessionLog ? (global::Tensorflow.SessionLog) what_ : null; } set { @@ -279,6 +296,7 @@ public string FileVersion { /// The metadata returned by running a session.run() call. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TaggedRunMetadata TaggedRunMetadata { get { return whatCase_ == WhatOneofCase.TaggedRunMetadata ? (global::Tensorflow.TaggedRunMetadata) what_ : null; } set { @@ -293,6 +311,7 @@ public string FileVersion { /// An encoded version of a MetaGraphDef. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString MetaGraphDef { get { return whatCase_ == WhatOneofCase.MetaGraphDef ? (pb::ByteString) what_ : pb::ByteString.Empty; } set { @@ -315,22 +334,26 @@ public enum WhatOneofCase { } private WhatOneofCase whatCase_ = WhatOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WhatOneofCase WhatCase { get { return whatCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearWhat() { whatCase_ = WhatOneofCase.None; what_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Event); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Event other) { if (ReferenceEquals(other, null)) { return false; @@ -352,6 +375,7 @@ public bool Equals(Event other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (WallTime != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(WallTime); @@ -371,12 +395,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (WallTime != 0D) { output.WriteRawTag(9); output.WriteDouble(WallTime); @@ -416,9 +445,57 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (WallTime != 0D) { + output.WriteRawTag(9); + output.WriteDouble(WallTime); + } + if (Step != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Step); + } + if (whatCase_ == WhatOneofCase.FileVersion) { + output.WriteRawTag(26); + output.WriteString(FileVersion); + } + if (whatCase_ == WhatOneofCase.GraphDef) { + output.WriteRawTag(34); + output.WriteBytes(GraphDef); + } + if (whatCase_ == WhatOneofCase.Summary) { + output.WriteRawTag(42); + output.WriteMessage(Summary); + } + if (whatCase_ == WhatOneofCase.LogMessage) { + output.WriteRawTag(50); + output.WriteMessage(LogMessage); + } + if (whatCase_ == WhatOneofCase.SessionLog) { + output.WriteRawTag(58); + output.WriteMessage(SessionLog); + } + if (whatCase_ == WhatOneofCase.TaggedRunMetadata) { + output.WriteRawTag(66); + output.WriteMessage(TaggedRunMetadata); + } + if (whatCase_ == WhatOneofCase.MetaGraphDef) { + output.WriteRawTag(74); + output.WriteBytes(MetaGraphDef); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (WallTime != 0D) { @@ -455,6 +532,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Event other) { if (other == null) { return; @@ -505,7 +583,11 @@ public void MergeFrom(Event other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -570,8 +652,80 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 9: { + WallTime = input.ReadDouble(); + break; + } + case 16: { + Step = input.ReadInt64(); + break; + } + case 26: { + FileVersion = input.ReadString(); + break; + } + case 34: { + GraphDef = input.ReadBytes(); + break; + } + case 42: { + global::Tensorflow.Summary subBuilder = new global::Tensorflow.Summary(); + if (whatCase_ == WhatOneofCase.Summary) { + subBuilder.MergeFrom(Summary); + } + input.ReadMessage(subBuilder); + Summary = subBuilder; + break; + } + case 50: { + global::Tensorflow.LogMessage subBuilder = new global::Tensorflow.LogMessage(); + if (whatCase_ == WhatOneofCase.LogMessage) { + subBuilder.MergeFrom(LogMessage); + } + input.ReadMessage(subBuilder); + LogMessage = subBuilder; + break; + } + case 58: { + global::Tensorflow.SessionLog subBuilder = new global::Tensorflow.SessionLog(); + if (whatCase_ == WhatOneofCase.SessionLog) { + subBuilder.MergeFrom(SessionLog); + } + input.ReadMessage(subBuilder); + SessionLog = subBuilder; + break; + } + case 66: { + global::Tensorflow.TaggedRunMetadata subBuilder = new global::Tensorflow.TaggedRunMetadata(); + if (whatCase_ == WhatOneofCase.TaggedRunMetadata) { + subBuilder.MergeFrom(TaggedRunMetadata); + } + input.ReadMessage(subBuilder); + TaggedRunMetadata = subBuilder; + break; + } + case 74: { + MetaGraphDef = input.ReadBytes(); + break; + } + } + } + } + #endif + } /// @@ -581,23 +735,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// has been removed; this message is now deprecated and should not be used. /// [global::System.ObsoleteAttribute] - public sealed partial class LogMessage : pb::IMessage { + public sealed partial class LogMessage : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new LogMessage()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.EventReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public LogMessage() { OnConstruction(); } @@ -605,6 +767,7 @@ public LogMessage() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public LogMessage(LogMessage other) : this() { level_ = other.level_; message_ = other.message_; @@ -612,6 +775,7 @@ public LogMessage(LogMessage other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public LogMessage Clone() { return new LogMessage(this); } @@ -620,6 +784,7 @@ public LogMessage Clone() { public const int LevelFieldNumber = 1; private global::Tensorflow.LogMessage.Types.Level level_ = global::Tensorflow.LogMessage.Types.Level.Unknown; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.LogMessage.Types.Level Level { get { return level_; } set { @@ -631,6 +796,7 @@ public LogMessage Clone() { public const int MessageFieldNumber = 2; private string message_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Message { get { return message_; } set { @@ -639,11 +805,13 @@ public string Message { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as LogMessage); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(LogMessage other) { if (ReferenceEquals(other, null)) { return false; @@ -657,6 +825,7 @@ public bool Equals(LogMessage other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Level != global::Tensorflow.LogMessage.Types.Level.Unknown) hash ^= Level.GetHashCode(); @@ -668,12 +837,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Level != global::Tensorflow.LogMessage.Types.Level.Unknown) { output.WriteRawTag(8); output.WriteEnum((int) Level); @@ -685,9 +859,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Level != global::Tensorflow.LogMessage.Types.Level.Unknown) { + output.WriteRawTag(8); + output.WriteEnum((int) Level); + } + if (Message.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Message); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Level != global::Tensorflow.LogMessage.Types.Level.Unknown) { @@ -703,6 +897,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(LogMessage other) { if (other == null) { return; @@ -717,7 +912,11 @@ public void MergeFrom(LogMessage other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -734,11 +933,36 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Level = (global::Tensorflow.LogMessage.Types.Level) input.ReadEnum(); + break; + } + case 18: { + Message = input.ReadString(); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the LogMessage message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { public enum Level { [pbr::OriginalName("UNKNOWN")] Unknown = 0, @@ -763,23 +987,31 @@ public enum Level { /// /// Protocol buffer used for logging session state. /// - public sealed partial class SessionLog : pb::IMessage { + public sealed partial class SessionLog : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SessionLog()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.EventReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SessionLog() { OnConstruction(); } @@ -787,6 +1019,7 @@ public SessionLog() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SessionLog(SessionLog other) : this() { status_ = other.status_; checkpointPath_ = other.checkpointPath_; @@ -795,6 +1028,7 @@ public SessionLog(SessionLog other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SessionLog Clone() { return new SessionLog(this); } @@ -803,6 +1037,7 @@ public SessionLog Clone() { public const int StatusFieldNumber = 1; private global::Tensorflow.SessionLog.Types.SessionStatus status_ = global::Tensorflow.SessionLog.Types.SessionStatus.StatusUnspecified; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SessionLog.Types.SessionStatus Status { get { return status_; } set { @@ -817,6 +1052,7 @@ public SessionLog Clone() { /// This checkpoint_path contains both the path and filename. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string CheckpointPath { get { return checkpointPath_; } set { @@ -828,6 +1064,7 @@ public string CheckpointPath { public const int MsgFieldNumber = 3; private string msg_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Msg { get { return msg_; } set { @@ -836,11 +1073,13 @@ public string Msg { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SessionLog); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SessionLog other) { if (ReferenceEquals(other, null)) { return false; @@ -855,6 +1094,7 @@ public bool Equals(SessionLog other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Status != global::Tensorflow.SessionLog.Types.SessionStatus.StatusUnspecified) hash ^= Status.GetHashCode(); @@ -867,12 +1107,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Status != global::Tensorflow.SessionLog.Types.SessionStatus.StatusUnspecified) { output.WriteRawTag(8); output.WriteEnum((int) Status); @@ -888,9 +1133,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Status != global::Tensorflow.SessionLog.Types.SessionStatus.StatusUnspecified) { + output.WriteRawTag(8); + output.WriteEnum((int) Status); + } + if (CheckpointPath.Length != 0) { + output.WriteRawTag(18); + output.WriteString(CheckpointPath); + } + if (Msg.Length != 0) { + output.WriteRawTag(26); + output.WriteString(Msg); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Status != global::Tensorflow.SessionLog.Types.SessionStatus.StatusUnspecified) { @@ -909,6 +1178,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SessionLog other) { if (other == null) { return; @@ -926,7 +1196,11 @@ public void MergeFrom(SessionLog other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -947,11 +1221,40 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Status = (global::Tensorflow.SessionLog.Types.SessionStatus) input.ReadEnum(); + break; + } + case 18: { + CheckpointPath = input.ReadString(); + break; + } + case 26: { + Msg = input.ReadString(); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the SessionLog message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { public enum SessionStatus { [pbr::OriginalName("STATUS_UNSPECIFIED")] StatusUnspecified = 0, @@ -968,23 +1271,31 @@ public enum SessionStatus { /// /// For logging the metadata output for a single session.run() call. /// - public sealed partial class TaggedRunMetadata : pb::IMessage { + public sealed partial class TaggedRunMetadata : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TaggedRunMetadata()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.EventReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TaggedRunMetadata() { OnConstruction(); } @@ -992,6 +1303,7 @@ public TaggedRunMetadata() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TaggedRunMetadata(TaggedRunMetadata other) : this() { tag_ = other.tag_; runMetadata_ = other.runMetadata_; @@ -999,6 +1311,7 @@ public TaggedRunMetadata(TaggedRunMetadata other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TaggedRunMetadata Clone() { return new TaggedRunMetadata(this); } @@ -1010,6 +1323,7 @@ public TaggedRunMetadata Clone() { /// Tag name associated with this metadata. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Tag { get { return tag_; } set { @@ -1025,6 +1339,7 @@ public string Tag { /// deserialization. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString RunMetadata { get { return runMetadata_; } set { @@ -1033,11 +1348,13 @@ public string Tag { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TaggedRunMetadata); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TaggedRunMetadata other) { if (ReferenceEquals(other, null)) { return false; @@ -1051,6 +1368,7 @@ public bool Equals(TaggedRunMetadata other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Tag.Length != 0) hash ^= Tag.GetHashCode(); @@ -1062,12 +1380,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Tag.Length != 0) { output.WriteRawTag(10); output.WriteString(Tag); @@ -1079,9 +1402,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Tag.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Tag); + } + if (RunMetadata.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(RunMetadata); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Tag.Length != 0) { @@ -1097,6 +1440,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TaggedRunMetadata other) { if (other == null) { return; @@ -1111,7 +1455,11 @@ public void MergeFrom(TaggedRunMetadata other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1128,27 +1476,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Tag = input.ReadString(); + break; + } + case 18: { + RunMetadata = input.ReadBytes(); + break; + } + } + } + } + #endif + } - public sealed partial class WatchdogConfig : pb::IMessage { + public sealed partial class WatchdogConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WatchdogConfig()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.EventReflection.Descriptor.MessageTypes[4]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WatchdogConfig() { OnConstruction(); } @@ -1156,12 +1536,14 @@ public WatchdogConfig() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WatchdogConfig(WatchdogConfig other) : this() { timeoutMs_ = other.timeoutMs_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WatchdogConfig Clone() { return new WatchdogConfig(this); } @@ -1170,6 +1552,7 @@ public WatchdogConfig Clone() { public const int TimeoutMsFieldNumber = 1; private long timeoutMs_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long TimeoutMs { get { return timeoutMs_; } set { @@ -1178,11 +1561,13 @@ public long TimeoutMs { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as WatchdogConfig); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(WatchdogConfig other) { if (ReferenceEquals(other, null)) { return false; @@ -1195,6 +1580,7 @@ public bool Equals(WatchdogConfig other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (TimeoutMs != 0L) hash ^= TimeoutMs.GetHashCode(); @@ -1205,12 +1591,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (TimeoutMs != 0L) { output.WriteRawTag(8); output.WriteInt64(TimeoutMs); @@ -1218,9 +1609,25 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (TimeoutMs != 0L) { + output.WriteRawTag(8); + output.WriteInt64(TimeoutMs); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (TimeoutMs != 0L) { @@ -1233,6 +1640,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(WatchdogConfig other) { if (other == null) { return; @@ -1244,7 +1652,11 @@ public void MergeFrom(WatchdogConfig other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1257,27 +1669,55 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + TimeoutMs = input.ReadInt64(); + break; + } + } + } + } + #endif + } - public sealed partial class RequestedExitCode : pb::IMessage { + public sealed partial class RequestedExitCode : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RequestedExitCode()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.EventReflection.Descriptor.MessageTypes[5]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RequestedExitCode() { OnConstruction(); } @@ -1285,12 +1725,14 @@ public RequestedExitCode() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RequestedExitCode(RequestedExitCode other) : this() { exitCode_ = other.exitCode_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RequestedExitCode Clone() { return new RequestedExitCode(this); } @@ -1299,6 +1741,7 @@ public RequestedExitCode Clone() { public const int ExitCodeFieldNumber = 1; private int exitCode_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int ExitCode { get { return exitCode_; } set { @@ -1307,11 +1750,13 @@ public int ExitCode { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as RequestedExitCode); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(RequestedExitCode other) { if (ReferenceEquals(other, null)) { return false; @@ -1324,6 +1769,7 @@ public bool Equals(RequestedExitCode other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (ExitCode != 0) hash ^= ExitCode.GetHashCode(); @@ -1334,12 +1780,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (ExitCode != 0) { output.WriteRawTag(8); output.WriteInt32(ExitCode); @@ -1347,9 +1798,25 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ExitCode != 0) { + output.WriteRawTag(8); + output.WriteInt32(ExitCode); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (ExitCode != 0) { @@ -1362,6 +1829,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(RequestedExitCode other) { if (other == null) { return; @@ -1373,7 +1841,11 @@ public void MergeFrom(RequestedExitCode other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1386,27 +1858,55 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + ExitCode = input.ReadInt32(); + break; + } + } + } } + #endif } - public sealed partial class WorkerHeartbeatRequest : pb::IMessage { + public sealed partial class WorkerHeartbeatRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WorkerHeartbeatRequest()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.EventReflection.Descriptor.MessageTypes[6]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WorkerHeartbeatRequest() { OnConstruction(); } @@ -1414,6 +1914,7 @@ public WorkerHeartbeatRequest() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WorkerHeartbeatRequest(WorkerHeartbeatRequest other) : this() { shutdownMode_ = other.shutdownMode_; watchdogConfig_ = other.watchdogConfig_ != null ? other.watchdogConfig_.Clone() : null; @@ -1422,6 +1923,7 @@ public WorkerHeartbeatRequest(WorkerHeartbeatRequest other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WorkerHeartbeatRequest Clone() { return new WorkerHeartbeatRequest(this); } @@ -1430,6 +1932,7 @@ public WorkerHeartbeatRequest Clone() { public const int ShutdownModeFieldNumber = 1; private global::Tensorflow.WorkerShutdownMode shutdownMode_ = global::Tensorflow.WorkerShutdownMode.Default; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.WorkerShutdownMode ShutdownMode { get { return shutdownMode_; } set { @@ -1441,6 +1944,7 @@ public WorkerHeartbeatRequest Clone() { public const int WatchdogConfigFieldNumber = 2; private global::Tensorflow.WatchdogConfig watchdogConfig_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.WatchdogConfig WatchdogConfig { get { return watchdogConfig_; } set { @@ -1452,6 +1956,7 @@ public WorkerHeartbeatRequest Clone() { public const int ExitCodeFieldNumber = 3; private global::Tensorflow.RequestedExitCode exitCode_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RequestedExitCode ExitCode { get { return exitCode_; } set { @@ -1460,11 +1965,13 @@ public WorkerHeartbeatRequest Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as WorkerHeartbeatRequest); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(WorkerHeartbeatRequest other) { if (ReferenceEquals(other, null)) { return false; @@ -1479,6 +1986,7 @@ public bool Equals(WorkerHeartbeatRequest other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (ShutdownMode != global::Tensorflow.WorkerShutdownMode.Default) hash ^= ShutdownMode.GetHashCode(); @@ -1491,12 +1999,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (ShutdownMode != global::Tensorflow.WorkerShutdownMode.Default) { output.WriteRawTag(8); output.WriteEnum((int) ShutdownMode); @@ -1512,9 +2025,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ShutdownMode != global::Tensorflow.WorkerShutdownMode.Default) { + output.WriteRawTag(8); + output.WriteEnum((int) ShutdownMode); + } + if (watchdogConfig_ != null) { + output.WriteRawTag(18); + output.WriteMessage(WatchdogConfig); + } + if (exitCode_ != null) { + output.WriteRawTag(26); + output.WriteMessage(ExitCode); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (ShutdownMode != global::Tensorflow.WorkerShutdownMode.Default) { @@ -1533,6 +2070,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(WorkerHeartbeatRequest other) { if (other == null) { return; @@ -1556,7 +2094,11 @@ public void MergeFrom(WorkerHeartbeatRequest other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1583,27 +2125,69 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + ShutdownMode = (global::Tensorflow.WorkerShutdownMode) input.ReadEnum(); + break; + } + case 18: { + if (watchdogConfig_ == null) { + WatchdogConfig = new global::Tensorflow.WatchdogConfig(); + } + input.ReadMessage(WatchdogConfig); + break; + } + case 26: { + if (exitCode_ == null) { + ExitCode = new global::Tensorflow.RequestedExitCode(); + } + input.ReadMessage(ExitCode); + break; + } + } + } + } + #endif + } - public sealed partial class WorkerHeartbeatResponse : pb::IMessage { + public sealed partial class WorkerHeartbeatResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WorkerHeartbeatResponse()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.EventReflection.Descriptor.MessageTypes[7]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WorkerHeartbeatResponse() { OnConstruction(); } @@ -1611,6 +2195,7 @@ public WorkerHeartbeatResponse() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WorkerHeartbeatResponse(WorkerHeartbeatResponse other) : this() { healthStatus_ = other.healthStatus_; workerLog_ = other.workerLog_.Clone(); @@ -1619,6 +2204,7 @@ public WorkerHeartbeatResponse(WorkerHeartbeatResponse other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public WorkerHeartbeatResponse Clone() { return new WorkerHeartbeatResponse(this); } @@ -1627,6 +2213,7 @@ public WorkerHeartbeatResponse Clone() { public const int HealthStatusFieldNumber = 1; private global::Tensorflow.WorkerHealth healthStatus_ = global::Tensorflow.WorkerHealth.Ok; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.WorkerHealth HealthStatus { get { return healthStatus_; } set { @@ -1640,6 +2227,7 @@ public WorkerHeartbeatResponse Clone() { = pb::FieldCodec.ForMessage(18, global::Tensorflow.Event.Parser); private readonly pbc::RepeatedField workerLog_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField WorkerLog { get { return workerLog_; } } @@ -1648,6 +2236,7 @@ public WorkerHeartbeatResponse Clone() { public const int HostnameFieldNumber = 3; private string hostname_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Hostname { get { return hostname_; } set { @@ -1656,11 +2245,13 @@ public string Hostname { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as WorkerHeartbeatResponse); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(WorkerHeartbeatResponse other) { if (ReferenceEquals(other, null)) { return false; @@ -1675,6 +2266,7 @@ public bool Equals(WorkerHeartbeatResponse other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (HealthStatus != global::Tensorflow.WorkerHealth.Ok) hash ^= HealthStatus.GetHashCode(); @@ -1687,12 +2279,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (HealthStatus != global::Tensorflow.WorkerHealth.Ok) { output.WriteRawTag(8); output.WriteEnum((int) HealthStatus); @@ -1705,9 +2302,30 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (HealthStatus != global::Tensorflow.WorkerHealth.Ok) { + output.WriteRawTag(8); + output.WriteEnum((int) HealthStatus); + } + workerLog_.WriteTo(ref output, _repeated_workerLog_codec); + if (Hostname.Length != 0) { + output.WriteRawTag(26); + output.WriteString(Hostname); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (HealthStatus != global::Tensorflow.WorkerHealth.Ok) { @@ -1724,6 +2342,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(WorkerHeartbeatResponse other) { if (other == null) { return; @@ -1739,7 +2358,11 @@ public void MergeFrom(WorkerHeartbeatResponse other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1760,7 +2383,35 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + HealthStatus = (global::Tensorflow.WorkerHealth) input.ReadEnum(); + break; + } + case 18: { + workerLog_.AddEntriesFrom(ref input, _repeated_workerLog_codec); + break; + } + case 26: { + Hostname = input.ReadString(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Executable.cs b/src/TensorFlowNET.Core/Protobuf/Executable.cs new file mode 100644 index 000000000..245c87ffb --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/Executable.cs @@ -0,0 +1,340 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/compiler/xla/service/cpu/executable.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Xla.Cpu { + + /// Holder for reflection information generated from tensorflow/compiler/xla/service/cpu/executable.proto + public static partial class ExecutableReflection { + + #region Descriptor + /// File descriptor for tensorflow/compiler/xla/service/cpu/executable.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static ExecutableReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "CjR0ZW5zb3JmbG93L2NvbXBpbGVyL3hsYS9zZXJ2aWNlL2NwdS9leGVjdXRh", + "YmxlLnByb3RvEgd4bGEuY3B1Gjd0ZW5zb3JmbG93L2NvbXBpbGVyL3hsYS9z", + "ZXJ2aWNlL2NwdS94bGFfZnJhbWV3b3JrLnByb3RvGil0ZW5zb3JmbG93L2Nv", + "bXBpbGVyL3hsYS9zZXJ2aWNlL2hsby5wcm90byLXAQocWGxhUnVudGltZUNw", + "dUV4ZWN1dGFibGVQcm90bxI+ChZ4bGFfcnVudGltZV9leGVjdXRhYmxlGAEg", + "ASgLMh4ueGxhLlhsYVJ1bnRpbWVFeGVjdXRhYmxlUHJvdG8SQAoVeGxhX2Zy", + "YW1ld29ya19tYXBwaW5nGAIgASgLMiEueGxhLmNwdS5YbGFGcmFtZXdvcmtN", + "YXBwaW5nUHJvdG8SNQoRYnVmZmVyX2Fzc2lnbm1lbnQYAyABKAsyGi54bGEu", + "QnVmZmVyQXNzaWdubWVudFByb3Rv")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { global::Xla.Cpu.XlaFrameworkReflection.Descriptor, global::Xla.HloReflection.Descriptor, }, + new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.Cpu.XlaRuntimeCpuExecutableProto), global::Xla.Cpu.XlaRuntimeCpuExecutableProto.Parser, new[]{ "XlaRuntimeExecutable", "XlaFrameworkMapping", "BufferAssignment" }, null, null, null, null) + })); + } + #endregion + + } + #region Messages + public sealed partial class XlaRuntimeCpuExecutableProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new XlaRuntimeCpuExecutableProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.Cpu.ExecutableReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaRuntimeCpuExecutableProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaRuntimeCpuExecutableProto(XlaRuntimeCpuExecutableProto other) : this() { + xlaRuntimeExecutable_ = other.xlaRuntimeExecutable_ != null ? other.xlaRuntimeExecutable_.Clone() : null; + xlaFrameworkMapping_ = other.xlaFrameworkMapping_ != null ? other.xlaFrameworkMapping_.Clone() : null; + bufferAssignment_ = other.bufferAssignment_ != null ? other.bufferAssignment_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaRuntimeCpuExecutableProto Clone() { + return new XlaRuntimeCpuExecutableProto(this); + } + + /// Field number for the "xla_runtime_executable" field. + public const int XlaRuntimeExecutableFieldNumber = 1; + private global::Xla.XlaRuntimeExecutableProto xlaRuntimeExecutable_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.XlaRuntimeExecutableProto XlaRuntimeExecutable { + get { return xlaRuntimeExecutable_; } + set { + xlaRuntimeExecutable_ = value; + } + } + + /// Field number for the "xla_framework_mapping" field. + public const int XlaFrameworkMappingFieldNumber = 2; + private global::Xla.Cpu.XlaFrameworkMappingProto xlaFrameworkMapping_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.Cpu.XlaFrameworkMappingProto XlaFrameworkMapping { + get { return xlaFrameworkMapping_; } + set { + xlaFrameworkMapping_ = value; + } + } + + /// Field number for the "buffer_assignment" field. + public const int BufferAssignmentFieldNumber = 3; + private global::Xla.BufferAssignmentProto bufferAssignment_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.BufferAssignmentProto BufferAssignment { + get { return bufferAssignment_; } + set { + bufferAssignment_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as XlaRuntimeCpuExecutableProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(XlaRuntimeCpuExecutableProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(XlaRuntimeExecutable, other.XlaRuntimeExecutable)) return false; + if (!object.Equals(XlaFrameworkMapping, other.XlaFrameworkMapping)) return false; + if (!object.Equals(BufferAssignment, other.BufferAssignment)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (xlaRuntimeExecutable_ != null) hash ^= XlaRuntimeExecutable.GetHashCode(); + if (xlaFrameworkMapping_ != null) hash ^= XlaFrameworkMapping.GetHashCode(); + if (bufferAssignment_ != null) hash ^= BufferAssignment.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (xlaRuntimeExecutable_ != null) { + output.WriteRawTag(10); + output.WriteMessage(XlaRuntimeExecutable); + } + if (xlaFrameworkMapping_ != null) { + output.WriteRawTag(18); + output.WriteMessage(XlaFrameworkMapping); + } + if (bufferAssignment_ != null) { + output.WriteRawTag(26); + output.WriteMessage(BufferAssignment); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (xlaRuntimeExecutable_ != null) { + output.WriteRawTag(10); + output.WriteMessage(XlaRuntimeExecutable); + } + if (xlaFrameworkMapping_ != null) { + output.WriteRawTag(18); + output.WriteMessage(XlaFrameworkMapping); + } + if (bufferAssignment_ != null) { + output.WriteRawTag(26); + output.WriteMessage(BufferAssignment); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (xlaRuntimeExecutable_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(XlaRuntimeExecutable); + } + if (xlaFrameworkMapping_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(XlaFrameworkMapping); + } + if (bufferAssignment_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(BufferAssignment); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(XlaRuntimeCpuExecutableProto other) { + if (other == null) { + return; + } + if (other.xlaRuntimeExecutable_ != null) { + if (xlaRuntimeExecutable_ == null) { + XlaRuntimeExecutable = new global::Xla.XlaRuntimeExecutableProto(); + } + XlaRuntimeExecutable.MergeFrom(other.XlaRuntimeExecutable); + } + if (other.xlaFrameworkMapping_ != null) { + if (xlaFrameworkMapping_ == null) { + XlaFrameworkMapping = new global::Xla.Cpu.XlaFrameworkMappingProto(); + } + XlaFrameworkMapping.MergeFrom(other.XlaFrameworkMapping); + } + if (other.bufferAssignment_ != null) { + if (bufferAssignment_ == null) { + BufferAssignment = new global::Xla.BufferAssignmentProto(); + } + BufferAssignment.MergeFrom(other.BufferAssignment); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (xlaRuntimeExecutable_ == null) { + XlaRuntimeExecutable = new global::Xla.XlaRuntimeExecutableProto(); + } + input.ReadMessage(XlaRuntimeExecutable); + break; + } + case 18: { + if (xlaFrameworkMapping_ == null) { + XlaFrameworkMapping = new global::Xla.Cpu.XlaFrameworkMappingProto(); + } + input.ReadMessage(XlaFrameworkMapping); + break; + } + case 26: { + if (bufferAssignment_ == null) { + BufferAssignment = new global::Xla.BufferAssignmentProto(); + } + input.ReadMessage(BufferAssignment); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (xlaRuntimeExecutable_ == null) { + XlaRuntimeExecutable = new global::Xla.XlaRuntimeExecutableProto(); + } + input.ReadMessage(XlaRuntimeExecutable); + break; + } + case 18: { + if (xlaFrameworkMapping_ == null) { + XlaFrameworkMapping = new global::Xla.Cpu.XlaFrameworkMappingProto(); + } + input.ReadMessage(XlaFrameworkMapping); + break; + } + case 26: { + if (bufferAssignment_ == null) { + BufferAssignment = new global::Xla.BufferAssignmentProto(); + } + input.ReadMessage(BufferAssignment); + break; + } + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/FullType.cs b/src/TensorFlowNET.Core/Protobuf/FullType.cs index a8b54b2a6..dee5571e8 100644 --- a/src/TensorFlowNET.Core/Protobuf/FullType.cs +++ b/src/TensorFlowNET.Core/Protobuf/FullType.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/full_type.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -25,26 +25,30 @@ static FullTypeReflection() { byte[] descriptorData = global::System.Convert.FromBase64String( string.Concat( "Cil0ZW5zb3JmbG93L2NvcmUvZnJhbWV3b3JrL2Z1bGxfdHlwZS5wcm90bxIK", - "dGVuc29yZmxvdyJyCgtGdWxsVHlwZURlZhInCgd0eXBlX2lkGAEgASgOMhYu", + "dGVuc29yZmxvdyJ/CgtGdWxsVHlwZURlZhInCgd0eXBlX2lkGAEgASgOMhYu", "dGVuc29yZmxvdy5GdWxsVHlwZUlkEiUKBGFyZ3MYAiADKAsyFy50ZW5zb3Jm", - "bG93LkZ1bGxUeXBlRGVmEgsKAXMYAyABKAlIAEIGCgRhdHRyKqwDCgpGdWxs", - "VHlwZUlkEg0KCVRGVF9VTlNFVBAAEgsKB1RGVF9WQVIQARILCgdURlRfQU5Z", - "EAISDwoLVEZUX1BST0RVQ1QQAxIQCgxURlRfQ0FMTEFCTEUQZBIPCgpURlRf", - "VEVOU09SEOgHEg4KCVRGVF9BUlJBWRDpBxIRCgxURlRfT1BUSU9OQUwQ6gcS", - "EAoLVEZUX0RBVEFTRVQQ9k4SDQoIVEZUX0JPT0wQyAESDgoJVEZUX1VJTlQ4", - "EMkBEg8KClRGVF9VSU5UMTYQygESDwoKVEZUX1VJTlQzMhDLARIPCgpURlRf", - "VUlOVDY0EMwBEg0KCFRGVF9JTlQ4EM0BEg4KCVRGVF9JTlQxNhDOARIOCglU", - "RlRfSU5UMzIQzwESDgoJVEZUX0lOVDY0ENABEg0KCFRGVF9IQUxGENEBEg4K", - "CVRGVF9GTE9BVBDSARIPCgpURlRfRE9VQkxFENMBEhEKDFRGVF9CRkxPQVQx", - "NhDXARISCg1URlRfQ09NUExFWDY0ENQBEhMKDlRGVF9DT01QTEVYMTI4ENUB", - "Eg8KClRGVF9TVFJJTkcQ1gFCfQoYb3JnLnRlbnNvcmZsb3cuZnJhbWV3b3Jr", - "Qg5GdWxsVHlwZVByb3Rvc1ABWkxnaXRodWIuY29tL3RlbnNvcmZsb3cvdGVu", - "c29yZmxvdy90ZW5zb3JmbG93L2dvL2NvcmUvZnJhbWV3b3JrL3R5cGVzX2dv", - "X3Byb3Rv+AEBYgZwcm90bzM=")); + "bG93LkZ1bGxUeXBlRGVmEgsKAXMYAyABKAlIABILCgFpGAQgASgDSABCBgoE", + "YXR0cirDBAoKRnVsbFR5cGVJZBINCglURlRfVU5TRVQQABILCgdURlRfVkFS", + "EAESCwoHVEZUX0FOWRACEg8KC1RGVF9QUk9EVUNUEAMSDQoJVEZUX05BTUVE", + "EAQSEAoMVEZUX0ZPUl9FQUNIEBQSEAoMVEZUX0NBTExBQkxFEGQSDwoKVEZU", + "X1RFTlNPUhDoBxIOCglURlRfQVJSQVkQ6QcSEQoMVEZUX09QVElPTkFMEOoH", + "EhAKC1RGVF9MSVRFUkFMEOsHEhAKC1RGVF9FTkNPREVEEOwHEg0KCFRGVF9C", + "T09MEMgBEg4KCVRGVF9VSU5UOBDJARIPCgpURlRfVUlOVDE2EMoBEg8KClRG", + "VF9VSU5UMzIQywESDwoKVEZUX1VJTlQ2NBDMARINCghURlRfSU5UOBDNARIO", + "CglURlRfSU5UMTYQzgESDgoJVEZUX0lOVDMyEM8BEg4KCVRGVF9JTlQ2NBDQ", + "ARINCghURlRfSEFMRhDRARIOCglURlRfRkxPQVQQ0gESDwoKVEZUX0RPVUJM", + "RRDTARIRCgxURlRfQkZMT0FUMTYQ1wESEgoNVEZUX0NPTVBMRVg2NBDUARIT", + "Cg5URlRfQ09NUExFWDEyOBDVARIPCgpURlRfU1RSSU5HENYBEhAKC1RGVF9E", + "QVRBU0VUEPZOEg8KClRGVF9SQUdHRUQQ904SEQoMVEZUX0lURVJBVE9SEPhO", + "EhMKDlRGVF9NVVRFWF9MT0NLENpPEhcKElRGVF9MRUdBQ1lfVkFSSUFOVBDb", + "T0KBAQoYb3JnLnRlbnNvcmZsb3cuZnJhbWV3b3JrQg5GdWxsVHlwZVByb3Rv", + "c1ABWlBnaXRodWIuY29tL3RlbnNvcmZsb3cvdGVuc29yZmxvdy90ZW5zb3Jm", + "bG93L2dvL2NvcmUvZnJhbWV3b3JrL2Z1bGxfdHlwZV9nb19wcm90b/gBAWIG", + "cHJvdG8z")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, new pbr::FileDescriptor[] { }, new pbr::GeneratedClrTypeInfo(new[] {typeof(global::Tensorflow.FullTypeId), }, null, new pbr::GeneratedClrTypeInfo[] { - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.FullTypeDef), global::Tensorflow.FullTypeDef.Parser, new[]{ "TypeId", "Args", "S" }, new[]{ "Attr" }, null, null, null) + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.FullTypeDef), global::Tensorflow.FullTypeDef.Parser, new[]{ "TypeId", "Args", "S", "I" }, new[]{ "Attr" }, null, null, null) })); } #endregion @@ -52,6 +56,7 @@ static FullTypeReflection() { } #region Enums /// + /// LINT.IfChange /// Experimental. Represents the complete type information of a TensorFlow value. /// public enum FullTypeId { @@ -69,7 +74,7 @@ public enum FullTypeId { /// TFT_TENSOR[TFT_VAR["T"]], TFT_TENSOR[TFT_VAR["T"]] are two tensors of /// identical element types. /// TFT_TENSOR[TFT_VAR["P"]], TFT_TENSOR[TFT_VAR["Q"]] are two tensors of - /// potentially different element types. + /// independent element types. /// [pbr::OriginalName("TFT_VAR")] TftVar = 1, /// @@ -90,14 +95,55 @@ public enum FullTypeId { /// [pbr::OriginalName("TFT_PRODUCT")] TftProduct = 3, /// + /// Represents a named field, with the name stored in the attribute. + /// + /// Parametrization: + /// TFT_NAMED[<type>]{<name>} + /// * <type> is the type of the field + /// * <name> is the field name, as string (thpugh can theoretically be an int + /// as well) + /// + /// Example: + /// TFT_RECORD[ + /// TFT_NAMED[TFT_TENSOR[TFT_INT32]]{'foo'}, + /// TFT_NAMED[TFT_TENSOR[TFT_FLOAT32]]{'bar'}, + /// ] + /// is a structure with two fields, an int tensor "foo" and a float tensor + /// "bar". + /// + [pbr::OriginalName("TFT_NAMED")] TftNamed = 4, + /// + /// Template definition. Expands the variables by repeating a template as + /// arguments of container. + /// + /// Parametrization: + /// TFT_FOR_EACH[<container_type>, <template>, <expansions>] + /// * <container_type> is the type of the container that the template will be + /// expanded into + /// * <template> is any type definition that potentially contains type + /// variables + /// * <expansions> is a TFT_VAR and may include more types in the future + /// + /// Example: + /// TFT_FOR_EACH[ + /// TFT_PRODUCT, + /// TFT_TENSOR[TFT_VAR["t"]], + /// TFT_VAR["t"] + /// ] + /// will substitute a T = TFT_INT32 to TFT_PRODUCT[TFT_TENSOR[TFT_INT32]] + /// and a T = (TFT_INT32, TFT_INT64) to + /// TFT_PRODUCT[TFT_TENSOR[TFT_INT32], TFT_TENSOR[TFT_INT64]]. + /// + [pbr::OriginalName("TFT_FOR_EACH")] TftForEach = 20, + /// /// Callable types describe functions and ops. /// /// Parametrization: /// TFT_CALLABLE[<arg type>, <return type>] - /// * <arg_type> is the type of the arguments; TFT_PRODUCT represents + /// * <arg type> is the type of the arguments; TFT_PRODUCT represents /// multiple /// arguments. - /// * <return_type> is the return type; TFT_PRODUCT represents multiple + /// * <return type> is the return type; TFT_PRODUCT represents multiple /// return values (that means that callables returning multiple things /// don't necessarily return a single tuple). /// @@ -115,9 +161,9 @@ public enum FullTypeId { /// /// Parametrization: /// TFT_TENSOR[<element type>, <shape type>] - /// * <element_type> is currently limited to one of the element types + /// * <element type> is currently limited to one of the element types /// defined below. - /// * <shape_type> is not yet defined, and may only be TFT_UNKNOWN for now. + /// * <shape type> is not yet defined, and may only be TFT_UNKNOWN for now. /// /// A TFT_SHAPE type will be defined in the future. /// @@ -140,7 +186,7 @@ public enum FullTypeId { /// /// Parametrization: /// TFT_ARRAY[<element type>] - /// * <element_type> may be any concrete type. + /// * <element type> may be any concrete type. /// /// Examples: /// TFT_ARRAY[TFT_TENSOR[TFT_INT32]] is a TensorArray holding int32 Tensors @@ -159,7 +205,7 @@ public enum FullTypeId { /// /// Parametrization: /// TFT_OPTIONAL[<element type>] - /// * <element_type> may be any concrete type. + /// * <element type> may be any concrete type. /// /// Examples: /// TFT_OPTIONAL[TFT_TENSOR[TFT_INT32]] is an Optional holding an int32 @@ -167,28 +213,31 @@ public enum FullTypeId { /// [pbr::OriginalName("TFT_OPTIONAL")] TftOptional = 1002, /// - /// Datasets created by tf.data ops and APIs. Datasets have generator/iterable - /// semantics, that is, one can construct an iterator from them. Like - /// Array, they are considered to return elements that can be described - /// by a single type. Unlike Array, they do not support random access or - /// mutation, and can potentially produce an infinite number of elements. - /// A datasets can produce logical structures (e.g. multiple elements). This - /// is expressed using TFT_PRODUCT. + /// Literal types describe compile-time constant values. + /// Literal types may also participate in dependent types. /// - /// Parametrization: TFT_ARRAY[<element type>]. - /// <element_type> may be a concrete type or a type symbol. It represents the - /// data type of the elements produced by the dataset. + /// Parametrization: + /// TFT_LITERAL[<value type>]{<value>} + /// * <value type> may be any concrete type compatible that can hold <value> + /// * <value> is the type's attribute, and holds the actual literal value /// /// Examples: - /// TFT_DATSET[TFT_TENSOR[TFT_INT32]] is a Dataset producing single int32 - /// Tensors of unknown shape. - /// TFT_DATSET[TFT_PRODUCT[TFT_TENSOR[TFT_INT32], TFT_TENSOR[TFT_FLOAT32]] is - /// a - /// Dataset producing pairs of Tensors, one integer and one float. - /// Note: The high ID number is to prepare for the eventuality that Datasets - /// will be supported by user types in the future. + /// TFT_LITERAL[TFT_INT32]{1} is the compile-time constant 1. /// - [pbr::OriginalName("TFT_DATASET")] TftDataset = 10102, + [pbr::OriginalName("TFT_LITERAL")] TftLiteral = 1003, + /// + /// Encoding types describe a value of a certain type, encoded as a different + /// type. + /// + /// Parametrization: + /// TFT_ENCODED[<encoded type>, <encoding type>] + /// * <encoded type> may be any type + /// * <encoding type> may be any type + /// + /// Examples: + /// TFT_ENCODING[TFT_INT32, TFT_STRING] is an integer encoded as string. + /// + [pbr::OriginalName("TFT_ENCODED")] TftEncoded = 1004, /// /// The bool element type. /// TODO(mdan): Quantized types, legacy representations (e.g. ref) @@ -222,6 +271,62 @@ public enum FullTypeId { /// The string element type. /// [pbr::OriginalName("TFT_STRING")] TftString = 214, + /// + /// Datasets created by tf.data ops and APIs. Datasets have generator/iterable + /// semantics, that is, one can construct an iterator from them. Like + /// Array, they are considered to return elements that can be described + /// by a single type. Unlike Array, they do not support random access or + /// mutation, and can potentially produce an infinite number of elements. + /// A datasets can produce logical structures (e.g. multiple elements). This + /// is expressed using TFT_PRODUCT. + /// + /// Parametrization: TFT_DATASET[<element type>]. + /// * <element type> may be a concrete type or a type symbol. It represents + /// the data type of the elements produced by the dataset. + /// + /// Examples: + /// TFT_DATSET[TFT_TENSOR[TFT_INT32]] is a Dataset producing single int32 + /// Tensors of unknown shape. + /// TFT_DATSET[TFT_PRODUCT[TFT_TENSOR[TFT_INT32], TFT_TENSOR[TFT_FLOAT32]] is + /// a Dataset producing pairs of Tensors, one integer and one float. + /// Note: The high ID number is to prepare for the eventuality that Datasets + /// will be supported by user types in the future. + /// + [pbr::OriginalName("TFT_DATASET")] TftDataset = 10102, + /// + /// A ragged tensor created by tf.ragged ops and APIs. + /// + /// Parametrization: TFT_RAGGED[<element_type>]. + /// + [pbr::OriginalName("TFT_RAGGED")] TftRagged = 10103, + /// + /// Iterators created by tf.data ops and APIs. Very similar to Datasets, except + /// they are mutable. + /// + /// Parametrization: TFT_ITERATOR[<element type>]. + /// * <element type> may be a concrete type or a type symbol. It represents + /// the data type of the elements produced by the dataset. + /// + [pbr::OriginalName("TFT_ITERATOR")] TftIterator = 10104, + /// + /// A mutex lock tensor, produced by tf.raw_ops.MutexLock. + /// Unlike strict execution models, where ownership of a lock is denoted by + /// "running after the lock has been acquired", in non-strict mode, lock + /// ownership is in the true sense: "the op argument representing the lock is + /// available". + /// Mutex locks are the dynamic counterpart of control dependencies. + /// TODO(mdan): Properly document this thing. + /// + /// Parametrization: TFT_MUTEX_LOCK[]. + /// + [pbr::OriginalName("TFT_MUTEX_LOCK")] TftMutexLock = 10202, + /// + /// The equivalent of a Tensor with DT_VARIANT dtype, kept here to simplify + /// translation. This type should not normally appear after type inference. + /// Note that LEGACY_VARIANT != ANY: TENSOR[INT32] is a subtype of ANY, but is + /// not a subtype of LEGACY_VARIANT. + /// + [pbr::OriginalName("TFT_LEGACY_VARIANT")] TftLegacyVariant = 10203, } #endregion @@ -233,23 +338,31 @@ public enum FullTypeId { /// particular the encoding imposes no restrictions on what the parameters of any /// type should be, which in particular needs to be true for type symbols. /// - public sealed partial class FullTypeDef : pb::IMessage { + public sealed partial class FullTypeDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new FullTypeDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.FullTypeReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FullTypeDef() { OnConstruction(); } @@ -257,6 +370,7 @@ public FullTypeDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FullTypeDef(FullTypeDef other) : this() { typeId_ = other.typeId_; args_ = other.args_.Clone(); @@ -264,12 +378,16 @@ public FullTypeDef(FullTypeDef other) : this() { case AttrOneofCase.S: S = other.S; break; + case AttrOneofCase.I: + I = other.I; + break; } _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FullTypeDef Clone() { return new FullTypeDef(this); } @@ -283,6 +401,7 @@ public FullTypeDef Clone() { /// symbol (Any, Union). See FullTypeId for details. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.FullTypeId TypeId { get { return typeId_; } set { @@ -296,6 +415,7 @@ public FullTypeDef Clone() { = pb::FieldCodec.ForMessage(18, global::Tensorflow.FullTypeDef.Parser); private readonly pbc::RepeatedField args_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Args { get { return args_; } } @@ -303,6 +423,7 @@ public FullTypeDef Clone() { /// Field number for the "s" field. public const int SFieldNumber = 3; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string S { get { return attrCase_ == AttrOneofCase.S ? (string) attr_ : ""; } set { @@ -311,30 +432,50 @@ public string S { } } + /// Field number for the "i" field. + public const int IFieldNumber = 4; + /// + /// TODO(mdan): list/tensor, map? Need to reconcile with TFT_RECORD, etc. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long I { + get { return attrCase_ == AttrOneofCase.I ? (long) attr_ : 0L; } + set { + attr_ = value; + attrCase_ = AttrOneofCase.I; + } + } + private object attr_; /// Enum of possible cases for the "attr" oneof. public enum AttrOneofCase { None = 0, S = 3, + I = 4, } private AttrOneofCase attrCase_ = AttrOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrOneofCase AttrCase { get { return attrCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearAttr() { attrCase_ = AttrOneofCase.None; attr_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as FullTypeDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(FullTypeDef other) { if (ReferenceEquals(other, null)) { return false; @@ -345,16 +486,19 @@ public bool Equals(FullTypeDef other) { if (TypeId != other.TypeId) return false; if(!args_.Equals(other.args_)) return false; if (S != other.S) return false; + if (I != other.I) return false; if (AttrCase != other.AttrCase) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (TypeId != global::Tensorflow.FullTypeId.TftUnset) hash ^= TypeId.GetHashCode(); hash ^= args_.GetHashCode(); if (attrCase_ == AttrOneofCase.S) hash ^= S.GetHashCode(); + if (attrCase_ == AttrOneofCase.I) hash ^= I.GetHashCode(); hash ^= (int) attrCase_; if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); @@ -363,12 +507,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (TypeId != global::Tensorflow.FullTypeId.TftUnset) { output.WriteRawTag(8); output.WriteEnum((int) TypeId); @@ -378,12 +527,41 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(26); output.WriteString(S); } + if (attrCase_ == AttrOneofCase.I) { + output.WriteRawTag(32); + output.WriteInt64(I); + } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (TypeId != global::Tensorflow.FullTypeId.TftUnset) { + output.WriteRawTag(8); + output.WriteEnum((int) TypeId); + } + args_.WriteTo(ref output, _repeated_args_codec); + if (attrCase_ == AttrOneofCase.S) { + output.WriteRawTag(26); + output.WriteString(S); + } + if (attrCase_ == AttrOneofCase.I) { + output.WriteRawTag(32); + output.WriteInt64(I); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (TypeId != global::Tensorflow.FullTypeId.TftUnset) { @@ -393,6 +571,9 @@ public int CalculateSize() { if (attrCase_ == AttrOneofCase.S) { size += 1 + pb::CodedOutputStream.ComputeStringSize(S); } + if (attrCase_ == AttrOneofCase.I) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(I); + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -400,6 +581,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(FullTypeDef other) { if (other == null) { return; @@ -412,13 +594,20 @@ public void MergeFrom(FullTypeDef other) { case AttrOneofCase.S: S = other.S; break; + case AttrOneofCase.I: + I = other.I; + break; } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -437,9 +626,45 @@ public void MergeFrom(pb::CodedInputStream input) { S = input.ReadString(); break; } + case 32: { + I = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + TypeId = (global::Tensorflow.FullTypeId) input.ReadEnum(); + break; + } + case 18: { + args_.AddEntriesFrom(ref input, _repeated_args_codec); + break; + } + case 26: { + S = input.ReadString(); + break; + } + case 32: { + I = input.ReadInt64(); + break; + } } } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Function.cs b/src/TensorFlowNET.Core/Protobuf/Function.cs index 63cdc44f4..800e64442 100644 --- a/src/TensorFlowNET.Core/Protobuf/Function.cs +++ b/src/TensorFlowNET.Core/Protobuf/Function.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/function.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -74,23 +74,31 @@ static FunctionReflection() { /// /// A library is a set of named functions. /// - public sealed partial class FunctionDefLibrary : pb::IMessage { + public sealed partial class FunctionDefLibrary : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new FunctionDefLibrary()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.FunctionReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionDefLibrary() { OnConstruction(); } @@ -98,6 +106,7 @@ public FunctionDefLibrary() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionDefLibrary(FunctionDefLibrary other) : this() { function_ = other.function_.Clone(); gradient_ = other.gradient_.Clone(); @@ -106,6 +115,7 @@ public FunctionDefLibrary(FunctionDefLibrary other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionDefLibrary Clone() { return new FunctionDefLibrary(this); } @@ -116,6 +126,7 @@ public FunctionDefLibrary Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.FunctionDef.Parser); private readonly pbc::RepeatedField function_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Function { get { return function_; } } @@ -126,6 +137,7 @@ public FunctionDefLibrary Clone() { = pb::FieldCodec.ForMessage(18, global::Tensorflow.GradientDef.Parser); private readonly pbc::RepeatedField gradient_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Gradient { get { return gradient_; } } @@ -136,16 +148,19 @@ public FunctionDefLibrary Clone() { = pb::FieldCodec.ForMessage(26, global::Tensorflow.RegisteredGradient.Parser); private readonly pbc::RepeatedField registeredGradients_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField RegisteredGradients { get { return registeredGradients_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as FunctionDefLibrary); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(FunctionDefLibrary other) { if (ReferenceEquals(other, null)) { return false; @@ -160,6 +175,7 @@ public bool Equals(FunctionDefLibrary other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= function_.GetHashCode(); @@ -172,21 +188,41 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else function_.WriteTo(output, _repeated_function_codec); gradient_.WriteTo(output, _repeated_gradient_codec); registeredGradients_.WriteTo(output, _repeated_registeredGradients_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + function_.WriteTo(ref output, _repeated_function_codec); + gradient_.WriteTo(ref output, _repeated_gradient_codec); + registeredGradients_.WriteTo(ref output, _repeated_registeredGradients_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += function_.CalculateSize(_repeated_function_codec); @@ -199,6 +235,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(FunctionDefLibrary other) { if (other == null) { return; @@ -210,7 +247,11 @@ public void MergeFrom(FunctionDefLibrary other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -231,8 +272,36 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + function_.AddEntriesFrom(ref input, _repeated_function_codec); + break; + } + case 18: { + gradient_.AddEntriesFrom(ref input, _repeated_gradient_codec); + break; + } + case 26: { + registeredGradients_.AddEntriesFrom(ref input, _repeated_registeredGradients_codec); + break; + } + } + } + } + #endif + } /// @@ -243,23 +312,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// TODO(zhifengc): /// * device spec, etc. /// - public sealed partial class FunctionDef : pb::IMessage { + public sealed partial class FunctionDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new FunctionDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.FunctionReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionDef() { OnConstruction(); } @@ -267,6 +344,7 @@ public FunctionDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionDef(FunctionDef other) : this() { signature_ = other.signature_ != null ? other.signature_.Clone() : null; attr_ = other.attr_.Clone(); @@ -279,6 +357,7 @@ public FunctionDef(FunctionDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionDef Clone() { return new FunctionDef(this); } @@ -291,6 +370,7 @@ public FunctionDef Clone() { /// attrs etc. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.OpDef Signature { get { return signature_; } set { @@ -307,6 +387,7 @@ public FunctionDef Clone() { /// Attributes specific to this function definition. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField Attr { get { return attr_; } } @@ -317,6 +398,7 @@ public FunctionDef Clone() { = new pbc::MapField.Codec(pb::FieldCodec.ForUInt32(8, 0), pb::FieldCodec.ForMessage(18, global::Tensorflow.FunctionDef.Types.ArgAttrs.Parser), 58); private readonly pbc::MapField argAttr_ = new pbc::MapField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField ArgAttr { get { return argAttr_; } } @@ -338,6 +420,7 @@ public FunctionDef Clone() { /// "_resource_arg_unique_id" attribute. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField ResourceArgUniqueId { get { return resourceArgUniqueId_; } } @@ -353,6 +436,7 @@ public FunctionDef Clone() { /// be a builtin op. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField NodeDef { get { return nodeDef_; } } @@ -367,6 +451,7 @@ public FunctionDef Clone() { /// outputs from `node_def` that should be returned by the function. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField Ret { get { return ret_; } } @@ -381,16 +466,19 @@ public FunctionDef Clone() { /// `node_def` which should be control outputs of this function. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField ControlRet { get { return controlRet_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as FunctionDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(FunctionDef other) { if (ReferenceEquals(other, null)) { return false; @@ -409,6 +497,7 @@ public bool Equals(FunctionDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (signature_ != null) hash ^= Signature.GetHashCode(); @@ -425,12 +514,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (signature_ != null) { output.WriteRawTag(10); output.WriteMessage(Signature); @@ -444,9 +538,31 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (signature_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Signature); + } + nodeDef_.WriteTo(ref output, _repeated_nodeDef_codec); + ret_.WriteTo(ref output, _map_ret_codec); + attr_.WriteTo(ref output, _map_attr_codec); + controlRet_.WriteTo(ref output, _map_controlRet_codec); + argAttr_.WriteTo(ref output, _map_argAttr_codec); + resourceArgUniqueId_.WriteTo(ref output, _map_resourceArgUniqueId_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (signature_ != null) { @@ -465,6 +581,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(FunctionDef other) { if (other == null) { return; @@ -485,7 +602,11 @@ public void MergeFrom(FunctionDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -525,33 +646,89 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (signature_ == null) { + Signature = new global::Tensorflow.OpDef(); + } + input.ReadMessage(Signature); + break; + } + case 26: { + nodeDef_.AddEntriesFrom(ref input, _repeated_nodeDef_codec); + break; + } + case 34: { + ret_.AddEntriesFrom(ref input, _map_ret_codec); + break; + } + case 42: { + attr_.AddEntriesFrom(ref input, _map_attr_codec); + break; + } + case 50: { + controlRet_.AddEntriesFrom(ref input, _map_controlRet_codec); + break; + } + case 58: { + argAttr_.AddEntriesFrom(ref input, _map_argAttr_codec); + break; + } + case 66: { + resourceArgUniqueId_.AddEntriesFrom(ref input, _map_resourceArgUniqueId_codec); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the FunctionDef message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Attributes for function arguments. These attributes are the same set of /// valid attributes as to _Arg nodes. /// - public sealed partial class ArgAttrs : pb::IMessage { + public sealed partial class ArgAttrs : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ArgAttrs()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.FunctionDef.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ArgAttrs() { OnConstruction(); } @@ -559,12 +736,14 @@ public ArgAttrs() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ArgAttrs(ArgAttrs other) : this() { attr_ = other.attr_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ArgAttrs Clone() { return new ArgAttrs(this); } @@ -575,16 +754,19 @@ public ArgAttrs Clone() { = new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForMessage(18, global::Tensorflow.AttrValue.Parser), 10); private readonly pbc::MapField attr_ = new pbc::MapField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField Attr { get { return attr_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ArgAttrs); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ArgAttrs other) { if (ReferenceEquals(other, null)) { return false; @@ -597,6 +779,7 @@ public bool Equals(ArgAttrs other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= Attr.GetHashCode(); @@ -607,19 +790,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else attr_.WriteTo(output, _map_attr_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + attr_.WriteTo(ref output, _map_attr_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += attr_.CalculateSize(_map_attr_codec); @@ -630,6 +831,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ArgAttrs other) { if (other == null) { return; @@ -639,7 +841,11 @@ public void MergeFrom(ArgAttrs other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -652,7 +858,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + attr_.AddEntriesFrom(ref input, _map_attr_codec); + break; + } + } + } } + #endif } @@ -681,23 +907,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// loss function). dL/dx_i is the partial derivative of L with respect /// to x_i. /// - public sealed partial class GradientDef : pb::IMessage { + public sealed partial class GradientDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GradientDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.FunctionReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GradientDef() { OnConstruction(); } @@ -705,6 +939,7 @@ public GradientDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GradientDef(GradientDef other) : this() { functionName_ = other.functionName_; gradientFunc_ = other.gradientFunc_; @@ -712,6 +947,7 @@ public GradientDef(GradientDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GradientDef Clone() { return new GradientDef(this); } @@ -723,6 +959,7 @@ public GradientDef Clone() { /// The function name. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string FunctionName { get { return functionName_; } set { @@ -737,6 +974,7 @@ public string FunctionName { /// The gradient function's name. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string GradientFunc { get { return gradientFunc_; } set { @@ -745,11 +983,13 @@ public string GradientFunc { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GradientDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GradientDef other) { if (ReferenceEquals(other, null)) { return false; @@ -763,6 +1003,7 @@ public bool Equals(GradientDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (FunctionName.Length != 0) hash ^= FunctionName.GetHashCode(); @@ -774,12 +1015,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (FunctionName.Length != 0) { output.WriteRawTag(10); output.WriteString(FunctionName); @@ -791,9 +1037,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (FunctionName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(FunctionName); + } + if (GradientFunc.Length != 0) { + output.WriteRawTag(18); + output.WriteString(GradientFunc); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (FunctionName.Length != 0) { @@ -809,6 +1075,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GradientDef other) { if (other == null) { return; @@ -823,7 +1090,11 @@ public void MergeFrom(GradientDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -840,7 +1111,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + FunctionName = input.ReadString(); + break; + } + case 18: { + GradientFunc = input.ReadString(); + break; + } + } + } } + #endif } @@ -850,23 +1145,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// Unlike GradientDef, these gradients are identified by op type, and not /// directly linked to any function. /// - public sealed partial class RegisteredGradient : pb::IMessage { + public sealed partial class RegisteredGradient : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RegisteredGradient()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.FunctionReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RegisteredGradient() { OnConstruction(); } @@ -874,6 +1177,7 @@ public RegisteredGradient() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RegisteredGradient(RegisteredGradient other) : this() { gradientFunc_ = other.gradientFunc_; registeredOpType_ = other.registeredOpType_; @@ -881,6 +1185,7 @@ public RegisteredGradient(RegisteredGradient other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RegisteredGradient Clone() { return new RegisteredGradient(this); } @@ -892,6 +1197,7 @@ public RegisteredGradient Clone() { /// The gradient function's name. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string GradientFunc { get { return gradientFunc_; } set { @@ -906,6 +1212,7 @@ public string GradientFunc { /// The gradient function's registered op type. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string RegisteredOpType { get { return registeredOpType_; } set { @@ -914,11 +1221,13 @@ public string RegisteredOpType { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as RegisteredGradient); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(RegisteredGradient other) { if (ReferenceEquals(other, null)) { return false; @@ -932,6 +1241,7 @@ public bool Equals(RegisteredGradient other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (GradientFunc.Length != 0) hash ^= GradientFunc.GetHashCode(); @@ -943,12 +1253,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (GradientFunc.Length != 0) { output.WriteRawTag(10); output.WriteString(GradientFunc); @@ -960,9 +1275,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (GradientFunc.Length != 0) { + output.WriteRawTag(10); + output.WriteString(GradientFunc); + } + if (RegisteredOpType.Length != 0) { + output.WriteRawTag(18); + output.WriteString(RegisteredOpType); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (GradientFunc.Length != 0) { @@ -978,6 +1313,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(RegisteredGradient other) { if (other == null) { return; @@ -992,7 +1328,11 @@ public void MergeFrom(RegisteredGradient other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1009,7 +1349,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + GradientFunc = input.ReadString(); + break; + } + case 18: { + RegisteredOpType = input.ReadString(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Gen.bat b/src/TensorFlowNET.Core/Protobuf/Gen.bat index fdb962f80..6b898bcb8 100644 --- a/src/TensorFlowNET.Core/Protobuf/Gen.bat +++ b/src/TensorFlowNET.Core/Protobuf/Gen.bat @@ -1,7 +1,7 @@ @ECHO OFF -set SRC_DIR=D:/SciSharp/tensorflow-google -set DST_DIR=D:/SciSharp/TensorFlow.NET/src/TensorFlowNET.Core/Protobuf +set SRC_DIR=D:/development/tf.net/tensorflow-2.11.0 +set DST_DIR=D:/development/tf.net/gen_proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/framework/resource_handle.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/framework/tensor_shape.proto @@ -30,6 +30,10 @@ protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/saver.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/saved_object_graph.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/saved_model.proto ECHO Download `any.proto` from https://github.com/protocolbuffers/protobuf/tree/master/src/google/protobuf +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/coordination_service.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/coordination_config.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/service_config.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/data_service.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/meta_graph.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/cluster.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/config.proto @@ -41,6 +45,14 @@ protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/struct.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/protobuf/verifier_config.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/util/event.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/core/util/memmapped_file_system.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/tsl/protobuf/histogram.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/compiler/xla/xla.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/compiler/xla/xla_data.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/compiler/xla/service/hlo.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/compiler/xla/pjrt/distributed/protocol.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/compiler/xla/service/gpu/executable.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/compiler/xla/service/cpu/executable.proto +protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/compiler/xla/service/cpu/xla_framework.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/python/training/checkpoint_state.proto protoc -I=%SRC_DIR% --csharp_out=%DST_DIR% tensorflow/python/framework/cpp_shape_inference.proto diff --git a/src/TensorFlowNET.Core/Protobuf/Graph.cs b/src/TensorFlowNET.Core/Protobuf/Graph.cs index e5e782cca..0b7644eba 100644 --- a/src/TensorFlowNET.Core/Protobuf/Graph.cs +++ b/src/TensorFlowNET.Core/Protobuf/Graph.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/graph.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -48,23 +48,31 @@ static GraphReflection() { /// /// Represents the graph of operations /// - public sealed partial class GraphDef : pb::IMessage { + public sealed partial class GraphDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GraphReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphDef() { OnConstruction(); } @@ -72,6 +80,7 @@ public GraphDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphDef(GraphDef other) : this() { node_ = other.node_.Clone(); versions_ = other.versions_ != null ? other.versions_.Clone() : null; @@ -81,6 +90,7 @@ public GraphDef(GraphDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphDef Clone() { return new GraphDef(this); } @@ -91,6 +101,7 @@ public GraphDef Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.NodeDef.Parser); private readonly pbc::RepeatedField node_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Node { get { return node_; } } @@ -104,6 +115,7 @@ public GraphDef Clone() { /// each release of TensorFlow will support a range of GraphDef versions. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.VersionDef Versions { get { return versions_; } set { @@ -121,6 +133,7 @@ public GraphDef Clone() { /// [global::System.ObsoleteAttribute] [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Version { get { return version_; } set { @@ -159,6 +172,7 @@ public int Version { /// function are ready. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.FunctionDefLibrary Library { get { return library_; } set { @@ -167,11 +181,13 @@ public int Version { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphDef other) { if (ReferenceEquals(other, null)) { return false; @@ -187,6 +203,7 @@ public bool Equals(GraphDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= node_.GetHashCode(); @@ -200,12 +217,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else node_.WriteTo(output, _repeated_node_codec); if (library_ != null) { output.WriteRawTag(18); @@ -222,9 +244,34 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + node_.WriteTo(ref output, _repeated_node_codec); + if (library_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Library); + } + if (Version != 0) { + output.WriteRawTag(24); + output.WriteInt32(Version); + } + if (versions_ != null) { + output.WriteRawTag(34); + output.WriteMessage(Versions); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += node_.CalculateSize(_repeated_node_codec); @@ -244,6 +291,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphDef other) { if (other == null) { return; @@ -268,7 +316,11 @@ public void MergeFrom(GraphDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -299,7 +351,45 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + node_.AddEntriesFrom(ref input, _repeated_node_codec); + break; + } + case 18: { + if (library_ == null) { + Library = new global::Tensorflow.FunctionDefLibrary(); + } + input.ReadMessage(Library); + break; + } + case 24: { + Version = input.ReadInt32(); + break; + } + case 34: { + if (versions_ == null) { + Versions = new global::Tensorflow.VersionDef(); + } + input.ReadMessage(Versions); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/GraphTransferInfo.cs b/src/TensorFlowNET.Core/Protobuf/GraphTransferInfo.cs index 7094e6255..0292e8170 100644 --- a/src/TensorFlowNET.Core/Protobuf/GraphTransferInfo.cs +++ b/src/TensorFlowNET.Core/Protobuf/GraphTransferInfo.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/graph_transfer_info.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -75,23 +75,31 @@ static GraphTransferInfoReflection() { } #region Messages - public sealed partial class GraphTransferNodeInput : pb::IMessage { + public sealed partial class GraphTransferNodeInput : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphTransferNodeInput()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GraphTransferInfoReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeInput() { OnConstruction(); } @@ -99,6 +107,7 @@ public GraphTransferNodeInput() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeInput(GraphTransferNodeInput other) : this() { nodeId_ = other.nodeId_; outputPort_ = other.outputPort_; @@ -106,6 +115,7 @@ public GraphTransferNodeInput(GraphTransferNodeInput other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeInput Clone() { return new GraphTransferNodeInput(this); } @@ -114,6 +124,7 @@ public GraphTransferNodeInput Clone() { public const int NodeIdFieldNumber = 1; private int nodeId_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NodeId { get { return nodeId_; } set { @@ -125,6 +136,7 @@ public int NodeId { public const int OutputPortFieldNumber = 2; private int outputPort_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int OutputPort { get { return outputPort_; } set { @@ -133,11 +145,13 @@ public int OutputPort { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphTransferNodeInput); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphTransferNodeInput other) { if (ReferenceEquals(other, null)) { return false; @@ -151,6 +165,7 @@ public bool Equals(GraphTransferNodeInput other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (NodeId != 0) hash ^= NodeId.GetHashCode(); @@ -162,12 +177,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (NodeId != 0) { output.WriteRawTag(8); output.WriteInt32(NodeId); @@ -179,9 +199,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (NodeId != 0) { + output.WriteRawTag(8); + output.WriteInt32(NodeId); + } + if (OutputPort != 0) { + output.WriteRawTag(16); + output.WriteInt32(OutputPort); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (NodeId != 0) { @@ -197,6 +237,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphTransferNodeInput other) { if (other == null) { return; @@ -211,7 +252,11 @@ public void MergeFrom(GraphTransferNodeInput other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -228,27 +273,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + NodeId = input.ReadInt32(); + break; + } + case 16: { + OutputPort = input.ReadInt32(); + break; + } + } + } } + #endif } - public sealed partial class GraphTransferNodeInfo : pb::IMessage { + public sealed partial class GraphTransferNodeInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphTransferNodeInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GraphTransferInfoReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeInfo() { OnConstruction(); } @@ -256,6 +333,7 @@ public GraphTransferNodeInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeInfo(GraphTransferNodeInfo other) : this() { name_ = other.name_; nodeId_ = other.nodeId_; @@ -268,6 +346,7 @@ public GraphTransferNodeInfo(GraphTransferNodeInfo other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeInfo Clone() { return new GraphTransferNodeInfo(this); } @@ -276,6 +355,7 @@ public GraphTransferNodeInfo Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -287,6 +367,7 @@ public string Name { public const int NodeIdFieldNumber = 2; private int nodeId_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NodeId { get { return nodeId_; } set { @@ -298,6 +379,7 @@ public int NodeId { public const int TypeNameFieldNumber = 3; private string typeName_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string TypeName { get { return typeName_; } set { @@ -309,6 +391,7 @@ public string TypeName { public const int SocOpIdFieldNumber = 4; private int socOpId_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int SocOpId { get { return socOpId_; } set { @@ -320,6 +403,7 @@ public int SocOpId { public const int PaddingIdFieldNumber = 5; private int paddingId_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int PaddingId { get { return paddingId_; } set { @@ -331,6 +415,7 @@ public int PaddingId { public const int InputCountFieldNumber = 6; private int inputCount_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int InputCount { get { return inputCount_; } set { @@ -342,6 +427,7 @@ public int InputCount { public const int OutputCountFieldNumber = 7; private int outputCount_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int OutputCount { get { return outputCount_; } set { @@ -350,11 +436,13 @@ public int OutputCount { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphTransferNodeInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphTransferNodeInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -373,6 +461,7 @@ public bool Equals(GraphTransferNodeInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -389,12 +478,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -426,9 +520,49 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (NodeId != 0) { + output.WriteRawTag(16); + output.WriteInt32(NodeId); + } + if (TypeName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(TypeName); + } + if (SocOpId != 0) { + output.WriteRawTag(32); + output.WriteInt32(SocOpId); + } + if (PaddingId != 0) { + output.WriteRawTag(40); + output.WriteInt32(PaddingId); + } + if (InputCount != 0) { + output.WriteRawTag(48); + output.WriteInt32(InputCount); + } + if (OutputCount != 0) { + output.WriteRawTag(56); + output.WriteInt32(OutputCount); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -459,6 +593,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphTransferNodeInfo other) { if (other == null) { return; @@ -488,7 +623,11 @@ public void MergeFrom(GraphTransferNodeInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -525,27 +664,79 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 16: { + NodeId = input.ReadInt32(); + break; + } + case 26: { + TypeName = input.ReadString(); + break; + } + case 32: { + SocOpId = input.ReadInt32(); + break; + } + case 40: { + PaddingId = input.ReadInt32(); + break; + } + case 48: { + InputCount = input.ReadInt32(); + break; + } + case 56: { + OutputCount = input.ReadInt32(); + break; + } + } + } + } + #endif + } - public sealed partial class GraphTransferConstNodeInfo : pb::IMessage { + public sealed partial class GraphTransferConstNodeInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphTransferConstNodeInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GraphTransferInfoReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferConstNodeInfo() { OnConstruction(); } @@ -553,6 +744,7 @@ public GraphTransferConstNodeInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferConstNodeInfo(GraphTransferConstNodeInfo other) : this() { name_ = other.name_; nodeId_ = other.nodeId_; @@ -563,6 +755,7 @@ public GraphTransferConstNodeInfo(GraphTransferConstNodeInfo other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferConstNodeInfo Clone() { return new GraphTransferConstNodeInfo(this); } @@ -571,6 +764,7 @@ public GraphTransferConstNodeInfo Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -582,6 +776,7 @@ public string Name { public const int NodeIdFieldNumber = 2; private int nodeId_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NodeId { get { return nodeId_; } set { @@ -595,6 +790,7 @@ public int NodeId { = pb::FieldCodec.ForInt64(26); private readonly pbc::RepeatedField shape_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Shape { get { return shape_; } } @@ -603,6 +799,7 @@ public int NodeId { public const int DataFieldNumber = 4; private pb::ByteString data_ = pb::ByteString.Empty; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString Data { get { return data_; } set { @@ -614,6 +811,7 @@ public int NodeId { public const int DtypeFieldNumber = 5; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -622,11 +820,13 @@ public int NodeId { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphTransferConstNodeInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphTransferConstNodeInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -643,6 +843,7 @@ public bool Equals(GraphTransferConstNodeInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -657,12 +858,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -683,9 +889,38 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (NodeId != 0) { + output.WriteRawTag(16); + output.WriteInt32(NodeId); + } + shape_.WriteTo(ref output, _repeated_shape_codec); + if (Data.Length != 0) { + output.WriteRawTag(34); + output.WriteBytes(Data); + } + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(40); + output.WriteEnum((int) Dtype); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -708,6 +943,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphTransferConstNodeInfo other) { if (other == null) { return; @@ -729,7 +965,11 @@ public void MergeFrom(GraphTransferConstNodeInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -759,27 +999,72 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 16: { + NodeId = input.ReadInt32(); + break; + } + case 26: + case 24: { + shape_.AddEntriesFrom(ref input, _repeated_shape_codec); + break; + } + case 34: { + Data = input.ReadBytes(); + break; + } + case 40: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + } + } + } + #endif + } - public sealed partial class GraphTransferNodeInputInfo : pb::IMessage { + public sealed partial class GraphTransferNodeInputInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphTransferNodeInputInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GraphTransferInfoReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeInputInfo() { OnConstruction(); } @@ -787,6 +1072,7 @@ public GraphTransferNodeInputInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeInputInfo(GraphTransferNodeInputInfo other) : this() { nodeId_ = other.nodeId_; nodeInput_ = other.nodeInput_.Clone(); @@ -794,6 +1080,7 @@ public GraphTransferNodeInputInfo(GraphTransferNodeInputInfo other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeInputInfo Clone() { return new GraphTransferNodeInputInfo(this); } @@ -802,6 +1089,7 @@ public GraphTransferNodeInputInfo Clone() { public const int NodeIdFieldNumber = 1; private int nodeId_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NodeId { get { return nodeId_; } set { @@ -815,16 +1103,19 @@ public int NodeId { = pb::FieldCodec.ForMessage(18, global::Tensorflow.GraphTransferNodeInput.Parser); private readonly pbc::RepeatedField nodeInput_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField NodeInput { get { return nodeInput_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphTransferNodeInputInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphTransferNodeInputInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -838,6 +1129,7 @@ public bool Equals(GraphTransferNodeInputInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (NodeId != 0) hash ^= NodeId.GetHashCode(); @@ -849,12 +1141,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (NodeId != 0) { output.WriteRawTag(8); output.WriteInt32(NodeId); @@ -863,9 +1160,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (NodeId != 0) { + output.WriteRawTag(8); + output.WriteInt32(NodeId); + } + nodeInput_.WriteTo(ref output, _repeated_nodeInput_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (NodeId != 0) { @@ -879,6 +1193,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphTransferNodeInputInfo other) { if (other == null) { return; @@ -891,7 +1206,11 @@ public void MergeFrom(GraphTransferNodeInputInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -908,27 +1227,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + NodeId = input.ReadInt32(); + break; + } + case 18: { + nodeInput_.AddEntriesFrom(ref input, _repeated_nodeInput_codec); + break; + } + } + } } + #endif } - public sealed partial class GraphTransferNodeOutputInfo : pb::IMessage { + public sealed partial class GraphTransferNodeOutputInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphTransferNodeOutputInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GraphTransferInfoReflection.Descriptor.MessageTypes[4]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeOutputInfo() { OnConstruction(); } @@ -936,6 +1287,7 @@ public GraphTransferNodeOutputInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeOutputInfo(GraphTransferNodeOutputInfo other) : this() { nodeId_ = other.nodeId_; maxByteSize_ = other.maxByteSize_.Clone(); @@ -943,6 +1295,7 @@ public GraphTransferNodeOutputInfo(GraphTransferNodeOutputInfo other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferNodeOutputInfo Clone() { return new GraphTransferNodeOutputInfo(this); } @@ -951,6 +1304,7 @@ public GraphTransferNodeOutputInfo Clone() { public const int NodeIdFieldNumber = 1; private int nodeId_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NodeId { get { return nodeId_; } set { @@ -964,16 +1318,19 @@ public int NodeId { = pb::FieldCodec.ForInt32(18); private readonly pbc::RepeatedField maxByteSize_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField MaxByteSize { get { return maxByteSize_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphTransferNodeOutputInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphTransferNodeOutputInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -987,6 +1344,7 @@ public bool Equals(GraphTransferNodeOutputInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (NodeId != 0) hash ^= NodeId.GetHashCode(); @@ -998,12 +1356,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (NodeId != 0) { output.WriteRawTag(8); output.WriteInt32(NodeId); @@ -1012,9 +1375,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (NodeId != 0) { + output.WriteRawTag(8); + output.WriteInt32(NodeId); + } + maxByteSize_.WriteTo(ref output, _repeated_maxByteSize_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (NodeId != 0) { @@ -1028,6 +1408,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphTransferNodeOutputInfo other) { if (other == null) { return; @@ -1040,7 +1421,11 @@ public void MergeFrom(GraphTransferNodeOutputInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1058,27 +1443,60 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + NodeId = input.ReadInt32(); + break; + } + case 18: + case 16: { + maxByteSize_.AddEntriesFrom(ref input, _repeated_maxByteSize_codec); + break; + } + } + } + } + #endif + } - public sealed partial class GraphTransferGraphInputNodeInfo : pb::IMessage { + public sealed partial class GraphTransferGraphInputNodeInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphTransferGraphInputNodeInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GraphTransferInfoReflection.Descriptor.MessageTypes[5]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferGraphInputNodeInfo() { OnConstruction(); } @@ -1086,6 +1504,7 @@ public GraphTransferGraphInputNodeInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferGraphInputNodeInfo(GraphTransferGraphInputNodeInfo other) : this() { name_ = other.name_; shape_ = other.shape_.Clone(); @@ -1094,6 +1513,7 @@ public GraphTransferGraphInputNodeInfo(GraphTransferGraphInputNodeInfo other) : } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferGraphInputNodeInfo Clone() { return new GraphTransferGraphInputNodeInfo(this); } @@ -1102,6 +1522,7 @@ public GraphTransferGraphInputNodeInfo Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -1115,6 +1536,7 @@ public string Name { = pb::FieldCodec.ForInt64(18); private readonly pbc::RepeatedField shape_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Shape { get { return shape_; } } @@ -1123,6 +1545,7 @@ public string Name { public const int DtypeFieldNumber = 3; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -1131,11 +1554,13 @@ public string Name { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphTransferGraphInputNodeInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphTransferGraphInputNodeInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -1150,6 +1575,7 @@ public bool Equals(GraphTransferGraphInputNodeInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -1162,12 +1588,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -1180,9 +1611,30 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + shape_.WriteTo(ref output, _repeated_shape_codec); + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(24); + output.WriteEnum((int) Dtype); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -1199,6 +1651,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphTransferGraphInputNodeInfo other) { if (other == null) { return; @@ -1214,7 +1667,11 @@ public void MergeFrom(GraphTransferGraphInputNodeInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1236,27 +1693,64 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: + case 16: { + shape_.AddEntriesFrom(ref input, _repeated_shape_codec); + break; + } + case 24: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + } + } } + #endif } - public sealed partial class GraphTransferGraphOutputNodeInfo : pb::IMessage { + public sealed partial class GraphTransferGraphOutputNodeInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphTransferGraphOutputNodeInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GraphTransferInfoReflection.Descriptor.MessageTypes[6]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferGraphOutputNodeInfo() { OnConstruction(); } @@ -1264,6 +1758,7 @@ public GraphTransferGraphOutputNodeInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferGraphOutputNodeInfo(GraphTransferGraphOutputNodeInfo other) : this() { name_ = other.name_; shape_ = other.shape_.Clone(); @@ -1272,6 +1767,7 @@ public GraphTransferGraphOutputNodeInfo(GraphTransferGraphOutputNodeInfo other) } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferGraphOutputNodeInfo Clone() { return new GraphTransferGraphOutputNodeInfo(this); } @@ -1280,6 +1776,7 @@ public GraphTransferGraphOutputNodeInfo Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -1293,6 +1790,7 @@ public string Name { = pb::FieldCodec.ForInt64(18); private readonly pbc::RepeatedField shape_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Shape { get { return shape_; } } @@ -1301,6 +1799,7 @@ public string Name { public const int DtypeFieldNumber = 3; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -1309,11 +1808,13 @@ public string Name { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphTransferGraphOutputNodeInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphTransferGraphOutputNodeInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -1328,6 +1829,7 @@ public bool Equals(GraphTransferGraphOutputNodeInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -1340,12 +1842,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -1358,9 +1865,30 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + shape_.WriteTo(ref output, _repeated_shape_codec); + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(24); + output.WriteEnum((int) Dtype); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -1377,6 +1905,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphTransferGraphOutputNodeInfo other) { if (other == null) { return; @@ -1392,7 +1921,11 @@ public void MergeFrom(GraphTransferGraphOutputNodeInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1414,7 +1947,36 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: + case 16: { + shape_.AddEntriesFrom(ref input, _repeated_shape_codec); + break; + } + case 24: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + } + } } + #endif } @@ -1423,23 +1985,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// not valid across executions, but can be serialized back and forth from within /// a single run. /// - public sealed partial class GraphTransferInfo : pb::IMessage { + public sealed partial class GraphTransferInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphTransferInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.GraphTransferInfoReflection.Descriptor.MessageTypes[7]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferInfo() { OnConstruction(); } @@ -1447,6 +2017,7 @@ public GraphTransferInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferInfo(GraphTransferInfo other) : this() { nodeInfo_ = other.nodeInfo_.Clone(); constNodeInfo_ = other.constNodeInfo_.Clone(); @@ -1459,6 +2030,7 @@ public GraphTransferInfo(GraphTransferInfo other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public GraphTransferInfo Clone() { return new GraphTransferInfo(this); } @@ -1469,6 +2041,7 @@ public GraphTransferInfo Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.GraphTransferNodeInfo.Parser); private readonly pbc::RepeatedField nodeInfo_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField NodeInfo { get { return nodeInfo_; } } @@ -1479,6 +2052,7 @@ public GraphTransferInfo Clone() { = pb::FieldCodec.ForMessage(18, global::Tensorflow.GraphTransferConstNodeInfo.Parser); private readonly pbc::RepeatedField constNodeInfo_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ConstNodeInfo { get { return constNodeInfo_; } } @@ -1489,6 +2063,7 @@ public GraphTransferInfo Clone() { = pb::FieldCodec.ForMessage(26, global::Tensorflow.GraphTransferNodeInputInfo.Parser); private readonly pbc::RepeatedField nodeInputInfo_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField NodeInputInfo { get { return nodeInputInfo_; } } @@ -1499,6 +2074,7 @@ public GraphTransferInfo Clone() { = pb::FieldCodec.ForMessage(34, global::Tensorflow.GraphTransferNodeOutputInfo.Parser); private readonly pbc::RepeatedField nodeOutputInfo_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField NodeOutputInfo { get { return nodeOutputInfo_; } } @@ -1512,6 +2088,7 @@ public GraphTransferInfo Clone() { /// Input Node parameters of transferred graph /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField GraphInputNodeInfo { get { return graphInputNodeInfo_; } } @@ -1522,6 +2099,7 @@ public GraphTransferInfo Clone() { = pb::FieldCodec.ForMessage(50, global::Tensorflow.GraphTransferGraphOutputNodeInfo.Parser); private readonly pbc::RepeatedField graphOutputNodeInfo_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField GraphOutputNodeInfo { get { return graphOutputNodeInfo_; } } @@ -1533,6 +2111,7 @@ public GraphTransferInfo Clone() { /// Destination of graph transfer /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.GraphTransferInfo.Types.Destination Destination { get { return destination_; } set { @@ -1541,11 +2120,13 @@ public GraphTransferInfo Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as GraphTransferInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(GraphTransferInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -1564,6 +2145,7 @@ public bool Equals(GraphTransferInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= nodeInfo_.GetHashCode(); @@ -1580,12 +2162,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else nodeInfo_.WriteTo(output, _repeated_nodeInfo_codec); constNodeInfo_.WriteTo(output, _repeated_constNodeInfo_codec); nodeInputInfo_.WriteTo(output, _repeated_nodeInputInfo_codec); @@ -1599,9 +2186,31 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + nodeInfo_.WriteTo(ref output, _repeated_nodeInfo_codec); + constNodeInfo_.WriteTo(ref output, _repeated_constNodeInfo_codec); + nodeInputInfo_.WriteTo(ref output, _repeated_nodeInputInfo_codec); + nodeOutputInfo_.WriteTo(ref output, _repeated_nodeOutputInfo_codec); + graphInputNodeInfo_.WriteTo(ref output, _repeated_graphInputNodeInfo_codec); + graphOutputNodeInfo_.WriteTo(ref output, _repeated_graphOutputNodeInfo_codec); + if (Destination != global::Tensorflow.GraphTransferInfo.Types.Destination.Nop) { + output.WriteRawTag(56); + output.WriteEnum((int) Destination); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += nodeInfo_.CalculateSize(_repeated_nodeInfo_codec); @@ -1620,6 +2229,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(GraphTransferInfo other) { if (other == null) { return; @@ -1637,7 +2247,11 @@ public void MergeFrom(GraphTransferInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1674,11 +2288,56 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + nodeInfo_.AddEntriesFrom(ref input, _repeated_nodeInfo_codec); + break; + } + case 18: { + constNodeInfo_.AddEntriesFrom(ref input, _repeated_constNodeInfo_codec); + break; + } + case 26: { + nodeInputInfo_.AddEntriesFrom(ref input, _repeated_nodeInputInfo_codec); + break; + } + case 34: { + nodeOutputInfo_.AddEntriesFrom(ref input, _repeated_nodeOutputInfo_codec); + break; + } + case 42: { + graphInputNodeInfo_.AddEntriesFrom(ref input, _repeated_graphInputNodeInfo_codec); + break; + } + case 50: { + graphOutputNodeInfo_.AddEntriesFrom(ref input, _repeated_graphOutputNodeInfo_codec); + break; + } + case 56: { + Destination = (global::Tensorflow.GraphTransferInfo.Types.Destination) input.ReadEnum(); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the GraphTransferInfo message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { public enum Destination { [pbr::OriginalName("NOP")] Nop = 0, diff --git a/src/TensorFlowNET.Core/Protobuf/Histogram.cs b/src/TensorFlowNET.Core/Protobuf/Histogram.cs new file mode 100644 index 000000000..7414d1e50 --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/Histogram.cs @@ -0,0 +1,452 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/tsl/protobuf/histogram.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Tensorflow { + + /// Holder for reflection information generated from tensorflow/tsl/protobuf/histogram.proto + public static partial class HistogramReflection { + + #region Descriptor + /// File descriptor for tensorflow/tsl/protobuf/histogram.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static HistogramReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "Cid0ZW5zb3JmbG93L3RzbC9wcm90b2J1Zi9oaXN0b2dyYW0ucHJvdG8SCnRl", + "bnNvcmZsb3cihwEKDkhpc3RvZ3JhbVByb3RvEgsKA21pbhgBIAEoARILCgNt", + "YXgYAiABKAESCwoDbnVtGAMgASgBEgsKA3N1bRgEIAEoARITCgtzdW1fc3F1", + "YXJlcxgFIAEoARIYCgxidWNrZXRfbGltaXQYBiADKAFCAhABEhIKBmJ1Y2tl", + "dBgHIAMoAUICEAFCXAoYb3JnLnRlbnNvcmZsb3cuZnJhbWV3b3JrUAFaO2dp", + "dGh1Yi5jb20vZ29vZ2xlL3RzbC90c2wvZ28vY29yZS9wcm90b2J1Zi9zdW1t", + "YXJ5X2dvX3Byb3Rv+AEBYgZwcm90bzM=")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { }, + new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.HistogramProto), global::Tensorflow.HistogramProto.Parser, new[]{ "Min", "Max", "Num", "Sum", "SumSquares", "BucketLimit", "Bucket" }, null, null, null, null) + })); + } + #endregion + + } + #region Messages + /// + /// Serialization format for histogram module in + /// tsl/lib/histogram/histogram.h + /// + public sealed partial class HistogramProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HistogramProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.HistogramReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HistogramProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HistogramProto(HistogramProto other) : this() { + min_ = other.min_; + max_ = other.max_; + num_ = other.num_; + sum_ = other.sum_; + sumSquares_ = other.sumSquares_; + bucketLimit_ = other.bucketLimit_.Clone(); + bucket_ = other.bucket_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HistogramProto Clone() { + return new HistogramProto(this); + } + + /// Field number for the "min" field. + public const int MinFieldNumber = 1; + private double min_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public double Min { + get { return min_; } + set { + min_ = value; + } + } + + /// Field number for the "max" field. + public const int MaxFieldNumber = 2; + private double max_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public double Max { + get { return max_; } + set { + max_ = value; + } + } + + /// Field number for the "num" field. + public const int NumFieldNumber = 3; + private double num_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public double Num { + get { return num_; } + set { + num_ = value; + } + } + + /// Field number for the "sum" field. + public const int SumFieldNumber = 4; + private double sum_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public double Sum { + get { return sum_; } + set { + sum_ = value; + } + } + + /// Field number for the "sum_squares" field. + public const int SumSquaresFieldNumber = 5; + private double sumSquares_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public double SumSquares { + get { return sumSquares_; } + set { + sumSquares_ = value; + } + } + + /// Field number for the "bucket_limit" field. + public const int BucketLimitFieldNumber = 6; + private static readonly pb::FieldCodec _repeated_bucketLimit_codec + = pb::FieldCodec.ForDouble(50); + private readonly pbc::RepeatedField bucketLimit_ = new pbc::RepeatedField(); + /// + /// Parallel arrays encoding the bucket boundaries and the bucket values. + /// bucket(i) is the count for the bucket i. The range for + /// a bucket is: + /// i == 0: -DBL_MAX .. bucket_limit(0) + /// i != 0: bucket_limit(i-1) .. bucket_limit(i) + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField BucketLimit { + get { return bucketLimit_; } + } + + /// Field number for the "bucket" field. + public const int BucketFieldNumber = 7; + private static readonly pb::FieldCodec _repeated_bucket_codec + = pb::FieldCodec.ForDouble(58); + private readonly pbc::RepeatedField bucket_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Bucket { + get { return bucket_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HistogramProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HistogramProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(Min, other.Min)) return false; + if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(Max, other.Max)) return false; + if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(Num, other.Num)) return false; + if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(Sum, other.Sum)) return false; + if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(SumSquares, other.SumSquares)) return false; + if(!bucketLimit_.Equals(other.bucketLimit_)) return false; + if(!bucket_.Equals(other.bucket_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Min != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(Min); + if (Max != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(Max); + if (Num != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(Num); + if (Sum != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(Sum); + if (SumSquares != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(SumSquares); + hash ^= bucketLimit_.GetHashCode(); + hash ^= bucket_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Min != 0D) { + output.WriteRawTag(9); + output.WriteDouble(Min); + } + if (Max != 0D) { + output.WriteRawTag(17); + output.WriteDouble(Max); + } + if (Num != 0D) { + output.WriteRawTag(25); + output.WriteDouble(Num); + } + if (Sum != 0D) { + output.WriteRawTag(33); + output.WriteDouble(Sum); + } + if (SumSquares != 0D) { + output.WriteRawTag(41); + output.WriteDouble(SumSquares); + } + bucketLimit_.WriteTo(output, _repeated_bucketLimit_codec); + bucket_.WriteTo(output, _repeated_bucket_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Min != 0D) { + output.WriteRawTag(9); + output.WriteDouble(Min); + } + if (Max != 0D) { + output.WriteRawTag(17); + output.WriteDouble(Max); + } + if (Num != 0D) { + output.WriteRawTag(25); + output.WriteDouble(Num); + } + if (Sum != 0D) { + output.WriteRawTag(33); + output.WriteDouble(Sum); + } + if (SumSquares != 0D) { + output.WriteRawTag(41); + output.WriteDouble(SumSquares); + } + bucketLimit_.WriteTo(ref output, _repeated_bucketLimit_codec); + bucket_.WriteTo(ref output, _repeated_bucket_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Min != 0D) { + size += 1 + 8; + } + if (Max != 0D) { + size += 1 + 8; + } + if (Num != 0D) { + size += 1 + 8; + } + if (Sum != 0D) { + size += 1 + 8; + } + if (SumSquares != 0D) { + size += 1 + 8; + } + size += bucketLimit_.CalculateSize(_repeated_bucketLimit_codec); + size += bucket_.CalculateSize(_repeated_bucket_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HistogramProto other) { + if (other == null) { + return; + } + if (other.Min != 0D) { + Min = other.Min; + } + if (other.Max != 0D) { + Max = other.Max; + } + if (other.Num != 0D) { + Num = other.Num; + } + if (other.Sum != 0D) { + Sum = other.Sum; + } + if (other.SumSquares != 0D) { + SumSquares = other.SumSquares; + } + bucketLimit_.Add(other.bucketLimit_); + bucket_.Add(other.bucket_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 9: { + Min = input.ReadDouble(); + break; + } + case 17: { + Max = input.ReadDouble(); + break; + } + case 25: { + Num = input.ReadDouble(); + break; + } + case 33: { + Sum = input.ReadDouble(); + break; + } + case 41: { + SumSquares = input.ReadDouble(); + break; + } + case 50: + case 49: { + bucketLimit_.AddEntriesFrom(input, _repeated_bucketLimit_codec); + break; + } + case 58: + case 57: { + bucket_.AddEntriesFrom(input, _repeated_bucket_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 9: { + Min = input.ReadDouble(); + break; + } + case 17: { + Max = input.ReadDouble(); + break; + } + case 25: { + Num = input.ReadDouble(); + break; + } + case 33: { + Sum = input.ReadDouble(); + break; + } + case 41: { + SumSquares = input.ReadDouble(); + break; + } + case 50: + case 49: { + bucketLimit_.AddEntriesFrom(ref input, _repeated_bucketLimit_codec); + break; + } + case 58: + case 57: { + bucket_.AddEntriesFrom(ref input, _repeated_bucket_codec); + break; + } + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/Hlo.cs b/src/TensorFlowNET.Core/Protobuf/Hlo.cs new file mode 100644 index 000000000..27aa3faa3 --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/Hlo.cs @@ -0,0 +1,11996 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/compiler/xla/service/hlo.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Xla { + + /// Holder for reflection information generated from tensorflow/compiler/xla/service/hlo.proto + public static partial class HloReflection { + + #region Descriptor + /// File descriptor for tensorflow/compiler/xla/service/hlo.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static HloReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "Cil0ZW5zb3JmbG93L2NvbXBpbGVyL3hsYS9zZXJ2aWNlL2hsby5wcm90bxID", + "eGxhGiZ0ZW5zb3JmbG93L2NvbXBpbGVyL3hsYS94bGFfZGF0YS5wcm90byKV", + "FQoTSGxvSW5zdHJ1Y3Rpb25Qcm90bxIMCgRuYW1lGAEgASgJEg4KBm9wY29k", + "ZRgCIAEoCRIeCgVzaGFwZRgDIAEoCzIPLnhsYS5TaGFwZVByb3RvEiEKCG1l", + "dGFkYXRhGAcgASgLMg8ueGxhLk9wTWV0YWRhdGESIgoHbGl0ZXJhbBgIIAEo", + "CzIRLnhsYS5MaXRlcmFsUHJvdG8SGAoQcGFyYW1ldGVyX251bWJlchgJIAEo", + "AxITCgtmdXNpb25fa2luZBgLIAEoCRITCgt0dXBsZV9pbmRleBgNIAEoAxIS", + "CgpkaW1lbnNpb25zGA4gAygDEhsKBndpbmRvdxgPIAEoCzILLnhsYS5XaW5k", + "b3cSRwodY29udm9sdXRpb25fZGltZW5zaW9uX251bWJlcnMYECABKAsyIC54", + "bGEuQ29udm9sdXRpb25EaW1lbnNpb25OdW1iZXJzEhsKE2ZlYXR1cmVfZ3Jv", + "dXBfY291bnQYMiABKAMSGQoRYmF0Y2hfZ3JvdXBfY291bnQYOiABKAMSQgoQ", + "c2xpY2VfZGltZW5zaW9ucxgRIAMoCzIoLnhsYS5IbG9JbnN0cnVjdGlvblBy", + "b3RvLlNsaWNlRGltZW5zaW9ucxIVCg1leHBvbmVudF9iaXRzGBIgASgFEhUK", + "DW1hbnRpc3NhX2JpdHMYEyABKAUSGwoTZHluYW1pY19zbGljZV9zaXplcxgU", + "IAMoAxIqCg5wYWRkaW5nX2NvbmZpZxgVIAEoCzISLnhsYS5QYWRkaW5nQ29u", + "ZmlnEhYKDm91dGZlZWRfY29uZmlnGBYgASgMEi0KDGRpc3RyaWJ1dGlvbhgX", + "IAEoDjIXLnhsYS5SYW5kb21EaXN0cmlidXRpb24SDwoHZXBzaWxvbhgYIAEo", + "AhIVCg1mZWF0dXJlX2luZGV4GBkgASgDEhIKCmNoYW5uZWxfaWQYGiABKAMS", + "FQoNaW5mZWVkX2NvbmZpZxgbIAEoDBIaChJjdXN0b21fY2FsbF90YXJnZXQY", + "HCABKAkSJgoNb3V0ZmVlZF9zaGFwZRgdIAEoCzIPLnhsYS5TaGFwZVByb3Rv", + "EjcKFWRvdF9kaW1lbnNpb25fbnVtYmVycxgeIAEoCzIYLnhsYS5Eb3REaW1l", + "bnNpb25OdW1iZXJzEh4KCGZmdF90eXBlGB8gASgOMgwueGxhLkZmdFR5cGUS", + "EgoKZmZ0X2xlbmd0aBggIAMoAxIcChRjb21wYXJpc29uX2RpcmVjdGlvbhg/", + "IAEoCRI9ChhnYXRoZXJfZGltZW5zaW9uX251bWJlcnMYISABKAsyGy54bGEu", + "R2F0aGVyRGltZW5zaW9uTnVtYmVycxIaChJnYXRoZXJfc2xpY2Vfc2l6ZXMY", + "IiADKAMSCgoCaWQYIyABKAMSEwoLb3BlcmFuZF9pZHMYJCADKAMSHwoXY29u", + "dHJvbF9wcmVkZWNlc3Nvcl9pZHMYJSADKAMSHgoWY2FsbGVkX2NvbXB1dGF0", + "aW9uX2lkcxgmIAMoAxIhCghzaGFyZGluZxgoIAEoCzIPLnhsYS5PcFNoYXJk", + "aW5nEhYKDmJhY2tlbmRfY29uZmlnGCsgASgMEikKDnJlcGxpY2FfZ3JvdXBz", + "GDEgAygLMhEueGxhLlJlcGxpY2FHcm91cBIZCg1hbGxfcmVkdWNlX2lkGC0g", + "ASgDQgIYARIdChV1c2VfZ2xvYmFsX2RldmljZV9pZHMYRyABKAgSGAoQaXNf", + "aG9zdF90cmFuc2ZlchgvIAEoCBIRCglpc19zdGFibGUYPCABKAgSPwoZc2Nh", + "dHRlcl9kaW1lbnNpb25fbnVtYmVycxgwIAEoCzIcLnhsYS5TY2F0dGVyRGlt", + "ZW5zaW9uTnVtYmVycxIuChBwcmVjaXNpb25fY29uZmlnGDMgASgLMhQueGxh", + "LlByZWNpc2lvbkNvbmZpZxIuChNzb3VyY2VfdGFyZ2V0X3BhaXJzGDQgAygL", + "MhEueGxhLlNvdXJjZVRhcmdldBIuChVkb21haW5fZW50cnlfc2hhcmRpbmcY", + "NiABKAsyDy54bGEuT3BTaGFyZGluZxItChRkb21haW5fZXhpdF9zaGFyZGlu", + "Zxg3IAEoCzIPLnhsYS5PcFNoYXJkaW5nEhgKEGNvbnN0cmFpbl9sYXlvdXQY", + "OCABKAgSMwoab3BlcmFuZF9zaGFwZXNfd2l0aF9sYXlvdXQYOSADKAsyDy54", + "bGEuU2hhcGVQcm90bxI9Chh0cmlhbmd1bGFyX3NvbHZlX29wdGlvbnMYOyAB", + "KAsyGy54bGEuVHJpYW5ndWxhclNvbHZlT3B0aW9ucxIuChBjaG9sZXNreV9v", + "cHRpb25zGD4gASgLMhQueGxhLkNob2xlc2t5T3B0aW9ucxI4ChVwYXJhbWV0", + "ZXJfcmVwbGljYXRpb24YPSABKAsyGS54bGEuUGFyYW1ldGVyUmVwbGljYXRp", + "b24SIwobY3VzdG9tX2NhbGxfaGFzX3NpZGVfZWZmZWN0GEEgASgIElEKI2N1", + "c3RvbV9jYWxsX291dHB1dF9vcGVyYW5kX2FsaWFzaW5nGEogAygLMiQueGxh", + "LkN1c3RvbUNhbGxPdXRwdXRPcGVyYW5kQWxpYXNpbmcSNQoUY3VzdG9tX2Nh", + "bGxfc2NoZWR1bGUYTCABKA4yFy54bGEuQ3VzdG9tQ2FsbFNjaGVkdWxlEg0K", + "BWRlbHRhGEIgASgDEhoKEmluZGljZXNfYXJlX3NvcnRlZBhDIAEoCBI0ChNm", + "cm9udGVuZF9hdHRyaWJ1dGVzGEQgASgLMhcueGxhLkZyb250ZW5kQXR0cmli", + "dXRlcxIWCg51bmlxdWVfaW5kaWNlcxhFIAEoCBIrCg1ybmdfYWxnb3JpdGht", + "GEYgASgOMhQueGxhLlJhbmRvbUFsZ29yaXRobRIXCg9jb21wYXJpc29uX3R5", + "cGUYSCABKAkSIQoZaXNfY3Jvc3NfcHJvZ3JhbV9wcmVmZXRjaBhJIAEoCBIm", + "CgxwYWRkaW5nX3R5cGUYSyABKA4yEC54bGEuUGFkZGluZ1R5cGUSOgoXY3Vz", + "dG9tX2NhbGxfYXBpX3ZlcnNpb24YTSABKA4yGS54bGEuQ3VzdG9tQ2FsbEFw", + "aVZlcnNpb24SFgoOYXN5bmNfZ3JvdXBfaWQYTiABKAMSHgoWYXN5bmNfZXhl", + "Y3V0aW9uX3RocmVhZBhPIAEoCRo/Cg9TbGljZURpbWVuc2lvbnMSDQoFc3Rh", + "cnQYASABKAMSDQoFbGltaXQYAiABKAMSDgoGc3RyaWRlGAMgASgDSgQIChAL", + "SgQIDBANSgQIBBAFSgQIBRAGSgQIBhAHSgQILBAtSgQINRA2SgQILhAvSgQI", + "KRAqSgQIKhArSgQIQBBBUg5wYXJhbWV0ZXJfbmFtZVIeZnVzZWRfaW5zdHJ1", + "Y3Rpb25zX2NvbXB1dGF0aW9uUg1vcGVyYW5kX25hbWVzUhljb250cm9sX3By", + "ZWRlY2Vzc29yX25hbWVzUhhjYWxsZWRfY29tcHV0YXRpb25fbmFtZXNSEXJl", + "cGxpY2FfZ3JvdXBfaWRzUhJjdXN0b21fY2FsbF9vcGFxdWVSEmFsbF9yZWR1", + "Y2VfYmFycmllciLpAQoTSGxvQ29tcHV0YXRpb25Qcm90bxIMCgRuYW1lGAEg", + "ASgJEi4KDGluc3RydWN0aW9ucxgCIAMoCzIYLnhsYS5IbG9JbnN0cnVjdGlv", + "blByb3RvEi0KDXByb2dyYW1fc2hhcGUYBCABKAsyFi54bGEuUHJvZ3JhbVNo", + "YXBlUHJvdG8SCgoCaWQYBSABKAMSDwoHcm9vdF9pZBgGIAEoAxIdChVpc19m", + "dXNpb25fY29tcHV0YXRpb24YByABKAgSGAoQZXhlY3V0aW9uX3RocmVhZBgI", + "IAEoCUoECAMQBFIJcm9vdF9uYW1lItgBChBIbG9TY2hlZHVsZVByb3RvEjcK", + "CXNlcXVlbmNlcxgBIAMoCzIkLnhsYS5IbG9TY2hlZHVsZVByb3RvLlNlcXVl", + "bmNlc0VudHJ5Gi4KE0luc3RydWN0aW9uU2VxdWVuY2USFwoPaW5zdHJ1Y3Rp", + "b25faWRzGAEgAygDGlsKDlNlcXVlbmNlc0VudHJ5EgsKA2tleRgBIAEoAxI4", + "CgV2YWx1ZRgCIAEoCzIpLnhsYS5IbG9TY2hlZHVsZVByb3RvLkluc3RydWN0", + "aW9uU2VxdWVuY2U6AjgBItsBChhIbG9JbnB1dE91dHB1dEFsaWFzUHJvdG8S", + "PgoHZW50cmllcxgBIAMoCzItLnhsYS5IbG9JbnB1dE91dHB1dEFsaWFzUHJv", + "dG8uQWxpYXNFbnRyeVByb3RvGn8KD0FsaWFzRW50cnlQcm90bxIaChJvdXRw", + "dXRfc2hhcGVfaW5kZXgYASADKAMSGAoQcGFyYW1ldGVyX251bWJlchgCIAEo", + "AxIdChVwYXJhbWV0ZXJfc2hhcGVfaW5kZXgYAyADKAMSFwoEa2luZBgEIAEo", + "DjIJLnhsYS5LaW5kIvIBChxEeW5hbWljUGFyYW1ldGVyQmluZGluZ1Byb3Rv", + "EjoKB2VudHJpZXMYASADKAsyKS54bGEuRHluYW1pY1BhcmFtZXRlckJpbmRp", + "bmdQcm90by5CaW5kaW5nGpUBCgdCaW5kaW5nEhkKEWR5bmFtaWNfcGFyYW1f", + "bnVtGAEgASgDEhsKE2R5bmFtaWNfcGFyYW1faW5kZXgYAiADKAMSGAoQdGFy", + "Z2V0X3BhcmFtX251bRgDIAEoAxIaChJ0YXJnZXRfcGFyYW1faW5kZXgYBCAD", + "KAMSHAoUdGFyZ2V0X3BhcmFtX2RpbV9udW0YBSABKAMiOAoUQ3Jvc3NQcm9n", + "cmFtUHJlZmV0Y2gSEQoJcGFyYW1ldGVyGAEgASgDEg0KBWluZGV4GAIgAygD", + "IsIHCg5IbG9Nb2R1bGVQcm90bxIMCgRuYW1lGAEgASgJEh4KFmVudHJ5X2Nv", + "bXB1dGF0aW9uX25hbWUYAiABKAkSHAoUZW50cnlfY29tcHV0YXRpb25faWQY", + "BiABKAMSLgoMY29tcHV0YXRpb25zGAMgAygLMhgueGxhLkhsb0NvbXB1dGF0", + "aW9uUHJvdG8SMgoSaG9zdF9wcm9ncmFtX3NoYXBlGAQgASgLMhYueGxhLlBy", + "b2dyYW1TaGFwZVByb3RvEgoKAmlkGAUgASgDEicKCHNjaGVkdWxlGAcgASgL", + "MhUueGxhLkhsb1NjaGVkdWxlUHJvdG8SOQoSaW5wdXRfb3V0cHV0X2FsaWFz", + "GAggASgLMh0ueGxhLkhsb0lucHV0T3V0cHV0QWxpYXNQcm90bxJEChlkeW5h", + "bWljX3BhcmFtZXRlcl9iaW5kaW5nGAkgASgLMiEueGxhLkR5bmFtaWNQYXJh", + "bWV0ZXJCaW5kaW5nUHJvdG8SOwoYY3Jvc3NfcHJvZ3JhbV9wcmVmZXRjaGVz", + "GAogAygLMhkueGxhLkNyb3NzUHJvZ3JhbVByZWZldGNoEhIKCmlzX2R5bmFt", + "aWMYCyABKAgSLQoUc3BtZF9vdXRwdXRfc2hhcmRpbmcYDCABKAsyDy54bGEu", + "T3BTaGFyZGluZxIyChlzcG1kX3BhcmFtZXRlcnNfc2hhcmRpbmdzGA4gAygL", + "Mg8ueGxhLk9wU2hhcmRpbmcSIgoadXNlX2F1dG9fc3BtZF9wYXJ0aXRpb25p", + "bmcYECABKAgSNQoMcHJvZmlsZV9pbmZvGA0gAygLMh8ueGxhLkhsb01vZHVs", + "ZVByb3RvLlByb2ZpbGVJbmZvEjUKEWRldmljZV9hc3NpZ25tZW50GA8gASgL", + "MhoueGxhLkRldmljZUFzc2lnbm1lbnRQcm90bxq8AQoLUHJvZmlsZUluZm8S", + "NQoMcHJvZmlsZV90eXBlGAEgASgOMh8ueGxhLkhsb01vZHVsZVByb3RvLlBy", + "b2ZpbGVUeXBlEhgKEHJlbGF0aXZlX3NwZWVkdXAYAiABKAESKgoOcHJvZmls", + "ZV9zb3VyY2UYAyABKA4yEi54bGEuUHJvZmlsZVNvdXJjZRIwChFjb21waWxh", + "dGlvbl9ldmVudBgEIAEoDjIVLnhsYS5Db21waWxhdGlvbkV2ZW50IkUKC1By", + "b2ZpbGVUeXBlEgsKB0lOVkFMSUQQABIICgRGTEFHEAESCgoGRlVTSU9OEAIS", + "CgoGTEFZT1VUEAMSBwoDRE9UEAQi6AEKEkxvZ2ljYWxCdWZmZXJQcm90bxIK", + "CgJpZBgBIAEoAxIMCgRzaXplGAIgASgDEjQKCmRlZmluZWRfYXQYAyABKAsy", + "IC54bGEuTG9naWNhbEJ1ZmZlclByb3RvLkxvY2F0aW9uEg0KBWNvbG9yGAQg", + "ASgDGnMKCExvY2F0aW9uEhwKEGNvbXB1dGF0aW9uX25hbWUYASABKAlCAhgB", + "EhwKEGluc3RydWN0aW9uX25hbWUYAiABKAlCAhgBEhYKDmluc3RydWN0aW9u", + "X2lkGAQgASgDEhMKC3NoYXBlX2luZGV4GAMgAygDIvgCChVCdWZmZXJBbGxv", + "Y2F0aW9uUHJvdG8SDQoFaW5kZXgYASABKAMSDAoEc2l6ZRgCIAEoAxIXCg9p", + "c190aHJlYWRfbG9jYWwYAyABKAgSEAoIaXNfdHVwbGUYCyABKAgSJgoeaXNf", + "ZW50cnlfY29tcHV0YXRpb25fcGFyYW1ldGVyGAUgASgIEhMKC2lzX2NvbnN0", + "YW50GAwgASgIEhgKEHBhcmFtZXRlcl9udW1iZXIYBiABKAMSHQoVcGFyYW1l", + "dGVyX3NoYXBlX2luZGV4GAogAygDEhYKDm1heWJlX2xpdmVfb3V0GAcgASgI", + "Eg0KBWNvbG9yGAggASgDEjUKCGFzc2lnbmVkGAkgAygLMiMueGxhLkJ1ZmZl", + "ckFsbG9jYXRpb25Qcm90by5Bc3NpZ25lZBpDCghBc3NpZ25lZBIZChFsb2dp", + "Y2FsX2J1ZmZlcl9pZBgBIAEoAxIOCgZvZmZzZXQYAiABKAMSDAoEc2l6ZRgD", + "IAEoAyLWAgoSSGVhcFNpbXVsYXRvclRyYWNlEi0KBmV2ZW50cxgBIAMoCzId", + "LnhsYS5IZWFwU2ltdWxhdG9yVHJhY2UuRXZlbnQSHwoXd2hvbGVfbW9kdWxl", + "X3NpbXVsYXRpb24YAiABKAgSHwoXYnVmZmVyX2FsbG9jYXRpb25faW5kZXgY", + "AyABKAMazgEKBUV2ZW50EjAKBGtpbmQYASABKA4yIi54bGEuSGVhcFNpbXVs", + "YXRvclRyYWNlLkV2ZW50LktpbmQSEQoJYnVmZmVyX2lkGAIgASgDEhgKEGNv", + "bXB1dGF0aW9uX25hbWUYAyABKAkSGAoQaW5zdHJ1Y3Rpb25fbmFtZRgEIAEo", + "CRIfChdzaGFyZV93aXRoX2Nhbm9uaWNhbF9pZBgFIAEoAyIrCgRLaW5kEgkK", + "BUFMTE9DEAASCAoERlJFRRABEg4KClNIQVJFX1dJVEgQAiJNChNIbG9Nb2R1", + "bGVHcm91cFByb3RvEgwKBG5hbWUYASABKAkSKAoLaGxvX21vZHVsZXMYAiAD", + "KAsyEy54bGEuSGxvTW9kdWxlUHJvdG8i1gIKFUJ1ZmZlckFzc2lnbm1lbnRQ", + "cm90bxIwCg9sb2dpY2FsX2J1ZmZlcnMYASADKAsyFy54bGEuTG9naWNhbEJ1", + "ZmZlclByb3RvEj4KDmJ1ZmZlcl9hbGlhc2VzGAIgAygLMiYueGxhLkJ1ZmZl", + "ckFzc2lnbm1lbnRQcm90by5CdWZmZXJBbGlhcxI2ChJidWZmZXJfYWxsb2Nh", + "dGlvbnMYAyADKAsyGi54bGEuQnVmZmVyQWxsb2NhdGlvblByb3RvEjYKFWhl", + "YXBfc2ltdWxhdG9yX3RyYWNlcxgEIAMoCzIXLnhsYS5IZWFwU2ltdWxhdG9y", + "VHJhY2UaWwoLQnVmZmVyQWxpYXMSGAoQc291cmNlX2J1ZmZlcl9pZBgBIAEo", + "AxIyCghsb2NhdGlvbhgCIAEoCzIgLnhsYS5Mb2dpY2FsQnVmZmVyUHJvdG8u", + "TG9jYXRpb24ifgoISGxvUHJvdG8SJwoKaGxvX21vZHVsZRgBIAEoCzITLnhs", + "YS5IbG9Nb2R1bGVQcm90bxI1ChFidWZmZXJfYXNzaWdubWVudBgDIAEoCzIa", + "LnhsYS5CdWZmZXJBc3NpZ25tZW50UHJvdG9KBAgCEANSDGhsb19vcmRlcmlu", + "ZyKOAQoLSGxvU25hcHNob3QSGgoDaGxvGAEgASgLMg0ueGxhLkhsb1Byb3Rv", + "EiQKCWFyZ3VtZW50cxgCIAMoCzIRLnhsYS5MaXRlcmFsUHJvdG8SIQoGcmVz", + "dWx0GAMgASgLMhEueGxhLkxpdGVyYWxQcm90bxIaChJleGVjdXRpb25fcGxh", + "dGZvcm0YBCABKAkiuQEKFkhsb01vZHVsZU1ldGFkYXRhUHJvdG8SGwoTY2Fu", + "b25pY2FsX21vZHVsZV9pZBgBIAEoAxIZChFtb2R1bGVfZ3JvdXBfbmFtZRgC", + "IAEoCRIaChJvcmlnaW5hbF9tb2R1bGVfaWQYAyABKAMSHgoWcGFydGl0aW9u", + "ZWRfbW9kdWxlX2lkcxgEIAMoAxIrCg1wYXNzX21ldGFkYXRhGAUgAygLMhQu", + "eGxhLkhsb1Bhc3NNZXRhZGF0YSLqAQoPSGxvUGFzc01ldGFkYXRhEg8KB3Bh", + "c3NfaWQYASABKAMSEQoJcGFzc19uYW1lGAIgASgJEhUKDXBpcGVsaW5lX25h", + "bWUYAyABKAkSFgoOZHVtcF9maWxlbmFtZXMYBCADKAkSFgoObW9kdWxlX2No", + "YW5nZWQYBSABKAgSEQoJbW9kdWxlX2lkGAYgASgDEh8KF21vZHVsZV9ncm91", + "cF9tb2R1bGVfaWRzGAcgAygDEhwKFHN0YXJ0X3RpbWVzdGFtcF91c2VjGAgg", + "ASgDEhoKEmVuZF90aW1lc3RhbXBfdXNlYxgJIAEoAyKzAwoXRW50cnlGdW5j", + "dGlvbkF0dHJpYnV0ZXMSRwoHYnVmZmVycxgBIAMoCzI2LnhsYS5FbnRyeUZ1", + "bmN0aW9uQXR0cmlidXRlcy5CdWZmZXJQYXJhbWV0ZXJBdHRyaWJ1dGVzEhgK", + "EHJlc3VsdF94bGFfc2hhcGUYAiABKAkaHQoKU2hhcGVJbmRleBIPCgdpbmRp", + "Y2VzGAEgAygDGpUCChlCdWZmZXJQYXJhbWV0ZXJBdHRyaWJ1dGVzEhQKDGxt", + "aGxvX3BhcmFtcxgBIAEoAxIcChRsbWhsb19wYXJhbXNfcHJlc2VudBgGIAEo", + "CBJIChdsbWhsb19wYXJhbV9zaGFwZV9pbmRleBgCIAEoCzInLnhsYS5FbnRy", + "eUZ1bmN0aW9uQXR0cmlidXRlcy5TaGFwZUluZGV4EhsKE2xtaGxvX2NvbnN0", + "YW50X25hbWUYAyABKAkSGAoQbG1obG9fbXVzdF9hbGlhcxgEIAEoCBJDChJs", + "bWhsb19vdXRwdXRfaW5kZXgYBSABKAsyJy54bGEuRW50cnlGdW5jdGlvbkF0", + "dHJpYnV0ZXMuU2hhcGVJbmRleCKpAQoZWGxhUnVudGltZUV4ZWN1dGFibGVQ", + "cm90bxItChBobG9fbW9kdWxlX3Byb3RvGAEgASgLMhMueGxhLkhsb01vZHVs", + "ZVByb3RvEjYKEGVudHJ5X2Z1bmNfYXR0cnMYAiABKAsyHC54bGEuRW50cnlG", + "dW5jdGlvbkF0dHJpYnV0ZXMSEAoIb2JqX2ZpbGUYAyABKAwSEwoLbWxpcl9t", + "b2R1bGUYBCABKAkqUwoSQ3VzdG9tQ2FsbFNjaGVkdWxlEhEKDVNDSEVEVUxF", + "X05PTkUQABITCg9TQ0hFRFVMRV9MQVRFU1QQARIVChFTQ0hFRFVMRV9FQVJM", + "SUVTVBACKpkBChRDdXN0b21DYWxsQXBpVmVyc2lvbhIbChdBUElfVkVSU0lP", + "Tl9VTlNQRUNJRklFRBAAEhgKFEFQSV9WRVJTSU9OX09SSUdJTkFMEAESIAoc", + "QVBJX1ZFUlNJT05fU1RBVFVTX1JFVFVSTklORxACEigKJEFQSV9WRVJTSU9O", + "X1NUQVRVU19SRVRVUk5JTkdfVU5JRklFRBADKjoKBEtpbmQSEwoPVU5ERUZJ", + "TkVEX0FMSUFTEAASDQoJTUFZX0FMSUFTEAESDgoKTVVTVF9BTElBUxACQgP4", + "AQFiBnByb3RvMw==")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { global::Xla.XlaDataReflection.Descriptor, }, + new pbr::GeneratedClrTypeInfo(new[] {typeof(global::Xla.CustomCallSchedule), typeof(global::Xla.CustomCallApiVersion), typeof(global::Xla.Kind), }, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloInstructionProto), global::Xla.HloInstructionProto.Parser, new[]{ "Name", "Opcode", "Shape", "Metadata", "Literal", "ParameterNumber", "FusionKind", "TupleIndex", "Dimensions", "Window", "ConvolutionDimensionNumbers", "FeatureGroupCount", "BatchGroupCount", "SliceDimensions", "ExponentBits", "MantissaBits", "DynamicSliceSizes", "PaddingConfig", "OutfeedConfig", "Distribution", "Epsilon", "FeatureIndex", "ChannelId", "InfeedConfig", "CustomCallTarget", "OutfeedShape", "DotDimensionNumbers", "FftType", "FftLength", "ComparisonDirection", "GatherDimensionNumbers", "GatherSliceSizes", "Id", "OperandIds", "ControlPredecessorIds", "CalledComputationIds", "Sharding", "BackendConfig", "ReplicaGroups", "AllReduceId", "UseGlobalDeviceIds", "IsHostTransfer", "IsStable", "ScatterDimensionNumbers", "PrecisionConfig", "SourceTargetPairs", "DomainEntrySharding", "DomainExitSharding", "ConstrainLayout", "OperandShapesWithLayout", "TriangularSolveOptions", "CholeskyOptions", "ParameterReplication", "CustomCallHasSideEffect", "CustomCallOutputOperandAliasing", "CustomCallSchedule", "Delta", "IndicesAreSorted", "FrontendAttributes", "UniqueIndices", "RngAlgorithm", "ComparisonType", "IsCrossProgramPrefetch", "PaddingType", "CustomCallApiVersion", "AsyncGroupId", "AsyncExecutionThread" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloInstructionProto.Types.SliceDimensions), global::Xla.HloInstructionProto.Types.SliceDimensions.Parser, new[]{ "Start", "Limit", "Stride" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloComputationProto), global::Xla.HloComputationProto.Parser, new[]{ "Name", "Instructions", "ProgramShape", "Id", "RootId", "IsFusionComputation", "ExecutionThread" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloScheduleProto), global::Xla.HloScheduleProto.Parser, new[]{ "Sequences" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloScheduleProto.Types.InstructionSequence), global::Xla.HloScheduleProto.Types.InstructionSequence.Parser, new[]{ "InstructionIds" }, null, null, null, null), + null, }), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloInputOutputAliasProto), global::Xla.HloInputOutputAliasProto.Parser, new[]{ "Entries" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloInputOutputAliasProto.Types.AliasEntryProto), global::Xla.HloInputOutputAliasProto.Types.AliasEntryProto.Parser, new[]{ "OutputShapeIndex", "ParameterNumber", "ParameterShapeIndex", "Kind" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DynamicParameterBindingProto), global::Xla.DynamicParameterBindingProto.Parser, new[]{ "Entries" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DynamicParameterBindingProto.Types.Binding), global::Xla.DynamicParameterBindingProto.Types.Binding.Parser, new[]{ "DynamicParamNum", "DynamicParamIndex", "TargetParamNum", "TargetParamIndex", "TargetParamDimNum" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.CrossProgramPrefetch), global::Xla.CrossProgramPrefetch.Parser, new[]{ "Parameter", "Index" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloModuleProto), global::Xla.HloModuleProto.Parser, new[]{ "Name", "EntryComputationName", "EntryComputationId", "Computations", "HostProgramShape", "Id", "Schedule", "InputOutputAlias", "DynamicParameterBinding", "CrossProgramPrefetches", "IsDynamic", "SpmdOutputSharding", "SpmdParametersShardings", "UseAutoSpmdPartitioning", "ProfileInfo", "DeviceAssignment" }, null, new[]{ typeof(global::Xla.HloModuleProto.Types.ProfileType) }, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloModuleProto.Types.ProfileInfo), global::Xla.HloModuleProto.Types.ProfileInfo.Parser, new[]{ "ProfileType", "RelativeSpeedup", "ProfileSource", "CompilationEvent" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.LogicalBufferProto), global::Xla.LogicalBufferProto.Parser, new[]{ "Id", "Size", "DefinedAt", "Color" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.LogicalBufferProto.Types.Location), global::Xla.LogicalBufferProto.Types.Location.Parser, new[]{ "ComputationName", "InstructionName", "InstructionId", "ShapeIndex" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.BufferAllocationProto), global::Xla.BufferAllocationProto.Parser, new[]{ "Index", "Size", "IsThreadLocal", "IsTuple", "IsEntryComputationParameter", "IsConstant", "ParameterNumber", "ParameterShapeIndex", "MaybeLiveOut", "Color", "Assigned" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.BufferAllocationProto.Types.Assigned), global::Xla.BufferAllocationProto.Types.Assigned.Parser, new[]{ "LogicalBufferId", "Offset", "Size" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HeapSimulatorTrace), global::Xla.HeapSimulatorTrace.Parser, new[]{ "Events", "WholeModuleSimulation", "BufferAllocationIndex" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HeapSimulatorTrace.Types.Event), global::Xla.HeapSimulatorTrace.Types.Event.Parser, new[]{ "Kind", "BufferId", "ComputationName", "InstructionName", "ShareWithCanonicalId" }, null, new[]{ typeof(global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind) }, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloModuleGroupProto), global::Xla.HloModuleGroupProto.Parser, new[]{ "Name", "HloModules" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.BufferAssignmentProto), global::Xla.BufferAssignmentProto.Parser, new[]{ "LogicalBuffers", "BufferAliases", "BufferAllocations", "HeapSimulatorTraces" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.BufferAssignmentProto.Types.BufferAlias), global::Xla.BufferAssignmentProto.Types.BufferAlias.Parser, new[]{ "SourceBufferId", "Location" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloProto), global::Xla.HloProto.Parser, new[]{ "HloModule", "BufferAssignment" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloSnapshot), global::Xla.HloSnapshot.Parser, new[]{ "Hlo", "Arguments", "Result", "ExecutionPlatform" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloModuleMetadataProto), global::Xla.HloModuleMetadataProto.Parser, new[]{ "CanonicalModuleId", "ModuleGroupName", "OriginalModuleId", "PartitionedModuleIds", "PassMetadata" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HloPassMetadata), global::Xla.HloPassMetadata.Parser, new[]{ "PassId", "PassName", "PipelineName", "DumpFilenames", "ModuleChanged", "ModuleId", "ModuleGroupModuleIds", "StartTimestampUsec", "EndTimestampUsec" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.EntryFunctionAttributes), global::Xla.EntryFunctionAttributes.Parser, new[]{ "Buffers", "ResultXlaShape" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.EntryFunctionAttributes.Types.ShapeIndex), global::Xla.EntryFunctionAttributes.Types.ShapeIndex.Parser, new[]{ "Indices" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.EntryFunctionAttributes.Types.BufferParameterAttributes), global::Xla.EntryFunctionAttributes.Types.BufferParameterAttributes.Parser, new[]{ "LmhloParams", "LmhloParamsPresent", "LmhloParamShapeIndex", "LmhloConstantName", "LmhloMustAlias", "LmhloOutputIndex" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.XlaRuntimeExecutableProto), global::Xla.XlaRuntimeExecutableProto.Parser, new[]{ "HloModuleProto", "EntryFuncAttrs", "ObjFile", "MlirModule" }, null, null, null, null) + })); + } + #endregion + + } + #region Enums + public enum CustomCallSchedule { + [pbr::OriginalName("SCHEDULE_NONE")] ScheduleNone = 0, + [pbr::OriginalName("SCHEDULE_LATEST")] ScheduleLatest = 1, + [pbr::OriginalName("SCHEDULE_EARLIEST")] ScheduleEarliest = 2, + } + + /// + /// The version of the API used by the custom call function. The signatures for + /// each version are given below. + /// TODO(b/189822916): Remove this enum when all clients are migrated to the + /// status-returning API. + /// + public enum CustomCallApiVersion { + [pbr::OriginalName("API_VERSION_UNSPECIFIED")] ApiVersionUnspecified = 0, + /// + /// The first version of the API, with the following signatures: + /// + /// CPU: + /// void do_custom_call(void* out, const void** in); + /// + /// GPU: + /// void do_custom_call(CUstream stream, void** buffers, + /// const char* opaque, size_t opaque_len); + /// + [pbr::OriginalName("API_VERSION_ORIGINAL")] ApiVersionOriginal = 1, + /// + /// When the ability to return success/failure status was added: + /// + /// CPU: + /// void do_custom_call(void* out, const void** in, + /// XlaCustomCallStatus* status); + /// + /// GPU: + /// void do_custom_call(CUstream stream, void** buffers, + /// const char* opaque, size_t opaque_len, + /// XlaCustomCallStatus* status); + /// + [pbr::OriginalName("API_VERSION_STATUS_RETURNING")] ApiVersionStatusReturning = 2, + /// + /// Fixes the API signatures on the CPU side of the version STATUS_RETURNING by + /// adding the opaque string so that the custom call API is consistent across + /// CPUs and GPUs. For GPUs, the behaviors invoked by + /// API_VERSION_STATUS_RETURNING and API_VERSION_STATUS_RETURNING_UNIFIED are + /// the same. + /// + /// CPU: + /// void do_custom_call(void* out, const void** in, + /// const char* opaque, size_t opaque_len, + /// XlaCustomCallStatus* status); + /// + /// GPU: + /// void do_custom_call(CUstream stream, void** buffers, + /// const char* opaque, size_t opaque_len, + /// XlaCustomCallStatus* status); + /// + [pbr::OriginalName("API_VERSION_STATUS_RETURNING_UNIFIED")] ApiVersionStatusReturningUnified = 3, + } + + public enum Kind { + /// + /// Define a UNDEFINED_ALIAS equal to zero to get around the default-0 proto3 + /// behavior and missing has_*() APIs. + /// + [pbr::OriginalName("UNDEFINED_ALIAS")] UndefinedAlias = 0, + /// + /// The buffers may or may not alias at runtime. + /// + [pbr::OriginalName("MAY_ALIAS")] MayAlias = 1, + /// + /// The buffers must alias at runtime. + /// + [pbr::OriginalName("MUST_ALIAS")] MustAlias = 2, + } + + #endregion + + #region Messages + /// + /// Serialization of HloInstruction. + /// Next ID: 80 + /// + public sealed partial class HloInstructionProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloInstructionProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloInstructionProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloInstructionProto(HloInstructionProto other) : this() { + name_ = other.name_; + opcode_ = other.opcode_; + shape_ = other.shape_ != null ? other.shape_.Clone() : null; + metadata_ = other.metadata_ != null ? other.metadata_.Clone() : null; + literal_ = other.literal_ != null ? other.literal_.Clone() : null; + parameterNumber_ = other.parameterNumber_; + fusionKind_ = other.fusionKind_; + tupleIndex_ = other.tupleIndex_; + dimensions_ = other.dimensions_.Clone(); + window_ = other.window_ != null ? other.window_.Clone() : null; + convolutionDimensionNumbers_ = other.convolutionDimensionNumbers_ != null ? other.convolutionDimensionNumbers_.Clone() : null; + featureGroupCount_ = other.featureGroupCount_; + batchGroupCount_ = other.batchGroupCount_; + sliceDimensions_ = other.sliceDimensions_.Clone(); + exponentBits_ = other.exponentBits_; + mantissaBits_ = other.mantissaBits_; + dynamicSliceSizes_ = other.dynamicSliceSizes_.Clone(); + paddingConfig_ = other.paddingConfig_ != null ? other.paddingConfig_.Clone() : null; + outfeedConfig_ = other.outfeedConfig_; + distribution_ = other.distribution_; + epsilon_ = other.epsilon_; + featureIndex_ = other.featureIndex_; + channelId_ = other.channelId_; + infeedConfig_ = other.infeedConfig_; + customCallTarget_ = other.customCallTarget_; + outfeedShape_ = other.outfeedShape_ != null ? other.outfeedShape_.Clone() : null; + dotDimensionNumbers_ = other.dotDimensionNumbers_ != null ? other.dotDimensionNumbers_.Clone() : null; + fftType_ = other.fftType_; + fftLength_ = other.fftLength_.Clone(); + comparisonDirection_ = other.comparisonDirection_; + gatherDimensionNumbers_ = other.gatherDimensionNumbers_ != null ? other.gatherDimensionNumbers_.Clone() : null; + gatherSliceSizes_ = other.gatherSliceSizes_.Clone(); + id_ = other.id_; + operandIds_ = other.operandIds_.Clone(); + controlPredecessorIds_ = other.controlPredecessorIds_.Clone(); + calledComputationIds_ = other.calledComputationIds_.Clone(); + sharding_ = other.sharding_ != null ? other.sharding_.Clone() : null; + backendConfig_ = other.backendConfig_; + replicaGroups_ = other.replicaGroups_.Clone(); + allReduceId_ = other.allReduceId_; + useGlobalDeviceIds_ = other.useGlobalDeviceIds_; + isHostTransfer_ = other.isHostTransfer_; + isStable_ = other.isStable_; + scatterDimensionNumbers_ = other.scatterDimensionNumbers_ != null ? other.scatterDimensionNumbers_.Clone() : null; + precisionConfig_ = other.precisionConfig_ != null ? other.precisionConfig_.Clone() : null; + sourceTargetPairs_ = other.sourceTargetPairs_.Clone(); + domainEntrySharding_ = other.domainEntrySharding_ != null ? other.domainEntrySharding_.Clone() : null; + domainExitSharding_ = other.domainExitSharding_ != null ? other.domainExitSharding_.Clone() : null; + constrainLayout_ = other.constrainLayout_; + operandShapesWithLayout_ = other.operandShapesWithLayout_.Clone(); + triangularSolveOptions_ = other.triangularSolveOptions_ != null ? other.triangularSolveOptions_.Clone() : null; + choleskyOptions_ = other.choleskyOptions_ != null ? other.choleskyOptions_.Clone() : null; + parameterReplication_ = other.parameterReplication_ != null ? other.parameterReplication_.Clone() : null; + customCallHasSideEffect_ = other.customCallHasSideEffect_; + customCallOutputOperandAliasing_ = other.customCallOutputOperandAliasing_.Clone(); + customCallSchedule_ = other.customCallSchedule_; + delta_ = other.delta_; + indicesAreSorted_ = other.indicesAreSorted_; + frontendAttributes_ = other.frontendAttributes_ != null ? other.frontendAttributes_.Clone() : null; + uniqueIndices_ = other.uniqueIndices_; + rngAlgorithm_ = other.rngAlgorithm_; + comparisonType_ = other.comparisonType_; + isCrossProgramPrefetch_ = other.isCrossProgramPrefetch_; + paddingType_ = other.paddingType_; + customCallApiVersion_ = other.customCallApiVersion_; + asyncGroupId_ = other.asyncGroupId_; + asyncExecutionThread_ = other.asyncExecutionThread_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloInstructionProto Clone() { + return new HloInstructionProto(this); + } + + /// Field number for the "name" field. + public const int NameFieldNumber = 1; + private string name_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Name { + get { return name_; } + set { + name_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "opcode" field. + public const int OpcodeFieldNumber = 2; + private string opcode_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Opcode { + get { return opcode_; } + set { + opcode_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "shape" field. + public const int ShapeFieldNumber = 3; + private global::Xla.ShapeProto shape_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto Shape { + get { return shape_; } + set { + shape_ = value; + } + } + + /// Field number for the "metadata" field. + public const int MetadataFieldNumber = 7; + private global::Xla.OpMetadata metadata_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.OpMetadata Metadata { + get { return metadata_; } + set { + metadata_ = value; + } + } + + /// Field number for the "literal" field. + public const int LiteralFieldNumber = 8; + private global::Xla.LiteralProto literal_; + /// + /// Literal, only present for kConstant. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LiteralProto Literal { + get { return literal_; } + set { + literal_ = value; + } + } + + /// Field number for the "parameter_number" field. + public const int ParameterNumberFieldNumber = 9; + private long parameterNumber_; + /// + /// Parameter number is only present for kParameter. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ParameterNumber { + get { return parameterNumber_; } + set { + parameterNumber_ = value; + } + } + + /// Field number for the "fusion_kind" field. + public const int FusionKindFieldNumber = 11; + private string fusionKind_ = ""; + /// + /// Fusion state, only present for kFusion. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string FusionKind { + get { return fusionKind_; } + set { + fusionKind_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "tuple_index" field. + public const int TupleIndexFieldNumber = 13; + private long tupleIndex_; + /// + /// Index for kGetTupleElement. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long TupleIndex { + get { return tupleIndex_; } + set { + tupleIndex_ = value; + } + } + + /// Field number for the "dimensions" field. + public const int DimensionsFieldNumber = 14; + private static readonly pb::FieldCodec _repeated_dimensions_codec + = pb::FieldCodec.ForInt64(114); + private readonly pbc::RepeatedField dimensions_ = new pbc::RepeatedField(); + /// + /// Dimensions present for some operations that require reshaping or + /// broadcasting, including Reshape, Reduce, ReduceWindow, and Reverse. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Dimensions { + get { return dimensions_; } + } + + /// Field number for the "window" field. + public const int WindowFieldNumber = 15; + private global::Xla.Window window_; + /// + /// Describes the window in a windowed operation such as convolution. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.Window Window { + get { return window_; } + set { + window_ = value; + } + } + + /// Field number for the "convolution_dimension_numbers" field. + public const int ConvolutionDimensionNumbersFieldNumber = 16; + private global::Xla.ConvolutionDimensionNumbers convolutionDimensionNumbers_; + /// + /// Describes the dimension numbers used for a convolution. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ConvolutionDimensionNumbers ConvolutionDimensionNumbers { + get { return convolutionDimensionNumbers_; } + set { + convolutionDimensionNumbers_ = value; + } + } + + /// Field number for the "feature_group_count" field. + public const int FeatureGroupCountFieldNumber = 50; + private long featureGroupCount_; + /// + /// The number of feature groups. Used for a convolution. Must be a divisor of + /// the input feature dimension and output feature dimension. If not specified, + /// it will use a default value of 1. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long FeatureGroupCount { + get { return featureGroupCount_; } + set { + featureGroupCount_ = value; + } + } + + /// Field number for the "batch_group_count" field. + public const int BatchGroupCountFieldNumber = 58; + private long batchGroupCount_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long BatchGroupCount { + get { return batchGroupCount_; } + set { + batchGroupCount_ = value; + } + } + + /// Field number for the "slice_dimensions" field. + public const int SliceDimensionsFieldNumber = 17; + private static readonly pb::FieldCodec _repeated_sliceDimensions_codec + = pb::FieldCodec.ForMessage(138, global::Xla.HloInstructionProto.Types.SliceDimensions.Parser); + private readonly pbc::RepeatedField sliceDimensions_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField SliceDimensions { + get { return sliceDimensions_; } + } + + /// Field number for the "exponent_bits" field. + public const int ExponentBitsFieldNumber = 18; + private int exponentBits_; + /// + /// The bit sizes for a reduce-precision operation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int ExponentBits { + get { return exponentBits_; } + set { + exponentBits_ = value; + } + } + + /// Field number for the "mantissa_bits" field. + public const int MantissaBitsFieldNumber = 19; + private int mantissaBits_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int MantissaBits { + get { return mantissaBits_; } + set { + mantissaBits_ = value; + } + } + + /// Field number for the "dynamic_slice_sizes" field. + public const int DynamicSliceSizesFieldNumber = 20; + private static readonly pb::FieldCodec _repeated_dynamicSliceSizes_codec + = pb::FieldCodec.ForInt64(162); + private readonly pbc::RepeatedField dynamicSliceSizes_ = new pbc::RepeatedField(); + /// + /// Describes the [start, start + size) range size for a dynamic slice + /// ('start' is specified dynamically in the second operand of the operation). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField DynamicSliceSizes { + get { return dynamicSliceSizes_; } + } + + /// Field number for the "padding_config" field. + public const int PaddingConfigFieldNumber = 21; + private global::Xla.PaddingConfig paddingConfig_; + /// + /// The padding configuration that describes the edge padding and interior + /// padding of this pad instruction. Only set for pad instructions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.PaddingConfig PaddingConfig { + get { return paddingConfig_; } + set { + paddingConfig_ = value; + } + } + + /// Field number for the "outfeed_config" field. + public const int OutfeedConfigFieldNumber = 22; + private pb::ByteString outfeedConfig_ = pb::ByteString.Empty; + /// + /// Outfeed configuration information, only present for kOutfeed. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString OutfeedConfig { + get { return outfeedConfig_; } + set { + outfeedConfig_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "distribution" field. + public const int DistributionFieldNumber = 23; + private global::Xla.RandomDistribution distribution_ = global::Xla.RandomDistribution.RngInvalid; + /// + /// The distribution requested for random number generation. + /// Only present for kRng. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.RandomDistribution Distribution { + get { return distribution_; } + set { + distribution_ = value; + } + } + + /// Field number for the "epsilon" field. + public const int EpsilonFieldNumber = 24; + private float epsilon_; + /// + /// A small float number added to the variance to avoid divide-by-zero error. + /// Only present for kBatchNormTraining, kBatchNormInference, and + /// kBatchNormGrad. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public float Epsilon { + get { return epsilon_; } + set { + epsilon_ = value; + } + } + + /// Field number for the "feature_index" field. + public const int FeatureIndexFieldNumber = 25; + private long featureIndex_; + /// + /// An integer value representing the index of the feature dimension. + /// Only present for kBatchNormTraining, kBatchNormInference, and + /// kBatchNormGrad. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long FeatureIndex { + get { return featureIndex_; } + set { + featureIndex_ = value; + } + } + + /// Field number for the "channel_id" field. + public const int ChannelIdFieldNumber = 26; + private long channelId_; + /// + /// Represents a unique identifier for each Send/Recv instruction pair or + /// optionally for collective instructions (AllReduce, CollectivePermute, + /// AllToAll). Non-positive channel_id is equivalent to no channel id. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ChannelId { + get { return channelId_; } + set { + channelId_ = value; + } + } + + /// Field number for the "infeed_config" field. + public const int InfeedConfigFieldNumber = 27; + private pb::ByteString infeedConfig_ = pb::ByteString.Empty; + /// + /// The string representation of the infeed configuration. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString InfeedConfig { + get { return infeedConfig_; } + set { + infeedConfig_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "custom_call_target" field. + public const int CustomCallTargetFieldNumber = 28; + private string customCallTarget_ = ""; + /// + /// Name of a external target (eg, global symbol) to call, only present for + /// kCustomCall. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string CustomCallTarget { + get { return customCallTarget_; } + set { + customCallTarget_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "outfeed_shape" field. + public const int OutfeedShapeFieldNumber = 29; + private global::Xla.ShapeProto outfeedShape_; + /// + /// Shape of outfeed request. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto OutfeedShape { + get { return outfeedShape_; } + set { + outfeedShape_ = value; + } + } + + /// Field number for the "dot_dimension_numbers" field. + public const int DotDimensionNumbersFieldNumber = 30; + private global::Xla.DotDimensionNumbers dotDimensionNumbers_; + /// + /// Describes the dimension numbers used for a dot operation + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DotDimensionNumbers DotDimensionNumbers { + get { return dotDimensionNumbers_; } + set { + dotDimensionNumbers_ = value; + } + } + + /// Field number for the "fft_type" field. + public const int FftTypeFieldNumber = 31; + private global::Xla.FftType fftType_ = global::Xla.FftType.Fft; + /// + /// FFT type (FFT, IFFT, etc). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.FftType FftType { + get { return fftType_; } + set { + fftType_ = value; + } + } + + /// Field number for the "fft_length" field. + public const int FftLengthFieldNumber = 32; + private static readonly pb::FieldCodec _repeated_fftLength_codec + = pb::FieldCodec.ForInt64(258); + private readonly pbc::RepeatedField fftLength_ = new pbc::RepeatedField(); + /// + /// FFT length. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField FftLength { + get { return fftLength_; } + } + + /// Field number for the "comparison_direction" field. + public const int ComparisonDirectionFieldNumber = 63; + private string comparisonDirection_ = ""; + /// + /// Comparison direction only used for kCompare. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ComparisonDirection { + get { return comparisonDirection_; } + set { + comparisonDirection_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "gather_dimension_numbers" field. + public const int GatherDimensionNumbersFieldNumber = 33; + private global::Xla.GatherDimensionNumbers gatherDimensionNumbers_; + /// + /// Gather dimension numbers. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GatherDimensionNumbers GatherDimensionNumbers { + get { return gatherDimensionNumbers_; } + set { + gatherDimensionNumbers_ = value; + } + } + + /// Field number for the "gather_slice_sizes" field. + public const int GatherSliceSizesFieldNumber = 34; + private static readonly pb::FieldCodec _repeated_gatherSliceSizes_codec + = pb::FieldCodec.ForInt64(274); + private readonly pbc::RepeatedField gatherSliceSizes_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField GatherSliceSizes { + get { return gatherSliceSizes_; } + } + + /// Field number for the "id" field. + public const int IdFieldNumber = 35; + private long id_; + /// + /// The id of this instruction. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Id { + get { return id_; } + set { + id_ = value; + } + } + + /// Field number for the "operand_ids" field. + public const int OperandIdsFieldNumber = 36; + private static readonly pb::FieldCodec _repeated_operandIds_codec + = pb::FieldCodec.ForInt64(290); + private readonly pbc::RepeatedField operandIds_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField OperandIds { + get { return operandIds_; } + } + + /// Field number for the "control_predecessor_ids" field. + public const int ControlPredecessorIdsFieldNumber = 37; + private static readonly pb::FieldCodec _repeated_controlPredecessorIds_codec + = pb::FieldCodec.ForInt64(298); + private readonly pbc::RepeatedField controlPredecessorIds_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ControlPredecessorIds { + get { return controlPredecessorIds_; } + } + + /// Field number for the "called_computation_ids" field. + public const int CalledComputationIdsFieldNumber = 38; + private static readonly pb::FieldCodec _repeated_calledComputationIds_codec + = pb::FieldCodec.ForInt64(306); + private readonly pbc::RepeatedField calledComputationIds_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField CalledComputationIds { + get { return calledComputationIds_; } + } + + /// Field number for the "sharding" field. + public const int ShardingFieldNumber = 40; + private global::Xla.OpSharding sharding_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.OpSharding Sharding { + get { return sharding_; } + set { + sharding_ = value; + } + } + + /// Field number for the "backend_config" field. + public const int BackendConfigFieldNumber = 43; + private pb::ByteString backendConfig_ = pb::ByteString.Empty; + /// + /// Backend configuration for the instruction. Has backend-specific meaning. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString BackendConfig { + get { return backendConfig_; } + set { + backendConfig_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "replica_groups" field. + public const int ReplicaGroupsFieldNumber = 49; + private static readonly pb::FieldCodec _repeated_replicaGroups_codec + = pb::FieldCodec.ForMessage(394, global::Xla.ReplicaGroup.Parser); + private readonly pbc::RepeatedField replicaGroups_ = new pbc::RepeatedField(); + /// + /// Cross replica op fields. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ReplicaGroups { + get { return replicaGroups_; } + } + + /// Field number for the "all_reduce_id" field. + public const int AllReduceIdFieldNumber = 45; + private long allReduceId_; + /// + /// Deprecated, but keeping it for backward compatibility. Use channel_id. + /// Non-positive all_reduce_id is equivalent to no all_reduce_id. + /// + [global::System.ObsoleteAttribute] + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long AllReduceId { + get { return allReduceId_; } + set { + allReduceId_ = value; + } + } + + /// Field number for the "use_global_device_ids" field. + public const int UseGlobalDeviceIdsFieldNumber = 71; + private bool useGlobalDeviceIds_; + /// + /// If true, interprets ids in ReplicaGroup as global device ids, which is + /// a linearized id of `replica_id * partition_count + partition_id`. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool UseGlobalDeviceIds { + get { return useGlobalDeviceIds_; } + set { + useGlobalDeviceIds_ = value; + } + } + + /// Field number for the "is_host_transfer" field. + public const int IsHostTransferFieldNumber = 47; + private bool isHostTransfer_; + /// + /// Whether this Send/Recv instruction transfers data to/from the host. Only + /// present for Send and Recv instructions and their SendDone and RecvDone + /// partners. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsHostTransfer { + get { return isHostTransfer_; } + set { + isHostTransfer_ = value; + } + } + + /// Field number for the "is_stable" field. + public const int IsStableFieldNumber = 60; + private bool isStable_; + /// + /// Whether this Sort instruction should be stable. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsStable { + get { return isStable_; } + set { + isStable_ = value; + } + } + + /// Field number for the "scatter_dimension_numbers" field. + public const int ScatterDimensionNumbersFieldNumber = 48; + private global::Xla.ScatterDimensionNumbers scatterDimensionNumbers_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ScatterDimensionNumbers ScatterDimensionNumbers { + get { return scatterDimensionNumbers_; } + set { + scatterDimensionNumbers_ = value; + } + } + + /// Field number for the "precision_config" field. + public const int PrecisionConfigFieldNumber = 51; + private global::Xla.PrecisionConfig precisionConfig_; + /// + /// Precision configuration for the instruction. Has backend-specific meaning. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.PrecisionConfig PrecisionConfig { + get { return precisionConfig_; } + set { + precisionConfig_ = value; + } + } + + /// Field number for the "source_target_pairs" field. + public const int SourceTargetPairsFieldNumber = 52; + private static readonly pb::FieldCodec _repeated_sourceTargetPairs_codec + = pb::FieldCodec.ForMessage(418, global::Xla.SourceTarget.Parser); + private readonly pbc::RepeatedField sourceTargetPairs_ = new pbc::RepeatedField(); + /// + /// Collective permute field. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField SourceTargetPairs { + get { return sourceTargetPairs_; } + } + + /// Field number for the "domain_entry_sharding" field. + public const int DomainEntryShardingFieldNumber = 54; + private global::Xla.OpSharding domainEntrySharding_; + /// + /// Sharding for kDomain instructions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.OpSharding DomainEntrySharding { + get { return domainEntrySharding_; } + set { + domainEntrySharding_ = value; + } + } + + /// Field number for the "domain_exit_sharding" field. + public const int DomainExitShardingFieldNumber = 55; + private global::Xla.OpSharding domainExitSharding_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.OpSharding DomainExitSharding { + get { return domainExitSharding_; } + set { + domainExitSharding_ = value; + } + } + + /// Field number for the "constrain_layout" field. + public const int ConstrainLayoutFieldNumber = 56; + private bool constrainLayout_; + /// + /// For custom call this indicates that the layouts are constrained. If + /// constrain_layout is true then the 'shape' field must contain a layout, and + /// 'operand_shapes_with_layout' must contain a shape with layout for each + /// operand. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool ConstrainLayout { + get { return constrainLayout_; } + set { + constrainLayout_ = value; + } + } + + /// Field number for the "operand_shapes_with_layout" field. + public const int OperandShapesWithLayoutFieldNumber = 57; + private static readonly pb::FieldCodec _repeated_operandShapesWithLayout_codec + = pb::FieldCodec.ForMessage(458, global::Xla.ShapeProto.Parser); + private readonly pbc::RepeatedField operandShapesWithLayout_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField OperandShapesWithLayout { + get { return operandShapesWithLayout_; } + } + + /// Field number for the "triangular_solve_options" field. + public const int TriangularSolveOptionsFieldNumber = 59; + private global::Xla.TriangularSolveOptions triangularSolveOptions_; + /// + /// Options for TriangularSolve + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.TriangularSolveOptions TriangularSolveOptions { + get { return triangularSolveOptions_; } + set { + triangularSolveOptions_ = value; + } + } + + /// Field number for the "cholesky_options" field. + public const int CholeskyOptionsFieldNumber = 62; + private global::Xla.CholeskyOptions choleskyOptions_; + /// + /// Options for Cholesky + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.CholeskyOptions CholeskyOptions { + get { return choleskyOptions_; } + set { + choleskyOptions_ = value; + } + } + + /// Field number for the "parameter_replication" field. + public const int ParameterReplicationFieldNumber = 61; + private global::Xla.ParameterReplication parameterReplication_; + /// + /// Describes how parameters behave with regards to replicas. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ParameterReplication ParameterReplication { + get { return parameterReplication_; } + set { + parameterReplication_ = value; + } + } + + /// Field number for the "custom_call_has_side_effect" field. + public const int CustomCallHasSideEffectFieldNumber = 65; + private bool customCallHasSideEffect_; + /// + /// Whether the kCustomCall instruction has side-effects, only present for + /// kCustomCall. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool CustomCallHasSideEffect { + get { return customCallHasSideEffect_; } + set { + customCallHasSideEffect_ = value; + } + } + + /// Field number for the "custom_call_output_operand_aliasing" field. + public const int CustomCallOutputOperandAliasingFieldNumber = 74; + private static readonly pb::FieldCodec _repeated_customCallOutputOperandAliasing_codec + = pb::FieldCodec.ForMessage(594, global::Xla.CustomCallOutputOperandAliasing.Parser); + private readonly pbc::RepeatedField customCallOutputOperandAliasing_ = new pbc::RepeatedField(); + /// + /// A list of CustomCallOutputOperandAliasing pairs that specifies aliasing + /// buffers between output and operands for kCustomCall. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField CustomCallOutputOperandAliasing { + get { return customCallOutputOperandAliasing_; } + } + + /// Field number for the "custom_call_schedule" field. + public const int CustomCallScheduleFieldNumber = 76; + private global::Xla.CustomCallSchedule customCallSchedule_ = global::Xla.CustomCallSchedule.ScheduleNone; + /// + /// Specifies the desired schedule for the custom-call. The field is only + /// present for custom-call. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.CustomCallSchedule CustomCallSchedule { + get { return customCallSchedule_; } + set { + customCallSchedule_ = value; + } + } + + /// Field number for the "delta" field. + public const int DeltaFieldNumber = 66; + private long delta_; + /// + /// The delta value for kRngGetAndUpdateState. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Delta { + get { return delta_; } + set { + delta_ = value; + } + } + + /// Field number for the "indices_are_sorted" field. + public const int IndicesAreSortedFieldNumber = 67; + private bool indicesAreSorted_; + /// + /// Specifies if the gather/scatter indices are guaranteed to be sorted by the + /// caller. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IndicesAreSorted { + get { return indicesAreSorted_; } + set { + indicesAreSorted_ = value; + } + } + + /// Field number for the "frontend_attributes" field. + public const int FrontendAttributesFieldNumber = 68; + private global::Xla.FrontendAttributes frontendAttributes_; + /// + /// Frontend attributes to pass to the XLA backend. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.FrontendAttributes FrontendAttributes { + get { return frontendAttributes_; } + set { + frontendAttributes_ = value; + } + } + + /// Field number for the "unique_indices" field. + public const int UniqueIndicesFieldNumber = 69; + private bool uniqueIndices_; + /// + /// Specifies if all elements updated are guaranteed to be unique by + /// the caller. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool UniqueIndices { + get { return uniqueIndices_; } + set { + uniqueIndices_ = value; + } + } + + /// Field number for the "rng_algorithm" field. + public const int RngAlgorithmFieldNumber = 70; + private global::Xla.RandomAlgorithm rngAlgorithm_ = global::Xla.RandomAlgorithm.RngDefault; + /// + /// RNG algorithm used by kRngBitGenerator. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.RandomAlgorithm RngAlgorithm { + get { return rngAlgorithm_; } + set { + rngAlgorithm_ = value; + } + } + + /// Field number for the "comparison_type" field. + public const int ComparisonTypeFieldNumber = 72; + private string comparisonType_ = ""; + /// + /// The comparison type used for kCompare. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ComparisonType { + get { return comparisonType_; } + set { + comparisonType_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "is_cross_program_prefetch" field. + public const int IsCrossProgramPrefetchFieldNumber = 73; + private bool isCrossProgramPrefetch_; + /// + /// Specifies if this is a cross-program-prefetch, used by kCopyStart. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsCrossProgramPrefetch { + get { return isCrossProgramPrefetch_; } + set { + isCrossProgramPrefetch_ = value; + } + } + + /// Field number for the "padding_type" field. + public const int PaddingTypeFieldNumber = 75; + private global::Xla.PaddingType paddingType_ = global::Xla.PaddingType.PaddingInvalid; + /// + /// If a convolution is dynamic, a dynamic padding type will be specified. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.PaddingType PaddingType { + get { return paddingType_; } + set { + paddingType_ = value; + } + } + + /// Field number for the "custom_call_api_version" field. + public const int CustomCallApiVersionFieldNumber = 77; + private global::Xla.CustomCallApiVersion customCallApiVersion_ = global::Xla.CustomCallApiVersion.ApiVersionUnspecified; + /// + /// The API version used by the custom call function. This field is only + /// present for custom-call. + /// TODO(b/189822916): Remove this field when all clients are migrated to the + /// status-returning API. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.CustomCallApiVersion CustomCallApiVersion { + get { return customCallApiVersion_; } + set { + customCallApiVersion_ = value; + } + } + + /// Field number for the "async_group_id" field. + public const int AsyncGroupIdFieldNumber = 78; + private long asyncGroupId_; + /// + /// Represents a unique identifier for an async group which consists of an + /// async start, async done, and zero or more async update operations. + /// Negative async_group_id is equivalent to no async group id. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long AsyncGroupId { + get { return asyncGroupId_; } + set { + asyncGroupId_ = value; + } + } + + /// Field number for the "async_execution_thread" field. + public const int AsyncExecutionThreadFieldNumber = 79; + private string asyncExecutionThread_ = ""; + /// + /// Represents a unique execution thread name for one or more async groups. + /// Each HLO module may contain a main thread and one or more parallel threads. + /// Empty async_execution_thread is equivalent to main thread. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string AsyncExecutionThread { + get { return asyncExecutionThread_; } + set { + asyncExecutionThread_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloInstructionProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloInstructionProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Name != other.Name) return false; + if (Opcode != other.Opcode) return false; + if (!object.Equals(Shape, other.Shape)) return false; + if (!object.Equals(Metadata, other.Metadata)) return false; + if (!object.Equals(Literal, other.Literal)) return false; + if (ParameterNumber != other.ParameterNumber) return false; + if (FusionKind != other.FusionKind) return false; + if (TupleIndex != other.TupleIndex) return false; + if(!dimensions_.Equals(other.dimensions_)) return false; + if (!object.Equals(Window, other.Window)) return false; + if (!object.Equals(ConvolutionDimensionNumbers, other.ConvolutionDimensionNumbers)) return false; + if (FeatureGroupCount != other.FeatureGroupCount) return false; + if (BatchGroupCount != other.BatchGroupCount) return false; + if(!sliceDimensions_.Equals(other.sliceDimensions_)) return false; + if (ExponentBits != other.ExponentBits) return false; + if (MantissaBits != other.MantissaBits) return false; + if(!dynamicSliceSizes_.Equals(other.dynamicSliceSizes_)) return false; + if (!object.Equals(PaddingConfig, other.PaddingConfig)) return false; + if (OutfeedConfig != other.OutfeedConfig) return false; + if (Distribution != other.Distribution) return false; + if (!pbc::ProtobufEqualityComparers.BitwiseSingleEqualityComparer.Equals(Epsilon, other.Epsilon)) return false; + if (FeatureIndex != other.FeatureIndex) return false; + if (ChannelId != other.ChannelId) return false; + if (InfeedConfig != other.InfeedConfig) return false; + if (CustomCallTarget != other.CustomCallTarget) return false; + if (!object.Equals(OutfeedShape, other.OutfeedShape)) return false; + if (!object.Equals(DotDimensionNumbers, other.DotDimensionNumbers)) return false; + if (FftType != other.FftType) return false; + if(!fftLength_.Equals(other.fftLength_)) return false; + if (ComparisonDirection != other.ComparisonDirection) return false; + if (!object.Equals(GatherDimensionNumbers, other.GatherDimensionNumbers)) return false; + if(!gatherSliceSizes_.Equals(other.gatherSliceSizes_)) return false; + if (Id != other.Id) return false; + if(!operandIds_.Equals(other.operandIds_)) return false; + if(!controlPredecessorIds_.Equals(other.controlPredecessorIds_)) return false; + if(!calledComputationIds_.Equals(other.calledComputationIds_)) return false; + if (!object.Equals(Sharding, other.Sharding)) return false; + if (BackendConfig != other.BackendConfig) return false; + if(!replicaGroups_.Equals(other.replicaGroups_)) return false; + if (AllReduceId != other.AllReduceId) return false; + if (UseGlobalDeviceIds != other.UseGlobalDeviceIds) return false; + if (IsHostTransfer != other.IsHostTransfer) return false; + if (IsStable != other.IsStable) return false; + if (!object.Equals(ScatterDimensionNumbers, other.ScatterDimensionNumbers)) return false; + if (!object.Equals(PrecisionConfig, other.PrecisionConfig)) return false; + if(!sourceTargetPairs_.Equals(other.sourceTargetPairs_)) return false; + if (!object.Equals(DomainEntrySharding, other.DomainEntrySharding)) return false; + if (!object.Equals(DomainExitSharding, other.DomainExitSharding)) return false; + if (ConstrainLayout != other.ConstrainLayout) return false; + if(!operandShapesWithLayout_.Equals(other.operandShapesWithLayout_)) return false; + if (!object.Equals(TriangularSolveOptions, other.TriangularSolveOptions)) return false; + if (!object.Equals(CholeskyOptions, other.CholeskyOptions)) return false; + if (!object.Equals(ParameterReplication, other.ParameterReplication)) return false; + if (CustomCallHasSideEffect != other.CustomCallHasSideEffect) return false; + if(!customCallOutputOperandAliasing_.Equals(other.customCallOutputOperandAliasing_)) return false; + if (CustomCallSchedule != other.CustomCallSchedule) return false; + if (Delta != other.Delta) return false; + if (IndicesAreSorted != other.IndicesAreSorted) return false; + if (!object.Equals(FrontendAttributes, other.FrontendAttributes)) return false; + if (UniqueIndices != other.UniqueIndices) return false; + if (RngAlgorithm != other.RngAlgorithm) return false; + if (ComparisonType != other.ComparisonType) return false; + if (IsCrossProgramPrefetch != other.IsCrossProgramPrefetch) return false; + if (PaddingType != other.PaddingType) return false; + if (CustomCallApiVersion != other.CustomCallApiVersion) return false; + if (AsyncGroupId != other.AsyncGroupId) return false; + if (AsyncExecutionThread != other.AsyncExecutionThread) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Name.Length != 0) hash ^= Name.GetHashCode(); + if (Opcode.Length != 0) hash ^= Opcode.GetHashCode(); + if (shape_ != null) hash ^= Shape.GetHashCode(); + if (metadata_ != null) hash ^= Metadata.GetHashCode(); + if (literal_ != null) hash ^= Literal.GetHashCode(); + if (ParameterNumber != 0L) hash ^= ParameterNumber.GetHashCode(); + if (FusionKind.Length != 0) hash ^= FusionKind.GetHashCode(); + if (TupleIndex != 0L) hash ^= TupleIndex.GetHashCode(); + hash ^= dimensions_.GetHashCode(); + if (window_ != null) hash ^= Window.GetHashCode(); + if (convolutionDimensionNumbers_ != null) hash ^= ConvolutionDimensionNumbers.GetHashCode(); + if (FeatureGroupCount != 0L) hash ^= FeatureGroupCount.GetHashCode(); + if (BatchGroupCount != 0L) hash ^= BatchGroupCount.GetHashCode(); + hash ^= sliceDimensions_.GetHashCode(); + if (ExponentBits != 0) hash ^= ExponentBits.GetHashCode(); + if (MantissaBits != 0) hash ^= MantissaBits.GetHashCode(); + hash ^= dynamicSliceSizes_.GetHashCode(); + if (paddingConfig_ != null) hash ^= PaddingConfig.GetHashCode(); + if (OutfeedConfig.Length != 0) hash ^= OutfeedConfig.GetHashCode(); + if (Distribution != global::Xla.RandomDistribution.RngInvalid) hash ^= Distribution.GetHashCode(); + if (Epsilon != 0F) hash ^= pbc::ProtobufEqualityComparers.BitwiseSingleEqualityComparer.GetHashCode(Epsilon); + if (FeatureIndex != 0L) hash ^= FeatureIndex.GetHashCode(); + if (ChannelId != 0L) hash ^= ChannelId.GetHashCode(); + if (InfeedConfig.Length != 0) hash ^= InfeedConfig.GetHashCode(); + if (CustomCallTarget.Length != 0) hash ^= CustomCallTarget.GetHashCode(); + if (outfeedShape_ != null) hash ^= OutfeedShape.GetHashCode(); + if (dotDimensionNumbers_ != null) hash ^= DotDimensionNumbers.GetHashCode(); + if (FftType != global::Xla.FftType.Fft) hash ^= FftType.GetHashCode(); + hash ^= fftLength_.GetHashCode(); + if (ComparisonDirection.Length != 0) hash ^= ComparisonDirection.GetHashCode(); + if (gatherDimensionNumbers_ != null) hash ^= GatherDimensionNumbers.GetHashCode(); + hash ^= gatherSliceSizes_.GetHashCode(); + if (Id != 0L) hash ^= Id.GetHashCode(); + hash ^= operandIds_.GetHashCode(); + hash ^= controlPredecessorIds_.GetHashCode(); + hash ^= calledComputationIds_.GetHashCode(); + if (sharding_ != null) hash ^= Sharding.GetHashCode(); + if (BackendConfig.Length != 0) hash ^= BackendConfig.GetHashCode(); + hash ^= replicaGroups_.GetHashCode(); + if (AllReduceId != 0L) hash ^= AllReduceId.GetHashCode(); + if (UseGlobalDeviceIds != false) hash ^= UseGlobalDeviceIds.GetHashCode(); + if (IsHostTransfer != false) hash ^= IsHostTransfer.GetHashCode(); + if (IsStable != false) hash ^= IsStable.GetHashCode(); + if (scatterDimensionNumbers_ != null) hash ^= ScatterDimensionNumbers.GetHashCode(); + if (precisionConfig_ != null) hash ^= PrecisionConfig.GetHashCode(); + hash ^= sourceTargetPairs_.GetHashCode(); + if (domainEntrySharding_ != null) hash ^= DomainEntrySharding.GetHashCode(); + if (domainExitSharding_ != null) hash ^= DomainExitSharding.GetHashCode(); + if (ConstrainLayout != false) hash ^= ConstrainLayout.GetHashCode(); + hash ^= operandShapesWithLayout_.GetHashCode(); + if (triangularSolveOptions_ != null) hash ^= TriangularSolveOptions.GetHashCode(); + if (choleskyOptions_ != null) hash ^= CholeskyOptions.GetHashCode(); + if (parameterReplication_ != null) hash ^= ParameterReplication.GetHashCode(); + if (CustomCallHasSideEffect != false) hash ^= CustomCallHasSideEffect.GetHashCode(); + hash ^= customCallOutputOperandAliasing_.GetHashCode(); + if (CustomCallSchedule != global::Xla.CustomCallSchedule.ScheduleNone) hash ^= CustomCallSchedule.GetHashCode(); + if (Delta != 0L) hash ^= Delta.GetHashCode(); + if (IndicesAreSorted != false) hash ^= IndicesAreSorted.GetHashCode(); + if (frontendAttributes_ != null) hash ^= FrontendAttributes.GetHashCode(); + if (UniqueIndices != false) hash ^= UniqueIndices.GetHashCode(); + if (RngAlgorithm != global::Xla.RandomAlgorithm.RngDefault) hash ^= RngAlgorithm.GetHashCode(); + if (ComparisonType.Length != 0) hash ^= ComparisonType.GetHashCode(); + if (IsCrossProgramPrefetch != false) hash ^= IsCrossProgramPrefetch.GetHashCode(); + if (PaddingType != global::Xla.PaddingType.PaddingInvalid) hash ^= PaddingType.GetHashCode(); + if (CustomCallApiVersion != global::Xla.CustomCallApiVersion.ApiVersionUnspecified) hash ^= CustomCallApiVersion.GetHashCode(); + if (AsyncGroupId != 0L) hash ^= AsyncGroupId.GetHashCode(); + if (AsyncExecutionThread.Length != 0) hash ^= AsyncExecutionThread.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (Opcode.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Opcode); + } + if (shape_ != null) { + output.WriteRawTag(26); + output.WriteMessage(Shape); + } + if (metadata_ != null) { + output.WriteRawTag(58); + output.WriteMessage(Metadata); + } + if (literal_ != null) { + output.WriteRawTag(66); + output.WriteMessage(Literal); + } + if (ParameterNumber != 0L) { + output.WriteRawTag(72); + output.WriteInt64(ParameterNumber); + } + if (FusionKind.Length != 0) { + output.WriteRawTag(90); + output.WriteString(FusionKind); + } + if (TupleIndex != 0L) { + output.WriteRawTag(104); + output.WriteInt64(TupleIndex); + } + dimensions_.WriteTo(output, _repeated_dimensions_codec); + if (window_ != null) { + output.WriteRawTag(122); + output.WriteMessage(Window); + } + if (convolutionDimensionNumbers_ != null) { + output.WriteRawTag(130, 1); + output.WriteMessage(ConvolutionDimensionNumbers); + } + sliceDimensions_.WriteTo(output, _repeated_sliceDimensions_codec); + if (ExponentBits != 0) { + output.WriteRawTag(144, 1); + output.WriteInt32(ExponentBits); + } + if (MantissaBits != 0) { + output.WriteRawTag(152, 1); + output.WriteInt32(MantissaBits); + } + dynamicSliceSizes_.WriteTo(output, _repeated_dynamicSliceSizes_codec); + if (paddingConfig_ != null) { + output.WriteRawTag(170, 1); + output.WriteMessage(PaddingConfig); + } + if (OutfeedConfig.Length != 0) { + output.WriteRawTag(178, 1); + output.WriteBytes(OutfeedConfig); + } + if (Distribution != global::Xla.RandomDistribution.RngInvalid) { + output.WriteRawTag(184, 1); + output.WriteEnum((int) Distribution); + } + if (Epsilon != 0F) { + output.WriteRawTag(197, 1); + output.WriteFloat(Epsilon); + } + if (FeatureIndex != 0L) { + output.WriteRawTag(200, 1); + output.WriteInt64(FeatureIndex); + } + if (ChannelId != 0L) { + output.WriteRawTag(208, 1); + output.WriteInt64(ChannelId); + } + if (InfeedConfig.Length != 0) { + output.WriteRawTag(218, 1); + output.WriteBytes(InfeedConfig); + } + if (CustomCallTarget.Length != 0) { + output.WriteRawTag(226, 1); + output.WriteString(CustomCallTarget); + } + if (outfeedShape_ != null) { + output.WriteRawTag(234, 1); + output.WriteMessage(OutfeedShape); + } + if (dotDimensionNumbers_ != null) { + output.WriteRawTag(242, 1); + output.WriteMessage(DotDimensionNumbers); + } + if (FftType != global::Xla.FftType.Fft) { + output.WriteRawTag(248, 1); + output.WriteEnum((int) FftType); + } + fftLength_.WriteTo(output, _repeated_fftLength_codec); + if (gatherDimensionNumbers_ != null) { + output.WriteRawTag(138, 2); + output.WriteMessage(GatherDimensionNumbers); + } + gatherSliceSizes_.WriteTo(output, _repeated_gatherSliceSizes_codec); + if (Id != 0L) { + output.WriteRawTag(152, 2); + output.WriteInt64(Id); + } + operandIds_.WriteTo(output, _repeated_operandIds_codec); + controlPredecessorIds_.WriteTo(output, _repeated_controlPredecessorIds_codec); + calledComputationIds_.WriteTo(output, _repeated_calledComputationIds_codec); + if (sharding_ != null) { + output.WriteRawTag(194, 2); + output.WriteMessage(Sharding); + } + if (BackendConfig.Length != 0) { + output.WriteRawTag(218, 2); + output.WriteBytes(BackendConfig); + } + if (AllReduceId != 0L) { + output.WriteRawTag(232, 2); + output.WriteInt64(AllReduceId); + } + if (IsHostTransfer != false) { + output.WriteRawTag(248, 2); + output.WriteBool(IsHostTransfer); + } + if (scatterDimensionNumbers_ != null) { + output.WriteRawTag(130, 3); + output.WriteMessage(ScatterDimensionNumbers); + } + replicaGroups_.WriteTo(output, _repeated_replicaGroups_codec); + if (FeatureGroupCount != 0L) { + output.WriteRawTag(144, 3); + output.WriteInt64(FeatureGroupCount); + } + if (precisionConfig_ != null) { + output.WriteRawTag(154, 3); + output.WriteMessage(PrecisionConfig); + } + sourceTargetPairs_.WriteTo(output, _repeated_sourceTargetPairs_codec); + if (domainEntrySharding_ != null) { + output.WriteRawTag(178, 3); + output.WriteMessage(DomainEntrySharding); + } + if (domainExitSharding_ != null) { + output.WriteRawTag(186, 3); + output.WriteMessage(DomainExitSharding); + } + if (ConstrainLayout != false) { + output.WriteRawTag(192, 3); + output.WriteBool(ConstrainLayout); + } + operandShapesWithLayout_.WriteTo(output, _repeated_operandShapesWithLayout_codec); + if (BatchGroupCount != 0L) { + output.WriteRawTag(208, 3); + output.WriteInt64(BatchGroupCount); + } + if (triangularSolveOptions_ != null) { + output.WriteRawTag(218, 3); + output.WriteMessage(TriangularSolveOptions); + } + if (IsStable != false) { + output.WriteRawTag(224, 3); + output.WriteBool(IsStable); + } + if (parameterReplication_ != null) { + output.WriteRawTag(234, 3); + output.WriteMessage(ParameterReplication); + } + if (choleskyOptions_ != null) { + output.WriteRawTag(242, 3); + output.WriteMessage(CholeskyOptions); + } + if (ComparisonDirection.Length != 0) { + output.WriteRawTag(250, 3); + output.WriteString(ComparisonDirection); + } + if (CustomCallHasSideEffect != false) { + output.WriteRawTag(136, 4); + output.WriteBool(CustomCallHasSideEffect); + } + if (Delta != 0L) { + output.WriteRawTag(144, 4); + output.WriteInt64(Delta); + } + if (IndicesAreSorted != false) { + output.WriteRawTag(152, 4); + output.WriteBool(IndicesAreSorted); + } + if (frontendAttributes_ != null) { + output.WriteRawTag(162, 4); + output.WriteMessage(FrontendAttributes); + } + if (UniqueIndices != false) { + output.WriteRawTag(168, 4); + output.WriteBool(UniqueIndices); + } + if (RngAlgorithm != global::Xla.RandomAlgorithm.RngDefault) { + output.WriteRawTag(176, 4); + output.WriteEnum((int) RngAlgorithm); + } + if (UseGlobalDeviceIds != false) { + output.WriteRawTag(184, 4); + output.WriteBool(UseGlobalDeviceIds); + } + if (ComparisonType.Length != 0) { + output.WriteRawTag(194, 4); + output.WriteString(ComparisonType); + } + if (IsCrossProgramPrefetch != false) { + output.WriteRawTag(200, 4); + output.WriteBool(IsCrossProgramPrefetch); + } + customCallOutputOperandAliasing_.WriteTo(output, _repeated_customCallOutputOperandAliasing_codec); + if (PaddingType != global::Xla.PaddingType.PaddingInvalid) { + output.WriteRawTag(216, 4); + output.WriteEnum((int) PaddingType); + } + if (CustomCallSchedule != global::Xla.CustomCallSchedule.ScheduleNone) { + output.WriteRawTag(224, 4); + output.WriteEnum((int) CustomCallSchedule); + } + if (CustomCallApiVersion != global::Xla.CustomCallApiVersion.ApiVersionUnspecified) { + output.WriteRawTag(232, 4); + output.WriteEnum((int) CustomCallApiVersion); + } + if (AsyncGroupId != 0L) { + output.WriteRawTag(240, 4); + output.WriteInt64(AsyncGroupId); + } + if (AsyncExecutionThread.Length != 0) { + output.WriteRawTag(250, 4); + output.WriteString(AsyncExecutionThread); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (Opcode.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Opcode); + } + if (shape_ != null) { + output.WriteRawTag(26); + output.WriteMessage(Shape); + } + if (metadata_ != null) { + output.WriteRawTag(58); + output.WriteMessage(Metadata); + } + if (literal_ != null) { + output.WriteRawTag(66); + output.WriteMessage(Literal); + } + if (ParameterNumber != 0L) { + output.WriteRawTag(72); + output.WriteInt64(ParameterNumber); + } + if (FusionKind.Length != 0) { + output.WriteRawTag(90); + output.WriteString(FusionKind); + } + if (TupleIndex != 0L) { + output.WriteRawTag(104); + output.WriteInt64(TupleIndex); + } + dimensions_.WriteTo(ref output, _repeated_dimensions_codec); + if (window_ != null) { + output.WriteRawTag(122); + output.WriteMessage(Window); + } + if (convolutionDimensionNumbers_ != null) { + output.WriteRawTag(130, 1); + output.WriteMessage(ConvolutionDimensionNumbers); + } + sliceDimensions_.WriteTo(ref output, _repeated_sliceDimensions_codec); + if (ExponentBits != 0) { + output.WriteRawTag(144, 1); + output.WriteInt32(ExponentBits); + } + if (MantissaBits != 0) { + output.WriteRawTag(152, 1); + output.WriteInt32(MantissaBits); + } + dynamicSliceSizes_.WriteTo(ref output, _repeated_dynamicSliceSizes_codec); + if (paddingConfig_ != null) { + output.WriteRawTag(170, 1); + output.WriteMessage(PaddingConfig); + } + if (OutfeedConfig.Length != 0) { + output.WriteRawTag(178, 1); + output.WriteBytes(OutfeedConfig); + } + if (Distribution != global::Xla.RandomDistribution.RngInvalid) { + output.WriteRawTag(184, 1); + output.WriteEnum((int) Distribution); + } + if (Epsilon != 0F) { + output.WriteRawTag(197, 1); + output.WriteFloat(Epsilon); + } + if (FeatureIndex != 0L) { + output.WriteRawTag(200, 1); + output.WriteInt64(FeatureIndex); + } + if (ChannelId != 0L) { + output.WriteRawTag(208, 1); + output.WriteInt64(ChannelId); + } + if (InfeedConfig.Length != 0) { + output.WriteRawTag(218, 1); + output.WriteBytes(InfeedConfig); + } + if (CustomCallTarget.Length != 0) { + output.WriteRawTag(226, 1); + output.WriteString(CustomCallTarget); + } + if (outfeedShape_ != null) { + output.WriteRawTag(234, 1); + output.WriteMessage(OutfeedShape); + } + if (dotDimensionNumbers_ != null) { + output.WriteRawTag(242, 1); + output.WriteMessage(DotDimensionNumbers); + } + if (FftType != global::Xla.FftType.Fft) { + output.WriteRawTag(248, 1); + output.WriteEnum((int) FftType); + } + fftLength_.WriteTo(ref output, _repeated_fftLength_codec); + if (gatherDimensionNumbers_ != null) { + output.WriteRawTag(138, 2); + output.WriteMessage(GatherDimensionNumbers); + } + gatherSliceSizes_.WriteTo(ref output, _repeated_gatherSliceSizes_codec); + if (Id != 0L) { + output.WriteRawTag(152, 2); + output.WriteInt64(Id); + } + operandIds_.WriteTo(ref output, _repeated_operandIds_codec); + controlPredecessorIds_.WriteTo(ref output, _repeated_controlPredecessorIds_codec); + calledComputationIds_.WriteTo(ref output, _repeated_calledComputationIds_codec); + if (sharding_ != null) { + output.WriteRawTag(194, 2); + output.WriteMessage(Sharding); + } + if (BackendConfig.Length != 0) { + output.WriteRawTag(218, 2); + output.WriteBytes(BackendConfig); + } + if (AllReduceId != 0L) { + output.WriteRawTag(232, 2); + output.WriteInt64(AllReduceId); + } + if (IsHostTransfer != false) { + output.WriteRawTag(248, 2); + output.WriteBool(IsHostTransfer); + } + if (scatterDimensionNumbers_ != null) { + output.WriteRawTag(130, 3); + output.WriteMessage(ScatterDimensionNumbers); + } + replicaGroups_.WriteTo(ref output, _repeated_replicaGroups_codec); + if (FeatureGroupCount != 0L) { + output.WriteRawTag(144, 3); + output.WriteInt64(FeatureGroupCount); + } + if (precisionConfig_ != null) { + output.WriteRawTag(154, 3); + output.WriteMessage(PrecisionConfig); + } + sourceTargetPairs_.WriteTo(ref output, _repeated_sourceTargetPairs_codec); + if (domainEntrySharding_ != null) { + output.WriteRawTag(178, 3); + output.WriteMessage(DomainEntrySharding); + } + if (domainExitSharding_ != null) { + output.WriteRawTag(186, 3); + output.WriteMessage(DomainExitSharding); + } + if (ConstrainLayout != false) { + output.WriteRawTag(192, 3); + output.WriteBool(ConstrainLayout); + } + operandShapesWithLayout_.WriteTo(ref output, _repeated_operandShapesWithLayout_codec); + if (BatchGroupCount != 0L) { + output.WriteRawTag(208, 3); + output.WriteInt64(BatchGroupCount); + } + if (triangularSolveOptions_ != null) { + output.WriteRawTag(218, 3); + output.WriteMessage(TriangularSolveOptions); + } + if (IsStable != false) { + output.WriteRawTag(224, 3); + output.WriteBool(IsStable); + } + if (parameterReplication_ != null) { + output.WriteRawTag(234, 3); + output.WriteMessage(ParameterReplication); + } + if (choleskyOptions_ != null) { + output.WriteRawTag(242, 3); + output.WriteMessage(CholeskyOptions); + } + if (ComparisonDirection.Length != 0) { + output.WriteRawTag(250, 3); + output.WriteString(ComparisonDirection); + } + if (CustomCallHasSideEffect != false) { + output.WriteRawTag(136, 4); + output.WriteBool(CustomCallHasSideEffect); + } + if (Delta != 0L) { + output.WriteRawTag(144, 4); + output.WriteInt64(Delta); + } + if (IndicesAreSorted != false) { + output.WriteRawTag(152, 4); + output.WriteBool(IndicesAreSorted); + } + if (frontendAttributes_ != null) { + output.WriteRawTag(162, 4); + output.WriteMessage(FrontendAttributes); + } + if (UniqueIndices != false) { + output.WriteRawTag(168, 4); + output.WriteBool(UniqueIndices); + } + if (RngAlgorithm != global::Xla.RandomAlgorithm.RngDefault) { + output.WriteRawTag(176, 4); + output.WriteEnum((int) RngAlgorithm); + } + if (UseGlobalDeviceIds != false) { + output.WriteRawTag(184, 4); + output.WriteBool(UseGlobalDeviceIds); + } + if (ComparisonType.Length != 0) { + output.WriteRawTag(194, 4); + output.WriteString(ComparisonType); + } + if (IsCrossProgramPrefetch != false) { + output.WriteRawTag(200, 4); + output.WriteBool(IsCrossProgramPrefetch); + } + customCallOutputOperandAliasing_.WriteTo(ref output, _repeated_customCallOutputOperandAliasing_codec); + if (PaddingType != global::Xla.PaddingType.PaddingInvalid) { + output.WriteRawTag(216, 4); + output.WriteEnum((int) PaddingType); + } + if (CustomCallSchedule != global::Xla.CustomCallSchedule.ScheduleNone) { + output.WriteRawTag(224, 4); + output.WriteEnum((int) CustomCallSchedule); + } + if (CustomCallApiVersion != global::Xla.CustomCallApiVersion.ApiVersionUnspecified) { + output.WriteRawTag(232, 4); + output.WriteEnum((int) CustomCallApiVersion); + } + if (AsyncGroupId != 0L) { + output.WriteRawTag(240, 4); + output.WriteInt64(AsyncGroupId); + } + if (AsyncExecutionThread.Length != 0) { + output.WriteRawTag(250, 4); + output.WriteString(AsyncExecutionThread); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Name.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Name); + } + if (Opcode.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Opcode); + } + if (shape_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Shape); + } + if (metadata_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Metadata); + } + if (literal_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Literal); + } + if (ParameterNumber != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ParameterNumber); + } + if (FusionKind.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(FusionKind); + } + if (TupleIndex != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(TupleIndex); + } + size += dimensions_.CalculateSize(_repeated_dimensions_codec); + if (window_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Window); + } + if (convolutionDimensionNumbers_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(ConvolutionDimensionNumbers); + } + if (FeatureGroupCount != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(FeatureGroupCount); + } + if (BatchGroupCount != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(BatchGroupCount); + } + size += sliceDimensions_.CalculateSize(_repeated_sliceDimensions_codec); + if (ExponentBits != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(ExponentBits); + } + if (MantissaBits != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(MantissaBits); + } + size += dynamicSliceSizes_.CalculateSize(_repeated_dynamicSliceSizes_codec); + if (paddingConfig_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(PaddingConfig); + } + if (OutfeedConfig.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeBytesSize(OutfeedConfig); + } + if (Distribution != global::Xla.RandomDistribution.RngInvalid) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) Distribution); + } + if (Epsilon != 0F) { + size += 2 + 4; + } + if (FeatureIndex != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(FeatureIndex); + } + if (ChannelId != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(ChannelId); + } + if (InfeedConfig.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeBytesSize(InfeedConfig); + } + if (CustomCallTarget.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(CustomCallTarget); + } + if (outfeedShape_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(OutfeedShape); + } + if (dotDimensionNumbers_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(DotDimensionNumbers); + } + if (FftType != global::Xla.FftType.Fft) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) FftType); + } + size += fftLength_.CalculateSize(_repeated_fftLength_codec); + if (ComparisonDirection.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(ComparisonDirection); + } + if (gatherDimensionNumbers_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(GatherDimensionNumbers); + } + size += gatherSliceSizes_.CalculateSize(_repeated_gatherSliceSizes_codec); + if (Id != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(Id); + } + size += operandIds_.CalculateSize(_repeated_operandIds_codec); + size += controlPredecessorIds_.CalculateSize(_repeated_controlPredecessorIds_codec); + size += calledComputationIds_.CalculateSize(_repeated_calledComputationIds_codec); + if (sharding_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(Sharding); + } + if (BackendConfig.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeBytesSize(BackendConfig); + } + size += replicaGroups_.CalculateSize(_repeated_replicaGroups_codec); + if (AllReduceId != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(AllReduceId); + } + if (UseGlobalDeviceIds != false) { + size += 2 + 1; + } + if (IsHostTransfer != false) { + size += 2 + 1; + } + if (IsStable != false) { + size += 2 + 1; + } + if (scatterDimensionNumbers_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(ScatterDimensionNumbers); + } + if (precisionConfig_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(PrecisionConfig); + } + size += sourceTargetPairs_.CalculateSize(_repeated_sourceTargetPairs_codec); + if (domainEntrySharding_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(DomainEntrySharding); + } + if (domainExitSharding_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(DomainExitSharding); + } + if (ConstrainLayout != false) { + size += 2 + 1; + } + size += operandShapesWithLayout_.CalculateSize(_repeated_operandShapesWithLayout_codec); + if (triangularSolveOptions_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(TriangularSolveOptions); + } + if (choleskyOptions_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(CholeskyOptions); + } + if (parameterReplication_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(ParameterReplication); + } + if (CustomCallHasSideEffect != false) { + size += 2 + 1; + } + size += customCallOutputOperandAliasing_.CalculateSize(_repeated_customCallOutputOperandAliasing_codec); + if (CustomCallSchedule != global::Xla.CustomCallSchedule.ScheduleNone) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) CustomCallSchedule); + } + if (Delta != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(Delta); + } + if (IndicesAreSorted != false) { + size += 2 + 1; + } + if (frontendAttributes_ != null) { + size += 2 + pb::CodedOutputStream.ComputeMessageSize(FrontendAttributes); + } + if (UniqueIndices != false) { + size += 2 + 1; + } + if (RngAlgorithm != global::Xla.RandomAlgorithm.RngDefault) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) RngAlgorithm); + } + if (ComparisonType.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(ComparisonType); + } + if (IsCrossProgramPrefetch != false) { + size += 2 + 1; + } + if (PaddingType != global::Xla.PaddingType.PaddingInvalid) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) PaddingType); + } + if (CustomCallApiVersion != global::Xla.CustomCallApiVersion.ApiVersionUnspecified) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) CustomCallApiVersion); + } + if (AsyncGroupId != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(AsyncGroupId); + } + if (AsyncExecutionThread.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(AsyncExecutionThread); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloInstructionProto other) { + if (other == null) { + return; + } + if (other.Name.Length != 0) { + Name = other.Name; + } + if (other.Opcode.Length != 0) { + Opcode = other.Opcode; + } + if (other.shape_ != null) { + if (shape_ == null) { + Shape = new global::Xla.ShapeProto(); + } + Shape.MergeFrom(other.Shape); + } + if (other.metadata_ != null) { + if (metadata_ == null) { + Metadata = new global::Xla.OpMetadata(); + } + Metadata.MergeFrom(other.Metadata); + } + if (other.literal_ != null) { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + Literal.MergeFrom(other.Literal); + } + if (other.ParameterNumber != 0L) { + ParameterNumber = other.ParameterNumber; + } + if (other.FusionKind.Length != 0) { + FusionKind = other.FusionKind; + } + if (other.TupleIndex != 0L) { + TupleIndex = other.TupleIndex; + } + dimensions_.Add(other.dimensions_); + if (other.window_ != null) { + if (window_ == null) { + Window = new global::Xla.Window(); + } + Window.MergeFrom(other.Window); + } + if (other.convolutionDimensionNumbers_ != null) { + if (convolutionDimensionNumbers_ == null) { + ConvolutionDimensionNumbers = new global::Xla.ConvolutionDimensionNumbers(); + } + ConvolutionDimensionNumbers.MergeFrom(other.ConvolutionDimensionNumbers); + } + if (other.FeatureGroupCount != 0L) { + FeatureGroupCount = other.FeatureGroupCount; + } + if (other.BatchGroupCount != 0L) { + BatchGroupCount = other.BatchGroupCount; + } + sliceDimensions_.Add(other.sliceDimensions_); + if (other.ExponentBits != 0) { + ExponentBits = other.ExponentBits; + } + if (other.MantissaBits != 0) { + MantissaBits = other.MantissaBits; + } + dynamicSliceSizes_.Add(other.dynamicSliceSizes_); + if (other.paddingConfig_ != null) { + if (paddingConfig_ == null) { + PaddingConfig = new global::Xla.PaddingConfig(); + } + PaddingConfig.MergeFrom(other.PaddingConfig); + } + if (other.OutfeedConfig.Length != 0) { + OutfeedConfig = other.OutfeedConfig; + } + if (other.Distribution != global::Xla.RandomDistribution.RngInvalid) { + Distribution = other.Distribution; + } + if (other.Epsilon != 0F) { + Epsilon = other.Epsilon; + } + if (other.FeatureIndex != 0L) { + FeatureIndex = other.FeatureIndex; + } + if (other.ChannelId != 0L) { + ChannelId = other.ChannelId; + } + if (other.InfeedConfig.Length != 0) { + InfeedConfig = other.InfeedConfig; + } + if (other.CustomCallTarget.Length != 0) { + CustomCallTarget = other.CustomCallTarget; + } + if (other.outfeedShape_ != null) { + if (outfeedShape_ == null) { + OutfeedShape = new global::Xla.ShapeProto(); + } + OutfeedShape.MergeFrom(other.OutfeedShape); + } + if (other.dotDimensionNumbers_ != null) { + if (dotDimensionNumbers_ == null) { + DotDimensionNumbers = new global::Xla.DotDimensionNumbers(); + } + DotDimensionNumbers.MergeFrom(other.DotDimensionNumbers); + } + if (other.FftType != global::Xla.FftType.Fft) { + FftType = other.FftType; + } + fftLength_.Add(other.fftLength_); + if (other.ComparisonDirection.Length != 0) { + ComparisonDirection = other.ComparisonDirection; + } + if (other.gatherDimensionNumbers_ != null) { + if (gatherDimensionNumbers_ == null) { + GatherDimensionNumbers = new global::Xla.GatherDimensionNumbers(); + } + GatherDimensionNumbers.MergeFrom(other.GatherDimensionNumbers); + } + gatherSliceSizes_.Add(other.gatherSliceSizes_); + if (other.Id != 0L) { + Id = other.Id; + } + operandIds_.Add(other.operandIds_); + controlPredecessorIds_.Add(other.controlPredecessorIds_); + calledComputationIds_.Add(other.calledComputationIds_); + if (other.sharding_ != null) { + if (sharding_ == null) { + Sharding = new global::Xla.OpSharding(); + } + Sharding.MergeFrom(other.Sharding); + } + if (other.BackendConfig.Length != 0) { + BackendConfig = other.BackendConfig; + } + replicaGroups_.Add(other.replicaGroups_); + if (other.AllReduceId != 0L) { + AllReduceId = other.AllReduceId; + } + if (other.UseGlobalDeviceIds != false) { + UseGlobalDeviceIds = other.UseGlobalDeviceIds; + } + if (other.IsHostTransfer != false) { + IsHostTransfer = other.IsHostTransfer; + } + if (other.IsStable != false) { + IsStable = other.IsStable; + } + if (other.scatterDimensionNumbers_ != null) { + if (scatterDimensionNumbers_ == null) { + ScatterDimensionNumbers = new global::Xla.ScatterDimensionNumbers(); + } + ScatterDimensionNumbers.MergeFrom(other.ScatterDimensionNumbers); + } + if (other.precisionConfig_ != null) { + if (precisionConfig_ == null) { + PrecisionConfig = new global::Xla.PrecisionConfig(); + } + PrecisionConfig.MergeFrom(other.PrecisionConfig); + } + sourceTargetPairs_.Add(other.sourceTargetPairs_); + if (other.domainEntrySharding_ != null) { + if (domainEntrySharding_ == null) { + DomainEntrySharding = new global::Xla.OpSharding(); + } + DomainEntrySharding.MergeFrom(other.DomainEntrySharding); + } + if (other.domainExitSharding_ != null) { + if (domainExitSharding_ == null) { + DomainExitSharding = new global::Xla.OpSharding(); + } + DomainExitSharding.MergeFrom(other.DomainExitSharding); + } + if (other.ConstrainLayout != false) { + ConstrainLayout = other.ConstrainLayout; + } + operandShapesWithLayout_.Add(other.operandShapesWithLayout_); + if (other.triangularSolveOptions_ != null) { + if (triangularSolveOptions_ == null) { + TriangularSolveOptions = new global::Xla.TriangularSolveOptions(); + } + TriangularSolveOptions.MergeFrom(other.TriangularSolveOptions); + } + if (other.choleskyOptions_ != null) { + if (choleskyOptions_ == null) { + CholeskyOptions = new global::Xla.CholeskyOptions(); + } + CholeskyOptions.MergeFrom(other.CholeskyOptions); + } + if (other.parameterReplication_ != null) { + if (parameterReplication_ == null) { + ParameterReplication = new global::Xla.ParameterReplication(); + } + ParameterReplication.MergeFrom(other.ParameterReplication); + } + if (other.CustomCallHasSideEffect != false) { + CustomCallHasSideEffect = other.CustomCallHasSideEffect; + } + customCallOutputOperandAliasing_.Add(other.customCallOutputOperandAliasing_); + if (other.CustomCallSchedule != global::Xla.CustomCallSchedule.ScheduleNone) { + CustomCallSchedule = other.CustomCallSchedule; + } + if (other.Delta != 0L) { + Delta = other.Delta; + } + if (other.IndicesAreSorted != false) { + IndicesAreSorted = other.IndicesAreSorted; + } + if (other.frontendAttributes_ != null) { + if (frontendAttributes_ == null) { + FrontendAttributes = new global::Xla.FrontendAttributes(); + } + FrontendAttributes.MergeFrom(other.FrontendAttributes); + } + if (other.UniqueIndices != false) { + UniqueIndices = other.UniqueIndices; + } + if (other.RngAlgorithm != global::Xla.RandomAlgorithm.RngDefault) { + RngAlgorithm = other.RngAlgorithm; + } + if (other.ComparisonType.Length != 0) { + ComparisonType = other.ComparisonType; + } + if (other.IsCrossProgramPrefetch != false) { + IsCrossProgramPrefetch = other.IsCrossProgramPrefetch; + } + if (other.PaddingType != global::Xla.PaddingType.PaddingInvalid) { + PaddingType = other.PaddingType; + } + if (other.CustomCallApiVersion != global::Xla.CustomCallApiVersion.ApiVersionUnspecified) { + CustomCallApiVersion = other.CustomCallApiVersion; + } + if (other.AsyncGroupId != 0L) { + AsyncGroupId = other.AsyncGroupId; + } + if (other.AsyncExecutionThread.Length != 0) { + AsyncExecutionThread = other.AsyncExecutionThread; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + Opcode = input.ReadString(); + break; + } + case 26: { + if (shape_ == null) { + Shape = new global::Xla.ShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 58: { + if (metadata_ == null) { + Metadata = new global::Xla.OpMetadata(); + } + input.ReadMessage(Metadata); + break; + } + case 66: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + case 72: { + ParameterNumber = input.ReadInt64(); + break; + } + case 90: { + FusionKind = input.ReadString(); + break; + } + case 104: { + TupleIndex = input.ReadInt64(); + break; + } + case 114: + case 112: { + dimensions_.AddEntriesFrom(input, _repeated_dimensions_codec); + break; + } + case 122: { + if (window_ == null) { + Window = new global::Xla.Window(); + } + input.ReadMessage(Window); + break; + } + case 130: { + if (convolutionDimensionNumbers_ == null) { + ConvolutionDimensionNumbers = new global::Xla.ConvolutionDimensionNumbers(); + } + input.ReadMessage(ConvolutionDimensionNumbers); + break; + } + case 138: { + sliceDimensions_.AddEntriesFrom(input, _repeated_sliceDimensions_codec); + break; + } + case 144: { + ExponentBits = input.ReadInt32(); + break; + } + case 152: { + MantissaBits = input.ReadInt32(); + break; + } + case 162: + case 160: { + dynamicSliceSizes_.AddEntriesFrom(input, _repeated_dynamicSliceSizes_codec); + break; + } + case 170: { + if (paddingConfig_ == null) { + PaddingConfig = new global::Xla.PaddingConfig(); + } + input.ReadMessage(PaddingConfig); + break; + } + case 178: { + OutfeedConfig = input.ReadBytes(); + break; + } + case 184: { + Distribution = (global::Xla.RandomDistribution) input.ReadEnum(); + break; + } + case 197: { + Epsilon = input.ReadFloat(); + break; + } + case 200: { + FeatureIndex = input.ReadInt64(); + break; + } + case 208: { + ChannelId = input.ReadInt64(); + break; + } + case 218: { + InfeedConfig = input.ReadBytes(); + break; + } + case 226: { + CustomCallTarget = input.ReadString(); + break; + } + case 234: { + if (outfeedShape_ == null) { + OutfeedShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(OutfeedShape); + break; + } + case 242: { + if (dotDimensionNumbers_ == null) { + DotDimensionNumbers = new global::Xla.DotDimensionNumbers(); + } + input.ReadMessage(DotDimensionNumbers); + break; + } + case 248: { + FftType = (global::Xla.FftType) input.ReadEnum(); + break; + } + case 258: + case 256: { + fftLength_.AddEntriesFrom(input, _repeated_fftLength_codec); + break; + } + case 266: { + if (gatherDimensionNumbers_ == null) { + GatherDimensionNumbers = new global::Xla.GatherDimensionNumbers(); + } + input.ReadMessage(GatherDimensionNumbers); + break; + } + case 274: + case 272: { + gatherSliceSizes_.AddEntriesFrom(input, _repeated_gatherSliceSizes_codec); + break; + } + case 280: { + Id = input.ReadInt64(); + break; + } + case 290: + case 288: { + operandIds_.AddEntriesFrom(input, _repeated_operandIds_codec); + break; + } + case 298: + case 296: { + controlPredecessorIds_.AddEntriesFrom(input, _repeated_controlPredecessorIds_codec); + break; + } + case 306: + case 304: { + calledComputationIds_.AddEntriesFrom(input, _repeated_calledComputationIds_codec); + break; + } + case 322: { + if (sharding_ == null) { + Sharding = new global::Xla.OpSharding(); + } + input.ReadMessage(Sharding); + break; + } + case 346: { + BackendConfig = input.ReadBytes(); + break; + } + case 360: { + AllReduceId = input.ReadInt64(); + break; + } + case 376: { + IsHostTransfer = input.ReadBool(); + break; + } + case 386: { + if (scatterDimensionNumbers_ == null) { + ScatterDimensionNumbers = new global::Xla.ScatterDimensionNumbers(); + } + input.ReadMessage(ScatterDimensionNumbers); + break; + } + case 394: { + replicaGroups_.AddEntriesFrom(input, _repeated_replicaGroups_codec); + break; + } + case 400: { + FeatureGroupCount = input.ReadInt64(); + break; + } + case 410: { + if (precisionConfig_ == null) { + PrecisionConfig = new global::Xla.PrecisionConfig(); + } + input.ReadMessage(PrecisionConfig); + break; + } + case 418: { + sourceTargetPairs_.AddEntriesFrom(input, _repeated_sourceTargetPairs_codec); + break; + } + case 434: { + if (domainEntrySharding_ == null) { + DomainEntrySharding = new global::Xla.OpSharding(); + } + input.ReadMessage(DomainEntrySharding); + break; + } + case 442: { + if (domainExitSharding_ == null) { + DomainExitSharding = new global::Xla.OpSharding(); + } + input.ReadMessage(DomainExitSharding); + break; + } + case 448: { + ConstrainLayout = input.ReadBool(); + break; + } + case 458: { + operandShapesWithLayout_.AddEntriesFrom(input, _repeated_operandShapesWithLayout_codec); + break; + } + case 464: { + BatchGroupCount = input.ReadInt64(); + break; + } + case 474: { + if (triangularSolveOptions_ == null) { + TriangularSolveOptions = new global::Xla.TriangularSolveOptions(); + } + input.ReadMessage(TriangularSolveOptions); + break; + } + case 480: { + IsStable = input.ReadBool(); + break; + } + case 490: { + if (parameterReplication_ == null) { + ParameterReplication = new global::Xla.ParameterReplication(); + } + input.ReadMessage(ParameterReplication); + break; + } + case 498: { + if (choleskyOptions_ == null) { + CholeskyOptions = new global::Xla.CholeskyOptions(); + } + input.ReadMessage(CholeskyOptions); + break; + } + case 506: { + ComparisonDirection = input.ReadString(); + break; + } + case 520: { + CustomCallHasSideEffect = input.ReadBool(); + break; + } + case 528: { + Delta = input.ReadInt64(); + break; + } + case 536: { + IndicesAreSorted = input.ReadBool(); + break; + } + case 546: { + if (frontendAttributes_ == null) { + FrontendAttributes = new global::Xla.FrontendAttributes(); + } + input.ReadMessage(FrontendAttributes); + break; + } + case 552: { + UniqueIndices = input.ReadBool(); + break; + } + case 560: { + RngAlgorithm = (global::Xla.RandomAlgorithm) input.ReadEnum(); + break; + } + case 568: { + UseGlobalDeviceIds = input.ReadBool(); + break; + } + case 578: { + ComparisonType = input.ReadString(); + break; + } + case 584: { + IsCrossProgramPrefetch = input.ReadBool(); + break; + } + case 594: { + customCallOutputOperandAliasing_.AddEntriesFrom(input, _repeated_customCallOutputOperandAliasing_codec); + break; + } + case 600: { + PaddingType = (global::Xla.PaddingType) input.ReadEnum(); + break; + } + case 608: { + CustomCallSchedule = (global::Xla.CustomCallSchedule) input.ReadEnum(); + break; + } + case 616: { + CustomCallApiVersion = (global::Xla.CustomCallApiVersion) input.ReadEnum(); + break; + } + case 624: { + AsyncGroupId = input.ReadInt64(); + break; + } + case 634: { + AsyncExecutionThread = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + Opcode = input.ReadString(); + break; + } + case 26: { + if (shape_ == null) { + Shape = new global::Xla.ShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 58: { + if (metadata_ == null) { + Metadata = new global::Xla.OpMetadata(); + } + input.ReadMessage(Metadata); + break; + } + case 66: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + case 72: { + ParameterNumber = input.ReadInt64(); + break; + } + case 90: { + FusionKind = input.ReadString(); + break; + } + case 104: { + TupleIndex = input.ReadInt64(); + break; + } + case 114: + case 112: { + dimensions_.AddEntriesFrom(ref input, _repeated_dimensions_codec); + break; + } + case 122: { + if (window_ == null) { + Window = new global::Xla.Window(); + } + input.ReadMessage(Window); + break; + } + case 130: { + if (convolutionDimensionNumbers_ == null) { + ConvolutionDimensionNumbers = new global::Xla.ConvolutionDimensionNumbers(); + } + input.ReadMessage(ConvolutionDimensionNumbers); + break; + } + case 138: { + sliceDimensions_.AddEntriesFrom(ref input, _repeated_sliceDimensions_codec); + break; + } + case 144: { + ExponentBits = input.ReadInt32(); + break; + } + case 152: { + MantissaBits = input.ReadInt32(); + break; + } + case 162: + case 160: { + dynamicSliceSizes_.AddEntriesFrom(ref input, _repeated_dynamicSliceSizes_codec); + break; + } + case 170: { + if (paddingConfig_ == null) { + PaddingConfig = new global::Xla.PaddingConfig(); + } + input.ReadMessage(PaddingConfig); + break; + } + case 178: { + OutfeedConfig = input.ReadBytes(); + break; + } + case 184: { + Distribution = (global::Xla.RandomDistribution) input.ReadEnum(); + break; + } + case 197: { + Epsilon = input.ReadFloat(); + break; + } + case 200: { + FeatureIndex = input.ReadInt64(); + break; + } + case 208: { + ChannelId = input.ReadInt64(); + break; + } + case 218: { + InfeedConfig = input.ReadBytes(); + break; + } + case 226: { + CustomCallTarget = input.ReadString(); + break; + } + case 234: { + if (outfeedShape_ == null) { + OutfeedShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(OutfeedShape); + break; + } + case 242: { + if (dotDimensionNumbers_ == null) { + DotDimensionNumbers = new global::Xla.DotDimensionNumbers(); + } + input.ReadMessage(DotDimensionNumbers); + break; + } + case 248: { + FftType = (global::Xla.FftType) input.ReadEnum(); + break; + } + case 258: + case 256: { + fftLength_.AddEntriesFrom(ref input, _repeated_fftLength_codec); + break; + } + case 266: { + if (gatherDimensionNumbers_ == null) { + GatherDimensionNumbers = new global::Xla.GatherDimensionNumbers(); + } + input.ReadMessage(GatherDimensionNumbers); + break; + } + case 274: + case 272: { + gatherSliceSizes_.AddEntriesFrom(ref input, _repeated_gatherSliceSizes_codec); + break; + } + case 280: { + Id = input.ReadInt64(); + break; + } + case 290: + case 288: { + operandIds_.AddEntriesFrom(ref input, _repeated_operandIds_codec); + break; + } + case 298: + case 296: { + controlPredecessorIds_.AddEntriesFrom(ref input, _repeated_controlPredecessorIds_codec); + break; + } + case 306: + case 304: { + calledComputationIds_.AddEntriesFrom(ref input, _repeated_calledComputationIds_codec); + break; + } + case 322: { + if (sharding_ == null) { + Sharding = new global::Xla.OpSharding(); + } + input.ReadMessage(Sharding); + break; + } + case 346: { + BackendConfig = input.ReadBytes(); + break; + } + case 360: { + AllReduceId = input.ReadInt64(); + break; + } + case 376: { + IsHostTransfer = input.ReadBool(); + break; + } + case 386: { + if (scatterDimensionNumbers_ == null) { + ScatterDimensionNumbers = new global::Xla.ScatterDimensionNumbers(); + } + input.ReadMessage(ScatterDimensionNumbers); + break; + } + case 394: { + replicaGroups_.AddEntriesFrom(ref input, _repeated_replicaGroups_codec); + break; + } + case 400: { + FeatureGroupCount = input.ReadInt64(); + break; + } + case 410: { + if (precisionConfig_ == null) { + PrecisionConfig = new global::Xla.PrecisionConfig(); + } + input.ReadMessage(PrecisionConfig); + break; + } + case 418: { + sourceTargetPairs_.AddEntriesFrom(ref input, _repeated_sourceTargetPairs_codec); + break; + } + case 434: { + if (domainEntrySharding_ == null) { + DomainEntrySharding = new global::Xla.OpSharding(); + } + input.ReadMessage(DomainEntrySharding); + break; + } + case 442: { + if (domainExitSharding_ == null) { + DomainExitSharding = new global::Xla.OpSharding(); + } + input.ReadMessage(DomainExitSharding); + break; + } + case 448: { + ConstrainLayout = input.ReadBool(); + break; + } + case 458: { + operandShapesWithLayout_.AddEntriesFrom(ref input, _repeated_operandShapesWithLayout_codec); + break; + } + case 464: { + BatchGroupCount = input.ReadInt64(); + break; + } + case 474: { + if (triangularSolveOptions_ == null) { + TriangularSolveOptions = new global::Xla.TriangularSolveOptions(); + } + input.ReadMessage(TriangularSolveOptions); + break; + } + case 480: { + IsStable = input.ReadBool(); + break; + } + case 490: { + if (parameterReplication_ == null) { + ParameterReplication = new global::Xla.ParameterReplication(); + } + input.ReadMessage(ParameterReplication); + break; + } + case 498: { + if (choleskyOptions_ == null) { + CholeskyOptions = new global::Xla.CholeskyOptions(); + } + input.ReadMessage(CholeskyOptions); + break; + } + case 506: { + ComparisonDirection = input.ReadString(); + break; + } + case 520: { + CustomCallHasSideEffect = input.ReadBool(); + break; + } + case 528: { + Delta = input.ReadInt64(); + break; + } + case 536: { + IndicesAreSorted = input.ReadBool(); + break; + } + case 546: { + if (frontendAttributes_ == null) { + FrontendAttributes = new global::Xla.FrontendAttributes(); + } + input.ReadMessage(FrontendAttributes); + break; + } + case 552: { + UniqueIndices = input.ReadBool(); + break; + } + case 560: { + RngAlgorithm = (global::Xla.RandomAlgorithm) input.ReadEnum(); + break; + } + case 568: { + UseGlobalDeviceIds = input.ReadBool(); + break; + } + case 578: { + ComparisonType = input.ReadString(); + break; + } + case 584: { + IsCrossProgramPrefetch = input.ReadBool(); + break; + } + case 594: { + customCallOutputOperandAliasing_.AddEntriesFrom(ref input, _repeated_customCallOutputOperandAliasing_codec); + break; + } + case 600: { + PaddingType = (global::Xla.PaddingType) input.ReadEnum(); + break; + } + case 608: { + CustomCallSchedule = (global::Xla.CustomCallSchedule) input.ReadEnum(); + break; + } + case 616: { + CustomCallApiVersion = (global::Xla.CustomCallApiVersion) input.ReadEnum(); + break; + } + case 624: { + AsyncGroupId = input.ReadInt64(); + break; + } + case 634: { + AsyncExecutionThread = input.ReadString(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the HloInstructionProto message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Describes the [begin, end) index range and stride for slices. + /// + public sealed partial class SliceDimensions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SliceDimensions()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloInstructionProto.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public SliceDimensions() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public SliceDimensions(SliceDimensions other) : this() { + start_ = other.start_; + limit_ = other.limit_; + stride_ = other.stride_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public SliceDimensions Clone() { + return new SliceDimensions(this); + } + + /// Field number for the "start" field. + public const int StartFieldNumber = 1; + private long start_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Start { + get { return start_; } + set { + start_ = value; + } + } + + /// Field number for the "limit" field. + public const int LimitFieldNumber = 2; + private long limit_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Limit { + get { return limit_; } + set { + limit_ = value; + } + } + + /// Field number for the "stride" field. + public const int StrideFieldNumber = 3; + private long stride_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Stride { + get { return stride_; } + set { + stride_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as SliceDimensions); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(SliceDimensions other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Start != other.Start) return false; + if (Limit != other.Limit) return false; + if (Stride != other.Stride) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Start != 0L) hash ^= Start.GetHashCode(); + if (Limit != 0L) hash ^= Limit.GetHashCode(); + if (Stride != 0L) hash ^= Stride.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Start != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Start); + } + if (Limit != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Limit); + } + if (Stride != 0L) { + output.WriteRawTag(24); + output.WriteInt64(Stride); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Start != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Start); + } + if (Limit != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Limit); + } + if (Stride != 0L) { + output.WriteRawTag(24); + output.WriteInt64(Stride); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Start != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Start); + } + if (Limit != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Limit); + } + if (Stride != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Stride); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(SliceDimensions other) { + if (other == null) { + return; + } + if (other.Start != 0L) { + Start = other.Start; + } + if (other.Limit != 0L) { + Limit = other.Limit; + } + if (other.Stride != 0L) { + Stride = other.Stride; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Start = input.ReadInt64(); + break; + } + case 16: { + Limit = input.ReadInt64(); + break; + } + case 24: { + Stride = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Start = input.ReadInt64(); + break; + } + case 16: { + Limit = input.ReadInt64(); + break; + } + case 24: { + Stride = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// Serialization of HloComputation. + /// + public sealed partial class HloComputationProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloComputationProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloComputationProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloComputationProto(HloComputationProto other) : this() { + name_ = other.name_; + instructions_ = other.instructions_.Clone(); + programShape_ = other.programShape_ != null ? other.programShape_.Clone() : null; + id_ = other.id_; + rootId_ = other.rootId_; + isFusionComputation_ = other.isFusionComputation_; + executionThread_ = other.executionThread_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloComputationProto Clone() { + return new HloComputationProto(this); + } + + /// Field number for the "name" field. + public const int NameFieldNumber = 1; + private string name_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Name { + get { return name_; } + set { + name_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "instructions" field. + public const int InstructionsFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_instructions_codec + = pb::FieldCodec.ForMessage(18, global::Xla.HloInstructionProto.Parser); + private readonly pbc::RepeatedField instructions_ = new pbc::RepeatedField(); + /// + /// The array of instructions is always in a valid dependency order, where + /// operands appear before their users. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Instructions { + get { return instructions_; } + } + + /// Field number for the "program_shape" field. + public const int ProgramShapeFieldNumber = 4; + private global::Xla.ProgramShapeProto programShape_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ProgramShapeProto ProgramShape { + get { return programShape_; } + set { + programShape_ = value; + } + } + + /// Field number for the "id" field. + public const int IdFieldNumber = 5; + private long id_; + /// + /// The id of this computation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Id { + get { return id_; } + set { + id_ = value; + } + } + + /// Field number for the "root_id" field. + public const int RootIdFieldNumber = 6; + private long rootId_; + /// + /// The id of the root of the computation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long RootId { + get { return rootId_; } + set { + rootId_ = value; + } + } + + /// Field number for the "is_fusion_computation" field. + public const int IsFusionComputationFieldNumber = 7; + private bool isFusionComputation_; + /// + /// Whether this is a fusion computation. Fusion computations should use this + /// to determine whether they are a fusion in CreateFromProto since the + /// parent fusion_instruction_ may get removed and be nullptr. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsFusionComputation { + get { return isFusionComputation_; } + set { + isFusionComputation_ = value; + } + } + + /// Field number for the "execution_thread" field. + public const int ExecutionThreadFieldNumber = 8; + private string executionThread_ = ""; + /// + /// The name of execution thread this computation belongs to. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ExecutionThread { + get { return executionThread_; } + set { + executionThread_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloComputationProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloComputationProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Name != other.Name) return false; + if(!instructions_.Equals(other.instructions_)) return false; + if (!object.Equals(ProgramShape, other.ProgramShape)) return false; + if (Id != other.Id) return false; + if (RootId != other.RootId) return false; + if (IsFusionComputation != other.IsFusionComputation) return false; + if (ExecutionThread != other.ExecutionThread) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Name.Length != 0) hash ^= Name.GetHashCode(); + hash ^= instructions_.GetHashCode(); + if (programShape_ != null) hash ^= ProgramShape.GetHashCode(); + if (Id != 0L) hash ^= Id.GetHashCode(); + if (RootId != 0L) hash ^= RootId.GetHashCode(); + if (IsFusionComputation != false) hash ^= IsFusionComputation.GetHashCode(); + if (ExecutionThread.Length != 0) hash ^= ExecutionThread.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + instructions_.WriteTo(output, _repeated_instructions_codec); + if (programShape_ != null) { + output.WriteRawTag(34); + output.WriteMessage(ProgramShape); + } + if (Id != 0L) { + output.WriteRawTag(40); + output.WriteInt64(Id); + } + if (RootId != 0L) { + output.WriteRawTag(48); + output.WriteInt64(RootId); + } + if (IsFusionComputation != false) { + output.WriteRawTag(56); + output.WriteBool(IsFusionComputation); + } + if (ExecutionThread.Length != 0) { + output.WriteRawTag(66); + output.WriteString(ExecutionThread); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + instructions_.WriteTo(ref output, _repeated_instructions_codec); + if (programShape_ != null) { + output.WriteRawTag(34); + output.WriteMessage(ProgramShape); + } + if (Id != 0L) { + output.WriteRawTag(40); + output.WriteInt64(Id); + } + if (RootId != 0L) { + output.WriteRawTag(48); + output.WriteInt64(RootId); + } + if (IsFusionComputation != false) { + output.WriteRawTag(56); + output.WriteBool(IsFusionComputation); + } + if (ExecutionThread.Length != 0) { + output.WriteRawTag(66); + output.WriteString(ExecutionThread); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Name.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Name); + } + size += instructions_.CalculateSize(_repeated_instructions_codec); + if (programShape_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ProgramShape); + } + if (Id != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Id); + } + if (RootId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(RootId); + } + if (IsFusionComputation != false) { + size += 1 + 1; + } + if (ExecutionThread.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ExecutionThread); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloComputationProto other) { + if (other == null) { + return; + } + if (other.Name.Length != 0) { + Name = other.Name; + } + instructions_.Add(other.instructions_); + if (other.programShape_ != null) { + if (programShape_ == null) { + ProgramShape = new global::Xla.ProgramShapeProto(); + } + ProgramShape.MergeFrom(other.ProgramShape); + } + if (other.Id != 0L) { + Id = other.Id; + } + if (other.RootId != 0L) { + RootId = other.RootId; + } + if (other.IsFusionComputation != false) { + IsFusionComputation = other.IsFusionComputation; + } + if (other.ExecutionThread.Length != 0) { + ExecutionThread = other.ExecutionThread; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + instructions_.AddEntriesFrom(input, _repeated_instructions_codec); + break; + } + case 34: { + if (programShape_ == null) { + ProgramShape = new global::Xla.ProgramShapeProto(); + } + input.ReadMessage(ProgramShape); + break; + } + case 40: { + Id = input.ReadInt64(); + break; + } + case 48: { + RootId = input.ReadInt64(); + break; + } + case 56: { + IsFusionComputation = input.ReadBool(); + break; + } + case 66: { + ExecutionThread = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + instructions_.AddEntriesFrom(ref input, _repeated_instructions_codec); + break; + } + case 34: { + if (programShape_ == null) { + ProgramShape = new global::Xla.ProgramShapeProto(); + } + input.ReadMessage(ProgramShape); + break; + } + case 40: { + Id = input.ReadInt64(); + break; + } + case 48: { + RootId = input.ReadInt64(); + break; + } + case 56: { + IsFusionComputation = input.ReadBool(); + break; + } + case 66: { + ExecutionThread = input.ReadString(); + break; + } + } + } + } + #endif + + } + + /// + /// Serialization of an HLO schedule. An HLO schedule contains a total order of + /// instructions for each non-fusion computation in the module. + /// + public sealed partial class HloScheduleProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloScheduleProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[2]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloScheduleProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloScheduleProto(HloScheduleProto other) : this() { + sequences_ = other.sequences_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloScheduleProto Clone() { + return new HloScheduleProto(this); + } + + /// Field number for the "sequences" field. + public const int SequencesFieldNumber = 1; + private static readonly pbc::MapField.Codec _map_sequences_codec + = new pbc::MapField.Codec(pb::FieldCodec.ForInt64(8, 0L), pb::FieldCodec.ForMessage(18, global::Xla.HloScheduleProto.Types.InstructionSequence.Parser), 10); + private readonly pbc::MapField sequences_ = new pbc::MapField(); + /// + /// Map from computation id to sequence. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::MapField Sequences { + get { return sequences_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloScheduleProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloScheduleProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!Sequences.Equals(other.Sequences)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= Sequences.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + sequences_.WriteTo(output, _map_sequences_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + sequences_.WriteTo(ref output, _map_sequences_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += sequences_.CalculateSize(_map_sequences_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloScheduleProto other) { + if (other == null) { + return; + } + sequences_.Add(other.sequences_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + sequences_.AddEntriesFrom(input, _map_sequences_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + sequences_.AddEntriesFrom(ref input, _map_sequences_codec); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the HloScheduleProto message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + public sealed partial class InstructionSequence : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new InstructionSequence()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloScheduleProto.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public InstructionSequence() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public InstructionSequence(InstructionSequence other) : this() { + instructionIds_ = other.instructionIds_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public InstructionSequence Clone() { + return new InstructionSequence(this); + } + + /// Field number for the "instruction_ids" field. + public const int InstructionIdsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_instructionIds_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField instructionIds_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField InstructionIds { + get { return instructionIds_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as InstructionSequence); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(InstructionSequence other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!instructionIds_.Equals(other.instructionIds_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= instructionIds_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + instructionIds_.WriteTo(output, _repeated_instructionIds_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + instructionIds_.WriteTo(ref output, _repeated_instructionIds_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += instructionIds_.CalculateSize(_repeated_instructionIds_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(InstructionSequence other) { + if (other == null) { + return; + } + instructionIds_.Add(other.instructionIds_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + instructionIds_.AddEntriesFrom(input, _repeated_instructionIds_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + instructionIds_.AddEntriesFrom(ref input, _repeated_instructionIds_codec); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + public sealed partial class HloInputOutputAliasProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloInputOutputAliasProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[3]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloInputOutputAliasProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloInputOutputAliasProto(HloInputOutputAliasProto other) : this() { + entries_ = other.entries_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloInputOutputAliasProto Clone() { + return new HloInputOutputAliasProto(this); + } + + /// Field number for the "entries" field. + public const int EntriesFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_entries_codec + = pb::FieldCodec.ForMessage(10, global::Xla.HloInputOutputAliasProto.Types.AliasEntryProto.Parser); + private readonly pbc::RepeatedField entries_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Entries { + get { return entries_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloInputOutputAliasProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloInputOutputAliasProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!entries_.Equals(other.entries_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= entries_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + entries_.WriteTo(output, _repeated_entries_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + entries_.WriteTo(ref output, _repeated_entries_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += entries_.CalculateSize(_repeated_entries_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloInputOutputAliasProto other) { + if (other == null) { + return; + } + entries_.Add(other.entries_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + entries_.AddEntriesFrom(input, _repeated_entries_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + entries_.AddEntriesFrom(ref input, _repeated_entries_codec); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the HloInputOutputAliasProto message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// The following proto describes a pair of aliased an input + /// (described by parameter number and a ShapeIndex of the parameter) + /// and an output (described by a ShapeIndex of the root + /// instruction). For example: + /// + /// entry = { + /// output_shape_index={1}, + /// parameter_number=0, + /// parameter_shape_index={1, 2}, + /// } + /// + /// This entry indicates that the first paremter's {1, 2} element is + /// aliased with the {1} element of the root instruction. + /// + public sealed partial class AliasEntryProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AliasEntryProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloInputOutputAliasProto.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public AliasEntryProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public AliasEntryProto(AliasEntryProto other) : this() { + outputShapeIndex_ = other.outputShapeIndex_.Clone(); + parameterNumber_ = other.parameterNumber_; + parameterShapeIndex_ = other.parameterShapeIndex_.Clone(); + kind_ = other.kind_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public AliasEntryProto Clone() { + return new AliasEntryProto(this); + } + + /// Field number for the "output_shape_index" field. + public const int OutputShapeIndexFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_outputShapeIndex_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField outputShapeIndex_ = new pbc::RepeatedField(); + /// + /// ShapeIndex of the root hlo. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField OutputShapeIndex { + get { return outputShapeIndex_; } + } + + /// Field number for the "parameter_number" field. + public const int ParameterNumberFieldNumber = 2; + private long parameterNumber_; + /// + /// Number of the parameter in entry computation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ParameterNumber { + get { return parameterNumber_; } + set { + parameterNumber_ = value; + } + } + + /// Field number for the "parameter_shape_index" field. + public const int ParameterShapeIndexFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_parameterShapeIndex_codec + = pb::FieldCodec.ForInt64(26); + private readonly pbc::RepeatedField parameterShapeIndex_ = new pbc::RepeatedField(); + /// + /// ShapeIndex of the parameter instruction. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ParameterShapeIndex { + get { return parameterShapeIndex_; } + } + + /// Field number for the "kind" field. + public const int KindFieldNumber = 4; + private global::Xla.Kind kind_ = global::Xla.Kind.UndefinedAlias; + /// + /// The kind of alias to be setup. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.Kind Kind { + get { return kind_; } + set { + kind_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as AliasEntryProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(AliasEntryProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!outputShapeIndex_.Equals(other.outputShapeIndex_)) return false; + if (ParameterNumber != other.ParameterNumber) return false; + if(!parameterShapeIndex_.Equals(other.parameterShapeIndex_)) return false; + if (Kind != other.Kind) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= outputShapeIndex_.GetHashCode(); + if (ParameterNumber != 0L) hash ^= ParameterNumber.GetHashCode(); + hash ^= parameterShapeIndex_.GetHashCode(); + if (Kind != global::Xla.Kind.UndefinedAlias) hash ^= Kind.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + outputShapeIndex_.WriteTo(output, _repeated_outputShapeIndex_codec); + if (ParameterNumber != 0L) { + output.WriteRawTag(16); + output.WriteInt64(ParameterNumber); + } + parameterShapeIndex_.WriteTo(output, _repeated_parameterShapeIndex_codec); + if (Kind != global::Xla.Kind.UndefinedAlias) { + output.WriteRawTag(32); + output.WriteEnum((int) Kind); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + outputShapeIndex_.WriteTo(ref output, _repeated_outputShapeIndex_codec); + if (ParameterNumber != 0L) { + output.WriteRawTag(16); + output.WriteInt64(ParameterNumber); + } + parameterShapeIndex_.WriteTo(ref output, _repeated_parameterShapeIndex_codec); + if (Kind != global::Xla.Kind.UndefinedAlias) { + output.WriteRawTag(32); + output.WriteEnum((int) Kind); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += outputShapeIndex_.CalculateSize(_repeated_outputShapeIndex_codec); + if (ParameterNumber != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ParameterNumber); + } + size += parameterShapeIndex_.CalculateSize(_repeated_parameterShapeIndex_codec); + if (Kind != global::Xla.Kind.UndefinedAlias) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) Kind); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(AliasEntryProto other) { + if (other == null) { + return; + } + outputShapeIndex_.Add(other.outputShapeIndex_); + if (other.ParameterNumber != 0L) { + ParameterNumber = other.ParameterNumber; + } + parameterShapeIndex_.Add(other.parameterShapeIndex_); + if (other.Kind != global::Xla.Kind.UndefinedAlias) { + Kind = other.Kind; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + outputShapeIndex_.AddEntriesFrom(input, _repeated_outputShapeIndex_codec); + break; + } + case 16: { + ParameterNumber = input.ReadInt64(); + break; + } + case 26: + case 24: { + parameterShapeIndex_.AddEntriesFrom(input, _repeated_parameterShapeIndex_codec); + break; + } + case 32: { + Kind = (global::Xla.Kind) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + outputShapeIndex_.AddEntriesFrom(ref input, _repeated_outputShapeIndex_codec); + break; + } + case 16: { + ParameterNumber = input.ReadInt64(); + break; + } + case 26: + case 24: { + parameterShapeIndex_.AddEntriesFrom(ref input, _repeated_parameterShapeIndex_codec); + break; + } + case 32: { + Kind = (global::Xla.Kind) input.ReadEnum(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + public sealed partial class DynamicParameterBindingProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DynamicParameterBindingProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[4]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DynamicParameterBindingProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DynamicParameterBindingProto(DynamicParameterBindingProto other) : this() { + entries_ = other.entries_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DynamicParameterBindingProto Clone() { + return new DynamicParameterBindingProto(this); + } + + /// Field number for the "entries" field. + public const int EntriesFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_entries_codec + = pb::FieldCodec.ForMessage(10, global::Xla.DynamicParameterBindingProto.Types.Binding.Parser); + private readonly pbc::RepeatedField entries_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Entries { + get { return entries_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DynamicParameterBindingProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DynamicParameterBindingProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!entries_.Equals(other.entries_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= entries_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + entries_.WriteTo(output, _repeated_entries_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + entries_.WriteTo(ref output, _repeated_entries_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += entries_.CalculateSize(_repeated_entries_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DynamicParameterBindingProto other) { + if (other == null) { + return; + } + entries_.Add(other.entries_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + entries_.AddEntriesFrom(input, _repeated_entries_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + entries_.AddEntriesFrom(ref input, _repeated_entries_codec); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the DynamicParameterBindingProto message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// A list of bindings which indicates that the `target_dim_num` in + /// the subshape `target_param_index` of parameter `target_param_num` + /// is a dynamic dimension and its real dynamic size is represented + /// by `dynamic_param_index` in parameter `dynamic_param_num`. + /// + /// As an example, imagine we have a program: + /// + /// ENTRY main { + /// a = f32[] parameter(0) + /// b = f32[10] parameter(1) + /// ROOT root = (f32[], f32[10]) tuple(%a, %b) + /// } + /// + /// Let's say 'b' (param index 1) is a dynamic shape whose input has + /// an upperbound of 10 and real size is determined at runtime.'a' + /// represents the real size of b's first dimension. + /// + /// In this case, the fields are set in the following way: + /// dynamic_param_num = 1 + /// dynamic_param_index = {} + /// target_param_num = 0 + /// target_param_index = {} + /// target_param_dim = 0 + /// + public sealed partial class Binding : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Binding()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.DynamicParameterBindingProto.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Binding() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Binding(Binding other) : this() { + dynamicParamNum_ = other.dynamicParamNum_; + dynamicParamIndex_ = other.dynamicParamIndex_.Clone(); + targetParamNum_ = other.targetParamNum_; + targetParamIndex_ = other.targetParamIndex_.Clone(); + targetParamDimNum_ = other.targetParamDimNum_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Binding Clone() { + return new Binding(this); + } + + /// Field number for the "dynamic_param_num" field. + public const int DynamicParamNumFieldNumber = 1; + private long dynamicParamNum_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long DynamicParamNum { + get { return dynamicParamNum_; } + set { + dynamicParamNum_ = value; + } + } + + /// Field number for the "dynamic_param_index" field. + public const int DynamicParamIndexFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_dynamicParamIndex_codec + = pb::FieldCodec.ForInt64(18); + private readonly pbc::RepeatedField dynamicParamIndex_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField DynamicParamIndex { + get { return dynamicParamIndex_; } + } + + /// Field number for the "target_param_num" field. + public const int TargetParamNumFieldNumber = 3; + private long targetParamNum_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long TargetParamNum { + get { return targetParamNum_; } + set { + targetParamNum_ = value; + } + } + + /// Field number for the "target_param_index" field. + public const int TargetParamIndexFieldNumber = 4; + private static readonly pb::FieldCodec _repeated_targetParamIndex_codec + = pb::FieldCodec.ForInt64(34); + private readonly pbc::RepeatedField targetParamIndex_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField TargetParamIndex { + get { return targetParamIndex_; } + } + + /// Field number for the "target_param_dim_num" field. + public const int TargetParamDimNumFieldNumber = 5; + private long targetParamDimNum_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long TargetParamDimNum { + get { return targetParamDimNum_; } + set { + targetParamDimNum_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as Binding); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(Binding other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (DynamicParamNum != other.DynamicParamNum) return false; + if(!dynamicParamIndex_.Equals(other.dynamicParamIndex_)) return false; + if (TargetParamNum != other.TargetParamNum) return false; + if(!targetParamIndex_.Equals(other.targetParamIndex_)) return false; + if (TargetParamDimNum != other.TargetParamDimNum) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (DynamicParamNum != 0L) hash ^= DynamicParamNum.GetHashCode(); + hash ^= dynamicParamIndex_.GetHashCode(); + if (TargetParamNum != 0L) hash ^= TargetParamNum.GetHashCode(); + hash ^= targetParamIndex_.GetHashCode(); + if (TargetParamDimNum != 0L) hash ^= TargetParamDimNum.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (DynamicParamNum != 0L) { + output.WriteRawTag(8); + output.WriteInt64(DynamicParamNum); + } + dynamicParamIndex_.WriteTo(output, _repeated_dynamicParamIndex_codec); + if (TargetParamNum != 0L) { + output.WriteRawTag(24); + output.WriteInt64(TargetParamNum); + } + targetParamIndex_.WriteTo(output, _repeated_targetParamIndex_codec); + if (TargetParamDimNum != 0L) { + output.WriteRawTag(40); + output.WriteInt64(TargetParamDimNum); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (DynamicParamNum != 0L) { + output.WriteRawTag(8); + output.WriteInt64(DynamicParamNum); + } + dynamicParamIndex_.WriteTo(ref output, _repeated_dynamicParamIndex_codec); + if (TargetParamNum != 0L) { + output.WriteRawTag(24); + output.WriteInt64(TargetParamNum); + } + targetParamIndex_.WriteTo(ref output, _repeated_targetParamIndex_codec); + if (TargetParamDimNum != 0L) { + output.WriteRawTag(40); + output.WriteInt64(TargetParamDimNum); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (DynamicParamNum != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(DynamicParamNum); + } + size += dynamicParamIndex_.CalculateSize(_repeated_dynamicParamIndex_codec); + if (TargetParamNum != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(TargetParamNum); + } + size += targetParamIndex_.CalculateSize(_repeated_targetParamIndex_codec); + if (TargetParamDimNum != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(TargetParamDimNum); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(Binding other) { + if (other == null) { + return; + } + if (other.DynamicParamNum != 0L) { + DynamicParamNum = other.DynamicParamNum; + } + dynamicParamIndex_.Add(other.dynamicParamIndex_); + if (other.TargetParamNum != 0L) { + TargetParamNum = other.TargetParamNum; + } + targetParamIndex_.Add(other.targetParamIndex_); + if (other.TargetParamDimNum != 0L) { + TargetParamDimNum = other.TargetParamDimNum; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + DynamicParamNum = input.ReadInt64(); + break; + } + case 18: + case 16: { + dynamicParamIndex_.AddEntriesFrom(input, _repeated_dynamicParamIndex_codec); + break; + } + case 24: { + TargetParamNum = input.ReadInt64(); + break; + } + case 34: + case 32: { + targetParamIndex_.AddEntriesFrom(input, _repeated_targetParamIndex_codec); + break; + } + case 40: { + TargetParamDimNum = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + DynamicParamNum = input.ReadInt64(); + break; + } + case 18: + case 16: { + dynamicParamIndex_.AddEntriesFrom(ref input, _repeated_dynamicParamIndex_codec); + break; + } + case 24: { + TargetParamNum = input.ReadInt64(); + break; + } + case 34: + case 32: { + targetParamIndex_.AddEntriesFrom(ref input, _repeated_targetParamIndex_codec); + break; + } + case 40: { + TargetParamDimNum = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + public sealed partial class CrossProgramPrefetch : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CrossProgramPrefetch()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[5]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CrossProgramPrefetch() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CrossProgramPrefetch(CrossProgramPrefetch other) : this() { + parameter_ = other.parameter_; + index_ = other.index_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CrossProgramPrefetch Clone() { + return new CrossProgramPrefetch(this); + } + + /// Field number for the "parameter" field. + public const int ParameterFieldNumber = 1; + private long parameter_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Parameter { + get { return parameter_; } + set { + parameter_ = value; + } + } + + /// Field number for the "index" field. + public const int IndexFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_index_codec + = pb::FieldCodec.ForInt64(18); + private readonly pbc::RepeatedField index_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Index { + get { return index_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CrossProgramPrefetch); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CrossProgramPrefetch other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Parameter != other.Parameter) return false; + if(!index_.Equals(other.index_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Parameter != 0L) hash ^= Parameter.GetHashCode(); + hash ^= index_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Parameter != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Parameter); + } + index_.WriteTo(output, _repeated_index_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Parameter != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Parameter); + } + index_.WriteTo(ref output, _repeated_index_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Parameter != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Parameter); + } + size += index_.CalculateSize(_repeated_index_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CrossProgramPrefetch other) { + if (other == null) { + return; + } + if (other.Parameter != 0L) { + Parameter = other.Parameter; + } + index_.Add(other.index_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Parameter = input.ReadInt64(); + break; + } + case 18: + case 16: { + index_.AddEntriesFrom(input, _repeated_index_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Parameter = input.ReadInt64(); + break; + } + case 18: + case 16: { + index_.AddEntriesFrom(ref input, _repeated_index_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Serialization of HloModule. + /// + public sealed partial class HloModuleProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloModuleProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[6]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloModuleProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloModuleProto(HloModuleProto other) : this() { + name_ = other.name_; + entryComputationName_ = other.entryComputationName_; + entryComputationId_ = other.entryComputationId_; + computations_ = other.computations_.Clone(); + hostProgramShape_ = other.hostProgramShape_ != null ? other.hostProgramShape_.Clone() : null; + id_ = other.id_; + schedule_ = other.schedule_ != null ? other.schedule_.Clone() : null; + inputOutputAlias_ = other.inputOutputAlias_ != null ? other.inputOutputAlias_.Clone() : null; + dynamicParameterBinding_ = other.dynamicParameterBinding_ != null ? other.dynamicParameterBinding_.Clone() : null; + crossProgramPrefetches_ = other.crossProgramPrefetches_.Clone(); + isDynamic_ = other.isDynamic_; + spmdOutputSharding_ = other.spmdOutputSharding_ != null ? other.spmdOutputSharding_.Clone() : null; + spmdParametersShardings_ = other.spmdParametersShardings_.Clone(); + useAutoSpmdPartitioning_ = other.useAutoSpmdPartitioning_; + profileInfo_ = other.profileInfo_.Clone(); + deviceAssignment_ = other.deviceAssignment_ != null ? other.deviceAssignment_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloModuleProto Clone() { + return new HloModuleProto(this); + } + + /// Field number for the "name" field. + public const int NameFieldNumber = 1; + private string name_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Name { + get { return name_; } + set { + name_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "entry_computation_name" field. + public const int EntryComputationNameFieldNumber = 2; + private string entryComputationName_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string EntryComputationName { + get { return entryComputationName_; } + set { + entryComputationName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "entry_computation_id" field. + public const int EntryComputationIdFieldNumber = 6; + private long entryComputationId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long EntryComputationId { + get { return entryComputationId_; } + set { + entryComputationId_ = value; + } + } + + /// Field number for the "computations" field. + public const int ComputationsFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_computations_codec + = pb::FieldCodec.ForMessage(26, global::Xla.HloComputationProto.Parser); + private readonly pbc::RepeatedField computations_ = new pbc::RepeatedField(); + /// + /// The array of computations is always in a valid dependency order, where + /// callees appear before their callers. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Computations { + get { return computations_; } + } + + /// Field number for the "host_program_shape" field. + public const int HostProgramShapeFieldNumber = 4; + private global::Xla.ProgramShapeProto hostProgramShape_; + /// + /// The host program shape (with layout) of the entry computation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ProgramShapeProto HostProgramShape { + get { return hostProgramShape_; } + set { + hostProgramShape_ = value; + } + } + + /// Field number for the "id" field. + public const int IdFieldNumber = 5; + private long id_; + /// + /// The id of this module. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Id { + get { return id_; } + set { + id_ = value; + } + } + + /// Field number for the "schedule" field. + public const int ScheduleFieldNumber = 7; + private global::Xla.HloScheduleProto schedule_; + /// + /// The schedule for this module. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloScheduleProto Schedule { + get { return schedule_; } + set { + schedule_ = value; + } + } + + /// Field number for the "input_output_alias" field. + public const int InputOutputAliasFieldNumber = 8; + private global::Xla.HloInputOutputAliasProto inputOutputAlias_; + /// + /// Describes alias information between inputs and outputs. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloInputOutputAliasProto InputOutputAlias { + get { return inputOutputAlias_; } + set { + inputOutputAlias_ = value; + } + } + + /// Field number for the "dynamic_parameter_binding" field. + public const int DynamicParameterBindingFieldNumber = 9; + private global::Xla.DynamicParameterBindingProto dynamicParameterBinding_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DynamicParameterBindingProto DynamicParameterBinding { + get { return dynamicParameterBinding_; } + set { + dynamicParameterBinding_ = value; + } + } + + /// Field number for the "cross_program_prefetches" field. + public const int CrossProgramPrefetchesFieldNumber = 10; + private static readonly pb::FieldCodec _repeated_crossProgramPrefetches_codec + = pb::FieldCodec.ForMessage(82, global::Xla.CrossProgramPrefetch.Parser); + private readonly pbc::RepeatedField crossProgramPrefetches_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField CrossProgramPrefetches { + get { return crossProgramPrefetches_; } + } + + /// Field number for the "is_dynamic" field. + public const int IsDynamicFieldNumber = 11; + private bool isDynamic_; + /// + /// True if the module contains dynamic computation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsDynamic { + get { return isDynamic_; } + set { + isDynamic_ = value; + } + } + + /// Field number for the "spmd_output_sharding" field. + public const int SpmdOutputShardingFieldNumber = 12; + private global::Xla.OpSharding spmdOutputSharding_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.OpSharding SpmdOutputSharding { + get { return spmdOutputSharding_; } + set { + spmdOutputSharding_ = value; + } + } + + /// Field number for the "spmd_parameters_shardings" field. + public const int SpmdParametersShardingsFieldNumber = 14; + private static readonly pb::FieldCodec _repeated_spmdParametersShardings_codec + = pb::FieldCodec.ForMessage(114, global::Xla.OpSharding.Parser); + private readonly pbc::RepeatedField spmdParametersShardings_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField SpmdParametersShardings { + get { return spmdParametersShardings_; } + } + + /// Field number for the "use_auto_spmd_partitioning" field. + public const int UseAutoSpmdPartitioningFieldNumber = 16; + private bool useAutoSpmdPartitioning_; + /// + /// Uses AutoSharding pass or not. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool UseAutoSpmdPartitioning { + get { return useAutoSpmdPartitioning_; } + set { + useAutoSpmdPartitioning_ = value; + } + } + + /// Field number for the "profile_info" field. + public const int ProfileInfoFieldNumber = 13; + private static readonly pb::FieldCodec _repeated_profileInfo_codec + = pb::FieldCodec.ForMessage(106, global::Xla.HloModuleProto.Types.ProfileInfo.Parser); + private readonly pbc::RepeatedField profileInfo_ = new pbc::RepeatedField(); + /// + /// Profile information for the HLO module. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ProfileInfo { + get { return profileInfo_; } + } + + /// Field number for the "device_assignment" field. + public const int DeviceAssignmentFieldNumber = 15; + private global::Xla.DeviceAssignmentProto deviceAssignment_; + /// + /// DeviceAssignment object information. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DeviceAssignmentProto DeviceAssignment { + get { return deviceAssignment_; } + set { + deviceAssignment_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloModuleProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloModuleProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Name != other.Name) return false; + if (EntryComputationName != other.EntryComputationName) return false; + if (EntryComputationId != other.EntryComputationId) return false; + if(!computations_.Equals(other.computations_)) return false; + if (!object.Equals(HostProgramShape, other.HostProgramShape)) return false; + if (Id != other.Id) return false; + if (!object.Equals(Schedule, other.Schedule)) return false; + if (!object.Equals(InputOutputAlias, other.InputOutputAlias)) return false; + if (!object.Equals(DynamicParameterBinding, other.DynamicParameterBinding)) return false; + if(!crossProgramPrefetches_.Equals(other.crossProgramPrefetches_)) return false; + if (IsDynamic != other.IsDynamic) return false; + if (!object.Equals(SpmdOutputSharding, other.SpmdOutputSharding)) return false; + if(!spmdParametersShardings_.Equals(other.spmdParametersShardings_)) return false; + if (UseAutoSpmdPartitioning != other.UseAutoSpmdPartitioning) return false; + if(!profileInfo_.Equals(other.profileInfo_)) return false; + if (!object.Equals(DeviceAssignment, other.DeviceAssignment)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Name.Length != 0) hash ^= Name.GetHashCode(); + if (EntryComputationName.Length != 0) hash ^= EntryComputationName.GetHashCode(); + if (EntryComputationId != 0L) hash ^= EntryComputationId.GetHashCode(); + hash ^= computations_.GetHashCode(); + if (hostProgramShape_ != null) hash ^= HostProgramShape.GetHashCode(); + if (Id != 0L) hash ^= Id.GetHashCode(); + if (schedule_ != null) hash ^= Schedule.GetHashCode(); + if (inputOutputAlias_ != null) hash ^= InputOutputAlias.GetHashCode(); + if (dynamicParameterBinding_ != null) hash ^= DynamicParameterBinding.GetHashCode(); + hash ^= crossProgramPrefetches_.GetHashCode(); + if (IsDynamic != false) hash ^= IsDynamic.GetHashCode(); + if (spmdOutputSharding_ != null) hash ^= SpmdOutputSharding.GetHashCode(); + hash ^= spmdParametersShardings_.GetHashCode(); + if (UseAutoSpmdPartitioning != false) hash ^= UseAutoSpmdPartitioning.GetHashCode(); + hash ^= profileInfo_.GetHashCode(); + if (deviceAssignment_ != null) hash ^= DeviceAssignment.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (EntryComputationName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(EntryComputationName); + } + computations_.WriteTo(output, _repeated_computations_codec); + if (hostProgramShape_ != null) { + output.WriteRawTag(34); + output.WriteMessage(HostProgramShape); + } + if (Id != 0L) { + output.WriteRawTag(40); + output.WriteInt64(Id); + } + if (EntryComputationId != 0L) { + output.WriteRawTag(48); + output.WriteInt64(EntryComputationId); + } + if (schedule_ != null) { + output.WriteRawTag(58); + output.WriteMessage(Schedule); + } + if (inputOutputAlias_ != null) { + output.WriteRawTag(66); + output.WriteMessage(InputOutputAlias); + } + if (dynamicParameterBinding_ != null) { + output.WriteRawTag(74); + output.WriteMessage(DynamicParameterBinding); + } + crossProgramPrefetches_.WriteTo(output, _repeated_crossProgramPrefetches_codec); + if (IsDynamic != false) { + output.WriteRawTag(88); + output.WriteBool(IsDynamic); + } + if (spmdOutputSharding_ != null) { + output.WriteRawTag(98); + output.WriteMessage(SpmdOutputSharding); + } + profileInfo_.WriteTo(output, _repeated_profileInfo_codec); + spmdParametersShardings_.WriteTo(output, _repeated_spmdParametersShardings_codec); + if (deviceAssignment_ != null) { + output.WriteRawTag(122); + output.WriteMessage(DeviceAssignment); + } + if (UseAutoSpmdPartitioning != false) { + output.WriteRawTag(128, 1); + output.WriteBool(UseAutoSpmdPartitioning); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (EntryComputationName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(EntryComputationName); + } + computations_.WriteTo(ref output, _repeated_computations_codec); + if (hostProgramShape_ != null) { + output.WriteRawTag(34); + output.WriteMessage(HostProgramShape); + } + if (Id != 0L) { + output.WriteRawTag(40); + output.WriteInt64(Id); + } + if (EntryComputationId != 0L) { + output.WriteRawTag(48); + output.WriteInt64(EntryComputationId); + } + if (schedule_ != null) { + output.WriteRawTag(58); + output.WriteMessage(Schedule); + } + if (inputOutputAlias_ != null) { + output.WriteRawTag(66); + output.WriteMessage(InputOutputAlias); + } + if (dynamicParameterBinding_ != null) { + output.WriteRawTag(74); + output.WriteMessage(DynamicParameterBinding); + } + crossProgramPrefetches_.WriteTo(ref output, _repeated_crossProgramPrefetches_codec); + if (IsDynamic != false) { + output.WriteRawTag(88); + output.WriteBool(IsDynamic); + } + if (spmdOutputSharding_ != null) { + output.WriteRawTag(98); + output.WriteMessage(SpmdOutputSharding); + } + profileInfo_.WriteTo(ref output, _repeated_profileInfo_codec); + spmdParametersShardings_.WriteTo(ref output, _repeated_spmdParametersShardings_codec); + if (deviceAssignment_ != null) { + output.WriteRawTag(122); + output.WriteMessage(DeviceAssignment); + } + if (UseAutoSpmdPartitioning != false) { + output.WriteRawTag(128, 1); + output.WriteBool(UseAutoSpmdPartitioning); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Name.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Name); + } + if (EntryComputationName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(EntryComputationName); + } + if (EntryComputationId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(EntryComputationId); + } + size += computations_.CalculateSize(_repeated_computations_codec); + if (hostProgramShape_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(HostProgramShape); + } + if (Id != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Id); + } + if (schedule_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Schedule); + } + if (inputOutputAlias_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(InputOutputAlias); + } + if (dynamicParameterBinding_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DynamicParameterBinding); + } + size += crossProgramPrefetches_.CalculateSize(_repeated_crossProgramPrefetches_codec); + if (IsDynamic != false) { + size += 1 + 1; + } + if (spmdOutputSharding_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SpmdOutputSharding); + } + size += spmdParametersShardings_.CalculateSize(_repeated_spmdParametersShardings_codec); + if (UseAutoSpmdPartitioning != false) { + size += 2 + 1; + } + size += profileInfo_.CalculateSize(_repeated_profileInfo_codec); + if (deviceAssignment_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DeviceAssignment); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloModuleProto other) { + if (other == null) { + return; + } + if (other.Name.Length != 0) { + Name = other.Name; + } + if (other.EntryComputationName.Length != 0) { + EntryComputationName = other.EntryComputationName; + } + if (other.EntryComputationId != 0L) { + EntryComputationId = other.EntryComputationId; + } + computations_.Add(other.computations_); + if (other.hostProgramShape_ != null) { + if (hostProgramShape_ == null) { + HostProgramShape = new global::Xla.ProgramShapeProto(); + } + HostProgramShape.MergeFrom(other.HostProgramShape); + } + if (other.Id != 0L) { + Id = other.Id; + } + if (other.schedule_ != null) { + if (schedule_ == null) { + Schedule = new global::Xla.HloScheduleProto(); + } + Schedule.MergeFrom(other.Schedule); + } + if (other.inputOutputAlias_ != null) { + if (inputOutputAlias_ == null) { + InputOutputAlias = new global::Xla.HloInputOutputAliasProto(); + } + InputOutputAlias.MergeFrom(other.InputOutputAlias); + } + if (other.dynamicParameterBinding_ != null) { + if (dynamicParameterBinding_ == null) { + DynamicParameterBinding = new global::Xla.DynamicParameterBindingProto(); + } + DynamicParameterBinding.MergeFrom(other.DynamicParameterBinding); + } + crossProgramPrefetches_.Add(other.crossProgramPrefetches_); + if (other.IsDynamic != false) { + IsDynamic = other.IsDynamic; + } + if (other.spmdOutputSharding_ != null) { + if (spmdOutputSharding_ == null) { + SpmdOutputSharding = new global::Xla.OpSharding(); + } + SpmdOutputSharding.MergeFrom(other.SpmdOutputSharding); + } + spmdParametersShardings_.Add(other.spmdParametersShardings_); + if (other.UseAutoSpmdPartitioning != false) { + UseAutoSpmdPartitioning = other.UseAutoSpmdPartitioning; + } + profileInfo_.Add(other.profileInfo_); + if (other.deviceAssignment_ != null) { + if (deviceAssignment_ == null) { + DeviceAssignment = new global::Xla.DeviceAssignmentProto(); + } + DeviceAssignment.MergeFrom(other.DeviceAssignment); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + EntryComputationName = input.ReadString(); + break; + } + case 26: { + computations_.AddEntriesFrom(input, _repeated_computations_codec); + break; + } + case 34: { + if (hostProgramShape_ == null) { + HostProgramShape = new global::Xla.ProgramShapeProto(); + } + input.ReadMessage(HostProgramShape); + break; + } + case 40: { + Id = input.ReadInt64(); + break; + } + case 48: { + EntryComputationId = input.ReadInt64(); + break; + } + case 58: { + if (schedule_ == null) { + Schedule = new global::Xla.HloScheduleProto(); + } + input.ReadMessage(Schedule); + break; + } + case 66: { + if (inputOutputAlias_ == null) { + InputOutputAlias = new global::Xla.HloInputOutputAliasProto(); + } + input.ReadMessage(InputOutputAlias); + break; + } + case 74: { + if (dynamicParameterBinding_ == null) { + DynamicParameterBinding = new global::Xla.DynamicParameterBindingProto(); + } + input.ReadMessage(DynamicParameterBinding); + break; + } + case 82: { + crossProgramPrefetches_.AddEntriesFrom(input, _repeated_crossProgramPrefetches_codec); + break; + } + case 88: { + IsDynamic = input.ReadBool(); + break; + } + case 98: { + if (spmdOutputSharding_ == null) { + SpmdOutputSharding = new global::Xla.OpSharding(); + } + input.ReadMessage(SpmdOutputSharding); + break; + } + case 106: { + profileInfo_.AddEntriesFrom(input, _repeated_profileInfo_codec); + break; + } + case 114: { + spmdParametersShardings_.AddEntriesFrom(input, _repeated_spmdParametersShardings_codec); + break; + } + case 122: { + if (deviceAssignment_ == null) { + DeviceAssignment = new global::Xla.DeviceAssignmentProto(); + } + input.ReadMessage(DeviceAssignment); + break; + } + case 128: { + UseAutoSpmdPartitioning = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + EntryComputationName = input.ReadString(); + break; + } + case 26: { + computations_.AddEntriesFrom(ref input, _repeated_computations_codec); + break; + } + case 34: { + if (hostProgramShape_ == null) { + HostProgramShape = new global::Xla.ProgramShapeProto(); + } + input.ReadMessage(HostProgramShape); + break; + } + case 40: { + Id = input.ReadInt64(); + break; + } + case 48: { + EntryComputationId = input.ReadInt64(); + break; + } + case 58: { + if (schedule_ == null) { + Schedule = new global::Xla.HloScheduleProto(); + } + input.ReadMessage(Schedule); + break; + } + case 66: { + if (inputOutputAlias_ == null) { + InputOutputAlias = new global::Xla.HloInputOutputAliasProto(); + } + input.ReadMessage(InputOutputAlias); + break; + } + case 74: { + if (dynamicParameterBinding_ == null) { + DynamicParameterBinding = new global::Xla.DynamicParameterBindingProto(); + } + input.ReadMessage(DynamicParameterBinding); + break; + } + case 82: { + crossProgramPrefetches_.AddEntriesFrom(ref input, _repeated_crossProgramPrefetches_codec); + break; + } + case 88: { + IsDynamic = input.ReadBool(); + break; + } + case 98: { + if (spmdOutputSharding_ == null) { + SpmdOutputSharding = new global::Xla.OpSharding(); + } + input.ReadMessage(SpmdOutputSharding); + break; + } + case 106: { + profileInfo_.AddEntriesFrom(ref input, _repeated_profileInfo_codec); + break; + } + case 114: { + spmdParametersShardings_.AddEntriesFrom(ref input, _repeated_spmdParametersShardings_codec); + break; + } + case 122: { + if (deviceAssignment_ == null) { + DeviceAssignment = new global::Xla.DeviceAssignmentProto(); + } + input.ReadMessage(DeviceAssignment); + break; + } + case 128: { + UseAutoSpmdPartitioning = input.ReadBool(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the HloModuleProto message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// The type of optimization profile in use for module-level optimizations. + /// + public enum ProfileType { + [pbr::OriginalName("INVALID")] Invalid = 0, + [pbr::OriginalName("FLAG")] Flag = 1, + [pbr::OriginalName("FUSION")] Fusion = 2, + [pbr::OriginalName("LAYOUT")] Layout = 3, + [pbr::OriginalName("DOT")] Dot = 4, + } + + /// + /// Information about the optimization profile that this module contains. + /// + public sealed partial class ProfileInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ProfileInfo()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloModuleProto.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProfileInfo() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProfileInfo(ProfileInfo other) : this() { + profileType_ = other.profileType_; + relativeSpeedup_ = other.relativeSpeedup_; + profileSource_ = other.profileSource_; + compilationEvent_ = other.compilationEvent_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProfileInfo Clone() { + return new ProfileInfo(this); + } + + /// Field number for the "profile_type" field. + public const int ProfileTypeFieldNumber = 1; + private global::Xla.HloModuleProto.Types.ProfileType profileType_ = global::Xla.HloModuleProto.Types.ProfileType.Invalid; + /// + /// The optimization profiles that this module contains. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloModuleProto.Types.ProfileType ProfileType { + get { return profileType_; } + set { + profileType_ = value; + } + } + + /// Field number for the "relative_speedup" field. + public const int RelativeSpeedupFieldNumber = 2; + private double relativeSpeedup_; + /// + /// Speedup of tuned config compared to default config. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public double RelativeSpeedup { + get { return relativeSpeedup_; } + set { + relativeSpeedup_ = value; + } + } + + /// Field number for the "profile_source" field. + public const int ProfileSourceFieldNumber = 3; + private global::Xla.ProfileSource profileSource_ = global::Xla.ProfileSource.UnknownSource; + /// + /// The source of the optimization profile that this module contains. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ProfileSource ProfileSource { + get { return profileSource_; } + set { + profileSource_ = value; + } + } + + /// Field number for the "compilation_event" field. + public const int CompilationEventFieldNumber = 4; + private global::Xla.CompilationEvent compilationEvent_ = global::Xla.CompilationEvent.UnknownEvent; + /// + /// The compilation event that triggered the use of the profile. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.CompilationEvent CompilationEvent { + get { return compilationEvent_; } + set { + compilationEvent_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ProfileInfo); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ProfileInfo other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ProfileType != other.ProfileType) return false; + if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(RelativeSpeedup, other.RelativeSpeedup)) return false; + if (ProfileSource != other.ProfileSource) return false; + if (CompilationEvent != other.CompilationEvent) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ProfileType != global::Xla.HloModuleProto.Types.ProfileType.Invalid) hash ^= ProfileType.GetHashCode(); + if (RelativeSpeedup != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(RelativeSpeedup); + if (ProfileSource != global::Xla.ProfileSource.UnknownSource) hash ^= ProfileSource.GetHashCode(); + if (CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) hash ^= CompilationEvent.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ProfileType != global::Xla.HloModuleProto.Types.ProfileType.Invalid) { + output.WriteRawTag(8); + output.WriteEnum((int) ProfileType); + } + if (RelativeSpeedup != 0D) { + output.WriteRawTag(17); + output.WriteDouble(RelativeSpeedup); + } + if (ProfileSource != global::Xla.ProfileSource.UnknownSource) { + output.WriteRawTag(24); + output.WriteEnum((int) ProfileSource); + } + if (CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) { + output.WriteRawTag(32); + output.WriteEnum((int) CompilationEvent); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ProfileType != global::Xla.HloModuleProto.Types.ProfileType.Invalid) { + output.WriteRawTag(8); + output.WriteEnum((int) ProfileType); + } + if (RelativeSpeedup != 0D) { + output.WriteRawTag(17); + output.WriteDouble(RelativeSpeedup); + } + if (ProfileSource != global::Xla.ProfileSource.UnknownSource) { + output.WriteRawTag(24); + output.WriteEnum((int) ProfileSource); + } + if (CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) { + output.WriteRawTag(32); + output.WriteEnum((int) CompilationEvent); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ProfileType != global::Xla.HloModuleProto.Types.ProfileType.Invalid) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) ProfileType); + } + if (RelativeSpeedup != 0D) { + size += 1 + 8; + } + if (ProfileSource != global::Xla.ProfileSource.UnknownSource) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) ProfileSource); + } + if (CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) CompilationEvent); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ProfileInfo other) { + if (other == null) { + return; + } + if (other.ProfileType != global::Xla.HloModuleProto.Types.ProfileType.Invalid) { + ProfileType = other.ProfileType; + } + if (other.RelativeSpeedup != 0D) { + RelativeSpeedup = other.RelativeSpeedup; + } + if (other.ProfileSource != global::Xla.ProfileSource.UnknownSource) { + ProfileSource = other.ProfileSource; + } + if (other.CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) { + CompilationEvent = other.CompilationEvent; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + ProfileType = (global::Xla.HloModuleProto.Types.ProfileType) input.ReadEnum(); + break; + } + case 17: { + RelativeSpeedup = input.ReadDouble(); + break; + } + case 24: { + ProfileSource = (global::Xla.ProfileSource) input.ReadEnum(); + break; + } + case 32: { + CompilationEvent = (global::Xla.CompilationEvent) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + ProfileType = (global::Xla.HloModuleProto.Types.ProfileType) input.ReadEnum(); + break; + } + case 17: { + RelativeSpeedup = input.ReadDouble(); + break; + } + case 24: { + ProfileSource = (global::Xla.ProfileSource) input.ReadEnum(); + break; + } + case 32: { + CompilationEvent = (global::Xla.CompilationEvent) input.ReadEnum(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// Serialization of LogicalBuffer. + /// + public sealed partial class LogicalBufferProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new LogicalBufferProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[7]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LogicalBufferProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LogicalBufferProto(LogicalBufferProto other) : this() { + id_ = other.id_; + size_ = other.size_; + definedAt_ = other.definedAt_ != null ? other.definedAt_.Clone() : null; + color_ = other.color_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LogicalBufferProto Clone() { + return new LogicalBufferProto(this); + } + + /// Field number for the "id" field. + public const int IdFieldNumber = 1; + private long id_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Id { + get { return id_; } + set { + id_ = value; + } + } + + /// Field number for the "size" field. + public const int SizeFieldNumber = 2; + private long size_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Size { + get { return size_; } + set { + size_ = value; + } + } + + /// Field number for the "defined_at" field. + public const int DefinedAtFieldNumber = 3; + private global::Xla.LogicalBufferProto.Types.Location definedAt_; + /// + /// The location where the buffer is defined. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LogicalBufferProto.Types.Location DefinedAt { + get { return definedAt_; } + set { + definedAt_ = value; + } + } + + /// Field number for the "color" field. + public const int ColorFieldNumber = 4; + private long color_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Color { + get { return color_; } + set { + color_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as LogicalBufferProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(LogicalBufferProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Id != other.Id) return false; + if (Size != other.Size) return false; + if (!object.Equals(DefinedAt, other.DefinedAt)) return false; + if (Color != other.Color) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Id != 0L) hash ^= Id.GetHashCode(); + if (Size != 0L) hash ^= Size.GetHashCode(); + if (definedAt_ != null) hash ^= DefinedAt.GetHashCode(); + if (Color != 0L) hash ^= Color.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Id != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Id); + } + if (Size != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Size); + } + if (definedAt_ != null) { + output.WriteRawTag(26); + output.WriteMessage(DefinedAt); + } + if (Color != 0L) { + output.WriteRawTag(32); + output.WriteInt64(Color); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Id != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Id); + } + if (Size != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Size); + } + if (definedAt_ != null) { + output.WriteRawTag(26); + output.WriteMessage(DefinedAt); + } + if (Color != 0L) { + output.WriteRawTag(32); + output.WriteInt64(Color); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Id != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Id); + } + if (Size != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Size); + } + if (definedAt_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DefinedAt); + } + if (Color != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Color); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(LogicalBufferProto other) { + if (other == null) { + return; + } + if (other.Id != 0L) { + Id = other.Id; + } + if (other.Size != 0L) { + Size = other.Size; + } + if (other.definedAt_ != null) { + if (definedAt_ == null) { + DefinedAt = new global::Xla.LogicalBufferProto.Types.Location(); + } + DefinedAt.MergeFrom(other.DefinedAt); + } + if (other.Color != 0L) { + Color = other.Color; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Id = input.ReadInt64(); + break; + } + case 16: { + Size = input.ReadInt64(); + break; + } + case 26: { + if (definedAt_ == null) { + DefinedAt = new global::Xla.LogicalBufferProto.Types.Location(); + } + input.ReadMessage(DefinedAt); + break; + } + case 32: { + Color = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Id = input.ReadInt64(); + break; + } + case 16: { + Size = input.ReadInt64(); + break; + } + case 26: { + if (definedAt_ == null) { + DefinedAt = new global::Xla.LogicalBufferProto.Types.Location(); + } + input.ReadMessage(DefinedAt); + break; + } + case 32: { + Color = input.ReadInt64(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the LogicalBufferProto message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Location represents an instruction and its shape index, which uniquely + /// identifies a point where a buffer is needed. + /// + public sealed partial class Location : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Location()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.LogicalBufferProto.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Location() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Location(Location other) : this() { + computationName_ = other.computationName_; + instructionName_ = other.instructionName_; + instructionId_ = other.instructionId_; + shapeIndex_ = other.shapeIndex_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Location Clone() { + return new Location(this); + } + + /// Field number for the "computation_name" field. + public const int ComputationNameFieldNumber = 1; + private string computationName_ = ""; + /// + /// NOTE: module_name isn't necessary, since all LogicalBuffers are + /// associated with a single HloModule. + /// TODO(b/239098765): Remove instruction_name and computation_name. + /// + [global::System.ObsoleteAttribute] + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ComputationName { + get { return computationName_; } + set { + computationName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "instruction_name" field. + public const int InstructionNameFieldNumber = 2; + private string instructionName_ = ""; + [global::System.ObsoleteAttribute] + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string InstructionName { + get { return instructionName_; } + set { + instructionName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "instruction_id" field. + public const int InstructionIdFieldNumber = 4; + private long instructionId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long InstructionId { + get { return instructionId_; } + set { + instructionId_ = value; + } + } + + /// Field number for the "shape_index" field. + public const int ShapeIndexFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_shapeIndex_codec + = pb::FieldCodec.ForInt64(26); + private readonly pbc::RepeatedField shapeIndex_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ShapeIndex { + get { return shapeIndex_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as Location); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(Location other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ComputationName != other.ComputationName) return false; + if (InstructionName != other.InstructionName) return false; + if (InstructionId != other.InstructionId) return false; + if(!shapeIndex_.Equals(other.shapeIndex_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ComputationName.Length != 0) hash ^= ComputationName.GetHashCode(); + if (InstructionName.Length != 0) hash ^= InstructionName.GetHashCode(); + if (InstructionId != 0L) hash ^= InstructionId.GetHashCode(); + hash ^= shapeIndex_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ComputationName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ComputationName); + } + if (InstructionName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(InstructionName); + } + shapeIndex_.WriteTo(output, _repeated_shapeIndex_codec); + if (InstructionId != 0L) { + output.WriteRawTag(32); + output.WriteInt64(InstructionId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ComputationName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ComputationName); + } + if (InstructionName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(InstructionName); + } + shapeIndex_.WriteTo(ref output, _repeated_shapeIndex_codec); + if (InstructionId != 0L) { + output.WriteRawTag(32); + output.WriteInt64(InstructionId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ComputationName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ComputationName); + } + if (InstructionName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(InstructionName); + } + if (InstructionId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(InstructionId); + } + size += shapeIndex_.CalculateSize(_repeated_shapeIndex_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(Location other) { + if (other == null) { + return; + } + if (other.ComputationName.Length != 0) { + ComputationName = other.ComputationName; + } + if (other.InstructionName.Length != 0) { + InstructionName = other.InstructionName; + } + if (other.InstructionId != 0L) { + InstructionId = other.InstructionId; + } + shapeIndex_.Add(other.shapeIndex_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + ComputationName = input.ReadString(); + break; + } + case 18: { + InstructionName = input.ReadString(); + break; + } + case 26: + case 24: { + shapeIndex_.AddEntriesFrom(input, _repeated_shapeIndex_codec); + break; + } + case 32: { + InstructionId = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + ComputationName = input.ReadString(); + break; + } + case 18: { + InstructionName = input.ReadString(); + break; + } + case 26: + case 24: { + shapeIndex_.AddEntriesFrom(ref input, _repeated_shapeIndex_codec); + break; + } + case 32: { + InstructionId = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// Serialization of BufferAllocation. + /// + public sealed partial class BufferAllocationProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new BufferAllocationProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[8]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferAllocationProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferAllocationProto(BufferAllocationProto other) : this() { + index_ = other.index_; + size_ = other.size_; + isThreadLocal_ = other.isThreadLocal_; + isTuple_ = other.isTuple_; + isEntryComputationParameter_ = other.isEntryComputationParameter_; + isConstant_ = other.isConstant_; + parameterNumber_ = other.parameterNumber_; + parameterShapeIndex_ = other.parameterShapeIndex_.Clone(); + maybeLiveOut_ = other.maybeLiveOut_; + color_ = other.color_; + assigned_ = other.assigned_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferAllocationProto Clone() { + return new BufferAllocationProto(this); + } + + /// Field number for the "index" field. + public const int IndexFieldNumber = 1; + private long index_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Index { + get { return index_; } + set { + index_ = value; + } + } + + /// Field number for the "size" field. + public const int SizeFieldNumber = 2; + private long size_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Size { + get { return size_; } + set { + size_ = value; + } + } + + /// Field number for the "is_thread_local" field. + public const int IsThreadLocalFieldNumber = 3; + private bool isThreadLocal_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsThreadLocal { + get { return isThreadLocal_; } + set { + isThreadLocal_ = value; + } + } + + /// Field number for the "is_tuple" field. + public const int IsTupleFieldNumber = 11; + private bool isTuple_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsTuple { + get { return isTuple_; } + set { + isTuple_ = value; + } + } + + /// Field number for the "is_entry_computation_parameter" field. + public const int IsEntryComputationParameterFieldNumber = 5; + private bool isEntryComputationParameter_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsEntryComputationParameter { + get { return isEntryComputationParameter_; } + set { + isEntryComputationParameter_ = value; + } + } + + /// Field number for the "is_constant" field. + public const int IsConstantFieldNumber = 12; + private bool isConstant_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool IsConstant { + get { return isConstant_; } + set { + isConstant_ = value; + } + } + + /// Field number for the "parameter_number" field. + public const int ParameterNumberFieldNumber = 6; + private long parameterNumber_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ParameterNumber { + get { return parameterNumber_; } + set { + parameterNumber_ = value; + } + } + + /// Field number for the "parameter_shape_index" field. + public const int ParameterShapeIndexFieldNumber = 10; + private static readonly pb::FieldCodec _repeated_parameterShapeIndex_codec + = pb::FieldCodec.ForInt64(82); + private readonly pbc::RepeatedField parameterShapeIndex_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ParameterShapeIndex { + get { return parameterShapeIndex_; } + } + + /// Field number for the "maybe_live_out" field. + public const int MaybeLiveOutFieldNumber = 7; + private bool maybeLiveOut_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool MaybeLiveOut { + get { return maybeLiveOut_; } + set { + maybeLiveOut_ = value; + } + } + + /// Field number for the "color" field. + public const int ColorFieldNumber = 8; + private long color_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Color { + get { return color_; } + set { + color_ = value; + } + } + + /// Field number for the "assigned" field. + public const int AssignedFieldNumber = 9; + private static readonly pb::FieldCodec _repeated_assigned_codec + = pb::FieldCodec.ForMessage(74, global::Xla.BufferAllocationProto.Types.Assigned.Parser); + private readonly pbc::RepeatedField assigned_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Assigned { + get { return assigned_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as BufferAllocationProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(BufferAllocationProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Index != other.Index) return false; + if (Size != other.Size) return false; + if (IsThreadLocal != other.IsThreadLocal) return false; + if (IsTuple != other.IsTuple) return false; + if (IsEntryComputationParameter != other.IsEntryComputationParameter) return false; + if (IsConstant != other.IsConstant) return false; + if (ParameterNumber != other.ParameterNumber) return false; + if(!parameterShapeIndex_.Equals(other.parameterShapeIndex_)) return false; + if (MaybeLiveOut != other.MaybeLiveOut) return false; + if (Color != other.Color) return false; + if(!assigned_.Equals(other.assigned_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Index != 0L) hash ^= Index.GetHashCode(); + if (Size != 0L) hash ^= Size.GetHashCode(); + if (IsThreadLocal != false) hash ^= IsThreadLocal.GetHashCode(); + if (IsTuple != false) hash ^= IsTuple.GetHashCode(); + if (IsEntryComputationParameter != false) hash ^= IsEntryComputationParameter.GetHashCode(); + if (IsConstant != false) hash ^= IsConstant.GetHashCode(); + if (ParameterNumber != 0L) hash ^= ParameterNumber.GetHashCode(); + hash ^= parameterShapeIndex_.GetHashCode(); + if (MaybeLiveOut != false) hash ^= MaybeLiveOut.GetHashCode(); + if (Color != 0L) hash ^= Color.GetHashCode(); + hash ^= assigned_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Index != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Index); + } + if (Size != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Size); + } + if (IsThreadLocal != false) { + output.WriteRawTag(24); + output.WriteBool(IsThreadLocal); + } + if (IsEntryComputationParameter != false) { + output.WriteRawTag(40); + output.WriteBool(IsEntryComputationParameter); + } + if (ParameterNumber != 0L) { + output.WriteRawTag(48); + output.WriteInt64(ParameterNumber); + } + if (MaybeLiveOut != false) { + output.WriteRawTag(56); + output.WriteBool(MaybeLiveOut); + } + if (Color != 0L) { + output.WriteRawTag(64); + output.WriteInt64(Color); + } + assigned_.WriteTo(output, _repeated_assigned_codec); + parameterShapeIndex_.WriteTo(output, _repeated_parameterShapeIndex_codec); + if (IsTuple != false) { + output.WriteRawTag(88); + output.WriteBool(IsTuple); + } + if (IsConstant != false) { + output.WriteRawTag(96); + output.WriteBool(IsConstant); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Index != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Index); + } + if (Size != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Size); + } + if (IsThreadLocal != false) { + output.WriteRawTag(24); + output.WriteBool(IsThreadLocal); + } + if (IsEntryComputationParameter != false) { + output.WriteRawTag(40); + output.WriteBool(IsEntryComputationParameter); + } + if (ParameterNumber != 0L) { + output.WriteRawTag(48); + output.WriteInt64(ParameterNumber); + } + if (MaybeLiveOut != false) { + output.WriteRawTag(56); + output.WriteBool(MaybeLiveOut); + } + if (Color != 0L) { + output.WriteRawTag(64); + output.WriteInt64(Color); + } + assigned_.WriteTo(ref output, _repeated_assigned_codec); + parameterShapeIndex_.WriteTo(ref output, _repeated_parameterShapeIndex_codec); + if (IsTuple != false) { + output.WriteRawTag(88); + output.WriteBool(IsTuple); + } + if (IsConstant != false) { + output.WriteRawTag(96); + output.WriteBool(IsConstant); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Index != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Index); + } + if (Size != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Size); + } + if (IsThreadLocal != false) { + size += 1 + 1; + } + if (IsTuple != false) { + size += 1 + 1; + } + if (IsEntryComputationParameter != false) { + size += 1 + 1; + } + if (IsConstant != false) { + size += 1 + 1; + } + if (ParameterNumber != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ParameterNumber); + } + size += parameterShapeIndex_.CalculateSize(_repeated_parameterShapeIndex_codec); + if (MaybeLiveOut != false) { + size += 1 + 1; + } + if (Color != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Color); + } + size += assigned_.CalculateSize(_repeated_assigned_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(BufferAllocationProto other) { + if (other == null) { + return; + } + if (other.Index != 0L) { + Index = other.Index; + } + if (other.Size != 0L) { + Size = other.Size; + } + if (other.IsThreadLocal != false) { + IsThreadLocal = other.IsThreadLocal; + } + if (other.IsTuple != false) { + IsTuple = other.IsTuple; + } + if (other.IsEntryComputationParameter != false) { + IsEntryComputationParameter = other.IsEntryComputationParameter; + } + if (other.IsConstant != false) { + IsConstant = other.IsConstant; + } + if (other.ParameterNumber != 0L) { + ParameterNumber = other.ParameterNumber; + } + parameterShapeIndex_.Add(other.parameterShapeIndex_); + if (other.MaybeLiveOut != false) { + MaybeLiveOut = other.MaybeLiveOut; + } + if (other.Color != 0L) { + Color = other.Color; + } + assigned_.Add(other.assigned_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Index = input.ReadInt64(); + break; + } + case 16: { + Size = input.ReadInt64(); + break; + } + case 24: { + IsThreadLocal = input.ReadBool(); + break; + } + case 40: { + IsEntryComputationParameter = input.ReadBool(); + break; + } + case 48: { + ParameterNumber = input.ReadInt64(); + break; + } + case 56: { + MaybeLiveOut = input.ReadBool(); + break; + } + case 64: { + Color = input.ReadInt64(); + break; + } + case 74: { + assigned_.AddEntriesFrom(input, _repeated_assigned_codec); + break; + } + case 82: + case 80: { + parameterShapeIndex_.AddEntriesFrom(input, _repeated_parameterShapeIndex_codec); + break; + } + case 88: { + IsTuple = input.ReadBool(); + break; + } + case 96: { + IsConstant = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Index = input.ReadInt64(); + break; + } + case 16: { + Size = input.ReadInt64(); + break; + } + case 24: { + IsThreadLocal = input.ReadBool(); + break; + } + case 40: { + IsEntryComputationParameter = input.ReadBool(); + break; + } + case 48: { + ParameterNumber = input.ReadInt64(); + break; + } + case 56: { + MaybeLiveOut = input.ReadBool(); + break; + } + case 64: { + Color = input.ReadInt64(); + break; + } + case 74: { + assigned_.AddEntriesFrom(ref input, _repeated_assigned_codec); + break; + } + case 82: + case 80: { + parameterShapeIndex_.AddEntriesFrom(ref input, _repeated_parameterShapeIndex_codec); + break; + } + case 88: { + IsTuple = input.ReadBool(); + break; + } + case 96: { + IsConstant = input.ReadBool(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the BufferAllocationProto message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Assigned represents a single LogicalBuffer that is assigned to this + /// BufferAllocation. + /// + public sealed partial class Assigned : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Assigned()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.BufferAllocationProto.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Assigned() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Assigned(Assigned other) : this() { + logicalBufferId_ = other.logicalBufferId_; + offset_ = other.offset_; + size_ = other.size_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Assigned Clone() { + return new Assigned(this); + } + + /// Field number for the "logical_buffer_id" field. + public const int LogicalBufferIdFieldNumber = 1; + private long logicalBufferId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long LogicalBufferId { + get { return logicalBufferId_; } + set { + logicalBufferId_ = value; + } + } + + /// Field number for the "offset" field. + public const int OffsetFieldNumber = 2; + private long offset_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Offset { + get { return offset_; } + set { + offset_ = value; + } + } + + /// Field number for the "size" field. + public const int SizeFieldNumber = 3; + private long size_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Size { + get { return size_; } + set { + size_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as Assigned); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(Assigned other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (LogicalBufferId != other.LogicalBufferId) return false; + if (Offset != other.Offset) return false; + if (Size != other.Size) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (LogicalBufferId != 0L) hash ^= LogicalBufferId.GetHashCode(); + if (Offset != 0L) hash ^= Offset.GetHashCode(); + if (Size != 0L) hash ^= Size.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (LogicalBufferId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(LogicalBufferId); + } + if (Offset != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Offset); + } + if (Size != 0L) { + output.WriteRawTag(24); + output.WriteInt64(Size); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (LogicalBufferId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(LogicalBufferId); + } + if (Offset != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Offset); + } + if (Size != 0L) { + output.WriteRawTag(24); + output.WriteInt64(Size); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (LogicalBufferId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(LogicalBufferId); + } + if (Offset != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Offset); + } + if (Size != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Size); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(Assigned other) { + if (other == null) { + return; + } + if (other.LogicalBufferId != 0L) { + LogicalBufferId = other.LogicalBufferId; + } + if (other.Offset != 0L) { + Offset = other.Offset; + } + if (other.Size != 0L) { + Size = other.Size; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + LogicalBufferId = input.ReadInt64(); + break; + } + case 16: { + Offset = input.ReadInt64(); + break; + } + case 24: { + Size = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + LogicalBufferId = input.ReadInt64(); + break; + } + case 16: { + Offset = input.ReadInt64(); + break; + } + case 24: { + Size = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// A trace of a HeapSimulator run. + /// + public sealed partial class HeapSimulatorTrace : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HeapSimulatorTrace()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[9]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeapSimulatorTrace() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeapSimulatorTrace(HeapSimulatorTrace other) : this() { + events_ = other.events_.Clone(); + wholeModuleSimulation_ = other.wholeModuleSimulation_; + bufferAllocationIndex_ = other.bufferAllocationIndex_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeapSimulatorTrace Clone() { + return new HeapSimulatorTrace(this); + } + + /// Field number for the "events" field. + public const int EventsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_events_codec + = pb::FieldCodec.ForMessage(10, global::Xla.HeapSimulatorTrace.Types.Event.Parser); + private readonly pbc::RepeatedField events_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Events { + get { return events_; } + } + + /// Field number for the "whole_module_simulation" field. + public const int WholeModuleSimulationFieldNumber = 2; + private bool wholeModuleSimulation_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool WholeModuleSimulation { + get { return wholeModuleSimulation_; } + set { + wholeModuleSimulation_ = value; + } + } + + /// Field number for the "buffer_allocation_index" field. + public const int BufferAllocationIndexFieldNumber = 3; + private long bufferAllocationIndex_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long BufferAllocationIndex { + get { return bufferAllocationIndex_; } + set { + bufferAllocationIndex_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HeapSimulatorTrace); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HeapSimulatorTrace other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!events_.Equals(other.events_)) return false; + if (WholeModuleSimulation != other.WholeModuleSimulation) return false; + if (BufferAllocationIndex != other.BufferAllocationIndex) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= events_.GetHashCode(); + if (WholeModuleSimulation != false) hash ^= WholeModuleSimulation.GetHashCode(); + if (BufferAllocationIndex != 0L) hash ^= BufferAllocationIndex.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + events_.WriteTo(output, _repeated_events_codec); + if (WholeModuleSimulation != false) { + output.WriteRawTag(16); + output.WriteBool(WholeModuleSimulation); + } + if (BufferAllocationIndex != 0L) { + output.WriteRawTag(24); + output.WriteInt64(BufferAllocationIndex); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + events_.WriteTo(ref output, _repeated_events_codec); + if (WholeModuleSimulation != false) { + output.WriteRawTag(16); + output.WriteBool(WholeModuleSimulation); + } + if (BufferAllocationIndex != 0L) { + output.WriteRawTag(24); + output.WriteInt64(BufferAllocationIndex); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += events_.CalculateSize(_repeated_events_codec); + if (WholeModuleSimulation != false) { + size += 1 + 1; + } + if (BufferAllocationIndex != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(BufferAllocationIndex); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HeapSimulatorTrace other) { + if (other == null) { + return; + } + events_.Add(other.events_); + if (other.WholeModuleSimulation != false) { + WholeModuleSimulation = other.WholeModuleSimulation; + } + if (other.BufferAllocationIndex != 0L) { + BufferAllocationIndex = other.BufferAllocationIndex; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + events_.AddEntriesFrom(input, _repeated_events_codec); + break; + } + case 16: { + WholeModuleSimulation = input.ReadBool(); + break; + } + case 24: { + BufferAllocationIndex = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + events_.AddEntriesFrom(ref input, _repeated_events_codec); + break; + } + case 16: { + WholeModuleSimulation = input.ReadBool(); + break; + } + case 24: { + BufferAllocationIndex = input.ReadInt64(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the HeapSimulatorTrace message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// The trace includes a list of events, where each event describes one action + /// performed by the heap simulator. + /// + public sealed partial class Event : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Event()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HeapSimulatorTrace.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Event() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Event(Event other) : this() { + kind_ = other.kind_; + bufferId_ = other.bufferId_; + computationName_ = other.computationName_; + instructionName_ = other.instructionName_; + shareWithCanonicalId_ = other.shareWithCanonicalId_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Event Clone() { + return new Event(this); + } + + /// Field number for the "kind" field. + public const int KindFieldNumber = 1; + private global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind kind_ = global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind.Alloc; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind Kind { + get { return kind_; } + set { + kind_ = value; + } + } + + /// Field number for the "buffer_id" field. + public const int BufferIdFieldNumber = 2; + private long bufferId_; + /// + /// The id of the LogicalBuffer that the event applies to. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long BufferId { + get { return bufferId_; } + set { + bufferId_ = value; + } + } + + /// Field number for the "computation_name" field. + public const int ComputationNameFieldNumber = 3; + private string computationName_ = ""; + /// + /// The HloInstruction that the simulation was processing that caused this + /// event to occur, identified by its computation and instruction name. E.g. + /// buffers defined by instruction A are allocated when processing A. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ComputationName { + get { return computationName_; } + set { + computationName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "instruction_name" field. + public const int InstructionNameFieldNumber = 4; + private string instructionName_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string InstructionName { + get { return instructionName_; } + set { + instructionName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "share_with_canonical_id" field. + public const int ShareWithCanonicalIdFieldNumber = 5; + private long shareWithCanonicalId_; + /// + /// The id of the canonical LogicalBuffer that the buffer shares with. Only + /// set for SHARE_WITH events. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ShareWithCanonicalId { + get { return shareWithCanonicalId_; } + set { + shareWithCanonicalId_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as Event); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(Event other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Kind != other.Kind) return false; + if (BufferId != other.BufferId) return false; + if (ComputationName != other.ComputationName) return false; + if (InstructionName != other.InstructionName) return false; + if (ShareWithCanonicalId != other.ShareWithCanonicalId) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Kind != global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind.Alloc) hash ^= Kind.GetHashCode(); + if (BufferId != 0L) hash ^= BufferId.GetHashCode(); + if (ComputationName.Length != 0) hash ^= ComputationName.GetHashCode(); + if (InstructionName.Length != 0) hash ^= InstructionName.GetHashCode(); + if (ShareWithCanonicalId != 0L) hash ^= ShareWithCanonicalId.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Kind != global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind.Alloc) { + output.WriteRawTag(8); + output.WriteEnum((int) Kind); + } + if (BufferId != 0L) { + output.WriteRawTag(16); + output.WriteInt64(BufferId); + } + if (ComputationName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(ComputationName); + } + if (InstructionName.Length != 0) { + output.WriteRawTag(34); + output.WriteString(InstructionName); + } + if (ShareWithCanonicalId != 0L) { + output.WriteRawTag(40); + output.WriteInt64(ShareWithCanonicalId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Kind != global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind.Alloc) { + output.WriteRawTag(8); + output.WriteEnum((int) Kind); + } + if (BufferId != 0L) { + output.WriteRawTag(16); + output.WriteInt64(BufferId); + } + if (ComputationName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(ComputationName); + } + if (InstructionName.Length != 0) { + output.WriteRawTag(34); + output.WriteString(InstructionName); + } + if (ShareWithCanonicalId != 0L) { + output.WriteRawTag(40); + output.WriteInt64(ShareWithCanonicalId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Kind != global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind.Alloc) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) Kind); + } + if (BufferId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(BufferId); + } + if (ComputationName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ComputationName); + } + if (InstructionName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(InstructionName); + } + if (ShareWithCanonicalId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ShareWithCanonicalId); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(Event other) { + if (other == null) { + return; + } + if (other.Kind != global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind.Alloc) { + Kind = other.Kind; + } + if (other.BufferId != 0L) { + BufferId = other.BufferId; + } + if (other.ComputationName.Length != 0) { + ComputationName = other.ComputationName; + } + if (other.InstructionName.Length != 0) { + InstructionName = other.InstructionName; + } + if (other.ShareWithCanonicalId != 0L) { + ShareWithCanonicalId = other.ShareWithCanonicalId; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Kind = (global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind) input.ReadEnum(); + break; + } + case 16: { + BufferId = input.ReadInt64(); + break; + } + case 26: { + ComputationName = input.ReadString(); + break; + } + case 34: { + InstructionName = input.ReadString(); + break; + } + case 40: { + ShareWithCanonicalId = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Kind = (global::Xla.HeapSimulatorTrace.Types.Event.Types.Kind) input.ReadEnum(); + break; + } + case 16: { + BufferId = input.ReadInt64(); + break; + } + case 26: { + ComputationName = input.ReadString(); + break; + } + case 34: { + InstructionName = input.ReadString(); + break; + } + case 40: { + ShareWithCanonicalId = input.ReadInt64(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the Event message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + public enum Kind { + /// + /// A memory region was allocated for the buffer. + /// + [pbr::OriginalName("ALLOC")] Alloc = 0, + /// + /// A memory region was freed for the buffer. + /// + [pbr::OriginalName("FREE")] Free = 1, + /// + /// A buffer was shared with another (canonical) buffer. This is similar to + /// ALLOC, except that instead of allocating a new region of memory, the + /// memory region of the canonical buffer is directly re-used. Multiple + /// buffers may share with the same canonical buffer. The lifetime of the + /// canonical buffer is extended to the union of all lifetimes. + /// + [pbr::OriginalName("SHARE_WITH")] ShareWith = 2, + } + + } + #endregion + + } + + } + #endregion + + } + + /// + /// An abstraction representing a set of HLO module built to run concurrently + /// across different devices. + /// + public sealed partial class HloModuleGroupProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloModuleGroupProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[10]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloModuleGroupProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloModuleGroupProto(HloModuleGroupProto other) : this() { + name_ = other.name_; + hloModules_ = other.hloModules_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloModuleGroupProto Clone() { + return new HloModuleGroupProto(this); + } + + /// Field number for the "name" field. + public const int NameFieldNumber = 1; + private string name_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Name { + get { return name_; } + set { + name_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "hlo_modules" field. + public const int HloModulesFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_hloModules_codec + = pb::FieldCodec.ForMessage(18, global::Xla.HloModuleProto.Parser); + private readonly pbc::RepeatedField hloModules_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField HloModules { + get { return hloModules_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloModuleGroupProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloModuleGroupProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Name != other.Name) return false; + if(!hloModules_.Equals(other.hloModules_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Name.Length != 0) hash ^= Name.GetHashCode(); + hash ^= hloModules_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + hloModules_.WriteTo(output, _repeated_hloModules_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + hloModules_.WriteTo(ref output, _repeated_hloModules_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Name.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Name); + } + size += hloModules_.CalculateSize(_repeated_hloModules_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloModuleGroupProto other) { + if (other == null) { + return; + } + if (other.Name.Length != 0) { + Name = other.Name; + } + hloModules_.Add(other.hloModules_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + hloModules_.AddEntriesFrom(input, _repeated_hloModules_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + hloModules_.AddEntriesFrom(ref input, _repeated_hloModules_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Serialization of BufferAssignment. + /// + public sealed partial class BufferAssignmentProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new BufferAssignmentProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[11]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferAssignmentProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferAssignmentProto(BufferAssignmentProto other) : this() { + logicalBuffers_ = other.logicalBuffers_.Clone(); + bufferAliases_ = other.bufferAliases_.Clone(); + bufferAllocations_ = other.bufferAllocations_.Clone(); + heapSimulatorTraces_ = other.heapSimulatorTraces_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferAssignmentProto Clone() { + return new BufferAssignmentProto(this); + } + + /// Field number for the "logical_buffers" field. + public const int LogicalBuffersFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_logicalBuffers_codec + = pb::FieldCodec.ForMessage(10, global::Xla.LogicalBufferProto.Parser); + private readonly pbc::RepeatedField logicalBuffers_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField LogicalBuffers { + get { return logicalBuffers_; } + } + + /// Field number for the "buffer_aliases" field. + public const int BufferAliasesFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_bufferAliases_codec + = pb::FieldCodec.ForMessage(18, global::Xla.BufferAssignmentProto.Types.BufferAlias.Parser); + private readonly pbc::RepeatedField bufferAliases_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField BufferAliases { + get { return bufferAliases_; } + } + + /// Field number for the "buffer_allocations" field. + public const int BufferAllocationsFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_bufferAllocations_codec + = pb::FieldCodec.ForMessage(26, global::Xla.BufferAllocationProto.Parser); + private readonly pbc::RepeatedField bufferAllocations_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField BufferAllocations { + get { return bufferAllocations_; } + } + + /// Field number for the "heap_simulator_traces" field. + public const int HeapSimulatorTracesFieldNumber = 4; + private static readonly pb::FieldCodec _repeated_heapSimulatorTraces_codec + = pb::FieldCodec.ForMessage(34, global::Xla.HeapSimulatorTrace.Parser); + private readonly pbc::RepeatedField heapSimulatorTraces_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField HeapSimulatorTraces { + get { return heapSimulatorTraces_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as BufferAssignmentProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(BufferAssignmentProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!logicalBuffers_.Equals(other.logicalBuffers_)) return false; + if(!bufferAliases_.Equals(other.bufferAliases_)) return false; + if(!bufferAllocations_.Equals(other.bufferAllocations_)) return false; + if(!heapSimulatorTraces_.Equals(other.heapSimulatorTraces_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= logicalBuffers_.GetHashCode(); + hash ^= bufferAliases_.GetHashCode(); + hash ^= bufferAllocations_.GetHashCode(); + hash ^= heapSimulatorTraces_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + logicalBuffers_.WriteTo(output, _repeated_logicalBuffers_codec); + bufferAliases_.WriteTo(output, _repeated_bufferAliases_codec); + bufferAllocations_.WriteTo(output, _repeated_bufferAllocations_codec); + heapSimulatorTraces_.WriteTo(output, _repeated_heapSimulatorTraces_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + logicalBuffers_.WriteTo(ref output, _repeated_logicalBuffers_codec); + bufferAliases_.WriteTo(ref output, _repeated_bufferAliases_codec); + bufferAllocations_.WriteTo(ref output, _repeated_bufferAllocations_codec); + heapSimulatorTraces_.WriteTo(ref output, _repeated_heapSimulatorTraces_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += logicalBuffers_.CalculateSize(_repeated_logicalBuffers_codec); + size += bufferAliases_.CalculateSize(_repeated_bufferAliases_codec); + size += bufferAllocations_.CalculateSize(_repeated_bufferAllocations_codec); + size += heapSimulatorTraces_.CalculateSize(_repeated_heapSimulatorTraces_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(BufferAssignmentProto other) { + if (other == null) { + return; + } + logicalBuffers_.Add(other.logicalBuffers_); + bufferAliases_.Add(other.bufferAliases_); + bufferAllocations_.Add(other.bufferAllocations_); + heapSimulatorTraces_.Add(other.heapSimulatorTraces_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + logicalBuffers_.AddEntriesFrom(input, _repeated_logicalBuffers_codec); + break; + } + case 18: { + bufferAliases_.AddEntriesFrom(input, _repeated_bufferAliases_codec); + break; + } + case 26: { + bufferAllocations_.AddEntriesFrom(input, _repeated_bufferAllocations_codec); + break; + } + case 34: { + heapSimulatorTraces_.AddEntriesFrom(input, _repeated_heapSimulatorTraces_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + logicalBuffers_.AddEntriesFrom(ref input, _repeated_logicalBuffers_codec); + break; + } + case 18: { + bufferAliases_.AddEntriesFrom(ref input, _repeated_bufferAliases_codec); + break; + } + case 26: { + bufferAllocations_.AddEntriesFrom(ref input, _repeated_bufferAllocations_codec); + break; + } + case 34: { + heapSimulatorTraces_.AddEntriesFrom(ref input, _repeated_heapSimulatorTraces_codec); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the BufferAssignmentProto message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Alias represents a source LogicalBuffer, and the buffer location that + /// aliases it. + /// + public sealed partial class BufferAlias : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new BufferAlias()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.BufferAssignmentProto.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferAlias() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferAlias(BufferAlias other) : this() { + sourceBufferId_ = other.sourceBufferId_; + location_ = other.location_ != null ? other.location_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferAlias Clone() { + return new BufferAlias(this); + } + + /// Field number for the "source_buffer_id" field. + public const int SourceBufferIdFieldNumber = 1; + private long sourceBufferId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long SourceBufferId { + get { return sourceBufferId_; } + set { + sourceBufferId_ = value; + } + } + + /// Field number for the "location" field. + public const int LocationFieldNumber = 2; + private global::Xla.LogicalBufferProto.Types.Location location_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LogicalBufferProto.Types.Location Location { + get { return location_; } + set { + location_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as BufferAlias); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(BufferAlias other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (SourceBufferId != other.SourceBufferId) return false; + if (!object.Equals(Location, other.Location)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (SourceBufferId != 0L) hash ^= SourceBufferId.GetHashCode(); + if (location_ != null) hash ^= Location.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (SourceBufferId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(SourceBufferId); + } + if (location_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Location); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SourceBufferId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(SourceBufferId); + } + if (location_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Location); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (SourceBufferId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(SourceBufferId); + } + if (location_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Location); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(BufferAlias other) { + if (other == null) { + return; + } + if (other.SourceBufferId != 0L) { + SourceBufferId = other.SourceBufferId; + } + if (other.location_ != null) { + if (location_ == null) { + Location = new global::Xla.LogicalBufferProto.Types.Location(); + } + Location.MergeFrom(other.Location); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + SourceBufferId = input.ReadInt64(); + break; + } + case 18: { + if (location_ == null) { + Location = new global::Xla.LogicalBufferProto.Types.Location(); + } + input.ReadMessage(Location); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + SourceBufferId = input.ReadInt64(); + break; + } + case 18: { + if (location_ == null) { + Location = new global::Xla.LogicalBufferProto.Types.Location(); + } + input.ReadMessage(Location); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// Grouping message that contains all of the information above. + /// + public sealed partial class HloProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[12]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloProto(HloProto other) : this() { + hloModule_ = other.hloModule_ != null ? other.hloModule_.Clone() : null; + bufferAssignment_ = other.bufferAssignment_ != null ? other.bufferAssignment_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloProto Clone() { + return new HloProto(this); + } + + /// Field number for the "hlo_module" field. + public const int HloModuleFieldNumber = 1; + private global::Xla.HloModuleProto hloModule_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloModuleProto HloModule { + get { return hloModule_; } + set { + hloModule_ = value; + } + } + + /// Field number for the "buffer_assignment" field. + public const int BufferAssignmentFieldNumber = 3; + private global::Xla.BufferAssignmentProto bufferAssignment_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.BufferAssignmentProto BufferAssignment { + get { return bufferAssignment_; } + set { + bufferAssignment_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(HloModule, other.HloModule)) return false; + if (!object.Equals(BufferAssignment, other.BufferAssignment)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (hloModule_ != null) hash ^= HloModule.GetHashCode(); + if (bufferAssignment_ != null) hash ^= BufferAssignment.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (hloModule_ != null) { + output.WriteRawTag(10); + output.WriteMessage(HloModule); + } + if (bufferAssignment_ != null) { + output.WriteRawTag(26); + output.WriteMessage(BufferAssignment); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (hloModule_ != null) { + output.WriteRawTag(10); + output.WriteMessage(HloModule); + } + if (bufferAssignment_ != null) { + output.WriteRawTag(26); + output.WriteMessage(BufferAssignment); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (hloModule_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(HloModule); + } + if (bufferAssignment_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(BufferAssignment); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloProto other) { + if (other == null) { + return; + } + if (other.hloModule_ != null) { + if (hloModule_ == null) { + HloModule = new global::Xla.HloModuleProto(); + } + HloModule.MergeFrom(other.HloModule); + } + if (other.bufferAssignment_ != null) { + if (bufferAssignment_ == null) { + BufferAssignment = new global::Xla.BufferAssignmentProto(); + } + BufferAssignment.MergeFrom(other.BufferAssignment); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (hloModule_ == null) { + HloModule = new global::Xla.HloModuleProto(); + } + input.ReadMessage(HloModule); + break; + } + case 26: { + if (bufferAssignment_ == null) { + BufferAssignment = new global::Xla.BufferAssignmentProto(); + } + input.ReadMessage(BufferAssignment); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (hloModule_ == null) { + HloModule = new global::Xla.HloModuleProto(); + } + input.ReadMessage(HloModule); + break; + } + case 26: { + if (bufferAssignment_ == null) { + BufferAssignment = new global::Xla.BufferAssignmentProto(); + } + input.ReadMessage(BufferAssignment); + break; + } + } + } + } + #endif + + } + + /// + /// Encapsulates HloProto together with the arguments, result, and + /// execution_platform. This message is used for purposes such as + /// analysis/replay/file-storage. + /// + public sealed partial class HloSnapshot : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloSnapshot()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[13]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloSnapshot() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloSnapshot(HloSnapshot other) : this() { + hlo_ = other.hlo_ != null ? other.hlo_.Clone() : null; + arguments_ = other.arguments_.Clone(); + result_ = other.result_ != null ? other.result_.Clone() : null; + executionPlatform_ = other.executionPlatform_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloSnapshot Clone() { + return new HloSnapshot(this); + } + + /// Field number for the "hlo" field. + public const int HloFieldNumber = 1; + private global::Xla.HloProto hlo_; + /// + /// The hlo graph. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloProto Hlo { + get { return hlo_; } + set { + hlo_ = value; + } + } + + /// Field number for the "arguments" field. + public const int ArgumentsFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_arguments_codec + = pb::FieldCodec.ForMessage(18, global::Xla.LiteralProto.Parser); + private readonly pbc::RepeatedField arguments_ = new pbc::RepeatedField(); + /// + /// The arguments passed to the graph. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Arguments { + get { return arguments_; } + } + + /// Field number for the "result" field. + public const int ResultFieldNumber = 3; + private global::Xla.LiteralProto result_; + /// + /// The result of the graph. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LiteralProto Result { + get { return result_; } + set { + result_ = value; + } + } + + /// Field number for the "execution_platform" field. + public const int ExecutionPlatformFieldNumber = 4; + private string executionPlatform_ = ""; + /// + /// The name of the platform used to run the graph. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ExecutionPlatform { + get { return executionPlatform_; } + set { + executionPlatform_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloSnapshot); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloSnapshot other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Hlo, other.Hlo)) return false; + if(!arguments_.Equals(other.arguments_)) return false; + if (!object.Equals(Result, other.Result)) return false; + if (ExecutionPlatform != other.ExecutionPlatform) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (hlo_ != null) hash ^= Hlo.GetHashCode(); + hash ^= arguments_.GetHashCode(); + if (result_ != null) hash ^= Result.GetHashCode(); + if (ExecutionPlatform.Length != 0) hash ^= ExecutionPlatform.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (hlo_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Hlo); + } + arguments_.WriteTo(output, _repeated_arguments_codec); + if (result_ != null) { + output.WriteRawTag(26); + output.WriteMessage(Result); + } + if (ExecutionPlatform.Length != 0) { + output.WriteRawTag(34); + output.WriteString(ExecutionPlatform); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (hlo_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Hlo); + } + arguments_.WriteTo(ref output, _repeated_arguments_codec); + if (result_ != null) { + output.WriteRawTag(26); + output.WriteMessage(Result); + } + if (ExecutionPlatform.Length != 0) { + output.WriteRawTag(34); + output.WriteString(ExecutionPlatform); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (hlo_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Hlo); + } + size += arguments_.CalculateSize(_repeated_arguments_codec); + if (result_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Result); + } + if (ExecutionPlatform.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ExecutionPlatform); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloSnapshot other) { + if (other == null) { + return; + } + if (other.hlo_ != null) { + if (hlo_ == null) { + Hlo = new global::Xla.HloProto(); + } + Hlo.MergeFrom(other.Hlo); + } + arguments_.Add(other.arguments_); + if (other.result_ != null) { + if (result_ == null) { + Result = new global::Xla.LiteralProto(); + } + Result.MergeFrom(other.Result); + } + if (other.ExecutionPlatform.Length != 0) { + ExecutionPlatform = other.ExecutionPlatform; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (hlo_ == null) { + Hlo = new global::Xla.HloProto(); + } + input.ReadMessage(Hlo); + break; + } + case 18: { + arguments_.AddEntriesFrom(input, _repeated_arguments_codec); + break; + } + case 26: { + if (result_ == null) { + Result = new global::Xla.LiteralProto(); + } + input.ReadMessage(Result); + break; + } + case 34: { + ExecutionPlatform = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (hlo_ == null) { + Hlo = new global::Xla.HloProto(); + } + input.ReadMessage(Hlo); + break; + } + case 18: { + arguments_.AddEntriesFrom(ref input, _repeated_arguments_codec); + break; + } + case 26: { + if (result_ == null) { + Result = new global::Xla.LiteralProto(); + } + input.ReadMessage(Result); + break; + } + case 34: { + ExecutionPlatform = input.ReadString(); + break; + } + } + } + } + #endif + + } + + /// + /// Metadata for an HLO module. Dumped after HLO passes and before LLO lowering + /// with filename module_####.metadata.textproto, where #### is + /// canonical_module_id. + /// + public sealed partial class HloModuleMetadataProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloModuleMetadataProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[14]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloModuleMetadataProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloModuleMetadataProto(HloModuleMetadataProto other) : this() { + canonicalModuleId_ = other.canonicalModuleId_; + moduleGroupName_ = other.moduleGroupName_; + originalModuleId_ = other.originalModuleId_; + partitionedModuleIds_ = other.partitionedModuleIds_.Clone(); + passMetadata_ = other.passMetadata_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloModuleMetadataProto Clone() { + return new HloModuleMetadataProto(this); + } + + /// Field number for the "canonical_module_id" field. + public const int CanonicalModuleIdFieldNumber = 1; + private long canonicalModuleId_; + /// + /// Uniquely identifies an HloModuleMetadata. Equal to the first unique_id + /// of the module (a module may go through multiple unique_ids). If a module + /// is partitioned into multiple modules, those modules will each have a new + /// HloModuleMetadata with a different canonical_module_id. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long CanonicalModuleId { + get { return canonicalModuleId_; } + set { + canonicalModuleId_ = value; + } + } + + /// Field number for the "module_group_name" field. + public const int ModuleGroupNameFieldNumber = 2; + private string moduleGroupName_ = ""; + /// + /// Name of the module group that the module is part of. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ModuleGroupName { + get { return moduleGroupName_; } + set { + moduleGroupName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "original_module_id" field. + public const int OriginalModuleIdFieldNumber = 3; + private long originalModuleId_; + /// + /// The canonical module id of the module that this one is partitioned from, + /// if applicable. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long OriginalModuleId { + get { return originalModuleId_; } + set { + originalModuleId_ = value; + } + } + + /// Field number for the "partitioned_module_ids" field. + public const int PartitionedModuleIdsFieldNumber = 4; + private static readonly pb::FieldCodec _repeated_partitionedModuleIds_codec + = pb::FieldCodec.ForInt64(34); + private readonly pbc::RepeatedField partitionedModuleIds_ = new pbc::RepeatedField(); + /// + /// The canonical module ids of the modules that this one is partitioned into, + /// if applicable. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField PartitionedModuleIds { + get { return partitionedModuleIds_; } + } + + /// Field number for the "pass_metadata" field. + public const int PassMetadataFieldNumber = 5; + private static readonly pb::FieldCodec _repeated_passMetadata_codec + = pb::FieldCodec.ForMessage(42, global::Xla.HloPassMetadata.Parser); + private readonly pbc::RepeatedField passMetadata_ = new pbc::RepeatedField(); + /// + /// Metadata for the HLO passes that are run on the module. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField PassMetadata { + get { return passMetadata_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloModuleMetadataProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloModuleMetadataProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (CanonicalModuleId != other.CanonicalModuleId) return false; + if (ModuleGroupName != other.ModuleGroupName) return false; + if (OriginalModuleId != other.OriginalModuleId) return false; + if(!partitionedModuleIds_.Equals(other.partitionedModuleIds_)) return false; + if(!passMetadata_.Equals(other.passMetadata_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (CanonicalModuleId != 0L) hash ^= CanonicalModuleId.GetHashCode(); + if (ModuleGroupName.Length != 0) hash ^= ModuleGroupName.GetHashCode(); + if (OriginalModuleId != 0L) hash ^= OriginalModuleId.GetHashCode(); + hash ^= partitionedModuleIds_.GetHashCode(); + hash ^= passMetadata_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (CanonicalModuleId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(CanonicalModuleId); + } + if (ModuleGroupName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ModuleGroupName); + } + if (OriginalModuleId != 0L) { + output.WriteRawTag(24); + output.WriteInt64(OriginalModuleId); + } + partitionedModuleIds_.WriteTo(output, _repeated_partitionedModuleIds_codec); + passMetadata_.WriteTo(output, _repeated_passMetadata_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (CanonicalModuleId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(CanonicalModuleId); + } + if (ModuleGroupName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ModuleGroupName); + } + if (OriginalModuleId != 0L) { + output.WriteRawTag(24); + output.WriteInt64(OriginalModuleId); + } + partitionedModuleIds_.WriteTo(ref output, _repeated_partitionedModuleIds_codec); + passMetadata_.WriteTo(ref output, _repeated_passMetadata_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (CanonicalModuleId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(CanonicalModuleId); + } + if (ModuleGroupName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ModuleGroupName); + } + if (OriginalModuleId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(OriginalModuleId); + } + size += partitionedModuleIds_.CalculateSize(_repeated_partitionedModuleIds_codec); + size += passMetadata_.CalculateSize(_repeated_passMetadata_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloModuleMetadataProto other) { + if (other == null) { + return; + } + if (other.CanonicalModuleId != 0L) { + CanonicalModuleId = other.CanonicalModuleId; + } + if (other.ModuleGroupName.Length != 0) { + ModuleGroupName = other.ModuleGroupName; + } + if (other.OriginalModuleId != 0L) { + OriginalModuleId = other.OriginalModuleId; + } + partitionedModuleIds_.Add(other.partitionedModuleIds_); + passMetadata_.Add(other.passMetadata_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + CanonicalModuleId = input.ReadInt64(); + break; + } + case 18: { + ModuleGroupName = input.ReadString(); + break; + } + case 24: { + OriginalModuleId = input.ReadInt64(); + break; + } + case 34: + case 32: { + partitionedModuleIds_.AddEntriesFrom(input, _repeated_partitionedModuleIds_codec); + break; + } + case 42: { + passMetadata_.AddEntriesFrom(input, _repeated_passMetadata_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + CanonicalModuleId = input.ReadInt64(); + break; + } + case 18: { + ModuleGroupName = input.ReadString(); + break; + } + case 24: { + OriginalModuleId = input.ReadInt64(); + break; + } + case 34: + case 32: { + partitionedModuleIds_.AddEntriesFrom(ref input, _repeated_partitionedModuleIds_codec); + break; + } + case 42: { + passMetadata_.AddEntriesFrom(ref input, _repeated_passMetadata_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Metadata for one run of an HLO pass on a module. Provides more information + /// when processing debug dumps of HloProtos about the order of HLO passes and + /// various other stats like duration. `pass_id` may also be used to identify a + /// particular run of a pass in debug info that propagates through stages of + /// compilation. + /// + public sealed partial class HloPassMetadata : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HloPassMetadata()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[15]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloPassMetadata() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloPassMetadata(HloPassMetadata other) : this() { + passId_ = other.passId_; + passName_ = other.passName_; + pipelineName_ = other.pipelineName_; + dumpFilenames_ = other.dumpFilenames_.Clone(); + moduleChanged_ = other.moduleChanged_; + moduleId_ = other.moduleId_; + moduleGroupModuleIds_ = other.moduleGroupModuleIds_.Clone(); + startTimestampUsec_ = other.startTimestampUsec_; + endTimestampUsec_ = other.endTimestampUsec_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HloPassMetadata Clone() { + return new HloPassMetadata(this); + } + + /// Field number for the "pass_id" field. + public const int PassIdFieldNumber = 1; + private long passId_; + /// + /// For a given module, pass_id uniquely identifies a run of an HLO pass on + /// that module. Note that a pass_id may not always refer to the same pass + /// because the order of passes during compilation may change. For finding + /// metadata for a particular pass, pass_name and pipeline_name would be more + /// reliable, although note that they may not be unique. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long PassId { + get { return passId_; } + set { + passId_ = value; + } + } + + /// Field number for the "pass_name" field. + public const int PassNameFieldNumber = 2; + private string passName_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string PassName { + get { return passName_; } + set { + passName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "pipeline_name" field. + public const int PipelineNameFieldNumber = 3; + private string pipelineName_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string PipelineName { + get { return pipelineName_; } + set { + pipelineName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "dump_filenames" field. + public const int DumpFilenamesFieldNumber = 4; + private static readonly pb::FieldCodec _repeated_dumpFilenames_codec + = pb::FieldCodec.ForString(34); + private readonly pbc::RepeatedField dumpFilenames_ = new pbc::RepeatedField(); + /// + /// Filenames of the dumps of the module after this pass ran. Module may be + /// dumped in multiple formats, and the order of formats in this field will + /// stay consistent across passes. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField DumpFilenames { + get { return dumpFilenames_; } + } + + /// Field number for the "module_changed" field. + public const int ModuleChangedFieldNumber = 5; + private bool moduleChanged_; + /// + /// Return value of pass.Run(). True if this pass changed the module, or, in + /// the case where the module was run through this pass as part of a module + /// group, true if this pass changed any module in the same module group. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool ModuleChanged { + get { return moduleChanged_; } + set { + moduleChanged_ = value; + } + } + + /// Field number for the "module_id" field. + public const int ModuleIdFieldNumber = 6; + private long moduleId_; + /// + /// The unique_id of the module that this pass is run on. May be different from + /// the canonical_module_id of the HloModuleMetadata that this HloPassMetadata + /// is inside. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ModuleId { + get { return moduleId_; } + set { + moduleId_ = value; + } + } + + /// Field number for the "module_group_module_ids" field. + public const int ModuleGroupModuleIdsFieldNumber = 7; + private static readonly pb::FieldCodec _repeated_moduleGroupModuleIds_codec + = pb::FieldCodec.ForInt64(58); + private readonly pbc::RepeatedField moduleGroupModuleIds_ = new pbc::RepeatedField(); + /// + /// If the module went through this pass as part of a module group, this is + /// set as the ids of all the modules in the module group. Empty otherwise. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ModuleGroupModuleIds { + get { return moduleGroupModuleIds_; } + } + + /// Field number for the "start_timestamp_usec" field. + public const int StartTimestampUsecFieldNumber = 8; + private long startTimestampUsec_; + /// + /// Timestamp before and after the pass is run. Note they may be equal. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long StartTimestampUsec { + get { return startTimestampUsec_; } + set { + startTimestampUsec_ = value; + } + } + + /// Field number for the "end_timestamp_usec" field. + public const int EndTimestampUsecFieldNumber = 9; + private long endTimestampUsec_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long EndTimestampUsec { + get { return endTimestampUsec_; } + set { + endTimestampUsec_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HloPassMetadata); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HloPassMetadata other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (PassId != other.PassId) return false; + if (PassName != other.PassName) return false; + if (PipelineName != other.PipelineName) return false; + if(!dumpFilenames_.Equals(other.dumpFilenames_)) return false; + if (ModuleChanged != other.ModuleChanged) return false; + if (ModuleId != other.ModuleId) return false; + if(!moduleGroupModuleIds_.Equals(other.moduleGroupModuleIds_)) return false; + if (StartTimestampUsec != other.StartTimestampUsec) return false; + if (EndTimestampUsec != other.EndTimestampUsec) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (PassId != 0L) hash ^= PassId.GetHashCode(); + if (PassName.Length != 0) hash ^= PassName.GetHashCode(); + if (PipelineName.Length != 0) hash ^= PipelineName.GetHashCode(); + hash ^= dumpFilenames_.GetHashCode(); + if (ModuleChanged != false) hash ^= ModuleChanged.GetHashCode(); + if (ModuleId != 0L) hash ^= ModuleId.GetHashCode(); + hash ^= moduleGroupModuleIds_.GetHashCode(); + if (StartTimestampUsec != 0L) hash ^= StartTimestampUsec.GetHashCode(); + if (EndTimestampUsec != 0L) hash ^= EndTimestampUsec.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (PassId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(PassId); + } + if (PassName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(PassName); + } + if (PipelineName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(PipelineName); + } + dumpFilenames_.WriteTo(output, _repeated_dumpFilenames_codec); + if (ModuleChanged != false) { + output.WriteRawTag(40); + output.WriteBool(ModuleChanged); + } + if (ModuleId != 0L) { + output.WriteRawTag(48); + output.WriteInt64(ModuleId); + } + moduleGroupModuleIds_.WriteTo(output, _repeated_moduleGroupModuleIds_codec); + if (StartTimestampUsec != 0L) { + output.WriteRawTag(64); + output.WriteInt64(StartTimestampUsec); + } + if (EndTimestampUsec != 0L) { + output.WriteRawTag(72); + output.WriteInt64(EndTimestampUsec); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (PassId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(PassId); + } + if (PassName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(PassName); + } + if (PipelineName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(PipelineName); + } + dumpFilenames_.WriteTo(ref output, _repeated_dumpFilenames_codec); + if (ModuleChanged != false) { + output.WriteRawTag(40); + output.WriteBool(ModuleChanged); + } + if (ModuleId != 0L) { + output.WriteRawTag(48); + output.WriteInt64(ModuleId); + } + moduleGroupModuleIds_.WriteTo(ref output, _repeated_moduleGroupModuleIds_codec); + if (StartTimestampUsec != 0L) { + output.WriteRawTag(64); + output.WriteInt64(StartTimestampUsec); + } + if (EndTimestampUsec != 0L) { + output.WriteRawTag(72); + output.WriteInt64(EndTimestampUsec); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (PassId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(PassId); + } + if (PassName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(PassName); + } + if (PipelineName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(PipelineName); + } + size += dumpFilenames_.CalculateSize(_repeated_dumpFilenames_codec); + if (ModuleChanged != false) { + size += 1 + 1; + } + if (ModuleId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ModuleId); + } + size += moduleGroupModuleIds_.CalculateSize(_repeated_moduleGroupModuleIds_codec); + if (StartTimestampUsec != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(StartTimestampUsec); + } + if (EndTimestampUsec != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(EndTimestampUsec); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HloPassMetadata other) { + if (other == null) { + return; + } + if (other.PassId != 0L) { + PassId = other.PassId; + } + if (other.PassName.Length != 0) { + PassName = other.PassName; + } + if (other.PipelineName.Length != 0) { + PipelineName = other.PipelineName; + } + dumpFilenames_.Add(other.dumpFilenames_); + if (other.ModuleChanged != false) { + ModuleChanged = other.ModuleChanged; + } + if (other.ModuleId != 0L) { + ModuleId = other.ModuleId; + } + moduleGroupModuleIds_.Add(other.moduleGroupModuleIds_); + if (other.StartTimestampUsec != 0L) { + StartTimestampUsec = other.StartTimestampUsec; + } + if (other.EndTimestampUsec != 0L) { + EndTimestampUsec = other.EndTimestampUsec; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + PassId = input.ReadInt64(); + break; + } + case 18: { + PassName = input.ReadString(); + break; + } + case 26: { + PipelineName = input.ReadString(); + break; + } + case 34: { + dumpFilenames_.AddEntriesFrom(input, _repeated_dumpFilenames_codec); + break; + } + case 40: { + ModuleChanged = input.ReadBool(); + break; + } + case 48: { + ModuleId = input.ReadInt64(); + break; + } + case 58: + case 56: { + moduleGroupModuleIds_.AddEntriesFrom(input, _repeated_moduleGroupModuleIds_codec); + break; + } + case 64: { + StartTimestampUsec = input.ReadInt64(); + break; + } + case 72: { + EndTimestampUsec = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + PassId = input.ReadInt64(); + break; + } + case 18: { + PassName = input.ReadString(); + break; + } + case 26: { + PipelineName = input.ReadString(); + break; + } + case 34: { + dumpFilenames_.AddEntriesFrom(ref input, _repeated_dumpFilenames_codec); + break; + } + case 40: { + ModuleChanged = input.ReadBool(); + break; + } + case 48: { + ModuleId = input.ReadInt64(); + break; + } + case 58: + case 56: { + moduleGroupModuleIds_.AddEntriesFrom(ref input, _repeated_moduleGroupModuleIds_codec); + break; + } + case 64: { + StartTimestampUsec = input.ReadInt64(); + break; + } + case 72: { + EndTimestampUsec = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + /// + /// Encodes attributes for an entry function. + /// + public sealed partial class EntryFunctionAttributes : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new EntryFunctionAttributes()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[16]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public EntryFunctionAttributes() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public EntryFunctionAttributes(EntryFunctionAttributes other) : this() { + buffers_ = other.buffers_.Clone(); + resultXlaShape_ = other.resultXlaShape_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public EntryFunctionAttributes Clone() { + return new EntryFunctionAttributes(this); + } + + /// Field number for the "buffers" field. + public const int BuffersFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_buffers_codec + = pb::FieldCodec.ForMessage(10, global::Xla.EntryFunctionAttributes.Types.BufferParameterAttributes.Parser); + private readonly pbc::RepeatedField buffers_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Buffers { + get { return buffers_; } + } + + /// Field number for the "result_xla_shape" field. + public const int ResultXlaShapeFieldNumber = 2; + private string resultXlaShape_ = ""; + /// + /// xla::Shape in string format. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ResultXlaShape { + get { return resultXlaShape_; } + set { + resultXlaShape_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as EntryFunctionAttributes); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(EntryFunctionAttributes other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!buffers_.Equals(other.buffers_)) return false; + if (ResultXlaShape != other.ResultXlaShape) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= buffers_.GetHashCode(); + if (ResultXlaShape.Length != 0) hash ^= ResultXlaShape.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + buffers_.WriteTo(output, _repeated_buffers_codec); + if (ResultXlaShape.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ResultXlaShape); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + buffers_.WriteTo(ref output, _repeated_buffers_codec); + if (ResultXlaShape.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ResultXlaShape); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += buffers_.CalculateSize(_repeated_buffers_codec); + if (ResultXlaShape.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ResultXlaShape); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(EntryFunctionAttributes other) { + if (other == null) { + return; + } + buffers_.Add(other.buffers_); + if (other.ResultXlaShape.Length != 0) { + ResultXlaShape = other.ResultXlaShape; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + buffers_.AddEntriesFrom(input, _repeated_buffers_codec); + break; + } + case 18: { + ResultXlaShape = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + buffers_.AddEntriesFrom(ref input, _repeated_buffers_codec); + break; + } + case 18: { + ResultXlaShape = input.ReadString(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the EntryFunctionAttributes message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Acts as the underlying container for an xla::ShapeIndex. + /// + public sealed partial class ShapeIndex : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ShapeIndex()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.EntryFunctionAttributes.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShapeIndex() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShapeIndex(ShapeIndex other) : this() { + indices_ = other.indices_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShapeIndex Clone() { + return new ShapeIndex(this); + } + + /// Field number for the "indices" field. + public const int IndicesFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_indices_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField indices_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Indices { + get { return indices_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ShapeIndex); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ShapeIndex other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!indices_.Equals(other.indices_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= indices_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + indices_.WriteTo(output, _repeated_indices_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + indices_.WriteTo(ref output, _repeated_indices_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += indices_.CalculateSize(_repeated_indices_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ShapeIndex other) { + if (other == null) { + return; + } + indices_.Add(other.indices_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + indices_.AddEntriesFrom(input, _repeated_indices_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + indices_.AddEntriesFrom(ref input, _repeated_indices_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Encodes attributes for a single buffer parameter. + /// + public sealed partial class BufferParameterAttributes : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new BufferParameterAttributes()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.EntryFunctionAttributes.Descriptor.NestedTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferParameterAttributes() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferParameterAttributes(BufferParameterAttributes other) : this() { + lmhloParams_ = other.lmhloParams_; + lmhloParamsPresent_ = other.lmhloParamsPresent_; + lmhloParamShapeIndex_ = other.lmhloParamShapeIndex_ != null ? other.lmhloParamShapeIndex_.Clone() : null; + lmhloConstantName_ = other.lmhloConstantName_; + lmhloMustAlias_ = other.lmhloMustAlias_; + lmhloOutputIndex_ = other.lmhloOutputIndex_ != null ? other.lmhloOutputIndex_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public BufferParameterAttributes Clone() { + return new BufferParameterAttributes(this); + } + + /// Field number for the "lmhlo_params" field. + public const int LmhloParamsFieldNumber = 1; + private long lmhloParams_; + /// + /// Represents an lmhlo.params function argument attribute. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long LmhloParams { + get { return lmhloParams_; } + set { + lmhloParams_ = value; + } + } + + /// Field number for the "lmhlo_params_present" field. + public const int LmhloParamsPresentFieldNumber = 6; + private bool lmhloParamsPresent_; + /// + /// TODO(hanbinyoon): Deprecate when optional fields are available in proto3 + /// (Protocol Buffers v3.15.0). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool LmhloParamsPresent { + get { return lmhloParamsPresent_; } + set { + lmhloParamsPresent_ = value; + } + } + + /// Field number for the "lmhlo_param_shape_index" field. + public const int LmhloParamShapeIndexFieldNumber = 2; + private global::Xla.EntryFunctionAttributes.Types.ShapeIndex lmhloParamShapeIndex_; + /// + /// Represents an lmhlo.param_shape_index function argument attribute. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.EntryFunctionAttributes.Types.ShapeIndex LmhloParamShapeIndex { + get { return lmhloParamShapeIndex_; } + set { + lmhloParamShapeIndex_ = value; + } + } + + /// Field number for the "lmhlo_constant_name" field. + public const int LmhloConstantNameFieldNumber = 3; + private string lmhloConstantName_ = ""; + /// + /// Represents an lmhlo.constant_name function argument attribute. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string LmhloConstantName { + get { return lmhloConstantName_; } + set { + lmhloConstantName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "lmhlo_must_alias" field. + public const int LmhloMustAliasFieldNumber = 4; + private bool lmhloMustAlias_; + /// + /// Represents an lmhlo.must_alias function argument attribute. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool LmhloMustAlias { + get { return lmhloMustAlias_; } + set { + lmhloMustAlias_ = value; + } + } + + /// Field number for the "lmhlo_output_index" field. + public const int LmhloOutputIndexFieldNumber = 5; + private global::Xla.EntryFunctionAttributes.Types.ShapeIndex lmhloOutputIndex_; + /// + /// Represents an lmhlo.params function argument attribute. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.EntryFunctionAttributes.Types.ShapeIndex LmhloOutputIndex { + get { return lmhloOutputIndex_; } + set { + lmhloOutputIndex_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as BufferParameterAttributes); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(BufferParameterAttributes other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (LmhloParams != other.LmhloParams) return false; + if (LmhloParamsPresent != other.LmhloParamsPresent) return false; + if (!object.Equals(LmhloParamShapeIndex, other.LmhloParamShapeIndex)) return false; + if (LmhloConstantName != other.LmhloConstantName) return false; + if (LmhloMustAlias != other.LmhloMustAlias) return false; + if (!object.Equals(LmhloOutputIndex, other.LmhloOutputIndex)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (LmhloParams != 0L) hash ^= LmhloParams.GetHashCode(); + if (LmhloParamsPresent != false) hash ^= LmhloParamsPresent.GetHashCode(); + if (lmhloParamShapeIndex_ != null) hash ^= LmhloParamShapeIndex.GetHashCode(); + if (LmhloConstantName.Length != 0) hash ^= LmhloConstantName.GetHashCode(); + if (LmhloMustAlias != false) hash ^= LmhloMustAlias.GetHashCode(); + if (lmhloOutputIndex_ != null) hash ^= LmhloOutputIndex.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (LmhloParams != 0L) { + output.WriteRawTag(8); + output.WriteInt64(LmhloParams); + } + if (lmhloParamShapeIndex_ != null) { + output.WriteRawTag(18); + output.WriteMessage(LmhloParamShapeIndex); + } + if (LmhloConstantName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(LmhloConstantName); + } + if (LmhloMustAlias != false) { + output.WriteRawTag(32); + output.WriteBool(LmhloMustAlias); + } + if (lmhloOutputIndex_ != null) { + output.WriteRawTag(42); + output.WriteMessage(LmhloOutputIndex); + } + if (LmhloParamsPresent != false) { + output.WriteRawTag(48); + output.WriteBool(LmhloParamsPresent); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (LmhloParams != 0L) { + output.WriteRawTag(8); + output.WriteInt64(LmhloParams); + } + if (lmhloParamShapeIndex_ != null) { + output.WriteRawTag(18); + output.WriteMessage(LmhloParamShapeIndex); + } + if (LmhloConstantName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(LmhloConstantName); + } + if (LmhloMustAlias != false) { + output.WriteRawTag(32); + output.WriteBool(LmhloMustAlias); + } + if (lmhloOutputIndex_ != null) { + output.WriteRawTag(42); + output.WriteMessage(LmhloOutputIndex); + } + if (LmhloParamsPresent != false) { + output.WriteRawTag(48); + output.WriteBool(LmhloParamsPresent); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (LmhloParams != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(LmhloParams); + } + if (LmhloParamsPresent != false) { + size += 1 + 1; + } + if (lmhloParamShapeIndex_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(LmhloParamShapeIndex); + } + if (LmhloConstantName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(LmhloConstantName); + } + if (LmhloMustAlias != false) { + size += 1 + 1; + } + if (lmhloOutputIndex_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(LmhloOutputIndex); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(BufferParameterAttributes other) { + if (other == null) { + return; + } + if (other.LmhloParams != 0L) { + LmhloParams = other.LmhloParams; + } + if (other.LmhloParamsPresent != false) { + LmhloParamsPresent = other.LmhloParamsPresent; + } + if (other.lmhloParamShapeIndex_ != null) { + if (lmhloParamShapeIndex_ == null) { + LmhloParamShapeIndex = new global::Xla.EntryFunctionAttributes.Types.ShapeIndex(); + } + LmhloParamShapeIndex.MergeFrom(other.LmhloParamShapeIndex); + } + if (other.LmhloConstantName.Length != 0) { + LmhloConstantName = other.LmhloConstantName; + } + if (other.LmhloMustAlias != false) { + LmhloMustAlias = other.LmhloMustAlias; + } + if (other.lmhloOutputIndex_ != null) { + if (lmhloOutputIndex_ == null) { + LmhloOutputIndex = new global::Xla.EntryFunctionAttributes.Types.ShapeIndex(); + } + LmhloOutputIndex.MergeFrom(other.LmhloOutputIndex); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + LmhloParams = input.ReadInt64(); + break; + } + case 18: { + if (lmhloParamShapeIndex_ == null) { + LmhloParamShapeIndex = new global::Xla.EntryFunctionAttributes.Types.ShapeIndex(); + } + input.ReadMessage(LmhloParamShapeIndex); + break; + } + case 26: { + LmhloConstantName = input.ReadString(); + break; + } + case 32: { + LmhloMustAlias = input.ReadBool(); + break; + } + case 42: { + if (lmhloOutputIndex_ == null) { + LmhloOutputIndex = new global::Xla.EntryFunctionAttributes.Types.ShapeIndex(); + } + input.ReadMessage(LmhloOutputIndex); + break; + } + case 48: { + LmhloParamsPresent = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + LmhloParams = input.ReadInt64(); + break; + } + case 18: { + if (lmhloParamShapeIndex_ == null) { + LmhloParamShapeIndex = new global::Xla.EntryFunctionAttributes.Types.ShapeIndex(); + } + input.ReadMessage(LmhloParamShapeIndex); + break; + } + case 26: { + LmhloConstantName = input.ReadString(); + break; + } + case 32: { + LmhloMustAlias = input.ReadBool(); + break; + } + case 42: { + if (lmhloOutputIndex_ == null) { + LmhloOutputIndex = new global::Xla.EntryFunctionAttributes.Types.ShapeIndex(); + } + input.ReadMessage(LmhloOutputIndex); + break; + } + case 48: { + LmhloParamsPresent = input.ReadBool(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// Encodes the underlying Xla runtime executable compiled from the XLA module. + /// + public sealed partial class XlaRuntimeExecutableProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new XlaRuntimeExecutableProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.HloReflection.Descriptor.MessageTypes[17]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaRuntimeExecutableProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaRuntimeExecutableProto(XlaRuntimeExecutableProto other) : this() { + hloModuleProto_ = other.hloModuleProto_ != null ? other.hloModuleProto_.Clone() : null; + entryFuncAttrs_ = other.entryFuncAttrs_ != null ? other.entryFuncAttrs_.Clone() : null; + objFile_ = other.objFile_; + mlirModule_ = other.mlirModule_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaRuntimeExecutableProto Clone() { + return new XlaRuntimeExecutableProto(this); + } + + /// Field number for the "hlo_module_proto" field. + public const int HloModuleProtoFieldNumber = 1; + private global::Xla.HloModuleProto hloModuleProto_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloModuleProto HloModuleProto { + get { return hloModuleProto_; } + set { + hloModuleProto_ = value; + } + } + + /// Field number for the "entry_func_attrs" field. + public const int EntryFuncAttrsFieldNumber = 2; + private global::Xla.EntryFunctionAttributes entryFuncAttrs_; + /// + /// XLA-specific attributes of the executable's entry function. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.EntryFunctionAttributes EntryFuncAttrs { + get { return entryFuncAttrs_; } + set { + entryFuncAttrs_ = value; + } + } + + /// Field number for the "obj_file" field. + public const int ObjFileFieldNumber = 3; + private pb::ByteString objFile_ = pb::ByteString.Empty; + /// + /// Serialized object file compiled from the XLA module. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString ObjFile { + get { return objFile_; } + set { + objFile_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "mlir_module" field. + public const int MlirModuleFieldNumber = 4; + private string mlirModule_ = ""; + /// + /// Serialized MLIR module corresponding to compiled object file. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string MlirModule { + get { return mlirModule_; } + set { + mlirModule_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as XlaRuntimeExecutableProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(XlaRuntimeExecutableProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(HloModuleProto, other.HloModuleProto)) return false; + if (!object.Equals(EntryFuncAttrs, other.EntryFuncAttrs)) return false; + if (ObjFile != other.ObjFile) return false; + if (MlirModule != other.MlirModule) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (hloModuleProto_ != null) hash ^= HloModuleProto.GetHashCode(); + if (entryFuncAttrs_ != null) hash ^= EntryFuncAttrs.GetHashCode(); + if (ObjFile.Length != 0) hash ^= ObjFile.GetHashCode(); + if (MlirModule.Length != 0) hash ^= MlirModule.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (hloModuleProto_ != null) { + output.WriteRawTag(10); + output.WriteMessage(HloModuleProto); + } + if (entryFuncAttrs_ != null) { + output.WriteRawTag(18); + output.WriteMessage(EntryFuncAttrs); + } + if (ObjFile.Length != 0) { + output.WriteRawTag(26); + output.WriteBytes(ObjFile); + } + if (MlirModule.Length != 0) { + output.WriteRawTag(34); + output.WriteString(MlirModule); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (hloModuleProto_ != null) { + output.WriteRawTag(10); + output.WriteMessage(HloModuleProto); + } + if (entryFuncAttrs_ != null) { + output.WriteRawTag(18); + output.WriteMessage(EntryFuncAttrs); + } + if (ObjFile.Length != 0) { + output.WriteRawTag(26); + output.WriteBytes(ObjFile); + } + if (MlirModule.Length != 0) { + output.WriteRawTag(34); + output.WriteString(MlirModule); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (hloModuleProto_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(HloModuleProto); + } + if (entryFuncAttrs_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(EntryFuncAttrs); + } + if (ObjFile.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(ObjFile); + } + if (MlirModule.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(MlirModule); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(XlaRuntimeExecutableProto other) { + if (other == null) { + return; + } + if (other.hloModuleProto_ != null) { + if (hloModuleProto_ == null) { + HloModuleProto = new global::Xla.HloModuleProto(); + } + HloModuleProto.MergeFrom(other.HloModuleProto); + } + if (other.entryFuncAttrs_ != null) { + if (entryFuncAttrs_ == null) { + EntryFuncAttrs = new global::Xla.EntryFunctionAttributes(); + } + EntryFuncAttrs.MergeFrom(other.EntryFuncAttrs); + } + if (other.ObjFile.Length != 0) { + ObjFile = other.ObjFile; + } + if (other.MlirModule.Length != 0) { + MlirModule = other.MlirModule; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (hloModuleProto_ == null) { + HloModuleProto = new global::Xla.HloModuleProto(); + } + input.ReadMessage(HloModuleProto); + break; + } + case 18: { + if (entryFuncAttrs_ == null) { + EntryFuncAttrs = new global::Xla.EntryFunctionAttributes(); + } + input.ReadMessage(EntryFuncAttrs); + break; + } + case 26: { + ObjFile = input.ReadBytes(); + break; + } + case 34: { + MlirModule = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (hloModuleProto_ == null) { + HloModuleProto = new global::Xla.HloModuleProto(); + } + input.ReadMessage(HloModuleProto); + break; + } + case 18: { + if (entryFuncAttrs_ == null) { + EntryFuncAttrs = new global::Xla.EntryFunctionAttributes(); + } + input.ReadMessage(EntryFuncAttrs); + break; + } + case 26: { + ObjFile = input.ReadBytes(); + break; + } + case 34: { + MlirModule = input.ReadString(); + break; + } + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/KernelDef.cs b/src/TensorFlowNET.Core/Protobuf/KernelDef.cs index b5ec68825..06928ad44 100644 --- a/src/TensorFlowNET.Core/Protobuf/KernelDef.cs +++ b/src/TensorFlowNET.Core/Protobuf/KernelDef.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/kernel_def.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -47,23 +47,31 @@ static KernelDefReflection() { } #region Messages - public sealed partial class KernelDef : pb::IMessage { + public sealed partial class KernelDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new KernelDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.KernelDefReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public KernelDef() { OnConstruction(); } @@ -71,6 +79,7 @@ public KernelDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public KernelDef(KernelDef other) : this() { op_ = other.op_; deviceType_ = other.deviceType_; @@ -82,6 +91,7 @@ public KernelDef(KernelDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public KernelDef Clone() { return new KernelDef(this); } @@ -93,6 +103,7 @@ public KernelDef Clone() { /// Must match the name of an Op. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Op { get { return op_; } set { @@ -107,6 +118,7 @@ public string Op { /// Type of device this kernel runs on. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string DeviceType { get { return deviceType_; } set { @@ -120,6 +132,7 @@ public string DeviceType { = pb::FieldCodec.ForMessage(26, global::Tensorflow.KernelDef.Types.AttrConstraint.Parser); private readonly pbc::RepeatedField constraint_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Constraint { get { return constraint_; } } @@ -134,6 +147,7 @@ public string DeviceType { /// instead of device memory. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField HostMemoryArg { get { return hostMemoryArg_; } } @@ -147,6 +161,7 @@ public string DeviceType { /// value matching this. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Label { get { return label_; } set { @@ -163,6 +178,7 @@ public string Label { /// this is not set), we prefer GPU kernels over CPU. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Priority { get { return priority_; } set { @@ -171,11 +187,13 @@ public int Priority { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as KernelDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(KernelDef other) { if (ReferenceEquals(other, null)) { return false; @@ -193,6 +211,7 @@ public bool Equals(KernelDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Op.Length != 0) hash ^= Op.GetHashCode(); @@ -208,12 +227,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Op.Length != 0) { output.WriteRawTag(10); output.WriteString(Op); @@ -235,9 +259,39 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Op.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Op); + } + if (DeviceType.Length != 0) { + output.WriteRawTag(18); + output.WriteString(DeviceType); + } + constraint_.WriteTo(ref output, _repeated_constraint_codec); + hostMemoryArg_.WriteTo(ref output, _repeated_hostMemoryArg_codec); + if (Label.Length != 0) { + output.WriteRawTag(42); + output.WriteString(Label); + } + if (Priority != 0) { + output.WriteRawTag(48); + output.WriteInt32(Priority); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Op.Length != 0) { @@ -261,6 +315,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(KernelDef other) { if (other == null) { return; @@ -283,7 +338,11 @@ public void MergeFrom(KernelDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -316,29 +375,78 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Op = input.ReadString(); + break; + } + case 18: { + DeviceType = input.ReadString(); + break; + } + case 26: { + constraint_.AddEntriesFrom(ref input, _repeated_constraint_codec); + break; + } + case 34: { + hostMemoryArg_.AddEntriesFrom(ref input, _repeated_hostMemoryArg_codec); + break; + } + case 42: { + Label = input.ReadString(); + break; + } + case 48: { + Priority = input.ReadInt32(); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the KernelDef message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class AttrConstraint : pb::IMessage { + public sealed partial class AttrConstraint : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AttrConstraint()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.KernelDef.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrConstraint() { OnConstruction(); } @@ -346,6 +454,7 @@ public AttrConstraint() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrConstraint(AttrConstraint other) : this() { name_ = other.name_; allowedValues_ = other.allowedValues_ != null ? other.allowedValues_.Clone() : null; @@ -353,6 +462,7 @@ public AttrConstraint(AttrConstraint other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrConstraint Clone() { return new AttrConstraint(this); } @@ -364,6 +474,7 @@ public AttrConstraint Clone() { /// Name of an attr from the Op. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -379,6 +490,7 @@ public string Name { /// Like OpDef.AttrDef.allowed_values, except for kernels instead of Ops. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.AttrValue AllowedValues { get { return allowedValues_; } set { @@ -387,11 +499,13 @@ public string Name { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AttrConstraint); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AttrConstraint other) { if (ReferenceEquals(other, null)) { return false; @@ -405,6 +519,7 @@ public bool Equals(AttrConstraint other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -416,12 +531,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -433,9 +553,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (allowedValues_ != null) { + output.WriteRawTag(18); + output.WriteMessage(AllowedValues); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -451,6 +591,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AttrConstraint other) { if (other == null) { return; @@ -468,7 +609,11 @@ public void MergeFrom(AttrConstraint other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -488,7 +633,34 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + if (allowedValues_ == null) { + AllowedValues = new global::Tensorflow.AttrValue(); + } + input.ReadMessage(AllowedValues); + break; + } + } + } } + #endif } @@ -500,23 +672,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// /// A collection of KernelDefs /// - public sealed partial class KernelList : pb::IMessage { + public sealed partial class KernelList : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new KernelList()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.KernelDefReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public KernelList() { OnConstruction(); } @@ -524,12 +704,14 @@ public KernelList() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public KernelList(KernelList other) : this() { kernel_ = other.kernel_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public KernelList Clone() { return new KernelList(this); } @@ -540,16 +722,19 @@ public KernelList Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.KernelDef.Parser); private readonly pbc::RepeatedField kernel_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Kernel { get { return kernel_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as KernelList); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(KernelList other) { if (ReferenceEquals(other, null)) { return false; @@ -562,6 +747,7 @@ public bool Equals(KernelList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= kernel_.GetHashCode(); @@ -572,19 +758,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else kernel_.WriteTo(output, _repeated_kernel_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + kernel_.WriteTo(ref output, _repeated_kernel_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += kernel_.CalculateSize(_repeated_kernel_codec); @@ -595,6 +799,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(KernelList other) { if (other == null) { return; @@ -604,7 +809,11 @@ public void MergeFrom(KernelList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -617,7 +826,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + kernel_.AddEntriesFrom(ref input, _repeated_kernel_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/LogMemory.cs b/src/TensorFlowNET.Core/Protobuf/LogMemory.cs index eb68b53a4..af16b3122 100644 --- a/src/TensorFlowNET.Core/Protobuf/LogMemory.cs +++ b/src/TensorFlowNET.Core/Protobuf/LogMemory.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/log_memory.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -59,23 +59,31 @@ static LogMemoryReflection() { } #region Messages - public sealed partial class MemoryLogStep : pb::IMessage { + public sealed partial class MemoryLogStep : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MemoryLogStep()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.LogMemoryReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogStep() { OnConstruction(); } @@ -83,6 +91,7 @@ public MemoryLogStep() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogStep(MemoryLogStep other) : this() { stepId_ = other.stepId_; handle_ = other.handle_; @@ -90,6 +99,7 @@ public MemoryLogStep(MemoryLogStep other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogStep Clone() { return new MemoryLogStep(this); } @@ -101,6 +111,7 @@ public MemoryLogStep Clone() { /// Process-unique step id. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long StepId { get { return stepId_; } set { @@ -115,6 +126,7 @@ public long StepId { /// Handle describing the feeds and fetches of the step. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Handle { get { return handle_; } set { @@ -123,11 +135,13 @@ public string Handle { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MemoryLogStep); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MemoryLogStep other) { if (ReferenceEquals(other, null)) { return false; @@ -141,6 +155,7 @@ public bool Equals(MemoryLogStep other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (StepId != 0L) hash ^= StepId.GetHashCode(); @@ -152,12 +167,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (StepId != 0L) { output.WriteRawTag(8); output.WriteInt64(StepId); @@ -169,9 +189,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (StepId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(StepId); + } + if (Handle.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Handle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (StepId != 0L) { @@ -187,6 +227,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MemoryLogStep other) { if (other == null) { return; @@ -201,7 +242,11 @@ public void MergeFrom(MemoryLogStep other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -218,27 +263,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + StepId = input.ReadInt64(); + break; + } + case 18: { + Handle = input.ReadString(); + break; + } + } + } } + #endif } - public sealed partial class MemoryLogTensorAllocation : pb::IMessage { + public sealed partial class MemoryLogTensorAllocation : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MemoryLogTensorAllocation()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.LogMemoryReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogTensorAllocation() { OnConstruction(); } @@ -246,6 +323,7 @@ public MemoryLogTensorAllocation() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogTensorAllocation(MemoryLogTensorAllocation other) : this() { stepId_ = other.stepId_; kernelName_ = other.kernelName_; @@ -254,6 +332,7 @@ public MemoryLogTensorAllocation(MemoryLogTensorAllocation other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogTensorAllocation Clone() { return new MemoryLogTensorAllocation(this); } @@ -265,6 +344,7 @@ public MemoryLogTensorAllocation Clone() { /// Process-unique step id. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long StepId { get { return stepId_; } set { @@ -280,6 +360,7 @@ public long StepId { /// e.g., "affine2/weights/Assign". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string KernelName { get { return kernelName_; } set { @@ -294,6 +375,7 @@ public string KernelName { /// Allocated tensor details. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorDescription Tensor { get { return tensor_; } set { @@ -302,11 +384,13 @@ public string KernelName { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MemoryLogTensorAllocation); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MemoryLogTensorAllocation other) { if (ReferenceEquals(other, null)) { return false; @@ -321,6 +405,7 @@ public bool Equals(MemoryLogTensorAllocation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (StepId != 0L) hash ^= StepId.GetHashCode(); @@ -333,12 +418,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (StepId != 0L) { output.WriteRawTag(8); output.WriteInt64(StepId); @@ -354,9 +444,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (StepId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(StepId); + } + if (KernelName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(KernelName); + } + if (tensor_ != null) { + output.WriteRawTag(26); + output.WriteMessage(Tensor); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (StepId != 0L) { @@ -375,6 +489,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MemoryLogTensorAllocation other) { if (other == null) { return; @@ -395,7 +510,11 @@ public void MergeFrom(MemoryLogTensorAllocation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -419,27 +538,66 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + StepId = input.ReadInt64(); + break; + } + case 18: { + KernelName = input.ReadString(); + break; + } + case 26: { + if (tensor_ == null) { + Tensor = new global::Tensorflow.TensorDescription(); + } + input.ReadMessage(Tensor); + break; + } + } + } } + #endif } - public sealed partial class MemoryLogTensorDeallocation : pb::IMessage { + public sealed partial class MemoryLogTensorDeallocation : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MemoryLogTensorDeallocation()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.LogMemoryReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogTensorDeallocation() { OnConstruction(); } @@ -447,6 +605,7 @@ public MemoryLogTensorDeallocation() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogTensorDeallocation(MemoryLogTensorDeallocation other) : this() { allocationId_ = other.allocationId_; allocatorName_ = other.allocatorName_; @@ -454,6 +613,7 @@ public MemoryLogTensorDeallocation(MemoryLogTensorDeallocation other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogTensorDeallocation Clone() { return new MemoryLogTensorDeallocation(this); } @@ -466,6 +626,7 @@ public MemoryLogTensorDeallocation Clone() { /// corresponding allocation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllocationId { get { return allocationId_; } set { @@ -480,6 +641,7 @@ public long AllocationId { /// Name of the allocator used. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string AllocatorName { get { return allocatorName_; } set { @@ -488,11 +650,13 @@ public string AllocatorName { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MemoryLogTensorDeallocation); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MemoryLogTensorDeallocation other) { if (ReferenceEquals(other, null)) { return false; @@ -506,6 +670,7 @@ public bool Equals(MemoryLogTensorDeallocation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (AllocationId != 0L) hash ^= AllocationId.GetHashCode(); @@ -517,12 +682,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (AllocationId != 0L) { output.WriteRawTag(8); output.WriteInt64(AllocationId); @@ -534,9 +704,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (AllocationId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(AllocationId); + } + if (AllocatorName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(AllocatorName); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (AllocationId != 0L) { @@ -552,6 +742,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MemoryLogTensorDeallocation other) { if (other == null) { return; @@ -566,7 +757,11 @@ public void MergeFrom(MemoryLogTensorDeallocation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -583,27 +778,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + AllocationId = input.ReadInt64(); + break; + } + case 18: { + AllocatorName = input.ReadString(); + break; + } + } + } } + #endif } - public sealed partial class MemoryLogTensorOutput : pb::IMessage { + public sealed partial class MemoryLogTensorOutput : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MemoryLogTensorOutput()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.LogMemoryReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogTensorOutput() { OnConstruction(); } @@ -611,6 +838,7 @@ public MemoryLogTensorOutput() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogTensorOutput(MemoryLogTensorOutput other) : this() { stepId_ = other.stepId_; kernelName_ = other.kernelName_; @@ -620,6 +848,7 @@ public MemoryLogTensorOutput(MemoryLogTensorOutput other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogTensorOutput Clone() { return new MemoryLogTensorOutput(this); } @@ -631,6 +860,7 @@ public MemoryLogTensorOutput Clone() { /// Process-unique step id. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long StepId { get { return stepId_; } set { @@ -646,6 +876,7 @@ public long StepId { /// "affine2/weights/Assign". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string KernelName { get { return kernelName_; } set { @@ -660,6 +891,7 @@ public string KernelName { /// Index of the output being set. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Index { get { return index_; } set { @@ -674,6 +906,7 @@ public int Index { /// Output tensor details. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorDescription Tensor { get { return tensor_; } set { @@ -682,11 +915,13 @@ public int Index { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MemoryLogTensorOutput); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MemoryLogTensorOutput other) { if (ReferenceEquals(other, null)) { return false; @@ -702,6 +937,7 @@ public bool Equals(MemoryLogTensorOutput other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (StepId != 0L) hash ^= StepId.GetHashCode(); @@ -715,12 +951,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (StepId != 0L) { output.WriteRawTag(8); output.WriteInt64(StepId); @@ -740,9 +981,37 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (StepId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(StepId); + } + if (KernelName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(KernelName); + } + if (Index != 0) { + output.WriteRawTag(24); + output.WriteInt32(Index); + } + if (tensor_ != null) { + output.WriteRawTag(34); + output.WriteMessage(Tensor); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (StepId != 0L) { @@ -764,6 +1033,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MemoryLogTensorOutput other) { if (other == null) { return; @@ -787,7 +1057,11 @@ public void MergeFrom(MemoryLogTensorOutput other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -815,27 +1089,70 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + StepId = input.ReadInt64(); + break; + } + case 18: { + KernelName = input.ReadString(); + break; + } + case 24: { + Index = input.ReadInt32(); + break; + } + case 34: { + if (tensor_ == null) { + Tensor = new global::Tensorflow.TensorDescription(); + } + input.ReadMessage(Tensor); + break; + } + } + } } + #endif } - public sealed partial class MemoryLogRawAllocation : pb::IMessage { + public sealed partial class MemoryLogRawAllocation : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MemoryLogRawAllocation()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.LogMemoryReflection.Descriptor.MessageTypes[4]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogRawAllocation() { OnConstruction(); } @@ -843,6 +1160,7 @@ public MemoryLogRawAllocation() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogRawAllocation(MemoryLogRawAllocation other) : this() { stepId_ = other.stepId_; operation_ = other.operation_; @@ -854,6 +1172,7 @@ public MemoryLogRawAllocation(MemoryLogRawAllocation other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogRawAllocation Clone() { return new MemoryLogRawAllocation(this); } @@ -865,6 +1184,7 @@ public MemoryLogRawAllocation Clone() { /// Process-unique step id. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long StepId { get { return stepId_; } set { @@ -879,6 +1199,7 @@ public long StepId { /// Name of the operation making the allocation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Operation { get { return operation_; } set { @@ -893,6 +1214,7 @@ public string Operation { /// Number of bytes in the allocation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long NumBytes { get { return numBytes_; } set { @@ -907,6 +1229,7 @@ public long NumBytes { /// Address of the allocation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ulong Ptr { get { return ptr_; } set { @@ -922,6 +1245,7 @@ public ulong Ptr { /// corresponding deallocation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllocationId { get { return allocationId_; } set { @@ -936,6 +1260,7 @@ public long AllocationId { /// Name of the allocator used. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string AllocatorName { get { return allocatorName_; } set { @@ -944,11 +1269,13 @@ public string AllocatorName { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MemoryLogRawAllocation); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MemoryLogRawAllocation other) { if (ReferenceEquals(other, null)) { return false; @@ -966,6 +1293,7 @@ public bool Equals(MemoryLogRawAllocation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (StepId != 0L) hash ^= StepId.GetHashCode(); @@ -981,12 +1309,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (StepId != 0L) { output.WriteRawTag(8); output.WriteInt64(StepId); @@ -1014,9 +1347,45 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (StepId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(StepId); + } + if (Operation.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Operation); + } + if (NumBytes != 0L) { + output.WriteRawTag(24); + output.WriteInt64(NumBytes); + } + if (Ptr != 0UL) { + output.WriteRawTag(32); + output.WriteUInt64(Ptr); + } + if (AllocationId != 0L) { + output.WriteRawTag(40); + output.WriteInt64(AllocationId); + } + if (AllocatorName.Length != 0) { + output.WriteRawTag(50); + output.WriteString(AllocatorName); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (StepId != 0L) { @@ -1044,6 +1413,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MemoryLogRawAllocation other) { if (other == null) { return; @@ -1070,7 +1440,11 @@ public void MergeFrom(MemoryLogRawAllocation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1103,27 +1477,75 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + StepId = input.ReadInt64(); + break; + } + case 18: { + Operation = input.ReadString(); + break; + } + case 24: { + NumBytes = input.ReadInt64(); + break; + } + case 32: { + Ptr = input.ReadUInt64(); + break; + } + case 40: { + AllocationId = input.ReadInt64(); + break; + } + case 50: { + AllocatorName = input.ReadString(); + break; + } + } + } } + #endif } - public sealed partial class MemoryLogRawDeallocation : pb::IMessage { + public sealed partial class MemoryLogRawDeallocation : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MemoryLogRawDeallocation()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.LogMemoryReflection.Descriptor.MessageTypes[5]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogRawDeallocation() { OnConstruction(); } @@ -1131,6 +1553,7 @@ public MemoryLogRawDeallocation() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogRawDeallocation(MemoryLogRawDeallocation other) : this() { stepId_ = other.stepId_; operation_ = other.operation_; @@ -1141,6 +1564,7 @@ public MemoryLogRawDeallocation(MemoryLogRawDeallocation other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryLogRawDeallocation Clone() { return new MemoryLogRawDeallocation(this); } @@ -1152,6 +1576,7 @@ public MemoryLogRawDeallocation Clone() { /// Process-unique step id. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long StepId { get { return stepId_; } set { @@ -1166,6 +1591,7 @@ public long StepId { /// Name of the operation making the deallocation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Operation { get { return operation_; } set { @@ -1181,6 +1607,7 @@ public string Operation { /// corresponding allocation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllocationId { get { return allocationId_; } set { @@ -1195,6 +1622,7 @@ public long AllocationId { /// Name of the allocator used. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string AllocatorName { get { return allocatorName_; } set { @@ -1210,6 +1638,7 @@ public string AllocatorName { /// e.g. for GPU lazy freeing of buffers. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Deferred { get { return deferred_; } set { @@ -1218,11 +1647,13 @@ public bool Deferred { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MemoryLogRawDeallocation); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MemoryLogRawDeallocation other) { if (ReferenceEquals(other, null)) { return false; @@ -1239,6 +1670,7 @@ public bool Equals(MemoryLogRawDeallocation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (StepId != 0L) hash ^= StepId.GetHashCode(); @@ -1253,12 +1685,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (StepId != 0L) { output.WriteRawTag(8); output.WriteInt64(StepId); @@ -1282,9 +1719,41 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (StepId != 0L) { + output.WriteRawTag(8); + output.WriteInt64(StepId); + } + if (Operation.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Operation); + } + if (AllocationId != 0L) { + output.WriteRawTag(24); + output.WriteInt64(AllocationId); + } + if (AllocatorName.Length != 0) { + output.WriteRawTag(34); + output.WriteString(AllocatorName); + } + if (Deferred != false) { + output.WriteRawTag(40); + output.WriteBool(Deferred); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (StepId != 0L) { @@ -1309,6 +1778,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MemoryLogRawDeallocation other) { if (other == null) { return; @@ -1332,7 +1802,11 @@ public void MergeFrom(MemoryLogRawDeallocation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1361,7 +1835,43 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + StepId = input.ReadInt64(); + break; + } + case 18: { + Operation = input.ReadString(); + break; + } + case 24: { + AllocationId = input.ReadInt64(); + break; + } + case 34: { + AllocatorName = input.ReadString(); + break; + } + case 40: { + Deferred = input.ReadBool(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/MemmappedFileSystem.cs b/src/TensorFlowNET.Core/Protobuf/MemmappedFileSystem.cs index 9a013fd75..b47599ea9 100644 --- a/src/TensorFlowNET.Core/Protobuf/MemmappedFileSystem.cs +++ b/src/TensorFlowNET.Core/Protobuf/MemmappedFileSystem.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/util/memmapped_file_system.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -44,23 +44,31 @@ static MemmappedFileSystemReflection() { /// /// A message that describes one region of memmapped file. /// - public sealed partial class MemmappedFileSystemDirectoryElement : pb::IMessage { + public sealed partial class MemmappedFileSystemDirectoryElement : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MemmappedFileSystemDirectoryElement()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.MemmappedFileSystemReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemmappedFileSystemDirectoryElement() { OnConstruction(); } @@ -68,6 +76,7 @@ public MemmappedFileSystemDirectoryElement() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemmappedFileSystemDirectoryElement(MemmappedFileSystemDirectoryElement other) : this() { offset_ = other.offset_; name_ = other.name_; @@ -76,6 +85,7 @@ public MemmappedFileSystemDirectoryElement(MemmappedFileSystemDirectoryElement o } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemmappedFileSystemDirectoryElement Clone() { return new MemmappedFileSystemDirectoryElement(this); } @@ -84,6 +94,7 @@ public MemmappedFileSystemDirectoryElement Clone() { public const int OffsetFieldNumber = 1; private ulong offset_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ulong Offset { get { return offset_; } set { @@ -95,6 +106,7 @@ public ulong Offset { public const int NameFieldNumber = 2; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -106,6 +118,7 @@ public string Name { public const int LengthFieldNumber = 3; private ulong length_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ulong Length { get { return length_; } set { @@ -114,11 +127,13 @@ public ulong Length { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MemmappedFileSystemDirectoryElement); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MemmappedFileSystemDirectoryElement other) { if (ReferenceEquals(other, null)) { return false; @@ -133,6 +148,7 @@ public bool Equals(MemmappedFileSystemDirectoryElement other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Offset != 0UL) hash ^= Offset.GetHashCode(); @@ -145,12 +161,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Offset != 0UL) { output.WriteRawTag(8); output.WriteUInt64(Offset); @@ -166,9 +187,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Offset != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(Offset); + } + if (Name.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Name); + } + if (Length != 0UL) { + output.WriteRawTag(24); + output.WriteUInt64(Length); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Offset != 0UL) { @@ -187,6 +232,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MemmappedFileSystemDirectoryElement other) { if (other == null) { return; @@ -204,7 +250,11 @@ public void MergeFrom(MemmappedFileSystemDirectoryElement other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -225,30 +275,66 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Offset = input.ReadUInt64(); + break; + } + case 18: { + Name = input.ReadString(); + break; + } + case 24: { + Length = input.ReadUInt64(); + break; + } + } + } + } + #endif + } /// /// A directory of regions in a memmapped file. /// - public sealed partial class MemmappedFileSystemDirectory : pb::IMessage { + public sealed partial class MemmappedFileSystemDirectory : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MemmappedFileSystemDirectory()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.MemmappedFileSystemReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemmappedFileSystemDirectory() { OnConstruction(); } @@ -256,12 +342,14 @@ public MemmappedFileSystemDirectory() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemmappedFileSystemDirectory(MemmappedFileSystemDirectory other) : this() { element_ = other.element_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemmappedFileSystemDirectory Clone() { return new MemmappedFileSystemDirectory(this); } @@ -272,16 +360,19 @@ public MemmappedFileSystemDirectory Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.MemmappedFileSystemDirectoryElement.Parser); private readonly pbc::RepeatedField element_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Element { get { return element_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MemmappedFileSystemDirectory); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MemmappedFileSystemDirectory other) { if (ReferenceEquals(other, null)) { return false; @@ -294,6 +385,7 @@ public bool Equals(MemmappedFileSystemDirectory other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= element_.GetHashCode(); @@ -304,19 +396,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else element_.WriteTo(output, _repeated_element_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + element_.WriteTo(ref output, _repeated_element_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += element_.CalculateSize(_repeated_element_codec); @@ -327,6 +437,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MemmappedFileSystemDirectory other) { if (other == null) { return; @@ -336,7 +447,11 @@ public void MergeFrom(MemmappedFileSystemDirectory other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -349,7 +464,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + element_.AddEntriesFrom(ref input, _repeated_element_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/MetaGraph.cs b/src/TensorFlowNET.Core/Protobuf/MetaGraph.cs index d66429028..4cd62e025 100644 --- a/src/TensorFlowNET.Core/Protobuf/MetaGraph.cs +++ b/src/TensorFlowNET.Core/Protobuf/MetaGraph.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/meta_graph.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -107,9 +107,6 @@ static MetaGraphReflection() { } #region Messages /// - /// NOTE: This protocol buffer is evolving, and will go through revisions in the - /// coming months. - /// /// Protocol buffer containing the following which are necessary to restart /// training, run inference. It can be used to serialize/de-serialize memory /// objects necessary for running computation in a graph when crossing the @@ -122,23 +119,31 @@ static MetaGraphReflection() { /// TensorInfo /// SignatureDef /// - public sealed partial class MetaGraphDef : pb::IMessage { + public sealed partial class MetaGraphDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MetaGraphDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.MetaGraphReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MetaGraphDef() { OnConstruction(); } @@ -146,6 +151,7 @@ public MetaGraphDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MetaGraphDef(MetaGraphDef other) : this() { metaInfoDef_ = other.metaInfoDef_ != null ? other.metaInfoDef_.Clone() : null; graphDef_ = other.graphDef_ != null ? other.graphDef_.Clone() : null; @@ -158,6 +164,7 @@ public MetaGraphDef(MetaGraphDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MetaGraphDef Clone() { return new MetaGraphDef(this); } @@ -166,6 +173,7 @@ public MetaGraphDef Clone() { public const int MetaInfoDefFieldNumber = 1; private global::Tensorflow.MetaGraphDef.Types.MetaInfoDef metaInfoDef_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.MetaGraphDef.Types.MetaInfoDef MetaInfoDef { get { return metaInfoDef_; } set { @@ -180,6 +188,7 @@ public MetaGraphDef Clone() { /// GraphDef. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.GraphDef GraphDef { get { return graphDef_; } set { @@ -194,6 +203,7 @@ public MetaGraphDef Clone() { /// SaverDef. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SaverDef SaverDef { get { return saverDef_; } set { @@ -211,6 +221,7 @@ public MetaGraphDef Clone() { /// See CollectionDef section for details. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField CollectionDef { get { return collectionDef_; } } @@ -225,6 +236,7 @@ public MetaGraphDef Clone() { /// SignatureDef. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField SignatureDef { get { return signatureDef_; } } @@ -238,6 +250,7 @@ public MetaGraphDef Clone() { /// Asset file def to be used with the defined graph. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField AssetFileDef { get { return assetFileDef_; } } @@ -249,6 +262,7 @@ public MetaGraphDef Clone() { /// Extra information about the structure of functions and stateful objects. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SavedObjectGraph ObjectGraphDef { get { return objectGraphDef_; } set { @@ -257,11 +271,13 @@ public MetaGraphDef Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MetaGraphDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MetaGraphDef other) { if (ReferenceEquals(other, null)) { return false; @@ -280,6 +296,7 @@ public bool Equals(MetaGraphDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (metaInfoDef_ != null) hash ^= MetaInfoDef.GetHashCode(); @@ -296,12 +313,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (metaInfoDef_ != null) { output.WriteRawTag(10); output.WriteMessage(MetaInfoDef); @@ -324,9 +346,40 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (metaInfoDef_ != null) { + output.WriteRawTag(10); + output.WriteMessage(MetaInfoDef); + } + if (graphDef_ != null) { + output.WriteRawTag(18); + output.WriteMessage(GraphDef); + } + if (saverDef_ != null) { + output.WriteRawTag(26); + output.WriteMessage(SaverDef); + } + collectionDef_.WriteTo(ref output, _map_collectionDef_codec); + signatureDef_.WriteTo(ref output, _map_signatureDef_codec); + assetFileDef_.WriteTo(ref output, _repeated_assetFileDef_codec); + if (objectGraphDef_ != null) { + output.WriteRawTag(58); + output.WriteMessage(ObjectGraphDef); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (metaInfoDef_ != null) { @@ -351,6 +404,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MetaGraphDef other) { if (other == null) { return; @@ -386,7 +440,11 @@ public void MergeFrom(MetaGraphDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -435,33 +493,98 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (metaInfoDef_ == null) { + MetaInfoDef = new global::Tensorflow.MetaGraphDef.Types.MetaInfoDef(); + } + input.ReadMessage(MetaInfoDef); + break; + } + case 18: { + if (graphDef_ == null) { + GraphDef = new global::Tensorflow.GraphDef(); + } + input.ReadMessage(GraphDef); + break; + } + case 26: { + if (saverDef_ == null) { + SaverDef = new global::Tensorflow.SaverDef(); + } + input.ReadMessage(SaverDef); + break; + } + case 34: { + collectionDef_.AddEntriesFrom(ref input, _map_collectionDef_codec); + break; + } + case 42: { + signatureDef_.AddEntriesFrom(ref input, _map_signatureDef_codec); + break; + } + case 50: { + assetFileDef_.AddEntriesFrom(ref input, _repeated_assetFileDef_codec); + break; + } + case 58: { + if (objectGraphDef_ == null) { + ObjectGraphDef = new global::Tensorflow.SavedObjectGraph(); + } + input.ReadMessage(ObjectGraphDef); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the MetaGraphDef message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Meta information regarding the graph to be exported. To be used by users /// of this protocol buffer to encode information regarding their meta graph. /// - public sealed partial class MetaInfoDef : pb::IMessage { + public sealed partial class MetaInfoDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MetaInfoDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.MetaGraphDef.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MetaInfoDef() { OnConstruction(); } @@ -469,6 +592,7 @@ public MetaInfoDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MetaInfoDef(MetaInfoDef other) : this() { metaGraphVersion_ = other.metaGraphVersion_; strippedOpList_ = other.strippedOpList_ != null ? other.strippedOpList_.Clone() : null; @@ -482,6 +606,7 @@ public MetaInfoDef(MetaInfoDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MetaInfoDef Clone() { return new MetaInfoDef(this); } @@ -494,6 +619,7 @@ public MetaInfoDef Clone() { /// steps this model has been trained to, etc. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string MetaGraphVersion { get { return metaGraphVersion_; } set { @@ -509,6 +635,7 @@ public string MetaGraphVersion { /// Descriptions and Ops not used in graph_def are stripped out. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.OpList StrippedOpList { get { return strippedOpList_; } set { @@ -524,6 +651,7 @@ public string MetaGraphVersion { /// modified, or name of the model. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Google.Protobuf.WellKnownTypes.Any AnyInfo { get { return anyInfo_; } set { @@ -545,6 +673,7 @@ public string MetaGraphVersion { /// specific use-case or runtime environment. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Tags { get { return tags_; } } @@ -558,6 +687,7 @@ public string MetaGraphVersion { /// supplied value. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string TensorflowVersion { get { return tensorflowVersion_; } set { @@ -574,6 +704,7 @@ public string TensorflowVersion { /// user supplied value. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string TensorflowGitVersion { get { return tensorflowGitVersion_; } set { @@ -589,6 +720,7 @@ public string TensorflowGitVersion { /// the nodes in this graph_def. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool StrippedDefaultAttrs { get { return strippedDefaultAttrs_; } set { @@ -605,16 +737,19 @@ public bool StrippedDefaultAttrs { /// FunctionDef name to aliases mapping. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField FunctionAliases { get { return functionAliases_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MetaInfoDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MetaInfoDef other) { if (ReferenceEquals(other, null)) { return false; @@ -634,6 +769,7 @@ public bool Equals(MetaInfoDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (MetaGraphVersion.Length != 0) hash ^= MetaGraphVersion.GetHashCode(); @@ -651,12 +787,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (MetaGraphVersion.Length != 0) { output.WriteRawTag(10); output.WriteString(MetaGraphVersion); @@ -686,9 +827,47 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (MetaGraphVersion.Length != 0) { + output.WriteRawTag(10); + output.WriteString(MetaGraphVersion); + } + if (strippedOpList_ != null) { + output.WriteRawTag(18); + output.WriteMessage(StrippedOpList); + } + if (anyInfo_ != null) { + output.WriteRawTag(26); + output.WriteMessage(AnyInfo); + } + tags_.WriteTo(ref output, _repeated_tags_codec); + if (TensorflowVersion.Length != 0) { + output.WriteRawTag(42); + output.WriteString(TensorflowVersion); + } + if (TensorflowGitVersion.Length != 0) { + output.WriteRawTag(50); + output.WriteString(TensorflowGitVersion); + } + if (StrippedDefaultAttrs != false) { + output.WriteRawTag(56); + output.WriteBool(StrippedDefaultAttrs); + } + functionAliases_.WriteTo(ref output, _map_functionAliases_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (MetaGraphVersion.Length != 0) { @@ -718,6 +897,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MetaInfoDef other) { if (other == null) { return; @@ -752,7 +932,11 @@ public void MergeFrom(MetaInfoDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -799,8 +983,62 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + MetaGraphVersion = input.ReadString(); + break; + } + case 18: { + if (strippedOpList_ == null) { + StrippedOpList = new global::Tensorflow.OpList(); + } + input.ReadMessage(StrippedOpList); + break; + } + case 26: { + if (anyInfo_ == null) { + AnyInfo = new global::Google.Protobuf.WellKnownTypes.Any(); + } + input.ReadMessage(AnyInfo); + break; + } + case 34: { + tags_.AddEntriesFrom(ref input, _repeated_tags_codec); + break; + } + case 42: { + TensorflowVersion = input.ReadString(); + break; + } + case 50: { + TensorflowGitVersion = input.ReadString(); + break; + } + case 56: { + StrippedDefaultAttrs = input.ReadBool(); + break; + } + case 66: { + functionAliases_.AddEntriesFrom(ref input, _map_functionAliases_codec); + break; + } + } + } + } + #endif + } } @@ -872,23 +1110,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// to_proto=Variable.to_proto, /// from_proto=Variable.from_proto) /// - public sealed partial class CollectionDef : pb::IMessage { + public sealed partial class CollectionDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CollectionDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.MetaGraphReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CollectionDef() { OnConstruction(); } @@ -896,6 +1142,7 @@ public CollectionDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CollectionDef(CollectionDef other) : this() { switch (other.KindCase) { case KindOneofCase.NodeList: @@ -919,6 +1166,7 @@ public CollectionDef(CollectionDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CollectionDef Clone() { return new CollectionDef(this); } @@ -926,6 +1174,7 @@ public CollectionDef Clone() { /// Field number for the "node_list" field. public const int NodeListFieldNumber = 1; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.CollectionDef.Types.NodeList NodeList { get { return kindCase_ == KindOneofCase.NodeList ? (global::Tensorflow.CollectionDef.Types.NodeList) kind_ : null; } set { @@ -937,6 +1186,7 @@ public CollectionDef Clone() { /// Field number for the "bytes_list" field. public const int BytesListFieldNumber = 2; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.CollectionDef.Types.BytesList BytesList { get { return kindCase_ == KindOneofCase.BytesList ? (global::Tensorflow.CollectionDef.Types.BytesList) kind_ : null; } set { @@ -948,6 +1198,7 @@ public CollectionDef Clone() { /// Field number for the "int64_list" field. public const int Int64ListFieldNumber = 3; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.CollectionDef.Types.Int64List Int64List { get { return kindCase_ == KindOneofCase.Int64List ? (global::Tensorflow.CollectionDef.Types.Int64List) kind_ : null; } set { @@ -959,6 +1210,7 @@ public CollectionDef Clone() { /// Field number for the "float_list" field. public const int FloatListFieldNumber = 4; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.CollectionDef.Types.FloatList FloatList { get { return kindCase_ == KindOneofCase.FloatList ? (global::Tensorflow.CollectionDef.Types.FloatList) kind_ : null; } set { @@ -970,6 +1222,7 @@ public CollectionDef Clone() { /// Field number for the "any_list" field. public const int AnyListFieldNumber = 5; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.CollectionDef.Types.AnyList AnyList { get { return kindCase_ == KindOneofCase.AnyList ? (global::Tensorflow.CollectionDef.Types.AnyList) kind_ : null; } set { @@ -990,22 +1243,26 @@ public enum KindOneofCase { } private KindOneofCase kindCase_ = KindOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public KindOneofCase KindCase { get { return kindCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearKind() { kindCase_ = KindOneofCase.None; kind_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CollectionDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CollectionDef other) { if (ReferenceEquals(other, null)) { return false; @@ -1023,6 +1280,7 @@ public bool Equals(CollectionDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (kindCase_ == KindOneofCase.NodeList) hash ^= NodeList.GetHashCode(); @@ -1038,12 +1296,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (kindCase_ == KindOneofCase.NodeList) { output.WriteRawTag(10); output.WriteMessage(NodeList); @@ -1067,9 +1330,41 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (kindCase_ == KindOneofCase.NodeList) { + output.WriteRawTag(10); + output.WriteMessage(NodeList); + } + if (kindCase_ == KindOneofCase.BytesList) { + output.WriteRawTag(18); + output.WriteMessage(BytesList); + } + if (kindCase_ == KindOneofCase.Int64List) { + output.WriteRawTag(26); + output.WriteMessage(Int64List); + } + if (kindCase_ == KindOneofCase.FloatList) { + output.WriteRawTag(34); + output.WriteMessage(FloatList); + } + if (kindCase_ == KindOneofCase.AnyList) { + output.WriteRawTag(42); + output.WriteMessage(AnyList); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (kindCase_ == KindOneofCase.NodeList) { @@ -1094,6 +1389,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CollectionDef other) { if (other == null) { return; @@ -1135,7 +1431,11 @@ public void MergeFrom(CollectionDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1189,11 +1489,73 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + global::Tensorflow.CollectionDef.Types.NodeList subBuilder = new global::Tensorflow.CollectionDef.Types.NodeList(); + if (kindCase_ == KindOneofCase.NodeList) { + subBuilder.MergeFrom(NodeList); + } + input.ReadMessage(subBuilder); + NodeList = subBuilder; + break; + } + case 18: { + global::Tensorflow.CollectionDef.Types.BytesList subBuilder = new global::Tensorflow.CollectionDef.Types.BytesList(); + if (kindCase_ == KindOneofCase.BytesList) { + subBuilder.MergeFrom(BytesList); + } + input.ReadMessage(subBuilder); + BytesList = subBuilder; + break; + } + case 26: { + global::Tensorflow.CollectionDef.Types.Int64List subBuilder = new global::Tensorflow.CollectionDef.Types.Int64List(); + if (kindCase_ == KindOneofCase.Int64List) { + subBuilder.MergeFrom(Int64List); + } + input.ReadMessage(subBuilder); + Int64List = subBuilder; + break; + } + case 34: { + global::Tensorflow.CollectionDef.Types.FloatList subBuilder = new global::Tensorflow.CollectionDef.Types.FloatList(); + if (kindCase_ == KindOneofCase.FloatList) { + subBuilder.MergeFrom(FloatList); + } + input.ReadMessage(subBuilder); + FloatList = subBuilder; + break; + } + case 42: { + global::Tensorflow.CollectionDef.Types.AnyList subBuilder = new global::Tensorflow.CollectionDef.Types.AnyList(); + if (kindCase_ == KindOneofCase.AnyList) { + subBuilder.MergeFrom(AnyList); + } + input.ReadMessage(subBuilder); + AnyList = subBuilder; + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the CollectionDef message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// NodeList is used for collecting nodes in graph. For example @@ -1207,23 +1569,31 @@ public static partial class Types { /// } /// } /// - public sealed partial class NodeList : pb::IMessage { + public sealed partial class NodeList : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new NodeList()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CollectionDef.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeList() { OnConstruction(); } @@ -1231,12 +1601,14 @@ public NodeList() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeList(NodeList other) : this() { value_ = other.value_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeList Clone() { return new NodeList(this); } @@ -1247,16 +1619,19 @@ public NodeList Clone() { = pb::FieldCodec.ForString(10); private readonly pbc::RepeatedField value_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Value { get { return value_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as NodeList); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(NodeList other) { if (ReferenceEquals(other, null)) { return false; @@ -1269,6 +1644,7 @@ public bool Equals(NodeList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= value_.GetHashCode(); @@ -1279,19 +1655,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else value_.WriteTo(output, _repeated_value_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + value_.WriteTo(ref output, _repeated_value_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += value_.CalculateSize(_repeated_value_codec); @@ -1302,6 +1696,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(NodeList other) { if (other == null) { return; @@ -1311,7 +1706,11 @@ public void MergeFrom(NodeList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1324,8 +1723,28 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + value_.AddEntriesFrom(ref input, _repeated_value_codec); + break; + } + } + } + } + #endif + } /// @@ -1343,23 +1762,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// } /// } /// - public sealed partial class BytesList : pb::IMessage { + public sealed partial class BytesList : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new BytesList()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CollectionDef.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public BytesList() { OnConstruction(); } @@ -1367,12 +1794,14 @@ public BytesList() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public BytesList(BytesList other) : this() { value_ = other.value_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public BytesList Clone() { return new BytesList(this); } @@ -1383,16 +1812,19 @@ public BytesList Clone() { = pb::FieldCodec.ForBytes(10); private readonly pbc::RepeatedField value_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Value { get { return value_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as BytesList); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(BytesList other) { if (ReferenceEquals(other, null)) { return false; @@ -1405,6 +1837,7 @@ public bool Equals(BytesList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= value_.GetHashCode(); @@ -1415,19 +1848,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else value_.WriteTo(output, _repeated_value_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + value_.WriteTo(ref output, _repeated_value_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += value_.CalculateSize(_repeated_value_codec); @@ -1438,6 +1889,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(BytesList other) { if (other == null) { return; @@ -1447,7 +1899,11 @@ public void MergeFrom(BytesList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1455,35 +1911,63 @@ public void MergeFrom(pb::CodedInputStream input) { _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); break; case 10: { - value_.AddEntriesFrom(input, _repeated_value_codec); + value_.AddEntriesFrom(input, _repeated_value_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + value_.AddEntriesFrom(ref input, _repeated_value_codec); break; } } } } + #endif } /// /// Int64List is used for collecting int, int64 and long values. /// - public sealed partial class Int64List : pb::IMessage { + public sealed partial class Int64List : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Int64List()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CollectionDef.Descriptor.NestedTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Int64List() { OnConstruction(); } @@ -1491,12 +1975,14 @@ public Int64List() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Int64List(Int64List other) : this() { value_ = other.value_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Int64List Clone() { return new Int64List(this); } @@ -1507,16 +1993,19 @@ public Int64List Clone() { = pb::FieldCodec.ForInt64(10); private readonly pbc::RepeatedField value_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Value { get { return value_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Int64List); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Int64List other) { if (ReferenceEquals(other, null)) { return false; @@ -1529,6 +2018,7 @@ public bool Equals(Int64List other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= value_.GetHashCode(); @@ -1539,19 +2029,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else value_.WriteTo(output, _repeated_value_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + value_.WriteTo(ref output, _repeated_value_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += value_.CalculateSize(_repeated_value_codec); @@ -1562,6 +2070,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Int64List other) { if (other == null) { return; @@ -1571,7 +2080,11 @@ public void MergeFrom(Int64List other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1585,30 +2098,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + value_.AddEntriesFrom(ref input, _repeated_value_codec); + break; + } + } + } } + #endif } /// /// FloatList is used for collecting float values. /// - public sealed partial class FloatList : pb::IMessage { + public sealed partial class FloatList : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new FloatList()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CollectionDef.Descriptor.NestedTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FloatList() { OnConstruction(); } @@ -1616,12 +2158,14 @@ public FloatList() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FloatList(FloatList other) : this() { value_ = other.value_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FloatList Clone() { return new FloatList(this); } @@ -1632,16 +2176,19 @@ public FloatList Clone() { = pb::FieldCodec.ForFloat(10); private readonly pbc::RepeatedField value_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Value { get { return value_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as FloatList); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(FloatList other) { if (ReferenceEquals(other, null)) { return false; @@ -1654,6 +2201,7 @@ public bool Equals(FloatList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= value_.GetHashCode(); @@ -1664,19 +2212,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else value_.WriteTo(output, _repeated_value_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + value_.WriteTo(ref output, _repeated_value_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += value_.CalculateSize(_repeated_value_codec); @@ -1687,6 +2253,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(FloatList other) { if (other == null) { return; @@ -1696,7 +2263,11 @@ public void MergeFrom(FloatList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1710,30 +2281,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 13: { + value_.AddEntriesFrom(ref input, _repeated_value_codec); + break; + } + } + } } + #endif } /// /// AnyList is used for collecting Any protos. /// - public sealed partial class AnyList : pb::IMessage { + public sealed partial class AnyList : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AnyList()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.CollectionDef.Descriptor.NestedTypes[4]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AnyList() { OnConstruction(); } @@ -1741,12 +2341,14 @@ public AnyList() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AnyList(AnyList other) : this() { value_ = other.value_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AnyList Clone() { return new AnyList(this); } @@ -1757,16 +2359,19 @@ public AnyList Clone() { = pb::FieldCodec.ForMessage(10, global::Google.Protobuf.WellKnownTypes.Any.Parser); private readonly pbc::RepeatedField value_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Value { get { return value_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AnyList); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AnyList other) { if (ReferenceEquals(other, null)) { return false; @@ -1779,6 +2384,7 @@ public bool Equals(AnyList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= value_.GetHashCode(); @@ -1789,19 +2395,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else value_.WriteTo(output, _repeated_value_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + value_.WriteTo(ref output, _repeated_value_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += value_.CalculateSize(_repeated_value_codec); @@ -1812,6 +2436,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AnyList other) { if (other == null) { return; @@ -1821,7 +2446,11 @@ public void MergeFrom(AnyList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1834,7 +2463,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + value_.AddEntriesFrom(ref input, _repeated_value_codec); + break; + } + } + } } + #endif } @@ -1846,23 +2495,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// /// Information about a Tensor necessary for feeding or retrieval. /// - public sealed partial class TensorInfo : pb::IMessage { + public sealed partial class TensorInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TensorInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.MetaGraphReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorInfo() { OnConstruction(); } @@ -1870,6 +2527,7 @@ public TensorInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorInfo(TensorInfo other) : this() { dtype_ = other.dtype_; tensorShape_ = other.tensorShape_ != null ? other.tensorShape_.Clone() : null; @@ -1889,6 +2547,7 @@ public TensorInfo(TensorInfo other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorInfo Clone() { return new TensorInfo(this); } @@ -1899,6 +2558,7 @@ public TensorInfo Clone() { /// For dense `Tensor`s, the name of the tensor in the graph. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return encodingCase_ == EncodingOneofCase.Name ? (string) encoding_ : ""; } set { @@ -1916,6 +2576,7 @@ public string Name { /// SparseTensor Python class. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorInfo.Types.CooSparse CooSparse { get { return encodingCase_ == EncodingOneofCase.CooSparse ? (global::Tensorflow.TensorInfo.Types.CooSparse) encoding_ : null; } set { @@ -1930,6 +2591,7 @@ public string Name { /// Generic encoding for CompositeTensors. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorInfo.Types.CompositeTensor CompositeTensor { get { return encodingCase_ == EncodingOneofCase.CompositeTensor ? (global::Tensorflow.TensorInfo.Types.CompositeTensor) encoding_ : null; } set { @@ -1942,6 +2604,7 @@ public string Name { public const int DtypeFieldNumber = 2; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -1958,6 +2621,7 @@ public string Name { /// the logical shape of the represented tensor (aka dense_shape). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto TensorShape { get { return tensorShape_; } set { @@ -1975,22 +2639,26 @@ public enum EncodingOneofCase { } private EncodingOneofCase encodingCase_ = EncodingOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public EncodingOneofCase EncodingCase { get { return encodingCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearEncoding() { encodingCase_ = EncodingOneofCase.None; encoding_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TensorInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TensorInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -2008,6 +2676,7 @@ public bool Equals(TensorInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (encodingCase_ == EncodingOneofCase.Name) hash ^= Name.GetHashCode(); @@ -2023,12 +2692,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (encodingCase_ == EncodingOneofCase.Name) { output.WriteRawTag(10); output.WriteString(Name); @@ -2052,9 +2726,41 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (encodingCase_ == EncodingOneofCase.Name) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(16); + output.WriteEnum((int) Dtype); + } + if (tensorShape_ != null) { + output.WriteRawTag(26); + output.WriteMessage(TensorShape); + } + if (encodingCase_ == EncodingOneofCase.CooSparse) { + output.WriteRawTag(34); + output.WriteMessage(CooSparse); + } + if (encodingCase_ == EncodingOneofCase.CompositeTensor) { + output.WriteRawTag(42); + output.WriteMessage(CompositeTensor); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (encodingCase_ == EncodingOneofCase.Name) { @@ -2079,6 +2785,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TensorInfo other) { if (other == null) { return; @@ -2114,7 +2821,11 @@ public void MergeFrom(TensorInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2156,33 +2867,91 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 16: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + case 26: { + if (tensorShape_ == null) { + TensorShape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(TensorShape); + break; + } + case 34: { + global::Tensorflow.TensorInfo.Types.CooSparse subBuilder = new global::Tensorflow.TensorInfo.Types.CooSparse(); + if (encodingCase_ == EncodingOneofCase.CooSparse) { + subBuilder.MergeFrom(CooSparse); + } + input.ReadMessage(subBuilder); + CooSparse = subBuilder; + break; + } + case 42: { + global::Tensorflow.TensorInfo.Types.CompositeTensor subBuilder = new global::Tensorflow.TensorInfo.Types.CompositeTensor(); + if (encodingCase_ == EncodingOneofCase.CompositeTensor) { + subBuilder.MergeFrom(CompositeTensor); + } + input.ReadMessage(subBuilder); + CompositeTensor = subBuilder; + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the TensorInfo message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// For sparse tensors, The COO encoding stores a triple of values, indices, /// and shape. /// - public sealed partial class CooSparse : pb::IMessage { + public sealed partial class CooSparse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CooSparse()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TensorInfo.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CooSparse() { OnConstruction(); } @@ -2190,6 +2959,7 @@ public CooSparse() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CooSparse(CooSparse other) : this() { valuesTensorName_ = other.valuesTensorName_; indicesTensorName_ = other.indicesTensorName_; @@ -2198,6 +2968,7 @@ public CooSparse(CooSparse other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CooSparse Clone() { return new CooSparse(this); } @@ -2210,6 +2981,7 @@ public CooSparse Clone() { /// the SparseTensor as a whole, given in the enclosing TensorInfo. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string ValuesTensorName { get { return valuesTensorName_; } set { @@ -2224,6 +2996,7 @@ public string ValuesTensorName { /// The indices Tensor must have dtype int64 and shape [?, ?]. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string IndicesTensorName { get { return indicesTensorName_; } set { @@ -2239,6 +3012,7 @@ public string IndicesTensorName { /// the Tensor referenced here. It must have dtype int64 and shape [?]. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string DenseShapeTensorName { get { return denseShapeTensorName_; } set { @@ -2247,11 +3021,13 @@ public string DenseShapeTensorName { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CooSparse); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CooSparse other) { if (ReferenceEquals(other, null)) { return false; @@ -2266,6 +3042,7 @@ public bool Equals(CooSparse other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (ValuesTensorName.Length != 0) hash ^= ValuesTensorName.GetHashCode(); @@ -2278,12 +3055,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (ValuesTensorName.Length != 0) { output.WriteRawTag(10); output.WriteString(ValuesTensorName); @@ -2299,9 +3081,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ValuesTensorName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ValuesTensorName); + } + if (IndicesTensorName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(IndicesTensorName); + } + if (DenseShapeTensorName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(DenseShapeTensorName); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (ValuesTensorName.Length != 0) { @@ -2320,6 +3126,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CooSparse other) { if (other == null) { return; @@ -2337,7 +3144,11 @@ public void MergeFrom(CooSparse other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2358,30 +3169,66 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + ValuesTensorName = input.ReadString(); + break; + } + case 18: { + IndicesTensorName = input.ReadString(); + break; + } + case 26: { + DenseShapeTensorName = input.ReadString(); + break; + } + } + } } + #endif } /// /// Generic encoding for composite tensors. /// - public sealed partial class CompositeTensor : pb::IMessage { + public sealed partial class CompositeTensor : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CompositeTensor()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TensorInfo.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CompositeTensor() { OnConstruction(); } @@ -2389,6 +3236,7 @@ public CompositeTensor() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CompositeTensor(CompositeTensor other) : this() { typeSpec_ = other.typeSpec_ != null ? other.typeSpec_.Clone() : null; components_ = other.components_.Clone(); @@ -2396,6 +3244,7 @@ public CompositeTensor(CompositeTensor other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CompositeTensor Clone() { return new CompositeTensor(this); } @@ -2407,6 +3256,7 @@ public CompositeTensor Clone() { /// The serialized TypeSpec for the composite tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TypeSpecProto TypeSpec { get { return typeSpec_; } set { @@ -2423,16 +3273,19 @@ public CompositeTensor Clone() { /// A TensorInfo for each flattened component tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Components { get { return components_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CompositeTensor); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CompositeTensor other) { if (ReferenceEquals(other, null)) { return false; @@ -2446,6 +3299,7 @@ public bool Equals(CompositeTensor other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (typeSpec_ != null) hash ^= TypeSpec.GetHashCode(); @@ -2457,12 +3311,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (typeSpec_ != null) { output.WriteRawTag(10); output.WriteMessage(TypeSpec); @@ -2471,9 +3330,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (typeSpec_ != null) { + output.WriteRawTag(10); + output.WriteMessage(TypeSpec); + } + components_.WriteTo(ref output, _repeated_components_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (typeSpec_ != null) { @@ -2487,6 +3363,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CompositeTensor other) { if (other == null) { return; @@ -2502,7 +3379,11 @@ public void MergeFrom(CompositeTensor other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2522,7 +3403,34 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (typeSpec_ == null) { + TypeSpec = new global::Tensorflow.TypeSpecProto(); + } + input.ReadMessage(TypeSpec); + break; + } + case 18: { + components_.AddEntriesFrom(ref input, _repeated_components_codec); + break; + } + } + } } + #endif } @@ -2590,23 +3498,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// ... /// } /// - public sealed partial class SignatureDef : pb::IMessage { + public sealed partial class SignatureDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SignatureDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.MetaGraphReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SignatureDef() { OnConstruction(); } @@ -2614,6 +3530,7 @@ public SignatureDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SignatureDef(SignatureDef other) : this() { inputs_ = other.inputs_.Clone(); outputs_ = other.outputs_.Clone(); @@ -2622,6 +3539,7 @@ public SignatureDef(SignatureDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SignatureDef Clone() { return new SignatureDef(this); } @@ -2635,6 +3553,7 @@ public SignatureDef Clone() { /// Named input parameters. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField Inputs { get { return inputs_; } } @@ -2648,6 +3567,7 @@ public SignatureDef Clone() { /// Named output parameters. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField Outputs { get { return outputs_; } } @@ -2666,6 +3586,7 @@ public SignatureDef Clone() { /// where a single graph computation may return multiple results. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string MethodName { get { return methodName_; } set { @@ -2674,11 +3595,13 @@ public string MethodName { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SignatureDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SignatureDef other) { if (ReferenceEquals(other, null)) { return false; @@ -2693,6 +3616,7 @@ public bool Equals(SignatureDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= Inputs.GetHashCode(); @@ -2705,12 +3629,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else inputs_.WriteTo(output, _map_inputs_codec); outputs_.WriteTo(output, _map_outputs_codec); if (MethodName.Length != 0) { @@ -2720,9 +3649,27 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + inputs_.WriteTo(ref output, _map_inputs_codec); + outputs_.WriteTo(ref output, _map_outputs_codec); + if (MethodName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(MethodName); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += inputs_.CalculateSize(_map_inputs_codec); @@ -2737,6 +3684,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SignatureDef other) { if (other == null) { return; @@ -2750,7 +3698,11 @@ public void MergeFrom(SignatureDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2771,7 +3723,35 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + inputs_.AddEntriesFrom(ref input, _map_inputs_codec); + break; + } + case 18: { + outputs_.AddEntriesFrom(ref input, _map_outputs_codec); + break; + } + case 26: { + MethodName = input.ReadString(); + break; + } + } + } } + #endif } @@ -2779,23 +3759,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// An asset file def for a single file or a set of sharded files with the same /// name. /// - public sealed partial class AssetFileDef : pb::IMessage { + public sealed partial class AssetFileDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AssetFileDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.MetaGraphReflection.Descriptor.MessageTypes[4]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AssetFileDef() { OnConstruction(); } @@ -2803,6 +3791,7 @@ public AssetFileDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AssetFileDef(AssetFileDef other) : this() { tensorInfo_ = other.tensorInfo_ != null ? other.tensorInfo_.Clone() : null; filename_ = other.filename_; @@ -2810,6 +3799,7 @@ public AssetFileDef(AssetFileDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AssetFileDef Clone() { return new AssetFileDef(this); } @@ -2821,6 +3811,7 @@ public AssetFileDef Clone() { /// The tensor to bind the asset filename to. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorInfo TensorInfo { get { return tensorInfo_; } set { @@ -2837,6 +3828,7 @@ public AssetFileDef Clone() { /// would be "vocab.txt". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Filename { get { return filename_; } set { @@ -2845,11 +3837,13 @@ public string Filename { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AssetFileDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AssetFileDef other) { if (ReferenceEquals(other, null)) { return false; @@ -2863,6 +3857,7 @@ public bool Equals(AssetFileDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (tensorInfo_ != null) hash ^= TensorInfo.GetHashCode(); @@ -2874,12 +3869,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (tensorInfo_ != null) { output.WriteRawTag(10); output.WriteMessage(TensorInfo); @@ -2891,9 +3891,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (tensorInfo_ != null) { + output.WriteRawTag(10); + output.WriteMessage(TensorInfo); + } + if (Filename.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Filename); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (tensorInfo_ != null) { @@ -2909,6 +3929,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AssetFileDef other) { if (other == null) { return; @@ -2926,7 +3947,11 @@ public void MergeFrom(AssetFileDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2946,7 +3971,34 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (tensorInfo_ == null) { + TensorInfo = new global::Tensorflow.TensorInfo(); + } + input.ReadMessage(TensorInfo); + break; + } + case 18: { + Filename = input.ReadString(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/NodeDef.cs b/src/TensorFlowNET.Core/Protobuf/NodeDef.cs index fd6e25792..657ef46eb 100644 --- a/src/TensorFlowNET.Core/Protobuf/NodeDef.cs +++ b/src/TensorFlowNET.Core/Protobuf/NodeDef.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/node_def.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -26,44 +26,54 @@ static NodeDefReflection() { string.Concat( "Cih0ZW5zb3JmbG93L2NvcmUvZnJhbWV3b3JrL25vZGVfZGVmLnByb3RvEgp0", "ZW5zb3JmbG93Gip0ZW5zb3JmbG93L2NvcmUvZnJhbWV3b3JrL2F0dHJfdmFs", - "dWUucHJvdG8i0gIKB05vZGVEZWYSDAoEbmFtZRgBIAEoCRIKCgJvcBgCIAEo", - "CRINCgVpbnB1dBgDIAMoCRIOCgZkZXZpY2UYBCABKAkSKwoEYXR0chgFIAMo", - "CzIdLnRlbnNvcmZsb3cuTm9kZURlZi5BdHRyRW50cnkSSgoXZXhwZXJpbWVu", - "dGFsX2RlYnVnX2luZm8YBiABKAsyKS50ZW5zb3JmbG93Lk5vZGVEZWYuRXhw", - "ZXJpbWVudGFsRGVidWdJbmZvGkIKCUF0dHJFbnRyeRILCgNrZXkYASABKAkS", - "JAoFdmFsdWUYAiABKAsyFS50ZW5zb3JmbG93LkF0dHJWYWx1ZToCOAEaUQoV", - "RXhwZXJpbWVudGFsRGVidWdJbmZvEhsKE29yaWdpbmFsX25vZGVfbmFtZXMY", - "ASADKAkSGwoTb3JpZ2luYWxfZnVuY19uYW1lcxgCIAMoCUJ7ChhvcmcudGVu", - "c29yZmxvdy5mcmFtZXdvcmtCCU5vZGVQcm90b1ABWk9naXRodWIuY29tL3Rl", - "bnNvcmZsb3cvdGVuc29yZmxvdy90ZW5zb3JmbG93L2dvL2NvcmUvZnJhbWV3", - "b3JrL25vZGVfZGVmX2dvX3Byb3Rv+AEBYgZwcm90bzM=")); + "dWUucHJvdG8aKXRlbnNvcmZsb3cvY29yZS9mcmFtZXdvcmsvZnVsbF90eXBl", + "LnByb3RvIoYDCgdOb2RlRGVmEgwKBG5hbWUYASABKAkSCgoCb3AYAiABKAkS", + "DQoFaW5wdXQYAyADKAkSDgoGZGV2aWNlGAQgASgJEisKBGF0dHIYBSADKAsy", + "HS50ZW5zb3JmbG93Lk5vZGVEZWYuQXR0ckVudHJ5EkoKF2V4cGVyaW1lbnRh", + "bF9kZWJ1Z19pbmZvGAYgASgLMikudGVuc29yZmxvdy5Ob2RlRGVmLkV4cGVy", + "aW1lbnRhbERlYnVnSW5mbxIyChFleHBlcmltZW50YWxfdHlwZRgHIAEoCzIX", + "LnRlbnNvcmZsb3cuRnVsbFR5cGVEZWYaQgoJQXR0ckVudHJ5EgsKA2tleRgB", + "IAEoCRIkCgV2YWx1ZRgCIAEoCzIVLnRlbnNvcmZsb3cuQXR0clZhbHVlOgI4", + "ARpRChVFeHBlcmltZW50YWxEZWJ1Z0luZm8SGwoTb3JpZ2luYWxfbm9kZV9u", + "YW1lcxgBIAMoCRIbChNvcmlnaW5hbF9mdW5jX25hbWVzGAIgAygJQnsKGG9y", + "Zy50ZW5zb3JmbG93LmZyYW1ld29ya0IJTm9kZVByb3RvUAFaT2dpdGh1Yi5j", + "b20vdGVuc29yZmxvdy90ZW5zb3JmbG93L3RlbnNvcmZsb3cvZ28vY29yZS9m", + "cmFtZXdvcmsvbm9kZV9kZWZfZ29fcHJvdG/4AQFiBnByb3RvMw==")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, - new pbr::FileDescriptor[] { global::Tensorflow.AttrValueReflection.Descriptor, }, + new pbr::FileDescriptor[] { global::Tensorflow.AttrValueReflection.Descriptor, global::Tensorflow.FullTypeReflection.Descriptor, }, new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.NodeDef), global::Tensorflow.NodeDef.Parser, new[]{ "Name", "Op", "Input", "Device", "Attr", "ExperimentalDebugInfo" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.NodeDef.Types.ExperimentalDebugInfo), global::Tensorflow.NodeDef.Types.ExperimentalDebugInfo.Parser, new[]{ "OriginalNodeNames", "OriginalFuncNames" }, null, null, null, null)}) + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.NodeDef), global::Tensorflow.NodeDef.Parser, new[]{ "Name", "Op", "Input", "Device", "Attr", "ExperimentalDebugInfo", "ExperimentalType" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.NodeDef.Types.ExperimentalDebugInfo), global::Tensorflow.NodeDef.Types.ExperimentalDebugInfo.Parser, new[]{ "OriginalNodeNames", "OriginalFuncNames" }, null, null, null, null)}) })); } #endregion } #region Messages - public sealed partial class NodeDef : pb::IMessage { + public sealed partial class NodeDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new NodeDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.NodeDefReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeDef() { OnConstruction(); } @@ -71,6 +81,7 @@ public NodeDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeDef(NodeDef other) : this() { name_ = other.name_; op_ = other.op_; @@ -78,10 +89,12 @@ public NodeDef(NodeDef other) : this() { device_ = other.device_; attr_ = other.attr_.Clone(); experimentalDebugInfo_ = other.experimentalDebugInfo_ != null ? other.experimentalDebugInfo_.Clone() : null; + experimentalType_ = other.experimentalType_ != null ? other.experimentalType_.Clone() : null; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeDef Clone() { return new NodeDef(this); } @@ -95,6 +108,7 @@ public NodeDef Clone() { /// Must match the regexp "[A-Za-z0-9.][A-Za-z0-9_>./]*". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -110,6 +124,7 @@ public string Name { /// Op names starting with an underscore are reserved for internal use. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Op { get { return op_; } set { @@ -130,6 +145,7 @@ public string Op { /// "^node". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Input { get { return input_; } } @@ -160,6 +176,7 @@ public string Op { /// choose a device automatically. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Device { get { return device_; } set { @@ -187,6 +204,7 @@ public string Device { /// TODO(josh11b): Add some examples here showing best practices. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField Attr { get { return attr_; } } @@ -198,6 +216,7 @@ public string Device { /// This stores debug information associated with the node. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.NodeDef.Types.ExperimentalDebugInfo ExperimentalDebugInfo { get { return experimentalDebugInfo_; } set { @@ -205,12 +224,32 @@ public string Device { } } + /// Field number for the "experimental_type" field. + public const int ExperimentalTypeFieldNumber = 7; + private global::Tensorflow.FullTypeDef experimentalType_; + /// + /// The complete type of this node. Experimental and subject to change. + /// Currently, the field only contains the return types of the node. That will + /// extend in the future to contain the entire signature of the node, as a + /// function type. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.FullTypeDef ExperimentalType { + get { return experimentalType_; } + set { + experimentalType_ = value; + } + } + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as NodeDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(NodeDef other) { if (ReferenceEquals(other, null)) { return false; @@ -224,10 +263,12 @@ public bool Equals(NodeDef other) { if (Device != other.Device) return false; if (!Attr.Equals(other.Attr)) return false; if (!object.Equals(ExperimentalDebugInfo, other.ExperimentalDebugInfo)) return false; + if (!object.Equals(ExperimentalType, other.ExperimentalType)) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -236,6 +277,7 @@ public override int GetHashCode() { if (Device.Length != 0) hash ^= Device.GetHashCode(); hash ^= Attr.GetHashCode(); if (experimentalDebugInfo_ != null) hash ^= ExperimentalDebugInfo.GetHashCode(); + if (experimentalType_ != null) hash ^= ExperimentalType.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -243,12 +285,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -267,12 +314,50 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(50); output.WriteMessage(ExperimentalDebugInfo); } + if (experimentalType_ != null) { + output.WriteRawTag(58); + output.WriteMessage(ExperimentalType); + } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (Op.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Op); + } + input_.WriteTo(ref output, _repeated_input_codec); + if (Device.Length != 0) { + output.WriteRawTag(34); + output.WriteString(Device); + } + attr_.WriteTo(ref output, _map_attr_codec); + if (experimentalDebugInfo_ != null) { + output.WriteRawTag(50); + output.WriteMessage(ExperimentalDebugInfo); + } + if (experimentalType_ != null) { + output.WriteRawTag(58); + output.WriteMessage(ExperimentalType); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -289,6 +374,9 @@ public int CalculateSize() { if (experimentalDebugInfo_ != null) { size += 1 + pb::CodedOutputStream.ComputeMessageSize(ExperimentalDebugInfo); } + if (experimentalType_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ExperimentalType); + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -296,6 +384,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(NodeDef other) { if (other == null) { return; @@ -317,11 +406,21 @@ public void MergeFrom(NodeDef other) { } ExperimentalDebugInfo.MergeFrom(other.ExperimentalDebugInfo); } + if (other.experimentalType_ != null) { + if (experimentalType_ == null) { + ExperimentalType = new global::Tensorflow.FullTypeDef(); + } + ExperimentalType.MergeFrom(other.ExperimentalType); + } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -355,31 +454,97 @@ public void MergeFrom(pb::CodedInputStream input) { input.ReadMessage(ExperimentalDebugInfo); break; } + case 58: { + if (experimentalType_ == null) { + ExperimentalType = new global::Tensorflow.FullTypeDef(); + } + input.ReadMessage(ExperimentalType); + break; + } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + Op = input.ReadString(); + break; + } + case 26: { + input_.AddEntriesFrom(ref input, _repeated_input_codec); + break; + } + case 34: { + Device = input.ReadString(); + break; + } + case 42: { + attr_.AddEntriesFrom(ref input, _map_attr_codec); + break; + } + case 50: { + if (experimentalDebugInfo_ == null) { + ExperimentalDebugInfo = new global::Tensorflow.NodeDef.Types.ExperimentalDebugInfo(); + } + input.ReadMessage(ExperimentalDebugInfo); + break; + } + case 58: { + if (experimentalType_ == null) { + ExperimentalType = new global::Tensorflow.FullTypeDef(); + } + input.ReadMessage(ExperimentalType); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the NodeDef message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class ExperimentalDebugInfo : pb::IMessage { + public sealed partial class ExperimentalDebugInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ExperimentalDebugInfo()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.NodeDef.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ExperimentalDebugInfo() { OnConstruction(); } @@ -387,6 +552,7 @@ public ExperimentalDebugInfo() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ExperimentalDebugInfo(ExperimentalDebugInfo other) : this() { originalNodeNames_ = other.originalNodeNames_.Clone(); originalFuncNames_ = other.originalFuncNames_.Clone(); @@ -394,6 +560,7 @@ public ExperimentalDebugInfo(ExperimentalDebugInfo other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ExperimentalDebugInfo Clone() { return new ExperimentalDebugInfo(this); } @@ -413,6 +580,7 @@ public ExperimentalDebugInfo Clone() { /// current node to some top level source code. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField OriginalNodeNames { get { return originalNodeNames_; } } @@ -432,16 +600,19 @@ public ExperimentalDebugInfo Clone() { /// current ndoe to some top level source code. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField OriginalFuncNames { get { return originalFuncNames_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ExperimentalDebugInfo); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ExperimentalDebugInfo other) { if (ReferenceEquals(other, null)) { return false; @@ -455,6 +626,7 @@ public bool Equals(ExperimentalDebugInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= originalNodeNames_.GetHashCode(); @@ -466,20 +638,39 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else originalNodeNames_.WriteTo(output, _repeated_originalNodeNames_codec); originalFuncNames_.WriteTo(output, _repeated_originalFuncNames_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + originalNodeNames_.WriteTo(ref output, _repeated_originalNodeNames_codec); + originalFuncNames_.WriteTo(ref output, _repeated_originalFuncNames_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += originalNodeNames_.CalculateSize(_repeated_originalNodeNames_codec); @@ -491,6 +682,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ExperimentalDebugInfo other) { if (other == null) { return; @@ -501,7 +693,11 @@ public void MergeFrom(ExperimentalDebugInfo other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -518,7 +714,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + originalNodeNames_.AddEntriesFrom(ref input, _repeated_originalNodeNames_codec); + break; + } + case 18: { + originalFuncNames_.AddEntriesFrom(ref input, _repeated_originalFuncNames_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/OpDef.cs b/src/TensorFlowNET.Core/Protobuf/OpDef.cs index df26be91c..dd6a26450 100644 --- a/src/TensorFlowNET.Core/Protobuf/OpDef.cs +++ b/src/TensorFlowNET.Core/Protobuf/OpDef.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/op_def.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -72,23 +72,31 @@ static OpDefReflection() { /// using the "op" field which should match the name of a OpDef. /// LINT.IfChange /// - public sealed partial class OpDef : pb::IMessage { + public sealed partial class OpDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new OpDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.OpDefReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OpDef() { OnConstruction(); } @@ -96,6 +104,7 @@ public OpDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OpDef(OpDef other) : this() { name_ = other.name_; inputArg_ = other.inputArg_.Clone(); @@ -114,6 +123,7 @@ public OpDef(OpDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OpDef Clone() { return new OpDef(this); } @@ -126,6 +136,7 @@ public OpDef Clone() { /// Names should be CamelCase and match the regexp "[A-Z][a-zA-Z0-9>_]*". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -142,6 +153,7 @@ public string Name { /// Description of the input(s). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField InputArg { get { return inputArg_; } } @@ -155,6 +167,7 @@ public string Name { /// Description of the output(s). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField OutputArg { get { return outputArg_; } } @@ -169,6 +182,7 @@ public string Name { /// operations (i.e. functions) which want to name different control outputs. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ControlOutput { get { return controlOutput_; } } @@ -179,6 +193,7 @@ public string Name { = pb::FieldCodec.ForMessage(34, global::Tensorflow.OpDef.Types.AttrDef.Parser); private readonly pbc::RepeatedField attr_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Attr { get { return attr_; } } @@ -190,6 +205,7 @@ public string Name { /// Optional deprecation based on GraphDef versions. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.OpDeprecation Deprecation { get { return deprecation_; } set { @@ -204,6 +220,7 @@ public string Name { /// One-line human-readable description of what the Op does. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Summary { get { return summary_; } set { @@ -218,6 +235,7 @@ public string Summary { /// Additional, longer human-readable description of what the Op does. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Description { get { return description_; } set { @@ -232,6 +250,7 @@ public string Description { /// True if the operation is commutative ("op(a,b) == op(b,a)" for all inputs) /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsCommutative { get { return isCommutative_; } set { @@ -253,6 +272,7 @@ public bool IsCommutative { /// TODO(josh11b): Implement that optimization. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsAggregate { get { return isAggregate_; } set { @@ -277,6 +297,7 @@ public bool IsAggregate { /// Subexpression Elimination (CSE). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsStateful { get { return isStateful_; } set { @@ -294,6 +315,7 @@ public bool IsStateful { /// input. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool AllowsUninitializedInput { get { return allowsUninitializedInput_; } set { @@ -310,6 +332,7 @@ public bool AllowsUninitializedInput { /// trigger TF network failure handling logics. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsDistributedCommunication { get { return isDistributedCommunication_; } set { @@ -318,11 +341,13 @@ public bool IsDistributedCommunication { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as OpDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(OpDef other) { if (ReferenceEquals(other, null)) { return false; @@ -347,6 +372,7 @@ public bool Equals(OpDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -369,12 +395,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -418,9 +449,61 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + inputArg_.WriteTo(ref output, _repeated_inputArg_codec); + outputArg_.WriteTo(ref output, _repeated_outputArg_codec); + attr_.WriteTo(ref output, _repeated_attr_codec); + if (Summary.Length != 0) { + output.WriteRawTag(42); + output.WriteString(Summary); + } + if (Description.Length != 0) { + output.WriteRawTag(50); + output.WriteString(Description); + } + if (deprecation_ != null) { + output.WriteRawTag(66); + output.WriteMessage(Deprecation); + } + if (IsAggregate != false) { + output.WriteRawTag(128, 1); + output.WriteBool(IsAggregate); + } + if (IsStateful != false) { + output.WriteRawTag(136, 1); + output.WriteBool(IsStateful); + } + if (IsCommutative != false) { + output.WriteRawTag(144, 1); + output.WriteBool(IsCommutative); + } + if (AllowsUninitializedInput != false) { + output.WriteRawTag(152, 1); + output.WriteBool(AllowsUninitializedInput); + } + controlOutput_.WriteTo(ref output, _repeated_controlOutput_codec); + if (IsDistributedCommunication != false) { + output.WriteRawTag(168, 1); + output.WriteBool(IsDistributedCommunication); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -461,6 +544,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(OpDef other) { if (other == null) { return; @@ -503,7 +587,11 @@ public void MergeFrom(OpDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -567,32 +655,112 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + inputArg_.AddEntriesFrom(ref input, _repeated_inputArg_codec); + break; + } + case 26: { + outputArg_.AddEntriesFrom(ref input, _repeated_outputArg_codec); + break; + } + case 34: { + attr_.AddEntriesFrom(ref input, _repeated_attr_codec); + break; + } + case 42: { + Summary = input.ReadString(); + break; + } + case 50: { + Description = input.ReadString(); + break; + } + case 66: { + if (deprecation_ == null) { + Deprecation = new global::Tensorflow.OpDeprecation(); + } + input.ReadMessage(Deprecation); + break; + } + case 128: { + IsAggregate = input.ReadBool(); + break; + } + case 136: { + IsStateful = input.ReadBool(); + break; + } + case 144: { + IsCommutative = input.ReadBool(); + break; + } + case 152: { + AllowsUninitializedInput = input.ReadBool(); + break; + } + case 162: { + controlOutput_.AddEntriesFrom(ref input, _repeated_controlOutput_codec); + break; + } + case 168: { + IsDistributedCommunication = input.ReadBool(); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the OpDef message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// For describing inputs and outputs. /// - public sealed partial class ArgDef : pb::IMessage { + public sealed partial class ArgDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ArgDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.OpDef.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ArgDef() { OnConstruction(); } @@ -600,6 +768,7 @@ public ArgDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ArgDef(ArgDef other) : this() { name_ = other.name_; description_ = other.description_; @@ -614,6 +783,7 @@ public ArgDef(ArgDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ArgDef Clone() { return new ArgDef(this); } @@ -625,6 +795,7 @@ public ArgDef Clone() { /// Name for the input/output. Should match the regexp "[a-z][a-z0-9_]*". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -639,6 +810,7 @@ public string Name { /// Human readable description. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Description { get { return description_; } set { @@ -662,6 +834,7 @@ public string Description { /// to the name of an attr with type "list(type)". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Type { get { return type_; } set { @@ -676,6 +849,7 @@ public string Description { /// if specified, attr must have type "type" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string TypeAttr { get { return typeAttr_; } set { @@ -690,6 +864,7 @@ public string TypeAttr { /// if specified, attr must have type "int" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string NumberAttr { get { return numberAttr_; } set { @@ -705,6 +880,7 @@ public string NumberAttr { /// type, type_attr, and number_attr may be specified. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string TypeListAttr { get { return typeListAttr_; } set { @@ -721,6 +897,7 @@ public string TypeListAttr { /// The handle data for resource inputs. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField HandleData { get { return handleData_; } } @@ -734,6 +911,7 @@ public string TypeListAttr { /// For outputs: if true, outputs are refs, otherwise they are not. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsRef { get { return isRef_; } set { @@ -756,6 +934,7 @@ public bool IsRef { /// just the type of a single argument. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.FullTypeDef ExperimentalFullType { get { return experimentalFullType_; } set { @@ -764,11 +943,13 @@ public bool IsRef { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ArgDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ArgDef other) { if (ReferenceEquals(other, null)) { return false; @@ -789,6 +970,7 @@ public bool Equals(ArgDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -807,12 +989,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -849,9 +1036,54 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (Description.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Description); + } + if (Type != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(24); + output.WriteEnum((int) Type); + } + if (TypeAttr.Length != 0) { + output.WriteRawTag(34); + output.WriteString(TypeAttr); + } + if (NumberAttr.Length != 0) { + output.WriteRawTag(42); + output.WriteString(NumberAttr); + } + if (TypeListAttr.Length != 0) { + output.WriteRawTag(50); + output.WriteString(TypeListAttr); + } + handleData_.WriteTo(ref output, _repeated_handleData_codec); + if (IsRef != false) { + output.WriteRawTag(128, 1); + output.WriteBool(IsRef); + } + if (experimentalFullType_ != null) { + output.WriteRawTag(138, 1); + output.WriteMessage(ExperimentalFullType); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -886,6 +1118,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ArgDef other) { if (other == null) { return; @@ -922,7 +1155,11 @@ public void MergeFrom(ArgDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -970,8 +1207,63 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + Description = input.ReadString(); + break; + } + case 24: { + Type = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + case 34: { + TypeAttr = input.ReadString(); + break; + } + case 42: { + NumberAttr = input.ReadString(); + break; + } + case 50: { + TypeListAttr = input.ReadString(); + break; + } + case 58: { + handleData_.AddEntriesFrom(ref input, _repeated_handleData_codec); + break; + } + case 128: { + IsRef = input.ReadBool(); + break; + } + case 138: { + if (experimentalFullType_ == null) { + ExperimentalFullType = new global::Tensorflow.FullTypeDef(); + } + input.ReadMessage(ExperimentalFullType); + break; + } + } + } + } + #endif + } /// @@ -979,23 +1271,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// Op. That is to say, this describes the attr fields that will /// be specified in the NodeDef. /// - public sealed partial class AttrDef : pb::IMessage { + public sealed partial class AttrDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AttrDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.OpDef.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrDef() { OnConstruction(); } @@ -1003,6 +1303,7 @@ public AttrDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrDef(AttrDef other) : this() { name_ = other.name_; type_ = other.type_; @@ -1015,6 +1316,7 @@ public AttrDef(AttrDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AttrDef Clone() { return new AttrDef(this); } @@ -1028,6 +1330,7 @@ public AttrDef Clone() { /// the regexp "[a-z][a-z0-9_]+". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -1043,6 +1346,7 @@ public string Name { /// "int", etc.). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Type { get { return type_; } set { @@ -1058,6 +1362,7 @@ public string Type { /// a value. If not specified, the user must supply a value. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.AttrValue DefaultValue { get { return defaultValue_; } set { @@ -1072,6 +1377,7 @@ public string Type { /// Human-readable description. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Description { get { return description_; } set { @@ -1087,6 +1393,7 @@ public string Description { /// types, this is the minimum length. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool HasMinimum { get { return hasMinimum_; } set { @@ -1098,6 +1405,7 @@ public bool HasMinimum { public const int MinimumFieldNumber = 6; private long minimum_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Minimum { get { return minimum_; } set { @@ -1117,6 +1425,7 @@ public long Minimum { /// "allowed_values.list" has the set of allowed strings. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.AttrValue AllowedValues { get { return allowedValues_; } set { @@ -1125,11 +1434,13 @@ public long Minimum { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AttrDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AttrDef other) { if (ReferenceEquals(other, null)) { return false; @@ -1148,6 +1459,7 @@ public bool Equals(AttrDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -1164,12 +1476,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -1201,9 +1518,49 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (Type.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Type); + } + if (defaultValue_ != null) { + output.WriteRawTag(26); + output.WriteMessage(DefaultValue); + } + if (Description.Length != 0) { + output.WriteRawTag(34); + output.WriteString(Description); + } + if (HasMinimum != false) { + output.WriteRawTag(40); + output.WriteBool(HasMinimum); + } + if (Minimum != 0L) { + output.WriteRawTag(48); + output.WriteInt64(Minimum); + } + if (allowedValues_ != null) { + output.WriteRawTag(58); + output.WriteMessage(AllowedValues); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -1234,6 +1591,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AttrDef other) { if (other == null) { return; @@ -1269,7 +1627,11 @@ public void MergeFrom(AttrDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1312,7 +1674,57 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + Type = input.ReadString(); + break; + } + case 26: { + if (defaultValue_ == null) { + DefaultValue = new global::Tensorflow.AttrValue(); + } + input.ReadMessage(DefaultValue); + break; + } + case 34: { + Description = input.ReadString(); + break; + } + case 40: { + HasMinimum = input.ReadBool(); + break; + } + case 48: { + Minimum = input.ReadInt64(); + break; + } + case 58: { + if (allowedValues_ == null) { + AllowedValues = new global::Tensorflow.AttrValue(); + } + input.ReadMessage(AllowedValues); + break; + } + } + } } + #endif } @@ -1324,23 +1736,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// /// Information about version-dependent deprecation of an op /// - public sealed partial class OpDeprecation : pb::IMessage { + public sealed partial class OpDeprecation : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new OpDeprecation()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.OpDefReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OpDeprecation() { OnConstruction(); } @@ -1348,6 +1768,7 @@ public OpDeprecation() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OpDeprecation(OpDeprecation other) : this() { version_ = other.version_; explanation_ = other.explanation_; @@ -1355,6 +1776,7 @@ public OpDeprecation(OpDeprecation other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OpDeprecation Clone() { return new OpDeprecation(this); } @@ -1366,6 +1788,7 @@ public OpDeprecation Clone() { /// First GraphDef version at which the op is disallowed. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Version { get { return version_; } set { @@ -1380,6 +1803,7 @@ public int Version { /// Explanation of why it was deprecated and what to use instead. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Explanation { get { return explanation_; } set { @@ -1388,11 +1812,13 @@ public string Explanation { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as OpDeprecation); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(OpDeprecation other) { if (ReferenceEquals(other, null)) { return false; @@ -1406,6 +1832,7 @@ public bool Equals(OpDeprecation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Version != 0) hash ^= Version.GetHashCode(); @@ -1417,12 +1844,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Version != 0) { output.WriteRawTag(8); output.WriteInt32(Version); @@ -1434,9 +1866,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Version != 0) { + output.WriteRawTag(8); + output.WriteInt32(Version); + } + if (Explanation.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Explanation); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Version != 0) { @@ -1452,6 +1904,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(OpDeprecation other) { if (other == null) { return; @@ -1466,7 +1919,11 @@ public void MergeFrom(OpDeprecation other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1483,30 +1940,62 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Version = input.ReadInt32(); + break; + } + case 18: { + Explanation = input.ReadString(); + break; + } + } + } + } + #endif + } /// /// A collection of OpDefs /// - public sealed partial class OpList : pb::IMessage { + public sealed partial class OpList : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new OpList()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.OpDefReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OpList() { OnConstruction(); } @@ -1514,12 +2003,14 @@ public OpList() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OpList(OpList other) : this() { op_ = other.op_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public OpList Clone() { return new OpList(this); } @@ -1530,16 +2021,19 @@ public OpList Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.OpDef.Parser); private readonly pbc::RepeatedField op_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Op { get { return op_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as OpList); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(OpList other) { if (ReferenceEquals(other, null)) { return false; @@ -1552,6 +2046,7 @@ public bool Equals(OpList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= op_.GetHashCode(); @@ -1562,19 +2057,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else op_.WriteTo(output, _repeated_op_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + op_.WriteTo(ref output, _repeated_op_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += op_.CalculateSize(_repeated_op_codec); @@ -1585,6 +2098,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(OpList other) { if (other == null) { return; @@ -1594,7 +2108,11 @@ public void MergeFrom(OpList other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1607,7 +2125,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + op_.AddEntriesFrom(ref input, _repeated_op_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Protocol.cs b/src/TensorFlowNET.Core/Protobuf/Protocol.cs new file mode 100644 index 000000000..6463a9b54 --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/Protocol.cs @@ -0,0 +1,3840 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/compiler/xla/pjrt/distributed/protocol.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Xla { + + /// Holder for reflection information generated from tensorflow/compiler/xla/pjrt/distributed/protocol.proto + public static partial class ProtocolReflection { + + #region Descriptor + /// File descriptor for tensorflow/compiler/xla/pjrt/distributed/protocol.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static ProtocolReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "Cjd0ZW5zb3JmbG93L2NvbXBpbGVyL3hsYS9wanJ0L2Rpc3RyaWJ1dGVkL3By", + "b3RvY29sLnByb3RvEgN4bGEiYwoLRGV2aWNlUHJvdG8SHAoUbG9jYWxfZGV2", + "aWNlX29yZGluYWwYASABKAUSDAoEbmFtZRgCIAEoCRIOCgZ2ZW5kb3IYAyAB", + "KAkSGAoQZ2xvYmFsX2RldmljZV9pZBgEIAEoBSJIChJMb2NhbFRvcG9sb2d5", + "UHJvdG8SDwoHbm9kZV9pZBgBIAEoBRIhCgdkZXZpY2VzGAIgAygLMhAueGxh", + "LkRldmljZVByb3RvIj0KE0dsb2JhbFRvcG9sb2d5UHJvdG8SJgoFbm9kZXMY", + "ASADKAsyFy54bGEuTG9jYWxUb3BvbG9neVByb3RvImwKDkNvbm5lY3RSZXF1", + "ZXN0EhgKEHByb3RvY29sX3ZlcnNpb24YASABKAUSHAoUdGltZW91dF9taWxs", + "aXNlY29uZHMYAiABKAUSDwoHbm9kZV9pZBgDIAEoBRIRCgljbGllbnRfaWQY", + "BCABKAQiJQoPQ29ubmVjdFJlc3BvbnNlEhIKCnNlc3Npb25faWQYASABKAQi", + "XgoXRW51bWVyYXRlRGV2aWNlc1JlcXVlc3QSEgoKc2Vzc2lvbl9pZBgBIAEo", + "BBIvCg5sb2NhbF90b3BvbG9neRgDIAEoCzIXLnhsYS5Mb2NhbFRvcG9sb2d5", + "UHJvdG8iTQoYRW51bWVyYXRlRGV2aWNlc1Jlc3BvbnNlEjEKD2dsb2JhbF90", + "b3BvbG9neRgBIAEoCzIYLnhsYS5HbG9iYWxUb3BvbG9neVByb3RvIlMKEktl", + "eVZhbHVlR2V0UmVxdWVzdBISCgpzZXNzaW9uX2lkGAEgASgEEgsKA2tleRgC", + "IAEoDBIcChR0aW1lb3V0X21pbGxpc2Vjb25kcxgDIAEoBSIzChNLZXlWYWx1", + "ZUdldFJlc3BvbnNlEg0KBWZvdW5kGAEgASgIEg0KBXZhbHVlGAIgASgMIkQK", + "EktleVZhbHVlU2V0UmVxdWVzdBISCgpzZXNzaW9uX2lkGAEgASgEEgsKA2tl", + "eRgCIAEoDBINCgV2YWx1ZRgDIAEoDCIVChNLZXlWYWx1ZVNldFJlc3BvbnNl", + "Im0KFFdhaXRBdEJhcnJpZXJSZXF1ZXN0EhIKCnNlc3Npb25faWQYASABKAQS", + "EgoKYmFycmllcl9pZBgCIAEoDBIPCgdub2RlX2lkGAMgASgFEhwKFHRpbWVv", + "dXRfbWlsbGlzZWNvbmRzGAQgASgFIhcKFVdhaXRBdEJhcnJpZXJSZXNwb25z", + "ZSI3ChBIZWFydGJlYXRSZXF1ZXN0EhIKCnNlc3Npb25faWQYASABKAQSDwoH", + "bm9kZV9pZBgCIAEoBSITChFIZWFydGJlYXRSZXNwb25zZSI2Cg9TaHV0ZG93", + "blJlcXVlc3QSEgoKc2Vzc2lvbl9pZBgBIAEoBBIPCgdub2RlX2lkGAIgASgF", + "IhIKEFNodXRkb3duUmVzcG9uc2Uy8QMKGURpc3RyaWJ1dGVkUnVudGltZVNl", + "cnZpY2USNgoHQ29ubmVjdBITLnhsYS5Db25uZWN0UmVxdWVzdBoULnhsYS5D", + "b25uZWN0UmVzcG9uc2UiABJRChBFbnVtZXJhdGVEZXZpY2VzEhwueGxhLkVu", + "dW1lcmF0ZURldmljZXNSZXF1ZXN0Gh0ueGxhLkVudW1lcmF0ZURldmljZXNS", + "ZXNwb25zZSIAEjwKCUhlYXJ0YmVhdBIVLnhsYS5IZWFydGJlYXRSZXF1ZXN0", + "GhYueGxhLkhlYXJ0YmVhdFJlc3BvbnNlIgASOQoIU2h1dGRvd24SFC54bGEu", + "U2h1dGRvd25SZXF1ZXN0GhUueGxhLlNodXRkb3duUmVzcG9uc2UiABJCCgtL", + "ZXlWYWx1ZUdldBIXLnhsYS5LZXlWYWx1ZUdldFJlcXVlc3QaGC54bGEuS2V5", + "VmFsdWVHZXRSZXNwb25zZSIAEkIKC0tleVZhbHVlU2V0EhcueGxhLktleVZh", + "bHVlU2V0UmVxdWVzdBoYLnhsYS5LZXlWYWx1ZVNldFJlc3BvbnNlIgASSAoN", + "V2FpdEF0QmFycmllchIZLnhsYS5XYWl0QXRCYXJyaWVyUmVxdWVzdBoaLnhs", + "YS5XYWl0QXRCYXJyaWVyUmVzcG9uc2UiAEJgWl5naXRodWIuY29tL3RlbnNv", + "cmZsb3cvdGVuc29yZmxvdy90ZW5zb3JmbG93L2dvL2NvbXBpbGVyL3hsYS9w", + "anJ0L2Rpc3RyaWJ1dGVkL3Byb3RvY29sX2dvX3Byb3RvYgZwcm90bzM=")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { }, + new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DeviceProto), global::Xla.DeviceProto.Parser, new[]{ "LocalDeviceOrdinal", "Name", "Vendor", "GlobalDeviceId" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.LocalTopologyProto), global::Xla.LocalTopologyProto.Parser, new[]{ "NodeId", "Devices" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.GlobalTopologyProto), global::Xla.GlobalTopologyProto.Parser, new[]{ "Nodes" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ConnectRequest), global::Xla.ConnectRequest.Parser, new[]{ "ProtocolVersion", "TimeoutMilliseconds", "NodeId", "ClientId" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ConnectResponse), global::Xla.ConnectResponse.Parser, new[]{ "SessionId" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.EnumerateDevicesRequest), global::Xla.EnumerateDevicesRequest.Parser, new[]{ "SessionId", "LocalTopology" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.EnumerateDevicesResponse), global::Xla.EnumerateDevicesResponse.Parser, new[]{ "GlobalTopology" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.KeyValueGetRequest), global::Xla.KeyValueGetRequest.Parser, new[]{ "SessionId", "Key", "TimeoutMilliseconds" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.KeyValueGetResponse), global::Xla.KeyValueGetResponse.Parser, new[]{ "Found", "Value" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.KeyValueSetRequest), global::Xla.KeyValueSetRequest.Parser, new[]{ "SessionId", "Key", "Value" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.KeyValueSetResponse), global::Xla.KeyValueSetResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.WaitAtBarrierRequest), global::Xla.WaitAtBarrierRequest.Parser, new[]{ "SessionId", "BarrierId", "NodeId", "TimeoutMilliseconds" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.WaitAtBarrierResponse), global::Xla.WaitAtBarrierResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HeartbeatRequest), global::Xla.HeartbeatRequest.Parser, new[]{ "SessionId", "NodeId" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.HeartbeatResponse), global::Xla.HeartbeatResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ShutdownRequest), global::Xla.ShutdownRequest.Parser, new[]{ "SessionId", "NodeId" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ShutdownResponse), global::Xla.ShutdownResponse.Parser, null, null, null, null, null) + })); + } + #endregion + + } + #region Messages + /// + /// Describes a device local to a host. + /// + public sealed partial class DeviceProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeviceProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeviceProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeviceProto(DeviceProto other) : this() { + localDeviceOrdinal_ = other.localDeviceOrdinal_; + name_ = other.name_; + vendor_ = other.vendor_; + globalDeviceId_ = other.globalDeviceId_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeviceProto Clone() { + return new DeviceProto(this); + } + + /// Field number for the "local_device_ordinal" field. + public const int LocalDeviceOrdinalFieldNumber = 1; + private int localDeviceOrdinal_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int LocalDeviceOrdinal { + get { return localDeviceOrdinal_; } + set { + localDeviceOrdinal_ = value; + } + } + + /// Field number for the "name" field. + public const int NameFieldNumber = 2; + private string name_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Name { + get { return name_; } + set { + name_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "vendor" field. + public const int VendorFieldNumber = 3; + private string vendor_ = ""; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Vendor { + get { return vendor_; } + set { + vendor_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "global_device_id" field. + public const int GlobalDeviceIdFieldNumber = 4; + private int globalDeviceId_; + /// + /// The following fields are present in the GlobalTopologyProto message + /// returned by EnumerateDevices() but not in the LocalTopologyProto messages + /// passed to EnumerateDevices(). In other words, the coordinator node + /// determines the global device IDs during EnumerateDevices(). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int GlobalDeviceId { + get { return globalDeviceId_; } + set { + globalDeviceId_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DeviceProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DeviceProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (LocalDeviceOrdinal != other.LocalDeviceOrdinal) return false; + if (Name != other.Name) return false; + if (Vendor != other.Vendor) return false; + if (GlobalDeviceId != other.GlobalDeviceId) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (LocalDeviceOrdinal != 0) hash ^= LocalDeviceOrdinal.GetHashCode(); + if (Name.Length != 0) hash ^= Name.GetHashCode(); + if (Vendor.Length != 0) hash ^= Vendor.GetHashCode(); + if (GlobalDeviceId != 0) hash ^= GlobalDeviceId.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (LocalDeviceOrdinal != 0) { + output.WriteRawTag(8); + output.WriteInt32(LocalDeviceOrdinal); + } + if (Name.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Name); + } + if (Vendor.Length != 0) { + output.WriteRawTag(26); + output.WriteString(Vendor); + } + if (GlobalDeviceId != 0) { + output.WriteRawTag(32); + output.WriteInt32(GlobalDeviceId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (LocalDeviceOrdinal != 0) { + output.WriteRawTag(8); + output.WriteInt32(LocalDeviceOrdinal); + } + if (Name.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Name); + } + if (Vendor.Length != 0) { + output.WriteRawTag(26); + output.WriteString(Vendor); + } + if (GlobalDeviceId != 0) { + output.WriteRawTag(32); + output.WriteInt32(GlobalDeviceId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (LocalDeviceOrdinal != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(LocalDeviceOrdinal); + } + if (Name.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Name); + } + if (Vendor.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Vendor); + } + if (GlobalDeviceId != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(GlobalDeviceId); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DeviceProto other) { + if (other == null) { + return; + } + if (other.LocalDeviceOrdinal != 0) { + LocalDeviceOrdinal = other.LocalDeviceOrdinal; + } + if (other.Name.Length != 0) { + Name = other.Name; + } + if (other.Vendor.Length != 0) { + Vendor = other.Vendor; + } + if (other.GlobalDeviceId != 0) { + GlobalDeviceId = other.GlobalDeviceId; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + LocalDeviceOrdinal = input.ReadInt32(); + break; + } + case 18: { + Name = input.ReadString(); + break; + } + case 26: { + Vendor = input.ReadString(); + break; + } + case 32: { + GlobalDeviceId = input.ReadInt32(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + LocalDeviceOrdinal = input.ReadInt32(); + break; + } + case 18: { + Name = input.ReadString(); + break; + } + case 26: { + Vendor = input.ReadString(); + break; + } + case 32: { + GlobalDeviceId = input.ReadInt32(); + break; + } + } + } + } + #endif + + } + + public sealed partial class LocalTopologyProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new LocalTopologyProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LocalTopologyProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LocalTopologyProto(LocalTopologyProto other) : this() { + nodeId_ = other.nodeId_; + devices_ = other.devices_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LocalTopologyProto Clone() { + return new LocalTopologyProto(this); + } + + /// Field number for the "node_id" field. + public const int NodeIdFieldNumber = 1; + private int nodeId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int NodeId { + get { return nodeId_; } + set { + nodeId_ = value; + } + } + + /// Field number for the "devices" field. + public const int DevicesFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_devices_codec + = pb::FieldCodec.ForMessage(18, global::Xla.DeviceProto.Parser); + private readonly pbc::RepeatedField devices_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Devices { + get { return devices_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as LocalTopologyProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(LocalTopologyProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (NodeId != other.NodeId) return false; + if(!devices_.Equals(other.devices_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (NodeId != 0) hash ^= NodeId.GetHashCode(); + hash ^= devices_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (NodeId != 0) { + output.WriteRawTag(8); + output.WriteInt32(NodeId); + } + devices_.WriteTo(output, _repeated_devices_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (NodeId != 0) { + output.WriteRawTag(8); + output.WriteInt32(NodeId); + } + devices_.WriteTo(ref output, _repeated_devices_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (NodeId != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(NodeId); + } + size += devices_.CalculateSize(_repeated_devices_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(LocalTopologyProto other) { + if (other == null) { + return; + } + if (other.NodeId != 0) { + NodeId = other.NodeId; + } + devices_.Add(other.devices_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + NodeId = input.ReadInt32(); + break; + } + case 18: { + devices_.AddEntriesFrom(input, _repeated_devices_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + NodeId = input.ReadInt32(); + break; + } + case 18: { + devices_.AddEntriesFrom(ref input, _repeated_devices_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class GlobalTopologyProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GlobalTopologyProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[2]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GlobalTopologyProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GlobalTopologyProto(GlobalTopologyProto other) : this() { + nodes_ = other.nodes_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GlobalTopologyProto Clone() { + return new GlobalTopologyProto(this); + } + + /// Field number for the "nodes" field. + public const int NodesFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_nodes_codec + = pb::FieldCodec.ForMessage(10, global::Xla.LocalTopologyProto.Parser); + private readonly pbc::RepeatedField nodes_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Nodes { + get { return nodes_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GlobalTopologyProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GlobalTopologyProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!nodes_.Equals(other.nodes_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= nodes_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + nodes_.WriteTo(output, _repeated_nodes_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + nodes_.WriteTo(ref output, _repeated_nodes_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += nodes_.CalculateSize(_repeated_nodes_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GlobalTopologyProto other) { + if (other == null) { + return; + } + nodes_.Add(other.nodes_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + nodes_.AddEntriesFrom(input, _repeated_nodes_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + nodes_.AddEntriesFrom(ref input, _repeated_nodes_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class ConnectRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ConnectRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[3]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ConnectRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ConnectRequest(ConnectRequest other) : this() { + protocolVersion_ = other.protocolVersion_; + timeoutMilliseconds_ = other.timeoutMilliseconds_; + nodeId_ = other.nodeId_; + clientId_ = other.clientId_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ConnectRequest Clone() { + return new ConnectRequest(this); + } + + /// Field number for the "protocol_version" field. + public const int ProtocolVersionFieldNumber = 1; + private int protocolVersion_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int ProtocolVersion { + get { return protocolVersion_; } + set { + protocolVersion_ = value; + } + } + + /// Field number for the "timeout_milliseconds" field. + public const int TimeoutMillisecondsFieldNumber = 2; + private int timeoutMilliseconds_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int TimeoutMilliseconds { + get { return timeoutMilliseconds_; } + set { + timeoutMilliseconds_ = value; + } + } + + /// Field number for the "node_id" field. + public const int NodeIdFieldNumber = 3; + private int nodeId_; + /// + /// We assume that each node knows its globally-unique node ID, provided by + /// whatever mechanism launches the tasks. Node IDs should form a dense range + /// of integers [0, num_nodes). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int NodeId { + get { return nodeId_; } + set { + nodeId_ = value; + } + } + + /// Field number for the "client_id" field. + public const int ClientIdFieldNumber = 4; + private ulong clientId_; + /// + /// A unique ID number for the client. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong ClientId { + get { return clientId_; } + set { + clientId_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ConnectRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ConnectRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ProtocolVersion != other.ProtocolVersion) return false; + if (TimeoutMilliseconds != other.TimeoutMilliseconds) return false; + if (NodeId != other.NodeId) return false; + if (ClientId != other.ClientId) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ProtocolVersion != 0) hash ^= ProtocolVersion.GetHashCode(); + if (TimeoutMilliseconds != 0) hash ^= TimeoutMilliseconds.GetHashCode(); + if (NodeId != 0) hash ^= NodeId.GetHashCode(); + if (ClientId != 0UL) hash ^= ClientId.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ProtocolVersion != 0) { + output.WriteRawTag(8); + output.WriteInt32(ProtocolVersion); + } + if (TimeoutMilliseconds != 0) { + output.WriteRawTag(16); + output.WriteInt32(TimeoutMilliseconds); + } + if (NodeId != 0) { + output.WriteRawTag(24); + output.WriteInt32(NodeId); + } + if (ClientId != 0UL) { + output.WriteRawTag(32); + output.WriteUInt64(ClientId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ProtocolVersion != 0) { + output.WriteRawTag(8); + output.WriteInt32(ProtocolVersion); + } + if (TimeoutMilliseconds != 0) { + output.WriteRawTag(16); + output.WriteInt32(TimeoutMilliseconds); + } + if (NodeId != 0) { + output.WriteRawTag(24); + output.WriteInt32(NodeId); + } + if (ClientId != 0UL) { + output.WriteRawTag(32); + output.WriteUInt64(ClientId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ProtocolVersion != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(ProtocolVersion); + } + if (TimeoutMilliseconds != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(TimeoutMilliseconds); + } + if (NodeId != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(NodeId); + } + if (ClientId != 0UL) { + size += 1 + pb::CodedOutputStream.ComputeUInt64Size(ClientId); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ConnectRequest other) { + if (other == null) { + return; + } + if (other.ProtocolVersion != 0) { + ProtocolVersion = other.ProtocolVersion; + } + if (other.TimeoutMilliseconds != 0) { + TimeoutMilliseconds = other.TimeoutMilliseconds; + } + if (other.NodeId != 0) { + NodeId = other.NodeId; + } + if (other.ClientId != 0UL) { + ClientId = other.ClientId; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + ProtocolVersion = input.ReadInt32(); + break; + } + case 16: { + TimeoutMilliseconds = input.ReadInt32(); + break; + } + case 24: { + NodeId = input.ReadInt32(); + break; + } + case 32: { + ClientId = input.ReadUInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + ProtocolVersion = input.ReadInt32(); + break; + } + case 16: { + TimeoutMilliseconds = input.ReadInt32(); + break; + } + case 24: { + NodeId = input.ReadInt32(); + break; + } + case 32: { + ClientId = input.ReadUInt64(); + break; + } + } + } + } + #endif + + } + + public sealed partial class ConnectResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ConnectResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[4]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ConnectResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ConnectResponse(ConnectResponse other) : this() { + sessionId_ = other.sessionId_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ConnectResponse Clone() { + return new ConnectResponse(this); + } + + /// Field number for the "session_id" field. + public const int SessionIdFieldNumber = 1; + private ulong sessionId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong SessionId { + get { return sessionId_; } + set { + sessionId_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ConnectResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ConnectResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (SessionId != other.SessionId) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (SessionId != 0UL) hash ^= SessionId.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (SessionId != 0UL) { + size += 1 + pb::CodedOutputStream.ComputeUInt64Size(SessionId); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ConnectResponse other) { + if (other == null) { + return; + } + if (other.SessionId != 0UL) { + SessionId = other.SessionId; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + } + } + } + #endif + + } + + public sealed partial class EnumerateDevicesRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new EnumerateDevicesRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[5]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public EnumerateDevicesRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public EnumerateDevicesRequest(EnumerateDevicesRequest other) : this() { + sessionId_ = other.sessionId_; + localTopology_ = other.localTopology_ != null ? other.localTopology_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public EnumerateDevicesRequest Clone() { + return new EnumerateDevicesRequest(this); + } + + /// Field number for the "session_id" field. + public const int SessionIdFieldNumber = 1; + private ulong sessionId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong SessionId { + get { return sessionId_; } + set { + sessionId_ = value; + } + } + + /// Field number for the "local_topology" field. + public const int LocalTopologyFieldNumber = 3; + private global::Xla.LocalTopologyProto localTopology_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LocalTopologyProto LocalTopology { + get { return localTopology_; } + set { + localTopology_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as EnumerateDevicesRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(EnumerateDevicesRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (SessionId != other.SessionId) return false; + if (!object.Equals(LocalTopology, other.LocalTopology)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (SessionId != 0UL) hash ^= SessionId.GetHashCode(); + if (localTopology_ != null) hash ^= LocalTopology.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (localTopology_ != null) { + output.WriteRawTag(26); + output.WriteMessage(LocalTopology); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (localTopology_ != null) { + output.WriteRawTag(26); + output.WriteMessage(LocalTopology); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (SessionId != 0UL) { + size += 1 + pb::CodedOutputStream.ComputeUInt64Size(SessionId); + } + if (localTopology_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(LocalTopology); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(EnumerateDevicesRequest other) { + if (other == null) { + return; + } + if (other.SessionId != 0UL) { + SessionId = other.SessionId; + } + if (other.localTopology_ != null) { + if (localTopology_ == null) { + LocalTopology = new global::Xla.LocalTopologyProto(); + } + LocalTopology.MergeFrom(other.LocalTopology); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 26: { + if (localTopology_ == null) { + LocalTopology = new global::Xla.LocalTopologyProto(); + } + input.ReadMessage(LocalTopology); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 26: { + if (localTopology_ == null) { + LocalTopology = new global::Xla.LocalTopologyProto(); + } + input.ReadMessage(LocalTopology); + break; + } + } + } + } + #endif + + } + + public sealed partial class EnumerateDevicesResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new EnumerateDevicesResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[6]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public EnumerateDevicesResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public EnumerateDevicesResponse(EnumerateDevicesResponse other) : this() { + globalTopology_ = other.globalTopology_ != null ? other.globalTopology_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public EnumerateDevicesResponse Clone() { + return new EnumerateDevicesResponse(this); + } + + /// Field number for the "global_topology" field. + public const int GlobalTopologyFieldNumber = 1; + private global::Xla.GlobalTopologyProto globalTopology_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalTopologyProto GlobalTopology { + get { return globalTopology_; } + set { + globalTopology_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as EnumerateDevicesResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(EnumerateDevicesResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(GlobalTopology, other.GlobalTopology)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (globalTopology_ != null) hash ^= GlobalTopology.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (globalTopology_ != null) { + output.WriteRawTag(10); + output.WriteMessage(GlobalTopology); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (globalTopology_ != null) { + output.WriteRawTag(10); + output.WriteMessage(GlobalTopology); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (globalTopology_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(GlobalTopology); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(EnumerateDevicesResponse other) { + if (other == null) { + return; + } + if (other.globalTopology_ != null) { + if (globalTopology_ == null) { + GlobalTopology = new global::Xla.GlobalTopologyProto(); + } + GlobalTopology.MergeFrom(other.GlobalTopology); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (globalTopology_ == null) { + GlobalTopology = new global::Xla.GlobalTopologyProto(); + } + input.ReadMessage(GlobalTopology); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (globalTopology_ == null) { + GlobalTopology = new global::Xla.GlobalTopologyProto(); + } + input.ReadMessage(GlobalTopology); + break; + } + } + } + } + #endif + + } + + public sealed partial class KeyValueGetRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new KeyValueGetRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[7]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueGetRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueGetRequest(KeyValueGetRequest other) : this() { + sessionId_ = other.sessionId_; + key_ = other.key_; + timeoutMilliseconds_ = other.timeoutMilliseconds_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueGetRequest Clone() { + return new KeyValueGetRequest(this); + } + + /// Field number for the "session_id" field. + public const int SessionIdFieldNumber = 1; + private ulong sessionId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong SessionId { + get { return sessionId_; } + set { + sessionId_ = value; + } + } + + /// Field number for the "key" field. + public const int KeyFieldNumber = 2; + private pb::ByteString key_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString Key { + get { return key_; } + set { + key_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "timeout_milliseconds" field. + public const int TimeoutMillisecondsFieldNumber = 3; + private int timeoutMilliseconds_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int TimeoutMilliseconds { + get { return timeoutMilliseconds_; } + set { + timeoutMilliseconds_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as KeyValueGetRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(KeyValueGetRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (SessionId != other.SessionId) return false; + if (Key != other.Key) return false; + if (TimeoutMilliseconds != other.TimeoutMilliseconds) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (SessionId != 0UL) hash ^= SessionId.GetHashCode(); + if (Key.Length != 0) hash ^= Key.GetHashCode(); + if (TimeoutMilliseconds != 0) hash ^= TimeoutMilliseconds.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (Key.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Key); + } + if (TimeoutMilliseconds != 0) { + output.WriteRawTag(24); + output.WriteInt32(TimeoutMilliseconds); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (Key.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Key); + } + if (TimeoutMilliseconds != 0) { + output.WriteRawTag(24); + output.WriteInt32(TimeoutMilliseconds); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (SessionId != 0UL) { + size += 1 + pb::CodedOutputStream.ComputeUInt64Size(SessionId); + } + if (Key.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(Key); + } + if (TimeoutMilliseconds != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(TimeoutMilliseconds); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(KeyValueGetRequest other) { + if (other == null) { + return; + } + if (other.SessionId != 0UL) { + SessionId = other.SessionId; + } + if (other.Key.Length != 0) { + Key = other.Key; + } + if (other.TimeoutMilliseconds != 0) { + TimeoutMilliseconds = other.TimeoutMilliseconds; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 18: { + Key = input.ReadBytes(); + break; + } + case 24: { + TimeoutMilliseconds = input.ReadInt32(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 18: { + Key = input.ReadBytes(); + break; + } + case 24: { + TimeoutMilliseconds = input.ReadInt32(); + break; + } + } + } + } + #endif + + } + + public sealed partial class KeyValueGetResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new KeyValueGetResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[8]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueGetResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueGetResponse(KeyValueGetResponse other) : this() { + found_ = other.found_; + value_ = other.value_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueGetResponse Clone() { + return new KeyValueGetResponse(this); + } + + /// Field number for the "found" field. + public const int FoundFieldNumber = 1; + private bool found_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Found { + get { return found_; } + set { + found_ = value; + } + } + + /// Field number for the "value" field. + public const int ValueFieldNumber = 2; + private pb::ByteString value_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString Value { + get { return value_; } + set { + value_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as KeyValueGetResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(KeyValueGetResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Found != other.Found) return false; + if (Value != other.Value) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Found != false) hash ^= Found.GetHashCode(); + if (Value.Length != 0) hash ^= Value.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Found != false) { + output.WriteRawTag(8); + output.WriteBool(Found); + } + if (Value.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Value); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Found != false) { + output.WriteRawTag(8); + output.WriteBool(Found); + } + if (Value.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Value); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Found != false) { + size += 1 + 1; + } + if (Value.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(Value); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(KeyValueGetResponse other) { + if (other == null) { + return; + } + if (other.Found != false) { + Found = other.Found; + } + if (other.Value.Length != 0) { + Value = other.Value; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Found = input.ReadBool(); + break; + } + case 18: { + Value = input.ReadBytes(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Found = input.ReadBool(); + break; + } + case 18: { + Value = input.ReadBytes(); + break; + } + } + } + } + #endif + + } + + public sealed partial class KeyValueSetRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new KeyValueSetRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[9]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueSetRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueSetRequest(KeyValueSetRequest other) : this() { + sessionId_ = other.sessionId_; + key_ = other.key_; + value_ = other.value_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueSetRequest Clone() { + return new KeyValueSetRequest(this); + } + + /// Field number for the "session_id" field. + public const int SessionIdFieldNumber = 1; + private ulong sessionId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong SessionId { + get { return sessionId_; } + set { + sessionId_ = value; + } + } + + /// Field number for the "key" field. + public const int KeyFieldNumber = 2; + private pb::ByteString key_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString Key { + get { return key_; } + set { + key_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "value" field. + public const int ValueFieldNumber = 3; + private pb::ByteString value_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString Value { + get { return value_; } + set { + value_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as KeyValueSetRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(KeyValueSetRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (SessionId != other.SessionId) return false; + if (Key != other.Key) return false; + if (Value != other.Value) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (SessionId != 0UL) hash ^= SessionId.GetHashCode(); + if (Key.Length != 0) hash ^= Key.GetHashCode(); + if (Value.Length != 0) hash ^= Value.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (Key.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Key); + } + if (Value.Length != 0) { + output.WriteRawTag(26); + output.WriteBytes(Value); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (Key.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Key); + } + if (Value.Length != 0) { + output.WriteRawTag(26); + output.WriteBytes(Value); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (SessionId != 0UL) { + size += 1 + pb::CodedOutputStream.ComputeUInt64Size(SessionId); + } + if (Key.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(Key); + } + if (Value.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(Value); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(KeyValueSetRequest other) { + if (other == null) { + return; + } + if (other.SessionId != 0UL) { + SessionId = other.SessionId; + } + if (other.Key.Length != 0) { + Key = other.Key; + } + if (other.Value.Length != 0) { + Value = other.Value; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 18: { + Key = input.ReadBytes(); + break; + } + case 26: { + Value = input.ReadBytes(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 18: { + Key = input.ReadBytes(); + break; + } + case 26: { + Value = input.ReadBytes(); + break; + } + } + } + } + #endif + + } + + public sealed partial class KeyValueSetResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new KeyValueSetResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[10]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueSetResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueSetResponse(KeyValueSetResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KeyValueSetResponse Clone() { + return new KeyValueSetResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as KeyValueSetResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(KeyValueSetResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(KeyValueSetResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + public sealed partial class WaitAtBarrierRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WaitAtBarrierRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[11]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitAtBarrierRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitAtBarrierRequest(WaitAtBarrierRequest other) : this() { + sessionId_ = other.sessionId_; + barrierId_ = other.barrierId_; + nodeId_ = other.nodeId_; + timeoutMilliseconds_ = other.timeoutMilliseconds_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitAtBarrierRequest Clone() { + return new WaitAtBarrierRequest(this); + } + + /// Field number for the "session_id" field. + public const int SessionIdFieldNumber = 1; + private ulong sessionId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong SessionId { + get { return sessionId_; } + set { + sessionId_ = value; + } + } + + /// Field number for the "barrier_id" field. + public const int BarrierIdFieldNumber = 2; + private pb::ByteString barrierId_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString BarrierId { + get { return barrierId_; } + set { + barrierId_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "node_id" field. + public const int NodeIdFieldNumber = 3; + private int nodeId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int NodeId { + get { return nodeId_; } + set { + nodeId_ = value; + } + } + + /// Field number for the "timeout_milliseconds" field. + public const int TimeoutMillisecondsFieldNumber = 4; + private int timeoutMilliseconds_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int TimeoutMilliseconds { + get { return timeoutMilliseconds_; } + set { + timeoutMilliseconds_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as WaitAtBarrierRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(WaitAtBarrierRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (SessionId != other.SessionId) return false; + if (BarrierId != other.BarrierId) return false; + if (NodeId != other.NodeId) return false; + if (TimeoutMilliseconds != other.TimeoutMilliseconds) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (SessionId != 0UL) hash ^= SessionId.GetHashCode(); + if (BarrierId.Length != 0) hash ^= BarrierId.GetHashCode(); + if (NodeId != 0) hash ^= NodeId.GetHashCode(); + if (TimeoutMilliseconds != 0) hash ^= TimeoutMilliseconds.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (BarrierId.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(BarrierId); + } + if (NodeId != 0) { + output.WriteRawTag(24); + output.WriteInt32(NodeId); + } + if (TimeoutMilliseconds != 0) { + output.WriteRawTag(32); + output.WriteInt32(TimeoutMilliseconds); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (BarrierId.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(BarrierId); + } + if (NodeId != 0) { + output.WriteRawTag(24); + output.WriteInt32(NodeId); + } + if (TimeoutMilliseconds != 0) { + output.WriteRawTag(32); + output.WriteInt32(TimeoutMilliseconds); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (SessionId != 0UL) { + size += 1 + pb::CodedOutputStream.ComputeUInt64Size(SessionId); + } + if (BarrierId.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(BarrierId); + } + if (NodeId != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(NodeId); + } + if (TimeoutMilliseconds != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(TimeoutMilliseconds); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(WaitAtBarrierRequest other) { + if (other == null) { + return; + } + if (other.SessionId != 0UL) { + SessionId = other.SessionId; + } + if (other.BarrierId.Length != 0) { + BarrierId = other.BarrierId; + } + if (other.NodeId != 0) { + NodeId = other.NodeId; + } + if (other.TimeoutMilliseconds != 0) { + TimeoutMilliseconds = other.TimeoutMilliseconds; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 18: { + BarrierId = input.ReadBytes(); + break; + } + case 24: { + NodeId = input.ReadInt32(); + break; + } + case 32: { + TimeoutMilliseconds = input.ReadInt32(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 18: { + BarrierId = input.ReadBytes(); + break; + } + case 24: { + NodeId = input.ReadInt32(); + break; + } + case 32: { + TimeoutMilliseconds = input.ReadInt32(); + break; + } + } + } + } + #endif + + } + + public sealed partial class WaitAtBarrierResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WaitAtBarrierResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[12]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitAtBarrierResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitAtBarrierResponse(WaitAtBarrierResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitAtBarrierResponse Clone() { + return new WaitAtBarrierResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as WaitAtBarrierResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(WaitAtBarrierResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(WaitAtBarrierResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + public sealed partial class HeartbeatRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HeartbeatRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[13]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatRequest(HeartbeatRequest other) : this() { + sessionId_ = other.sessionId_; + nodeId_ = other.nodeId_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatRequest Clone() { + return new HeartbeatRequest(this); + } + + /// Field number for the "session_id" field. + public const int SessionIdFieldNumber = 1; + private ulong sessionId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong SessionId { + get { return sessionId_; } + set { + sessionId_ = value; + } + } + + /// Field number for the "node_id" field. + public const int NodeIdFieldNumber = 2; + private int nodeId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int NodeId { + get { return nodeId_; } + set { + nodeId_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HeartbeatRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HeartbeatRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (SessionId != other.SessionId) return false; + if (NodeId != other.NodeId) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (SessionId != 0UL) hash ^= SessionId.GetHashCode(); + if (NodeId != 0) hash ^= NodeId.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (NodeId != 0) { + output.WriteRawTag(16); + output.WriteInt32(NodeId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (NodeId != 0) { + output.WriteRawTag(16); + output.WriteInt32(NodeId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (SessionId != 0UL) { + size += 1 + pb::CodedOutputStream.ComputeUInt64Size(SessionId); + } + if (NodeId != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(NodeId); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HeartbeatRequest other) { + if (other == null) { + return; + } + if (other.SessionId != 0UL) { + SessionId = other.SessionId; + } + if (other.NodeId != 0) { + NodeId = other.NodeId; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 16: { + NodeId = input.ReadInt32(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 16: { + NodeId = input.ReadInt32(); + break; + } + } + } + } + #endif + + } + + public sealed partial class HeartbeatResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HeartbeatResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[14]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatResponse(HeartbeatResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public HeartbeatResponse Clone() { + return new HeartbeatResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as HeartbeatResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(HeartbeatResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(HeartbeatResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + public sealed partial class ShutdownRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ShutdownRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[15]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownRequest(ShutdownRequest other) : this() { + sessionId_ = other.sessionId_; + nodeId_ = other.nodeId_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownRequest Clone() { + return new ShutdownRequest(this); + } + + /// Field number for the "session_id" field. + public const int SessionIdFieldNumber = 1; + private ulong sessionId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong SessionId { + get { return sessionId_; } + set { + sessionId_ = value; + } + } + + /// Field number for the "node_id" field. + public const int NodeIdFieldNumber = 2; + private int nodeId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int NodeId { + get { return nodeId_; } + set { + nodeId_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ShutdownRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ShutdownRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (SessionId != other.SessionId) return false; + if (NodeId != other.NodeId) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (SessionId != 0UL) hash ^= SessionId.GetHashCode(); + if (NodeId != 0) hash ^= NodeId.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (NodeId != 0) { + output.WriteRawTag(16); + output.WriteInt32(NodeId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SessionId != 0UL) { + output.WriteRawTag(8); + output.WriteUInt64(SessionId); + } + if (NodeId != 0) { + output.WriteRawTag(16); + output.WriteInt32(NodeId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (SessionId != 0UL) { + size += 1 + pb::CodedOutputStream.ComputeUInt64Size(SessionId); + } + if (NodeId != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(NodeId); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ShutdownRequest other) { + if (other == null) { + return; + } + if (other.SessionId != 0UL) { + SessionId = other.SessionId; + } + if (other.NodeId != 0) { + NodeId = other.NodeId; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 16: { + NodeId = input.ReadInt32(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + SessionId = input.ReadUInt64(); + break; + } + case 16: { + NodeId = input.ReadInt32(); + break; + } + } + } + } + #endif + + } + + public sealed partial class ShutdownResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ShutdownResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.ProtocolReflection.Descriptor.MessageTypes[16]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownResponse(ShutdownResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShutdownResponse Clone() { + return new ShutdownResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ShutdownResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ShutdownResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ShutdownResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/ResourceHandle.cs b/src/TensorFlowNET.Core/Protobuf/ResourceHandle.cs index 1ca38bee5..77e84cc53 100644 --- a/src/TensorFlowNET.Core/Protobuf/ResourceHandle.cs +++ b/src/TensorFlowNET.Core/Protobuf/ResourceHandle.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/resource_handle.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -53,23 +53,31 @@ static ResourceHandleReflection() { /// not valid across executions, but can be serialized back and forth from within /// a single run. /// - public sealed partial class ResourceHandleProto : pb::IMessage { + public sealed partial class ResourceHandleProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ResourceHandleProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ResourceHandleReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ResourceHandleProto() { OnConstruction(); } @@ -77,6 +85,7 @@ public ResourceHandleProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ResourceHandleProto(ResourceHandleProto other) : this() { device_ = other.device_; container_ = other.container_; @@ -88,6 +97,7 @@ public ResourceHandleProto(ResourceHandleProto other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ResourceHandleProto Clone() { return new ResourceHandleProto(this); } @@ -99,6 +109,7 @@ public ResourceHandleProto Clone() { /// Unique name for the device containing the resource. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Device { get { return device_; } set { @@ -113,6 +124,7 @@ public string Device { /// Container in which this resource is placed. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Container { get { return container_; } set { @@ -127,6 +139,7 @@ public string Container { /// Unique name of this resource. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -142,6 +155,7 @@ public string Name { /// and in the same execution. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ulong HashCode { get { return hashCode_; } set { @@ -157,6 +171,7 @@ public ulong HashCode { /// available. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string MaybeTypeName { get { return maybeTypeName_; } set { @@ -173,16 +188,19 @@ public string MaybeTypeName { /// Data types and shapes for the underlying resource. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField DtypesAndShapes { get { return dtypesAndShapes_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ResourceHandleProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ResourceHandleProto other) { if (ReferenceEquals(other, null)) { return false; @@ -200,6 +218,7 @@ public bool Equals(ResourceHandleProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Device.Length != 0) hash ^= Device.GetHashCode(); @@ -215,12 +234,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Device.Length != 0) { output.WriteRawTag(10); output.WriteString(Device); @@ -245,9 +269,42 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Device.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Device); + } + if (Container.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Container); + } + if (Name.Length != 0) { + output.WriteRawTag(26); + output.WriteString(Name); + } + if (HashCode != 0UL) { + output.WriteRawTag(32); + output.WriteUInt64(HashCode); + } + if (MaybeTypeName.Length != 0) { + output.WriteRawTag(42); + output.WriteString(MaybeTypeName); + } + dtypesAndShapes_.WriteTo(ref output, _repeated_dtypesAndShapes_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Device.Length != 0) { @@ -273,6 +330,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ResourceHandleProto other) { if (other == null) { return; @@ -297,7 +355,11 @@ public void MergeFrom(ResourceHandleProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -330,32 +392,81 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Device = input.ReadString(); + break; + } + case 18: { + Container = input.ReadString(); + break; + } + case 26: { + Name = input.ReadString(); + break; + } + case 32: { + HashCode = input.ReadUInt64(); + break; + } + case 42: { + MaybeTypeName = input.ReadString(); + break; + } + case 50: { + dtypesAndShapes_.AddEntriesFrom(ref input, _repeated_dtypesAndShapes_codec); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the ResourceHandleProto message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Protocol buffer representing a pair of (data type, tensor shape). /// - public sealed partial class DtypeAndShape : pb::IMessage { + public sealed partial class DtypeAndShape : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DtypeAndShape()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.ResourceHandleProto.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DtypeAndShape() { OnConstruction(); } @@ -363,6 +474,7 @@ public DtypeAndShape() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DtypeAndShape(DtypeAndShape other) : this() { dtype_ = other.dtype_; shape_ = other.shape_ != null ? other.shape_.Clone() : null; @@ -370,6 +482,7 @@ public DtypeAndShape(DtypeAndShape other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DtypeAndShape Clone() { return new DtypeAndShape(this); } @@ -378,6 +491,7 @@ public DtypeAndShape Clone() { public const int DtypeFieldNumber = 1; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -389,6 +503,7 @@ public DtypeAndShape Clone() { public const int ShapeFieldNumber = 2; private global::Tensorflow.TensorShapeProto shape_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto Shape { get { return shape_; } set { @@ -397,11 +512,13 @@ public DtypeAndShape Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as DtypeAndShape); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(DtypeAndShape other) { if (ReferenceEquals(other, null)) { return false; @@ -415,6 +532,7 @@ public bool Equals(DtypeAndShape other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Dtype != global::Tensorflow.DataType.DtInvalid) hash ^= Dtype.GetHashCode(); @@ -426,12 +544,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Dtype != global::Tensorflow.DataType.DtInvalid) { output.WriteRawTag(8); output.WriteEnum((int) Dtype); @@ -443,9 +566,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(8); + output.WriteEnum((int) Dtype); + } + if (shape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Shape); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Dtype != global::Tensorflow.DataType.DtInvalid) { @@ -461,6 +604,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(DtypeAndShape other) { if (other == null) { return; @@ -478,7 +622,11 @@ public void MergeFrom(DtypeAndShape other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -498,7 +646,34 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + case 18: { + if (shape_ == null) { + Shape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(Shape); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/RewriterConfig.cs b/src/TensorFlowNET.Core/Protobuf/RewriterConfig.cs index 2804ca26d..eae000206 100644 --- a/src/TensorFlowNET.Core/Protobuf/RewriterConfig.cs +++ b/src/TensorFlowNET.Core/Protobuf/RewriterConfig.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/rewriter_config.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -29,7 +29,7 @@ static RewriterConfigReflection() { "dHJfdmFsdWUucHJvdG8aLnRlbnNvcmZsb3cvY29yZS9wcm90b2J1Zi92ZXJp", "Zmllcl9jb25maWcucHJvdG8iOwoTQXV0b1BhcmFsbGVsT3B0aW9ucxIOCgZl", "bmFibGUYASABKAgSFAoMbnVtX3JlcGxpY2FzGAIgASgFIisKFlNjb3BlZEFs", - "bG9jYXRvck9wdGlvbnMSEQoJZW5hYmxlX29wGAEgAygJIuETCg5SZXdyaXRl", + "bG9jYXRvck9wdGlvbnMSEQoJZW5hYmxlX29wGAEgAygJIvYVCg5SZXdyaXRl", "ckNvbmZpZxJDChVjcHVfbGF5b3V0X2NvbnZlcnNpb24YMiABKA4yJC50ZW5z", "b3JmbG93LlJld3JpdGVyQ29uZmlnLkNwdUxheW91dBI7ChBsYXlvdXRfb3B0", "aW1pemVyGAEgASgOMiEudGVuc29yZmxvdy5SZXdyaXRlckNvbmZpZy5Ub2dn", @@ -54,71 +54,85 @@ static RewriterConfigReflection() { "LlRvZ2dsZRI/ChRhdXRvX21peGVkX3ByZWNpc2lvbhgXIAEoDjIhLnRlbnNv", "cmZsb3cuUmV3cml0ZXJDb25maWcuVG9nZ2xlEkMKGGF1dG9fbWl4ZWRfcHJl", "Y2lzaW9uX21rbBgZIAEoDjIhLnRlbnNvcmZsb3cuUmV3cml0ZXJDb25maWcu", - "VG9nZ2xlEh4KFmRpc2FibGVfbWV0YV9vcHRpbWl6ZXIYEyABKAgSQAoVdXNl", - "X3BsdWdpbl9vcHRpbWl6ZXJzGBwgASgOMiEudGVuc29yZmxvdy5SZXdyaXRl", - "ckNvbmZpZy5Ub2dnbGUSTwoZbWV0YV9vcHRpbWl6ZXJfaXRlcmF0aW9ucxgM", - "IAEoDjIsLnRlbnNvcmZsb3cuUmV3cml0ZXJDb25maWcuTnVtSXRlcmF0aW9u", - "c1R5cGUSFwoPbWluX2dyYXBoX25vZGVzGBEgASgFEjsKM2V4cGVyaW1lbnRh", - "bF9kaXNhYmxlX2NvbXByZXNzZWRfdGVuc29yX29wdGltaXphdGlvbhgaIAEo", - "CBI7CjNleHBlcmltZW50YWxfZGlzYWJsZV9mb2xkaW5nX3F1YW50aXphdGlv", - "bl9lbXVsYXRpb24YGyABKAgSQgoTbWVtb3J5X29wdGltaXphdGlvbhgEIAEo", - "DjIlLnRlbnNvcmZsb3cuUmV3cml0ZXJDb25maWcuTWVtT3B0VHlwZRIvCidt", - "ZW1vcnlfb3B0aW1pemVyX3RhcmdldF9ub2RlX25hbWVfc2NvcGUYBiABKAkS", - "IQoZbWV0YV9vcHRpbWl6ZXJfdGltZW91dF9tcxgUIAEoAxI2Cg1hdXRvX3Bh", - "cmFsbGVsGAUgASgLMh8udGVuc29yZmxvdy5BdXRvUGFyYWxsZWxPcHRpb25z", - "EiAKGGZhaWxfb25fb3B0aW1pemVyX2Vycm9ycxgVIAEoCBJBChVzY29wZWRf", - "YWxsb2NhdG9yX29wdHMYECABKAsyIi50ZW5zb3JmbG93LlNjb3BlZEFsbG9j", - "YXRvck9wdGlvbnMSEgoKb3B0aW1pemVycxhkIAMoCRJLChFjdXN0b21fb3B0", - "aW1pemVycxjIASADKAsyLy50ZW5zb3JmbG93LlJld3JpdGVyQ29uZmlnLkN1", - "c3RvbUdyYXBoT3B0aW1pemVyEkQKH2ludGVyX29wdGltaXplcl92ZXJpZmll", - "cl9jb25maWcYrAIgASgLMhoudGVuc29yZmxvdy5WZXJpZmllckNvbmZpZxJG", - "CiFwb3N0X29wdGltaXphdGlvbl92ZXJpZmllcl9jb25maWcYrQIgASgLMhou", - "dGVuc29yZmxvdy5WZXJpZmllckNvbmZpZxrKAQoUQ3VzdG9tR3JhcGhPcHRp", - "bWl6ZXISDAoEbmFtZRgBIAEoCRJYCg1wYXJhbWV0ZXJfbWFwGAIgAygLMkEu", - "dGVuc29yZmxvdy5SZXdyaXRlckNvbmZpZy5DdXN0b21HcmFwaE9wdGltaXpl", - "ci5QYXJhbWV0ZXJNYXBFbnRyeRpKChFQYXJhbWV0ZXJNYXBFbnRyeRILCgNr", - "ZXkYASABKAkSJAoFdmFsdWUYAiABKAsyFS50ZW5zb3JmbG93LkF0dHJWYWx1", - "ZToCOAEiNgoGVG9nZ2xlEgsKB0RFRkFVTFQQABIGCgJPThABEgcKA09GRhAC", - "Eg4KCkFHR1JFU1NJVkUQAyJJCglDcHVMYXlvdXQSGAoUTk9fQ09OVkVSU0lP", - "Tl9PTl9DUFUQABIQCgxOQ0hXX1RPX05IV0MQARIQCgxOSFdDX1RPX05DSFcQ", - "AiI8ChFOdW1JdGVyYXRpb25zVHlwZRIVChFERUZBVUxUX05VTV9JVEVSUxAA", - "EgcKA09ORRABEgcKA1RXTxACIp8BCgpNZW1PcHRUeXBlEhMKD0RFRkFVTFRf", - "TUVNX09QVBAAEg4KCk5PX01FTV9PUFQQARIKCgZNQU5VQUwQAhIXChNTV0FQ", - "UElOR19IRVVSSVNUSUNTEAQSHAoYUkVDT01QVVRBVElPTl9IRVVSSVNUSUNT", - "EAUSGQoVU0NIRURVTElOR19IRVVSSVNUSUNTEAYSDgoKSEVVUklTVElDUxAD", - "QowBChhvcmcudGVuc29yZmxvdy5mcmFtZXdvcmtCFFJld3JpdGVyQ29uZmln", - "UHJvdG9zUAFaVWdpdGh1Yi5jb20vdGVuc29yZmxvdy90ZW5zb3JmbG93L3Rl", - "bnNvcmZsb3cvZ28vY29yZS9wcm90b2J1Zi9mb3JfY29yZV9wcm90b3NfZ29f", - "cHJvdG/4AQFiBnByb3RvMw==")); + "VG9nZ2xlEk8KJGF1dG9fbWl4ZWRfcHJlY2lzaW9uX29uZWRubl9iZmxvYXQx", + "NhgfIAEoDjIhLnRlbnNvcmZsb3cuUmV3cml0ZXJDb25maWcuVG9nZ2xlEkMK", + "GGF1dG9fbWl4ZWRfcHJlY2lzaW9uX2NwdRgdIAEoDjIhLnRlbnNvcmZsb3cu", + "UmV3cml0ZXJDb25maWcuVG9nZ2xlEh4KFmRpc2FibGVfbWV0YV9vcHRpbWl6", + "ZXIYEyABKAgSQAoVdXNlX3BsdWdpbl9vcHRpbWl6ZXJzGBwgASgOMiEudGVu", + "c29yZmxvdy5SZXdyaXRlckNvbmZpZy5Ub2dnbGUSTwokZXhwZXJpbWVudGFs", + "X2NvbmRpdGlvbmFsX2NvZGVfbW90aW9uGB4gASgOMiEudGVuc29yZmxvdy5S", + "ZXdyaXRlckNvbmZpZy5Ub2dnbGUSTwoZbWV0YV9vcHRpbWl6ZXJfaXRlcmF0", + "aW9ucxgMIAEoDjIsLnRlbnNvcmZsb3cuUmV3cml0ZXJDb25maWcuTnVtSXRl", + "cmF0aW9uc1R5cGUSFwoPbWluX2dyYXBoX25vZGVzGBEgASgFEjsKM2V4cGVy", + "aW1lbnRhbF9kaXNhYmxlX2NvbXByZXNzZWRfdGVuc29yX29wdGltaXphdGlv", + "bhgaIAEoCBI7CjNleHBlcmltZW50YWxfZGlzYWJsZV9mb2xkaW5nX3F1YW50", + "aXphdGlvbl9lbXVsYXRpb24YGyABKAgSQgoTbWVtb3J5X29wdGltaXphdGlv", + "bhgEIAEoDjIlLnRlbnNvcmZsb3cuUmV3cml0ZXJDb25maWcuTWVtT3B0VHlw", + "ZRIvCidtZW1vcnlfb3B0aW1pemVyX3RhcmdldF9ub2RlX25hbWVfc2NvcGUY", + "BiABKAkSIQoZbWV0YV9vcHRpbWl6ZXJfdGltZW91dF9tcxgUIAEoAxI2Cg1h", + "dXRvX3BhcmFsbGVsGAUgASgLMh8udGVuc29yZmxvdy5BdXRvUGFyYWxsZWxP", + "cHRpb25zEiAKGGZhaWxfb25fb3B0aW1pemVyX2Vycm9ycxgVIAEoCBJBChVz", + "Y29wZWRfYWxsb2NhdG9yX29wdHMYECABKAsyIi50ZW5zb3JmbG93LlNjb3Bl", + "ZEFsbG9jYXRvck9wdGlvbnMSEgoKb3B0aW1pemVycxhkIAMoCRJLChFjdXN0", + "b21fb3B0aW1pemVycxjIASADKAsyLy50ZW5zb3JmbG93LlJld3JpdGVyQ29u", + "ZmlnLkN1c3RvbUdyYXBoT3B0aW1pemVyEkQKH2ludGVyX29wdGltaXplcl92", + "ZXJpZmllcl9jb25maWcYrAIgASgLMhoudGVuc29yZmxvdy5WZXJpZmllckNv", + "bmZpZxJGCiFwb3N0X29wdGltaXphdGlvbl92ZXJpZmllcl9jb25maWcYrQIg", + "ASgLMhoudGVuc29yZmxvdy5WZXJpZmllckNvbmZpZxrKAQoUQ3VzdG9tR3Jh", + "cGhPcHRpbWl6ZXISDAoEbmFtZRgBIAEoCRJYCg1wYXJhbWV0ZXJfbWFwGAIg", + "AygLMkEudGVuc29yZmxvdy5SZXdyaXRlckNvbmZpZy5DdXN0b21HcmFwaE9w", + "dGltaXplci5QYXJhbWV0ZXJNYXBFbnRyeRpKChFQYXJhbWV0ZXJNYXBFbnRy", + "eRILCgNrZXkYASABKAkSJAoFdmFsdWUYAiABKAsyFS50ZW5zb3JmbG93LkF0", + "dHJWYWx1ZToCOAEiZAoGVG9nZ2xlEgsKB0RFRkFVTFQQABIGCgJPThABEgcK", + "A09GRhACEg4KCkFHR1JFU1NJVkUQAxIVChFFWFBFUklNRU5UQUxfTUxJUhAE", + "EhUKEUVYUEVSSU1FTlRBTF9CT1RIEAUiSQoJQ3B1TGF5b3V0EhgKFE5PX0NP", + "TlZFUlNJT05fT05fQ1BVEAASEAoMTkNIV19UT19OSFdDEAESEAoMTkhXQ19U", + "T19OQ0hXEAIiPAoRTnVtSXRlcmF0aW9uc1R5cGUSFQoRREVGQVVMVF9OVU1f", + "SVRFUlMQABIHCgNPTkUQARIHCgNUV08QAiKfAQoKTWVtT3B0VHlwZRITCg9E", + "RUZBVUxUX01FTV9PUFQQABIOCgpOT19NRU1fT1BUEAESCgoGTUFOVUFMEAIS", + "FwoTU1dBUFBJTkdfSEVVUklTVElDUxAEEhwKGFJFQ09NUFVUQVRJT05fSEVV", + "UklTVElDUxAFEhkKFVNDSEVEVUxJTkdfSEVVUklTVElDUxAGEg4KCkhFVVJJ", + "U1RJQ1MQA0KMAQoYb3JnLnRlbnNvcmZsb3cuZnJhbWV3b3JrQhRSZXdyaXRl", + "ckNvbmZpZ1Byb3Rvc1ABWlVnaXRodWIuY29tL3RlbnNvcmZsb3cvdGVuc29y", + "Zmxvdy90ZW5zb3JmbG93L2dvL2NvcmUvcHJvdG9idWYvZm9yX2NvcmVfcHJv", + "dG9zX2dvX3Byb3Rv+AEBYgZwcm90bzM=")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, new pbr::FileDescriptor[] { global::Tensorflow.AttrValueReflection.Descriptor, global::Tensorflow.VerifierConfigReflection.Descriptor, }, new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.AutoParallelOptions), global::Tensorflow.AutoParallelOptions.Parser, new[]{ "Enable", "NumReplicas" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ScopedAllocatorOptions), global::Tensorflow.ScopedAllocatorOptions.Parser, new[]{ "EnableOp" }, null, null, null, null), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RewriterConfig), global::Tensorflow.RewriterConfig.Parser, new[]{ "CpuLayoutConversion", "LayoutOptimizer", "ConstantFolding", "ShapeOptimization", "Remapping", "CommonSubgraphElimination", "ArithmeticOptimization", "DependencyOptimization", "LoopOptimization", "FunctionOptimization", "DebugStripper", "DisableModelPruning", "ScopedAllocatorOptimization", "PinToHostOptimization", "ImplementationSelector", "AutoMixedPrecision", "AutoMixedPrecisionMkl", "DisableMetaOptimizer", "UsePluginOptimizers", "MetaOptimizerIterations", "MinGraphNodes", "ExperimentalDisableCompressedTensorOptimization", "ExperimentalDisableFoldingQuantizationEmulation", "MemoryOptimization", "MemoryOptimizerTargetNodeNameScope", "MetaOptimizerTimeoutMs", "AutoParallel", "FailOnOptimizerErrors", "ScopedAllocatorOpts", "Optimizers", "CustomOptimizers", "InterOptimizerVerifierConfig", "PostOptimizationVerifierConfig" }, null, new[]{ typeof(global::Tensorflow.RewriterConfig.Types.Toggle), typeof(global::Tensorflow.RewriterConfig.Types.CpuLayout), typeof(global::Tensorflow.RewriterConfig.Types.NumIterationsType), typeof(global::Tensorflow.RewriterConfig.Types.MemOptType) }, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RewriterConfig.Types.CustomGraphOptimizer), global::Tensorflow.RewriterConfig.Types.CustomGraphOptimizer.Parser, new[]{ "Name", "ParameterMap" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, })}) + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RewriterConfig), global::Tensorflow.RewriterConfig.Parser, new[]{ "CpuLayoutConversion", "LayoutOptimizer", "ConstantFolding", "ShapeOptimization", "Remapping", "CommonSubgraphElimination", "ArithmeticOptimization", "DependencyOptimization", "LoopOptimization", "FunctionOptimization", "DebugStripper", "DisableModelPruning", "ScopedAllocatorOptimization", "PinToHostOptimization", "ImplementationSelector", "AutoMixedPrecision", "AutoMixedPrecisionMkl", "AutoMixedPrecisionOnednnBfloat16", "AutoMixedPrecisionCpu", "DisableMetaOptimizer", "UsePluginOptimizers", "ExperimentalConditionalCodeMotion", "MetaOptimizerIterations", "MinGraphNodes", "ExperimentalDisableCompressedTensorOptimization", "ExperimentalDisableFoldingQuantizationEmulation", "MemoryOptimization", "MemoryOptimizerTargetNodeNameScope", "MetaOptimizerTimeoutMs", "AutoParallel", "FailOnOptimizerErrors", "ScopedAllocatorOpts", "Optimizers", "CustomOptimizers", "InterOptimizerVerifierConfig", "PostOptimizationVerifierConfig" }, null, new[]{ typeof(global::Tensorflow.RewriterConfig.Types.Toggle), typeof(global::Tensorflow.RewriterConfig.Types.CpuLayout), typeof(global::Tensorflow.RewriterConfig.Types.NumIterationsType), typeof(global::Tensorflow.RewriterConfig.Types.MemOptType) }, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RewriterConfig.Types.CustomGraphOptimizer), global::Tensorflow.RewriterConfig.Types.CustomGraphOptimizer.Parser, new[]{ "Name", "ParameterMap" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, })}) })); } #endregion } #region Messages - public sealed partial class AutoParallelOptions : pb::IMessage { + public sealed partial class AutoParallelOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AutoParallelOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.RewriterConfigReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AutoParallelOptions() { OnConstruction(); } @@ -126,6 +140,7 @@ public AutoParallelOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AutoParallelOptions(AutoParallelOptions other) : this() { enable_ = other.enable_; numReplicas_ = other.numReplicas_; @@ -133,6 +148,7 @@ public AutoParallelOptions(AutoParallelOptions other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AutoParallelOptions Clone() { return new AutoParallelOptions(this); } @@ -141,6 +157,7 @@ public AutoParallelOptions Clone() { public const int EnableFieldNumber = 1; private bool enable_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Enable { get { return enable_; } set { @@ -152,6 +169,7 @@ public bool Enable { public const int NumReplicasFieldNumber = 2; private int numReplicas_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NumReplicas { get { return numReplicas_; } set { @@ -160,11 +178,13 @@ public int NumReplicas { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AutoParallelOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AutoParallelOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -178,6 +198,7 @@ public bool Equals(AutoParallelOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Enable != false) hash ^= Enable.GetHashCode(); @@ -189,12 +210,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Enable != false) { output.WriteRawTag(8); output.WriteBool(Enable); @@ -206,9 +232,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Enable != false) { + output.WriteRawTag(8); + output.WriteBool(Enable); + } + if (NumReplicas != 0) { + output.WriteRawTag(16); + output.WriteInt32(NumReplicas); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Enable != false) { @@ -224,6 +270,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AutoParallelOptions other) { if (other == null) { return; @@ -238,7 +285,11 @@ public void MergeFrom(AutoParallelOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -255,27 +306,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Enable = input.ReadBool(); + break; + } + case 16: { + NumReplicas = input.ReadInt32(); + break; + } + } + } + } + #endif + } - public sealed partial class ScopedAllocatorOptions : pb::IMessage { + public sealed partial class ScopedAllocatorOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ScopedAllocatorOptions()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.RewriterConfigReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ScopedAllocatorOptions() { OnConstruction(); } @@ -283,12 +366,14 @@ public ScopedAllocatorOptions() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ScopedAllocatorOptions(ScopedAllocatorOptions other) : this() { enableOp_ = other.enableOp_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ScopedAllocatorOptions Clone() { return new ScopedAllocatorOptions(this); } @@ -302,16 +387,19 @@ public ScopedAllocatorOptions Clone() { /// If present, only perform optimization for these ops. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField EnableOp { get { return enableOp_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ScopedAllocatorOptions); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ScopedAllocatorOptions other) { if (ReferenceEquals(other, null)) { return false; @@ -324,6 +412,7 @@ public bool Equals(ScopedAllocatorOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= enableOp_.GetHashCode(); @@ -334,19 +423,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else enableOp_.WriteTo(output, _repeated_enableOp_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + enableOp_.WriteTo(ref output, _repeated_enableOp_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += enableOp_.CalculateSize(_repeated_enableOp_codec); @@ -357,6 +464,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ScopedAllocatorOptions other) { if (other == null) { return; @@ -366,7 +474,11 @@ public void MergeFrom(ScopedAllocatorOptions other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -379,31 +491,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + enableOp_.AddEntriesFrom(ref input, _repeated_enableOp_codec); + break; + } + } + } + } + #endif + } /// /// Graph rewriting is experimental and subject to change, not covered by any /// API stability guarantees. /// - public sealed partial class RewriterConfig : pb::IMessage { + public sealed partial class RewriterConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RewriterConfig()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.RewriterConfigReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RewriterConfig() { OnConstruction(); } @@ -411,6 +551,7 @@ public RewriterConfig() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RewriterConfig(RewriterConfig other) : this() { cpuLayoutConversion_ = other.cpuLayoutConversion_; layoutOptimizer_ = other.layoutOptimizer_; @@ -429,8 +570,11 @@ public RewriterConfig(RewriterConfig other) : this() { implementationSelector_ = other.implementationSelector_; autoMixedPrecision_ = other.autoMixedPrecision_; autoMixedPrecisionMkl_ = other.autoMixedPrecisionMkl_; + autoMixedPrecisionOnednnBfloat16_ = other.autoMixedPrecisionOnednnBfloat16_; + autoMixedPrecisionCpu_ = other.autoMixedPrecisionCpu_; disableMetaOptimizer_ = other.disableMetaOptimizer_; usePluginOptimizers_ = other.usePluginOptimizers_; + experimentalConditionalCodeMotion_ = other.experimentalConditionalCodeMotion_; metaOptimizerIterations_ = other.metaOptimizerIterations_; minGraphNodes_ = other.minGraphNodes_; experimentalDisableCompressedTensorOptimization_ = other.experimentalDisableCompressedTensorOptimization_; @@ -449,6 +593,7 @@ public RewriterConfig(RewriterConfig other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public RewriterConfig Clone() { return new RewriterConfig(this); } @@ -460,6 +605,7 @@ public RewriterConfig Clone() { /// CPU Conversion settings between NHCW and NCHW. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.CpuLayout CpuLayoutConversion { get { return cpuLayoutConversion_; } set { @@ -475,6 +621,7 @@ public RewriterConfig Clone() { /// e.g. This will try to use NCHW layout on GPU which is faster. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle LayoutOptimizer { get { return layoutOptimizer_; } set { @@ -491,6 +638,7 @@ public RewriterConfig Clone() { /// result using constants. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle ConstantFolding { get { return constantFolding_; } set { @@ -506,6 +654,7 @@ public RewriterConfig Clone() { /// Simplify computations made on shapes. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle ShapeOptimization { get { return shapeOptimization_; } set { @@ -521,6 +670,7 @@ public RewriterConfig Clone() { /// Remap subgraphs onto more efficient implementations. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle Remapping { get { return remapping_; } set { @@ -536,6 +686,7 @@ public RewriterConfig Clone() { /// e.g. Simplify arithmetic ops; merge ops with same value (like constants). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle CommonSubgraphElimination { get { return commonSubgraphElimination_; } set { @@ -551,6 +702,7 @@ public RewriterConfig Clone() { /// e.g. Simplify arithmetic ops; merge ops with same value (like constants). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle ArithmeticOptimization { get { return arithmeticOptimization_; } set { @@ -566,6 +718,7 @@ public RewriterConfig Clone() { /// Remove redundant control dependencies, which may enable other optimization. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle DependencyOptimization { get { return dependencyOptimization_; } set { @@ -580,6 +733,7 @@ public RewriterConfig Clone() { /// Loop optimizations (default is ON). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle LoopOptimization { get { return loopOptimization_; } set { @@ -594,6 +748,7 @@ public RewriterConfig Clone() { /// Function optimizations (default is ON). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle FunctionOptimization { get { return functionOptimization_; } set { @@ -608,6 +763,7 @@ public RewriterConfig Clone() { /// Strips debug-related nodes from the graph (off by default). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle DebugStripper { get { return debugStripper_; } set { @@ -622,6 +778,7 @@ public RewriterConfig Clone() { /// If true, don't remove unnecessary ops from the graph /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool DisableModelPruning { get { return disableModelPruning_; } set { @@ -637,6 +794,7 @@ public bool DisableModelPruning { /// merge or eliminate downstream Ops (off by default). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle ScopedAllocatorOptimization { get { return scopedAllocatorOptimization_; } set { @@ -651,6 +809,7 @@ public bool DisableModelPruning { /// Force small ops onto the CPU (default is OFF). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle PinToHostOptimization { get { return pinToHostOptimization_; } set { @@ -666,6 +825,7 @@ public bool DisableModelPruning { /// (default is ON). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle ImplementationSelector { get { return implementationSelector_; } set { @@ -683,6 +843,7 @@ public bool DisableModelPruning { /// require the use of loss scaling to maintain model convergence. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle AutoMixedPrecision { get { return autoMixedPrecision_; } set { @@ -694,11 +855,14 @@ public bool DisableModelPruning { public const int AutoMixedPrecisionMklFieldNumber = 25; private global::Tensorflow.RewriterConfig.Types.Toggle autoMixedPrecisionMkl_ = global::Tensorflow.RewriterConfig.Types.Toggle.Default; /// - /// Optimize data types for MKL (default is OFF). + /// Optimize data types for oneDNN (default is OFF). /// This will try to use bfloat16 on CPUs, which is faster. /// Note that this can change the numerical stability of the graph. + /// Note: this is deprecated. + /// It is replaced by auto_mixed_precision_onednn_bfloat16 /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle AutoMixedPrecisionMkl { get { return autoMixedPrecisionMkl_; } set { @@ -706,6 +870,43 @@ public bool DisableModelPruning { } } + /// Field number for the "auto_mixed_precision_onednn_bfloat16" field. + public const int AutoMixedPrecisionOnednnBfloat16FieldNumber = 31; + private global::Tensorflow.RewriterConfig.Types.Toggle autoMixedPrecisionOnednnBfloat16_ = global::Tensorflow.RewriterConfig.Types.Toggle.Default; + /// + /// Optimize data types for oneDNN (default is OFF). + /// This will try to use bfloat16 on CPUs, which is faster. + /// Note that this can change the numerical stability of the graph. + /// Note: this is equivalent to the deprecated option auto_mixed_precision_mkl + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.RewriterConfig.Types.Toggle AutoMixedPrecisionOnednnBfloat16 { + get { return autoMixedPrecisionOnednnBfloat16_; } + set { + autoMixedPrecisionOnednnBfloat16_ = value; + } + } + + /// Field number for the "auto_mixed_precision_cpu" field. + public const int AutoMixedPrecisionCpuFieldNumber = 29; + private global::Tensorflow.RewriterConfig.Types.Toggle autoMixedPrecisionCpu_ = global::Tensorflow.RewriterConfig.Types.Toggle.Default; + /// + /// Emulate a model using data type float16 on CPU (default is OFF). + /// This will try to emulate the float16 inputs and outputs of an operator + /// on CPU to have better correlation with float16 on GPU; however the + /// computation in the operator is based on float32. + /// Note that this can change the numerical stability of the graph. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.RewriterConfig.Types.Toggle AutoMixedPrecisionCpu { + get { return autoMixedPrecisionCpu_; } + set { + autoMixedPrecisionCpu_ = value; + } + } + /// Field number for the "disable_meta_optimizer" field. public const int DisableMetaOptimizerFieldNumber = 19; private bool disableMetaOptimizer_; @@ -713,6 +914,7 @@ public bool DisableModelPruning { /// Disable the entire meta optimizer (off by default). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool DisableMetaOptimizer { get { return disableMetaOptimizer_; } set { @@ -727,6 +929,7 @@ public bool DisableMetaOptimizer { /// Optimizers registered by plugin (default is ON) /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.Toggle UsePluginOptimizers { get { return usePluginOptimizers_; } set { @@ -734,6 +937,21 @@ public bool DisableMetaOptimizer { } } + /// Field number for the "experimental_conditional_code_motion" field. + public const int ExperimentalConditionalCodeMotionFieldNumber = 30; + private global::Tensorflow.RewriterConfig.Types.Toggle experimentalConditionalCodeMotion_ = global::Tensorflow.RewriterConfig.Types.Toggle.Default; + /// + /// Conditional code motion (default is ON). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.RewriterConfig.Types.Toggle ExperimentalConditionalCodeMotion { + get { return experimentalConditionalCodeMotion_; } + set { + experimentalConditionalCodeMotion_ = value; + } + } + /// Field number for the "meta_optimizer_iterations" field. public const int MetaOptimizerIterationsFieldNumber = 12; private global::Tensorflow.RewriterConfig.Types.NumIterationsType metaOptimizerIterations_ = global::Tensorflow.RewriterConfig.Types.NumIterationsType.DefaultNumIters; @@ -742,6 +960,7 @@ public bool DisableMetaOptimizer { /// is once). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.NumIterationsType MetaOptimizerIterations { get { return metaOptimizerIterations_; } set { @@ -759,6 +978,7 @@ public bool DisableMetaOptimizer { /// < 0 means do not skip optimization. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int MinGraphNodes { get { return minGraphNodes_; } set { @@ -774,6 +994,7 @@ public int MinGraphNodes { /// is experimental and may be removed in the future. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool ExperimentalDisableCompressedTensorOptimization { get { return experimentalDisableCompressedTensorOptimization_; } set { @@ -793,6 +1014,7 @@ public bool ExperimentalDisableCompressedTensorOptimization { /// details. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool ExperimentalDisableFoldingQuantizationEmulation { get { return experimentalDisableFoldingQuantizationEmulation_; } set { @@ -809,6 +1031,7 @@ public bool ExperimentalDisableFoldingQuantizationEmulation { /// field. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.RewriterConfig.Types.MemOptType MemoryOptimization { get { return memoryOptimization_; } set { @@ -830,6 +1053,7 @@ public bool ExperimentalDisableFoldingQuantizationEmulation { /// "foo/gradients/bar", but not "foo_gradients/" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string MemoryOptimizerTargetNodeNameScope { get { return memoryOptimizerTargetNodeNameScope_; } set { @@ -846,6 +1070,7 @@ public string MemoryOptimizerTargetNodeNameScope { /// never time out. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long MetaOptimizerTimeoutMs { get { return metaOptimizerTimeoutMs_; } set { @@ -861,6 +1086,7 @@ public long MetaOptimizerTimeoutMs { /// meta-optimizer or when manually specified through the optimizers field. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.AutoParallelOptions AutoParallel { get { return autoParallel_; } set { @@ -877,6 +1103,7 @@ public long MetaOptimizerTimeoutMs { /// skipped silently. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool FailOnOptimizerErrors { get { return failOnOptimizerErrors_; } set { @@ -888,6 +1115,7 @@ public bool FailOnOptimizerErrors { public const int ScopedAllocatorOptsFieldNumber = 16; private global::Tensorflow.ScopedAllocatorOptions scopedAllocatorOpts_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.ScopedAllocatorOptions ScopedAllocatorOpts { get { return scopedAllocatorOpts_; } set { @@ -915,6 +1143,7 @@ public bool FailOnOptimizerErrors { /// schedule will be run after - in the order that they were specified. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Optimizers { get { return optimizers_; } } @@ -928,6 +1157,7 @@ public bool FailOnOptimizerErrors { /// list of CustomGraphOptimizers to apply. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField CustomOptimizers { get { return customOptimizers_; } } @@ -939,6 +1169,7 @@ public bool FailOnOptimizerErrors { /// VerifierConfig specifying the verifiers to be run after every optimizer. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.VerifierConfig InterOptimizerVerifierConfig { get { return interOptimizerVerifierConfig_; } set { @@ -954,6 +1185,7 @@ public bool FailOnOptimizerErrors { /// optimizers have run. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.VerifierConfig PostOptimizationVerifierConfig { get { return postOptimizationVerifierConfig_; } set { @@ -962,11 +1194,13 @@ public bool FailOnOptimizerErrors { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as RewriterConfig); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(RewriterConfig other) { if (ReferenceEquals(other, null)) { return false; @@ -991,8 +1225,11 @@ public bool Equals(RewriterConfig other) { if (ImplementationSelector != other.ImplementationSelector) return false; if (AutoMixedPrecision != other.AutoMixedPrecision) return false; if (AutoMixedPrecisionMkl != other.AutoMixedPrecisionMkl) return false; + if (AutoMixedPrecisionOnednnBfloat16 != other.AutoMixedPrecisionOnednnBfloat16) return false; + if (AutoMixedPrecisionCpu != other.AutoMixedPrecisionCpu) return false; if (DisableMetaOptimizer != other.DisableMetaOptimizer) return false; if (UsePluginOptimizers != other.UsePluginOptimizers) return false; + if (ExperimentalConditionalCodeMotion != other.ExperimentalConditionalCodeMotion) return false; if (MetaOptimizerIterations != other.MetaOptimizerIterations) return false; if (MinGraphNodes != other.MinGraphNodes) return false; if (ExperimentalDisableCompressedTensorOptimization != other.ExperimentalDisableCompressedTensorOptimization) return false; @@ -1011,6 +1248,7 @@ public bool Equals(RewriterConfig other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (CpuLayoutConversion != global::Tensorflow.RewriterConfig.Types.CpuLayout.NoConversionOnCpu) hash ^= CpuLayoutConversion.GetHashCode(); @@ -1030,8 +1268,11 @@ public override int GetHashCode() { if (ImplementationSelector != global::Tensorflow.RewriterConfig.Types.Toggle.Default) hash ^= ImplementationSelector.GetHashCode(); if (AutoMixedPrecision != global::Tensorflow.RewriterConfig.Types.Toggle.Default) hash ^= AutoMixedPrecision.GetHashCode(); if (AutoMixedPrecisionMkl != global::Tensorflow.RewriterConfig.Types.Toggle.Default) hash ^= AutoMixedPrecisionMkl.GetHashCode(); + if (AutoMixedPrecisionOnednnBfloat16 != global::Tensorflow.RewriterConfig.Types.Toggle.Default) hash ^= AutoMixedPrecisionOnednnBfloat16.GetHashCode(); + if (AutoMixedPrecisionCpu != global::Tensorflow.RewriterConfig.Types.Toggle.Default) hash ^= AutoMixedPrecisionCpu.GetHashCode(); if (DisableMetaOptimizer != false) hash ^= DisableMetaOptimizer.GetHashCode(); if (UsePluginOptimizers != global::Tensorflow.RewriterConfig.Types.Toggle.Default) hash ^= UsePluginOptimizers.GetHashCode(); + if (ExperimentalConditionalCodeMotion != global::Tensorflow.RewriterConfig.Types.Toggle.Default) hash ^= ExperimentalConditionalCodeMotion.GetHashCode(); if (MetaOptimizerIterations != global::Tensorflow.RewriterConfig.Types.NumIterationsType.DefaultNumIters) hash ^= MetaOptimizerIterations.GetHashCode(); if (MinGraphNodes != 0) hash ^= MinGraphNodes.GetHashCode(); if (ExperimentalDisableCompressedTensorOptimization != false) hash ^= ExperimentalDisableCompressedTensorOptimization.GetHashCode(); @@ -1053,12 +1294,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (LayoutOptimizer != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { output.WriteRawTag(8); output.WriteEnum((int) LayoutOptimizer); @@ -1171,6 +1417,18 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(224, 1); output.WriteEnum((int) UsePluginOptimizers); } + if (AutoMixedPrecisionCpu != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(232, 1); + output.WriteEnum((int) AutoMixedPrecisionCpu); + } + if (ExperimentalConditionalCodeMotion != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(240, 1); + output.WriteEnum((int) ExperimentalConditionalCodeMotion); + } + if (AutoMixedPrecisionOnednnBfloat16 != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(248, 1); + output.WriteEnum((int) AutoMixedPrecisionOnednnBfloat16); + } if (CpuLayoutConversion != global::Tensorflow.RewriterConfig.Types.CpuLayout.NoConversionOnCpu) { output.WriteRawTag(144, 3); output.WriteEnum((int) CpuLayoutConversion); @@ -1188,9 +1446,159 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (LayoutOptimizer != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(8); + output.WriteEnum((int) LayoutOptimizer); + } + if (DisableModelPruning != false) { + output.WriteRawTag(16); + output.WriteBool(DisableModelPruning); + } + if (ConstantFolding != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(24); + output.WriteEnum((int) ConstantFolding); + } + if (MemoryOptimization != global::Tensorflow.RewriterConfig.Types.MemOptType.DefaultMemOpt) { + output.WriteRawTag(32); + output.WriteEnum((int) MemoryOptimization); + } + if (autoParallel_ != null) { + output.WriteRawTag(42); + output.WriteMessage(AutoParallel); + } + if (MemoryOptimizerTargetNodeNameScope.Length != 0) { + output.WriteRawTag(50); + output.WriteString(MemoryOptimizerTargetNodeNameScope); + } + if (ArithmeticOptimization != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(56); + output.WriteEnum((int) ArithmeticOptimization); + } + if (DependencyOptimization != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(64); + output.WriteEnum((int) DependencyOptimization); + } + if (LoopOptimization != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(72); + output.WriteEnum((int) LoopOptimization); + } + if (FunctionOptimization != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(80); + output.WriteEnum((int) FunctionOptimization); + } + if (DebugStripper != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(88); + output.WriteEnum((int) DebugStripper); + } + if (MetaOptimizerIterations != global::Tensorflow.RewriterConfig.Types.NumIterationsType.DefaultNumIters) { + output.WriteRawTag(96); + output.WriteEnum((int) MetaOptimizerIterations); + } + if (ShapeOptimization != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(104); + output.WriteEnum((int) ShapeOptimization); + } + if (Remapping != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(112); + output.WriteEnum((int) Remapping); + } + if (ScopedAllocatorOptimization != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(120); + output.WriteEnum((int) ScopedAllocatorOptimization); + } + if (scopedAllocatorOpts_ != null) { + output.WriteRawTag(130, 1); + output.WriteMessage(ScopedAllocatorOpts); + } + if (MinGraphNodes != 0) { + output.WriteRawTag(136, 1); + output.WriteInt32(MinGraphNodes); + } + if (PinToHostOptimization != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(144, 1); + output.WriteEnum((int) PinToHostOptimization); + } + if (DisableMetaOptimizer != false) { + output.WriteRawTag(152, 1); + output.WriteBool(DisableMetaOptimizer); + } + if (MetaOptimizerTimeoutMs != 0L) { + output.WriteRawTag(160, 1); + output.WriteInt64(MetaOptimizerTimeoutMs); + } + if (FailOnOptimizerErrors != false) { + output.WriteRawTag(168, 1); + output.WriteBool(FailOnOptimizerErrors); + } + if (ImplementationSelector != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(176, 1); + output.WriteEnum((int) ImplementationSelector); + } + if (AutoMixedPrecision != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(184, 1); + output.WriteEnum((int) AutoMixedPrecision); + } + if (CommonSubgraphElimination != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(192, 1); + output.WriteEnum((int) CommonSubgraphElimination); + } + if (AutoMixedPrecisionMkl != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(200, 1); + output.WriteEnum((int) AutoMixedPrecisionMkl); + } + if (ExperimentalDisableCompressedTensorOptimization != false) { + output.WriteRawTag(208, 1); + output.WriteBool(ExperimentalDisableCompressedTensorOptimization); + } + if (ExperimentalDisableFoldingQuantizationEmulation != false) { + output.WriteRawTag(216, 1); + output.WriteBool(ExperimentalDisableFoldingQuantizationEmulation); + } + if (UsePluginOptimizers != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(224, 1); + output.WriteEnum((int) UsePluginOptimizers); + } + if (AutoMixedPrecisionCpu != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(232, 1); + output.WriteEnum((int) AutoMixedPrecisionCpu); + } + if (ExperimentalConditionalCodeMotion != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(240, 1); + output.WriteEnum((int) ExperimentalConditionalCodeMotion); + } + if (AutoMixedPrecisionOnednnBfloat16 != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + output.WriteRawTag(248, 1); + output.WriteEnum((int) AutoMixedPrecisionOnednnBfloat16); + } + if (CpuLayoutConversion != global::Tensorflow.RewriterConfig.Types.CpuLayout.NoConversionOnCpu) { + output.WriteRawTag(144, 3); + output.WriteEnum((int) CpuLayoutConversion); + } + optimizers_.WriteTo(ref output, _repeated_optimizers_codec); + customOptimizers_.WriteTo(ref output, _repeated_customOptimizers_codec); + if (interOptimizerVerifierConfig_ != null) { + output.WriteRawTag(226, 18); + output.WriteMessage(InterOptimizerVerifierConfig); + } + if (postOptimizationVerifierConfig_ != null) { + output.WriteRawTag(234, 18); + output.WriteMessage(PostOptimizationVerifierConfig); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (CpuLayoutConversion != global::Tensorflow.RewriterConfig.Types.CpuLayout.NoConversionOnCpu) { @@ -1244,12 +1652,21 @@ public int CalculateSize() { if (AutoMixedPrecisionMkl != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) AutoMixedPrecisionMkl); } + if (AutoMixedPrecisionOnednnBfloat16 != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) AutoMixedPrecisionOnednnBfloat16); + } + if (AutoMixedPrecisionCpu != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) AutoMixedPrecisionCpu); + } if (DisableMetaOptimizer != false) { size += 2 + 1; } if (UsePluginOptimizers != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) UsePluginOptimizers); } + if (ExperimentalConditionalCodeMotion != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) ExperimentalConditionalCodeMotion); + } if (MetaOptimizerIterations != global::Tensorflow.RewriterConfig.Types.NumIterationsType.DefaultNumIters) { size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) MetaOptimizerIterations); } @@ -1295,6 +1712,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(RewriterConfig other) { if (other == null) { return; @@ -1350,12 +1768,21 @@ public void MergeFrom(RewriterConfig other) { if (other.AutoMixedPrecisionMkl != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { AutoMixedPrecisionMkl = other.AutoMixedPrecisionMkl; } + if (other.AutoMixedPrecisionOnednnBfloat16 != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + AutoMixedPrecisionOnednnBfloat16 = other.AutoMixedPrecisionOnednnBfloat16; + } + if (other.AutoMixedPrecisionCpu != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + AutoMixedPrecisionCpu = other.AutoMixedPrecisionCpu; + } if (other.DisableMetaOptimizer != false) { DisableMetaOptimizer = other.DisableMetaOptimizer; } if (other.UsePluginOptimizers != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { UsePluginOptimizers = other.UsePluginOptimizers; } + if (other.ExperimentalConditionalCodeMotion != global::Tensorflow.RewriterConfig.Types.Toggle.Default) { + ExperimentalConditionalCodeMotion = other.ExperimentalConditionalCodeMotion; + } if (other.MetaOptimizerIterations != global::Tensorflow.RewriterConfig.Types.NumIterationsType.DefaultNumIters) { MetaOptimizerIterations = other.MetaOptimizerIterations; } @@ -1410,7 +1837,11 @@ public void MergeFrom(RewriterConfig other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1535,6 +1966,18 @@ public void MergeFrom(pb::CodedInputStream input) { UsePluginOptimizers = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); break; } + case 232: { + AutoMixedPrecisionCpu = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 240: { + ExperimentalConditionalCodeMotion = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 248: { + AutoMixedPrecisionOnednnBfloat16 = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } case 400: { CpuLayoutConversion = (global::Tensorflow.RewriterConfig.Types.CpuLayout) input.ReadEnum(); break; @@ -1563,11 +2006,184 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + LayoutOptimizer = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 16: { + DisableModelPruning = input.ReadBool(); + break; + } + case 24: { + ConstantFolding = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 32: { + MemoryOptimization = (global::Tensorflow.RewriterConfig.Types.MemOptType) input.ReadEnum(); + break; + } + case 42: { + if (autoParallel_ == null) { + AutoParallel = new global::Tensorflow.AutoParallelOptions(); + } + input.ReadMessage(AutoParallel); + break; + } + case 50: { + MemoryOptimizerTargetNodeNameScope = input.ReadString(); + break; + } + case 56: { + ArithmeticOptimization = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 64: { + DependencyOptimization = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 72: { + LoopOptimization = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 80: { + FunctionOptimization = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 88: { + DebugStripper = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 96: { + MetaOptimizerIterations = (global::Tensorflow.RewriterConfig.Types.NumIterationsType) input.ReadEnum(); + break; + } + case 104: { + ShapeOptimization = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 112: { + Remapping = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 120: { + ScopedAllocatorOptimization = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 130: { + if (scopedAllocatorOpts_ == null) { + ScopedAllocatorOpts = new global::Tensorflow.ScopedAllocatorOptions(); + } + input.ReadMessage(ScopedAllocatorOpts); + break; + } + case 136: { + MinGraphNodes = input.ReadInt32(); + break; + } + case 144: { + PinToHostOptimization = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 152: { + DisableMetaOptimizer = input.ReadBool(); + break; + } + case 160: { + MetaOptimizerTimeoutMs = input.ReadInt64(); + break; + } + case 168: { + FailOnOptimizerErrors = input.ReadBool(); + break; + } + case 176: { + ImplementationSelector = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 184: { + AutoMixedPrecision = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 192: { + CommonSubgraphElimination = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 200: { + AutoMixedPrecisionMkl = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 208: { + ExperimentalDisableCompressedTensorOptimization = input.ReadBool(); + break; + } + case 216: { + ExperimentalDisableFoldingQuantizationEmulation = input.ReadBool(); + break; + } + case 224: { + UsePluginOptimizers = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 232: { + AutoMixedPrecisionCpu = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 240: { + ExperimentalConditionalCodeMotion = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 248: { + AutoMixedPrecisionOnednnBfloat16 = (global::Tensorflow.RewriterConfig.Types.Toggle) input.ReadEnum(); + break; + } + case 400: { + CpuLayoutConversion = (global::Tensorflow.RewriterConfig.Types.CpuLayout) input.ReadEnum(); + break; + } + case 802: { + optimizers_.AddEntriesFrom(ref input, _repeated_optimizers_codec); + break; + } + case 1602: { + customOptimizers_.AddEntriesFrom(ref input, _repeated_customOptimizers_codec); + break; + } + case 2402: { + if (interOptimizerVerifierConfig_ == null) { + InterOptimizerVerifierConfig = new global::Tensorflow.VerifierConfig(); + } + input.ReadMessage(InterOptimizerVerifierConfig); + break; + } + case 2410: { + if (postOptimizationVerifierConfig_ == null) { + PostOptimizationVerifierConfig = new global::Tensorflow.VerifierConfig(); + } + input.ReadMessage(PostOptimizationVerifierConfig); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the RewriterConfig message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { public enum Toggle { [pbr::OriginalName("DEFAULT")] Default = 0, @@ -1579,6 +2195,17 @@ public enum Toggle { /// actual feed. /// [pbr::OriginalName("AGGRESSIVE")] Aggressive = 3, + /// + /// Run MLIR pass if there's one implemented in TFG, do nothing otherwise. + /// I.e., if there's no corresponding TFG pass, it's an OFF. This is supposed + /// to be mapped with `ON` and there's no `AGGRESSIVE` in MLIR pass now. + /// + [pbr::OriginalName("EXPERIMENTAL_MLIR")] ExperimentalMlir = 4, + /// + /// Run both MLIR and Grappler passes consecutively and MLIR pass will come + /// first. + /// + [pbr::OriginalName("EXPERIMENTAL_BOTH")] ExperimentalBoth = 5, } /// @@ -1637,23 +2264,31 @@ public enum MemOptType { /// /// Message to describe custom graph optimizer and its parameters /// - public sealed partial class CustomGraphOptimizer : pb::IMessage { + public sealed partial class CustomGraphOptimizer : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CustomGraphOptimizer()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.RewriterConfig.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CustomGraphOptimizer() { OnConstruction(); } @@ -1661,6 +2296,7 @@ public CustomGraphOptimizer() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CustomGraphOptimizer(CustomGraphOptimizer other) : this() { name_ = other.name_; parameterMap_ = other.parameterMap_.Clone(); @@ -1668,6 +2304,7 @@ public CustomGraphOptimizer(CustomGraphOptimizer other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CustomGraphOptimizer Clone() { return new CustomGraphOptimizer(this); } @@ -1676,6 +2313,7 @@ public CustomGraphOptimizer Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -1689,16 +2327,19 @@ public string Name { = new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForMessage(18, global::Tensorflow.AttrValue.Parser), 18); private readonly pbc::MapField parameterMap_ = new pbc::MapField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField ParameterMap { get { return parameterMap_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CustomGraphOptimizer); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CustomGraphOptimizer other) { if (ReferenceEquals(other, null)) { return false; @@ -1712,6 +2353,7 @@ public bool Equals(CustomGraphOptimizer other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -1723,12 +2365,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -1737,9 +2384,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + parameterMap_.WriteTo(ref output, _map_parameterMap_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -1753,6 +2417,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CustomGraphOptimizer other) { if (other == null) { return; @@ -1765,7 +2430,11 @@ public void MergeFrom(CustomGraphOptimizer other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1782,7 +2451,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + parameterMap_.AddEntriesFrom(ref input, _map_parameterMap_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/SavedModel.cs b/src/TensorFlowNET.Core/Protobuf/SavedModel.cs index a42481b4d..67cea4889 100644 --- a/src/TensorFlowNET.Core/Protobuf/SavedModel.cs +++ b/src/TensorFlowNET.Core/Protobuf/SavedModel.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/saved_model.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -46,23 +46,31 @@ static SavedModelReflection() { /// SavedModel is the high level serialization format for TensorFlow Models. /// See [todo: doc links, similar to session_bundle] for more information. /// - public sealed partial class SavedModel : pb::IMessage { + public sealed partial class SavedModel : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedModel()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedModelReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedModel() { OnConstruction(); } @@ -70,6 +78,7 @@ public SavedModel() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedModel(SavedModel other) : this() { savedModelSchemaVersion_ = other.savedModelSchemaVersion_; metaGraphs_ = other.metaGraphs_.Clone(); @@ -77,6 +86,7 @@ public SavedModel(SavedModel other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedModel Clone() { return new SavedModel(this); } @@ -90,6 +100,7 @@ public SavedModel Clone() { /// at release will be 1. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long SavedModelSchemaVersion { get { return savedModelSchemaVersion_; } set { @@ -106,16 +117,19 @@ public long SavedModelSchemaVersion { /// One or more MetaGraphs. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField MetaGraphs { get { return metaGraphs_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedModel); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedModel other) { if (ReferenceEquals(other, null)) { return false; @@ -129,6 +143,7 @@ public bool Equals(SavedModel other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (SavedModelSchemaVersion != 0L) hash ^= SavedModelSchemaVersion.GetHashCode(); @@ -140,12 +155,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (SavedModelSchemaVersion != 0L) { output.WriteRawTag(8); output.WriteInt64(SavedModelSchemaVersion); @@ -154,9 +174,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SavedModelSchemaVersion != 0L) { + output.WriteRawTag(8); + output.WriteInt64(SavedModelSchemaVersion); + } + metaGraphs_.WriteTo(ref output, _repeated_metaGraphs_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (SavedModelSchemaVersion != 0L) { @@ -170,6 +207,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedModel other) { if (other == null) { return; @@ -182,7 +220,11 @@ public void MergeFrom(SavedModel other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -199,7 +241,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + SavedModelSchemaVersion = input.ReadInt64(); + break; + } + case 18: { + metaGraphs_.AddEntriesFrom(ref input, _repeated_metaGraphs_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/SavedObjectGraph.cs b/src/TensorFlowNET.Core/Protobuf/SavedObjectGraph.cs index 9d3e854ac..df7019ad4 100644 --- a/src/TensorFlowNET.Core/Protobuf/SavedObjectGraph.cs +++ b/src/TensorFlowNET.Core/Protobuf/SavedObjectGraph.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/saved_object_graph.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -25,73 +25,78 @@ static SavedObjectGraphReflection() { byte[] descriptorData = global::System.Convert.FromBase64String( string.Concat( "CjF0ZW5zb3JmbG93L2NvcmUvcHJvdG9idWYvc2F2ZWRfb2JqZWN0X2dyYXBo", - "LnByb3RvEgp0ZW5zb3JmbG93Gix0ZW5zb3JmbG93L2NvcmUvZnJhbWV3b3Jr", - "L3RlbnNvcl9zaGFwZS5wcm90bxoldGVuc29yZmxvdy9jb3JlL2ZyYW1ld29y", - "ay90eXBlcy5wcm90bxoodGVuc29yZmxvdy9jb3JlL2ZyYW1ld29yay92YXJp", - "YWJsZS5wcm90bxoodGVuc29yZmxvdy9jb3JlL2ZyYW1ld29yay92ZXJzaW9u", - "cy5wcm90bxoldGVuc29yZmxvdy9jb3JlL3Byb3RvYnVmL3N0cnVjdC5wcm90", - "bxo1dGVuc29yZmxvdy9jb3JlL3Byb3RvYnVmL3RyYWNrYWJsZV9vYmplY3Rf", - "Z3JhcGgucHJvdG8i6AEKEFNhdmVkT2JqZWN0R3JhcGgSJgoFbm9kZXMYASAD", - "KAsyFy50ZW5zb3JmbG93LlNhdmVkT2JqZWN0Ek8KEmNvbmNyZXRlX2Z1bmN0", - "aW9ucxgCIAMoCzIzLnRlbnNvcmZsb3cuU2F2ZWRPYmplY3RHcmFwaC5Db25j", - "cmV0ZUZ1bmN0aW9uc0VudHJ5GlsKFkNvbmNyZXRlRnVuY3Rpb25zRW50cnkS", - "CwoDa2V5GAEgASgJEjAKBXZhbHVlGAIgASgLMiEudGVuc29yZmxvdy5TYXZl", - "ZENvbmNyZXRlRnVuY3Rpb246AjgBIpAGCgtTYXZlZE9iamVjdBJSCghjaGls", - "ZHJlbhgBIAMoCzJALnRlbnNvcmZsb3cuVHJhY2thYmxlT2JqZWN0R3JhcGgu", - "VHJhY2thYmxlT2JqZWN0Lk9iamVjdFJlZmVyZW5jZRJeCg5zbG90X3Zhcmlh", - "YmxlcxgDIAMoCzJGLnRlbnNvcmZsb3cuVHJhY2thYmxlT2JqZWN0R3JhcGgu", - "VHJhY2thYmxlT2JqZWN0LlNsb3RWYXJpYWJsZVJlZmVyZW5jZRIyCgt1c2Vy", - "X29iamVjdBgEIAEoCzIbLnRlbnNvcmZsb3cuU2F2ZWRVc2VyT2JqZWN0SAAS", - "JwoFYXNzZXQYBSABKAsyFi50ZW5zb3JmbG93LlNhdmVkQXNzZXRIABItCghm", - "dW5jdGlvbhgGIAEoCzIZLnRlbnNvcmZsb3cuU2F2ZWRGdW5jdGlvbkgAEi0K", - "CHZhcmlhYmxlGAcgASgLMhkudGVuc29yZmxvdy5TYXZlZFZhcmlhYmxlSAAS", - "RwoWYmFyZV9jb25jcmV0ZV9mdW5jdGlvbhgIIAEoCzIlLnRlbnNvcmZsb3cu", - "U2F2ZWRCYXJlQ29uY3JldGVGdW5jdGlvbkgAEi0KCGNvbnN0YW50GAkgASgL", - "MhkudGVuc29yZmxvdy5TYXZlZENvbnN0YW50SAASLQoIcmVzb3VyY2UYCiAB", - "KAsyGS50ZW5zb3JmbG93LlNhdmVkUmVzb3VyY2VIABI1Cg9jYXB0dXJlZF90", - "ZW5zb3IYDCABKAsyGi50ZW5zb3JmbG93LkNhcHR1cmVkVGVuc29ySAASRgoQ", - "c2F2ZWFibGVfb2JqZWN0cxgLIAMoCzIsLnRlbnNvcmZsb3cuU2F2ZWRPYmpl", - "Y3QuU2F2ZWFibGVPYmplY3RzRW50cnkaUgoUU2F2ZWFibGVPYmplY3RzRW50", - "cnkSCwoDa2V5GAEgASgJEikKBXZhbHVlGAIgASgLMhoudGVuc29yZmxvdy5T", - "YXZlYWJsZU9iamVjdDoCOAFCBgoEa2luZEoECAIQA1IKYXR0cmlidXRlcyJk", - "Cg9TYXZlZFVzZXJPYmplY3QSEgoKaWRlbnRpZmllchgBIAEoCRInCgd2ZXJz", - "aW9uGAIgASgLMhYudGVuc29yZmxvdy5WZXJzaW9uRGVmEhQKCG1ldGFkYXRh", - "GAMgASgJQgIYASIqCgpTYXZlZEFzc2V0EhwKFGFzc2V0X2ZpbGVfZGVmX2lu", - "ZGV4GAEgASgFIlwKDVNhdmVkRnVuY3Rpb24SGgoSY29uY3JldGVfZnVuY3Rp", - "b25zGAEgAygJEi8KDWZ1bmN0aW9uX3NwZWMYAiABKAsyGC50ZW5zb3JmbG93", - "LkZ1bmN0aW9uU3BlYyI5Cg5DYXB0dXJlZFRlbnNvchIMCgRuYW1lGAEgASgJ", - "EhkKEWNvbmNyZXRlX2Z1bmN0aW9uGAIgASgJIqgBChVTYXZlZENvbmNyZXRl", - "RnVuY3Rpb24SFAoMYm91bmRfaW5wdXRzGAIgAygFEkIKHWNhbm9uaWNhbGl6", - "ZWRfaW5wdXRfc2lnbmF0dXJlGAMgASgLMhsudGVuc29yZmxvdy5TdHJ1Y3R1", - "cmVkVmFsdWUSNQoQb3V0cHV0X3NpZ25hdHVyZRgEIAEoCzIbLnRlbnNvcmZs", - "b3cuU3RydWN0dXJlZFZhbHVlIq0BChlTYXZlZEJhcmVDb25jcmV0ZUZ1bmN0", - "aW9uEh4KFmNvbmNyZXRlX2Z1bmN0aW9uX25hbWUYASABKAkSGQoRYXJndW1l", - "bnRfa2V5d29yZHMYAiADKAkSJAocYWxsb3dlZF9wb3NpdGlvbmFsX2FyZ3Vt", - "ZW50cxgDIAEoAxIvCg1mdW5jdGlvbl9zcGVjGAQgASgLMhgudGVuc29yZmxv", - "dy5GdW5jdGlvblNwZWMiIgoNU2F2ZWRDb25zdGFudBIRCglvcGVyYXRpb24Y", - "ASABKAki1wIKDVNhdmVkVmFyaWFibGUSIwoFZHR5cGUYASABKA4yFC50ZW5z", - "b3JmbG93LkRhdGFUeXBlEisKBXNoYXBlGAIgASgLMhwudGVuc29yZmxvdy5U", - "ZW5zb3JTaGFwZVByb3RvEhEKCXRyYWluYWJsZRgDIAEoCBI8Cg9zeW5jaHJv", - "bml6YXRpb24YBCABKA4yIy50ZW5zb3JmbG93LlZhcmlhYmxlU3luY2hyb25p", - "emF0aW9uEjQKC2FnZ3JlZ2F0aW9uGAUgASgOMh8udGVuc29yZmxvdy5WYXJp", - "YWJsZUFnZ3JlZ2F0aW9uEgwKBG5hbWUYBiABKAkSDgoGZGV2aWNlGAcgASgJ", - "Ek8KLGV4cGVyaW1lbnRhbF9kaXN0cmlidXRlZF92YXJpYWJsZV9jb21wb25l", - "bnRzGAggAygLMhkudGVuc29yZmxvdy5TYXZlZFZhcmlhYmxlIvsBCgxGdW5j", - "dGlvblNwZWMSMAoLZnVsbGFyZ3NwZWMYASABKAsyGy50ZW5zb3JmbG93LlN0", - "cnVjdHVyZWRWYWx1ZRIRCglpc19tZXRob2QYAiABKAgSNAoPaW5wdXRfc2ln", - "bmF0dXJlGAUgASgLMhsudGVuc29yZmxvdy5TdHJ1Y3R1cmVkVmFsdWUSOAoL", - "aml0X2NvbXBpbGUYBiABKA4yIy50ZW5zb3JmbG93LkZ1bmN0aW9uU3BlYy5K", - "aXRDb21waWxlIioKCkppdENvbXBpbGUSCwoHREVGQVVMVBAAEgYKAk9OEAES", - "BwoDT0ZGEAJKBAgDEARKBAgEEAUiHwoNU2F2ZWRSZXNvdXJjZRIOCgZkZXZp", - "Y2UYASABKAkiQQoOU2F2ZWFibGVPYmplY3QSFQoNc2F2ZV9mdW5jdGlvbhgC", - "IAEoBRIYChByZXN0b3JlX2Z1bmN0aW9uGAMgASgFQlpaVWdpdGh1Yi5jb20v", - "dGVuc29yZmxvdy90ZW5zb3JmbG93L3RlbnNvcmZsb3cvZ28vY29yZS9wcm90", - "b2J1Zi9mb3JfY29yZV9wcm90b3NfZ29fcHJvdG/4AQFiBnByb3RvMw==")); + "LnByb3RvEgp0ZW5zb3JmbG93Ghlnb29nbGUvcHJvdG9idWYvYW55LnByb3Rv", + "Gix0ZW5zb3JmbG93L2NvcmUvZnJhbWV3b3JrL3RlbnNvcl9zaGFwZS5wcm90", + "bxoldGVuc29yZmxvdy9jb3JlL2ZyYW1ld29yay90eXBlcy5wcm90bxoodGVu", + "c29yZmxvdy9jb3JlL2ZyYW1ld29yay92YXJpYWJsZS5wcm90bxoodGVuc29y", + "Zmxvdy9jb3JlL2ZyYW1ld29yay92ZXJzaW9ucy5wcm90bxoldGVuc29yZmxv", + "dy9jb3JlL3Byb3RvYnVmL3N0cnVjdC5wcm90bxo1dGVuc29yZmxvdy9jb3Jl", + "L3Byb3RvYnVmL3RyYWNrYWJsZV9vYmplY3RfZ3JhcGgucHJvdG8i6AEKEFNh", + "dmVkT2JqZWN0R3JhcGgSJgoFbm9kZXMYASADKAsyFy50ZW5zb3JmbG93LlNh", + "dmVkT2JqZWN0Ek8KEmNvbmNyZXRlX2Z1bmN0aW9ucxgCIAMoCzIzLnRlbnNv", + "cmZsb3cuU2F2ZWRPYmplY3RHcmFwaC5Db25jcmV0ZUZ1bmN0aW9uc0VudHJ5", + "GlsKFkNvbmNyZXRlRnVuY3Rpb25zRW50cnkSCwoDa2V5GAEgASgJEjAKBXZh", + "bHVlGAIgASgLMiEudGVuc29yZmxvdy5TYXZlZENvbmNyZXRlRnVuY3Rpb246", + "AjgBItAHCgtTYXZlZE9iamVjdBJSCghjaGlsZHJlbhgBIAMoCzJALnRlbnNv", + "cmZsb3cuVHJhY2thYmxlT2JqZWN0R3JhcGguVHJhY2thYmxlT2JqZWN0Lk9i", + "amVjdFJlZmVyZW5jZRJWCgxkZXBlbmRlbmNpZXMYDyADKAsyQC50ZW5zb3Jm", + "bG93LlRyYWNrYWJsZU9iamVjdEdyYXBoLlRyYWNrYWJsZU9iamVjdC5PYmpl", + "Y3RSZWZlcmVuY2USXgoOc2xvdF92YXJpYWJsZXMYAyADKAsyRi50ZW5zb3Jm", + "bG93LlRyYWNrYWJsZU9iamVjdEdyYXBoLlRyYWNrYWJsZU9iamVjdC5TbG90", + "VmFyaWFibGVSZWZlcmVuY2USMgoLdXNlcl9vYmplY3QYBCABKAsyGy50ZW5z", + "b3JmbG93LlNhdmVkVXNlck9iamVjdEgAEicKBWFzc2V0GAUgASgLMhYudGVu", + "c29yZmxvdy5TYXZlZEFzc2V0SAASLQoIZnVuY3Rpb24YBiABKAsyGS50ZW5z", + "b3JmbG93LlNhdmVkRnVuY3Rpb25IABItCgh2YXJpYWJsZRgHIAEoCzIZLnRl", + "bnNvcmZsb3cuU2F2ZWRWYXJpYWJsZUgAEkcKFmJhcmVfY29uY3JldGVfZnVu", + "Y3Rpb24YCCABKAsyJS50ZW5zb3JmbG93LlNhdmVkQmFyZUNvbmNyZXRlRnVu", + "Y3Rpb25IABItCghjb25zdGFudBgJIAEoCzIZLnRlbnNvcmZsb3cuU2F2ZWRD", + "b25zdGFudEgAEi0KCHJlc291cmNlGAogASgLMhkudGVuc29yZmxvdy5TYXZl", + "ZFJlc291cmNlSAASNQoPY2FwdHVyZWRfdGVuc29yGAwgASgLMhoudGVuc29y", + "Zmxvdy5DYXB0dXJlZFRlbnNvckgAEkYKEHNhdmVhYmxlX29iamVjdHMYCyAD", + "KAsyLC50ZW5zb3JmbG93LlNhdmVkT2JqZWN0LlNhdmVhYmxlT2JqZWN0c0Vu", + "dHJ5EhcKD3JlZ2lzdGVyZWRfbmFtZRgNIAEoCRIzChVzZXJpYWxpemVkX3Vz", + "ZXJfcHJvdG8YDiABKAsyFC5nb29nbGUucHJvdG9idWYuQW55EhgKEHJlZ2lz", + "dGVyZWRfc2F2ZXIYECABKAkaUgoUU2F2ZWFibGVPYmplY3RzRW50cnkSCwoD", + "a2V5GAEgASgJEikKBXZhbHVlGAIgASgLMhoudGVuc29yZmxvdy5TYXZlYWJs", + "ZU9iamVjdDoCOAFCBgoEa2luZEoECAIQA1IKYXR0cmlidXRlcyJkCg9TYXZl", + "ZFVzZXJPYmplY3QSEgoKaWRlbnRpZmllchgBIAEoCRInCgd2ZXJzaW9uGAIg", + "ASgLMhYudGVuc29yZmxvdy5WZXJzaW9uRGVmEhQKCG1ldGFkYXRhGAMgASgJ", + "QgIYASIqCgpTYXZlZEFzc2V0EhwKFGFzc2V0X2ZpbGVfZGVmX2luZGV4GAEg", + "ASgFIlwKDVNhdmVkRnVuY3Rpb24SGgoSY29uY3JldGVfZnVuY3Rpb25zGAEg", + "AygJEi8KDWZ1bmN0aW9uX3NwZWMYAiABKAsyGC50ZW5zb3JmbG93LkZ1bmN0", + "aW9uU3BlYyI5Cg5DYXB0dXJlZFRlbnNvchIMCgRuYW1lGAEgASgJEhkKEWNv", + "bmNyZXRlX2Z1bmN0aW9uGAIgASgJIqgBChVTYXZlZENvbmNyZXRlRnVuY3Rp", + "b24SFAoMYm91bmRfaW5wdXRzGAIgAygFEkIKHWNhbm9uaWNhbGl6ZWRfaW5w", + "dXRfc2lnbmF0dXJlGAMgASgLMhsudGVuc29yZmxvdy5TdHJ1Y3R1cmVkVmFs", + "dWUSNQoQb3V0cHV0X3NpZ25hdHVyZRgEIAEoCzIbLnRlbnNvcmZsb3cuU3Ry", + "dWN0dXJlZFZhbHVlIq0BChlTYXZlZEJhcmVDb25jcmV0ZUZ1bmN0aW9uEh4K", + "FmNvbmNyZXRlX2Z1bmN0aW9uX25hbWUYASABKAkSGQoRYXJndW1lbnRfa2V5", + "d29yZHMYAiADKAkSJAocYWxsb3dlZF9wb3NpdGlvbmFsX2FyZ3VtZW50cxgD", + "IAEoAxIvCg1mdW5jdGlvbl9zcGVjGAQgASgLMhgudGVuc29yZmxvdy5GdW5j", + "dGlvblNwZWMiIgoNU2F2ZWRDb25zdGFudBIRCglvcGVyYXRpb24YASABKAki", + "1wIKDVNhdmVkVmFyaWFibGUSIwoFZHR5cGUYASABKA4yFC50ZW5zb3JmbG93", + "LkRhdGFUeXBlEisKBXNoYXBlGAIgASgLMhwudGVuc29yZmxvdy5UZW5zb3JT", + "aGFwZVByb3RvEhEKCXRyYWluYWJsZRgDIAEoCBI8Cg9zeW5jaHJvbml6YXRp", + "b24YBCABKA4yIy50ZW5zb3JmbG93LlZhcmlhYmxlU3luY2hyb25pemF0aW9u", + "EjQKC2FnZ3JlZ2F0aW9uGAUgASgOMh8udGVuc29yZmxvdy5WYXJpYWJsZUFn", + "Z3JlZ2F0aW9uEgwKBG5hbWUYBiABKAkSDgoGZGV2aWNlGAcgASgJEk8KLGV4", + "cGVyaW1lbnRhbF9kaXN0cmlidXRlZF92YXJpYWJsZV9jb21wb25lbnRzGAgg", + "AygLMhkudGVuc29yZmxvdy5TYXZlZFZhcmlhYmxlIvsBCgxGdW5jdGlvblNw", + "ZWMSMAoLZnVsbGFyZ3NwZWMYASABKAsyGy50ZW5zb3JmbG93LlN0cnVjdHVy", + "ZWRWYWx1ZRIRCglpc19tZXRob2QYAiABKAgSNAoPaW5wdXRfc2lnbmF0dXJl", + "GAUgASgLMhsudGVuc29yZmxvdy5TdHJ1Y3R1cmVkVmFsdWUSOAoLaml0X2Nv", + "bXBpbGUYBiABKA4yIy50ZW5zb3JmbG93LkZ1bmN0aW9uU3BlYy5KaXRDb21w", + "aWxlIioKCkppdENvbXBpbGUSCwoHREVGQVVMVBAAEgYKAk9OEAESBwoDT0ZG", + "EAJKBAgDEARKBAgEEAUiHwoNU2F2ZWRSZXNvdXJjZRIOCgZkZXZpY2UYASAB", + "KAkiQQoOU2F2ZWFibGVPYmplY3QSFQoNc2F2ZV9mdW5jdGlvbhgCIAEoBRIY", + "ChByZXN0b3JlX2Z1bmN0aW9uGAMgASgFQlpaVWdpdGh1Yi5jb20vdGVuc29y", + "Zmxvdy90ZW5zb3JmbG93L3RlbnNvcmZsb3cvZ28vY29yZS9wcm90b2J1Zi9m", + "b3JfY29yZV9wcm90b3NfZ29fcHJvdG/4AQFiBnByb3RvMw==")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, - new pbr::FileDescriptor[] { global::Tensorflow.TensorShapeReflection.Descriptor, global::Tensorflow.TypesReflection.Descriptor, global::Tensorflow.VariableReflection.Descriptor, global::Tensorflow.VersionsReflection.Descriptor, global::Tensorflow.StructReflection.Descriptor, global::Tensorflow.TrackableObjectGraphReflection.Descriptor, }, + new pbr::FileDescriptor[] { global::Google.Protobuf.WellKnownTypes.AnyReflection.Descriptor, global::Tensorflow.TensorShapeReflection.Descriptor, global::Tensorflow.TypesReflection.Descriptor, global::Tensorflow.VariableReflection.Descriptor, global::Tensorflow.VersionsReflection.Descriptor, global::Tensorflow.StructReflection.Descriptor, global::Tensorflow.TrackableObjectGraphReflection.Descriptor, }, new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SavedObjectGraph), global::Tensorflow.SavedObjectGraph.Parser, new[]{ "Nodes", "ConcreteFunctions" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, }), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SavedObject), global::Tensorflow.SavedObject.Parser, new[]{ "Children", "SlotVariables", "UserObject", "Asset", "Function", "Variable", "BareConcreteFunction", "Constant", "Resource", "CapturedTensor", "SaveableObjects" }, new[]{ "Kind" }, null, null, new pbr::GeneratedClrTypeInfo[] { null, }), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SavedObject), global::Tensorflow.SavedObject.Parser, new[]{ "Children", "Dependencies", "SlotVariables", "UserObject", "Asset", "Function", "Variable", "BareConcreteFunction", "Constant", "Resource", "CapturedTensor", "SaveableObjects", "RegisteredName", "SerializedUserProto", "RegisteredSaver" }, new[]{ "Kind" }, null, null, new pbr::GeneratedClrTypeInfo[] { null, }), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SavedUserObject), global::Tensorflow.SavedUserObject.Parser, new[]{ "Identifier", "Version", "Metadata" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SavedAsset), global::Tensorflow.SavedAsset.Parser, new[]{ "AssetFileDefIndex" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SavedFunction), global::Tensorflow.SavedFunction.Parser, new[]{ "ConcreteFunctions", "FunctionSpec" }, null, null, null, null), @@ -109,23 +114,31 @@ static SavedObjectGraphReflection() { } #region Messages - public sealed partial class SavedObjectGraph : pb::IMessage { + public sealed partial class SavedObjectGraph : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedObjectGraph()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedObjectGraph() { OnConstruction(); } @@ -133,6 +146,7 @@ public SavedObjectGraph() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedObjectGraph(SavedObjectGraph other) : this() { nodes_ = other.nodes_.Clone(); concreteFunctions_ = other.concreteFunctions_.Clone(); @@ -140,6 +154,7 @@ public SavedObjectGraph(SavedObjectGraph other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedObjectGraph Clone() { return new SavedObjectGraph(this); } @@ -156,6 +171,7 @@ public SavedObjectGraph Clone() { /// Nodes[0] is considered the root node. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Nodes { get { return nodes_; } } @@ -170,16 +186,19 @@ public SavedObjectGraph Clone() { /// Referenced from SavedBareConcreteFunction and SavedFunction. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField ConcreteFunctions { get { return concreteFunctions_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedObjectGraph); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedObjectGraph other) { if (ReferenceEquals(other, null)) { return false; @@ -193,6 +212,7 @@ public bool Equals(SavedObjectGraph other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= nodes_.GetHashCode(); @@ -204,20 +224,39 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else nodes_.WriteTo(output, _repeated_nodes_codec); concreteFunctions_.WriteTo(output, _map_concreteFunctions_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + nodes_.WriteTo(ref output, _repeated_nodes_codec); + concreteFunctions_.WriteTo(ref output, _map_concreteFunctions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += nodes_.CalculateSize(_repeated_nodes_codec); @@ -229,6 +268,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedObjectGraph other) { if (other == null) { return; @@ -239,7 +279,11 @@ public void MergeFrom(SavedObjectGraph other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -256,27 +300,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + nodes_.AddEntriesFrom(ref input, _repeated_nodes_codec); + break; + } + case 18: { + concreteFunctions_.AddEntriesFrom(ref input, _map_concreteFunctions_codec); + break; + } + } + } } + #endif } - public sealed partial class SavedObject : pb::IMessage { + public sealed partial class SavedObject : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedObject()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedObject() { OnConstruction(); } @@ -284,10 +360,15 @@ public SavedObject() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedObject(SavedObject other) : this() { children_ = other.children_.Clone(); + dependencies_ = other.dependencies_.Clone(); slotVariables_ = other.slotVariables_.Clone(); saveableObjects_ = other.saveableObjects_.Clone(); + registeredName_ = other.registeredName_; + serializedUserProto_ = other.serializedUserProto_ != null ? other.serializedUserProto_.Clone() : null; + registeredSaver_ = other.registeredSaver_; switch (other.KindCase) { case KindOneofCase.UserObject: UserObject = other.UserObject.Clone(); @@ -319,6 +400,7 @@ public SavedObject(SavedObject other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedObject Clone() { return new SavedObject(this); } @@ -332,13 +414,31 @@ public SavedObject Clone() { /// Objects which this object depends on: named edges in the dependency /// graph. /// - /// Note: currently only valid if kind == "user_object" or "resource". + /// Note: All kinds of SavedObject may have children, except + /// "constant" and "captured_tensor". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Children { get { return children_; } } + /// Field number for the "dependencies" field. + public const int DependenciesFieldNumber = 15; + private static readonly pb::FieldCodec _repeated_dependencies_codec + = pb::FieldCodec.ForMessage(122, global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.ObjectReference.Parser); + private readonly pbc::RepeatedField dependencies_ = new pbc::RepeatedField(); + /// + /// Ordered list of dependencies that must be loaded before this object. + /// SavedModel loads with the bottom-up approach, by first creating all objects + /// (in the order defined by the dependencies), then connecting the edges. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Dependencies { + get { return dependencies_; } + } + /// Field number for the "slot_variables" field. public const int SlotVariablesFieldNumber = 3; private static readonly pb::FieldCodec _repeated_slotVariables_codec @@ -352,6 +452,7 @@ public SavedObject Clone() { /// Note: currently only valid if kind == "user_object". /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField SlotVariables { get { return slotVariables_; } } @@ -359,6 +460,7 @@ public SavedObject Clone() { /// Field number for the "user_object" field. public const int UserObjectFieldNumber = 4; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SavedUserObject UserObject { get { return kindCase_ == KindOneofCase.UserObject ? (global::Tensorflow.SavedUserObject) kind_ : null; } set { @@ -370,6 +472,7 @@ public SavedObject Clone() { /// Field number for the "asset" field. public const int AssetFieldNumber = 5; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SavedAsset Asset { get { return kindCase_ == KindOneofCase.Asset ? (global::Tensorflow.SavedAsset) kind_ : null; } set { @@ -381,6 +484,7 @@ public SavedObject Clone() { /// Field number for the "function" field. public const int FunctionFieldNumber = 6; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SavedFunction Function { get { return kindCase_ == KindOneofCase.Function ? (global::Tensorflow.SavedFunction) kind_ : null; } set { @@ -392,6 +496,7 @@ public SavedObject Clone() { /// Field number for the "variable" field. public const int VariableFieldNumber = 7; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SavedVariable Variable { get { return kindCase_ == KindOneofCase.Variable ? (global::Tensorflow.SavedVariable) kind_ : null; } set { @@ -403,6 +508,7 @@ public SavedObject Clone() { /// Field number for the "bare_concrete_function" field. public const int BareConcreteFunctionFieldNumber = 8; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SavedBareConcreteFunction BareConcreteFunction { get { return kindCase_ == KindOneofCase.BareConcreteFunction ? (global::Tensorflow.SavedBareConcreteFunction) kind_ : null; } set { @@ -414,6 +520,7 @@ public SavedObject Clone() { /// Field number for the "constant" field. public const int ConstantFieldNumber = 9; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SavedConstant Constant { get { return kindCase_ == KindOneofCase.Constant ? (global::Tensorflow.SavedConstant) kind_ : null; } set { @@ -425,6 +532,7 @@ public SavedObject Clone() { /// Field number for the "resource" field. public const int ResourceFieldNumber = 10; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SavedResource Resource { get { return kindCase_ == KindOneofCase.Resource ? (global::Tensorflow.SavedResource) kind_ : null; } set { @@ -436,6 +544,7 @@ public SavedObject Clone() { /// Field number for the "captured_tensor" field. public const int CapturedTensorFieldNumber = 12; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.CapturedTensor CapturedTensor { get { return kindCase_ == KindOneofCase.CapturedTensor ? (global::Tensorflow.CapturedTensor) kind_ : null; } set { @@ -449,11 +558,67 @@ public SavedObject Clone() { private static readonly pbc::MapField.Codec _map_saveableObjects_codec = new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForMessage(18, global::Tensorflow.SaveableObject.Parser), 90); private readonly pbc::MapField saveableObjects_ = new pbc::MapField(); + /// + /// Stores the functions used to save and restore this object. At most one of + /// `saveable_objects` or `registered_saver` is defined for each SavedObject. + /// See the comment below for the difference between SaveableObject and + /// registered savers. + /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField SaveableObjects { get { return saveableObjects_; } } + /// Field number for the "registered_name" field. + public const int RegisteredNameFieldNumber = 13; + private string registeredName_ = ""; + /// + /// The name of the registered class of the form "{package}.{class_name}". + /// This field is used to search for the registered class at loading time. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string RegisteredName { + get { return registeredName_; } + set { + registeredName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "serialized_user_proto" field. + public const int SerializedUserProtoFieldNumber = 14; + private global::Google.Protobuf.WellKnownTypes.Any serializedUserProto_; + /// + /// The user-generated proto storing metadata for this object, to be passed to + /// the registered classes's _deserialize_from_proto method when this object is + /// loaded from the SavedModel. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Google.Protobuf.WellKnownTypes.Any SerializedUserProto { + get { return serializedUserProto_; } + set { + serializedUserProto_ = value; + } + } + + /// Field number for the "registered_saver" field. + public const int RegisteredSaverFieldNumber = 16; + private string registeredSaver_ = ""; + /// + /// String name of the registered saver. At most one of `saveable_objects` or + /// `registered_saver` is defined for each SavedObject. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string RegisteredSaver { + get { return registeredSaver_; } + set { + registeredSaver_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + private object kind_; /// Enum of possible cases for the "kind" oneof. public enum KindOneofCase { @@ -469,22 +634,26 @@ public enum KindOneofCase { } private KindOneofCase kindCase_ = KindOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public KindOneofCase KindCase { get { return kindCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearKind() { kindCase_ = KindOneofCase.None; kind_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedObject); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedObject other) { if (ReferenceEquals(other, null)) { return false; @@ -493,6 +662,7 @@ public bool Equals(SavedObject other) { return true; } if(!children_.Equals(other.children_)) return false; + if(!dependencies_.Equals(other.dependencies_)) return false; if(!slotVariables_.Equals(other.slotVariables_)) return false; if (!object.Equals(UserObject, other.UserObject)) return false; if (!object.Equals(Asset, other.Asset)) return false; @@ -503,14 +673,19 @@ public bool Equals(SavedObject other) { if (!object.Equals(Resource, other.Resource)) return false; if (!object.Equals(CapturedTensor, other.CapturedTensor)) return false; if (!SaveableObjects.Equals(other.SaveableObjects)) return false; + if (RegisteredName != other.RegisteredName) return false; + if (!object.Equals(SerializedUserProto, other.SerializedUserProto)) return false; + if (RegisteredSaver != other.RegisteredSaver) return false; if (KindCase != other.KindCase) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= children_.GetHashCode(); + hash ^= dependencies_.GetHashCode(); hash ^= slotVariables_.GetHashCode(); if (kindCase_ == KindOneofCase.UserObject) hash ^= UserObject.GetHashCode(); if (kindCase_ == KindOneofCase.Asset) hash ^= Asset.GetHashCode(); @@ -521,6 +696,9 @@ public override int GetHashCode() { if (kindCase_ == KindOneofCase.Resource) hash ^= Resource.GetHashCode(); if (kindCase_ == KindOneofCase.CapturedTensor) hash ^= CapturedTensor.GetHashCode(); hash ^= SaveableObjects.GetHashCode(); + if (RegisteredName.Length != 0) hash ^= RegisteredName.GetHashCode(); + if (serializedUserProto_ != null) hash ^= SerializedUserProto.GetHashCode(); + if (RegisteredSaver.Length != 0) hash ^= RegisteredSaver.GetHashCode(); hash ^= (int) kindCase_; if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); @@ -529,12 +707,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else children_.WriteTo(output, _repeated_children_codec); slotVariables_.WriteTo(output, _repeated_slotVariables_codec); if (kindCase_ == KindOneofCase.UserObject) { @@ -570,15 +753,89 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(98); output.WriteMessage(CapturedTensor); } + if (RegisteredName.Length != 0) { + output.WriteRawTag(106); + output.WriteString(RegisteredName); + } + if (serializedUserProto_ != null) { + output.WriteRawTag(114); + output.WriteMessage(SerializedUserProto); + } + dependencies_.WriteTo(output, _repeated_dependencies_codec); + if (RegisteredSaver.Length != 0) { + output.WriteRawTag(130, 1); + output.WriteString(RegisteredSaver); + } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + children_.WriteTo(ref output, _repeated_children_codec); + slotVariables_.WriteTo(ref output, _repeated_slotVariables_codec); + if (kindCase_ == KindOneofCase.UserObject) { + output.WriteRawTag(34); + output.WriteMessage(UserObject); + } + if (kindCase_ == KindOneofCase.Asset) { + output.WriteRawTag(42); + output.WriteMessage(Asset); + } + if (kindCase_ == KindOneofCase.Function) { + output.WriteRawTag(50); + output.WriteMessage(Function); + } + if (kindCase_ == KindOneofCase.Variable) { + output.WriteRawTag(58); + output.WriteMessage(Variable); + } + if (kindCase_ == KindOneofCase.BareConcreteFunction) { + output.WriteRawTag(66); + output.WriteMessage(BareConcreteFunction); + } + if (kindCase_ == KindOneofCase.Constant) { + output.WriteRawTag(74); + output.WriteMessage(Constant); + } + if (kindCase_ == KindOneofCase.Resource) { + output.WriteRawTag(82); + output.WriteMessage(Resource); + } + saveableObjects_.WriteTo(ref output, _map_saveableObjects_codec); + if (kindCase_ == KindOneofCase.CapturedTensor) { + output.WriteRawTag(98); + output.WriteMessage(CapturedTensor); + } + if (RegisteredName.Length != 0) { + output.WriteRawTag(106); + output.WriteString(RegisteredName); + } + if (serializedUserProto_ != null) { + output.WriteRawTag(114); + output.WriteMessage(SerializedUserProto); + } + dependencies_.WriteTo(ref output, _repeated_dependencies_codec); + if (RegisteredSaver.Length != 0) { + output.WriteRawTag(130, 1); + output.WriteString(RegisteredSaver); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += children_.CalculateSize(_repeated_children_codec); + size += dependencies_.CalculateSize(_repeated_dependencies_codec); size += slotVariables_.CalculateSize(_repeated_slotVariables_codec); if (kindCase_ == KindOneofCase.UserObject) { size += 1 + pb::CodedOutputStream.ComputeMessageSize(UserObject); @@ -605,6 +862,15 @@ public int CalculateSize() { size += 1 + pb::CodedOutputStream.ComputeMessageSize(CapturedTensor); } size += saveableObjects_.CalculateSize(_map_saveableObjects_codec); + if (RegisteredName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(RegisteredName); + } + if (serializedUserProto_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(SerializedUserProto); + } + if (RegisteredSaver.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(RegisteredSaver); + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -612,13 +878,27 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedObject other) { if (other == null) { return; } children_.Add(other.children_); + dependencies_.Add(other.dependencies_); slotVariables_.Add(other.slotVariables_); saveableObjects_.Add(other.saveableObjects_); + if (other.RegisteredName.Length != 0) { + RegisteredName = other.RegisteredName; + } + if (other.serializedUserProto_ != null) { + if (serializedUserProto_ == null) { + SerializedUserProto = new global::Google.Protobuf.WellKnownTypes.Any(); + } + SerializedUserProto.MergeFrom(other.SerializedUserProto); + } + if (other.RegisteredSaver.Length != 0) { + RegisteredSaver = other.RegisteredSaver; + } switch (other.KindCase) { case KindOneofCase.UserObject: if (UserObject == null) { @@ -674,7 +954,11 @@ public void MergeFrom(SavedObject other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -765,9 +1049,147 @@ public void MergeFrom(pb::CodedInputStream input) { CapturedTensor = subBuilder; break; } + case 106: { + RegisteredName = input.ReadString(); + break; + } + case 114: { + if (serializedUserProto_ == null) { + SerializedUserProto = new global::Google.Protobuf.WellKnownTypes.Any(); + } + input.ReadMessage(SerializedUserProto); + break; + } + case 122: { + dependencies_.AddEntriesFrom(input, _repeated_dependencies_codec); + break; + } + case 130: { + RegisteredSaver = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + children_.AddEntriesFrom(ref input, _repeated_children_codec); + break; + } + case 26: { + slotVariables_.AddEntriesFrom(ref input, _repeated_slotVariables_codec); + break; + } + case 34: { + global::Tensorflow.SavedUserObject subBuilder = new global::Tensorflow.SavedUserObject(); + if (kindCase_ == KindOneofCase.UserObject) { + subBuilder.MergeFrom(UserObject); + } + input.ReadMessage(subBuilder); + UserObject = subBuilder; + break; + } + case 42: { + global::Tensorflow.SavedAsset subBuilder = new global::Tensorflow.SavedAsset(); + if (kindCase_ == KindOneofCase.Asset) { + subBuilder.MergeFrom(Asset); + } + input.ReadMessage(subBuilder); + Asset = subBuilder; + break; + } + case 50: { + global::Tensorflow.SavedFunction subBuilder = new global::Tensorflow.SavedFunction(); + if (kindCase_ == KindOneofCase.Function) { + subBuilder.MergeFrom(Function); + } + input.ReadMessage(subBuilder); + Function = subBuilder; + break; + } + case 58: { + global::Tensorflow.SavedVariable subBuilder = new global::Tensorflow.SavedVariable(); + if (kindCase_ == KindOneofCase.Variable) { + subBuilder.MergeFrom(Variable); + } + input.ReadMessage(subBuilder); + Variable = subBuilder; + break; + } + case 66: { + global::Tensorflow.SavedBareConcreteFunction subBuilder = new global::Tensorflow.SavedBareConcreteFunction(); + if (kindCase_ == KindOneofCase.BareConcreteFunction) { + subBuilder.MergeFrom(BareConcreteFunction); + } + input.ReadMessage(subBuilder); + BareConcreteFunction = subBuilder; + break; + } + case 74: { + global::Tensorflow.SavedConstant subBuilder = new global::Tensorflow.SavedConstant(); + if (kindCase_ == KindOneofCase.Constant) { + subBuilder.MergeFrom(Constant); + } + input.ReadMessage(subBuilder); + Constant = subBuilder; + break; + } + case 82: { + global::Tensorflow.SavedResource subBuilder = new global::Tensorflow.SavedResource(); + if (kindCase_ == KindOneofCase.Resource) { + subBuilder.MergeFrom(Resource); + } + input.ReadMessage(subBuilder); + Resource = subBuilder; + break; + } + case 90: { + saveableObjects_.AddEntriesFrom(ref input, _map_saveableObjects_codec); + break; + } + case 98: { + global::Tensorflow.CapturedTensor subBuilder = new global::Tensorflow.CapturedTensor(); + if (kindCase_ == KindOneofCase.CapturedTensor) { + subBuilder.MergeFrom(CapturedTensor); + } + input.ReadMessage(subBuilder); + CapturedTensor = subBuilder; + break; + } + case 106: { + RegisteredName = input.ReadString(); + break; + } + case 114: { + if (serializedUserProto_ == null) { + SerializedUserProto = new global::Google.Protobuf.WellKnownTypes.Any(); + } + input.ReadMessage(SerializedUserProto); + break; + } + case 122: { + dependencies_.AddEntriesFrom(ref input, _repeated_dependencies_codec); + break; + } + case 130: { + RegisteredSaver = input.ReadString(); + break; + } } } } + #endif } @@ -779,23 +1201,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// This object cannot be evaluated as a tensor, and therefore cannot be bound /// to an input of a function. /// - public sealed partial class SavedUserObject : pb::IMessage { + public sealed partial class SavedUserObject : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedUserObject()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedUserObject() { OnConstruction(); } @@ -803,6 +1233,7 @@ public SavedUserObject() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedUserObject(SavedUserObject other) : this() { identifier_ = other.identifier_; version_ = other.version_ != null ? other.version_.Clone() : null; @@ -811,6 +1242,7 @@ public SavedUserObject(SavedUserObject other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedUserObject Clone() { return new SavedUserObject(this); } @@ -822,6 +1254,7 @@ public SavedUserObject Clone() { /// Corresponds to a registration of the type to use in the loading program. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Identifier { get { return identifier_; } set { @@ -836,6 +1269,7 @@ public string Identifier { /// Version information from the producer of this SavedUserObject. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.VersionDef Version { get { return version_; } set { @@ -855,6 +1289,7 @@ public string Identifier { /// [global::System.ObsoleteAttribute] [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Metadata { get { return metadata_; } set { @@ -863,11 +1298,13 @@ public string Metadata { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedUserObject); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedUserObject other) { if (ReferenceEquals(other, null)) { return false; @@ -882,6 +1319,7 @@ public bool Equals(SavedUserObject other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Identifier.Length != 0) hash ^= Identifier.GetHashCode(); @@ -894,12 +1332,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Identifier.Length != 0) { output.WriteRawTag(10); output.WriteString(Identifier); @@ -915,9 +1358,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Identifier.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Identifier); + } + if (version_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Version); + } + if (Metadata.Length != 0) { + output.WriteRawTag(26); + output.WriteString(Metadata); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Identifier.Length != 0) { @@ -936,6 +1403,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedUserObject other) { if (other == null) { return; @@ -956,7 +1424,11 @@ public void MergeFrom(SavedUserObject other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -980,8 +1452,39 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Identifier = input.ReadString(); + break; + } + case 18: { + if (version_ == null) { + Version = new global::Tensorflow.VersionDef(); + } + input.ReadMessage(Version); + break; + } + case 26: { + Metadata = input.ReadString(); + break; + } + } + } + } + #endif + } /// @@ -991,23 +1494,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// filename. Users should not depend on a particular part of the filename to /// remain stable (e.g. basename could be changed). /// - public sealed partial class SavedAsset : pb::IMessage { + public sealed partial class SavedAsset : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedAsset()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedAsset() { OnConstruction(); } @@ -1015,12 +1526,14 @@ public SavedAsset() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedAsset(SavedAsset other) : this() { assetFileDefIndex_ = other.assetFileDefIndex_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedAsset Clone() { return new SavedAsset(this); } @@ -1035,6 +1548,7 @@ public SavedAsset Clone() { /// `AssetFileDef.tensor_info`, MUST be ignored. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int AssetFileDefIndex { get { return assetFileDefIndex_; } set { @@ -1043,11 +1557,13 @@ public int AssetFileDefIndex { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedAsset); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedAsset other) { if (ReferenceEquals(other, null)) { return false; @@ -1060,6 +1576,7 @@ public bool Equals(SavedAsset other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (AssetFileDefIndex != 0) hash ^= AssetFileDefIndex.GetHashCode(); @@ -1070,12 +1587,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (AssetFileDefIndex != 0) { output.WriteRawTag(8); output.WriteInt32(AssetFileDefIndex); @@ -1083,9 +1605,25 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (AssetFileDefIndex != 0) { + output.WriteRawTag(8); + output.WriteInt32(AssetFileDefIndex); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (AssetFileDefIndex != 0) { @@ -1098,6 +1636,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedAsset other) { if (other == null) { return; @@ -1109,7 +1648,11 @@ public void MergeFrom(SavedAsset other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1122,30 +1665,58 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + AssetFileDefIndex = input.ReadInt32(); + break; + } + } + } + } + #endif + } /// /// A function with multiple signatures, possibly with non-Tensor arguments. /// - public sealed partial class SavedFunction : pb::IMessage { + public sealed partial class SavedFunction : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedFunction()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[4]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedFunction() { OnConstruction(); } @@ -1153,6 +1724,7 @@ public SavedFunction() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedFunction(SavedFunction other) : this() { concreteFunctions_ = other.concreteFunctions_.Clone(); functionSpec_ = other.functionSpec_ != null ? other.functionSpec_.Clone() : null; @@ -1160,6 +1732,7 @@ public SavedFunction(SavedFunction other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedFunction Clone() { return new SavedFunction(this); } @@ -1170,6 +1743,7 @@ public SavedFunction Clone() { = pb::FieldCodec.ForString(10); private readonly pbc::RepeatedField concreteFunctions_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ConcreteFunctions { get { return concreteFunctions_; } } @@ -1178,6 +1752,7 @@ public SavedFunction Clone() { public const int FunctionSpecFieldNumber = 2; private global::Tensorflow.FunctionSpec functionSpec_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.FunctionSpec FunctionSpec { get { return functionSpec_; } set { @@ -1186,11 +1761,13 @@ public SavedFunction Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedFunction); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedFunction other) { if (ReferenceEquals(other, null)) { return false; @@ -1204,6 +1781,7 @@ public bool Equals(SavedFunction other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= concreteFunctions_.GetHashCode(); @@ -1215,12 +1793,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else concreteFunctions_.WriteTo(output, _repeated_concreteFunctions_codec); if (functionSpec_ != null) { output.WriteRawTag(18); @@ -1229,9 +1812,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + concreteFunctions_.WriteTo(ref output, _repeated_concreteFunctions_codec); + if (functionSpec_ != null) { + output.WriteRawTag(18); + output.WriteMessage(FunctionSpec); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += concreteFunctions_.CalculateSize(_repeated_concreteFunctions_codec); @@ -1245,6 +1845,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedFunction other) { if (other == null) { return; @@ -1260,7 +1861,11 @@ public void MergeFrom(SavedFunction other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1280,27 +1885,62 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + concreteFunctions_.AddEntriesFrom(ref input, _repeated_concreteFunctions_codec); + break; + } + case 18: { + if (functionSpec_ == null) { + FunctionSpec = new global::Tensorflow.FunctionSpec(); + } + input.ReadMessage(FunctionSpec); + break; + } + } + } + } + #endif + } - public sealed partial class CapturedTensor : pb::IMessage { + public sealed partial class CapturedTensor : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CapturedTensor()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[5]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CapturedTensor() { OnConstruction(); } @@ -1308,6 +1948,7 @@ public CapturedTensor() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CapturedTensor(CapturedTensor other) : this() { name_ = other.name_; concreteFunction_ = other.concreteFunction_; @@ -1315,6 +1956,7 @@ public CapturedTensor(CapturedTensor other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public CapturedTensor Clone() { return new CapturedTensor(this); } @@ -1326,6 +1968,7 @@ public CapturedTensor Clone() { /// Name of captured tensor /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -1340,6 +1983,7 @@ public string Name { /// Name of concrete function which contains the computed graph tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string ConcreteFunction { get { return concreteFunction_; } set { @@ -1348,11 +1992,13 @@ public string ConcreteFunction { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as CapturedTensor); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(CapturedTensor other) { if (ReferenceEquals(other, null)) { return false; @@ -1366,6 +2012,7 @@ public bool Equals(CapturedTensor other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -1377,12 +2024,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -1394,9 +2046,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (ConcreteFunction.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ConcreteFunction); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -1412,6 +2084,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(CapturedTensor other) { if (other == null) { return; @@ -1426,7 +2099,11 @@ public void MergeFrom(CapturedTensor other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1443,7 +2120,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + ConcreteFunction = input.ReadString(); + break; + } + } + } } + #endif } @@ -1451,23 +2152,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// Stores low-level information about a concrete function. Referenced in either /// a SavedFunction or a SavedBareConcreteFunction. /// - public sealed partial class SavedConcreteFunction : pb::IMessage { + public sealed partial class SavedConcreteFunction : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedConcreteFunction()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[6]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedConcreteFunction() { OnConstruction(); } @@ -1475,6 +2184,7 @@ public SavedConcreteFunction() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedConcreteFunction(SavedConcreteFunction other) : this() { boundInputs_ = other.boundInputs_.Clone(); canonicalizedInputSignature_ = other.canonicalizedInputSignature_ != null ? other.canonicalizedInputSignature_.Clone() : null; @@ -1483,6 +2193,7 @@ public SavedConcreteFunction(SavedConcreteFunction other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedConcreteFunction Clone() { return new SavedConcreteFunction(this); } @@ -1493,6 +2204,7 @@ public SavedConcreteFunction Clone() { = pb::FieldCodec.ForInt32(18); private readonly pbc::RepeatedField boundInputs_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField BoundInputs { get { return boundInputs_; } } @@ -1505,6 +2217,7 @@ public SavedConcreteFunction Clone() { /// function. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.StructuredValue CanonicalizedInputSignature { get { return canonicalizedInputSignature_; } set { @@ -1521,6 +2234,7 @@ public SavedConcreteFunction Clone() { /// be used to reconstruct the full structure from pure tensors. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.StructuredValue OutputSignature { get { return outputSignature_; } set { @@ -1529,11 +2243,13 @@ public SavedConcreteFunction Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedConcreteFunction); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedConcreteFunction other) { if (ReferenceEquals(other, null)) { return false; @@ -1548,6 +2264,7 @@ public bool Equals(SavedConcreteFunction other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= boundInputs_.GetHashCode(); @@ -1560,12 +2277,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else boundInputs_.WriteTo(output, _repeated_boundInputs_codec); if (canonicalizedInputSignature_ != null) { output.WriteRawTag(26); @@ -1578,9 +2300,30 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + boundInputs_.WriteTo(ref output, _repeated_boundInputs_codec); + if (canonicalizedInputSignature_ != null) { + output.WriteRawTag(26); + output.WriteMessage(CanonicalizedInputSignature); + } + if (outputSignature_ != null) { + output.WriteRawTag(34); + output.WriteMessage(OutputSignature); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += boundInputs_.CalculateSize(_repeated_boundInputs_codec); @@ -1597,6 +2340,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedConcreteFunction other) { if (other == null) { return; @@ -1614,20 +2358,58 @@ public void MergeFrom(SavedConcreteFunction other) { } OutputSignature.MergeFrom(other.OutputSignature); } - _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 18: + case 16: { + boundInputs_.AddEntriesFrom(input, _repeated_boundInputs_codec); + break; + } + case 26: { + if (canonicalizedInputSignature_ == null) { + CanonicalizedInputSignature = new global::Tensorflow.StructuredValue(); + } + input.ReadMessage(CanonicalizedInputSignature); + break; + } + case 34: { + if (outputSignature_ == null) { + OutputSignature = new global::Tensorflow.StructuredValue(); + } + input.ReadMessage(OutputSignature); + break; + } + } + } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public void MergeFrom(pb::CodedInputStream input) { + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { default: - _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); break; case 18: case 16: { - boundInputs_.AddEntriesFrom(input, _repeated_boundInputs_codec); + boundInputs_.AddEntriesFrom(ref input, _repeated_boundInputs_codec); break; } case 26: { @@ -1647,26 +2429,35 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } - public sealed partial class SavedBareConcreteFunction : pb::IMessage { + public sealed partial class SavedBareConcreteFunction : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedBareConcreteFunction()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[7]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedBareConcreteFunction() { OnConstruction(); } @@ -1674,6 +2465,7 @@ public SavedBareConcreteFunction() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedBareConcreteFunction(SavedBareConcreteFunction other) : this() { concreteFunctionName_ = other.concreteFunctionName_; argumentKeywords_ = other.argumentKeywords_.Clone(); @@ -1683,6 +2475,7 @@ public SavedBareConcreteFunction(SavedBareConcreteFunction other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedBareConcreteFunction Clone() { return new SavedBareConcreteFunction(this); } @@ -1694,6 +2487,7 @@ public SavedBareConcreteFunction Clone() { /// Identifies a SavedConcreteFunction. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string ConcreteFunctionName { get { return concreteFunctionName_; } set { @@ -1710,6 +2504,7 @@ public string ConcreteFunctionName { /// A sequence of unique strings, one per Tensor argument. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ArgumentKeywords { get { return argumentKeywords_; } } @@ -1721,6 +2516,7 @@ public string ConcreteFunctionName { /// The prefix of `argument_keywords` which may be identified by position. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllowedPositionalArguments { get { return allowedPositionalArguments_; } set { @@ -1740,6 +2536,7 @@ public long AllowedPositionalArguments { /// inputs in C++ SavedModel API. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.FunctionSpec FunctionSpec { get { return functionSpec_; } set { @@ -1748,11 +2545,13 @@ public long AllowedPositionalArguments { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedBareConcreteFunction); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedBareConcreteFunction other) { if (ReferenceEquals(other, null)) { return false; @@ -1768,6 +2567,7 @@ public bool Equals(SavedBareConcreteFunction other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (ConcreteFunctionName.Length != 0) hash ^= ConcreteFunctionName.GetHashCode(); @@ -1781,12 +2581,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (ConcreteFunctionName.Length != 0) { output.WriteRawTag(10); output.WriteString(ConcreteFunctionName); @@ -1803,9 +2608,34 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ConcreteFunctionName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ConcreteFunctionName); + } + argumentKeywords_.WriteTo(ref output, _repeated_argumentKeywords_codec); + if (AllowedPositionalArguments != 0L) { + output.WriteRawTag(24); + output.WriteInt64(AllowedPositionalArguments); + } + if (functionSpec_ != null) { + output.WriteRawTag(34); + output.WriteMessage(FunctionSpec); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (ConcreteFunctionName.Length != 0) { @@ -1825,6 +2655,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedBareConcreteFunction other) { if (other == null) { return; @@ -1846,7 +2677,11 @@ public void MergeFrom(SavedBareConcreteFunction other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1874,27 +2709,70 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + ConcreteFunctionName = input.ReadString(); + break; + } + case 18: { + argumentKeywords_.AddEntriesFrom(ref input, _repeated_argumentKeywords_codec); + break; + } + case 24: { + AllowedPositionalArguments = input.ReadInt64(); + break; + } + case 34: { + if (functionSpec_ == null) { + FunctionSpec = new global::Tensorflow.FunctionSpec(); + } + input.ReadMessage(FunctionSpec); + break; + } + } + } } + #endif } - public sealed partial class SavedConstant : pb::IMessage { + public sealed partial class SavedConstant : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedConstant()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[8]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedConstant() { OnConstruction(); } @@ -1902,12 +2780,14 @@ public SavedConstant() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedConstant(SavedConstant other) : this() { operation_ = other.operation_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedConstant Clone() { return new SavedConstant(this); } @@ -1919,6 +2799,7 @@ public SavedConstant Clone() { /// An Operation name for a ConstantOp in this SavedObjectGraph's MetaGraph. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Operation { get { return operation_; } set { @@ -1927,11 +2808,13 @@ public string Operation { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedConstant); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedConstant other) { if (ReferenceEquals(other, null)) { return false; @@ -1944,6 +2827,7 @@ public bool Equals(SavedConstant other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Operation.Length != 0) hash ^= Operation.GetHashCode(); @@ -1954,12 +2838,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Operation.Length != 0) { output.WriteRawTag(10); output.WriteString(Operation); @@ -1967,9 +2856,25 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Operation.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Operation); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Operation.Length != 0) { @@ -1982,6 +2887,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedConstant other) { if (other == null) { return; @@ -1993,7 +2899,11 @@ public void MergeFrom(SavedConstant other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2006,7 +2916,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Operation = input.ReadString(); + break; + } + } + } } + #endif } @@ -2014,23 +2944,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// Represents a Variable that is initialized by loading the contents from the /// checkpoint. /// - public sealed partial class SavedVariable : pb::IMessage { + public sealed partial class SavedVariable : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedVariable()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[9]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedVariable() { OnConstruction(); } @@ -2038,6 +2976,7 @@ public SavedVariable() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedVariable(SavedVariable other) : this() { dtype_ = other.dtype_; shape_ = other.shape_ != null ? other.shape_.Clone() : null; @@ -2051,6 +2990,7 @@ public SavedVariable(SavedVariable other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedVariable Clone() { return new SavedVariable(this); } @@ -2059,6 +2999,7 @@ public SavedVariable Clone() { public const int DtypeFieldNumber = 1; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -2070,6 +3011,7 @@ public SavedVariable Clone() { public const int ShapeFieldNumber = 2; private global::Tensorflow.TensorShapeProto shape_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto Shape { get { return shape_; } set { @@ -2081,6 +3023,7 @@ public SavedVariable Clone() { public const int TrainableFieldNumber = 3; private bool trainable_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Trainable { get { return trainable_; } set { @@ -2092,6 +3035,7 @@ public bool Trainable { public const int SynchronizationFieldNumber = 4; private global::Tensorflow.VariableSynchronization synchronization_ = global::Tensorflow.VariableSynchronization.Auto; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.VariableSynchronization Synchronization { get { return synchronization_; } set { @@ -2103,6 +3047,7 @@ public bool Trainable { public const int AggregationFieldNumber = 5; private global::Tensorflow.VariableAggregation aggregation_ = global::Tensorflow.VariableAggregation.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.VariableAggregation Aggregation { get { return aggregation_; } set { @@ -2114,6 +3059,7 @@ public bool Trainable { public const int NameFieldNumber = 6; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -2125,6 +3071,7 @@ public string Name { public const int DeviceFieldNumber = 7; private string device_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Device { get { return device_; } set { @@ -2146,16 +3093,19 @@ public string Device { /// This is only supported by experimental loaders at the moment. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ExperimentalDistributedVariableComponents { get { return experimentalDistributedVariableComponents_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedVariable); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedVariable other) { if (ReferenceEquals(other, null)) { return false; @@ -2175,6 +3125,7 @@ public bool Equals(SavedVariable other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Dtype != global::Tensorflow.DataType.DtInvalid) hash ^= Dtype.GetHashCode(); @@ -2192,12 +3143,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Dtype != global::Tensorflow.DataType.DtInvalid) { output.WriteRawTag(8); output.WriteEnum((int) Dtype); @@ -2230,9 +3186,50 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(8); + output.WriteEnum((int) Dtype); + } + if (shape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Shape); + } + if (Trainable != false) { + output.WriteRawTag(24); + output.WriteBool(Trainable); + } + if (Synchronization != global::Tensorflow.VariableSynchronization.Auto) { + output.WriteRawTag(32); + output.WriteEnum((int) Synchronization); + } + if (Aggregation != global::Tensorflow.VariableAggregation.None) { + output.WriteRawTag(40); + output.WriteEnum((int) Aggregation); + } + if (Name.Length != 0) { + output.WriteRawTag(50); + output.WriteString(Name); + } + if (Device.Length != 0) { + output.WriteRawTag(58); + output.WriteString(Device); + } + experimentalDistributedVariableComponents_.WriteTo(ref output, _repeated_experimentalDistributedVariableComponents_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Dtype != global::Tensorflow.DataType.DtInvalid) { @@ -2264,6 +3261,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedVariable other) { if (other == null) { return; @@ -2297,7 +3295,11 @@ public void MergeFrom(SavedVariable other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2341,7 +3343,58 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + case 18: { + if (shape_ == null) { + Shape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 24: { + Trainable = input.ReadBool(); + break; + } + case 32: { + Synchronization = (global::Tensorflow.VariableSynchronization) input.ReadEnum(); + break; + } + case 40: { + Aggregation = (global::Tensorflow.VariableAggregation) input.ReadEnum(); + break; + } + case 50: { + Name = input.ReadString(); + break; + } + case 58: { + Device = input.ReadString(); + break; + } + case 66: { + experimentalDistributedVariableComponents_.AddEntriesFrom(ref input, _repeated_experimentalDistributedVariableComponents_codec); + break; + } + } + } } + #endif } @@ -2349,23 +3402,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// Represents `FunctionSpec` used in `Function`. This represents a /// function that has been wrapped as a TensorFlow `Function`. /// - public sealed partial class FunctionSpec : pb::IMessage { + public sealed partial class FunctionSpec : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new FunctionSpec()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[10]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionSpec() { OnConstruction(); } @@ -2373,6 +3434,7 @@ public FunctionSpec() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionSpec(FunctionSpec other) : this() { fullargspec_ = other.fullargspec_ != null ? other.fullargspec_.Clone() : null; isMethod_ = other.isMethod_; @@ -2382,6 +3444,7 @@ public FunctionSpec(FunctionSpec other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public FunctionSpec Clone() { return new FunctionSpec(this); } @@ -2393,6 +3456,7 @@ public FunctionSpec Clone() { /// Full arg spec from inspect.getfullargspec(). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.StructuredValue Fullargspec { get { return fullargspec_; } set { @@ -2407,6 +3471,7 @@ public FunctionSpec Clone() { /// Whether this represents a class method. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsMethod { get { return isMethod_; } set { @@ -2421,6 +3486,7 @@ public bool IsMethod { /// The input signature, if specified. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.StructuredValue InputSignature { get { return inputSignature_; } set { @@ -2432,6 +3498,7 @@ public bool IsMethod { public const int JitCompileFieldNumber = 6; private global::Tensorflow.FunctionSpec.Types.JitCompile jitCompile_ = global::Tensorflow.FunctionSpec.Types.JitCompile.Default; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.FunctionSpec.Types.JitCompile JitCompile { get { return jitCompile_; } set { @@ -2440,11 +3507,13 @@ public bool IsMethod { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as FunctionSpec); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(FunctionSpec other) { if (ReferenceEquals(other, null)) { return false; @@ -2460,6 +3529,7 @@ public bool Equals(FunctionSpec other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (fullargspec_ != null) hash ^= Fullargspec.GetHashCode(); @@ -2473,12 +3543,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (fullargspec_ != null) { output.WriteRawTag(10); output.WriteMessage(Fullargspec); @@ -2498,9 +3573,37 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (fullargspec_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Fullargspec); + } + if (IsMethod != false) { + output.WriteRawTag(16); + output.WriteBool(IsMethod); + } + if (inputSignature_ != null) { + output.WriteRawTag(42); + output.WriteMessage(InputSignature); + } + if (JitCompile != global::Tensorflow.FunctionSpec.Types.JitCompile.Default) { + output.WriteRawTag(48); + output.WriteEnum((int) JitCompile); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (fullargspec_ != null) { @@ -2522,6 +3625,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(FunctionSpec other) { if (other == null) { return; @@ -2548,7 +3652,11 @@ public void MergeFrom(FunctionSpec other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2579,11 +3687,50 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (fullargspec_ == null) { + Fullargspec = new global::Tensorflow.StructuredValue(); + } + input.ReadMessage(Fullargspec); + break; + } + case 16: { + IsMethod = input.ReadBool(); + break; + } + case 42: { + if (inputSignature_ == null) { + InputSignature = new global::Tensorflow.StructuredValue(); + } + input.ReadMessage(InputSignature); + break; + } + case 48: { + JitCompile = (global::Tensorflow.FunctionSpec.Types.JitCompile) input.ReadEnum(); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the FunctionSpec message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Whether the function should be compiled by XLA. @@ -2611,23 +3758,31 @@ public enum JitCompile { /// An object of this type can have a reference to a: /// create_resource() and an initialize() function. /// - public sealed partial class SavedResource : pb::IMessage { + public sealed partial class SavedResource : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SavedResource()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[11]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedResource() { OnConstruction(); } @@ -2635,12 +3790,14 @@ public SavedResource() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedResource(SavedResource other) : this() { device_ = other.device_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SavedResource Clone() { return new SavedResource(this); } @@ -2654,6 +3811,7 @@ public SavedResource Clone() { /// device. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Device { get { return device_; } set { @@ -2662,11 +3820,13 @@ public string Device { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SavedResource); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SavedResource other) { if (ReferenceEquals(other, null)) { return false; @@ -2679,6 +3839,7 @@ public bool Equals(SavedResource other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Device.Length != 0) hash ^= Device.GetHashCode(); @@ -2689,12 +3850,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Device.Length != 0) { output.WriteRawTag(10); output.WriteString(Device); @@ -2702,9 +3868,25 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Device.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Device); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Device.Length != 0) { @@ -2717,6 +3899,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SavedResource other) { if (other == null) { return; @@ -2728,7 +3911,11 @@ public void MergeFrom(SavedResource other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2741,27 +3928,55 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Device = input.ReadString(); + break; + } + } + } } + #endif } - public sealed partial class SaveableObject : pb::IMessage { + public sealed partial class SaveableObject : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SaveableObject()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SavedObjectGraphReflection.Descriptor.MessageTypes[12]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SaveableObject() { OnConstruction(); } @@ -2769,6 +3984,7 @@ public SaveableObject() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SaveableObject(SaveableObject other) : this() { saveFunction_ = other.saveFunction_; restoreFunction_ = other.restoreFunction_; @@ -2776,6 +3992,7 @@ public SaveableObject(SaveableObject other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SaveableObject Clone() { return new SaveableObject(this); } @@ -2785,8 +4002,10 @@ public SaveableObject Clone() { private int saveFunction_; /// /// Node ids of concrete functions for saving and loading from a checkpoint. + /// These functions save and restore directly from tensors. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int SaveFunction { get { return saveFunction_; } set { @@ -2798,6 +4017,7 @@ public int SaveFunction { public const int RestoreFunctionFieldNumber = 3; private int restoreFunction_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int RestoreFunction { get { return restoreFunction_; } set { @@ -2806,11 +4026,13 @@ public int RestoreFunction { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SaveableObject); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SaveableObject other) { if (ReferenceEquals(other, null)) { return false; @@ -2824,6 +4046,7 @@ public bool Equals(SaveableObject other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (SaveFunction != 0) hash ^= SaveFunction.GetHashCode(); @@ -2835,12 +4058,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (SaveFunction != 0) { output.WriteRawTag(16); output.WriteInt32(SaveFunction); @@ -2852,9 +4080,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SaveFunction != 0) { + output.WriteRawTag(16); + output.WriteInt32(SaveFunction); + } + if (RestoreFunction != 0) { + output.WriteRawTag(24); + output.WriteInt32(RestoreFunction); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (SaveFunction != 0) { @@ -2870,6 +4118,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SaveableObject other) { if (other == null) { return; @@ -2884,7 +4133,11 @@ public void MergeFrom(SaveableObject other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2901,7 +4154,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 16: { + SaveFunction = input.ReadInt32(); + break; + } + case 24: { + RestoreFunction = input.ReadInt32(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Saver.cs b/src/TensorFlowNET.Core/Protobuf/Saver.cs index 51857418a..fac25e329 100644 --- a/src/TensorFlowNET.Core/Protobuf/Saver.cs +++ b/src/TensorFlowNET.Core/Protobuf/Saver.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/saver.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -48,23 +48,31 @@ static SaverReflection() { /// /// Protocol buffer representing the configuration of a Saver. /// - public sealed partial class SaverDef : pb::IMessage { + public sealed partial class SaverDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SaverDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SaverReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SaverDef() { OnConstruction(); } @@ -72,6 +80,7 @@ public SaverDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SaverDef(SaverDef other) : this() { filenameTensorName_ = other.filenameTensorName_; saveTensorName_ = other.saveTensorName_; @@ -84,6 +93,7 @@ public SaverDef(SaverDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SaverDef Clone() { return new SaverDef(this); } @@ -96,6 +106,7 @@ public SaverDef Clone() { /// restoring a model checkpoint. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string FilenameTensorName { get { return filenameTensorName_; } set { @@ -110,6 +121,7 @@ public string FilenameTensorName { /// The operation to run when saving a model checkpoint. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string SaveTensorName { get { return saveTensorName_; } set { @@ -124,6 +136,7 @@ public string SaveTensorName { /// The operation to run when restoring a model checkpoint. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string RestoreOpName { get { return restoreOpName_; } set { @@ -138,6 +151,7 @@ public string RestoreOpName { /// Maximum number of checkpoints to keep. If 0, no checkpoints are deleted. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int MaxToKeep { get { return maxToKeep_; } set { @@ -152,6 +166,7 @@ public int MaxToKeep { /// Shard the save files, one per device that has Variable nodes. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Sharded { get { return sharded_; } set { @@ -169,6 +184,7 @@ public bool Sharded { /// for every n hours of training. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public float KeepCheckpointEveryNHours { get { return keepCheckpointEveryNHours_; } set { @@ -180,6 +196,7 @@ public float KeepCheckpointEveryNHours { public const int VersionFieldNumber = 7; private global::Tensorflow.SaverDef.Types.CheckpointFormatVersion version_ = global::Tensorflow.SaverDef.Types.CheckpointFormatVersion.Legacy; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SaverDef.Types.CheckpointFormatVersion Version { get { return version_; } set { @@ -188,11 +205,13 @@ public float KeepCheckpointEveryNHours { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SaverDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SaverDef other) { if (ReferenceEquals(other, null)) { return false; @@ -211,6 +230,7 @@ public bool Equals(SaverDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (FilenameTensorName.Length != 0) hash ^= FilenameTensorName.GetHashCode(); @@ -227,12 +247,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (FilenameTensorName.Length != 0) { output.WriteRawTag(10); output.WriteString(FilenameTensorName); @@ -264,9 +289,49 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (FilenameTensorName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(FilenameTensorName); + } + if (SaveTensorName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(SaveTensorName); + } + if (RestoreOpName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(RestoreOpName); + } + if (MaxToKeep != 0) { + output.WriteRawTag(32); + output.WriteInt32(MaxToKeep); + } + if (Sharded != false) { + output.WriteRawTag(40); + output.WriteBool(Sharded); + } + if (KeepCheckpointEveryNHours != 0F) { + output.WriteRawTag(53); + output.WriteFloat(KeepCheckpointEveryNHours); + } + if (Version != global::Tensorflow.SaverDef.Types.CheckpointFormatVersion.Legacy) { + output.WriteRawTag(56); + output.WriteEnum((int) Version); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (FilenameTensorName.Length != 0) { @@ -297,6 +362,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SaverDef other) { if (other == null) { return; @@ -326,7 +392,11 @@ public void MergeFrom(SaverDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -363,11 +433,56 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + FilenameTensorName = input.ReadString(); + break; + } + case 18: { + SaveTensorName = input.ReadString(); + break; + } + case 26: { + RestoreOpName = input.ReadString(); + break; + } + case 32: { + MaxToKeep = input.ReadInt32(); + break; + } + case 40: { + Sharded = input.ReadBool(); + break; + } + case 53: { + KeepCheckpointEveryNHours = input.ReadFloat(); + break; + } + case 56: { + Version = (global::Tensorflow.SaverDef.Types.CheckpointFormatVersion) input.ReadEnum(); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the SaverDef message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// A version number that identifies a different on-disk checkpoint format. diff --git a/src/TensorFlowNET.Core/Protobuf/ServiceConfig.cs b/src/TensorFlowNET.Core/Protobuf/ServiceConfig.cs new file mode 100644 index 000000000..2197b4bac --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/ServiceConfig.cs @@ -0,0 +1,1179 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/core/protobuf/service_config.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Tensorflow.Data.Experimental { + + /// Holder for reflection information generated from tensorflow/core/protobuf/service_config.proto + public static partial class ServiceConfigReflection { + + #region Descriptor + /// File descriptor for tensorflow/core/protobuf/service_config.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static ServiceConfigReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "Ci10ZW5zb3JmbG93L2NvcmUvcHJvdG9idWYvc2VydmljZV9jb25maWcucHJv", + "dG8SHHRlbnNvcmZsb3cuZGF0YS5leHBlcmltZW50YWwaK3RlbnNvcmZsb3cv", + "Y29yZS9wcm90b2J1Zi9kYXRhX3NlcnZpY2UucHJvdG8ijQIKEERpc3BhdGNo", + "ZXJDb25maWcSDAoEcG9ydBgBIAEoAxIQCghwcm90b2NvbBgCIAEoCRIQCgh3", + "b3JrX2RpchgDIAEoCRIbChNmYXVsdF90b2xlcmFudF9tb2RlGAQgASgIEhgK", + "EHdvcmtlcl9hZGRyZXNzZXMYByADKAkSOAoPZGVwbG95bWVudF9tb2RlGAkg", + "ASgOMh8udGVuc29yZmxvdy5kYXRhLkRlcGxveW1lbnRNb2RlEiAKGGpvYl9n", + "Y19jaGVja19pbnRlcnZhbF9tcxgFIAEoAxIZChFqb2JfZ2NfdGltZW91dF9t", + "cxgGIAEoAxIZChFjbGllbnRfdGltZW91dF9tcxgIIAEoAyK+AgoMV29ya2Vy", + "Q29uZmlnEgwKBHBvcnQYASABKAMSEAoIcHJvdG9jb2wYAiABKAkSGgoSZGlz", + "cGF0Y2hlcl9hZGRyZXNzGAMgASgJEhYKDndvcmtlcl9hZGRyZXNzGAQgASgJ", + "EhMKC3dvcmtlcl90YWdzGAogAygJEh0KFWhlYXJ0YmVhdF9pbnRlcnZhbF9t", + "cxgFIAEoAxIdChVkaXNwYXRjaGVyX3RpbWVvdXRfbXMYBiABKAMSHgoWZGF0", + "YV90cmFuc2Zlcl9wcm90b2NvbBgHIAEoCRIdChVkYXRhX3RyYW5zZmVyX2Fk", + "ZHJlc3MYCCABKAkSJgoeY3Jvc3NfdHJhaW5lcl9jYWNoZV9zaXplX2J5dGVz", + "GAsgASgDEiAKGHNodXRkb3duX3F1aWV0X3BlcmlvZF9tcxgJIAEoA0JXWlVn", + "aXRodWIuY29tL3RlbnNvcmZsb3cvdGVuc29yZmxvdy90ZW5zb3JmbG93L2dv", + "L2NvcmUvcHJvdG9idWYvZm9yX2NvcmVfcHJvdG9zX2dvX3Byb3RvYgZwcm90", + "bzM=")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { global::Tensorflow.Data.DataServiceReflection.Descriptor, }, + new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.Data.Experimental.DispatcherConfig), global::Tensorflow.Data.Experimental.DispatcherConfig.Parser, new[]{ "Port", "Protocol", "WorkDir", "FaultTolerantMode", "WorkerAddresses", "DeploymentMode", "JobGcCheckIntervalMs", "JobGcTimeoutMs", "ClientTimeoutMs" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.Data.Experimental.WorkerConfig), global::Tensorflow.Data.Experimental.WorkerConfig.Parser, new[]{ "Port", "Protocol", "DispatcherAddress", "WorkerAddress", "WorkerTags", "HeartbeatIntervalMs", "DispatcherTimeoutMs", "DataTransferProtocol", "DataTransferAddress", "CrossTrainerCacheSizeBytes", "ShutdownQuietPeriodMs" }, null, null, null, null) + })); + } + #endregion + + } + #region Messages + /// + /// Configuration for a tf.data service DispatchServer. + /// Next id: 10 + /// + public sealed partial class DispatcherConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DispatcherConfig()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.Data.Experimental.ServiceConfigReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DispatcherConfig() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DispatcherConfig(DispatcherConfig other) : this() { + port_ = other.port_; + protocol_ = other.protocol_; + workDir_ = other.workDir_; + faultTolerantMode_ = other.faultTolerantMode_; + workerAddresses_ = other.workerAddresses_.Clone(); + deploymentMode_ = other.deploymentMode_; + jobGcCheckIntervalMs_ = other.jobGcCheckIntervalMs_; + jobGcTimeoutMs_ = other.jobGcTimeoutMs_; + clientTimeoutMs_ = other.clientTimeoutMs_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DispatcherConfig Clone() { + return new DispatcherConfig(this); + } + + /// Field number for the "port" field. + public const int PortFieldNumber = 1; + private long port_; + /// + /// The port for the dispatcher to bind to. A value of 0 indicates that the + /// dispatcher may bind to any available port. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Port { + get { return port_; } + set { + port_ = value; + } + } + + /// Field number for the "protocol" field. + public const int ProtocolFieldNumber = 2; + private string protocol_ = ""; + /// + /// The protocol for the dispatcher to use when connecting to workers. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Protocol { + get { return protocol_; } + set { + protocol_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "work_dir" field. + public const int WorkDirFieldNumber = 3; + private string workDir_ = ""; + /// + /// A work directory to use for storing dispatcher state, and for recovering + /// during restarts. The empty string indicates not to use any work directory. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string WorkDir { + get { return workDir_; } + set { + workDir_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "fault_tolerant_mode" field. + public const int FaultTolerantModeFieldNumber = 4; + private bool faultTolerantMode_; + /// + /// Whether to run in fault tolerant mode, where dispatcher state is saved + /// across restarts. Requires that `work_dir` is nonempty. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool FaultTolerantMode { + get { return faultTolerantMode_; } + set { + faultTolerantMode_ = value; + } + } + + /// Field number for the "worker_addresses" field. + public const int WorkerAddressesFieldNumber = 7; + private static readonly pb::FieldCodec _repeated_workerAddresses_codec + = pb::FieldCodec.ForString(58); + private readonly pbc::RepeatedField workerAddresses_ = new pbc::RepeatedField(); + /// + /// (Optional.) If the job uses auto-sharding, it needs to specify a fixed list + /// of worker addresses that will register with the dispatcher. The worker + /// addresses should be in the format "host" or "host:port", where "port" is an + /// integer, named port, or %port% to match any port. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField WorkerAddresses { + get { return workerAddresses_; } + } + + /// Field number for the "deployment_mode" field. + public const int DeploymentModeFieldNumber = 9; + private global::Tensorflow.Data.DeploymentMode deploymentMode_ = global::Tensorflow.Data.DeploymentMode.Unspecified; + /// + /// (Optional.) tf.data service deployment mode. Supported values are "REMOTE", + /// "COLOCATED", and "HYBRID". If unspecified, it is assumed to be "REMOTE". + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.Data.DeploymentMode DeploymentMode { + get { return deploymentMode_; } + set { + deploymentMode_ = value; + } + } + + /// Field number for the "job_gc_check_interval_ms" field. + public const int JobGcCheckIntervalMsFieldNumber = 5; + private long jobGcCheckIntervalMs_; + /// + /// How often the dispatcher should scan through to delete old and unused + /// jobs. A value of 0 indicates that the decision should be left up to the + /// runtime. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long JobGcCheckIntervalMs { + get { return jobGcCheckIntervalMs_; } + set { + jobGcCheckIntervalMs_ = value; + } + } + + /// Field number for the "job_gc_timeout_ms" field. + public const int JobGcTimeoutMsFieldNumber = 6; + private long jobGcTimeoutMs_; + /// + /// How long a job needs to be unused before it becomes a candidate for garbage + /// collection. A value of -1 indicates that jobs should never be garbage + /// collected. A value of 0 indicates that the decision should be left up to + /// the runtime. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long JobGcTimeoutMs { + get { return jobGcTimeoutMs_; } + set { + jobGcTimeoutMs_ = value; + } + } + + /// Field number for the "client_timeout_ms" field. + public const int ClientTimeoutMsFieldNumber = 8; + private long clientTimeoutMs_; + /// + /// How long to wait before garbage-collecting a client that hasn't + /// heartbeated to the dispatcher. A value of 0 indicates that the timeout + /// should be left to the runtime. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ClientTimeoutMs { + get { return clientTimeoutMs_; } + set { + clientTimeoutMs_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DispatcherConfig); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DispatcherConfig other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Port != other.Port) return false; + if (Protocol != other.Protocol) return false; + if (WorkDir != other.WorkDir) return false; + if (FaultTolerantMode != other.FaultTolerantMode) return false; + if(!workerAddresses_.Equals(other.workerAddresses_)) return false; + if (DeploymentMode != other.DeploymentMode) return false; + if (JobGcCheckIntervalMs != other.JobGcCheckIntervalMs) return false; + if (JobGcTimeoutMs != other.JobGcTimeoutMs) return false; + if (ClientTimeoutMs != other.ClientTimeoutMs) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Port != 0L) hash ^= Port.GetHashCode(); + if (Protocol.Length != 0) hash ^= Protocol.GetHashCode(); + if (WorkDir.Length != 0) hash ^= WorkDir.GetHashCode(); + if (FaultTolerantMode != false) hash ^= FaultTolerantMode.GetHashCode(); + hash ^= workerAddresses_.GetHashCode(); + if (DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) hash ^= DeploymentMode.GetHashCode(); + if (JobGcCheckIntervalMs != 0L) hash ^= JobGcCheckIntervalMs.GetHashCode(); + if (JobGcTimeoutMs != 0L) hash ^= JobGcTimeoutMs.GetHashCode(); + if (ClientTimeoutMs != 0L) hash ^= ClientTimeoutMs.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Port != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Port); + } + if (Protocol.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Protocol); + } + if (WorkDir.Length != 0) { + output.WriteRawTag(26); + output.WriteString(WorkDir); + } + if (FaultTolerantMode != false) { + output.WriteRawTag(32); + output.WriteBool(FaultTolerantMode); + } + if (JobGcCheckIntervalMs != 0L) { + output.WriteRawTag(40); + output.WriteInt64(JobGcCheckIntervalMs); + } + if (JobGcTimeoutMs != 0L) { + output.WriteRawTag(48); + output.WriteInt64(JobGcTimeoutMs); + } + workerAddresses_.WriteTo(output, _repeated_workerAddresses_codec); + if (ClientTimeoutMs != 0L) { + output.WriteRawTag(64); + output.WriteInt64(ClientTimeoutMs); + } + if (DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) { + output.WriteRawTag(72); + output.WriteEnum((int) DeploymentMode); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Port != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Port); + } + if (Protocol.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Protocol); + } + if (WorkDir.Length != 0) { + output.WriteRawTag(26); + output.WriteString(WorkDir); + } + if (FaultTolerantMode != false) { + output.WriteRawTag(32); + output.WriteBool(FaultTolerantMode); + } + if (JobGcCheckIntervalMs != 0L) { + output.WriteRawTag(40); + output.WriteInt64(JobGcCheckIntervalMs); + } + if (JobGcTimeoutMs != 0L) { + output.WriteRawTag(48); + output.WriteInt64(JobGcTimeoutMs); + } + workerAddresses_.WriteTo(ref output, _repeated_workerAddresses_codec); + if (ClientTimeoutMs != 0L) { + output.WriteRawTag(64); + output.WriteInt64(ClientTimeoutMs); + } + if (DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) { + output.WriteRawTag(72); + output.WriteEnum((int) DeploymentMode); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Port != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Port); + } + if (Protocol.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Protocol); + } + if (WorkDir.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(WorkDir); + } + if (FaultTolerantMode != false) { + size += 1 + 1; + } + size += workerAddresses_.CalculateSize(_repeated_workerAddresses_codec); + if (DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) DeploymentMode); + } + if (JobGcCheckIntervalMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(JobGcCheckIntervalMs); + } + if (JobGcTimeoutMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(JobGcTimeoutMs); + } + if (ClientTimeoutMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ClientTimeoutMs); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DispatcherConfig other) { + if (other == null) { + return; + } + if (other.Port != 0L) { + Port = other.Port; + } + if (other.Protocol.Length != 0) { + Protocol = other.Protocol; + } + if (other.WorkDir.Length != 0) { + WorkDir = other.WorkDir; + } + if (other.FaultTolerantMode != false) { + FaultTolerantMode = other.FaultTolerantMode; + } + workerAddresses_.Add(other.workerAddresses_); + if (other.DeploymentMode != global::Tensorflow.Data.DeploymentMode.Unspecified) { + DeploymentMode = other.DeploymentMode; + } + if (other.JobGcCheckIntervalMs != 0L) { + JobGcCheckIntervalMs = other.JobGcCheckIntervalMs; + } + if (other.JobGcTimeoutMs != 0L) { + JobGcTimeoutMs = other.JobGcTimeoutMs; + } + if (other.ClientTimeoutMs != 0L) { + ClientTimeoutMs = other.ClientTimeoutMs; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Port = input.ReadInt64(); + break; + } + case 18: { + Protocol = input.ReadString(); + break; + } + case 26: { + WorkDir = input.ReadString(); + break; + } + case 32: { + FaultTolerantMode = input.ReadBool(); + break; + } + case 40: { + JobGcCheckIntervalMs = input.ReadInt64(); + break; + } + case 48: { + JobGcTimeoutMs = input.ReadInt64(); + break; + } + case 58: { + workerAddresses_.AddEntriesFrom(input, _repeated_workerAddresses_codec); + break; + } + case 64: { + ClientTimeoutMs = input.ReadInt64(); + break; + } + case 72: { + DeploymentMode = (global::Tensorflow.Data.DeploymentMode) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Port = input.ReadInt64(); + break; + } + case 18: { + Protocol = input.ReadString(); + break; + } + case 26: { + WorkDir = input.ReadString(); + break; + } + case 32: { + FaultTolerantMode = input.ReadBool(); + break; + } + case 40: { + JobGcCheckIntervalMs = input.ReadInt64(); + break; + } + case 48: { + JobGcTimeoutMs = input.ReadInt64(); + break; + } + case 58: { + workerAddresses_.AddEntriesFrom(ref input, _repeated_workerAddresses_codec); + break; + } + case 64: { + ClientTimeoutMs = input.ReadInt64(); + break; + } + case 72: { + DeploymentMode = (global::Tensorflow.Data.DeploymentMode) input.ReadEnum(); + break; + } + } + } + } + #endif + + } + + /// + /// Configuration for a tf.data service WorkerServer. + /// Next id: 12 + /// + public sealed partial class WorkerConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WorkerConfig()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.Data.Experimental.ServiceConfigReflection.Descriptor.MessageTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WorkerConfig() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WorkerConfig(WorkerConfig other) : this() { + port_ = other.port_; + protocol_ = other.protocol_; + dispatcherAddress_ = other.dispatcherAddress_; + workerAddress_ = other.workerAddress_; + workerTags_ = other.workerTags_.Clone(); + heartbeatIntervalMs_ = other.heartbeatIntervalMs_; + dispatcherTimeoutMs_ = other.dispatcherTimeoutMs_; + dataTransferProtocol_ = other.dataTransferProtocol_; + dataTransferAddress_ = other.dataTransferAddress_; + crossTrainerCacheSizeBytes_ = other.crossTrainerCacheSizeBytes_; + shutdownQuietPeriodMs_ = other.shutdownQuietPeriodMs_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WorkerConfig Clone() { + return new WorkerConfig(this); + } + + /// Field number for the "port" field. + public const int PortFieldNumber = 1; + private long port_; + /// + /// The port for the worker to bind to. A value of 0 indicates that the + /// worker may bind to any available port. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Port { + get { return port_; } + set { + port_ = value; + } + } + + /// Field number for the "protocol" field. + public const int ProtocolFieldNumber = 2; + private string protocol_ = ""; + /// + /// The protocol for the worker to use when connecting to the dispatcher. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Protocol { + get { return protocol_; } + set { + protocol_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "dispatcher_address" field. + public const int DispatcherAddressFieldNumber = 3; + private string dispatcherAddress_ = ""; + /// + /// The address of the dispatcher to register with. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string DispatcherAddress { + get { return dispatcherAddress_; } + set { + dispatcherAddress_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "worker_address" field. + public const int WorkerAddressFieldNumber = 4; + private string workerAddress_ = ""; + /// + /// The address of the worker server. The substring "%port%", if specified, + /// will be replaced with the worker's bound port. This is useful when the port + /// is set to `0`. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string WorkerAddress { + get { return workerAddress_; } + set { + workerAddress_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "worker_tags" field. + public const int WorkerTagsFieldNumber = 10; + private static readonly pb::FieldCodec _repeated_workerTags_codec + = pb::FieldCodec.ForString(82); + private readonly pbc::RepeatedField workerTags_ = new pbc::RepeatedField(); + /// + /// Tags attached to the worker. This allows reading from selected workers. + /// For example, by applying a "COLOCATED" tag, tf.data service is able to read + /// from the local tf.data worker if one exists, then from off-TF-host workers, + /// to avoid cross-TF-host reads. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField WorkerTags { + get { return workerTags_; } + } + + /// Field number for the "heartbeat_interval_ms" field. + public const int HeartbeatIntervalMsFieldNumber = 5; + private long heartbeatIntervalMs_; + /// + /// How often the worker should heartbeat to the master. A value of 0 indicates + /// that the decision should be left up to the runtime. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long HeartbeatIntervalMs { + get { return heartbeatIntervalMs_; } + set { + heartbeatIntervalMs_ = value; + } + } + + /// Field number for the "dispatcher_timeout_ms" field. + public const int DispatcherTimeoutMsFieldNumber = 6; + private long dispatcherTimeoutMs_; + /// + /// How long to retry requests to the dispatcher before giving up and reporting + /// an error. A value of 0 indicates that the decision should be left up to the + /// runtime. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long DispatcherTimeoutMs { + get { return dispatcherTimeoutMs_; } + set { + dispatcherTimeoutMs_ = value; + } + } + + /// Field number for the "data_transfer_protocol" field. + public const int DataTransferProtocolFieldNumber = 7; + private string dataTransferProtocol_ = ""; + /// + /// The protocol for the worker to use when transferring data to clients. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string DataTransferProtocol { + get { return dataTransferProtocol_; } + set { + dataTransferProtocol_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "data_transfer_address" field. + public const int DataTransferAddressFieldNumber = 8; + private string dataTransferAddress_ = ""; + /// + /// The data transfer address of the worker server. The substring "%port%", if + /// specified, will be replaced with the worker's bound port. This is useful + /// when the port is set to `0`. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string DataTransferAddress { + get { return dataTransferAddress_; } + set { + dataTransferAddress_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "cross_trainer_cache_size_bytes" field. + public const int CrossTrainerCacheSizeBytesFieldNumber = 11; + private long crossTrainerCacheSizeBytes_; + /// + /// Maximum size of the cross-trainer cache in bytes. If enabled, make sure + /// your training job provides sufficient memory resources. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long CrossTrainerCacheSizeBytes { + get { return crossTrainerCacheSizeBytes_; } + set { + crossTrainerCacheSizeBytes_ = value; + } + } + + /// Field number for the "shutdown_quiet_period_ms" field. + public const int ShutdownQuietPeriodMsFieldNumber = 9; + private long shutdownQuietPeriodMs_; + /// + /// When shutting down a worker, how long to wait for the gRPC server to + /// process the final requests. This is used to achieve clean shutdown in unit + /// tests. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ShutdownQuietPeriodMs { + get { return shutdownQuietPeriodMs_; } + set { + shutdownQuietPeriodMs_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as WorkerConfig); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(WorkerConfig other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Port != other.Port) return false; + if (Protocol != other.Protocol) return false; + if (DispatcherAddress != other.DispatcherAddress) return false; + if (WorkerAddress != other.WorkerAddress) return false; + if(!workerTags_.Equals(other.workerTags_)) return false; + if (HeartbeatIntervalMs != other.HeartbeatIntervalMs) return false; + if (DispatcherTimeoutMs != other.DispatcherTimeoutMs) return false; + if (DataTransferProtocol != other.DataTransferProtocol) return false; + if (DataTransferAddress != other.DataTransferAddress) return false; + if (CrossTrainerCacheSizeBytes != other.CrossTrainerCacheSizeBytes) return false; + if (ShutdownQuietPeriodMs != other.ShutdownQuietPeriodMs) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Port != 0L) hash ^= Port.GetHashCode(); + if (Protocol.Length != 0) hash ^= Protocol.GetHashCode(); + if (DispatcherAddress.Length != 0) hash ^= DispatcherAddress.GetHashCode(); + if (WorkerAddress.Length != 0) hash ^= WorkerAddress.GetHashCode(); + hash ^= workerTags_.GetHashCode(); + if (HeartbeatIntervalMs != 0L) hash ^= HeartbeatIntervalMs.GetHashCode(); + if (DispatcherTimeoutMs != 0L) hash ^= DispatcherTimeoutMs.GetHashCode(); + if (DataTransferProtocol.Length != 0) hash ^= DataTransferProtocol.GetHashCode(); + if (DataTransferAddress.Length != 0) hash ^= DataTransferAddress.GetHashCode(); + if (CrossTrainerCacheSizeBytes != 0L) hash ^= CrossTrainerCacheSizeBytes.GetHashCode(); + if (ShutdownQuietPeriodMs != 0L) hash ^= ShutdownQuietPeriodMs.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Port != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Port); + } + if (Protocol.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Protocol); + } + if (DispatcherAddress.Length != 0) { + output.WriteRawTag(26); + output.WriteString(DispatcherAddress); + } + if (WorkerAddress.Length != 0) { + output.WriteRawTag(34); + output.WriteString(WorkerAddress); + } + if (HeartbeatIntervalMs != 0L) { + output.WriteRawTag(40); + output.WriteInt64(HeartbeatIntervalMs); + } + if (DispatcherTimeoutMs != 0L) { + output.WriteRawTag(48); + output.WriteInt64(DispatcherTimeoutMs); + } + if (DataTransferProtocol.Length != 0) { + output.WriteRawTag(58); + output.WriteString(DataTransferProtocol); + } + if (DataTransferAddress.Length != 0) { + output.WriteRawTag(66); + output.WriteString(DataTransferAddress); + } + if (ShutdownQuietPeriodMs != 0L) { + output.WriteRawTag(72); + output.WriteInt64(ShutdownQuietPeriodMs); + } + workerTags_.WriteTo(output, _repeated_workerTags_codec); + if (CrossTrainerCacheSizeBytes != 0L) { + output.WriteRawTag(88); + output.WriteInt64(CrossTrainerCacheSizeBytes); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Port != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Port); + } + if (Protocol.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Protocol); + } + if (DispatcherAddress.Length != 0) { + output.WriteRawTag(26); + output.WriteString(DispatcherAddress); + } + if (WorkerAddress.Length != 0) { + output.WriteRawTag(34); + output.WriteString(WorkerAddress); + } + if (HeartbeatIntervalMs != 0L) { + output.WriteRawTag(40); + output.WriteInt64(HeartbeatIntervalMs); + } + if (DispatcherTimeoutMs != 0L) { + output.WriteRawTag(48); + output.WriteInt64(DispatcherTimeoutMs); + } + if (DataTransferProtocol.Length != 0) { + output.WriteRawTag(58); + output.WriteString(DataTransferProtocol); + } + if (DataTransferAddress.Length != 0) { + output.WriteRawTag(66); + output.WriteString(DataTransferAddress); + } + if (ShutdownQuietPeriodMs != 0L) { + output.WriteRawTag(72); + output.WriteInt64(ShutdownQuietPeriodMs); + } + workerTags_.WriteTo(ref output, _repeated_workerTags_codec); + if (CrossTrainerCacheSizeBytes != 0L) { + output.WriteRawTag(88); + output.WriteInt64(CrossTrainerCacheSizeBytes); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Port != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Port); + } + if (Protocol.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Protocol); + } + if (DispatcherAddress.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(DispatcherAddress); + } + if (WorkerAddress.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(WorkerAddress); + } + size += workerTags_.CalculateSize(_repeated_workerTags_codec); + if (HeartbeatIntervalMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(HeartbeatIntervalMs); + } + if (DispatcherTimeoutMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(DispatcherTimeoutMs); + } + if (DataTransferProtocol.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(DataTransferProtocol); + } + if (DataTransferAddress.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(DataTransferAddress); + } + if (CrossTrainerCacheSizeBytes != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(CrossTrainerCacheSizeBytes); + } + if (ShutdownQuietPeriodMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ShutdownQuietPeriodMs); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(WorkerConfig other) { + if (other == null) { + return; + } + if (other.Port != 0L) { + Port = other.Port; + } + if (other.Protocol.Length != 0) { + Protocol = other.Protocol; + } + if (other.DispatcherAddress.Length != 0) { + DispatcherAddress = other.DispatcherAddress; + } + if (other.WorkerAddress.Length != 0) { + WorkerAddress = other.WorkerAddress; + } + workerTags_.Add(other.workerTags_); + if (other.HeartbeatIntervalMs != 0L) { + HeartbeatIntervalMs = other.HeartbeatIntervalMs; + } + if (other.DispatcherTimeoutMs != 0L) { + DispatcherTimeoutMs = other.DispatcherTimeoutMs; + } + if (other.DataTransferProtocol.Length != 0) { + DataTransferProtocol = other.DataTransferProtocol; + } + if (other.DataTransferAddress.Length != 0) { + DataTransferAddress = other.DataTransferAddress; + } + if (other.CrossTrainerCacheSizeBytes != 0L) { + CrossTrainerCacheSizeBytes = other.CrossTrainerCacheSizeBytes; + } + if (other.ShutdownQuietPeriodMs != 0L) { + ShutdownQuietPeriodMs = other.ShutdownQuietPeriodMs; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Port = input.ReadInt64(); + break; + } + case 18: { + Protocol = input.ReadString(); + break; + } + case 26: { + DispatcherAddress = input.ReadString(); + break; + } + case 34: { + WorkerAddress = input.ReadString(); + break; + } + case 40: { + HeartbeatIntervalMs = input.ReadInt64(); + break; + } + case 48: { + DispatcherTimeoutMs = input.ReadInt64(); + break; + } + case 58: { + DataTransferProtocol = input.ReadString(); + break; + } + case 66: { + DataTransferAddress = input.ReadString(); + break; + } + case 72: { + ShutdownQuietPeriodMs = input.ReadInt64(); + break; + } + case 82: { + workerTags_.AddEntriesFrom(input, _repeated_workerTags_codec); + break; + } + case 88: { + CrossTrainerCacheSizeBytes = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Port = input.ReadInt64(); + break; + } + case 18: { + Protocol = input.ReadString(); + break; + } + case 26: { + DispatcherAddress = input.ReadString(); + break; + } + case 34: { + WorkerAddress = input.ReadString(); + break; + } + case 40: { + HeartbeatIntervalMs = input.ReadInt64(); + break; + } + case 48: { + DispatcherTimeoutMs = input.ReadInt64(); + break; + } + case 58: { + DataTransferProtocol = input.ReadString(); + break; + } + case 66: { + DataTransferAddress = input.ReadString(); + break; + } + case 72: { + ShutdownQuietPeriodMs = input.ReadInt64(); + break; + } + case 82: { + workerTags_.AddEntriesFrom(ref input, _repeated_workerTags_codec); + break; + } + case 88: { + CrossTrainerCacheSizeBytes = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/StepStats.cs b/src/TensorFlowNET.Core/Protobuf/StepStats.cs index bff1645d0..48ecd0d50 100644 --- a/src/TensorFlowNET.Core/Protobuf/StepStats.cs +++ b/src/TensorFlowNET.Core/Protobuf/StepStats.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/step_stats.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -81,23 +81,31 @@ static StepStatsReflection() { /// /// An allocation/de-allocation operation performed by the allocator. /// - public sealed partial class AllocationRecord : pb::IMessage { + public sealed partial class AllocationRecord : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AllocationRecord()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StepStatsReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AllocationRecord() { OnConstruction(); } @@ -105,6 +113,7 @@ public AllocationRecord() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AllocationRecord(AllocationRecord other) : this() { allocMicros_ = other.allocMicros_; allocBytes_ = other.allocBytes_; @@ -112,6 +121,7 @@ public AllocationRecord(AllocationRecord other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AllocationRecord Clone() { return new AllocationRecord(this); } @@ -123,6 +133,7 @@ public AllocationRecord Clone() { /// The timestamp of the operation. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllocMicros { get { return allocMicros_; } set { @@ -137,6 +148,7 @@ public long AllocMicros { /// Number of bytes allocated, or de-allocated if negative. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllocBytes { get { return allocBytes_; } set { @@ -145,11 +157,13 @@ public long AllocBytes { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AllocationRecord); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AllocationRecord other) { if (ReferenceEquals(other, null)) { return false; @@ -163,6 +177,7 @@ public bool Equals(AllocationRecord other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (AllocMicros != 0L) hash ^= AllocMicros.GetHashCode(); @@ -174,12 +189,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (AllocMicros != 0L) { output.WriteRawTag(8); output.WriteInt64(AllocMicros); @@ -191,9 +211,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (AllocMicros != 0L) { + output.WriteRawTag(8); + output.WriteInt64(AllocMicros); + } + if (AllocBytes != 0L) { + output.WriteRawTag(16); + output.WriteInt64(AllocBytes); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (AllocMicros != 0L) { @@ -209,6 +249,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AllocationRecord other) { if (other == null) { return; @@ -223,7 +264,11 @@ public void MergeFrom(AllocationRecord other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -240,27 +285,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + AllocMicros = input.ReadInt64(); + break; + } + case 16: { + AllocBytes = input.ReadInt64(); + break; + } + } + } } + #endif } - public sealed partial class AllocatorMemoryUsed : pb::IMessage { + public sealed partial class AllocatorMemoryUsed : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new AllocatorMemoryUsed()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StepStatsReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AllocatorMemoryUsed() { OnConstruction(); } @@ -268,6 +345,7 @@ public AllocatorMemoryUsed() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AllocatorMemoryUsed(AllocatorMemoryUsed other) : this() { allocatorName_ = other.allocatorName_; totalBytes_ = other.totalBytes_; @@ -279,6 +357,7 @@ public AllocatorMemoryUsed(AllocatorMemoryUsed other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public AllocatorMemoryUsed Clone() { return new AllocatorMemoryUsed(this); } @@ -287,6 +366,7 @@ public AllocatorMemoryUsed Clone() { public const int AllocatorNameFieldNumber = 1; private string allocatorName_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string AllocatorName { get { return allocatorName_; } set { @@ -301,6 +381,7 @@ public string AllocatorName { /// These are per-node allocator memory stats. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long TotalBytes { get { return totalBytes_; } set { @@ -312,6 +393,7 @@ public long TotalBytes { public const int PeakBytesFieldNumber = 3; private long peakBytes_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long PeakBytes { get { return peakBytes_; } set { @@ -326,6 +408,7 @@ public long PeakBytes { /// The bytes that are not deallocated. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long LiveBytes { get { return liveBytes_; } set { @@ -342,6 +425,7 @@ public long LiveBytes { /// The allocation and deallocation timeline. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField AllocationRecords { get { return allocationRecords_; } } @@ -354,6 +438,7 @@ public long LiveBytes { /// The number of live bytes currently allocated by the allocator. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllocatorBytesInUse { get { return allocatorBytesInUse_; } set { @@ -362,11 +447,13 @@ public long AllocatorBytesInUse { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as AllocatorMemoryUsed); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(AllocatorMemoryUsed other) { if (ReferenceEquals(other, null)) { return false; @@ -384,6 +471,7 @@ public bool Equals(AllocatorMemoryUsed other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (AllocatorName.Length != 0) hash ^= AllocatorName.GetHashCode(); @@ -399,12 +487,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (AllocatorName.Length != 0) { output.WriteRawTag(10); output.WriteString(AllocatorName); @@ -429,9 +522,42 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (AllocatorName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(AllocatorName); + } + if (TotalBytes != 0L) { + output.WriteRawTag(16); + output.WriteInt64(TotalBytes); + } + if (PeakBytes != 0L) { + output.WriteRawTag(24); + output.WriteInt64(PeakBytes); + } + if (LiveBytes != 0L) { + output.WriteRawTag(32); + output.WriteInt64(LiveBytes); + } + if (AllocatorBytesInUse != 0L) { + output.WriteRawTag(40); + output.WriteInt64(AllocatorBytesInUse); + } + allocationRecords_.WriteTo(ref output, _repeated_allocationRecords_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (AllocatorName.Length != 0) { @@ -457,6 +583,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(AllocatorMemoryUsed other) { if (other == null) { return; @@ -481,7 +608,11 @@ public void MergeFrom(AllocatorMemoryUsed other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -514,30 +645,78 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + AllocatorName = input.ReadString(); + break; + } + case 16: { + TotalBytes = input.ReadInt64(); + break; + } + case 24: { + PeakBytes = input.ReadInt64(); + break; + } + case 32: { + LiveBytes = input.ReadInt64(); + break; + } + case 40: { + AllocatorBytesInUse = input.ReadInt64(); + break; + } + case 50: { + allocationRecords_.AddEntriesFrom(ref input, _repeated_allocationRecords_codec); + break; + } + } + } + } + #endif + } /// /// Output sizes recorded for a single execution of a graph node. /// - public sealed partial class NodeOutput : pb::IMessage { + public sealed partial class NodeOutput : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new NodeOutput()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StepStatsReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeOutput() { OnConstruction(); } @@ -545,6 +724,7 @@ public NodeOutput() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeOutput(NodeOutput other) : this() { slot_ = other.slot_; tensorDescription_ = other.tensorDescription_ != null ? other.tensorDescription_.Clone() : null; @@ -552,6 +732,7 @@ public NodeOutput(NodeOutput other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeOutput Clone() { return new NodeOutput(this); } @@ -560,6 +741,7 @@ public NodeOutput Clone() { public const int SlotFieldNumber = 1; private int slot_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Slot { get { return slot_; } set { @@ -571,6 +753,7 @@ public int Slot { public const int TensorDescriptionFieldNumber = 3; private global::Tensorflow.TensorDescription tensorDescription_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorDescription TensorDescription { get { return tensorDescription_; } set { @@ -579,11 +762,13 @@ public int Slot { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as NodeOutput); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(NodeOutput other) { if (ReferenceEquals(other, null)) { return false; @@ -597,6 +782,7 @@ public bool Equals(NodeOutput other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Slot != 0) hash ^= Slot.GetHashCode(); @@ -608,12 +794,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Slot != 0) { output.WriteRawTag(8); output.WriteInt32(Slot); @@ -625,9 +816,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Slot != 0) { + output.WriteRawTag(8); + output.WriteInt32(Slot); + } + if (tensorDescription_ != null) { + output.WriteRawTag(26); + output.WriteMessage(TensorDescription); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Slot != 0) { @@ -643,6 +854,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(NodeOutput other) { if (other == null) { return; @@ -660,7 +872,11 @@ public void MergeFrom(NodeOutput other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -680,30 +896,65 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Slot = input.ReadInt32(); + break; + } + case 26: { + if (tensorDescription_ == null) { + TensorDescription = new global::Tensorflow.TensorDescription(); + } + input.ReadMessage(TensorDescription); + break; + } + } + } } + #endif } /// /// For memory tracking. /// - public sealed partial class MemoryStats : pb::IMessage { + public sealed partial class MemoryStats : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new MemoryStats()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StepStatsReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryStats() { OnConstruction(); } @@ -711,6 +962,7 @@ public MemoryStats() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryStats(MemoryStats other) : this() { tempMemorySize_ = other.tempMemorySize_; persistentMemorySize_ = other.persistentMemorySize_; @@ -722,6 +974,7 @@ public MemoryStats(MemoryStats other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public MemoryStats Clone() { return new MemoryStats(this); } @@ -730,6 +983,7 @@ public MemoryStats Clone() { public const int TempMemorySizeFieldNumber = 1; private long tempMemorySize_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long TempMemorySize { get { return tempMemorySize_; } set { @@ -741,6 +995,7 @@ public long TempMemorySize { public const int PersistentMemorySizeFieldNumber = 3; private long persistentMemorySize_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long PersistentMemorySize { get { return persistentMemorySize_; } set { @@ -754,6 +1009,7 @@ public long PersistentMemorySize { = pb::FieldCodec.ForInt64(42); private readonly pbc::RepeatedField persistentTensorAllocIds_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField PersistentTensorAllocIds { get { return persistentTensorAllocIds_; } } @@ -763,6 +1019,7 @@ public long PersistentMemorySize { private long deviceTempMemorySize_; [global::System.ObsoleteAttribute] [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long DeviceTempMemorySize { get { return deviceTempMemorySize_; } set { @@ -775,6 +1032,7 @@ public long DeviceTempMemorySize { private long devicePersistentMemorySize_; [global::System.ObsoleteAttribute] [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long DevicePersistentMemorySize { get { return devicePersistentMemorySize_; } set { @@ -789,16 +1047,19 @@ public long DevicePersistentMemorySize { private readonly pbc::RepeatedField devicePersistentTensorAllocIds_ = new pbc::RepeatedField(); [global::System.ObsoleteAttribute] [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField DevicePersistentTensorAllocIds { get { return devicePersistentTensorAllocIds_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as MemoryStats); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(MemoryStats other) { if (ReferenceEquals(other, null)) { return false; @@ -816,6 +1077,7 @@ public bool Equals(MemoryStats other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (TempMemorySize != 0L) hash ^= TempMemorySize.GetHashCode(); @@ -831,12 +1093,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (TempMemorySize != 0L) { output.WriteRawTag(8); output.WriteInt64(TempMemorySize); @@ -858,9 +1125,39 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (TempMemorySize != 0L) { + output.WriteRawTag(8); + output.WriteInt64(TempMemorySize); + } + if (DeviceTempMemorySize != 0L) { + output.WriteRawTag(16); + output.WriteInt64(DeviceTempMemorySize); + } + if (PersistentMemorySize != 0L) { + output.WriteRawTag(24); + output.WriteInt64(PersistentMemorySize); + } + if (DevicePersistentMemorySize != 0L) { + output.WriteRawTag(32); + output.WriteInt64(DevicePersistentMemorySize); + } + persistentTensorAllocIds_.WriteTo(ref output, _repeated_persistentTensorAllocIds_codec); + devicePersistentTensorAllocIds_.WriteTo(ref output, _repeated_devicePersistentTensorAllocIds_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (TempMemorySize != 0L) { @@ -884,6 +1181,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(MemoryStats other) { if (other == null) { return; @@ -906,7 +1204,11 @@ public void MergeFrom(MemoryStats other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -941,30 +1243,80 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + TempMemorySize = input.ReadInt64(); + break; + } + case 16: { + DeviceTempMemorySize = input.ReadInt64(); + break; + } + case 24: { + PersistentMemorySize = input.ReadInt64(); + break; + } + case 32: { + DevicePersistentMemorySize = input.ReadInt64(); + break; + } + case 42: + case 40: { + persistentTensorAllocIds_.AddEntriesFrom(ref input, _repeated_persistentTensorAllocIds_codec); + break; + } + case 50: + case 48: { + devicePersistentTensorAllocIds_.AddEntriesFrom(ref input, _repeated_devicePersistentTensorAllocIds_codec); + break; + } + } + } + } + #endif + } /// /// Time/size stats recorded for a single execution of a graph node. /// - public sealed partial class NodeExecStats : pb::IMessage { + public sealed partial class NodeExecStats : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new NodeExecStats()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StepStatsReflection.Descriptor.MessageTypes[4]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeExecStats() { OnConstruction(); } @@ -972,6 +1324,7 @@ public NodeExecStats() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeExecStats(NodeExecStats other) : this() { nodeName_ = other.nodeName_; allStartMicros_ = other.allStartMicros_; @@ -994,6 +1347,7 @@ public NodeExecStats(NodeExecStats other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NodeExecStats Clone() { return new NodeExecStats(this); } @@ -1008,6 +1362,7 @@ public NodeExecStats Clone() { /// the name. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string NodeName { get { return nodeName_; } set { @@ -1019,6 +1374,7 @@ public string NodeName { public const int AllStartMicrosFieldNumber = 2; private long allStartMicros_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllStartMicros { get { return allStartMicros_; } set { @@ -1030,6 +1386,7 @@ public long AllStartMicros { public const int OpStartRelMicrosFieldNumber = 3; private long opStartRelMicros_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long OpStartRelMicros { get { return opStartRelMicros_; } set { @@ -1041,6 +1398,7 @@ public long OpStartRelMicros { public const int OpEndRelMicrosFieldNumber = 4; private long opEndRelMicros_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long OpEndRelMicros { get { return opEndRelMicros_; } set { @@ -1052,6 +1410,7 @@ public long OpEndRelMicros { public const int AllEndRelMicrosFieldNumber = 5; private long allEndRelMicros_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllEndRelMicros { get { return allEndRelMicros_; } set { @@ -1065,6 +1424,7 @@ public long AllEndRelMicros { = pb::FieldCodec.ForMessage(50, global::Tensorflow.AllocatorMemoryUsed.Parser); private readonly pbc::RepeatedField memory_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Memory { get { return memory_; } } @@ -1075,6 +1435,7 @@ public long AllEndRelMicros { = pb::FieldCodec.ForMessage(58, global::Tensorflow.NodeOutput.Parser); private readonly pbc::RepeatedField output_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Output { get { return output_; } } @@ -1083,6 +1444,7 @@ public long AllEndRelMicros { public const int TimelineLabelFieldNumber = 8; private string timelineLabel_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string TimelineLabel { get { return timelineLabel_; } set { @@ -1094,6 +1456,7 @@ public string TimelineLabel { public const int ScheduledMicrosFieldNumber = 9; private long scheduledMicros_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long ScheduledMicros { get { return scheduledMicros_; } set { @@ -1105,6 +1468,7 @@ public long ScheduledMicros { public const int ThreadIdFieldNumber = 10; private uint threadId_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public uint ThreadId { get { return threadId_; } set { @@ -1118,6 +1482,7 @@ public uint ThreadId { = pb::FieldCodec.ForMessage(90, global::Tensorflow.AllocationDescription.Parser); private readonly pbc::RepeatedField referencedTensor_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ReferencedTensor { get { return referencedTensor_; } } @@ -1126,6 +1491,7 @@ public uint ThreadId { public const int MemoryStatsFieldNumber = 12; private global::Tensorflow.MemoryStats memoryStats_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.MemoryStats MemoryStats { get { return memoryStats_; } set { @@ -1137,6 +1503,7 @@ public uint ThreadId { public const int AllStartNanosFieldNumber = 13; private long allStartNanos_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllStartNanos { get { return allStartNanos_; } set { @@ -1148,6 +1515,7 @@ public long AllStartNanos { public const int OpStartRelNanosFieldNumber = 14; private long opStartRelNanos_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long OpStartRelNanos { get { return opStartRelNanos_; } set { @@ -1159,6 +1527,7 @@ public long OpStartRelNanos { public const int OpEndRelNanosFieldNumber = 15; private long opEndRelNanos_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long OpEndRelNanos { get { return opEndRelNanos_; } set { @@ -1170,6 +1539,7 @@ public long OpEndRelNanos { public const int AllEndRelNanosFieldNumber = 16; private long allEndRelNanos_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long AllEndRelNanos { get { return allEndRelNanos_; } set { @@ -1181,6 +1551,7 @@ public long AllEndRelNanos { public const int ScheduledNanosFieldNumber = 17; private long scheduledNanos_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long ScheduledNanos { get { return scheduledNanos_; } set { @@ -1189,11 +1560,13 @@ public long ScheduledNanos { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as NodeExecStats); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(NodeExecStats other) { if (ReferenceEquals(other, null)) { return false; @@ -1222,6 +1595,7 @@ public bool Equals(NodeExecStats other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (NodeName.Length != 0) hash ^= NodeName.GetHashCode(); @@ -1248,12 +1622,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (NodeName.Length != 0) { output.WriteRawTag(10); output.WriteString(NodeName); @@ -1316,9 +1695,80 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (NodeName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(NodeName); + } + if (AllStartMicros != 0L) { + output.WriteRawTag(16); + output.WriteInt64(AllStartMicros); + } + if (OpStartRelMicros != 0L) { + output.WriteRawTag(24); + output.WriteInt64(OpStartRelMicros); + } + if (OpEndRelMicros != 0L) { + output.WriteRawTag(32); + output.WriteInt64(OpEndRelMicros); + } + if (AllEndRelMicros != 0L) { + output.WriteRawTag(40); + output.WriteInt64(AllEndRelMicros); + } + memory_.WriteTo(ref output, _repeated_memory_codec); + output_.WriteTo(ref output, _repeated_output_codec); + if (TimelineLabel.Length != 0) { + output.WriteRawTag(66); + output.WriteString(TimelineLabel); + } + if (ScheduledMicros != 0L) { + output.WriteRawTag(72); + output.WriteInt64(ScheduledMicros); + } + if (ThreadId != 0) { + output.WriteRawTag(80); + output.WriteUInt32(ThreadId); + } + referencedTensor_.WriteTo(ref output, _repeated_referencedTensor_codec); + if (memoryStats_ != null) { + output.WriteRawTag(98); + output.WriteMessage(MemoryStats); + } + if (AllStartNanos != 0L) { + output.WriteRawTag(104); + output.WriteInt64(AllStartNanos); + } + if (OpStartRelNanos != 0L) { + output.WriteRawTag(112); + output.WriteInt64(OpStartRelNanos); + } + if (OpEndRelNanos != 0L) { + output.WriteRawTag(120); + output.WriteInt64(OpEndRelNanos); + } + if (AllEndRelNanos != 0L) { + output.WriteRawTag(128, 1); + output.WriteInt64(AllEndRelNanos); + } + if (ScheduledNanos != 0L) { + output.WriteRawTag(136, 1); + output.WriteInt64(ScheduledNanos); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (NodeName.Length != 0) { @@ -1373,6 +1823,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(NodeExecStats other) { if (other == null) { return; @@ -1429,7 +1880,11 @@ public void MergeFrom(NodeExecStats other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1509,27 +1964,122 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + NodeName = input.ReadString(); + break; + } + case 16: { + AllStartMicros = input.ReadInt64(); + break; + } + case 24: { + OpStartRelMicros = input.ReadInt64(); + break; + } + case 32: { + OpEndRelMicros = input.ReadInt64(); + break; + } + case 40: { + AllEndRelMicros = input.ReadInt64(); + break; + } + case 50: { + memory_.AddEntriesFrom(ref input, _repeated_memory_codec); + break; + } + case 58: { + output_.AddEntriesFrom(ref input, _repeated_output_codec); + break; + } + case 66: { + TimelineLabel = input.ReadString(); + break; + } + case 72: { + ScheduledMicros = input.ReadInt64(); + break; + } + case 80: { + ThreadId = input.ReadUInt32(); + break; + } + case 90: { + referencedTensor_.AddEntriesFrom(ref input, _repeated_referencedTensor_codec); + break; + } + case 98: { + if (memoryStats_ == null) { + MemoryStats = new global::Tensorflow.MemoryStats(); + } + input.ReadMessage(MemoryStats); + break; + } + case 104: { + AllStartNanos = input.ReadInt64(); + break; + } + case 112: { + OpStartRelNanos = input.ReadInt64(); + break; + } + case 120: { + OpEndRelNanos = input.ReadInt64(); + break; + } + case 128: { + AllEndRelNanos = input.ReadInt64(); + break; + } + case 136: { + ScheduledNanos = input.ReadInt64(); + break; + } + } + } } + #endif } - public sealed partial class DeviceStepStats : pb::IMessage { + public sealed partial class DeviceStepStats : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeviceStepStats()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StepStatsReflection.Descriptor.MessageTypes[5]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DeviceStepStats() { OnConstruction(); } @@ -1537,6 +2087,7 @@ public DeviceStepStats() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DeviceStepStats(DeviceStepStats other) : this() { device_ = other.device_; nodeStats_ = other.nodeStats_.Clone(); @@ -1545,6 +2096,7 @@ public DeviceStepStats(DeviceStepStats other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DeviceStepStats Clone() { return new DeviceStepStats(this); } @@ -1553,6 +2105,7 @@ public DeviceStepStats Clone() { public const int DeviceFieldNumber = 1; private string device_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Device { get { return device_; } set { @@ -1566,6 +2119,7 @@ public string Device { = pb::FieldCodec.ForMessage(18, global::Tensorflow.NodeExecStats.Parser); private readonly pbc::RepeatedField nodeStats_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField NodeStats { get { return nodeStats_; } } @@ -1579,16 +2133,19 @@ public string Device { /// Its key is thread id. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField ThreadNames { get { return threadNames_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as DeviceStepStats); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(DeviceStepStats other) { if (ReferenceEquals(other, null)) { return false; @@ -1603,6 +2160,7 @@ public bool Equals(DeviceStepStats other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Device.Length != 0) hash ^= Device.GetHashCode(); @@ -1615,12 +2173,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Device.Length != 0) { output.WriteRawTag(10); output.WriteString(Device); @@ -1630,9 +2193,27 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Device.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Device); + } + nodeStats_.WriteTo(ref output, _repeated_nodeStats_codec); + threadNames_.WriteTo(ref output, _map_threadNames_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Device.Length != 0) { @@ -1647,6 +2228,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(DeviceStepStats other) { if (other == null) { return; @@ -1660,7 +2242,11 @@ public void MergeFrom(DeviceStepStats other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1681,27 +2267,63 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Device = input.ReadString(); + break; + } + case 18: { + nodeStats_.AddEntriesFrom(ref input, _repeated_nodeStats_codec); + break; + } + case 26: { + threadNames_.AddEntriesFrom(ref input, _map_threadNames_codec); + break; + } + } + } + } + #endif + } - public sealed partial class StepStats : pb::IMessage { + public sealed partial class StepStats : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new StepStats()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StepStatsReflection.Descriptor.MessageTypes[6]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public StepStats() { OnConstruction(); } @@ -1709,12 +2331,14 @@ public StepStats() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public StepStats(StepStats other) : this() { devStats_ = other.devStats_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public StepStats Clone() { return new StepStats(this); } @@ -1725,16 +2349,19 @@ public StepStats Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.DeviceStepStats.Parser); private readonly pbc::RepeatedField devStats_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField DevStats { get { return devStats_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as StepStats); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(StepStats other) { if (ReferenceEquals(other, null)) { return false; @@ -1747,6 +2374,7 @@ public bool Equals(StepStats other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= devStats_.GetHashCode(); @@ -1757,19 +2385,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else devStats_.WriteTo(output, _repeated_devStats_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + devStats_.WriteTo(ref output, _repeated_devStats_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += devStats_.CalculateSize(_repeated_devStats_codec); @@ -1780,6 +2426,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(StepStats other) { if (other == null) { return; @@ -1789,7 +2436,11 @@ public void MergeFrom(StepStats other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1802,7 +2453,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + devStats_.AddEntriesFrom(ref input, _repeated_devStats_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Struct.cs b/src/TensorFlowNET.Core/Protobuf/Struct.cs index c0879bc9f..6a2e39f37 100644 --- a/src/TensorFlowNET.Core/Protobuf/Struct.cs +++ b/src/TensorFlowNET.Core/Protobuf/Struct.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/struct.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -58,20 +58,21 @@ static StructReflection() { "YW1lGAEgASgJEisKBXNoYXBlGAIgASgLMhwudGVuc29yZmxvdy5UZW5zb3JT", "aGFwZVByb3RvEiMKBWR0eXBlGAMgASgOMhQudGVuc29yZmxvdy5EYXRhVHlw", "ZRIoCgdtaW5pbXVtGAQgASgLMhcudGVuc29yZmxvdy5UZW5zb3JQcm90bxIo", - "CgdtYXhpbXVtGAUgASgLMhcudGVuc29yZmxvdy5UZW5zb3JQcm90byLbAwoN", + "CgdtYXhpbXVtGAUgASgLMhcudGVuc29yZmxvdy5UZW5zb3JQcm90byL4AwoN", "VHlwZVNwZWNQcm90bxJACg90eXBlX3NwZWNfY2xhc3MYASABKA4yJy50ZW5z", "b3JmbG93LlR5cGVTcGVjUHJvdG8uVHlwZVNwZWNDbGFzcxIvCgp0eXBlX3N0", "YXRlGAIgASgLMhsudGVuc29yZmxvdy5TdHJ1Y3R1cmVkVmFsdWUSHAoUdHlw", - "ZV9zcGVjX2NsYXNzX25hbWUYAyABKAkiuAIKDVR5cGVTcGVjQ2xhc3MSCwoH", - "VU5LTk9XThAAEhYKElNQQVJTRV9URU5TT1JfU1BFQxABEhcKE0lOREVYRURf", - "U0xJQ0VTX1NQRUMQAhIWChJSQUdHRURfVEVOU09SX1NQRUMQAxIVChFURU5T", - "T1JfQVJSQVlfU1BFQxAEEhUKEURBVEFfREFUQVNFVF9TUEVDEAUSFgoSREFU", - "QV9JVEVSQVRPUl9TUEVDEAYSEQoNT1BUSU9OQUxfU1BFQxAHEhQKEFBFUl9S", - "RVBMSUNBX1NQRUMQCBIRCg1WQVJJQUJMRV9TUEVDEAkSFgoSUk9XX1BBUlRJ", - "VElPTl9TUEVDEAoSGAoUUkVHSVNURVJFRF9UWVBFX1NQRUMQDBIXChNFWFRF", - "TlNJT05fVFlQRV9TUEVDEA0iBAgLEAtCV1pVZ2l0aHViLmNvbS90ZW5zb3Jm", - "bG93L3RlbnNvcmZsb3cvdGVuc29yZmxvdy9nby9jb3JlL3Byb3RvYnVmL2Zv", - "cl9jb3JlX3Byb3Rvc19nb19wcm90b2IGcHJvdG8z")); + "ZV9zcGVjX2NsYXNzX25hbWUYAyABKAkSGwoTbnVtX2ZsYXRfY29tcG9uZW50", + "cxgEIAEoBSK4AgoNVHlwZVNwZWNDbGFzcxILCgdVTktOT1dOEAASFgoSU1BB", + "UlNFX1RFTlNPUl9TUEVDEAESFwoTSU5ERVhFRF9TTElDRVNfU1BFQxACEhYK", + "ElJBR0dFRF9URU5TT1JfU1BFQxADEhUKEVRFTlNPUl9BUlJBWV9TUEVDEAQS", + "FQoRREFUQV9EQVRBU0VUX1NQRUMQBRIWChJEQVRBX0lURVJBVE9SX1NQRUMQ", + "BhIRCg1PUFRJT05BTF9TUEVDEAcSFAoQUEVSX1JFUExJQ0FfU1BFQxAIEhEK", + "DVZBUklBQkxFX1NQRUMQCRIWChJST1dfUEFSVElUSU9OX1NQRUMQChIYChRS", + "RUdJU1RFUkVEX1RZUEVfU1BFQxAMEhcKE0VYVEVOU0lPTl9UWVBFX1NQRUMQ", + "DSIECAsQC0JXWlVnaXRodWIuY29tL3RlbnNvcmZsb3cvdGVuc29yZmxvdy90", + "ZW5zb3JmbG93L2dvL2NvcmUvcHJvdG9idWYvZm9yX2NvcmVfcHJvdG9zX2dv", + "X3Byb3RvYgZwcm90bzM=")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, new pbr::FileDescriptor[] { global::Tensorflow.TensorReflection.Descriptor, global::Tensorflow.TensorShapeReflection.Descriptor, global::Tensorflow.TypesReflection.Descriptor, }, new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { @@ -84,7 +85,7 @@ static StructReflection() { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.NamedTupleValue), global::Tensorflow.NamedTupleValue.Parser, new[]{ "Name", "Values" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TensorSpecProto), global::Tensorflow.TensorSpecProto.Parser, new[]{ "Name", "Shape", "Dtype" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.BoundedTensorSpecProto), global::Tensorflow.BoundedTensorSpecProto.Parser, new[]{ "Name", "Shape", "Dtype", "Minimum", "Maximum" }, null, null, null, null), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TypeSpecProto), global::Tensorflow.TypeSpecProto.Parser, new[]{ "TypeSpecClass", "TypeState", "TypeSpecClassName" }, null, new[]{ typeof(global::Tensorflow.TypeSpecProto.Types.TypeSpecClass) }, null, null) + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TypeSpecProto), global::Tensorflow.TypeSpecProto.Parser, new[]{ "TypeSpecClass", "TypeState", "TypeSpecClassName", "NumFlatComponents" }, null, new[]{ typeof(global::Tensorflow.TypeSpecProto.Types.TypeSpecClass) }, null, null) })); } #endregion @@ -117,23 +118,31 @@ static StructReflection() { /// to serialize all possible function signatures. For example we do not expect /// to pickle generic Python objects, and ideally we'd stay language-agnostic. /// - public sealed partial class StructuredValue : pb::IMessage { + public sealed partial class StructuredValue : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new StructuredValue()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public StructuredValue() { OnConstruction(); } @@ -141,6 +150,7 @@ public StructuredValue() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public StructuredValue(StructuredValue other) : this() { switch (other.KindCase) { case KindOneofCase.NoneValue: @@ -191,6 +201,7 @@ public StructuredValue(StructuredValue other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public StructuredValue Clone() { return new StructuredValue(this); } @@ -201,6 +212,7 @@ public StructuredValue Clone() { /// Represents None. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.NoneValue NoneValue { get { return kindCase_ == KindOneofCase.NoneValue ? (global::Tensorflow.NoneValue) kind_ : null; } set { @@ -215,6 +227,7 @@ public StructuredValue Clone() { /// Represents a double-precision floating-point value (a Python `float`). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public double Float64Value { get { return kindCase_ == KindOneofCase.Float64Value ? (double) kind_ : 0D; } set { @@ -230,6 +243,7 @@ public double Float64Value { /// Larger values from Python's arbitrary-precision integers are unsupported. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Int64Value { get { return kindCase_ == KindOneofCase.Int64Value ? (long) kind_ : 0L; } set { @@ -249,6 +263,7 @@ public long Int64Value { /// The obsolescent `unicode` type of Python 2 is not supported here. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string StringValue { get { return kindCase_ == KindOneofCase.StringValue ? (string) kind_ : ""; } set { @@ -263,6 +278,7 @@ public string StringValue { /// Represents a boolean value. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool BoolValue { get { return kindCase_ == KindOneofCase.BoolValue ? (bool) kind_ : false; } set { @@ -277,6 +293,7 @@ public bool BoolValue { /// Represents a TensorShape. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto TensorShapeValue { get { return kindCase_ == KindOneofCase.TensorShapeValue ? (global::Tensorflow.TensorShapeProto) kind_ : null; } set { @@ -291,6 +308,7 @@ public bool BoolValue { /// Represents an enum value for dtype. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType TensorDtypeValue { get { return kindCase_ == KindOneofCase.TensorDtypeValue ? (global::Tensorflow.DataType) kind_ : global::Tensorflow.DataType.DtInvalid; } set { @@ -305,6 +323,7 @@ public bool BoolValue { /// Represents a value for tf.TensorSpec. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorSpecProto TensorSpecValue { get { return kindCase_ == KindOneofCase.TensorSpecValue ? (global::Tensorflow.TensorSpecProto) kind_ : null; } set { @@ -319,6 +338,7 @@ public bool BoolValue { /// Represents a value for tf.TypeSpec. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TypeSpecProto TypeSpecValue { get { return kindCase_ == KindOneofCase.TypeSpecValue ? (global::Tensorflow.TypeSpecProto) kind_ : null; } set { @@ -333,6 +353,7 @@ public bool BoolValue { /// Represents a value for tf.BoundedTensorSpec. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.BoundedTensorSpecProto BoundedTensorSpecValue { get { return kindCase_ == KindOneofCase.BoundedTensorSpecValue ? (global::Tensorflow.BoundedTensorSpecProto) kind_ : null; } set { @@ -347,6 +368,7 @@ public bool BoolValue { /// Represents a list of `Value`. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.ListValue ListValue { get { return kindCase_ == KindOneofCase.ListValue ? (global::Tensorflow.ListValue) kind_ : null; } set { @@ -361,6 +383,7 @@ public bool BoolValue { /// Represents a tuple of `Value`. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TupleValue TupleValue { get { return kindCase_ == KindOneofCase.TupleValue ? (global::Tensorflow.TupleValue) kind_ : null; } set { @@ -375,6 +398,7 @@ public bool BoolValue { /// Represents a dict `Value`. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DictValue DictValue { get { return kindCase_ == KindOneofCase.DictValue ? (global::Tensorflow.DictValue) kind_ : null; } set { @@ -389,6 +413,7 @@ public bool BoolValue { /// Represents Python's namedtuple. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.NamedTupleValue NamedTupleValue { get { return kindCase_ == KindOneofCase.NamedTupleValue ? (global::Tensorflow.NamedTupleValue) kind_ : null; } set { @@ -418,22 +443,26 @@ public enum KindOneofCase { } private KindOneofCase kindCase_ = KindOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public KindOneofCase KindCase { get { return kindCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearKind() { kindCase_ = KindOneofCase.None; kind_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as StructuredValue); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(StructuredValue other) { if (ReferenceEquals(other, null)) { return false; @@ -460,6 +489,7 @@ public bool Equals(StructuredValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (kindCase_ == KindOneofCase.NoneValue) hash ^= NoneValue.GetHashCode(); @@ -484,12 +514,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (kindCase_ == KindOneofCase.NoneValue) { output.WriteRawTag(10); output.WriteMessage(NoneValue); @@ -549,9 +584,77 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (kindCase_ == KindOneofCase.NoneValue) { + output.WriteRawTag(10); + output.WriteMessage(NoneValue); + } + if (kindCase_ == KindOneofCase.Float64Value) { + output.WriteRawTag(89); + output.WriteDouble(Float64Value); + } + if (kindCase_ == KindOneofCase.Int64Value) { + output.WriteRawTag(96); + output.WriteSInt64(Int64Value); + } + if (kindCase_ == KindOneofCase.StringValue) { + output.WriteRawTag(106); + output.WriteString(StringValue); + } + if (kindCase_ == KindOneofCase.BoolValue) { + output.WriteRawTag(112); + output.WriteBool(BoolValue); + } + if (kindCase_ == KindOneofCase.TensorShapeValue) { + output.WriteRawTag(250, 1); + output.WriteMessage(TensorShapeValue); + } + if (kindCase_ == KindOneofCase.TensorDtypeValue) { + output.WriteRawTag(128, 2); + output.WriteEnum((int) TensorDtypeValue); + } + if (kindCase_ == KindOneofCase.TensorSpecValue) { + output.WriteRawTag(138, 2); + output.WriteMessage(TensorSpecValue); + } + if (kindCase_ == KindOneofCase.TypeSpecValue) { + output.WriteRawTag(146, 2); + output.WriteMessage(TypeSpecValue); + } + if (kindCase_ == KindOneofCase.BoundedTensorSpecValue) { + output.WriteRawTag(154, 2); + output.WriteMessage(BoundedTensorSpecValue); + } + if (kindCase_ == KindOneofCase.ListValue) { + output.WriteRawTag(154, 3); + output.WriteMessage(ListValue); + } + if (kindCase_ == KindOneofCase.TupleValue) { + output.WriteRawTag(162, 3); + output.WriteMessage(TupleValue); + } + if (kindCase_ == KindOneofCase.DictValue) { + output.WriteRawTag(170, 3); + output.WriteMessage(DictValue); + } + if (kindCase_ == KindOneofCase.NamedTupleValue) { + output.WriteRawTag(178, 3); + output.WriteMessage(NamedTupleValue); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (kindCase_ == KindOneofCase.NoneValue) { @@ -603,6 +706,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(StructuredValue other) { if (other == null) { return; @@ -683,7 +787,11 @@ public void MergeFrom(StructuredValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -794,30 +902,156 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + global::Tensorflow.NoneValue subBuilder = new global::Tensorflow.NoneValue(); + if (kindCase_ == KindOneofCase.NoneValue) { + subBuilder.MergeFrom(NoneValue); + } + input.ReadMessage(subBuilder); + NoneValue = subBuilder; + break; + } + case 89: { + Float64Value = input.ReadDouble(); + break; + } + case 96: { + Int64Value = input.ReadSInt64(); + break; + } + case 106: { + StringValue = input.ReadString(); + break; + } + case 112: { + BoolValue = input.ReadBool(); + break; + } + case 250: { + global::Tensorflow.TensorShapeProto subBuilder = new global::Tensorflow.TensorShapeProto(); + if (kindCase_ == KindOneofCase.TensorShapeValue) { + subBuilder.MergeFrom(TensorShapeValue); + } + input.ReadMessage(subBuilder); + TensorShapeValue = subBuilder; + break; + } + case 256: { + kind_ = input.ReadEnum(); + kindCase_ = KindOneofCase.TensorDtypeValue; + break; + } + case 266: { + global::Tensorflow.TensorSpecProto subBuilder = new global::Tensorflow.TensorSpecProto(); + if (kindCase_ == KindOneofCase.TensorSpecValue) { + subBuilder.MergeFrom(TensorSpecValue); + } + input.ReadMessage(subBuilder); + TensorSpecValue = subBuilder; + break; + } + case 274: { + global::Tensorflow.TypeSpecProto subBuilder = new global::Tensorflow.TypeSpecProto(); + if (kindCase_ == KindOneofCase.TypeSpecValue) { + subBuilder.MergeFrom(TypeSpecValue); + } + input.ReadMessage(subBuilder); + TypeSpecValue = subBuilder; + break; + } + case 282: { + global::Tensorflow.BoundedTensorSpecProto subBuilder = new global::Tensorflow.BoundedTensorSpecProto(); + if (kindCase_ == KindOneofCase.BoundedTensorSpecValue) { + subBuilder.MergeFrom(BoundedTensorSpecValue); + } + input.ReadMessage(subBuilder); + BoundedTensorSpecValue = subBuilder; + break; + } + case 410: { + global::Tensorflow.ListValue subBuilder = new global::Tensorflow.ListValue(); + if (kindCase_ == KindOneofCase.ListValue) { + subBuilder.MergeFrom(ListValue); + } + input.ReadMessage(subBuilder); + ListValue = subBuilder; + break; + } + case 418: { + global::Tensorflow.TupleValue subBuilder = new global::Tensorflow.TupleValue(); + if (kindCase_ == KindOneofCase.TupleValue) { + subBuilder.MergeFrom(TupleValue); + } + input.ReadMessage(subBuilder); + TupleValue = subBuilder; + break; + } + case 426: { + global::Tensorflow.DictValue subBuilder = new global::Tensorflow.DictValue(); + if (kindCase_ == KindOneofCase.DictValue) { + subBuilder.MergeFrom(DictValue); + } + input.ReadMessage(subBuilder); + DictValue = subBuilder; + break; + } + case 434: { + global::Tensorflow.NamedTupleValue subBuilder = new global::Tensorflow.NamedTupleValue(); + if (kindCase_ == KindOneofCase.NamedTupleValue) { + subBuilder.MergeFrom(NamedTupleValue); + } + input.ReadMessage(subBuilder); + NamedTupleValue = subBuilder; + break; + } + } + } + } + #endif + } /// /// Represents None. /// - public sealed partial class NoneValue : pb::IMessage { + public sealed partial class NoneValue : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new NoneValue()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NoneValue() { OnConstruction(); } @@ -825,21 +1059,25 @@ public NoneValue() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NoneValue(NoneValue other) : this() { _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NoneValue Clone() { return new NoneValue(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as NoneValue); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(NoneValue other) { if (ReferenceEquals(other, null)) { return false; @@ -851,6 +1089,7 @@ public bool Equals(NoneValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (_unknownFields != null) { @@ -860,18 +1099,35 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (_unknownFields != null) { @@ -881,6 +1137,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(NoneValue other) { if (other == null) { return; @@ -889,7 +1146,11 @@ public void MergeFrom(NoneValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -898,30 +1159,54 @@ public void MergeFrom(pb::CodedInputStream input) { break; } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + } /// /// Represents a Python list. /// - public sealed partial class ListValue : pb::IMessage { + public sealed partial class ListValue : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ListValue()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ListValue() { OnConstruction(); } @@ -929,12 +1214,14 @@ public ListValue() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ListValue(ListValue other) : this() { values_ = other.values_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ListValue Clone() { return new ListValue(this); } @@ -945,16 +1232,19 @@ public ListValue Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.StructuredValue.Parser); private readonly pbc::RepeatedField values_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Values { get { return values_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ListValue); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ListValue other) { if (ReferenceEquals(other, null)) { return false; @@ -967,6 +1257,7 @@ public bool Equals(ListValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= values_.GetHashCode(); @@ -977,19 +1268,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else values_.WriteTo(output, _repeated_values_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + values_.WriteTo(ref output, _repeated_values_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += values_.CalculateSize(_repeated_values_codec); @@ -1000,6 +1309,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ListValue other) { if (other == null) { return; @@ -1009,7 +1319,11 @@ public void MergeFrom(ListValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1022,30 +1336,58 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + values_.AddEntriesFrom(ref input, _repeated_values_codec); + break; + } + } + } } + #endif } /// /// Represents a Python tuple. /// - public sealed partial class TupleValue : pb::IMessage { + public sealed partial class TupleValue : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TupleValue()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[3]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TupleValue() { OnConstruction(); } @@ -1053,12 +1395,14 @@ public TupleValue() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TupleValue(TupleValue other) : this() { values_ = other.values_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TupleValue Clone() { return new TupleValue(this); } @@ -1069,16 +1413,19 @@ public TupleValue Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.StructuredValue.Parser); private readonly pbc::RepeatedField values_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Values { get { return values_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TupleValue); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TupleValue other) { if (ReferenceEquals(other, null)) { return false; @@ -1091,6 +1438,7 @@ public bool Equals(TupleValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= values_.GetHashCode(); @@ -1101,19 +1449,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else values_.WriteTo(output, _repeated_values_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + values_.WriteTo(ref output, _repeated_values_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += values_.CalculateSize(_repeated_values_codec); @@ -1124,6 +1490,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TupleValue other) { if (other == null) { return; @@ -1133,7 +1500,11 @@ public void MergeFrom(TupleValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1146,31 +1517,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + values_.AddEntriesFrom(ref input, _repeated_values_codec); + break; + } + } + } + } + #endif + } /// /// Represents a Python dict keyed by `str`. /// The comment on Unicode from Value.string_value applies analogously. /// - public sealed partial class DictValue : pb::IMessage { + public sealed partial class DictValue : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DictValue()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[4]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DictValue() { OnConstruction(); } @@ -1178,12 +1577,14 @@ public DictValue() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DictValue(DictValue other) : this() { fields_ = other.fields_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public DictValue Clone() { return new DictValue(this); } @@ -1194,16 +1595,19 @@ public DictValue Clone() { = new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForMessage(18, global::Tensorflow.StructuredValue.Parser), 10); private readonly pbc::MapField fields_ = new pbc::MapField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::MapField Fields { get { return fields_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as DictValue); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(DictValue other) { if (ReferenceEquals(other, null)) { return false; @@ -1216,6 +1620,7 @@ public bool Equals(DictValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= Fields.GetHashCode(); @@ -1226,19 +1631,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else fields_.WriteTo(output, _map_fields_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + fields_.WriteTo(ref output, _map_fields_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += fields_.CalculateSize(_map_fields_codec); @@ -1249,6 +1672,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(DictValue other) { if (other == null) { return; @@ -1258,7 +1682,11 @@ public void MergeFrom(DictValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1271,30 +1699,58 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + fields_.AddEntriesFrom(ref input, _map_fields_codec); + break; + } + } + } + } + #endif + } /// /// Represents a (key, value) pair. /// - public sealed partial class PairValue : pb::IMessage { + public sealed partial class PairValue : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new PairValue()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[5]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public PairValue() { OnConstruction(); } @@ -1302,6 +1758,7 @@ public PairValue() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public PairValue(PairValue other) : this() { key_ = other.key_; value_ = other.value_ != null ? other.value_.Clone() : null; @@ -1309,6 +1766,7 @@ public PairValue(PairValue other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public PairValue Clone() { return new PairValue(this); } @@ -1317,6 +1775,7 @@ public PairValue Clone() { public const int KeyFieldNumber = 1; private string key_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Key { get { return key_; } set { @@ -1328,6 +1787,7 @@ public string Key { public const int ValueFieldNumber = 2; private global::Tensorflow.StructuredValue value_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.StructuredValue Value { get { return value_; } set { @@ -1336,11 +1796,13 @@ public string Key { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as PairValue); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(PairValue other) { if (ReferenceEquals(other, null)) { return false; @@ -1354,6 +1816,7 @@ public bool Equals(PairValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Key.Length != 0) hash ^= Key.GetHashCode(); @@ -1365,12 +1828,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Key.Length != 0) { output.WriteRawTag(10); output.WriteString(Key); @@ -1382,9 +1850,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Key.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Key); + } + if (value_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Value); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Key.Length != 0) { @@ -1400,6 +1888,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(PairValue other) { if (other == null) { return; @@ -1417,7 +1906,11 @@ public void MergeFrom(PairValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1437,30 +1930,65 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Key = input.ReadString(); + break; + } + case 18: { + if (value_ == null) { + Value = new global::Tensorflow.StructuredValue(); + } + input.ReadMessage(Value); + break; + } + } + } } + #endif } /// /// Represents Python's namedtuple. /// - public sealed partial class NamedTupleValue : pb::IMessage { + public sealed partial class NamedTupleValue : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new NamedTupleValue()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[6]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NamedTupleValue() { OnConstruction(); } @@ -1468,6 +1996,7 @@ public NamedTupleValue() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NamedTupleValue(NamedTupleValue other) : this() { name_ = other.name_; values_ = other.values_.Clone(); @@ -1475,6 +2004,7 @@ public NamedTupleValue(NamedTupleValue other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public NamedTupleValue Clone() { return new NamedTupleValue(this); } @@ -1483,6 +2013,7 @@ public NamedTupleValue Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -1496,16 +2027,19 @@ public string Name { = pb::FieldCodec.ForMessage(18, global::Tensorflow.PairValue.Parser); private readonly pbc::RepeatedField values_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Values { get { return values_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as NamedTupleValue); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(NamedTupleValue other) { if (ReferenceEquals(other, null)) { return false; @@ -1519,6 +2053,7 @@ public bool Equals(NamedTupleValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -1530,12 +2065,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -1544,9 +2084,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + values_.WriteTo(ref output, _repeated_values_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -1560,6 +2117,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(NamedTupleValue other) { if (other == null) { return; @@ -1572,7 +2130,11 @@ public void MergeFrom(NamedTupleValue other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1589,30 +2151,62 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + values_.AddEntriesFrom(ref input, _repeated_values_codec); + break; + } + } + } } + #endif } /// /// A protobuf to represent tf.TensorSpec. /// - public sealed partial class TensorSpecProto : pb::IMessage { + public sealed partial class TensorSpecProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TensorSpecProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[7]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorSpecProto() { OnConstruction(); } @@ -1620,6 +2214,7 @@ public TensorSpecProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorSpecProto(TensorSpecProto other) : this() { name_ = other.name_; shape_ = other.shape_ != null ? other.shape_.Clone() : null; @@ -1628,6 +2223,7 @@ public TensorSpecProto(TensorSpecProto other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorSpecProto Clone() { return new TensorSpecProto(this); } @@ -1636,6 +2232,7 @@ public TensorSpecProto Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -1647,6 +2244,7 @@ public string Name { public const int ShapeFieldNumber = 2; private global::Tensorflow.TensorShapeProto shape_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto Shape { get { return shape_; } set { @@ -1658,6 +2256,7 @@ public string Name { public const int DtypeFieldNumber = 3; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -1666,11 +2265,13 @@ public string Name { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TensorSpecProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TensorSpecProto other) { if (ReferenceEquals(other, null)) { return false; @@ -1685,6 +2286,7 @@ public bool Equals(TensorSpecProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -1697,12 +2299,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -1718,9 +2325,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (shape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Shape); + } + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(24); + output.WriteEnum((int) Dtype); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -1739,6 +2370,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TensorSpecProto other) { if (other == null) { return; @@ -1759,7 +2391,11 @@ public void MergeFrom(TensorSpecProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1783,30 +2419,69 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + if (shape_ == null) { + Shape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 24: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + } + } } + #endif } /// /// A protobuf to represent tf.BoundedTensorSpec. /// - public sealed partial class BoundedTensorSpecProto : pb::IMessage { + public sealed partial class BoundedTensorSpecProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new BoundedTensorSpecProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[8]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public BoundedTensorSpecProto() { OnConstruction(); } @@ -1814,6 +2489,7 @@ public BoundedTensorSpecProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public BoundedTensorSpecProto(BoundedTensorSpecProto other) : this() { name_ = other.name_; shape_ = other.shape_ != null ? other.shape_.Clone() : null; @@ -1824,6 +2500,7 @@ public BoundedTensorSpecProto(BoundedTensorSpecProto other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public BoundedTensorSpecProto Clone() { return new BoundedTensorSpecProto(this); } @@ -1832,6 +2509,7 @@ public BoundedTensorSpecProto Clone() { public const int NameFieldNumber = 1; private string name_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -1843,6 +2521,7 @@ public string Name { public const int ShapeFieldNumber = 2; private global::Tensorflow.TensorShapeProto shape_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto Shape { get { return shape_; } set { @@ -1854,6 +2533,7 @@ public string Name { public const int DtypeFieldNumber = 3; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -1865,6 +2545,7 @@ public string Name { public const int MinimumFieldNumber = 4; private global::Tensorflow.TensorProto minimum_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorProto Minimum { get { return minimum_; } set { @@ -1876,6 +2557,7 @@ public string Name { public const int MaximumFieldNumber = 5; private global::Tensorflow.TensorProto maximum_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorProto Maximum { get { return maximum_; } set { @@ -1884,11 +2566,13 @@ public string Name { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as BoundedTensorSpecProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(BoundedTensorSpecProto other) { if (ReferenceEquals(other, null)) { return false; @@ -1905,6 +2589,7 @@ public bool Equals(BoundedTensorSpecProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); @@ -1919,12 +2604,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -1948,9 +2638,41 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (shape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Shape); + } + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(24); + output.WriteEnum((int) Dtype); + } + if (minimum_ != null) { + output.WriteRawTag(34); + output.WriteMessage(Minimum); + } + if (maximum_ != null) { + output.WriteRawTag(42); + output.WriteMessage(Maximum); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -1975,6 +2697,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(BoundedTensorSpecProto other) { if (other == null) { return; @@ -2007,7 +2730,11 @@ public void MergeFrom(BoundedTensorSpecProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2045,30 +2772,83 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + if (shape_ == null) { + Shape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 24: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + case 34: { + if (minimum_ == null) { + Minimum = new global::Tensorflow.TensorProto(); + } + input.ReadMessage(Minimum); + break; + } + case 42: { + if (maximum_ == null) { + Maximum = new global::Tensorflow.TensorProto(); + } + input.ReadMessage(Maximum); + break; + } + } + } } + #endif } /// /// Represents a tf.TypeSpec /// - public sealed partial class TypeSpecProto : pb::IMessage { + public sealed partial class TypeSpecProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TypeSpecProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.StructReflection.Descriptor.MessageTypes[9]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TypeSpecProto() { OnConstruction(); } @@ -2076,14 +2856,17 @@ public TypeSpecProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TypeSpecProto(TypeSpecProto other) : this() { typeSpecClass_ = other.typeSpecClass_; typeState_ = other.typeState_ != null ? other.typeState_.Clone() : null; typeSpecClassName_ = other.typeSpecClassName_; + numFlatComponents_ = other.numFlatComponents_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TypeSpecProto Clone() { return new TypeSpecProto(this); } @@ -2092,6 +2875,7 @@ public TypeSpecProto Clone() { public const int TypeSpecClassFieldNumber = 1; private global::Tensorflow.TypeSpecProto.Types.TypeSpecClass typeSpecClass_ = global::Tensorflow.TypeSpecProto.Types.TypeSpecClass.Unknown; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TypeSpecProto.Types.TypeSpecClass TypeSpecClass { get { return typeSpecClass_; } set { @@ -2106,6 +2890,7 @@ public TypeSpecProto Clone() { /// The value returned by TypeSpec._serialize(). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.StructuredValue TypeState { get { return typeState_; } set { @@ -2121,12 +2906,13 @@ public TypeSpecProto Clone() { /// * If type_spec_class == REGISTERED_TYPE_SPEC, the TypeSpec class is /// the one registered under this name. For types registered outside /// core TensorFlow by an add-on library, that library must be loaded - /// before this value can be deserialized by StructureCoder. + /// before this value can be deserialized by nested_structure_coder. /// * If type_spec_class specifies a particular TypeSpec class, this field is /// redundant with the type_spec_class enum, and is only used for error /// reporting in older binaries that do not know the tupe_spec_class enum. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string TypeSpecClassName { get { return typeSpecClassName_; } set { @@ -2134,12 +2920,29 @@ public string TypeSpecClassName { } } + /// Field number for the "num_flat_components" field. + public const int NumFlatComponentsFieldNumber = 4; + private int numFlatComponents_; + /// + /// The number of flat tensor components required by this TypeSpec. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int NumFlatComponents { + get { return numFlatComponents_; } + set { + numFlatComponents_ = value; + } + } + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TypeSpecProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TypeSpecProto other) { if (ReferenceEquals(other, null)) { return false; @@ -2150,15 +2953,18 @@ public bool Equals(TypeSpecProto other) { if (TypeSpecClass != other.TypeSpecClass) return false; if (!object.Equals(TypeState, other.TypeState)) return false; if (TypeSpecClassName != other.TypeSpecClassName) return false; + if (NumFlatComponents != other.NumFlatComponents) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (TypeSpecClass != global::Tensorflow.TypeSpecProto.Types.TypeSpecClass.Unknown) hash ^= TypeSpecClass.GetHashCode(); if (typeState_ != null) hash ^= TypeState.GetHashCode(); if (TypeSpecClassName.Length != 0) hash ^= TypeSpecClassName.GetHashCode(); + if (NumFlatComponents != 0) hash ^= NumFlatComponents.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -2166,12 +2972,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (TypeSpecClass != global::Tensorflow.TypeSpecProto.Types.TypeSpecClass.Unknown) { output.WriteRawTag(8); output.WriteEnum((int) TypeSpecClass); @@ -2184,12 +2995,44 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(26); output.WriteString(TypeSpecClassName); } + if (NumFlatComponents != 0) { + output.WriteRawTag(32); + output.WriteInt32(NumFlatComponents); + } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (TypeSpecClass != global::Tensorflow.TypeSpecProto.Types.TypeSpecClass.Unknown) { + output.WriteRawTag(8); + output.WriteEnum((int) TypeSpecClass); + } + if (typeState_ != null) { + output.WriteRawTag(18); + output.WriteMessage(TypeState); + } + if (TypeSpecClassName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(TypeSpecClassName); + } + if (NumFlatComponents != 0) { + output.WriteRawTag(32); + output.WriteInt32(NumFlatComponents); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (TypeSpecClass != global::Tensorflow.TypeSpecProto.Types.TypeSpecClass.Unknown) { @@ -2201,6 +3044,9 @@ public int CalculateSize() { if (TypeSpecClassName.Length != 0) { size += 1 + pb::CodedOutputStream.ComputeStringSize(TypeSpecClassName); } + if (NumFlatComponents != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(NumFlatComponents); + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -2208,6 +3054,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TypeSpecProto other) { if (other == null) { return; @@ -2224,11 +3071,18 @@ public void MergeFrom(TypeSpecProto other) { if (other.TypeSpecClassName.Length != 0) { TypeSpecClassName = other.TypeSpecClassName; } + if (other.NumFlatComponents != 0) { + NumFlatComponents = other.NumFlatComponents; + } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -2250,13 +3104,53 @@ public void MergeFrom(pb::CodedInputStream input) { TypeSpecClassName = input.ReadString(); break; } + case 32: { + NumFlatComponents = input.ReadInt32(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + TypeSpecClass = (global::Tensorflow.TypeSpecProto.Types.TypeSpecClass) input.ReadEnum(); + break; + } + case 18: { + if (typeState_ == null) { + TypeState = new global::Tensorflow.StructuredValue(); + } + input.ReadMessage(TypeState); + break; + } + case 26: { + TypeSpecClassName = input.ReadString(); + break; + } + case 32: { + NumFlatComponents = input.ReadInt32(); + break; + } } } } + #endif #region Nested types /// Container for nested types declared in the TypeSpecProto message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { public enum TypeSpecClass { [pbr::OriginalName("UNKNOWN")] Unknown = 0, diff --git a/src/TensorFlowNET.Core/Protobuf/Summary.cs b/src/TensorFlowNET.Core/Protobuf/Summary.cs index 44ba5cdbc..8f17e8dff 100644 --- a/src/TensorFlowNET.Core/Protobuf/Summary.cs +++ b/src/TensorFlowNET.Core/Protobuf/Summary.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/summary.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -25,41 +25,38 @@ static SummaryReflection() { byte[] descriptorData = global::System.Convert.FromBase64String( string.Concat( "Cid0ZW5zb3JmbG93L2NvcmUvZnJhbWV3b3JrL3N1bW1hcnkucHJvdG8SCnRl", - "bnNvcmZsb3caJnRlbnNvcmZsb3cvY29yZS9mcmFtZXdvcmsvdGVuc29yLnBy", - "b3RvIicKElN1bW1hcnlEZXNjcmlwdGlvbhIRCgl0eXBlX2hpbnQYASABKAki", - "hwEKDkhpc3RvZ3JhbVByb3RvEgsKA21pbhgBIAEoARILCgNtYXgYAiABKAES", - "CwoDbnVtGAMgASgBEgsKA3N1bRgEIAEoARITCgtzdW1fc3F1YXJlcxgFIAEo", - "ARIYCgxidWNrZXRfbGltaXQYBiADKAFCAhABEhIKBmJ1Y2tldBgHIAMoAUIC", - "EAEi4AEKD1N1bW1hcnlNZXRhZGF0YRI7CgtwbHVnaW5fZGF0YRgBIAEoCzIm", - "LnRlbnNvcmZsb3cuU3VtbWFyeU1ldGFkYXRhLlBsdWdpbkRhdGESFAoMZGlz", - "cGxheV9uYW1lGAIgASgJEhsKE3N1bW1hcnlfZGVzY3JpcHRpb24YAyABKAkS", - "KQoKZGF0YV9jbGFzcxgEIAEoDjIVLnRlbnNvcmZsb3cuRGF0YUNsYXNzGjIK", - "ClBsdWdpbkRhdGESEwoLcGx1Z2luX25hbWUYASABKAkSDwoHY29udGVudBgC", - "IAEoDCLeBAoHU3VtbWFyeRIoCgV2YWx1ZRgBIAMoCzIZLnRlbnNvcmZsb3cu", - "U3VtbWFyeS5WYWx1ZRpYCgVJbWFnZRIOCgZoZWlnaHQYASABKAUSDQoFd2lk", - "dGgYAiABKAUSEgoKY29sb3JzcGFjZRgDIAEoBRIcChRlbmNvZGVkX2ltYWdl", - "X3N0cmluZxgEIAEoDBp9CgVBdWRpbxITCgtzYW1wbGVfcmF0ZRgBIAEoAhIU", - "CgxudW1fY2hhbm5lbHMYAiABKAMSFQoNbGVuZ3RoX2ZyYW1lcxgDIAEoAxIc", - "ChRlbmNvZGVkX2F1ZGlvX3N0cmluZxgEIAEoDBIUCgxjb250ZW50X3R5cGUY", - "BSABKAkazwIKBVZhbHVlEhEKCW5vZGVfbmFtZRgHIAEoCRILCgN0YWcYASAB", - "KAkSLQoIbWV0YWRhdGEYCSABKAsyGy50ZW5zb3JmbG93LlN1bW1hcnlNZXRh", - "ZGF0YRIWCgxzaW1wbGVfdmFsdWUYAiABKAJIABImChxvYnNvbGV0ZV9vbGRf", - "c3R5bGVfaGlzdG9ncmFtGAMgASgMSAASKgoFaW1hZ2UYBCABKAsyGS50ZW5z", - "b3JmbG93LlN1bW1hcnkuSW1hZ2VIABIrCgVoaXN0bxgFIAEoCzIaLnRlbnNv", - "cmZsb3cuSGlzdG9ncmFtUHJvdG9IABIqCgVhdWRpbxgGIAEoCzIZLnRlbnNv", - "cmZsb3cuU3VtbWFyeS5BdWRpb0gAEikKBnRlbnNvchgIIAEoCzIXLnRlbnNv", - "cmZsb3cuVGVuc29yUHJvdG9IAEIHCgV2YWx1ZSpvCglEYXRhQ2xhc3MSFgoS", - "REFUQV9DTEFTU19VTktOT1dOEAASFQoRREFUQV9DTEFTU19TQ0FMQVIQARIV", - "ChFEQVRBX0NMQVNTX1RFTlNPUhACEhwKGERBVEFfQ0xBU1NfQkxPQl9TRVFV", - "RU5DRRADQn4KGG9yZy50ZW5zb3JmbG93LmZyYW1ld29ya0INU3VtbWFyeVBy", - "b3Rvc1ABWk5naXRodWIuY29tL3RlbnNvcmZsb3cvdGVuc29yZmxvdy90ZW5z", - "b3JmbG93L2dvL2NvcmUvZnJhbWV3b3JrL3N1bW1hcnlfZ29fcHJvdG/4AQFi", - "BnByb3RvMw==")); + "bnNvcmZsb3caJ3RlbnNvcmZsb3cvdHNsL3Byb3RvYnVmL2hpc3RvZ3JhbS5w", + "cm90bxomdGVuc29yZmxvdy9jb3JlL2ZyYW1ld29yay90ZW5zb3IucHJvdG8i", + "JwoSU3VtbWFyeURlc2NyaXB0aW9uEhEKCXR5cGVfaGludBgBIAEoCSLgAQoP", + "U3VtbWFyeU1ldGFkYXRhEjsKC3BsdWdpbl9kYXRhGAEgASgLMiYudGVuc29y", + "Zmxvdy5TdW1tYXJ5TWV0YWRhdGEuUGx1Z2luRGF0YRIUCgxkaXNwbGF5X25h", + "bWUYAiABKAkSGwoTc3VtbWFyeV9kZXNjcmlwdGlvbhgDIAEoCRIpCgpkYXRh", + "X2NsYXNzGAQgASgOMhUudGVuc29yZmxvdy5EYXRhQ2xhc3MaMgoKUGx1Z2lu", + "RGF0YRITCgtwbHVnaW5fbmFtZRgBIAEoCRIPCgdjb250ZW50GAIgASgMIt4E", + "CgdTdW1tYXJ5EigKBXZhbHVlGAEgAygLMhkudGVuc29yZmxvdy5TdW1tYXJ5", + "LlZhbHVlGlgKBUltYWdlEg4KBmhlaWdodBgBIAEoBRINCgV3aWR0aBgCIAEo", + "BRISCgpjb2xvcnNwYWNlGAMgASgFEhwKFGVuY29kZWRfaW1hZ2Vfc3RyaW5n", + "GAQgASgMGn0KBUF1ZGlvEhMKC3NhbXBsZV9yYXRlGAEgASgCEhQKDG51bV9j", + "aGFubmVscxgCIAEoAxIVCg1sZW5ndGhfZnJhbWVzGAMgASgDEhwKFGVuY29k", + "ZWRfYXVkaW9fc3RyaW5nGAQgASgMEhQKDGNvbnRlbnRfdHlwZRgFIAEoCRrP", + "AgoFVmFsdWUSEQoJbm9kZV9uYW1lGAcgASgJEgsKA3RhZxgBIAEoCRItCght", + "ZXRhZGF0YRgJIAEoCzIbLnRlbnNvcmZsb3cuU3VtbWFyeU1ldGFkYXRhEhYK", + "DHNpbXBsZV92YWx1ZRgCIAEoAkgAEiYKHG9ic29sZXRlX29sZF9zdHlsZV9o", + "aXN0b2dyYW0YAyABKAxIABIqCgVpbWFnZRgEIAEoCzIZLnRlbnNvcmZsb3cu", + "U3VtbWFyeS5JbWFnZUgAEisKBWhpc3RvGAUgASgLMhoudGVuc29yZmxvdy5I", + "aXN0b2dyYW1Qcm90b0gAEioKBWF1ZGlvGAYgASgLMhkudGVuc29yZmxvdy5T", + "dW1tYXJ5LkF1ZGlvSAASKQoGdGVuc29yGAggASgLMhcudGVuc29yZmxvdy5U", + "ZW5zb3JQcm90b0gAQgcKBXZhbHVlKm8KCURhdGFDbGFzcxIWChJEQVRBX0NM", + "QVNTX1VOS05PV04QABIVChFEQVRBX0NMQVNTX1NDQUxBUhABEhUKEURBVEFf", + "Q0xBU1NfVEVOU09SEAISHAoYREFUQV9DTEFTU19CTE9CX1NFUVVFTkNFEANC", + "fgoYb3JnLnRlbnNvcmZsb3cuZnJhbWV3b3JrQg1TdW1tYXJ5UHJvdG9zUAFa", + "TmdpdGh1Yi5jb20vdGVuc29yZmxvdy90ZW5zb3JmbG93L3RlbnNvcmZsb3cv", + "Z28vY29yZS9mcmFtZXdvcmsvc3VtbWFyeV9nb19wcm90b/gBAVAAYgZwcm90", + "bzM=")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, - new pbr::FileDescriptor[] { global::Tensorflow.TensorReflection.Descriptor, }, + new pbr::FileDescriptor[] { global::Tensorflow.HistogramReflection.Descriptor, global::Tensorflow.TensorReflection.Descriptor, }, new pbr::GeneratedClrTypeInfo(new[] {typeof(global::Tensorflow.DataClass), }, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SummaryDescription), global::Tensorflow.SummaryDescription.Parser, new[]{ "TypeHint" }, null, null, null, null), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.HistogramProto), global::Tensorflow.HistogramProto.Parser, new[]{ "Min", "Max", "Num", "Sum", "SumSquares", "BucketLimit", "Bucket" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SummaryMetadata), global::Tensorflow.SummaryMetadata.Parser, new[]{ "PluginData", "DisplayName", "SummaryDescription", "DataClass" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SummaryMetadata.Types.PluginData), global::Tensorflow.SummaryMetadata.Types.PluginData.Parser, new[]{ "PluginName", "Content" }, null, null, null, null)}), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.Summary), global::Tensorflow.Summary.Parser, new[]{ "Value" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.Summary.Types.Image), global::Tensorflow.Summary.Types.Image.Parser, new[]{ "Height", "Width", "Colorspace", "EncodedImageString" }, null, null, null, null), new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.Summary.Types.Audio), global::Tensorflow.Summary.Types.Audio.Parser, new[]{ "SampleRate", "NumChannels", "LengthFrames", "EncodedAudioString", "ContentType" }, null, null, null, null), @@ -101,23 +98,31 @@ public enum DataClass { /// /// Metadata associated with a series of Summary data /// - public sealed partial class SummaryDescription : pb::IMessage { + public sealed partial class SummaryDescription : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SummaryDescription()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SummaryReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SummaryDescription() { OnConstruction(); } @@ -125,12 +130,14 @@ public SummaryDescription() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SummaryDescription(SummaryDescription other) : this() { typeHint_ = other.typeHint_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SummaryDescription Clone() { return new SummaryDescription(this); } @@ -143,6 +150,7 @@ public SummaryDescription Clone() { /// Supported values include "scalar", "histogram", "image", "audio" /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string TypeHint { get { return typeHint_; } set { @@ -151,11 +159,13 @@ public string TypeHint { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SummaryDescription); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SummaryDescription other) { if (ReferenceEquals(other, null)) { return false; @@ -168,6 +178,7 @@ public bool Equals(SummaryDescription other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (TypeHint.Length != 0) hash ^= TypeHint.GetHashCode(); @@ -178,12 +189,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (TypeHint.Length != 0) { output.WriteRawTag(10); output.WriteString(TypeHint); @@ -191,9 +207,25 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (TypeHint.Length != 0) { + output.WriteRawTag(10); + output.WriteString(TypeHint); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (TypeHint.Length != 0) { @@ -206,6 +238,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SummaryDescription other) { if (other == null) { return; @@ -217,7 +250,11 @@ public void MergeFrom(SummaryDescription other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -230,301 +267,27 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } - } - - /// - /// Serialization format for histogram module in - /// core/lib/histogram/histogram.h - /// - public sealed partial class HistogramProto : pb::IMessage { - private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new HistogramProto()); - private pb::UnknownFieldSet _unknownFields; - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public static pb::MessageParser Parser { get { return _parser; } } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public static pbr::MessageDescriptor Descriptor { - get { return global::Tensorflow.SummaryReflection.Descriptor.MessageTypes[1]; } - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - pbr::MessageDescriptor pb::IMessage.Descriptor { - get { return Descriptor; } - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public HistogramProto() { - OnConstruction(); - } - - partial void OnConstruction(); - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public HistogramProto(HistogramProto other) : this() { - min_ = other.min_; - max_ = other.max_; - num_ = other.num_; - sum_ = other.sum_; - sumSquares_ = other.sumSquares_; - bucketLimit_ = other.bucketLimit_.Clone(); - bucket_ = other.bucket_.Clone(); - _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public HistogramProto Clone() { - return new HistogramProto(this); - } - - /// Field number for the "min" field. - public const int MinFieldNumber = 1; - private double min_; - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public double Min { - get { return min_; } - set { - min_ = value; - } - } - - /// Field number for the "max" field. - public const int MaxFieldNumber = 2; - private double max_; - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public double Max { - get { return max_; } - set { - max_ = value; - } - } - - /// Field number for the "num" field. - public const int NumFieldNumber = 3; - private double num_; - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public double Num { - get { return num_; } - set { - num_ = value; - } - } - - /// Field number for the "sum" field. - public const int SumFieldNumber = 4; - private double sum_; - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public double Sum { - get { return sum_; } - set { - sum_ = value; - } - } - - /// Field number for the "sum_squares" field. - public const int SumSquaresFieldNumber = 5; - private double sumSquares_; - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public double SumSquares { - get { return sumSquares_; } - set { - sumSquares_ = value; - } - } - - /// Field number for the "bucket_limit" field. - public const int BucketLimitFieldNumber = 6; - private static readonly pb::FieldCodec _repeated_bucketLimit_codec - = pb::FieldCodec.ForDouble(50); - private readonly pbc::RepeatedField bucketLimit_ = new pbc::RepeatedField(); - /// - /// Parallel arrays encoding the bucket boundaries and the bucket values. - /// bucket(i) is the count for the bucket i. The range for - /// a bucket is: - /// i == 0: -DBL_MAX .. bucket_limit(0) - /// i != 0: bucket_limit(i-1) .. bucket_limit(i) - /// - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public pbc::RepeatedField BucketLimit { - get { return bucketLimit_; } - } - - /// Field number for the "bucket" field. - public const int BucketFieldNumber = 7; - private static readonly pb::FieldCodec _repeated_bucket_codec - = pb::FieldCodec.ForDouble(58); - private readonly pbc::RepeatedField bucket_ = new pbc::RepeatedField(); - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public pbc::RepeatedField Bucket { - get { return bucket_; } - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public override bool Equals(object other) { - return Equals(other as HistogramProto); - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public bool Equals(HistogramProto other) { - if (ReferenceEquals(other, null)) { - return false; - } - if (ReferenceEquals(other, this)) { - return true; - } - if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(Min, other.Min)) return false; - if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(Max, other.Max)) return false; - if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(Num, other.Num)) return false; - if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(Sum, other.Sum)) return false; - if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(SumSquares, other.SumSquares)) return false; - if(!bucketLimit_.Equals(other.bucketLimit_)) return false; - if(!bucket_.Equals(other.bucket_)) return false; - return Equals(_unknownFields, other._unknownFields); - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public override int GetHashCode() { - int hash = 1; - if (Min != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(Min); - if (Max != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(Max); - if (Num != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(Num); - if (Sum != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(Sum); - if (SumSquares != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(SumSquares); - hash ^= bucketLimit_.GetHashCode(); - hash ^= bucket_.GetHashCode(); - if (_unknownFields != null) { - hash ^= _unknownFields.GetHashCode(); - } - return hash; - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public override string ToString() { - return pb::JsonFormatter.ToDiagnosticString(this); - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public void WriteTo(pb::CodedOutputStream output) { - if (Min != 0D) { - output.WriteRawTag(9); - output.WriteDouble(Min); - } - if (Max != 0D) { - output.WriteRawTag(17); - output.WriteDouble(Max); - } - if (Num != 0D) { - output.WriteRawTag(25); - output.WriteDouble(Num); - } - if (Sum != 0D) { - output.WriteRawTag(33); - output.WriteDouble(Sum); - } - if (SumSquares != 0D) { - output.WriteRawTag(41); - output.WriteDouble(SumSquares); - } - bucketLimit_.WriteTo(output, _repeated_bucketLimit_codec); - bucket_.WriteTo(output, _repeated_bucket_codec); - if (_unknownFields != null) { - _unknownFields.WriteTo(output); - } - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public int CalculateSize() { - int size = 0; - if (Min != 0D) { - size += 1 + 8; - } - if (Max != 0D) { - size += 1 + 8; - } - if (Num != 0D) { - size += 1 + 8; - } - if (Sum != 0D) { - size += 1 + 8; - } - if (SumSquares != 0D) { - size += 1 + 8; - } - size += bucketLimit_.CalculateSize(_repeated_bucketLimit_codec); - size += bucket_.CalculateSize(_repeated_bucket_codec); - if (_unknownFields != null) { - size += _unknownFields.CalculateSize(); - } - return size; - } - - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public void MergeFrom(HistogramProto other) { - if (other == null) { - return; - } - if (other.Min != 0D) { - Min = other.Min; - } - if (other.Max != 0D) { - Max = other.Max; - } - if (other.Num != 0D) { - Num = other.Num; - } - if (other.Sum != 0D) { - Sum = other.Sum; - } - if (other.SumSquares != 0D) { - SumSquares = other.SumSquares; - } - bucketLimit_.Add(other.bucketLimit_); - bucket_.Add(other.bucket_); - _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); - } - + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public void MergeFrom(pb::CodedInputStream input) { + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { default: - _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); - break; - case 9: { - Min = input.ReadDouble(); - break; - } - case 17: { - Max = input.ReadDouble(); - break; - } - case 25: { - Num = input.ReadDouble(); - break; - } - case 33: { - Sum = input.ReadDouble(); + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); break; - } - case 41: { - SumSquares = input.ReadDouble(); - break; - } - case 50: - case 49: { - bucketLimit_.AddEntriesFrom(input, _repeated_bucketLimit_codec); - break; - } - case 58: - case 57: { - bucket_.AddEntriesFrom(input, _repeated_bucket_codec); + case 10: { + TypeHint = input.ReadString(); break; } } } } + #endif } @@ -532,23 +295,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// A SummaryMetadata encapsulates information on which plugins are able to make /// use of a certain summary value. /// - public sealed partial class SummaryMetadata : pb::IMessage { + public sealed partial class SummaryMetadata : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SummaryMetadata()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { - get { return global::Tensorflow.SummaryReflection.Descriptor.MessageTypes[2]; } + get { return global::Tensorflow.SummaryReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SummaryMetadata() { OnConstruction(); } @@ -556,6 +327,7 @@ public SummaryMetadata() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SummaryMetadata(SummaryMetadata other) : this() { pluginData_ = other.pluginData_ != null ? other.pluginData_.Clone() : null; displayName_ = other.displayName_; @@ -565,6 +337,7 @@ public SummaryMetadata(SummaryMetadata other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SummaryMetadata Clone() { return new SummaryMetadata(this); } @@ -576,6 +349,7 @@ public SummaryMetadata Clone() { /// Data that associates a summary with a certain plugin. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SummaryMetadata.Types.PluginData PluginData { get { return pluginData_; } set { @@ -590,6 +364,7 @@ public SummaryMetadata Clone() { /// Display name for viewing in TensorBoard. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string DisplayName { get { return displayName_; } set { @@ -604,6 +379,7 @@ public string DisplayName { /// Longform readable description of the summary sequence. Markdown supported. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string SummaryDescription { get { return summaryDescription_; } set { @@ -621,6 +397,7 @@ public string SummaryDescription { /// values. See `DataClass` docs for details. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataClass DataClass { get { return dataClass_; } set { @@ -629,11 +406,13 @@ public string SummaryDescription { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SummaryMetadata); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SummaryMetadata other) { if (ReferenceEquals(other, null)) { return false; @@ -649,6 +428,7 @@ public bool Equals(SummaryMetadata other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (pluginData_ != null) hash ^= PluginData.GetHashCode(); @@ -662,12 +442,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (pluginData_ != null) { output.WriteRawTag(10); output.WriteMessage(PluginData); @@ -687,9 +472,37 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (pluginData_ != null) { + output.WriteRawTag(10); + output.WriteMessage(PluginData); + } + if (DisplayName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(DisplayName); + } + if (SummaryDescription.Length != 0) { + output.WriteRawTag(26); + output.WriteString(SummaryDescription); + } + if (DataClass != global::Tensorflow.DataClass.Unknown) { + output.WriteRawTag(32); + output.WriteEnum((int) DataClass); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (pluginData_ != null) { @@ -711,6 +524,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SummaryMetadata other) { if (other == null) { return; @@ -734,7 +548,11 @@ public void MergeFrom(SummaryMetadata other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -762,29 +580,73 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (pluginData_ == null) { + PluginData = new global::Tensorflow.SummaryMetadata.Types.PluginData(); + } + input.ReadMessage(PluginData); + break; + } + case 18: { + DisplayName = input.ReadString(); + break; + } + case 26: { + SummaryDescription = input.ReadString(); + break; + } + case 32: { + DataClass = (global::Tensorflow.DataClass) input.ReadEnum(); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the SummaryMetadata message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class PluginData : pb::IMessage { + public sealed partial class PluginData : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new PluginData()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.SummaryMetadata.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public PluginData() { OnConstruction(); } @@ -792,6 +654,7 @@ public PluginData() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public PluginData(PluginData other) : this() { pluginName_ = other.pluginName_; content_ = other.content_; @@ -799,6 +662,7 @@ public PluginData(PluginData other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public PluginData Clone() { return new PluginData(this); } @@ -810,6 +674,7 @@ public PluginData Clone() { /// The name of the plugin this data pertains to. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string PluginName { get { return pluginName_; } set { @@ -825,6 +690,7 @@ public string PluginName { /// a binary serialized protocol buffer. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString Content { get { return content_; } set { @@ -833,11 +699,13 @@ public string PluginName { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as PluginData); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(PluginData other) { if (ReferenceEquals(other, null)) { return false; @@ -851,6 +719,7 @@ public bool Equals(PluginData other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (PluginName.Length != 0) hash ^= PluginName.GetHashCode(); @@ -862,12 +731,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (PluginName.Length != 0) { output.WriteRawTag(10); output.WriteString(PluginName); @@ -879,9 +753,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (PluginName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(PluginName); + } + if (Content.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Content); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (PluginName.Length != 0) { @@ -897,6 +791,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(PluginData other) { if (other == null) { return; @@ -911,7 +806,11 @@ public void MergeFrom(PluginData other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -928,7 +827,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + PluginName = input.ReadString(); + break; + } + case 18: { + Content = input.ReadBytes(); + break; + } + } + } } + #endif } @@ -945,23 +868,31 @@ public void MergeFrom(pb::CodedInputStream input) { /// the "summary_interval_secs" attribute of the training operation. /// Summaries are also produced at the end of an evaluation. /// - public sealed partial class Summary : pb::IMessage { + public sealed partial class Summary : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Summary()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { - get { return global::Tensorflow.SummaryReflection.Descriptor.MessageTypes[3]; } + get { return global::Tensorflow.SummaryReflection.Descriptor.MessageTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Summary() { OnConstruction(); } @@ -969,12 +900,14 @@ public Summary() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Summary(Summary other) : this() { value_ = other.value_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Summary Clone() { return new Summary(this); } @@ -988,16 +921,19 @@ public Summary Clone() { /// Set of values for the summary. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Value { get { return value_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Summary); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Summary other) { if (ReferenceEquals(other, null)) { return false; @@ -1010,6 +946,7 @@ public bool Equals(Summary other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= value_.GetHashCode(); @@ -1020,19 +957,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else value_.WriteTo(output, _repeated_value_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + value_.WriteTo(ref output, _repeated_value_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += value_.CalculateSize(_repeated_value_codec); @@ -1043,6 +998,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Summary other) { if (other == null) { return; @@ -1052,7 +1008,11 @@ public void MergeFrom(Summary other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1065,29 +1025,58 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + value_.AddEntriesFrom(ref input, _repeated_value_codec); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the Summary message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class Image : pb::IMessage { + public sealed partial class Image : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Image()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.Summary.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Image() { OnConstruction(); } @@ -1095,6 +1084,7 @@ public Image() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Image(Image other) : this() { height_ = other.height_; width_ = other.width_; @@ -1104,6 +1094,7 @@ public Image(Image other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Image Clone() { return new Image(this); } @@ -1115,6 +1106,7 @@ public Image Clone() { /// Dimensions of the image. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Height { get { return height_; } set { @@ -1126,6 +1118,7 @@ public int Height { public const int WidthFieldNumber = 2; private int width_; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Width { get { return width_; } set { @@ -1146,6 +1139,7 @@ public int Width { /// 6 - BGRA /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Colorspace { get { return colorspace_; } set { @@ -1161,6 +1155,7 @@ public int Colorspace { /// image_codec::CoderUtil can be stored here. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString EncodedImageString { get { return encodedImageString_; } set { @@ -1169,11 +1164,13 @@ public int Colorspace { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Image); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Image other) { if (ReferenceEquals(other, null)) { return false; @@ -1189,6 +1186,7 @@ public bool Equals(Image other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Height != 0) hash ^= Height.GetHashCode(); @@ -1202,12 +1200,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Height != 0) { output.WriteRawTag(8); output.WriteInt32(Height); @@ -1227,9 +1230,37 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Height != 0) { + output.WriteRawTag(8); + output.WriteInt32(Height); + } + if (Width != 0) { + output.WriteRawTag(16); + output.WriteInt32(Width); + } + if (Colorspace != 0) { + output.WriteRawTag(24); + output.WriteInt32(Colorspace); + } + if (EncodedImageString.Length != 0) { + output.WriteRawTag(34); + output.WriteBytes(EncodedImageString); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Height != 0) { @@ -1251,6 +1282,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Image other) { if (other == null) { return; @@ -1271,7 +1303,11 @@ public void MergeFrom(Image other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1296,27 +1332,67 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Height = input.ReadInt32(); + break; + } + case 16: { + Width = input.ReadInt32(); + break; + } + case 24: { + Colorspace = input.ReadInt32(); + break; + } + case 34: { + EncodedImageString = input.ReadBytes(); + break; + } + } + } + } + #endif + } - public sealed partial class Audio : pb::IMessage [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public float SampleRate { get { return sampleRate_; } set { @@ -1359,6 +1438,7 @@ public float SampleRate { /// Number of channels of audio. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long NumChannels { get { return numChannels_; } set { @@ -1373,6 +1453,7 @@ public long NumChannels { /// Length of the audio in frames (samples per channel). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long LengthFrames { get { return lengthFrames_; } set { @@ -1388,6 +1469,7 @@ public long LengthFrames { /// "audio/wav"). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString EncodedAudioString { get { return encodedAudioString_; } set { @@ -1399,6 +1481,7 @@ public long LengthFrames { public const int ContentTypeFieldNumber = 5; private string contentType_ = ""; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string ContentType { get { return contentType_; } set { @@ -1407,11 +1490,13 @@ public string ContentType { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Audio); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Audio other) { if (ReferenceEquals(other, null)) { return false; @@ -1428,6 +1513,7 @@ public bool Equals(Audio other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (SampleRate != 0F) hash ^= pbc::ProtobufEqualityComparers.BitwiseSingleEqualityComparer.GetHashCode(SampleRate); @@ -1442,12 +1528,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (SampleRate != 0F) { output.WriteRawTag(13); output.WriteFloat(SampleRate); @@ -1471,9 +1562,41 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (SampleRate != 0F) { + output.WriteRawTag(13); + output.WriteFloat(SampleRate); + } + if (NumChannels != 0L) { + output.WriteRawTag(16); + output.WriteInt64(NumChannels); + } + if (LengthFrames != 0L) { + output.WriteRawTag(24); + output.WriteInt64(LengthFrames); + } + if (EncodedAudioString.Length != 0) { + output.WriteRawTag(34); + output.WriteBytes(EncodedAudioString); + } + if (ContentType.Length != 0) { + output.WriteRawTag(42); + output.WriteString(ContentType); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (SampleRate != 0F) { @@ -1498,6 +1621,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Audio other) { if (other == null) { return; @@ -1521,7 +1645,11 @@ public void MergeFrom(Audio other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1550,27 +1678,71 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 13: { + SampleRate = input.ReadFloat(); + break; + } + case 16: { + NumChannels = input.ReadInt64(); + break; + } + case 24: { + LengthFrames = input.ReadInt64(); + break; + } + case 34: { + EncodedAudioString = input.ReadBytes(); + break; + } + case 42: { + ContentType = input.ReadString(); + break; + } + } + } } + #endif } - public sealed partial class Value : pb::IMessage { + public sealed partial class Value : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Value()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.Summary.Descriptor.NestedTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Value() { OnConstruction(); } @@ -1578,6 +1750,7 @@ public Value() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Value(Value other) : this() { nodeName_ = other.nodeName_; tag_ = other.tag_; @@ -1607,6 +1780,7 @@ public Value(Value other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Value Clone() { return new Value(this); } @@ -1618,6 +1792,7 @@ public Value Clone() { /// This field is deprecated and will not be set. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string NodeName { get { return nodeName_; } set { @@ -1634,6 +1809,7 @@ public string NodeName { /// hierarchy). For example: foo/bar/0 /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Tag { get { return tag_; } set { @@ -1652,6 +1828,7 @@ public string Tag { /// tags are associated with which plugins. This saves space. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SummaryMetadata Metadata { get { return metadata_; } set { @@ -1662,6 +1839,7 @@ public string Tag { /// Field number for the "simple_value" field. public const int SimpleValueFieldNumber = 2; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public float SimpleValue { get { return valueCase_ == ValueOneofCase.SimpleValue ? (float) value_ : 0F; } set { @@ -1673,6 +1851,7 @@ public float SimpleValue { /// Field number for the "obsolete_old_style_histogram" field. public const int ObsoleteOldStyleHistogramFieldNumber = 3; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString ObsoleteOldStyleHistogram { get { return valueCase_ == ValueOneofCase.ObsoleteOldStyleHistogram ? (pb::ByteString) value_ : pb::ByteString.Empty; } set { @@ -1684,6 +1863,7 @@ public float SimpleValue { /// Field number for the "image" field. public const int ImageFieldNumber = 4; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.Summary.Types.Image Image { get { return valueCase_ == ValueOneofCase.Image ? (global::Tensorflow.Summary.Types.Image) value_ : null; } set { @@ -1695,6 +1875,7 @@ public float SimpleValue { /// Field number for the "histo" field. public const int HistoFieldNumber = 5; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.HistogramProto Histo { get { return valueCase_ == ValueOneofCase.Histo ? (global::Tensorflow.HistogramProto) value_ : null; } set { @@ -1706,6 +1887,7 @@ public float SimpleValue { /// Field number for the "audio" field. public const int AudioFieldNumber = 6; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.Summary.Types.Audio Audio { get { return valueCase_ == ValueOneofCase.Audio ? (global::Tensorflow.Summary.Types.Audio) value_ : null; } set { @@ -1717,6 +1899,7 @@ public float SimpleValue { /// Field number for the "tensor" field. public const int TensorFieldNumber = 8; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorProto Tensor { get { return valueCase_ == ValueOneofCase.Tensor ? (global::Tensorflow.TensorProto) value_ : null; } set { @@ -1738,22 +1921,26 @@ public enum ValueOneofCase { } private ValueOneofCase valueCase_ = ValueOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ValueOneofCase ValueCase { get { return valueCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearValue() { valueCase_ = ValueOneofCase.None; value_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Value); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Value other) { if (ReferenceEquals(other, null)) { return false; @@ -1775,6 +1962,7 @@ public bool Equals(Value other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (NodeName.Length != 0) hash ^= NodeName.GetHashCode(); @@ -1794,12 +1982,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Tag.Length != 0) { output.WriteRawTag(10); output.WriteString(Tag); @@ -1839,9 +2032,57 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Tag.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Tag); + } + if (valueCase_ == ValueOneofCase.SimpleValue) { + output.WriteRawTag(21); + output.WriteFloat(SimpleValue); + } + if (valueCase_ == ValueOneofCase.ObsoleteOldStyleHistogram) { + output.WriteRawTag(26); + output.WriteBytes(ObsoleteOldStyleHistogram); + } + if (valueCase_ == ValueOneofCase.Image) { + output.WriteRawTag(34); + output.WriteMessage(Image); + } + if (valueCase_ == ValueOneofCase.Histo) { + output.WriteRawTag(42); + output.WriteMessage(Histo); + } + if (valueCase_ == ValueOneofCase.Audio) { + output.WriteRawTag(50); + output.WriteMessage(Audio); + } + if (NodeName.Length != 0) { + output.WriteRawTag(58); + output.WriteString(NodeName); + } + if (valueCase_ == ValueOneofCase.Tensor) { + output.WriteRawTag(66); + output.WriteMessage(Tensor); + } + if (metadata_ != null) { + output.WriteRawTag(74); + output.WriteMessage(Metadata); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (NodeName.Length != 0) { @@ -1878,6 +2119,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Value other) { if (other == null) { return; @@ -1931,7 +2173,11 @@ public void MergeFrom(Value other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -1999,7 +2245,82 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Tag = input.ReadString(); + break; + } + case 21: { + SimpleValue = input.ReadFloat(); + break; + } + case 26: { + ObsoleteOldStyleHistogram = input.ReadBytes(); + break; + } + case 34: { + global::Tensorflow.Summary.Types.Image subBuilder = new global::Tensorflow.Summary.Types.Image(); + if (valueCase_ == ValueOneofCase.Image) { + subBuilder.MergeFrom(Image); + } + input.ReadMessage(subBuilder); + Image = subBuilder; + break; + } + case 42: { + global::Tensorflow.HistogramProto subBuilder = new global::Tensorflow.HistogramProto(); + if (valueCase_ == ValueOneofCase.Histo) { + subBuilder.MergeFrom(Histo); + } + input.ReadMessage(subBuilder); + Histo = subBuilder; + break; + } + case 50: { + global::Tensorflow.Summary.Types.Audio subBuilder = new global::Tensorflow.Summary.Types.Audio(); + if (valueCase_ == ValueOneofCase.Audio) { + subBuilder.MergeFrom(Audio); + } + input.ReadMessage(subBuilder); + Audio = subBuilder; + break; + } + case 58: { + NodeName = input.ReadString(); + break; + } + case 66: { + global::Tensorflow.TensorProto subBuilder = new global::Tensorflow.TensorProto(); + if (valueCase_ == ValueOneofCase.Tensor) { + subBuilder.MergeFrom(Tensor); + } + input.ReadMessage(subBuilder); + Tensor = subBuilder; + break; + } + case 74: { + if (metadata_ == null) { + Metadata = new global::Tensorflow.SummaryMetadata(); + } + input.ReadMessage(Metadata); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Tensor.cs b/src/TensorFlowNET.Core/Protobuf/Tensor.cs index 1ab871331..2ec07ac40 100644 --- a/src/TensorFlowNET.Core/Protobuf/Tensor.cs +++ b/src/TensorFlowNET.Core/Protobuf/Tensor.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/tensor.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -60,23 +60,31 @@ static TensorReflection() { /// /// Protocol buffer representing a tensor. /// - public sealed partial class TensorProto : pb::IMessage { + public sealed partial class TensorProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TensorProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TensorReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorProto() { OnConstruction(); } @@ -84,6 +92,7 @@ public TensorProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorProto(TensorProto other) : this() { dtype_ = other.dtype_; tensorShape_ = other.tensorShape_ != null ? other.tensorShape_.Clone() : null; @@ -106,6 +115,7 @@ public TensorProto(TensorProto other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorProto Clone() { return new TensorProto(this); } @@ -114,6 +124,7 @@ public TensorProto Clone() { public const int DtypeFieldNumber = 1; private global::Tensorflow.DataType dtype_ = global::Tensorflow.DataType.DtInvalid; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -128,6 +139,7 @@ public TensorProto Clone() { /// Shape of the tensor. TODO(touts): sort out the 0-rank issues. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto TensorShape { get { return tensorShape_; } set { @@ -146,6 +158,7 @@ public TensorProto Clone() { /// to represent a constant Tensor with a single value. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int VersionNumber { get { return versionNumber_; } set { @@ -164,6 +177,7 @@ public int VersionNumber { /// many repeated small items. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString TensorContent { get { return tensorContent_; } set { @@ -181,6 +195,7 @@ public int VersionNumber { /// have some pointless zero padding for each value here. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField HalfVal { get { return halfVal_; } } @@ -194,6 +209,7 @@ public int VersionNumber { /// DT_FLOAT. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField FloatVal { get { return floatVal_; } } @@ -207,6 +223,7 @@ public int VersionNumber { /// DT_DOUBLE. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField DoubleVal { get { return doubleVal_; } } @@ -220,6 +237,7 @@ public int VersionNumber { /// DT_INT32, DT_INT16, DT_UINT16, DT_INT8, DT_UINT8. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField IntVal { get { return intVal_; } } @@ -233,6 +251,7 @@ public int VersionNumber { /// DT_STRING /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField StringVal { get { return stringVal_; } } @@ -247,6 +266,7 @@ public int VersionNumber { /// and imaginary parts of i-th single precision complex. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ScomplexVal { get { return scomplexVal_; } } @@ -260,6 +280,7 @@ public int VersionNumber { /// DT_INT64 /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Int64Val { get { return int64Val_; } } @@ -273,6 +294,7 @@ public int VersionNumber { /// DT_BOOL /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField BoolVal { get { return boolVal_; } } @@ -287,6 +309,7 @@ public int VersionNumber { /// and imaginary parts of i-th double precision complex. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField DcomplexVal { get { return dcomplexVal_; } } @@ -300,6 +323,7 @@ public int VersionNumber { /// DT_RESOURCE /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField ResourceHandleVal { get { return resourceHandleVal_; } } @@ -313,6 +337,7 @@ public int VersionNumber { /// DT_VARIANT /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField VariantVal { get { return variantVal_; } } @@ -326,6 +351,7 @@ public int VersionNumber { /// DT_UINT32 /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Uint32Val { get { return uint32Val_; } } @@ -339,16 +365,19 @@ public int VersionNumber { /// DT_UINT64 /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Uint64Val { get { return uint64Val_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TensorProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TensorProto other) { if (ReferenceEquals(other, null)) { return false; @@ -377,6 +406,7 @@ public bool Equals(TensorProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Dtype != global::Tensorflow.DataType.DtInvalid) hash ^= Dtype.GetHashCode(); @@ -403,12 +433,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Dtype != global::Tensorflow.DataType.DtInvalid) { output.WriteRawTag(8); output.WriteEnum((int) Dtype); @@ -441,9 +476,50 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(8); + output.WriteEnum((int) Dtype); + } + if (tensorShape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(TensorShape); + } + if (VersionNumber != 0) { + output.WriteRawTag(24); + output.WriteInt32(VersionNumber); + } + if (TensorContent.Length != 0) { + output.WriteRawTag(34); + output.WriteBytes(TensorContent); + } + floatVal_.WriteTo(ref output, _repeated_floatVal_codec); + doubleVal_.WriteTo(ref output, _repeated_doubleVal_codec); + intVal_.WriteTo(ref output, _repeated_intVal_codec); + stringVal_.WriteTo(ref output, _repeated_stringVal_codec); + scomplexVal_.WriteTo(ref output, _repeated_scomplexVal_codec); + int64Val_.WriteTo(ref output, _repeated_int64Val_codec); + boolVal_.WriteTo(ref output, _repeated_boolVal_codec); + dcomplexVal_.WriteTo(ref output, _repeated_dcomplexVal_codec); + halfVal_.WriteTo(ref output, _repeated_halfVal_codec); + resourceHandleVal_.WriteTo(ref output, _repeated_resourceHandleVal_codec); + variantVal_.WriteTo(ref output, _repeated_variantVal_codec); + uint32Val_.WriteTo(ref output, _repeated_uint32Val_codec); + uint64Val_.WriteTo(ref output, _repeated_uint64Val_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Dtype != global::Tensorflow.DataType.DtInvalid) { @@ -478,6 +554,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TensorProto other) { if (other == null) { return; @@ -514,7 +591,11 @@ public void MergeFrom(TensorProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -604,30 +685,135 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + case 18: { + if (tensorShape_ == null) { + TensorShape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(TensorShape); + break; + } + case 24: { + VersionNumber = input.ReadInt32(); + break; + } + case 34: { + TensorContent = input.ReadBytes(); + break; + } + case 42: + case 45: { + floatVal_.AddEntriesFrom(ref input, _repeated_floatVal_codec); + break; + } + case 50: + case 49: { + doubleVal_.AddEntriesFrom(ref input, _repeated_doubleVal_codec); + break; + } + case 58: + case 56: { + intVal_.AddEntriesFrom(ref input, _repeated_intVal_codec); + break; + } + case 66: { + stringVal_.AddEntriesFrom(ref input, _repeated_stringVal_codec); + break; + } + case 74: + case 77: { + scomplexVal_.AddEntriesFrom(ref input, _repeated_scomplexVal_codec); + break; + } + case 82: + case 80: { + int64Val_.AddEntriesFrom(ref input, _repeated_int64Val_codec); + break; + } + case 90: + case 88: { + boolVal_.AddEntriesFrom(ref input, _repeated_boolVal_codec); + break; + } + case 98: + case 97: { + dcomplexVal_.AddEntriesFrom(ref input, _repeated_dcomplexVal_codec); + break; + } + case 106: + case 104: { + halfVal_.AddEntriesFrom(ref input, _repeated_halfVal_codec); + break; + } + case 114: { + resourceHandleVal_.AddEntriesFrom(ref input, _repeated_resourceHandleVal_codec); + break; + } + case 122: { + variantVal_.AddEntriesFrom(ref input, _repeated_variantVal_codec); + break; + } + case 130: + case 128: { + uint32Val_.AddEntriesFrom(ref input, _repeated_uint32Val_codec); + break; + } + case 138: + case 136: { + uint64Val_.AddEntriesFrom(ref input, _repeated_uint64Val_codec); + break; + } + } + } + } + #endif + } /// /// Protocol buffer representing the serialization format of DT_VARIANT tensors. /// - public sealed partial class VariantTensorDataProto : pb::IMessage { + public sealed partial class VariantTensorDataProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new VariantTensorDataProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TensorReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VariantTensorDataProto() { OnConstruction(); } @@ -635,6 +821,7 @@ public VariantTensorDataProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VariantTensorDataProto(VariantTensorDataProto other) : this() { typeName_ = other.typeName_; metadata_ = other.metadata_; @@ -643,6 +830,7 @@ public VariantTensorDataProto(VariantTensorDataProto other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VariantTensorDataProto Clone() { return new VariantTensorDataProto(this); } @@ -654,6 +842,7 @@ public VariantTensorDataProto Clone() { /// Name of the type of objects being serialized. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string TypeName { get { return typeName_; } set { @@ -668,6 +857,7 @@ public string TypeName { /// Portions of the object that are not Tensors. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pb::ByteString Metadata { get { return metadata_; } set { @@ -684,16 +874,19 @@ public string TypeName { /// Tensors contained within objects being serialized. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Tensors { get { return tensors_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as VariantTensorDataProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(VariantTensorDataProto other) { if (ReferenceEquals(other, null)) { return false; @@ -708,6 +901,7 @@ public bool Equals(VariantTensorDataProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (TypeName.Length != 0) hash ^= TypeName.GetHashCode(); @@ -720,12 +914,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (TypeName.Length != 0) { output.WriteRawTag(10); output.WriteString(TypeName); @@ -738,9 +937,30 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (TypeName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(TypeName); + } + if (Metadata.Length != 0) { + output.WriteRawTag(18); + output.WriteBytes(Metadata); + } + tensors_.WriteTo(ref output, _repeated_tensors_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (TypeName.Length != 0) { @@ -757,6 +977,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(VariantTensorDataProto other) { if (other == null) { return; @@ -772,7 +993,11 @@ public void MergeFrom(VariantTensorDataProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -793,7 +1018,35 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + TypeName = input.ReadString(); + break; + } + case 18: { + Metadata = input.ReadBytes(); + break; + } + case 26: { + tensors_.AddEntriesFrom(ref input, _repeated_tensors_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/TensorDescription.cs b/src/TensorFlowNET.Core/Protobuf/TensorDescription.cs index 0af197687..81b170abe 100644 --- a/src/TensorFlowNET.Core/Protobuf/TensorDescription.cs +++ b/src/TensorFlowNET.Core/Protobuf/TensorDescription.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/tensor_description.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -46,23 +46,31 @@ static TensorDescriptionReflection() { } #region Messages - public sealed partial class TensorDescription : pb::IMessage { + public sealed partial class TensorDescription : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TensorDescription()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TensorDescriptionReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorDescription() { OnConstruction(); } @@ -70,6 +78,7 @@ public TensorDescription() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorDescription(TensorDescription other) : this() { dtype_ = other.dtype_; shape_ = other.shape_ != null ? other.shape_.Clone() : null; @@ -78,6 +87,7 @@ public TensorDescription(TensorDescription other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorDescription Clone() { return new TensorDescription(this); } @@ -89,6 +99,7 @@ public TensorDescription Clone() { /// Data type of tensor elements /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.DataType Dtype { get { return dtype_; } set { @@ -103,6 +114,7 @@ public TensorDescription Clone() { /// Shape of the tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.TensorShapeProto Shape { get { return shape_; } set { @@ -117,6 +129,7 @@ public TensorDescription Clone() { /// Information about the size and allocator used for the data /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.AllocationDescription AllocationDescription { get { return allocationDescription_; } set { @@ -125,11 +138,13 @@ public TensorDescription Clone() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TensorDescription); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TensorDescription other) { if (ReferenceEquals(other, null)) { return false; @@ -144,6 +159,7 @@ public bool Equals(TensorDescription other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Dtype != global::Tensorflow.DataType.DtInvalid) hash ^= Dtype.GetHashCode(); @@ -156,12 +172,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Dtype != global::Tensorflow.DataType.DtInvalid) { output.WriteRawTag(8); output.WriteEnum((int) Dtype); @@ -177,9 +198,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Dtype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(8); + output.WriteEnum((int) Dtype); + } + if (shape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Shape); + } + if (allocationDescription_ != null) { + output.WriteRawTag(34); + output.WriteMessage(AllocationDescription); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Dtype != global::Tensorflow.DataType.DtInvalid) { @@ -198,6 +243,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TensorDescription other) { if (other == null) { return; @@ -221,7 +267,11 @@ public void MergeFrom(TensorDescription other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -248,7 +298,41 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Dtype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + case 18: { + if (shape_ == null) { + Shape = new global::Tensorflow.TensorShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 34: { + if (allocationDescription_ == null) { + AllocationDescription = new global::Tensorflow.AllocationDescription(); + } + input.ReadMessage(AllocationDescription); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/TensorShape.cs b/src/TensorFlowNET.Core/Protobuf/TensorShape.cs index dec408f5d..e22ed820b 100644 --- a/src/TensorFlowNET.Core/Protobuf/TensorShape.cs +++ b/src/TensorFlowNET.Core/Protobuf/TensorShape.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/tensor_shape.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -45,23 +45,31 @@ static TensorShapeReflection() { /// /// Dimensions of a tensor. /// - public sealed partial class TensorShapeProto : pb::IMessage { + public sealed partial class TensorShapeProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TensorShapeProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TensorShapeReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorShapeProto() { OnConstruction(); } @@ -69,6 +77,7 @@ public TensorShapeProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorShapeProto(TensorShapeProto other) : this() { dim_ = other.dim_.Clone(); unknownRank_ = other.unknownRank_; @@ -76,6 +85,7 @@ public TensorShapeProto(TensorShapeProto other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorShapeProto Clone() { return new TensorShapeProto(this); } @@ -101,6 +111,7 @@ public TensorShapeProto Clone() { /// If "dim.size()" > 0, "unknown_rank" must be false. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Dim { get { return dim_; } } @@ -114,6 +125,7 @@ public TensorShapeProto Clone() { /// If true, "dim.size()" must be 0. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool UnknownRank { get { return unknownRank_; } set { @@ -122,11 +134,13 @@ public bool UnknownRank { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TensorShapeProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TensorShapeProto other) { if (ReferenceEquals(other, null)) { return false; @@ -140,6 +154,7 @@ public bool Equals(TensorShapeProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= dim_.GetHashCode(); @@ -151,12 +166,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else dim_.WriteTo(output, _repeated_dim_codec); if (UnknownRank != false) { output.WriteRawTag(24); @@ -165,9 +185,26 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + dim_.WriteTo(ref output, _repeated_dim_codec); + if (UnknownRank != false) { + output.WriteRawTag(24); + output.WriteBool(UnknownRank); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += dim_.CalculateSize(_repeated_dim_codec); @@ -181,6 +218,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TensorShapeProto other) { if (other == null) { return; @@ -193,7 +231,11 @@ public void MergeFrom(TensorShapeProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -210,32 +252,65 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 18: { + dim_.AddEntriesFrom(ref input, _repeated_dim_codec); + break; + } + case 24: { + UnknownRank = input.ReadBool(); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the TensorShapeProto message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// One dimension of the tensor. /// - public sealed partial class Dim : pb::IMessage { + public sealed partial class Dim : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Dim()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TensorShapeProto.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Dim() { OnConstruction(); } @@ -243,6 +318,7 @@ public Dim() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Dim(Dim other) : this() { size_ = other.size_; name_ = other.name_; @@ -250,6 +326,7 @@ public Dim(Dim other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Dim Clone() { return new Dim(this); } @@ -265,6 +342,7 @@ public Dim Clone() { /// a TensorShapeProto containing a dim value of -1. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Size { get { return size_; } set { @@ -279,6 +357,7 @@ public long Size { /// Optional name of the tensor dimension. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -287,11 +366,13 @@ public string Name { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Dim); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Dim other) { if (ReferenceEquals(other, null)) { return false; @@ -305,6 +386,7 @@ public bool Equals(Dim other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Size != 0L) hash ^= Size.GetHashCode(); @@ -316,12 +398,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Size != 0L) { output.WriteRawTag(8); output.WriteInt64(Size); @@ -333,9 +420,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Size != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Size); + } + if (Name.Length != 0) { + output.WriteRawTag(18); + output.WriteString(Name); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Size != 0L) { @@ -351,6 +458,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Dim other) { if (other == null) { return; @@ -365,7 +473,11 @@ public void MergeFrom(Dim other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -382,7 +494,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Size = input.ReadInt64(); + break; + } + case 18: { + Name = input.ReadString(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/TensorSlice.cs b/src/TensorFlowNET.Core/Protobuf/TensorSlice.cs index fe505f715..cf1c44d35 100644 --- a/src/TensorFlowNET.Core/Protobuf/TensorSlice.cs +++ b/src/TensorFlowNET.Core/Protobuf/TensorSlice.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/tensor_slice.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -45,23 +45,31 @@ static TensorSliceReflection() { /// /// Can only be interpreted if you know the corresponding TensorShape. /// - public sealed partial class TensorSliceProto : pb::IMessage { + public sealed partial class TensorSliceProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TensorSliceProto()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TensorSliceReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorSliceProto() { OnConstruction(); } @@ -69,12 +77,14 @@ public TensorSliceProto() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorSliceProto(TensorSliceProto other) : this() { extent_ = other.extent_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TensorSliceProto Clone() { return new TensorSliceProto(this); } @@ -92,16 +102,19 @@ public TensorSliceProto Clone() { /// dimensions in the TensorShape. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Extent { get { return extent_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TensorSliceProto); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TensorSliceProto other) { if (ReferenceEquals(other, null)) { return false; @@ -114,6 +127,7 @@ public bool Equals(TensorSliceProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= extent_.GetHashCode(); @@ -124,19 +138,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else extent_.WriteTo(output, _repeated_extent_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + extent_.WriteTo(ref output, _repeated_extent_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += extent_.CalculateSize(_repeated_extent_codec); @@ -147,6 +179,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TensorSliceProto other) { if (other == null) { return; @@ -156,7 +189,11 @@ public void MergeFrom(TensorSliceProto other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -169,32 +206,61 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + extent_.AddEntriesFrom(ref input, _repeated_extent_codec); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the TensorSliceProto message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { /// /// Extent of the slice in one dimension. /// - public sealed partial class Extent : pb::IMessage { + public sealed partial class Extent : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Extent()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TensorSliceProto.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Extent() { OnConstruction(); } @@ -202,6 +268,7 @@ public Extent() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Extent(Extent other) : this() { start_ = other.start_; switch (other.HasLengthCase) { @@ -214,6 +281,7 @@ public Extent(Extent other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public Extent Clone() { return new Extent(this); } @@ -225,6 +293,7 @@ public Extent Clone() { /// Start index of the slice, starting at 0. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Start { get { return start_; } set { @@ -235,6 +304,7 @@ public long Start { /// Field number for the "length" field. public const int LengthFieldNumber = 2; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long Length { get { return hasLengthCase_ == HasLengthOneofCase.Length ? (long) hasLength_ : 0L; } set { @@ -251,22 +321,26 @@ public enum HasLengthOneofCase { } private HasLengthOneofCase hasLengthCase_ = HasLengthOneofCase.None; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public HasLengthOneofCase HasLengthCase { get { return hasLengthCase_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void ClearHasLength() { hasLengthCase_ = HasLengthOneofCase.None; hasLength_ = null; } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as Extent); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(Extent other) { if (ReferenceEquals(other, null)) { return false; @@ -281,6 +355,7 @@ public bool Equals(Extent other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Start != 0L) hash ^= Start.GetHashCode(); @@ -293,12 +368,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Start != 0L) { output.WriteRawTag(8); output.WriteInt64(Start); @@ -310,9 +390,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Start != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Start); + } + if (hasLengthCase_ == HasLengthOneofCase.Length) { + output.WriteRawTag(16); + output.WriteInt64(Length); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Start != 0L) { @@ -328,6 +428,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(Extent other) { if (other == null) { return; @@ -345,7 +446,11 @@ public void MergeFrom(Extent other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -362,7 +467,31 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Start = input.ReadInt64(); + break; + } + case 16: { + Length = input.ReadInt64(); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/TrackableObjectGraph.cs b/src/TensorFlowNET.Core/Protobuf/TrackableObjectGraph.cs index 3aa747c20..89bc07521 100644 --- a/src/TensorFlowNET.Core/Protobuf/TrackableObjectGraph.cs +++ b/src/TensorFlowNET.Core/Protobuf/TrackableObjectGraph.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/trackable_object_graph.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -25,53 +25,66 @@ static TrackableObjectGraphReflection() { byte[] descriptorData = global::System.Convert.FromBase64String( string.Concat( "CjV0ZW5zb3JmbG93L2NvcmUvcHJvdG9idWYvdHJhY2thYmxlX29iamVjdF9n", - "cmFwaC5wcm90bxIKdGVuc29yZmxvdyKDBQoUVHJhY2thYmxlT2JqZWN0R3Jh", - "cGgSPwoFbm9kZXMYASADKAsyMC50ZW5zb3JmbG93LlRyYWNrYWJsZU9iamVj", - "dEdyYXBoLlRyYWNrYWJsZU9iamVjdBqpBAoPVHJhY2thYmxlT2JqZWN0ElIK", - "CGNoaWxkcmVuGAEgAygLMkAudGVuc29yZmxvdy5UcmFja2FibGVPYmplY3RH", - "cmFwaC5UcmFja2FibGVPYmplY3QuT2JqZWN0UmVmZXJlbmNlElUKCmF0dHJp", - "YnV0ZXMYAiADKAsyQS50ZW5zb3JmbG93LlRyYWNrYWJsZU9iamVjdEdyYXBo", - "LlRyYWNrYWJsZU9iamVjdC5TZXJpYWxpemVkVGVuc29yEl4KDnNsb3RfdmFy", - "aWFibGVzGAMgAygLMkYudGVuc29yZmxvdy5UcmFja2FibGVPYmplY3RHcmFw", - "aC5UcmFja2FibGVPYmplY3QuU2xvdFZhcmlhYmxlUmVmZXJlbmNlGjYKD09i", - "amVjdFJlZmVyZW5jZRIPCgdub2RlX2lkGAEgASgFEhIKCmxvY2FsX25hbWUY", - "AiABKAkaZQoQU2VyaWFsaXplZFRlbnNvchIMCgRuYW1lGAEgASgJEhEKCWZ1", - "bGxfbmFtZRgCIAEoCRIWCg5jaGVja3BvaW50X2tleRgDIAEoCRIYChBvcHRp", - "b25hbF9yZXN0b3JlGAQgASgIGmwKFVNsb3RWYXJpYWJsZVJlZmVyZW5jZRIh", - "ChlvcmlnaW5hbF92YXJpYWJsZV9ub2RlX2lkGAEgASgFEhEKCXNsb3RfbmFt", - "ZRgCIAEoCRIdChVzbG90X3ZhcmlhYmxlX25vZGVfaWQYAyABKAVCWlpVZ2l0", - "aHViLmNvbS90ZW5zb3JmbG93L3RlbnNvcmZsb3cvdGVuc29yZmxvdy9nby9j", - "b3JlL3Byb3RvYnVmL2Zvcl9jb3JlX3Byb3Rvc19nb19wcm90b/gBAWIGcHJv", - "dG8z")); + "cmFwaC5wcm90bxIKdGVuc29yZmxvdxoeZ29vZ2xlL3Byb3RvYnVmL3dyYXBw", + "ZXJzLnByb3RvIvMFChRUcmFja2FibGVPYmplY3RHcmFwaBI/CgVub2RlcxgB", + "IAMoCzIwLnRlbnNvcmZsb3cuVHJhY2thYmxlT2JqZWN0R3JhcGguVHJhY2th", + "YmxlT2JqZWN0GpkFCg9UcmFja2FibGVPYmplY3QSUgoIY2hpbGRyZW4YASAD", + "KAsyQC50ZW5zb3JmbG93LlRyYWNrYWJsZU9iamVjdEdyYXBoLlRyYWNrYWJs", + "ZU9iamVjdC5PYmplY3RSZWZlcmVuY2USVQoKYXR0cmlidXRlcxgCIAMoCzJB", + "LnRlbnNvcmZsb3cuVHJhY2thYmxlT2JqZWN0R3JhcGguVHJhY2thYmxlT2Jq", + "ZWN0LlNlcmlhbGl6ZWRUZW5zb3ISXgoOc2xvdF92YXJpYWJsZXMYAyADKAsy", + "Ri50ZW5zb3JmbG93LlRyYWNrYWJsZU9iamVjdEdyYXBoLlRyYWNrYWJsZU9i", + "amVjdC5TbG90VmFyaWFibGVSZWZlcmVuY2USNQoQcmVnaXN0ZXJlZF9zYXZl", + "chgEIAEoCzIbLnRlbnNvcmZsb3cuUmVnaXN0ZXJlZFNhdmVyEjkKFWhhc19j", + "aGVja3BvaW50X3ZhbHVlcxgFIAEoCzIaLmdvb2dsZS5wcm90b2J1Zi5Cb29s", + "VmFsdWUaNgoPT2JqZWN0UmVmZXJlbmNlEg8KB25vZGVfaWQYASABKAUSEgoK", + "bG9jYWxfbmFtZRgCIAEoCRpjChBTZXJpYWxpemVkVGVuc29yEgwKBG5hbWUY", + "ASABKAkSEQoJZnVsbF9uYW1lGAIgASgJEhYKDmNoZWNrcG9pbnRfa2V5GAMg", + "ASgJSgQIBBAFUhBvcHRpb25hbF9yZXN0b3JlGmwKFVNsb3RWYXJpYWJsZVJl", + "ZmVyZW5jZRIhChlvcmlnaW5hbF92YXJpYWJsZV9ub2RlX2lkGAEgASgFEhEK", + "CXNsb3RfbmFtZRgCIAEoCRIdChVzbG90X3ZhcmlhYmxlX25vZGVfaWQYAyAB", + "KAUiNAoPUmVnaXN0ZXJlZFNhdmVyEgwKBG5hbWUYASABKAkSEwoLb2JqZWN0", + "X25hbWUYAiABKAlCWlpVZ2l0aHViLmNvbS90ZW5zb3JmbG93L3RlbnNvcmZs", + "b3cvdGVuc29yZmxvdy9nby9jb3JlL3Byb3RvYnVmL2Zvcl9jb3JlX3Byb3Rv", + "c19nb19wcm90b/gBAWIGcHJvdG8z")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, - new pbr::FileDescriptor[] { }, + new pbr::FileDescriptor[] { global::Google.Protobuf.WellKnownTypes.WrappersReflection.Descriptor, }, new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph), global::Tensorflow.TrackableObjectGraph.Parser, new[]{ "Nodes" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph.Types.TrackableObject), global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Parser, new[]{ "Children", "Attributes", "SlotVariables" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.ObjectReference), global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.ObjectReference.Parser, new[]{ "NodeId", "LocalName" }, null, null, null, null), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.SerializedTensor), global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.SerializedTensor.Parser, new[]{ "Name", "FullName", "CheckpointKey", "OptionalRestore" }, null, null, null, null), - new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.SlotVariableReference), global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.SlotVariableReference.Parser, new[]{ "OriginalVariableNodeId", "SlotName", "SlotVariableNodeId" }, null, null, null, null)})}) + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph), global::Tensorflow.TrackableObjectGraph.Parser, new[]{ "Nodes" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph.Types.TrackableObject), global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Parser, new[]{ "Children", "Attributes", "SlotVariables", "RegisteredSaver", "HasCheckpointValues" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.ObjectReference), global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.ObjectReference.Parser, new[]{ "NodeId", "LocalName" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.SerializedTensor), global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.SerializedTensor.Parser, new[]{ "Name", "FullName", "CheckpointKey" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.SlotVariableReference), global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Types.SlotVariableReference.Parser, new[]{ "OriginalVariableNodeId", "SlotName", "SlotVariableNodeId" }, null, null, null, null)})}), + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RegisteredSaver), global::Tensorflow.RegisteredSaver.Parser, new[]{ "Name", "ObjectName" }, null, null, null, null) })); } #endregion } #region Messages - public sealed partial class TrackableObjectGraph : pb::IMessage { + public sealed partial class TrackableObjectGraph : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TrackableObjectGraph()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TrackableObjectGraphReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TrackableObjectGraph() { OnConstruction(); } @@ -79,12 +92,14 @@ public TrackableObjectGraph() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TrackableObjectGraph(TrackableObjectGraph other) : this() { nodes_ = other.nodes_.Clone(); _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TrackableObjectGraph Clone() { return new TrackableObjectGraph(this); } @@ -95,16 +110,19 @@ public TrackableObjectGraph Clone() { = pb::FieldCodec.ForMessage(10, global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Parser); private readonly pbc::RepeatedField nodes_ = new pbc::RepeatedField(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Nodes { get { return nodes_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TrackableObjectGraph); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TrackableObjectGraph other) { if (ReferenceEquals(other, null)) { return false; @@ -117,6 +135,7 @@ public bool Equals(TrackableObjectGraph other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= nodes_.GetHashCode(); @@ -127,19 +146,37 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else nodes_.WriteTo(output, _repeated_nodes_codec); if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + nodes_.WriteTo(ref output, _repeated_nodes_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += nodes_.CalculateSize(_repeated_nodes_codec); @@ -150,6 +187,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TrackableObjectGraph other) { if (other == null) { return; @@ -159,7 +197,11 @@ public void MergeFrom(TrackableObjectGraph other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -172,29 +214,58 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + nodes_.AddEntriesFrom(ref input, _repeated_nodes_codec); + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the TrackableObjectGraph message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class TrackableObject : pb::IMessage { + public sealed partial class TrackableObject : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TrackableObject()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TrackableObjectGraph.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TrackableObject() { OnConstruction(); } @@ -202,14 +273,18 @@ public TrackableObject() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TrackableObject(TrackableObject other) : this() { children_ = other.children_.Clone(); attributes_ = other.attributes_.Clone(); slotVariables_ = other.slotVariables_.Clone(); + registeredSaver_ = other.registeredSaver_ != null ? other.registeredSaver_.Clone() : null; + HasCheckpointValues = other.HasCheckpointValues; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public TrackableObject Clone() { return new TrackableObject(this); } @@ -223,6 +298,7 @@ public TrackableObject Clone() { /// Objects which this object depends on. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Children { get { return children_; } } @@ -236,6 +312,7 @@ public TrackableObject Clone() { /// Serialized data specific to this object. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField Attributes { get { return attributes_; } } @@ -249,16 +326,55 @@ public TrackableObject Clone() { /// Slot variables owned by this object. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField SlotVariables { get { return slotVariables_; } } + /// Field number for the "registered_saver" field. + public const int RegisteredSaverFieldNumber = 4; + private global::Tensorflow.RegisteredSaver registeredSaver_; + /// + /// The registered saver used to save this object. If this saver is not + /// present when loading the checkpoint, then loading will fail. + /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.RegisteredSaver RegisteredSaver { + get { return registeredSaver_; } + set { + registeredSaver_ = value; + } + } + + /// Field number for the "has_checkpoint_values" field. + public const int HasCheckpointValuesFieldNumber = 5; + private static readonly pb::FieldCodec _single_hasCheckpointValues_codec = pb::FieldCodec.ForStructWrapper(42); + private bool? hasCheckpointValues_; + /// + /// Whether this object has checkpoint values or descendants with checkpoint + /// values. This is computed at save time to avoid traversing the entire + /// object graph proto when restoring (which also has to traverse the live + /// object graph). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool? HasCheckpointValues { + get { return hasCheckpointValues_; } + set { + hasCheckpointValues_ = value; + } + } + + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as TrackableObject); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(TrackableObject other) { if (ReferenceEquals(other, null)) { return false; @@ -269,15 +385,20 @@ public bool Equals(TrackableObject other) { if(!children_.Equals(other.children_)) return false; if(!attributes_.Equals(other.attributes_)) return false; if(!slotVariables_.Equals(other.slotVariables_)) return false; + if (!object.Equals(RegisteredSaver, other.RegisteredSaver)) return false; + if (HasCheckpointValues != other.HasCheckpointValues) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; hash ^= children_.GetHashCode(); hash ^= attributes_.GetHashCode(); hash ^= slotVariables_.GetHashCode(); + if (registeredSaver_ != null) hash ^= RegisteredSaver.GetHashCode(); + if (hasCheckpointValues_ != null) hash ^= HasCheckpointValues.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -285,26 +406,66 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else children_.WriteTo(output, _repeated_children_codec); attributes_.WriteTo(output, _repeated_attributes_codec); slotVariables_.WriteTo(output, _repeated_slotVariables_codec); + if (registeredSaver_ != null) { + output.WriteRawTag(34); + output.WriteMessage(RegisteredSaver); + } + if (hasCheckpointValues_ != null) { + _single_hasCheckpointValues_codec.WriteTagAndValue(output, HasCheckpointValues); + } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + children_.WriteTo(ref output, _repeated_children_codec); + attributes_.WriteTo(ref output, _repeated_attributes_codec); + slotVariables_.WriteTo(ref output, _repeated_slotVariables_codec); + if (registeredSaver_ != null) { + output.WriteRawTag(34); + output.WriteMessage(RegisteredSaver); + } + if (hasCheckpointValues_ != null) { + _single_hasCheckpointValues_codec.WriteTagAndValue(ref output, HasCheckpointValues); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; size += children_.CalculateSize(_repeated_children_codec); size += attributes_.CalculateSize(_repeated_attributes_codec); size += slotVariables_.CalculateSize(_repeated_slotVariables_codec); + if (registeredSaver_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(RegisteredSaver); + } + if (hasCheckpointValues_ != null) { + size += _single_hasCheckpointValues_codec.CalculateSizeWithTag(HasCheckpointValues); + } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -312,6 +473,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(TrackableObject other) { if (other == null) { return; @@ -319,11 +481,26 @@ public void MergeFrom(TrackableObject other) { children_.Add(other.children_); attributes_.Add(other.attributes_); slotVariables_.Add(other.slotVariables_); + if (other.registeredSaver_ != null) { + if (registeredSaver_ == null) { + RegisteredSaver = new global::Tensorflow.RegisteredSaver(); + } + RegisteredSaver.MergeFrom(other.RegisteredSaver); + } + if (other.hasCheckpointValues_ != null) { + if (hasCheckpointValues_ == null || other.HasCheckpointValues != false) { + HasCheckpointValues = other.HasCheckpointValues; + } + } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -342,31 +519,96 @@ public void MergeFrom(pb::CodedInputStream input) { slotVariables_.AddEntriesFrom(input, _repeated_slotVariables_codec); break; } + case 34: { + if (registeredSaver_ == null) { + RegisteredSaver = new global::Tensorflow.RegisteredSaver(); + } + input.ReadMessage(RegisteredSaver); + break; + } + case 42: { + bool? value = _single_hasCheckpointValues_codec.Read(input); + if (hasCheckpointValues_ == null || value != false) { + HasCheckpointValues = value; + } + break; + } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + children_.AddEntriesFrom(ref input, _repeated_children_codec); + break; + } + case 18: { + attributes_.AddEntriesFrom(ref input, _repeated_attributes_codec); + break; + } + case 26: { + slotVariables_.AddEntriesFrom(ref input, _repeated_slotVariables_codec); + break; + } + case 34: { + if (registeredSaver_ == null) { + RegisteredSaver = new global::Tensorflow.RegisteredSaver(); + } + input.ReadMessage(RegisteredSaver); + break; + } + case 42: { + bool? value = _single_hasCheckpointValues_codec.Read(ref input); + if (hasCheckpointValues_ == null || value != false) { + HasCheckpointValues = value; + } + break; + } + } + } + } + #endif + #region Nested types /// Container for nested types declared in the TrackableObject message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { - public sealed partial class ObjectReference : pb::IMessage { + public sealed partial class ObjectReference : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ObjectReference()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Descriptor.NestedTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ObjectReference() { OnConstruction(); } @@ -374,6 +616,7 @@ public ObjectReference() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ObjectReference(ObjectReference other) : this() { nodeId_ = other.nodeId_; localName_ = other.localName_; @@ -381,6 +624,7 @@ public ObjectReference(ObjectReference other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public ObjectReference Clone() { return new ObjectReference(this); } @@ -393,6 +637,7 @@ public ObjectReference Clone() { /// being referenced. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int NodeId { get { return nodeId_; } set { @@ -407,6 +652,7 @@ public int NodeId { /// A user-provided name for the edge. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string LocalName { get { return localName_; } set { @@ -415,11 +661,13 @@ public string LocalName { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as ObjectReference); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(ObjectReference other) { if (ReferenceEquals(other, null)) { return false; @@ -433,6 +681,7 @@ public bool Equals(ObjectReference other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (NodeId != 0) hash ^= NodeId.GetHashCode(); @@ -444,12 +693,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (NodeId != 0) { output.WriteRawTag(8); output.WriteInt32(NodeId); @@ -461,9 +715,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (NodeId != 0) { + output.WriteRawTag(8); + output.WriteInt32(NodeId); + } + if (LocalName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(LocalName); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (NodeId != 0) { @@ -479,6 +753,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(ObjectReference other) { if (other == null) { return; @@ -493,7 +768,11 @@ public void MergeFrom(ObjectReference other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -510,27 +789,59 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + NodeId = input.ReadInt32(); + break; + } + case 18: { + LocalName = input.ReadString(); + break; + } + } + } + } + #endif + } - public sealed partial class SerializedTensor : pb::IMessage { + public sealed partial class SerializedTensor : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SerializedTensor()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Descriptor.NestedTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SerializedTensor() { OnConstruction(); } @@ -538,15 +849,16 @@ public SerializedTensor() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SerializedTensor(SerializedTensor other) : this() { name_ = other.name_; fullName_ = other.fullName_; checkpointKey_ = other.checkpointKey_; - optionalRestore_ = other.optionalRestore_; _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SerializedTensor Clone() { return new SerializedTensor(this); } @@ -560,6 +872,7 @@ public SerializedTensor Clone() { /// be restored on object creation as an optimization. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string Name { get { return name_; } set { @@ -577,6 +890,7 @@ public string Name { /// assigned by tf.train.Saver. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string FullName { get { return fullName_; } set { @@ -591,6 +905,7 @@ public string FullName { /// The generated name of the Tensor in the checkpoint. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string CheckpointKey { get { return checkpointKey_; } set { @@ -598,28 +913,14 @@ public string CheckpointKey { } } - /// Field number for the "optional_restore" field. - public const int OptionalRestoreFieldNumber = 4; - private bool optionalRestore_; - /// - /// Whether checkpoints should be considered as matching even without this - /// value restored. Used for non-critical values which don't affect the - /// TensorFlow graph, such as layer configurations. - /// - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] - public bool OptionalRestore { - get { return optionalRestore_; } - set { - optionalRestore_ = value; - } - } - [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SerializedTensor); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SerializedTensor other) { if (ReferenceEquals(other, null)) { return false; @@ -630,17 +931,16 @@ public bool Equals(SerializedTensor other) { if (Name != other.Name) return false; if (FullName != other.FullName) return false; if (CheckpointKey != other.CheckpointKey) return false; - if (OptionalRestore != other.OptionalRestore) return false; return Equals(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Name.Length != 0) hash ^= Name.GetHashCode(); if (FullName.Length != 0) hash ^= FullName.GetHashCode(); if (CheckpointKey.Length != 0) hash ^= CheckpointKey.GetHashCode(); - if (OptionalRestore != false) hash ^= OptionalRestore.GetHashCode(); if (_unknownFields != null) { hash ^= _unknownFields.GetHashCode(); } @@ -648,12 +948,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Name.Length != 0) { output.WriteRawTag(10); output.WriteString(Name); @@ -666,16 +971,36 @@ public void WriteTo(pb::CodedOutputStream output) { output.WriteRawTag(26); output.WriteString(CheckpointKey); } - if (OptionalRestore != false) { - output.WriteRawTag(32); - output.WriteBool(OptionalRestore); - } if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (FullName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(FullName); + } + if (CheckpointKey.Length != 0) { + output.WriteRawTag(26); + output.WriteString(CheckpointKey); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Name.Length != 0) { @@ -687,9 +1012,6 @@ public int CalculateSize() { if (CheckpointKey.Length != 0) { size += 1 + pb::CodedOutputStream.ComputeStringSize(CheckpointKey); } - if (OptionalRestore != false) { - size += 1 + 1; - } if (_unknownFields != null) { size += _unknownFields.CalculateSize(); } @@ -697,6 +1019,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SerializedTensor other) { if (other == null) { return; @@ -710,14 +1033,15 @@ public void MergeFrom(SerializedTensor other) { if (other.CheckpointKey.Length != 0) { CheckpointKey = other.CheckpointKey; } - if (other.OptionalRestore != false) { - OptionalRestore = other.OptionalRestore; - } _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -736,33 +1060,65 @@ public void MergeFrom(pb::CodedInputStream input) { CheckpointKey = input.ReadString(); break; } - case 32: { - OptionalRestore = input.ReadBool(); + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + FullName = input.ReadString(); + break; + } + case 26: { + CheckpointKey = input.ReadString(); break; } } } } + #endif } - public sealed partial class SlotVariableReference : pb::IMessage { + public sealed partial class SlotVariableReference : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SlotVariableReference()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.TrackableObjectGraph.Types.TrackableObject.Descriptor.NestedTypes[2]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SlotVariableReference() { OnConstruction(); } @@ -770,6 +1126,7 @@ public SlotVariableReference() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SlotVariableReference(SlotVariableReference other) : this() { originalVariableNodeId_ = other.originalVariableNodeId_; slotName_ = other.slotName_; @@ -778,6 +1135,7 @@ public SlotVariableReference(SlotVariableReference other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SlotVariableReference Clone() { return new SlotVariableReference(this); } @@ -790,6 +1148,7 @@ public SlotVariableReference Clone() { /// variable object this slot was created for. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int OriginalVariableNodeId { get { return originalVariableNodeId_; } set { @@ -804,6 +1163,7 @@ public int OriginalVariableNodeId { /// The name of the slot (e.g. "m"/"v"). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string SlotName { get { return slotName_; } set { @@ -819,6 +1179,7 @@ public string SlotName { /// `Object` with the value of the slot variable. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int SlotVariableNodeId { get { return slotVariableNodeId_; } set { @@ -827,11 +1188,13 @@ public int SlotVariableNodeId { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SlotVariableReference); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SlotVariableReference other) { if (ReferenceEquals(other, null)) { return false; @@ -846,6 +1209,7 @@ public bool Equals(SlotVariableReference other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (OriginalVariableNodeId != 0) hash ^= OriginalVariableNodeId.GetHashCode(); @@ -858,12 +1222,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (OriginalVariableNodeId != 0) { output.WriteRawTag(8); output.WriteInt32(OriginalVariableNodeId); @@ -879,9 +1248,33 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (OriginalVariableNodeId != 0) { + output.WriteRawTag(8); + output.WriteInt32(OriginalVariableNodeId); + } + if (SlotName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(SlotName); + } + if (SlotVariableNodeId != 0) { + output.WriteRawTag(24); + output.WriteInt32(SlotVariableNodeId); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (OriginalVariableNodeId != 0) { @@ -900,6 +1293,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SlotVariableReference other) { if (other == null) { return; @@ -917,7 +1311,11 @@ public void MergeFrom(SlotVariableReference other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -938,8 +1336,36 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + OriginalVariableNodeId = input.ReadInt32(); + break; + } + case 18: { + SlotName = input.ReadString(); + break; + } + case 24: { + SlotVariableNodeId = input.ReadInt32(); + break; + } + } + } + } + #endif + } } @@ -952,6 +1378,238 @@ public void MergeFrom(pb::CodedInputStream input) { } + public sealed partial class RegisteredSaver : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RegisteredSaver()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.TrackableObjectGraphReflection.Descriptor.MessageTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public RegisteredSaver() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public RegisteredSaver(RegisteredSaver other) : this() { + name_ = other.name_; + objectName_ = other.objectName_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public RegisteredSaver Clone() { + return new RegisteredSaver(this); + } + + /// Field number for the "name" field. + public const int NameFieldNumber = 1; + private string name_ = ""; + /// + /// The name of the registered saver/restore function. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string Name { + get { return name_; } + set { + name_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "object_name" field. + public const int ObjectNameFieldNumber = 2; + private string objectName_ = ""; + /// + /// Unique auto-generated name of the object. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ObjectName { + get { return objectName_; } + set { + objectName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as RegisteredSaver); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(RegisteredSaver other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Name != other.Name) return false; + if (ObjectName != other.ObjectName) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Name.Length != 0) hash ^= Name.GetHashCode(); + if (ObjectName.Length != 0) hash ^= ObjectName.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (ObjectName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ObjectName); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Name.Length != 0) { + output.WriteRawTag(10); + output.WriteString(Name); + } + if (ObjectName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ObjectName); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Name.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(Name); + } + if (ObjectName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ObjectName); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(RegisteredSaver other) { + if (other == null) { + return; + } + if (other.Name.Length != 0) { + Name = other.Name; + } + if (other.ObjectName.Length != 0) { + ObjectName = other.ObjectName; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + ObjectName = input.ReadString(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + Name = input.ReadString(); + break; + } + case 18: { + ObjectName = input.ReadString(); + break; + } + } + } + } + #endif + + } + #endregion } diff --git a/src/TensorFlowNET.Core/Protobuf/Types.cs b/src/TensorFlowNET.Core/Protobuf/Types.cs index 6483cddf9..a2d3bac5d 100644 --- a/src/TensorFlowNET.Core/Protobuf/Types.cs +++ b/src/TensorFlowNET.Core/Protobuf/Types.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/types.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -25,31 +25,34 @@ static TypesReflection() { byte[] descriptorData = global::System.Convert.FromBase64String( string.Concat( "CiV0ZW5zb3JmbG93L2NvcmUvZnJhbWV3b3JrL3R5cGVzLnByb3RvEgp0ZW5z", - "b3JmbG93KqoGCghEYXRhVHlwZRIOCgpEVF9JTlZBTElEEAASDAoIRFRfRkxP", - "QVQQARINCglEVF9ET1VCTEUQAhIMCghEVF9JTlQzMhADEgwKCERUX1VJTlQ4", - "EAQSDAoIRFRfSU5UMTYQBRILCgdEVF9JTlQ4EAYSDQoJRFRfU1RSSU5HEAcS", - "EAoMRFRfQ09NUExFWDY0EAgSDAoIRFRfSU5UNjQQCRILCgdEVF9CT09MEAoS", - "DAoIRFRfUUlOVDgQCxINCglEVF9RVUlOVDgQDBINCglEVF9RSU5UMzIQDRIP", - "CgtEVF9CRkxPQVQxNhAOEg0KCURUX1FJTlQxNhAPEg4KCkRUX1FVSU5UMTYQ", - "EBINCglEVF9VSU5UMTYQERIRCg1EVF9DT01QTEVYMTI4EBISCwoHRFRfSEFM", - "RhATEg8KC0RUX1JFU09VUkNFEBQSDgoKRFRfVkFSSUFOVBAVEg0KCURUX1VJ", - "TlQzMhAWEg0KCURUX1VJTlQ2NBAXEhAKDERUX0ZMT0FUX1JFRhBlEhEKDURU", - "X0RPVUJMRV9SRUYQZhIQCgxEVF9JTlQzMl9SRUYQZxIQCgxEVF9VSU5UOF9S", - "RUYQaBIQCgxEVF9JTlQxNl9SRUYQaRIPCgtEVF9JTlQ4X1JFRhBqEhEKDURU", - "X1NUUklOR19SRUYQaxIUChBEVF9DT01QTEVYNjRfUkVGEGwSEAoMRFRfSU5U", - "NjRfUkVGEG0SDwoLRFRfQk9PTF9SRUYQbhIQCgxEVF9RSU5UOF9SRUYQbxIR", - "Cg1EVF9RVUlOVDhfUkVGEHASEQoNRFRfUUlOVDMyX1JFRhBxEhMKD0RUX0JG", - "TE9BVDE2X1JFRhByEhEKDURUX1FJTlQxNl9SRUYQcxISCg5EVF9RVUlOVDE2", - "X1JFRhB0EhEKDURUX1VJTlQxNl9SRUYQdRIVChFEVF9DT01QTEVYMTI4X1JF", - "RhB2Eg8KC0RUX0hBTEZfUkVGEHcSEwoPRFRfUkVTT1VSQ0VfUkVGEHgSEgoO", - "RFRfVkFSSUFOVF9SRUYQeRIRCg1EVF9VSU5UMzJfUkVGEHoSEQoNRFRfVUlO", - "VDY0X1JFRhB7QnoKGG9yZy50ZW5zb3JmbG93LmZyYW1ld29ya0ILVHlwZXNQ", - "cm90b3NQAVpMZ2l0aHViLmNvbS90ZW5zb3JmbG93L3RlbnNvcmZsb3cvdGVu", - "c29yZmxvdy9nby9jb3JlL2ZyYW1ld29yay90eXBlc19nb19wcm90b/gBAWIG", - "cHJvdG8z")); + "b3JmbG93IjkKD1NlcmlhbGl6ZWREVHlwZRImCghkYXRhdHlwZRgBIAEoDjIU", + "LnRlbnNvcmZsb3cuRGF0YVR5cGUqqgYKCERhdGFUeXBlEg4KCkRUX0lOVkFM", + "SUQQABIMCghEVF9GTE9BVBABEg0KCURUX0RPVUJMRRACEgwKCERUX0lOVDMy", + "EAMSDAoIRFRfVUlOVDgQBBIMCghEVF9JTlQxNhAFEgsKB0RUX0lOVDgQBhIN", + "CglEVF9TVFJJTkcQBxIQCgxEVF9DT01QTEVYNjQQCBIMCghEVF9JTlQ2NBAJ", + "EgsKB0RUX0JPT0wQChIMCghEVF9RSU5UOBALEg0KCURUX1FVSU5UOBAMEg0K", + "CURUX1FJTlQzMhANEg8KC0RUX0JGTE9BVDE2EA4SDQoJRFRfUUlOVDE2EA8S", + "DgoKRFRfUVVJTlQxNhAQEg0KCURUX1VJTlQxNhAREhEKDURUX0NPTVBMRVgx", + "MjgQEhILCgdEVF9IQUxGEBMSDwoLRFRfUkVTT1VSQ0UQFBIOCgpEVF9WQVJJ", + "QU5UEBUSDQoJRFRfVUlOVDMyEBYSDQoJRFRfVUlOVDY0EBcSEAoMRFRfRkxP", + "QVRfUkVGEGUSEQoNRFRfRE9VQkxFX1JFRhBmEhAKDERUX0lOVDMyX1JFRhBn", + "EhAKDERUX1VJTlQ4X1JFRhBoEhAKDERUX0lOVDE2X1JFRhBpEg8KC0RUX0lO", + "VDhfUkVGEGoSEQoNRFRfU1RSSU5HX1JFRhBrEhQKEERUX0NPTVBMRVg2NF9S", + "RUYQbBIQCgxEVF9JTlQ2NF9SRUYQbRIPCgtEVF9CT09MX1JFRhBuEhAKDERU", + "X1FJTlQ4X1JFRhBvEhEKDURUX1FVSU5UOF9SRUYQcBIRCg1EVF9RSU5UMzJf", + "UkVGEHESEwoPRFRfQkZMT0FUMTZfUkVGEHISEQoNRFRfUUlOVDE2X1JFRhBz", + "EhIKDkRUX1FVSU5UMTZfUkVGEHQSEQoNRFRfVUlOVDE2X1JFRhB1EhUKEURU", + "X0NPTVBMRVgxMjhfUkVGEHYSDwoLRFRfSEFMRl9SRUYQdxITCg9EVF9SRVNP", + "VVJDRV9SRUYQeBISCg5EVF9WQVJJQU5UX1JFRhB5EhEKDURUX1VJTlQzMl9S", + "RUYQehIRCg1EVF9VSU5UNjRfUkVGEHtCegoYb3JnLnRlbnNvcmZsb3cuZnJh", + "bWV3b3JrQgtUeXBlc1Byb3Rvc1ABWkxnaXRodWIuY29tL3RlbnNvcmZsb3cv", + "dGVuc29yZmxvdy90ZW5zb3JmbG93L2dvL2NvcmUvZnJhbWV3b3JrL3R5cGVz", + "X2dvX3Byb3Rv+AEBYgZwcm90bzM=")); descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, new pbr::FileDescriptor[] { }, - new pbr::GeneratedClrTypeInfo(new[] {typeof(global::Tensorflow.DataType), }, null, null)); + new pbr::GeneratedClrTypeInfo(new[] {typeof(global::Tensorflow.DataType), }, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SerializedDType), global::Tensorflow.SerializedDType.Parser, new[]{ "Datatype" }, null, null, null, null) + })); } #endregion @@ -150,6 +153,201 @@ public enum DataType { #endregion + #region Messages + /// + /// Represents a serialized tf.dtypes.Dtype + /// + public sealed partial class SerializedDType : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SerializedDType()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Tensorflow.TypesReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public SerializedDType() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public SerializedDType(SerializedDType other) : this() { + datatype_ = other.datatype_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public SerializedDType Clone() { + return new SerializedDType(this); + } + + /// Field number for the "datatype" field. + public const int DatatypeFieldNumber = 1; + private global::Tensorflow.DataType datatype_ = global::Tensorflow.DataType.DtInvalid; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Tensorflow.DataType Datatype { + get { return datatype_; } + set { + datatype_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as SerializedDType); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(SerializedDType other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Datatype != other.Datatype) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Datatype != global::Tensorflow.DataType.DtInvalid) hash ^= Datatype.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Datatype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(8); + output.WriteEnum((int) Datatype); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Datatype != global::Tensorflow.DataType.DtInvalid) { + output.WriteRawTag(8); + output.WriteEnum((int) Datatype); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Datatype != global::Tensorflow.DataType.DtInvalid) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) Datatype); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(SerializedDType other) { + if (other == null) { + return; + } + if (other.Datatype != global::Tensorflow.DataType.DtInvalid) { + Datatype = other.Datatype; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Datatype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Datatype = (global::Tensorflow.DataType) input.ReadEnum(); + break; + } + } + } + } + #endif + + } + + #endregion + } #endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/Variable.cs b/src/TensorFlowNET.Core/Protobuf/Variable.cs index 145c3625c..1bb8f0120 100644 --- a/src/TensorFlowNET.Core/Protobuf/Variable.cs +++ b/src/TensorFlowNET.Core/Protobuf/Variable.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/variable.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -117,23 +117,31 @@ public enum VariableAggregation { /// /// Protocol buffer representing a Variable. /// - public sealed partial class VariableDef : pb::IMessage { + public sealed partial class VariableDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new VariableDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.VariableReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VariableDef() { OnConstruction(); } @@ -141,6 +149,7 @@ public VariableDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VariableDef(VariableDef other) : this() { variableName_ = other.variableName_; initialValueName_ = other.initialValueName_; @@ -155,6 +164,7 @@ public VariableDef(VariableDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VariableDef Clone() { return new VariableDef(this); } @@ -166,6 +176,7 @@ public VariableDef Clone() { /// Name of the variable tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string VariableName { get { return variableName_; } set { @@ -180,6 +191,7 @@ public string VariableName { /// Name of the tensor holding the variable's initial value. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string InitialValueName { get { return initialValueName_; } set { @@ -194,6 +206,7 @@ public string InitialValueName { /// Name of the initializer op. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string InitializerName { get { return initializerName_; } set { @@ -208,6 +221,7 @@ public string InitializerName { /// Name of the snapshot tensor. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string SnapshotName { get { return snapshotName_; } set { @@ -222,6 +236,7 @@ public string SnapshotName { /// Support for saving variables as slices of a larger variable. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.SaveSliceInfoDef SaveSliceInfoDef { get { return saveSliceInfoDef_; } set { @@ -236,6 +251,7 @@ public string SnapshotName { /// Whether to represent this as a ResourceVariable. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool IsResource { get { return isResource_; } set { @@ -250,6 +266,7 @@ public bool IsResource { /// Whether this variable should be trained. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Trainable { get { return trainable_; } set { @@ -264,6 +281,7 @@ public bool Trainable { /// Indicates when a distributed variable will be synced. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.VariableSynchronization Synchronization { get { return synchronization_; } set { @@ -278,6 +296,7 @@ public bool Trainable { /// Indicates how a distributed variable will be aggregated. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.VariableAggregation Aggregation { get { return aggregation_; } set { @@ -286,11 +305,13 @@ public bool Trainable { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as VariableDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(VariableDef other) { if (ReferenceEquals(other, null)) { return false; @@ -311,6 +332,7 @@ public bool Equals(VariableDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (VariableName.Length != 0) hash ^= VariableName.GetHashCode(); @@ -329,12 +351,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (VariableName.Length != 0) { output.WriteRawTag(10); output.WriteString(VariableName); @@ -374,9 +401,57 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (VariableName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(VariableName); + } + if (InitializerName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(InitializerName); + } + if (SnapshotName.Length != 0) { + output.WriteRawTag(26); + output.WriteString(SnapshotName); + } + if (saveSliceInfoDef_ != null) { + output.WriteRawTag(34); + output.WriteMessage(SaveSliceInfoDef); + } + if (IsResource != false) { + output.WriteRawTag(40); + output.WriteBool(IsResource); + } + if (InitialValueName.Length != 0) { + output.WriteRawTag(50); + output.WriteString(InitialValueName); + } + if (Trainable != false) { + output.WriteRawTag(56); + output.WriteBool(Trainable); + } + if (Synchronization != global::Tensorflow.VariableSynchronization.Auto) { + output.WriteRawTag(64); + output.WriteEnum((int) Synchronization); + } + if (Aggregation != global::Tensorflow.VariableAggregation.None) { + output.WriteRawTag(72); + output.WriteEnum((int) Aggregation); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (VariableName.Length != 0) { @@ -413,6 +488,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(VariableDef other) { if (other == null) { return; @@ -451,7 +527,11 @@ public void MergeFrom(VariableDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -499,27 +579,90 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + VariableName = input.ReadString(); + break; + } + case 18: { + InitializerName = input.ReadString(); + break; + } + case 26: { + SnapshotName = input.ReadString(); + break; + } + case 34: { + if (saveSliceInfoDef_ == null) { + SaveSliceInfoDef = new global::Tensorflow.SaveSliceInfoDef(); + } + input.ReadMessage(SaveSliceInfoDef); + break; + } + case 40: { + IsResource = input.ReadBool(); + break; + } + case 50: { + InitialValueName = input.ReadString(); + break; + } + case 56: { + Trainable = input.ReadBool(); + break; + } + case 64: { + Synchronization = (global::Tensorflow.VariableSynchronization) input.ReadEnum(); + break; + } + case 72: { + Aggregation = (global::Tensorflow.VariableAggregation) input.ReadEnum(); + break; + } + } + } + } + #endif + } - public sealed partial class SaveSliceInfoDef : pb::IMessage { + public sealed partial class SaveSliceInfoDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SaveSliceInfoDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.VariableReflection.Descriptor.MessageTypes[1]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SaveSliceInfoDef() { OnConstruction(); } @@ -527,6 +670,7 @@ public SaveSliceInfoDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SaveSliceInfoDef(SaveSliceInfoDef other) : this() { fullName_ = other.fullName_; fullShape_ = other.fullShape_.Clone(); @@ -536,6 +680,7 @@ public SaveSliceInfoDef(SaveSliceInfoDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public SaveSliceInfoDef Clone() { return new SaveSliceInfoDef(this); } @@ -547,6 +692,7 @@ public SaveSliceInfoDef Clone() { /// Name of the full variable of which this is a slice. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public string FullName { get { return fullName_; } set { @@ -563,6 +709,7 @@ public string FullName { /// Shape of the full variable. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField FullShape { get { return fullShape_; } } @@ -576,6 +723,7 @@ public string FullName { /// Offset of this variable into the full variable. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField VarOffset { get { return varOffset_; } } @@ -589,16 +737,19 @@ public string FullName { /// Shape of this variable. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField VarShape { get { return varShape_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as SaveSliceInfoDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(SaveSliceInfoDef other) { if (ReferenceEquals(other, null)) { return false; @@ -614,6 +765,7 @@ public bool Equals(SaveSliceInfoDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (FullName.Length != 0) hash ^= FullName.GetHashCode(); @@ -627,12 +779,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (FullName.Length != 0) { output.WriteRawTag(10); output.WriteString(FullName); @@ -643,9 +800,28 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (FullName.Length != 0) { + output.WriteRawTag(10); + output.WriteString(FullName); + } + fullShape_.WriteTo(ref output, _repeated_fullShape_codec); + varOffset_.WriteTo(ref output, _repeated_varOffset_codec); + varShape_.WriteTo(ref output, _repeated_varShape_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } } + #endif [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (FullName.Length != 0) { @@ -661,6 +837,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(SaveSliceInfoDef other) { if (other == null) { return; @@ -675,7 +852,11 @@ public void MergeFrom(SaveSliceInfoDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -703,7 +884,42 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + FullName = input.ReadString(); + break; + } + case 18: + case 16: { + fullShape_.AddEntriesFrom(ref input, _repeated_fullShape_codec); + break; + } + case 26: + case 24: { + varOffset_.AddEntriesFrom(ref input, _repeated_varOffset_codec); + break; + } + case 34: + case 32: { + varShape_.AddEntriesFrom(ref input, _repeated_varShape_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/VerifierConfig.cs b/src/TensorFlowNET.Core/Protobuf/VerifierConfig.cs index d0f2e2fbb..904196b1f 100644 --- a/src/TensorFlowNET.Core/Protobuf/VerifierConfig.cs +++ b/src/TensorFlowNET.Core/Protobuf/VerifierConfig.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/protobuf/verifier_config.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -46,23 +46,31 @@ static VerifierConfigReflection() { /// /// The config for graph verifiers. /// - public sealed partial class VerifierConfig : pb::IMessage { + public sealed partial class VerifierConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new VerifierConfig()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.VerifierConfigReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VerifierConfig() { OnConstruction(); } @@ -70,6 +78,7 @@ public VerifierConfig() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VerifierConfig(VerifierConfig other) : this() { verificationTimeoutInMs_ = other.verificationTimeoutInMs_; structureVerifier_ = other.structureVerifier_; @@ -77,6 +86,7 @@ public VerifierConfig(VerifierConfig other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VerifierConfig Clone() { return new VerifierConfig(this); } @@ -89,6 +99,7 @@ public VerifierConfig Clone() { /// verifiers must complete execution within this time. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public long VerificationTimeoutInMs { get { return verificationTimeoutInMs_; } set { @@ -103,6 +114,7 @@ public long VerificationTimeoutInMs { /// Perform structural validation on a tensorflow graph. Default is OFF. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public global::Tensorflow.VerifierConfig.Types.Toggle StructureVerifier { get { return structureVerifier_; } set { @@ -111,11 +123,13 @@ public long VerificationTimeoutInMs { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as VerifierConfig); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(VerifierConfig other) { if (ReferenceEquals(other, null)) { return false; @@ -129,6 +143,7 @@ public bool Equals(VerifierConfig other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (VerificationTimeoutInMs != 0L) hash ^= VerificationTimeoutInMs.GetHashCode(); @@ -140,12 +155,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (VerificationTimeoutInMs != 0L) { output.WriteRawTag(8); output.WriteInt64(VerificationTimeoutInMs); @@ -157,9 +177,29 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (VerificationTimeoutInMs != 0L) { + output.WriteRawTag(8); + output.WriteInt64(VerificationTimeoutInMs); + } + if (StructureVerifier != global::Tensorflow.VerifierConfig.Types.Toggle.Default) { + output.WriteRawTag(16); + output.WriteEnum((int) StructureVerifier); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (VerificationTimeoutInMs != 0L) { @@ -175,6 +215,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(VerifierConfig other) { if (other == null) { return; @@ -189,7 +230,11 @@ public void MergeFrom(VerifierConfig other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -206,11 +251,36 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + VerificationTimeoutInMs = input.ReadInt64(); + break; + } + case 16: { + StructureVerifier = (global::Tensorflow.VerifierConfig.Types.Toggle) input.ReadEnum(); + break; + } + } + } } + #endif #region Nested types /// Container for nested types declared in the VerifierConfig message type. [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static partial class Types { public enum Toggle { [pbr::OriginalName("DEFAULT")] Default = 0, diff --git a/src/TensorFlowNET.Core/Protobuf/Versions.cs b/src/TensorFlowNET.Core/Protobuf/Versions.cs index 3cd007655..d3e9fc512 100644 --- a/src/TensorFlowNET.Core/Protobuf/Versions.cs +++ b/src/TensorFlowNET.Core/Protobuf/Versions.cs @@ -2,7 +2,7 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! // source: tensorflow/core/framework/versions.proto // -#pragma warning disable 1591, 0612, 3021 +#pragma warning disable 1591, 0612, 3021, 8981 #region Designer generated code using pb = global::Google.Protobuf; @@ -54,23 +54,31 @@ static VersionsReflection() { /// consumer >= min_consumer /// consumer not in bad_consumers /// - public sealed partial class VersionDef : pb::IMessage { + public sealed partial class VersionDef : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new VersionDef()); private pb::UnknownFieldSet _unknownFields; [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pb::MessageParser Parser { get { return _parser; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public static pbr::MessageDescriptor Descriptor { get { return global::Tensorflow.VersionsReflection.Descriptor.MessageTypes[0]; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] pbr::MessageDescriptor pb::IMessage.Descriptor { get { return Descriptor; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VersionDef() { OnConstruction(); } @@ -78,6 +86,7 @@ public VersionDef() { partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VersionDef(VersionDef other) : this() { producer_ = other.producer_; minConsumer_ = other.minConsumer_; @@ -86,6 +95,7 @@ public VersionDef(VersionDef other) : this() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public VersionDef Clone() { return new VersionDef(this); } @@ -97,6 +107,7 @@ public VersionDef Clone() { /// The version of the code that produced this data. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int Producer { get { return producer_; } set { @@ -111,6 +122,7 @@ public int Producer { /// Any consumer below this version is not allowed to consume this data. /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int MinConsumer { get { return minConsumer_; } set { @@ -127,16 +139,19 @@ public int MinConsumer { /// Specific consumer versions which are disallowed (e.g. due to bugs). /// [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public pbc::RepeatedField BadConsumers { get { return badConsumers_; } } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override bool Equals(object other) { return Equals(other as VersionDef); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public bool Equals(VersionDef other) { if (ReferenceEquals(other, null)) { return false; @@ -151,6 +166,7 @@ public bool Equals(VersionDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override int GetHashCode() { int hash = 1; if (Producer != 0) hash ^= Producer.GetHashCode(); @@ -163,12 +179,17 @@ public override int GetHashCode() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public override string ToString() { return pb::JsonFormatter.ToDiagnosticString(this); } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else if (Producer != 0) { output.WriteRawTag(8); output.WriteInt32(Producer); @@ -181,9 +202,30 @@ public void WriteTo(pb::CodedOutputStream output) { if (_unknownFields != null) { _unknownFields.WriteTo(output); } + #endif } + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Producer != 0) { + output.WriteRawTag(8); + output.WriteInt32(Producer); + } + if (MinConsumer != 0) { + output.WriteRawTag(16); + output.WriteInt32(MinConsumer); + } + badConsumers_.WriteTo(ref output, _repeated_badConsumers_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public int CalculateSize() { int size = 0; if (Producer != 0) { @@ -200,6 +242,7 @@ public int CalculateSize() { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(VersionDef other) { if (other == null) { return; @@ -215,7 +258,11 @@ public void MergeFrom(VersionDef other) { } [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else uint tag; while ((tag = input.ReadTag()) != 0) { switch(tag) { @@ -237,7 +284,36 @@ public void MergeFrom(pb::CodedInputStream input) { } } } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Producer = input.ReadInt32(); + break; + } + case 16: { + MinConsumer = input.ReadInt32(); + break; + } + case 26: + case 24: { + badConsumers_.AddEntriesFrom(ref input, _repeated_badConsumers_codec); + break; + } + } + } } + #endif } diff --git a/src/TensorFlowNET.Core/Protobuf/Xla.cs b/src/TensorFlowNET.Core/Protobuf/Xla.cs new file mode 100644 index 000000000..24f46594c --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/Xla.cs @@ -0,0 +1,12788 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/compiler/xla/xla.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Xla { + + /// Holder for reflection information generated from tensorflow/compiler/xla/xla.proto + public static partial class XlaReflection { + + #region Descriptor + /// File descriptor for tensorflow/compiler/xla/xla.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static XlaReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "CiF0ZW5zb3JmbG93L2NvbXBpbGVyL3hsYS94bGEucHJvdG8SA3hsYRopdGVu", + "c29yZmxvdy9jb21waWxlci94bGEvc2VydmljZS9obG8ucHJvdG8aJnRlbnNv", + "cmZsb3cvY29tcGlsZXIveGxhL3hsYV9kYXRhLnByb3RvIscdCgxEZWJ1Z09w", + "dGlvbnMSHwoXeGxhX2hsb19ncmFwaF9hZGRyZXNzZXMYAiABKAgSFwoPeGxh", + "X2hsb19wcm9maWxlGAkgASgIEh4KFnhsYV9kaXNhYmxlX2hsb19wYXNzZXMY", + "HiADKAkSIgoaeGxhX2VuYWJsZV9obG9fcGFzc2VzX29ubHkYfCADKAkSIgoa", + "eGxhX2Rpc2FibGVfYWxsX2hsb19wYXNzZXMYaCABKAgSJgoeeGxhX2JhY2tl", + "bmRfb3B0aW1pemF0aW9uX2xldmVsGB8gASgFEiIKGnhsYV9lbWJlZF9pcl9p", + "bl9leGVjdXRhYmxlGCEgASgIEiwKJHhsYV9lbGltaW5hdGVfaGxvX2ltcGxp", + "Y2l0X2Jyb2FkY2FzdBgjIAEoCBIiChp4bGFfY3B1X211bHRpX3RocmVhZF9l", + "aWdlbhg8IAEoCBIdChV4bGFfZ3B1X2N1ZGFfZGF0YV9kaXIYPSABKAkSEwoL", + "eGxhX2dwdV9mdHoYPiABKAgSLAokeGxhX2xsdm1fZW5hYmxlX2FsaWFzX3Nj", + "b3BlX21ldGFkYXRhGEYgASgIEigKIHhsYV9sbHZtX2VuYWJsZV9ub2FsaWFz", + "X21ldGFkYXRhGEcgASgIEi8KJ3hsYV9sbHZtX2VuYWJsZV9pbnZhcmlhbnRf", + "bG9hZF9tZXRhZGF0YRhIIAEoCBIpCiF4bGFfbGx2bV9kaXNhYmxlX2V4cGVu", + "c2l2ZV9wYXNzZXMYSSABKAgSIwobeGxhX3Rlc3RfYWxsX291dHB1dF9sYXlv", + "dXRzGFogASgIEiIKGnhsYV90ZXN0X2FsbF9pbnB1dF9sYXlvdXRzGFsgASgI", + "EiQKHHhsYV9obG9fZ3JhcGhfc2hhcmRpbmdfY29sb3IYXCABKAgSGwoTeGxh", + "X2NwdV91c2VfbWtsX2RubhhhIAEoCBIgChd4bGFfY3B1X3VzZV94bGFfcnVu", + "dGltZRixASABKAgSKAogeGxhX2dwdV9tYXhfa2VybmVsX3Vucm9sbF9mYWN0", + "b3IYYiABKAUSIAoYeGxhX2NwdV9lbmFibGVfZmFzdF9tYXRoGGMgASgIEiQK", + "HHhsYV9jcHVfZmFzdF9tYXRoX2hvbm9yX25hbnMYeCABKAgSJAoceGxhX2Nw", + "dV9mYXN0X21hdGhfaG9ub3JfaW5mcxh5IAEoCBIoCiB4bGFfY3B1X2Zhc3Rf", + "bWF0aF9ob25vcl9kaXZpc2lvbhh+IAEoCBIqCiF4bGFfY3B1X2Zhc3RfbWF0", + "aF9ob25vcl9mdW5jdGlvbnMYgQEgASgIEiQKG3hsYV9jcHVfZW5hYmxlX2Zh", + "c3RfbWluX21heBiMASABKAgSIwobeGxhX2dwdV9lbmFibGVfZmFzdF9taW5f", + "bWF4GGQgASgIEiIKGnhsYV9hbGxvd19leGNlc3NfcHJlY2lzaW9uGHogASgI", + "Ei4KJnhsYV9ncHVfY3Jhc2hfb25fdmVyaWZpY2F0aW9uX2ZhaWx1cmVzGGUg", + "ASgIEh4KFnhsYV9ncHVfYXV0b3R1bmVfbGV2ZWwYeyABKAUSLAokeGxhX2Zv", + "cmNlX2hvc3RfcGxhdGZvcm1fZGV2aWNlX2NvdW50GGYgASgFEiwKJHhsYV9n", + "cHVfZGlzYWJsZV9ncHVhc21fb3B0aW1pemF0aW9ucxhnIAEoCBI8ChR4bGFf", + "Z3B1X3NoYXBlX2NoZWNrcxiqASABKA4yHS54bGEuRGVidWdPcHRpb25zLlNo", + "YXBlQ2hlY2tzEiUKHHhsYV9jcHVfZW5hYmxlX21saXJfbG93ZXJpbmcYqwEg", + "ASgIEiUKHHhsYV9ncHVfZW5hYmxlX21saXJfbG93ZXJpbmcYrQEgASgIEicK", + "H3hsYV9obG9fZXZhbHVhdG9yX3VzZV9mYXN0X3BhdGgYaiABKAgSKgoieGxh", + "X2FsbG93X3NjYWxhcl9pbmRleF9keW5hbWljX29wcxhrIAEoCBJGChh4bGFf", + "c3RlcF9tYXJrZXJfbG9jYXRpb24YbCABKA4yJC54bGEuRGVidWdPcHRpb25z", + "LlN0ZXBNYXJrZXJMb2NhdGlvbhITCgt4bGFfZHVtcF90bxhtIAEoCRIeChZ4", + "bGFfZHVtcF9obG9fbW9kdWxlX3JlGG4gASgJEhwKFHhsYV9kdW1wX2hsb19w", + "YXNzX3JlGG8gASgJEhwKFHhsYV9kdW1wX2hsb19hc190ZXh0GHAgASgIEh0K", + "FXhsYV9kdW1wX2hsb19hc19wcm90bxhxIAEoCBIbChN4bGFfZHVtcF9obG9f", + "YXNfZG90GHIgASgIEhsKE3hsYV9kdW1wX2hsb19hc191cmwYcyABKAgSHAoU", + "eGxhX2R1bXBfaGxvX2FzX2h0bWwYdCABKAgSJgodeGxhX2R1bXBfZnVzaW9u", + "X3Zpc3VhbGl6YXRpb24YlQEgASgIEh4KFnhsYV9kdW1wX2hsb19zbmFwc2hv", + "dHMYdiABKAgSIwoaeGxhX2R1bXBfaW5jbHVkZV90aW1lc3RhbXAYgwEgASgI", + "EiEKGHhsYV9kdW1wX21heF9obG9fbW9kdWxlcxiEASABKAUSIQoYeGxhX2R1", + "bXBfbW9kdWxlX21ldGFkYXRhGJABIAEoCBIhChh4bGFfZHVtcF9jb21wcmVz", + "c19wcm90b3MYlwEgASgIEiIKGXhsYV9kdW1wX2hsb19hc19sb25nX3RleHQY", + "pAEgASgIEh8KF3hsYV9ncHVfZm9yY2VfY29udl9uY2h3GH0gASgIEiAKF3hs", + "YV9ncHVfZm9yY2VfY29udl9uaHdjGJIBIAEoCBIYChB4bGFfZ3B1X3B0eF9m", + "aWxlGH8gAygJEhwKE3hsYV9ncHVfZHVtcF9sbHZtaXIYmwEgASgIEigKH3hs", + "YV9ncHVfYWxnb3JpdGhtX2RlbnlsaXN0X3BhdGgYgAEgASgJEhsKEnhsYV90", + "cHVfZGV0ZWN0X25hbhiHASABKAgSGwoSeGxhX3RwdV9kZXRlY3RfaW5mGIgB", + "IAEoCBIlChx4bGFfY3B1X2VuYWJsZV94cHJvZl90cmFjZW1lGIkBIAEoCBI9", + "CjR4bGFfZ3B1X3Vuc2FmZV9mYWxsYmFja190b19kcml2ZXJfb25fcHR4YXNf", + "bm90X2ZvdW5kGIoBIAEoCBIgChd4bGFfZ3B1X2FzbV9leHRyYV9mbGFncxiN", + "ASABKAkSLwomeGxhX211bHRpaGVhcF9zaXplX2NvbnN0cmFpbnRfcGVyX2hl", + "YXAYjgEgASgFEikKIHhsYV9kZXRhaWxlZF9sb2dnaW5nX2FuZF9kdW1waW5n", + "GI8BIAEoCBIuCiV4bGFfZ3B1X2ZvcmNlX2NvbXBpbGF0aW9uX3BhcmFsbGVs", + "aXNtGJMBIAEoBRIiChl4bGFfZ3B1X2RldGVybWluaXN0aWNfb3BzGJQBIAEo", + "CBIdChR4bGFfZ3B1X2xsdm1faXJfZmlsZRiWASADKAkSKAofeGxhX2dwdV9l", + "bmFibGVfYXN5bmNfYWxsX3JlZHVjZRiYASABKAgSMwoqeGxhX2dwdV9hbGxf", + "cmVkdWNlX2NvbWJpbmVfdGhyZXNob2xkX2J5dGVzGJ0BIAEoAxImCh14bGFf", + "Z3B1X2FsbF9yZWR1Y2VfY29udGlndW91cxieASABKAgSPAozeGxhX2dwdV9h", + "bGxfcmVkdWNlX2JsdWVjb25uZWN0X251bV9kZXZpY2VzX3Blcl9ob3N0GJ8B", + "IAEoBRImCh14bGFfZ3B1X2VuYWJsZV9jdWRubl9mcm9udGVuZBigASABKAgS", + "IgoZeGxhX2R1bXBfZGlzYWJsZV9tZXRhZGF0YRiZASABKAgSIQoYeGxhX2R1", + "bXBfaGxvX3BpcGVsaW5lX3JlGJoBIAEoCRItCiR4bGFfZ3B1X3N0cmljdF9j", + "b252X2FsZ29yaXRobV9waWNrZXIYnAEgASgIEi4KJXhsYV9ncHVfZW5hYmxl", + "X3hsYV9ydW50aW1lX2V4ZWN1dGFibGUYqQEgASgIEjEKKHhsYV9ncHVfbmNj", + "bF90ZXJtaW5hdGlvbl90aW1lb3V0X3NlY29uZHMYowEgASgDEigKH3hsYV9n", + "cHVfZW5hYmxlX3NoYXJlZF9jb25zdGFudHMYpQEgASgIEiAKF3hsYV9ncHVf", + "ZW5hYmxlX2N1Ymxhc2x0GKYBIAEoCBIuCiV4bGFfZ3B1X3JlZHpvbmVfc2Ny", + "YXRjaF9tYXhfbWVnYWJ5dGVzGKcBIAEoAxIsCiN4bGFfZ3B1X3NpbXBsaWZ5", + "X2FsbF9mcF9jb252ZXJzaW9ucxioASABKAgSIgoZeGxhX2dwdV9ub3JtYWxp", + "emVfbGF5b3V0cxisASABKAgSGAoPeGxhX2NwdV91c2VfYWNsGK4BIAEoCBIl", + "Chx4bGFfY3B1X3N0cmljdF9kb3RfY29udl9tYXRoGK8BIAEoCBJRChl4bGFf", + "YmFja2VuZF9leHRyYV9vcHRpb25zGPQDIAMoCzItLnhsYS5EZWJ1Z09wdGlv", + "bnMuWGxhQmFja2VuZEV4dHJhT3B0aW9uc0VudHJ5Gj0KG1hsYUJhY2tlbmRF", + "eHRyYU9wdGlvbnNFbnRyeRILCgNrZXkYASABKAkSDQoFdmFsdWUYAiABKAk6", + "AjgBIjgKC1NoYXBlQ2hlY2tzEgoKBklHTk9SRRAAEgsKB1JVTlRJTUUQARIQ", + "CgxDT01QSUxFX1RJTUUQAiKRAQoSU3RlcE1hcmtlckxvY2F0aW9uEhYKElNU", + "RVBfTUFSS19BVF9FTlRSWRAAEiUKIVNURVBfTUFSS19BVF9UT1BfTEVWRUxf", + "V0hJTEVfTE9PUBABEigKJFNURVBfTUFSS19BVF9TRUNPTkRfTEVWRUxfV0hJ", + "TEVfTE9PUBADEhIKDlNURVBfTUFSS19OT05FEAJKBAg/EEBKBgiGARCHAUoE", + "CFAQUUoECF0QXkoECF4QX0oGCIIBEIMBSgYIoQEQogFKBgiiARCjAUoECAUQ", + "BkoECHUQdkoGCIUBEIYBSgYIiwEQjAFKBgiwARCxAUoGCLIBELMBIqsEChBF", + "eGVjdXRpb25PcHRpb25zEjEKGHNoYXBlX3dpdGhfb3V0cHV0X2xheW91dBgC", + "IAEoCzIPLnhsYS5TaGFwZVByb3RvEgwKBHNlZWQYAyABKAQSKAoNZGVidWdf", + "b3B0aW9ucxgEIAEoCzIRLnhsYS5EZWJ1Z09wdGlvbnMSKQoOZGV2aWNlX2hh", + "bmRsZXMYBSADKAsyES54bGEuRGV2aWNlSGFuZGxlEhQKDG51bV9yZXBsaWNh", + "cxgGIAEoBRI1ChFkZXZpY2VfYXNzaWdubWVudBgHIAEoCzIaLnhsYS5EZXZp", + "Y2VBc3NpZ25tZW50UHJvdG8SIAoYYWxpYXNfcGFzc3Rocm91Z2hfcGFyYW1z", + "GAggASgIEhYKDm51bV9wYXJ0aXRpb25zGAkgASgFEhEKCWxhdW5jaF9pZBgK", + "IAEoBRIdChV1c2Vfc3BtZF9wYXJ0aXRpb25pbmcYCyABKAgSIgoadXNlX2F1", + "dG9fc3BtZF9wYXJ0aXRpb25pbmcYDyABKAgSKQohYXV0b19zcG1kX3BhcnRp", + "dGlvbmluZ19tZXNoX3NoYXBlGBAgAygDEicKH2F1dG9fc3BtZF9wYXJ0aXRp", + "b25pbmdfbWVzaF9pZHMYESADKAMSFwoPZGVkdXBsaWNhdGVfaGxvGAwgASgI", + "EjEKKWFsbG93X3NwbWRfc2hhcmRpbmdfcHJvcGFnYXRpb25fdG9fb3V0cHV0", + "GA4gASgISgQIDRAOIi8KF0dldERldmljZUhhbmRsZXNSZXF1ZXN0EhQKDGRl", + "dmljZV9jb3VudBgBIAEoAyJFChhHZXREZXZpY2VIYW5kbGVzUmVzcG9uc2US", + "KQoOZGV2aWNlX2hhbmRsZXMYASADKAsyES54bGEuRGV2aWNlSGFuZGxlImoK", + "F1RyYW5zZmVyVG9DbGllbnRSZXF1ZXN0EiMKBGRhdGEYASABKAsyFS54bGEu", + "R2xvYmFsRGF0YUhhbmRsZRIqChFzaGFwZV93aXRoX2xheW91dBgCIAEoCzIP", + "LnhsYS5TaGFwZVByb3RvIj4KGFRyYW5zZmVyVG9DbGllbnRSZXNwb25zZRIi", + "CgdsaXRlcmFsGAEgASgLMhEueGxhLkxpdGVyYWxQcm90byJnChdUcmFuc2Zl", + "clRvU2VydmVyUmVxdWVzdBIiCgdsaXRlcmFsGAEgASgLMhEueGxhLkxpdGVy", + "YWxQcm90bxIoCg1kZXZpY2VfaGFuZGxlGAIgASgLMhEueGxhLkRldmljZUhh", + "bmRsZSI/ChhUcmFuc2ZlclRvU2VydmVyUmVzcG9uc2USIwoEZGF0YRgBIAEo", + "CzIVLnhsYS5HbG9iYWxEYXRhSGFuZGxlInsKF1RyYW5zZmVyVG9JbmZlZWRS", + "ZXF1ZXN0EiIKB2xpdGVyYWwYASABKAsyES54bGEuTGl0ZXJhbFByb3RvEhIK", + "CnJlcGxpY2FfaWQYAiABKAMSKAoNZGV2aWNlX2hhbmRsZRgDIAEoCzIRLnhs", + "YS5EZXZpY2VIYW5kbGUiGgoYVHJhbnNmZXJUb0luZmVlZFJlc3BvbnNlIoYB", + "ChpUcmFuc2ZlckZyb21PdXRmZWVkUmVxdWVzdBIqChFzaGFwZV93aXRoX2xh", + "eW91dBgBIAEoCzIPLnhsYS5TaGFwZVByb3RvEhIKCnJlcGxpY2FfaWQYAiAB", + "KAMSKAoNZGV2aWNlX2hhbmRsZRgDIAEoCzIRLnhsYS5EZXZpY2VIYW5kbGUi", + "QQobVHJhbnNmZXJGcm9tT3V0ZmVlZFJlc3BvbnNlEiIKB2xpdGVyYWwYASAB", + "KAsyES54bGEuTGl0ZXJhbFByb3RvIj4KElJlc2V0RGV2aWNlUmVxdWVzdBIo", + "Cg1kZXZpY2VfaGFuZGxlGAEgASgLMhEueGxhLkRldmljZUhhbmRsZSIVChNS", + "ZXNldERldmljZVJlc3BvbnNlInIKHENvbXB1dGF0aW9uR3JhcGhTdGF0c1Jl", + "cXVlc3QSKAoLY29tcHV0YXRpb24YASABKAsyEy54bGEuSGxvTW9kdWxlUHJv", + "dG8SKAoNZGVidWdfb3B0aW9ucxgCIAEoCzIRLnhsYS5EZWJ1Z09wdGlvbnMi", + "QAoYQ29tcHV0YXRpb25TdGF0c1Jlc3BvbnNlEiQKBXN0YXRzGAEgASgLMhUu", + "eGxhLkNvbXB1dGF0aW9uU3RhdHMiUgoaQ3JlYXRlQ2hhbm5lbEhhbmRsZVJl", + "cXVlc3QSNAoMY2hhbm5lbF90eXBlGAEgASgOMh4ueGxhLkNoYW5uZWxIYW5k", + "bGUuQ2hhbm5lbFR5cGUiQgobQ3JlYXRlQ2hhbm5lbEhhbmRsZVJlc3BvbnNl", + "EiMKB2NoYW5uZWwYASABKAsyEi54bGEuQ2hhbm5lbEhhbmRsZSI4ChFVbnJl", + "Z2lzdGVyUmVxdWVzdBIjCgRkYXRhGAEgAygLMhUueGxhLkdsb2JhbERhdGFI", + "YW5kbGUiFAoSVW5yZWdpc3RlclJlc3BvbnNlIp4BCg5Db21waWxlUmVxdWVz", + "dBIoCgtjb21wdXRhdGlvbhgBIAEoCzITLnhsYS5IbG9Nb2R1bGVQcm90bxIw", + "ChFleGVjdXRpb25fb3B0aW9ucxgCIAEoCzIVLnhsYS5FeGVjdXRpb25PcHRp", + "b25zEjAKF2lucHV0X3NoYXBlX3dpdGhfbGF5b3V0GAMgAygLMg8ueGxhLlNo", + "YXBlUHJvdG8iNwoPQ29tcGlsZVJlc3BvbnNlEiQKBmhhbmRsZRgBIAEoCzIU", + "LnhsYS5FeGVjdXRpb25IYW5kbGUiYAoORXhlY3V0ZVJlcXVlc3QSJAoGaGFu", + "ZGxlGAEgASgLMhQueGxhLkV4ZWN1dGlvbkhhbmRsZRIoCglhcmd1bWVudHMY", + "AiADKAsyFS54bGEuR2xvYmFsRGF0YUhhbmRsZSKbAQoTRXhlY3V0ZUdyYXBo", + "UmVxdWVzdBIoCgtjb21wdXRhdGlvbhgBIAEoCzITLnhsYS5IbG9Nb2R1bGVQ", + "cm90bxIoCglhcmd1bWVudHMYAiADKAsyFS54bGEuR2xvYmFsRGF0YUhhbmRs", + "ZRIwChFleGVjdXRpb25fb3B0aW9ucxgDIAEoCzIVLnhsYS5FeGVjdXRpb25P", + "cHRpb25zIkkKG0V4ZWN1dGVHcmFwaFBhcmFsbGVsUmVxdWVzdBIqCghyZXF1", + "ZXN0cxgBIAMoCzIYLnhsYS5FeGVjdXRlR3JhcGhSZXF1ZXN0ImAKD0V4ZWN1", + "dGVSZXNwb25zZRIlCgZvdXRwdXQYASABKAsyFS54bGEuR2xvYmFsRGF0YUhh", + "bmRsZRImCgdwcm9maWxlGAIgASgLMhUueGxhLkV4ZWN1dGlvblByb2ZpbGUi", + "QgoXRXhlY3V0ZVBhcmFsbGVsUmVzcG9uc2USJwoJcmVzcG9uc2VzGAEgAygL", + "MhQueGxhLkV4ZWN1dGVSZXNwb25zZSJCChdXYWl0Rm9yRXhlY3V0aW9uUmVx", + "dWVzdBInCglleGVjdXRpb24YASABKAsyFC54bGEuRXhlY3V0aW9uSGFuZGxl", + "ImkKGFdhaXRGb3JFeGVjdXRpb25SZXNwb25zZRIlCgZvdXRwdXQYASABKAsy", + "FS54bGEuR2xvYmFsRGF0YUhhbmRsZRImCgdwcm9maWxlGAIgASgLMhUueGxh", + "LkV4ZWN1dGlvblByb2ZpbGUicAobQ29tcHV0ZUNvbnN0YW50R3JhcGhSZXF1", + "ZXN0EigKC2NvbXB1dGF0aW9uGAEgASgLMhMueGxhLkhsb01vZHVsZVByb3Rv", + "EicKDW91dHB1dF9sYXlvdXQYAiABKAsyEC54bGEuTGF5b3V0UHJvdG8iPQoX", + "Q29tcHV0ZUNvbnN0YW50UmVzcG9uc2USIgoHbGl0ZXJhbBgBIAEoCzIRLnhs", + "YS5MaXRlcmFsUHJvdG8iRgoXRGVjb25zdHJ1Y3RUdXBsZVJlcXVlc3QSKwoM", + "dHVwbGVfaGFuZGxlGAIgASgLMhUueGxhLkdsb2JhbERhdGFIYW5kbGUiSgoY", + "RGVjb25zdHJ1Y3RUdXBsZVJlc3BvbnNlEi4KD2VsZW1lbnRfaGFuZGxlcxgB", + "IAMoCzIVLnhsYS5HbG9iYWxEYXRhSGFuZGxlIpsBCg9Mb2FkRGF0YVJlcXVl", + "c3QSHAoUY29sdW1uaW9fdGFibGV0X3BhdGgYASABKAkSFgoOY29sdW1uaW9f", + "ZmllbGQYAiABKAkSJgoNZWxlbWVudF9zaGFwZRgDIAEoCzIPLnhsYS5TaGFw", + "ZVByb3RvEg4KBm9mZnNldBgEIAEoAxINCgVsaW1pdBgFIAEoAxILCgN6aXAY", + "BiABKAgingEKEExvYWREYXRhUmVzcG9uc2USIwoEZGF0YRgBIAEoCzIVLnhs", + "YS5HbG9iYWxEYXRhSGFuZGxlEiMKCmRhdGFfc2hhcGUYAiABKAsyDy54bGEu", + "U2hhcGVQcm90bxIWCg5hdmFpbGFibGVfcm93cxgDIAEoAxITCgtyb3dzX2xv", + "YWRlZBgEIAEoAxITCgtuYW5vc2Vjb25kcxgFIAEoAyI2Cg9HZXRTaGFwZVJl", + "cXVlc3QSIwoEZGF0YRgBIAEoCzIVLnhsYS5HbG9iYWxEYXRhSGFuZGxlIjIK", + "EEdldFNoYXBlUmVzcG9uc2USHgoFc2hhcGUYASABKAsyDy54bGEuU2hhcGVQ", + "cm90byI0Cg1VbnBhY2tSZXF1ZXN0EiMKBGRhdGEYASABKAsyFS54bGEuR2xv", + "YmFsRGF0YUhhbmRsZSI6Cg5VbnBhY2tSZXNwb25zZRIoCgl0aWVkX2RhdGEY", + "ASADKAsyFS54bGEuR2xvYmFsRGF0YUhhbmRsZWIGcHJvdG8z")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { global::Xla.HloReflection.Descriptor, global::Xla.XlaDataReflection.Descriptor, }, + new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DebugOptions), global::Xla.DebugOptions.Parser, new[]{ "XlaHloGraphAddresses", "XlaHloProfile", "XlaDisableHloPasses", "XlaEnableHloPassesOnly", "XlaDisableAllHloPasses", "XlaBackendOptimizationLevel", "XlaEmbedIrInExecutable", "XlaEliminateHloImplicitBroadcast", "XlaCpuMultiThreadEigen", "XlaGpuCudaDataDir", "XlaGpuFtz", "XlaLlvmEnableAliasScopeMetadata", "XlaLlvmEnableNoaliasMetadata", "XlaLlvmEnableInvariantLoadMetadata", "XlaLlvmDisableExpensivePasses", "XlaTestAllOutputLayouts", "XlaTestAllInputLayouts", "XlaHloGraphShardingColor", "XlaCpuUseMklDnn", "XlaCpuUseXlaRuntime", "XlaGpuMaxKernelUnrollFactor", "XlaCpuEnableFastMath", "XlaCpuFastMathHonorNans", "XlaCpuFastMathHonorInfs", "XlaCpuFastMathHonorDivision", "XlaCpuFastMathHonorFunctions", "XlaCpuEnableFastMinMax", "XlaGpuEnableFastMinMax", "XlaAllowExcessPrecision", "XlaGpuCrashOnVerificationFailures", "XlaGpuAutotuneLevel", "XlaForceHostPlatformDeviceCount", "XlaGpuDisableGpuasmOptimizations", "XlaGpuShapeChecks", "XlaCpuEnableMlirLowering", "XlaGpuEnableMlirLowering", "XlaHloEvaluatorUseFastPath", "XlaAllowScalarIndexDynamicOps", "XlaStepMarkerLocation", "XlaDumpTo", "XlaDumpHloModuleRe", "XlaDumpHloPassRe", "XlaDumpHloAsText", "XlaDumpHloAsProto", "XlaDumpHloAsDot", "XlaDumpHloAsUrl", "XlaDumpHloAsHtml", "XlaDumpFusionVisualization", "XlaDumpHloSnapshots", "XlaDumpIncludeTimestamp", "XlaDumpMaxHloModules", "XlaDumpModuleMetadata", "XlaDumpCompressProtos", "XlaDumpHloAsLongText", "XlaGpuForceConvNchw", "XlaGpuForceConvNhwc", "XlaGpuPtxFile", "XlaGpuDumpLlvmir", "XlaGpuAlgorithmDenylistPath", "XlaTpuDetectNan", "XlaTpuDetectInf", "XlaCpuEnableXprofTraceme", "XlaGpuUnsafeFallbackToDriverOnPtxasNotFound", "XlaGpuAsmExtraFlags", "XlaMultiheapSizeConstraintPerHeap", "XlaDetailedLoggingAndDumping", "XlaGpuForceCompilationParallelism", "XlaGpuDeterministicOps", "XlaGpuLlvmIrFile", "XlaGpuEnableAsyncAllReduce", "XlaGpuAllReduceCombineThresholdBytes", "XlaGpuAllReduceContiguous", "XlaGpuAllReduceBlueconnectNumDevicesPerHost", "XlaGpuEnableCudnnFrontend", "XlaDumpDisableMetadata", "XlaDumpHloPipelineRe", "XlaGpuStrictConvAlgorithmPicker", "XlaGpuEnableXlaRuntimeExecutable", "XlaGpuNcclTerminationTimeoutSeconds", "XlaGpuEnableSharedConstants", "XlaGpuEnableCublaslt", "XlaGpuRedzoneScratchMaxMegabytes", "XlaGpuSimplifyAllFpConversions", "XlaGpuNormalizeLayouts", "XlaCpuUseAcl", "XlaCpuStrictDotConvMath", "XlaBackendExtraOptions" }, null, new[]{ typeof(global::Xla.DebugOptions.Types.ShapeChecks), typeof(global::Xla.DebugOptions.Types.StepMarkerLocation) }, null, new pbr::GeneratedClrTypeInfo[] { null, }), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ExecutionOptions), global::Xla.ExecutionOptions.Parser, new[]{ "ShapeWithOutputLayout", "Seed", "DebugOptions", "DeviceHandles", "NumReplicas", "DeviceAssignment", "AliasPassthroughParams", "NumPartitions", "LaunchId", "UseSpmdPartitioning", "UseAutoSpmdPartitioning", "AutoSpmdPartitioningMeshShape", "AutoSpmdPartitioningMeshIds", "DeduplicateHlo", "AllowSpmdShardingPropagationToOutput" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.GetDeviceHandlesRequest), global::Xla.GetDeviceHandlesRequest.Parser, new[]{ "DeviceCount" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.GetDeviceHandlesResponse), global::Xla.GetDeviceHandlesResponse.Parser, new[]{ "DeviceHandles" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TransferToClientRequest), global::Xla.TransferToClientRequest.Parser, new[]{ "Data", "ShapeWithLayout" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TransferToClientResponse), global::Xla.TransferToClientResponse.Parser, new[]{ "Literal" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TransferToServerRequest), global::Xla.TransferToServerRequest.Parser, new[]{ "Literal", "DeviceHandle" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TransferToServerResponse), global::Xla.TransferToServerResponse.Parser, new[]{ "Data" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TransferToInfeedRequest), global::Xla.TransferToInfeedRequest.Parser, new[]{ "Literal", "ReplicaId", "DeviceHandle" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TransferToInfeedResponse), global::Xla.TransferToInfeedResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TransferFromOutfeedRequest), global::Xla.TransferFromOutfeedRequest.Parser, new[]{ "ShapeWithLayout", "ReplicaId", "DeviceHandle" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TransferFromOutfeedResponse), global::Xla.TransferFromOutfeedResponse.Parser, new[]{ "Literal" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ResetDeviceRequest), global::Xla.ResetDeviceRequest.Parser, new[]{ "DeviceHandle" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ResetDeviceResponse), global::Xla.ResetDeviceResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ComputationGraphStatsRequest), global::Xla.ComputationGraphStatsRequest.Parser, new[]{ "Computation", "DebugOptions" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ComputationStatsResponse), global::Xla.ComputationStatsResponse.Parser, new[]{ "Stats" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.CreateChannelHandleRequest), global::Xla.CreateChannelHandleRequest.Parser, new[]{ "ChannelType" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.CreateChannelHandleResponse), global::Xla.CreateChannelHandleResponse.Parser, new[]{ "Channel" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.UnregisterRequest), global::Xla.UnregisterRequest.Parser, new[]{ "Data" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.UnregisterResponse), global::Xla.UnregisterResponse.Parser, null, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.CompileRequest), global::Xla.CompileRequest.Parser, new[]{ "Computation", "ExecutionOptions", "InputShapeWithLayout" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.CompileResponse), global::Xla.CompileResponse.Parser, new[]{ "Handle" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ExecuteRequest), global::Xla.ExecuteRequest.Parser, new[]{ "Handle", "Arguments" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ExecuteGraphRequest), global::Xla.ExecuteGraphRequest.Parser, new[]{ "Computation", "Arguments", "ExecutionOptions" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ExecuteGraphParallelRequest), global::Xla.ExecuteGraphParallelRequest.Parser, new[]{ "Requests" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ExecuteResponse), global::Xla.ExecuteResponse.Parser, new[]{ "Output", "Profile" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ExecuteParallelResponse), global::Xla.ExecuteParallelResponse.Parser, new[]{ "Responses" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.WaitForExecutionRequest), global::Xla.WaitForExecutionRequest.Parser, new[]{ "Execution" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.WaitForExecutionResponse), global::Xla.WaitForExecutionResponse.Parser, new[]{ "Output", "Profile" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ComputeConstantGraphRequest), global::Xla.ComputeConstantGraphRequest.Parser, new[]{ "Computation", "OutputLayout" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ComputeConstantResponse), global::Xla.ComputeConstantResponse.Parser, new[]{ "Literal" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DeconstructTupleRequest), global::Xla.DeconstructTupleRequest.Parser, new[]{ "TupleHandle" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DeconstructTupleResponse), global::Xla.DeconstructTupleResponse.Parser, new[]{ "ElementHandles" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.LoadDataRequest), global::Xla.LoadDataRequest.Parser, new[]{ "ColumnioTabletPath", "ColumnioField", "ElementShape", "Offset", "Limit", "Zip" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.LoadDataResponse), global::Xla.LoadDataResponse.Parser, new[]{ "Data", "DataShape", "AvailableRows", "RowsLoaded", "Nanoseconds" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.GetShapeRequest), global::Xla.GetShapeRequest.Parser, new[]{ "Data" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.GetShapeResponse), global::Xla.GetShapeResponse.Parser, new[]{ "Shape" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.UnpackRequest), global::Xla.UnpackRequest.Parser, new[]{ "Data" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.UnpackResponse), global::Xla.UnpackResponse.Parser, new[]{ "TiedData" }, null, null, null, null) + })); + } + #endregion + + } + #region Messages + /// + /// Debugging options for XLA. These options may change at any time - there are + /// no guarantees about backward or forward compatibility for these fields. + /// + public sealed partial class DebugOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DebugOptions()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DebugOptions() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DebugOptions(DebugOptions other) : this() { + xlaHloGraphAddresses_ = other.xlaHloGraphAddresses_; + xlaHloProfile_ = other.xlaHloProfile_; + xlaDisableHloPasses_ = other.xlaDisableHloPasses_.Clone(); + xlaEnableHloPassesOnly_ = other.xlaEnableHloPassesOnly_.Clone(); + xlaDisableAllHloPasses_ = other.xlaDisableAllHloPasses_; + xlaBackendOptimizationLevel_ = other.xlaBackendOptimizationLevel_; + xlaEmbedIrInExecutable_ = other.xlaEmbedIrInExecutable_; + xlaEliminateHloImplicitBroadcast_ = other.xlaEliminateHloImplicitBroadcast_; + xlaCpuMultiThreadEigen_ = other.xlaCpuMultiThreadEigen_; + xlaGpuCudaDataDir_ = other.xlaGpuCudaDataDir_; + xlaGpuFtz_ = other.xlaGpuFtz_; + xlaLlvmEnableAliasScopeMetadata_ = other.xlaLlvmEnableAliasScopeMetadata_; + xlaLlvmEnableNoaliasMetadata_ = other.xlaLlvmEnableNoaliasMetadata_; + xlaLlvmEnableInvariantLoadMetadata_ = other.xlaLlvmEnableInvariantLoadMetadata_; + xlaLlvmDisableExpensivePasses_ = other.xlaLlvmDisableExpensivePasses_; + xlaTestAllOutputLayouts_ = other.xlaTestAllOutputLayouts_; + xlaTestAllInputLayouts_ = other.xlaTestAllInputLayouts_; + xlaHloGraphShardingColor_ = other.xlaHloGraphShardingColor_; + xlaCpuUseMklDnn_ = other.xlaCpuUseMklDnn_; + xlaCpuUseXlaRuntime_ = other.xlaCpuUseXlaRuntime_; + xlaGpuMaxKernelUnrollFactor_ = other.xlaGpuMaxKernelUnrollFactor_; + xlaCpuEnableFastMath_ = other.xlaCpuEnableFastMath_; + xlaCpuFastMathHonorNans_ = other.xlaCpuFastMathHonorNans_; + xlaCpuFastMathHonorInfs_ = other.xlaCpuFastMathHonorInfs_; + xlaCpuFastMathHonorDivision_ = other.xlaCpuFastMathHonorDivision_; + xlaCpuFastMathHonorFunctions_ = other.xlaCpuFastMathHonorFunctions_; + xlaCpuEnableFastMinMax_ = other.xlaCpuEnableFastMinMax_; + xlaGpuEnableFastMinMax_ = other.xlaGpuEnableFastMinMax_; + xlaAllowExcessPrecision_ = other.xlaAllowExcessPrecision_; + xlaGpuCrashOnVerificationFailures_ = other.xlaGpuCrashOnVerificationFailures_; + xlaGpuAutotuneLevel_ = other.xlaGpuAutotuneLevel_; + xlaForceHostPlatformDeviceCount_ = other.xlaForceHostPlatformDeviceCount_; + xlaGpuDisableGpuasmOptimizations_ = other.xlaGpuDisableGpuasmOptimizations_; + xlaGpuShapeChecks_ = other.xlaGpuShapeChecks_; + xlaCpuEnableMlirLowering_ = other.xlaCpuEnableMlirLowering_; + xlaGpuEnableMlirLowering_ = other.xlaGpuEnableMlirLowering_; + xlaHloEvaluatorUseFastPath_ = other.xlaHloEvaluatorUseFastPath_; + xlaAllowScalarIndexDynamicOps_ = other.xlaAllowScalarIndexDynamicOps_; + xlaStepMarkerLocation_ = other.xlaStepMarkerLocation_; + xlaDumpTo_ = other.xlaDumpTo_; + xlaDumpHloModuleRe_ = other.xlaDumpHloModuleRe_; + xlaDumpHloPassRe_ = other.xlaDumpHloPassRe_; + xlaDumpHloAsText_ = other.xlaDumpHloAsText_; + xlaDumpHloAsProto_ = other.xlaDumpHloAsProto_; + xlaDumpHloAsDot_ = other.xlaDumpHloAsDot_; + xlaDumpHloAsUrl_ = other.xlaDumpHloAsUrl_; + xlaDumpHloAsHtml_ = other.xlaDumpHloAsHtml_; + xlaDumpFusionVisualization_ = other.xlaDumpFusionVisualization_; + xlaDumpHloSnapshots_ = other.xlaDumpHloSnapshots_; + xlaDumpIncludeTimestamp_ = other.xlaDumpIncludeTimestamp_; + xlaDumpMaxHloModules_ = other.xlaDumpMaxHloModules_; + xlaDumpModuleMetadata_ = other.xlaDumpModuleMetadata_; + xlaDumpCompressProtos_ = other.xlaDumpCompressProtos_; + xlaDumpHloAsLongText_ = other.xlaDumpHloAsLongText_; + xlaGpuForceConvNchw_ = other.xlaGpuForceConvNchw_; + xlaGpuForceConvNhwc_ = other.xlaGpuForceConvNhwc_; + xlaGpuPtxFile_ = other.xlaGpuPtxFile_.Clone(); + xlaGpuDumpLlvmir_ = other.xlaGpuDumpLlvmir_; + xlaGpuAlgorithmDenylistPath_ = other.xlaGpuAlgorithmDenylistPath_; + xlaTpuDetectNan_ = other.xlaTpuDetectNan_; + xlaTpuDetectInf_ = other.xlaTpuDetectInf_; + xlaCpuEnableXprofTraceme_ = other.xlaCpuEnableXprofTraceme_; + xlaGpuUnsafeFallbackToDriverOnPtxasNotFound_ = other.xlaGpuUnsafeFallbackToDriverOnPtxasNotFound_; + xlaGpuAsmExtraFlags_ = other.xlaGpuAsmExtraFlags_; + xlaMultiheapSizeConstraintPerHeap_ = other.xlaMultiheapSizeConstraintPerHeap_; + xlaDetailedLoggingAndDumping_ = other.xlaDetailedLoggingAndDumping_; + xlaGpuForceCompilationParallelism_ = other.xlaGpuForceCompilationParallelism_; + xlaGpuDeterministicOps_ = other.xlaGpuDeterministicOps_; + xlaGpuLlvmIrFile_ = other.xlaGpuLlvmIrFile_.Clone(); + xlaGpuEnableAsyncAllReduce_ = other.xlaGpuEnableAsyncAllReduce_; + xlaGpuAllReduceCombineThresholdBytes_ = other.xlaGpuAllReduceCombineThresholdBytes_; + xlaGpuAllReduceContiguous_ = other.xlaGpuAllReduceContiguous_; + xlaGpuAllReduceBlueconnectNumDevicesPerHost_ = other.xlaGpuAllReduceBlueconnectNumDevicesPerHost_; + xlaGpuEnableCudnnFrontend_ = other.xlaGpuEnableCudnnFrontend_; + xlaDumpDisableMetadata_ = other.xlaDumpDisableMetadata_; + xlaDumpHloPipelineRe_ = other.xlaDumpHloPipelineRe_; + xlaGpuStrictConvAlgorithmPicker_ = other.xlaGpuStrictConvAlgorithmPicker_; + xlaGpuEnableXlaRuntimeExecutable_ = other.xlaGpuEnableXlaRuntimeExecutable_; + xlaGpuNcclTerminationTimeoutSeconds_ = other.xlaGpuNcclTerminationTimeoutSeconds_; + xlaGpuEnableSharedConstants_ = other.xlaGpuEnableSharedConstants_; + xlaGpuEnableCublaslt_ = other.xlaGpuEnableCublaslt_; + xlaGpuRedzoneScratchMaxMegabytes_ = other.xlaGpuRedzoneScratchMaxMegabytes_; + xlaGpuSimplifyAllFpConversions_ = other.xlaGpuSimplifyAllFpConversions_; + xlaGpuNormalizeLayouts_ = other.xlaGpuNormalizeLayouts_; + xlaCpuUseAcl_ = other.xlaCpuUseAcl_; + xlaCpuStrictDotConvMath_ = other.xlaCpuStrictDotConvMath_; + xlaBackendExtraOptions_ = other.xlaBackendExtraOptions_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DebugOptions Clone() { + return new DebugOptions(this); + } + + /// Field number for the "xla_hlo_graph_addresses" field. + public const int XlaHloGraphAddressesFieldNumber = 2; + private bool xlaHloGraphAddresses_; + /// + /// Show addresses of HLO ops in graph dump. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaHloGraphAddresses { + get { return xlaHloGraphAddresses_; } + set { + xlaHloGraphAddresses_ = value; + } + } + + /// Field number for the "xla_hlo_profile" field. + public const int XlaHloProfileFieldNumber = 9; + private bool xlaHloProfile_; + /// + /// Instrument the computation to collect per-HLO cycle counts. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaHloProfile { + get { return xlaHloProfile_; } + set { + xlaHloProfile_ = value; + } + } + + /// Field number for the "xla_disable_hlo_passes" field. + public const int XlaDisableHloPassesFieldNumber = 30; + private static readonly pb::FieldCodec _repeated_xlaDisableHloPasses_codec + = pb::FieldCodec.ForString(242); + private readonly pbc::RepeatedField xlaDisableHloPasses_ = new pbc::RepeatedField(); + /// + /// List of HLO passes to disable/enable. These names must exactly match the + /// pass names as specified by the HloPassInterface::name() method. + /// + /// At least one of xla_disable_hlo_passes and xla_enable_hlo_passes_only must + /// be empty. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField XlaDisableHloPasses { + get { return xlaDisableHloPasses_; } + } + + /// Field number for the "xla_enable_hlo_passes_only" field. + public const int XlaEnableHloPassesOnlyFieldNumber = 124; + private static readonly pb::FieldCodec _repeated_xlaEnableHloPassesOnly_codec + = pb::FieldCodec.ForString(994); + private readonly pbc::RepeatedField xlaEnableHloPassesOnly_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField XlaEnableHloPassesOnly { + get { return xlaEnableHloPassesOnly_; } + } + + /// Field number for the "xla_disable_all_hlo_passes" field. + public const int XlaDisableAllHloPassesFieldNumber = 104; + private bool xlaDisableAllHloPasses_; + /// + /// Disables all HLO passes. Notes that some passes are necessary for + /// correctness and the invariants that must be satisfied by "fully optimized" + /// HLO are different for different devices and may change over time. The only + /// "guarantee", such as it is, is that if you compile XLA and dump the + /// optimized HLO for some graph, you should be able to run it again on the + /// same device with the same build of XLA. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDisableAllHloPasses { + get { return xlaDisableAllHloPasses_; } + set { + xlaDisableAllHloPasses_ = value; + } + } + + /// Field number for the "xla_backend_optimization_level" field. + public const int XlaBackendOptimizationLevelFieldNumber = 31; + private int xlaBackendOptimizationLevel_; + /// + /// Numerical optimization level for the XLA compiler backend; the specific + /// interpretation of this value is left to the backends. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int XlaBackendOptimizationLevel { + get { return xlaBackendOptimizationLevel_; } + set { + xlaBackendOptimizationLevel_ = value; + } + } + + /// Field number for the "xla_embed_ir_in_executable" field. + public const int XlaEmbedIrInExecutableFieldNumber = 33; + private bool xlaEmbedIrInExecutable_; + /// + /// Embed the compiler IR as a string in the executable. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaEmbedIrInExecutable { + get { return xlaEmbedIrInExecutable_; } + set { + xlaEmbedIrInExecutable_ = value; + } + } + + /// Field number for the "xla_eliminate_hlo_implicit_broadcast" field. + public const int XlaEliminateHloImplicitBroadcastFieldNumber = 35; + private bool xlaEliminateHloImplicitBroadcast_; + /// + /// Eliminate implicit broadcasts when lowering user computations to HLO + /// instructions; use explicit broadcast instead. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaEliminateHloImplicitBroadcast { + get { return xlaEliminateHloImplicitBroadcast_; } + set { + xlaEliminateHloImplicitBroadcast_ = value; + } + } + + /// Field number for the "xla_cpu_multi_thread_eigen" field. + public const int XlaCpuMultiThreadEigenFieldNumber = 60; + private bool xlaCpuMultiThreadEigen_; + /// + /// When generating calls to Eigen in the CPU backend, use multi-threaded Eigen + /// mode. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuMultiThreadEigen { + get { return xlaCpuMultiThreadEigen_; } + set { + xlaCpuMultiThreadEigen_ = value; + } + } + + /// Field number for the "xla_gpu_cuda_data_dir" field. + public const int XlaGpuCudaDataDirFieldNumber = 61; + private string xlaGpuCudaDataDir_ = ""; + /// + /// Path to directory with cuda/ptx tools and libraries. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string XlaGpuCudaDataDir { + get { return xlaGpuCudaDataDir_; } + set { + xlaGpuCudaDataDir_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "xla_gpu_ftz" field. + public const int XlaGpuFtzFieldNumber = 62; + private bool xlaGpuFtz_; + /// + /// Enable flush-to-zero semantics in the GPU backend. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuFtz { + get { return xlaGpuFtz_; } + set { + xlaGpuFtz_ = value; + } + } + + /// Field number for the "xla_llvm_enable_alias_scope_metadata" field. + public const int XlaLlvmEnableAliasScopeMetadataFieldNumber = 70; + private bool xlaLlvmEnableAliasScopeMetadata_; + /// + /// If true, in LLVM-based backends, emit !alias.scope metadata in + /// generated IR. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaLlvmEnableAliasScopeMetadata { + get { return xlaLlvmEnableAliasScopeMetadata_; } + set { + xlaLlvmEnableAliasScopeMetadata_ = value; + } + } + + /// Field number for the "xla_llvm_enable_noalias_metadata" field. + public const int XlaLlvmEnableNoaliasMetadataFieldNumber = 71; + private bool xlaLlvmEnableNoaliasMetadata_; + /// + /// If true, in LLVM-based backends, emit !noalias metadata in the + /// generated IR. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaLlvmEnableNoaliasMetadata { + get { return xlaLlvmEnableNoaliasMetadata_; } + set { + xlaLlvmEnableNoaliasMetadata_ = value; + } + } + + /// Field number for the "xla_llvm_enable_invariant_load_metadata" field. + public const int XlaLlvmEnableInvariantLoadMetadataFieldNumber = 72; + private bool xlaLlvmEnableInvariantLoadMetadata_; + /// + /// If true, in LLVM-based backends, emit !invariant.load metadata in + /// the generated IR. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaLlvmEnableInvariantLoadMetadata { + get { return xlaLlvmEnableInvariantLoadMetadata_; } + set { + xlaLlvmEnableInvariantLoadMetadata_ = value; + } + } + + /// Field number for the "xla_llvm_disable_expensive_passes" field. + public const int XlaLlvmDisableExpensivePassesFieldNumber = 73; + private bool xlaLlvmDisableExpensivePasses_; + /// + /// If true, a set of expensive LLVM optimization passes will not be run. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaLlvmDisableExpensivePasses { + get { return xlaLlvmDisableExpensivePasses_; } + set { + xlaLlvmDisableExpensivePasses_ = value; + } + } + + /// Field number for the "xla_test_all_output_layouts" field. + public const int XlaTestAllOutputLayoutsFieldNumber = 90; + private bool xlaTestAllOutputLayouts_; + /// + /// This is used by ClientLibraryTestBase::ComputeAndCompare*. If true, the + /// computation will run n! times with all permunations of layouts for the + /// output shape in rank n. For example, with a 3D shape, all permutations of + /// the set {0, 1, 2} are tried. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaTestAllOutputLayouts { + get { return xlaTestAllOutputLayouts_; } + set { + xlaTestAllOutputLayouts_ = value; + } + } + + /// Field number for the "xla_test_all_input_layouts" field. + public const int XlaTestAllInputLayoutsFieldNumber = 91; + private bool xlaTestAllInputLayouts_; + /// + /// This is used by ClientLibraryTestBase::ComputeAndCompare*. If true, the + /// computation will run for all permunations of layouts of all input + /// arguments. For example, with 2 input arguments in 2D and 4D shapes, the + /// computation will run 2! * 4! times. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaTestAllInputLayouts { + get { return xlaTestAllInputLayouts_; } + set { + xlaTestAllInputLayouts_ = value; + } + } + + /// Field number for the "xla_hlo_graph_sharding_color" field. + public const int XlaHloGraphShardingColorFieldNumber = 92; + private bool xlaHloGraphShardingColor_; + /// + /// Assign colors based on sharding information when generating the Graphviz + /// HLO graph. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaHloGraphShardingColor { + get { return xlaHloGraphShardingColor_; } + set { + xlaHloGraphShardingColor_ = value; + } + } + + /// Field number for the "xla_cpu_use_mkl_dnn" field. + public const int XlaCpuUseMklDnnFieldNumber = 97; + private bool xlaCpuUseMklDnn_; + /// + /// Generate calls to MKL-DNN in the CPU backend. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuUseMklDnn { + get { return xlaCpuUseMklDnn_; } + set { + xlaCpuUseMklDnn_ = value; + } + } + + /// Field number for the "xla_cpu_use_xla_runtime" field. + public const int XlaCpuUseXlaRuntimeFieldNumber = 177; + private bool xlaCpuUseXlaRuntime_; + /// + /// Enable XLA Runtime in the CPU backend. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuUseXlaRuntime { + get { return xlaCpuUseXlaRuntime_; } + set { + xlaCpuUseXlaRuntime_ = value; + } + } + + /// Field number for the "xla_gpu_max_kernel_unroll_factor" field. + public const int XlaGpuMaxKernelUnrollFactorFieldNumber = 98; + private int xlaGpuMaxKernelUnrollFactor_; + /// + /// Maximum kernel unroll factor for the GPU backend. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int XlaGpuMaxKernelUnrollFactor { + get { return xlaGpuMaxKernelUnrollFactor_; } + set { + xlaGpuMaxKernelUnrollFactor_ = value; + } + } + + /// Field number for the "xla_cpu_enable_fast_math" field. + public const int XlaCpuEnableFastMathFieldNumber = 99; + private bool xlaCpuEnableFastMath_; + /// + /// When true, "unsafe" mathematical optimizations are enabled. These + /// transformations include but are not limited to: + /// + /// - Reducing the precision of operations (e.g. using an approximate sin + /// function, or transforming x/y into x * (1/y)). + /// - Assuming that operations never produce or consume NaN or +/- Inf (this + /// behavior can be adjusted using xla_cpu_fast_math_allow_{nans|infs}). + /// - Assuming that +0 and -0 are indistinguishable. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuEnableFastMath { + get { return xlaCpuEnableFastMath_; } + set { + xlaCpuEnableFastMath_ = value; + } + } + + /// Field number for the "xla_cpu_fast_math_honor_nans" field. + public const int XlaCpuFastMathHonorNansFieldNumber = 120; + private bool xlaCpuFastMathHonorNans_; + /// + /// When xla_cpu_enable_fast_math is true then this controls whether we allow + /// operations to produce NaNs. Ignored when xla_cpu_enable_fast_math is + /// false. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuFastMathHonorNans { + get { return xlaCpuFastMathHonorNans_; } + set { + xlaCpuFastMathHonorNans_ = value; + } + } + + /// Field number for the "xla_cpu_fast_math_honor_infs" field. + public const int XlaCpuFastMathHonorInfsFieldNumber = 121; + private bool xlaCpuFastMathHonorInfs_; + /// + /// When xla_cpu_enable_fast_math is true then this controls whether we allow + /// operations to produce infinites. Ignored when xla_cpu_enable_fast_math is + /// false. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuFastMathHonorInfs { + get { return xlaCpuFastMathHonorInfs_; } + set { + xlaCpuFastMathHonorInfs_ = value; + } + } + + /// Field number for the "xla_cpu_fast_math_honor_division" field. + public const int XlaCpuFastMathHonorDivisionFieldNumber = 126; + private bool xlaCpuFastMathHonorDivision_; + /// + /// When xla_cpu_enable_fast_math is true then this controls whether we forbid + /// to use the reciprocal of an argument instead of division. Ignored when + /// xla_cpu_enable_fast_math is false. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuFastMathHonorDivision { + get { return xlaCpuFastMathHonorDivision_; } + set { + xlaCpuFastMathHonorDivision_ = value; + } + } + + /// Field number for the "xla_cpu_fast_math_honor_functions" field. + public const int XlaCpuFastMathHonorFunctionsFieldNumber = 129; + private bool xlaCpuFastMathHonorFunctions_; + /// + /// When xla_cpu_enable_fast_math is true then this controls whether we forbid + /// to approximate calculations for functions. Ignored when + /// xla_cpu_enable_fast_math is false. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuFastMathHonorFunctions { + get { return xlaCpuFastMathHonorFunctions_; } + set { + xlaCpuFastMathHonorFunctions_ = value; + } + } + + /// Field number for the "xla_cpu_enable_fast_min_max" field. + public const int XlaCpuEnableFastMinMaxFieldNumber = 140; + private bool xlaCpuEnableFastMinMax_; + /// + /// When false we lower the Minimum and Maximum hlos in the CPU backend such + /// that Min(NotNaN, NaN) = Min(NaN, NotNaN) = NaN. In other words, if flag + /// this is false we always propagate NaNs through Min and Max. + /// + /// Note, this does not correspond to the exact same behavior as the gpu flag + /// below! + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuEnableFastMinMax { + get { return xlaCpuEnableFastMinMax_; } + set { + xlaCpuEnableFastMinMax_ = value; + } + } + + /// Field number for the "xla_gpu_enable_fast_min_max" field. + public const int XlaGpuEnableFastMinMaxFieldNumber = 100; + private bool xlaGpuEnableFastMinMax_; + /// + /// When true we lower the Minimum and Maximum hlos in the GPU backend such + /// that Min(NotNaN, NaN) = Min(NaN, NotNaN) = NotNaN. In other words, if flag + /// this is true we don't propagate NaNs through Min and Max. + /// + /// Note, this does not correspond to the exact same behavior as the cpu flag + /// above! + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuEnableFastMinMax { + get { return xlaGpuEnableFastMinMax_; } + set { + xlaGpuEnableFastMinMax_ = value; + } + } + + /// Field number for the "xla_allow_excess_precision" field. + public const int XlaAllowExcessPrecisionFieldNumber = 122; + private bool xlaAllowExcessPrecision_; + /// + /// Allows xla to increase the output precision of floating point operations. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaAllowExcessPrecision { + get { return xlaAllowExcessPrecision_; } + set { + xlaAllowExcessPrecision_ = value; + } + } + + /// Field number for the "xla_gpu_crash_on_verification_failures" field. + public const int XlaGpuCrashOnVerificationFailuresFieldNumber = 101; + private bool xlaGpuCrashOnVerificationFailures_; + /// + /// Crashes the program when any kind of verification fails, instead of just + /// logging the failures. One example is cross checking of convolution results + /// among different algorithms. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuCrashOnVerificationFailures { + get { return xlaGpuCrashOnVerificationFailures_; } + set { + xlaGpuCrashOnVerificationFailures_ = value; + } + } + + /// Field number for the "xla_gpu_autotune_level" field. + public const int XlaGpuAutotuneLevelFieldNumber = 123; + private int xlaGpuAutotuneLevel_; + /// + /// 0: Disable gemm and convolution autotuning. + /// 1: Enable autotuning, but disable correctness checking. + /// 2: Also set output buffers to random numbers during autotuning. + /// 3: Also reset output buffers to random numbers after autotuning each + /// algorithm. + /// 4+: Also check for correct outputs and for out-of-bounds reads/writes. + /// + /// Default: 4. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int XlaGpuAutotuneLevel { + get { return xlaGpuAutotuneLevel_; } + set { + xlaGpuAutotuneLevel_ = value; + } + } + + /// Field number for the "xla_force_host_platform_device_count" field. + public const int XlaForceHostPlatformDeviceCountFieldNumber = 102; + private int xlaForceHostPlatformDeviceCount_; + /// + /// Force the host platform to pretend that there are these many host + /// "devices". All these devices are backed by the same threadpool. Defaults + /// to 1. + /// + /// Setting this to anything other than 1 can increase overhead from context + /// switching but we let the user override this behavior to help run tests on + /// the host that run models in parallel across multiple devices. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int XlaForceHostPlatformDeviceCount { + get { return xlaForceHostPlatformDeviceCount_; } + set { + xlaForceHostPlatformDeviceCount_ = value; + } + } + + /// Field number for the "xla_gpu_disable_gpuasm_optimizations" field. + public const int XlaGpuDisableGpuasmOptimizationsFieldNumber = 103; + private bool xlaGpuDisableGpuasmOptimizations_; + /// + /// If set to true XLA:GPU invokes `ptxas` with -O0 (default is -O3). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuDisableGpuasmOptimizations { + get { return xlaGpuDisableGpuasmOptimizations_; } + set { + xlaGpuDisableGpuasmOptimizations_ = value; + } + } + + /// Field number for the "xla_gpu_shape_checks" field. + public const int XlaGpuShapeChecksFieldNumber = 170; + private global::Xla.DebugOptions.Types.ShapeChecks xlaGpuShapeChecks_ = global::Xla.DebugOptions.Types.ShapeChecks.Ignore; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DebugOptions.Types.ShapeChecks XlaGpuShapeChecks { + get { return xlaGpuShapeChecks_; } + set { + xlaGpuShapeChecks_ = value; + } + } + + /// Field number for the "xla_cpu_enable_mlir_lowering" field. + public const int XlaCpuEnableMlirLoweringFieldNumber = 171; + private bool xlaCpuEnableMlirLowering_; + /// + /// Enable MLIR-based lowering in XLA:CPU instead of LLVM emitters. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuEnableMlirLowering { + get { return xlaCpuEnableMlirLowering_; } + set { + xlaCpuEnableMlirLowering_ = value; + } + } + + /// Field number for the "xla_gpu_enable_mlir_lowering" field. + public const int XlaGpuEnableMlirLoweringFieldNumber = 173; + private bool xlaGpuEnableMlirLowering_; + /// + /// If true, use MLIR instead of IR emitter to generate device code for + /// supported lmhlo.fusion ops. See xla::gpu::RewriteFusionOps() for details. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuEnableMlirLowering { + get { return xlaGpuEnableMlirLowering_; } + set { + xlaGpuEnableMlirLowering_ = value; + } + } + + /// Field number for the "xla_hlo_evaluator_use_fast_path" field. + public const int XlaHloEvaluatorUseFastPathFieldNumber = 106; + private bool xlaHloEvaluatorUseFastPath_; + /// + /// Enable fast math with eigen in the HLO evaluator. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaHloEvaluatorUseFastPath { + get { return xlaHloEvaluatorUseFastPath_; } + set { + xlaHloEvaluatorUseFastPath_ = value; + } + } + + /// Field number for the "xla_allow_scalar_index_dynamic_ops" field. + public const int XlaAllowScalarIndexDynamicOpsFieldNumber = 107; + private bool xlaAllowScalarIndexDynamicOps_; + /// + /// Temporary option to allow support for both the R1 and the scalar index + /// versions of DynamicSlice and DynamicUpdateSlice. Only used for testing. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaAllowScalarIndexDynamicOps { + get { return xlaAllowScalarIndexDynamicOps_; } + set { + xlaAllowScalarIndexDynamicOps_ = value; + } + } + + /// Field number for the "xla_step_marker_location" field. + public const int XlaStepMarkerLocationFieldNumber = 108; + private global::Xla.DebugOptions.Types.StepMarkerLocation xlaStepMarkerLocation_ = global::Xla.DebugOptions.Types.StepMarkerLocation.StepMarkAtEntry; + /// + /// Option to emit a target-specific marker to indicate the start of a training + /// step. The location of the marker (if any) is determined by the option + /// value. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DebugOptions.Types.StepMarkerLocation XlaStepMarkerLocation { + get { return xlaStepMarkerLocation_; } + set { + xlaStepMarkerLocation_ = value; + } + } + + /// Field number for the "xla_dump_to" field. + public const int XlaDumpToFieldNumber = 109; + private string xlaDumpTo_ = ""; + /// + /// Directory to dump into. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string XlaDumpTo { + get { return xlaDumpTo_; } + set { + xlaDumpTo_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "xla_dump_hlo_module_re" field. + public const int XlaDumpHloModuleReFieldNumber = 110; + private string xlaDumpHloModuleRe_ = ""; + /// + /// If specified, will only dump modules which match this regexp. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string XlaDumpHloModuleRe { + get { return xlaDumpHloModuleRe_; } + set { + xlaDumpHloModuleRe_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "xla_dump_hlo_pass_re" field. + public const int XlaDumpHloPassReFieldNumber = 111; + private string xlaDumpHloPassRe_ = ""; + /// + /// If this flag is specified, will also dump HLO before and after passes that + /// match this regular expression. Set to .* to dump before/after all passes. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string XlaDumpHloPassRe { + get { return xlaDumpHloPassRe_; } + set { + xlaDumpHloPassRe_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "xla_dump_hlo_as_text" field. + public const int XlaDumpHloAsTextFieldNumber = 112; + private bool xlaDumpHloAsText_; + /// + /// Specifies the format that HLO is dumped in. Multiple of these may be + /// specified. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpHloAsText { + get { return xlaDumpHloAsText_; } + set { + xlaDumpHloAsText_ = value; + } + } + + /// Field number for the "xla_dump_hlo_as_proto" field. + public const int XlaDumpHloAsProtoFieldNumber = 113; + private bool xlaDumpHloAsProto_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpHloAsProto { + get { return xlaDumpHloAsProto_; } + set { + xlaDumpHloAsProto_ = value; + } + } + + /// Field number for the "xla_dump_hlo_as_dot" field. + public const int XlaDumpHloAsDotFieldNumber = 114; + private bool xlaDumpHloAsDot_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpHloAsDot { + get { return xlaDumpHloAsDot_; } + set { + xlaDumpHloAsDot_ = value; + } + } + + /// Field number for the "xla_dump_hlo_as_url" field. + public const int XlaDumpHloAsUrlFieldNumber = 115; + private bool xlaDumpHloAsUrl_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpHloAsUrl { + get { return xlaDumpHloAsUrl_; } + set { + xlaDumpHloAsUrl_ = value; + } + } + + /// Field number for the "xla_dump_hlo_as_html" field. + public const int XlaDumpHloAsHtmlFieldNumber = 116; + private bool xlaDumpHloAsHtml_; + /// + /// Dump HLO graphs as an HTML (DOT -> SVG inlined in HTML) + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpHloAsHtml { + get { return xlaDumpHloAsHtml_; } + set { + xlaDumpHloAsHtml_ = value; + } + } + + /// Field number for the "xla_dump_fusion_visualization" field. + public const int XlaDumpFusionVisualizationFieldNumber = 149; + private bool xlaDumpFusionVisualization_; + /// + /// Dump the visualization of the fusion progress. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpFusionVisualization { + get { return xlaDumpFusionVisualization_; } + set { + xlaDumpFusionVisualization_ = value; + } + } + + /// Field number for the "xla_dump_hlo_snapshots" field. + public const int XlaDumpHloSnapshotsFieldNumber = 118; + private bool xlaDumpHloSnapshots_; + /// + /// If true, every time an HLO module is run, we will dump an HloSnapshot + /// (essentially, a serialized module plus its inputs) to the --xla_dump_to + /// directory. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpHloSnapshots { + get { return xlaDumpHloSnapshots_; } + set { + xlaDumpHloSnapshots_ = value; + } + } + + /// Field number for the "xla_dump_include_timestamp" field. + public const int XlaDumpIncludeTimestampFieldNumber = 131; + private bool xlaDumpIncludeTimestamp_; + /// + /// Include a timestamp in the dumped filenames. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpIncludeTimestamp { + get { return xlaDumpIncludeTimestamp_; } + set { + xlaDumpIncludeTimestamp_ = value; + } + } + + /// Field number for the "xla_dump_max_hlo_modules" field. + public const int XlaDumpMaxHloModulesFieldNumber = 132; + private int xlaDumpMaxHloModules_; + /// + /// Max number of hlo module dumps in a directory. Set to < 0 for unbounded. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int XlaDumpMaxHloModules { + get { return xlaDumpMaxHloModules_; } + set { + xlaDumpMaxHloModules_ = value; + } + } + + /// Field number for the "xla_dump_module_metadata" field. + public const int XlaDumpModuleMetadataFieldNumber = 144; + private bool xlaDumpModuleMetadata_; + /// + /// Dump HloModuleMetadata as a text proto for each HLO module. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpModuleMetadata { + get { return xlaDumpModuleMetadata_; } + set { + xlaDumpModuleMetadata_ = value; + } + } + + /// Field number for the "xla_dump_compress_protos" field. + public const int XlaDumpCompressProtosFieldNumber = 151; + private bool xlaDumpCompressProtos_; + /// + /// GZip-compress protos dumped via --xla_dump_hlo_as_proto. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpCompressProtos { + get { return xlaDumpCompressProtos_; } + set { + xlaDumpCompressProtos_ = value; + } + } + + /// Field number for the "xla_dump_hlo_as_long_text" field. + public const int XlaDumpHloAsLongTextFieldNumber = 164; + private bool xlaDumpHloAsLongText_; + /// + /// Dump HLO in long text format. Ignored unless xla_dump_hlo_as_text is true. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpHloAsLongText { + get { return xlaDumpHloAsLongText_; } + set { + xlaDumpHloAsLongText_ = value; + } + } + + /// Field number for the "xla_gpu_force_conv_nchw" field. + public const int XlaGpuForceConvNchwFieldNumber = 125; + private bool xlaGpuForceConvNchw_; + /// + /// Overrides for XLA GPU's convolution layout heuristic. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuForceConvNchw { + get { return xlaGpuForceConvNchw_; } + set { + xlaGpuForceConvNchw_ = value; + } + } + + /// Field number for the "xla_gpu_force_conv_nhwc" field. + public const int XlaGpuForceConvNhwcFieldNumber = 146; + private bool xlaGpuForceConvNhwc_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuForceConvNhwc { + get { return xlaGpuForceConvNhwc_; } + set { + xlaGpuForceConvNhwc_ = value; + } + } + + /// Field number for the "xla_gpu_ptx_file" field. + public const int XlaGpuPtxFileFieldNumber = 127; + private static readonly pb::FieldCodec _repeated_xlaGpuPtxFile_codec + = pb::FieldCodec.ForString(1018); + private readonly pbc::RepeatedField xlaGpuPtxFile_ = new pbc::RepeatedField(); + /// + /// Paths to files with ptx code. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField XlaGpuPtxFile { + get { return xlaGpuPtxFile_; } + } + + /// Field number for the "xla_gpu_dump_llvmir" field. + public const int XlaGpuDumpLlvmirFieldNumber = 155; + private bool xlaGpuDumpLlvmir_; + /// + /// Whether to dump llvm ir when compiling to ptx. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuDumpLlvmir { + get { return xlaGpuDumpLlvmir_; } + set { + xlaGpuDumpLlvmir_ = value; + } + } + + /// Field number for the "xla_gpu_algorithm_denylist_path" field. + public const int XlaGpuAlgorithmDenylistPathFieldNumber = 128; + private string xlaGpuAlgorithmDenylistPath_ = ""; + /// + /// Denylist for cuDNN convolutions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string XlaGpuAlgorithmDenylistPath { + get { return xlaGpuAlgorithmDenylistPath_; } + set { + xlaGpuAlgorithmDenylistPath_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "xla_tpu_detect_nan" field. + public const int XlaTpuDetectNanFieldNumber = 135; + private bool xlaTpuDetectNan_; + /// + /// Debug options that trigger execution errors when NaN or Inf are detected. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaTpuDetectNan { + get { return xlaTpuDetectNan_; } + set { + xlaTpuDetectNan_ = value; + } + } + + /// Field number for the "xla_tpu_detect_inf" field. + public const int XlaTpuDetectInfFieldNumber = 136; + private bool xlaTpuDetectInf_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaTpuDetectInf { + get { return xlaTpuDetectInf_; } + set { + xlaTpuDetectInf_ = value; + } + } + + /// Field number for the "xla_cpu_enable_xprof_traceme" field. + public const int XlaCpuEnableXprofTracemeFieldNumber = 137; + private bool xlaCpuEnableXprofTraceme_; + /// + /// True if TraceMe annotations are enabled for XLA:CPU. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuEnableXprofTraceme { + get { return xlaCpuEnableXprofTraceme_; } + set { + xlaCpuEnableXprofTraceme_ = value; + } + } + + /// Field number for the "xla_gpu_unsafe_fallback_to_driver_on_ptxas_not_found" field. + public const int XlaGpuUnsafeFallbackToDriverOnPtxasNotFoundFieldNumber = 138; + private bool xlaGpuUnsafeFallbackToDriverOnPtxasNotFound_; + /// + /// It is usually preferable to not fallback to the driver; it can consume more + /// memory, or have bugs. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuUnsafeFallbackToDriverOnPtxasNotFound { + get { return xlaGpuUnsafeFallbackToDriverOnPtxasNotFound_; } + set { + xlaGpuUnsafeFallbackToDriverOnPtxasNotFound_ = value; + } + } + + /// Field number for the "xla_gpu_asm_extra_flags" field. + public const int XlaGpuAsmExtraFlagsFieldNumber = 141; + private string xlaGpuAsmExtraFlags_ = ""; + /// + /// Extra parameters to pass the GPU assembler. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string XlaGpuAsmExtraFlags { + get { return xlaGpuAsmExtraFlags_; } + set { + xlaGpuAsmExtraFlags_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "xla_multiheap_size_constraint_per_heap" field. + public const int XlaMultiheapSizeConstraintPerHeapFieldNumber = 142; + private int xlaMultiheapSizeConstraintPerHeap_; + /// + /// Per-heap size constraint. New heaps will be created if per-heap max size is + /// reached. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int XlaMultiheapSizeConstraintPerHeap { + get { return xlaMultiheapSizeConstraintPerHeap_; } + set { + xlaMultiheapSizeConstraintPerHeap_ = value; + } + } + + /// Field number for the "xla_detailed_logging_and_dumping" field. + public const int XlaDetailedLoggingAndDumpingFieldNumber = 143; + private bool xlaDetailedLoggingAndDumping_; + /// + /// Enable detailed logging into vlog and xla dumping. If this is disabled, no + /// compilation summary will be printed in the end of computation and no hlo + /// modules will be dumped. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDetailedLoggingAndDumping { + get { return xlaDetailedLoggingAndDumping_; } + set { + xlaDetailedLoggingAndDumping_ = value; + } + } + + /// Field number for the "xla_gpu_force_compilation_parallelism" field. + public const int XlaGpuForceCompilationParallelismFieldNumber = 147; + private int xlaGpuForceCompilationParallelism_; + /// + /// Overrides normal multi-threaded compilation settting to use this many + /// threads. Setting to 0 (the default value) means no enforcement. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int XlaGpuForceCompilationParallelism { + get { return xlaGpuForceCompilationParallelism_; } + set { + xlaGpuForceCompilationParallelism_ = value; + } + } + + /// Field number for the "xla_gpu_deterministic_ops" field. + public const int XlaGpuDeterministicOpsFieldNumber = 148; + private bool xlaGpuDeterministicOps_; + /// + /// Guarantees run-to-run determinism. At present, the HLO ops Scatter and + /// SelectAndScatter do not have deterministic XLA:GPU implementations. + /// Compilation errors out if these ops are encountered. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuDeterministicOps { + get { return xlaGpuDeterministicOps_; } + set { + xlaGpuDeterministicOps_ = value; + } + } + + /// Field number for the "xla_gpu_llvm_ir_file" field. + public const int XlaGpuLlvmIrFileFieldNumber = 150; + private static readonly pb::FieldCodec _repeated_xlaGpuLlvmIrFile_codec + = pb::FieldCodec.ForString(1202); + private readonly pbc::RepeatedField xlaGpuLlvmIrFile_ = new pbc::RepeatedField(); + /// + /// Paths to files with LLVM code. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField XlaGpuLlvmIrFile { + get { return xlaGpuLlvmIrFile_; } + } + + /// Field number for the "xla_gpu_enable_async_all_reduce" field. + public const int XlaGpuEnableAsyncAllReduceFieldNumber = 152; + private bool xlaGpuEnableAsyncAllReduce_; + /// + /// Convert synchronous all-reduces ops into asynchronous. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuEnableAsyncAllReduce { + get { return xlaGpuEnableAsyncAllReduce_; } + set { + xlaGpuEnableAsyncAllReduce_ = value; + } + } + + /// Field number for the "xla_gpu_all_reduce_combine_threshold_bytes" field. + public const int XlaGpuAllReduceCombineThresholdBytesFieldNumber = 157; + private long xlaGpuAllReduceCombineThresholdBytes_; + /// + /// Size threshold (in bytes) for the GPU all-reduce combiner. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long XlaGpuAllReduceCombineThresholdBytes { + get { return xlaGpuAllReduceCombineThresholdBytes_; } + set { + xlaGpuAllReduceCombineThresholdBytes_ = value; + } + } + + /// Field number for the "xla_gpu_all_reduce_contiguous" field. + public const int XlaGpuAllReduceContiguousFieldNumber = 158; + private bool xlaGpuAllReduceContiguous_; + /// + /// Combine GPU all-reduces into a single operation over a contiguous buffer. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuAllReduceContiguous { + get { return xlaGpuAllReduceContiguous_; } + set { + xlaGpuAllReduceContiguous_ = value; + } + } + + /// Field number for the "xla_gpu_all_reduce_blueconnect_num_devices_per_host" field. + public const int XlaGpuAllReduceBlueconnectNumDevicesPerHostFieldNumber = 159; + private int xlaGpuAllReduceBlueconnectNumDevicesPerHost_; + /// + /// Number of devices per host for first stage of BlueConnect decomposition + /// pass. The pass will attempt to decompose all-reduces ops into a + /// ReduceScatter-AllReduce-AllGather sequence, with the initial ReduceScatter + /// being performed over all of the devices in the same host. Set to < 1 to + /// disable all-reduce decomposition. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int XlaGpuAllReduceBlueconnectNumDevicesPerHost { + get { return xlaGpuAllReduceBlueconnectNumDevicesPerHost_; } + set { + xlaGpuAllReduceBlueconnectNumDevicesPerHost_ = value; + } + } + + /// Field number for the "xla_gpu_enable_cudnn_frontend" field. + public const int XlaGpuEnableCudnnFrontendFieldNumber = 160; + private bool xlaGpuEnableCudnnFrontend_; + /// + /// Whether to use the cuDNN frontend API for convolutions when possible. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuEnableCudnnFrontend { + get { return xlaGpuEnableCudnnFrontend_; } + set { + xlaGpuEnableCudnnFrontend_ = value; + } + } + + /// Field number for the "xla_dump_disable_metadata" field. + public const int XlaDumpDisableMetadataFieldNumber = 153; + private bool xlaDumpDisableMetadata_; + /// + /// Disable dumping metadata in HLO dumps. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaDumpDisableMetadata { + get { return xlaDumpDisableMetadata_; } + set { + xlaDumpDisableMetadata_ = value; + } + } + + /// Field number for the "xla_dump_hlo_pipeline_re" field. + public const int XlaDumpHloPipelineReFieldNumber = 154; + private string xlaDumpHloPipelineRe_ = ""; + /// + /// If this flag is specified, will only dump HLO before and after passes in + /// the pass pipeline that matches this regular expression. Default empty value + /// enables dumping in all pipelines. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string XlaDumpHloPipelineRe { + get { return xlaDumpHloPipelineRe_; } + set { + xlaDumpHloPipelineRe_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "xla_gpu_strict_conv_algorithm_picker" field. + public const int XlaGpuStrictConvAlgorithmPickerFieldNumber = 156; + private bool xlaGpuStrictConvAlgorithmPicker_; + /// + /// If true, abort immediately when conv algorithm picker fails, rather than + /// logging a warning and proceeding with fallback. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuStrictConvAlgorithmPicker { + get { return xlaGpuStrictConvAlgorithmPicker_; } + set { + xlaGpuStrictConvAlgorithmPicker_ = value; + } + } + + /// Field number for the "xla_gpu_enable_xla_runtime_executable" field. + public const int XlaGpuEnableXlaRuntimeExecutableFieldNumber = 169; + private bool xlaGpuEnableXlaRuntimeExecutable_; + /// + /// If true, use XLA runtime for XLA:GPU backend. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuEnableXlaRuntimeExecutable { + get { return xlaGpuEnableXlaRuntimeExecutable_; } + set { + xlaGpuEnableXlaRuntimeExecutable_ = value; + } + } + + /// Field number for the "xla_gpu_nccl_termination_timeout_seconds" field. + public const int XlaGpuNcclTerminationTimeoutSecondsFieldNumber = 163; + private long xlaGpuNcclTerminationTimeoutSeconds_; + /// + /// Timeout in seconds before terminating jobs that are stuck in a NCCL + /// Rendezvous. Negative value disables the timeout and will not terminate. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long XlaGpuNcclTerminationTimeoutSeconds { + get { return xlaGpuNcclTerminationTimeoutSeconds_; } + set { + xlaGpuNcclTerminationTimeoutSeconds_ = value; + } + } + + /// Field number for the "xla_gpu_enable_shared_constants" field. + public const int XlaGpuEnableSharedConstantsFieldNumber = 165; + private bool xlaGpuEnableSharedConstants_; + /// + /// Enables shared constants for XLA/GPU. This allows large constants to be + /// shared among multiple GPU executables. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuEnableSharedConstants { + get { return xlaGpuEnableSharedConstants_; } + set { + xlaGpuEnableSharedConstants_ = value; + } + } + + /// Field number for the "xla_gpu_enable_cublaslt" field. + public const int XlaGpuEnableCublasltFieldNumber = 166; + private bool xlaGpuEnableCublaslt_; + /// + /// Whether to use cuBLASLt for GEMMs on GPUs. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuEnableCublaslt { + get { return xlaGpuEnableCublaslt_; } + set { + xlaGpuEnableCublaslt_ = value; + } + } + + /// Field number for the "xla_gpu_redzone_scratch_max_megabytes" field. + public const int XlaGpuRedzoneScratchMaxMegabytesFieldNumber = 167; + private long xlaGpuRedzoneScratchMaxMegabytes_; + /// + /// Size threshold (in megabytes) for the GPU redzone scratch allocator. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long XlaGpuRedzoneScratchMaxMegabytes { + get { return xlaGpuRedzoneScratchMaxMegabytes_; } + set { + xlaGpuRedzoneScratchMaxMegabytes_ = value; + } + } + + /// Field number for the "xla_gpu_simplify_all_fp_conversions" field. + public const int XlaGpuSimplifyAllFpConversionsFieldNumber = 168; + private bool xlaGpuSimplifyAllFpConversions_; + /// + /// Allows all floating-point conversions to be simplified, including those + /// that affect the numerics. The `BFloat16Normalization` pass inserts many + /// `f32 -> bf16 -> f32` conversion pairs. These are not removed by the + /// `AlgebraicSimplifier`, as that will only simplify conversions that are + /// no-ops, e.g. `bf16 -> f32 -> bf16`. Removing these improves accuracy. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuSimplifyAllFpConversions { + get { return xlaGpuSimplifyAllFpConversions_; } + set { + xlaGpuSimplifyAllFpConversions_ = value; + } + } + + /// Field number for the "xla_gpu_normalize_layouts" field. + public const int XlaGpuNormalizeLayoutsFieldNumber = 172; + private bool xlaGpuNormalizeLayouts_; + /// + /// An experimental option to force all layouts present in the + /// after-optimizations HLO to be descending, e.g. + /// ShapeUtil::MakeShapeWithDescendingLayout is an identity on all + /// instructions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaGpuNormalizeLayouts { + get { return xlaGpuNormalizeLayouts_; } + set { + xlaGpuNormalizeLayouts_ = value; + } + } + + /// Field number for the "xla_cpu_use_acl" field. + public const int XlaCpuUseAclFieldNumber = 174; + private bool xlaCpuUseAcl_; + /// + /// Generate calls to Arm Compute Library in the CPU backend. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuUseAcl { + get { return xlaCpuUseAcl_; } + set { + xlaCpuUseAcl_ = value; + } + } + + /// Field number for the "xla_cpu_strict_dot_conv_math" field. + public const int XlaCpuStrictDotConvMathFieldNumber = 175; + private bool xlaCpuStrictDotConvMath_; + /// + /// By default, XLA:CPU will run fp16 dot/conv as fp32, as this is generally + /// (much) faster on our hardware. Set this flag to disable this behavior. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool XlaCpuStrictDotConvMath { + get { return xlaCpuStrictDotConvMath_; } + set { + xlaCpuStrictDotConvMath_ = value; + } + } + + /// Field number for the "xla_backend_extra_options" field. + public const int XlaBackendExtraOptionsFieldNumber = 500; + private static readonly pbc::MapField.Codec _map_xlaBackendExtraOptions_codec + = new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForString(18, ""), 4002); + private readonly pbc::MapField xlaBackendExtraOptions_ = new pbc::MapField(); + /// + /// Extra options to pass to the compilation backend (e.g. LLVM); specific + /// interpretation of these values is left to the backend. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::MapField XlaBackendExtraOptions { + get { return xlaBackendExtraOptions_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DebugOptions); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DebugOptions other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (XlaHloGraphAddresses != other.XlaHloGraphAddresses) return false; + if (XlaHloProfile != other.XlaHloProfile) return false; + if(!xlaDisableHloPasses_.Equals(other.xlaDisableHloPasses_)) return false; + if(!xlaEnableHloPassesOnly_.Equals(other.xlaEnableHloPassesOnly_)) return false; + if (XlaDisableAllHloPasses != other.XlaDisableAllHloPasses) return false; + if (XlaBackendOptimizationLevel != other.XlaBackendOptimizationLevel) return false; + if (XlaEmbedIrInExecutable != other.XlaEmbedIrInExecutable) return false; + if (XlaEliminateHloImplicitBroadcast != other.XlaEliminateHloImplicitBroadcast) return false; + if (XlaCpuMultiThreadEigen != other.XlaCpuMultiThreadEigen) return false; + if (XlaGpuCudaDataDir != other.XlaGpuCudaDataDir) return false; + if (XlaGpuFtz != other.XlaGpuFtz) return false; + if (XlaLlvmEnableAliasScopeMetadata != other.XlaLlvmEnableAliasScopeMetadata) return false; + if (XlaLlvmEnableNoaliasMetadata != other.XlaLlvmEnableNoaliasMetadata) return false; + if (XlaLlvmEnableInvariantLoadMetadata != other.XlaLlvmEnableInvariantLoadMetadata) return false; + if (XlaLlvmDisableExpensivePasses != other.XlaLlvmDisableExpensivePasses) return false; + if (XlaTestAllOutputLayouts != other.XlaTestAllOutputLayouts) return false; + if (XlaTestAllInputLayouts != other.XlaTestAllInputLayouts) return false; + if (XlaHloGraphShardingColor != other.XlaHloGraphShardingColor) return false; + if (XlaCpuUseMklDnn != other.XlaCpuUseMklDnn) return false; + if (XlaCpuUseXlaRuntime != other.XlaCpuUseXlaRuntime) return false; + if (XlaGpuMaxKernelUnrollFactor != other.XlaGpuMaxKernelUnrollFactor) return false; + if (XlaCpuEnableFastMath != other.XlaCpuEnableFastMath) return false; + if (XlaCpuFastMathHonorNans != other.XlaCpuFastMathHonorNans) return false; + if (XlaCpuFastMathHonorInfs != other.XlaCpuFastMathHonorInfs) return false; + if (XlaCpuFastMathHonorDivision != other.XlaCpuFastMathHonorDivision) return false; + if (XlaCpuFastMathHonorFunctions != other.XlaCpuFastMathHonorFunctions) return false; + if (XlaCpuEnableFastMinMax != other.XlaCpuEnableFastMinMax) return false; + if (XlaGpuEnableFastMinMax != other.XlaGpuEnableFastMinMax) return false; + if (XlaAllowExcessPrecision != other.XlaAllowExcessPrecision) return false; + if (XlaGpuCrashOnVerificationFailures != other.XlaGpuCrashOnVerificationFailures) return false; + if (XlaGpuAutotuneLevel != other.XlaGpuAutotuneLevel) return false; + if (XlaForceHostPlatformDeviceCount != other.XlaForceHostPlatformDeviceCount) return false; + if (XlaGpuDisableGpuasmOptimizations != other.XlaGpuDisableGpuasmOptimizations) return false; + if (XlaGpuShapeChecks != other.XlaGpuShapeChecks) return false; + if (XlaCpuEnableMlirLowering != other.XlaCpuEnableMlirLowering) return false; + if (XlaGpuEnableMlirLowering != other.XlaGpuEnableMlirLowering) return false; + if (XlaHloEvaluatorUseFastPath != other.XlaHloEvaluatorUseFastPath) return false; + if (XlaAllowScalarIndexDynamicOps != other.XlaAllowScalarIndexDynamicOps) return false; + if (XlaStepMarkerLocation != other.XlaStepMarkerLocation) return false; + if (XlaDumpTo != other.XlaDumpTo) return false; + if (XlaDumpHloModuleRe != other.XlaDumpHloModuleRe) return false; + if (XlaDumpHloPassRe != other.XlaDumpHloPassRe) return false; + if (XlaDumpHloAsText != other.XlaDumpHloAsText) return false; + if (XlaDumpHloAsProto != other.XlaDumpHloAsProto) return false; + if (XlaDumpHloAsDot != other.XlaDumpHloAsDot) return false; + if (XlaDumpHloAsUrl != other.XlaDumpHloAsUrl) return false; + if (XlaDumpHloAsHtml != other.XlaDumpHloAsHtml) return false; + if (XlaDumpFusionVisualization != other.XlaDumpFusionVisualization) return false; + if (XlaDumpHloSnapshots != other.XlaDumpHloSnapshots) return false; + if (XlaDumpIncludeTimestamp != other.XlaDumpIncludeTimestamp) return false; + if (XlaDumpMaxHloModules != other.XlaDumpMaxHloModules) return false; + if (XlaDumpModuleMetadata != other.XlaDumpModuleMetadata) return false; + if (XlaDumpCompressProtos != other.XlaDumpCompressProtos) return false; + if (XlaDumpHloAsLongText != other.XlaDumpHloAsLongText) return false; + if (XlaGpuForceConvNchw != other.XlaGpuForceConvNchw) return false; + if (XlaGpuForceConvNhwc != other.XlaGpuForceConvNhwc) return false; + if(!xlaGpuPtxFile_.Equals(other.xlaGpuPtxFile_)) return false; + if (XlaGpuDumpLlvmir != other.XlaGpuDumpLlvmir) return false; + if (XlaGpuAlgorithmDenylistPath != other.XlaGpuAlgorithmDenylistPath) return false; + if (XlaTpuDetectNan != other.XlaTpuDetectNan) return false; + if (XlaTpuDetectInf != other.XlaTpuDetectInf) return false; + if (XlaCpuEnableXprofTraceme != other.XlaCpuEnableXprofTraceme) return false; + if (XlaGpuUnsafeFallbackToDriverOnPtxasNotFound != other.XlaGpuUnsafeFallbackToDriverOnPtxasNotFound) return false; + if (XlaGpuAsmExtraFlags != other.XlaGpuAsmExtraFlags) return false; + if (XlaMultiheapSizeConstraintPerHeap != other.XlaMultiheapSizeConstraintPerHeap) return false; + if (XlaDetailedLoggingAndDumping != other.XlaDetailedLoggingAndDumping) return false; + if (XlaGpuForceCompilationParallelism != other.XlaGpuForceCompilationParallelism) return false; + if (XlaGpuDeterministicOps != other.XlaGpuDeterministicOps) return false; + if(!xlaGpuLlvmIrFile_.Equals(other.xlaGpuLlvmIrFile_)) return false; + if (XlaGpuEnableAsyncAllReduce != other.XlaGpuEnableAsyncAllReduce) return false; + if (XlaGpuAllReduceCombineThresholdBytes != other.XlaGpuAllReduceCombineThresholdBytes) return false; + if (XlaGpuAllReduceContiguous != other.XlaGpuAllReduceContiguous) return false; + if (XlaGpuAllReduceBlueconnectNumDevicesPerHost != other.XlaGpuAllReduceBlueconnectNumDevicesPerHost) return false; + if (XlaGpuEnableCudnnFrontend != other.XlaGpuEnableCudnnFrontend) return false; + if (XlaDumpDisableMetadata != other.XlaDumpDisableMetadata) return false; + if (XlaDumpHloPipelineRe != other.XlaDumpHloPipelineRe) return false; + if (XlaGpuStrictConvAlgorithmPicker != other.XlaGpuStrictConvAlgorithmPicker) return false; + if (XlaGpuEnableXlaRuntimeExecutable != other.XlaGpuEnableXlaRuntimeExecutable) return false; + if (XlaGpuNcclTerminationTimeoutSeconds != other.XlaGpuNcclTerminationTimeoutSeconds) return false; + if (XlaGpuEnableSharedConstants != other.XlaGpuEnableSharedConstants) return false; + if (XlaGpuEnableCublaslt != other.XlaGpuEnableCublaslt) return false; + if (XlaGpuRedzoneScratchMaxMegabytes != other.XlaGpuRedzoneScratchMaxMegabytes) return false; + if (XlaGpuSimplifyAllFpConversions != other.XlaGpuSimplifyAllFpConversions) return false; + if (XlaGpuNormalizeLayouts != other.XlaGpuNormalizeLayouts) return false; + if (XlaCpuUseAcl != other.XlaCpuUseAcl) return false; + if (XlaCpuStrictDotConvMath != other.XlaCpuStrictDotConvMath) return false; + if (!XlaBackendExtraOptions.Equals(other.XlaBackendExtraOptions)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (XlaHloGraphAddresses != false) hash ^= XlaHloGraphAddresses.GetHashCode(); + if (XlaHloProfile != false) hash ^= XlaHloProfile.GetHashCode(); + hash ^= xlaDisableHloPasses_.GetHashCode(); + hash ^= xlaEnableHloPassesOnly_.GetHashCode(); + if (XlaDisableAllHloPasses != false) hash ^= XlaDisableAllHloPasses.GetHashCode(); + if (XlaBackendOptimizationLevel != 0) hash ^= XlaBackendOptimizationLevel.GetHashCode(); + if (XlaEmbedIrInExecutable != false) hash ^= XlaEmbedIrInExecutable.GetHashCode(); + if (XlaEliminateHloImplicitBroadcast != false) hash ^= XlaEliminateHloImplicitBroadcast.GetHashCode(); + if (XlaCpuMultiThreadEigen != false) hash ^= XlaCpuMultiThreadEigen.GetHashCode(); + if (XlaGpuCudaDataDir.Length != 0) hash ^= XlaGpuCudaDataDir.GetHashCode(); + if (XlaGpuFtz != false) hash ^= XlaGpuFtz.GetHashCode(); + if (XlaLlvmEnableAliasScopeMetadata != false) hash ^= XlaLlvmEnableAliasScopeMetadata.GetHashCode(); + if (XlaLlvmEnableNoaliasMetadata != false) hash ^= XlaLlvmEnableNoaliasMetadata.GetHashCode(); + if (XlaLlvmEnableInvariantLoadMetadata != false) hash ^= XlaLlvmEnableInvariantLoadMetadata.GetHashCode(); + if (XlaLlvmDisableExpensivePasses != false) hash ^= XlaLlvmDisableExpensivePasses.GetHashCode(); + if (XlaTestAllOutputLayouts != false) hash ^= XlaTestAllOutputLayouts.GetHashCode(); + if (XlaTestAllInputLayouts != false) hash ^= XlaTestAllInputLayouts.GetHashCode(); + if (XlaHloGraphShardingColor != false) hash ^= XlaHloGraphShardingColor.GetHashCode(); + if (XlaCpuUseMklDnn != false) hash ^= XlaCpuUseMklDnn.GetHashCode(); + if (XlaCpuUseXlaRuntime != false) hash ^= XlaCpuUseXlaRuntime.GetHashCode(); + if (XlaGpuMaxKernelUnrollFactor != 0) hash ^= XlaGpuMaxKernelUnrollFactor.GetHashCode(); + if (XlaCpuEnableFastMath != false) hash ^= XlaCpuEnableFastMath.GetHashCode(); + if (XlaCpuFastMathHonorNans != false) hash ^= XlaCpuFastMathHonorNans.GetHashCode(); + if (XlaCpuFastMathHonorInfs != false) hash ^= XlaCpuFastMathHonorInfs.GetHashCode(); + if (XlaCpuFastMathHonorDivision != false) hash ^= XlaCpuFastMathHonorDivision.GetHashCode(); + if (XlaCpuFastMathHonorFunctions != false) hash ^= XlaCpuFastMathHonorFunctions.GetHashCode(); + if (XlaCpuEnableFastMinMax != false) hash ^= XlaCpuEnableFastMinMax.GetHashCode(); + if (XlaGpuEnableFastMinMax != false) hash ^= XlaGpuEnableFastMinMax.GetHashCode(); + if (XlaAllowExcessPrecision != false) hash ^= XlaAllowExcessPrecision.GetHashCode(); + if (XlaGpuCrashOnVerificationFailures != false) hash ^= XlaGpuCrashOnVerificationFailures.GetHashCode(); + if (XlaGpuAutotuneLevel != 0) hash ^= XlaGpuAutotuneLevel.GetHashCode(); + if (XlaForceHostPlatformDeviceCount != 0) hash ^= XlaForceHostPlatformDeviceCount.GetHashCode(); + if (XlaGpuDisableGpuasmOptimizations != false) hash ^= XlaGpuDisableGpuasmOptimizations.GetHashCode(); + if (XlaGpuShapeChecks != global::Xla.DebugOptions.Types.ShapeChecks.Ignore) hash ^= XlaGpuShapeChecks.GetHashCode(); + if (XlaCpuEnableMlirLowering != false) hash ^= XlaCpuEnableMlirLowering.GetHashCode(); + if (XlaGpuEnableMlirLowering != false) hash ^= XlaGpuEnableMlirLowering.GetHashCode(); + if (XlaHloEvaluatorUseFastPath != false) hash ^= XlaHloEvaluatorUseFastPath.GetHashCode(); + if (XlaAllowScalarIndexDynamicOps != false) hash ^= XlaAllowScalarIndexDynamicOps.GetHashCode(); + if (XlaStepMarkerLocation != global::Xla.DebugOptions.Types.StepMarkerLocation.StepMarkAtEntry) hash ^= XlaStepMarkerLocation.GetHashCode(); + if (XlaDumpTo.Length != 0) hash ^= XlaDumpTo.GetHashCode(); + if (XlaDumpHloModuleRe.Length != 0) hash ^= XlaDumpHloModuleRe.GetHashCode(); + if (XlaDumpHloPassRe.Length != 0) hash ^= XlaDumpHloPassRe.GetHashCode(); + if (XlaDumpHloAsText != false) hash ^= XlaDumpHloAsText.GetHashCode(); + if (XlaDumpHloAsProto != false) hash ^= XlaDumpHloAsProto.GetHashCode(); + if (XlaDumpHloAsDot != false) hash ^= XlaDumpHloAsDot.GetHashCode(); + if (XlaDumpHloAsUrl != false) hash ^= XlaDumpHloAsUrl.GetHashCode(); + if (XlaDumpHloAsHtml != false) hash ^= XlaDumpHloAsHtml.GetHashCode(); + if (XlaDumpFusionVisualization != false) hash ^= XlaDumpFusionVisualization.GetHashCode(); + if (XlaDumpHloSnapshots != false) hash ^= XlaDumpHloSnapshots.GetHashCode(); + if (XlaDumpIncludeTimestamp != false) hash ^= XlaDumpIncludeTimestamp.GetHashCode(); + if (XlaDumpMaxHloModules != 0) hash ^= XlaDumpMaxHloModules.GetHashCode(); + if (XlaDumpModuleMetadata != false) hash ^= XlaDumpModuleMetadata.GetHashCode(); + if (XlaDumpCompressProtos != false) hash ^= XlaDumpCompressProtos.GetHashCode(); + if (XlaDumpHloAsLongText != false) hash ^= XlaDumpHloAsLongText.GetHashCode(); + if (XlaGpuForceConvNchw != false) hash ^= XlaGpuForceConvNchw.GetHashCode(); + if (XlaGpuForceConvNhwc != false) hash ^= XlaGpuForceConvNhwc.GetHashCode(); + hash ^= xlaGpuPtxFile_.GetHashCode(); + if (XlaGpuDumpLlvmir != false) hash ^= XlaGpuDumpLlvmir.GetHashCode(); + if (XlaGpuAlgorithmDenylistPath.Length != 0) hash ^= XlaGpuAlgorithmDenylistPath.GetHashCode(); + if (XlaTpuDetectNan != false) hash ^= XlaTpuDetectNan.GetHashCode(); + if (XlaTpuDetectInf != false) hash ^= XlaTpuDetectInf.GetHashCode(); + if (XlaCpuEnableXprofTraceme != false) hash ^= XlaCpuEnableXprofTraceme.GetHashCode(); + if (XlaGpuUnsafeFallbackToDriverOnPtxasNotFound != false) hash ^= XlaGpuUnsafeFallbackToDriverOnPtxasNotFound.GetHashCode(); + if (XlaGpuAsmExtraFlags.Length != 0) hash ^= XlaGpuAsmExtraFlags.GetHashCode(); + if (XlaMultiheapSizeConstraintPerHeap != 0) hash ^= XlaMultiheapSizeConstraintPerHeap.GetHashCode(); + if (XlaDetailedLoggingAndDumping != false) hash ^= XlaDetailedLoggingAndDumping.GetHashCode(); + if (XlaGpuForceCompilationParallelism != 0) hash ^= XlaGpuForceCompilationParallelism.GetHashCode(); + if (XlaGpuDeterministicOps != false) hash ^= XlaGpuDeterministicOps.GetHashCode(); + hash ^= xlaGpuLlvmIrFile_.GetHashCode(); + if (XlaGpuEnableAsyncAllReduce != false) hash ^= XlaGpuEnableAsyncAllReduce.GetHashCode(); + if (XlaGpuAllReduceCombineThresholdBytes != 0L) hash ^= XlaGpuAllReduceCombineThresholdBytes.GetHashCode(); + if (XlaGpuAllReduceContiguous != false) hash ^= XlaGpuAllReduceContiguous.GetHashCode(); + if (XlaGpuAllReduceBlueconnectNumDevicesPerHost != 0) hash ^= XlaGpuAllReduceBlueconnectNumDevicesPerHost.GetHashCode(); + if (XlaGpuEnableCudnnFrontend != false) hash ^= XlaGpuEnableCudnnFrontend.GetHashCode(); + if (XlaDumpDisableMetadata != false) hash ^= XlaDumpDisableMetadata.GetHashCode(); + if (XlaDumpHloPipelineRe.Length != 0) hash ^= XlaDumpHloPipelineRe.GetHashCode(); + if (XlaGpuStrictConvAlgorithmPicker != false) hash ^= XlaGpuStrictConvAlgorithmPicker.GetHashCode(); + if (XlaGpuEnableXlaRuntimeExecutable != false) hash ^= XlaGpuEnableXlaRuntimeExecutable.GetHashCode(); + if (XlaGpuNcclTerminationTimeoutSeconds != 0L) hash ^= XlaGpuNcclTerminationTimeoutSeconds.GetHashCode(); + if (XlaGpuEnableSharedConstants != false) hash ^= XlaGpuEnableSharedConstants.GetHashCode(); + if (XlaGpuEnableCublaslt != false) hash ^= XlaGpuEnableCublaslt.GetHashCode(); + if (XlaGpuRedzoneScratchMaxMegabytes != 0L) hash ^= XlaGpuRedzoneScratchMaxMegabytes.GetHashCode(); + if (XlaGpuSimplifyAllFpConversions != false) hash ^= XlaGpuSimplifyAllFpConversions.GetHashCode(); + if (XlaGpuNormalizeLayouts != false) hash ^= XlaGpuNormalizeLayouts.GetHashCode(); + if (XlaCpuUseAcl != false) hash ^= XlaCpuUseAcl.GetHashCode(); + if (XlaCpuStrictDotConvMath != false) hash ^= XlaCpuStrictDotConvMath.GetHashCode(); + hash ^= XlaBackendExtraOptions.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (XlaHloGraphAddresses != false) { + output.WriteRawTag(16); + output.WriteBool(XlaHloGraphAddresses); + } + if (XlaHloProfile != false) { + output.WriteRawTag(72); + output.WriteBool(XlaHloProfile); + } + xlaDisableHloPasses_.WriteTo(output, _repeated_xlaDisableHloPasses_codec); + if (XlaBackendOptimizationLevel != 0) { + output.WriteRawTag(248, 1); + output.WriteInt32(XlaBackendOptimizationLevel); + } + if (XlaEmbedIrInExecutable != false) { + output.WriteRawTag(136, 2); + output.WriteBool(XlaEmbedIrInExecutable); + } + if (XlaEliminateHloImplicitBroadcast != false) { + output.WriteRawTag(152, 2); + output.WriteBool(XlaEliminateHloImplicitBroadcast); + } + if (XlaCpuMultiThreadEigen != false) { + output.WriteRawTag(224, 3); + output.WriteBool(XlaCpuMultiThreadEigen); + } + if (XlaGpuCudaDataDir.Length != 0) { + output.WriteRawTag(234, 3); + output.WriteString(XlaGpuCudaDataDir); + } + if (XlaGpuFtz != false) { + output.WriteRawTag(240, 3); + output.WriteBool(XlaGpuFtz); + } + if (XlaLlvmEnableAliasScopeMetadata != false) { + output.WriteRawTag(176, 4); + output.WriteBool(XlaLlvmEnableAliasScopeMetadata); + } + if (XlaLlvmEnableNoaliasMetadata != false) { + output.WriteRawTag(184, 4); + output.WriteBool(XlaLlvmEnableNoaliasMetadata); + } + if (XlaLlvmEnableInvariantLoadMetadata != false) { + output.WriteRawTag(192, 4); + output.WriteBool(XlaLlvmEnableInvariantLoadMetadata); + } + if (XlaLlvmDisableExpensivePasses != false) { + output.WriteRawTag(200, 4); + output.WriteBool(XlaLlvmDisableExpensivePasses); + } + if (XlaTestAllOutputLayouts != false) { + output.WriteRawTag(208, 5); + output.WriteBool(XlaTestAllOutputLayouts); + } + if (XlaTestAllInputLayouts != false) { + output.WriteRawTag(216, 5); + output.WriteBool(XlaTestAllInputLayouts); + } + if (XlaHloGraphShardingColor != false) { + output.WriteRawTag(224, 5); + output.WriteBool(XlaHloGraphShardingColor); + } + if (XlaCpuUseMklDnn != false) { + output.WriteRawTag(136, 6); + output.WriteBool(XlaCpuUseMklDnn); + } + if (XlaGpuMaxKernelUnrollFactor != 0) { + output.WriteRawTag(144, 6); + output.WriteInt32(XlaGpuMaxKernelUnrollFactor); + } + if (XlaCpuEnableFastMath != false) { + output.WriteRawTag(152, 6); + output.WriteBool(XlaCpuEnableFastMath); + } + if (XlaGpuEnableFastMinMax != false) { + output.WriteRawTag(160, 6); + output.WriteBool(XlaGpuEnableFastMinMax); + } + if (XlaGpuCrashOnVerificationFailures != false) { + output.WriteRawTag(168, 6); + output.WriteBool(XlaGpuCrashOnVerificationFailures); + } + if (XlaForceHostPlatformDeviceCount != 0) { + output.WriteRawTag(176, 6); + output.WriteInt32(XlaForceHostPlatformDeviceCount); + } + if (XlaGpuDisableGpuasmOptimizations != false) { + output.WriteRawTag(184, 6); + output.WriteBool(XlaGpuDisableGpuasmOptimizations); + } + if (XlaDisableAllHloPasses != false) { + output.WriteRawTag(192, 6); + output.WriteBool(XlaDisableAllHloPasses); + } + if (XlaHloEvaluatorUseFastPath != false) { + output.WriteRawTag(208, 6); + output.WriteBool(XlaHloEvaluatorUseFastPath); + } + if (XlaAllowScalarIndexDynamicOps != false) { + output.WriteRawTag(216, 6); + output.WriteBool(XlaAllowScalarIndexDynamicOps); + } + if (XlaStepMarkerLocation != global::Xla.DebugOptions.Types.StepMarkerLocation.StepMarkAtEntry) { + output.WriteRawTag(224, 6); + output.WriteEnum((int) XlaStepMarkerLocation); + } + if (XlaDumpTo.Length != 0) { + output.WriteRawTag(234, 6); + output.WriteString(XlaDumpTo); + } + if (XlaDumpHloModuleRe.Length != 0) { + output.WriteRawTag(242, 6); + output.WriteString(XlaDumpHloModuleRe); + } + if (XlaDumpHloPassRe.Length != 0) { + output.WriteRawTag(250, 6); + output.WriteString(XlaDumpHloPassRe); + } + if (XlaDumpHloAsText != false) { + output.WriteRawTag(128, 7); + output.WriteBool(XlaDumpHloAsText); + } + if (XlaDumpHloAsProto != false) { + output.WriteRawTag(136, 7); + output.WriteBool(XlaDumpHloAsProto); + } + if (XlaDumpHloAsDot != false) { + output.WriteRawTag(144, 7); + output.WriteBool(XlaDumpHloAsDot); + } + if (XlaDumpHloAsUrl != false) { + output.WriteRawTag(152, 7); + output.WriteBool(XlaDumpHloAsUrl); + } + if (XlaDumpHloAsHtml != false) { + output.WriteRawTag(160, 7); + output.WriteBool(XlaDumpHloAsHtml); + } + if (XlaDumpHloSnapshots != false) { + output.WriteRawTag(176, 7); + output.WriteBool(XlaDumpHloSnapshots); + } + if (XlaCpuFastMathHonorNans != false) { + output.WriteRawTag(192, 7); + output.WriteBool(XlaCpuFastMathHonorNans); + } + if (XlaCpuFastMathHonorInfs != false) { + output.WriteRawTag(200, 7); + output.WriteBool(XlaCpuFastMathHonorInfs); + } + if (XlaAllowExcessPrecision != false) { + output.WriteRawTag(208, 7); + output.WriteBool(XlaAllowExcessPrecision); + } + if (XlaGpuAutotuneLevel != 0) { + output.WriteRawTag(216, 7); + output.WriteInt32(XlaGpuAutotuneLevel); + } + xlaEnableHloPassesOnly_.WriteTo(output, _repeated_xlaEnableHloPassesOnly_codec); + if (XlaGpuForceConvNchw != false) { + output.WriteRawTag(232, 7); + output.WriteBool(XlaGpuForceConvNchw); + } + if (XlaCpuFastMathHonorDivision != false) { + output.WriteRawTag(240, 7); + output.WriteBool(XlaCpuFastMathHonorDivision); + } + xlaGpuPtxFile_.WriteTo(output, _repeated_xlaGpuPtxFile_codec); + if (XlaGpuAlgorithmDenylistPath.Length != 0) { + output.WriteRawTag(130, 8); + output.WriteString(XlaGpuAlgorithmDenylistPath); + } + if (XlaCpuFastMathHonorFunctions != false) { + output.WriteRawTag(136, 8); + output.WriteBool(XlaCpuFastMathHonorFunctions); + } + if (XlaDumpIncludeTimestamp != false) { + output.WriteRawTag(152, 8); + output.WriteBool(XlaDumpIncludeTimestamp); + } + if (XlaDumpMaxHloModules != 0) { + output.WriteRawTag(160, 8); + output.WriteInt32(XlaDumpMaxHloModules); + } + if (XlaTpuDetectNan != false) { + output.WriteRawTag(184, 8); + output.WriteBool(XlaTpuDetectNan); + } + if (XlaTpuDetectInf != false) { + output.WriteRawTag(192, 8); + output.WriteBool(XlaTpuDetectInf); + } + if (XlaCpuEnableXprofTraceme != false) { + output.WriteRawTag(200, 8); + output.WriteBool(XlaCpuEnableXprofTraceme); + } + if (XlaGpuUnsafeFallbackToDriverOnPtxasNotFound != false) { + output.WriteRawTag(208, 8); + output.WriteBool(XlaGpuUnsafeFallbackToDriverOnPtxasNotFound); + } + if (XlaCpuEnableFastMinMax != false) { + output.WriteRawTag(224, 8); + output.WriteBool(XlaCpuEnableFastMinMax); + } + if (XlaGpuAsmExtraFlags.Length != 0) { + output.WriteRawTag(234, 8); + output.WriteString(XlaGpuAsmExtraFlags); + } + if (XlaMultiheapSizeConstraintPerHeap != 0) { + output.WriteRawTag(240, 8); + output.WriteInt32(XlaMultiheapSizeConstraintPerHeap); + } + if (XlaDetailedLoggingAndDumping != false) { + output.WriteRawTag(248, 8); + output.WriteBool(XlaDetailedLoggingAndDumping); + } + if (XlaDumpModuleMetadata != false) { + output.WriteRawTag(128, 9); + output.WriteBool(XlaDumpModuleMetadata); + } + if (XlaGpuForceConvNhwc != false) { + output.WriteRawTag(144, 9); + output.WriteBool(XlaGpuForceConvNhwc); + } + if (XlaGpuForceCompilationParallelism != 0) { + output.WriteRawTag(152, 9); + output.WriteInt32(XlaGpuForceCompilationParallelism); + } + if (XlaGpuDeterministicOps != false) { + output.WriteRawTag(160, 9); + output.WriteBool(XlaGpuDeterministicOps); + } + if (XlaDumpFusionVisualization != false) { + output.WriteRawTag(168, 9); + output.WriteBool(XlaDumpFusionVisualization); + } + xlaGpuLlvmIrFile_.WriteTo(output, _repeated_xlaGpuLlvmIrFile_codec); + if (XlaDumpCompressProtos != false) { + output.WriteRawTag(184, 9); + output.WriteBool(XlaDumpCompressProtos); + } + if (XlaGpuEnableAsyncAllReduce != false) { + output.WriteRawTag(192, 9); + output.WriteBool(XlaGpuEnableAsyncAllReduce); + } + if (XlaDumpDisableMetadata != false) { + output.WriteRawTag(200, 9); + output.WriteBool(XlaDumpDisableMetadata); + } + if (XlaDumpHloPipelineRe.Length != 0) { + output.WriteRawTag(210, 9); + output.WriteString(XlaDumpHloPipelineRe); + } + if (XlaGpuDumpLlvmir != false) { + output.WriteRawTag(216, 9); + output.WriteBool(XlaGpuDumpLlvmir); + } + if (XlaGpuStrictConvAlgorithmPicker != false) { + output.WriteRawTag(224, 9); + output.WriteBool(XlaGpuStrictConvAlgorithmPicker); + } + if (XlaGpuAllReduceCombineThresholdBytes != 0L) { + output.WriteRawTag(232, 9); + output.WriteInt64(XlaGpuAllReduceCombineThresholdBytes); + } + if (XlaGpuAllReduceContiguous != false) { + output.WriteRawTag(240, 9); + output.WriteBool(XlaGpuAllReduceContiguous); + } + if (XlaGpuAllReduceBlueconnectNumDevicesPerHost != 0) { + output.WriteRawTag(248, 9); + output.WriteInt32(XlaGpuAllReduceBlueconnectNumDevicesPerHost); + } + if (XlaGpuEnableCudnnFrontend != false) { + output.WriteRawTag(128, 10); + output.WriteBool(XlaGpuEnableCudnnFrontend); + } + if (XlaGpuNcclTerminationTimeoutSeconds != 0L) { + output.WriteRawTag(152, 10); + output.WriteInt64(XlaGpuNcclTerminationTimeoutSeconds); + } + if (XlaDumpHloAsLongText != false) { + output.WriteRawTag(160, 10); + output.WriteBool(XlaDumpHloAsLongText); + } + if (XlaGpuEnableSharedConstants != false) { + output.WriteRawTag(168, 10); + output.WriteBool(XlaGpuEnableSharedConstants); + } + if (XlaGpuEnableCublaslt != false) { + output.WriteRawTag(176, 10); + output.WriteBool(XlaGpuEnableCublaslt); + } + if (XlaGpuRedzoneScratchMaxMegabytes != 0L) { + output.WriteRawTag(184, 10); + output.WriteInt64(XlaGpuRedzoneScratchMaxMegabytes); + } + if (XlaGpuSimplifyAllFpConversions != false) { + output.WriteRawTag(192, 10); + output.WriteBool(XlaGpuSimplifyAllFpConversions); + } + if (XlaGpuEnableXlaRuntimeExecutable != false) { + output.WriteRawTag(200, 10); + output.WriteBool(XlaGpuEnableXlaRuntimeExecutable); + } + if (XlaGpuShapeChecks != global::Xla.DebugOptions.Types.ShapeChecks.Ignore) { + output.WriteRawTag(208, 10); + output.WriteEnum((int) XlaGpuShapeChecks); + } + if (XlaCpuEnableMlirLowering != false) { + output.WriteRawTag(216, 10); + output.WriteBool(XlaCpuEnableMlirLowering); + } + if (XlaGpuNormalizeLayouts != false) { + output.WriteRawTag(224, 10); + output.WriteBool(XlaGpuNormalizeLayouts); + } + if (XlaGpuEnableMlirLowering != false) { + output.WriteRawTag(232, 10); + output.WriteBool(XlaGpuEnableMlirLowering); + } + if (XlaCpuUseAcl != false) { + output.WriteRawTag(240, 10); + output.WriteBool(XlaCpuUseAcl); + } + if (XlaCpuStrictDotConvMath != false) { + output.WriteRawTag(248, 10); + output.WriteBool(XlaCpuStrictDotConvMath); + } + if (XlaCpuUseXlaRuntime != false) { + output.WriteRawTag(136, 11); + output.WriteBool(XlaCpuUseXlaRuntime); + } + xlaBackendExtraOptions_.WriteTo(output, _map_xlaBackendExtraOptions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (XlaHloGraphAddresses != false) { + output.WriteRawTag(16); + output.WriteBool(XlaHloGraphAddresses); + } + if (XlaHloProfile != false) { + output.WriteRawTag(72); + output.WriteBool(XlaHloProfile); + } + xlaDisableHloPasses_.WriteTo(ref output, _repeated_xlaDisableHloPasses_codec); + if (XlaBackendOptimizationLevel != 0) { + output.WriteRawTag(248, 1); + output.WriteInt32(XlaBackendOptimizationLevel); + } + if (XlaEmbedIrInExecutable != false) { + output.WriteRawTag(136, 2); + output.WriteBool(XlaEmbedIrInExecutable); + } + if (XlaEliminateHloImplicitBroadcast != false) { + output.WriteRawTag(152, 2); + output.WriteBool(XlaEliminateHloImplicitBroadcast); + } + if (XlaCpuMultiThreadEigen != false) { + output.WriteRawTag(224, 3); + output.WriteBool(XlaCpuMultiThreadEigen); + } + if (XlaGpuCudaDataDir.Length != 0) { + output.WriteRawTag(234, 3); + output.WriteString(XlaGpuCudaDataDir); + } + if (XlaGpuFtz != false) { + output.WriteRawTag(240, 3); + output.WriteBool(XlaGpuFtz); + } + if (XlaLlvmEnableAliasScopeMetadata != false) { + output.WriteRawTag(176, 4); + output.WriteBool(XlaLlvmEnableAliasScopeMetadata); + } + if (XlaLlvmEnableNoaliasMetadata != false) { + output.WriteRawTag(184, 4); + output.WriteBool(XlaLlvmEnableNoaliasMetadata); + } + if (XlaLlvmEnableInvariantLoadMetadata != false) { + output.WriteRawTag(192, 4); + output.WriteBool(XlaLlvmEnableInvariantLoadMetadata); + } + if (XlaLlvmDisableExpensivePasses != false) { + output.WriteRawTag(200, 4); + output.WriteBool(XlaLlvmDisableExpensivePasses); + } + if (XlaTestAllOutputLayouts != false) { + output.WriteRawTag(208, 5); + output.WriteBool(XlaTestAllOutputLayouts); + } + if (XlaTestAllInputLayouts != false) { + output.WriteRawTag(216, 5); + output.WriteBool(XlaTestAllInputLayouts); + } + if (XlaHloGraphShardingColor != false) { + output.WriteRawTag(224, 5); + output.WriteBool(XlaHloGraphShardingColor); + } + if (XlaCpuUseMklDnn != false) { + output.WriteRawTag(136, 6); + output.WriteBool(XlaCpuUseMklDnn); + } + if (XlaGpuMaxKernelUnrollFactor != 0) { + output.WriteRawTag(144, 6); + output.WriteInt32(XlaGpuMaxKernelUnrollFactor); + } + if (XlaCpuEnableFastMath != false) { + output.WriteRawTag(152, 6); + output.WriteBool(XlaCpuEnableFastMath); + } + if (XlaGpuEnableFastMinMax != false) { + output.WriteRawTag(160, 6); + output.WriteBool(XlaGpuEnableFastMinMax); + } + if (XlaGpuCrashOnVerificationFailures != false) { + output.WriteRawTag(168, 6); + output.WriteBool(XlaGpuCrashOnVerificationFailures); + } + if (XlaForceHostPlatformDeviceCount != 0) { + output.WriteRawTag(176, 6); + output.WriteInt32(XlaForceHostPlatformDeviceCount); + } + if (XlaGpuDisableGpuasmOptimizations != false) { + output.WriteRawTag(184, 6); + output.WriteBool(XlaGpuDisableGpuasmOptimizations); + } + if (XlaDisableAllHloPasses != false) { + output.WriteRawTag(192, 6); + output.WriteBool(XlaDisableAllHloPasses); + } + if (XlaHloEvaluatorUseFastPath != false) { + output.WriteRawTag(208, 6); + output.WriteBool(XlaHloEvaluatorUseFastPath); + } + if (XlaAllowScalarIndexDynamicOps != false) { + output.WriteRawTag(216, 6); + output.WriteBool(XlaAllowScalarIndexDynamicOps); + } + if (XlaStepMarkerLocation != global::Xla.DebugOptions.Types.StepMarkerLocation.StepMarkAtEntry) { + output.WriteRawTag(224, 6); + output.WriteEnum((int) XlaStepMarkerLocation); + } + if (XlaDumpTo.Length != 0) { + output.WriteRawTag(234, 6); + output.WriteString(XlaDumpTo); + } + if (XlaDumpHloModuleRe.Length != 0) { + output.WriteRawTag(242, 6); + output.WriteString(XlaDumpHloModuleRe); + } + if (XlaDumpHloPassRe.Length != 0) { + output.WriteRawTag(250, 6); + output.WriteString(XlaDumpHloPassRe); + } + if (XlaDumpHloAsText != false) { + output.WriteRawTag(128, 7); + output.WriteBool(XlaDumpHloAsText); + } + if (XlaDumpHloAsProto != false) { + output.WriteRawTag(136, 7); + output.WriteBool(XlaDumpHloAsProto); + } + if (XlaDumpHloAsDot != false) { + output.WriteRawTag(144, 7); + output.WriteBool(XlaDumpHloAsDot); + } + if (XlaDumpHloAsUrl != false) { + output.WriteRawTag(152, 7); + output.WriteBool(XlaDumpHloAsUrl); + } + if (XlaDumpHloAsHtml != false) { + output.WriteRawTag(160, 7); + output.WriteBool(XlaDumpHloAsHtml); + } + if (XlaDumpHloSnapshots != false) { + output.WriteRawTag(176, 7); + output.WriteBool(XlaDumpHloSnapshots); + } + if (XlaCpuFastMathHonorNans != false) { + output.WriteRawTag(192, 7); + output.WriteBool(XlaCpuFastMathHonorNans); + } + if (XlaCpuFastMathHonorInfs != false) { + output.WriteRawTag(200, 7); + output.WriteBool(XlaCpuFastMathHonorInfs); + } + if (XlaAllowExcessPrecision != false) { + output.WriteRawTag(208, 7); + output.WriteBool(XlaAllowExcessPrecision); + } + if (XlaGpuAutotuneLevel != 0) { + output.WriteRawTag(216, 7); + output.WriteInt32(XlaGpuAutotuneLevel); + } + xlaEnableHloPassesOnly_.WriteTo(ref output, _repeated_xlaEnableHloPassesOnly_codec); + if (XlaGpuForceConvNchw != false) { + output.WriteRawTag(232, 7); + output.WriteBool(XlaGpuForceConvNchw); + } + if (XlaCpuFastMathHonorDivision != false) { + output.WriteRawTag(240, 7); + output.WriteBool(XlaCpuFastMathHonorDivision); + } + xlaGpuPtxFile_.WriteTo(ref output, _repeated_xlaGpuPtxFile_codec); + if (XlaGpuAlgorithmDenylistPath.Length != 0) { + output.WriteRawTag(130, 8); + output.WriteString(XlaGpuAlgorithmDenylistPath); + } + if (XlaCpuFastMathHonorFunctions != false) { + output.WriteRawTag(136, 8); + output.WriteBool(XlaCpuFastMathHonorFunctions); + } + if (XlaDumpIncludeTimestamp != false) { + output.WriteRawTag(152, 8); + output.WriteBool(XlaDumpIncludeTimestamp); + } + if (XlaDumpMaxHloModules != 0) { + output.WriteRawTag(160, 8); + output.WriteInt32(XlaDumpMaxHloModules); + } + if (XlaTpuDetectNan != false) { + output.WriteRawTag(184, 8); + output.WriteBool(XlaTpuDetectNan); + } + if (XlaTpuDetectInf != false) { + output.WriteRawTag(192, 8); + output.WriteBool(XlaTpuDetectInf); + } + if (XlaCpuEnableXprofTraceme != false) { + output.WriteRawTag(200, 8); + output.WriteBool(XlaCpuEnableXprofTraceme); + } + if (XlaGpuUnsafeFallbackToDriverOnPtxasNotFound != false) { + output.WriteRawTag(208, 8); + output.WriteBool(XlaGpuUnsafeFallbackToDriverOnPtxasNotFound); + } + if (XlaCpuEnableFastMinMax != false) { + output.WriteRawTag(224, 8); + output.WriteBool(XlaCpuEnableFastMinMax); + } + if (XlaGpuAsmExtraFlags.Length != 0) { + output.WriteRawTag(234, 8); + output.WriteString(XlaGpuAsmExtraFlags); + } + if (XlaMultiheapSizeConstraintPerHeap != 0) { + output.WriteRawTag(240, 8); + output.WriteInt32(XlaMultiheapSizeConstraintPerHeap); + } + if (XlaDetailedLoggingAndDumping != false) { + output.WriteRawTag(248, 8); + output.WriteBool(XlaDetailedLoggingAndDumping); + } + if (XlaDumpModuleMetadata != false) { + output.WriteRawTag(128, 9); + output.WriteBool(XlaDumpModuleMetadata); + } + if (XlaGpuForceConvNhwc != false) { + output.WriteRawTag(144, 9); + output.WriteBool(XlaGpuForceConvNhwc); + } + if (XlaGpuForceCompilationParallelism != 0) { + output.WriteRawTag(152, 9); + output.WriteInt32(XlaGpuForceCompilationParallelism); + } + if (XlaGpuDeterministicOps != false) { + output.WriteRawTag(160, 9); + output.WriteBool(XlaGpuDeterministicOps); + } + if (XlaDumpFusionVisualization != false) { + output.WriteRawTag(168, 9); + output.WriteBool(XlaDumpFusionVisualization); + } + xlaGpuLlvmIrFile_.WriteTo(ref output, _repeated_xlaGpuLlvmIrFile_codec); + if (XlaDumpCompressProtos != false) { + output.WriteRawTag(184, 9); + output.WriteBool(XlaDumpCompressProtos); + } + if (XlaGpuEnableAsyncAllReduce != false) { + output.WriteRawTag(192, 9); + output.WriteBool(XlaGpuEnableAsyncAllReduce); + } + if (XlaDumpDisableMetadata != false) { + output.WriteRawTag(200, 9); + output.WriteBool(XlaDumpDisableMetadata); + } + if (XlaDumpHloPipelineRe.Length != 0) { + output.WriteRawTag(210, 9); + output.WriteString(XlaDumpHloPipelineRe); + } + if (XlaGpuDumpLlvmir != false) { + output.WriteRawTag(216, 9); + output.WriteBool(XlaGpuDumpLlvmir); + } + if (XlaGpuStrictConvAlgorithmPicker != false) { + output.WriteRawTag(224, 9); + output.WriteBool(XlaGpuStrictConvAlgorithmPicker); + } + if (XlaGpuAllReduceCombineThresholdBytes != 0L) { + output.WriteRawTag(232, 9); + output.WriteInt64(XlaGpuAllReduceCombineThresholdBytes); + } + if (XlaGpuAllReduceContiguous != false) { + output.WriteRawTag(240, 9); + output.WriteBool(XlaGpuAllReduceContiguous); + } + if (XlaGpuAllReduceBlueconnectNumDevicesPerHost != 0) { + output.WriteRawTag(248, 9); + output.WriteInt32(XlaGpuAllReduceBlueconnectNumDevicesPerHost); + } + if (XlaGpuEnableCudnnFrontend != false) { + output.WriteRawTag(128, 10); + output.WriteBool(XlaGpuEnableCudnnFrontend); + } + if (XlaGpuNcclTerminationTimeoutSeconds != 0L) { + output.WriteRawTag(152, 10); + output.WriteInt64(XlaGpuNcclTerminationTimeoutSeconds); + } + if (XlaDumpHloAsLongText != false) { + output.WriteRawTag(160, 10); + output.WriteBool(XlaDumpHloAsLongText); + } + if (XlaGpuEnableSharedConstants != false) { + output.WriteRawTag(168, 10); + output.WriteBool(XlaGpuEnableSharedConstants); + } + if (XlaGpuEnableCublaslt != false) { + output.WriteRawTag(176, 10); + output.WriteBool(XlaGpuEnableCublaslt); + } + if (XlaGpuRedzoneScratchMaxMegabytes != 0L) { + output.WriteRawTag(184, 10); + output.WriteInt64(XlaGpuRedzoneScratchMaxMegabytes); + } + if (XlaGpuSimplifyAllFpConversions != false) { + output.WriteRawTag(192, 10); + output.WriteBool(XlaGpuSimplifyAllFpConversions); + } + if (XlaGpuEnableXlaRuntimeExecutable != false) { + output.WriteRawTag(200, 10); + output.WriteBool(XlaGpuEnableXlaRuntimeExecutable); + } + if (XlaGpuShapeChecks != global::Xla.DebugOptions.Types.ShapeChecks.Ignore) { + output.WriteRawTag(208, 10); + output.WriteEnum((int) XlaGpuShapeChecks); + } + if (XlaCpuEnableMlirLowering != false) { + output.WriteRawTag(216, 10); + output.WriteBool(XlaCpuEnableMlirLowering); + } + if (XlaGpuNormalizeLayouts != false) { + output.WriteRawTag(224, 10); + output.WriteBool(XlaGpuNormalizeLayouts); + } + if (XlaGpuEnableMlirLowering != false) { + output.WriteRawTag(232, 10); + output.WriteBool(XlaGpuEnableMlirLowering); + } + if (XlaCpuUseAcl != false) { + output.WriteRawTag(240, 10); + output.WriteBool(XlaCpuUseAcl); + } + if (XlaCpuStrictDotConvMath != false) { + output.WriteRawTag(248, 10); + output.WriteBool(XlaCpuStrictDotConvMath); + } + if (XlaCpuUseXlaRuntime != false) { + output.WriteRawTag(136, 11); + output.WriteBool(XlaCpuUseXlaRuntime); + } + xlaBackendExtraOptions_.WriteTo(ref output, _map_xlaBackendExtraOptions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (XlaHloGraphAddresses != false) { + size += 1 + 1; + } + if (XlaHloProfile != false) { + size += 1 + 1; + } + size += xlaDisableHloPasses_.CalculateSize(_repeated_xlaDisableHloPasses_codec); + size += xlaEnableHloPassesOnly_.CalculateSize(_repeated_xlaEnableHloPassesOnly_codec); + if (XlaDisableAllHloPasses != false) { + size += 2 + 1; + } + if (XlaBackendOptimizationLevel != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(XlaBackendOptimizationLevel); + } + if (XlaEmbedIrInExecutable != false) { + size += 2 + 1; + } + if (XlaEliminateHloImplicitBroadcast != false) { + size += 2 + 1; + } + if (XlaCpuMultiThreadEigen != false) { + size += 2 + 1; + } + if (XlaGpuCudaDataDir.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(XlaGpuCudaDataDir); + } + if (XlaGpuFtz != false) { + size += 2 + 1; + } + if (XlaLlvmEnableAliasScopeMetadata != false) { + size += 2 + 1; + } + if (XlaLlvmEnableNoaliasMetadata != false) { + size += 2 + 1; + } + if (XlaLlvmEnableInvariantLoadMetadata != false) { + size += 2 + 1; + } + if (XlaLlvmDisableExpensivePasses != false) { + size += 2 + 1; + } + if (XlaTestAllOutputLayouts != false) { + size += 2 + 1; + } + if (XlaTestAllInputLayouts != false) { + size += 2 + 1; + } + if (XlaHloGraphShardingColor != false) { + size += 2 + 1; + } + if (XlaCpuUseMklDnn != false) { + size += 2 + 1; + } + if (XlaCpuUseXlaRuntime != false) { + size += 2 + 1; + } + if (XlaGpuMaxKernelUnrollFactor != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(XlaGpuMaxKernelUnrollFactor); + } + if (XlaCpuEnableFastMath != false) { + size += 2 + 1; + } + if (XlaCpuFastMathHonorNans != false) { + size += 2 + 1; + } + if (XlaCpuFastMathHonorInfs != false) { + size += 2 + 1; + } + if (XlaCpuFastMathHonorDivision != false) { + size += 2 + 1; + } + if (XlaCpuFastMathHonorFunctions != false) { + size += 2 + 1; + } + if (XlaCpuEnableFastMinMax != false) { + size += 2 + 1; + } + if (XlaGpuEnableFastMinMax != false) { + size += 2 + 1; + } + if (XlaAllowExcessPrecision != false) { + size += 2 + 1; + } + if (XlaGpuCrashOnVerificationFailures != false) { + size += 2 + 1; + } + if (XlaGpuAutotuneLevel != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(XlaGpuAutotuneLevel); + } + if (XlaForceHostPlatformDeviceCount != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(XlaForceHostPlatformDeviceCount); + } + if (XlaGpuDisableGpuasmOptimizations != false) { + size += 2 + 1; + } + if (XlaGpuShapeChecks != global::Xla.DebugOptions.Types.ShapeChecks.Ignore) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) XlaGpuShapeChecks); + } + if (XlaCpuEnableMlirLowering != false) { + size += 2 + 1; + } + if (XlaGpuEnableMlirLowering != false) { + size += 2 + 1; + } + if (XlaHloEvaluatorUseFastPath != false) { + size += 2 + 1; + } + if (XlaAllowScalarIndexDynamicOps != false) { + size += 2 + 1; + } + if (XlaStepMarkerLocation != global::Xla.DebugOptions.Types.StepMarkerLocation.StepMarkAtEntry) { + size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) XlaStepMarkerLocation); + } + if (XlaDumpTo.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(XlaDumpTo); + } + if (XlaDumpHloModuleRe.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(XlaDumpHloModuleRe); + } + if (XlaDumpHloPassRe.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(XlaDumpHloPassRe); + } + if (XlaDumpHloAsText != false) { + size += 2 + 1; + } + if (XlaDumpHloAsProto != false) { + size += 2 + 1; + } + if (XlaDumpHloAsDot != false) { + size += 2 + 1; + } + if (XlaDumpHloAsUrl != false) { + size += 2 + 1; + } + if (XlaDumpHloAsHtml != false) { + size += 2 + 1; + } + if (XlaDumpFusionVisualization != false) { + size += 2 + 1; + } + if (XlaDumpHloSnapshots != false) { + size += 2 + 1; + } + if (XlaDumpIncludeTimestamp != false) { + size += 2 + 1; + } + if (XlaDumpMaxHloModules != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(XlaDumpMaxHloModules); + } + if (XlaDumpModuleMetadata != false) { + size += 2 + 1; + } + if (XlaDumpCompressProtos != false) { + size += 2 + 1; + } + if (XlaDumpHloAsLongText != false) { + size += 2 + 1; + } + if (XlaGpuForceConvNchw != false) { + size += 2 + 1; + } + if (XlaGpuForceConvNhwc != false) { + size += 2 + 1; + } + size += xlaGpuPtxFile_.CalculateSize(_repeated_xlaGpuPtxFile_codec); + if (XlaGpuDumpLlvmir != false) { + size += 2 + 1; + } + if (XlaGpuAlgorithmDenylistPath.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(XlaGpuAlgorithmDenylistPath); + } + if (XlaTpuDetectNan != false) { + size += 2 + 1; + } + if (XlaTpuDetectInf != false) { + size += 2 + 1; + } + if (XlaCpuEnableXprofTraceme != false) { + size += 2 + 1; + } + if (XlaGpuUnsafeFallbackToDriverOnPtxasNotFound != false) { + size += 2 + 1; + } + if (XlaGpuAsmExtraFlags.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(XlaGpuAsmExtraFlags); + } + if (XlaMultiheapSizeConstraintPerHeap != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(XlaMultiheapSizeConstraintPerHeap); + } + if (XlaDetailedLoggingAndDumping != false) { + size += 2 + 1; + } + if (XlaGpuForceCompilationParallelism != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(XlaGpuForceCompilationParallelism); + } + if (XlaGpuDeterministicOps != false) { + size += 2 + 1; + } + size += xlaGpuLlvmIrFile_.CalculateSize(_repeated_xlaGpuLlvmIrFile_codec); + if (XlaGpuEnableAsyncAllReduce != false) { + size += 2 + 1; + } + if (XlaGpuAllReduceCombineThresholdBytes != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(XlaGpuAllReduceCombineThresholdBytes); + } + if (XlaGpuAllReduceContiguous != false) { + size += 2 + 1; + } + if (XlaGpuAllReduceBlueconnectNumDevicesPerHost != 0) { + size += 2 + pb::CodedOutputStream.ComputeInt32Size(XlaGpuAllReduceBlueconnectNumDevicesPerHost); + } + if (XlaGpuEnableCudnnFrontend != false) { + size += 2 + 1; + } + if (XlaDumpDisableMetadata != false) { + size += 2 + 1; + } + if (XlaDumpHloPipelineRe.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeStringSize(XlaDumpHloPipelineRe); + } + if (XlaGpuStrictConvAlgorithmPicker != false) { + size += 2 + 1; + } + if (XlaGpuEnableXlaRuntimeExecutable != false) { + size += 2 + 1; + } + if (XlaGpuNcclTerminationTimeoutSeconds != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(XlaGpuNcclTerminationTimeoutSeconds); + } + if (XlaGpuEnableSharedConstants != false) { + size += 2 + 1; + } + if (XlaGpuEnableCublaslt != false) { + size += 2 + 1; + } + if (XlaGpuRedzoneScratchMaxMegabytes != 0L) { + size += 2 + pb::CodedOutputStream.ComputeInt64Size(XlaGpuRedzoneScratchMaxMegabytes); + } + if (XlaGpuSimplifyAllFpConversions != false) { + size += 2 + 1; + } + if (XlaGpuNormalizeLayouts != false) { + size += 2 + 1; + } + if (XlaCpuUseAcl != false) { + size += 2 + 1; + } + if (XlaCpuStrictDotConvMath != false) { + size += 2 + 1; + } + size += xlaBackendExtraOptions_.CalculateSize(_map_xlaBackendExtraOptions_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DebugOptions other) { + if (other == null) { + return; + } + if (other.XlaHloGraphAddresses != false) { + XlaHloGraphAddresses = other.XlaHloGraphAddresses; + } + if (other.XlaHloProfile != false) { + XlaHloProfile = other.XlaHloProfile; + } + xlaDisableHloPasses_.Add(other.xlaDisableHloPasses_); + xlaEnableHloPassesOnly_.Add(other.xlaEnableHloPassesOnly_); + if (other.XlaDisableAllHloPasses != false) { + XlaDisableAllHloPasses = other.XlaDisableAllHloPasses; + } + if (other.XlaBackendOptimizationLevel != 0) { + XlaBackendOptimizationLevel = other.XlaBackendOptimizationLevel; + } + if (other.XlaEmbedIrInExecutable != false) { + XlaEmbedIrInExecutable = other.XlaEmbedIrInExecutable; + } + if (other.XlaEliminateHloImplicitBroadcast != false) { + XlaEliminateHloImplicitBroadcast = other.XlaEliminateHloImplicitBroadcast; + } + if (other.XlaCpuMultiThreadEigen != false) { + XlaCpuMultiThreadEigen = other.XlaCpuMultiThreadEigen; + } + if (other.XlaGpuCudaDataDir.Length != 0) { + XlaGpuCudaDataDir = other.XlaGpuCudaDataDir; + } + if (other.XlaGpuFtz != false) { + XlaGpuFtz = other.XlaGpuFtz; + } + if (other.XlaLlvmEnableAliasScopeMetadata != false) { + XlaLlvmEnableAliasScopeMetadata = other.XlaLlvmEnableAliasScopeMetadata; + } + if (other.XlaLlvmEnableNoaliasMetadata != false) { + XlaLlvmEnableNoaliasMetadata = other.XlaLlvmEnableNoaliasMetadata; + } + if (other.XlaLlvmEnableInvariantLoadMetadata != false) { + XlaLlvmEnableInvariantLoadMetadata = other.XlaLlvmEnableInvariantLoadMetadata; + } + if (other.XlaLlvmDisableExpensivePasses != false) { + XlaLlvmDisableExpensivePasses = other.XlaLlvmDisableExpensivePasses; + } + if (other.XlaTestAllOutputLayouts != false) { + XlaTestAllOutputLayouts = other.XlaTestAllOutputLayouts; + } + if (other.XlaTestAllInputLayouts != false) { + XlaTestAllInputLayouts = other.XlaTestAllInputLayouts; + } + if (other.XlaHloGraphShardingColor != false) { + XlaHloGraphShardingColor = other.XlaHloGraphShardingColor; + } + if (other.XlaCpuUseMklDnn != false) { + XlaCpuUseMklDnn = other.XlaCpuUseMklDnn; + } + if (other.XlaCpuUseXlaRuntime != false) { + XlaCpuUseXlaRuntime = other.XlaCpuUseXlaRuntime; + } + if (other.XlaGpuMaxKernelUnrollFactor != 0) { + XlaGpuMaxKernelUnrollFactor = other.XlaGpuMaxKernelUnrollFactor; + } + if (other.XlaCpuEnableFastMath != false) { + XlaCpuEnableFastMath = other.XlaCpuEnableFastMath; + } + if (other.XlaCpuFastMathHonorNans != false) { + XlaCpuFastMathHonorNans = other.XlaCpuFastMathHonorNans; + } + if (other.XlaCpuFastMathHonorInfs != false) { + XlaCpuFastMathHonorInfs = other.XlaCpuFastMathHonorInfs; + } + if (other.XlaCpuFastMathHonorDivision != false) { + XlaCpuFastMathHonorDivision = other.XlaCpuFastMathHonorDivision; + } + if (other.XlaCpuFastMathHonorFunctions != false) { + XlaCpuFastMathHonorFunctions = other.XlaCpuFastMathHonorFunctions; + } + if (other.XlaCpuEnableFastMinMax != false) { + XlaCpuEnableFastMinMax = other.XlaCpuEnableFastMinMax; + } + if (other.XlaGpuEnableFastMinMax != false) { + XlaGpuEnableFastMinMax = other.XlaGpuEnableFastMinMax; + } + if (other.XlaAllowExcessPrecision != false) { + XlaAllowExcessPrecision = other.XlaAllowExcessPrecision; + } + if (other.XlaGpuCrashOnVerificationFailures != false) { + XlaGpuCrashOnVerificationFailures = other.XlaGpuCrashOnVerificationFailures; + } + if (other.XlaGpuAutotuneLevel != 0) { + XlaGpuAutotuneLevel = other.XlaGpuAutotuneLevel; + } + if (other.XlaForceHostPlatformDeviceCount != 0) { + XlaForceHostPlatformDeviceCount = other.XlaForceHostPlatformDeviceCount; + } + if (other.XlaGpuDisableGpuasmOptimizations != false) { + XlaGpuDisableGpuasmOptimizations = other.XlaGpuDisableGpuasmOptimizations; + } + if (other.XlaGpuShapeChecks != global::Xla.DebugOptions.Types.ShapeChecks.Ignore) { + XlaGpuShapeChecks = other.XlaGpuShapeChecks; + } + if (other.XlaCpuEnableMlirLowering != false) { + XlaCpuEnableMlirLowering = other.XlaCpuEnableMlirLowering; + } + if (other.XlaGpuEnableMlirLowering != false) { + XlaGpuEnableMlirLowering = other.XlaGpuEnableMlirLowering; + } + if (other.XlaHloEvaluatorUseFastPath != false) { + XlaHloEvaluatorUseFastPath = other.XlaHloEvaluatorUseFastPath; + } + if (other.XlaAllowScalarIndexDynamicOps != false) { + XlaAllowScalarIndexDynamicOps = other.XlaAllowScalarIndexDynamicOps; + } + if (other.XlaStepMarkerLocation != global::Xla.DebugOptions.Types.StepMarkerLocation.StepMarkAtEntry) { + XlaStepMarkerLocation = other.XlaStepMarkerLocation; + } + if (other.XlaDumpTo.Length != 0) { + XlaDumpTo = other.XlaDumpTo; + } + if (other.XlaDumpHloModuleRe.Length != 0) { + XlaDumpHloModuleRe = other.XlaDumpHloModuleRe; + } + if (other.XlaDumpHloPassRe.Length != 0) { + XlaDumpHloPassRe = other.XlaDumpHloPassRe; + } + if (other.XlaDumpHloAsText != false) { + XlaDumpHloAsText = other.XlaDumpHloAsText; + } + if (other.XlaDumpHloAsProto != false) { + XlaDumpHloAsProto = other.XlaDumpHloAsProto; + } + if (other.XlaDumpHloAsDot != false) { + XlaDumpHloAsDot = other.XlaDumpHloAsDot; + } + if (other.XlaDumpHloAsUrl != false) { + XlaDumpHloAsUrl = other.XlaDumpHloAsUrl; + } + if (other.XlaDumpHloAsHtml != false) { + XlaDumpHloAsHtml = other.XlaDumpHloAsHtml; + } + if (other.XlaDumpFusionVisualization != false) { + XlaDumpFusionVisualization = other.XlaDumpFusionVisualization; + } + if (other.XlaDumpHloSnapshots != false) { + XlaDumpHloSnapshots = other.XlaDumpHloSnapshots; + } + if (other.XlaDumpIncludeTimestamp != false) { + XlaDumpIncludeTimestamp = other.XlaDumpIncludeTimestamp; + } + if (other.XlaDumpMaxHloModules != 0) { + XlaDumpMaxHloModules = other.XlaDumpMaxHloModules; + } + if (other.XlaDumpModuleMetadata != false) { + XlaDumpModuleMetadata = other.XlaDumpModuleMetadata; + } + if (other.XlaDumpCompressProtos != false) { + XlaDumpCompressProtos = other.XlaDumpCompressProtos; + } + if (other.XlaDumpHloAsLongText != false) { + XlaDumpHloAsLongText = other.XlaDumpHloAsLongText; + } + if (other.XlaGpuForceConvNchw != false) { + XlaGpuForceConvNchw = other.XlaGpuForceConvNchw; + } + if (other.XlaGpuForceConvNhwc != false) { + XlaGpuForceConvNhwc = other.XlaGpuForceConvNhwc; + } + xlaGpuPtxFile_.Add(other.xlaGpuPtxFile_); + if (other.XlaGpuDumpLlvmir != false) { + XlaGpuDumpLlvmir = other.XlaGpuDumpLlvmir; + } + if (other.XlaGpuAlgorithmDenylistPath.Length != 0) { + XlaGpuAlgorithmDenylistPath = other.XlaGpuAlgorithmDenylistPath; + } + if (other.XlaTpuDetectNan != false) { + XlaTpuDetectNan = other.XlaTpuDetectNan; + } + if (other.XlaTpuDetectInf != false) { + XlaTpuDetectInf = other.XlaTpuDetectInf; + } + if (other.XlaCpuEnableXprofTraceme != false) { + XlaCpuEnableXprofTraceme = other.XlaCpuEnableXprofTraceme; + } + if (other.XlaGpuUnsafeFallbackToDriverOnPtxasNotFound != false) { + XlaGpuUnsafeFallbackToDriverOnPtxasNotFound = other.XlaGpuUnsafeFallbackToDriverOnPtxasNotFound; + } + if (other.XlaGpuAsmExtraFlags.Length != 0) { + XlaGpuAsmExtraFlags = other.XlaGpuAsmExtraFlags; + } + if (other.XlaMultiheapSizeConstraintPerHeap != 0) { + XlaMultiheapSizeConstraintPerHeap = other.XlaMultiheapSizeConstraintPerHeap; + } + if (other.XlaDetailedLoggingAndDumping != false) { + XlaDetailedLoggingAndDumping = other.XlaDetailedLoggingAndDumping; + } + if (other.XlaGpuForceCompilationParallelism != 0) { + XlaGpuForceCompilationParallelism = other.XlaGpuForceCompilationParallelism; + } + if (other.XlaGpuDeterministicOps != false) { + XlaGpuDeterministicOps = other.XlaGpuDeterministicOps; + } + xlaGpuLlvmIrFile_.Add(other.xlaGpuLlvmIrFile_); + if (other.XlaGpuEnableAsyncAllReduce != false) { + XlaGpuEnableAsyncAllReduce = other.XlaGpuEnableAsyncAllReduce; + } + if (other.XlaGpuAllReduceCombineThresholdBytes != 0L) { + XlaGpuAllReduceCombineThresholdBytes = other.XlaGpuAllReduceCombineThresholdBytes; + } + if (other.XlaGpuAllReduceContiguous != false) { + XlaGpuAllReduceContiguous = other.XlaGpuAllReduceContiguous; + } + if (other.XlaGpuAllReduceBlueconnectNumDevicesPerHost != 0) { + XlaGpuAllReduceBlueconnectNumDevicesPerHost = other.XlaGpuAllReduceBlueconnectNumDevicesPerHost; + } + if (other.XlaGpuEnableCudnnFrontend != false) { + XlaGpuEnableCudnnFrontend = other.XlaGpuEnableCudnnFrontend; + } + if (other.XlaDumpDisableMetadata != false) { + XlaDumpDisableMetadata = other.XlaDumpDisableMetadata; + } + if (other.XlaDumpHloPipelineRe.Length != 0) { + XlaDumpHloPipelineRe = other.XlaDumpHloPipelineRe; + } + if (other.XlaGpuStrictConvAlgorithmPicker != false) { + XlaGpuStrictConvAlgorithmPicker = other.XlaGpuStrictConvAlgorithmPicker; + } + if (other.XlaGpuEnableXlaRuntimeExecutable != false) { + XlaGpuEnableXlaRuntimeExecutable = other.XlaGpuEnableXlaRuntimeExecutable; + } + if (other.XlaGpuNcclTerminationTimeoutSeconds != 0L) { + XlaGpuNcclTerminationTimeoutSeconds = other.XlaGpuNcclTerminationTimeoutSeconds; + } + if (other.XlaGpuEnableSharedConstants != false) { + XlaGpuEnableSharedConstants = other.XlaGpuEnableSharedConstants; + } + if (other.XlaGpuEnableCublaslt != false) { + XlaGpuEnableCublaslt = other.XlaGpuEnableCublaslt; + } + if (other.XlaGpuRedzoneScratchMaxMegabytes != 0L) { + XlaGpuRedzoneScratchMaxMegabytes = other.XlaGpuRedzoneScratchMaxMegabytes; + } + if (other.XlaGpuSimplifyAllFpConversions != false) { + XlaGpuSimplifyAllFpConversions = other.XlaGpuSimplifyAllFpConversions; + } + if (other.XlaGpuNormalizeLayouts != false) { + XlaGpuNormalizeLayouts = other.XlaGpuNormalizeLayouts; + } + if (other.XlaCpuUseAcl != false) { + XlaCpuUseAcl = other.XlaCpuUseAcl; + } + if (other.XlaCpuStrictDotConvMath != false) { + XlaCpuStrictDotConvMath = other.XlaCpuStrictDotConvMath; + } + xlaBackendExtraOptions_.Add(other.xlaBackendExtraOptions_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 16: { + XlaHloGraphAddresses = input.ReadBool(); + break; + } + case 72: { + XlaHloProfile = input.ReadBool(); + break; + } + case 242: { + xlaDisableHloPasses_.AddEntriesFrom(input, _repeated_xlaDisableHloPasses_codec); + break; + } + case 248: { + XlaBackendOptimizationLevel = input.ReadInt32(); + break; + } + case 264: { + XlaEmbedIrInExecutable = input.ReadBool(); + break; + } + case 280: { + XlaEliminateHloImplicitBroadcast = input.ReadBool(); + break; + } + case 480: { + XlaCpuMultiThreadEigen = input.ReadBool(); + break; + } + case 490: { + XlaGpuCudaDataDir = input.ReadString(); + break; + } + case 496: { + XlaGpuFtz = input.ReadBool(); + break; + } + case 560: { + XlaLlvmEnableAliasScopeMetadata = input.ReadBool(); + break; + } + case 568: { + XlaLlvmEnableNoaliasMetadata = input.ReadBool(); + break; + } + case 576: { + XlaLlvmEnableInvariantLoadMetadata = input.ReadBool(); + break; + } + case 584: { + XlaLlvmDisableExpensivePasses = input.ReadBool(); + break; + } + case 720: { + XlaTestAllOutputLayouts = input.ReadBool(); + break; + } + case 728: { + XlaTestAllInputLayouts = input.ReadBool(); + break; + } + case 736: { + XlaHloGraphShardingColor = input.ReadBool(); + break; + } + case 776: { + XlaCpuUseMklDnn = input.ReadBool(); + break; + } + case 784: { + XlaGpuMaxKernelUnrollFactor = input.ReadInt32(); + break; + } + case 792: { + XlaCpuEnableFastMath = input.ReadBool(); + break; + } + case 800: { + XlaGpuEnableFastMinMax = input.ReadBool(); + break; + } + case 808: { + XlaGpuCrashOnVerificationFailures = input.ReadBool(); + break; + } + case 816: { + XlaForceHostPlatformDeviceCount = input.ReadInt32(); + break; + } + case 824: { + XlaGpuDisableGpuasmOptimizations = input.ReadBool(); + break; + } + case 832: { + XlaDisableAllHloPasses = input.ReadBool(); + break; + } + case 848: { + XlaHloEvaluatorUseFastPath = input.ReadBool(); + break; + } + case 856: { + XlaAllowScalarIndexDynamicOps = input.ReadBool(); + break; + } + case 864: { + XlaStepMarkerLocation = (global::Xla.DebugOptions.Types.StepMarkerLocation) input.ReadEnum(); + break; + } + case 874: { + XlaDumpTo = input.ReadString(); + break; + } + case 882: { + XlaDumpHloModuleRe = input.ReadString(); + break; + } + case 890: { + XlaDumpHloPassRe = input.ReadString(); + break; + } + case 896: { + XlaDumpHloAsText = input.ReadBool(); + break; + } + case 904: { + XlaDumpHloAsProto = input.ReadBool(); + break; + } + case 912: { + XlaDumpHloAsDot = input.ReadBool(); + break; + } + case 920: { + XlaDumpHloAsUrl = input.ReadBool(); + break; + } + case 928: { + XlaDumpHloAsHtml = input.ReadBool(); + break; + } + case 944: { + XlaDumpHloSnapshots = input.ReadBool(); + break; + } + case 960: { + XlaCpuFastMathHonorNans = input.ReadBool(); + break; + } + case 968: { + XlaCpuFastMathHonorInfs = input.ReadBool(); + break; + } + case 976: { + XlaAllowExcessPrecision = input.ReadBool(); + break; + } + case 984: { + XlaGpuAutotuneLevel = input.ReadInt32(); + break; + } + case 994: { + xlaEnableHloPassesOnly_.AddEntriesFrom(input, _repeated_xlaEnableHloPassesOnly_codec); + break; + } + case 1000: { + XlaGpuForceConvNchw = input.ReadBool(); + break; + } + case 1008: { + XlaCpuFastMathHonorDivision = input.ReadBool(); + break; + } + case 1018: { + xlaGpuPtxFile_.AddEntriesFrom(input, _repeated_xlaGpuPtxFile_codec); + break; + } + case 1026: { + XlaGpuAlgorithmDenylistPath = input.ReadString(); + break; + } + case 1032: { + XlaCpuFastMathHonorFunctions = input.ReadBool(); + break; + } + case 1048: { + XlaDumpIncludeTimestamp = input.ReadBool(); + break; + } + case 1056: { + XlaDumpMaxHloModules = input.ReadInt32(); + break; + } + case 1080: { + XlaTpuDetectNan = input.ReadBool(); + break; + } + case 1088: { + XlaTpuDetectInf = input.ReadBool(); + break; + } + case 1096: { + XlaCpuEnableXprofTraceme = input.ReadBool(); + break; + } + case 1104: { + XlaGpuUnsafeFallbackToDriverOnPtxasNotFound = input.ReadBool(); + break; + } + case 1120: { + XlaCpuEnableFastMinMax = input.ReadBool(); + break; + } + case 1130: { + XlaGpuAsmExtraFlags = input.ReadString(); + break; + } + case 1136: { + XlaMultiheapSizeConstraintPerHeap = input.ReadInt32(); + break; + } + case 1144: { + XlaDetailedLoggingAndDumping = input.ReadBool(); + break; + } + case 1152: { + XlaDumpModuleMetadata = input.ReadBool(); + break; + } + case 1168: { + XlaGpuForceConvNhwc = input.ReadBool(); + break; + } + case 1176: { + XlaGpuForceCompilationParallelism = input.ReadInt32(); + break; + } + case 1184: { + XlaGpuDeterministicOps = input.ReadBool(); + break; + } + case 1192: { + XlaDumpFusionVisualization = input.ReadBool(); + break; + } + case 1202: { + xlaGpuLlvmIrFile_.AddEntriesFrom(input, _repeated_xlaGpuLlvmIrFile_codec); + break; + } + case 1208: { + XlaDumpCompressProtos = input.ReadBool(); + break; + } + case 1216: { + XlaGpuEnableAsyncAllReduce = input.ReadBool(); + break; + } + case 1224: { + XlaDumpDisableMetadata = input.ReadBool(); + break; + } + case 1234: { + XlaDumpHloPipelineRe = input.ReadString(); + break; + } + case 1240: { + XlaGpuDumpLlvmir = input.ReadBool(); + break; + } + case 1248: { + XlaGpuStrictConvAlgorithmPicker = input.ReadBool(); + break; + } + case 1256: { + XlaGpuAllReduceCombineThresholdBytes = input.ReadInt64(); + break; + } + case 1264: { + XlaGpuAllReduceContiguous = input.ReadBool(); + break; + } + case 1272: { + XlaGpuAllReduceBlueconnectNumDevicesPerHost = input.ReadInt32(); + break; + } + case 1280: { + XlaGpuEnableCudnnFrontend = input.ReadBool(); + break; + } + case 1304: { + XlaGpuNcclTerminationTimeoutSeconds = input.ReadInt64(); + break; + } + case 1312: { + XlaDumpHloAsLongText = input.ReadBool(); + break; + } + case 1320: { + XlaGpuEnableSharedConstants = input.ReadBool(); + break; + } + case 1328: { + XlaGpuEnableCublaslt = input.ReadBool(); + break; + } + case 1336: { + XlaGpuRedzoneScratchMaxMegabytes = input.ReadInt64(); + break; + } + case 1344: { + XlaGpuSimplifyAllFpConversions = input.ReadBool(); + break; + } + case 1352: { + XlaGpuEnableXlaRuntimeExecutable = input.ReadBool(); + break; + } + case 1360: { + XlaGpuShapeChecks = (global::Xla.DebugOptions.Types.ShapeChecks) input.ReadEnum(); + break; + } + case 1368: { + XlaCpuEnableMlirLowering = input.ReadBool(); + break; + } + case 1376: { + XlaGpuNormalizeLayouts = input.ReadBool(); + break; + } + case 1384: { + XlaGpuEnableMlirLowering = input.ReadBool(); + break; + } + case 1392: { + XlaCpuUseAcl = input.ReadBool(); + break; + } + case 1400: { + XlaCpuStrictDotConvMath = input.ReadBool(); + break; + } + case 1416: { + XlaCpuUseXlaRuntime = input.ReadBool(); + break; + } + case 4002: { + xlaBackendExtraOptions_.AddEntriesFrom(input, _map_xlaBackendExtraOptions_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 16: { + XlaHloGraphAddresses = input.ReadBool(); + break; + } + case 72: { + XlaHloProfile = input.ReadBool(); + break; + } + case 242: { + xlaDisableHloPasses_.AddEntriesFrom(ref input, _repeated_xlaDisableHloPasses_codec); + break; + } + case 248: { + XlaBackendOptimizationLevel = input.ReadInt32(); + break; + } + case 264: { + XlaEmbedIrInExecutable = input.ReadBool(); + break; + } + case 280: { + XlaEliminateHloImplicitBroadcast = input.ReadBool(); + break; + } + case 480: { + XlaCpuMultiThreadEigen = input.ReadBool(); + break; + } + case 490: { + XlaGpuCudaDataDir = input.ReadString(); + break; + } + case 496: { + XlaGpuFtz = input.ReadBool(); + break; + } + case 560: { + XlaLlvmEnableAliasScopeMetadata = input.ReadBool(); + break; + } + case 568: { + XlaLlvmEnableNoaliasMetadata = input.ReadBool(); + break; + } + case 576: { + XlaLlvmEnableInvariantLoadMetadata = input.ReadBool(); + break; + } + case 584: { + XlaLlvmDisableExpensivePasses = input.ReadBool(); + break; + } + case 720: { + XlaTestAllOutputLayouts = input.ReadBool(); + break; + } + case 728: { + XlaTestAllInputLayouts = input.ReadBool(); + break; + } + case 736: { + XlaHloGraphShardingColor = input.ReadBool(); + break; + } + case 776: { + XlaCpuUseMklDnn = input.ReadBool(); + break; + } + case 784: { + XlaGpuMaxKernelUnrollFactor = input.ReadInt32(); + break; + } + case 792: { + XlaCpuEnableFastMath = input.ReadBool(); + break; + } + case 800: { + XlaGpuEnableFastMinMax = input.ReadBool(); + break; + } + case 808: { + XlaGpuCrashOnVerificationFailures = input.ReadBool(); + break; + } + case 816: { + XlaForceHostPlatformDeviceCount = input.ReadInt32(); + break; + } + case 824: { + XlaGpuDisableGpuasmOptimizations = input.ReadBool(); + break; + } + case 832: { + XlaDisableAllHloPasses = input.ReadBool(); + break; + } + case 848: { + XlaHloEvaluatorUseFastPath = input.ReadBool(); + break; + } + case 856: { + XlaAllowScalarIndexDynamicOps = input.ReadBool(); + break; + } + case 864: { + XlaStepMarkerLocation = (global::Xla.DebugOptions.Types.StepMarkerLocation) input.ReadEnum(); + break; + } + case 874: { + XlaDumpTo = input.ReadString(); + break; + } + case 882: { + XlaDumpHloModuleRe = input.ReadString(); + break; + } + case 890: { + XlaDumpHloPassRe = input.ReadString(); + break; + } + case 896: { + XlaDumpHloAsText = input.ReadBool(); + break; + } + case 904: { + XlaDumpHloAsProto = input.ReadBool(); + break; + } + case 912: { + XlaDumpHloAsDot = input.ReadBool(); + break; + } + case 920: { + XlaDumpHloAsUrl = input.ReadBool(); + break; + } + case 928: { + XlaDumpHloAsHtml = input.ReadBool(); + break; + } + case 944: { + XlaDumpHloSnapshots = input.ReadBool(); + break; + } + case 960: { + XlaCpuFastMathHonorNans = input.ReadBool(); + break; + } + case 968: { + XlaCpuFastMathHonorInfs = input.ReadBool(); + break; + } + case 976: { + XlaAllowExcessPrecision = input.ReadBool(); + break; + } + case 984: { + XlaGpuAutotuneLevel = input.ReadInt32(); + break; + } + case 994: { + xlaEnableHloPassesOnly_.AddEntriesFrom(ref input, _repeated_xlaEnableHloPassesOnly_codec); + break; + } + case 1000: { + XlaGpuForceConvNchw = input.ReadBool(); + break; + } + case 1008: { + XlaCpuFastMathHonorDivision = input.ReadBool(); + break; + } + case 1018: { + xlaGpuPtxFile_.AddEntriesFrom(ref input, _repeated_xlaGpuPtxFile_codec); + break; + } + case 1026: { + XlaGpuAlgorithmDenylistPath = input.ReadString(); + break; + } + case 1032: { + XlaCpuFastMathHonorFunctions = input.ReadBool(); + break; + } + case 1048: { + XlaDumpIncludeTimestamp = input.ReadBool(); + break; + } + case 1056: { + XlaDumpMaxHloModules = input.ReadInt32(); + break; + } + case 1080: { + XlaTpuDetectNan = input.ReadBool(); + break; + } + case 1088: { + XlaTpuDetectInf = input.ReadBool(); + break; + } + case 1096: { + XlaCpuEnableXprofTraceme = input.ReadBool(); + break; + } + case 1104: { + XlaGpuUnsafeFallbackToDriverOnPtxasNotFound = input.ReadBool(); + break; + } + case 1120: { + XlaCpuEnableFastMinMax = input.ReadBool(); + break; + } + case 1130: { + XlaGpuAsmExtraFlags = input.ReadString(); + break; + } + case 1136: { + XlaMultiheapSizeConstraintPerHeap = input.ReadInt32(); + break; + } + case 1144: { + XlaDetailedLoggingAndDumping = input.ReadBool(); + break; + } + case 1152: { + XlaDumpModuleMetadata = input.ReadBool(); + break; + } + case 1168: { + XlaGpuForceConvNhwc = input.ReadBool(); + break; + } + case 1176: { + XlaGpuForceCompilationParallelism = input.ReadInt32(); + break; + } + case 1184: { + XlaGpuDeterministicOps = input.ReadBool(); + break; + } + case 1192: { + XlaDumpFusionVisualization = input.ReadBool(); + break; + } + case 1202: { + xlaGpuLlvmIrFile_.AddEntriesFrom(ref input, _repeated_xlaGpuLlvmIrFile_codec); + break; + } + case 1208: { + XlaDumpCompressProtos = input.ReadBool(); + break; + } + case 1216: { + XlaGpuEnableAsyncAllReduce = input.ReadBool(); + break; + } + case 1224: { + XlaDumpDisableMetadata = input.ReadBool(); + break; + } + case 1234: { + XlaDumpHloPipelineRe = input.ReadString(); + break; + } + case 1240: { + XlaGpuDumpLlvmir = input.ReadBool(); + break; + } + case 1248: { + XlaGpuStrictConvAlgorithmPicker = input.ReadBool(); + break; + } + case 1256: { + XlaGpuAllReduceCombineThresholdBytes = input.ReadInt64(); + break; + } + case 1264: { + XlaGpuAllReduceContiguous = input.ReadBool(); + break; + } + case 1272: { + XlaGpuAllReduceBlueconnectNumDevicesPerHost = input.ReadInt32(); + break; + } + case 1280: { + XlaGpuEnableCudnnFrontend = input.ReadBool(); + break; + } + case 1304: { + XlaGpuNcclTerminationTimeoutSeconds = input.ReadInt64(); + break; + } + case 1312: { + XlaDumpHloAsLongText = input.ReadBool(); + break; + } + case 1320: { + XlaGpuEnableSharedConstants = input.ReadBool(); + break; + } + case 1328: { + XlaGpuEnableCublaslt = input.ReadBool(); + break; + } + case 1336: { + XlaGpuRedzoneScratchMaxMegabytes = input.ReadInt64(); + break; + } + case 1344: { + XlaGpuSimplifyAllFpConversions = input.ReadBool(); + break; + } + case 1352: { + XlaGpuEnableXlaRuntimeExecutable = input.ReadBool(); + break; + } + case 1360: { + XlaGpuShapeChecks = (global::Xla.DebugOptions.Types.ShapeChecks) input.ReadEnum(); + break; + } + case 1368: { + XlaCpuEnableMlirLowering = input.ReadBool(); + break; + } + case 1376: { + XlaGpuNormalizeLayouts = input.ReadBool(); + break; + } + case 1384: { + XlaGpuEnableMlirLowering = input.ReadBool(); + break; + } + case 1392: { + XlaCpuUseAcl = input.ReadBool(); + break; + } + case 1400: { + XlaCpuStrictDotConvMath = input.ReadBool(); + break; + } + case 1416: { + XlaCpuUseXlaRuntime = input.ReadBool(); + break; + } + case 4002: { + xlaBackendExtraOptions_.AddEntriesFrom(ref input, _map_xlaBackendExtraOptions_codec); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the DebugOptions message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + public enum ShapeChecks { + /// + /// Do not insert any shape checks for dynamically shaped operations; output + /// buffers might contain garbage data if shapes don't match. + /// + [pbr::OriginalName("IGNORE")] Ignore = 0, + /// + /// Check shapes at runtime, will insert an extra synchronization if shapes + /// cannot be proven correct at compile time. + /// + [pbr::OriginalName("RUNTIME")] Runtime = 1, + /// + /// Will refuse to compile any program where shape correctness can not be + /// established at compile time. + /// + [pbr::OriginalName("COMPILE_TIME")] CompileTime = 2, + } + + public enum StepMarkerLocation { + /// + /// Generate a step marker at the program entry. This handles the case where + /// each step is done by one or multiple program execution(s). Only the first + /// program will be tagged for generating a step marker at the program entry. + /// This is the default. + /// + [pbr::OriginalName("STEP_MARK_AT_ENTRY")] StepMarkAtEntry = 0, + /// + /// Generate a step marker at each iteration of the top level while loop, + /// which is assumed to be a training loop. + /// + [pbr::OriginalName("STEP_MARK_AT_TOP_LEVEL_WHILE_LOOP")] StepMarkAtTopLevelWhileLoop = 1, + /// + /// Generate a step marker at each iteration of the second level while loops, + /// which is assumed to be a training or eval loop. + /// + [pbr::OriginalName("STEP_MARK_AT_SECOND_LEVEL_WHILE_LOOP")] StepMarkAtSecondLevelWhileLoop = 3, + /// + /// No step marker generated. + /// + [pbr::OriginalName("STEP_MARK_NONE")] StepMarkNone = 2, + } + + } + #endregion + + } + + /// + /// These settings control how XLA compiles and/or runs code. Not all settings + /// will have an effect on every platform. + /// + /// When adding new fields, keep in mind that boolean fields default to false. + /// + public sealed partial class ExecutionOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ExecutionOptions()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecutionOptions() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecutionOptions(ExecutionOptions other) : this() { + shapeWithOutputLayout_ = other.shapeWithOutputLayout_ != null ? other.shapeWithOutputLayout_.Clone() : null; + seed_ = other.seed_; + debugOptions_ = other.debugOptions_ != null ? other.debugOptions_.Clone() : null; + deviceHandles_ = other.deviceHandles_.Clone(); + numReplicas_ = other.numReplicas_; + deviceAssignment_ = other.deviceAssignment_ != null ? other.deviceAssignment_.Clone() : null; + aliasPassthroughParams_ = other.aliasPassthroughParams_; + numPartitions_ = other.numPartitions_; + launchId_ = other.launchId_; + useSpmdPartitioning_ = other.useSpmdPartitioning_; + useAutoSpmdPartitioning_ = other.useAutoSpmdPartitioning_; + autoSpmdPartitioningMeshShape_ = other.autoSpmdPartitioningMeshShape_.Clone(); + autoSpmdPartitioningMeshIds_ = other.autoSpmdPartitioningMeshIds_.Clone(); + deduplicateHlo_ = other.deduplicateHlo_; + allowSpmdShardingPropagationToOutput_ = other.allowSpmdShardingPropagationToOutput_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecutionOptions Clone() { + return new ExecutionOptions(this); + } + + /// Field number for the "shape_with_output_layout" field. + public const int ShapeWithOutputLayoutFieldNumber = 2; + private global::Xla.ShapeProto shapeWithOutputLayout_; + /// + /// This optional field's layout is used as a hint when storing the output of + /// this computation. Subsequent transfers of this output array to the client + /// may be faster when using this layout. + /// + /// We use a Shape here to accommodate computations that return a tuple. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto ShapeWithOutputLayout { + get { return shapeWithOutputLayout_; } + set { + shapeWithOutputLayout_ = value; + } + } + + /// Field number for the "seed" field. + public const int SeedFieldNumber = 3; + private ulong seed_; + /// + /// Used to seed random-number generators used in this computation. If this is + /// 0, we generate a seed ourselves. + /// + /// TODO(b/32083678): Changing the seed unnecessarily forces a recompilation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ulong Seed { + get { return seed_; } + set { + seed_ = value; + } + } + + /// Field number for the "debug_options" field. + public const int DebugOptionsFieldNumber = 4; + private global::Xla.DebugOptions debugOptions_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DebugOptions DebugOptions { + get { return debugOptions_; } + set { + debugOptions_ = value; + } + } + + /// Field number for the "device_handles" field. + public const int DeviceHandlesFieldNumber = 5; + private static readonly pb::FieldCodec _repeated_deviceHandles_codec + = pb::FieldCodec.ForMessage(42, global::Xla.DeviceHandle.Parser); + private readonly pbc::RepeatedField deviceHandles_ = new pbc::RepeatedField(); + /// + /// This optional field specifies a particular set of devices to run the + /// computation on. The computation will be partitioned across these devices. + /// If not provided, the default device will be chosen. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField DeviceHandles { + get { return deviceHandles_; } + } + + /// Field number for the "num_replicas" field. + public const int NumReplicasFieldNumber = 6; + private int numReplicas_; + /// + /// Number of replicas of the computation to run. If zero, uses the default + /// number of replicas for the XLA service. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int NumReplicas { + get { return numReplicas_; } + set { + numReplicas_ = value; + } + } + + /// Field number for the "device_assignment" field. + public const int DeviceAssignmentFieldNumber = 7; + private global::Xla.DeviceAssignmentProto deviceAssignment_; + /// + /// This optional field specifies the device assignment if known at compile + /// time. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DeviceAssignmentProto DeviceAssignment { + get { return deviceAssignment_; } + set { + deviceAssignment_ = value; + } + } + + /// Field number for the "alias_passthrough_params" field. + public const int AliasPassthroughParamsFieldNumber = 8; + private bool aliasPassthroughParams_; + /// + /// Alias input and output buffers for parameters that are passed-through XLA + /// modules without being changed. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool AliasPassthroughParams { + get { return aliasPassthroughParams_; } + set { + aliasPassthroughParams_ = value; + } + } + + /// Field number for the "num_partitions" field. + public const int NumPartitionsFieldNumber = 9; + private int numPartitions_; + /// + /// Number of partitions of the computation to run (model parallelism). + /// If zero, uses the default number of partitions for the XLA service. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int NumPartitions { + get { return numPartitions_; } + set { + numPartitions_ = value; + } + } + + /// Field number for the "launch_id" field. + public const int LaunchIdFieldNumber = 10; + private int launchId_; + /// + /// Used to identify a set of programs that should be launch together. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int LaunchId { + get { return launchId_; } + set { + launchId_ = value; + } + } + + /// Field number for the "use_spmd_partitioning" field. + public const int UseSpmdPartitioningFieldNumber = 11; + private bool useSpmdPartitioning_; + /// + /// Indicates whether to use SPMD (true) or MPMD (false) partitioning when + /// num_partitions > 1 and XLA is requested to partition the input program. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool UseSpmdPartitioning { + get { return useSpmdPartitioning_; } + set { + useSpmdPartitioning_ = value; + } + } + + /// Field number for the "use_auto_spmd_partitioning" field. + public const int UseAutoSpmdPartitioningFieldNumber = 15; + private bool useAutoSpmdPartitioning_; + /// + /// Whether to automatically generate XLA shardings for SPMD partitioner. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool UseAutoSpmdPartitioning { + get { return useAutoSpmdPartitioning_; } + set { + useAutoSpmdPartitioning_ = value; + } + } + + /// Field number for the "auto_spmd_partitioning_mesh_shape" field. + public const int AutoSpmdPartitioningMeshShapeFieldNumber = 16; + private static readonly pb::FieldCodec _repeated_autoSpmdPartitioningMeshShape_codec + = pb::FieldCodec.ForInt64(130); + private readonly pbc::RepeatedField autoSpmdPartitioningMeshShape_ = new pbc::RepeatedField(); + /// + /// Device mesh shape used to create the sharding search space when + /// use_auto_spmd_partitioning=true. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField AutoSpmdPartitioningMeshShape { + get { return autoSpmdPartitioningMeshShape_; } + } + + /// Field number for the "auto_spmd_partitioning_mesh_ids" field. + public const int AutoSpmdPartitioningMeshIdsFieldNumber = 17; + private static readonly pb::FieldCodec _repeated_autoSpmdPartitioningMeshIds_codec + = pb::FieldCodec.ForInt64(138); + private readonly pbc::RepeatedField autoSpmdPartitioningMeshIds_ = new pbc::RepeatedField(); + /// + /// Device mesh ids compatible with the above mesh_shape used when + /// use_auto_spmd_partitioning=true. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField AutoSpmdPartitioningMeshIds { + get { return autoSpmdPartitioningMeshIds_; } + } + + /// Field number for the "deduplicate_hlo" field. + public const int DeduplicateHloFieldNumber = 12; + private bool deduplicateHlo_; + /// + /// If set, deduplicate hlo into function calls to reduce binary size. Only + /// works on TPU. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool DeduplicateHlo { + get { return deduplicateHlo_; } + set { + deduplicateHlo_ = value; + } + } + + /// Field number for the "allow_spmd_sharding_propagation_to_output" field. + public const int AllowSpmdShardingPropagationToOutputFieldNumber = 14; + private bool allowSpmdShardingPropagationToOutput_; + /// + /// Allows sharding propagation to propagate to the outputs. This changes the + /// output shape of the computation (which is undesirable), but it can be used + /// to allow to run partial compilation to determine what would be the output + /// sharding of a computation if XLA would be allowed to propagate the sharding + /// which can be used by higher level framework as a way to query intermediate + /// sharding of operations when multiple computation would be chained and + /// merged together. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool AllowSpmdShardingPropagationToOutput { + get { return allowSpmdShardingPropagationToOutput_; } + set { + allowSpmdShardingPropagationToOutput_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ExecutionOptions); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ExecutionOptions other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(ShapeWithOutputLayout, other.ShapeWithOutputLayout)) return false; + if (Seed != other.Seed) return false; + if (!object.Equals(DebugOptions, other.DebugOptions)) return false; + if(!deviceHandles_.Equals(other.deviceHandles_)) return false; + if (NumReplicas != other.NumReplicas) return false; + if (!object.Equals(DeviceAssignment, other.DeviceAssignment)) return false; + if (AliasPassthroughParams != other.AliasPassthroughParams) return false; + if (NumPartitions != other.NumPartitions) return false; + if (LaunchId != other.LaunchId) return false; + if (UseSpmdPartitioning != other.UseSpmdPartitioning) return false; + if (UseAutoSpmdPartitioning != other.UseAutoSpmdPartitioning) return false; + if(!autoSpmdPartitioningMeshShape_.Equals(other.autoSpmdPartitioningMeshShape_)) return false; + if(!autoSpmdPartitioningMeshIds_.Equals(other.autoSpmdPartitioningMeshIds_)) return false; + if (DeduplicateHlo != other.DeduplicateHlo) return false; + if (AllowSpmdShardingPropagationToOutput != other.AllowSpmdShardingPropagationToOutput) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (shapeWithOutputLayout_ != null) hash ^= ShapeWithOutputLayout.GetHashCode(); + if (Seed != 0UL) hash ^= Seed.GetHashCode(); + if (debugOptions_ != null) hash ^= DebugOptions.GetHashCode(); + hash ^= deviceHandles_.GetHashCode(); + if (NumReplicas != 0) hash ^= NumReplicas.GetHashCode(); + if (deviceAssignment_ != null) hash ^= DeviceAssignment.GetHashCode(); + if (AliasPassthroughParams != false) hash ^= AliasPassthroughParams.GetHashCode(); + if (NumPartitions != 0) hash ^= NumPartitions.GetHashCode(); + if (LaunchId != 0) hash ^= LaunchId.GetHashCode(); + if (UseSpmdPartitioning != false) hash ^= UseSpmdPartitioning.GetHashCode(); + if (UseAutoSpmdPartitioning != false) hash ^= UseAutoSpmdPartitioning.GetHashCode(); + hash ^= autoSpmdPartitioningMeshShape_.GetHashCode(); + hash ^= autoSpmdPartitioningMeshIds_.GetHashCode(); + if (DeduplicateHlo != false) hash ^= DeduplicateHlo.GetHashCode(); + if (AllowSpmdShardingPropagationToOutput != false) hash ^= AllowSpmdShardingPropagationToOutput.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (shapeWithOutputLayout_ != null) { + output.WriteRawTag(18); + output.WriteMessage(ShapeWithOutputLayout); + } + if (Seed != 0UL) { + output.WriteRawTag(24); + output.WriteUInt64(Seed); + } + if (debugOptions_ != null) { + output.WriteRawTag(34); + output.WriteMessage(DebugOptions); + } + deviceHandles_.WriteTo(output, _repeated_deviceHandles_codec); + if (NumReplicas != 0) { + output.WriteRawTag(48); + output.WriteInt32(NumReplicas); + } + if (deviceAssignment_ != null) { + output.WriteRawTag(58); + output.WriteMessage(DeviceAssignment); + } + if (AliasPassthroughParams != false) { + output.WriteRawTag(64); + output.WriteBool(AliasPassthroughParams); + } + if (NumPartitions != 0) { + output.WriteRawTag(72); + output.WriteInt32(NumPartitions); + } + if (LaunchId != 0) { + output.WriteRawTag(80); + output.WriteInt32(LaunchId); + } + if (UseSpmdPartitioning != false) { + output.WriteRawTag(88); + output.WriteBool(UseSpmdPartitioning); + } + if (DeduplicateHlo != false) { + output.WriteRawTag(96); + output.WriteBool(DeduplicateHlo); + } + if (AllowSpmdShardingPropagationToOutput != false) { + output.WriteRawTag(112); + output.WriteBool(AllowSpmdShardingPropagationToOutput); + } + if (UseAutoSpmdPartitioning != false) { + output.WriteRawTag(120); + output.WriteBool(UseAutoSpmdPartitioning); + } + autoSpmdPartitioningMeshShape_.WriteTo(output, _repeated_autoSpmdPartitioningMeshShape_codec); + autoSpmdPartitioningMeshIds_.WriteTo(output, _repeated_autoSpmdPartitioningMeshIds_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (shapeWithOutputLayout_ != null) { + output.WriteRawTag(18); + output.WriteMessage(ShapeWithOutputLayout); + } + if (Seed != 0UL) { + output.WriteRawTag(24); + output.WriteUInt64(Seed); + } + if (debugOptions_ != null) { + output.WriteRawTag(34); + output.WriteMessage(DebugOptions); + } + deviceHandles_.WriteTo(ref output, _repeated_deviceHandles_codec); + if (NumReplicas != 0) { + output.WriteRawTag(48); + output.WriteInt32(NumReplicas); + } + if (deviceAssignment_ != null) { + output.WriteRawTag(58); + output.WriteMessage(DeviceAssignment); + } + if (AliasPassthroughParams != false) { + output.WriteRawTag(64); + output.WriteBool(AliasPassthroughParams); + } + if (NumPartitions != 0) { + output.WriteRawTag(72); + output.WriteInt32(NumPartitions); + } + if (LaunchId != 0) { + output.WriteRawTag(80); + output.WriteInt32(LaunchId); + } + if (UseSpmdPartitioning != false) { + output.WriteRawTag(88); + output.WriteBool(UseSpmdPartitioning); + } + if (DeduplicateHlo != false) { + output.WriteRawTag(96); + output.WriteBool(DeduplicateHlo); + } + if (AllowSpmdShardingPropagationToOutput != false) { + output.WriteRawTag(112); + output.WriteBool(AllowSpmdShardingPropagationToOutput); + } + if (UseAutoSpmdPartitioning != false) { + output.WriteRawTag(120); + output.WriteBool(UseAutoSpmdPartitioning); + } + autoSpmdPartitioningMeshShape_.WriteTo(ref output, _repeated_autoSpmdPartitioningMeshShape_codec); + autoSpmdPartitioningMeshIds_.WriteTo(ref output, _repeated_autoSpmdPartitioningMeshIds_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (shapeWithOutputLayout_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ShapeWithOutputLayout); + } + if (Seed != 0UL) { + size += 1 + pb::CodedOutputStream.ComputeUInt64Size(Seed); + } + if (debugOptions_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DebugOptions); + } + size += deviceHandles_.CalculateSize(_repeated_deviceHandles_codec); + if (NumReplicas != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(NumReplicas); + } + if (deviceAssignment_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DeviceAssignment); + } + if (AliasPassthroughParams != false) { + size += 1 + 1; + } + if (NumPartitions != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(NumPartitions); + } + if (LaunchId != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(LaunchId); + } + if (UseSpmdPartitioning != false) { + size += 1 + 1; + } + if (UseAutoSpmdPartitioning != false) { + size += 1 + 1; + } + size += autoSpmdPartitioningMeshShape_.CalculateSize(_repeated_autoSpmdPartitioningMeshShape_codec); + size += autoSpmdPartitioningMeshIds_.CalculateSize(_repeated_autoSpmdPartitioningMeshIds_codec); + if (DeduplicateHlo != false) { + size += 1 + 1; + } + if (AllowSpmdShardingPropagationToOutput != false) { + size += 1 + 1; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ExecutionOptions other) { + if (other == null) { + return; + } + if (other.shapeWithOutputLayout_ != null) { + if (shapeWithOutputLayout_ == null) { + ShapeWithOutputLayout = new global::Xla.ShapeProto(); + } + ShapeWithOutputLayout.MergeFrom(other.ShapeWithOutputLayout); + } + if (other.Seed != 0UL) { + Seed = other.Seed; + } + if (other.debugOptions_ != null) { + if (debugOptions_ == null) { + DebugOptions = new global::Xla.DebugOptions(); + } + DebugOptions.MergeFrom(other.DebugOptions); + } + deviceHandles_.Add(other.deviceHandles_); + if (other.NumReplicas != 0) { + NumReplicas = other.NumReplicas; + } + if (other.deviceAssignment_ != null) { + if (deviceAssignment_ == null) { + DeviceAssignment = new global::Xla.DeviceAssignmentProto(); + } + DeviceAssignment.MergeFrom(other.DeviceAssignment); + } + if (other.AliasPassthroughParams != false) { + AliasPassthroughParams = other.AliasPassthroughParams; + } + if (other.NumPartitions != 0) { + NumPartitions = other.NumPartitions; + } + if (other.LaunchId != 0) { + LaunchId = other.LaunchId; + } + if (other.UseSpmdPartitioning != false) { + UseSpmdPartitioning = other.UseSpmdPartitioning; + } + if (other.UseAutoSpmdPartitioning != false) { + UseAutoSpmdPartitioning = other.UseAutoSpmdPartitioning; + } + autoSpmdPartitioningMeshShape_.Add(other.autoSpmdPartitioningMeshShape_); + autoSpmdPartitioningMeshIds_.Add(other.autoSpmdPartitioningMeshIds_); + if (other.DeduplicateHlo != false) { + DeduplicateHlo = other.DeduplicateHlo; + } + if (other.AllowSpmdShardingPropagationToOutput != false) { + AllowSpmdShardingPropagationToOutput = other.AllowSpmdShardingPropagationToOutput; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 18: { + if (shapeWithOutputLayout_ == null) { + ShapeWithOutputLayout = new global::Xla.ShapeProto(); + } + input.ReadMessage(ShapeWithOutputLayout); + break; + } + case 24: { + Seed = input.ReadUInt64(); + break; + } + case 34: { + if (debugOptions_ == null) { + DebugOptions = new global::Xla.DebugOptions(); + } + input.ReadMessage(DebugOptions); + break; + } + case 42: { + deviceHandles_.AddEntriesFrom(input, _repeated_deviceHandles_codec); + break; + } + case 48: { + NumReplicas = input.ReadInt32(); + break; + } + case 58: { + if (deviceAssignment_ == null) { + DeviceAssignment = new global::Xla.DeviceAssignmentProto(); + } + input.ReadMessage(DeviceAssignment); + break; + } + case 64: { + AliasPassthroughParams = input.ReadBool(); + break; + } + case 72: { + NumPartitions = input.ReadInt32(); + break; + } + case 80: { + LaunchId = input.ReadInt32(); + break; + } + case 88: { + UseSpmdPartitioning = input.ReadBool(); + break; + } + case 96: { + DeduplicateHlo = input.ReadBool(); + break; + } + case 112: { + AllowSpmdShardingPropagationToOutput = input.ReadBool(); + break; + } + case 120: { + UseAutoSpmdPartitioning = input.ReadBool(); + break; + } + case 130: + case 128: { + autoSpmdPartitioningMeshShape_.AddEntriesFrom(input, _repeated_autoSpmdPartitioningMeshShape_codec); + break; + } + case 138: + case 136: { + autoSpmdPartitioningMeshIds_.AddEntriesFrom(input, _repeated_autoSpmdPartitioningMeshIds_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 18: { + if (shapeWithOutputLayout_ == null) { + ShapeWithOutputLayout = new global::Xla.ShapeProto(); + } + input.ReadMessage(ShapeWithOutputLayout); + break; + } + case 24: { + Seed = input.ReadUInt64(); + break; + } + case 34: { + if (debugOptions_ == null) { + DebugOptions = new global::Xla.DebugOptions(); + } + input.ReadMessage(DebugOptions); + break; + } + case 42: { + deviceHandles_.AddEntriesFrom(ref input, _repeated_deviceHandles_codec); + break; + } + case 48: { + NumReplicas = input.ReadInt32(); + break; + } + case 58: { + if (deviceAssignment_ == null) { + DeviceAssignment = new global::Xla.DeviceAssignmentProto(); + } + input.ReadMessage(DeviceAssignment); + break; + } + case 64: { + AliasPassthroughParams = input.ReadBool(); + break; + } + case 72: { + NumPartitions = input.ReadInt32(); + break; + } + case 80: { + LaunchId = input.ReadInt32(); + break; + } + case 88: { + UseSpmdPartitioning = input.ReadBool(); + break; + } + case 96: { + DeduplicateHlo = input.ReadBool(); + break; + } + case 112: { + AllowSpmdShardingPropagationToOutput = input.ReadBool(); + break; + } + case 120: { + UseAutoSpmdPartitioning = input.ReadBool(); + break; + } + case 130: + case 128: { + autoSpmdPartitioningMeshShape_.AddEntriesFrom(ref input, _repeated_autoSpmdPartitioningMeshShape_codec); + break; + } + case 138: + case 136: { + autoSpmdPartitioningMeshIds_.AddEntriesFrom(ref input, _repeated_autoSpmdPartitioningMeshIds_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class GetDeviceHandlesRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetDeviceHandlesRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[2]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetDeviceHandlesRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetDeviceHandlesRequest(GetDeviceHandlesRequest other) : this() { + deviceCount_ = other.deviceCount_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetDeviceHandlesRequest Clone() { + return new GetDeviceHandlesRequest(this); + } + + /// Field number for the "device_count" field. + public const int DeviceCountFieldNumber = 1; + private long deviceCount_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long DeviceCount { + get { return deviceCount_; } + set { + deviceCount_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetDeviceHandlesRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetDeviceHandlesRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (DeviceCount != other.DeviceCount) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (DeviceCount != 0L) hash ^= DeviceCount.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (DeviceCount != 0L) { + output.WriteRawTag(8); + output.WriteInt64(DeviceCount); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (DeviceCount != 0L) { + output.WriteRawTag(8); + output.WriteInt64(DeviceCount); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (DeviceCount != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(DeviceCount); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetDeviceHandlesRequest other) { + if (other == null) { + return; + } + if (other.DeviceCount != 0L) { + DeviceCount = other.DeviceCount; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + DeviceCount = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + DeviceCount = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + public sealed partial class GetDeviceHandlesResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetDeviceHandlesResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[3]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetDeviceHandlesResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetDeviceHandlesResponse(GetDeviceHandlesResponse other) : this() { + deviceHandles_ = other.deviceHandles_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetDeviceHandlesResponse Clone() { + return new GetDeviceHandlesResponse(this); + } + + /// Field number for the "device_handles" field. + public const int DeviceHandlesFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_deviceHandles_codec + = pb::FieldCodec.ForMessage(10, global::Xla.DeviceHandle.Parser); + private readonly pbc::RepeatedField deviceHandles_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField DeviceHandles { + get { return deviceHandles_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetDeviceHandlesResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetDeviceHandlesResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!deviceHandles_.Equals(other.deviceHandles_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= deviceHandles_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + deviceHandles_.WriteTo(output, _repeated_deviceHandles_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + deviceHandles_.WriteTo(ref output, _repeated_deviceHandles_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += deviceHandles_.CalculateSize(_repeated_deviceHandles_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetDeviceHandlesResponse other) { + if (other == null) { + return; + } + deviceHandles_.Add(other.deviceHandles_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + deviceHandles_.AddEntriesFrom(input, _repeated_deviceHandles_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + deviceHandles_.AddEntriesFrom(ref input, _repeated_deviceHandles_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class TransferToClientRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TransferToClientRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[4]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToClientRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToClientRequest(TransferToClientRequest other) : this() { + data_ = other.data_ != null ? other.data_.Clone() : null; + shapeWithLayout_ = other.shapeWithLayout_ != null ? other.shapeWithLayout_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToClientRequest Clone() { + return new TransferToClientRequest(this); + } + + /// Field number for the "data" field. + public const int DataFieldNumber = 1; + private global::Xla.GlobalDataHandle data_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalDataHandle Data { + get { return data_; } + set { + data_ = value; + } + } + + /// Field number for the "shape_with_layout" field. + public const int ShapeWithLayoutFieldNumber = 2; + private global::Xla.ShapeProto shapeWithLayout_; + /// + /// This optional field directs the service to return the literal in this + /// layout. A shape is used to hold the layout to accommodate tuples. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto ShapeWithLayout { + get { return shapeWithLayout_; } + set { + shapeWithLayout_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TransferToClientRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TransferToClientRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Data, other.Data)) return false; + if (!object.Equals(ShapeWithLayout, other.ShapeWithLayout)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (data_ != null) hash ^= Data.GetHashCode(); + if (shapeWithLayout_ != null) hash ^= ShapeWithLayout.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (shapeWithLayout_ != null) { + output.WriteRawTag(18); + output.WriteMessage(ShapeWithLayout); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (shapeWithLayout_ != null) { + output.WriteRawTag(18); + output.WriteMessage(ShapeWithLayout); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (data_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Data); + } + if (shapeWithLayout_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ShapeWithLayout); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TransferToClientRequest other) { + if (other == null) { + return; + } + if (other.data_ != null) { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + Data.MergeFrom(other.Data); + } + if (other.shapeWithLayout_ != null) { + if (shapeWithLayout_ == null) { + ShapeWithLayout = new global::Xla.ShapeProto(); + } + ShapeWithLayout.MergeFrom(other.ShapeWithLayout); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + case 18: { + if (shapeWithLayout_ == null) { + ShapeWithLayout = new global::Xla.ShapeProto(); + } + input.ReadMessage(ShapeWithLayout); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + case 18: { + if (shapeWithLayout_ == null) { + ShapeWithLayout = new global::Xla.ShapeProto(); + } + input.ReadMessage(ShapeWithLayout); + break; + } + } + } + } + #endif + + } + + public sealed partial class TransferToClientResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TransferToClientResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[5]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToClientResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToClientResponse(TransferToClientResponse other) : this() { + literal_ = other.literal_ != null ? other.literal_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToClientResponse Clone() { + return new TransferToClientResponse(this); + } + + /// Field number for the "literal" field. + public const int LiteralFieldNumber = 1; + private global::Xla.LiteralProto literal_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LiteralProto Literal { + get { return literal_; } + set { + literal_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TransferToClientResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TransferToClientResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Literal, other.Literal)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (literal_ != null) hash ^= Literal.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (literal_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Literal); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TransferToClientResponse other) { + if (other == null) { + return; + } + if (other.literal_ != null) { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + Literal.MergeFrom(other.Literal); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + } + } + } + #endif + + } + + public sealed partial class TransferToServerRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TransferToServerRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[6]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToServerRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToServerRequest(TransferToServerRequest other) : this() { + literal_ = other.literal_ != null ? other.literal_.Clone() : null; + deviceHandle_ = other.deviceHandle_ != null ? other.deviceHandle_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToServerRequest Clone() { + return new TransferToServerRequest(this); + } + + /// Field number for the "literal" field. + public const int LiteralFieldNumber = 1; + private global::Xla.LiteralProto literal_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LiteralProto Literal { + get { return literal_; } + set { + literal_ = value; + } + } + + /// Field number for the "device_handle" field. + public const int DeviceHandleFieldNumber = 2; + private global::Xla.DeviceHandle deviceHandle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DeviceHandle DeviceHandle { + get { return deviceHandle_; } + set { + deviceHandle_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TransferToServerRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TransferToServerRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Literal, other.Literal)) return false; + if (!object.Equals(DeviceHandle, other.DeviceHandle)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (literal_ != null) hash ^= Literal.GetHashCode(); + if (deviceHandle_ != null) hash ^= DeviceHandle.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (deviceHandle_ != null) { + output.WriteRawTag(18); + output.WriteMessage(DeviceHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (deviceHandle_ != null) { + output.WriteRawTag(18); + output.WriteMessage(DeviceHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (literal_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Literal); + } + if (deviceHandle_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DeviceHandle); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TransferToServerRequest other) { + if (other == null) { + return; + } + if (other.literal_ != null) { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + Literal.MergeFrom(other.Literal); + } + if (other.deviceHandle_ != null) { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + DeviceHandle.MergeFrom(other.DeviceHandle); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + case 18: { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + input.ReadMessage(DeviceHandle); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + case 18: { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + input.ReadMessage(DeviceHandle); + break; + } + } + } + } + #endif + + } + + public sealed partial class TransferToServerResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TransferToServerResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[7]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToServerResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToServerResponse(TransferToServerResponse other) : this() { + data_ = other.data_ != null ? other.data_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToServerResponse Clone() { + return new TransferToServerResponse(this); + } + + /// Field number for the "data" field. + public const int DataFieldNumber = 1; + private global::Xla.GlobalDataHandle data_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalDataHandle Data { + get { return data_; } + set { + data_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TransferToServerResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TransferToServerResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Data, other.Data)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (data_ != null) hash ^= Data.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (data_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Data); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TransferToServerResponse other) { + if (other == null) { + return; + } + if (other.data_ != null) { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + Data.MergeFrom(other.Data); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + } + } + } + #endif + + } + + public sealed partial class TransferToInfeedRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TransferToInfeedRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[8]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToInfeedRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToInfeedRequest(TransferToInfeedRequest other) : this() { + literal_ = other.literal_ != null ? other.literal_.Clone() : null; + replicaId_ = other.replicaId_; + deviceHandle_ = other.deviceHandle_ != null ? other.deviceHandle_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToInfeedRequest Clone() { + return new TransferToInfeedRequest(this); + } + + /// Field number for the "literal" field. + public const int LiteralFieldNumber = 1; + private global::Xla.LiteralProto literal_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LiteralProto Literal { + get { return literal_; } + set { + literal_ = value; + } + } + + /// Field number for the "replica_id" field. + public const int ReplicaIdFieldNumber = 2; + private long replicaId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ReplicaId { + get { return replicaId_; } + set { + replicaId_ = value; + } + } + + /// Field number for the "device_handle" field. + public const int DeviceHandleFieldNumber = 3; + private global::Xla.DeviceHandle deviceHandle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DeviceHandle DeviceHandle { + get { return deviceHandle_; } + set { + deviceHandle_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TransferToInfeedRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TransferToInfeedRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Literal, other.Literal)) return false; + if (ReplicaId != other.ReplicaId) return false; + if (!object.Equals(DeviceHandle, other.DeviceHandle)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (literal_ != null) hash ^= Literal.GetHashCode(); + if (ReplicaId != 0L) hash ^= ReplicaId.GetHashCode(); + if (deviceHandle_ != null) hash ^= DeviceHandle.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (ReplicaId != 0L) { + output.WriteRawTag(16); + output.WriteInt64(ReplicaId); + } + if (deviceHandle_ != null) { + output.WriteRawTag(26); + output.WriteMessage(DeviceHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (ReplicaId != 0L) { + output.WriteRawTag(16); + output.WriteInt64(ReplicaId); + } + if (deviceHandle_ != null) { + output.WriteRawTag(26); + output.WriteMessage(DeviceHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (literal_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Literal); + } + if (ReplicaId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ReplicaId); + } + if (deviceHandle_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DeviceHandle); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TransferToInfeedRequest other) { + if (other == null) { + return; + } + if (other.literal_ != null) { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + Literal.MergeFrom(other.Literal); + } + if (other.ReplicaId != 0L) { + ReplicaId = other.ReplicaId; + } + if (other.deviceHandle_ != null) { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + DeviceHandle.MergeFrom(other.DeviceHandle); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + case 16: { + ReplicaId = input.ReadInt64(); + break; + } + case 26: { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + input.ReadMessage(DeviceHandle); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + case 16: { + ReplicaId = input.ReadInt64(); + break; + } + case 26: { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + input.ReadMessage(DeviceHandle); + break; + } + } + } + } + #endif + + } + + public sealed partial class TransferToInfeedResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TransferToInfeedResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[9]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToInfeedResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToInfeedResponse(TransferToInfeedResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferToInfeedResponse Clone() { + return new TransferToInfeedResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TransferToInfeedResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TransferToInfeedResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TransferToInfeedResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + public sealed partial class TransferFromOutfeedRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TransferFromOutfeedRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[10]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferFromOutfeedRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferFromOutfeedRequest(TransferFromOutfeedRequest other) : this() { + shapeWithLayout_ = other.shapeWithLayout_ != null ? other.shapeWithLayout_.Clone() : null; + replicaId_ = other.replicaId_; + deviceHandle_ = other.deviceHandle_ != null ? other.deviceHandle_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferFromOutfeedRequest Clone() { + return new TransferFromOutfeedRequest(this); + } + + /// Field number for the "shape_with_layout" field. + public const int ShapeWithLayoutFieldNumber = 1; + private global::Xla.ShapeProto shapeWithLayout_; + /// + /// This optional field directs the service to return the literal in this + /// layout. A shape is used to hold the layout to accommodate tuples. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto ShapeWithLayout { + get { return shapeWithLayout_; } + set { + shapeWithLayout_ = value; + } + } + + /// Field number for the "replica_id" field. + public const int ReplicaIdFieldNumber = 2; + private long replicaId_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ReplicaId { + get { return replicaId_; } + set { + replicaId_ = value; + } + } + + /// Field number for the "device_handle" field. + public const int DeviceHandleFieldNumber = 3; + private global::Xla.DeviceHandle deviceHandle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DeviceHandle DeviceHandle { + get { return deviceHandle_; } + set { + deviceHandle_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TransferFromOutfeedRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TransferFromOutfeedRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(ShapeWithLayout, other.ShapeWithLayout)) return false; + if (ReplicaId != other.ReplicaId) return false; + if (!object.Equals(DeviceHandle, other.DeviceHandle)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (shapeWithLayout_ != null) hash ^= ShapeWithLayout.GetHashCode(); + if (ReplicaId != 0L) hash ^= ReplicaId.GetHashCode(); + if (deviceHandle_ != null) hash ^= DeviceHandle.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (shapeWithLayout_ != null) { + output.WriteRawTag(10); + output.WriteMessage(ShapeWithLayout); + } + if (ReplicaId != 0L) { + output.WriteRawTag(16); + output.WriteInt64(ReplicaId); + } + if (deviceHandle_ != null) { + output.WriteRawTag(26); + output.WriteMessage(DeviceHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (shapeWithLayout_ != null) { + output.WriteRawTag(10); + output.WriteMessage(ShapeWithLayout); + } + if (ReplicaId != 0L) { + output.WriteRawTag(16); + output.WriteInt64(ReplicaId); + } + if (deviceHandle_ != null) { + output.WriteRawTag(26); + output.WriteMessage(DeviceHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (shapeWithLayout_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ShapeWithLayout); + } + if (ReplicaId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ReplicaId); + } + if (deviceHandle_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DeviceHandle); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TransferFromOutfeedRequest other) { + if (other == null) { + return; + } + if (other.shapeWithLayout_ != null) { + if (shapeWithLayout_ == null) { + ShapeWithLayout = new global::Xla.ShapeProto(); + } + ShapeWithLayout.MergeFrom(other.ShapeWithLayout); + } + if (other.ReplicaId != 0L) { + ReplicaId = other.ReplicaId; + } + if (other.deviceHandle_ != null) { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + DeviceHandle.MergeFrom(other.DeviceHandle); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (shapeWithLayout_ == null) { + ShapeWithLayout = new global::Xla.ShapeProto(); + } + input.ReadMessage(ShapeWithLayout); + break; + } + case 16: { + ReplicaId = input.ReadInt64(); + break; + } + case 26: { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + input.ReadMessage(DeviceHandle); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (shapeWithLayout_ == null) { + ShapeWithLayout = new global::Xla.ShapeProto(); + } + input.ReadMessage(ShapeWithLayout); + break; + } + case 16: { + ReplicaId = input.ReadInt64(); + break; + } + case 26: { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + input.ReadMessage(DeviceHandle); + break; + } + } + } + } + #endif + + } + + public sealed partial class TransferFromOutfeedResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TransferFromOutfeedResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[11]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferFromOutfeedResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferFromOutfeedResponse(TransferFromOutfeedResponse other) : this() { + literal_ = other.literal_ != null ? other.literal_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TransferFromOutfeedResponse Clone() { + return new TransferFromOutfeedResponse(this); + } + + /// Field number for the "literal" field. + public const int LiteralFieldNumber = 1; + private global::Xla.LiteralProto literal_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LiteralProto Literal { + get { return literal_; } + set { + literal_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TransferFromOutfeedResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TransferFromOutfeedResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Literal, other.Literal)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (literal_ != null) hash ^= Literal.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (literal_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Literal); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TransferFromOutfeedResponse other) { + if (other == null) { + return; + } + if (other.literal_ != null) { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + Literal.MergeFrom(other.Literal); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + } + } + } + #endif + + } + + public sealed partial class ResetDeviceRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ResetDeviceRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[12]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetDeviceRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetDeviceRequest(ResetDeviceRequest other) : this() { + deviceHandle_ = other.deviceHandle_ != null ? other.deviceHandle_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetDeviceRequest Clone() { + return new ResetDeviceRequest(this); + } + + /// Field number for the "device_handle" field. + public const int DeviceHandleFieldNumber = 1; + private global::Xla.DeviceHandle deviceHandle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DeviceHandle DeviceHandle { + get { return deviceHandle_; } + set { + deviceHandle_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ResetDeviceRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ResetDeviceRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(DeviceHandle, other.DeviceHandle)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (deviceHandle_ != null) hash ^= DeviceHandle.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (deviceHandle_ != null) { + output.WriteRawTag(10); + output.WriteMessage(DeviceHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (deviceHandle_ != null) { + output.WriteRawTag(10); + output.WriteMessage(DeviceHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (deviceHandle_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DeviceHandle); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ResetDeviceRequest other) { + if (other == null) { + return; + } + if (other.deviceHandle_ != null) { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + DeviceHandle.MergeFrom(other.DeviceHandle); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + input.ReadMessage(DeviceHandle); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (deviceHandle_ == null) { + DeviceHandle = new global::Xla.DeviceHandle(); + } + input.ReadMessage(DeviceHandle); + break; + } + } + } + } + #endif + + } + + public sealed partial class ResetDeviceResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ResetDeviceResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[13]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetDeviceResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetDeviceResponse(ResetDeviceResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ResetDeviceResponse Clone() { + return new ResetDeviceResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ResetDeviceResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ResetDeviceResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ResetDeviceResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + public sealed partial class ComputationGraphStatsRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ComputationGraphStatsRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[14]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationGraphStatsRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationGraphStatsRequest(ComputationGraphStatsRequest other) : this() { + computation_ = other.computation_ != null ? other.computation_.Clone() : null; + debugOptions_ = other.debugOptions_ != null ? other.debugOptions_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationGraphStatsRequest Clone() { + return new ComputationGraphStatsRequest(this); + } + + /// Field number for the "computation" field. + public const int ComputationFieldNumber = 1; + private global::Xla.HloModuleProto computation_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloModuleProto Computation { + get { return computation_; } + set { + computation_ = value; + } + } + + /// Field number for the "debug_options" field. + public const int DebugOptionsFieldNumber = 2; + private global::Xla.DebugOptions debugOptions_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.DebugOptions DebugOptions { + get { return debugOptions_; } + set { + debugOptions_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ComputationGraphStatsRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ComputationGraphStatsRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Computation, other.Computation)) return false; + if (!object.Equals(DebugOptions, other.DebugOptions)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (computation_ != null) hash ^= Computation.GetHashCode(); + if (debugOptions_ != null) hash ^= DebugOptions.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (computation_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Computation); + } + if (debugOptions_ != null) { + output.WriteRawTag(18); + output.WriteMessage(DebugOptions); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (computation_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Computation); + } + if (debugOptions_ != null) { + output.WriteRawTag(18); + output.WriteMessage(DebugOptions); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (computation_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Computation); + } + if (debugOptions_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DebugOptions); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ComputationGraphStatsRequest other) { + if (other == null) { + return; + } + if (other.computation_ != null) { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + Computation.MergeFrom(other.Computation); + } + if (other.debugOptions_ != null) { + if (debugOptions_ == null) { + DebugOptions = new global::Xla.DebugOptions(); + } + DebugOptions.MergeFrom(other.DebugOptions); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + input.ReadMessage(Computation); + break; + } + case 18: { + if (debugOptions_ == null) { + DebugOptions = new global::Xla.DebugOptions(); + } + input.ReadMessage(DebugOptions); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + input.ReadMessage(Computation); + break; + } + case 18: { + if (debugOptions_ == null) { + DebugOptions = new global::Xla.DebugOptions(); + } + input.ReadMessage(DebugOptions); + break; + } + } + } + } + #endif + + } + + public sealed partial class ComputationStatsResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ComputationStatsResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[15]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationStatsResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationStatsResponse(ComputationStatsResponse other) : this() { + stats_ = other.stats_ != null ? other.stats_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationStatsResponse Clone() { + return new ComputationStatsResponse(this); + } + + /// Field number for the "stats" field. + public const int StatsFieldNumber = 1; + private global::Xla.ComputationStats stats_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ComputationStats Stats { + get { return stats_; } + set { + stats_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ComputationStatsResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ComputationStatsResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Stats, other.Stats)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (stats_ != null) hash ^= Stats.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (stats_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Stats); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (stats_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Stats); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (stats_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Stats); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ComputationStatsResponse other) { + if (other == null) { + return; + } + if (other.stats_ != null) { + if (stats_ == null) { + Stats = new global::Xla.ComputationStats(); + } + Stats.MergeFrom(other.Stats); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (stats_ == null) { + Stats = new global::Xla.ComputationStats(); + } + input.ReadMessage(Stats); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (stats_ == null) { + Stats = new global::Xla.ComputationStats(); + } + input.ReadMessage(Stats); + break; + } + } + } + } + #endif + + } + + public sealed partial class CreateChannelHandleRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CreateChannelHandleRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[16]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CreateChannelHandleRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CreateChannelHandleRequest(CreateChannelHandleRequest other) : this() { + channelType_ = other.channelType_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CreateChannelHandleRequest Clone() { + return new CreateChannelHandleRequest(this); + } + + /// Field number for the "channel_type" field. + public const int ChannelTypeFieldNumber = 1; + private global::Xla.ChannelHandle.Types.ChannelType channelType_ = global::Xla.ChannelHandle.Types.ChannelType.Invalid; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ChannelHandle.Types.ChannelType ChannelType { + get { return channelType_; } + set { + channelType_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CreateChannelHandleRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CreateChannelHandleRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ChannelType != other.ChannelType) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ChannelType != global::Xla.ChannelHandle.Types.ChannelType.Invalid) hash ^= ChannelType.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ChannelType != global::Xla.ChannelHandle.Types.ChannelType.Invalid) { + output.WriteRawTag(8); + output.WriteEnum((int) ChannelType); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ChannelType != global::Xla.ChannelHandle.Types.ChannelType.Invalid) { + output.WriteRawTag(8); + output.WriteEnum((int) ChannelType); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ChannelType != global::Xla.ChannelHandle.Types.ChannelType.Invalid) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) ChannelType); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CreateChannelHandleRequest other) { + if (other == null) { + return; + } + if (other.ChannelType != global::Xla.ChannelHandle.Types.ChannelType.Invalid) { + ChannelType = other.ChannelType; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + ChannelType = (global::Xla.ChannelHandle.Types.ChannelType) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + ChannelType = (global::Xla.ChannelHandle.Types.ChannelType) input.ReadEnum(); + break; + } + } + } + } + #endif + + } + + public sealed partial class CreateChannelHandleResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CreateChannelHandleResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[17]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CreateChannelHandleResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CreateChannelHandleResponse(CreateChannelHandleResponse other) : this() { + channel_ = other.channel_ != null ? other.channel_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CreateChannelHandleResponse Clone() { + return new CreateChannelHandleResponse(this); + } + + /// Field number for the "channel" field. + public const int ChannelFieldNumber = 1; + private global::Xla.ChannelHandle channel_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ChannelHandle Channel { + get { return channel_; } + set { + channel_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CreateChannelHandleResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CreateChannelHandleResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Channel, other.Channel)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (channel_ != null) hash ^= Channel.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (channel_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Channel); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (channel_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Channel); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (channel_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Channel); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CreateChannelHandleResponse other) { + if (other == null) { + return; + } + if (other.channel_ != null) { + if (channel_ == null) { + Channel = new global::Xla.ChannelHandle(); + } + Channel.MergeFrom(other.Channel); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (channel_ == null) { + Channel = new global::Xla.ChannelHandle(); + } + input.ReadMessage(Channel); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (channel_ == null) { + Channel = new global::Xla.ChannelHandle(); + } + input.ReadMessage(Channel); + break; + } + } + } + } + #endif + + } + + public sealed partial class UnregisterRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new UnregisterRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[18]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnregisterRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnregisterRequest(UnregisterRequest other) : this() { + data_ = other.data_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnregisterRequest Clone() { + return new UnregisterRequest(this); + } + + /// Field number for the "data" field. + public const int DataFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_data_codec + = pb::FieldCodec.ForMessage(10, global::Xla.GlobalDataHandle.Parser); + private readonly pbc::RepeatedField data_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Data { + get { return data_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as UnregisterRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(UnregisterRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!data_.Equals(other.data_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= data_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + data_.WriteTo(output, _repeated_data_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + data_.WriteTo(ref output, _repeated_data_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += data_.CalculateSize(_repeated_data_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(UnregisterRequest other) { + if (other == null) { + return; + } + data_.Add(other.data_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + data_.AddEntriesFrom(input, _repeated_data_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + data_.AddEntriesFrom(ref input, _repeated_data_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class UnregisterResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new UnregisterResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[19]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnregisterResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnregisterResponse(UnregisterResponse other) : this() { + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnregisterResponse Clone() { + return new UnregisterResponse(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as UnregisterResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(UnregisterResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(UnregisterResponse other) { + if (other == null) { + return; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + } + } + } + #endif + + } + + public sealed partial class CompileRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CompileRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[20]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CompileRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CompileRequest(CompileRequest other) : this() { + computation_ = other.computation_ != null ? other.computation_.Clone() : null; + executionOptions_ = other.executionOptions_ != null ? other.executionOptions_.Clone() : null; + inputShapeWithLayout_ = other.inputShapeWithLayout_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CompileRequest Clone() { + return new CompileRequest(this); + } + + /// Field number for the "computation" field. + public const int ComputationFieldNumber = 1; + private global::Xla.HloModuleProto computation_; + /// + /// The graph to be compiled. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloModuleProto Computation { + get { return computation_; } + set { + computation_ = value; + } + } + + /// Field number for the "execution_options" field. + public const int ExecutionOptionsFieldNumber = 2; + private global::Xla.ExecutionOptions executionOptions_; + /// + /// Options that affect how XLA compiles code to service this request. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ExecutionOptions ExecutionOptions { + get { return executionOptions_; } + set { + executionOptions_ = value; + } + } + + /// Field number for the "input_shape_with_layout" field. + public const int InputShapeWithLayoutFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_inputShapeWithLayout_codec + = pb::FieldCodec.ForMessage(26, global::Xla.ShapeProto.Parser); + private readonly pbc::RepeatedField inputShapeWithLayout_ = new pbc::RepeatedField(); + /// + /// The layouts of the input arguments. If not set, the default layout will be + /// used. Although the real arguments are not needed in compilation, the + /// layouts of the arguments can affect the compilation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField InputShapeWithLayout { + get { return inputShapeWithLayout_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CompileRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CompileRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Computation, other.Computation)) return false; + if (!object.Equals(ExecutionOptions, other.ExecutionOptions)) return false; + if(!inputShapeWithLayout_.Equals(other.inputShapeWithLayout_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (computation_ != null) hash ^= Computation.GetHashCode(); + if (executionOptions_ != null) hash ^= ExecutionOptions.GetHashCode(); + hash ^= inputShapeWithLayout_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (computation_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Computation); + } + if (executionOptions_ != null) { + output.WriteRawTag(18); + output.WriteMessage(ExecutionOptions); + } + inputShapeWithLayout_.WriteTo(output, _repeated_inputShapeWithLayout_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (computation_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Computation); + } + if (executionOptions_ != null) { + output.WriteRawTag(18); + output.WriteMessage(ExecutionOptions); + } + inputShapeWithLayout_.WriteTo(ref output, _repeated_inputShapeWithLayout_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (computation_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Computation); + } + if (executionOptions_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ExecutionOptions); + } + size += inputShapeWithLayout_.CalculateSize(_repeated_inputShapeWithLayout_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CompileRequest other) { + if (other == null) { + return; + } + if (other.computation_ != null) { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + Computation.MergeFrom(other.Computation); + } + if (other.executionOptions_ != null) { + if (executionOptions_ == null) { + ExecutionOptions = new global::Xla.ExecutionOptions(); + } + ExecutionOptions.MergeFrom(other.ExecutionOptions); + } + inputShapeWithLayout_.Add(other.inputShapeWithLayout_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + input.ReadMessage(Computation); + break; + } + case 18: { + if (executionOptions_ == null) { + ExecutionOptions = new global::Xla.ExecutionOptions(); + } + input.ReadMessage(ExecutionOptions); + break; + } + case 26: { + inputShapeWithLayout_.AddEntriesFrom(input, _repeated_inputShapeWithLayout_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + input.ReadMessage(Computation); + break; + } + case 18: { + if (executionOptions_ == null) { + ExecutionOptions = new global::Xla.ExecutionOptions(); + } + input.ReadMessage(ExecutionOptions); + break; + } + case 26: { + inputShapeWithLayout_.AddEntriesFrom(ref input, _repeated_inputShapeWithLayout_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class CompileResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CompileResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[21]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CompileResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CompileResponse(CompileResponse other) : this() { + handle_ = other.handle_ != null ? other.handle_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CompileResponse Clone() { + return new CompileResponse(this); + } + + /// Field number for the "handle" field. + public const int HandleFieldNumber = 1; + private global::Xla.ExecutionHandle handle_; + /// + /// The handle to the executable. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ExecutionHandle Handle { + get { return handle_; } + set { + handle_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CompileResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CompileResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Handle, other.Handle)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (handle_ != null) hash ^= Handle.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (handle_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Handle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (handle_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Handle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (handle_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Handle); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CompileResponse other) { + if (other == null) { + return; + } + if (other.handle_ != null) { + if (handle_ == null) { + Handle = new global::Xla.ExecutionHandle(); + } + Handle.MergeFrom(other.Handle); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (handle_ == null) { + Handle = new global::Xla.ExecutionHandle(); + } + input.ReadMessage(Handle); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (handle_ == null) { + Handle = new global::Xla.ExecutionHandle(); + } + input.ReadMessage(Handle); + break; + } + } + } + } + #endif + + } + + public sealed partial class ExecuteRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ExecuteRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[22]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteRequest(ExecuteRequest other) : this() { + handle_ = other.handle_ != null ? other.handle_.Clone() : null; + arguments_ = other.arguments_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteRequest Clone() { + return new ExecuteRequest(this); + } + + /// Field number for the "handle" field. + public const int HandleFieldNumber = 1; + private global::Xla.ExecutionHandle handle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ExecutionHandle Handle { + get { return handle_; } + set { + handle_ = value; + } + } + + /// Field number for the "arguments" field. + public const int ArgumentsFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_arguments_codec + = pb::FieldCodec.ForMessage(18, global::Xla.GlobalDataHandle.Parser); + private readonly pbc::RepeatedField arguments_ = new pbc::RepeatedField(); + /// + /// The shape and layout of the arguments must be the same as the those of the + /// executable's parameters. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Arguments { + get { return arguments_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ExecuteRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ExecuteRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Handle, other.Handle)) return false; + if(!arguments_.Equals(other.arguments_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (handle_ != null) hash ^= Handle.GetHashCode(); + hash ^= arguments_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (handle_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Handle); + } + arguments_.WriteTo(output, _repeated_arguments_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (handle_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Handle); + } + arguments_.WriteTo(ref output, _repeated_arguments_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (handle_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Handle); + } + size += arguments_.CalculateSize(_repeated_arguments_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ExecuteRequest other) { + if (other == null) { + return; + } + if (other.handle_ != null) { + if (handle_ == null) { + Handle = new global::Xla.ExecutionHandle(); + } + Handle.MergeFrom(other.Handle); + } + arguments_.Add(other.arguments_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (handle_ == null) { + Handle = new global::Xla.ExecutionHandle(); + } + input.ReadMessage(Handle); + break; + } + case 18: { + arguments_.AddEntriesFrom(input, _repeated_arguments_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (handle_ == null) { + Handle = new global::Xla.ExecutionHandle(); + } + input.ReadMessage(Handle); + break; + } + case 18: { + arguments_.AddEntriesFrom(ref input, _repeated_arguments_codec); + break; + } + } + } + } + #endif + + } + + /// + /// TODO(b/118493728): Remove this and ExecuteGraphParallelRequest and replace + /// the uses with calls to Compile and Execute. + /// + public sealed partial class ExecuteGraphRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ExecuteGraphRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[23]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteGraphRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteGraphRequest(ExecuteGraphRequest other) : this() { + computation_ = other.computation_ != null ? other.computation_.Clone() : null; + arguments_ = other.arguments_.Clone(); + executionOptions_ = other.executionOptions_ != null ? other.executionOptions_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteGraphRequest Clone() { + return new ExecuteGraphRequest(this); + } + + /// Field number for the "computation" field. + public const int ComputationFieldNumber = 1; + private global::Xla.HloModuleProto computation_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloModuleProto Computation { + get { return computation_; } + set { + computation_ = value; + } + } + + /// Field number for the "arguments" field. + public const int ArgumentsFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_arguments_codec + = pb::FieldCodec.ForMessage(18, global::Xla.GlobalDataHandle.Parser); + private readonly pbc::RepeatedField arguments_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Arguments { + get { return arguments_; } + } + + /// Field number for the "execution_options" field. + public const int ExecutionOptionsFieldNumber = 3; + private global::Xla.ExecutionOptions executionOptions_; + /// + /// Options that affect how XLA compiles and runs code to service this request. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ExecutionOptions ExecutionOptions { + get { return executionOptions_; } + set { + executionOptions_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ExecuteGraphRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ExecuteGraphRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Computation, other.Computation)) return false; + if(!arguments_.Equals(other.arguments_)) return false; + if (!object.Equals(ExecutionOptions, other.ExecutionOptions)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (computation_ != null) hash ^= Computation.GetHashCode(); + hash ^= arguments_.GetHashCode(); + if (executionOptions_ != null) hash ^= ExecutionOptions.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (computation_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Computation); + } + arguments_.WriteTo(output, _repeated_arguments_codec); + if (executionOptions_ != null) { + output.WriteRawTag(26); + output.WriteMessage(ExecutionOptions); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (computation_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Computation); + } + arguments_.WriteTo(ref output, _repeated_arguments_codec); + if (executionOptions_ != null) { + output.WriteRawTag(26); + output.WriteMessage(ExecutionOptions); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (computation_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Computation); + } + size += arguments_.CalculateSize(_repeated_arguments_codec); + if (executionOptions_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ExecutionOptions); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ExecuteGraphRequest other) { + if (other == null) { + return; + } + if (other.computation_ != null) { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + Computation.MergeFrom(other.Computation); + } + arguments_.Add(other.arguments_); + if (other.executionOptions_ != null) { + if (executionOptions_ == null) { + ExecutionOptions = new global::Xla.ExecutionOptions(); + } + ExecutionOptions.MergeFrom(other.ExecutionOptions); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + input.ReadMessage(Computation); + break; + } + case 18: { + arguments_.AddEntriesFrom(input, _repeated_arguments_codec); + break; + } + case 26: { + if (executionOptions_ == null) { + ExecutionOptions = new global::Xla.ExecutionOptions(); + } + input.ReadMessage(ExecutionOptions); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + input.ReadMessage(Computation); + break; + } + case 18: { + arguments_.AddEntriesFrom(ref input, _repeated_arguments_codec); + break; + } + case 26: { + if (executionOptions_ == null) { + ExecutionOptions = new global::Xla.ExecutionOptions(); + } + input.ReadMessage(ExecutionOptions); + break; + } + } + } + } + #endif + + } + + public sealed partial class ExecuteGraphParallelRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ExecuteGraphParallelRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[24]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteGraphParallelRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteGraphParallelRequest(ExecuteGraphParallelRequest other) : this() { + requests_ = other.requests_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteGraphParallelRequest Clone() { + return new ExecuteGraphParallelRequest(this); + } + + /// Field number for the "requests" field. + public const int RequestsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_requests_codec + = pb::FieldCodec.ForMessage(10, global::Xla.ExecuteGraphRequest.Parser); + private readonly pbc::RepeatedField requests_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Requests { + get { return requests_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ExecuteGraphParallelRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ExecuteGraphParallelRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!requests_.Equals(other.requests_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= requests_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + requests_.WriteTo(output, _repeated_requests_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + requests_.WriteTo(ref output, _repeated_requests_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += requests_.CalculateSize(_repeated_requests_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ExecuteGraphParallelRequest other) { + if (other == null) { + return; + } + requests_.Add(other.requests_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + requests_.AddEntriesFrom(input, _repeated_requests_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + requests_.AddEntriesFrom(ref input, _repeated_requests_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class ExecuteResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ExecuteResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[25]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteResponse(ExecuteResponse other) : this() { + output_ = other.output_ != null ? other.output_.Clone() : null; + profile_ = other.profile_ != null ? other.profile_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteResponse Clone() { + return new ExecuteResponse(this); + } + + /// Field number for the "output" field. + public const int OutputFieldNumber = 1; + private global::Xla.GlobalDataHandle output_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalDataHandle Output { + get { return output_; } + set { + output_ = value; + } + } + + /// Field number for the "profile" field. + public const int ProfileFieldNumber = 2; + private global::Xla.ExecutionProfile profile_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ExecutionProfile Profile { + get { return profile_; } + set { + profile_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ExecuteResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ExecuteResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Output, other.Output)) return false; + if (!object.Equals(Profile, other.Profile)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (output_ != null) hash ^= Output.GetHashCode(); + if (profile_ != null) hash ^= Profile.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (output_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Output); + } + if (profile_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Profile); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (output_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Output); + } + if (profile_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Profile); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (output_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Output); + } + if (profile_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Profile); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ExecuteResponse other) { + if (other == null) { + return; + } + if (other.output_ != null) { + if (output_ == null) { + Output = new global::Xla.GlobalDataHandle(); + } + Output.MergeFrom(other.Output); + } + if (other.profile_ != null) { + if (profile_ == null) { + Profile = new global::Xla.ExecutionProfile(); + } + Profile.MergeFrom(other.Profile); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (output_ == null) { + Output = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Output); + break; + } + case 18: { + if (profile_ == null) { + Profile = new global::Xla.ExecutionProfile(); + } + input.ReadMessage(Profile); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (output_ == null) { + Output = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Output); + break; + } + case 18: { + if (profile_ == null) { + Profile = new global::Xla.ExecutionProfile(); + } + input.ReadMessage(Profile); + break; + } + } + } + } + #endif + + } + + public sealed partial class ExecuteParallelResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ExecuteParallelResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[26]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteParallelResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteParallelResponse(ExecuteParallelResponse other) : this() { + responses_ = other.responses_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecuteParallelResponse Clone() { + return new ExecuteParallelResponse(this); + } + + /// Field number for the "responses" field. + public const int ResponsesFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_responses_codec + = pb::FieldCodec.ForMessage(10, global::Xla.ExecuteResponse.Parser); + private readonly pbc::RepeatedField responses_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Responses { + get { return responses_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ExecuteParallelResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ExecuteParallelResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!responses_.Equals(other.responses_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= responses_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + responses_.WriteTo(output, _repeated_responses_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + responses_.WriteTo(ref output, _repeated_responses_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += responses_.CalculateSize(_repeated_responses_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ExecuteParallelResponse other) { + if (other == null) { + return; + } + responses_.Add(other.responses_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + responses_.AddEntriesFrom(input, _repeated_responses_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + responses_.AddEntriesFrom(ref input, _repeated_responses_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class WaitForExecutionRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WaitForExecutionRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[27]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForExecutionRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForExecutionRequest(WaitForExecutionRequest other) : this() { + execution_ = other.execution_ != null ? other.execution_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForExecutionRequest Clone() { + return new WaitForExecutionRequest(this); + } + + /// Field number for the "execution" field. + public const int ExecutionFieldNumber = 1; + private global::Xla.ExecutionHandle execution_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ExecutionHandle Execution { + get { return execution_; } + set { + execution_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as WaitForExecutionRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(WaitForExecutionRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Execution, other.Execution)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (execution_ != null) hash ^= Execution.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (execution_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Execution); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (execution_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Execution); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (execution_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Execution); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(WaitForExecutionRequest other) { + if (other == null) { + return; + } + if (other.execution_ != null) { + if (execution_ == null) { + Execution = new global::Xla.ExecutionHandle(); + } + Execution.MergeFrom(other.Execution); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (execution_ == null) { + Execution = new global::Xla.ExecutionHandle(); + } + input.ReadMessage(Execution); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (execution_ == null) { + Execution = new global::Xla.ExecutionHandle(); + } + input.ReadMessage(Execution); + break; + } + } + } + } + #endif + + } + + public sealed partial class WaitForExecutionResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WaitForExecutionResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[28]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForExecutionResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForExecutionResponse(WaitForExecutionResponse other) : this() { + output_ = other.output_ != null ? other.output_.Clone() : null; + profile_ = other.profile_ != null ? other.profile_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WaitForExecutionResponse Clone() { + return new WaitForExecutionResponse(this); + } + + /// Field number for the "output" field. + public const int OutputFieldNumber = 1; + private global::Xla.GlobalDataHandle output_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalDataHandle Output { + get { return output_; } + set { + output_ = value; + } + } + + /// Field number for the "profile" field. + public const int ProfileFieldNumber = 2; + private global::Xla.ExecutionProfile profile_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ExecutionProfile Profile { + get { return profile_; } + set { + profile_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as WaitForExecutionResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(WaitForExecutionResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Output, other.Output)) return false; + if (!object.Equals(Profile, other.Profile)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (output_ != null) hash ^= Output.GetHashCode(); + if (profile_ != null) hash ^= Profile.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (output_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Output); + } + if (profile_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Profile); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (output_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Output); + } + if (profile_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Profile); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (output_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Output); + } + if (profile_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Profile); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(WaitForExecutionResponse other) { + if (other == null) { + return; + } + if (other.output_ != null) { + if (output_ == null) { + Output = new global::Xla.GlobalDataHandle(); + } + Output.MergeFrom(other.Output); + } + if (other.profile_ != null) { + if (profile_ == null) { + Profile = new global::Xla.ExecutionProfile(); + } + Profile.MergeFrom(other.Profile); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (output_ == null) { + Output = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Output); + break; + } + case 18: { + if (profile_ == null) { + Profile = new global::Xla.ExecutionProfile(); + } + input.ReadMessage(Profile); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (output_ == null) { + Output = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Output); + break; + } + case 18: { + if (profile_ == null) { + Profile = new global::Xla.ExecutionProfile(); + } + input.ReadMessage(Profile); + break; + } + } + } + } + #endif + + } + + public sealed partial class ComputeConstantGraphRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ComputeConstantGraphRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[29]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputeConstantGraphRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputeConstantGraphRequest(ComputeConstantGraphRequest other) : this() { + computation_ = other.computation_ != null ? other.computation_.Clone() : null; + outputLayout_ = other.outputLayout_ != null ? other.outputLayout_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputeConstantGraphRequest Clone() { + return new ComputeConstantGraphRequest(this); + } + + /// Field number for the "computation" field. + public const int ComputationFieldNumber = 1; + private global::Xla.HloModuleProto computation_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.HloModuleProto Computation { + get { return computation_; } + set { + computation_ = value; + } + } + + /// Field number for the "output_layout" field. + public const int OutputLayoutFieldNumber = 2; + private global::Xla.LayoutProto outputLayout_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LayoutProto OutputLayout { + get { return outputLayout_; } + set { + outputLayout_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ComputeConstantGraphRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ComputeConstantGraphRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Computation, other.Computation)) return false; + if (!object.Equals(OutputLayout, other.OutputLayout)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (computation_ != null) hash ^= Computation.GetHashCode(); + if (outputLayout_ != null) hash ^= OutputLayout.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (computation_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Computation); + } + if (outputLayout_ != null) { + output.WriteRawTag(18); + output.WriteMessage(OutputLayout); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (computation_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Computation); + } + if (outputLayout_ != null) { + output.WriteRawTag(18); + output.WriteMessage(OutputLayout); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (computation_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Computation); + } + if (outputLayout_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(OutputLayout); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ComputeConstantGraphRequest other) { + if (other == null) { + return; + } + if (other.computation_ != null) { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + Computation.MergeFrom(other.Computation); + } + if (other.outputLayout_ != null) { + if (outputLayout_ == null) { + OutputLayout = new global::Xla.LayoutProto(); + } + OutputLayout.MergeFrom(other.OutputLayout); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + input.ReadMessage(Computation); + break; + } + case 18: { + if (outputLayout_ == null) { + OutputLayout = new global::Xla.LayoutProto(); + } + input.ReadMessage(OutputLayout); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (computation_ == null) { + Computation = new global::Xla.HloModuleProto(); + } + input.ReadMessage(Computation); + break; + } + case 18: { + if (outputLayout_ == null) { + OutputLayout = new global::Xla.LayoutProto(); + } + input.ReadMessage(OutputLayout); + break; + } + } + } + } + #endif + + } + + public sealed partial class ComputeConstantResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ComputeConstantResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[30]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputeConstantResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputeConstantResponse(ComputeConstantResponse other) : this() { + literal_ = other.literal_ != null ? other.literal_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputeConstantResponse Clone() { + return new ComputeConstantResponse(this); + } + + /// Field number for the "literal" field. + public const int LiteralFieldNumber = 1; + private global::Xla.LiteralProto literal_; + /// + /// A LiteralProto is returned directly for this request. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LiteralProto Literal { + get { return literal_; } + set { + literal_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ComputeConstantResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ComputeConstantResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Literal, other.Literal)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (literal_ != null) hash ^= Literal.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (literal_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Literal); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (literal_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Literal); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ComputeConstantResponse other) { + if (other == null) { + return; + } + if (other.literal_ != null) { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + Literal.MergeFrom(other.Literal); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (literal_ == null) { + Literal = new global::Xla.LiteralProto(); + } + input.ReadMessage(Literal); + break; + } + } + } + } + #endif + + } + + public sealed partial class DeconstructTupleRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeconstructTupleRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[31]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeconstructTupleRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeconstructTupleRequest(DeconstructTupleRequest other) : this() { + tupleHandle_ = other.tupleHandle_ != null ? other.tupleHandle_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeconstructTupleRequest Clone() { + return new DeconstructTupleRequest(this); + } + + /// Field number for the "tuple_handle" field. + public const int TupleHandleFieldNumber = 2; + private global::Xla.GlobalDataHandle tupleHandle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalDataHandle TupleHandle { + get { return tupleHandle_; } + set { + tupleHandle_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DeconstructTupleRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DeconstructTupleRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(TupleHandle, other.TupleHandle)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (tupleHandle_ != null) hash ^= TupleHandle.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (tupleHandle_ != null) { + output.WriteRawTag(18); + output.WriteMessage(TupleHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (tupleHandle_ != null) { + output.WriteRawTag(18); + output.WriteMessage(TupleHandle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (tupleHandle_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(TupleHandle); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DeconstructTupleRequest other) { + if (other == null) { + return; + } + if (other.tupleHandle_ != null) { + if (tupleHandle_ == null) { + TupleHandle = new global::Xla.GlobalDataHandle(); + } + TupleHandle.MergeFrom(other.TupleHandle); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 18: { + if (tupleHandle_ == null) { + TupleHandle = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(TupleHandle); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 18: { + if (tupleHandle_ == null) { + TupleHandle = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(TupleHandle); + break; + } + } + } + } + #endif + + } + + public sealed partial class DeconstructTupleResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeconstructTupleResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[32]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeconstructTupleResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeconstructTupleResponse(DeconstructTupleResponse other) : this() { + elementHandles_ = other.elementHandles_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeconstructTupleResponse Clone() { + return new DeconstructTupleResponse(this); + } + + /// Field number for the "element_handles" field. + public const int ElementHandlesFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_elementHandles_codec + = pb::FieldCodec.ForMessage(10, global::Xla.GlobalDataHandle.Parser); + private readonly pbc::RepeatedField elementHandles_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ElementHandles { + get { return elementHandles_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DeconstructTupleResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DeconstructTupleResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!elementHandles_.Equals(other.elementHandles_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= elementHandles_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + elementHandles_.WriteTo(output, _repeated_elementHandles_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + elementHandles_.WriteTo(ref output, _repeated_elementHandles_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += elementHandles_.CalculateSize(_repeated_elementHandles_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DeconstructTupleResponse other) { + if (other == null) { + return; + } + elementHandles_.Add(other.elementHandles_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + elementHandles_.AddEntriesFrom(input, _repeated_elementHandles_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + elementHandles_.AddEntriesFrom(ref input, _repeated_elementHandles_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class LoadDataRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new LoadDataRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[33]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LoadDataRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LoadDataRequest(LoadDataRequest other) : this() { + columnioTabletPath_ = other.columnioTabletPath_; + columnioField_ = other.columnioField_; + elementShape_ = other.elementShape_ != null ? other.elementShape_.Clone() : null; + offset_ = other.offset_; + limit_ = other.limit_; + zip_ = other.zip_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LoadDataRequest Clone() { + return new LoadDataRequest(this); + } + + /// Field number for the "columnio_tablet_path" field. + public const int ColumnioTabletPathFieldNumber = 1; + private string columnioTabletPath_ = ""; + /// + /// Describes the path of the ColumnIO tablet to load. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ColumnioTabletPath { + get { return columnioTabletPath_; } + set { + columnioTabletPath_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "columnio_field" field. + public const int ColumnioFieldFieldNumber = 2; + private string columnioField_ = ""; + /// + /// Describes the field to load within the ColumnIO tablet. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string ColumnioField { + get { return columnioField_; } + set { + columnioField_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "element_shape" field. + public const int ElementShapeFieldNumber = 3; + private global::Xla.ShapeProto elementShape_; + /// + /// Individual element shape, excluding rows. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto ElementShape { + get { return elementShape_; } + set { + elementShape_ = value; + } + } + + /// Field number for the "offset" field. + public const int OffsetFieldNumber = 4; + private long offset_; + /// + /// Warning: ColumnIO does not support random-access, so use offset with + /// caution in performance-critical scenarios. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Offset { + get { return offset_; } + set { + offset_ = value; + } + } + + /// Field number for the "limit" field. + public const int LimitFieldNumber = 5; + private long limit_; + /// + /// Maximum number of elements (with shape element_shape) to load. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Limit { + get { return limit_; } + set { + limit_ = value; + } + } + + /// Field number for the "zip" field. + public const int ZipFieldNumber = 6; + private bool zip_; + /// + /// If more than one item is requested (via limit > 1), then this request + /// attribute zips together the produced vectors. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Zip { + get { return zip_; } + set { + zip_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as LoadDataRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(LoadDataRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ColumnioTabletPath != other.ColumnioTabletPath) return false; + if (ColumnioField != other.ColumnioField) return false; + if (!object.Equals(ElementShape, other.ElementShape)) return false; + if (Offset != other.Offset) return false; + if (Limit != other.Limit) return false; + if (Zip != other.Zip) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ColumnioTabletPath.Length != 0) hash ^= ColumnioTabletPath.GetHashCode(); + if (ColumnioField.Length != 0) hash ^= ColumnioField.GetHashCode(); + if (elementShape_ != null) hash ^= ElementShape.GetHashCode(); + if (Offset != 0L) hash ^= Offset.GetHashCode(); + if (Limit != 0L) hash ^= Limit.GetHashCode(); + if (Zip != false) hash ^= Zip.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ColumnioTabletPath.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ColumnioTabletPath); + } + if (ColumnioField.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ColumnioField); + } + if (elementShape_ != null) { + output.WriteRawTag(26); + output.WriteMessage(ElementShape); + } + if (Offset != 0L) { + output.WriteRawTag(32); + output.WriteInt64(Offset); + } + if (Limit != 0L) { + output.WriteRawTag(40); + output.WriteInt64(Limit); + } + if (Zip != false) { + output.WriteRawTag(48); + output.WriteBool(Zip); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ColumnioTabletPath.Length != 0) { + output.WriteRawTag(10); + output.WriteString(ColumnioTabletPath); + } + if (ColumnioField.Length != 0) { + output.WriteRawTag(18); + output.WriteString(ColumnioField); + } + if (elementShape_ != null) { + output.WriteRawTag(26); + output.WriteMessage(ElementShape); + } + if (Offset != 0L) { + output.WriteRawTag(32); + output.WriteInt64(Offset); + } + if (Limit != 0L) { + output.WriteRawTag(40); + output.WriteInt64(Limit); + } + if (Zip != false) { + output.WriteRawTag(48); + output.WriteBool(Zip); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ColumnioTabletPath.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ColumnioTabletPath); + } + if (ColumnioField.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(ColumnioField); + } + if (elementShape_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ElementShape); + } + if (Offset != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Offset); + } + if (Limit != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Limit); + } + if (Zip != false) { + size += 1 + 1; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(LoadDataRequest other) { + if (other == null) { + return; + } + if (other.ColumnioTabletPath.Length != 0) { + ColumnioTabletPath = other.ColumnioTabletPath; + } + if (other.ColumnioField.Length != 0) { + ColumnioField = other.ColumnioField; + } + if (other.elementShape_ != null) { + if (elementShape_ == null) { + ElementShape = new global::Xla.ShapeProto(); + } + ElementShape.MergeFrom(other.ElementShape); + } + if (other.Offset != 0L) { + Offset = other.Offset; + } + if (other.Limit != 0L) { + Limit = other.Limit; + } + if (other.Zip != false) { + Zip = other.Zip; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + ColumnioTabletPath = input.ReadString(); + break; + } + case 18: { + ColumnioField = input.ReadString(); + break; + } + case 26: { + if (elementShape_ == null) { + ElementShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(ElementShape); + break; + } + case 32: { + Offset = input.ReadInt64(); + break; + } + case 40: { + Limit = input.ReadInt64(); + break; + } + case 48: { + Zip = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + ColumnioTabletPath = input.ReadString(); + break; + } + case 18: { + ColumnioField = input.ReadString(); + break; + } + case 26: { + if (elementShape_ == null) { + ElementShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(ElementShape); + break; + } + case 32: { + Offset = input.ReadInt64(); + break; + } + case 40: { + Limit = input.ReadInt64(); + break; + } + case 48: { + Zip = input.ReadBool(); + break; + } + } + } + } + #endif + + } + + public sealed partial class LoadDataResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new LoadDataResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[34]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LoadDataResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LoadDataResponse(LoadDataResponse other) : this() { + data_ = other.data_ != null ? other.data_.Clone() : null; + dataShape_ = other.dataShape_ != null ? other.dataShape_.Clone() : null; + availableRows_ = other.availableRows_; + rowsLoaded_ = other.rowsLoaded_; + nanoseconds_ = other.nanoseconds_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LoadDataResponse Clone() { + return new LoadDataResponse(this); + } + + /// Field number for the "data" field. + public const int DataFieldNumber = 1; + private global::Xla.GlobalDataHandle data_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalDataHandle Data { + get { return data_; } + set { + data_ = value; + } + } + + /// Field number for the "data_shape" field. + public const int DataShapeFieldNumber = 2; + private global::Xla.ShapeProto dataShape_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto DataShape { + get { return dataShape_; } + set { + dataShape_ = value; + } + } + + /// Field number for the "available_rows" field. + public const int AvailableRowsFieldNumber = 3; + private long availableRows_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long AvailableRows { + get { return availableRows_; } + set { + availableRows_ = value; + } + } + + /// Field number for the "rows_loaded" field. + public const int RowsLoadedFieldNumber = 4; + private long rowsLoaded_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long RowsLoaded { + get { return rowsLoaded_; } + set { + rowsLoaded_ = value; + } + } + + /// Field number for the "nanoseconds" field. + public const int NanosecondsFieldNumber = 5; + private long nanoseconds_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Nanoseconds { + get { return nanoseconds_; } + set { + nanoseconds_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as LoadDataResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(LoadDataResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Data, other.Data)) return false; + if (!object.Equals(DataShape, other.DataShape)) return false; + if (AvailableRows != other.AvailableRows) return false; + if (RowsLoaded != other.RowsLoaded) return false; + if (Nanoseconds != other.Nanoseconds) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (data_ != null) hash ^= Data.GetHashCode(); + if (dataShape_ != null) hash ^= DataShape.GetHashCode(); + if (AvailableRows != 0L) hash ^= AvailableRows.GetHashCode(); + if (RowsLoaded != 0L) hash ^= RowsLoaded.GetHashCode(); + if (Nanoseconds != 0L) hash ^= Nanoseconds.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (dataShape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(DataShape); + } + if (AvailableRows != 0L) { + output.WriteRawTag(24); + output.WriteInt64(AvailableRows); + } + if (RowsLoaded != 0L) { + output.WriteRawTag(32); + output.WriteInt64(RowsLoaded); + } + if (Nanoseconds != 0L) { + output.WriteRawTag(40); + output.WriteInt64(Nanoseconds); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (dataShape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(DataShape); + } + if (AvailableRows != 0L) { + output.WriteRawTag(24); + output.WriteInt64(AvailableRows); + } + if (RowsLoaded != 0L) { + output.WriteRawTag(32); + output.WriteInt64(RowsLoaded); + } + if (Nanoseconds != 0L) { + output.WriteRawTag(40); + output.WriteInt64(Nanoseconds); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (data_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Data); + } + if (dataShape_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(DataShape); + } + if (AvailableRows != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(AvailableRows); + } + if (RowsLoaded != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(RowsLoaded); + } + if (Nanoseconds != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Nanoseconds); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(LoadDataResponse other) { + if (other == null) { + return; + } + if (other.data_ != null) { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + Data.MergeFrom(other.Data); + } + if (other.dataShape_ != null) { + if (dataShape_ == null) { + DataShape = new global::Xla.ShapeProto(); + } + DataShape.MergeFrom(other.DataShape); + } + if (other.AvailableRows != 0L) { + AvailableRows = other.AvailableRows; + } + if (other.RowsLoaded != 0L) { + RowsLoaded = other.RowsLoaded; + } + if (other.Nanoseconds != 0L) { + Nanoseconds = other.Nanoseconds; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + case 18: { + if (dataShape_ == null) { + DataShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(DataShape); + break; + } + case 24: { + AvailableRows = input.ReadInt64(); + break; + } + case 32: { + RowsLoaded = input.ReadInt64(); + break; + } + case 40: { + Nanoseconds = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + case 18: { + if (dataShape_ == null) { + DataShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(DataShape); + break; + } + case 24: { + AvailableRows = input.ReadInt64(); + break; + } + case 32: { + RowsLoaded = input.ReadInt64(); + break; + } + case 40: { + Nanoseconds = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + public sealed partial class GetShapeRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetShapeRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[35]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetShapeRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetShapeRequest(GetShapeRequest other) : this() { + data_ = other.data_ != null ? other.data_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetShapeRequest Clone() { + return new GetShapeRequest(this); + } + + /// Field number for the "data" field. + public const int DataFieldNumber = 1; + private global::Xla.GlobalDataHandle data_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalDataHandle Data { + get { return data_; } + set { + data_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetShapeRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetShapeRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Data, other.Data)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (data_ != null) hash ^= Data.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (data_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Data); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetShapeRequest other) { + if (other == null) { + return; + } + if (other.data_ != null) { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + Data.MergeFrom(other.Data); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + } + } + } + #endif + + } + + public sealed partial class GetShapeResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GetShapeResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[36]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetShapeResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetShapeResponse(GetShapeResponse other) : this() { + shape_ = other.shape_ != null ? other.shape_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GetShapeResponse Clone() { + return new GetShapeResponse(this); + } + + /// Field number for the "shape" field. + public const int ShapeFieldNumber = 1; + private global::Xla.ShapeProto shape_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto Shape { + get { return shape_; } + set { + shape_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GetShapeResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GetShapeResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Shape, other.Shape)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (shape_ != null) hash ^= Shape.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (shape_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Shape); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (shape_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Shape); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (shape_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Shape); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GetShapeResponse other) { + if (other == null) { + return; + } + if (other.shape_ != null) { + if (shape_ == null) { + Shape = new global::Xla.ShapeProto(); + } + Shape.MergeFrom(other.Shape); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (shape_ == null) { + Shape = new global::Xla.ShapeProto(); + } + input.ReadMessage(Shape); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (shape_ == null) { + Shape = new global::Xla.ShapeProto(); + } + input.ReadMessage(Shape); + break; + } + } + } + } + #endif + + } + + public sealed partial class UnpackRequest : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new UnpackRequest()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[37]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnpackRequest() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnpackRequest(UnpackRequest other) : this() { + data_ = other.data_ != null ? other.data_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnpackRequest Clone() { + return new UnpackRequest(this); + } + + /// Field number for the "data" field. + public const int DataFieldNumber = 1; + private global::Xla.GlobalDataHandle data_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.GlobalDataHandle Data { + get { return data_; } + set { + data_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as UnpackRequest); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(UnpackRequest other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Data, other.Data)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (data_ != null) hash ^= Data.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (data_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Data); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (data_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Data); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(UnpackRequest other) { + if (other == null) { + return; + } + if (other.data_ != null) { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + Data.MergeFrom(other.Data); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (data_ == null) { + Data = new global::Xla.GlobalDataHandle(); + } + input.ReadMessage(Data); + break; + } + } + } + } + #endif + + } + + public sealed partial class UnpackResponse : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new UnpackResponse()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaReflection.Descriptor.MessageTypes[38]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnpackResponse() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnpackResponse(UnpackResponse other) : this() { + tiedData_ = other.tiedData_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public UnpackResponse Clone() { + return new UnpackResponse(this); + } + + /// Field number for the "tied_data" field. + public const int TiedDataFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_tiedData_codec + = pb::FieldCodec.ForMessage(10, global::Xla.GlobalDataHandle.Parser); + private readonly pbc::RepeatedField tiedData_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField TiedData { + get { return tiedData_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as UnpackResponse); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(UnpackResponse other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!tiedData_.Equals(other.tiedData_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= tiedData_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + tiedData_.WriteTo(output, _repeated_tiedData_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + tiedData_.WriteTo(ref output, _repeated_tiedData_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += tiedData_.CalculateSize(_repeated_tiedData_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(UnpackResponse other) { + if (other == null) { + return; + } + tiedData_.Add(other.tiedData_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + tiedData_.AddEntriesFrom(input, _repeated_tiedData_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + tiedData_.AddEntriesFrom(ref input, _repeated_tiedData_codec); + break; + } + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/XlaData.cs b/src/TensorFlowNET.Core/Protobuf/XlaData.cs new file mode 100644 index 000000000..b281ab778 --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/XlaData.cs @@ -0,0 +1,10350 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/compiler/xla/xla_data.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Xla { + + /// Holder for reflection information generated from tensorflow/compiler/xla/xla_data.proto + public static partial class XlaDataReflection { + + #region Descriptor + /// File descriptor for tensorflow/compiler/xla/xla_data.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static XlaDataReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "CiZ0ZW5zb3JmbG93L2NvbXBpbGVyL3hsYS94bGFfZGF0YS5wcm90bxIDeGxh", + "IrcBCg1QYWRkaW5nQ29uZmlnEj0KCmRpbWVuc2lvbnMYASADKAsyKS54bGEu", + "UGFkZGluZ0NvbmZpZy5QYWRkaW5nQ29uZmlnRGltZW5zaW9uGmcKFlBhZGRp", + "bmdDb25maWdEaW1lbnNpb24SGAoQZWRnZV9wYWRkaW5nX2xvdxgBIAEoAxIZ", + "ChFlZGdlX3BhZGRpbmdfaGlnaBgCIAEoAxIYChBpbnRlcmlvcl9wYWRkaW5n", + "GAMgASgDIh8KCVRpbGVQcm90bxISCgpkaW1lbnNpb25zGAEgAygDIqQCCgtM", + "YXlvdXRQcm90bxIqCg9kaW1fbGV2ZWxfdHlwZXMYCSADKA4yES54bGEuRGlt", + "TGV2ZWxUeXBlEhYKDm1pbm9yX3RvX21ham9yGAEgAygDEh0KBXRpbGVzGAYg", + "AygLMg4ueGxhLlRpbGVQcm90bxIcChRlbGVtZW50X3NpemVfaW5fYml0cxgH", + "IAEoAxIUCgxtZW1vcnlfc3BhY2UYCCABKAMSJwoOcGh5c2ljYWxfc2hhcGUY", + "CiABKAsyDy54bGEuU2hhcGVQcm90b0oECAIQA0oECAMQBEoECAQQBUoECAUQ", + "BlIRcGFkZGVkX2RpbWVuc2lvbnNSDXBhZGRpbmdfdmFsdWVSBmZvcm1hdFIT", + "bWF4X3NwYXJzZV9lbGVtZW50cyK9AQoKU2hhcGVQcm90bxIoCgxlbGVtZW50", + "X3R5cGUYAiABKA4yEi54bGEuUHJpbWl0aXZlVHlwZRISCgpkaW1lbnNpb25z", + "GAMgAygDEiUKDHR1cGxlX3NoYXBlcxgEIAMoCzIPLnhsYS5TaGFwZVByb3Rv", + "EiAKBmxheW91dBgFIAEoCzIQLnhsYS5MYXlvdXRQcm90bxIcChRpc19keW5h", + "bWljX2RpbWVuc2lvbhgGIAMoCEoECAEQAlIEcmFuayJyChFQcm9ncmFtU2hh", + "cGVQcm90bxIjCgpwYXJhbWV0ZXJzGAEgAygLMg8ueGxhLlNoYXBlUHJvdG8S", + "HwoGcmVzdWx0GAIgASgLMg8ueGxhLlNoYXBlUHJvdG8SFwoPcGFyYW1ldGVy", + "X25hbWVzGAMgAygJIkQKEENvbXB1dGF0aW9uU3RhdHMSEgoKZmxvcF9jb3Vu", + "dBgBIAEoARIcChR0cmFuc2NlbmRlbnRhbF9jb3VudBgCIAEoASL/AwoKT3BN", + "ZXRhZGF0YRIPCgdvcF90eXBlGAEgASgJEg8KB29wX25hbWUYAiABKAkSEwoL", + "c291cmNlX2ZpbGUYAyABKAkSEwoLc291cmNlX2xpbmUYBCABKAUSKgoMcHJv", + "ZmlsZV90eXBlGAUgAygOMhAueGxhLlByb2ZpbGVUeXBlQgIYARIYChBjcmVh", + "dGlvbl9wYXNzX2lkGAYgASgDEiAKGGxvZ2ljYWxfY3JlYXRpb25fcGFzc19p", + "ZBgHIAEoAxInCh9zaXplX29mX2dlbmVyYXRlZF9jb2RlX2luX2J5dGVzGAgg", + "ASgDEisKI3NpemVfb2ZfbWVtb3J5X3dvcmtpbmdfc2V0X2luX2J5dGVzGAkg", + "ASgDEjEKDHByb2ZpbGVfaW5mbxgKIAEoCzIbLnhsYS5PcE1ldGFkYXRhLlBy", + "b2ZpbGVJbmZvGq0BCgtQcm9maWxlSW5mbxImCgxwcm9maWxlX3R5cGUYASAD", + "KA4yEC54bGEuUHJvZmlsZVR5cGUSGAoQcmVsYXRpdmVfc3BlZWR1cBgCIAEo", + "ARIqCg5wcm9maWxlX3NvdXJjZRgDIAEoDjISLnhsYS5Qcm9maWxlU291cmNl", + "EjAKEWNvbXBpbGF0aW9uX2V2ZW50GAQgASgOMhUueGxhLkNvbXBpbGF0aW9u", + "RXZlbnRKBAgLEAwi4wEKEEV4ZWN1dGlvblByb2ZpbGUSHQoVY29tcGlsYXRp", + "b25fY2FjaGVfaGl0GAEgASgIEhcKD2NvbXBpbGVfdGltZV9tcxgCIAEoAxIb", + "ChNjb21wdXRlX2N5Y2xlX2NvdW50GAMgASgDEhcKD2NvbXB1dGVfdGltZV9u", + "cxgEIAEoAxIkChxjb21wdXRlX2FuZF90cmFuc2Zlcl90aW1lX25zGAUgASgD", + "EiAKGGV4ZWN1dGFibGVfc2l6ZV9pbl9ieXRlcxgGIAEoAxIZChFwcm9maWxl", + "X2NhY2hlX2hpdBgHIAEoCCIhCg9FeGVjdXRpb25IYW5kbGUSDgoGaGFuZGxl", + "GAEgASgDIiIKEEdsb2JhbERhdGFIYW5kbGUSDgoGaGFuZGxlGAEgASgDIjQK", + "DERldmljZUhhbmRsZRIOCgZoYW5kbGUYASABKAMSFAoMZGV2aWNlX2NvdW50", + "GAIgASgDIrQBCg1DaGFubmVsSGFuZGxlEg4KBmhhbmRsZRgBIAEoAxIsCgR0", + "eXBlGAIgASgOMh4ueGxhLkNoYW5uZWxIYW5kbGUuQ2hhbm5lbFR5cGUiZQoL", + "Q2hhbm5lbFR5cGUSGAoUQ0hBTk5FTF9UWVBFX0lOVkFMSUQQABIUChBERVZJ", + "Q0VfVE9fREVWSUNFEAESEgoOREVWSUNFX1RPX0hPU1QQAhISCg5IT1NUX1RP", + "X0RFVklDRRADIsUBChVEZXZpY2VBc3NpZ25tZW50UHJvdG8SFQoNcmVwbGlj", + "YV9jb3VudBgBIAEoBRIZChFjb21wdXRhdGlvbl9jb3VudBgCIAEoBRJJChNj", + "b21wdXRhdGlvbl9kZXZpY2VzGAMgAygLMiwueGxhLkRldmljZUFzc2lnbm1l", + "bnRQcm90by5Db21wdXRhdGlvbkRldmljZRovChFDb21wdXRhdGlvbkRldmlj", + "ZRIaChJyZXBsaWNhX2RldmljZV9pZHMYASADKAUixAIKDExpdGVyYWxQcm90", + "bxIeCgVzaGFwZRgBIAEoCzIPLnhsYS5TaGFwZVByb3RvEg0KBXByZWRzGAIg", + "AygIEgsKA3M4cxgPIAEoDBILCgN1OHMYAyABKAwSDAoEczMycxgEIAMoBRIM", + "CgRzNjRzGAUgAygDEgwKBHUzMnMYBiADKA0SDAoEdTY0cxgHIAMoBBIMCgRm", + "MzJzGAggAygCEgwKBGY2NHMYCSADKAESDAoEYzY0cxgMIAMoAhINCgVjMTI4", + "cxgSIAMoARIpCg50dXBsZV9saXRlcmFscxgKIAMoCzIRLnhsYS5MaXRlcmFs", + "UHJvdG8SDAoEZjE2cxgLIAEoDBINCgViZjE2cxgNIAEoDBIMCgR1MTZzGBAg", + "ASgMEgwKBHMxNnMYESABKAwSFgoOc3BhcnNlX2luZGljZXMYDiADKAMiowEK", + "D1dpbmRvd0RpbWVuc2lvbhIMCgRzaXplGAEgASgDEg4KBnN0cmlkZRgCIAEo", + "AxITCgtwYWRkaW5nX2xvdxgDIAEoAxIUCgxwYWRkaW5nX2hpZ2gYBCABKAMS", + "FwoPd2luZG93X2RpbGF0aW9uGAUgASgDEhUKDWJhc2VfZGlsYXRpb24YBiAB", + "KAMSFwoPd2luZG93X3JldmVyc2FsGAcgASgIIjIKBldpbmRvdxIoCgpkaW1l", + "bnNpb25zGAEgAygLMhQueGxhLldpbmRvd0RpbWVuc2lvbiJ+ChZHYXRoZXJE", + "aW1lbnNpb25OdW1iZXJzEhMKC29mZnNldF9kaW1zGAEgAygDEhwKFGNvbGxh", + "cHNlZF9zbGljZV9kaW1zGAIgAygDEhcKD3N0YXJ0X2luZGV4X21hcBgDIAMo", + "AxIYChBpbmRleF92ZWN0b3JfZGltGAQgASgDIpMBChdTY2F0dGVyRGltZW5z", + "aW9uTnVtYmVycxIaChJ1cGRhdGVfd2luZG93X2RpbXMYASADKAMSHAoUaW5z", + "ZXJ0ZWRfd2luZG93X2RpbXMYAiADKAMSJAocc2NhdHRlcl9kaW1zX3RvX29w", + "ZXJhbmRfZGltcxgDIAMoAxIYChBpbmRleF92ZWN0b3JfZGltGAQgASgDItgC", + "ChtDb252b2x1dGlvbkRpbWVuc2lvbk51bWJlcnMSHQoVaW5wdXRfYmF0Y2hf", + "ZGltZW5zaW9uGAcgASgDEh8KF2lucHV0X2ZlYXR1cmVfZGltZW5zaW9uGAgg", + "ASgDEiAKGGlucHV0X3NwYXRpYWxfZGltZW5zaW9ucxgLIAMoAxImCh5rZXJu", + "ZWxfaW5wdXRfZmVhdHVyZV9kaW1lbnNpb24YAyABKAMSJwofa2VybmVsX291", + "dHB1dF9mZWF0dXJlX2RpbWVuc2lvbhgEIAEoAxIhChlrZXJuZWxfc3BhdGlh", + "bF9kaW1lbnNpb25zGAYgAygDEh4KFm91dHB1dF9iYXRjaF9kaW1lbnNpb24Y", + "CSABKAMSIAoYb3V0cHV0X2ZlYXR1cmVfZGltZW5zaW9uGAogASgDEiEKGW91", + "dHB1dF9zcGF0aWFsX2RpbWVuc2lvbnMYDCADKAMimQEKE0RvdERpbWVuc2lv", + "bk51bWJlcnMSIgoabGhzX2NvbnRyYWN0aW5nX2RpbWVuc2lvbnMYASADKAMS", + "IgoacmhzX2NvbnRyYWN0aW5nX2RpbWVuc2lvbnMYAiADKAMSHAoUbGhzX2Jh", + "dGNoX2RpbWVuc2lvbnMYAyADKAMSHAoUcmhzX2JhdGNoX2RpbWVuc2lvbnMY", + "BCADKAMi3wEKFlRyaWFuZ3VsYXJTb2x2ZU9wdGlvbnMSEQoJbGVmdF9zaWRl", + "GAEgASgIEg0KBWxvd2VyGAIgASgIEhUKDXVuaXRfZGlhZ29uYWwYAyABKAgS", + "OgoLdHJhbnNwb3NlX2EYBCABKA4yJS54bGEuVHJpYW5ndWxhclNvbHZlT3B0", + "aW9ucy5UcmFuc3Bvc2UiUAoJVHJhbnNwb3NlEhUKEVRSQU5TUE9TRV9JTlZB", + "TElEEAASEAoMTk9fVFJBTlNQT1NFEAESDQoJVFJBTlNQT1NFEAISCwoHQURK", + "T0lOVBADIiAKD0Nob2xlc2t5T3B0aW9ucxINCgVsb3dlchgBIAEoCCJvChJG", + "cm9udGVuZEF0dHJpYnV0ZXMSLQoDbWFwGAEgAygLMiAueGxhLkZyb250ZW5k", + "QXR0cmlidXRlcy5NYXBFbnRyeRoqCghNYXBFbnRyeRILCgNrZXkYASABKAkS", + "DQoFdmFsdWUYAiABKAk6AjgBIoADCgpPcFNoYXJkaW5nEiIKBHR5cGUYASAB", + "KA4yFC54bGEuT3BTaGFyZGluZy5UeXBlEiMKCnRpbGVfc2hhcGUYAiABKAsy", + "Dy54bGEuU2hhcGVQcm90bxIiChp0aWxlX2Fzc2lnbm1lbnRfZGltZW5zaW9u", + "cxgDIAMoAxIfChd0aWxlX2Fzc2lnbm1lbnRfZGV2aWNlcxgEIAMoAxIoCg90", + "dXBsZV9zaGFyZGluZ3MYBSADKAsyDy54bGEuT3BTaGFyZGluZxIiChpyZXBs", + "aWNhdGVfb25fbGFzdF90aWxlX2RpbRgGIAEoCBIhCghtZXRhZGF0YRgHIAMo", + "CzIPLnhsYS5PcE1ldGFkYXRhEiwKDmxhc3RfdGlsZV9kaW1zGAggAygOMhQu", + "eGxhLk9wU2hhcmRpbmcuVHlwZSJFCgRUeXBlEg4KClJFUExJQ0FURUQQABIL", + "CgdNQVhJTUFMEAESCQoFVFVQTEUQAhIJCgVPVEhFUhADEgoKBk1BTlVBTBAE", + "IiMKDFJlcGxpY2FHcm91cBITCgtyZXBsaWNhX2lkcxgBIAMoAyIuCgxTb3Vy", + "Y2VUYXJnZXQSDgoGc291cmNlGAEgASgDEg4KBnRhcmdldBgCIAEoAyKQAQoP", + "UHJlY2lzaW9uQ29uZmlnEjkKEW9wZXJhbmRfcHJlY2lzaW9uGAEgAygOMh4u", + "eGxhLlByZWNpc2lvbkNvbmZpZy5QcmVjaXNpb24iQgoJUHJlY2lzaW9uEgsK", + "B0RFRkFVTFQQABIICgRISUdIEAESCwoHSElHSEVTVBACEhEKDVBBQ0tFRF9O", + "SUJCTEUQAyI6ChRQYXJhbWV0ZXJSZXBsaWNhdGlvbhIiChpyZXBsaWNhdGVk", + "X2F0X2xlYWZfYnVmZmVycxgBIAMoCCJ7ChZXaGlsZUxvb3BCYWNrZW5kQ29u", + "ZmlnEkQKEGtub3duX3RyaXBfY291bnQYASABKAsyKi54bGEuV2hpbGVMb29w", + "QmFja2VuZENvbmZpZy5Lbm93blRyaXBDb3VudBobCg5Lbm93blRyaXBDb3Vu", + "dBIJCgFuGAEgASgDInEKH0N1c3RvbUNhbGxPdXRwdXRPcGVyYW5kQWxpYXNp", + "bmcSGgoSb3V0cHV0X3NoYXBlX2luZGV4GAEgAygDEhUKDW9wZXJhbmRfaW5k", + "ZXgYAiABKAMSGwoTb3BlcmFuZF9zaGFwZV9pbmRleBgDIAMoAyraAQoNUHJp", + "bWl0aXZlVHlwZRIaChZQUklNSVRJVkVfVFlQRV9JTlZBTElEEAASCAoEUFJF", + "RBABEgYKAlM4EAISBwoDUzE2EAMSBwoDUzMyEAQSBwoDUzY0EAUSBgoCVTgQ", + "BhIHCgNVMTYQBxIHCgNVMzIQCBIHCgNVNjQQCRIHCgNGMTYQChIHCgNGMzIQ", + "CxIICgRCRjE2EBASBwoDRjY0EAwSBwoDQzY0EA8SCAoEQzEyOBASEgkKBVRV", + "UExFEA0SDwoLT1BBUVVFX1RZUEUQDhIJCgVUT0tFThARKkQKDERpbUxldmVs", + "VHlwZRINCglESU1fREVOU0UQABISCg5ESU1fQ09NUFJFU1NFRBABEhEKDURJ", + "TV9TSU5HTEVUT04QAio9CgtQcm9maWxlVHlwZRILCgdJTlZBTElEEAASCgoG", + "V0lORE9XEAESCAoERkxBRxACEgsKB0lOVEVHRVIQAypqCg1Qcm9maWxlU291", + "cmNlEiEKHVBST0ZJTEVfU09VUkNFX1VOS05PV05fU09VUkNFEAASGwoXUFJP", + "RklMRV9TT1VSQ0VfRU1CRURERUQQARIZChVQUk9GSUxFX1NPVVJDRV9SRU1P", + "VEUQAiqFAQoQQ29tcGlsYXRpb25FdmVudBIjCh9DT01QSUxBVElPTl9FVkVO", + "VF9VTktOT1dOX0VWRU5UEAASJwojQ09NUElMQVRJT05fRVZFTlRfRklSU1Rf", + "Q09NUElMQVRJT04QARIjCh9DT01QSUxBVElPTl9FVkVOVF9SRUNPTVBJTEFU", + "SU9OEAIqRwoLUGFkZGluZ1R5cGUSEwoPUEFERElOR19JTlZBTElEEAASEQoN", + "UEFERElOR19WQUxJRBABEhAKDFBBRERJTkdfU0FNRRACKjEKB0ZmdFR5cGUS", + "BwoDRkZUEAASCAoESUZGVBABEggKBFJGRlQQAhIJCgVJUkZGVBADKkYKElJh", + "bmRvbURpc3RyaWJ1dGlvbhIPCgtSTkdfSU5WQUxJRBAAEg8KC1JOR19VTklG", + "T1JNEAESDgoKUk5HX05PUk1BTBACKkUKD1JhbmRvbUFsZ29yaXRobRIPCgtS", + "TkdfREVGQVVMVBAAEhEKDVJOR19USFJFRV9GUlkQARIOCgpSTkdfUEhJTE9Y", + "EAJCA/gBAWIGcHJvdG8z")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { }, + new pbr::GeneratedClrTypeInfo(new[] {typeof(global::Xla.PrimitiveType), typeof(global::Xla.DimLevelType), typeof(global::Xla.ProfileType), typeof(global::Xla.ProfileSource), typeof(global::Xla.CompilationEvent), typeof(global::Xla.PaddingType), typeof(global::Xla.FftType), typeof(global::Xla.RandomDistribution), typeof(global::Xla.RandomAlgorithm), }, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.PaddingConfig), global::Xla.PaddingConfig.Parser, new[]{ "Dimensions" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.PaddingConfig.Types.PaddingConfigDimension), global::Xla.PaddingConfig.Types.PaddingConfigDimension.Parser, new[]{ "EdgePaddingLow", "EdgePaddingHigh", "InteriorPadding" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TileProto), global::Xla.TileProto.Parser, new[]{ "Dimensions" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.LayoutProto), global::Xla.LayoutProto.Parser, new[]{ "DimLevelTypes", "MinorToMajor", "Tiles", "ElementSizeInBits", "MemorySpace", "PhysicalShape" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ShapeProto), global::Xla.ShapeProto.Parser, new[]{ "ElementType", "Dimensions", "TupleShapes", "Layout", "IsDynamicDimension" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ProgramShapeProto), global::Xla.ProgramShapeProto.Parser, new[]{ "Parameters", "Result", "ParameterNames" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ComputationStats), global::Xla.ComputationStats.Parser, new[]{ "FlopCount", "TranscendentalCount" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.OpMetadata), global::Xla.OpMetadata.Parser, new[]{ "OpType", "OpName", "SourceFile", "SourceLine", "ProfileType", "CreationPassId", "LogicalCreationPassId", "SizeOfGeneratedCodeInBytes", "SizeOfMemoryWorkingSetInBytes", "ProfileInfo" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.OpMetadata.Types.ProfileInfo), global::Xla.OpMetadata.Types.ProfileInfo.Parser, new[]{ "ProfileType", "RelativeSpeedup", "ProfileSource", "CompilationEvent" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ExecutionProfile), global::Xla.ExecutionProfile.Parser, new[]{ "CompilationCacheHit", "CompileTimeMs", "ComputeCycleCount", "ComputeTimeNs", "ComputeAndTransferTimeNs", "ExecutableSizeInBytes", "ProfileCacheHit" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ExecutionHandle), global::Xla.ExecutionHandle.Parser, new[]{ "Handle" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.GlobalDataHandle), global::Xla.GlobalDataHandle.Parser, new[]{ "Handle" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DeviceHandle), global::Xla.DeviceHandle.Parser, new[]{ "Handle", "DeviceCount" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ChannelHandle), global::Xla.ChannelHandle.Parser, new[]{ "Handle", "Type" }, null, new[]{ typeof(global::Xla.ChannelHandle.Types.ChannelType) }, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DeviceAssignmentProto), global::Xla.DeviceAssignmentProto.Parser, new[]{ "ReplicaCount", "ComputationCount", "ComputationDevices" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DeviceAssignmentProto.Types.ComputationDevice), global::Xla.DeviceAssignmentProto.Types.ComputationDevice.Parser, new[]{ "ReplicaDeviceIds" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.LiteralProto), global::Xla.LiteralProto.Parser, new[]{ "Shape", "Preds", "S8S", "U8S", "S32S", "S64S", "U32S", "U64S", "F32S", "F64S", "C64S", "C128S", "TupleLiterals", "F16S", "Bf16S", "U16S", "S16S", "SparseIndices" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.WindowDimension), global::Xla.WindowDimension.Parser, new[]{ "Size", "Stride", "PaddingLow", "PaddingHigh", "WindowDilation", "BaseDilation", "WindowReversal" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.Window), global::Xla.Window.Parser, new[]{ "Dimensions" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.GatherDimensionNumbers), global::Xla.GatherDimensionNumbers.Parser, new[]{ "OffsetDims", "CollapsedSliceDims", "StartIndexMap", "IndexVectorDim" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ScatterDimensionNumbers), global::Xla.ScatterDimensionNumbers.Parser, new[]{ "UpdateWindowDims", "InsertedWindowDims", "ScatterDimsToOperandDims", "IndexVectorDim" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ConvolutionDimensionNumbers), global::Xla.ConvolutionDimensionNumbers.Parser, new[]{ "InputBatchDimension", "InputFeatureDimension", "InputSpatialDimensions", "KernelInputFeatureDimension", "KernelOutputFeatureDimension", "KernelSpatialDimensions", "OutputBatchDimension", "OutputFeatureDimension", "OutputSpatialDimensions" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.DotDimensionNumbers), global::Xla.DotDimensionNumbers.Parser, new[]{ "LhsContractingDimensions", "RhsContractingDimensions", "LhsBatchDimensions", "RhsBatchDimensions" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.TriangularSolveOptions), global::Xla.TriangularSolveOptions.Parser, new[]{ "LeftSide", "Lower", "UnitDiagonal", "TransposeA" }, null, new[]{ typeof(global::Xla.TriangularSolveOptions.Types.Transpose) }, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.CholeskyOptions), global::Xla.CholeskyOptions.Parser, new[]{ "Lower" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.FrontendAttributes), global::Xla.FrontendAttributes.Parser, new[]{ "Map" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, }), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.OpSharding), global::Xla.OpSharding.Parser, new[]{ "Type", "TileShape", "TileAssignmentDimensions", "TileAssignmentDevices", "TupleShardings", "ReplicateOnLastTileDim", "Metadata", "LastTileDims" }, null, new[]{ typeof(global::Xla.OpSharding.Types.Type) }, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ReplicaGroup), global::Xla.ReplicaGroup.Parser, new[]{ "ReplicaIds" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.SourceTarget), global::Xla.SourceTarget.Parser, new[]{ "Source", "Target" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.PrecisionConfig), global::Xla.PrecisionConfig.Parser, new[]{ "OperandPrecision" }, null, new[]{ typeof(global::Xla.PrecisionConfig.Types.Precision) }, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.ParameterReplication), global::Xla.ParameterReplication.Parser, new[]{ "ReplicatedAtLeafBuffers" }, null, null, null, null), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.WhileLoopBackendConfig), global::Xla.WhileLoopBackendConfig.Parser, new[]{ "KnownTripCount" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Xla.WhileLoopBackendConfig.Types.KnownTripCount), global::Xla.WhileLoopBackendConfig.Types.KnownTripCount.Parser, new[]{ "N" }, null, null, null, null)}), + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.CustomCallOutputOperandAliasing), global::Xla.CustomCallOutputOperandAliasing.Parser, new[]{ "OutputShapeIndex", "OperandIndex", "OperandShapeIndex" }, null, null, null, null) + })); + } + #endregion + + } + #region Enums + /// + /// Primitive types are the individual values that can be held in rectangular + /// multidimensional arrays. A description of the rectangular multidimensional + /// array dimensions / primitive type is given by Shape, below. + /// + /// LINT.IfChange + /// + public enum PrimitiveType { + /// + /// Invalid primitive type to serve as default. + /// + [pbr::OriginalName("PRIMITIVE_TYPE_INVALID")] Invalid = 0, + /// + /// Predicates are two-state booleans. + /// + [pbr::OriginalName("PRED")] Pred = 1, + /// + /// Signed integral values of fixed width. + /// + [pbr::OriginalName("S8")] S8 = 2, + [pbr::OriginalName("S16")] S16 = 3, + [pbr::OriginalName("S32")] S32 = 4, + [pbr::OriginalName("S64")] S64 = 5, + /// + /// Unsigned integral values of fixed width. + /// + [pbr::OriginalName("U8")] U8 = 6, + [pbr::OriginalName("U16")] U16 = 7, + [pbr::OriginalName("U32")] U32 = 8, + [pbr::OriginalName("U64")] U64 = 9, + /// + /// Floating-point values of fixed width. + /// + /// Note: if f16s are not natively supported on the device, they will be + /// converted to f16 from f32 at arbirary points in the computation. + /// + [pbr::OriginalName("F16")] F16 = 10, + [pbr::OriginalName("F32")] F32 = 11, + /// + /// Truncated 16 bit floating-point format. This is similar to IEEE's 16 bit + /// floating-point format, but uses 1 bit for the sign, 8 bits for the exponent + /// and 7 bits for the mantissa. + /// + [pbr::OriginalName("BF16")] Bf16 = 16, + [pbr::OriginalName("F64")] F64 = 12, + /// + /// Complex values of fixed width. + /// + [pbr::OriginalName("C64")] C64 = 15, + /// + /// Paired F64 (real, imag), as in std::complex<double>. + /// + [pbr::OriginalName("C128")] C128 = 18, + /// + /// A tuple is a polymorphic sequence; e.g. a shape that holds different + /// sub-shapes. They are used for things like returning multiple values from a + /// computation; e.g. a computation that returns weights and biases may have a + /// signature that results in a tuple like (f32[784x2000], f32[2000]) + /// + /// If a shape proto has the tuple element type, it may not have any entries + /// in the dimensions field. + /// + [pbr::OriginalName("TUPLE")] Tuple = 13, + /// + /// An opaque type used for passing context-specific data to a custom + /// operation. Shapes of this primitive type will have empty dimensions and + /// tuple_shapes fields. + /// + /// (OPAQUE would be a better name for this identifier, but that conflicts with + /// a macro defined in windows.h.) + /// + [pbr::OriginalName("OPAQUE_TYPE")] OpaqueType = 14, + /// + /// A token type threaded between side-effecting operations. Shapes of this + /// primitive type will have empty dimensions and tuple_shapes fields. + /// + [pbr::OriginalName("TOKEN")] Token = 17, + } + + /// + /// A DimLevelType indicates the encoding method for a dimension in an array. + /// The semantics of this field are identical to those of the MLIR SparseTensor + /// dialect. + /// This should be kept in sync with the SparseTensor DimLevelType enum: + /// https://github.com/llvm/llvm-project/blob/5674a3c88088e668b684326c2194a6282e8270ff/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td#L86 + /// + public enum DimLevelType { + /// + /// The corresponding dimension is Dense, every entry is stored. + /// + [pbr::OriginalName("DIM_DENSE")] DimDense = 0, + /// + /// The corresponding dimension is Compressed, only nonzeros are stored. + /// + [pbr::OriginalName("DIM_COMPRESSED")] DimCompressed = 1, + /// + /// The corresponding dimension contains a single coordinate, no sibling + /// elements for each parent. + /// + [pbr::OriginalName("DIM_SINGLETON")] DimSingleton = 2, + } + + /// + /// The type optimization profiles in use for Op-level optimizations. + /// + public enum ProfileType { + [pbr::OriginalName("INVALID")] Invalid = 0, + [pbr::OriginalName("WINDOW")] Window = 1, + [pbr::OriginalName("FLAG")] Flag = 2, + [pbr::OriginalName("INTEGER")] Integer = 3, + } + + /// + /// The source of the optimization profile. + /// + public enum ProfileSource { + [pbr::OriginalName("PROFILE_SOURCE_UNKNOWN_SOURCE")] UnknownSource = 0, + [pbr::OriginalName("PROFILE_SOURCE_EMBEDDED")] Embedded = 1, + [pbr::OriginalName("PROFILE_SOURCE_REMOTE")] Remote = 2, + } + + /// + /// The compilation event that triggered the use of the profile. + /// + public enum CompilationEvent { + [pbr::OriginalName("COMPILATION_EVENT_UNKNOWN_EVENT")] UnknownEvent = 0, + [pbr::OriginalName("COMPILATION_EVENT_FIRST_COMPILATION")] FirstCompilation = 1, + [pbr::OriginalName("COMPILATION_EVENT_RECOMPILATION")] Recompilation = 2, + } + + public enum PaddingType { + [pbr::OriginalName("PADDING_INVALID")] PaddingInvalid = 0, + /// + /// Only valid portion of the base are covered. + /// + [pbr::OriginalName("PADDING_VALID")] PaddingValid = 1, + /// + /// Extra is added to produce same output size as the input. + /// + [pbr::OriginalName("PADDING_SAME")] PaddingSame = 2, + } + + public enum FftType { + /// + /// Forward FFT; complex in, complex out. + /// + [pbr::OriginalName("FFT")] Fft = 0, + /// + /// Inverse FFT; complex in, complex out. + /// + [pbr::OriginalName("IFFT")] Ifft = 1, + /// + /// Forward real FFT; real in, fft_length / 2 + 1 complex out + /// + [pbr::OriginalName("RFFT")] Rfft = 2, + /// + /// Inverse real FFT; fft_length / 2 + 1 complex in, + /// + [pbr::OriginalName("IRFFT")] Irfft = 3, + } + + public enum RandomDistribution { + [pbr::OriginalName("RNG_INVALID")] RngInvalid = 0, + /// + /// Creates a uniform-distribution-generated random number on the semi-open + /// interval [parameter[0], parameter[1]). + /// + [pbr::OriginalName("RNG_UNIFORM")] RngUniform = 1, + /// + /// Creates a normal-distribution-generated random number with mean + /// parameter[0] and standard deviation parameter[1]. + /// + [pbr::OriginalName("RNG_NORMAL")] RngNormal = 2, + } + + public enum RandomAlgorithm { + /// + /// Backend dependent default algorithm. + /// + [pbr::OriginalName("RNG_DEFAULT")] RngDefault = 0, + [pbr::OriginalName("RNG_THREE_FRY")] RngThreeFry = 1, + /// + /// Next: 2 + /// + [pbr::OriginalName("RNG_PHILOX")] RngPhilox = 2, + } + + #endregion + + #region Messages + /// + /// Describes the padding configuration for Pad operation. The padding amount on + /// both edges as well as between the elements are specified for each dimension. + /// + public sealed partial class PaddingConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new PaddingConfig()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public PaddingConfig() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public PaddingConfig(PaddingConfig other) : this() { + dimensions_ = other.dimensions_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public PaddingConfig Clone() { + return new PaddingConfig(this); + } + + /// Field number for the "dimensions" field. + public const int DimensionsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_dimensions_codec + = pb::FieldCodec.ForMessage(10, global::Xla.PaddingConfig.Types.PaddingConfigDimension.Parser); + private readonly pbc::RepeatedField dimensions_ = new pbc::RepeatedField(); + /// + /// The padding configuration for all dimensions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Dimensions { + get { return dimensions_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as PaddingConfig); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(PaddingConfig other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!dimensions_.Equals(other.dimensions_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= dimensions_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + dimensions_.WriteTo(output, _repeated_dimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + dimensions_.WriteTo(ref output, _repeated_dimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += dimensions_.CalculateSize(_repeated_dimensions_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(PaddingConfig other) { + if (other == null) { + return; + } + dimensions_.Add(other.dimensions_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + dimensions_.AddEntriesFrom(input, _repeated_dimensions_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + dimensions_.AddEntriesFrom(ref input, _repeated_dimensions_codec); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the PaddingConfig message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Describes the padding configuration for a dimension. + /// + public sealed partial class PaddingConfigDimension : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new PaddingConfigDimension()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.PaddingConfig.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public PaddingConfigDimension() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public PaddingConfigDimension(PaddingConfigDimension other) : this() { + edgePaddingLow_ = other.edgePaddingLow_; + edgePaddingHigh_ = other.edgePaddingHigh_; + interiorPadding_ = other.interiorPadding_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public PaddingConfigDimension Clone() { + return new PaddingConfigDimension(this); + } + + /// Field number for the "edge_padding_low" field. + public const int EdgePaddingLowFieldNumber = 1; + private long edgePaddingLow_; + /// + /// Padding amount on the low-end (next to the index 0). May be negative. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long EdgePaddingLow { + get { return edgePaddingLow_; } + set { + edgePaddingLow_ = value; + } + } + + /// Field number for the "edge_padding_high" field. + public const int EdgePaddingHighFieldNumber = 2; + private long edgePaddingHigh_; + /// + /// Padding amount on the high-end (next to the highest index). May be + /// negative. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long EdgePaddingHigh { + get { return edgePaddingHigh_; } + set { + edgePaddingHigh_ = value; + } + } + + /// Field number for the "interior_padding" field. + public const int InteriorPaddingFieldNumber = 3; + private long interiorPadding_; + /// + /// Padding amount between the elements. May not be negative. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long InteriorPadding { + get { return interiorPadding_; } + set { + interiorPadding_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as PaddingConfigDimension); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(PaddingConfigDimension other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (EdgePaddingLow != other.EdgePaddingLow) return false; + if (EdgePaddingHigh != other.EdgePaddingHigh) return false; + if (InteriorPadding != other.InteriorPadding) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (EdgePaddingLow != 0L) hash ^= EdgePaddingLow.GetHashCode(); + if (EdgePaddingHigh != 0L) hash ^= EdgePaddingHigh.GetHashCode(); + if (InteriorPadding != 0L) hash ^= InteriorPadding.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (EdgePaddingLow != 0L) { + output.WriteRawTag(8); + output.WriteInt64(EdgePaddingLow); + } + if (EdgePaddingHigh != 0L) { + output.WriteRawTag(16); + output.WriteInt64(EdgePaddingHigh); + } + if (InteriorPadding != 0L) { + output.WriteRawTag(24); + output.WriteInt64(InteriorPadding); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (EdgePaddingLow != 0L) { + output.WriteRawTag(8); + output.WriteInt64(EdgePaddingLow); + } + if (EdgePaddingHigh != 0L) { + output.WriteRawTag(16); + output.WriteInt64(EdgePaddingHigh); + } + if (InteriorPadding != 0L) { + output.WriteRawTag(24); + output.WriteInt64(InteriorPadding); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (EdgePaddingLow != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(EdgePaddingLow); + } + if (EdgePaddingHigh != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(EdgePaddingHigh); + } + if (InteriorPadding != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(InteriorPadding); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(PaddingConfigDimension other) { + if (other == null) { + return; + } + if (other.EdgePaddingLow != 0L) { + EdgePaddingLow = other.EdgePaddingLow; + } + if (other.EdgePaddingHigh != 0L) { + EdgePaddingHigh = other.EdgePaddingHigh; + } + if (other.InteriorPadding != 0L) { + InteriorPadding = other.InteriorPadding; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + EdgePaddingLow = input.ReadInt64(); + break; + } + case 16: { + EdgePaddingHigh = input.ReadInt64(); + break; + } + case 24: { + InteriorPadding = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + EdgePaddingLow = input.ReadInt64(); + break; + } + case 16: { + EdgePaddingHigh = input.ReadInt64(); + break; + } + case 24: { + InteriorPadding = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// Describes a tile used in tiling-based layout. Refer to + /// g3doc/third_party/tensorflow/compiler/xla/g3doc/tiled_layout.md for + /// details about tiling-based layout. + /// + public sealed partial class TileProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TileProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[1]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TileProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TileProto(TileProto other) : this() { + dimensions_ = other.dimensions_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TileProto Clone() { + return new TileProto(this); + } + + /// Field number for the "dimensions" field. + public const int DimensionsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_dimensions_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField dimensions_ = new pbc::RepeatedField(); + /// + /// Number of elements in each dimension of the tile. It's ordered from the + /// most major dimension of the tile to the most minor dimension of the tile. + /// The dimensions correspond to a suffix of the dimensions of the shape being + /// tiled. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Dimensions { + get { return dimensions_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TileProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TileProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!dimensions_.Equals(other.dimensions_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= dimensions_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + dimensions_.WriteTo(output, _repeated_dimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + dimensions_.WriteTo(ref output, _repeated_dimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += dimensions_.CalculateSize(_repeated_dimensions_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TileProto other) { + if (other == null) { + return; + } + dimensions_.Add(other.dimensions_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + dimensions_.AddEntriesFrom(input, _repeated_dimensions_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + dimensions_.AddEntriesFrom(ref input, _repeated_dimensions_codec); + break; + } + } + } + } + #endif + + } + + /// + /// A layout describes how the array is placed in (1D) memory space. This + /// includes the minor-to-major ordering of dimensions within a shape. + /// + /// Clients must specify the layouts of input Literals to the + /// computation. Layouts specified in interior operations which take Shapes (for + /// example, Convert) are ignored. + /// + /// See the XLA documentation for more information on shapes and layouts. + /// + /// LINT.IfChange + /// + public sealed partial class LayoutProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new LayoutProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[2]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LayoutProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LayoutProto(LayoutProto other) : this() { + dimLevelTypes_ = other.dimLevelTypes_.Clone(); + minorToMajor_ = other.minorToMajor_.Clone(); + tiles_ = other.tiles_.Clone(); + elementSizeInBits_ = other.elementSizeInBits_; + memorySpace_ = other.memorySpace_; + physicalShape_ = other.physicalShape_ != null ? other.physicalShape_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LayoutProto Clone() { + return new LayoutProto(this); + } + + /// Field number for the "dim_level_types" field. + public const int DimLevelTypesFieldNumber = 9; + private static readonly pb::FieldCodec _repeated_dimLevelTypes_codec + = pb::FieldCodec.ForEnum(74, x => (int) x, x => (global::Xla.DimLevelType) x); + private readonly pbc::RepeatedField dimLevelTypes_ = new pbc::RepeatedField(); + /// + /// The dimension level type list for this array, specifying the way in which + /// each array dimension is represented in memory. If this list is empty, the + /// array is assumed to be dense. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField DimLevelTypes { + get { return dimLevelTypes_; } + } + + /// Field number for the "minor_to_major" field. + public const int MinorToMajorFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_minorToMajor_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField minorToMajor_ = new pbc::RepeatedField(); + /// + /// Sequence of dimension numbers, from minor (fastest varying index) to major + /// (slowest varying index). This field is required. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField MinorToMajor { + get { return minorToMajor_; } + } + + /// Field number for the "tiles" field. + public const int TilesFieldNumber = 6; + private static readonly pb::FieldCodec _repeated_tiles_codec + = pb::FieldCodec.ForMessage(50, global::Xla.TileProto.Parser); + private readonly pbc::RepeatedField tiles_ = new pbc::RepeatedField(); + /// + /// A sequence of tiles, starting from the tile that's applied first to the + /// Shape. + /// + /// TODO(b/119839262): implement tiling in each backend or add Unimplemented + /// error. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Tiles { + get { return tiles_; } + } + + /// Field number for the "element_size_in_bits" field. + public const int ElementSizeInBitsFieldNumber = 7; + private long elementSizeInBits_; + /// + /// Bit size of each element. If the size is bigger than what the element + /// type requires, the value is stored in the least significant + /// bits and the additional most significant bits are filled with 0's. + /// + /// TODO(b/119839262): implement in each backend or add Unimplemented error. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ElementSizeInBits { + get { return elementSizeInBits_; } + set { + elementSizeInBits_ = value; + } + } + + /// Field number for the "memory_space" field. + public const int MemorySpaceFieldNumber = 8; + private long memorySpace_; + /// + /// Memory space where this array resides. The integer field is interpreted in + /// a backend-specific manner. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long MemorySpace { + get { return memorySpace_; } + set { + memorySpace_ = value; + } + } + + /// Field number for the "physical_shape" field. + public const int PhysicalShapeFieldNumber = 10; + private global::Xla.ShapeProto physicalShape_; + /// + /// The physical, on-device shape used to represent the shape this layout + /// belongs to. Only used for sparse arrays. + /// The layout(s) contained within the physical shape should not also contain + /// a physical shape. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto PhysicalShape { + get { return physicalShape_; } + set { + physicalShape_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as LayoutProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(LayoutProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!dimLevelTypes_.Equals(other.dimLevelTypes_)) return false; + if(!minorToMajor_.Equals(other.minorToMajor_)) return false; + if(!tiles_.Equals(other.tiles_)) return false; + if (ElementSizeInBits != other.ElementSizeInBits) return false; + if (MemorySpace != other.MemorySpace) return false; + if (!object.Equals(PhysicalShape, other.PhysicalShape)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= dimLevelTypes_.GetHashCode(); + hash ^= minorToMajor_.GetHashCode(); + hash ^= tiles_.GetHashCode(); + if (ElementSizeInBits != 0L) hash ^= ElementSizeInBits.GetHashCode(); + if (MemorySpace != 0L) hash ^= MemorySpace.GetHashCode(); + if (physicalShape_ != null) hash ^= PhysicalShape.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + minorToMajor_.WriteTo(output, _repeated_minorToMajor_codec); + tiles_.WriteTo(output, _repeated_tiles_codec); + if (ElementSizeInBits != 0L) { + output.WriteRawTag(56); + output.WriteInt64(ElementSizeInBits); + } + if (MemorySpace != 0L) { + output.WriteRawTag(64); + output.WriteInt64(MemorySpace); + } + dimLevelTypes_.WriteTo(output, _repeated_dimLevelTypes_codec); + if (physicalShape_ != null) { + output.WriteRawTag(82); + output.WriteMessage(PhysicalShape); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + minorToMajor_.WriteTo(ref output, _repeated_minorToMajor_codec); + tiles_.WriteTo(ref output, _repeated_tiles_codec); + if (ElementSizeInBits != 0L) { + output.WriteRawTag(56); + output.WriteInt64(ElementSizeInBits); + } + if (MemorySpace != 0L) { + output.WriteRawTag(64); + output.WriteInt64(MemorySpace); + } + dimLevelTypes_.WriteTo(ref output, _repeated_dimLevelTypes_codec); + if (physicalShape_ != null) { + output.WriteRawTag(82); + output.WriteMessage(PhysicalShape); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += dimLevelTypes_.CalculateSize(_repeated_dimLevelTypes_codec); + size += minorToMajor_.CalculateSize(_repeated_minorToMajor_codec); + size += tiles_.CalculateSize(_repeated_tiles_codec); + if (ElementSizeInBits != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ElementSizeInBits); + } + if (MemorySpace != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(MemorySpace); + } + if (physicalShape_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(PhysicalShape); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(LayoutProto other) { + if (other == null) { + return; + } + dimLevelTypes_.Add(other.dimLevelTypes_); + minorToMajor_.Add(other.minorToMajor_); + tiles_.Add(other.tiles_); + if (other.ElementSizeInBits != 0L) { + ElementSizeInBits = other.ElementSizeInBits; + } + if (other.MemorySpace != 0L) { + MemorySpace = other.MemorySpace; + } + if (other.physicalShape_ != null) { + if (physicalShape_ == null) { + PhysicalShape = new global::Xla.ShapeProto(); + } + PhysicalShape.MergeFrom(other.PhysicalShape); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + minorToMajor_.AddEntriesFrom(input, _repeated_minorToMajor_codec); + break; + } + case 50: { + tiles_.AddEntriesFrom(input, _repeated_tiles_codec); + break; + } + case 56: { + ElementSizeInBits = input.ReadInt64(); + break; + } + case 64: { + MemorySpace = input.ReadInt64(); + break; + } + case 74: + case 72: { + dimLevelTypes_.AddEntriesFrom(input, _repeated_dimLevelTypes_codec); + break; + } + case 82: { + if (physicalShape_ == null) { + PhysicalShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(PhysicalShape); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + minorToMajor_.AddEntriesFrom(ref input, _repeated_minorToMajor_codec); + break; + } + case 50: { + tiles_.AddEntriesFrom(ref input, _repeated_tiles_codec); + break; + } + case 56: { + ElementSizeInBits = input.ReadInt64(); + break; + } + case 64: { + MemorySpace = input.ReadInt64(); + break; + } + case 74: + case 72: { + dimLevelTypes_.AddEntriesFrom(ref input, _repeated_dimLevelTypes_codec); + break; + } + case 82: { + if (physicalShape_ == null) { + PhysicalShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(PhysicalShape); + break; + } + } + } + } + #endif + + } + + /// + /// A shape describes the number of dimensions in the array, the size of each + /// dimension, and the primitive component type. + /// + /// Tuples are a special case in that they have rank zero and have tuple_shapes + /// defined. + /// + /// See the XLA documentation for more information on shapes and layouts. + /// + /// LINT.IfChange + /// + public sealed partial class ShapeProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ShapeProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[3]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShapeProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShapeProto(ShapeProto other) : this() { + elementType_ = other.elementType_; + dimensions_ = other.dimensions_.Clone(); + tupleShapes_ = other.tupleShapes_.Clone(); + layout_ = other.layout_ != null ? other.layout_.Clone() : null; + isDynamicDimension_ = other.isDynamicDimension_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ShapeProto Clone() { + return new ShapeProto(this); + } + + /// Field number for the "element_type" field. + public const int ElementTypeFieldNumber = 2; + private global::Xla.PrimitiveType elementType_ = global::Xla.PrimitiveType.Invalid; + /// + /// The element type for this shape. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.PrimitiveType ElementType { + get { return elementType_; } + set { + elementType_ = value; + } + } + + /// Field number for the "dimensions" field. + public const int DimensionsFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_dimensions_codec + = pb::FieldCodec.ForInt64(26); + private readonly pbc::RepeatedField dimensions_ = new pbc::RepeatedField(); + /// + /// The size (number of elements) for each dimension, or an upper bound on the + /// size if the dimension is dynamic. In XLA, dimensions are numbered from 0 + /// to N-1 for an N-dimensional array. The first element of 'dimensions' is the + /// size of dimension 0, the second element is the size of dimension 1, and so + /// forth. Empty list indicates a scalar. + /// + /// If the respective element in 'is_dimension_dynamic' is true then the value + /// in this field represents an upper bound on the size of the dimension. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Dimensions { + get { return dimensions_; } + } + + /// Field number for the "tuple_shapes" field. + public const int TupleShapesFieldNumber = 4; + private static readonly pb::FieldCodec _repeated_tupleShapes_codec + = pb::FieldCodec.ForMessage(34, global::Xla.ShapeProto.Parser); + private readonly pbc::RepeatedField tupleShapes_ = new pbc::RepeatedField(); + /// + /// For tuples only, the shapes of constituent shapes in the tuple sequence. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField TupleShapes { + get { return tupleShapes_; } + } + + /// Field number for the "layout" field. + public const int LayoutFieldNumber = 5; + private global::Xla.LayoutProto layout_; + /// + /// The layout used to back this shape. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.LayoutProto Layout { + get { return layout_; } + set { + layout_ = value; + } + } + + /// Field number for the "is_dynamic_dimension" field. + public const int IsDynamicDimensionFieldNumber = 6; + private static readonly pb::FieldCodec _repeated_isDynamicDimension_codec + = pb::FieldCodec.ForBool(50); + private readonly pbc::RepeatedField isDynamicDimension_ = new pbc::RepeatedField(); + /// + /// For arrays, this indicates whether or not each dimension is + /// dynamically-sized. The number of elements in this repeated field should be + /// zero (indicating that no dimensions are dynamic) or equal to the number of + /// elements in the 'dimensions' field. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField IsDynamicDimension { + get { return isDynamicDimension_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ShapeProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ShapeProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ElementType != other.ElementType) return false; + if(!dimensions_.Equals(other.dimensions_)) return false; + if(!tupleShapes_.Equals(other.tupleShapes_)) return false; + if (!object.Equals(Layout, other.Layout)) return false; + if(!isDynamicDimension_.Equals(other.isDynamicDimension_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ElementType != global::Xla.PrimitiveType.Invalid) hash ^= ElementType.GetHashCode(); + hash ^= dimensions_.GetHashCode(); + hash ^= tupleShapes_.GetHashCode(); + if (layout_ != null) hash ^= Layout.GetHashCode(); + hash ^= isDynamicDimension_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ElementType != global::Xla.PrimitiveType.Invalid) { + output.WriteRawTag(16); + output.WriteEnum((int) ElementType); + } + dimensions_.WriteTo(output, _repeated_dimensions_codec); + tupleShapes_.WriteTo(output, _repeated_tupleShapes_codec); + if (layout_ != null) { + output.WriteRawTag(42); + output.WriteMessage(Layout); + } + isDynamicDimension_.WriteTo(output, _repeated_isDynamicDimension_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ElementType != global::Xla.PrimitiveType.Invalid) { + output.WriteRawTag(16); + output.WriteEnum((int) ElementType); + } + dimensions_.WriteTo(ref output, _repeated_dimensions_codec); + tupleShapes_.WriteTo(ref output, _repeated_tupleShapes_codec); + if (layout_ != null) { + output.WriteRawTag(42); + output.WriteMessage(Layout); + } + isDynamicDimension_.WriteTo(ref output, _repeated_isDynamicDimension_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ElementType != global::Xla.PrimitiveType.Invalid) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) ElementType); + } + size += dimensions_.CalculateSize(_repeated_dimensions_codec); + size += tupleShapes_.CalculateSize(_repeated_tupleShapes_codec); + if (layout_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Layout); + } + size += isDynamicDimension_.CalculateSize(_repeated_isDynamicDimension_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ShapeProto other) { + if (other == null) { + return; + } + if (other.ElementType != global::Xla.PrimitiveType.Invalid) { + ElementType = other.ElementType; + } + dimensions_.Add(other.dimensions_); + tupleShapes_.Add(other.tupleShapes_); + if (other.layout_ != null) { + if (layout_ == null) { + Layout = new global::Xla.LayoutProto(); + } + Layout.MergeFrom(other.Layout); + } + isDynamicDimension_.Add(other.isDynamicDimension_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 16: { + ElementType = (global::Xla.PrimitiveType) input.ReadEnum(); + break; + } + case 26: + case 24: { + dimensions_.AddEntriesFrom(input, _repeated_dimensions_codec); + break; + } + case 34: { + tupleShapes_.AddEntriesFrom(input, _repeated_tupleShapes_codec); + break; + } + case 42: { + if (layout_ == null) { + Layout = new global::Xla.LayoutProto(); + } + input.ReadMessage(Layout); + break; + } + case 50: + case 48: { + isDynamicDimension_.AddEntriesFrom(input, _repeated_isDynamicDimension_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 16: { + ElementType = (global::Xla.PrimitiveType) input.ReadEnum(); + break; + } + case 26: + case 24: { + dimensions_.AddEntriesFrom(ref input, _repeated_dimensions_codec); + break; + } + case 34: { + tupleShapes_.AddEntriesFrom(ref input, _repeated_tupleShapes_codec); + break; + } + case 42: { + if (layout_ == null) { + Layout = new global::Xla.LayoutProto(); + } + input.ReadMessage(Layout); + break; + } + case 50: + case 48: { + isDynamicDimension_.AddEntriesFrom(ref input, _repeated_isDynamicDimension_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Shape of the parameters and output of a computation (like a traditional + /// function signature). + /// + public sealed partial class ProgramShapeProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ProgramShapeProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[4]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProgramShapeProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProgramShapeProto(ProgramShapeProto other) : this() { + parameters_ = other.parameters_.Clone(); + result_ = other.result_ != null ? other.result_.Clone() : null; + parameterNames_ = other.parameterNames_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProgramShapeProto Clone() { + return new ProgramShapeProto(this); + } + + /// Field number for the "parameters" field. + public const int ParametersFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_parameters_codec + = pb::FieldCodec.ForMessage(10, global::Xla.ShapeProto.Parser); + private readonly pbc::RepeatedField parameters_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Parameters { + get { return parameters_; } + } + + /// Field number for the "result" field. + public const int ResultFieldNumber = 2; + private global::Xla.ShapeProto result_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto Result { + get { return result_; } + set { + result_ = value; + } + } + + /// Field number for the "parameter_names" field. + public const int ParameterNamesFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_parameterNames_codec + = pb::FieldCodec.ForString(26); + private readonly pbc::RepeatedField parameterNames_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ParameterNames { + get { return parameterNames_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ProgramShapeProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ProgramShapeProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!parameters_.Equals(other.parameters_)) return false; + if (!object.Equals(Result, other.Result)) return false; + if(!parameterNames_.Equals(other.parameterNames_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= parameters_.GetHashCode(); + if (result_ != null) hash ^= Result.GetHashCode(); + hash ^= parameterNames_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + parameters_.WriteTo(output, _repeated_parameters_codec); + if (result_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Result); + } + parameterNames_.WriteTo(output, _repeated_parameterNames_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + parameters_.WriteTo(ref output, _repeated_parameters_codec); + if (result_ != null) { + output.WriteRawTag(18); + output.WriteMessage(Result); + } + parameterNames_.WriteTo(ref output, _repeated_parameterNames_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += parameters_.CalculateSize(_repeated_parameters_codec); + if (result_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Result); + } + size += parameterNames_.CalculateSize(_repeated_parameterNames_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ProgramShapeProto other) { + if (other == null) { + return; + } + parameters_.Add(other.parameters_); + if (other.result_ != null) { + if (result_ == null) { + Result = new global::Xla.ShapeProto(); + } + Result.MergeFrom(other.Result); + } + parameterNames_.Add(other.parameterNames_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + parameters_.AddEntriesFrom(input, _repeated_parameters_codec); + break; + } + case 18: { + if (result_ == null) { + Result = new global::Xla.ShapeProto(); + } + input.ReadMessage(Result); + break; + } + case 26: { + parameterNames_.AddEntriesFrom(input, _repeated_parameterNames_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + parameters_.AddEntriesFrom(ref input, _repeated_parameters_codec); + break; + } + case 18: { + if (result_ == null) { + Result = new global::Xla.ShapeProto(); + } + input.ReadMessage(Result); + break; + } + case 26: { + parameterNames_.AddEntriesFrom(ref input, _repeated_parameterNames_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Statistics of a computation. + /// + public sealed partial class ComputationStats : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ComputationStats()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[5]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationStats() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationStats(ComputationStats other) : this() { + flopCount_ = other.flopCount_; + transcendentalCount_ = other.transcendentalCount_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationStats Clone() { + return new ComputationStats(this); + } + + /// Field number for the "flop_count" field. + public const int FlopCountFieldNumber = 1; + private double flopCount_; + /// + /// The number of floating point operations in the computation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public double FlopCount { + get { return flopCount_; } + set { + flopCount_ = value; + } + } + + /// Field number for the "transcendental_count" field. + public const int TranscendentalCountFieldNumber = 2; + private double transcendentalCount_; + /// + /// The number of transcendental operations (e.g., exp) in the computation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public double TranscendentalCount { + get { return transcendentalCount_; } + set { + transcendentalCount_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ComputationStats); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ComputationStats other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(FlopCount, other.FlopCount)) return false; + if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(TranscendentalCount, other.TranscendentalCount)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (FlopCount != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(FlopCount); + if (TranscendentalCount != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(TranscendentalCount); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (FlopCount != 0D) { + output.WriteRawTag(9); + output.WriteDouble(FlopCount); + } + if (TranscendentalCount != 0D) { + output.WriteRawTag(17); + output.WriteDouble(TranscendentalCount); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (FlopCount != 0D) { + output.WriteRawTag(9); + output.WriteDouble(FlopCount); + } + if (TranscendentalCount != 0D) { + output.WriteRawTag(17); + output.WriteDouble(TranscendentalCount); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (FlopCount != 0D) { + size += 1 + 8; + } + if (TranscendentalCount != 0D) { + size += 1 + 8; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ComputationStats other) { + if (other == null) { + return; + } + if (other.FlopCount != 0D) { + FlopCount = other.FlopCount; + } + if (other.TranscendentalCount != 0D) { + TranscendentalCount = other.TranscendentalCount; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 9: { + FlopCount = input.ReadDouble(); + break; + } + case 17: { + TranscendentalCount = input.ReadDouble(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 9: { + FlopCount = input.ReadDouble(); + break; + } + case 17: { + TranscendentalCount = input.ReadDouble(); + break; + } + } + } + } + #endif + + } + + /// + /// Symbolization metadata for HLO Instructions. + /// + /// This metadata is used for debugging XLA code generation, as well as + /// performance profiling of XLA-generated executables. + /// + public sealed partial class OpMetadata : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new OpMetadata()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[6]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public OpMetadata() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public OpMetadata(OpMetadata other) : this() { + opType_ = other.opType_; + opName_ = other.opName_; + sourceFile_ = other.sourceFile_; + sourceLine_ = other.sourceLine_; + profileType_ = other.profileType_.Clone(); + creationPassId_ = other.creationPassId_; + logicalCreationPassId_ = other.logicalCreationPassId_; + sizeOfGeneratedCodeInBytes_ = other.sizeOfGeneratedCodeInBytes_; + sizeOfMemoryWorkingSetInBytes_ = other.sizeOfMemoryWorkingSetInBytes_; + profileInfo_ = other.profileInfo_ != null ? other.profileInfo_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public OpMetadata Clone() { + return new OpMetadata(this); + } + + /// Field number for the "op_type" field. + public const int OpTypeFieldNumber = 1; + private string opType_ = ""; + /// + /// The framework op name that generated this XLA op. + /// + /// Frameworks that build on top of XLA should mirror the names of their ops + /// back to users by specifying the op_type. In this way, even if the + /// framework's "ops" are implemented as multiple XLA HLO Ops, they can be + /// grouped appropriately. (e.g. if a SoftMax layer is emitted into XLA as + /// multiple ops, then each op should have the op_type be "SoftMax".) + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string OpType { + get { return opType_; } + set { + opType_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "op_name" field. + public const int OpNameFieldNumber = 2; + private string opName_ = ""; + /// + /// The user-specified name of the op. + /// + /// This name is often unique within a computation. Note: some frameworks + /// add auto-generated names if the user does not provide one. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string OpName { + get { return opName_; } + set { + opName_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "source_file" field. + public const int SourceFileFieldNumber = 3; + private string sourceFile_ = ""; + /// + /// Indicate a file and line that this op is associated to in a user's program. + /// + /// e.g. it could be the file and line of user code that generated the op. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public string SourceFile { + get { return sourceFile_; } + set { + sourceFile_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "source_line" field. + public const int SourceLineFieldNumber = 4; + private int sourceLine_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int SourceLine { + get { return sourceLine_; } + set { + sourceLine_ = value; + } + } + + /// Field number for the "profile_type" field. + public const int ProfileTypeFieldNumber = 5; + private static readonly pb::FieldCodec _repeated_profileType_codec + = pb::FieldCodec.ForEnum(42, x => (int) x, x => (global::Xla.ProfileType) x); + private readonly pbc::RepeatedField profileType_ = new pbc::RepeatedField(); + /// + /// Deprecated, use [ProfileInfo][profile_type] instead. + /// + [global::System.ObsoleteAttribute] + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ProfileType { + get { return profileType_; } + } + + /// Field number for the "creation_pass_id" field. + public const int CreationPassIdFieldNumber = 6; + private long creationPassId_; + /// + /// HloPassMetadata.pass_id of the pass that created this HLO instruction + /// object. Should never be copied between HLO instructions. Zero if unset and + /// -1 if the instruction was created before HLO passes began. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long CreationPassId { + get { return creationPassId_; } + set { + creationPassId_ = value; + } + } + + /// Field number for the "logical_creation_pass_id" field. + public const int LogicalCreationPassIdFieldNumber = 7; + private long logicalCreationPassId_; + /// + /// HloPassMetadata.pass_id of the pass that created the logical functionality + /// that this HLO instruction represents. Should be copied between HLO + /// instructions that correspond across compilation passes. Zero if unset and + /// -1 if the instruction was created before HLO passes began. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long LogicalCreationPassId { + get { return logicalCreationPassId_; } + set { + logicalCreationPassId_ = value; + } + } + + /// Field number for the "size_of_generated_code_in_bytes" field. + public const int SizeOfGeneratedCodeInBytesFieldNumber = 8; + private long sizeOfGeneratedCodeInBytes_; + /// + /// The footprint of the generated code for the instruction. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long SizeOfGeneratedCodeInBytes { + get { return sizeOfGeneratedCodeInBytes_; } + set { + sizeOfGeneratedCodeInBytes_ = value; + } + } + + /// Field number for the "size_of_memory_working_set_in_bytes" field. + public const int SizeOfMemoryWorkingSetInBytesFieldNumber = 9; + private long sizeOfMemoryWorkingSetInBytes_; + /// + /// The size of the working set, i.e., the amount of memory, used by the + /// instruction in a compiler-managed fast device memory. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long SizeOfMemoryWorkingSetInBytes { + get { return sizeOfMemoryWorkingSetInBytes_; } + set { + sizeOfMemoryWorkingSetInBytes_ = value; + } + } + + /// Field number for the "profile_info" field. + public const int ProfileInfoFieldNumber = 10; + private global::Xla.OpMetadata.Types.ProfileInfo profileInfo_; + /// + /// Profile information for the Op. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.OpMetadata.Types.ProfileInfo ProfileInfo { + get { return profileInfo_; } + set { + profileInfo_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as OpMetadata); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(OpMetadata other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (OpType != other.OpType) return false; + if (OpName != other.OpName) return false; + if (SourceFile != other.SourceFile) return false; + if (SourceLine != other.SourceLine) return false; + if(!profileType_.Equals(other.profileType_)) return false; + if (CreationPassId != other.CreationPassId) return false; + if (LogicalCreationPassId != other.LogicalCreationPassId) return false; + if (SizeOfGeneratedCodeInBytes != other.SizeOfGeneratedCodeInBytes) return false; + if (SizeOfMemoryWorkingSetInBytes != other.SizeOfMemoryWorkingSetInBytes) return false; + if (!object.Equals(ProfileInfo, other.ProfileInfo)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (OpType.Length != 0) hash ^= OpType.GetHashCode(); + if (OpName.Length != 0) hash ^= OpName.GetHashCode(); + if (SourceFile.Length != 0) hash ^= SourceFile.GetHashCode(); + if (SourceLine != 0) hash ^= SourceLine.GetHashCode(); + hash ^= profileType_.GetHashCode(); + if (CreationPassId != 0L) hash ^= CreationPassId.GetHashCode(); + if (LogicalCreationPassId != 0L) hash ^= LogicalCreationPassId.GetHashCode(); + if (SizeOfGeneratedCodeInBytes != 0L) hash ^= SizeOfGeneratedCodeInBytes.GetHashCode(); + if (SizeOfMemoryWorkingSetInBytes != 0L) hash ^= SizeOfMemoryWorkingSetInBytes.GetHashCode(); + if (profileInfo_ != null) hash ^= ProfileInfo.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (OpType.Length != 0) { + output.WriteRawTag(10); + output.WriteString(OpType); + } + if (OpName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(OpName); + } + if (SourceFile.Length != 0) { + output.WriteRawTag(26); + output.WriteString(SourceFile); + } + if (SourceLine != 0) { + output.WriteRawTag(32); + output.WriteInt32(SourceLine); + } + profileType_.WriteTo(output, _repeated_profileType_codec); + if (CreationPassId != 0L) { + output.WriteRawTag(48); + output.WriteInt64(CreationPassId); + } + if (LogicalCreationPassId != 0L) { + output.WriteRawTag(56); + output.WriteInt64(LogicalCreationPassId); + } + if (SizeOfGeneratedCodeInBytes != 0L) { + output.WriteRawTag(64); + output.WriteInt64(SizeOfGeneratedCodeInBytes); + } + if (SizeOfMemoryWorkingSetInBytes != 0L) { + output.WriteRawTag(72); + output.WriteInt64(SizeOfMemoryWorkingSetInBytes); + } + if (profileInfo_ != null) { + output.WriteRawTag(82); + output.WriteMessage(ProfileInfo); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (OpType.Length != 0) { + output.WriteRawTag(10); + output.WriteString(OpType); + } + if (OpName.Length != 0) { + output.WriteRawTag(18); + output.WriteString(OpName); + } + if (SourceFile.Length != 0) { + output.WriteRawTag(26); + output.WriteString(SourceFile); + } + if (SourceLine != 0) { + output.WriteRawTag(32); + output.WriteInt32(SourceLine); + } + profileType_.WriteTo(ref output, _repeated_profileType_codec); + if (CreationPassId != 0L) { + output.WriteRawTag(48); + output.WriteInt64(CreationPassId); + } + if (LogicalCreationPassId != 0L) { + output.WriteRawTag(56); + output.WriteInt64(LogicalCreationPassId); + } + if (SizeOfGeneratedCodeInBytes != 0L) { + output.WriteRawTag(64); + output.WriteInt64(SizeOfGeneratedCodeInBytes); + } + if (SizeOfMemoryWorkingSetInBytes != 0L) { + output.WriteRawTag(72); + output.WriteInt64(SizeOfMemoryWorkingSetInBytes); + } + if (profileInfo_ != null) { + output.WriteRawTag(82); + output.WriteMessage(ProfileInfo); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (OpType.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(OpType); + } + if (OpName.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(OpName); + } + if (SourceFile.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeStringSize(SourceFile); + } + if (SourceLine != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(SourceLine); + } + size += profileType_.CalculateSize(_repeated_profileType_codec); + if (CreationPassId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(CreationPassId); + } + if (LogicalCreationPassId != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(LogicalCreationPassId); + } + if (SizeOfGeneratedCodeInBytes != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(SizeOfGeneratedCodeInBytes); + } + if (SizeOfMemoryWorkingSetInBytes != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(SizeOfMemoryWorkingSetInBytes); + } + if (profileInfo_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(ProfileInfo); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(OpMetadata other) { + if (other == null) { + return; + } + if (other.OpType.Length != 0) { + OpType = other.OpType; + } + if (other.OpName.Length != 0) { + OpName = other.OpName; + } + if (other.SourceFile.Length != 0) { + SourceFile = other.SourceFile; + } + if (other.SourceLine != 0) { + SourceLine = other.SourceLine; + } + profileType_.Add(other.profileType_); + if (other.CreationPassId != 0L) { + CreationPassId = other.CreationPassId; + } + if (other.LogicalCreationPassId != 0L) { + LogicalCreationPassId = other.LogicalCreationPassId; + } + if (other.SizeOfGeneratedCodeInBytes != 0L) { + SizeOfGeneratedCodeInBytes = other.SizeOfGeneratedCodeInBytes; + } + if (other.SizeOfMemoryWorkingSetInBytes != 0L) { + SizeOfMemoryWorkingSetInBytes = other.SizeOfMemoryWorkingSetInBytes; + } + if (other.profileInfo_ != null) { + if (profileInfo_ == null) { + ProfileInfo = new global::Xla.OpMetadata.Types.ProfileInfo(); + } + ProfileInfo.MergeFrom(other.ProfileInfo); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + OpType = input.ReadString(); + break; + } + case 18: { + OpName = input.ReadString(); + break; + } + case 26: { + SourceFile = input.ReadString(); + break; + } + case 32: { + SourceLine = input.ReadInt32(); + break; + } + case 42: + case 40: { + profileType_.AddEntriesFrom(input, _repeated_profileType_codec); + break; + } + case 48: { + CreationPassId = input.ReadInt64(); + break; + } + case 56: { + LogicalCreationPassId = input.ReadInt64(); + break; + } + case 64: { + SizeOfGeneratedCodeInBytes = input.ReadInt64(); + break; + } + case 72: { + SizeOfMemoryWorkingSetInBytes = input.ReadInt64(); + break; + } + case 82: { + if (profileInfo_ == null) { + ProfileInfo = new global::Xla.OpMetadata.Types.ProfileInfo(); + } + input.ReadMessage(ProfileInfo); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + OpType = input.ReadString(); + break; + } + case 18: { + OpName = input.ReadString(); + break; + } + case 26: { + SourceFile = input.ReadString(); + break; + } + case 32: { + SourceLine = input.ReadInt32(); + break; + } + case 42: + case 40: { + profileType_.AddEntriesFrom(ref input, _repeated_profileType_codec); + break; + } + case 48: { + CreationPassId = input.ReadInt64(); + break; + } + case 56: { + LogicalCreationPassId = input.ReadInt64(); + break; + } + case 64: { + SizeOfGeneratedCodeInBytes = input.ReadInt64(); + break; + } + case 72: { + SizeOfMemoryWorkingSetInBytes = input.ReadInt64(); + break; + } + case 82: { + if (profileInfo_ == null) { + ProfileInfo = new global::Xla.OpMetadata.Types.ProfileInfo(); + } + input.ReadMessage(ProfileInfo); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the OpMetadata message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Information about the optimization profile that this operation contains. + /// + public sealed partial class ProfileInfo : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ProfileInfo()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.OpMetadata.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProfileInfo() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProfileInfo(ProfileInfo other) : this() { + profileType_ = other.profileType_.Clone(); + relativeSpeedup_ = other.relativeSpeedup_; + profileSource_ = other.profileSource_; + compilationEvent_ = other.compilationEvent_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ProfileInfo Clone() { + return new ProfileInfo(this); + } + + /// Field number for the "profile_type" field. + public const int ProfileTypeFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_profileType_codec + = pb::FieldCodec.ForEnum(10, x => (int) x, x => (global::Xla.ProfileType) x); + private readonly pbc::RepeatedField profileType_ = new pbc::RepeatedField(); + /// + /// The type of optimization profiles that this operation contains. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ProfileType { + get { return profileType_; } + } + + /// Field number for the "relative_speedup" field. + public const int RelativeSpeedupFieldNumber = 2; + private double relativeSpeedup_; + /// + /// Speedup of tuned config compared to default config. + /// TODO(b/203817882) Set the relative_speedup. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public double RelativeSpeedup { + get { return relativeSpeedup_; } + set { + relativeSpeedup_ = value; + } + } + + /// Field number for the "profile_source" field. + public const int ProfileSourceFieldNumber = 3; + private global::Xla.ProfileSource profileSource_ = global::Xla.ProfileSource.UnknownSource; + /// + /// The source of the optimization profiles that this operation contains. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ProfileSource ProfileSource { + get { return profileSource_; } + set { + profileSource_ = value; + } + } + + /// Field number for the "compilation_event" field. + public const int CompilationEventFieldNumber = 4; + private global::Xla.CompilationEvent compilationEvent_ = global::Xla.CompilationEvent.UnknownEvent; + /// + /// The compilation event that triggered the use of the profiles. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.CompilationEvent CompilationEvent { + get { return compilationEvent_; } + set { + compilationEvent_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ProfileInfo); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ProfileInfo other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!profileType_.Equals(other.profileType_)) return false; + if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(RelativeSpeedup, other.RelativeSpeedup)) return false; + if (ProfileSource != other.ProfileSource) return false; + if (CompilationEvent != other.CompilationEvent) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= profileType_.GetHashCode(); + if (RelativeSpeedup != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(RelativeSpeedup); + if (ProfileSource != global::Xla.ProfileSource.UnknownSource) hash ^= ProfileSource.GetHashCode(); + if (CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) hash ^= CompilationEvent.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + profileType_.WriteTo(output, _repeated_profileType_codec); + if (RelativeSpeedup != 0D) { + output.WriteRawTag(17); + output.WriteDouble(RelativeSpeedup); + } + if (ProfileSource != global::Xla.ProfileSource.UnknownSource) { + output.WriteRawTag(24); + output.WriteEnum((int) ProfileSource); + } + if (CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) { + output.WriteRawTag(32); + output.WriteEnum((int) CompilationEvent); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + profileType_.WriteTo(ref output, _repeated_profileType_codec); + if (RelativeSpeedup != 0D) { + output.WriteRawTag(17); + output.WriteDouble(RelativeSpeedup); + } + if (ProfileSource != global::Xla.ProfileSource.UnknownSource) { + output.WriteRawTag(24); + output.WriteEnum((int) ProfileSource); + } + if (CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) { + output.WriteRawTag(32); + output.WriteEnum((int) CompilationEvent); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += profileType_.CalculateSize(_repeated_profileType_codec); + if (RelativeSpeedup != 0D) { + size += 1 + 8; + } + if (ProfileSource != global::Xla.ProfileSource.UnknownSource) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) ProfileSource); + } + if (CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) CompilationEvent); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ProfileInfo other) { + if (other == null) { + return; + } + profileType_.Add(other.profileType_); + if (other.RelativeSpeedup != 0D) { + RelativeSpeedup = other.RelativeSpeedup; + } + if (other.ProfileSource != global::Xla.ProfileSource.UnknownSource) { + ProfileSource = other.ProfileSource; + } + if (other.CompilationEvent != global::Xla.CompilationEvent.UnknownEvent) { + CompilationEvent = other.CompilationEvent; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + profileType_.AddEntriesFrom(input, _repeated_profileType_codec); + break; + } + case 17: { + RelativeSpeedup = input.ReadDouble(); + break; + } + case 24: { + ProfileSource = (global::Xla.ProfileSource) input.ReadEnum(); + break; + } + case 32: { + CompilationEvent = (global::Xla.CompilationEvent) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + profileType_.AddEntriesFrom(ref input, _repeated_profileType_codec); + break; + } + case 17: { + RelativeSpeedup = input.ReadDouble(); + break; + } + case 24: { + ProfileSource = (global::Xla.ProfileSource) input.ReadEnum(); + break; + } + case 32: { + CompilationEvent = (global::Xla.CompilationEvent) input.ReadEnum(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// Profile data from the execution of a computation. + /// + public sealed partial class ExecutionProfile : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ExecutionProfile()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[7]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecutionProfile() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecutionProfile(ExecutionProfile other) : this() { + compilationCacheHit_ = other.compilationCacheHit_; + compileTimeMs_ = other.compileTimeMs_; + computeCycleCount_ = other.computeCycleCount_; + computeTimeNs_ = other.computeTimeNs_; + computeAndTransferTimeNs_ = other.computeAndTransferTimeNs_; + executableSizeInBytes_ = other.executableSizeInBytes_; + profileCacheHit_ = other.profileCacheHit_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecutionProfile Clone() { + return new ExecutionProfile(this); + } + + /// Field number for the "compilation_cache_hit" field. + public const int CompilationCacheHitFieldNumber = 1; + private bool compilationCacheHit_; + /// + /// Whether the executable was read from the compilation cache. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool CompilationCacheHit { + get { return compilationCacheHit_; } + set { + compilationCacheHit_ = value; + } + } + + /// Field number for the "compile_time_ms" field. + public const int CompileTimeMsFieldNumber = 2; + private long compileTimeMs_; + /// + /// The time in milliseconds spent to compile the computation. This only set if + /// the executable was not read from the compilation cache + /// (compilation_cache_hit == false). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long CompileTimeMs { + get { return compileTimeMs_; } + set { + compileTimeMs_ = value; + } + } + + /// Field number for the "compute_cycle_count" field. + public const int ComputeCycleCountFieldNumber = 3; + private long computeCycleCount_; + /// + /// The number of cycles spent for the computation. This does not include the + /// time taken for the data transfers between the host and the device. This is + /// a target-dependent field and only used for debugging purposes. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ComputeCycleCount { + get { return computeCycleCount_; } + set { + computeCycleCount_ = value; + } + } + + /// Field number for the "compute_time_ns" field. + public const int ComputeTimeNsFieldNumber = 4; + private long computeTimeNs_; + /// + /// The time in nanoseconds spent for the computation, without data transfer. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ComputeTimeNs { + get { return computeTimeNs_; } + set { + computeTimeNs_ = value; + } + } + + /// Field number for the "compute_and_transfer_time_ns" field. + public const int ComputeAndTransferTimeNsFieldNumber = 5; + private long computeAndTransferTimeNs_; + /// + /// The time in nanoseconds spent for the entire computation, including the + /// result data transfer time. Current implementation does not spend any cycles + /// for the input data transfer since the memory is initialized with the proper + /// values before the execution. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ComputeAndTransferTimeNs { + get { return computeAndTransferTimeNs_; } + set { + computeAndTransferTimeNs_ = value; + } + } + + /// Field number for the "executable_size_in_bytes" field. + public const int ExecutableSizeInBytesFieldNumber = 6; + private long executableSizeInBytes_; + /// + /// The size of the binary code in the executable. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long ExecutableSizeInBytes { + get { return executableSizeInBytes_; } + set { + executableSizeInBytes_ = value; + } + } + + /// Field number for the "profile_cache_hit" field. + public const int ProfileCacheHitFieldNumber = 7; + private bool profileCacheHit_; + /// + /// Whether this profile was drawn from a cache of profiles instead of from + /// execution on the hardware. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool ProfileCacheHit { + get { return profileCacheHit_; } + set { + profileCacheHit_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ExecutionProfile); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ExecutionProfile other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (CompilationCacheHit != other.CompilationCacheHit) return false; + if (CompileTimeMs != other.CompileTimeMs) return false; + if (ComputeCycleCount != other.ComputeCycleCount) return false; + if (ComputeTimeNs != other.ComputeTimeNs) return false; + if (ComputeAndTransferTimeNs != other.ComputeAndTransferTimeNs) return false; + if (ExecutableSizeInBytes != other.ExecutableSizeInBytes) return false; + if (ProfileCacheHit != other.ProfileCacheHit) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (CompilationCacheHit != false) hash ^= CompilationCacheHit.GetHashCode(); + if (CompileTimeMs != 0L) hash ^= CompileTimeMs.GetHashCode(); + if (ComputeCycleCount != 0L) hash ^= ComputeCycleCount.GetHashCode(); + if (ComputeTimeNs != 0L) hash ^= ComputeTimeNs.GetHashCode(); + if (ComputeAndTransferTimeNs != 0L) hash ^= ComputeAndTransferTimeNs.GetHashCode(); + if (ExecutableSizeInBytes != 0L) hash ^= ExecutableSizeInBytes.GetHashCode(); + if (ProfileCacheHit != false) hash ^= ProfileCacheHit.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (CompilationCacheHit != false) { + output.WriteRawTag(8); + output.WriteBool(CompilationCacheHit); + } + if (CompileTimeMs != 0L) { + output.WriteRawTag(16); + output.WriteInt64(CompileTimeMs); + } + if (ComputeCycleCount != 0L) { + output.WriteRawTag(24); + output.WriteInt64(ComputeCycleCount); + } + if (ComputeTimeNs != 0L) { + output.WriteRawTag(32); + output.WriteInt64(ComputeTimeNs); + } + if (ComputeAndTransferTimeNs != 0L) { + output.WriteRawTag(40); + output.WriteInt64(ComputeAndTransferTimeNs); + } + if (ExecutableSizeInBytes != 0L) { + output.WriteRawTag(48); + output.WriteInt64(ExecutableSizeInBytes); + } + if (ProfileCacheHit != false) { + output.WriteRawTag(56); + output.WriteBool(ProfileCacheHit); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (CompilationCacheHit != false) { + output.WriteRawTag(8); + output.WriteBool(CompilationCacheHit); + } + if (CompileTimeMs != 0L) { + output.WriteRawTag(16); + output.WriteInt64(CompileTimeMs); + } + if (ComputeCycleCount != 0L) { + output.WriteRawTag(24); + output.WriteInt64(ComputeCycleCount); + } + if (ComputeTimeNs != 0L) { + output.WriteRawTag(32); + output.WriteInt64(ComputeTimeNs); + } + if (ComputeAndTransferTimeNs != 0L) { + output.WriteRawTag(40); + output.WriteInt64(ComputeAndTransferTimeNs); + } + if (ExecutableSizeInBytes != 0L) { + output.WriteRawTag(48); + output.WriteInt64(ExecutableSizeInBytes); + } + if (ProfileCacheHit != false) { + output.WriteRawTag(56); + output.WriteBool(ProfileCacheHit); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (CompilationCacheHit != false) { + size += 1 + 1; + } + if (CompileTimeMs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(CompileTimeMs); + } + if (ComputeCycleCount != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ComputeCycleCount); + } + if (ComputeTimeNs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ComputeTimeNs); + } + if (ComputeAndTransferTimeNs != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ComputeAndTransferTimeNs); + } + if (ExecutableSizeInBytes != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(ExecutableSizeInBytes); + } + if (ProfileCacheHit != false) { + size += 1 + 1; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ExecutionProfile other) { + if (other == null) { + return; + } + if (other.CompilationCacheHit != false) { + CompilationCacheHit = other.CompilationCacheHit; + } + if (other.CompileTimeMs != 0L) { + CompileTimeMs = other.CompileTimeMs; + } + if (other.ComputeCycleCount != 0L) { + ComputeCycleCount = other.ComputeCycleCount; + } + if (other.ComputeTimeNs != 0L) { + ComputeTimeNs = other.ComputeTimeNs; + } + if (other.ComputeAndTransferTimeNs != 0L) { + ComputeAndTransferTimeNs = other.ComputeAndTransferTimeNs; + } + if (other.ExecutableSizeInBytes != 0L) { + ExecutableSizeInBytes = other.ExecutableSizeInBytes; + } + if (other.ProfileCacheHit != false) { + ProfileCacheHit = other.ProfileCacheHit; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + CompilationCacheHit = input.ReadBool(); + break; + } + case 16: { + CompileTimeMs = input.ReadInt64(); + break; + } + case 24: { + ComputeCycleCount = input.ReadInt64(); + break; + } + case 32: { + ComputeTimeNs = input.ReadInt64(); + break; + } + case 40: { + ComputeAndTransferTimeNs = input.ReadInt64(); + break; + } + case 48: { + ExecutableSizeInBytes = input.ReadInt64(); + break; + } + case 56: { + ProfileCacheHit = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + CompilationCacheHit = input.ReadBool(); + break; + } + case 16: { + CompileTimeMs = input.ReadInt64(); + break; + } + case 24: { + ComputeCycleCount = input.ReadInt64(); + break; + } + case 32: { + ComputeTimeNs = input.ReadInt64(); + break; + } + case 40: { + ComputeAndTransferTimeNs = input.ReadInt64(); + break; + } + case 48: { + ExecutableSizeInBytes = input.ReadInt64(); + break; + } + case 56: { + ProfileCacheHit = input.ReadBool(); + break; + } + } + } + } + #endif + + } + + /// + /// Handle given to a user that represents an execution that the user launched + /// asynchronously on the device. + /// + public sealed partial class ExecutionHandle : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ExecutionHandle()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[8]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecutionHandle() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecutionHandle(ExecutionHandle other) : this() { + handle_ = other.handle_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ExecutionHandle Clone() { + return new ExecutionHandle(this); + } + + /// Field number for the "handle" field. + public const int HandleFieldNumber = 1; + private long handle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Handle { + get { return handle_; } + set { + handle_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ExecutionHandle); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ExecutionHandle other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Handle != other.Handle) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Handle != 0L) hash ^= Handle.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Handle != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Handle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Handle != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Handle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Handle != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Handle); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ExecutionHandle other) { + if (other == null) { + return; + } + if (other.Handle != 0L) { + Handle = other.Handle; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Handle = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Handle = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + /// + /// Handle given to a user that represents a globally accessible allocation. + /// Contrast this against a ComputationDataHandle, which is not globally + /// accessible, since it only exists within a specific computation. + /// + public sealed partial class GlobalDataHandle : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GlobalDataHandle()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[9]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GlobalDataHandle() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GlobalDataHandle(GlobalDataHandle other) : this() { + handle_ = other.handle_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GlobalDataHandle Clone() { + return new GlobalDataHandle(this); + } + + /// Field number for the "handle" field. + public const int HandleFieldNumber = 1; + private long handle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Handle { + get { return handle_; } + set { + handle_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GlobalDataHandle); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GlobalDataHandle other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Handle != other.Handle) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Handle != 0L) hash ^= Handle.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Handle != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Handle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Handle != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Handle); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Handle != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Handle); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GlobalDataHandle other) { + if (other == null) { + return; + } + if (other.Handle != 0L) { + Handle = other.Handle; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Handle = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Handle = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + /// + /// Handle given to a user that represents a replicated virtual device. Each + /// replicated device represents N physical devices for execution where N is the + /// number of replicas. + /// + public sealed partial class DeviceHandle : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeviceHandle()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[10]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeviceHandle() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeviceHandle(DeviceHandle other) : this() { + handle_ = other.handle_; + deviceCount_ = other.deviceCount_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeviceHandle Clone() { + return new DeviceHandle(this); + } + + /// Field number for the "handle" field. + public const int HandleFieldNumber = 1; + private long handle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Handle { + get { return handle_; } + set { + handle_ = value; + } + } + + /// Field number for the "device_count" field. + public const int DeviceCountFieldNumber = 2; + private long deviceCount_; + /// + /// The number of model-parallel virtual devices that communicate via XLA + /// Send/Recv instructions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long DeviceCount { + get { return deviceCount_; } + set { + deviceCount_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DeviceHandle); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DeviceHandle other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Handle != other.Handle) return false; + if (DeviceCount != other.DeviceCount) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Handle != 0L) hash ^= Handle.GetHashCode(); + if (DeviceCount != 0L) hash ^= DeviceCount.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Handle != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Handle); + } + if (DeviceCount != 0L) { + output.WriteRawTag(16); + output.WriteInt64(DeviceCount); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Handle != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Handle); + } + if (DeviceCount != 0L) { + output.WriteRawTag(16); + output.WriteInt64(DeviceCount); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Handle != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Handle); + } + if (DeviceCount != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(DeviceCount); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DeviceHandle other) { + if (other == null) { + return; + } + if (other.Handle != 0L) { + Handle = other.Handle; + } + if (other.DeviceCount != 0L) { + DeviceCount = other.DeviceCount; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Handle = input.ReadInt64(); + break; + } + case 16: { + DeviceCount = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Handle = input.ReadInt64(); + break; + } + case 16: { + DeviceCount = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + /// + /// Handle given to a user to represent a channel between two computations + /// via a Send and Recv instruction pair. Channels are unbuffered, so Send + /// Send instructions will be blocked until the data is transferred. + /// + public sealed partial class ChannelHandle : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ChannelHandle()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[11]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ChannelHandle() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ChannelHandle(ChannelHandle other) : this() { + handle_ = other.handle_; + type_ = other.type_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ChannelHandle Clone() { + return new ChannelHandle(this); + } + + /// Field number for the "handle" field. + public const int HandleFieldNumber = 1; + private long handle_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Handle { + get { return handle_; } + set { + handle_ = value; + } + } + + /// Field number for the "type" field. + public const int TypeFieldNumber = 2; + private global::Xla.ChannelHandle.Types.ChannelType type_ = global::Xla.ChannelHandle.Types.ChannelType.Invalid; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ChannelHandle.Types.ChannelType Type { + get { return type_; } + set { + type_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ChannelHandle); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ChannelHandle other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Handle != other.Handle) return false; + if (Type != other.Type) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Handle != 0L) hash ^= Handle.GetHashCode(); + if (Type != global::Xla.ChannelHandle.Types.ChannelType.Invalid) hash ^= Type.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Handle != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Handle); + } + if (Type != global::Xla.ChannelHandle.Types.ChannelType.Invalid) { + output.WriteRawTag(16); + output.WriteEnum((int) Type); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Handle != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Handle); + } + if (Type != global::Xla.ChannelHandle.Types.ChannelType.Invalid) { + output.WriteRawTag(16); + output.WriteEnum((int) Type); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Handle != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Handle); + } + if (Type != global::Xla.ChannelHandle.Types.ChannelType.Invalid) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) Type); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ChannelHandle other) { + if (other == null) { + return; + } + if (other.Handle != 0L) { + Handle = other.Handle; + } + if (other.Type != global::Xla.ChannelHandle.Types.ChannelType.Invalid) { + Type = other.Type; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Handle = input.ReadInt64(); + break; + } + case 16: { + Type = (global::Xla.ChannelHandle.Types.ChannelType) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Handle = input.ReadInt64(); + break; + } + case 16: { + Type = (global::Xla.ChannelHandle.Types.ChannelType) input.ReadEnum(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the ChannelHandle message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + public enum ChannelType { + /// + /// Invalid primitive type to serve as default. + /// + [pbr::OriginalName("CHANNEL_TYPE_INVALID")] Invalid = 0, + /// + /// A channel for sending data between devices. + /// + [pbr::OriginalName("DEVICE_TO_DEVICE")] DeviceToDevice = 1, + /// + /// A channel for sending data from the device to the host. Can only be used + /// with a Send operation. + /// + [pbr::OriginalName("DEVICE_TO_HOST")] DeviceToHost = 2, + /// + /// A channel for sending data from the host to the device. Can only be used + /// with a Recv operation. + /// + [pbr::OriginalName("HOST_TO_DEVICE")] HostToDevice = 3, + } + + } + #endregion + + } + + /// + /// DeviceAssignmentProto is a serialized form of DeviceAssignment class, which + /// represents the device ids assigned to a set of replicated computations. + /// See xla::DeviceAssignment class comment for more details. + /// + public sealed partial class DeviceAssignmentProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DeviceAssignmentProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[12]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeviceAssignmentProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeviceAssignmentProto(DeviceAssignmentProto other) : this() { + replicaCount_ = other.replicaCount_; + computationCount_ = other.computationCount_; + computationDevices_ = other.computationDevices_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DeviceAssignmentProto Clone() { + return new DeviceAssignmentProto(this); + } + + /// Field number for the "replica_count" field. + public const int ReplicaCountFieldNumber = 1; + private int replicaCount_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int ReplicaCount { + get { return replicaCount_; } + set { + replicaCount_ = value; + } + } + + /// Field number for the "computation_count" field. + public const int ComputationCountFieldNumber = 2; + private int computationCount_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int ComputationCount { + get { return computationCount_; } + set { + computationCount_ = value; + } + } + + /// Field number for the "computation_devices" field. + public const int ComputationDevicesFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_computationDevices_codec + = pb::FieldCodec.ForMessage(26, global::Xla.DeviceAssignmentProto.Types.ComputationDevice.Parser); + private readonly pbc::RepeatedField computationDevices_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ComputationDevices { + get { return computationDevices_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DeviceAssignmentProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DeviceAssignmentProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (ReplicaCount != other.ReplicaCount) return false; + if (ComputationCount != other.ComputationCount) return false; + if(!computationDevices_.Equals(other.computationDevices_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (ReplicaCount != 0) hash ^= ReplicaCount.GetHashCode(); + if (ComputationCount != 0) hash ^= ComputationCount.GetHashCode(); + hash ^= computationDevices_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (ReplicaCount != 0) { + output.WriteRawTag(8); + output.WriteInt32(ReplicaCount); + } + if (ComputationCount != 0) { + output.WriteRawTag(16); + output.WriteInt32(ComputationCount); + } + computationDevices_.WriteTo(output, _repeated_computationDevices_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (ReplicaCount != 0) { + output.WriteRawTag(8); + output.WriteInt32(ReplicaCount); + } + if (ComputationCount != 0) { + output.WriteRawTag(16); + output.WriteInt32(ComputationCount); + } + computationDevices_.WriteTo(ref output, _repeated_computationDevices_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (ReplicaCount != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(ReplicaCount); + } + if (ComputationCount != 0) { + size += 1 + pb::CodedOutputStream.ComputeInt32Size(ComputationCount); + } + size += computationDevices_.CalculateSize(_repeated_computationDevices_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DeviceAssignmentProto other) { + if (other == null) { + return; + } + if (other.ReplicaCount != 0) { + ReplicaCount = other.ReplicaCount; + } + if (other.ComputationCount != 0) { + ComputationCount = other.ComputationCount; + } + computationDevices_.Add(other.computationDevices_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + ReplicaCount = input.ReadInt32(); + break; + } + case 16: { + ComputationCount = input.ReadInt32(); + break; + } + case 26: { + computationDevices_.AddEntriesFrom(input, _repeated_computationDevices_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + ReplicaCount = input.ReadInt32(); + break; + } + case 16: { + ComputationCount = input.ReadInt32(); + break; + } + case 26: { + computationDevices_.AddEntriesFrom(ref input, _repeated_computationDevices_codec); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the DeviceAssignmentProto message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Each logical computation runs on replica_count physical devices. + /// ComputationDevice represents the device ids assinged to the replicas. + /// + public sealed partial class ComputationDevice : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ComputationDevice()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.DeviceAssignmentProto.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationDevice() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationDevice(ComputationDevice other) : this() { + replicaDeviceIds_ = other.replicaDeviceIds_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ComputationDevice Clone() { + return new ComputationDevice(this); + } + + /// Field number for the "replica_device_ids" field. + public const int ReplicaDeviceIdsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_replicaDeviceIds_codec + = pb::FieldCodec.ForInt32(10); + private readonly pbc::RepeatedField replicaDeviceIds_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ReplicaDeviceIds { + get { return replicaDeviceIds_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ComputationDevice); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ComputationDevice other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!replicaDeviceIds_.Equals(other.replicaDeviceIds_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= replicaDeviceIds_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + replicaDeviceIds_.WriteTo(output, _repeated_replicaDeviceIds_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + replicaDeviceIds_.WriteTo(ref output, _repeated_replicaDeviceIds_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += replicaDeviceIds_.CalculateSize(_repeated_replicaDeviceIds_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ComputationDevice other) { + if (other == null) { + return; + } + replicaDeviceIds_.Add(other.replicaDeviceIds_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + replicaDeviceIds_.AddEntriesFrom(input, _repeated_replicaDeviceIds_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + replicaDeviceIds_.AddEntriesFrom(ref input, _repeated_replicaDeviceIds_codec); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// Literals are used when the server and client need to exchange materialized + /// data / results. Literals are also used to describe constants used in + /// computations. + /// + /// Transfers to/from the client are encoded in literal form, and the structure + /// of the repeated fields is implied by the shape. + /// + public sealed partial class LiteralProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new LiteralProto()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[13]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LiteralProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LiteralProto(LiteralProto other) : this() { + shape_ = other.shape_ != null ? other.shape_.Clone() : null; + preds_ = other.preds_.Clone(); + s8S_ = other.s8S_; + u8S_ = other.u8S_; + s32S_ = other.s32S_.Clone(); + s64S_ = other.s64S_.Clone(); + u32S_ = other.u32S_.Clone(); + u64S_ = other.u64S_.Clone(); + f32S_ = other.f32S_.Clone(); + f64S_ = other.f64S_.Clone(); + c64S_ = other.c64S_.Clone(); + c128S_ = other.c128S_.Clone(); + tupleLiterals_ = other.tupleLiterals_.Clone(); + f16S_ = other.f16S_; + bf16S_ = other.bf16S_; + u16S_ = other.u16S_; + s16S_ = other.s16S_; + sparseIndices_ = other.sparseIndices_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public LiteralProto Clone() { + return new LiteralProto(this); + } + + /// Field number for the "shape" field. + public const int ShapeFieldNumber = 1; + private global::Xla.ShapeProto shape_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto Shape { + get { return shape_; } + set { + shape_ = value; + } + } + + /// Field number for the "preds" field. + public const int PredsFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_preds_codec + = pb::FieldCodec.ForBool(18); + private readonly pbc::RepeatedField preds_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Preds { + get { return preds_; } + } + + /// Field number for the "s8s" field. + public const int S8SFieldNumber = 15; + private pb::ByteString s8S_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString S8S { + get { return s8S_; } + set { + s8S_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "u8s" field. + public const int U8SFieldNumber = 3; + private pb::ByteString u8S_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString U8S { + get { return u8S_; } + set { + u8S_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "s32s" field. + public const int S32SFieldNumber = 4; + private static readonly pb::FieldCodec _repeated_s32S_codec + = pb::FieldCodec.ForInt32(34); + private readonly pbc::RepeatedField s32S_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField S32S { + get { return s32S_; } + } + + /// Field number for the "s64s" field. + public const int S64SFieldNumber = 5; + private static readonly pb::FieldCodec _repeated_s64S_codec + = pb::FieldCodec.ForInt64(42); + private readonly pbc::RepeatedField s64S_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField S64S { + get { return s64S_; } + } + + /// Field number for the "u32s" field. + public const int U32SFieldNumber = 6; + private static readonly pb::FieldCodec _repeated_u32S_codec + = pb::FieldCodec.ForUInt32(50); + private readonly pbc::RepeatedField u32S_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField U32S { + get { return u32S_; } + } + + /// Field number for the "u64s" field. + public const int U64SFieldNumber = 7; + private static readonly pb::FieldCodec _repeated_u64S_codec + = pb::FieldCodec.ForUInt64(58); + private readonly pbc::RepeatedField u64S_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField U64S { + get { return u64S_; } + } + + /// Field number for the "f32s" field. + public const int F32SFieldNumber = 8; + private static readonly pb::FieldCodec _repeated_f32S_codec + = pb::FieldCodec.ForFloat(66); + private readonly pbc::RepeatedField f32S_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField F32S { + get { return f32S_; } + } + + /// Field number for the "f64s" field. + public const int F64SFieldNumber = 9; + private static readonly pb::FieldCodec _repeated_f64S_codec + = pb::FieldCodec.ForDouble(74); + private readonly pbc::RepeatedField f64S_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField F64S { + get { return f64S_; } + } + + /// Field number for the "c64s" field. + public const int C64SFieldNumber = 12; + private static readonly pb::FieldCodec _repeated_c64S_codec + = pb::FieldCodec.ForFloat(98); + private readonly pbc::RepeatedField c64S_ = new pbc::RepeatedField(); + /// + /// Stored as interleaved real, imag floats. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField C64S { + get { return c64S_; } + } + + /// Field number for the "c128s" field. + public const int C128SFieldNumber = 18; + private static readonly pb::FieldCodec _repeated_c128S_codec + = pb::FieldCodec.ForDouble(146); + private readonly pbc::RepeatedField c128S_ = new pbc::RepeatedField(); + /// + /// Stored as interleaved real, imag doubles. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField C128S { + get { return c128S_; } + } + + /// Field number for the "tuple_literals" field. + public const int TupleLiteralsFieldNumber = 10; + private static readonly pb::FieldCodec _repeated_tupleLiterals_codec + = pb::FieldCodec.ForMessage(82, global::Xla.LiteralProto.Parser); + private readonly pbc::RepeatedField tupleLiterals_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField TupleLiterals { + get { return tupleLiterals_; } + } + + /// Field number for the "f16s" field. + public const int F16SFieldNumber = 11; + private pb::ByteString f16S_ = pb::ByteString.Empty; + /// + /// The F16s, BF16s, U16s and S16s are encoded in little endian byte order + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString F16S { + get { return f16S_; } + set { + f16S_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "bf16s" field. + public const int Bf16SFieldNumber = 13; + private pb::ByteString bf16S_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString Bf16S { + get { return bf16S_; } + set { + bf16S_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "u16s" field. + public const int U16SFieldNumber = 16; + private pb::ByteString u16S_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString U16S { + get { return u16S_; } + set { + u16S_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "s16s" field. + public const int S16SFieldNumber = 17; + private pb::ByteString s16S_ = pb::ByteString.Empty; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pb::ByteString S16S { + get { return s16S_; } + set { + s16S_ = pb::ProtoPreconditions.CheckNotNull(value, "value"); + } + } + + /// Field number for the "sparse_indices" field. + public const int SparseIndicesFieldNumber = 14; + private static readonly pb::FieldCodec _repeated_sparseIndices_codec + = pb::FieldCodec.ForInt64(114); + private readonly pbc::RepeatedField sparseIndices_ = new pbc::RepeatedField(); + /// + /// Next = 19 + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField SparseIndices { + get { return sparseIndices_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as LiteralProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(LiteralProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(Shape, other.Shape)) return false; + if(!preds_.Equals(other.preds_)) return false; + if (S8S != other.S8S) return false; + if (U8S != other.U8S) return false; + if(!s32S_.Equals(other.s32S_)) return false; + if(!s64S_.Equals(other.s64S_)) return false; + if(!u32S_.Equals(other.u32S_)) return false; + if(!u64S_.Equals(other.u64S_)) return false; + if(!f32S_.Equals(other.f32S_)) return false; + if(!f64S_.Equals(other.f64S_)) return false; + if(!c64S_.Equals(other.c64S_)) return false; + if(!c128S_.Equals(other.c128S_)) return false; + if(!tupleLiterals_.Equals(other.tupleLiterals_)) return false; + if (F16S != other.F16S) return false; + if (Bf16S != other.Bf16S) return false; + if (U16S != other.U16S) return false; + if (S16S != other.S16S) return false; + if(!sparseIndices_.Equals(other.sparseIndices_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (shape_ != null) hash ^= Shape.GetHashCode(); + hash ^= preds_.GetHashCode(); + if (S8S.Length != 0) hash ^= S8S.GetHashCode(); + if (U8S.Length != 0) hash ^= U8S.GetHashCode(); + hash ^= s32S_.GetHashCode(); + hash ^= s64S_.GetHashCode(); + hash ^= u32S_.GetHashCode(); + hash ^= u64S_.GetHashCode(); + hash ^= f32S_.GetHashCode(); + hash ^= f64S_.GetHashCode(); + hash ^= c64S_.GetHashCode(); + hash ^= c128S_.GetHashCode(); + hash ^= tupleLiterals_.GetHashCode(); + if (F16S.Length != 0) hash ^= F16S.GetHashCode(); + if (Bf16S.Length != 0) hash ^= Bf16S.GetHashCode(); + if (U16S.Length != 0) hash ^= U16S.GetHashCode(); + if (S16S.Length != 0) hash ^= S16S.GetHashCode(); + hash ^= sparseIndices_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (shape_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Shape); + } + preds_.WriteTo(output, _repeated_preds_codec); + if (U8S.Length != 0) { + output.WriteRawTag(26); + output.WriteBytes(U8S); + } + s32S_.WriteTo(output, _repeated_s32S_codec); + s64S_.WriteTo(output, _repeated_s64S_codec); + u32S_.WriteTo(output, _repeated_u32S_codec); + u64S_.WriteTo(output, _repeated_u64S_codec); + f32S_.WriteTo(output, _repeated_f32S_codec); + f64S_.WriteTo(output, _repeated_f64S_codec); + tupleLiterals_.WriteTo(output, _repeated_tupleLiterals_codec); + if (F16S.Length != 0) { + output.WriteRawTag(90); + output.WriteBytes(F16S); + } + c64S_.WriteTo(output, _repeated_c64S_codec); + if (Bf16S.Length != 0) { + output.WriteRawTag(106); + output.WriteBytes(Bf16S); + } + sparseIndices_.WriteTo(output, _repeated_sparseIndices_codec); + if (S8S.Length != 0) { + output.WriteRawTag(122); + output.WriteBytes(S8S); + } + if (U16S.Length != 0) { + output.WriteRawTag(130, 1); + output.WriteBytes(U16S); + } + if (S16S.Length != 0) { + output.WriteRawTag(138, 1); + output.WriteBytes(S16S); + } + c128S_.WriteTo(output, _repeated_c128S_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (shape_ != null) { + output.WriteRawTag(10); + output.WriteMessage(Shape); + } + preds_.WriteTo(ref output, _repeated_preds_codec); + if (U8S.Length != 0) { + output.WriteRawTag(26); + output.WriteBytes(U8S); + } + s32S_.WriteTo(ref output, _repeated_s32S_codec); + s64S_.WriteTo(ref output, _repeated_s64S_codec); + u32S_.WriteTo(ref output, _repeated_u32S_codec); + u64S_.WriteTo(ref output, _repeated_u64S_codec); + f32S_.WriteTo(ref output, _repeated_f32S_codec); + f64S_.WriteTo(ref output, _repeated_f64S_codec); + tupleLiterals_.WriteTo(ref output, _repeated_tupleLiterals_codec); + if (F16S.Length != 0) { + output.WriteRawTag(90); + output.WriteBytes(F16S); + } + c64S_.WriteTo(ref output, _repeated_c64S_codec); + if (Bf16S.Length != 0) { + output.WriteRawTag(106); + output.WriteBytes(Bf16S); + } + sparseIndices_.WriteTo(ref output, _repeated_sparseIndices_codec); + if (S8S.Length != 0) { + output.WriteRawTag(122); + output.WriteBytes(S8S); + } + if (U16S.Length != 0) { + output.WriteRawTag(130, 1); + output.WriteBytes(U16S); + } + if (S16S.Length != 0) { + output.WriteRawTag(138, 1); + output.WriteBytes(S16S); + } + c128S_.WriteTo(ref output, _repeated_c128S_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (shape_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(Shape); + } + size += preds_.CalculateSize(_repeated_preds_codec); + if (S8S.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(S8S); + } + if (U8S.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(U8S); + } + size += s32S_.CalculateSize(_repeated_s32S_codec); + size += s64S_.CalculateSize(_repeated_s64S_codec); + size += u32S_.CalculateSize(_repeated_u32S_codec); + size += u64S_.CalculateSize(_repeated_u64S_codec); + size += f32S_.CalculateSize(_repeated_f32S_codec); + size += f64S_.CalculateSize(_repeated_f64S_codec); + size += c64S_.CalculateSize(_repeated_c64S_codec); + size += c128S_.CalculateSize(_repeated_c128S_codec); + size += tupleLiterals_.CalculateSize(_repeated_tupleLiterals_codec); + if (F16S.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(F16S); + } + if (Bf16S.Length != 0) { + size += 1 + pb::CodedOutputStream.ComputeBytesSize(Bf16S); + } + if (U16S.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeBytesSize(U16S); + } + if (S16S.Length != 0) { + size += 2 + pb::CodedOutputStream.ComputeBytesSize(S16S); + } + size += sparseIndices_.CalculateSize(_repeated_sparseIndices_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(LiteralProto other) { + if (other == null) { + return; + } + if (other.shape_ != null) { + if (shape_ == null) { + Shape = new global::Xla.ShapeProto(); + } + Shape.MergeFrom(other.Shape); + } + preds_.Add(other.preds_); + if (other.S8S.Length != 0) { + S8S = other.S8S; + } + if (other.U8S.Length != 0) { + U8S = other.U8S; + } + s32S_.Add(other.s32S_); + s64S_.Add(other.s64S_); + u32S_.Add(other.u32S_); + u64S_.Add(other.u64S_); + f32S_.Add(other.f32S_); + f64S_.Add(other.f64S_); + c64S_.Add(other.c64S_); + c128S_.Add(other.c128S_); + tupleLiterals_.Add(other.tupleLiterals_); + if (other.F16S.Length != 0) { + F16S = other.F16S; + } + if (other.Bf16S.Length != 0) { + Bf16S = other.Bf16S; + } + if (other.U16S.Length != 0) { + U16S = other.U16S; + } + if (other.S16S.Length != 0) { + S16S = other.S16S; + } + sparseIndices_.Add(other.sparseIndices_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (shape_ == null) { + Shape = new global::Xla.ShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 18: + case 16: { + preds_.AddEntriesFrom(input, _repeated_preds_codec); + break; + } + case 26: { + U8S = input.ReadBytes(); + break; + } + case 34: + case 32: { + s32S_.AddEntriesFrom(input, _repeated_s32S_codec); + break; + } + case 42: + case 40: { + s64S_.AddEntriesFrom(input, _repeated_s64S_codec); + break; + } + case 50: + case 48: { + u32S_.AddEntriesFrom(input, _repeated_u32S_codec); + break; + } + case 58: + case 56: { + u64S_.AddEntriesFrom(input, _repeated_u64S_codec); + break; + } + case 66: + case 69: { + f32S_.AddEntriesFrom(input, _repeated_f32S_codec); + break; + } + case 74: + case 73: { + f64S_.AddEntriesFrom(input, _repeated_f64S_codec); + break; + } + case 82: { + tupleLiterals_.AddEntriesFrom(input, _repeated_tupleLiterals_codec); + break; + } + case 90: { + F16S = input.ReadBytes(); + break; + } + case 98: + case 101: { + c64S_.AddEntriesFrom(input, _repeated_c64S_codec); + break; + } + case 106: { + Bf16S = input.ReadBytes(); + break; + } + case 114: + case 112: { + sparseIndices_.AddEntriesFrom(input, _repeated_sparseIndices_codec); + break; + } + case 122: { + S8S = input.ReadBytes(); + break; + } + case 130: { + U16S = input.ReadBytes(); + break; + } + case 138: { + S16S = input.ReadBytes(); + break; + } + case 146: + case 145: { + c128S_.AddEntriesFrom(input, _repeated_c128S_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (shape_ == null) { + Shape = new global::Xla.ShapeProto(); + } + input.ReadMessage(Shape); + break; + } + case 18: + case 16: { + preds_.AddEntriesFrom(ref input, _repeated_preds_codec); + break; + } + case 26: { + U8S = input.ReadBytes(); + break; + } + case 34: + case 32: { + s32S_.AddEntriesFrom(ref input, _repeated_s32S_codec); + break; + } + case 42: + case 40: { + s64S_.AddEntriesFrom(ref input, _repeated_s64S_codec); + break; + } + case 50: + case 48: { + u32S_.AddEntriesFrom(ref input, _repeated_u32S_codec); + break; + } + case 58: + case 56: { + u64S_.AddEntriesFrom(ref input, _repeated_u64S_codec); + break; + } + case 66: + case 69: { + f32S_.AddEntriesFrom(ref input, _repeated_f32S_codec); + break; + } + case 74: + case 73: { + f64S_.AddEntriesFrom(ref input, _repeated_f64S_codec); + break; + } + case 82: { + tupleLiterals_.AddEntriesFrom(ref input, _repeated_tupleLiterals_codec); + break; + } + case 90: { + F16S = input.ReadBytes(); + break; + } + case 98: + case 101: { + c64S_.AddEntriesFrom(ref input, _repeated_c64S_codec); + break; + } + case 106: { + Bf16S = input.ReadBytes(); + break; + } + case 114: + case 112: { + sparseIndices_.AddEntriesFrom(ref input, _repeated_sparseIndices_codec); + break; + } + case 122: { + S8S = input.ReadBytes(); + break; + } + case 130: { + U16S = input.ReadBytes(); + break; + } + case 138: { + S16S = input.ReadBytes(); + break; + } + case 146: + case 145: { + c128S_.AddEntriesFrom(ref input, _repeated_c128S_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class WindowDimension : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WindowDimension()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[14]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WindowDimension() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WindowDimension(WindowDimension other) : this() { + size_ = other.size_; + stride_ = other.stride_; + paddingLow_ = other.paddingLow_; + paddingHigh_ = other.paddingHigh_; + windowDilation_ = other.windowDilation_; + baseDilation_ = other.baseDilation_; + windowReversal_ = other.windowReversal_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WindowDimension Clone() { + return new WindowDimension(this); + } + + /// Field number for the "size" field. + public const int SizeFieldNumber = 1; + private long size_; + /// + /// The size of the window in this dimension. For a rectangle, this would be + /// the width or height. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Size { + get { return size_; } + set { + size_ = value; + } + } + + /// Field number for the "stride" field. + public const int StrideFieldNumber = 2; + private long stride_; + /// + /// The stride at which the window moves across the base area in this + /// dimension. In other words, this is the spacing between different + /// positions of the window in this dimension. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Stride { + get { return stride_; } + set { + stride_ = value; + } + } + + /// Field number for the "padding_low" field. + public const int PaddingLowFieldNumber = 3; + private long paddingLow_; + /// + /// If positive, means the amount of padding to add to the base area at the low + /// end of this dimension; if negative, its negative means the number of + /// elements removed from the low end of this dimension. For example, in the + /// horizontal dimension of a rectangle, this would be the number of padding + /// values to pad on the left, given that indices increase when going right. + /// The actual padding value depends upon the context. Convolution pads with + /// zeros. ReduceWindow and SelectAndScatter pads with the reduce function's + /// init value. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long PaddingLow { + get { return paddingLow_; } + set { + paddingLow_ = value; + } + } + + /// Field number for the "padding_high" field. + public const int PaddingHighFieldNumber = 4; + private long paddingHigh_; + /// + /// As padding_low, but on the high end of this dimension. For example, in the + /// horizontal dimension of a rectangle, this would be the number of values to + /// pad on the right, given that indices increase when going right. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long PaddingHigh { + get { return paddingHigh_; } + set { + paddingHigh_ = value; + } + } + + /// Field number for the "window_dilation" field. + public const int WindowDilationFieldNumber = 5; + private long windowDilation_; + /// + /// Dilation factor of the sliding window in this dimension. A dilation factor + /// of 1 means no dilation. window_dilation - 1 no-op entries ("holes") are + /// implicitly placed between each kernel element. This value may not be less + /// than 1. See documentation for convolution. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long WindowDilation { + get { return windowDilation_; } + set { + windowDilation_ = value; + } + } + + /// Field number for the "base_dilation" field. + public const int BaseDilationFieldNumber = 6; + private long baseDilation_; + /// + /// Dilation factor of the base area in this dimension. A dilation factor of 1 + /// means no dilation. base_dilation - 1 no-op entries ("holes") are implicitly + /// placed between each base area element. This value may not be less than 1. + /// See documentation for convolution. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long BaseDilation { + get { return baseDilation_; } + set { + baseDilation_ = value; + } + } + + /// Field number for the "window_reversal" field. + public const int WindowReversalFieldNumber = 7; + private bool windowReversal_; + /// + /// Window reversal means that this dimension was logically reversed before the + /// operation. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool WindowReversal { + get { return windowReversal_; } + set { + windowReversal_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as WindowDimension); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(WindowDimension other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Size != other.Size) return false; + if (Stride != other.Stride) return false; + if (PaddingLow != other.PaddingLow) return false; + if (PaddingHigh != other.PaddingHigh) return false; + if (WindowDilation != other.WindowDilation) return false; + if (BaseDilation != other.BaseDilation) return false; + if (WindowReversal != other.WindowReversal) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Size != 0L) hash ^= Size.GetHashCode(); + if (Stride != 0L) hash ^= Stride.GetHashCode(); + if (PaddingLow != 0L) hash ^= PaddingLow.GetHashCode(); + if (PaddingHigh != 0L) hash ^= PaddingHigh.GetHashCode(); + if (WindowDilation != 0L) hash ^= WindowDilation.GetHashCode(); + if (BaseDilation != 0L) hash ^= BaseDilation.GetHashCode(); + if (WindowReversal != false) hash ^= WindowReversal.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Size != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Size); + } + if (Stride != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Stride); + } + if (PaddingLow != 0L) { + output.WriteRawTag(24); + output.WriteInt64(PaddingLow); + } + if (PaddingHigh != 0L) { + output.WriteRawTag(32); + output.WriteInt64(PaddingHigh); + } + if (WindowDilation != 0L) { + output.WriteRawTag(40); + output.WriteInt64(WindowDilation); + } + if (BaseDilation != 0L) { + output.WriteRawTag(48); + output.WriteInt64(BaseDilation); + } + if (WindowReversal != false) { + output.WriteRawTag(56); + output.WriteBool(WindowReversal); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Size != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Size); + } + if (Stride != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Stride); + } + if (PaddingLow != 0L) { + output.WriteRawTag(24); + output.WriteInt64(PaddingLow); + } + if (PaddingHigh != 0L) { + output.WriteRawTag(32); + output.WriteInt64(PaddingHigh); + } + if (WindowDilation != 0L) { + output.WriteRawTag(40); + output.WriteInt64(WindowDilation); + } + if (BaseDilation != 0L) { + output.WriteRawTag(48); + output.WriteInt64(BaseDilation); + } + if (WindowReversal != false) { + output.WriteRawTag(56); + output.WriteBool(WindowReversal); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Size != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Size); + } + if (Stride != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Stride); + } + if (PaddingLow != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(PaddingLow); + } + if (PaddingHigh != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(PaddingHigh); + } + if (WindowDilation != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(WindowDilation); + } + if (BaseDilation != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(BaseDilation); + } + if (WindowReversal != false) { + size += 1 + 1; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(WindowDimension other) { + if (other == null) { + return; + } + if (other.Size != 0L) { + Size = other.Size; + } + if (other.Stride != 0L) { + Stride = other.Stride; + } + if (other.PaddingLow != 0L) { + PaddingLow = other.PaddingLow; + } + if (other.PaddingHigh != 0L) { + PaddingHigh = other.PaddingHigh; + } + if (other.WindowDilation != 0L) { + WindowDilation = other.WindowDilation; + } + if (other.BaseDilation != 0L) { + BaseDilation = other.BaseDilation; + } + if (other.WindowReversal != false) { + WindowReversal = other.WindowReversal; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Size = input.ReadInt64(); + break; + } + case 16: { + Stride = input.ReadInt64(); + break; + } + case 24: { + PaddingLow = input.ReadInt64(); + break; + } + case 32: { + PaddingHigh = input.ReadInt64(); + break; + } + case 40: { + WindowDilation = input.ReadInt64(); + break; + } + case 48: { + BaseDilation = input.ReadInt64(); + break; + } + case 56: { + WindowReversal = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Size = input.ReadInt64(); + break; + } + case 16: { + Stride = input.ReadInt64(); + break; + } + case 24: { + PaddingLow = input.ReadInt64(); + break; + } + case 32: { + PaddingHigh = input.ReadInt64(); + break; + } + case 40: { + WindowDilation = input.ReadInt64(); + break; + } + case 48: { + BaseDilation = input.ReadInt64(); + break; + } + case 56: { + WindowReversal = input.ReadBool(); + break; + } + } + } + } + #endif + + } + + /// + /// Describes the windowing in an operation such as convolution. + /// + /// The window is moved across a base area and for each position of the + /// window a computation is performed. The field below describes the + /// window and the movement of the window across a base area. + /// + public sealed partial class Window : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Window()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[15]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Window() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Window(Window other) : this() { + dimensions_ = other.dimensions_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public Window Clone() { + return new Window(this); + } + + /// Field number for the "dimensions" field. + public const int DimensionsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_dimensions_codec + = pb::FieldCodec.ForMessage(10, global::Xla.WindowDimension.Parser); + private readonly pbc::RepeatedField dimensions_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Dimensions { + get { return dimensions_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as Window); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(Window other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!dimensions_.Equals(other.dimensions_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= dimensions_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + dimensions_.WriteTo(output, _repeated_dimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + dimensions_.WriteTo(ref output, _repeated_dimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += dimensions_.CalculateSize(_repeated_dimensions_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(Window other) { + if (other == null) { + return; + } + dimensions_.Add(other.dimensions_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + dimensions_.AddEntriesFrom(input, _repeated_dimensions_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + dimensions_.AddEntriesFrom(ref input, _repeated_dimensions_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Describes the dimension numbers for a gather operation. + /// + /// See https://www.tensorflow.org/performance/xla/operation_semantics#gather for + /// more details. + /// + public sealed partial class GatherDimensionNumbers : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GatherDimensionNumbers()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[16]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GatherDimensionNumbers() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GatherDimensionNumbers(GatherDimensionNumbers other) : this() { + offsetDims_ = other.offsetDims_.Clone(); + collapsedSliceDims_ = other.collapsedSliceDims_.Clone(); + startIndexMap_ = other.startIndexMap_.Clone(); + indexVectorDim_ = other.indexVectorDim_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public GatherDimensionNumbers Clone() { + return new GatherDimensionNumbers(this); + } + + /// Field number for the "offset_dims" field. + public const int OffsetDimsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_offsetDims_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField offsetDims_ = new pbc::RepeatedField(); + /// + /// "Window indices" is a term for a set of indices that index into the + /// interior of a dynamic-slice from the input tensor, the starting indices for + /// which were computed from output_gather_dims (see the operation semantic for + /// how this is defined) and the start_indices tensor. + /// + /// The window indices for a specific output index Out is computed as: + /// + /// i = 0 + /// for (k : [0, input_tensor_shape.rank)) + /// window_indices[k] = + /// if k in collapsed_slice_dims + /// then 0 + /// else Out[offset_dims[i++]] + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField OffsetDims { + get { return offsetDims_; } + } + + /// Field number for the "collapsed_slice_dims" field. + public const int CollapsedSliceDimsFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_collapsedSliceDims_codec + = pb::FieldCodec.ForInt64(18); + private readonly pbc::RepeatedField collapsedSliceDims_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField CollapsedSliceDims { + get { return collapsedSliceDims_; } + } + + /// Field number for the "start_index_map" field. + public const int StartIndexMapFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_startIndexMap_codec + = pb::FieldCodec.ForInt64(26); + private readonly pbc::RepeatedField startIndexMap_ = new pbc::RepeatedField(); + /// + /// This is interpreted as a map from i to start_index_map[i]. It + /// transforms the gather index looked up from the start_indices tensor into + /// the starting index in the input space. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField StartIndexMap { + get { return startIndexMap_; } + } + + /// Field number for the "index_vector_dim" field. + public const int IndexVectorDimFieldNumber = 4; + private long indexVectorDim_; + /// + /// The dimension in the start_indices input that contains the starting + /// indices. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long IndexVectorDim { + get { return indexVectorDim_; } + set { + indexVectorDim_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as GatherDimensionNumbers); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(GatherDimensionNumbers other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!offsetDims_.Equals(other.offsetDims_)) return false; + if(!collapsedSliceDims_.Equals(other.collapsedSliceDims_)) return false; + if(!startIndexMap_.Equals(other.startIndexMap_)) return false; + if (IndexVectorDim != other.IndexVectorDim) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= offsetDims_.GetHashCode(); + hash ^= collapsedSliceDims_.GetHashCode(); + hash ^= startIndexMap_.GetHashCode(); + if (IndexVectorDim != 0L) hash ^= IndexVectorDim.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + offsetDims_.WriteTo(output, _repeated_offsetDims_codec); + collapsedSliceDims_.WriteTo(output, _repeated_collapsedSliceDims_codec); + startIndexMap_.WriteTo(output, _repeated_startIndexMap_codec); + if (IndexVectorDim != 0L) { + output.WriteRawTag(32); + output.WriteInt64(IndexVectorDim); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + offsetDims_.WriteTo(ref output, _repeated_offsetDims_codec); + collapsedSliceDims_.WriteTo(ref output, _repeated_collapsedSliceDims_codec); + startIndexMap_.WriteTo(ref output, _repeated_startIndexMap_codec); + if (IndexVectorDim != 0L) { + output.WriteRawTag(32); + output.WriteInt64(IndexVectorDim); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += offsetDims_.CalculateSize(_repeated_offsetDims_codec); + size += collapsedSliceDims_.CalculateSize(_repeated_collapsedSliceDims_codec); + size += startIndexMap_.CalculateSize(_repeated_startIndexMap_codec); + if (IndexVectorDim != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(IndexVectorDim); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(GatherDimensionNumbers other) { + if (other == null) { + return; + } + offsetDims_.Add(other.offsetDims_); + collapsedSliceDims_.Add(other.collapsedSliceDims_); + startIndexMap_.Add(other.startIndexMap_); + if (other.IndexVectorDim != 0L) { + IndexVectorDim = other.IndexVectorDim; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + offsetDims_.AddEntriesFrom(input, _repeated_offsetDims_codec); + break; + } + case 18: + case 16: { + collapsedSliceDims_.AddEntriesFrom(input, _repeated_collapsedSliceDims_codec); + break; + } + case 26: + case 24: { + startIndexMap_.AddEntriesFrom(input, _repeated_startIndexMap_codec); + break; + } + case 32: { + IndexVectorDim = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + offsetDims_.AddEntriesFrom(ref input, _repeated_offsetDims_codec); + break; + } + case 18: + case 16: { + collapsedSliceDims_.AddEntriesFrom(ref input, _repeated_collapsedSliceDims_codec); + break; + } + case 26: + case 24: { + startIndexMap_.AddEntriesFrom(ref input, _repeated_startIndexMap_codec); + break; + } + case 32: { + IndexVectorDim = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + /// + /// Describes the dimension numbers for a scatter operation. + /// + /// All the fields are similar to the corresponding fields in + /// GatherDimensionNumbers. Differences are noted below. + /// + public sealed partial class ScatterDimensionNumbers : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ScatterDimensionNumbers()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[17]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ScatterDimensionNumbers() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ScatterDimensionNumbers(ScatterDimensionNumbers other) : this() { + updateWindowDims_ = other.updateWindowDims_.Clone(); + insertedWindowDims_ = other.insertedWindowDims_.Clone(); + scatterDimsToOperandDims_ = other.scatterDimsToOperandDims_.Clone(); + indexVectorDim_ = other.indexVectorDim_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ScatterDimensionNumbers Clone() { + return new ScatterDimensionNumbers(this); + } + + /// Field number for the "update_window_dims" field. + public const int UpdateWindowDimsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_updateWindowDims_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField updateWindowDims_ = new pbc::RepeatedField(); + /// + /// The set of dimensions in the updates shape that are window dimensions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField UpdateWindowDims { + get { return updateWindowDims_; } + } + + /// Field number for the "inserted_window_dims" field. + public const int InsertedWindowDimsFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_insertedWindowDims_codec + = pb::FieldCodec.ForInt64(18); + private readonly pbc::RepeatedField insertedWindowDims_ = new pbc::RepeatedField(); + /// + /// The set of window dimensions that must be inserted into the updates shape. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField InsertedWindowDims { + get { return insertedWindowDims_; } + } + + /// Field number for the "scatter_dims_to_operand_dims" field. + public const int ScatterDimsToOperandDimsFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_scatterDimsToOperandDims_codec + = pb::FieldCodec.ForInt64(26); + private readonly pbc::RepeatedField scatterDimsToOperandDims_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ScatterDimsToOperandDims { + get { return scatterDimsToOperandDims_; } + } + + /// Field number for the "index_vector_dim" field. + public const int IndexVectorDimFieldNumber = 4; + private long indexVectorDim_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long IndexVectorDim { + get { return indexVectorDim_; } + set { + indexVectorDim_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ScatterDimensionNumbers); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ScatterDimensionNumbers other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!updateWindowDims_.Equals(other.updateWindowDims_)) return false; + if(!insertedWindowDims_.Equals(other.insertedWindowDims_)) return false; + if(!scatterDimsToOperandDims_.Equals(other.scatterDimsToOperandDims_)) return false; + if (IndexVectorDim != other.IndexVectorDim) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= updateWindowDims_.GetHashCode(); + hash ^= insertedWindowDims_.GetHashCode(); + hash ^= scatterDimsToOperandDims_.GetHashCode(); + if (IndexVectorDim != 0L) hash ^= IndexVectorDim.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + updateWindowDims_.WriteTo(output, _repeated_updateWindowDims_codec); + insertedWindowDims_.WriteTo(output, _repeated_insertedWindowDims_codec); + scatterDimsToOperandDims_.WriteTo(output, _repeated_scatterDimsToOperandDims_codec); + if (IndexVectorDim != 0L) { + output.WriteRawTag(32); + output.WriteInt64(IndexVectorDim); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + updateWindowDims_.WriteTo(ref output, _repeated_updateWindowDims_codec); + insertedWindowDims_.WriteTo(ref output, _repeated_insertedWindowDims_codec); + scatterDimsToOperandDims_.WriteTo(ref output, _repeated_scatterDimsToOperandDims_codec); + if (IndexVectorDim != 0L) { + output.WriteRawTag(32); + output.WriteInt64(IndexVectorDim); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += updateWindowDims_.CalculateSize(_repeated_updateWindowDims_codec); + size += insertedWindowDims_.CalculateSize(_repeated_insertedWindowDims_codec); + size += scatterDimsToOperandDims_.CalculateSize(_repeated_scatterDimsToOperandDims_codec); + if (IndexVectorDim != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(IndexVectorDim); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ScatterDimensionNumbers other) { + if (other == null) { + return; + } + updateWindowDims_.Add(other.updateWindowDims_); + insertedWindowDims_.Add(other.insertedWindowDims_); + scatterDimsToOperandDims_.Add(other.scatterDimsToOperandDims_); + if (other.IndexVectorDim != 0L) { + IndexVectorDim = other.IndexVectorDim; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + updateWindowDims_.AddEntriesFrom(input, _repeated_updateWindowDims_codec); + break; + } + case 18: + case 16: { + insertedWindowDims_.AddEntriesFrom(input, _repeated_insertedWindowDims_codec); + break; + } + case 26: + case 24: { + scatterDimsToOperandDims_.AddEntriesFrom(input, _repeated_scatterDimsToOperandDims_codec); + break; + } + case 32: { + IndexVectorDim = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + updateWindowDims_.AddEntriesFrom(ref input, _repeated_updateWindowDims_codec); + break; + } + case 18: + case 16: { + insertedWindowDims_.AddEntriesFrom(ref input, _repeated_insertedWindowDims_codec); + break; + } + case 26: + case 24: { + scatterDimsToOperandDims_.AddEntriesFrom(ref input, _repeated_scatterDimsToOperandDims_codec); + break; + } + case 32: { + IndexVectorDim = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + public sealed partial class ConvolutionDimensionNumbers : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ConvolutionDimensionNumbers()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[18]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ConvolutionDimensionNumbers() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ConvolutionDimensionNumbers(ConvolutionDimensionNumbers other) : this() { + inputBatchDimension_ = other.inputBatchDimension_; + inputFeatureDimension_ = other.inputFeatureDimension_; + inputSpatialDimensions_ = other.inputSpatialDimensions_.Clone(); + kernelInputFeatureDimension_ = other.kernelInputFeatureDimension_; + kernelOutputFeatureDimension_ = other.kernelOutputFeatureDimension_; + kernelSpatialDimensions_ = other.kernelSpatialDimensions_.Clone(); + outputBatchDimension_ = other.outputBatchDimension_; + outputFeatureDimension_ = other.outputFeatureDimension_; + outputSpatialDimensions_ = other.outputSpatialDimensions_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ConvolutionDimensionNumbers Clone() { + return new ConvolutionDimensionNumbers(this); + } + + /// Field number for the "input_batch_dimension" field. + public const int InputBatchDimensionFieldNumber = 7; + private long inputBatchDimension_; + /// + /// The number of the dimension that represents batch in the input. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long InputBatchDimension { + get { return inputBatchDimension_; } + set { + inputBatchDimension_ = value; + } + } + + /// Field number for the "input_feature_dimension" field. + public const int InputFeatureDimensionFieldNumber = 8; + private long inputFeatureDimension_; + /// + /// The number of the dimension that represents features in the input. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long InputFeatureDimension { + get { return inputFeatureDimension_; } + set { + inputFeatureDimension_ = value; + } + } + + /// Field number for the "input_spatial_dimensions" field. + public const int InputSpatialDimensionsFieldNumber = 11; + private static readonly pb::FieldCodec _repeated_inputSpatialDimensions_codec + = pb::FieldCodec.ForInt64(90); + private readonly pbc::RepeatedField inputSpatialDimensions_ = new pbc::RepeatedField(); + /// + /// The dimension numbers for the spatial dimensions that the window + /// moves through in the input. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField InputSpatialDimensions { + get { return inputSpatialDimensions_; } + } + + /// Field number for the "kernel_input_feature_dimension" field. + public const int KernelInputFeatureDimensionFieldNumber = 3; + private long kernelInputFeatureDimension_; + /// + /// The number of the dimension that represents input features in the + /// convolutional kernel (rhs). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long KernelInputFeatureDimension { + get { return kernelInputFeatureDimension_; } + set { + kernelInputFeatureDimension_ = value; + } + } + + /// Field number for the "kernel_output_feature_dimension" field. + public const int KernelOutputFeatureDimensionFieldNumber = 4; + private long kernelOutputFeatureDimension_; + /// + /// The number of the dimension that represents output features in + /// the convolutional kernel (rhs). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long KernelOutputFeatureDimension { + get { return kernelOutputFeatureDimension_; } + set { + kernelOutputFeatureDimension_ = value; + } + } + + /// Field number for the "kernel_spatial_dimensions" field. + public const int KernelSpatialDimensionsFieldNumber = 6; + private static readonly pb::FieldCodec _repeated_kernelSpatialDimensions_codec + = pb::FieldCodec.ForInt64(50); + private readonly pbc::RepeatedField kernelSpatialDimensions_ = new pbc::RepeatedField(); + /// + /// The dimension numbers for the spatial dimensions that the window + /// moves through in the kernel (rhs). window.strides(0) is the + /// stride in the kernel_spatial_dimensions(0) dimension. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField KernelSpatialDimensions { + get { return kernelSpatialDimensions_; } + } + + /// Field number for the "output_batch_dimension" field. + public const int OutputBatchDimensionFieldNumber = 9; + private long outputBatchDimension_; + /// + /// The number of the dimension that represents batch in the output. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long OutputBatchDimension { + get { return outputBatchDimension_; } + set { + outputBatchDimension_ = value; + } + } + + /// Field number for the "output_feature_dimension" field. + public const int OutputFeatureDimensionFieldNumber = 10; + private long outputFeatureDimension_; + /// + /// The number of the dimension that represents features in the output. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long OutputFeatureDimension { + get { return outputFeatureDimension_; } + set { + outputFeatureDimension_ = value; + } + } + + /// Field number for the "output_spatial_dimensions" field. + public const int OutputSpatialDimensionsFieldNumber = 12; + private static readonly pb::FieldCodec _repeated_outputSpatialDimensions_codec + = pb::FieldCodec.ForInt64(98); + private readonly pbc::RepeatedField outputSpatialDimensions_ = new pbc::RepeatedField(); + /// + /// The dimension numbers for the spatial dimensions that the window + /// moves through in the output. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField OutputSpatialDimensions { + get { return outputSpatialDimensions_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ConvolutionDimensionNumbers); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ConvolutionDimensionNumbers other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (InputBatchDimension != other.InputBatchDimension) return false; + if (InputFeatureDimension != other.InputFeatureDimension) return false; + if(!inputSpatialDimensions_.Equals(other.inputSpatialDimensions_)) return false; + if (KernelInputFeatureDimension != other.KernelInputFeatureDimension) return false; + if (KernelOutputFeatureDimension != other.KernelOutputFeatureDimension) return false; + if(!kernelSpatialDimensions_.Equals(other.kernelSpatialDimensions_)) return false; + if (OutputBatchDimension != other.OutputBatchDimension) return false; + if (OutputFeatureDimension != other.OutputFeatureDimension) return false; + if(!outputSpatialDimensions_.Equals(other.outputSpatialDimensions_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (InputBatchDimension != 0L) hash ^= InputBatchDimension.GetHashCode(); + if (InputFeatureDimension != 0L) hash ^= InputFeatureDimension.GetHashCode(); + hash ^= inputSpatialDimensions_.GetHashCode(); + if (KernelInputFeatureDimension != 0L) hash ^= KernelInputFeatureDimension.GetHashCode(); + if (KernelOutputFeatureDimension != 0L) hash ^= KernelOutputFeatureDimension.GetHashCode(); + hash ^= kernelSpatialDimensions_.GetHashCode(); + if (OutputBatchDimension != 0L) hash ^= OutputBatchDimension.GetHashCode(); + if (OutputFeatureDimension != 0L) hash ^= OutputFeatureDimension.GetHashCode(); + hash ^= outputSpatialDimensions_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (KernelInputFeatureDimension != 0L) { + output.WriteRawTag(24); + output.WriteInt64(KernelInputFeatureDimension); + } + if (KernelOutputFeatureDimension != 0L) { + output.WriteRawTag(32); + output.WriteInt64(KernelOutputFeatureDimension); + } + kernelSpatialDimensions_.WriteTo(output, _repeated_kernelSpatialDimensions_codec); + if (InputBatchDimension != 0L) { + output.WriteRawTag(56); + output.WriteInt64(InputBatchDimension); + } + if (InputFeatureDimension != 0L) { + output.WriteRawTag(64); + output.WriteInt64(InputFeatureDimension); + } + if (OutputBatchDimension != 0L) { + output.WriteRawTag(72); + output.WriteInt64(OutputBatchDimension); + } + if (OutputFeatureDimension != 0L) { + output.WriteRawTag(80); + output.WriteInt64(OutputFeatureDimension); + } + inputSpatialDimensions_.WriteTo(output, _repeated_inputSpatialDimensions_codec); + outputSpatialDimensions_.WriteTo(output, _repeated_outputSpatialDimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (KernelInputFeatureDimension != 0L) { + output.WriteRawTag(24); + output.WriteInt64(KernelInputFeatureDimension); + } + if (KernelOutputFeatureDimension != 0L) { + output.WriteRawTag(32); + output.WriteInt64(KernelOutputFeatureDimension); + } + kernelSpatialDimensions_.WriteTo(ref output, _repeated_kernelSpatialDimensions_codec); + if (InputBatchDimension != 0L) { + output.WriteRawTag(56); + output.WriteInt64(InputBatchDimension); + } + if (InputFeatureDimension != 0L) { + output.WriteRawTag(64); + output.WriteInt64(InputFeatureDimension); + } + if (OutputBatchDimension != 0L) { + output.WriteRawTag(72); + output.WriteInt64(OutputBatchDimension); + } + if (OutputFeatureDimension != 0L) { + output.WriteRawTag(80); + output.WriteInt64(OutputFeatureDimension); + } + inputSpatialDimensions_.WriteTo(ref output, _repeated_inputSpatialDimensions_codec); + outputSpatialDimensions_.WriteTo(ref output, _repeated_outputSpatialDimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (InputBatchDimension != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(InputBatchDimension); + } + if (InputFeatureDimension != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(InputFeatureDimension); + } + size += inputSpatialDimensions_.CalculateSize(_repeated_inputSpatialDimensions_codec); + if (KernelInputFeatureDimension != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(KernelInputFeatureDimension); + } + if (KernelOutputFeatureDimension != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(KernelOutputFeatureDimension); + } + size += kernelSpatialDimensions_.CalculateSize(_repeated_kernelSpatialDimensions_codec); + if (OutputBatchDimension != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(OutputBatchDimension); + } + if (OutputFeatureDimension != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(OutputFeatureDimension); + } + size += outputSpatialDimensions_.CalculateSize(_repeated_outputSpatialDimensions_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ConvolutionDimensionNumbers other) { + if (other == null) { + return; + } + if (other.InputBatchDimension != 0L) { + InputBatchDimension = other.InputBatchDimension; + } + if (other.InputFeatureDimension != 0L) { + InputFeatureDimension = other.InputFeatureDimension; + } + inputSpatialDimensions_.Add(other.inputSpatialDimensions_); + if (other.KernelInputFeatureDimension != 0L) { + KernelInputFeatureDimension = other.KernelInputFeatureDimension; + } + if (other.KernelOutputFeatureDimension != 0L) { + KernelOutputFeatureDimension = other.KernelOutputFeatureDimension; + } + kernelSpatialDimensions_.Add(other.kernelSpatialDimensions_); + if (other.OutputBatchDimension != 0L) { + OutputBatchDimension = other.OutputBatchDimension; + } + if (other.OutputFeatureDimension != 0L) { + OutputFeatureDimension = other.OutputFeatureDimension; + } + outputSpatialDimensions_.Add(other.outputSpatialDimensions_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 24: { + KernelInputFeatureDimension = input.ReadInt64(); + break; + } + case 32: { + KernelOutputFeatureDimension = input.ReadInt64(); + break; + } + case 50: + case 48: { + kernelSpatialDimensions_.AddEntriesFrom(input, _repeated_kernelSpatialDimensions_codec); + break; + } + case 56: { + InputBatchDimension = input.ReadInt64(); + break; + } + case 64: { + InputFeatureDimension = input.ReadInt64(); + break; + } + case 72: { + OutputBatchDimension = input.ReadInt64(); + break; + } + case 80: { + OutputFeatureDimension = input.ReadInt64(); + break; + } + case 90: + case 88: { + inputSpatialDimensions_.AddEntriesFrom(input, _repeated_inputSpatialDimensions_codec); + break; + } + case 98: + case 96: { + outputSpatialDimensions_.AddEntriesFrom(input, _repeated_outputSpatialDimensions_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 24: { + KernelInputFeatureDimension = input.ReadInt64(); + break; + } + case 32: { + KernelOutputFeatureDimension = input.ReadInt64(); + break; + } + case 50: + case 48: { + kernelSpatialDimensions_.AddEntriesFrom(ref input, _repeated_kernelSpatialDimensions_codec); + break; + } + case 56: { + InputBatchDimension = input.ReadInt64(); + break; + } + case 64: { + InputFeatureDimension = input.ReadInt64(); + break; + } + case 72: { + OutputBatchDimension = input.ReadInt64(); + break; + } + case 80: { + OutputFeatureDimension = input.ReadInt64(); + break; + } + case 90: + case 88: { + inputSpatialDimensions_.AddEntriesFrom(ref input, _repeated_inputSpatialDimensions_codec); + break; + } + case 98: + case 96: { + outputSpatialDimensions_.AddEntriesFrom(ref input, _repeated_outputSpatialDimensions_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class DotDimensionNumbers : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new DotDimensionNumbers()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[19]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DotDimensionNumbers() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DotDimensionNumbers(DotDimensionNumbers other) : this() { + lhsContractingDimensions_ = other.lhsContractingDimensions_.Clone(); + rhsContractingDimensions_ = other.rhsContractingDimensions_.Clone(); + lhsBatchDimensions_ = other.lhsBatchDimensions_.Clone(); + rhsBatchDimensions_ = other.rhsBatchDimensions_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public DotDimensionNumbers Clone() { + return new DotDimensionNumbers(this); + } + + /// Field number for the "lhs_contracting_dimensions" field. + public const int LhsContractingDimensionsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_lhsContractingDimensions_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField lhsContractingDimensions_ = new pbc::RepeatedField(); + /// + /// The dimension numbers that represent the 'lhs' contracting dimensions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField LhsContractingDimensions { + get { return lhsContractingDimensions_; } + } + + /// Field number for the "rhs_contracting_dimensions" field. + public const int RhsContractingDimensionsFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_rhsContractingDimensions_codec + = pb::FieldCodec.ForInt64(18); + private readonly pbc::RepeatedField rhsContractingDimensions_ = new pbc::RepeatedField(); + /// + /// The dimension numbers that represent the 'rhs' contracting dimensions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField RhsContractingDimensions { + get { return rhsContractingDimensions_; } + } + + /// Field number for the "lhs_batch_dimensions" field. + public const int LhsBatchDimensionsFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_lhsBatchDimensions_codec + = pb::FieldCodec.ForInt64(26); + private readonly pbc::RepeatedField lhsBatchDimensions_ = new pbc::RepeatedField(); + /// + /// The dimension numbers that represent the 'lhs' batch dimensions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField LhsBatchDimensions { + get { return lhsBatchDimensions_; } + } + + /// Field number for the "rhs_batch_dimensions" field. + public const int RhsBatchDimensionsFieldNumber = 4; + private static readonly pb::FieldCodec _repeated_rhsBatchDimensions_codec + = pb::FieldCodec.ForInt64(34); + private readonly pbc::RepeatedField rhsBatchDimensions_ = new pbc::RepeatedField(); + /// + /// The dimension numbers that represent the 'rhs' batch dimensions. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField RhsBatchDimensions { + get { return rhsBatchDimensions_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as DotDimensionNumbers); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(DotDimensionNumbers other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!lhsContractingDimensions_.Equals(other.lhsContractingDimensions_)) return false; + if(!rhsContractingDimensions_.Equals(other.rhsContractingDimensions_)) return false; + if(!lhsBatchDimensions_.Equals(other.lhsBatchDimensions_)) return false; + if(!rhsBatchDimensions_.Equals(other.rhsBatchDimensions_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= lhsContractingDimensions_.GetHashCode(); + hash ^= rhsContractingDimensions_.GetHashCode(); + hash ^= lhsBatchDimensions_.GetHashCode(); + hash ^= rhsBatchDimensions_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + lhsContractingDimensions_.WriteTo(output, _repeated_lhsContractingDimensions_codec); + rhsContractingDimensions_.WriteTo(output, _repeated_rhsContractingDimensions_codec); + lhsBatchDimensions_.WriteTo(output, _repeated_lhsBatchDimensions_codec); + rhsBatchDimensions_.WriteTo(output, _repeated_rhsBatchDimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + lhsContractingDimensions_.WriteTo(ref output, _repeated_lhsContractingDimensions_codec); + rhsContractingDimensions_.WriteTo(ref output, _repeated_rhsContractingDimensions_codec); + lhsBatchDimensions_.WriteTo(ref output, _repeated_lhsBatchDimensions_codec); + rhsBatchDimensions_.WriteTo(ref output, _repeated_rhsBatchDimensions_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += lhsContractingDimensions_.CalculateSize(_repeated_lhsContractingDimensions_codec); + size += rhsContractingDimensions_.CalculateSize(_repeated_rhsContractingDimensions_codec); + size += lhsBatchDimensions_.CalculateSize(_repeated_lhsBatchDimensions_codec); + size += rhsBatchDimensions_.CalculateSize(_repeated_rhsBatchDimensions_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(DotDimensionNumbers other) { + if (other == null) { + return; + } + lhsContractingDimensions_.Add(other.lhsContractingDimensions_); + rhsContractingDimensions_.Add(other.rhsContractingDimensions_); + lhsBatchDimensions_.Add(other.lhsBatchDimensions_); + rhsBatchDimensions_.Add(other.rhsBatchDimensions_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + lhsContractingDimensions_.AddEntriesFrom(input, _repeated_lhsContractingDimensions_codec); + break; + } + case 18: + case 16: { + rhsContractingDimensions_.AddEntriesFrom(input, _repeated_rhsContractingDimensions_codec); + break; + } + case 26: + case 24: { + lhsBatchDimensions_.AddEntriesFrom(input, _repeated_lhsBatchDimensions_codec); + break; + } + case 34: + case 32: { + rhsBatchDimensions_.AddEntriesFrom(input, _repeated_rhsBatchDimensions_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + lhsContractingDimensions_.AddEntriesFrom(ref input, _repeated_lhsContractingDimensions_codec); + break; + } + case 18: + case 16: { + rhsContractingDimensions_.AddEntriesFrom(ref input, _repeated_rhsContractingDimensions_codec); + break; + } + case 26: + case 24: { + lhsBatchDimensions_.AddEntriesFrom(ref input, _repeated_lhsBatchDimensions_codec); + break; + } + case 34: + case 32: { + rhsBatchDimensions_.AddEntriesFrom(ref input, _repeated_rhsBatchDimensions_codec); + break; + } + } + } + } + #endif + + } + + public sealed partial class TriangularSolveOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TriangularSolveOptions()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[20]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TriangularSolveOptions() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TriangularSolveOptions(TriangularSolveOptions other) : this() { + leftSide_ = other.leftSide_; + lower_ = other.lower_; + unitDiagonal_ = other.unitDiagonal_; + transposeA_ = other.transposeA_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public TriangularSolveOptions Clone() { + return new TriangularSolveOptions(this); + } + + /// Field number for the "left_side" field. + public const int LeftSideFieldNumber = 1; + private bool leftSide_; + /// + /// If true, solves ax = b. If false, solves xa = b. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool LeftSide { + get { return leftSide_; } + set { + leftSide_ = value; + } + } + + /// Field number for the "lower" field. + public const int LowerFieldNumber = 2; + private bool lower_; + /// + /// If true, 'a' is lower triangular. If false, 'a' is upper triangular. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Lower { + get { return lower_; } + set { + lower_ = value; + } + } + + /// Field number for the "unit_diagonal" field. + public const int UnitDiagonalFieldNumber = 3; + private bool unitDiagonal_; + /// + /// If true, the diagonal elements of 'a' are assumed to be 1 and not accessed. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool UnitDiagonal { + get { return unitDiagonal_; } + set { + unitDiagonal_ = value; + } + } + + /// Field number for the "transpose_a" field. + public const int TransposeAFieldNumber = 4; + private global::Xla.TriangularSolveOptions.Types.Transpose transposeA_ = global::Xla.TriangularSolveOptions.Types.Transpose.Invalid; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.TriangularSolveOptions.Types.Transpose TransposeA { + get { return transposeA_; } + set { + transposeA_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as TriangularSolveOptions); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(TriangularSolveOptions other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (LeftSide != other.LeftSide) return false; + if (Lower != other.Lower) return false; + if (UnitDiagonal != other.UnitDiagonal) return false; + if (TransposeA != other.TransposeA) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (LeftSide != false) hash ^= LeftSide.GetHashCode(); + if (Lower != false) hash ^= Lower.GetHashCode(); + if (UnitDiagonal != false) hash ^= UnitDiagonal.GetHashCode(); + if (TransposeA != global::Xla.TriangularSolveOptions.Types.Transpose.Invalid) hash ^= TransposeA.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (LeftSide != false) { + output.WriteRawTag(8); + output.WriteBool(LeftSide); + } + if (Lower != false) { + output.WriteRawTag(16); + output.WriteBool(Lower); + } + if (UnitDiagonal != false) { + output.WriteRawTag(24); + output.WriteBool(UnitDiagonal); + } + if (TransposeA != global::Xla.TriangularSolveOptions.Types.Transpose.Invalid) { + output.WriteRawTag(32); + output.WriteEnum((int) TransposeA); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (LeftSide != false) { + output.WriteRawTag(8); + output.WriteBool(LeftSide); + } + if (Lower != false) { + output.WriteRawTag(16); + output.WriteBool(Lower); + } + if (UnitDiagonal != false) { + output.WriteRawTag(24); + output.WriteBool(UnitDiagonal); + } + if (TransposeA != global::Xla.TriangularSolveOptions.Types.Transpose.Invalid) { + output.WriteRawTag(32); + output.WriteEnum((int) TransposeA); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (LeftSide != false) { + size += 1 + 1; + } + if (Lower != false) { + size += 1 + 1; + } + if (UnitDiagonal != false) { + size += 1 + 1; + } + if (TransposeA != global::Xla.TriangularSolveOptions.Types.Transpose.Invalid) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) TransposeA); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(TriangularSolveOptions other) { + if (other == null) { + return; + } + if (other.LeftSide != false) { + LeftSide = other.LeftSide; + } + if (other.Lower != false) { + Lower = other.Lower; + } + if (other.UnitDiagonal != false) { + UnitDiagonal = other.UnitDiagonal; + } + if (other.TransposeA != global::Xla.TriangularSolveOptions.Types.Transpose.Invalid) { + TransposeA = other.TransposeA; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + LeftSide = input.ReadBool(); + break; + } + case 16: { + Lower = input.ReadBool(); + break; + } + case 24: { + UnitDiagonal = input.ReadBool(); + break; + } + case 32: { + TransposeA = (global::Xla.TriangularSolveOptions.Types.Transpose) input.ReadEnum(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + LeftSide = input.ReadBool(); + break; + } + case 16: { + Lower = input.ReadBool(); + break; + } + case 24: { + UnitDiagonal = input.ReadBool(); + break; + } + case 32: { + TransposeA = (global::Xla.TriangularSolveOptions.Types.Transpose) input.ReadEnum(); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the TriangularSolveOptions message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + /// + /// Should we transpose or use the adjoint of 'a'? + /// + public enum Transpose { + [pbr::OriginalName("TRANSPOSE_INVALID")] Invalid = 0, + /// + /// Don't transpose 'a'. + /// + [pbr::OriginalName("NO_TRANSPOSE")] NoTranspose = 1, + /// + /// Transpose 'a'. + /// + [pbr::OriginalName("TRANSPOSE")] Transpose = 2, + /// + /// Complex conjugate and transpose 'a'. + /// + [pbr::OriginalName("ADJOINT")] Adjoint = 3, + } + + } + #endregion + + } + + public sealed partial class CholeskyOptions : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CholeskyOptions()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[21]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CholeskyOptions() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CholeskyOptions(CholeskyOptions other) : this() { + lower_ = other.lower_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CholeskyOptions Clone() { + return new CholeskyOptions(this); + } + + /// Field number for the "lower" field. + public const int LowerFieldNumber = 1; + private bool lower_; + /// + /// If true, uses the lower triangle of `a`. If false, uses the upper triangle + /// of `a`. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Lower { + get { return lower_; } + set { + lower_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CholeskyOptions); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CholeskyOptions other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Lower != other.Lower) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Lower != false) hash ^= Lower.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Lower != false) { + output.WriteRawTag(8); + output.WriteBool(Lower); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Lower != false) { + output.WriteRawTag(8); + output.WriteBool(Lower); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Lower != false) { + size += 1 + 1; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CholeskyOptions other) { + if (other == null) { + return; + } + if (other.Lower != false) { + Lower = other.Lower; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Lower = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Lower = input.ReadBool(); + break; + } + } + } + } + #endif + + } + + /// + /// Generic map of attributes used to pass hints / configuration options from + /// the Python frontend to the XLA backend. + /// + public sealed partial class FrontendAttributes : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new FrontendAttributes()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[22]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public FrontendAttributes() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public FrontendAttributes(FrontendAttributes other) : this() { + map_ = other.map_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public FrontendAttributes Clone() { + return new FrontendAttributes(this); + } + + /// Field number for the "map" field. + public const int MapFieldNumber = 1; + private static readonly pbc::MapField.Codec _map_map_codec + = new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForString(18, ""), 10); + private readonly pbc::MapField map_ = new pbc::MapField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::MapField Map { + get { return map_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as FrontendAttributes); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(FrontendAttributes other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!Map.Equals(other.Map)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= Map.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + map_.WriteTo(output, _map_map_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + map_.WriteTo(ref output, _map_map_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += map_.CalculateSize(_map_map_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(FrontendAttributes other) { + if (other == null) { + return; + } + map_.Add(other.map_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + map_.AddEntriesFrom(input, _map_map_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + map_.AddEntriesFrom(ref input, _map_map_codec); + break; + } + } + } + } + #endif + + } + + /// + /// LINT.IfChange + /// + public sealed partial class OpSharding : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new OpSharding()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[23]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public OpSharding() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public OpSharding(OpSharding other) : this() { + type_ = other.type_; + tileShape_ = other.tileShape_ != null ? other.tileShape_.Clone() : null; + tileAssignmentDimensions_ = other.tileAssignmentDimensions_.Clone(); + tileAssignmentDevices_ = other.tileAssignmentDevices_.Clone(); + tupleShardings_ = other.tupleShardings_.Clone(); + replicateOnLastTileDim_ = other.replicateOnLastTileDim_; + metadata_ = other.metadata_.Clone(); + lastTileDims_ = other.lastTileDims_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public OpSharding Clone() { + return new OpSharding(this); + } + + /// Field number for the "type" field. + public const int TypeFieldNumber = 1; + private global::Xla.OpSharding.Types.Type type_ = global::Xla.OpSharding.Types.Type.Replicated; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.OpSharding.Types.Type Type { + get { return type_; } + set { + type_ = value; + } + } + + /// Field number for the "tile_shape" field. + public const int TileShapeFieldNumber = 2; + private global::Xla.ShapeProto tileShape_; + /// + /// The shape of the sharded tile. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.ShapeProto TileShape { + get { return tileShape_; } + set { + tileShape_ = value; + } + } + + /// Field number for the "tile_assignment_dimensions" field. + public const int TileAssignmentDimensionsFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_tileAssignmentDimensions_codec + = pb::FieldCodec.ForInt64(26); + private readonly pbc::RepeatedField tileAssignmentDimensions_ = new pbc::RepeatedField(); + /// + /// The shape of the tile assignment tensor - this must be the same rank as + /// tile_shape and the product of its dimensions must equal + /// tile_assignment_devices.size(). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField TileAssignmentDimensions { + get { return tileAssignmentDimensions_; } + } + + /// Field number for the "tile_assignment_devices" field. + public const int TileAssignmentDevicesFieldNumber = 4; + private static readonly pb::FieldCodec _repeated_tileAssignmentDevices_codec + = pb::FieldCodec.ForInt64(34); + private readonly pbc::RepeatedField tileAssignmentDevices_ = new pbc::RepeatedField(); + /// + /// Flattened list of device IDs. The order of flattening is the same as used + /// by IndexUtil::MultiToLinearIndex(tile_assignment_shape). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField TileAssignmentDevices { + get { return tileAssignmentDevices_; } + } + + /// Field number for the "tuple_shardings" field. + public const int TupleShardingsFieldNumber = 5; + private static readonly pb::FieldCodec _repeated_tupleShardings_codec + = pb::FieldCodec.ForMessage(42, global::Xla.OpSharding.Parser); + private readonly pbc::RepeatedField tupleShardings_ = new pbc::RepeatedField(); + /// + /// If type == TUPLE, the sub-shardings, one per leaf node in the tuple shape, + /// in pre-order. The tuple shape could be nested; here we store just a + /// flattened list of all leaves in the tuple shape. Note that the tuple shape + /// is not stored here; shardings do not store the shapes to which they are + /// applied, this is inferred from the instruction this sharding gets attached + /// to. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField TupleShardings { + get { return tupleShardings_; } + } + + /// Field number for the "replicate_on_last_tile_dim" field. + public const int ReplicateOnLastTileDimFieldNumber = 6; + private bool replicateOnLastTileDim_; + /// + /// Only used for OTHER type. If true, data is sharded according to other + /// dimensions of tile_assignment(), but replicated across devices along the + /// last dimension. (Experimental) + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool ReplicateOnLastTileDim { + get { return replicateOnLastTileDim_; } + set { + replicateOnLastTileDim_ = value; + } + } + + /// Field number for the "metadata" field. + public const int MetadataFieldNumber = 7; + private static readonly pb::FieldCodec _repeated_metadata_codec + = pb::FieldCodec.ForMessage(58, global::Xla.OpMetadata.Parser); + private readonly pbc::RepeatedField metadata_ = new pbc::RepeatedField(); + /// + /// This field is used to track the source of this sharding, usually derived + /// from instructions. Multple metadata may be populated if sharding is + /// combined with other shardings. Metadata are to not be populated when + /// type == TUPLE and instead metadata should be set on individual tuple + /// elements. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Metadata { + get { return metadata_; } + } + + /// Field number for the "last_tile_dims" field. + public const int LastTileDimsFieldNumber = 8; + private static readonly pb::FieldCodec _repeated_lastTileDims_codec + = pb::FieldCodec.ForEnum(66, x => (int) x, x => (global::Xla.OpSharding.Types.Type) x); + private readonly pbc::RepeatedField lastTileDims_ = new pbc::RepeatedField(); + /// + /// This field is used to represented the sharding type of each subgroup. + /// For example, sharding={devices=[2,2,2,2]0,1,2,...,15 last_tile_dims={ + /// replicate, manual, unreduced}} means that each of the last 3 dimensions + /// in [2,2,2,2] represents a subgrouping in replicate, manual, + /// unreduced sharding type respectively. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField LastTileDims { + get { return lastTileDims_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as OpSharding); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(OpSharding other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Type != other.Type) return false; + if (!object.Equals(TileShape, other.TileShape)) return false; + if(!tileAssignmentDimensions_.Equals(other.tileAssignmentDimensions_)) return false; + if(!tileAssignmentDevices_.Equals(other.tileAssignmentDevices_)) return false; + if(!tupleShardings_.Equals(other.tupleShardings_)) return false; + if (ReplicateOnLastTileDim != other.ReplicateOnLastTileDim) return false; + if(!metadata_.Equals(other.metadata_)) return false; + if(!lastTileDims_.Equals(other.lastTileDims_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Type != global::Xla.OpSharding.Types.Type.Replicated) hash ^= Type.GetHashCode(); + if (tileShape_ != null) hash ^= TileShape.GetHashCode(); + hash ^= tileAssignmentDimensions_.GetHashCode(); + hash ^= tileAssignmentDevices_.GetHashCode(); + hash ^= tupleShardings_.GetHashCode(); + if (ReplicateOnLastTileDim != false) hash ^= ReplicateOnLastTileDim.GetHashCode(); + hash ^= metadata_.GetHashCode(); + hash ^= lastTileDims_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Type != global::Xla.OpSharding.Types.Type.Replicated) { + output.WriteRawTag(8); + output.WriteEnum((int) Type); + } + if (tileShape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(TileShape); + } + tileAssignmentDimensions_.WriteTo(output, _repeated_tileAssignmentDimensions_codec); + tileAssignmentDevices_.WriteTo(output, _repeated_tileAssignmentDevices_codec); + tupleShardings_.WriteTo(output, _repeated_tupleShardings_codec); + if (ReplicateOnLastTileDim != false) { + output.WriteRawTag(48); + output.WriteBool(ReplicateOnLastTileDim); + } + metadata_.WriteTo(output, _repeated_metadata_codec); + lastTileDims_.WriteTo(output, _repeated_lastTileDims_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Type != global::Xla.OpSharding.Types.Type.Replicated) { + output.WriteRawTag(8); + output.WriteEnum((int) Type); + } + if (tileShape_ != null) { + output.WriteRawTag(18); + output.WriteMessage(TileShape); + } + tileAssignmentDimensions_.WriteTo(ref output, _repeated_tileAssignmentDimensions_codec); + tileAssignmentDevices_.WriteTo(ref output, _repeated_tileAssignmentDevices_codec); + tupleShardings_.WriteTo(ref output, _repeated_tupleShardings_codec); + if (ReplicateOnLastTileDim != false) { + output.WriteRawTag(48); + output.WriteBool(ReplicateOnLastTileDim); + } + metadata_.WriteTo(ref output, _repeated_metadata_codec); + lastTileDims_.WriteTo(ref output, _repeated_lastTileDims_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Type != global::Xla.OpSharding.Types.Type.Replicated) { + size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) Type); + } + if (tileShape_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(TileShape); + } + size += tileAssignmentDimensions_.CalculateSize(_repeated_tileAssignmentDimensions_codec); + size += tileAssignmentDevices_.CalculateSize(_repeated_tileAssignmentDevices_codec); + size += tupleShardings_.CalculateSize(_repeated_tupleShardings_codec); + if (ReplicateOnLastTileDim != false) { + size += 1 + 1; + } + size += metadata_.CalculateSize(_repeated_metadata_codec); + size += lastTileDims_.CalculateSize(_repeated_lastTileDims_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(OpSharding other) { + if (other == null) { + return; + } + if (other.Type != global::Xla.OpSharding.Types.Type.Replicated) { + Type = other.Type; + } + if (other.tileShape_ != null) { + if (tileShape_ == null) { + TileShape = new global::Xla.ShapeProto(); + } + TileShape.MergeFrom(other.TileShape); + } + tileAssignmentDimensions_.Add(other.tileAssignmentDimensions_); + tileAssignmentDevices_.Add(other.tileAssignmentDevices_); + tupleShardings_.Add(other.tupleShardings_); + if (other.ReplicateOnLastTileDim != false) { + ReplicateOnLastTileDim = other.ReplicateOnLastTileDim; + } + metadata_.Add(other.metadata_); + lastTileDims_.Add(other.lastTileDims_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Type = (global::Xla.OpSharding.Types.Type) input.ReadEnum(); + break; + } + case 18: { + if (tileShape_ == null) { + TileShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(TileShape); + break; + } + case 26: + case 24: { + tileAssignmentDimensions_.AddEntriesFrom(input, _repeated_tileAssignmentDimensions_codec); + break; + } + case 34: + case 32: { + tileAssignmentDevices_.AddEntriesFrom(input, _repeated_tileAssignmentDevices_codec); + break; + } + case 42: { + tupleShardings_.AddEntriesFrom(input, _repeated_tupleShardings_codec); + break; + } + case 48: { + ReplicateOnLastTileDim = input.ReadBool(); + break; + } + case 58: { + metadata_.AddEntriesFrom(input, _repeated_metadata_codec); + break; + } + case 66: + case 64: { + lastTileDims_.AddEntriesFrom(input, _repeated_lastTileDims_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Type = (global::Xla.OpSharding.Types.Type) input.ReadEnum(); + break; + } + case 18: { + if (tileShape_ == null) { + TileShape = new global::Xla.ShapeProto(); + } + input.ReadMessage(TileShape); + break; + } + case 26: + case 24: { + tileAssignmentDimensions_.AddEntriesFrom(ref input, _repeated_tileAssignmentDimensions_codec); + break; + } + case 34: + case 32: { + tileAssignmentDevices_.AddEntriesFrom(ref input, _repeated_tileAssignmentDevices_codec); + break; + } + case 42: { + tupleShardings_.AddEntriesFrom(ref input, _repeated_tupleShardings_codec); + break; + } + case 48: { + ReplicateOnLastTileDim = input.ReadBool(); + break; + } + case 58: { + metadata_.AddEntriesFrom(ref input, _repeated_metadata_codec); + break; + } + case 66: + case 64: { + lastTileDims_.AddEntriesFrom(ref input, _repeated_lastTileDims_codec); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the OpSharding message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + public enum Type { + /// + /// This sharding is replicated across all devices (implies maximal, + /// all other fields are unused). + /// + [pbr::OriginalName("REPLICATED")] Replicated = 0, + /// + /// This sharding is maximal - one device runs the entire operation. + /// + [pbr::OriginalName("MAXIMAL")] Maximal = 1, + /// + /// This sharding is a tuple - only the tuple_shardings field is valid. + /// + [pbr::OriginalName("TUPLE")] Tuple = 2, + /// + /// None of the above; tile_shape and tile_assignment are both used. + /// + [pbr::OriginalName("OTHER")] Other = 3, + /// + /// This op is manually sharded: the shapes are already partitioned and the + /// partitioner should not change this op. + /// + [pbr::OriginalName("MANUAL")] Manual = 4, + } + + } + #endregion + + } + + /// + /// Describes the replica groups in a cross replica op (e.g., all-reduce and + /// all-to-all). + /// + public sealed partial class ReplicaGroup : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ReplicaGroup()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[24]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReplicaGroup() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReplicaGroup(ReplicaGroup other) : this() { + replicaIds_ = other.replicaIds_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ReplicaGroup Clone() { + return new ReplicaGroup(this); + } + + /// Field number for the "replica_ids" field. + public const int ReplicaIdsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_replicaIds_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField replicaIds_ = new pbc::RepeatedField(); + /// + /// The ids of the replicas that belongs to the same group. The ordering of the + /// ids matters in some ops (e.g., all-to-all). + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ReplicaIds { + get { return replicaIds_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ReplicaGroup); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ReplicaGroup other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!replicaIds_.Equals(other.replicaIds_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= replicaIds_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + replicaIds_.WriteTo(output, _repeated_replicaIds_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + replicaIds_.WriteTo(ref output, _repeated_replicaIds_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += replicaIds_.CalculateSize(_repeated_replicaIds_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ReplicaGroup other) { + if (other == null) { + return; + } + replicaIds_.Add(other.replicaIds_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + replicaIds_.AddEntriesFrom(input, _repeated_replicaIds_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + replicaIds_.AddEntriesFrom(ref input, _repeated_replicaIds_codec); + break; + } + } + } + } + #endif + + } + + /// + /// Describes the source target pair in the collective permute op. + /// + public sealed partial class SourceTarget : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SourceTarget()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[25]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public SourceTarget() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public SourceTarget(SourceTarget other) : this() { + source_ = other.source_; + target_ = other.target_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public SourceTarget Clone() { + return new SourceTarget(this); + } + + /// Field number for the "source" field. + public const int SourceFieldNumber = 1; + private long source_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Source { + get { return source_; } + set { + source_ = value; + } + } + + /// Field number for the "target" field. + public const int TargetFieldNumber = 2; + private long target_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Target { + get { return target_; } + set { + target_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as SourceTarget); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(SourceTarget other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (Source != other.Source) return false; + if (Target != other.Target) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (Source != 0L) hash ^= Source.GetHashCode(); + if (Target != 0L) hash ^= Target.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (Source != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Source); + } + if (Target != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Target); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (Source != 0L) { + output.WriteRawTag(8); + output.WriteInt64(Source); + } + if (Target != 0L) { + output.WriteRawTag(16); + output.WriteInt64(Target); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (Source != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Source); + } + if (Target != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Target); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(SourceTarget other) { + if (other == null) { + return; + } + if (other.Source != 0L) { + Source = other.Source; + } + if (other.Target != 0L) { + Target = other.Target; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + Source = input.ReadInt64(); + break; + } + case 16: { + Target = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + Source = input.ReadInt64(); + break; + } + case 16: { + Target = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + /// + /// Used to indicate the precision configuration. It has backend specific + /// meaning. + /// + public sealed partial class PrecisionConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new PrecisionConfig()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[26]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public PrecisionConfig() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public PrecisionConfig(PrecisionConfig other) : this() { + operandPrecision_ = other.operandPrecision_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public PrecisionConfig Clone() { + return new PrecisionConfig(this); + } + + /// Field number for the "operand_precision" field. + public const int OperandPrecisionFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_operandPrecision_codec + = pb::FieldCodec.ForEnum(10, x => (int) x, x => (global::Xla.PrecisionConfig.Types.Precision) x); + private readonly pbc::RepeatedField operandPrecision_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField OperandPrecision { + get { return operandPrecision_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as PrecisionConfig); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(PrecisionConfig other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!operandPrecision_.Equals(other.operandPrecision_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= operandPrecision_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + operandPrecision_.WriteTo(output, _repeated_operandPrecision_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + operandPrecision_.WriteTo(ref output, _repeated_operandPrecision_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += operandPrecision_.CalculateSize(_repeated_operandPrecision_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(PrecisionConfig other) { + if (other == null) { + return; + } + operandPrecision_.Add(other.operandPrecision_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + operandPrecision_.AddEntriesFrom(input, _repeated_operandPrecision_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + operandPrecision_.AddEntriesFrom(ref input, _repeated_operandPrecision_codec); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the PrecisionConfig message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + public enum Precision { + [pbr::OriginalName("DEFAULT")] Default = 0, + [pbr::OriginalName("HIGH")] High = 1, + [pbr::OriginalName("HIGHEST")] Highest = 2, + /// + /// Each U8/S8 value in a tensor actually represents 2 nibble values. + /// + [pbr::OriginalName("PACKED_NIBBLE")] PackedNibble = 3, + } + + } + #endregion + + } + + /// + /// Describes whether all data-parallelism replicas will receive the same + /// parameter data at each buffer. + /// + public sealed partial class ParameterReplication : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ParameterReplication()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[27]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ParameterReplication() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ParameterReplication(ParameterReplication other) : this() { + replicatedAtLeafBuffers_ = other.replicatedAtLeafBuffers_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public ParameterReplication Clone() { + return new ParameterReplication(this); + } + + /// Field number for the "replicated_at_leaf_buffers" field. + public const int ReplicatedAtLeafBuffersFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_replicatedAtLeafBuffers_codec + = pb::FieldCodec.ForBool(10); + private readonly pbc::RepeatedField replicatedAtLeafBuffers_ = new pbc::RepeatedField(); + /// + /// A list of boolean values for the flattened leaf buffers. Each value + /// indicates whether the corresponding leaf buffer is replicated. + /// + /// If this field is empty, it means no buffer is replicated. Otherwise, the + /// number of elements in this field must match the number of leaf buffers in + /// the HLO instruction's shape. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField ReplicatedAtLeafBuffers { + get { return replicatedAtLeafBuffers_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as ParameterReplication); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(ParameterReplication other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!replicatedAtLeafBuffers_.Equals(other.replicatedAtLeafBuffers_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= replicatedAtLeafBuffers_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + replicatedAtLeafBuffers_.WriteTo(output, _repeated_replicatedAtLeafBuffers_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + replicatedAtLeafBuffers_.WriteTo(ref output, _repeated_replicatedAtLeafBuffers_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += replicatedAtLeafBuffers_.CalculateSize(_repeated_replicatedAtLeafBuffers_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(ParameterReplication other) { + if (other == null) { + return; + } + replicatedAtLeafBuffers_.Add(other.replicatedAtLeafBuffers_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + replicatedAtLeafBuffers_.AddEntriesFrom(input, _repeated_replicatedAtLeafBuffers_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + replicatedAtLeafBuffers_.AddEntriesFrom(ref input, _repeated_replicatedAtLeafBuffers_codec); + break; + } + } + } + } + #endif + + } + + /// + /// A backend-config for kWhile loops that stores the loop's trip count, if it is + /// known. + /// + /// This is useful for backends that can implement a `for i in 0..N` loop more + /// efficiently than a `while` loop. For example, on GPUs, we can implement a + /// `for i in 0..N` loop by enqueueing the kernels for the loop body N times, + /// whereas implementing a `while` loop requires a host-device sync on each + /// iteration. + /// + public sealed partial class WhileLoopBackendConfig : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new WhileLoopBackendConfig()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[28]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WhileLoopBackendConfig() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WhileLoopBackendConfig(WhileLoopBackendConfig other) : this() { + knownTripCount_ = other.knownTripCount_ != null ? other.knownTripCount_.Clone() : null; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public WhileLoopBackendConfig Clone() { + return new WhileLoopBackendConfig(this); + } + + /// Field number for the "known_trip_count" field. + public const int KnownTripCountFieldNumber = 1; + private global::Xla.WhileLoopBackendConfig.Types.KnownTripCount knownTripCount_; + /// + /// This indirection lets us distinguish between known-trip-count == 0 and + /// unknown-trip-count. + /// + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public global::Xla.WhileLoopBackendConfig.Types.KnownTripCount KnownTripCount { + get { return knownTripCount_; } + set { + knownTripCount_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as WhileLoopBackendConfig); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(WhileLoopBackendConfig other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (!object.Equals(KnownTripCount, other.KnownTripCount)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (knownTripCount_ != null) hash ^= KnownTripCount.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (knownTripCount_ != null) { + output.WriteRawTag(10); + output.WriteMessage(KnownTripCount); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (knownTripCount_ != null) { + output.WriteRawTag(10); + output.WriteMessage(KnownTripCount); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (knownTripCount_ != null) { + size += 1 + pb::CodedOutputStream.ComputeMessageSize(KnownTripCount); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(WhileLoopBackendConfig other) { + if (other == null) { + return; + } + if (other.knownTripCount_ != null) { + if (knownTripCount_ == null) { + KnownTripCount = new global::Xla.WhileLoopBackendConfig.Types.KnownTripCount(); + } + KnownTripCount.MergeFrom(other.KnownTripCount); + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: { + if (knownTripCount_ == null) { + KnownTripCount = new global::Xla.WhileLoopBackendConfig.Types.KnownTripCount(); + } + input.ReadMessage(KnownTripCount); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: { + if (knownTripCount_ == null) { + KnownTripCount = new global::Xla.WhileLoopBackendConfig.Types.KnownTripCount(); + } + input.ReadMessage(KnownTripCount); + break; + } + } + } + } + #endif + + #region Nested types + /// Container for nested types declared in the WhileLoopBackendConfig message type. + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static partial class Types { + public sealed partial class KnownTripCount : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new KnownTripCount()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.WhileLoopBackendConfig.Descriptor.NestedTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KnownTripCount() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KnownTripCount(KnownTripCount other) : this() { + n_ = other.n_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public KnownTripCount Clone() { + return new KnownTripCount(this); + } + + /// Field number for the "n" field. + public const int NFieldNumber = 1; + private long n_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long N { + get { return n_; } + set { + n_ = value; + } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as KnownTripCount); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(KnownTripCount other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if (N != other.N) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + if (N != 0L) hash ^= N.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + if (N != 0L) { + output.WriteRawTag(8); + output.WriteInt64(N); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + if (N != 0L) { + output.WriteRawTag(8); + output.WriteInt64(N); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + if (N != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(N); + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(KnownTripCount other) { + if (other == null) { + return; + } + if (other.N != 0L) { + N = other.N; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 8: { + N = input.ReadInt64(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 8: { + N = input.ReadInt64(); + break; + } + } + } + } + #endif + + } + + } + #endregion + + } + + /// + /// Specifies a pair of output/operand buffers for kCustomCall that alias each + /// other. + /// + public sealed partial class CustomCallOutputOperandAliasing : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CustomCallOutputOperandAliasing()); + private pb::UnknownFieldSet _unknownFields; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.XlaDataReflection.Descriptor.MessageTypes[29]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CustomCallOutputOperandAliasing() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CustomCallOutputOperandAliasing(CustomCallOutputOperandAliasing other) : this() { + outputShapeIndex_ = other.outputShapeIndex_.Clone(); + operandIndex_ = other.operandIndex_; + operandShapeIndex_ = other.operandShapeIndex_.Clone(); + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public CustomCallOutputOperandAliasing Clone() { + return new CustomCallOutputOperandAliasing(this); + } + + /// Field number for the "output_shape_index" field. + public const int OutputShapeIndexFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_outputShapeIndex_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField outputShapeIndex_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField OutputShapeIndex { + get { return outputShapeIndex_; } + } + + /// Field number for the "operand_index" field. + public const int OperandIndexFieldNumber = 2; + private long operandIndex_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long OperandIndex { + get { return operandIndex_; } + set { + operandIndex_ = value; + } + } + + /// Field number for the "operand_shape_index" field. + public const int OperandShapeIndexFieldNumber = 3; + private static readonly pb::FieldCodec _repeated_operandShapeIndex_codec + = pb::FieldCodec.ForInt64(26); + private readonly pbc::RepeatedField operandShapeIndex_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField OperandShapeIndex { + get { return operandShapeIndex_; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as CustomCallOutputOperandAliasing); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(CustomCallOutputOperandAliasing other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!outputShapeIndex_.Equals(other.outputShapeIndex_)) return false; + if (OperandIndex != other.OperandIndex) return false; + if(!operandShapeIndex_.Equals(other.operandShapeIndex_)) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= outputShapeIndex_.GetHashCode(); + if (OperandIndex != 0L) hash ^= OperandIndex.GetHashCode(); + hash ^= operandShapeIndex_.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + outputShapeIndex_.WriteTo(output, _repeated_outputShapeIndex_codec); + if (OperandIndex != 0L) { + output.WriteRawTag(16); + output.WriteInt64(OperandIndex); + } + operandShapeIndex_.WriteTo(output, _repeated_operandShapeIndex_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + outputShapeIndex_.WriteTo(ref output, _repeated_outputShapeIndex_codec); + if (OperandIndex != 0L) { + output.WriteRawTag(16); + output.WriteInt64(OperandIndex); + } + operandShapeIndex_.WriteTo(ref output, _repeated_operandShapeIndex_codec); + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += outputShapeIndex_.CalculateSize(_repeated_outputShapeIndex_codec); + if (OperandIndex != 0L) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(OperandIndex); + } + size += operandShapeIndex_.CalculateSize(_repeated_operandShapeIndex_codec); + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(CustomCallOutputOperandAliasing other) { + if (other == null) { + return; + } + outputShapeIndex_.Add(other.outputShapeIndex_); + if (other.OperandIndex != 0L) { + OperandIndex = other.OperandIndex; + } + operandShapeIndex_.Add(other.operandShapeIndex_); + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + outputShapeIndex_.AddEntriesFrom(input, _repeated_outputShapeIndex_codec); + break; + } + case 16: { + OperandIndex = input.ReadInt64(); + break; + } + case 26: + case 24: { + operandShapeIndex_.AddEntriesFrom(input, _repeated_operandShapeIndex_codec); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + outputShapeIndex_.AddEntriesFrom(ref input, _repeated_outputShapeIndex_codec); + break; + } + case 16: { + OperandIndex = input.ReadInt64(); + break; + } + case 26: + case 24: { + operandShapeIndex_.AddEntriesFrom(ref input, _repeated_operandShapeIndex_codec); + break; + } + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Protobuf/XlaFramework.cs b/src/TensorFlowNET.Core/Protobuf/XlaFramework.cs new file mode 100644 index 000000000..1cad3ef3b --- /dev/null +++ b/src/TensorFlowNET.Core/Protobuf/XlaFramework.cs @@ -0,0 +1,360 @@ +// +// Generated by the protocol buffer compiler. DO NOT EDIT! +// source: tensorflow/compiler/xla/service/cpu/xla_framework.proto +// +#pragma warning disable 1591, 0612, 3021, 8981 +#region Designer generated code + +using pb = global::Google.Protobuf; +using pbc = global::Google.Protobuf.Collections; +using pbr = global::Google.Protobuf.Reflection; +using scg = global::System.Collections.Generic; +namespace Xla.Cpu { + + /// Holder for reflection information generated from tensorflow/compiler/xla/service/cpu/xla_framework.proto + public static partial class XlaFrameworkReflection { + + #region Descriptor + /// File descriptor for tensorflow/compiler/xla/service/cpu/xla_framework.proto + public static pbr::FileDescriptor Descriptor { + get { return descriptor; } + } + private static pbr::FileDescriptor descriptor; + + static XlaFrameworkReflection() { + byte[] descriptorData = global::System.Convert.FromBase64String( + string.Concat( + "Cjd0ZW5zb3JmbG93L2NvbXBpbGVyL3hsYS9zZXJ2aWNlL2NwdS94bGFfZnJh", + "bWV3b3JrLnByb3RvEgd4bGEuY3B1InoKGFhsYUZyYW1ld29ya01hcHBpbmdQ", + "cm90bxISCgZpbnB1dHMYASADKANCAhABEh0KEWZsYXR0ZW5lZF9vdXRwdXRz", + "GAIgAygDQgIQARISCgZyZXN1bHQYAyABKAM6Ai0xEhcKD291dHB1dF9pc190", + "dXBsZRgEIAEoCA==")); + descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData, + new pbr::FileDescriptor[] { }, + new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] { + new pbr::GeneratedClrTypeInfo(typeof(global::Xla.Cpu.XlaFrameworkMappingProto), global::Xla.Cpu.XlaFrameworkMappingProto.Parser, new[]{ "Inputs", "FlattenedOutputs", "Result", "OutputIsTuple" }, null, null, null, null) + })); + } + #endregion + + } + #region Messages + public sealed partial class XlaFrameworkMappingProto : pb::IMessage + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + , pb::IBufferMessage + #endif + { + private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new XlaFrameworkMappingProto()); + private pb::UnknownFieldSet _unknownFields; + private int _hasBits0; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pb::MessageParser Parser { get { return _parser; } } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public static pbr::MessageDescriptor Descriptor { + get { return global::Xla.Cpu.XlaFrameworkReflection.Descriptor.MessageTypes[0]; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + pbr::MessageDescriptor pb::IMessage.Descriptor { + get { return Descriptor; } + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaFrameworkMappingProto() { + OnConstruction(); + } + + partial void OnConstruction(); + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaFrameworkMappingProto(XlaFrameworkMappingProto other) : this() { + _hasBits0 = other._hasBits0; + inputs_ = other.inputs_.Clone(); + flattenedOutputs_ = other.flattenedOutputs_.Clone(); + result_ = other.result_; + outputIsTuple_ = other.outputIsTuple_; + _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public XlaFrameworkMappingProto Clone() { + return new XlaFrameworkMappingProto(this); + } + + /// Field number for the "inputs" field. + public const int InputsFieldNumber = 1; + private static readonly pb::FieldCodec _repeated_inputs_codec + = pb::FieldCodec.ForInt64(10); + private readonly pbc::RepeatedField inputs_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField Inputs { + get { return inputs_; } + } + + /// Field number for the "flattened_outputs" field. + public const int FlattenedOutputsFieldNumber = 2; + private static readonly pb::FieldCodec _repeated_flattenedOutputs_codec + = pb::FieldCodec.ForInt64(18); + private readonly pbc::RepeatedField flattenedOutputs_ = new pbc::RepeatedField(); + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public pbc::RepeatedField FlattenedOutputs { + get { return flattenedOutputs_; } + } + + /// Field number for the "result" field. + public const int ResultFieldNumber = 3; + private readonly static long ResultDefaultValue = -1L; + + private long result_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public long Result { + get { if ((_hasBits0 & 1) != 0) { return result_; } else { return ResultDefaultValue; } } + set { + _hasBits0 |= 1; + result_ = value; + } + } + /// Gets whether the "result" field is set + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool HasResult { + get { return (_hasBits0 & 1) != 0; } + } + /// Clears the value of the "result" field + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void ClearResult() { + _hasBits0 &= ~1; + } + + /// Field number for the "output_is_tuple" field. + public const int OutputIsTupleFieldNumber = 4; + private readonly static bool OutputIsTupleDefaultValue = false; + + private bool outputIsTuple_; + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool OutputIsTuple { + get { if ((_hasBits0 & 2) != 0) { return outputIsTuple_; } else { return OutputIsTupleDefaultValue; } } + set { + _hasBits0 |= 2; + outputIsTuple_ = value; + } + } + /// Gets whether the "output_is_tuple" field is set + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool HasOutputIsTuple { + get { return (_hasBits0 & 2) != 0; } + } + /// Clears the value of the "output_is_tuple" field + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void ClearOutputIsTuple() { + _hasBits0 &= ~2; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override bool Equals(object other) { + return Equals(other as XlaFrameworkMappingProto); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public bool Equals(XlaFrameworkMappingProto other) { + if (ReferenceEquals(other, null)) { + return false; + } + if (ReferenceEquals(other, this)) { + return true; + } + if(!inputs_.Equals(other.inputs_)) return false; + if(!flattenedOutputs_.Equals(other.flattenedOutputs_)) return false; + if (Result != other.Result) return false; + if (OutputIsTuple != other.OutputIsTuple) return false; + return Equals(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override int GetHashCode() { + int hash = 1; + hash ^= inputs_.GetHashCode(); + hash ^= flattenedOutputs_.GetHashCode(); + if (HasResult) hash ^= Result.GetHashCode(); + if (HasOutputIsTuple) hash ^= OutputIsTuple.GetHashCode(); + if (_unknownFields != null) { + hash ^= _unknownFields.GetHashCode(); + } + return hash; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public override string ToString() { + return pb::JsonFormatter.ToDiagnosticString(this); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void WriteTo(pb::CodedOutputStream output) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + output.WriteRawMessage(this); + #else + inputs_.WriteTo(output, _repeated_inputs_codec); + flattenedOutputs_.WriteTo(output, _repeated_flattenedOutputs_codec); + if (HasResult) { + output.WriteRawTag(24); + output.WriteInt64(Result); + } + if (HasOutputIsTuple) { + output.WriteRawTag(32); + output.WriteBool(OutputIsTuple); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(output); + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) { + inputs_.WriteTo(ref output, _repeated_inputs_codec); + flattenedOutputs_.WriteTo(ref output, _repeated_flattenedOutputs_codec); + if (HasResult) { + output.WriteRawTag(24); + output.WriteInt64(Result); + } + if (HasOutputIsTuple) { + output.WriteRawTag(32); + output.WriteBool(OutputIsTuple); + } + if (_unknownFields != null) { + _unknownFields.WriteTo(ref output); + } + } + #endif + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public int CalculateSize() { + int size = 0; + size += inputs_.CalculateSize(_repeated_inputs_codec); + size += flattenedOutputs_.CalculateSize(_repeated_flattenedOutputs_codec); + if (HasResult) { + size += 1 + pb::CodedOutputStream.ComputeInt64Size(Result); + } + if (HasOutputIsTuple) { + size += 1 + 1; + } + if (_unknownFields != null) { + size += _unknownFields.CalculateSize(); + } + return size; + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(XlaFrameworkMappingProto other) { + if (other == null) { + return; + } + inputs_.Add(other.inputs_); + flattenedOutputs_.Add(other.flattenedOutputs_); + if (other.HasResult) { + Result = other.Result; + } + if (other.HasOutputIsTuple) { + OutputIsTuple = other.OutputIsTuple; + } + _unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); + } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + public void MergeFrom(pb::CodedInputStream input) { + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + input.ReadRawMessage(this); + #else + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input); + break; + case 10: + case 8: { + inputs_.AddEntriesFrom(input, _repeated_inputs_codec); + break; + } + case 18: + case 16: { + flattenedOutputs_.AddEntriesFrom(input, _repeated_flattenedOutputs_codec); + break; + } + case 24: { + Result = input.ReadInt64(); + break; + } + case 32: { + OutputIsTuple = input.ReadBool(); + break; + } + } + } + #endif + } + + #if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + [global::System.CodeDom.Compiler.GeneratedCode("protoc", null)] + void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) { + uint tag; + while ((tag = input.ReadTag()) != 0) { + switch(tag) { + default: + _unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input); + break; + case 10: + case 8: { + inputs_.AddEntriesFrom(ref input, _repeated_inputs_codec); + break; + } + case 18: + case 16: { + flattenedOutputs_.AddEntriesFrom(ref input, _repeated_flattenedOutputs_codec); + break; + } + case 24: { + Result = input.ReadInt64(); + break; + } + case 32: { + OutputIsTuple = input.ReadBool(); + break; + } + } + } + } + #endif + + } + + #endregion + +} + +#endregion Designer generated code diff --git a/src/TensorFlowNET.Core/Sessions/BaseSession.cs b/src/TensorFlowNET.Core/Sessions/BaseSession.cs index 1c9ed2a01..3dab4ec71 100644 --- a/src/TensorFlowNET.Core/Sessions/BaseSession.cs +++ b/src/TensorFlowNET.Core/Sessions/BaseSession.cs @@ -14,284 +14,273 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ -using Google.Protobuf; using Tensorflow.NumPy; -using System; -using System.Collections; -using System.Collections.Generic; -using System.Linq; -using System.Numerics; -using System.Text; -using Tensorflow.Util; using static Tensorflow.Binding; -namespace Tensorflow +namespace Tensorflow; + +public class BaseSession : IDisposable { - public class BaseSession : DisposableObject + protected SafeSessionHandle _handle; + protected Graph _graph; + protected Status _status; + public Graph graph => _graph; + + public BaseSession(SafeSessionHandle handle, Graph g) { - protected Graph _graph; - public Graph graph => _graph; + _handle = handle; + _graph = g ?? ops.get_default_graph(); + _status = tf.Status; + } - public BaseSession(IntPtr handle, Graph g) + public BaseSession(string target = "", Graph g = null, ConfigProto config = null, Status status = null) + { + _graph = g ?? ops.get_default_graph(); + if (!_graph.building_function) { - _handle = handle; - _graph = g ?? ops.get_default_graph(); + if (ops.get_default_graph() != _graph) + _graph.as_default(); } + + var opts = new SessionOptions(target, config); + _status = status ?? tf.Status; + _handle = c_api.TF_NewSession(_graph, opts, _status); + _status.Check(true); + } - public BaseSession(string target = "", Graph g = null, ConfigProto config = null, Status status = null) - { - _graph = g ?? ops.get_default_graph(); - if (!_graph.building_function) - { - if (ops.get_default_graph() != _graph) - _graph.as_default(); - } - - using var opts = new SessionOptions(target, config); - status = status ?? tf.Status; - _handle = c_api.TF_NewSession(_graph, opts.Handle, status.Handle); - status.Check(true); - } + public virtual void run(Operation op, params FeedItem[] feed_dict) + { + _run(op, feed_dict); + } - public virtual void run(Operation op, params FeedItem[] feed_dict) - { - _run(op, feed_dict); - } + public virtual NDArray run(Tensor fetche, params FeedItem[] feed_dict) + { + return _run(fetche, feed_dict)[0]; + } - public virtual NDArray run(Tensor fetche, params FeedItem[] feed_dict) - { - return _run(fetche, feed_dict)[0]; - } + public virtual NDArray run(ITensorOrOperation fetche, params FeedItem[] feed_dict) + { + var results = _run(fetche, feed_dict); + return fetche is Tensor ? results[0] : null; + } - public virtual NDArray run(ITensorOrOperation fetche, params FeedItem[] feed_dict) - { - var results = _run(fetche, feed_dict); - return fetche is Tensor ? results[0] : null; - } + public virtual (NDArray, NDArray, NDArray, NDArray, NDArray) run( + (ITensorOrOperation, ITensorOrOperation, ITensorOrOperation, ITensorOrOperation, ITensorOrOperation) fetches, + params FeedItem[] feed_dict) + { + var results = _run(new object[] { fetches.Item1, fetches.Item2, fetches.Item3, fetches.Item4, fetches.Item5 }, feed_dict); + return (results[0], results[1], results[2], results[3], results[4]); + } - public virtual (NDArray, NDArray, NDArray, NDArray, NDArray) run( - (ITensorOrOperation, ITensorOrOperation, ITensorOrOperation, ITensorOrOperation, ITensorOrOperation) fetches, - params FeedItem[] feed_dict) - { - var results = _run(new object[] { fetches.Item1, fetches.Item2, fetches.Item3, fetches.Item4, fetches.Item5 }, feed_dict); - return (results[0], results[1], results[2], results[3], results[4]); - } + public virtual (NDArray, NDArray, NDArray, NDArray) run((ITensorOrOperation, ITensorOrOperation, ITensorOrOperation, ITensorOrOperation) fetches, params FeedItem[] feed_dict) + { + var results = _run(new object[] { fetches.Item1, fetches.Item2, fetches.Item3, fetches.Item4 }, feed_dict); + return (results[0], results[1], results[2], results[3]); + } - public virtual (NDArray, NDArray, NDArray, NDArray) run((ITensorOrOperation, ITensorOrOperation, ITensorOrOperation, ITensorOrOperation) fetches, params FeedItem[] feed_dict) - { - var results = _run(new object[] { fetches.Item1, fetches.Item2, fetches.Item3, fetches.Item4 }, feed_dict); - return (results[0], results[1], results[2], results[3]); - } + public virtual (NDArray, NDArray, NDArray) run((ITensorOrOperation, ITensorOrOperation, ITensorOrOperation) fetches, params FeedItem[] feed_dict) + { + var results = _run(new object[] { fetches.Item1, fetches.Item2, fetches.Item3 }, feed_dict); + return (results[0], results[1], results[2]); + } - public virtual (NDArray, NDArray, NDArray) run((ITensorOrOperation, ITensorOrOperation, ITensorOrOperation) fetches, params FeedItem[] feed_dict) - { - var results = _run(new object[] { fetches.Item1, fetches.Item2, fetches.Item3 }, feed_dict); - return (results[0], results[1], results[2]); - } + public virtual (NDArray, NDArray) run((ITensorOrOperation, ITensorOrOperation) fetches, params FeedItem[] feed_dict) + { + var results = _run(new object[] { fetches.Item1, fetches.Item2 }, feed_dict); + return (results[0], results[1]); + } - public virtual (NDArray, NDArray) run((ITensorOrOperation, ITensorOrOperation) fetches, params FeedItem[] feed_dict) - { - var results = _run(new object[] { fetches.Item1, fetches.Item2 }, feed_dict); - return (results[0], results[1]); - } + public virtual NDArray[] run(object fetches, params FeedItem[] feed_dict) + { + return _run(fetches, feed_dict); + } - public virtual NDArray[] run(object fetches, params FeedItem[] feed_dict) - { - return _run(fetches, feed_dict); - } + public virtual NDArray[] run(object fetches, Hashtable feed_dict = null) + { + var feed_items = feed_dict == null ? new FeedItem[0] : feed_dict.Keys.OfType().Select(key => new FeedItem(key, feed_dict[key])).ToArray(); + return _run(fetches, feed_items); + } - public virtual NDArray[] run(object fetches, Hashtable feed_dict = null) - { - var feed_items = feed_dict == null ? new FeedItem[0] : feed_dict.Keys.OfType().Select(key => new FeedItem(key, feed_dict[key])).ToArray(); - return _run(fetches, feed_items); - } + private NDArray[] _run(object fetches, FeedItem[] feed_dict = null) + { + var feed_dict_tensor = new Dictionary(); + //var feed_map = new Dictionary(); - private NDArray[] _run(object fetches, FeedItem[] feed_dict = null) + // Validate and process feed_dict. + if (feed_dict != null) { - var feed_dict_tensor = new Dictionary(); - //var feed_map = new Dictionary(); - - // Validate and process feed_dict. - if (feed_dict != null) + foreach (var subfeed in feed_dict) { - foreach (var subfeed in feed_dict) - { - var subfeed_t = _graph.as_graph_element(subfeed.Key, allow_tensor: true, allow_operation: false); - //var target_dtype = subfeed_t.dtype.as_numpy_typecode(); // subfeed_dtype was never used - feed_dict_tensor[subfeed_t] = subfeed.Value; - //feed_map[subfeed_t.name] = (subfeed_t, subfeed.Value); - } + var subfeed_t = _graph.as_graph_element(subfeed.Key, allow_tensor: true, allow_operation: false); + //var target_dtype = subfeed_t.dtype.as_numpy_typecode(); // subfeed_dtype was never used + feed_dict_tensor[subfeed_t] = subfeed.Value; + //feed_map[subfeed_t.name] = (subfeed_t, subfeed.Value); } + } - // Create a fetch handler to take care of the structure of fetches. - var fetch_handler = new _FetchHandler(_graph, fetches, feed_dict_tensor); + // Create a fetch handler to take care of the structure of fetches. + var fetch_handler = new _FetchHandler(_graph, fetches, feed_dict_tensor); - // Run request and get response. - // We need to keep the returned movers alive for the following _do_run(). - // These movers are no longer needed when _do_run() completes, and - // are deleted when `movers` goes out of scope when this _run() ends. - var _ = _update_with_movers(); - var final_fetches = fetch_handler.fetches(); - var final_targets = fetch_handler.targets(); + // Run request and get response. + // We need to keep the returned movers alive for the following _do_run(). + // These movers are no longer needed when _do_run() completes, and + // are deleted when `movers` goes out of scope when this _run() ends. + var _ = _update_with_movers(); + var final_fetches = fetch_handler.fetches(); + var final_targets = fetch_handler.targets(); - // We only want to really perform the run if fetches or targets are provided, - // or if the call is a partial run that specifies feeds. - var results = _do_run(final_targets.Select(x => (Operation)x).ToList(), final_fetches, feed_dict_tensor); + // We only want to really perform the run if fetches or targets are provided, + // or if the call is a partial run that specifies feeds. + var results = _do_run(final_targets.Select(x => (Operation)x).ToList(), final_fetches, feed_dict_tensor); - return fetch_handler.build_results(this, results); - } + return fetch_handler.build_results(this, results); + } - /// - /// Runs a step based on the given fetches and feeds. - /// - /// A list of operations to be run, but not fetched. - /// - /// - /// - /// A list of numpy ndarrays, corresponding to the elements of - /// `fetch_list`. If the ith element of `fetch_list` contains the - /// name of an operation, the first Tensor output of that operation - /// will be returned for that element. - /// - private NDArray[] _do_run(List target_list, List fetch_list, Dictionary feed_dict) + /// + /// Runs a step based on the given fetches and feeds. + /// + /// A list of operations to be run, but not fetched. + /// + /// + /// + /// A list of numpy ndarrays, corresponding to the elements of + /// `fetch_list`. If the ith element of `fetch_list` contains the + /// name of an operation, the first Tensor output of that operation + /// will be returned for that element. + /// + private NDArray[] _do_run(List target_list, List fetch_list, Dictionary feed_dict) + { + var feeds = new KeyValuePair[feed_dict.Count]; + int i = 0; + foreach (var x in feed_dict) { - var feeds = new KeyValuePair[feed_dict.Count]; - int i = 0; - foreach (var x in feed_dict) + if (x.Key is Tensor key) { - if (x.Key is Tensor key) + switch (x.Value) { - switch (x.Value) - { - case Tensor v: - if (v.dtype != key.dtype) - throw new ValueError($"Tensor {v} does not match the expected dtype {key.dtype}, actual dtype: {v.dtype}"); - feeds[i++] = new KeyValuePair(key._as_tf_output(), v); - break; - case SafeTensorHandle v: - var tensor = new Tensor(v); - if (tensor.dtype != key.dtype) - throw new ValueError($"Tensor {v} does not match the expected dtype {key.dtype}, actual dtype: {tensor.dtype}"); - feeds[i++] = new KeyValuePair(key._as_tf_output(), tensor); - break; - case bool v: - feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); - break; - case byte v: - feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); - break; - case int v: - feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); - break; - case long v: - feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); - break; - case float v: - feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); - break; - case double v: - feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); - break; - case string v: - feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); - break; - case Array v: - feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v, v.GetShape())); - break; - default: - throw new NotImplementedException(""); - } + case Tensor v: + if (v.dtype != key.dtype) + throw new ValueError($"Tensor {v} does not match the expected dtype {key.dtype}, actual dtype: {v.dtype}"); + feeds[i++] = new KeyValuePair(key._as_tf_output(), v); + break; + case SafeTensorHandle v: + var tensor = new Tensor(v); + if (tensor.dtype != key.dtype) + throw new ValueError($"Tensor {v} does not match the expected dtype {key.dtype}, actual dtype: {tensor.dtype}"); + feeds[i++] = new KeyValuePair(key._as_tf_output(), tensor); + break; + case bool v: + feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); + break; + case byte v: + feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); + break; + case int v: + feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); + break; + case long v: + feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); + break; + case float v: + feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); + break; + case double v: + feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); + break; + case string v: + feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v)); + break; + case Array v: + feeds[i++] = new KeyValuePair(key._as_tf_output(), new Tensor(v, v.GetShape())); + break; + default: + throw new NotImplementedException(""); } - else - throw new NotImplementedException(""); } - - var fetches = fetch_list.Select(x => x._as_tf_output()).ToArray(); - //var targets = target_list; - return _call_tf_sessionrun(feeds, fetches, target_list); + else + throw new NotImplementedException(""); } + var fetches = fetch_list.Select(x => x._as_tf_output()).ToArray(); + //var targets = target_list; + return _call_tf_sessionrun(feeds, fetches, target_list); + } - private unsafe NDArray[] _call_tf_sessionrun(KeyValuePair[] feed_dict, TF_Output[] fetch_list, List target_list) - { - // Ensure any changes to the graph are reflected in the runtime. - _extend_graph(); - var status = tf.Status; + private unsafe NDArray[] _call_tf_sessionrun(KeyValuePair[] feed_dict, TF_Output[] fetch_list, List target_list) + { + // Ensure any changes to the graph are reflected in the runtime. + _extend_graph(); - var output_values = fetch_list.Select(x => IntPtr.Zero).ToArray(); + var output_values = fetch_list.Select(x => IntPtr.Zero).ToArray(); - c_api.TF_SessionRun(_handle, - run_options: null, - inputs: feed_dict.Select(f => f.Key).ToArray(), - input_values: feed_dict.Select(f => f.Value.Handle.DangerousGetHandle()).ToArray(), - ninputs: feed_dict.Length, - outputs: fetch_list, - output_values: output_values, - noutputs: fetch_list.Length, - target_opers: target_list.Select(f => (IntPtr)f).ToArray(), - ntargets: target_list.Count, - run_metadata: IntPtr.Zero, - status: status.Handle); + c_api.TF_SessionRun(_handle, + run_options: null, + inputs: feed_dict.Select(f => f.Key).ToArray(), + input_values: feed_dict.Select(f => f.Value.Handle.DangerousGetHandle()).ToArray(), + ninputs: feed_dict.Length, + outputs: fetch_list, + output_values: output_values, + noutputs: fetch_list.Length, + target_opers: target_list.Select(f => (IntPtr)f).ToArray(), + ntargets: target_list.Count, + run_metadata: IntPtr.Zero, + status: _status); - status.Check(true); + _status.Check(true); - var result = new NDArray[fetch_list.Length]; + var result = new NDArray[fetch_list.Length]; - for (int i = 0; i < fetch_list.Length; i++) - result[i] = fetchValue(new SafeTensorHandle(output_values[i])); + for (int i = 0; i < fetch_list.Length; i++) + result[i] = fetchValue(new SafeTensorHandle(output_values[i])); - return result; - } + return result; + } - public unsafe Tensor eval(Tensor tensor) - { - var status = tf.Status; - - var output_values = new IntPtr[1]; - var fetch_list = new[] { tensor._as_tf_output() }; - - c_api.TF_SessionRun(_handle, - run_options: null, - inputs: new TF_Output[0], - input_values: new IntPtr[0], - ninputs: 0, - outputs: fetch_list, - output_values: output_values, - noutputs: 1, - target_opers: new IntPtr[0], - ntargets: 0, - run_metadata: IntPtr.Zero, - status: status.Handle); - - status.Check(true); - - return new Tensor(new SafeTensorHandle(output_values[0])); - } + public unsafe Tensor eval(Tensor tensor) + { + var output_values = new IntPtr[1]; + var fetch_list = new[] { tensor._as_tf_output() }; + + c_api.TF_SessionRun(_handle, + run_options: null, + inputs: new TF_Output[0], + input_values: new IntPtr[0], + ninputs: 0, + outputs: fetch_list, + output_values: output_values, + noutputs: 1, + target_opers: new IntPtr[0], + ntargets: 0, + run_metadata: IntPtr.Zero, + status: _status); + + _status.Check(true); + + return new Tensor(new SafeTensorHandle(output_values[0])); + } - private static unsafe NDArray fetchValue(SafeTensorHandle output) - { - var tensor = new Tensor(output); - return tensor.numpy(); - } + private static unsafe NDArray fetchValue(SafeTensorHandle output) + { + var tensor = new Tensor(output); + return tensor.numpy(); + } - /// - /// If a tensor handle that is fed to a device incompatible placeholder, - /// we move the tensor to the right device, generate a new tensor handle, - /// and update feed_dict to use the new handle. - /// - private List _update_with_movers() - { - return new List { }; - } + /// + /// If a tensor handle that is fed to a device incompatible placeholder, + /// we move the tensor to the right device, generate a new tensor handle, + /// and update feed_dict to use the new handle. + /// + private List _update_with_movers() + { + return new List { }; + } - private void _extend_graph() - { } + private void _extend_graph() + { } - protected override void DisposeUnmanagedResources(IntPtr handle) - { - // c_api.TF_CloseSession(handle, tf.Status.Handle); - c_api.TF_DeleteSession(handle, tf.Status.Handle); - } + public void Dispose() + { + } } diff --git a/src/TensorFlowNET.Core/Sessions/SafeSessionHandle.cs b/src/TensorFlowNET.Core/Sessions/SafeSessionHandle.cs new file mode 100644 index 000000000..4e4b013c1 --- /dev/null +++ b/src/TensorFlowNET.Core/Sessions/SafeSessionHandle.cs @@ -0,0 +1,46 @@ +/***************************************************************************** + Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +******************************************************************************/ + +using System; +using System.Net.NetworkInformation; +using Tensorflow.Util; + +namespace Tensorflow +{ + public sealed class SafeSessionHandle : SafeTensorflowHandle + { + private SafeSessionHandle() + { + } + + public SafeSessionHandle(IntPtr handle) + : base(handle) + { + } + + public override string ToString() + => $"0x{handle:x16}"; + + protected override bool ReleaseHandle() + { + var status = new Status(); + // c_api.TF_CloseSession(handle, tf.Status.Handle); + c_api.TF_DeleteSession(handle, status); + SetHandle(IntPtr.Zero); + return true; + } + } +} diff --git a/src/TensorFlowNET.Core/Sessions/Session.cs b/src/TensorFlowNET.Core/Sessions/Session.cs index 05178fb85..3b91b4898 100644 --- a/src/TensorFlowNET.Core/Sessions/Session.cs +++ b/src/TensorFlowNET.Core/Sessions/Session.cs @@ -14,75 +14,49 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ -using System; -using System.IO; -using System.Runtime.CompilerServices; -using Tensorflow.Util; +namespace Tensorflow; -namespace Tensorflow +public class Session : BaseSession { - public class Session : BaseSession - { - public Session(string target = "", Graph g = null) : base(target, g, null) - { } - - public Session(IntPtr handle, Graph g = null) : base(handle, g) - { } - - public Session(Graph g, ConfigProto config = null, Status s = null) : base("", g, config, s) - { } - - public Session as_default() - { - return ops.set_default_session(this); - } - - public static Session LoadFromSavedModel(string path) - { - var graph = new Graph(); - using var status = new Status(); - using var opt = c_api.TF_NewSessionOptions(); - - var tags = new string[] { "serve" }; - - var sess = c_api.TF_LoadSessionFromSavedModel(opt, - IntPtr.Zero, - path, - tags, - tags.Length, - graph, - IntPtr.Zero, - status.Handle); - status.Check(true); - - // load graph bytes - // var data = new byte[buffer.length]; - // Marshal.Copy(buffer.data, data, 0, (int)buffer.length); - // var meta_graph = MetaGraphDef.Parser.ParseFrom(data);*/ - return new Session(sess, g: graph); - } - - public static implicit operator IntPtr(Session session) => session._handle; - public static implicit operator Session(IntPtr handle) => new Session(handle); + public Session(string target = "", Graph g = null) : base(target, g, null) + { } - public void __enter__() - { + public Session(SafeSessionHandle handle, Graph g = null) : base(handle, g) + { } - } + public Session(Graph g, ConfigProto config = null, Status s = null) : base("", g, config, s) + { } - public void __exit__() - { - - } - - public void __init__() - { - - } - - public void __del__() - { + public Session as_default() + { + return ops.set_default_session(this); + } - } + public static Session LoadFromSavedModel(string path) + { + var graph = new Graph(); + var status = new Status(); + using var opt = c_api.TF_NewSessionOptions(); + + var tags = new string[] { "serve" }; + + var sess = c_api.TF_LoadSessionFromSavedModel(opt, + IntPtr.Zero, + path, + tags, + tags.Length, + graph, + IntPtr.Zero, + status); + status.Check(true); + + // load graph bytes + // var data = new byte[buffer.length]; + // Marshal.Copy(buffer.data, data, 0, (int)buffer.length); + // var meta_graph = MetaGraphDef.Parser.ParseFrom(data);*/ + return new Session(sess, g: graph); } + + public static implicit operator SafeSessionHandle(Session session) => session._handle; + public static implicit operator Session(SafeSessionHandle handle) => new Session(handle); } diff --git a/src/TensorFlowNET.Core/Sessions/SessionOptions.cs b/src/TensorFlowNET.Core/Sessions/SessionOptions.cs index 00923d143..4a11a7f91 100644 --- a/src/TensorFlowNET.Core/Sessions/SessionOptions.cs +++ b/src/TensorFlowNET.Core/Sessions/SessionOptions.cs @@ -19,33 +19,33 @@ limitations under the License. namespace Tensorflow { - internal sealed class SessionOptions : IDisposable + internal sealed class SessionOptions { - public SafeSessionOptionsHandle Handle { get; } + SafeSessionOptionsHandle _handle { get; } public SessionOptions(string target = "", ConfigProto config = null) { - Handle = c_api.TF_NewSessionOptions(); - c_api.TF_SetTarget(Handle, target); + _handle = c_api.TF_NewSessionOptions(); + c_api.TF_SetTarget(_handle, target); if (config != null) SetConfig(config); } - public void Dispose() - => Handle.Dispose(); - private unsafe void SetConfig(ConfigProto config) { var bytes = config.ToByteArray(); fixed (byte* proto2 = bytes) { - using (var status = new Status()) - { - c_api.TF_SetConfig(Handle, (IntPtr)proto2, (ulong)bytes.Length, status.Handle); - status.Check(false); - } + var status = new Status(); + c_api.TF_SetConfig(_handle, (IntPtr)proto2, (ulong)bytes.Length, status); + status.Check(false); } } + + public static implicit operator SafeSessionOptionsHandle(SessionOptions opt) + { + return opt._handle; + } } } diff --git a/src/TensorFlowNET.Core/Sessions/c_api.session.cs b/src/TensorFlowNET.Core/Sessions/c_api.session.cs index 548d79e77..a26ab56d7 100644 --- a/src/TensorFlowNET.Core/Sessions/c_api.session.cs +++ b/src/TensorFlowNET.Core/Sessions/c_api.session.cs @@ -62,7 +62,7 @@ public partial class c_api /// TF_Status* /// TF_Session* [DllImport(TensorFlowLibName)] - public static extern IntPtr TF_NewSession(IntPtr graph, SafeSessionOptionsHandle opts, SafeStatusHandle status); + public static extern SafeSessionHandle TF_NewSession(SafeGraphHandle graph, SafeSessionOptionsHandle opts, SafeStatusHandle status); /// /// Return a new options object. @@ -110,7 +110,7 @@ public partial class c_api /// TF_Buffer* /// TF_Status* [DllImport(TensorFlowLibName)] - public static extern unsafe void TF_SessionRun(IntPtr session, TF_Buffer* run_options, + public static extern unsafe void TF_SessionRun(SafeSessionHandle session, TF_Buffer* run_options, TF_Output[] inputs, IntPtr[] input_values, int ninputs, TF_Output[] outputs, IntPtr[] output_values, int noutputs, IntPtr[] target_opers, int ntargets, diff --git a/src/TensorFlowNET.Core/Status/Status.cs b/src/TensorFlowNET.Core/Status/Status.cs index 288297fb5..12b6fba2b 100644 --- a/src/TensorFlowNET.Core/Status/Status.cs +++ b/src/TensorFlowNET.Core/Status/Status.cs @@ -17,6 +17,7 @@ limitations under the License. using System; using System.Diagnostics; using System.Runtime.CompilerServices; +using Tensorflow.Exceptions; using Tensorflow.Util; using static Tensorflow.c_api; @@ -26,7 +27,7 @@ namespace Tensorflow /// TF_Status holds error information. It either has an OK code, or /// else an error code with an associated error message. /// - public sealed class Status : IDisposable + public sealed class Status { /// /// Error message @@ -35,9 +36,9 @@ public string Message { get { - using (Handle.Lease()) + using (_handle.Lease()) { - return StringPiece(TF_Message(Handle)); + return StringPiece(TF_Message(_handle)); } } } @@ -45,23 +46,23 @@ public string Message /// /// Error code /// - public TF_Code Code => TF_GetCode(Handle); + public TF_Code Code => TF_GetCode(_handle); - public SafeStatusHandle Handle { get; } + SafeStatusHandle _handle { get; } public Status() { - Handle = TF_NewStatus(); + _handle = TF_NewStatus(); } public Status(SafeStatusHandle handle) { - Handle = handle ?? throw new ArgumentNullException(nameof(handle)); + _handle = handle ?? throw new ArgumentNullException(nameof(handle)); } public void SetStatus(TF_Code code, string msg) { - TF_SetStatus(Handle, code, msg); + TF_SetStatus(_handle, code, msg); } public bool ok() => Code == TF_Code.TF_OK; @@ -88,16 +89,18 @@ public void Check(bool throwException = false) case TF_Code.TF_INVALID_ARGUMENT: throw new InvalidArgumentError(message); default: - throw new TensorflowException(message); + throw new NotOkStatusException(message); } } } } - public void Dispose() - => Handle.Dispose(); - public override string ToString() - => $"{Code} 0x{Handle.DangerousGetHandle():x16}"; + => $"{Code} 0x{_handle.DangerousGetHandle():x16}"; + + public static implicit operator SafeStatusHandle(Status status) + { + return status._handle; + } } } \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Tensorflow.Binding.csproj b/src/TensorFlowNET.Core/Tensorflow.Binding.csproj index 4bd0a4908..42c0399da 100644 --- a/src/TensorFlowNET.Core/Tensorflow.Binding.csproj +++ b/src/TensorFlowNET.Core/Tensorflow.Binding.csproj @@ -1,17 +1,17 @@  - netstandard2.0 + netstandard2.0;net6.0 Tensorflow.Binding Tensorflow - 2.2.0 - 0.70.2 - 9.0 + 2.15.0 + 0.150.0 + 10.0 enable - Haiping Chen, Meinrad Recheis, Eli Belash + Haiping Chen, Eli Belash, Yaohui Liu, Meinrad Recheis SciSharp STACK - true - Apache 2.0, Haiping Chen $([System.DateTime]::UtcNow.ToString(yyyy)) + False + Apache 2.0, Haiping Chen since 2018 https://github.com/SciSharp/TensorFlow.NET git http://scisharpstack.org @@ -20,9 +20,17 @@ Google's TensorFlow full binding in .NET Standard. Building, training and infering deep learning models. https://tensorflownet.readthedocs.io - 0.70.1.0 + 0.150.0.0 - tf.net 0.70.x and above are based on tensorflow native 2.7.0 + tf.net 0.150.x and above are based on tensorflow native 2.15.0 + * Support BERT model. + + tf.net 0.110.x and above are based on tensorflow native 2.11.0 + * Support RNN, LSTM model. + * Support Transformer model. + * Added IMDB dataset. + + tf.net 0.100.x and above are based on tensorflow native 2.10.0 * Eager Mode is added finally. * tf.keras is partially working. @@ -35,14 +43,19 @@ https://tensorflownet.readthedocs.io tf.net 0.4x.x aligns with TensorFlow v2.4.1 native library. tf.net 0.6x.x aligns with TensorFlow v2.6.x native library. - tf.net 0.7x.x aligns with TensorFlow v2.7.x native library. - 0.70.1.0 + tf.net 0.7x.x aligns with TensorFlow v2.7.x native library. + tf.net 0.10x.x aligns with TensorFlow v2.10.x native library. + tf.net 0.11x.x aligns with TensorFlow v2.11.x native library. + tf.net 0.15x.x aligns with TensorFlow v2.15.x native library. + + 0.150.0.0 LICENSE true + packages true - Open.snk AnyCPU;x64 TensorFlow.NET + Debug;Release;GPU @@ -51,6 +64,12 @@ https://tensorflownet.readthedocs.io AnyCPU + + true + TRACE;DEBUG;TRACK_TENSOR_LIFE_1 + AnyCPU + + true TRACE;DEBUG;TRACK_TENSOR_LIFE1 @@ -58,6 +77,13 @@ https://tensorflownet.readthedocs.io TensorFlow.NET.xml + + true + TRACE;DEBUG;TRACK_TENSOR_LIFE1 + x64 + TensorFlow.NET.xml + + true @@ -67,6 +93,66 @@ https://tensorflownet.readthedocs.io + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + + + 1 + $(NoWarn),1570,1573,1591,1712,8603,8604,8625,CS0612 + + @@ -91,8 +177,16 @@ https://tensorflownet.readthedocs.io - - - + + + + + + + + + + + diff --git a/src/TensorFlowNET.Core/Tensors/Ragged/RaggedTensor.cs b/src/TensorFlowNET.Core/Tensors/Ragged/RaggedTensor.cs index 4f85e1081..0f09d4128 100644 --- a/src/TensorFlowNET.Core/Tensors/Ragged/RaggedTensor.cs +++ b/src/TensorFlowNET.Core/Tensors/Ragged/RaggedTensor.cs @@ -163,5 +163,38 @@ public static implicit operator RaggedTensor(Tensor tensor) { return tensor.Tag as RaggedTensor; } + public Tensor nrows(TF_DataType out_type, string name = null) + { + tf_with(ops.name_scope(name, "RaggedNRows"), scope => + { + return math_ops.cast(this._row_partition.nrows(), dtype: out_type); + }); + return null; + } + public RaggedTensor row_lengths(int axis=-1, string name=null) + { + if (axis == 0) return this._row_partition.nrows(); + if (axis == 1) return this._row_partition.row_lengths(); + var values = (RaggedTensor)this._values; + axis = array_ops.get_positive_axis( + axis, this.shape.rank, ndims_name: "rank(this)"); + if (axis == 0) return this.nrows(this._row_partition.GetDataType()); + else if (axis == 1) + { + var splits = this._row_partition.row_splits; + return splits[new Slice(start: 1)] - splits[new Slice(stop: -1)]; + + } + else if (this._values is RaggedTensor) + { + return values.row_lengths(axis - 1); + } + else + { + var shape = array_ops.shape(values, out_type: this._row_partition.GetDataType()); + return array_ops.ones(shape[new Slice(stop:axis - 1)], this._row_partition.GetDataType()) * + shape[axis - 1]; + } + } } } diff --git a/src/TensorFlowNET.Core/Tensors/Ragged/RowPartition.cs b/src/TensorFlowNET.Core/Tensors/Ragged/RowPartition.cs index b1dbf5864..9e242ff38 100644 --- a/src/TensorFlowNET.Core/Tensors/Ragged/RowPartition.cs +++ b/src/TensorFlowNET.Core/Tensors/Ragged/RowPartition.cs @@ -14,10 +14,15 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Serilog.Debugging; using System; +using System.Collections.Concurrent; using System.Collections.Generic; +//using System.ComponentModel.DataAnnotations; using System.Text; +using System.Xml.Linq; using Tensorflow.Framework; +using Tensorflow.NumPy; using static Tensorflow.Binding; namespace Tensorflow @@ -78,7 +83,7 @@ public static RowPartition from_value_rowids(Tensor value_rowids, minlength: nrows_int32, maxlength: nrows_int32, dtype: value_rowids.dtype); - var row_splits = array_ops.concat(new object[] + var row_splits = array_ops.concat(new Tensor[] { ops.convert_to_tensor(new long[] { 0 }), tf.cumsum(row_lengths) @@ -99,5 +104,55 @@ public static RowPartition from_row_splits(Tensor row_splits, return new RowPartition(row_splits); }); } + + public static RowPartition from_row_lengths(Tensor row_lengths, + bool validate=true, + TF_DataType dtype = TF_DataType.TF_INT32, + TF_DataType dtype_hint= TF_DataType.TF_INT32) + { + row_lengths = _convert_row_partition( + row_lengths, "row_lengths", dtype_hint: dtype_hint, dtype: dtype); + Tensor row_limits = math_ops.cumsum(row_lengths, tf.constant(-1)); + Tensor row_splits = array_ops.concat(new Tensor[] { tf.convert_to_tensor(np.array(new int[] { 0 }, TF_DataType.TF_INT64)), row_limits }, axis:0); + return new RowPartition(row_splits: row_splits, row_lengths: row_lengths); + } + + public static Tensor _convert_row_partition(Tensor partition, string name, TF_DataType dtype, + TF_DataType dtype_hint= TF_DataType.TF_INT64) + { + if (partition is NDArray && partition.GetDataType() == np.int32) partition = ops.convert_to_tensor(partition, name: name); + if (partition.GetDataType() != np.int32 && partition.GetDataType() != np.int64) throw new ValueError($"{name} must have dtype int32 or int64"); + return partition; + } + + public Tensor nrows() + { + /*Returns the number of rows created by this `RowPartition*/ + if (this._nrows != null) return this._nrows; + var nsplits = tensor_shape.dimension_at_index(this._row_splits.shape, 0); + if (nsplits == null) return array_ops.shape(this._row_splits, out_type: this.row_splits.dtype)[0] - 1; + else return constant_op.constant(nsplits.value - 1, dtype: this.row_splits.dtype); + } + + public Tensor row_lengths() + { + + if (this._row_splits != null) + { + int nrows_plus_one = tensor_shape.dimension_value(this._row_splits.shape[0]); + return tf.constant(nrows_plus_one - 1); + + } + if (this._row_lengths != null) + { + var nrows = tensor_shape.dimension_value(this._row_lengths.shape[0]); + return tf.constant(nrows); + } + if(this._nrows != null) + { + return tensor_util.constant_value(this._nrows); + } + return tf.constant(-1); + } } } diff --git a/src/TensorFlowNET.Core/Tensors/TF_DataType.cs b/src/TensorFlowNET.Core/Tensors/TF_DataType.cs index 5fe28c5d1..2a6f71147 100644 --- a/src/TensorFlowNET.Core/Tensors/TF_DataType.cs +++ b/src/TensorFlowNET.Core/Tensors/TF_DataType.cs @@ -1,9 +1,13 @@ -namespace Tensorflow +using Newtonsoft.Json; +using Tensorflow.Keras.Saving.Common; + +namespace Tensorflow { /// /// TF_DataType holds the type for a scalar value. E.g., one slot in a tensor. /// The enum values here are identical to corresponding values in types.proto. /// + [JsonConverter(typeof(CustomizedDTypeJsonConverter))] public enum TF_DataType { DtInvalid = 0, diff --git a/src/TensorFlowNET.Core/Tensors/Tensor.Conversions.cs b/src/TensorFlowNET.Core/Tensors/Tensor.Conversions.cs index 18bdc1aaf..fdd62aeed 100644 --- a/src/TensorFlowNET.Core/Tensors/Tensor.Conversions.cs +++ b/src/TensorFlowNET.Core/Tensors/Tensor.Conversions.cs @@ -14,19 +14,10 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ -using Tensorflow.NumPy; -using System; -using System.Diagnostics.CodeAnalysis; -using System.Text; -using Tensorflow.Framework.Models; -using static Tensorflow.Binding; +namespace Tensorflow; -namespace Tensorflow +public partial class Tensor { - [SuppressMessage("ReSharper", "InvokeAsExtensionMethod")] - public partial class Tensor - { - public TensorSpec ToTensorSpec() - => new TensorSpec(shape, dtype, name); - } + public TensorSpec ToTensorSpec() + => new TensorSpec(shape, dtype, name); } \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Tensors/Tensor.Creation.cs b/src/TensorFlowNET.Core/Tensors/Tensor.Creation.cs index 79b8d2c5b..e7ff9f748 100644 --- a/src/TensorFlowNET.Core/Tensors/Tensor.Creation.cs +++ b/src/TensorFlowNET.Core/Tensors/Tensor.Creation.cs @@ -30,7 +30,7 @@ public partial class Tensor { public virtual IntPtr TensorDataPointer => _handle == null ? IntPtr.Zero : TF_TensorData(_handle); - public Tensor() + protected Tensor() { } @@ -101,12 +101,21 @@ public Tensor(Operation op, int value_index, TF_DataType dtype) _op = op; _value_index = value_index; _override_dtype = dtype; + _tf_output = null; _id = ops.uid(); } + internal static Tensor _create_with_tf_output(Operation op, int value_index, TF_DataType dtype, TF_Output tf_output) + { + Tensor ret = new Tensor(op, value_index, dtype); + ret._tf_output = tf_output; + return ret; + } + protected unsafe void InitTensor(Shape shape, TF_DataType dtype) { _handle = TF_NewTensor(shape, dtype, null); + _id = ops.uid(); } protected unsafe void InitTensor(Shape shape, byte[] bytes, TF_DataType dtype) @@ -115,6 +124,7 @@ protected unsafe void InitTensor(Shape shape, byte[] bytes, TF_DataType dtype) _handle = StringTensor(new byte[][] { bytes }, Shape.Scalar); else _handle = TF_NewTensor(bytes, shape, dtype); + _id = ops.uid(); } protected unsafe void InitTensor(Array array, Shape? shape = null) @@ -165,6 +175,8 @@ protected unsafe void InitTensor(Array array, Shape? shape = null) string[] val => StringTensor(val, shape), _ => throw new NotImplementedException("") }; + + _id = ops.uid(); } unsafe SafeTensorHandle InitTensor(T[] array, Shape shape, TF_DataType dtype) where T : unmanaged diff --git a/src/TensorFlowNET.Core/Tensors/Tensor.Index.cs b/src/TensorFlowNET.Core/Tensors/Tensor.Index.cs index c8f47825c..51062cf3b 100644 --- a/src/TensorFlowNET.Core/Tensors/Tensor.Index.cs +++ b/src/TensorFlowNET.Core/Tensors/Tensor.Index.cs @@ -42,7 +42,7 @@ public Tensor this[params Slice[] slices] array_ops.stack(args.End), array_ops.stack(args.Strides)); - return gen_array_ops.strided_slice( + return array_ops.strided_slice( this, packed_begin, packed_end, @@ -180,8 +180,7 @@ public Tensor slice(int start) array_ops.stack(end.ToArray()), array_ops.stack(strides.ToArray())); - return gen_array_ops.strided_slice( - this, + return array_ops.strided_slice(this, packed_begin, packed_end, packed_strides, diff --git a/src/TensorFlowNET.Core/APIs/tf.exp.cs b/src/TensorFlowNET.Core/Tensors/Tensor.Keras.cs similarity index 75% rename from src/TensorFlowNET.Core/APIs/tf.exp.cs rename to src/TensorFlowNET.Core/Tensors/Tensor.Keras.cs index 56ea1898e..ca946ca48 100644 --- a/src/TensorFlowNET.Core/APIs/tf.exp.cs +++ b/src/TensorFlowNET.Core/Tensors/Tensor.Keras.cs @@ -1,6 +1,6 @@ /***************************************************************************** Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. - + Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at @@ -14,12 +14,14 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ -namespace Tensorflow +namespace Tensorflow; + +public partial class Tensor { - public partial class tensorflow - { - public Tensor exp(Tensor x, - string name = null) => gen_math_ops.exp(x, name); + public bool IsFromKerasTensor { get; set; } - } -} + /// + /// Keras History: (Layer, (node_index, tensor_index)) + /// + public KerasHistory KerasHistory { get; set; } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Tensors/Tensor.Operators.cs b/src/TensorFlowNET.Core/Tensors/Tensor.Operators.cs index ef71be2c0..c7a631d8b 100644 --- a/src/TensorFlowNET.Core/Tensors/Tensor.Operators.cs +++ b/src/TensorFlowNET.Core/Tensors/Tensor.Operators.cs @@ -154,103 +154,103 @@ public partial class Tensor public static Tensor operator >(Tensor lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); public static Tensor operator >(Tensor lhs, NDArray rhs) => gen_math_ops.greater(lhs, rhs); public static Tensor operator >(NDArray lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, sbyte rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(sbyte lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, byte rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(byte lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, short rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(short lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, ushort rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(ushort lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, int rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(int lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, uint rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(uint lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, ulong rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(ulong lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, long rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(long lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, float rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(float lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, double rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(double lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Tensor lhs, Complex rhs) => gen_math_ops.greater(lhs, rhs); - public static Tensor operator >(Complex lhs, Tensor rhs) => gen_math_ops.greater(lhs, rhs); + public static Tensor operator >(Tensor lhs, sbyte rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(sbyte lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >(Tensor lhs, byte rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(byte lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >(Tensor lhs, short rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(short lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >(Tensor lhs, ushort rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(ushort lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >(Tensor lhs, int rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(int lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >(Tensor lhs, uint rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(uint lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >(Tensor lhs, ulong rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(ulong lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), ops.convert_to_tensor(rhs)); + public static Tensor operator >(Tensor lhs, long rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(long lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >(Tensor lhs, float rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(float lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >(Tensor lhs, double rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(double lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >(Tensor lhs, Complex rhs) => gen_math_ops.greater(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >(Complex lhs, Tensor rhs) => gen_math_ops.greater(ops.convert_to_tensor(lhs), rhs); public static Tensor operator <(Tensor lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); public static Tensor operator <(Tensor lhs, NDArray rhs) => gen_math_ops.less(lhs, rhs); public static Tensor operator <(NDArray lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, sbyte rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(sbyte lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, byte rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(byte lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, short rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(short lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, ushort rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(ushort lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, int rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(int lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, uint rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(uint lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, ulong rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(ulong lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, long rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(long lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, float rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(float lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, double rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(double lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Tensor lhs, Complex rhs) => gen_math_ops.less(lhs, rhs); - public static Tensor operator <(Complex lhs, Tensor rhs) => gen_math_ops.less(lhs, rhs); + public static Tensor operator <(Tensor lhs, sbyte rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(sbyte lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, byte rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(byte lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, short rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(short lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, ushort rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(ushort lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, int rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(int lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, uint rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(uint lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, ulong rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(ulong lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, long rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(long lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, float rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(float lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, double rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(double lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <(Tensor lhs, Complex rhs) => gen_math_ops.less(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <(Complex lhs, Tensor rhs) => gen_math_ops.less(ops.convert_to_tensor(lhs), rhs); public static Tensor operator >=(Tensor lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); public static Tensor operator >=(Tensor lhs, NDArray rhs) => gen_math_ops.greater_equal(lhs, rhs); public static Tensor operator >=(NDArray lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, sbyte rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(sbyte lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, byte rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(byte lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, short rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(short lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, ushort rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(ushort lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, int rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(int lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, uint rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(uint lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, ulong rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(ulong lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, long rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(long lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, float rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(float lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, double rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(double lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Tensor lhs, Complex rhs) => gen_math_ops.greater_equal(lhs, rhs); - public static Tensor operator >=(Complex lhs, Tensor rhs) => gen_math_ops.greater_equal(lhs, rhs); + public static Tensor operator >=(Tensor lhs, sbyte rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(sbyte lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, byte rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(byte lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, short rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(short lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, ushort rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(ushort lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, int rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(int lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, uint rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(uint lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, ulong rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(ulong lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, long rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(long lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, float rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(float lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, double rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(double lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator >=(Tensor lhs, Complex rhs) => gen_math_ops.greater_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator >=(Complex lhs, Tensor rhs) => gen_math_ops.greater_equal(ops.convert_to_tensor(lhs), rhs); public static Tensor operator <=(Tensor lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); public static Tensor operator <=(Tensor lhs, NDArray rhs) => gen_math_ops.less_equal(lhs, rhs); public static Tensor operator <=(NDArray lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, sbyte rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(sbyte lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, byte rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(byte lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, short rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(short lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, ushort rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(ushort lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, int rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(int lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, uint rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(uint lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, ulong rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(ulong lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, long rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(long lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, float rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(float lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, double rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(double lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Tensor lhs, Complex rhs) => gen_math_ops.less_equal(lhs, rhs); - public static Tensor operator <=(Complex lhs, Tensor rhs) => gen_math_ops.less_equal(lhs, rhs); + public static Tensor operator <=(Tensor lhs, sbyte rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(sbyte lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, byte rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(byte lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, short rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(short lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, ushort rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(ushort lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, int rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(int lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, uint rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(uint lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, ulong rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(ulong lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, long rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(long lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, float rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(float lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, double rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(double lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); + public static Tensor operator <=(Tensor lhs, Complex rhs) => gen_math_ops.less_equal(lhs, ops.convert_to_tensor(rhs)); + public static Tensor operator <=(Complex lhs, Tensor rhs) => gen_math_ops.less_equal(ops.convert_to_tensor(lhs), rhs); public static Tensor operator -(Tensor x) => gen_math_ops.neg(x); diff --git a/src/TensorFlowNET.Core/Tensors/Tensor.cs b/src/TensorFlowNET.Core/Tensors/Tensor.cs index e9ab81a71..65e1c8576 100644 --- a/src/TensorFlowNET.Core/Tensors/Tensor.cs +++ b/src/TensorFlowNET.Core/Tensors/Tensor.cs @@ -87,6 +87,7 @@ public partial class Tensor : DisposableObject, public object Tag { get; set; } protected new SafeTensorHandle _handle; public virtual SafeTensorHandle Handle => _handle; + public Tensorflow.CppShapeInferenceResult.Types.HandleData HandleData { get; internal set; } protected SafeEagerTensorHandle _eagerTensorHandle; /// @@ -121,7 +122,7 @@ protected virtual Shape GetShapeInternal() if (_handle == null) { - c_api.TF_GraphGetTensorShape(op.graph, _as_tf_output(), dims, rank, tf.Status.Handle); + c_api.TF_GraphGetTensorShape(op.graph, _as_tf_output(), dims, rank, tf.Status); } else { @@ -134,10 +135,10 @@ protected virtual Shape GetShapeInternal() protected virtual void SetShapeInternal(Shape value) { - if (value == null) - c_api.TF_GraphSetTensorShape(graph, _as_tf_output(), null, -1, tf.Status.Handle); + if (value is null || value.ndim == 0 || value.ndim == -1) + c_api.TF_GraphSetTensorShape(op.graph.c_graph, _as_tf_output(), null, -1, tf.Status); else - c_api.TF_GraphSetTensorShape(graph, _as_tf_output(), value.dims, value.ndim, tf.Status.Handle); + c_api.TF_GraphSetTensorShape(op.graph.c_graph, _as_tf_output(), value.dims, value.ndim, tf.Status); } public int[] _shape_tuple() @@ -145,11 +146,6 @@ public int[] _shape_tuple() return rank < 0 ? null : shape.dims.Select(x => (int)x).ToArray(); } - /// - /// Keras History: (Layer, (node_index, tensor_index)) - /// - public KerasHistory KerasHistory { get; set; } - /// /// Updates the shape of this tensor. /// @@ -176,7 +172,9 @@ public virtual int rank if (_handle == null) { var output = _as_tf_output(); - int ndim = c_api.TF_GraphGetTensorNumDims(op.graph, output, tf.Status.Handle); + Status status = new(); + int ndim = c_api.TF_GraphGetTensorNumDims(op.graph, output, status); + status.Check(true); return ndim; } @@ -198,7 +196,7 @@ public Operation[] consumers() public TF_Output _as_tf_output() { if (!_tf_output.HasValue) - _tf_output = new TF_Output(op, value_index); + _tf_output = new TF_Output(op, _value_index); return _tf_output.Value; } diff --git a/src/TensorFlowNET.Core/Tensors/TensorArray.cs b/src/TensorFlowNET.Core/Tensors/TensorArray.cs index fb59593ce..ff74956ac 100644 --- a/src/TensorFlowNET.Core/Tensors/TensorArray.cs +++ b/src/TensorFlowNET.Core/Tensors/TensorArray.cs @@ -14,7 +14,9 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Tensorflow.Common.Types; using Tensorflow.Operations; +using static Tensorflow.Binding; namespace Tensorflow { @@ -44,5 +46,27 @@ public abstract class TensorArray : ITensorOrTensorArray public abstract Tensor stack(string name = null); public abstract Tensor gather(Tensor indices, string name = null); + + internal bool _dynamic_size; + internal Tensor _size; + internal List _colocate_with; + internal Shape _element_shape; + + public static TensorArray Create(TF_DataType dtype, Tensor size = null, bool dynamic_size = false, + bool clear_after_read = true, string tensor_array_name = null, Tensor handle = null, Tensor flow = null, + bool infer_shape = true, Shape? element_shape = null, + bool colocate_with_first_write_call = true, string name = null) + { + if (tf.Context.executing_eagerly() && (flow is null || flow.dtype != dtypes.variant)) + { + return new _EagerTensorArray(dtype, size, dynamic_size, clear_after_read, tensor_array_name, handle, flow, + infer_shape, element_shape, colocate_with_first_write_call, name); + } + else + { + return new _GraphTensorArrayV2(dtype, size, dynamic_size, clear_after_read, tensor_array_name, handle, flow, + infer_shape, element_shape, colocate_with_first_write_call, name); + } + } } } diff --git a/src/TensorFlowNET.Core/Tensors/Tensors.cs b/src/TensorFlowNET.Core/Tensors/Tensors.cs index ecd844d1f..2838b000d 100644 --- a/src/TensorFlowNET.Core/Tensors/Tensors.cs +++ b/src/TensorFlowNET.Core/Tensors/Tensors.cs @@ -3,6 +3,9 @@ using System.Collections; using System.Collections.Generic; using System.Linq; +using Tensorflow.Common.Types; +using Tensorflow.Operations; +using Tensorflow.Common.Extensions; namespace Tensorflow { @@ -13,58 +16,281 @@ namespace Tensorflow /// and Tensor[] from Tensors implicitily. /// It works for tuple and scalar as well. /// - public class Tensors : IEnumerable, IDisposable + public sealed class Tensors : Nest, IDisposable { - List items = new List(); - - public TF_DataType dtype => items.First().dtype; - public Shape shape => items.First().shape; - public int rank => items.First().rank; - public Graph graph => items.First().graph; + public TF_DataType dtype => this.First().dtype; + public Shape shape => this.First().shape; + public int rank => this.First().rank; + public Graph graph => this.First().graph; public bool IsList { get; set; } - public int Length => items.Count(); + public int Length => this.Count(); + /// + /// Return a Tensor if `Tensors` has only one tensor, otherwise throw an exception. + /// + public Tensor Single + { + get + { + if (Length != 1) + { + throw new ValueError("Tensors with more than one tensor cannot be " + + "implicitly converted to Tensor."); + } + return this.First(); + } + } - public Tensor this[int index] + /// + /// Return a Tensor if `Tensors` has only one tensor, and return null when `Tensors` is empty, + /// otherwise throw an exception. + /// + public Tensor? SingleOrNull { - get => items[index]; - set => items[index] = value; + get + { + if (Length > 1) + { + throw new ValueError($"Tensors with {Length} tensor cannot be " + + "implicitly converted to Tensor."); + } + return this.FirstOrDefault(); + } } public Tensor this[params string[] slices] - => items.First()[slices]; - public Tensors(params Tensor[] tensors) + => this.First()[slices]; + + internal Tensors(Nest nested) : base(nested) + { + + } + + public Tensors(params Tensor[] tensors): base(DealWithConstructorArrayInput(tensors)) + { + + } + + public Tensors(IList tensors) : base(tensors.Select(x => new Nest(x))) + { + + } + + public Tensors(NDArray nd): base(ops.convert_to_tensor(nd)) { - items.AddRange(tensors); + } - public Tensors(IEnumerable tensors) + /// + /// Get the element in shallow level. For example, for ts = [1, [2, 3], 4], + /// common indexer has ts[1] = 2. Shallow indexer has ts[1] = [2, 3] + /// + /// + /// + public Tensors GetShallow(int index) { - items.AddRange(tensors); + if(NestType == NestType.Node) + { + if(index > 0) + { + throw new IndexOutOfRangeException(); + } + return this; + } + else if(NestType == NestType.List) + { + return ListValue![index].AsNest().ToTensors(); + } + else + { + throw new NotImplementedException(); + } } - public Tensors(NDArray nd) + private static Nest DealWithConstructorArrayInput(Tensor[] tensors) { - items.Add(ops.convert_to_tensor(nd)); + if (tensors.Length == 0) + { + return Nest.Empty; + } + else if(tensors.Length == 1) + { + return new Nest(tensors[0]); + } + else + { + return new Nest(tensors.Select(x => new Nest(x))); + } } - public IEnumerator GetEnumerator() + public bool IsSingle() { - foreach (var tensor in items) - yield return tensor; + return Length == 1; } + public new Tensors MergeWith(Nest? other) + { + return FromNest(base.MergeWith(other)); + } + + [Obsolete("This method is not encouraged to be used. It may be removed in the future. If you do want to add " + + "a tensor to `Tensors`, creating a new instance with your newly added tensor is a better choice.")] public void Add(Tensor tensor) - => items.Add(tensor); + { + if(NestType == NestType.Dictionary) + { + throw new ValueError("Cannot add a tensor to dictionary type of nested tensors."); + } + else if(NestType == NestType.Node) + { + NestType = NestType.List; + ListValue = new() { new Nest(NodeValue), new Nest(tensor) }; + NodeValue = null; + } + else if(NestType == NestType.List) + { + ListValue!.Add(new Nest(tensor)); + } + else //Empty + { + NestType = NestType.Node; + NodeValue = tensor; + } + } - public void AddRange(Tensor[] tensors) - => items.AddRange(tensors); + [Obsolete("This method is not encouraged to be used. It may be removed in the future. If you do want to add " + + "some tensors to `Tensors`, creating a new instance with your newly added tensors is a better choice.")] + public void AddRange(IEnumerable tensors) + { + if (NestType == NestType.Dictionary) + { + throw new ValueError("Cannot add a tensor to dictionary type of nested tensors."); + } + else if (NestType == NestType.Node) + { + NestType = NestType.List; + ListValue = new() { new Nest(NodeValue) }; + ListValue.AddRange(tensors.Select(x => new Nest(x))); + NodeValue = null; + } + else if(NestType == NestType.List) + { + ListValue!.AddRange(tensors.Select(x => new Nest(x))); + } + else // empty + { + NestType = NestType.List; + ListValue = tensors.Select(x => new Nest(x) as INestStructure).ToList(); + } + } + [Obsolete("This method is not encouraged to be used. It may be removed in the future. If you do want to insert " + + "a tensor to `Tensors`, creating a new instance with your newly added tensor is a better choice.")] public void Insert(int index, Tensor tensor) - => items.Insert(index, tensor); + { + if (NestType == NestType.List) + { + ListValue.Insert(index, new Nest(tensor)); + } + else if(NestType == NestType.Node) + { + NestType = NestType.List; + ListValue = new() { new Nest(NodeValue) }; + ListValue.Insert(index, new Nest(tensor)); + NodeValue = null; + } + else + { + throw new ValueError("Cannot add a tensor to dictionary type of nested tensors."); + } + } + + public string[] StringData() + { + return Single.StringData(); + } - IEnumerator IEnumerable.GetEnumerator() - => GetEnumerator(); + public string StringData(int index) + { + return Single.StringData(index); + } + public NDArray numpy() + { + return Single.numpy(); + } + + [Obsolete] + public T[] ToArray() where T: unmanaged + { + return Single.ToArray(); + } + + #region Explicit Conversions + public static explicit operator bool(Tensors tensor) + { + return (bool)tensor.Single; + } + + public static explicit operator sbyte(Tensors tensor) + { + return (sbyte)tensor.Single; + } + + public static explicit operator byte(Tensors tensor) + { + return (byte)tensor.Single; + } + + public static explicit operator ushort(Tensors tensor) + { + return (ushort)tensor.Single; + } + + public static explicit operator short(Tensors tensor) + { + return (short)tensor.Single; + } + + public static explicit operator int(Tensors tensor) + { + return (int)tensor.Single; + } + + public static explicit operator uint(Tensors tensor) + { + return (uint)tensor.Single; + } + + public static explicit operator long(Tensors tensor) + { + return (long)tensor.Single; + } + + public static explicit operator ulong(Tensors tensor) + { + return (ulong)tensor.Single; + } + + public static explicit operator float(Tensors tensor) + { + return (byte)tensor.Single; + } + + public static explicit operator double(Tensors tensor) + { + return (double)tensor.Single; + } + + public static explicit operator string(Tensors tensor) + { + return (string)tensor.Single; + } + + public static explicit operator object[](Tensors tensors) + => tensors.Flatten().ToArray(); + #endregion + + #region Implicit Conversions public static implicit operator Tensors(Tensor tensor) => new Tensors(tensor); @@ -81,27 +307,44 @@ public static implicit operator Tensors(Tensor[] tensors) public static implicit operator Tensors(List tensors) => new Tensors(tensors.ToArray()); - public static implicit operator Tensor(Tensors tensors) - => tensors.FirstOrDefault(); + public static implicit operator Tensor(Tensors? tensors) + => tensors?.SingleOrNull; public static implicit operator Tensor[](Tensors tensors) - => tensors.items.ToArray(); + => tensors.Flatten().ToArray(); + #endregion - public void Deconstruct(out Tensor a, out Tensor b) + public static Tensors? FromNest(Nest nested) { - a = items[0]; - b = items[1]; + if(nested == Nest.Empty) + { + return null; + } + return new Tensors(nested); + } + + public void Deconstruct(out Tensor a, out Tensors? b) + { + a = this.First(); + b = Length == 1? null : new Tensors(this.Skip(1).ToArray()); } public override string ToString() - => items.Count() == 1 - ? items.First().ToString() - : items.Count() + " Tensors" + ". " + string.Join(", ", items.Select(x => x.name)); + { + if(Length == 1) + { + return this.First().ToString(); + } + else + { + return $"Totally {Length} tensors: {base.ToString()}"; + } + } public void Dispose() { - foreach (var item in items) - item.Dispose(); + foreach (var tensor in this) + tensor.Dispose(); } } } diff --git a/src/TensorFlowNET.Core/Tensors/c_api.tensor.cs b/src/TensorFlowNET.Core/Tensors/c_api.tensor.cs index 2e7edc66d..3779ddcfd 100644 --- a/src/TensorFlowNET.Core/Tensors/c_api.tensor.cs +++ b/src/TensorFlowNET.Core/Tensors/c_api.tensor.cs @@ -71,7 +71,7 @@ public partial class c_api /// /// [DllImport(TensorFlowLibName)] - public static extern SafeTensorHandle TF_NewTensor(TF_DataType dataType, long[] dims, int num_dims, IntPtr data, ulong len, Deallocator deallocator, IntPtr deallocator_arg); + public static extern SafeTensorHandle TF_NewTensor(TF_DataType dataType, long[] dims, int num_dims, IntPtr data, ulong len, DeallocatorV2 deallocator, IntPtr deallocator_arg); public static unsafe SafeTensorHandle TF_NewTensor(byte[] data, Shape shape, TF_DataType dtype) { @@ -147,6 +147,15 @@ public static unsafe SafeTensorHandle TF_NewTensor(T value) [DllImport(TensorFlowLibName)] public static extern TF_DataType TF_TensorType(SafeTensorHandle tensor); + /// + /// Set a new shape for the Tensor. Note that this API only works after tf2.11. + /// + /// + /// + /// + [DllImport(TensorFlowLibName)] + public static extern void TF_SetShape(SafeTensorHandle tensor, long[] dims, int num_dims); + /// /// Return the size in bytes required to encode a string `len` bytes long into a /// TF_STRING tensor. diff --git a/src/TensorFlowNET.Core/Tensors/constant_op.cs b/src/TensorFlowNET.Core/Tensors/constant_op.cs index 2c9035177..1a825e0cb 100644 --- a/src/TensorFlowNET.Core/Tensors/constant_op.cs +++ b/src/TensorFlowNET.Core/Tensors/constant_op.cs @@ -153,6 +153,10 @@ static Tensor convert_to_eager_tensor(object value, bool allow_broadcast) { var t = convert_to_eager_tensor(value, tf.Context, dtype: dtype); + if (dtype != TF_DataType.DtInvalid && dtype != t.dtype) + { + t = math_ops.cast(t, dtype); + } if (shape is null || shape.IsNull) return t; diff --git a/src/TensorFlowNET.Core/Tensors/dtypes.cs b/src/TensorFlowNET.Core/Tensors/dtypes.cs index 372ac6762..5b4db53b9 100644 --- a/src/TensorFlowNET.Core/Tensors/dtypes.cs +++ b/src/TensorFlowNET.Core/Tensors/dtypes.cs @@ -159,7 +159,10 @@ public static TF_DataType tf_dtype_from_name(string name) "uint32" => TF_DataType.TF_UINT32, "int64" => TF_DataType.TF_INT64, "uint64" => TF_DataType.TF_UINT64, + "float16" => TF_DataType.TF_BFLOAT16, + "float32" => TF_DataType.TF_FLOAT, "single" => TF_DataType.TF_FLOAT, + "float64" => TF_DataType.TF_DOUBLE, "double" => TF_DataType.TF_DOUBLE, "complex" => TF_DataType.TF_COMPLEX128, "string" => TF_DataType.TF_STRING, @@ -202,6 +205,24 @@ public static string as_numpy_name(this TF_DataType type) _ => type.ToString() }; + public static string as_python_name(this TF_DataType type) + => type switch + { + TF_DataType.TF_STRING => "str", + TF_DataType.TF_UINT8 => "uint8", + TF_DataType.TF_INT8 => "int8", + TF_DataType.TF_UINT32 => "uint32", + TF_DataType.TF_INT32 => "int32", + TF_DataType.TF_UINT64 => "uint64", + TF_DataType.TF_INT64 => "int64", + TF_DataType.TF_FLOAT => "float32", + TF_DataType.TF_DOUBLE => "float64", + TF_DataType.TF_BOOL => "bool", + TF_DataType.TF_RESOURCE => "resource", + TF_DataType.TF_VARIANT => "variant", + _ => type.ToString() + }; + public static int get_datatype_size(this TF_DataType type) => type.as_base_dtype() switch { @@ -280,6 +301,17 @@ public static bool is_integer(this TF_DataType type) type == TF_DataType.DtInt32Ref || type == TF_DataType.DtInt64Ref; } + public static bool is_unsigned(this TF_DataType type) + { + return type == TF_DataType.TF_UINT8 || type == TF_DataType.TF_UINT16 || type == TF_DataType.TF_UINT32 || + type == TF_DataType.TF_UINT64; + } + + public static bool is_bool(this TF_DataType type) + { + return type == TF_DataType.TF_BOOL; + } + public static bool is_floating(this TF_DataType type) { return type == TF_DataType.TF_HALF || type == TF_DataType.TF_FLOAT || type == TF_DataType.TF_DOUBLE; diff --git a/src/TensorFlowNET.Core/Tensors/shape_utils.cs b/src/TensorFlowNET.Core/Tensors/shape_utils.cs index 254cdad89..a77dd34ce 100644 --- a/src/TensorFlowNET.Core/Tensors/shape_utils.cs +++ b/src/TensorFlowNET.Core/Tensors/shape_utils.cs @@ -1,5 +1,6 @@ using System; using System.Linq; +using Tensorflow.Eager; using static Tensorflow.Binding; namespace Tensorflow @@ -13,5 +14,31 @@ public static Tensor static_or_dynamic_map_fn(Func fn, Tensor el throw new NotImplementedException(""); } + + public static Shape from_object_array(object[] shape) + { + var dims = shape.Select(x => + { + if (x is KerasTensor kt && kt.inferred_value != null) + { + return kt.inferred_value.as_int_list()[0]; + } + else if (x is EagerTensor et && et.dtype == TF_DataType.TF_INT32) + { + return et.ToArray()[0]; + } + else if (x is int i) + { + return i; + } + else if (x is long l) + { + return l; + } + throw new NotImplementedException(); + }).ToArray(); + + return new Shape(dims); + } } } diff --git a/src/TensorFlowNET.Core/Tensors/tensor_util.cs b/src/TensorFlowNET.Core/Tensors/tensor_util.cs index 5f09f202f..6e5024efd 100644 --- a/src/TensorFlowNET.Core/Tensors/tensor_util.cs +++ b/src/TensorFlowNET.Core/Tensors/tensor_util.cs @@ -1,4 +1,4 @@ -/***************************************************************************** +/***************************************************************************** Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); @@ -22,6 +22,7 @@ limitations under the License. using Tensorflow.Eager; using Tensorflow.Graphs; using static Tensorflow.Binding; +using System.Diagnostics; namespace Tensorflow { @@ -64,28 +65,68 @@ public static NDArray MakeNdarray(TensorProto tensor) var num_elements = shape.size; var tensor_dtype = tensor.Dtype.as_tf_dtype(); + T[] ExpandArrayToSize(IList src) + { + if (src.Count == 0) + { + return new T[0]; + } + var pad_count = num_elements - src.Count; + var pre = pad_count / 2; + var after = pad_count - pre; + var first_elem = src[0]; + var last_elem = src[src.Count - 1]; + T[] res = new T[num_elements]; + for (long i = 0; i < num_elements; i++) + { + if (i < pre) res[i] = first_elem; + else if (i >= num_elements - after) res[i] = last_elem; + else res[i] = src[(int)(i - pre)]; + } + return res; + } + if (shape.ndim > 0 && tensor.TensorContent.Length > 0) { return np.frombuffer(tensor.TensorContent.ToByteArray(), shape, tensor_dtype); } - else if (tensor.Dtype == DataType.DtHalf || tensor.Dtype == DataType.DtBfloat16) + NDArray values; + if (tensor.Dtype == DataType.DtHalf || tensor.Dtype == DataType.DtBfloat16) { - return np.array(tensor.HalfVal.ToArray()).reshape(shape); + values = np.array(ExpandArrayToSize(tensor.HalfVal)); } else if (tensor.Dtype == DataType.DtFloat) { - return np.array(tensor.FloatVal.ToArray()).reshape(shape); + values = np.array(ExpandArrayToSize(tensor.FloatVal)); } else if (new DataType[] { DataType.DtInt32, DataType.DtUint8 }.Contains(tensor.Dtype)) { - return np.array(tensor.IntVal.ToArray()).reshape(shape); + values = np.array(ExpandArrayToSize(tensor.IntVal)); + } + else if (new DataType[] { DataType.DtInt64 }.Contains(tensor.Dtype)) + { + values = np.array(ExpandArrayToSize(tensor.Int64Val)); + } + else if (new DataType[] { DataType.DtUint64 }.Contains(tensor.Dtype)) + { + values = np.array(ExpandArrayToSize(tensor.Uint64Val)); } else if (tensor.Dtype == DataType.DtBool) { - return np.array(tensor.BoolVal.ToArray()).reshape(shape); + values = np.array(ExpandArrayToSize(tensor.BoolVal)); + } + else + { + throw new TypeError($"Unsupported tensor type: {tensor.Dtype}. See " + + $"https://www.tensorflow.org/api_docs/python/tf/dtypes for supported TF dtypes."); } - throw new NotImplementedException("MakeNdarray"); + if (values.size == 0) + { + return np.zeros(shape, tensor_dtype); + } + + return values.reshape(shape); } private static readonly TF_DataType[] quantized_types = new TF_DataType[] @@ -94,6 +135,47 @@ public static NDArray MakeNdarray(TensorProto tensor) TF_DataType.TF_QINT32 }; + private static Array ConvertArray(Array inputArray, Func converter) + { + if (inputArray == null) + throw new ArgumentNullException(nameof(inputArray)); + + var elementType = typeof(TOut); + var lengths = new int[inputArray.Rank]; + for (var i = 0; i < inputArray.Rank; i++) + { + lengths[i] = inputArray.GetLength(i); + } + + var outputArray = Array.CreateInstance(elementType, lengths); + + FillArray(inputArray, outputArray, converter, new int[inputArray.Rank], 0); + + return outputArray; + } + + private static void FillArray(Array inputArray, Array outputArray, Func converter, int[] indices, int dimension) + { + if (dimension == inputArray.Rank - 1) + { + for (int i = 0; i < inputArray.GetLength(dimension); i++) + { + indices[dimension] = i; + var inputValue = (TIn)inputArray.GetValue(indices); + var convertedValue = converter(inputValue); + outputArray.SetValue(convertedValue, indices); + } + } + else + { + for (int i = 0; i < inputArray.GetLength(dimension); i++) + { + indices[dimension] = i; + FillArray(inputArray, outputArray, converter, indices, dimension + 1); + } + } + } + /// /// Create a TensorProto, invoked in graph mode /// @@ -113,17 +195,30 @@ public static TensorProto make_tensor_proto(object values, TF_DataType dtype = T var origin_dtype = values.GetDataType(); if (dtype == TF_DataType.DtInvalid) dtype = origin_dtype; - else if(origin_dtype != dtype) + else if (origin_dtype != dtype) { var new_system_dtype = dtype.as_system_dtype(); - if (values is long[] long_values) + + if (dtype != TF_DataType.TF_STRING && dtype != TF_DataType.TF_VARIANT && dtype != TF_DataType.TF_RESOURCE) + { + if (values is Array arrayValues) + { + values = dtype switch + { + TF_DataType.TF_INT32 => ConvertArray(arrayValues, Convert.ToInt32), + TF_DataType.TF_FLOAT => ConvertArray(arrayValues, Convert.ToSingle), + TF_DataType.TF_DOUBLE => ConvertArray(arrayValues, Convert.ToDouble), + _ => values, + }; + } else + { + values = Convert.ChangeType(values, new_system_dtype); + } + + } else { - if (dtype == TF_DataType.TF_INT32) - values = long_values.Select(x => (int)Convert.ChangeType(x, new_system_dtype)).ToArray(); - } - else - values = Convert.ChangeType(values, new_system_dtype); + } dtype = values.GetDataType(); } @@ -203,6 +298,9 @@ public static TensorProto make_tensor_proto(object values, TF_DataType dtype = T case sbyte val: tensor_proto.IntVal.AddRange(new[] { (int)val }); break; + case byte val: + tensor_proto.IntVal.AddRange(new[] { (int)val }); + break; case int val: tensor_proto.IntVal.AddRange(new[] { val }); break; @@ -216,7 +314,7 @@ public static TensorProto make_tensor_proto(object values, TF_DataType dtype = T tensor_proto.DoubleVal.AddRange(new[] { val }); break; default: - throw new Exception("make_tensor_proto Not Implemented"); + throw new Exception($"make_tensor_proto Not Implemented {values.GetType().Name}"); } } @@ -238,7 +336,7 @@ bool hasattr(Graph property, string attr) if (tensor is EagerTensor eagerTensor) { - if(tensor.dtype == tf.int64) + if (tensor.dtype == tf.int64) return new Shape(tensor.ToArray()); else return new Shape(tensor.ToArray()); @@ -413,7 +511,7 @@ bool hasattr(Graph property, string attr) var d_ = new int[value.size]; foreach (var (index, d) in enumerate(value.ToArray())) d_[index] = d >= 0 ? d : -1; - + ret = ret.merge_with(new Shape(d_)); } return ret; @@ -604,5 +702,24 @@ public static ParsedSliceArgs ParseSlices(Tensor start, Tensor stop = null, Tens NewAxisMask = new_axis_mask }; } + + /// + /// Warning: this method is an extremely dangerous method. It directly changes the dtype inside the tensor + /// and security is not guaranteed at all. Currently this method is only used for some conditions to reuse + /// the existing memory. Any other usage should be prevented. If you are sure you want to use it when + /// developing tensorflow.net, please ask @Oceanic2018 or @AsakusaRinne first. + /// + /// + /// + internal static unsafe void DangerousManuallySetTensorDType(SafeTensorHandle handle, TF_DataType dtype) + { + long tf_tensor_address = handle.DangerousGetHandle().ToInt64(); + long interface_address = *(long*)(tf_tensor_address); + long tensor_shape_address = interface_address + 8; + long tensor_dtype_address = tensor_shape_address + 13; + byte* dtype_pointer = (byte*)tensor_dtype_address; + *dtype_pointer = (byte)dtype; + Debug.Assert(c_api.TF_TensorType(handle) == dtype); + } } } diff --git a/src/TensorFlowNET.Core/Tensors/tf.constant.cs b/src/TensorFlowNET.Core/Tensors/tf.constant.cs index 6a62d34a5..ac26b3da3 100644 --- a/src/TensorFlowNET.Core/Tensors/tf.constant.cs +++ b/src/TensorFlowNET.Core/Tensors/tf.constant.cs @@ -46,6 +46,9 @@ public Tensor zeros(Tensor shape, TF_DataType dtype = TF_DataType.TF_FLOAT, stri public Tensor ones(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) => array_ops.ones(shape, dtype, name); + public Tensor ones(Tensor shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) + => array_ops.ones(shape, dtype, name); + public Tensor size(Tensor input, string name = null, TF_DataType out_type = TF_DataType.TF_INT32) => array_ops.size(input, diff --git a/src/TensorFlowNET.Core/Trackables/AssetResource.cs b/src/TensorFlowNET.Core/Trackables/AssetResource.cs new file mode 100644 index 000000000..6e8d05a8c --- /dev/null +++ b/src/TensorFlowNET.Core/Trackables/AssetResource.cs @@ -0,0 +1,18 @@ +using Google.Protobuf.Collections; +using System.IO; +using Tensorflow.Train; + +namespace Tensorflow.Trackables; + +public class AssetResource : Trackable +{ + public static (Trackable, Action) deserialize_from_proto(SavedObject object_proto, + string export_dir, + RepeatedField asset_file_def, + Dictionary> operation_attributes) + { + var proto = object_proto.Asset; + var filename = Path.Combine(export_dir, asset_file_def[proto.AssetFileDefIndex].Filename); + return (new AssetResource(), null); + } +} diff --git a/src/TensorFlowNET.Core/Trackables/CapturableResource.cs b/src/TensorFlowNET.Core/Trackables/CapturableResource.cs new file mode 100644 index 000000000..d93f786dc --- /dev/null +++ b/src/TensorFlowNET.Core/Trackables/CapturableResource.cs @@ -0,0 +1,7 @@ +using Tensorflow.Train; + +namespace Tensorflow.Trackables; + +public class CapturableResource : Trackable +{ +} diff --git a/src/TensorFlowNET.Core/Trackables/RestoredResource.cs b/src/TensorFlowNET.Core/Trackables/RestoredResource.cs new file mode 100644 index 000000000..cb9f6aa0b --- /dev/null +++ b/src/TensorFlowNET.Core/Trackables/RestoredResource.cs @@ -0,0 +1,13 @@ +using Google.Protobuf.Collections; +using Tensorflow.Train; + +namespace Tensorflow.Trackables; + +public class RestoredResource : TrackableResource +{ + public static (Trackable, Action) deserialize_from_proto(SavedObject object_proto, + Dictionary> operation_attributes) + { + return (new RestoredResource(), null); + } +} diff --git a/src/TensorFlowNET.Core/Trackables/TrackableConstant.cs b/src/TensorFlowNET.Core/Trackables/TrackableConstant.cs new file mode 100644 index 000000000..d65446f3d --- /dev/null +++ b/src/TensorFlowNET.Core/Trackables/TrackableConstant.cs @@ -0,0 +1,34 @@ +using Google.Protobuf.Collections; +using Tensorflow.Train; +using static Tensorflow.Binding; + +namespace Tensorflow.Trackables; + +public class TrackableConstant : Trackable +{ + Tensor _constant; + public TrackableConstant(Tensor constant) + { + _constant = constant; + } + + public static (Tensor, Action) deserialize_from_proto(SavedObject object_proto, + Dictionary> operation_attributes) + { + var tensor_proto = operation_attributes[object_proto.Constant.Operation]["value"].Tensor; + var ndarray = tensor_util.MakeNdarray(tensor_proto); + Tensor imported_constant; + if (tensor_proto.Dtype == DataType.DtString) + { + imported_constant = tf_with(ops.device("CPU"), _ => + { + return constant_op.constant(ndarray); + }); + } + else + { + imported_constant = constant_op.constant(ndarray); + } + return (imported_constant, null); + } +} diff --git a/src/TensorFlowNET.Core/Trackables/TrackableResource.cs b/src/TensorFlowNET.Core/Trackables/TrackableResource.cs new file mode 100644 index 000000000..43cbc5a20 --- /dev/null +++ b/src/TensorFlowNET.Core/Trackables/TrackableResource.cs @@ -0,0 +1,5 @@ +namespace Tensorflow.Trackables; + +public class TrackableResource : CapturableResource +{ +} diff --git a/src/TensorFlowNET.Core/Training/AutoTrackable.cs b/src/TensorFlowNET.Core/Training/AutoTrackable.cs index d2198e37e..20631ce82 100644 --- a/src/TensorFlowNET.Core/Training/AutoTrackable.cs +++ b/src/TensorFlowNET.Core/Training/AutoTrackable.cs @@ -1,6 +1,90 @@ -namespace Tensorflow.Train +using System.Collections.Generic; +using System.Linq; +using Tensorflow.Functions; +using Tensorflow.Keras.Saving.SavedModel; +using Tensorflow.Operations.Activation; +using Tensorflow.Training; +using static Tensorflow.Binding; + +namespace Tensorflow.Train { - public abstract class AutoTrackable : Trackable + public class AutoTrackable : Trackable { + public void _delete_tracking(string name) + { + _maybe_initialize_trackable(); + if (_unconditional_dependency_names.ContainsKey(name)) + { + _unconditional_dependency_names.Remove(name); + for (int i = _unconditional_checkpoint_dependencies.Count - 1; i >= 0; i--) + { + if (_unconditional_checkpoint_dependencies[i].Name == name) + { + _unconditional_checkpoint_dependencies.RemoveAt(i); + } + } + } + } + + public override void SetAttr(string name, object value) + { + // TODO(Rinne): deal with `self_setattr_tracking`. + value = TrackableDataStructure.sticky_attribute_assignment(this, name, value); + base.SetAttr(name, value); + } + + public override IDictionary _trackable_children(SaveType save_type, IDictionary>? cache = null) + { + if(save_type != SaveType.SAVEDMODEL) + { + return base._trackable_children(save_type, cache); + } + + Dictionary functions = new(); + // TODO: process of logs. + // TODO(Rinne): deal with members. + var properties = this.GetType().GetProperties(); + foreach ( var property in properties ) + { + if(property.PropertyType == typeof(Function) || property.PropertyType == typeof(ConcreteFunction)) + { + string name = property.Name; + object value = property.GetValue(this, null); + functions[name] = (Trackable)value; + } + } + + foreach(var item in CustomizedFields) + { + var name = item.Key; + var value = item.Value; + if (value is Function or ConcreteFunction) + { + functions[name] = (Trackable)value; + } + } + + // TODO: process the type `core_types.GenericFunction`. + + Dictionary children = new(); + foreach(var pair in CheckpointDependencies) + { + var name = pair.Name; + var child = pair.Refer; + if(child is ConcreteFunction) // or Generic function + { + continue; + } + if(functions.ContainsKey(name) && functions[name] != child) + { + throw new ValueError($"Can't save object because it has multiple children with the same " + + $"name. Object: {this}, attribute name: {name}, child 1: " + + $"{child}, child 2: {functions[name]}"); + } + children[name] = child; + } + + return children.Concat(functions).ToDictionary(x => x.Key, x => x.Value); + } } } diff --git a/src/TensorFlowNET.Core/Training/IWithTrackable.cs b/src/TensorFlowNET.Core/Training/IWithTrackable.cs new file mode 100644 index 000000000..87eda8795 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/IWithTrackable.cs @@ -0,0 +1,12 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Train; + +namespace Tensorflow.Training +{ + public interface IWithTrackable + { + Trackable GetTrackable(); + } +} diff --git a/src/TensorFlowNET.Core/Training/LayerUtils.cs b/src/TensorFlowNET.Core/Training/LayerUtils.cs new file mode 100644 index 000000000..211419651 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/LayerUtils.cs @@ -0,0 +1,9 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Train; + +namespace Tensorflow.Training +{ + +} diff --git a/src/TensorFlowNET.Core/Training/Optimizer.cs b/src/TensorFlowNET.Core/Training/Optimizer.cs index f985c6566..e656fe96d 100644 --- a/src/TensorFlowNET.Core/Training/Optimizer.cs +++ b/src/TensorFlowNET.Core/Training/Optimizer.cs @@ -351,7 +351,7 @@ public virtual void _prepare() /// /// /// - protected IVariableV1 get_slot(IVariableV1 var, string name) + internal IVariableV1 get_slot(IVariableV1 var, string name) { var named_slots = _slots.ContainsKey(name) ? _slots[name] : null; if (named_slots == null) @@ -360,6 +360,11 @@ protected IVariableV1 get_slot(IVariableV1 var, string name) return named_slots.ContainsKey(_var_key(var)) ? named_slots[_var_key(var)] : null; } + internal IEnumerable get_slot_names() + { + return _slots.Keys; + } + private string _var_key(IVariableV1 var) { return $"{var.Op.graph.graph_key}.{var.Op.name}"; diff --git a/src/TensorFlowNET.Core/Training/Saving/BaseSaverBuilder.cs b/src/TensorFlowNET.Core/Training/Saving/BaseSaverBuilder.cs index 10a85d9d9..e16f82c05 100644 --- a/src/TensorFlowNET.Core/Training/Saving/BaseSaverBuilder.cs +++ b/src/TensorFlowNET.Core/Training/Saving/BaseSaverBuilder.cs @@ -106,7 +106,7 @@ public virtual SaverDef _build_internal(IVariableV1[] names_to_saveables, name = scope; // Add a placeholder string tensor for the filename. - var filename_tensor = array_ops.placeholder_with_default(string.IsNullOrEmpty(filename) ? "model" : filename, shape: new int[0], name: "filename"); + var filename_tensor = array_ops.placeholder_with_default(tf.convert_to_tensor(string.IsNullOrEmpty(filename) ? "model" : filename), shape: new int[0], name: "filename"); // Keep the name "Const" for backwards compatibility. filename_tensor = gen_array_ops.placeholder_with_default(filename_tensor, shape: new int[0], name: "Const"); diff --git a/src/TensorFlowNET.Core/Training/Saving/ResourceVariableSaveable.cs b/src/TensorFlowNET.Core/Training/Saving/ResourceVariableSaveable.cs index 167c635a8..587dede40 100644 --- a/src/TensorFlowNET.Core/Training/Saving/ResourceVariableSaveable.cs +++ b/src/TensorFlowNET.Core/Training/Saving/ResourceVariableSaveable.cs @@ -14,6 +14,8 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using static Tensorflow.Binding; + namespace Tensorflow { public class ResourceVariableSaveable : MySaveableObject @@ -35,12 +37,48 @@ public ResourceVariableSaveable(Tensor var, string slice_spec, string name) this.name = name; } + public ResourceVariableSaveable(BaseResourceVariable var, string slice_spec, string name) + { + _var_device = var.Device; + _var_shape = var.shape; + + Func _read_variable_closure(BaseResourceVariable v) + { + return () => + { + return tf_with(ops.device(v.Device), _ => + { + if (tf.Context.executing_eagerly() && !((bool)v.is_initialized().numpy())) + { + return null; + } + var x = v.read_value_no_copy(); + return tf_with(ops.device("/device:CPU:0"), _ => + { + return array_ops.identity(x); + }); + }); + }; + } + + this.handle_op = var.Handle; + var tensor_creator = _read_variable_closure(var); + + var spec = new SaveSpec(tensor_creator, slice_spec, name, dtype: var.dtype, device: var.Device); + _op = var; + specs = new SaveSpec[] { spec }; + this.name = name; + } + public override Operation restore(Tensor[] restored_tensors, Shape[] restored_shapes = null) { var restored_tensor = restored_tensors[0]; - restored_tensor = array_ops.identity(restored_tensor); - return resource_variable_ops.shape_safe_assign_variable_handle( + return tf_with(ops.device(_var_device), _ => + { + restored_tensor = array_ops.identity(restored_tensor); + return resource_variable_ops.shape_safe_assign_variable_handle( handle_op, _var_shape, restored_tensor); + }); } } } diff --git a/src/TensorFlowNET.Core/Training/Saving/SaveSpec.cs b/src/TensorFlowNET.Core/Training/Saving/SaveSpec.cs index 1ae912ce6..2b300c2a9 100644 --- a/src/TensorFlowNET.Core/Training/Saving/SaveSpec.cs +++ b/src/TensorFlowNET.Core/Training/Saving/SaveSpec.cs @@ -14,6 +14,8 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Tensorflow.Exceptions; + namespace Tensorflow { /// @@ -21,24 +23,63 @@ namespace Tensorflow /// public class SaveSpec { - private Tensor _tensor; - public Tensor tensor => _tensor; + private Tensor _tensor = null; + private Func _tensor_creator = null; + public Tensor tensor + { + get + { + if(_tensor is not null || _tensor_creator is null) + { + return _tensor; + } + else + { + return _tensor_creator(); + } + } + } + + internal Func TensorCreator => _tensor_creator; private string _slice_spec; public string slice_spec => _slice_spec; private string _name; - public string name => _name; + public string name { get => _name; set => _name = value; } private TF_DataType _dtype; public TF_DataType dtype => _dtype; + private string _device; + public string device => _device; - public SaveSpec(Tensor tensor, string slice_spec, string name, TF_DataType dtype = TF_DataType.DtInvalid) + public SaveSpec(Tensor tensor, string slice_spec, string name, TF_DataType dtype = TF_DataType.DtInvalid, string device = null) { _tensor = tensor; _slice_spec = slice_spec; _name = name; _dtype = dtype; + if(device is not null) + { + _device = device; + } + else + { + _device = tensor.Device; + } + } + + public SaveSpec(Func tensor_creator, string slice_spec, string name, TF_DataType dtype = TF_DataType.DtInvalid, string device = null) + { + _tensor_creator = tensor_creator; + _slice_spec = slice_spec; + _name = name; + if(dtype == TF_DataType.DtInvalid || device is null) + { + throw new AssertionError("When passing a callable `tensor` to a SaveSpec, an explicit dtype and device must be provided."); + } + _dtype = dtype; + _device = device; } } } diff --git a/src/TensorFlowNET.Core/Training/Saving/SaveableObject.cs b/src/TensorFlowNET.Core/Training/Saving/SaveableObject.cs index c86075f86..f8c979757 100644 --- a/src/TensorFlowNET.Core/Training/Saving/SaveableObject.cs +++ b/src/TensorFlowNET.Core/Training/Saving/SaveableObject.cs @@ -14,11 +14,50 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using OneOf; +using Tensorflow.Checkpoint; + namespace Tensorflow { public class MySaveableObject { - public Tensor op; + protected OneOf _op; + public Tensor op + { + get + { + if(_op.TryPickT0(out var tensor, out var _)) + { + return tensor; + } + else + { + throw new TypeError("The _op is not a tensor."); + } + } + set + { + _op = value; + } + } + public BaseResourceVariable variable + { + get + { + if (_op.TryPickT1(out var v, out var _)) + { + return v; + } + else + { + throw new TypeError("The _op is not a variable."); + } + } + set + { + _op = value; + } + } public SaveSpec[] specs; public string name; public string device; @@ -35,7 +74,7 @@ public MySaveableObject(Tensor var, string slice_spec, string name) public MySaveableObject(Tensor op, SaveSpec[] specs, string name) { - this.op = op; + this._op = op; this.specs = specs; this.name = name; } @@ -48,4 +87,18 @@ public virtual Operation restore(Tensor[] restored_tensors, Shape[] restored_sha validate_shape: restored_shapes == null && op.shape.IsFullyDefined); } } + + public class NoRestoreSaveable: MySaveableObject + { + public NoRestoreSaveable(Tensor tensor, string name, TF_DataType dtype = TF_DataType.DtInvalid, string? device = null) : base(tensor, + new SaveSpec[] { new SaveSpec(tensor, "", name, dtype) }, name) + { + + } + + public override Operation restore(Tensor[] restored_tensors, Shape[] restored_shapes = null) + { + return control_flow_ops.no_op(); + } + } } diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/AssetInfo.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/AssetInfo.cs new file mode 100644 index 000000000..d10257822 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/AssetInfo.cs @@ -0,0 +1,11 @@ +using System.Collections.Generic; + +namespace Tensorflow; + +public record class AssetInfo +( + List asset_defs, + Dictionary asset_initializers_by_resource, + Dictionary asset_filename_map, + Dictionary asset_index +); diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/AugmentedGraphView.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/AugmentedGraphView.cs new file mode 100644 index 000000000..9d0b3f001 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/AugmentedGraphView.cs @@ -0,0 +1,129 @@ +using System; +using Tensorflow.Checkpoint; +using Tensorflow.Train; +using System.Collections.Generic; +using System.Linq; +using Tensorflow.Functions; +using Tensorflow.Keras.Saving.SavedModel; + +namespace Tensorflow; + +public class AugmentedGraphView: ObjectGraphView +{ + private Dictionary> _children_cache; + private Dictionary> _serialization_cache; + private List _untraces_functions; + private Dictionary _wrapped_functions; + public AugmentedGraphView(Trackable root): base(root) + { + _children_cache= new Dictionary>(); + _serialization_cache = new Dictionary>(); + _untraces_functions = new List(); + _wrapped_functions = new Dictionary(); + } + + public void set_signature(SignatureMap signature_map, IDictionary wrapped_functions) + { + list_children(Root); + var name = SignatureSerializationUtils.SIGNATURE_ATTRIBUTE_NAME; + if (!_children_cache.ContainsKey(Root)) + { + _children_cache[Root] = new Dictionary(); + } + _children_cache[Root][name] = signature_map; + _wrapped_functions = _wrapped_functions.Concat(wrapped_functions).ToDictionary(x => x.Key, x => x.Value); + } + + public override List list_children(Trackable obj, SaveType save_type = SaveType.SAVEDMODEL, IDictionary>? serialization_cache = null) + { + if(serialization_cache is not null) + { + throw new ValueError("Serialization cache should not be passed to `AugmentedGraphView.list_children`, please either remove the parameter or use `ObjectGraphView.list_children`."); + } + + if (!_children_cache.ContainsKey(obj)) + { + Dictionary children = new Dictionary(); + _children_cache[obj] = children; + foreach (var pair in base.list_children(obj, SaveType.SAVEDMODEL, _serialization_cache)) + { + var name = pair.Name; + var child = pair.Refer; + if(child is ConcreteFunction) + { + child = maybe_uncache_variable_captures((ConcreteFunction)child); + } + children[name] = child; + } + + if (obj is Function && children.Count == 0) + { + _untraces_functions.Add(((Function)obj).Name); + } + } + + List res = new(); + foreach(var pair in _children_cache[obj]) + { + res.Add(new TrackableReference(pair.Key, pair.Value)); + } + + return res; + } + + private ConcreteFunction maybe_uncache_variable_captures(ConcreteFunction concrete_function) + { + if (_wrapped_functions.ContainsKey(concrete_function)) + { + return _wrapped_functions[concrete_function]; + } + // skip the process here because of lack of feature. + // In the future, we may add an attribute which could specify if the variable is supposed to be cached. + //foreach(var capture in concrete_function.CapturedInputs) + //{ + + //} + return concrete_function; + } + + public override (IList, IDictionary>) breadth_first_traversal() + { + void merged_trackable(Trackable x) + { + // TODO: complete it with new definitions `Asset` and `TrackableConstant`. + } + + var trackable_objects = base.breadth_first_traversal(); + + foreach(var obj in _children_cache.Keys) + { + // skip the deletion of cache (maybe do it later). + foreach(var pair in _children_cache[obj]) + { + merged_trackable(pair.Value); + } + } + + return base.breadth_first_traversal(); + } + + public List<(string, Trackable)> list_dependencies(Trackable obj) + { + if (!_children_cache.TryGetValue(obj, out var children)) + { + children= new Dictionary(); + } + + List<(string, Trackable)> res = new(); + foreach(var pair in obj.deserialization_dependencies(children)) + { + res.Add((pair.Key, pair.Value)); + } + return res; + } + + public Trackable get_child(Trackable obj, string name) + { + return _children_cache[obj][name]; + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/Constants.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/Constants.cs new file mode 100644 index 000000000..726f6cfd4 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/Constants.cs @@ -0,0 +1,33 @@ +namespace Tensorflow; + +public static class Constants +{ + public static readonly string ASSETS_DIRECTORY = "assets"; + public static readonly string ASSETS_KEY = "saved_model_assets"; + + public static readonly string DEBUG_DIRECTORY = "debug"; + + public static readonly string DEBUG_INFO_FILENAME_PB = "saved_model_debug_info.pb"; + + public static readonly string EXTRA_ASSETS_DIRECTORY = "assets.extra"; + + public static readonly string FINGERPRINT_FILENAME = "fingerprint.pb"; + + public static readonly string INIT_OP_SIGNATURE_KEY = "__saved_model_init_op"; + + public static readonly string LEGACY_INIT_OP_KEY = "legacy_init_op"; + + public static readonly string MAIN_OP_KEY = "saved_model_main_op"; + + public static readonly string SAVED_MODEL_FILENAME_PB = "saved_model.pb"; + public static readonly string SAVED_MODEL_FILENAME_PBTXT = "saved_model.pbtxt"; + + public static readonly int SAVED_MODEL_SCHEMA_VERSION = 1; + + public static readonly string TRAIN_OP_KEY = "saved_model_train_op"; + + public static readonly string TRAIN_OP_SIGNATURE_KEY = "__saved_model_train_op"; + + public static readonly string VARIABLES_DIRECTORY = "variables"; + public static readonly string VARIABLES_FILENAME = "variables"; +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/LoadOptions.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/LoadOptions.cs new file mode 100644 index 000000000..df9bdc1b5 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/LoadOptions.cs @@ -0,0 +1,23 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow +{ + public record class LoadOptions + { + public bool allow_partial_checkpoint; + public string experimental_io_device; + public bool experimental_skip_checkpoint; + public VariablePolicy experimental_variable_policy; + + public LoadOptions(bool allow_partial_checkpoint = false, string experimental_io_device = null, + bool experimental_skip_checkpoint = false, string experimental_variable_policy = null) + { + this.allow_partial_checkpoint = allow_partial_checkpoint; + this.experimental_io_device = experimental_io_device; + this.experimental_skip_checkpoint = experimental_skip_checkpoint; + this.experimental_variable_policy = VariablePolicy.from_obj(experimental_variable_policy); + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/RevivedTypes.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/RevivedTypes.cs new file mode 100644 index 000000000..ab6adc30f --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/RevivedTypes.cs @@ -0,0 +1,54 @@ +using System; +using System.Diagnostics; +using Tensorflow.Train; +using Tensorflow.Training; + +namespace Tensorflow; + +public class RevivedTypes +{ + private static Dictionary _registered_revived_creator = new(); + static RevivedTypes() + { + var list_wrapper = new ListWrapper(new Trackable[] { }); + _registered_revived_creator[list_wrapper.Identifier] = list_wrapper; + var dict_wrapper = new DictWrapper(new Dictionary()); + _registered_revived_creator[dict_wrapper.Identifier] = dict_wrapper; + } + /// + /// Create a SavedUserObject from a trackable object. + /// + /// + /// + public static SavedUserObject? serialize(Trackable obj) + { + // TODO(Rinne): complete the implementation. + return null; + } + + public static (Trackable, Action) deserialize(SavedUserObject proto) + { + if(_registered_revived_creator.TryGetValue(proto.Identifier, out var wrapper)) + { + return (wrapper.FromProto(proto), (x, y, z) => + { + if (x is not ITrackableWrapper trackable) + { + throw new TypeError($"The type is expected to be `ITrackableWrapper`, but got {x.GetType()}."); + } + Debug.Assert(y is string); + trackable.SetValue(y, z); + } + ); + } + else + { + return (null, null); + } + } + + public static void RegisterRevivedTypeCreator(string identifier, ITrackableWrapper obj) + { + _registered_revived_creator[identifier] = obj; + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/SaveOptions.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/SaveOptions.cs new file mode 100644 index 000000000..d42f52535 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/SaveOptions.cs @@ -0,0 +1,60 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow +{ + /// + /// Options for saving to SavedModel. + /// + public class SaveOptions + { + public bool save_debug_info = false; + public IList? namespace_white_list { get; set; } = null; + public IDictionary? function_aliases { get; set; } = null; + public string? experimental_io_device { get; set; } = null; + // TODO: experimental + public VariablePolicy experimental_variable_policy { get; set; } = VariablePolicy.None; + public bool experimental_custom_gradients { get; set; } = true; + public SaveOptions(bool save_debug_info = false) + { + this.save_debug_info = save_debug_info; + } + } + + public class VariablePolicy + { + public string Policy { get; } + private VariablePolicy(string policy) + { + Policy = policy; + } + public static VariablePolicy None = new(null); + public static VariablePolicy SAVE_VARIABLE_DEVICES = new("save_variable_devices"); + public static VariablePolicy EXPAND_DISTRIBUTED_VARIABLES = new("expand_distributed_variables"); + + public bool save_variable_devices() + { + return this != None; + } + + /// + /// Tries to convert `obj` to a VariablePolicy instance. + /// + /// + /// + public static VariablePolicy from_obj(object obj) + { + if (obj is null) return None; + if (obj is VariablePolicy) return (VariablePolicy)obj; + var key = obj.ToString().ToLower(); + return key switch + { + null => None, + "save_variable_devices" => SAVE_VARIABLE_DEVICES, + "expand_distributed_variables" => EXPAND_DISTRIBUTED_VARIABLES, + _ => throw new ValueError($"Received invalid VariablePolicy value: {obj}.") + }; + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/SaveType.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/SaveType.cs new file mode 100644 index 000000000..8dd4f008f --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/SaveType.cs @@ -0,0 +1,9 @@ +using System; + +namespace Tensorflow; + +public enum SaveType +{ + SAVEDMODEL, + CHECKPOINT +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/SaveableView.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/SaveableView.cs new file mode 100644 index 000000000..44a627b67 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/SaveableView.cs @@ -0,0 +1,299 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using Tensorflow.Checkpoint; +using Tensorflow.Contexts; +using Tensorflow.Functions; +using Tensorflow.Train; +using Tensorflow.Training; +using pbc = global::Google.Protobuf.Collections; +using static Tensorflow.Binding; +using Tensorflow.Training.Saving.SavedModel; + +namespace Tensorflow; + +public class SaveableView +{ + private AugmentedGraphView _augmented_graph_view; + private SaveOptions _options; + private IList _trackable_objects; + private List _nodes; + private IDictionary> _node_paths; + private IDictionary _node_ids; + private IDictionary> + _slot_variables; + private IDictionary _object_names; + private List _gradient_functions; // to be completed + private List _gradient_defs; // to be completed + private List _concrete_functions; + private Dictionary _captured_tensor_node_ids; + private Dictionary> _saveable_objects_map; + private Dictionary _obj_to_registered_saver; + + public AugmentedGraphView AugmentedGraphView + { + get => _augmented_graph_view; + } + + public Trackable Root + { + get => _nodes[0]; + } + public List Nodes + { + get => _nodes; + } + public IDictionary NodeIds + { + get => _node_ids; + } + public List GradientDefs + { + get => _gradient_defs; + } + public IDictionary> NodePaths + { + get => _node_paths; + } + public SaveableView(AugmentedGraphView augmented_graph_view, SaveOptions options) + { + _augmented_graph_view = augmented_graph_view; + _options = options; + + (_trackable_objects, _node_paths, _node_ids, _slot_variables, _object_names) = + CheckPointUtils.objects_ids_and_slot_variables_and_paths(_augmented_graph_view); + + // TODO: deal with untraced functions. + + initialize_save_and_restore_functions(); + initialize_nodes_and_concrete_functions(); + + _captured_tensor_node_ids = new(); + } + + private void initialize_save_and_restore_functions() + { + // TODO: deal with the return value of `get_checkpoint_factories_and_keys`. + var (checkpoint_factory_map, registered_savers) = SaveUtilV1.get_checkpoint_factories_and_keys(_object_names); + // skip the process of registered savers and the generation of saveable_objects_map and _obj_to_registered_saver. + _obj_to_registered_saver = new(); + _saveable_objects_map = new(); + } + + private void initialize_nodes_and_concrete_functions() + { + _nodes = _trackable_objects.ToList().ConvertAll(x => x); // deep copy + _gradient_functions = new(); + _gradient_defs = new(); + + // TODO: deal with the condition that obj in `_saveable_objects_map`. + // foreach (var obj in _nodes) + // { + // + // } + + //_concrete_functions = new(); + //foreach (var obj in _nodes) + //{ + // if (obj is ConcreteFunction) + // { + // _concrete_functions.Add((ConcreteFunction)obj); + // } + //} + } + + public List get_concrete_resource_initializers() + { + // TODO: complete the implementation. + return new List(); + } + + public (Dictionary, Dictionary, AssetInfo) map_resources() + { + Debug.Assert(!tf.Context.executing_eagerly()); + + Dictionary object_map = new(); + Dictionary tensor_map = new(); + + AssetInfo assetInfo = new(new List(), new Dictionary(), + new Dictionary(), new Dictionary()); + + foreach (var node_id in dependency_sorted_node_ids()) + { + var obj = _nodes[node_id]; + var tensors = obj.export_to_saved_model_graph(object_map, tensor_map, _options); + // TODO: deal with Asset (if obj is Asset) + foreach (var tensor in tensors) + { + _captured_tensor_node_ids[tensor] = node_id; + } + } + + return (object_map, tensor_map, assetInfo); + } + + /// + /// Returns topologically sorted nodes, sorted by dependencies. + /// + public List dependency_sorted_node_ids() + { + Dictionary> dependency_map = new(); + foreach (var node in _nodes) + { + var node_id = _node_ids[node]; + List deps = new List(); + dependency_map.Add(node_id, deps); + + // TODO: deal with captured tensor. + + foreach (var (_, dep) in _augmented_graph_view.list_dependencies(node)) + { + if (!_node_ids.ContainsKey(dep)) + { + var node_path = TrackableUtils.pretty_print_node_path(_node_paths[node]); + throw new ValueError( + $"Found an untracked dependency. Object {node_path} depends on {dep}, " + + $"but this dependency isn't listed as a child. Please track this child by " + + $"overriding `_trackable_children` or use `._track_trackable`."); + } + deps.Add(_node_ids[dep]); + } + } + + try + { + return TrackableUtils.order_by_dependency(dependency_map); + } + catch (TrackableUtils.CyclicDependencyError err) + { + List pretty_printed_nodes = new(); + List pretty_printed_dependencies = new(); + + foreach (var pair in err.LeftOverDependencyMap) + { + var x = pair.Key; + var deps = pair.Value; + var node_path = TrackableUtils.pretty_print_node_path(_node_paths[_nodes[x]]); + pretty_printed_nodes.Add($"\tNode {x.ToString()} = {node_path} (type {_nodes[x]})"); + pretty_printed_dependencies.Add( + $"\tNode {x.ToString()} depends on nodes [{string.Join(", ", deps.Select(x => x.ToString()))}]"); + } + + throw new ValueError($"There is one or more dependency cycle in the saved Trackable object. " + + $"Saving cannot continue until this cycle is resolved." + + $"\n>> Unresolved nodes:\n{string.Join("\n", pretty_printed_nodes)}" + + $"\n>> Unresolved cyclic dependencies:\n{string.Join("\n", pretty_printed_dependencies)}"); + } + } + + /// + /// Corresponding to tensorflow/python/saved_model/save.py/_serialize_object_graph + /// + /// + /// + public SavedObjectGraph serialize_object_graph(IDictionary asset_file_def_index) + { + SavedObjectGraph proto = new(); + fill_object_graph_proto(proto); + + // TODO: complete the process of concrete functions. + + int cnt = Math.Min(_nodes.Count, proto.Nodes.Count); + for (int i = 0; i < cnt; i++) + { + var obj = _nodes[i]; + var obj_proto = proto.Nodes[i]; + write_object_proto(obj, obj_proto, asset_file_def_index, x => _augmented_graph_view.list_children(x)); + } + + return proto; + } + + private static void write_object_proto(Trackable obj, SavedObject proto, + IDictionary asset_file_def_index, Func> list_children_fn) + { + // skip the process of type Asset + if (resource_variable_ops.is_resource_variable(obj)) + { + var options = SaveContext.get_save_options(); + (obj as BaseResourceVariable).write_object_proto(proto, options); + } + else if (obj is Function) + { + // TODO: complete it. + throw new NotImplementedException(); + } + else if (obj is ConcreteFunction) + { + // TODO(Rinne): complete it. + // throw new NotImplementedException(); + } + // skip the process of type `_CapturedTensor` and `CapturableResource`. + else + { + var registered_type_proto = RevivedTypes.serialize(obj); + if (registered_type_proto is null) + { + registered_type_proto = new SavedUserObject() + { + Identifier = obj.ObjectIdentifier, + Version = new VersionDef() + { + Producer = 1, + MinConsumer = 1, + BadConsumers = { } + } + }; + } + + proto.UserObject = new SavedUserObject(registered_type_proto); + } + + // TODO: try get the registered_name from `registration`. + } + + public void fill_object_graph_proto(SavedObjectGraph proto) + { + for (int node_id = 0; node_id < _nodes.Count; node_id++) + { + var node = _nodes[node_id]; + Debug.Assert(_node_ids[node] == node_id); + SavedObject object_proto = new(); + if (_slot_variables.TryGetValue(node, out var value)) + { + object_proto.SlotVariables.AddRange(value); + } + // skip the check of type `_CapturedTensor` + foreach (var child in _augmented_graph_view.list_children(node)) + { + var child_proto = new TrackableObjectGraph.Types.TrackableObject.Types.ObjectReference(); + child_proto.NodeId = _node_ids[child.Refer]; + child_proto.LocalName = child.Name; + object_proto.Children.Add(child_proto); + } + + foreach (var pair in _augmented_graph_view.list_dependencies(node)) + { + var child_proto = new TrackableObjectGraph.Types.TrackableObject.Types.ObjectReference(); + child_proto.NodeId = _node_ids[pair.Item2]; + child_proto.LocalName = pair.Item1; + object_proto.Dependencies.Add(child_proto); + } + + if (_saveable_objects_map.ContainsKey(node)) + { + // TODO: complete it. + throw new NotImplementedException(); + } + else if(_obj_to_registered_saver.ContainsKey(node)) + { + // TODO: complete it. + // We now skip it for the lack of `SavedObject.registered_saver` API. + throw new NotImplementedException(); + } + + proto.Nodes.Add(object_proto); + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/TagConstants.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/TagConstants.cs new file mode 100644 index 000000000..6aa1fbde1 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/TagConstants.cs @@ -0,0 +1,10 @@ +namespace Tensorflow; + +public static class TagConstants +{ + public static readonly string SERVING = "serve"; + public static readonly string TRAINING = "train"; + public static readonly string EVAL = "eval"; + public static readonly string GPU = "gpu"; + public static readonly string TPU = "tpu"; +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/WrapperFunction.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/WrapperFunction.cs new file mode 100644 index 000000000..695eadfd3 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/WrapperFunction.cs @@ -0,0 +1,23 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Functions; + +namespace Tensorflow.Training.Saving.SavedModel +{ + /// + /// A class wraps a concrete function to handle different distributed contexts. + /// + internal class WrapperFunction: ConcreteFunction + { + public WrapperFunction(ConcreteFunction concrete_function): base(concrete_function.func_graph) + { + throw new NotImplementedException(); + //this.forward_backward = concrete_function.forward_backward; + //this.Outputs = concrete_function.Outputs; + //this.ReturnType = concrete_function.ReturnType; + //this.OutputStructure = concrete_function.OutputStructure; + //this.ArgKeywords = concrete_function.ArgKeywords; + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/builder.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/builder.cs new file mode 100644 index 000000000..dbbab91d8 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/builder.cs @@ -0,0 +1,22 @@ +using System; +using System.Collections.Generic; +using static Tensorflow.Binding; + +namespace Tensorflow; + +public class BuilderUtils +{ + public static void copy_assets_to_destination_dir(IDictionary asset_filename_map, + string destination_dir, HashSet? saved_files = null) + { + if (saved_files is null) saved_files = new HashSet(); + + var asset_destination_dir = SavedModelUtils.get_or_create_assets_dir(destination_dir); + + // TODO: complete the implementation of this function. + if (asset_filename_map is not null && asset_filename_map.Count > 0) + { + throw new NotImplementedException(); + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/function_deserialization.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/function_deserialization.cs new file mode 100644 index 000000000..77b115a46 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/function_deserialization.cs @@ -0,0 +1,494 @@ +using Google.Protobuf; +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using System.Runtime.CompilerServices; +using System.Text; +using System.Text.RegularExpressions; +using Tensorflow.Framework; +using Tensorflow.Functions; +using Tensorflow.Gradients; +using Tensorflow.Graphs; +using Tensorflow.Util; +using static Tensorflow.Binding; + +namespace Tensorflow.Training.Saving.SavedModel +{ + public static class function_deserialization + { + private static string _INFERENCE_PREFIX = "__inference_"; + private static string _FUNCTION_WRAPPER_NAME_REGEX = $@"^{_INFERENCE_PREFIX}(.*)_\d+$"; + /// + /// Creates a `Function` from a `SavedFunction`. + /// + /// + /// + /// + public static Function recreate_function(SavedFunction saved_function, + IDictionary concrete_functions) + { + var function_spec = _deserialize_function_spec_as_nonmethod(saved_function.FunctionSpec); + + Tensor[] restored_function_body(Tensor[] inputs) + { + if(saved_function.ConcreteFunctions is null || saved_function.ConcreteFunctions.Count == 0) + { + throw new ValueError("Found zero restored functions for caller function."); + } + foreach(var function_name in saved_function.ConcreteFunctions) + { + var function = concrete_functions[function_name]; + if(function.CapturedInputs.Any(x => x is null)) + { + throw new ValueError("Looks like you are trying to run a loaded " + + "non-Keras model that was trained using tf.distribute.experimental.ParameterServerStrategy " + + "with variable partitioning, which is not currently supported. Try using Keras to define your model " + + "if possible."); + } + if(_concrete_function_callable_with(function, inputs, false)) + { + return _call_concrete_function(function, inputs); + } + } + throw new ValueError("Unexpected runtime behavior, please submit an issue to " + + "https://github.com/SciSharp/TensorFlow.NET/issues"); + } + + List concrete_function_objects = new(); + foreach(var concrete_function_name in saved_function.ConcreteFunctions) + { + concrete_function_objects.Add(concrete_functions[concrete_function_name]); + } + foreach(var cf in concrete_function_objects) + { + cf._set_function_spec(function_spec); + } + + var restored_function = new RestoredFunction(restored_function_body, nameof(restored_function_body), + function_spec, concrete_function_objects); + + return restored_function; + } + + public static Dictionary load_function_def_library(FunctionDefLibrary library, + SavedObjectGraph saved_object_graph = null, string load_shared_name_suffix = null, object? wrapper_function = null) + { + var library_function_names = library.Function.Select(x => x.Signature.Name).Distinct(); + Dictionary functions = new(); + Dictionary renamed_functions = new(); + + Graph graph; + if (ops.executing_eagerly_outside_functions()) + { + graph = new Graph(); + } + else + { + graph = ops.get_default_graph(); + } + + if(load_shared_name_suffix is null) + { + load_shared_name_suffix = $"_load_{ops.uid()}"; + } + + Dictionary library_gradient_names = new(); + Dictionary new_gradient_op_types = new(); + Dictionary gradients_to_register = new(); + foreach (var gdef in library.RegisteredGradients) + { + if(gdef.RegisteredOpType is not null) + { + var new_op_type = custom_gradient.generate_name(); + var old_op_type = tf.compat.as_bytes(gdef.RegisteredOpType); + + library_gradient_names[old_op_type] = gdef.GradientFunc; + new_gradient_op_types[old_op_type] = new_op_type; + gradients_to_register[gdef.GradientFunc] = new_op_type; + } + } + + Dictionary> function_deps = new(); + foreach(var fdef in library.Function) + { + function_deps[fdef.Signature.Name] = _list_function_deps(fdef, library_function_names, library_gradient_names); + } + + Dictionary loaded_gradients = new(); + foreach (var fdef in _sort_function_defs(library, function_deps)) + { + var orig_name = _fix_fdef_in_place(fdef, functions, load_shared_name_suffix, new_gradient_op_types); + + object structured_input_signature = null; + object structured_outputs = null; + if (saved_object_graph is not null && saved_object_graph.ConcreteFunctions.ContainsKey(orig_name)) + { + // TODO(Rinne): deal with structured_input_signature and structured_outputs. + + //var proto = saved_object_graph.ConcreteFunctions[orig_name]; + //structured_input_signature = nested_structure_coder.decode_proto(proto.CanonicalizedInputSignature); + //structured_outputs = nested_structure_coder.decode_proto(proto.OutputSignature); + } + + graph.as_default(); + var func_graph = function_def_lib.function_def_to_graph(fdef, structured_input_signature, structured_outputs); + graph.Exit(); + + _restore_gradient_functions(func_graph, renamed_functions, loaded_gradients); + + foreach(var dep in function_deps[orig_name]) + { + functions[dep].AddTograph(func_graph); + } + + if (fdef.Attr.ContainsKey("_input_shapes")) + { + fdef.Attr.Remove("_input_shapes"); + } + var func = new ConcreteFunction(func_graph, fdef.Attr.ToDictionary(x => x.Key, x => x.Value)); + if(wrapper_function is not null) + { + throw new NotImplementedException(); + } + func.AddTograph(graph); + + functions[orig_name] = func; + renamed_functions[func.Name] = func; + if(func_graph.get_operations().Any(op => op.op.type == "TRTEngineOp")) + { + func.AddTograph(ops.get_default_graph()); + } + + if (gradients_to_register.ContainsKey(orig_name)) + { + var gradient_op_type = gradients_to_register[orig_name]; + loaded_gradients[gradient_op_type] = func; + ops.RegisterGradientFunction(gradient_op_type, _gen_gradient_func(func)); + } + } + return functions; + } + + public static void fix_node_def(NodeDef node_def, IDictionary functions, string shared_name_suffix) + { + if (functions.ContainsKey(node_def.Op)) + { + node_def.Op = functions[node_def.Op].Name; + } + foreach(var attr_value in node_def.Attr.Values) + { + if(attr_value.ValueCase == AttrValue.ValueOneofCase.Func) + { + attr_value.Func.Name = functions[attr_value.Func.Name].Name; + } + else if(attr_value.ValueCase == AttrValue.ValueOneofCase.List) + { + foreach(var fn in attr_value.List.Func) + { + fn.Name = functions[fn.Name].Name; + } + } + } + + if(node_def.Op == "HashTableV2") + { + if(!node_def.Attr.ContainsKey("use_node_name_sharing") || !node_def.Attr["use_node_name_sharing"].B) + { + node_def.Attr["use_node_name_sharing"].B = true; + shared_name_suffix += $"_{ops.uid()}"; + } + } + + var op_def = op_def_registry.GetOpDef(node_def.Op); + if(op_def is not null) + { + var attr = op_def.Attr.Where(x => x.Name == "shared_name").FirstOrDefault(); + if(attr is not null) + { + ByteString shared_name = null; + if(node_def.Attr.ContainsKey("shared_name") && node_def.Attr["shared_name"].S is not null) + { + shared_name = node_def.Attr["shared_name"].S; + } + else if(attr.DefaultValue.S is not null) + { + shared_name = tf.compat.as_bytes(attr.DefaultValue.S); + } + if(shared_name is null) + { + shared_name = tf.compat.as_bytes(node_def.Name); + } + node_def.Attr["shared_name"].S = ByteString.CopyFrom(shared_name.Concat(tf.compat.as_bytes(node_def.Name)).ToArray()); + } + } + } + + private static Func _gen_gradient_func(ConcreteFunction func) + { + return (unused_op, result_grads) => + { + result_grads = zip(result_grads, func.func_graph.Inputs) + .Select((item) => item.Item1 is null ? default_gradient.zeros_like(item.Item2) : item.Item1).ToArray(); + return func.CallFlat(result_grads, func.CapturedInputs); + }; + } + + private static void _restore_gradient_functions(FuncGraph func_graph, Dictionary renamed_functions, Dictionary loaded_gradients) + { + if(loaded_gradients is null || loaded_gradients.Count == 0) + { + foreach (var op in func_graph.get_operations()) + { + if (op.op.type == "StatefulPartitionedCall" || op.op.type == "PartitionedCall") + { + var function = renamed_functions[op.op.node_def.Attr["f"].Func.Name]; + op.op._gradient_function = function._get_gradient_function(); + } + } + } + else + { + foreach (var op in func_graph.get_operations()) + { + if (op.op.type == "StatefulPartitionedCall" || op.op.type == "PartitionedCall") + { + var function = renamed_functions[op.op.node_def.Attr["f"].Func.Name]; + op.op._gradient_function = function._get_gradient_function(); + } + string gradient_op_type = null; + try + { + gradient_op_type = op.op.get_attr("_gradient_op_type") as string; + } + catch (InvalidArgumentError) + { + continue; + } + if (loaded_gradients.ContainsKey(gradient_op_type)) + { + var grad_fn = loaded_gradients[gradient_op_type]; + grad_fn.NumPositionArgs = op.op.inputs.Length; + grad_fn.ArgKeywords = op.op.inputs._inputs.Select(x => x.name); + } + } + } + } + + private static string _fix_fdef_in_place(FunctionDef fdef, IDictionary functions, string shared_name_suffix, + IDictionary new_gradient_op_types) + { + var orig_name = fdef.Signature.Name; + bool contains_unsaved_custom_gradients = false; + + foreach(var node_def in fdef.NodeDef) + { + fix_node_def(node_def, functions, shared_name_suffix); + var op_type = _get_gradient_op_type(node_def); + if(op_type is not null) + { + if (new_gradient_op_types.ContainsKey(op_type)) + { + node_def.Attr["_gradient_op_type"].S = tf.compat.as_bytes(new_gradient_op_types[op_type]); + } + else + { + contains_unsaved_custom_gradients = true; + } + } + } + if (contains_unsaved_custom_gradients) + { + // TODO(Rinne): log warnings. + } + + fdef.Signature.Name = _clean_function_name(fdef.Signature.Name); + return orig_name; + } + + private static string _clean_function_name(string name) + { + var match = Regex.Match(name, _FUNCTION_WRAPPER_NAME_REGEX); + if(match.Success) + { + return match.Groups[1].Value; + } + else + { + return name; + } + } + + /// + /// Return a topologic sort of FunctionDefs in a library. + /// + /// + /// + private static IEnumerable _sort_function_defs(FunctionDefLibrary library, Dictionary> function_deps) + { + Dictionary> edges = new(); + Dictionary in_count = new(); + foreach(var item in function_deps) + { + var fname = item.Key; + var deps = item.Value; + if(deps is null || deps.Count() == 0) + { + in_count[fname] = 0; + continue; + } + foreach(var dep in deps) + { + edges.SetDefault(dep, new List()).Add(fname); + if (in_count.ContainsKey(fname)) + { + in_count[fname]++; + } + else + { + in_count[fname] = 1; + } + } + } + var ready = new Stack(library.Function. + Where(x => in_count[x.Signature.Name] == 0) + .Select(x => x.Signature.Name).ToList()); + List output = new(); + while(ready.Count > 0) + { + var node = ready.Pop(); + output.Add(node); + if (!edges.ContainsKey(node)) + { + continue; + } + foreach(var dest in edges[node]) + { + in_count[dest] -= 1; + if (in_count[dest] == 0) + { + ready.Push(dest); + } + } + } + + if(output.Count != library.Function.Count) + { + var failed_to_resolve = in_count.Keys.Except(output); + throw new ValueError($"There is a cyclic dependency between functions. " + + $"Could not resolve ({string.Join(", ", failed_to_resolve)})."); + } + + var reverse = library.Function.ToDictionary(x => x.Signature.Name, x => x); + return output.Select(x => reverse[x]); + } + + private static IEnumerable _list_function_deps(FunctionDef fdef, IEnumerable library_function_names, IDictionary library_gradient_names) + { + HashSet deps = new HashSet(); + foreach(var node_def in fdef.NodeDef) + { + var grad_op_type = _get_gradient_op_type(node_def); + if (library_function_names.Contains(node_def.Op)) + { + deps.Add(node_def.Op); + } + else if(grad_op_type is not null && library_gradient_names.TryGetValue(grad_op_type, out var gradient_name)) + { + deps.Add(gradient_name); + } + else + { + foreach(var attr_value in node_def.Attr.Values) + { + if(attr_value.ValueCase == AttrValue.ValueOneofCase.Func) + { + deps.Add(attr_value.Func.Name); + } + else if(attr_value.ValueCase == AttrValue.ValueOneofCase.List) + { + foreach(var fn in attr_value.List.Func) + { + deps.Add(fn.Name); + } + } + } + } + } + return deps.AsEnumerable(); + } + + private static ByteString _get_gradient_op_type(NodeDef node_def) + { + if(node_def.Attr.ContainsKey("_gradient_op_type") && node_def.Op != "StatefulPartitionedCall" && node_def.Op != "PartitionedCall") + { + return node_def.Attr["_gradient_op_type"].S; + } + return null; + } + + public static ConcreteFunction setup_bare_concrete_function(SavedBareConcreteFunction saved_bare_concrete_function, + IDictionary concrete_functions) + { + var concrete_function = concrete_functions[saved_bare_concrete_function.ConcreteFunctionName]; + concrete_function.ArgKeywords = saved_bare_concrete_function.ArgumentKeywords.ToList(); + concrete_function.NumPositionArgs = saved_bare_concrete_function.AllowedPositionalArguments; + + //var function_spec = _deserialize_function_spec_as_nonmethod(saved_bare_concrete_function.FunctionSpec); + // TODO(Rinne): set the functiona spec. + concrete_function.AddTograph(); + return concrete_function; + } + + private static FunctionSpec _deserialize_function_spec_as_nonmethod(FunctionSpec function_spec_proto) + { + // TODO(Rinne); revise the implementation. + return new FunctionSpec() + { + Fullargspec = function_spec_proto.Fullargspec, + IsMethod = function_spec_proto.IsMethod, + InputSignature = function_spec_proto.InputSignature, + JitCompile = function_spec_proto.JitCompile + }; + } + + private static Tensors _call_concrete_function(ConcreteFunction function, Tensors inputs) + { + // TODO(Rinne): var expected_structure = function.func_graph.structured_input_signature + return function.CallFlat(inputs, function.CapturedInputs); + } + + private static bool _concrete_function_callable_with(ConcreteFunction function, Tensor[] inputs, bool allow_conversion) + { + // TODO(Rinne): revise it. + return function.CapturedInputs.Length + inputs.Length == function.Inputs.Length; + //var expected_inputs = function.func_graph.Inputs; + //foreach(var (arg, expected) in zip(inputs, expected_inputs)) + //{ + // if(arg.Id != expected.Id) + // { + // return false; + // } + //} + //return true; + } + } + + public class RestoredFunction : Function + { + IEnumerable _concrete_functions; + FunctionSpec _function_spec; + public IEnumerable ConcreteFunctions => _concrete_functions; + public RestoredFunction(Func function, string name, FunctionSpec function_spec, + IEnumerable concrete_functions): base(function, name, auto_graph: false) + { + _concrete_functions = concrete_functions; + _function_spec = function_spec; + } + + protected override bool _run_functions_eagerly() + { + return false; + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/loader.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/loader.cs new file mode 100644 index 000000000..727d18a81 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/loader.cs @@ -0,0 +1,700 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using System.Net.Sockets; +using System.Text; +using Tensorflow.Checkpoint; +using Tensorflow.Train; +using Tensorflow.Training; +using pbc = global::Google.Protobuf.Collections; +using static Tensorflow.Binding; +using System.Runtime.CompilerServices; +using Tensorflow.Variables; +using Tensorflow.Functions; +using Tensorflow.Training.Saving.SavedModel; +using Tensorflow.Trackables; +using OneOf; +using Tensorflow.Keras.Engine; + +namespace Tensorflow +{ + /// + /// Helper class to load an object-based SavedModel. + /// + public partial class Loader + { + private pbc::RepeatedField _asset_file_def; + private Dictionary> _operation_attributes; + private SavedObjectGraph _proto; + private string _export_dir; + private CheckpointOptions _checkpoint_options; + private LoadOptions _save_options; + private IDictionary)> _node_filters; + private Dictionary? _node_path_to_id; + private List? _filtered_nodes; + private List _ordered_node_ids; + private Dictionary)> _loaded_nodes; + private List _nodes; + private Dictionary> _node_setters; + private Dictionary _concrete_functions; + private HashSet _restored_concrete_functions; + public Loader(SavedObjectGraph object_graph_proto, SavedModel saved_model_proto, string export_dir, + CheckpointOptions ckpt_options, LoadOptions save_options, IDictionary)> filters) + { + var meta_graph = saved_model_proto.MetaGraphs[0]; + _asset_file_def = meta_graph.AssetFileDef; + _operation_attributes = meta_graph.GraphDef.Node.ToDictionary(x => x.Name, x => x.Attr); + _proto = object_graph_proto; + _export_dir = export_dir; + // TODO(Rinne): This method is a bit slow (especially under debug mode), may need to be accelareted. + _concrete_functions = function_deserialization.load_function_def_library( + meta_graph.GraphDef.Library, _proto); + _restored_concrete_functions = new HashSet(); + _checkpoint_options = ckpt_options; + _save_options = save_options; + + // TODO: `this._pretty_printer` + + _node_filters = filters; + _node_path_to_id = _convert_node_paths_to_ints(); + _loaded_nodes = new Dictionary)>(); + + if (filters != null) + { + foreach (var filter in filters) + { + _loaded_nodes[_node_path_to_id[filter.Key]] = filter.Value; + } + } + + _filtered_nodes = _retrieve_all_filtered_nodes(); + + _ordered_node_ids = _generate_ordered_node_ids(); + + _load_all(); + + + if (!save_options.experimental_skip_checkpoint) + { + _restore_checkpoint(); + } + foreach(var node in _nodes) + { + // skip the process of `CapturableResource`. + } + } + + /// + /// Maps all string node paths in node_filters to the int node ids. + /// + /// + private Dictionary? _convert_node_paths_to_ints() + { + if( _node_filters is null) + { + return null; + } + Dictionary path_to_int = new(); + foreach(var node_id in _node_filters.Keys) + { + int int_node_id; + var node_path = node_id.Split('.'); + if (node_path[0] != "root") + { + throw new ValueError($"When passing string identifiers to node_filters, the first name" + + $" must be root. Received {node_path[0]}."); + } + int_node_id = 0; + for(int i = 0; i < node_path.Length - 1; i++) + { + var name = node_path[i + 1]; + int_node_id = _find_node_child(int_node_id, name, String.Join(".", node_path.Take(i + 1))); + } + path_to_int[node_id] = int_node_id; + } + return path_to_int; + } + + private int _find_node_child(int node_id, string child_name, string path) + { + foreach(var refer in _proto.Nodes[node_id].Children) + { + if(refer.LocalName == child_name) + { + return refer.NodeId; + } + } + throw new ValueError($"Unable to find node {path}."); + } + + private List? _retrieve_all_filtered_nodes() + { + if(_node_filters is null) + { + return null; + } + + HashSet all_filtered_nodes = new(); + Queue nodes_to_visit = new Queue(_node_filters.Keys); + + while(nodes_to_visit.Count > 0) + { + var node_path = nodes_to_visit.Dequeue(); + var node_id = _node_path_to_id[node_path]; + if (all_filtered_nodes.Contains(node_id)) + { + continue; + } + all_filtered_nodes.Add(node_id); + Trackable node = null; + Action setter = null; + if(_loaded_nodes.TryGetValue(node_id, out var res)) + { + (node, setter) = res; + } + if(node is not null) + { + node._maybe_initialize_trackable(); + } + + foreach(var refer in _proto.Nodes[node_id].Children) + { + Trackable children_object = null; + if(_loaded_nodes.TryGetValue(refer.NodeId, out var result)) + { + children_object = result.Item1; + } + // See if node already tracks the child reference, in which case add the child to the loaded_nodes dict. + if(children_object is null && node is not null) + { + children_object = node._lookup_dependency(refer.LocalName); + if(children_object is TrackableDataStructure) + { + // TODO: set setter as lambda. + + _loaded_nodes[refer.NodeId] = (children_object, setter); + } + } + string child_path = $"{node_path}.{refer.LocalName}"; + _node_path_to_id[child_path] = refer.NodeId; + nodes_to_visit.Enqueue(child_path); + } + } + + if (all_filtered_nodes.Contains(0)) + { + return null; + } + return all_filtered_nodes.ToList(); + } + + /// + /// Orders the node ids so that dependencies appear first. + /// + /// + private List _generate_ordered_node_ids() + { + List unordered_ids; + if(_filtered_nodes is null) + { + unordered_ids = Enumerable.Range(0, _proto.Nodes.Count).ToList(); + } + else + { + unordered_ids = new List(_filtered_nodes); + } + + Dictionary> dependency_map = new(); + foreach(var node_id in unordered_ids) + { + var deps = dependency_map.SetDefault(node_id, new List()); + if (_loaded_nodes.ContainsKey(node_id)) + { + continue; + } + var proto = _proto.Nodes[node_id]; + foreach (var dep in _get_node_dependencies(proto).Values.Distinct()) + { + deps.Add(dep); + if(_filtered_nodes is not null && !_filtered_nodes.Contains(dep)) + { + // TODO: add info with `_pretty_printer`. + throw new ValueError($"Unable to partially load SavedModel since the specified filter " + + $"does not include all required objects for loading (e.g. " + + $"variables used in functions or deserialization dependencies). " + + $"Please include this path in the filter: {dep}"); + } + } + int? prev_slot = null; + foreach(var slot_variable_proto in proto.SlotVariables) + { + var slot_variable_node_id = slot_variable_proto.SlotVariableNodeId; + // The optimizer and original variable must be created before the slot + // variable, since the slot variable is generated using the Optimizer's + // add_slot API. + var slot_deps = dependency_map.SetDefault(slot_variable_node_id, new List()); + slot_deps.Add(node_id); + slot_deps.Add(slot_variable_proto.OriginalVariableNodeId); + + if(prev_slot is not null) + { + slot_deps.Add(prev_slot.Value); + } + prev_slot = slot_variable_node_id; + } + } + try + { + int total = 0; + foreach(var v in dependency_map.Values) + { + total += v.Count; + } + return TrackableUtils.order_by_dependency(dependency_map); + } + catch (TrackableUtils.CyclicDependencyError ex) + { + throw new ValueError("Encountered a cycle in the deserialization dependencies" + + "in the SavedModel. This is extremely unexpected, please" + + "file a bug and make sure you are not manually modifying the SavedModel."); + } + } + + /// + /// Returns a dictionary of all dependencies of an object. + /// + /// + /// + private Dictionary, int> _get_node_dependencies(SavedObject proto) + { + Dictionary, int> dependencies = new(); + foreach(var refer in proto.Dependencies) + { + dependencies[refer.LocalName] = refer.NodeId; + } + if(proto.KindCase == SavedObject.KindOneofCase.Function) + { + var concreete_functions = proto.Function.ConcreteFunctions; + foreach(var fn_name in concreete_functions) + { + foreach(var bound_input in _proto.ConcreteFunctions[fn_name].BoundInputs) + { + dependencies[bound_input] = bound_input; + } + } + } + else if(proto.KindCase == SavedObject.KindOneofCase.BareConcreteFunction) + { + var fn_name = proto.BareConcreteFunction.ConcreteFunctionName; + foreach(var bound_input in _proto.ConcreteFunctions[fn_name].BoundInputs) + { + dependencies[bound_input] = bound_input; + } + } + else if(proto.KindCase == SavedObject.KindOneofCase.Resource) + { + foreach(var child in proto.Children) + { + if(child.LocalName == "_create_resource") + { + dependencies["_create_resource"] = child.NodeId; + } + } + } + return dependencies; + } + + /// + /// Loads all nodes and functions from the SavedModel and their edges. + /// + private void _load_all() + { + _load_nodes(); + _load_edges(); + + _setup_remaining_functions(); + _load_checkpoint_save_and_restore_functions(); + } + + /// + /// Restores the checkpoint-related save/restore functions to all nodes. + /// + private void _load_checkpoint_save_and_restore_functions() + { + foreach(var (node_id, proto) in _iter_all_nodes()) + { + var node = get(node_id); + if(proto.SaveableObjects.Keys.Count == 1 && proto.SaveableObjects.First().Key == TrackableUtils.SERIALIZE_TO_TENSORS_NAME) + { + // Restore Trackable serialize- and restore-from-tensor functions. + Debug.Assert(proto.SaveableObjects.Count == 1); + var saveable_object_proto = proto.SaveableObjects.Values.First(); + var save_fn_id = saveable_object_proto.SaveFunction; + var restore_fn_id = saveable_object_proto.RestoreFunction; + + throw new NotImplementedException("Not implemented, please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } + else + { + // Restore legacy SaveableObject functions. + Dictionary saveable_fn_by_name = new(); + foreach(var item in proto.SaveableObjects) + { + var name = item.Key; + var saveable_object_proto = item.Value; + var save_fn_id = saveable_object_proto.SaveFunction; + var restore_fn_id = saveable_object_proto.RestoreFunction; + saveable_fn_by_name[name] = ((Trackable)get(save_fn_id), (Trackable)get(restore_fn_id)); + } + var saveable_objects = saveable_object_util.recreate_saveable_objects(saveable_fn_by_name, null); + if (saveable_objects is not null && saveable_objects.Count > 0) + { + if(node is Trackable trackable) + { + trackable.SelfSaveableObjectFactories = saveable_objects; + } + else + { + throw new TypeError(); + } + } + } + } + } + + /// + /// Load all saved objects. + /// + private void _load_nodes() + { + // `nodes` maps from node ids to recreated objects + // `node_setters` maps from node ids to setter functions + // (same signature as setattr) for setting children. + var (nodes, node_setters) = _initialize_loaded_nodes(); + + Dictionary + slot_variable_node_ids = new(); + + foreach(var (node_id, proto) in _iter_all_nodes()) + { + foreach(var slot_variable_proto in proto.SlotVariables) + { + var slot_variable_node_id = slot_variable_proto.SlotVariableNodeId; + slot_variable_node_ids[slot_variable_node_id] = (node_id, slot_variable_proto); + } + } + + // Re-create everything. + foreach (var (node_id, proto) in _iter_all_nodes()) + { + if (nodes.ContainsKey(node_id)) + { + continue; + } + else if (slot_variable_node_ids.ContainsKey(node_id)) + { + // Use the public Optimizer interface when creating slot variables. + var (optimizer_node_id, slot_variable_proto) = slot_variable_node_ids[node_id]; + var optimizer_object = nodes[optimizer_node_id] as IOptimizer; + var optimizer_variable = nodes[slot_variable_proto.OriginalVariableNodeId]; + + var slot_variable = optimizer_object.add_slot(optimizer_variable as IVariableV1, slot_variable_proto.SlotName); + nodes[slot_variable_proto.SlotVariableNodeId] = slot_variable as Trackable; + node_setters[slot_variable_proto.SlotVariableNodeId] = setattr; + } + else + { + var (node, setter) = _recreate(proto, node_id, nodes); + nodes[node_id] = node; + node_setters[node_id] = setter; + } + } + + if (!nodes.ContainsKey(0)) + { + nodes[0] = _recreate_base_user_object().Item1; + } + _nodes = new List(); + for(int i = 0; i < _proto.Nodes.Count; i++) + { + _nodes.Add(nodes[i]); + } + _node_setters = node_setters; + } + + /// + /// Load state from checkpoint into the deserialized objects. + /// + private void _restore_checkpoint() + { + var variables_path = SavedModelUtils.get_variables_path(_export_dir); + var saver = new TrackableSaver(new ObjectGraphView((Trackable)get(0))); + tf_with(ops.device("CPU"), _ => + { + saver.FilePrefixPlaceHolder = constant_op.constant(variables_path); + }); + LoadStatus load_status; + if (_save_options.allow_partial_checkpoint) + { + load_status = saver.restore(variables_path, _checkpoint_options).expect_partial(); + load_status.assert_nontrivial_match(); + } + else + { + load_status = saver.restore(variables_path, _checkpoint_options); + load_status.assert_existing_objects_matched(); + } + var ckpt = (load_status as CheckpointLoadStatus).Checkpoint; + + if (!tf.Context.executing_eagerly()) + { + throw new NotImplementedException("The checkpoint restore has not supported graph mode. " + + "Please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } + } + + /// + /// Adds edges from objects to other objects and functions. + /// + private void _load_edges() + { + foreach(var (node_id, object_proto) in _iter_all_nodes()) + { + _add_object_graph_edges(object_proto, node_id); + } + + if(_filtered_nodes is not null && _filtered_nodes.Contains(0)) + { + var root = get(0); + foreach(var node_path in _node_filters.Keys) + { + var loaded_node = _nodes[_node_path_to_id[node_path]]; + + var path = node_path.Split('.'); + var current_node = root; + foreach(var name in path.Skip(1).Take(path.Length - 2)) + { + // `hasattr` and `setattr` is used here + throw new NotImplementedException(); + } + // `hasattr` and `setattr` is used here + throw new NotImplementedException(); + } + } + } + + private void _setup_function_captures(string concrete_function_name, IDictionary, object> nodes) + { + if (_restored_concrete_functions.Contains(concrete_function_name)) + { + return; + } + _restored_concrete_functions.Add(concrete_function_name); + var concrete_function = _concrete_functions[concrete_function_name]; + var proto = _proto.ConcreteFunctions[concrete_function_name]; + var inputs = proto.BoundInputs.Select(x => nodes[x]); + function_saved_model_utils.restore_captures(concrete_function, inputs); + } + + private void _setup_remaining_functions() + { + // TODO: implement it with concrete functions. + } + + public object get(int node_id) + { + return _nodes[node_id]; + } + + public object get(string node_id) + { + return get(_node_path_to_id[node_id]); + } + + /// + /// Adds edges from an object to its children. + /// + /// + /// + private void _add_object_graph_edges(SavedObject proto, int node_id) + { + var obj = _nodes[node_id]; + var setter = _node_setters[node_id]; + + foreach(var refer in proto.Children) + { + setter.Invoke(obj, refer.LocalName, _nodes[refer.NodeId]); + // TODO(Rinne): deal with "__call__" + } + } + + private (Dictionary, Dictionary>) _initialize_loaded_nodes() + { + Dictionary nodes = new(); + Dictionary> node_setters = new(); + foreach(var item in _loaded_nodes) + { + var node_id = item.Key; + var (node, setter) = item.Value; + nodes[node_id] = node; + node_setters[node_id] = setter; + } + return (nodes, node_setters); + } + + private IEnumerable<(int, SavedObject)> _iter_all_nodes() + { + foreach(var node_id in _ordered_node_ids) + { + yield return (node_id, _proto.Nodes[node_id]); + } + } + + private (object, Action) _recreate(SavedObject proto, int node_id, IDictionary nodes) + { + // skip the registered classes. + Dictionary, object> dependencies = new(); + foreach(var item in _get_node_dependencies(proto)) + { + dependencies[item.Key] = nodes[item.Value]; + } + + return proto.KindCase switch + { + SavedObject.KindOneofCase.Resource => RestoredResource.deserialize_from_proto(proto, _operation_attributes), + SavedObject.KindOneofCase.Asset => AssetResource.deserialize_from_proto(proto, _export_dir, _asset_file_def, _operation_attributes), + SavedObject.KindOneofCase.Constant => TrackableConstant.deserialize_from_proto(proto, _operation_attributes), + _ => _recreate_default(proto, node_id, dependencies) + }; + } + + /// + /// Creates a Python object from a SavedObject protocol buffer. + /// + /// + /// + /// + private (Trackable, Action) _recreate_default(SavedObject proto, int node_id, IDictionary, object> dependencies) + { + return proto.KindCase switch + { + SavedObject.KindOneofCase.UserObject => _recreate_user_object(proto.UserObject, node_id), + SavedObject.KindOneofCase.Function => _recreate_function(proto.Function, dependencies), + SavedObject.KindOneofCase.BareConcreteFunction => _recreate_bare_concrete_function(proto.BareConcreteFunction, dependencies), + SavedObject.KindOneofCase.Variable => _recreate_variable(proto.Variable), + SavedObject.KindOneofCase.CapturedTensor => throw new NotImplementedException(), + _ => throw new NotImplementedException() + }; + } + + private (Trackable, Action) _recreate_user_object(SavedUserObject? proto, int node_id) + { + // skip the check of proto identifier because of lack of property. + var (trackable, setter) = RevivedTypes.deserialize(proto); + if(trackable is null) + { + return _recreate_base_user_object(proto, node_id); + } + return (trackable, setter); + } + + private (Trackable, Action) _recreate_base_user_object(SavedUserObject? proto = null, int? node_id = null) + { + return (new _UserObject(), setattr); + } + + private (BaseResourceVariable, Action) _recreate_variable(SavedVariable proto) + { + string name = proto.Name; + string dbg_name = !string.IsNullOrEmpty(name) ? name : ""; + + // TODO(Rinne): `validate_synchronization_aggregation_trainable` + + var (synchronization, aggregation, trainable) = ResourceVariable.validate_synchronization_aggregation_trainable( + proto.Synchronization, proto.Aggregation, proto.Trainable, dbg_name); + + var saved_device = proto.Device; + var load_with_device = _save_options.experimental_variable_policy.save_variable_devices() && !string.IsNullOrEmpty(saved_device); + + if (load_with_device) + { + return tf_with(ops.device(saved_device), _ => + { + return (new UninitializedVariable( + shape: new Shape(proto.Shape.Dim.Select(x => (int)x.Size).ToArray()), + dtype: (TF_DataType)proto.Dtype, + name: name, + trainable: trainable, + aggregation: aggregation + ), setattr); + }); + } + else + { + return (new UninitializedVariable( + shape: new Shape(proto.Shape.Dim.Select(x => (int)x.Size).ToArray()), + dtype: (TF_DataType)proto.Dtype, + name: name, + trainable: trainable, + aggregation: aggregation + ), setattr); + } + } + + private (Function, Action) _recreate_function(SavedFunction proto, + IDictionary, object> dependencies) + { + var fn = function_deserialization.recreate_function(proto, _concrete_functions); + foreach (var name in proto.ConcreteFunctions) + { + _setup_function_captures(name, dependencies); + } + return (fn, setattr); + } + + private (ConcreteFunction, Action) _recreate_bare_concrete_function(SavedBareConcreteFunction proto, + IDictionary, object> dependencies) + { + var fn = function_deserialization.setup_bare_concrete_function(proto, _concrete_functions); + _setup_function_captures(proto.ConcreteFunctionName, dependencies); + return (fn, setattr); + } + + private (Tensor, Action) _get_tensor_from_fn(CapturedTensor proto) + { + var outer_graph = _concrete_functions[proto.ConcreteFunction].func_graph; + var captured_tensor = outer_graph.get_tensor_by_name(proto.Name); + return (captured_tensor, setattr); + } + + // TODO: remove this to a common class. + public static Action setattr = (x, y, z) => + { + Debug.Assert(y is string); + if(x is Trackable trackable) + { + trackable.SetAttr(y as string, z); + } + else + { + var properties = x.GetType().GetProperties(); + foreach (var p in properties) + { + if ((string)y == p.Name) + { + p.SetValue(x, z); + return; + } + } + } + // TODO(Rinne): check if the property has been set successfully. + //throw new ValueError($"Cannot find the property {y} of {x}."); + }; + + public class _UserObject: AutoTrackable + { + + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/loader.static.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/loader.static.cs new file mode 100644 index 000000000..d1c0170c8 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/loader.static.cs @@ -0,0 +1,122 @@ +using Google.Protobuf; +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.IO; +using System.Linq; +using System.Text; +using Tensorflow.Checkpoint; +using Tensorflow.Operations; +using Tensorflow.Train; +using static Tensorflow.Binding; + +namespace Tensorflow +{ + public partial class Loader + { + public static SavedModel parse_saved_model(string export_dir) + { + var path_to_pbtxt = tf.io.gfile.join(export_dir, Constants.SAVED_MODEL_FILENAME_PBTXT); + var path_to_pb = tf.io.gfile.join(export_dir, Constants.SAVED_MODEL_FILENAME_PB); + + SavedModel saved_model = new SavedModel(); + if (File.Exists(path_to_pb)) + { + byte[] file_content; + using(var f = new FileStream(path_to_pb, FileMode.Open, FileAccess.Read)) + { + file_content = new byte[f.Length]; + Debug.Assert(f.Length <= int.MaxValue); + f.Read(file_content, 0, (int)f.Length); + } + // TODO: change to stream mode. + saved_model.MergeFrom(file_content); + return saved_model; + } + else if (File.Exists(path_to_pbtxt)) + { + throw new NotImplementedException(); + } + else + { + throw new IOException($"SavedModel file does not exist at: {export_dir}{Path.PathSeparator}" + + $"{{{Constants.SAVED_MODEL_FILENAME_PBTXT}|{Constants.SAVED_MODEL_FILENAME_PB}}}"); + } + } + + // TODO: revise the type of `tags` + public static Trackable load(string export_dir, object? tags = null, LoadOptions? options = null) + { + return load_partial(export_dir, null, tags, options)["root"]; + } + + public static IDictionary load_partial(string export_dir, IDictionary)>? filters, object? tags = null, LoadOptions? options = null) + { + if (options is null) + { + options = new LoadOptions(); + } + if (tags is not null) + { + throw new NotImplementedException(); + } + var (saved_model_proto, debug_info) = Loader.parse_saved_model_with_debug_info(export_dir); + + Trackable root = null; + Loader loader = null; + if (saved_model_proto.MetaGraphs.Count == 1 && saved_model_proto.MetaGraphs[0].ObjectGraphDef is not null) + { + // skip python code: `metrics.IncrementReadApi(_LOAD_V2_LABEL)` + var meta_graph_def = saved_model_proto.MetaGraphs[0]; + if (!BitConverter.IsLittleEndian) + { + SavedModelUtils.swap_function_tensor_content(meta_graph_def); + } + + var object_graph_proto = meta_graph_def.ObjectGraphDef; + var ckpt_options = new CheckpointOptions(options.experimental_io_device); + tf_with(ops.init_scope(), x => + { + loader = new Loader(object_graph_proto, saved_model_proto, export_dir, ckpt_options, options, filters); + root = (Trackable)loader.get(0); + // skip the assignment of `graph_debug_info`. + }); + // skip the assignment of `tensorflow_version` + // skip the assignment of `tensorflow_git_version` + // skip the process of `metrics`. + } + else + { + if(filters is not null && filters.Count > 0) + { + throw new ValueError("SavedModels saved from Tensorflow 1.x or Estimator (any" + + " version) cannot be loaded with node filters."); + } + tf_with(ops.init_scope(), x => + { + throw new NotImplementedException("Not implemented, please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues."); + }); + } + if(filters != null && filters.Count > 0) + { + return filters.Keys.ToDictionary(x => x, x => (Trackable)loader.get(x)); + } + else + { + var res = new Dictionary(); + res["root"] = root; + return res; + } + } + + public static (SavedModel, object?) parse_saved_model_with_debug_info(string export_dir) + { + var saved_model = parse_saved_model(export_dir); + + // TODO: implement debug info. + + return (saved_model, null); + } + + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/nested_structure_coder.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/nested_structure_coder.cs new file mode 100644 index 000000000..c81dc29eb --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/nested_structure_coder.cs @@ -0,0 +1,268 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Text; +using Tensorflow.Util; +using static Tensorflow.Binding; + +namespace Tensorflow.Training.Saving.SavedModel +{ + internal interface ICodec + { + //bool CanEncode(StructuredValue value); + bool CanDecode(StructuredValue value); + //StructuredValue DoEecode(object value, Func encode_fn); + object DoDecode(StructuredValue value, Func decode_fn); + } + public class nested_structure_coder + { + private static Dictionary _codecs = null; + public static object decode_proto(StructuredValue proto) + { + if(_codecs is null) + { + _codecs = new Dictionary(); + _codecs[StructuredValue.KindOneofCase.ListValue] = new ListCodec(); + _codecs[StructuredValue.KindOneofCase.TupleValue] = new TupleCodec(); + _codecs[StructuredValue.KindOneofCase.DictValue] = new DictCodec(); + _codecs[StructuredValue.KindOneofCase.NamedTupleValue] = new NamedTupleCodec(); + _codecs[StructuredValue.KindOneofCase.Float64Value] = new Float64Codec(); + _codecs[StructuredValue.KindOneofCase.Int64Value] = new Int64Codec(); + _codecs[StructuredValue.KindOneofCase.StringValue] = new StringCodec(); + _codecs[StructuredValue.KindOneofCase.NoneValue] = new NoneCodec(); + _codecs[StructuredValue.KindOneofCase.BoolValue] = new BoolCodec(); + _codecs[StructuredValue.KindOneofCase.TensorShapeValue] = new TensorShapeCodec(); + _codecs[StructuredValue.KindOneofCase.TensorDtypeValue] = new TensorTypeCodec(); + _codecs[StructuredValue.KindOneofCase.TensorSpecValue] = new TensorSpecCodec(); + _codecs[StructuredValue.KindOneofCase.BoundedTensorSpecValue] = new BoundedTensorSpecCodec(); + _codecs[StructuredValue.KindOneofCase.TypeSpecValue] = new TypeSpecCodec(); + } + + return decode_proto_internal(proto, x => decode_proto(x)); + } + + public static object decode_proto_internal(StructuredValue proto, Func encode_fn) + { + Debug.Assert(_codecs[proto.KindCase].CanDecode(proto)); + return _codecs[proto.KindCase].DoDecode(proto, encode_fn); + } + } + + internal class ListCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.ListValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return value.ListValue.Values.Select(x => decode_fn(x)).ToList(); + } + } + + internal class TupleCodec: ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.TupleValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return value.TupleValue.Values.Select(x => decode_fn(x)).ToArray(); + } + } + + internal class DictCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.DictValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return value.DictValue.Fields.ToDictionary(x => x.Key, x => decode_fn(x.Value)); + } + } + + internal class NamedTupleCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.NamedTupleValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + var key_value_pairs = value.NamedTupleValue.Values; + var items = key_value_pairs.ToDictionary(x => x.Key, x => decode_fn(x.Value)); + return new Common.Types.NamedTuple() + { + Name = value.NamedTupleValue.Name, + ValueDict = items + }; + } + } + + internal class Float64Codec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.KindCase == StructuredValue.KindOneofCase.Float64Value; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return value.Float64Value; + } + } + + internal class Int64Codec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.KindCase == StructuredValue.KindOneofCase.Int64Value; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return (int)value.Int64Value; + } + } + + internal class StringCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.StringValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return tf.compat.as_str(value.StringValue); + } + } + + internal class NoneCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.NoneValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return null; + } + } + + internal class BoolCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.KindCase == StructuredValue.KindOneofCase.BoolValue; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return value.BoolValue; + } + } + + internal class TensorShapeCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.TensorShapeValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return new Shape(value.TensorShapeValue); + } + } + + internal class TensorTypeCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.KindCase == StructuredValue.KindOneofCase.TensorDtypeValue; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + return value.TensorDtypeValue.as_tf_dtype(); + } + } + + internal class TensorSpecCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.TensorSpecValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + var name = value.TensorSpecValue.Name; + var shape = decode_fn(new StructuredValue() + { + TensorShapeValue = value.TensorSpecValue.Shape + }); + Debug.Assert(shape is Shape); + var dtype = decode_fn(new StructuredValue() + { + TensorDtypeValue = value.TensorSpecValue.Dtype + }); + Debug.Assert(dtype is TF_DataType); + return new Framework.Models.TensorSpec(shape as Shape, (TF_DataType)dtype, + string.IsNullOrEmpty(name) ? null : name); + } + } + + internal class BoundedTensorSpecCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.BoundedTensorSpecValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + var btsv = value.BoundedTensorSpecValue; + var name = btsv.Name; + var shape = decode_fn(new StructuredValue() + { + TensorShapeValue = btsv.Shape + }); + Debug.Assert(shape is Shape); + var dtype = decode_fn(new StructuredValue() + { + TensorDtypeValue = btsv.Dtype + }); + Debug.Assert(dtype is TF_DataType); + throw new NotImplementedException("The `BoundedTensorSpec` has not been supported, " + + "please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } + } + + internal class TypeSpecCodec : ICodec + { + public bool CanDecode(StructuredValue value) + { + return value.TypeSpecValue is not null; + } + + public object DoDecode(StructuredValue value, Func decode_fn) + { + var type_spec_proto = value.TypeSpecValue; + var type_spec_class_enum = type_spec_proto.TypeSpecClass; + var class_name = type_spec_proto.TypeSpecClassName; + + throw new NotImplementedException("The `TypeSpec` analysis has not been supported, " + + "please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/save.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/save.cs new file mode 100644 index 000000000..23e0a9295 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/save.cs @@ -0,0 +1,268 @@ +using System; +using System.Collections.Generic; +using System.IO; +using System.Linq; +using System.Text; +using Google.Protobuf; +using Tensorflow.Checkpoint; +using Tensorflow.Functions; +using Tensorflow.Train; +using Tensorflow.Exceptions; +using static Tensorflow.Binding; +using Tensorflow.Training.Saving.SavedModel; + +namespace Tensorflow; + +public static partial class SavedModelUtils +{ + private static readonly IEnumerable byte_swappable = new List() + { + dtypes.float16, dtypes.float32, dtypes.float64, TF_DataType.TF_BFLOAT16, + dtypes.complex64, dtypes.complex128, TF_DataType.TF_UINT16, dtypes.uint32, + dtypes.uint64, TF_DataType.TF_INT16, dtypes.int32, dtypes.int64, TF_DataType.TF_QINT16, + TF_DataType.TF_QUINT16, TF_DataType.TF_QINT32 + }.Select(x => (int)x); + + public static (IList, IDictionary>) save_and_return_nodes(Trackable obj, + string export_dir, ConcreteFunction? signatures, SaveOptions? options = null, bool experimental_skip_checkpoint = false) + { + if (options is null) + { + options = new SaveOptions(); + } + + var saved_model = new Tensorflow.SavedModel(); + var meta_graph_def = new MetaGraphDef(); + saved_model.MetaGraphs.Add(meta_graph_def); + + var (_, exported_graph, object_saver, asset_info, saved_nodes, node_paths) = + _build_meta_graph(obj, signatures, options, meta_graph_def); + saved_model.SavedModelSchemaVersion = Tensorflow.Constants.SAVED_MODEL_SCHEMA_VERSION; + + if (!experimental_skip_checkpoint) + { + SavedModelUtils.get_or_create_variables_dir(export_dir); + CheckpointOptions ckpt_options = new(options.experimental_io_device); + object_saver.save(SavedModelUtils.get_variables_path(export_dir), options:ckpt_options); + } + BuilderUtils.copy_assets_to_destination_dir(asset_info.asset_filename_map, export_dir); + + if (tf.Context.executing_eagerly()) + { + // tensorflow python has a check of `context.async_wait()` here. + } + + // TODO: deal with `pywrap_saved_model.Save(export_dir)`. + + var saved_model_serialized = saved_model.ToString(); + + // This is a state depending on some py-c APIs. Here we temporarily set it as `true`. + if (true) + { + var fingerprint_path = Path.Combine(tf.compat.as_str(export_dir), + tf.compat.as_str(Constants.FINGERPRINT_FILENAME)); + // TODO: add c api and complete the fingerprint def. + var fingerprint_proto = ""; + File.WriteAllText(fingerprint_path, fingerprint_proto); + } + + var path = Path.Combine(tf.compat.as_str(export_dir), tf.compat.as_str(Constants.SAVED_MODEL_FILENAME_PB)); + File.WriteAllBytes(path, saved_model.ToByteArray()); + //File.WriteAllText(path, saved_model.ToString()); + + if (options.save_debug_info) + { + throw new NotImplementedException(); + } + + ops.dismantle_graph(exported_graph); + + return (saved_nodes, node_paths); + } + + private static (MetaGraphDef, Graph, TrackableSaver, AssetInfo, IList, + IDictionary>) _build_meta_graph(Trackable obj, + ConcreteFunction? signatures, SaveOptions options, MetaGraphDef? meta_graph_def = null) + { + using (SaveContext.save_context(options)) + { + if (ops.inside_function()) + { + throw new AssertionError("`tf.saved_model.save` is not supported inside a traced [AutoGraph]. " + + "Move the call to the outer eagerly-executed context."); + } + + if (meta_graph_def is null) + { + meta_graph_def = new MetaGraphDef(); + } + + AugmentedGraphView augmented_graph_view = new AugmentedGraphView(obj); + if (signatures is null) + { + signatures = SignatureSerializationUtils.find_function_to_export(augmented_graph_view); + } + + // TODO: process of aignatures and wrapped_functions + + SaveableView saveable_view = new SaveableView(augmented_graph_view, options); + TrackableSaver object_saver = new TrackableSaver(augmented_graph_view); + var (asset_info, exported_graph) = _fill_meta_graph_def(meta_graph_def, saveable_view, signatures, + options.namespace_white_list, options.experimental_custom_gradients); + if (options.function_aliases is not null) + { + var function_aliases = meta_graph_def.MetaInfoDef.FunctionAliases; + foreach (var pair in options.function_aliases) + { + var alias = pair.Key; + var func = pair.Value; + // TODO: complete it. + throw new NotImplementedException(); + } + } + + var object_graph_proto = saveable_view.serialize_object_graph(asset_info.asset_index); + meta_graph_def.ObjectGraphDef = new SavedObjectGraph(object_graph_proto); + + return (meta_graph_def, exported_graph, object_saver, asset_info, saveable_view.Nodes, saveable_view.NodePaths); + } + } + + private static (AssetInfo, Graph) _fill_meta_graph_def(MetaGraphDef meta_graph_def, SaveableView saveable_view, + ConcreteFunction signatures, IEnumerable namespace_whitelist, + bool save_custom_gradients) + { + var resource_initializers = saveable_view.get_concrete_resource_initializers(); + var exported_graph = new Graph(); + + Dictionary object_map; + Dictionary tensor_map; + AssetInfo asset_info; + var g = exported_graph.as_default(); + (object_map, tensor_map, asset_info) = saveable_view.map_resources(); + // TODO: deal with signatures. + if (save_custom_gradients) + { + // TODO: trace gradient functions. + } + + foreach (var resource_initializer_function in resource_initializers) + { + // List asset_dependencies = new(); + // TODO: deal with initializers + } + + // using(ops.control_dependencies(...)) + var init_op = control_flow_ops.no_op(); + if (meta_graph_def.CollectionDef.ContainsKey(Tensorflow.Constants.MAIN_OP_KEY)) + { + meta_graph_def.CollectionDef[Tensorflow.Constants.MAIN_OP_KEY].NodeList.Value.Append(init_op.name); + } + else + { + meta_graph_def.CollectionDef[Tensorflow.Constants.MAIN_OP_KEY] = new CollectionDef(); + } + // Lack `CopyFrom` API + // meta_graph_def.SignatureDef[Tensorflow.Constants.INIT_OP_SIGNATURE_KEY] + + g.Exit(); + + foreach (var obj in object_map.Values) + { + obj._maybe_initialize_trackable(); + } + + // TODO: add the implementation of `call_with_mapped_functions`. + var (named_saveable_objects, registered_savers) = + SaveUtilV1.frozen_saveables_and_savers(saveable_view.AugmentedGraphView, object_map, exported_graph, false); + var saver = MultiDeviceSaver.from_saveables(named_saveable_objects, registered_savers, false); + + var eg = exported_graph.as_default(); + var saver_def = saver.to_proto(); + meta_graph_def.SaverDef = saver_def; + eg.Exit(); + + + saveable_view.dependency_sorted_node_ids(); + + var graph_def = exported_graph.as_graph_def(true); + graph_def.Library.RegisteredGradients.AddRange(saveable_view.GradientDefs); + verify_ops(graph_def, namespace_whitelist); + + meta_graph_def.GraphDef = new GraphDef(graph_def); + meta_graph_def.MetaInfoDef = new(); + meta_graph_def.MetaInfoDef.Tags.Add(TagConstants.SERVING); + meta_graph_def.MetaInfoDef.TensorflowVersion = tf.VERSION; + // TODO: add git version. + meta_graph_def.MetaInfoDef.TensorflowGitVersion = ""; + meta_graph_def.MetaInfoDef.StrippedDefaultAttrs = true; + meta_graph_def.MetaInfoDef.StrippedOpList = new(); + meta_graph_def.MetaInfoDef.StrippedOpList.MergeFrom(meta_graph.stripped_op_list_for_graph(meta_graph_def.GraphDef)); + meta_graph_def.AssetFileDef.AddRange(asset_info.asset_defs); + + // TODO: deal with signatures here. + + meta_graph.strip_graph_default_valued_attrs(meta_graph_def); + + if (!BitConverter.IsLittleEndian) + { + swap_function_tensor_content(meta_graph_def); + } + + return (asset_info, exported_graph); + } + + private static void verify_ops(GraphDef graph_def, IEnumerable? namespace_whitelist) + { + return; + // if (namespace_whitelist is null || !namespace_whitelist.Any()) + // { + // return; + // } + + // skip the check for the lack of `meta_graph.ops_used_by_graph_def`. + } + + public static void swap_function_tensor_content(MetaGraphDef meta_graph_def) + { + var functions = meta_graph_def.GraphDef.Library.Function; + foreach (var function in functions) + { + var node_def = function.NodeDef; + foreach (var node in node_def) + { + if (node.Op == "Const") + { + var tensor = node.Attr["value"].Tensor; + byte_swap_tensor_content(tensor); + } + } + } + } + + public static void byte_swap_tensor_content(TensorProto tensor) + { + if (byte_swappable.Contains((int)tensor.Dtype)) + { + var tshape = tensor.TensorShape.Dim; + var tensor_bytes = tensor.TensorContent; + if (tensor_bytes is not null && !tensor_bytes.IsEmpty) + { + long tensor_size = 1; + foreach (var sz in tshape) + { + tensor_size *= sz.Size; + } + + var chunksize = tensor_bytes.Length / tensor_size; + List reversed_bytes = new(); + for (int i = 0; i < tensor_bytes.Length; i += (int)chunksize) + { + var current = tensor_bytes.Skip(i).Take((int)chunksize).Reverse(); + reversed_bytes.AddRange(current); + } + tensor.TensorContent = ByteString.CopyFrom(reversed_bytes.ToArray()); + } + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/save_context.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/save_context.cs new file mode 100644 index 000000000..47d8cbab9 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/save_context.cs @@ -0,0 +1,52 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Training.Saving.SavedModel +{ + /// + /// A context for building a graph of SavedModel. + /// + public static class SaveContext + { + // TODO: make it thead safe. + private static bool _in_save_context = false; + private static SaveOptions _save_options = null; + + public static bool in_save_context() => _in_save_context; + public static SaveOptions get_save_options() + { + if (!in_save_context()) + { + throw new ValueError("Not in a SaveContext."); + } + return _save_options; + } + public static SaveContextHandler save_context(SaveOptions options) + { + return new SaveContextHandler(options); + } + + public class SaveContextHandler: IDisposable + { + private bool _old_in_save_context; + private SaveOptions _old_save_options; + public SaveContextHandler(SaveOptions options) + { + if (SaveContext.in_save_context()) + { + throw new ValueError("Already in a SaveContext."); + } + _old_in_save_context = SaveContext._in_save_context; + SaveContext._in_save_context = true; + _old_save_options = SaveContext._save_options; + SaveContext._save_options = options; + } + public void Dispose() + { + SaveContext._in_save_context = _old_in_save_context; + SaveContext._save_options = _old_save_options; + } + } + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/signature_serialization.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/signature_serialization.cs new file mode 100644 index 000000000..d3ffebc9f --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/signature_serialization.cs @@ -0,0 +1,107 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using Tensorflow.Functions; +using Tensorflow.Keras.Saving.SavedModel; +using Tensorflow.Train; + +namespace Tensorflow; + +public static class SignatureSerializationUtils +{ + internal static readonly string DEFAULT_SIGNATURE_ATTR = "_default_save_signature"; + internal static readonly string SIGNATURE_ATTRIBUTE_NAME = "signatures"; + internal static readonly int _NUM_DISPLAY_NORMALIZED_SIGNATURES = 5; + public static SignatureMap create_signature_map(IDictionary signatures) + { + var signature_map = new SignatureMap(); + foreach (var pair in signatures) + { + var name = pair.Key; + var func = pair.Value; + Debug.Assert(func is ConcreteFunction); + // TODO: assert the `func.structured_outputs` and arg_keywords. + signature_map._add_signature(name, (ConcreteFunction)func); + } + + return signature_map; + } + + public static ConcreteFunction find_function_to_export(AugmentedGraphView graph_view) + { + var children = graph_view.list_children(graph_view.Root); + List possible_signatures = new(); + foreach (var item in children) + { + var name = item.Name; + var child = item.Refer; + if(child is not (Function or ConcreteFunction)) + { + continue; + } + if(name == DEFAULT_SIGNATURE_ATTR) + { + Debug.Assert(child is ConcreteFunction); + return (ConcreteFunction)child; + } + ConcreteFunction concrete = get_signature(child); + if(concrete is not null && valid_signature(concrete)) + { + possible_signatures.Add(concrete); + } + } + + if(possible_signatures.Count == 1) + { + var signature = get_signature(possible_signatures[0]); + if(signature is not null && valid_signature(signature)) + { + return signature; + } + } + return null; + } + + private static ConcreteFunction get_signature(Trackable function) + { + // TODO: implement it. + return null; + } + + private static bool valid_signature(ConcreteFunction concreate_function) + { + // TODO: implement it. + return false; + } +} + +public class SignatureMap: Trackable +{ + private Dictionary _signatures; + + public SignatureMap() + { + _signatures = new(); + } + + public void _add_signature(string name, ConcreteFunction concrete_function) + { + _signatures[name] = concrete_function; + } + + public void _add_signature(string name, Function concrete_function) + { + _signatures[name] = concrete_function; + } + + public override IDictionary _trackable_children(SaveType save_type, IDictionary>? cache = null) + { + if (save_type != SaveType.SAVEDMODEL) + { + return new Dictionary(); + } + + return _signatures.Where(x => x.Value is Function or ConcreteFunction).ToDictionary(x => x.Key, x => x.Value); + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/SavedModel/utils.cs b/src/TensorFlowNET.Core/Training/Saving/SavedModel/utils.cs new file mode 100644 index 000000000..b0e6411c9 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/Saving/SavedModel/utils.cs @@ -0,0 +1,57 @@ +using System.IO; +using System.Security.Cryptography.X509Certificates; +using Tensorflow.Train; +using static Tensorflow.Binding; + +namespace Tensorflow; + +public static partial class SavedModelUtils +{ + /// + /// Return variables sub-directory, or create one if it doesn't exist. + /// + /// + public static string get_or_create_variables_dir(string export_dir) + { + var variables_dir = get_variables_dir(export_dir); + Directory.CreateDirectory(variables_dir); + return variables_dir; + } + + /// + /// Return variables sub-directory in the SavedModel. + /// + /// + /// + public static string get_variables_dir(string export_dir) + { + return Path.Combine(tf.compat.as_text(export_dir), tf.compat.as_text(Constants.VARIABLES_DIRECTORY)); + } + + public static string get_variables_path(string export_dir) + { + return Path.Combine(tf.compat.as_text(get_variables_dir(export_dir)), tf.compat.as_text(Constants.VARIABLES_FILENAME)); + } + + /// + /// Return assets sub-directory, or create one if it doesn't exist. + /// + /// + /// + public static string get_or_create_assets_dir(string export_dir) + { + var assets_destination_dir = get_assets_dir(export_dir); + Directory.CreateDirectory(assets_destination_dir); + return assets_destination_dir; + } + + /// + /// Return path to asset directory in the SavedModel. + /// + /// + /// + public static string get_assets_dir(string export_dir) + { + return Path.Combine(tf.compat.as_text(export_dir), tf.compat.as_text(Constants.ASSETS_DIRECTORY)); + } +} diff --git a/src/TensorFlowNET.Core/Training/Saving/saveable_object_util.py.cs b/src/TensorFlowNET.Core/Training/Saving/saveable_object_util.py.cs index 3a6647880..5f198a4f8 100644 --- a/src/TensorFlowNET.Core/Training/Saving/saveable_object_util.py.cs +++ b/src/TensorFlowNET.Core/Training/Saving/saveable_object_util.py.cs @@ -14,15 +14,48 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using OneOf; using System; using System.Collections.Generic; +using System.Diagnostics; using System.Linq; +using Tensorflow.Checkpoint; +using Tensorflow.Contexts; +using Tensorflow.Device; +using Tensorflow.Operations.Activation; +using Tensorflow.Train; +using Tensorflow.Training; using static Tensorflow.Binding; namespace Tensorflow { - public class saveable_object_util + /// + /// A SaveableObject that defines `Trackable` checkpointing steps. + /// + public class TrackableSaveable : MySaveableObject { + private string _prefix; + private IEnumerable _local_names; + private Trackable _trackable; + private bool _call_with_mapped_captures; + // TODO: revise the implementation. Currently the parameter of constructor of this class and its base class has conflict. + public TrackableSaveable(Trackable obj, IEnumerable specs, string name, IEnumerable local_names, + string prefix, bool call_with_mapped_captures = false) : base((object)obj as Tensor, specs.ToArray(), name) + { + _prefix = prefix; + _trackable = obj; + _local_names = local_names; + _call_with_mapped_captures = call_with_mapped_captures; + } + + // TODO: complete this class. + } + public static class saveable_object_util + { + public static string NO_SLICE_SPEC_KEY = ""; + private static HashSet _VARIABLE_OPS = new HashSet(new string[] { + "Variable", "VariableV2", "AutoReloadVariable", "VarHandleOp", "ReadVariableOp" + }); /// /// Returns the variables and names that will be used for a Saver. /// @@ -42,6 +75,34 @@ public static MySaveableObject[] validate_and_slice_inputs(IVariableV1[] names_t return saveables.ToArray(); } + public static MySaveableObject[] validate_and_slice_inputs(Dictionary names_to_saveables) + { + var saveables = new List(); + var seen_ops = new List(); + + foreach (var (name, op) in enumerate(names_to_saveables)) + { + foreach (var converted_saveable_object in saveable_objects_for_op(op, name)) + _add_saveable(saveables, seen_ops, converted_saveable_object); + } + return saveables.ToArray(); + } + + public static MySaveableObject[] validate_and_slice_inputs(Dictionary names_to_saveables) + { + var saveables = new List(); + var seen_ops = new List(); + + foreach(var item in names_to_saveables.OrderBy(x => x.Key)) + { + foreach(var converted_saveable_object in saveable_objects_for_op(item.Value, item.Key)) + { + _add_saveable(saveables, seen_ops, converted_saveable_object); + } + } + return saveables.ToArray(); + } + private static void _add_saveable(List saveables, List seen_ops, T saveable) where T : MySaveableObject { if (seen_ops.Contains(saveable.op)) @@ -51,29 +112,121 @@ private static void _add_saveable(List saveables, List seen_ops, T seen_ops.Add(saveable.op); } + private static void _add_saveable(List saveables, List seen_ops, MySaveableObject saveable) + { + if (seen_ops.Contains(saveable.variable)) + throw new ValueError($"The same saveable will be restored with two names: {saveable.op.OriginalVar.Name}"); + + saveables.Add(saveable); + seen_ops.Add(saveable.variable); + } + /// - /// Create `SaveableObject`s from an operation. + /// Create `SaveableObject`s from an operation. Note that the `op` should not be implicitly converted from `Variable`. /// /// /// /// public static IEnumerable saveable_objects_for_op(Tensor op, string name) { - if (false) - { + ops.init_scope(); + var variable = ops.convert_to_tensor(op, as_ref: true); + if (variable.dtype.is_ref_dtype()) + yield return new ReferenceVariableSaveable(variable, "", name); + else + yield return new ResourceVariableSaveable(variable, "", name); + } + /// + /// Create `SaveableObject`s from an operation. + /// + /// + /// + /// + public static IEnumerable saveable_objects_for_op(Trackable obj, string name) + { + // The `op` maybe `Variable` or `Trackable`. + if (obj is BaseResourceVariable) + { + var variable = obj as BaseResourceVariable; + if (variable.InGraphMode) + { + yield return new ResourceVariableSaveable(variable.GraphElement, "", name); + } + else + { + yield return new ResourceVariableSaveable(variable, "", name); + } + } + else if(obj is not IVariableV1) + { + foreach(var pair in saveable_objects_from_trackable(obj)) + { + var attr = pair.Key; + var factory = pair.Value; + string full_name; + if(attr == Trackable.Constants.VARIABLE_VALUE_KEY) + { + full_name = name; + } + else + { + full_name = name + "_" + attr; + } + var op = factory(full_name); + if(op.TryPickT0(out var variable, out var saveable)) + { + foreach (var v in saveable_objects_for_op(variable as Trackable, variable.Name)) + { + yield return v; + } + } + else + { + foreach (var v in saveable_objects_for_op(saveable, saveable.name)) + { + yield return v; + } + } + } } else { - ops.init_scope(); - var variable = ops.convert_to_tensor(op, as_ref: true); - if (variable.dtype.is_ref_dtype()) + // Variable + if (tf.Context.executing_eagerly()) + { + throw new ValueError($"Can only save/restore ResourceVariables when " + + $"executing eagerly, got type: {obj.GetType()}."); + } + var variable = ops.convert_to_tensor(obj, as_ref: true); + if (!_tensor_comes_from_variable(variable)) + { + throw new TypeError($"names_to_saveables must be a dict mapping string " + + $"names to Tensors/Variables. Not a variable: {variable}"); + } + if(variable.op.type == "Variable" || variable.op.type == "VariableV2" || + variable.op.type == "AutoReloadVariable") + { yield return new ReferenceVariableSaveable(variable, "", name); + } else + { yield return new ResourceVariableSaveable(variable, "", name); + } } } + /// + /// Create `SaveableObject`s from an operation. + /// + /// + /// + /// + public static IEnumerable saveable_objects_for_op(MySaveableObject obj, string name) + { + yield return obj; + } + public static Dictionary op_list_to_dict(IVariableV1[] op_list, bool convert_variable_to_tensor = true) { op_list = op_list.OrderBy(x => x.Name).ToArray(); @@ -121,5 +274,193 @@ public static Dictionary op_list_to_dict(IVariableV1[] op_list, return names_to_saveables; } + + public static IDictionary>> saveable_objects_from_trackable(Trackable obj) + { + // skip the process of type `PythonState` + + OneOf create_saveable(string name = "") + { + // skip the case that `obj._serialize_to_tensors` is `ConcreteFunction`. + var tensor_dict = obj.serialize_to_tensors(); + + List specs = new(); + List local_names = new(); + string prefix = SaveableCompat.get_saveable_name(obj) ?? ""; + foreach (var pair in tensor_dict) + { + var tensor_name = pair.Key; + var internal_dict = pair.Value; + local_names.Add(tensor_name); + string spec_name = name + TrackableUtils.escape_local_name(tensor_name); + + foreach (var item in internal_dict) + { + Debug.Assert(item.Value.IsT0); + specs.Add(new SaveSpec(item.Value.AsT0, item.Key, spec_name)); + } + } + return new TrackableSaveable(obj, specs, name, local_names, prefix); + } + + if (trackable_has_serialize_to_tensor(obj)) + { + Dictionary>> res = new(); + res[TrackableUtils.SERIALIZE_TO_TENSORS_NAME] = create_saveable; + return res; + } + else + { + return obj.gather_saveables_for_checkpoint(); + } + } + + public static bool trackable_has_serialize_to_tensor(Trackable obj) + { + return obj.GetType().GetMethod("serialize_to_tensors").DeclaringType != typeof(Trackable); + } + + internal static string convert_to_string(string x) + { + return tf.compat.as_str(x); + } + + /// + /// Converts a list of SaveableObjects to a tensor dictionary. + /// + /// + public static Dictionary>> saveable_object_to_tensor_dict(IList saveables) + { + Dictionary>> tensor_dict = new(); + foreach (var saveable in saveables) + { + foreach (var spec in saveable.specs) + { + // skip the check that if `spec` is callable. + var name = convert_to_string(spec.name); + var slice_spec = convert_to_string(spec.slice_spec); + if (string.IsNullOrEmpty(slice_spec)) + { + slice_spec = NO_SLICE_SPEC_KEY; + } + tensor_dict.SetDefault(name, new Dictionary>())[slice_spec] = spec.TensorCreator is null ? spec.tensor : spec; + } + } + return tensor_dict; + } + + /// + /// Generates `Trackable._restore_from_tensors` from SaveableObjects. + /// + /// + public static Func>>, IDictionary> saveable_object_to_restore_fn(IList saveables) + { + return (restored_tensors) => + { + Dictionary restored_ops = new(); + + foreach(var saveable in saveables) + { + List saveable_restored_tensors = new(); + foreach(var spec in saveable.specs) + { + var name = TrackableUtils.extract_local_name(saveable_object_util.convert_to_string(spec.name)); + var slice_spec = saveable_object_util.convert_to_string(spec.slice_spec); + + var maybe_tensor = restored_tensors[name]; + IDictionary dict; + if(maybe_tensor.TryPickT0(out var tensor, out var dic)) + { + dict = new Dictionary(); + dict[""] = tensor; + } + else + { + dict = dic; + } + saveable_restored_tensors.Add(dict[slice_spec]); + } + restored_ops[saveable.name] = saveable.restore(saveable_restored_tensors.ToArray(), null); + } + return restored_ops; + }; + } + + /// + /// Returns a dict of SaveableObject factories generated from loaded fns. + /// + /// + /// + public static IDictionary>> recreate_saveable_objects( + IDictionary saveable_fn_by_name, IEnumerable? temp_session) + { + if (saveable_fn_by_name.Count > 0) + { + throw new NotImplementedException("Not implemented, please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } + var res = new Dictionary>>(); + return res; + } + + public static OneOf create_saveable_object(string name, string key, Func> factory, + bool call_with_mapped_captures = false) + { + return factory(key); + } + + public static string set_cpu0(string device_string) + { + if (tf.Context.is_custom_device(device_string)) + { + return device_string; + } + var parsed_device = DeviceSpec.from_string(device_string); + parsed_device = parsed_device.replace(device_type: "CPU", device_index: 0); + return parsed_device.ToString(); + } + + private static bool _tensor_comes_from_variable(object v) + { + return v is Tensor tensor && _VARIABLE_OPS.Contains(tensor.op.type); + } + } + + public class SaveableCompatibilityConverter: Trackable + { + private object _obj; + private IList _saveables; + public SaveableCompatibilityConverter(object obj, IList saveables) + { + _obj= obj; + _saveables= saveables; + } + + public object Obj => _obj; + public IList mySaveables=> _saveables; + + public override IDictionary>> serialize_to_tensors() + { + return saveable_object_util.saveable_object_to_tensor_dict(_saveables); + } + + /// + /// Returns the restore ops defined in the Saveables. + /// + /// + /// + public override IDictionary _restore_from_tensors(IDictionary>> restored_tensors) + { + List expected_keys = new(); + foreach(var saveable in _saveables) + { + expected_keys.AddRange(saveable.specs.Select(x => TrackableUtils.extract_local_name(saveable_object_util.convert_to_string(x.name)))); + } + if (!expected_keys.Distinct().SequenceEqual(restored_tensors.Keys)) + { + throw new ValueError($"Could not restore object {_obj} because not all expected tensors were in the checkpoint." + + $"\n\tExpected: {expected_keys} \n\tGot: {list(restored_tensors.Keys)}"); + } + return saveable_object_util.saveable_object_to_restore_fn(_saveables).Invoke(restored_tensors); + } } } diff --git a/src/TensorFlowNET.Core/Training/Saving/saver.py.cs b/src/TensorFlowNET.Core/Training/Saving/saver.py.cs index 4f583600f..f94f98940 100644 --- a/src/TensorFlowNET.Core/Training/Saving/saver.py.cs +++ b/src/TensorFlowNET.Core/Training/Saving/saver.py.cs @@ -94,18 +94,16 @@ public static string freeze_graph(string checkpoint_dir, string output_pb = Path.GetFullPath(Path.Combine(checkpoint_dir, "../", $"{output_pb_name}.pb")); - using (var graph = tf.Graph()) - using (var sess = tf.Session(graph)) - { - var saver = tf.train.import_meta_graph($"{checkpoint}.meta", clear_devices: true); - saver.restore(sess, checkpoint); - var output_graph_def = tf.graph_util.convert_variables_to_constants(sess, - graph.as_graph_def(), - output_node_names); - Binding.tf_output_redirect.WriteLine($"Froze {output_graph_def.Node.Count} nodes."); - File.WriteAllBytes(output_pb, output_graph_def.ToByteArray()); - return output_pb; - } + var graph = tf.Graph(); + var sess = tf.Session(graph); + var saver = tf.train.import_meta_graph($"{checkpoint}.meta", clear_devices: true); + saver.restore(sess, checkpoint); + var output_graph_def = tf.graph_util.convert_variables_to_constants(sess, + graph.as_graph_def(), + output_node_names); + Binding.tf_output_redirect.WriteLine($"Froze {output_graph_def.Node.Count} nodes."); + File.WriteAllBytes(output_pb, output_graph_def.ToByteArray()); + return output_pb; } public static Graph load_graph(string freeze_graph_pb, string name = "") diff --git a/src/TensorFlowNET.Core/Training/Trackable.cs b/src/TensorFlowNET.Core/Training/Trackable.cs index 79d6dca92..3eff34875 100644 --- a/src/TensorFlowNET.Core/Training/Trackable.cs +++ b/src/TensorFlowNET.Core/Training/Trackable.cs @@ -14,13 +14,143 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using OneOf; +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using Tensorflow.Checkpoint; +using Tensorflow.Keras.Saving.SavedModel; +using Tensorflow.Training; +using Tensorflow.Training.Saving.SavedModel; using static Tensorflow.Binding; namespace Tensorflow.Train { - public abstract class Trackable + public abstract class Trackable: IWithTrackable { + /// + /// Corresponding to tensorflow/python/trackable/constants.py + /// + public static class Constants + { + public static readonly string OBJECT_GRAPH_PROTO_KEY = "_CHECKPOINTABLE_OBJECT_GRAPH"; + public static readonly string VARIABLE_VALUE_KEY = "VARIABLE_VALUE"; + public static readonly string OBJECT_CONFIG_JSON_KEY = "OBJECT_CONFIG_JSON"; + } protected int _self_update_uid; + protected IDictionary _unconditional_dependency_names; + + protected IList _unconditional_checkpoint_dependencies; + protected Dictionary> _unconditional_deferred_dependencies; + + protected IDictionary>> _self_saveable_object_factories = + new Dictionary>>(); + private bool _manual_tracking = true; + + private static Trackable _none = new AutoTrackable(); + /// + /// This is a trick for that CSharp does not allow the key of `Dictionary` to be null. + /// The `None` can be any object that inherits `Trackable`. + /// This Property is supposed to be used only internal. + /// + public static Trackable None + { + get + { + return _none; + } + } + public Trackable GetTrackable() + { + return this; + } + public virtual string ObjectIdentifier + { + get => "_generic_user_object"; + } + public int UpdateUid { get => _self_update_uid; set => _self_update_uid = value; } + public IList UnconditionalCheckpointDependencies { get => _unconditional_checkpoint_dependencies; } + public IDictionary UnconditionalDependencyNames { get => _unconditional_dependency_names; } + public IList CheckpointDependencies { get => UnconditionalCheckpointDependencies; } + public Dictionary> DeferredDependencies => _unconditional_deferred_dependencies; + public IDictionary>> SelfSaveableObjectFactories + { + get + { + return _self_saveable_object_factories; + } + set + { + _self_saveable_object_factories = value; + } + } + public Dictionary CustomizedFields { get; set; } = new Dictionary(); + + public virtual void SetAttr(string name, object value) + { + var t = this.GetType(); + var field_info = t.GetField(name); + if(field_info is not null) + { + field_info.SetValue(this, value); + } + else + { + CustomizedFields[name] = value; + } + + // On account of performance, we don't use reflection to set the attribute if it exists in `Trackable`. + // When adding new members or properties to this class, please add corresponding process to this method. + //switch (name) + //{ + // case "_manual_tracking": + // { + // _manual_tracking = (bool)value; + // break; + // } + // case "_self_saveable_object_factories": + // { + // _self_saveable_object_factories = (IDictionary>>)value; + // break; + // } + // case "_self_update_uid": + // { + // _self_update_uid = (int)value; + // break; + // } + // case "_unconditional_checkpoint_dependencies": + // { + // _unconditional_checkpoint_dependencies = (IList)value; + // break; + // } + // case "_unconditional_deferred_dependencies": + // { + // _unconditional_deferred_dependencies = (Dictionary>)value; + // break; + // } + // case "_unconditional_dependency_names": + // { + // _unconditional_dependency_names = (IDictionary)value; + // break; + // } + // case "SelfSaveableObjectFactories": + // { + // SelfSaveableObjectFactories = (IDictionary>>)value; + // break; + // } + // case "UpdateUid": + // { + // UpdateUid = (int)value; + // break; + // } + // default: + // { + // CustomizedAttributes[name] = value; + // break; + // } + // } + } /// /// Restore-on-create for a variable be saved with this `Checkpointable`. @@ -47,9 +177,12 @@ protected virtual IVariableV1 _add_variable_with_custom_getter(VariableArgs args // assign again. It will add this variable to our dependencies, and if there // is a non-trivial restoration queued, it will handle that. This also // handles slot variables. - if (!args.Overwrite || new_variable is RefVariable) - return _track_checkpointable(new_variable, name: args.Name, - overwrite: args.Overwrite); + if (!args.Overwrite || new_variable is RefVariable || new_variable is Trackable) + { + var res = _track_trackable(new_variable as Trackable, args.Name, args.Overwrite); + Debug.Assert(res is IVariableV1); + return res as IVariableV1; + } else return new_variable; } @@ -73,10 +206,156 @@ protected IVariableV1 _track_checkpointable(IVariableV1 checkpointable, string n /// /// Initialize dependency management. /// - protected void _maybe_initialize_trackable() + public void _maybe_initialize_trackable() { - // _self_unconditional_checkpoint_dependencies = [] + if(_unconditional_checkpoint_dependencies is not null) + { + return; + } _self_update_uid = -1; + _unconditional_checkpoint_dependencies = new List(); + _unconditional_dependency_names = new Dictionary(); + _unconditional_deferred_dependencies = new Dictionary>(); + } + + public virtual IDictionary _trackable_children(SaveType save_type = SaveType.CHECKPOINT, + IDictionary>? cache = null) + { + _maybe_initialize_trackable(); + return _unconditional_checkpoint_dependencies.ToDictionary(x => x.Name, x => x.Refer); + } + + public virtual Trackable _track_trackable(Trackable trackable, string name, bool overwrite = false) + { + _maybe_initialize_trackable(); + if (!_manual_tracking) return trackable; + var new_reference = new TrackableReference(name, trackable); + var current_object = _lookup_dependency(name); + + if(current_object is null) + { + _unconditional_checkpoint_dependencies.Add(new_reference); + _handle_deferred_dependencies(name, trackable); + } + _unconditional_dependency_names[name] = trackable; + return trackable; + } + + /// + /// Pop and load any deferred checkpoint restores into `trackable`. + /// This method does not add a new dependency on `trackable`, but it does check if any outstanding/deferred dependencies have been queued waiting for + /// this dependency to be added (matched based on `name`). If so, `trackable` and its dependencies are restored. The restorations are + /// considered fulfilled and so are deleted. + /// `_track_trackable` is more appropriate for adding a normal/unconditional dependency, and includes handling for deferred restorations. + /// This method allows objects such as `Optimizer` to use the same restoration logic while managing conditional dependencies themselves, + /// by overriding `_checkpoint_dependencies` and `_lookup_dependency` to change the object's dependencies based on the context + /// it is saved/restored in (a single optimizer instance can have state associated with multiple graphs). + /// + /// + /// + public virtual void _handle_deferred_dependencies(string name, Trackable trackable) + { + _maybe_initialize_trackable(); + trackable._maybe_initialize_trackable(); + + if(_unconditional_deferred_dependencies.TryGetValue(name, out var dependencies)) + { + _unconditional_deferred_dependencies.Remove(name); + foreach(var checkpoint_position in dependencies.OrderByDescending(x => x.Checkpoint.RestoreUid)) + { + checkpoint_position.restore(trackable); + } + } + + // TODO(Rinne): deal with `_self_name_based_restores` + } + + public virtual Trackable? _lookup_dependency(string name) + { + if (_unconditional_dependency_names.TryGetValue(name, out var dependency)) return dependency; + else return null; + } + + public static Trackable convert_to_trackable(object obj, object? parent = null) + { + if (obj is Trackable) + { + return (Trackable)obj; + } + else + { + throw new NotImplementedException(); + } + } + + public virtual IDictionary deserialization_dependencies(IDictionary children) + { + return new Dictionary(); + } + + public virtual (IDictionary, IDictionary) map_resources( + SaveOptions? save_options) + { + return (new Dictionary(), new Dictionary()); + } + + public virtual List export_to_saved_model_graph(IDictionary object_map, + IDictionary tensor_map, SaveOptions? options = null) + { + var (self_object_map, self_tensor_map) = map_resources(options); + foreach (var pair in self_object_map) + { + object_map.Add(pair); + } + foreach (var pair in self_tensor_map) + { + tensor_map.Add(pair); + } + + return self_tensor_map.Keys.ToList(); + } + + public virtual IDictionary>> gather_saveables_for_checkpoint() + { + OneOf create_saveable(string name = "") + { + throw new NotImplementedException(); + //return new TrackableSaveable(this, null, name, null, null); + } + if (saveable_object_util.trackable_has_serialize_to_tensor(this)) + { + // TODO: complete the implementation (need to complete the class `saveable_object_util.TrackableSaveable`). + Dictionary>> res = new(); + res[""] = create_saveable; + return res; + } + else + { + return _self_saveable_object_factories; + } + } + + /// + /// Gathers tensors to save to the checkpoint. You should only override `serialize_to_tensors` and `restore_from_tensors` + /// if you are defining a custom resource or variable with custom ops. + /// Otherwise, please store the state of your trackable in `tf.Variable` objects + /// and add them to Trackable object hierarchy using `setattr` (for subclasses + /// of `AutoTrackable`) or overriding the `_trackable_children` method. + /// + /// + /// + public virtual IDictionary>> serialize_to_tensors() + { + throw new NotImplementedException(); + } + + public virtual IDictionary _restore_from_tensors(IDictionary>> restored_tensors) + { + throw new NotImplementedException(); } } + + public record class TrackableReference(string Name, Trackable Refer); + + public record class SlotVariableRestoration(int OptimizerId, int SlotVariableId, string SlotName); } diff --git a/src/TensorFlowNET.Core/Training/TrackableUtils.cs b/src/TensorFlowNET.Core/Training/TrackableUtils.cs new file mode 100644 index 000000000..89bb614d2 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/TrackableUtils.cs @@ -0,0 +1,173 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using Tensorflow.Checkpoint; +using Tensorflow.Exceptions; +using Tensorflow.Train; + +namespace Tensorflow.Training; + +public static class TrackableUtils +{ + public class CyclicDependencyError: System.Exception + { + public IDictionary> LeftOverDependencyMap { get; } + public CyclicDependencyError(IDictionary> leftover_dependency_map): base() + { + LeftOverDependencyMap = leftover_dependency_map; + } + public CyclicDependencyError(IDictionary> leftover_dependency_map): base() + { + LeftOverDependencyMap = leftover_dependency_map.ToDictionary(x => x.Key, x => x.Value.AsEnumerable()); + } + } + internal static string _ESCAPE_CHAR = "."; + internal static string _OPTIMIZER_SLOTS_NAME = _ESCAPE_CHAR + "OPTIMIZER_SLOT"; + internal static string OBJECT_ATTRIBUTES_NAME = _ESCAPE_CHAR + "ATTRIBUTES"; + internal static string SERIALIZE_TO_TENSORS_NAME = _ESCAPE_CHAR + "TENSORS"; + public static string object_path_to_string(IEnumerable node_path_arr) + { + return string.Join("/", node_path_arr.Select(x => escape_local_name(x.Name))); + } + + public static string escape_local_name(string name) + { + return name.Replace(_ESCAPE_CHAR, _ESCAPE_CHAR + _ESCAPE_CHAR).Replace("/", _ESCAPE_CHAR + "S"); + } + + public static string checkpoint_key(string object_path, string local_name) + { + var key_suffix = escape_local_name(local_name); + if (local_name == SERIALIZE_TO_TENSORS_NAME) + { + key_suffix = ""; + } + + return $"{object_path}/{OBJECT_ATTRIBUTES_NAME}/{key_suffix}"; + } + + /// + /// Topologically sorts the keys of a map so that dependencies appear first. + /// Uses Kahn's algorithm: https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm + /// + /// + /// + public static List order_by_dependency(IDictionary> dependency_map) + { + Dictionary> reverse_dependency_map = new(); + foreach (var pair in dependency_map) + { + foreach (var dep in pair.Value) + { + if (reverse_dependency_map.ContainsKey(dep)) + { + reverse_dependency_map[dep].Add(pair.Key); + } + else + { + reverse_dependency_map[dep] = new HashSet(); + reverse_dependency_map[dep].Add(pair.Key); + } + } + } + + // Validate that all values in the dependency map are also keys. + var unknown_keys = reverse_dependency_map.Keys.Except(dependency_map.Keys); + if (unknown_keys.Count() > 0) + { + throw new ValueError( + $"Found values in the dependency map which are not keys: {string.Join(", ", unknown_keys.Select(x => x.ToString()))}"); + } + + // Generate the list sorted by objects without dependencies -> dependencies. + // The returned list will reverse this. + List reversed_dependency_arr = new(); + + Queue to_visit = new(); + foreach (var x in dependency_map.Keys) + { + if (!reverse_dependency_map.ContainsKey(x)) + { + to_visit.Enqueue(x); + } + } + + while (to_visit.Count > 0) + { + var x = to_visit.Dequeue(); + reversed_dependency_arr.Add(x); + foreach (var dep in dependency_map[x].Distinct()) + { + var edges = reverse_dependency_map[dep]; + edges.Remove(x); + if (edges.Count == 0) + { + to_visit.Enqueue(dep); + if (!reverse_dependency_map.Remove(dep)) + { + throw new KeyError($"Cannot find the key {dep} in reverse_dependency_map"); + } + } + } + } + + if (reverse_dependency_map.Count > 0) + { + Dictionary> leftover_dependency_map = new(); + foreach (var pair in reverse_dependency_map) + { + foreach (var x in pair.Value) + { + if (leftover_dependency_map.ContainsKey(x)) + { + leftover_dependency_map[x].Add(pair.Key); + } + else + { + leftover_dependency_map[x] = new List() { pair.Key }; + } + } + } + + throw new CyclicDependencyError(leftover_dependency_map); + } + + reversed_dependency_arr.Reverse(); + return reversed_dependency_arr; + } + + public static string pretty_print_node_path(IEnumerable paths) + { + if (paths.Count() == 0) + { + return "root object"; + } + else + { + return $"root.{string.Join(".", paths.Select(x => x.Name))}"; + } + } + + /// + /// Returns the substring after the "/.ATTIBUTES/" in the checkpoint key. + /// + /// + /// + /// + public static string extract_local_name(string key, string? prefix = null) + { + if(prefix is null) + { + prefix = ""; + } + var search_key = OBJECT_ATTRIBUTES_NAME + "/" + prefix; + try + { + return key.Substring(key.IndexOf(search_key) + search_key.Length); + } + catch(ArgumentOutOfRangeException) + { + return key; + } + } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Core/Training/data_structures.cs b/src/TensorFlowNET.Core/Training/data_structures.cs new file mode 100644 index 000000000..6b607e853 --- /dev/null +++ b/src/TensorFlowNET.Core/Training/data_structures.cs @@ -0,0 +1,687 @@ +using Google.Protobuf; +using System; +using System.Collections; +using System.Collections.Generic; +using System.Diagnostics; +using System.Diagnostics.CodeAnalysis; +using System.IO.Compression; +using System.Linq; +using System.Linq.Expressions; +using System.Runtime.InteropServices; +using System.Text; +using Tensorflow.Functions; +using Tensorflow.Keras; +using Tensorflow.Keras.Saving.SavedModel; +using Tensorflow.Operations.Activation; +using Tensorflow.Train; +using static Tensorflow.ApiDef.Types; + +namespace Tensorflow.Training +{ + public class NoDependency + { + public Trackable Value { get; set; } + public NoDependency(Trackable value) + { + Value = value; + } + } + + static class TrackableWrapperUtils + { + internal static bool ShouldLoad(ITrackableWrapper wrapper, SavedUserObject proto) + { + if (proto.Identifier != wrapper.Identifier) + { + return false; + } + if (wrapper.Version < proto.Version.MinConsumer) + { + return false; + } + if (proto.Version.Producer < wrapper.MinProducerVersion) + { + return false; + } + foreach (var bad_version in proto.Version.BadConsumers) + { + if (bad_version == wrapper.Version) + { + return false; + } + } + return true; + } + + internal static bool is_function(Trackable x) + { + return x is Function or ConcreteFunction; + } + } + + public interface ITrackableWrapper + { + void SetValue(object name, object value); + String Identifier { get; } + int Version { get; } + int MinConsumerVersion { get; } + int MinProducerVersion { get; } + Trackable FromProto(SavedUserObject proto); + } + + public abstract class TrackableDataStructure : Trackable + { + private bool _self_trainable; + private List _self_extra_variables; + + public TrackableDataStructure() + { + _self_trainable = true; + _self_extra_variables = new List(); + } + + public abstract ICollection Values { get; } + public bool Trainable { get => _self_trainable; set => _self_trainable = value; } + public IEnumerable Layers + { + get + { + List collected = new(); + foreach(var obj in Values) + { + if(obj is ILayer) + { + collected.Add((ILayer)obj); + } + else if(obj is TrackableDataStructure) + { + collected.AddRange((obj as TrackableDataStructure).Layers); + } + } + return collected; + } + } + public IEnumerable TrainableWeights + { + get + { + if (!_self_trainable) + { + return new List(); + } + List trainable_variables = new(); + foreach (var obj in Values) + { + // skip the process of `module.Module`. + if (obj is TrackableDataStructure) + { + trainable_variables.AddRange((obj as TrackableDataStructure).TrainableVariables); + } + } + foreach(var v in _self_extra_variables) + { + if (v.Trainable) + { + trainable_variables.Add(v); + } + } + return trainable_variables; + } + } + public IEnumerable NonTrainableWeights + { + get + { + var trainable_extra_variables = _self_extra_variables.Where(x => x.Trainable).ToList(); + var non_trainable_extra_variables = _self_extra_variables.Where(x => !x.Trainable).ToList(); + List non_trainable_variables = new(); + foreach(var obj in Values) + { + // skip the process of `module.Module`. + if (obj is TrackableDataStructure) + { + non_trainable_variables.AddRange((obj as TrackableDataStructure).NonTrainableVariables); + } + } + + if (!_self_trainable) + { + // Return order is all trainable vars, then all non-trainable vars. + List trainable_variables = new(); + foreach(var obj in Values) + { + // skip the process of `module.Module`. + if (obj is TrackableDataStructure) + { + trainable_variables.AddRange((obj as TrackableDataStructure).TrainableVariables); + } + } + return trainable_variables.concat(trainable_extra_variables).concat(non_trainable_variables).concat(non_trainable_extra_variables); + } + else + { + return non_trainable_variables.concat(non_trainable_extra_variables); + } + } + } + public IEnumerable Weights => TrainableWeights.Concat(NonTrainableWeights); + public IEnumerable TrainableVariables => TrainableWeights; + public IEnumerable NonTrainableVariables => NonTrainableWeights; + public IEnumerable Variables => Weights; + + // TODO: `losses` property. + + /// + /// Add a dependency on `value`. + /// + /// + /// + protected virtual Trackable _track_value(Trackable value, string name) + { + value = (Trackable)sticky_attribute_assignment(this, name, value); + if(value is IVariableV1) + { + _self_extra_variables.Add(value as IVariableV1); + } + // skip the left process (need to be done in the future). + return value; + } + + public static Trackable wrap_or_unwrap(NoDependency value) + { + return value.Value; + } + + public static object wrap_or_unwrap(object value) + { + if(value is NoDependency dependency) + { + return dependency.Value; + } + if(value is Trackable trackable) + { + return trackable; + } + else if(value is IDictionary obj_dict) + { + return new DictWrapper(obj_dict); + } + else if(value is IList list) + { + return new ListWrapper(list); + } + else + { + return value; + } + } + + public static object sticky_attribute_assignment(Trackable trackable, string name, object value) + { + bool add_dependency = value is not NoDependency; + value = wrap_or_unwrap(value); + if (!add_dependency) + { + return value; + } + if(value is Trackable trackable_obj) + { + trackable._track_trackable(trackable_obj, name, true); + } + return value; + } + } + // TODO(Rinne): Add Dict wrapper and Tuple wrapper + + public class DictWrapper : TrackableDataStructure, IDictionary, ICloneable, ITrackableWrapper + { + private IDictionary _storage; + private bool _non_string_key; + private bool _external_modification; + private IDictionary _last_wrapped_dict_snapshot; + + public DictWrapper(IDictionary wrapped_dict = null) + { + if(wrapped_dict is not null) + { + _storage = new Dictionary(wrapped_dict); + } + else + { + _storage = new Dictionary(); + } + _update_snapshot(); + } + + public void SetValue(object name, object value) + { + Debug.Assert(value is Trackable); + this[name] = value as Trackable; + } + public String Identifier => "trackable_dict_wrapper"; + public int Version => 1; + public int MinConsumerVersion => 1; + public int MinProducerVersion => 1; + public Trackable FromProto(SavedUserObject proto) + { + return new DictWrapper(new Dictionary()); + } + + public Trackable this[object key] + { + get + { + return _storage[key]; + } + set + { + _check_self_external_modification(); + _maybe_initialize_trackable(); + bool no_dep = value is NoDependency; + if(key is string) + { + value = _track_value(value, key); + } + else + { + value = (Trackable)wrap_or_unwrap(value); + if(!no_dep && value is Trackable) + { + _non_string_key = true; + } + } + _storage[key] = value; + _update_snapshot(); + } + } + + public ICollection Keys => _storage.Keys; + + public override ICollection Values => _storage.OrderBy(x => x.Key).Select(x => x.Value).ToArray(); + + public void Add(object key, Trackable value) + { + _storage[key] = value; + } + + public bool ContainsKey(object key) + { + return _storage.ContainsKey(key); + } + + public bool Remove(object key) + { + _check_self_external_modification(); + var res = _storage.Remove(key); + _update_snapshot(); + return res; + } + + public bool TryGetValue(object key, out Trackable value) + { + return _storage.TryGetValue(key, out value); + } + + public int Count => _storage.Count; + + public bool IsReadOnly => _storage.IsReadOnly; + + public void Add(KeyValuePair item) + { + Add(item.Key, item.Value); + } + + public void Clear() + { + _storage.Clear(); + _update_snapshot(); + } + + public bool Contains(KeyValuePair item) + { + return _storage.Contains(item); + } + + public void CopyTo(KeyValuePair[] array, int arrayIndex) + { + _storage.CopyTo(array, arrayIndex); + } + + public bool Remove(KeyValuePair item) + { + _check_self_external_modification(); + var res = Remove(item); + _update_snapshot(); + return res; + } + + public IEnumerator> GetEnumerator() + { + return _storage.GetEnumerator(); + } + + IEnumerator IEnumerable.GetEnumerator() => _storage.GetEnumerator(); + + public object Clone() + { + var copied = new DictWrapper(_storage); + copied._external_modification = _external_modification; + copied._non_string_key = _non_string_key; + return copied; + } + + public override IDictionary _trackable_children(SaveType save_type = SaveType.CHECKPOINT, IDictionary>? cache = null) + { + _check_self_external_modification(); + if (_non_string_key) + { + throw new ValueError($"Unable to save the object {this} (a dictionary wrapper constructed \"" + + $"automatically on attribute assignment). The wrapped dictionary " + + $"contains a non-string key which maps to a trackable object or " + + $"mutable data structure.\n\nIf you don't need this dictionary " + + $"checkpointed, wrap it in a non-trackable " + + $"object; it will be subsequently ignored."); + } + if (_external_modification) + { + throw new ValueError($"Unable to save the object {this} (a dictionary wrapper constructed " + + $"automatically on attribute assignment). The wrapped dictionary was " + + $"modified outside the wrapper (its final value was {this}, its value" + + $" when a checkpoint dependency was added was " + + $"{this._last_wrapped_dict_snapshot}), which breaks " + + $"restoration on object creation.\n\nIf you don't need this " + + $"dictionary checkpointed, wrap it in a " + + $"non-trackable object; it will be subsequently ignored."); + } + Debug.Assert(!Dirty); + var children = base._trackable_children(save_type, cache); + + if(save_type == SaveType.SAVEDMODEL) + { + foreach(var item in _storage) + { + var key = item.Key; + var value = item.Value; + if (TrackableWrapperUtils.is_function(value)) + { + Debug.Assert(key is string); + children[key as string] = value; + } + } + } + + return children; + } + + protected Trackable _track_value(Trackable value, object name) + { + bool string_key = name is string; + if (!string_key) + { + name = "-non_string_key"; + } + try + { + bool no_dependency = value is NoDependency; + value = base._track_value(value, name as string); + if(!(string_key || no_dependency)) + { + _non_string_key = true; + } + return value; + } + catch (ValueError) + { + return (Trackable)sticky_attribute_assignment(this, name as string, value); + } + } + + private bool Dirty => _external_modification || _non_string_key; + + private void _check_self_external_modification() + { + if (Dirty) + { + return; + } + if(!this._storage.SequenceEqual(_last_wrapped_dict_snapshot)) + { + _external_modification = true; + _last_wrapped_dict_snapshot = null; + } + } + + private void _update_snapshot() + { + // TODO(Rinne): deal with attribute_sentinel. + if (Dirty) return; + _last_wrapped_dict_snapshot = new Dictionary(_storage); + } + } + public class ListWrapper : TrackableDataStructure, IList, ICloneable, ITrackableWrapper + { + private IList _storage; + private bool _non_append_mutation_value; + private bool _external_modification_value; + private IList _last_wrapped_list_snapshot; + /// + /// + /// + /// The initial value of the data structure. A shallow copy may be maintained for error checking. `wrapped_list` itself should not be + /// modified directly after constructing the `ListWrapper`, and if changes are detected the `ListWrapper` will throw an exception on save. + public ListWrapper(IList wrapped_list) + { + _storage = new List(wrapped_list); + _non_append_mutation_value = _external_modification_value = false; + _last_wrapped_list_snapshot = new List(_storage); + } + + public string Identifier => "trackable_list_wrapper"; + public int Version => 1; + public int MinConsumerVersion => 1; + public int MinProducerVersion => 1; + public Trackable FromProto(SavedUserObject proto) + { + if(TrackableWrapperUtils.ShouldLoad(this, proto)) + { + return new ListWrapper(new Trackable[] { }); + } + else + { + return null; + } + } + public void SetValue(object name, object value) + { + Debug.Assert(name is string); + if(int.TryParse(name as string, out var index)) + { + if(value is not Trackable trackable) + { + throw new TypeError("Cannot set an object which is not trackable to ListWrapper."); + } + if(Count <= index) + { + Add(trackable); + } + else + { + this[index] = trackable; + } + } + else + { + throw new NotImplementedException("Encounter an unexpected behavior in , please " + + "submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } + } + + protected bool NonAppendMuation { + get => _non_append_mutation_value; + set + { + // TODO: deal with `attribute_sentinel`. + _non_append_mutation_value = value; + } + } + + protected bool ExternalModification + { + get => _external_modification_value; + set + { + // TODO: deal with `attribute_sentinel`. + _external_modification_value = value; + } + } + + public override ICollection Values => this; + public bool IsReadOnly { get => _storage.IsReadOnly; } + + /// + /// Checks for any changes to the wrapped list not through the wrapper. + /// + private void check_external_modification() + { + if (_external_modification_value || _non_append_mutation_value) return; + if (!_storage.SequenceEqual(_last_wrapped_list_snapshot)) + { + _external_modification_value = true; + } + } + + private void update_snapshot() + { + // TODO(Rinne): deal with `attribute_sentinel`. + if (_external_modification_value || _non_append_mutation_value) return; + _last_wrapped_list_snapshot = new List(_storage); + } + + public override IDictionary _trackable_children(SaveType save_type, IDictionary>? cache = null) + { + check_external_modification(); + if (_non_append_mutation_value) + { + throw new ValueError($"Unable to save the object {this} (a list wrapper constructed to track trackable TensorFlow objects). A list element was replaced" + + $", deleted or moved (sort). In order to support restoration on object creation, tracking is exclusively for append-only data structures." + + $"\n\nIf you don't need this list checkpointed, wrap it in a non-trackable object; it will be subsequently ignored."); + } + if (_external_modification_value) + { + throw new ValueError($"Unable to save the object {this} (a list wrapper constructed to track trackable TensorFlow objects). The wrapped list was modified " + + $"outside the wrapper (its final value was {_storage}, its value when a checkpoint dependency was added was {_last_wrapped_list_snapshot}), which breaks " + + $"restoration on object creation.\n\nIf you don't need this list checkpointed, wrap it in a NoDependency object; it will be subsequently ignored."); + } + var children = base._trackable_children(save_type, cache); + + if(save_type == SaveType.SAVEDMODEL) + { + children = children.Concat(this.Where(x => x is Function or ConcreteFunction).Select((x, idx) => new KeyValuePair(idx.ToString(), x))).ToDictionary(x => x.Key, x => x.Value); + } + + return children; + } + + private bool has_mutation_or_trackable() + { + return _non_append_mutation_value; + } + + /// + /// Allows storage of non-trackable objects. + /// + /// + /// + /// + protected override Trackable _track_value(Trackable value, string name) + { + try + { + base._track_value(value, name); + } + catch(ValueError) + { + value = (Trackable)sticky_attribute_assignment(this, name, value); + } + return value; + } + + public object Clone() + { + var res = new ListWrapper(_storage.Select(x => x).ToList()); + res.NonAppendMuation= _non_append_mutation_value; + res.ExternalModification = _external_modification_value; + return res; + } + + public Trackable this[int index] { + get => _storage[index]; + set + { + // skip the process of `Slice`, maybe support it in the future. + _non_append_mutation_value = true; + _storage[index] = _track_value(value, _name_element(index)); + + update_snapshot(); + } + } + + public int IndexOf(Trackable item) => _storage.IndexOf(item); + + public void Insert(int index, Trackable item) + { + check_external_modification(); + _non_append_mutation_value = true; + _storage.Insert(index, item); + update_snapshot(); + } + + public void RemoveAt(int index) + { + check_external_modification(); + if (has_mutation_or_trackable()) + { + _non_append_mutation_value = true; + } + _storage.RemoveAt(index); + update_snapshot(); + } + + public int Count { get => _storage.Count; } + + public void Add(Trackable item) + { + check_external_modification(); + _storage.Add(item); + update_snapshot(); + } + + public void Clear() + { + _storage.Clear(); + update_snapshot(); + } + + public bool Contains(Trackable item) => _storage.Contains(item); + + public void CopyTo(Trackable[] array, int arrayIndex) => _storage.CopyTo(array, arrayIndex); + + public bool Remove(Trackable item) + { + check_external_modification(); + if (has_mutation_or_trackable()) + { + _non_append_mutation_value = true; + } + var res = _storage.Remove(item); + update_snapshot(); + return res; + } + + public IEnumerator GetEnumerator() => _storage.GetEnumerator(); + + IEnumerator IEnumerable.GetEnumerator() => _storage.GetEnumerator(); + + protected string _name_element(int index) => $"{index}"; + } +} diff --git a/src/TensorFlowNET.Core/Training/gen_training_ops.cs b/src/TensorFlowNET.Core/Training/gen_training_ops.cs index abe85a141..df7dd9e65 100644 --- a/src/TensorFlowNET.Core/Training/gen_training_ops.cs +++ b/src/TensorFlowNET.Core/Training/gen_training_ops.cs @@ -51,5 +51,9 @@ public static Tensor apply_gradient_descent(IVariableV1 var, Tensor alpha, Tenso public static Tensor resource_apply_gradient_descent(Tensor var, Tensor alpha, Tensor delta, bool use_locking = false, string name = null) => tf.Context.ExecuteOp("ResourceApplyGradientDescent", name, new ExecuteOpArgs(var, alpha, delta).SetAttributes(new { use_locking })); + + public static Tensor resource_apply_keras_momentum(Tensor var, Tensor accum, Tensor lr, Tensor grad, Tensor momentum, bool use_locking = false, bool use_nesterov = false, string name = null) + => tf.Context.ExecuteOp("ResourceApplyKerasMomentum", name, + new ExecuteOpArgs(var, accum, lr, grad, momentum).SetAttributes(new { use_locking, use_nesterov })); } } diff --git a/src/TensorFlowNET.Core/Util/Data.cs b/src/TensorFlowNET.Core/Util/Data.cs new file mode 100644 index 000000000..fe3466ed0 --- /dev/null +++ b/src/TensorFlowNET.Core/Util/Data.cs @@ -0,0 +1,78 @@ +using OneOf; +using Tensorflow.NumPy; + +namespace Tensorflow.Util +{ + /// + /// ValidationDataPack is used to pass validation data to fit method. + /// It can recive data which could be A tuple `(x_val, xy_val)` or `(x_val, y_val, sample_weight_val)` of Numpy arrays. + /// + public class ValidationDataPack + { + internal OneOf val_x; + internal NDArray val_y; + internal NDArray val_sample_weight = null; + public bool val_x_is_array = false; + public ValidationDataPack((NDArray, NDArray) validation_data) + { + this.val_x = validation_data.Item1; + this.val_y = validation_data.Item2; + } + + public ValidationDataPack((NDArray, NDArray, NDArray) validation_data) + { + this.val_x = validation_data.Item1; + this.val_y = validation_data.Item2; + this.val_sample_weight = validation_data.Item3; + } + + public ValidationDataPack((IEnumerable, NDArray) validation_data) + { + this.val_x = validation_data.Item1.ToArray(); + this.val_y = validation_data.Item2; + val_x_is_array = true; + } + + public ValidationDataPack((IEnumerable, NDArray, NDArray) validation_data) + { + this.val_x = validation_data.Item1.ToArray(); + this.val_y = validation_data.Item2; + this.val_sample_weight = validation_data.Item3; + val_x_is_array = true; + } + + public static implicit operator ValidationDataPack((NDArray, NDArray) validation_data) + => new ValidationDataPack(validation_data); + + public static implicit operator ValidationDataPack((NDArray, NDArray, NDArray) validation_data) + => new ValidationDataPack(validation_data); + + public static implicit operator ValidationDataPack((IEnumerable, NDArray) validation_data) + => new ValidationDataPack(validation_data); + + public static implicit operator ValidationDataPack((IEnumerable, NDArray, NDArray) validation_data) + => new ValidationDataPack(validation_data); + + public void Deconstruct(out NDArray val_x, out NDArray val_y) + { + val_x = this.val_x.AsT0; + val_y = this.val_y; + } + + public void Deconstruct(out NDArray val_x, out NDArray val_y, out NDArray val_sample_weight) + { + val_x = this.val_x.AsT0; + val_y = this.val_y; + val_sample_weight = this.val_sample_weight; + } + + // add a unuse parameter to make it different from Deconstruct(out NDArray val_x, out NDArray val_y, out NDArray val_sample_weight) + public void Deconstruct(out NDArray[] val_x_array, out NDArray val_y, out NDArray val_sample_weight, out NDArray unuse) + { + val_x_array = this.val_x.AsT1; + val_y = this.val_y; + val_sample_weight = this.val_sample_weight; + unuse = null; + } + } +} diff --git a/src/TensorFlowNET.Core/Util/ProtoUtils.cs b/src/TensorFlowNET.Core/Util/ProtoUtils.cs new file mode 100644 index 000000000..c1557da42 --- /dev/null +++ b/src/TensorFlowNET.Core/Util/ProtoUtils.cs @@ -0,0 +1,24 @@ +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Util +{ + internal static class ProtoUtils + { + public static object GetSingleAttrValue(AttrValue value, AttrValue.ValueOneofCase valueCase) + { + return valueCase switch + { + AttrValue.ValueOneofCase.S => value.S.ToStringUtf8(), + AttrValue.ValueOneofCase.I => value.I, + AttrValue.ValueOneofCase.F => value.F, + AttrValue.ValueOneofCase.B => value.B, + AttrValue.ValueOneofCase.Type => value.Type, + AttrValue.ValueOneofCase.Shape => value.Shape, + AttrValue.ValueOneofCase.Tensor => value.Tensor, + AttrValue.ValueOneofCase.Func => value.Func, + }; + } + } +} diff --git a/src/TensorFlowNET.Core/Util/UnorderedMap.cs b/src/TensorFlowNET.Core/Util/UnorderedMap.cs index fa2b91fee..219a3c140 100644 --- a/src/TensorFlowNET.Core/Util/UnorderedMap.cs +++ b/src/TensorFlowNET.Core/Util/UnorderedMap.cs @@ -25,6 +25,19 @@ public class UnorderedMap : Dictionary } } + public Tv SetDefault(Tk key, Tv default_value) + { + if(TryGetValue(key, out var res)) + { + return res; + } + else + { + base[key] = default_value; + return base[key]; + } + } + public void push_back(Tk key, Tv value) => this[key] = value; diff --git a/src/TensorFlowNET.Core/Util/function_utils.cs b/src/TensorFlowNET.Core/Util/function_utils.cs new file mode 100644 index 000000000..d4ba44237 --- /dev/null +++ b/src/TensorFlowNET.Core/Util/function_utils.cs @@ -0,0 +1,23 @@ +using Google.Protobuf; +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Util +{ + internal static class function_utils + { + private static ByteString _rewriter_config_optimizer_disabled; + public static ByteString get_disabled_rewriter_config() + { + if(_rewriter_config_optimizer_disabled is null) + { + var config = new ConfigProto(); + var rewriter_config = config.GraphOptions.RewriteOptions; + rewriter_config.DisableMetaOptimizer = true; + _rewriter_config_optimizer_disabled = config.ToByteString(); + } + return _rewriter_config_optimizer_disabled; + } + } +} diff --git a/src/TensorFlowNET.Core/Util/nest.py.cs b/src/TensorFlowNET.Core/Util/nest.py.cs index d04e6bff6..3ba3ce78b 100644 --- a/src/TensorFlowNET.Core/Util/nest.py.cs +++ b/src/TensorFlowNET.Core/Util/nest.py.cs @@ -36,6 +36,7 @@ namespace Tensorflow.Util // (np.array([3, 4]), tf.constant([3, 4])))` // + [Obsolete] public static class nest { @@ -137,10 +138,12 @@ private static object _sequence_like(object instance, IEnumerable args) switch (instance) { case Hashtable hash: - var result = new Hashtable(); - foreach ((object key, object value) in zip(_sorted(hash), args)) - result[key] = value; - return result; + { + var result = new Hashtable(); + foreach ((object key, object value) in zip(_sorted(hash), args)) + result[key] = value; + return result; + } } } //else if( _is_namedtuple(instance) || _is_attrs(instance)) @@ -221,6 +224,16 @@ public static List flatten(T structure) return list; } + public static List flatten(IEnumerable structure) + { + var list = new List(); + foreach(var item in structure) + { + _flatten_recursive(item, list); + } + return list; + } + public static object[] flatten2(ICanBeFlattened structure) => structure.Flatten(); @@ -519,6 +532,22 @@ public static Tensor map_structure(Func func, T structure) return pack_sequence_as(structure, mapped_flat_structure) as Tensor; } + public static T2 map_structure(Func func, T1 structure) where T2: class + { + var flat_structure = flatten(structure); + var mapped_flat_structure = flat_structure.Select(func).Select(x => (object)x); + + return pack_sequence_as(structure, mapped_flat_structure) as T2; + } + + public static IEnumerable map_structure(Func func, IEnumerable structure) where T2 : class + { + var flat_structure = flatten(structure); + var mapped_flat_structure = flat_structure.Select(func).Select(x => (object)x); + + return pack_sequence_as(structure, mapped_flat_structure) as IEnumerable; + } + /// /// Same as map_structure, but with only one structure (no combining of multiple structures) /// diff --git a/src/TensorFlowNET.Core/Util/variable_utils.cs b/src/TensorFlowNET.Core/Util/variable_utils.cs new file mode 100644 index 000000000..13237f9d4 --- /dev/null +++ b/src/TensorFlowNET.Core/Util/variable_utils.cs @@ -0,0 +1,33 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Framework; + +namespace Tensorflow.Util +{ + internal static class variable_utils + { + public static Tensor[] convert_variables_to_tensors(object[] values) + { + return values.Select(x => + { + if (resource_variable_ops.is_resource_variable(x)) + { + return ops.convert_to_tensor(x); + } + else if (x is CompositeTensor) + { + throw new NotImplementedException("The composite tensor has not been fully supported."); + } + else if(x is Tensor tensor) + { + return tensor; + } + else + { + throw new TypeError("Currently the output of function to be traced must be `Tensor`."); + } + }).ToArray(); + } + } +} diff --git a/src/TensorFlowNET.Core/Variables/BaseResourceVariable.cs b/src/TensorFlowNET.Core/Variables/BaseResourceVariable.cs index b270ec57d..a54283bd4 100644 --- a/src/TensorFlowNET.Core/Variables/BaseResourceVariable.cs +++ b/src/TensorFlowNET.Core/Variables/BaseResourceVariable.cs @@ -2,26 +2,46 @@ using System; using Tensorflow.Eager; using Tensorflow.Variables; +using Tensorflow.Train; using static Tensorflow.Binding; +using System.Collections.Generic; +using System.Diagnostics; +using Tensorflow.Checkpoint; +using Tensorflow.Training.Saving.SavedModel; +using OneOf; +using Tensorflow.Graphs; namespace Tensorflow { - public class BaseResourceVariable : DisposableObject + public class BaseResourceVariable : DisposableTrackableObject { protected string _name; public virtual string Name => _handle_name; + public virtual string SharedName + { + get + { + // TODO(Rinne): optimize the implementation with refactor of variable. + return _handle_name.Substring(0, _handle_name.IndexOf(':') + 1); + } + } protected TF_DataType _dtype; public TF_DataType dtype => _dtype; protected string _handle_name; - protected string handle_name => _handle_name; + public string handle_name + { + get { return _handle_name; } + set { _handle_name = value; } + } protected string _unique_id; public string UniqueId => _unique_id; protected bool _in_graph_mode; + internal bool InGraphMode => _in_graph_mode; protected bool _trainable; - public bool trainable => _trainable; + public bool Trainable => _trainable; protected Tensor _initial_value; @@ -46,12 +66,15 @@ public class BaseResourceVariable : DisposableObject public Graph Graph => handle.graph; public string Device => handle.Device; EagerResourceDeleter eager_resource_deleter; + public VariableAggregation Aggregation { get; protected set; } = VariableAggregation.None; public BaseResourceVariable() { } public void __init__(bool trainable = true, + Shape shape = null, + TF_DataType dtype = TF_DataType.DtInvalid, Tensor handle = null, string name = null, string unique_id = null, @@ -62,6 +85,14 @@ public void __init__(bool trainable = true, _unique_id = unique_id; this.handle = handle; _name = name; + if(shape is not null) + { + _shape = shape; + } + if(dtype != TF_DataType.DtInvalid) + { + _dtype = dtype; + } // After the handle has been created, set up a way to clean it up when // executing eagerly. We'll hold the only reference to the deleter, so that @@ -71,7 +102,12 @@ public void __init__(bool trainable = true, if (handle is EagerTensor) { _handle = handle.EagerTensorHandle.DangerousGetHandle(); - eager_resource_deleter = new EagerResourceDeleter(handle, handle.Device); + // eager_resource_deleter = new EagerResourceDeleter(handle, handle.Device); + } + else if(handle is null) + { + // TODO: fix this dangerous change. + _handle = IntPtr.Zero; } else { @@ -134,11 +170,28 @@ public IVariableV1 assign_lazy_load(Tensor value, string name = null) public Tensor value() => GraphElement ?? _read_variable_op(); - protected Tensor _read_variable_op() + protected Tensor _read_variable_op(bool no_copy = false) { variable_accessed(this); - var result = gen_resource_variable_ops.read_variable_op(handle, _dtype); - // _maybe_set_handle_data(_dtype, _handle, result); + + Tensor read_and_set_handle(bool no_copy) + { + if (no_copy) + { + gen_resource_variable_ops.disable_copy_on_read(handle); + } + var result = gen_resource_variable_ops.read_variable_op(handle, _dtype); + resource_variable_ops._maybe_set_handle_data(_dtype, handle, result); + return result; + } + + // TODO(Rinne): deal with caching device. + var result = read_and_set_handle(no_copy); + if (!tf.Context.executing_eagerly()) + { + tf.Runner.TFE_TapeSetRecordOperation("ReadVariableOp", new Tensor[] { result }, new Tensor[] { handle }, + backward_function: (x, _) => x); + } // have to set shape when converting to substituent placeholder if (result.shape.ndim == -1) @@ -147,7 +200,7 @@ protected Tensor _read_variable_op() result._as_tf_output(), shape.dims, shape.ndim, - tf.Status.Handle); + tf.Status); tf.Status.Check(true); } @@ -165,7 +218,11 @@ IVariableV1 _lazy_read(Operation op, Tensor value) /// void variable_accessed(BaseResourceVariable variable) { - if (variable.trainable) + if(ops.get_default_graph() is FuncGraph func_graph) + { + func_graph.watch_variable(variable as IVariableV1); + } + if (variable.Trainable) { foreach (var tape in tf.GetTapeSet()) tape.VariableAccessed(variable as ResourceVariable); @@ -243,5 +300,80 @@ public Tensor AsTensor(TF_DataType dtype = TF_DataType.DtInvalid, string name = else return value(); } + + public override (IDictionary, IDictionary) map_resources(SaveOptions save_options) + { + BaseResourceVariable new_variable; + if (save_options.experimental_variable_policy.save_variable_devices()) + { + Debug.Assert(this is ResourceVariable); + new_variable = tf_with(ops.device(this.Device), _ => + { + return resource_variable_ops.copy_to_graph_uninitialized((ResourceVariable)this); + }); + } + else + { + new_variable = resource_variable_ops.copy_to_graph_uninitialized((ResourceVariable)this); + } + Dictionary obj_map = new(); + Dictionary resource_map = new(); + obj_map[this] = new_variable; + resource_map[this.handle] = new_variable.handle; + return (obj_map, resource_map); + } + + /// + /// Writes additional information of the variable into the SavedObject proto. + /// ubclasses of ResourceVariables could choose to override this method to + /// customize extra information to provide when saving a SavedModel. + /// + /// + /// + public virtual void write_object_proto(SavedObject proto, SaveOptions options) + { + resource_variable_ops.write_object_proto_for_resource_variable(this, proto, options); + } + + public override IDictionary>> gather_saveables_for_checkpoint() + { + var res = new Dictionary>>(); + res[Trackable.Constants.VARIABLE_VALUE_KEY] = x => this; + return res; + } + + public Tensor is_initialized(string name = null) + { + return gen_resource_variable_ops.var_is_initialized_op(this.handle, name); + } + + public Tensor read_value_no_copy() + { + Tensor value = null; + tf_with(ops.name_scope("Read"), _ => + { + // TODO: `no_copy = true`. + value = _read_variable_op(); + }); + return array_ops.identity(value); + } + + //public static Tensor operator +(BaseResourceVariable x, int y) => x.value() + y; + //public static Tensor operator +(BaseResourceVariable x, float y) => x.value() + y; + //public static Tensor operator +(BaseResourceVariable x, double y) => x.value() + y; + //public static Tensor operator +(BaseResourceVariable x, BaseResourceVariable y) => x.value() + y.value(); + //public static Tensor operator -(BaseResourceVariable x, int y) => x.value() - y; + //public static Tensor operator -(BaseResourceVariable x, float y) => x.value() - y; + //public static Tensor operator -(BaseResourceVariable x, double y) => x.value() - y; + //public static Tensor operator -(BaseResourceVariable x, Tensor y) => x.value() - y; + //public static Tensor operator -(BaseResourceVariable x, BaseResourceVariable y) => x.value() - y.value(); + + //public static Tensor operator *(BaseResourceVariable x, BaseResourceVariable y) => x.value() * y.value(); + //public static Tensor operator *(BaseResourceVariable x, Tensor y) => x.value() * y; + //public static Tensor operator *(BaseResourceVariable x, NDArray y) => x.value() * y; + + //public static Tensor operator <(BaseResourceVariable x, Tensor y) => x.value() < y; + + //public static Tensor operator >(BaseResourceVariable x, Tensor y) => x.value() > y; } } diff --git a/src/TensorFlowNET.Core/Variables/EagerResourceDeleter.cs b/src/TensorFlowNET.Core/Variables/EagerResourceDeleter.cs index 8f3685cc6..77bf471b0 100644 --- a/src/TensorFlowNET.Core/Variables/EagerResourceDeleter.cs +++ b/src/TensorFlowNET.Core/Variables/EagerResourceDeleter.cs @@ -14,9 +14,6 @@ public EagerResourceDeleter(Tensor handle, string handle_device) _tensor = handle; _handle = handle.EagerTensorHandle.DangerousGetHandle(); _handle_device = handle_device; - - bool success = false; - handle.EagerTensorHandle.DangerousAddRef(ref success); } protected override void DisposeUnmanagedResources(IntPtr handle) @@ -27,8 +24,6 @@ protected override void DisposeUnmanagedResources(IntPtr handle) tf.Runner.TFE_Execute(tf.Context, _handle_device, "DestroyResourceOp", new[] { _tensor }, new object[] { "ignore_lookup_error", true }, 0); - - _tensor.EagerTensorHandle.DangerousRelease(); } } } diff --git a/src/TensorFlowNET.Core/Variables/IVariableV1.cs b/src/TensorFlowNET.Core/Variables/IVariableV1.cs index f4f716c3c..3eb78153a 100644 --- a/src/TensorFlowNET.Core/Variables/IVariableV1.cs +++ b/src/TensorFlowNET.Core/Variables/IVariableV1.cs @@ -46,6 +46,7 @@ public interface IVariableV1 Graph Graph { get; } TF_DataType dtype { get; } Shape shape { get; } + bool Trainable { get; } Tensor assign_add(T delta, bool use_locking = false, string name = null, bool read_value = true); Tensor assign_sub(T delta, bool use_locking = false, string name = null, bool read_value = true); IVariableV1 assign_sub_lazy_load(Tensor delta, string name = null); diff --git a/src/TensorFlowNET.Core/Variables/RefVariable.cs b/src/TensorFlowNET.Core/Variables/RefVariable.cs index 67c12c427..7b08f3ea4 100644 --- a/src/TensorFlowNET.Core/Variables/RefVariable.cs +++ b/src/TensorFlowNET.Core/Variables/RefVariable.cs @@ -20,11 +20,12 @@ limitations under the License. using System.Collections.Generic; using System.Linq; using static Tensorflow.Binding; +using Tensorflow.Train; namespace Tensorflow { [Obsolete] - public partial class RefVariable : IVariableV1, IProtoBuf + public partial class RefVariable: Trackable, IVariableV1, IProtoBuf { protected string _name; public string UniqueId => _name; @@ -56,6 +57,7 @@ public partial class RefVariable : IVariableV1, IProtoBuf _variable.name; public Tensor eval() => _variable; + public bool Trainable => _trainable; public RefVariable(object initial_value = null, bool trainable = true, diff --git a/src/TensorFlowNET.Core/Variables/ResourceVariable.Operators.cs b/src/TensorFlowNET.Core/Variables/ResourceVariable.Operators.cs index 29d6106b5..2737a2191 100644 --- a/src/TensorFlowNET.Core/Variables/ResourceVariable.Operators.cs +++ b/src/TensorFlowNET.Core/Variables/ResourceVariable.Operators.cs @@ -1,19 +1,6 @@ -/***************************************************************************** - Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. -******************************************************************************/ - +using System; +using System.Collections.Generic; +using System.Text; using Tensorflow.NumPy; namespace Tensorflow diff --git a/src/TensorFlowNET.Core/Variables/ResourceVariable.cs b/src/TensorFlowNET.Core/Variables/ResourceVariable.cs index b31960c73..bc23df3ed 100644 --- a/src/TensorFlowNET.Core/Variables/ResourceVariable.cs +++ b/src/TensorFlowNET.Core/Variables/ResourceVariable.cs @@ -17,7 +17,9 @@ limitations under the License. using Google.Protobuf; using System; using System.Collections.Generic; +using Tensorflow.Checkpoint; using Tensorflow.NumPy; +using Tensorflow.Train; using static Tensorflow.Binding; namespace Tensorflow @@ -39,6 +41,7 @@ public ResourceVariable(object initial_value = null, VariableAggregation aggregation = VariableAggregation.None, Shape shape = null) { + Aggregation = aggregation; if (variable_def != null) { if (initial_value != null) @@ -94,7 +97,7 @@ private void _init_from_args(object initial_value = null, else { unique_id = $"{handle_name}_{ops.uid()}"; - shared_name = tf.Context.shared_name(); + shared_name = null; } var attr = new AttrValue(); @@ -113,24 +116,43 @@ private void _init_from_args(object initial_value = null, } }); - _shape = shape ?? _initial_value.shape; + if(shape is null) + { + shape = _initial_value.shape; + } + dtype = _initial_value.dtype; if (_in_graph_mode) { + // TODO(Rinne): deal with initializer_op. + //if(initial_value is not null) + //{ + // tf_with(ops.name_scope("Assign"), n => + // { + // tf_with(ops.device(handle.Device), _ => + // { + + // }); + // }); + //} handle = state_ops.variable_op_v2(_initial_value.shape, _initial_value.dtype.as_base_dtype(), name: name); initializer_op = gen_state_ops.assign(handle, _initial_value, true).op; ops.colocate_with(initializer_op); - - _graph_element = gen_array_ops.identity(handle, name = "read"); - ops.add_to_collections(collections, this); - _dtype = handle.dtype; + tf_with(ops.device(handle.Device), _ => + { + var value = gen_resource_variable_ops.read_variable_op(handle, dtype); + resource_variable_ops._maybe_set_handle_data(dtype, handle, value); + _graph_element = gen_array_ops.identity(handle, name = "read"); + ops.add_to_collections(collections, this); + _dtype = handle.dtype; + }); } else { handle = resource_variable_ops.eager_safe_variable_handle( initial_value: _initial_value, - shape: _shape, + shape: shape, shared_name: shared_name, name: name, graph_mode: _in_graph_mode); @@ -138,11 +160,21 @@ private void _init_from_args(object initial_value = null, gen_resource_variable_ops.assign_variable_op(handle, _initial_value); initializer_op = null; _graph_element = null; + if (!string.IsNullOrEmpty(caching_device)) + { + tf_with(ops.device(caching_device), _ => + { + var value = gen_resource_variable_ops.read_variable_op(handle, dtype); + resource_variable_ops._maybe_set_handle_data(dtype, handle, value); + }); + } _dtype = _initial_value.dtype.as_base_dtype(); // initial_value = _in_graph_mode ? initial_value : null; } base.__init__(trainable: trainable, + shape: shape, + dtype: _dtype, handle: handle, name: name, unique_id: unique_id, @@ -235,5 +267,23 @@ public NDArray eval(Session session = null) { return _graph_element.eval(session); } + + public static (VariableSynchronization, VariableAggregation, bool) validate_synchronization_aggregation_trainable( + VariableSynchronization? synchronization, VariableAggregation? aggregation, bool? trainable, string name) + { + if(aggregation is null) + { + aggregation = VariableAggregation.None; + } + if(synchronization is null) + { + synchronization = VariableSynchronization.Auto; + } + if (trainable is null) + { + trainable = synchronization != VariableSynchronization.OnRead; + } + return (synchronization.Value, aggregation.Value, trainable.Value); + } } } diff --git a/src/TensorFlowNET.Core/Variables/UninitializedVariable.cs b/src/TensorFlowNET.Core/Variables/UninitializedVariable.cs new file mode 100644 index 000000000..e26312447 --- /dev/null +++ b/src/TensorFlowNET.Core/Variables/UninitializedVariable.cs @@ -0,0 +1,72 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Gradients; +using static Tensorflow.Binding; + +namespace Tensorflow.Variables +{ + /// + /// A variable with no initializer. + /// + public sealed class UninitializedVariable : BaseResourceVariable, IVariableV1 + { + // TODO: complete the arg list. + public UninitializedVariable( + bool trainable = true, + string caching_device = "", + string name = null, + TF_DataType dtype = TF_DataType.DtInvalid, + VariableAggregation aggregation = VariableAggregation.None, + Shape shape = null, + Tensor extra_handle_data = null) + { + string unique_id = ""; + string handle_name = ""; + Tensor created_handle = null; + tf_with(ops.init_scope(), (x) => + { + _in_graph_mode = !tf.Context.executing_eagerly(); + tf_with(ops.name_scope(name, "Variable", skip_on_eager: false), name => + { + handle_name = ops.name_from_scope_name(name); + string? shared_name; + if (_in_graph_mode) + { + shared_name = handle_name; + unique_id = shared_name; + } + else + { + unique_id = $"{handle_name}-{ops.uid()}"; + shared_name = null; + } + created_handle = resource_variable_ops.variable_handle_from_shape_and_dtype( + shape, dtype, shared_name, name, _in_graph_mode, extra_handle_data); + // skip the assignment of `handle._parent_trackable` because of lack of API. + // skip the assignment of `handle._name` and `handle._unique_id` because of accessability. + + if (_in_graph_mode) + { + tf_with(ops.name_scope("Read"), _ => + { + var value = tf_with(ops.device(created_handle.Device), _ => + { + var result = gen_resource_variable_ops.read_variable_op(created_handle, dtype); + resource_variable_ops._maybe_set_handle_data(dtype, created_handle, result); + return result; + }); + _graph_element = value; + }); + ops.add_to_collection(ops.GraphKeys.GLOBAL_VARIABLES_, this); + } + else + { + _graph_element = null; + } + }); + }); + base.__init__(trainable, shape, dtype, created_handle, unique_id: unique_id, handle_name: handle_name); + } + } +} diff --git a/src/TensorFlowNET.Core/Variables/variables.py.cs b/src/TensorFlowNET.Core/Variables/variables.py.cs index 0c07e0243..91f57e292 100644 --- a/src/TensorFlowNET.Core/Variables/variables.py.cs +++ b/src/TensorFlowNET.Core/Variables/variables.py.cs @@ -72,7 +72,9 @@ public static List global_variables(string scope = null) public static Operation variables_initializer(IVariableV1[] var_list, string name = "init") { if (var_list.Length > 0) + { return control_flow_ops.group(var_list.Select(x => x.Initializer).ToArray(), name); + } else return gen_control_flow_ops.no_op(name: name); } @@ -152,10 +154,5 @@ public static Operation _safe_initial_value_from_op(string name, Operation op, D return op; } - - public static Tensor global_variables_initializer() - { - throw new NotImplementedException(); - } } } diff --git a/src/TensorFlowNET.Core/ops.cs b/src/TensorFlowNET.Core/ops.cs index 95e8db577..6f51150a2 100644 --- a/src/TensorFlowNET.Core/ops.cs +++ b/src/TensorFlowNET.Core/ops.cs @@ -26,6 +26,7 @@ limitations under the License. using Tensorflow.Graphs; using Tensorflow.Util; using static Tensorflow.Binding; +using static Tensorflow.CppShapeInferenceResult.Types; namespace Tensorflow { @@ -137,9 +138,22 @@ public static Tensor convert_to_tensor(object value, else { var graph = get_default_graph(); + if (graph is FuncGraph funcGraph) + { + return funcGraph.capture(eager_tensor, name: name); + } if (!graph.building_function) - throw new RuntimeError("Attempting to capture an EagerTensor without building a function."); - return (graph as FuncGraph).capture(eager_tensor, name: name); + { + // throw new RuntimeError("Attempting to capture an EagerTensor without building a function."); + return eager_tensor.AsPlaceholder(name: name); + } + } + } + else if (value is KerasTensor kt) + { + if (kt.inferred_value != null) + { + return convert_to_tensor(kt.inferred_value, dtype: kt.dtype, name: name); } } @@ -247,7 +261,7 @@ public static (IntPtr, OperationDescription) _create_c_op(Graph graph, NodeDef n foreach (var attr in node_def.Attr) { var bytes = attr.Value.ToByteArray(); - c_api.TF_SetAttrValueProto(op_desc, attr.Key, bytes, proto_len: bytes.Length, status: status.Handle); + c_api.TF_SetAttrValueProto(op_desc, attr.Key, bytes, proto_len: (ulong)bytes.Length, status: status); status.Check(true); } @@ -564,7 +578,57 @@ public static bool executing_eagerly_outside_functions() if (tf.Context.executing_eagerly()) return true; else - throw new NotImplementedException(""); + // TODO(Wanglongzhi2001), implement the false case + return true; + //throw new NotImplementedException(""); + } + + public static bool inside_function() + { + return get_default_graph().building_function; + } + + public static HandleData get_resource_handle_data(Tensor graph_op) + { + var handle_data = c_api.TF_GetHandleShapeAndType(graph_op.graph.c_graph, graph_op._as_tf_output()); + try{ + var handle_str = c_api.ByteStringPiece(handle_data.DangerousGetHandle() == IntPtr.Zero ? null : new Buffer(handle_data)); + return HandleData.Parser.ParseFrom(handle_str); + } + catch(Exception){ + var handle_str = c_api.ByteStringPieceFromNativeString(handle_data.DangerousGetHandle()); + return HandleData.Parser.ParseFrom(handle_str); + } + } + + public static void dismantle_graph(Graph graph) + { + + } + + public static ITensorFlowObject device(string device_name) + { + if (tf.Context.executing_eagerly()) + { + return tf.Context.device(device_name); + } + //else if (ops.executing_eagerly_outside_functions()) + //{ + // throw new NotImplementedException(); + //} + else + { + return get_default_graph().device(device_name); + } + // TODO(Rinne): deal with `ops.executing_eagerly_outside_functions()`. + } + + public class NullContextManager: IDisposable + { + public void Dispose() + { + + } } } } diff --git a/src/TensorFlowNET.Core/tensorflow.cs b/src/TensorFlowNET.Core/tensorflow.cs index 8a2c78a7e..e368b37cd 100644 --- a/src/TensorFlowNET.Core/tensorflow.cs +++ b/src/TensorFlowNET.Core/tensorflow.cs @@ -14,12 +14,16 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Razorvine.Pickle; using Serilog; using Serilog.Core; +using System.Reflection; using System.Threading; using Tensorflow.Contexts; using Tensorflow.Eager; using Tensorflow.Gradients; +using Tensorflow.Keras; +using Tensorflow.NumPy.Pickle; namespace Tensorflow { @@ -51,6 +55,30 @@ public partial class tensorflow ThreadLocal _runner = new ThreadLocal(() => new EagerRunner()); public IEagerRunner Runner => _runner.Value; + private IKerasApi _keras; + public IKerasApi keras + { + get + { + if (_keras != null) + { + return _keras; + } + + var k = Assembly.Load("Tensorflow.Keras"); + var cls = k.GetTypes().FirstOrDefault(x => x.GetInterfaces().Contains(typeof(IKerasApi))); + if (cls != null) + { + _keras = Activator.CreateInstance(cls) as IKerasApi; + return _keras; + } + else + { + throw new Exception("Can't find keras library."); + } + } + } + public tensorflow() { Logger = new LoggerConfiguration() @@ -60,6 +88,22 @@ public tensorflow() OpDefLib = new OpDefLibrary(); InitGradientEnvironment(); + + try + { + var handle = c_api.TF_Version(); + } + catch (DllNotFoundException) + { + throw new RuntimeError("Tensorflow.NET cannot find a backend. Please install one of the following packages for your program: " + + "SciSharp.TensorFlow.Redist, SciSharp.TensorFlow.Redist-Linux-GPU, SciSharp.TensorFlow.Redist-Windows-GPU. For more details, " + + "please visit https://github.com/SciSharp/TensorFlow.NET. If it still not work after installing the backend, please submit an " + + "issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } + + // register numpy reconstructor for pickle + Unpickler.registerConstructor("numpy.core.multiarray", "_reconstruct", new MultiArrayConstructor()); + Unpickler.registerConstructor("numpy", "dtype", new DtypeConstructor()); } public string VERSION => c_api.StringPiece(c_api.TF_Version()); diff --git a/src/TensorFlowNET.Keras/Activations.cs b/src/TensorFlowNET.Keras/Activations.cs new file mode 100644 index 000000000..d3801902f --- /dev/null +++ b/src/TensorFlowNET.Keras/Activations.cs @@ -0,0 +1,100 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Operations.Activation; +using static Tensorflow.Binding; + +namespace Tensorflow.Keras +{ + public class Activations: IActivationsApi + { + private static Dictionary _nameActivationMap; + + private static Activation _linear = new Activation() + { + Name = "linear", + ActivationFunction = (features, name) => features + }; + private static Activation _relu = new Activation() + { + Name = "relu", + ActivationFunction = (features, name) => tf.Context.ExecuteOp("Relu", name, new ExecuteOpArgs(features)) + }; + private static Activation _relu6 = new Activation() + { + Name = "relu6", + ActivationFunction = (features, name) => tf.Context.ExecuteOp("Relu6", name, new ExecuteOpArgs(features)) + }; + private static Activation _sigmoid = new Activation() + { + Name = "sigmoid", + ActivationFunction = (features, name) => tf.Context.ExecuteOp("Sigmoid", name, new ExecuteOpArgs(features)) + }; + private static Activation _softmax = new Activation() + { + Name = "softmax", + ActivationFunction = (features, name) => tf.Context.ExecuteOp("Softmax", name, new ExecuteOpArgs(features)) + }; + private static Activation _tanh = new Activation() + { + Name = "tanh", + ActivationFunction = (features, name) => tf.Context.ExecuteOp("Tanh", name, new ExecuteOpArgs(features)) + }; + private static Activation _mish = new Activation() + { + Name = "mish", + ActivationFunction = (features, name) => features * tf.math.tanh(tf.math.softplus(features)) + }; + + /// + /// Register the name-activation mapping in this static class. + /// + /// + private static void RegisterActivation(Activation activation) + { + _nameActivationMap[activation.Name] = activation; + } + + static Activations() + { + _nameActivationMap = new Dictionary(); + + RegisterActivation(_relu); + RegisterActivation(_relu6); + RegisterActivation(_linear); + RegisterActivation(_sigmoid); + RegisterActivation(_softmax); + RegisterActivation(_tanh); + RegisterActivation(_mish); + } + + public Activation Linear => _linear; + + public Activation Relu => _relu; + public Activation Relu6 => _relu6; + + public Activation Sigmoid => _sigmoid; + + public Activation Softmax => _softmax; + + public Activation Tanh => _tanh; + + public Activation Mish => _mish; + + public Activation GetActivationFromName(string name) + { + if (name == null) + { + return _linear; + } + if (!_nameActivationMap.TryGetValue(name, out var res)) + { + throw new Exception($"Activation {name} not found"); + } + else + { + return res; + } + } + } +} diff --git a/src/TensorFlowNET.Keras/Activations/Activations.Linear.cs b/src/TensorFlowNET.Keras/Activations/Activations.Linear.cs deleted file mode 100644 index acd4de6e7..000000000 --- a/src/TensorFlowNET.Keras/Activations/Activations.Linear.cs +++ /dev/null @@ -1,10 +0,0 @@ -namespace Tensorflow.Keras -{ - public partial class Activations - { - /// - /// Linear activation function (pass-through). - /// - public Activation Linear = (features, name) => features; - } -} diff --git a/src/TensorFlowNET.Keras/Activations/Activations.Relu.cs b/src/TensorFlowNET.Keras/Activations/Activations.Relu.cs deleted file mode 100644 index dfebfb297..000000000 --- a/src/TensorFlowNET.Keras/Activations/Activations.Relu.cs +++ /dev/null @@ -1,10 +0,0 @@ -using static Tensorflow.Binding; - -namespace Tensorflow.Keras -{ - public partial class Activations - { - public Activation Relu = (features, name) - => tf.Context.ExecuteOp("Relu", name, new ExecuteOpArgs(features)); - } -} diff --git a/src/TensorFlowNET.Keras/Activations/Activations.Sigmoid.cs b/src/TensorFlowNET.Keras/Activations/Activations.Sigmoid.cs deleted file mode 100644 index ad900bdef..000000000 --- a/src/TensorFlowNET.Keras/Activations/Activations.Sigmoid.cs +++ /dev/null @@ -1,11 +0,0 @@ -using System; -using static Tensorflow.Binding; - -namespace Tensorflow.Keras -{ - public partial class Activations - { - public Activation Sigmoid = (features, name) - => tf.Context.ExecuteOp("Sigmoid", name, new ExecuteOpArgs(features)); - } -} diff --git a/src/TensorFlowNET.Keras/Activations/Activations.Softmax.cs b/src/TensorFlowNET.Keras/Activations/Activations.Softmax.cs deleted file mode 100644 index 02d86acea..000000000 --- a/src/TensorFlowNET.Keras/Activations/Activations.Softmax.cs +++ /dev/null @@ -1,11 +0,0 @@ -using System; -using static Tensorflow.Binding; - -namespace Tensorflow.Keras -{ - public partial class Activations - { - public Activation Softmax = (features, name) - => tf.Context.ExecuteOp("Softmax", name, new ExecuteOpArgs(features)); - } -} diff --git a/src/TensorFlowNET.Keras/Activations/Activations.Tanh.cs b/src/TensorFlowNET.Keras/Activations/Activations.Tanh.cs deleted file mode 100644 index 33dc5ba62..000000000 --- a/src/TensorFlowNET.Keras/Activations/Activations.Tanh.cs +++ /dev/null @@ -1,11 +0,0 @@ -using System; -using static Tensorflow.Binding; - -namespace Tensorflow.Keras -{ - public partial class Activations - { - public Activation Tanh = (features, name) - => tf.Context.ExecuteOp("Tanh", name, new ExecuteOpArgs(features)); - } -} diff --git a/src/TensorFlowNET.Keras/BackendImpl.cs b/src/TensorFlowNET.Keras/BackendImpl.cs index a62e8196e..574cf5990 100644 --- a/src/TensorFlowNET.Keras/BackendImpl.cs +++ b/src/TensorFlowNET.Keras/BackendImpl.cs @@ -20,8 +20,12 @@ limitations under the License. using System.Collections.Generic; using Tensorflow.Functions; using Tensorflow.Graphs; +using Tensorflow.Common.Extensions; using static Tensorflow.Binding; using static Tensorflow.Graphs.SubGraphUtility; +using Tensorflow.Util; +using Tensorflow.Common.Types; +using System.Diagnostics; namespace Tensorflow.Keras { @@ -60,11 +64,19 @@ public BackendImpl() public void track_variable(IVariableV1 v) { + if (tf.Context.executing_eagerly()) + { + return; + } var graph = v.Graph; + if(graph is null) + { + graph = get_graph(); + } _GRAPH_VARIABLES[graph.graph_key] = v; } - public Tensor placeholder(Shape shape = null, + public KerasTensor placeholder(Shape shape = null, int ndim = -1, TF_DataType dtype = TF_DataType.DtInvalid, bool sparse = false, @@ -161,6 +173,12 @@ public void set_learning_phase(bool value) _GRAPH_LEARNING_PHASES[tf.get_default_graph()] = (GraphLearningPhase)((value) ? 1 : 0); } + public void set_value(IVariableV1 x, object value) + { + // TODO(Rinne): check the implementation. + x.assign(value); + } + public void batch_set_value(List<(IVariableV1, NDArray)> tuples) { if (ops.executing_eagerly_outside_functions()) @@ -276,6 +294,77 @@ public Tensor categorical_crossentropy(Tensor target, Tensor output, bool from_l return -math_ops.reduce_sum(target * math_ops.log(output), new Axis(axis)); } + public Tensor sparse_categorical_crossentropy(Tensor target, Tensor output, bool from_logits = false, int axis = -1, int? ignore_class = null) + { + target = tf.cast(target, tf.int64); + if (!from_logits) + { + var epsilon_ = constant_op.constant(epsilon(), output.dtype.as_base_dtype()); + output = tf.clip_by_value(output, epsilon_, 1 - epsilon_); + output = tf.math.log(output); + } + var output_rank = output.shape.ndim; + if (output_rank > -1) + { + axis = Math.Abs(axis) % output_rank; + if (axis != output_rank - 1) + { + /*var permutation = list( + itertools.chain( + range(axis), range(axis + 1, output_rank), [axis] + ) + ); + output = tf.transpose(output, perm: permutation);*/ + throw new NotImplementedException(""); + } + + } + + var output_shape = tf.shape(output); + var target_rank = target.shape.ndim; + var update_shape = target_rank > -1 && output_rank > -1 && target_rank != output_rank - 1; + if (update_shape) + { + target = tf.reshape(target, -1); + output = tf.reshape(output, (-1, output.shape[-1])); + } + + if (ignore_class.HasValue) + { + throw new NotImplementedException(""); + } + + var res = tf.nn.sparse_softmax_cross_entropy_with_logits(labels: target, logits: output); + + if (ignore_class.HasValue) + { + throw new NotImplementedException(""); + } + + if (update_shape && output_rank >= 3) + { + // If our output includes timesteps or + // spatial dimensions we need to reshape + res = tf.reshape(res, output_shape[":-1"]); + } + + return res; + } + + public Tensor binary_crossentropy(Tensor target, Tensor output, bool from_logits = false) + { + if (from_logits) + return tf.nn.sigmoid_cross_entropy_with_logits(labels: target, logits: output); + + var epsilon_ = constant_op.constant(epsilon(), dtype: output.dtype.as_base_dtype()); + output = tf.clip_by_value(output, epsilon_, 1.0f - epsilon_); + + // Compute cross entropy from probabilities. + var bce = target * tf.math.log(output + epsilon()); + bce += (1 - target) * tf.math.log(1 - output + epsilon()); + return -bce; + } + /// /// Resizes the images contained in a 4D tensor. /// @@ -365,5 +454,552 @@ public Tensor conv2d_transpose(Tensor x, return x; } + + public (Tensors, Tensors, Tensors) rnn( + Func step_function, // args:inputs, states, return:output, new_states + Tensors inputs, // inputs is a tuple of tensors (one per input sequence) + Tensors initial_states, + bool go_backwards = false, + Tensor? mask = null, + Tensors? constants = null, + bool unroll = false, + Tensors? input_length = null, // An integer or a 1-D Tensor,depending on whether the time dimension is fixed-length or not + bool time_major = false, + bool zero_output_for_mask = false, + bool return_all_outputs = true) + { + + Tensor swap_batch_timestep(Tensor input_t) + { + var axes = Enumerable.Range(0, input_t.rank).ToArray(); + axes[0] = 1; + axes[1] = 0; + return tf.transpose(input_t, axes); + } + + if (!time_major) + { + inputs = Nest.MapStructure(swap_batch_timestep, inputs).ToTensors(); + } + + var flatted_inptus = Nest.Flatten(inputs).ToList(); + var first_flatted_input = flatted_inptus[0]; + var time_steps = first_flatted_input.shape[0]; + var batch = first_flatted_input.shape[1]; + var time_steps_t = tf.shape(first_flatted_input)[0]; + + foreach (var input_ in flatted_inptus) + { + input_.shape.with_rank_at_least(3); + } + + if (mask != null) + { + if (mask.dtype != TF_DataType.TF_BOOL) + { + mask = tf.cast(mask, TF_DataType.TF_BOOL); + } + + if (mask.rank == 2) + { + mask = tf.expand_dims(mask, -1); + } + + if (!time_major) + { + mask = swap_batch_timestep(mask); + } + + } + + // tf.where needs its condition tensor to be the same shape as its two + // result tensors, but in our case the condition (mask) tensor is + // (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. + // So we need to broadcast the mask to match the shape of inputs. + // That's what the tile call does, it just repeats the mask along its + // second dimension n times. + + Tensors _expand_mask(Tensors mask_t, Tensors input_t, int fixed_dim = 1) + { + if (!mask_t.IsSingle()) + { + throw new ValueError($"mask_t is expected to be tensor, but got {mask_t}"); + } + + if (!input_t.IsSingle()) + { + throw new ValueError($"input_t is expected to be tensor, but got {input_t}"); + } + + var rank_diff = input_t.rank - mask_t.rank; + for (int i = 0; i < rank_diff; i++) + { + mask_t = tf.expand_dims(mask_t, -1); + } + var multiples = Enumerable.Repeat(1, fixed_dim).ToArray().concat(input_t.shape.as_int_list().Skip(fixed_dim).ToArray()); + return tf.tile(mask_t, multiples); + } + + Tensors outputs = new Tensors(); + Tensors output_time_zero = new Tensors(); + Tensors last_output = new Tensors(); + Tensors new_states = new Tensors(); + if (unroll) + { + if (time_steps == 0) + { + throw new ValueError("Unrolling requires a fixed number of timesteps."); + } + + // Process the input tensors. The input tensor need to be split on the + // time_step dim, and reverse if go_backwards is True. In the case of + // nested input, the input is flattened and then transformed + // individually. The result of this will be a tuple of lists, each of + // the item in tuple is list of the tensor with shape (batch, feature) + + + // TODO(Wanglongzhi2001),step_func接受的第二个参数为List,但是最后却用的tuple + //var states = Tuple.Create(initial_states); + var states = initial_states; + + var successive_states = new Tensors(); + var successive_outputs = new Tensors(); + + // Process the input tensors. The input tensor need to be split on the + // time_step dim, and reverse if go_backwards is True. In the case of + // nested input, the input is flattened and then transformed + // individually. The result of this will be a tuple of lists, each of + // the item in tuple is list of the tensor with shape (batch, feature) + + Tensors _process_single_input_t(Tensor input_t) + { + var unstaked_input_t = array_ops.unstack(input_t); // unstack for time_step dim + if (go_backwards) + { + unstaked_input_t = unstaked_input_t.Reverse().ToArray(); + } + return unstaked_input_t; + } + + // TODO(Wanglongzhi2001) + Tensors processed_input; + if (!inputs.IsSingle()) + { + processed_input = inputs.MapStructure(_process_single_input_t).ReduceTo().ToTensors(); + } + else + { + processed_input = _process_single_input_t(inputs); + } + + object _get_input_tensor(int time) + { + List inp = new List(); + foreach (var t_ in processed_input) + { + inp.Add(t_[time]); + } + return Nest.PackSequenceAs(inputs, inp); + } + + if (mask != null) + { + var mask_list = tf.unstack(mask); + if (go_backwards) + { + mask_list.Reverse().ToArray(); + } + + for (int i = 0; i < time_steps; i++) + { + // TODO(Wanglongzhi2001),deal with _get_input_tensor + var inp = _get_input_tensor(i); + var mask_t = mask_list[i]; + // TODO + var (output, newStates) = step_function((Tensors)inp, states.MergeWith(constants)); + + var tiled_mask_t = _expand_mask(mask_t, output); + + Tensors prev_output; + if (successive_outputs == null) + { + prev_output = tf.zeros_like(output); + } + else + { + prev_output = successive_outputs.Last(); + } + + // output could be a tensor + output = tf.where(tiled_mask_t, output, prev_output); + + var flat_states = Nest.Flatten(states).ToList(); + var flat_new_states = Nest.Flatten(newStates).ToList(); + + var tiledMaskT = flat_states + .Select(s => _expand_mask(mask_t, s)) + .ToArray(); + var tuple = Tuple.Create(tiledMaskT); + + List flat_final_states = new List(); + foreach (var (m, s, ps) in zip(tiled_mask_t.ToList(), flat_new_states, flat_states)) + { + flat_final_states.Add(tf.where(m, s, ps)); + } + + states = Nest.PackSequenceAs(states, flat_final_states).ToTensors(); + if (return_all_outputs) + { + successive_outputs = successive_outputs.MergeWith(output); + successive_outputs = successive_states.MergeWith(states); + } + else + { + successive_outputs = new Tensors(output); + successive_states = new Tensors(states); + } + + } + last_output = successive_outputs.Last(); + new_states = successive_states.Last(); + outputs = tf.stack(successive_outputs); + + if (zero_output_for_mask) + { + last_output = tf.where(_expand_mask(mask_list.Last(), last_output), last_output, tf.zeros_like(last_output)); + outputs = tf.where(_expand_mask(mask, outputs, fixed_dim: 2), outputs, tf.zeros_like(outputs)); + } + else // mask is null + { + for (int i = 0; i < time_steps; i++) + { + var inp = _get_input_tensor(i); + var (output, newStates) = step_function((Tensors)inp, states.MergeWith(constants)); + states = newStates; + + if (return_all_outputs) + { + successive_outputs.Add(output); + successive_states.Add(newStates); + } + else + { + successive_outputs = new Tensors { output }; + successive_states = new Tensors { newStates }; + } + } + last_output = successive_outputs.Last(); + new_states = successive_states.Last(); + outputs = tf.stack(successive_outputs); + } + } + } + else // unroll == false + { + var states = initial_states; + // Create input tensor array, if the inputs is nested tensors, then it + // will be flattened first, and tensor array will be created one per + // flattened tensor. + + + var input_ta = new List(); + for (int i = 0; i < flatted_inptus.Count; i++) + { + input_ta.Add(TensorArray.Create(dtype: flatted_inptus[i].dtype, size: time_steps_t)); + } + + foreach(var (ta, input_) in zip(input_ta, flatted_inptus)) + { + if (!go_backwards) + { + ta.unstack(input_); + } + else + { + ta.unstack(reverse(input_, 0)); + } + } + + + // Get the time(0) input and compute the output for that, the output will + // be used to determine the dtype of output tensor array. Don't read from + // input_ta due to TensorArray clear_after_read default to True. + var input_time_zero = Nest.PackSequenceAs(inputs, flatted_inptus.Select(x => x[0]).ToArray()).ToTensors(); + + // output_time_zero is used to determine the cell output shape and its + // dtype. the value is discarded. + (output_time_zero, _) = step_function(input_time_zero, + constants is null ? initial_states : initial_states.MergeWith(constants)); + + Tensor output_ta_size = return_all_outputs ? time_steps_t : constant_op.constant(1); + var output_ta = new List(); + foreach(var output in output_time_zero.Flatten()) + { + output_ta.Add(TensorArray.Create(dtype: output.dtype, size: output_ta_size, element_shape: output.shape)); + } + + var time = tf.constant(0, dtype: TF_DataType.TF_INT32, name: "time"); + + Func? masking_fn; + Func? compute_masked_output = null; + if (mask != null) + { + if (go_backwards) + { + mask = tf.reverse(mask, axis: new[] { 0 }); + } + var mask_ta = TensorArray.Create(dtype: TF_DataType.TF_BOOL, size: time_steps_t); + mask_ta = mask_ta.unstack(mask); + + masking_fn = (time) => + { + return mask_ta.read(time); + }; + + compute_masked_output = (mask_t, flat_out, flat_mask) => + { + var tiled_mask_t = new Tensors(); + foreach (var o in flat_out) + { + tiled_mask_t.Add(_expand_mask(mask_t, o, fixed_dim: mask_t.rank)); + } + + Tensors res = new Tensors(); + foreach (var (m, o, fm) in zip(tiled_mask_t.ToList(), flat_out.ToList(), flat_mask.ToList())) + { + res.Add(tf.where(m, o, fm)); + } + return res; + }; + } + // TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor), it could be an integer or tensor + else if (input_length is Tensor) + { + if (go_backwards) + { + var max_len = tf.reduce_max(input_length, axis: 0); + var rev_input_length = tf.subtract(max_len - 1, input_length); + + masking_fn = (time) => + { + return tf.less(rev_input_length, time); + }; + } + else + { + masking_fn = (time) => + { + return tf.greater(input_length, time); + }; + } + + compute_masked_output = (mask_t, flat_out, flat_mask) => + { + var res = new List(); + foreach (var (o, zo) in zip(flat_out, flat_mask)) + { + res.Add(tf.where(mask_t, o, zo)); + } + return res; + }; + } + else + { + masking_fn = null; + } + + Func cond = (time) => (time[0] < time_steps_t); + int parallel_iterations = 32; + Tensors final_outputs; + if (masking_fn != null) + { + // Mask for the T output will be base on the output of T - 1. In the + // case T = 0, a zero filled tensor will be used. + var flat_zero_output = new Tensors(); + foreach (var o in Nest.Flatten(output_time_zero)) + { + flat_zero_output.Add(tf.zeros_like(o)); + } + + var prev_output = flat_zero_output; + var output_ta_t = output_ta; + Tensors _step(Tensors tensors) + { + /* + RNN step function. + Args: + time: Current timestep value. + output_ta_t: TensorArray. + prev_output: tuple of outputs from time - 1. + *states: List of states. + Returns: + Tuple(todo): `(time + 1, output_ta_t, output) + tuple(new_states)` + */ + + Tensor time = tensors[0]; + TensorArray output_ta_t = (tensors[1] as FakeTensorByTensorArray).TensorArray; + Tensors prev_output = tensors.GetShallow(2); + Tensors states = new Tensors(tensors.Skip(2 + prev_output.Length).ToArray()); + + var flat_current_input = input_ta.Select(x => x.read(time)).ToList(); + // maybe set shape + // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type + var current_input = Nest.PackSequenceAs(inputs, flat_current_input).ToTensors(); + var mask_t = masking_fn(time); + var (output, new_states) = step_function(current_input, states.MergeWith(constants)); + // mask output + var flat_output = Nest.Flatten(output).ToList(); + + var flat_mask_output = zero_output_for_mask ? flat_zero_output : prev_output.Flatten().ToList(); + + // TODO(Wanglongzhi2001),deal with compute_masked_output's third parameter's type + var flat_new_output = compute_masked_output(mask_t, flat_output, flat_mask_output); + + // mask states + var flat_state = states.Flatten().ToList(); + var flat_new_state = new_states.Flatten().ToList(); + + foreach (var (state, new_state) in zip(flat_state, flat_new_state)) + { + if (new_state is Tensor) + { + new_state.shape = state.shape; + } + } + + var flat_final_state = compute_masked_output(mask_t, flat_new_state, flat_state); + new_states = Nest.PackSequenceAs(new_states, flat_final_state.ToArray()).ToTensors(); + + var ta_index_to_write = return_all_outputs ? time : tf.constant(0); + Debug.Assert(flat_output.Count() == 1); + output_ta_t = output_ta_t.write(ta_index_to_write, flat_new_output.First()); + + return new Tensor[] { time + 1, new FakeTensorByTensorArray(output_ta_t) }.Concat(flat_new_output).Concat(new_states) + .ToArray().ToTensors(); + + } + var loop_vars = new Tensor[] { time + 1, new FakeTensorByTensorArray(output_ta[0]) } + .Concat(flat_zero_output.Flatten()).Concat(states).ToArray().ToTensors(); + final_outputs = control_flow_ops.while_loop(cond: cond, body: _step, loop_vars: loop_vars, parallel_iterations: parallel_iterations); + new_states = final_outputs.Skip(3).ToList(); + } + else + { + var output_ta_t = output_ta; + new_states = states; + Tensors _step(Tensors tensors) + { + Tensor time = tensors[0]; + TensorArray output_ta_t = (tensors[1] as FakeTensorByTensorArray).TensorArray; + Tensors states = new Tensors(tensors.Skip(2).ToArray()); + var flat_current_input = input_ta.Select(x => x.read(time)).ToList(); + // maybe set shape + // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type + var current_input = Nest.PackSequenceAs(inputs, flat_current_input).ToTensors(); + var (output, new_states) = step_function(current_input, states.MergeWith(constants)); + var flat_state = new_states.Flatten().ToList(); + var flat_new_state = new_states.Flatten().ToList(); + foreach (var (state, new_state) in zip(flat_state, flat_new_state)) + { + if (new_state is Tensor) + { + new_state.shape = state.shape; + } + } + var flat_output = Nest.Flatten(output); + var ta_index_to_write = return_all_outputs ? time : tf.constant(0); + Debug.Assert(flat_output.Count() == 1); + output_ta_t = output_ta_t.write(ta_index_to_write, flat_output.First()); + + new_states = Nest.PackSequenceAs(initial_states, flat_new_state).ToTensors(); + return new Tensor[] { time + 1, new FakeTensorByTensorArray(output_ta_t) }.Concat(new_states).ToArray().ToTensors(); + } + Debug.Assert(output_ta.Count == 1); + var loop_vars = new Tensor[] { time + 1, new FakeTensorByTensorArray(output_ta[0]) }.Concat(states).ToArray().ToTensors(); + final_outputs = control_flow_ops.while_loop(cond: cond, body: _step, loop_vars: loop_vars, parallel_iterations: parallel_iterations); + new_states = final_outputs.Skip(2).ToList(); + } + + output_ta = new List { (final_outputs[1] as FakeTensorByTensorArray).TensorArray }; + outputs = outputs.MergeWith(output_ta.Select(o => o.stack()).ToArray().ToTensors()); + last_output = last_output.MergeWith(outputs.Select(o => o[-1]).ToArray().ToTensors()); + outputs = Nest.PackSequenceAs(output_time_zero, (Tensor[])outputs).ToTensors(); + last_output = Nest.PackSequenceAs(output_time_zero, (Tensor[])last_output).ToTensors(); + } + + Func set_shape; + set_shape = (output_) => + { + if (output_ is Tensor) + { + var shape = output_.shape.as_int_list(); + if (return_all_outputs) + { + shape[0] = (int)time_steps; + } + else + { + shape[0] = 1; + } + shape[1] = (int)batch; + output_.shape = shape; + } + return output_; + }; + + outputs = Nest.MapStructure(set_shape, outputs).ToTensors(); + if (!time_major) + { + outputs = Nest.MapStructure(swap_batch_timestep, outputs).ToTensors(); + } + return (last_output, outputs, new_states); + + } + + /// + /// Repeats the elements of a tensor along an axis, like `np.repeat`. + /// + /// + /// + /// + /// + public Tensor repeat_elements(Tensor x, int rep, int axis) + { + var x_shape = x.shape.as_int_list(); + if (x_shape[axis] != -1) + { + var splits = tf.split(x, x_shape[axis], axis:axis); + var x_rep = splits.SelectMany(s => Enumerable.Repeat(s, rep)).ToArray(); + return concatenate(x_rep, axis); + } + //var auxiliary_axis = axis + 1; + //x_shape = x.shape; + //var x_rep = tf.expand_dims(x, auxiliary_axis); + //var reps = np.ones(x_shape.Length + 1); + //reps[auxiliary_axis] = rep; + //x_rep = tf.tile(x_rep, reps); + + throw new NotImplementedException(); + + } + public Tensor reverse(Tensor input, int axis) + { + return reverse(input, new int[] { axis }); + } + + public Tensor reverse(Tensor input, int[] axes) + { + return tf.reverse(input, axes); + } + + public Tensor maybe_convert_to_ragged(bool is_ragged_output, Tensor output, int nested_row_lengths, bool go_backwards = false) + { + if (!is_ragged_output) + { + return output; + } + + throw new NotImplementedException("Not implemented currently, please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); + } } } diff --git a/src/TensorFlowNET.Keras/Callbacks/CallbackList.cs b/src/TensorFlowNET.Keras/Callbacks/CallbackList.cs new file mode 100644 index 000000000..cb16aafa3 --- /dev/null +++ b/src/TensorFlowNET.Keras/Callbacks/CallbackList.cs @@ -0,0 +1,81 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.Engine; + +namespace Tensorflow.Keras.Callbacks; + +public class CallbackList +{ + // 改成public使得新定义的callback可以加入到callbacks里 + public List callbacks = new List(); + public History History => callbacks[0] as History; + + public CallbackList(CallbackParams parameters) + { + callbacks.Add(new History(parameters)); + callbacks.Add(new ProgbarLogger(parameters)); + } + + public void on_train_begin() + { + callbacks.ForEach(x => x.on_train_begin()); + } + public void on_test_begin() + { + callbacks.ForEach(x => x.on_test_begin()); + } + public void on_epoch_begin(int epoch) + { + callbacks.ForEach(x => x.on_epoch_begin(epoch)); + } + + public void on_train_batch_begin(long step) + { + callbacks.ForEach(x => x.on_train_batch_begin(step)); + } + + public void on_train_batch_end(long end_step, Dictionary logs) + { + callbacks.ForEach(x => x.on_train_batch_end(end_step, logs)); + } + + public void on_epoch_end(int epoch, Dictionary epoch_logs) + { + callbacks.ForEach(x => x.on_epoch_end(epoch, epoch_logs)); + } + + public void on_predict_begin() + { + callbacks.ForEach(x => x.on_predict_begin()); + } + + public void on_predict_batch_begin(long step) + { + callbacks.ForEach(x => x.on_predict_batch_begin(step)); + } + + public void on_predict_batch_end(long end_step, Dictionary logs) + { + callbacks.ForEach(x => x.on_predict_batch_end(end_step, logs)); + } + + public void on_predict_end() + { + callbacks.ForEach(x => x.on_predict_end()); + } + + public void on_test_batch_begin(long step) + { + callbacks.ForEach(x => x.on_test_batch_begin(step)); + } + public void on_test_batch_end(long end_step, Dictionary logs) + { + callbacks.ForEach(x => x.on_test_batch_end(end_step, logs)); + } + + public void on_test_end(Dictionary logs) + { + callbacks.ForEach(x => x.on_test_end(logs)); + } +} diff --git a/src/TensorFlowNET.Keras/Callbacks/CallbackParams.cs b/src/TensorFlowNET.Keras/Callbacks/CallbackParams.cs new file mode 100644 index 000000000..fe859c8a2 --- /dev/null +++ b/src/TensorFlowNET.Keras/Callbacks/CallbackParams.cs @@ -0,0 +1,15 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.Engine; + +namespace Tensorflow.Keras.Callbacks +{ + public class CallbackParams + { + public IModel Model { get; set; } + public int Verbose { get; set; } + public int Epochs { get; set; } + public long Steps { get; set; } + } +} diff --git a/src/TensorFlowNET.Keras/Callbacks/Earlystopping.cs b/src/TensorFlowNET.Keras/Callbacks/Earlystopping.cs new file mode 100644 index 000000000..a2a2ecfe2 --- /dev/null +++ b/src/TensorFlowNET.Keras/Callbacks/Earlystopping.cs @@ -0,0 +1,174 @@ +using Tensorflow.Keras.Engine; +namespace Tensorflow.Keras.Callbacks; + + +/// +/// Stop training when a monitored metric has stopped improving. +/// +public class EarlyStopping: ICallback +{ + int _paitence; + float _min_delta; + int _verbose; + int _stopped_epoch; + int _wait; + int _best_epoch; + int _start_from_epoch; + float _best; + float _baseline; + string _monitor; + string _mode; + bool _restore_best_weights; + List? _best_weights; + CallbackParams _parameters; + Func _monitor_op; + + public Dictionary>? history { get; set; } + // user need to pass a CallbackParams to EarlyStopping, CallbackParams at least need the model + public EarlyStopping(CallbackParams parameters,string monitor = "val_loss", float min_delta = 0f, int patience = 0, + int verbose = 1, string mode = "auto", float baseline = 0f, bool restore_best_weights = false, + int start_from_epoch = 0) + { + _parameters = parameters; + _stopped_epoch = 0; + _wait = 0; + _monitor = monitor; + _paitence = patience; + _verbose = verbose; + _baseline = baseline; + _start_from_epoch = start_from_epoch; + _min_delta = Math.Abs(min_delta); + _restore_best_weights = restore_best_weights; + _mode = mode; + + if (_mode != "auto" && _mode != "min" && _mode != "max") + { + Console.WriteLine($"EarlyStopping mode {_mode} is unknown, fallback to auto mode."); + _mode = "auto"; + } + + if (_mode == "min") + { + _monitor_op = np.less; + } + else if (_mode == "max") + { + _monitor_op = np.greater; + } + else + { + if (_monitor.EndsWith("acc") || _monitor.EndsWith("accuracy") || _monitor.EndsWith("auc")) + { + _monitor_op = np.greater; + } + else + { + _monitor_op = np.less; + } + } + + if (_monitor_op == np.greater) + { + _min_delta *= 1; + } + else + { + _min_delta *= -1; + } + } + public void on_train_begin() + { + _wait = 0; + _stopped_epoch = 0; + _best = _monitor_op == np.less ? (float)np.Inf : (float)-np.Inf; + _best_weights = null; + _best_epoch = 0; + } + + public void on_epoch_begin(int epoch) + { + + } + + public void on_train_batch_begin(long step) + { + + } + + public void on_train_batch_end(long end_step, Dictionary logs) + { + } + + public void on_epoch_end(int epoch, Dictionary epoch_logs) + { + var current = get_monitor_value(epoch_logs); + // If no monitor value exists or still in initial warm-up stage. + if (current == 0f || epoch < _start_from_epoch) + return; + // Restore the weights after first epoch if no progress is ever made. + if (_restore_best_weights && _best_weights == null) + { + _best_weights = _parameters.Model.get_weights(); + } + _wait += 1; + + if (_is_improvement(current, _best)) + { + _best = current; + _best_epoch = epoch; + if (_restore_best_weights) + _best_weights = _parameters.Model.get_weights(); + // Only restart wait if we beat both the baseline and our previous best. + if (_baseline == 0f || _is_improvement(current, _baseline)) + _wait = 0; + } + // Only check after the first epoch. + if (_wait >= _paitence && epoch > 0) + { + _stopped_epoch = epoch; + _parameters.Model.Stop_training = true; + if (_restore_best_weights && _best_weights != null) + { + if (_verbose > 0) + { + Console.WriteLine($"Restoring model weights from the end of the best epoch: {_best_epoch + 1}"); + } + _parameters.Model.set_weights(_best_weights); + } + } + } + public void on_train_end() + { + if (_stopped_epoch > 0 && _verbose > 0) + { + Console.WriteLine($"Epoch {_stopped_epoch + 1}: early stopping"); + } + } + public void on_predict_begin() { } + public void on_predict_batch_begin(long step) { } + public void on_predict_batch_end(long end_step, Dictionary logs) { } + public void on_predict_end() { } + public void on_test_begin() { } + public void on_test_batch_begin(long step) { } + public void on_test_batch_end(long end_step, Dictionary logs) { } + + float get_monitor_value(Dictionary logs) + { + logs = logs ?? new Dictionary(); + float monitor_value = logs[_monitor]; + if (monitor_value == 0f) + { + Console.WriteLine($"Early stopping conditioned on metric {_monitor} " + + $"which is not available. Available metrics are: {string.Join(", ", logs.Keys)}"); + } + return monitor_value; + } + public bool _is_improvement(float monitor_value, float reference_value) + { + return _monitor_op(monitor_value - _min_delta, reference_value); + } + + public void on_test_end(Dictionary logs) + { + } +} diff --git a/src/TensorFlowNET.Keras/Callbacks/History.cs b/src/TensorFlowNET.Keras/Callbacks/History.cs new file mode 100644 index 000000000..6d3ff6c38 --- /dev/null +++ b/src/TensorFlowNET.Keras/Callbacks/History.cs @@ -0,0 +1,88 @@ +using Tensorflow.Keras.Engine; + +namespace Tensorflow.Keras.Callbacks; + +public class History : ICallback +{ + List epochs; + CallbackParams _parameters; + public Dictionary> history { get; set; } + + public History(CallbackParams parameters) + { + _parameters = parameters; + } + + public void on_train_begin() + { + epochs = new List(); + history = new Dictionary>(); + } + public void on_test_begin() + { + epochs = new List(); + history = new Dictionary>(); + } + public void on_train_end() { } + public void on_epoch_begin(int epoch) + { + + } + + public void on_train_batch_begin(long step) + { + + } + + public void on_train_batch_end(long end_step, Dictionary logs) + { + } + + public void on_epoch_end(int epoch, Dictionary epoch_logs) + { + epochs.Add(epoch); + + foreach (var log in epoch_logs) + { + if (!history.ContainsKey(log.Key)) + { + history[log.Key] = new List(); + } + history[log.Key].Add(log.Value); + } + } + + public void on_predict_begin() + { + epochs = new List(); + history = new Dictionary>(); + } + + public void on_predict_batch_begin(long step) + { + + } + + public void on_predict_batch_end(long end_step, Dictionary logs) + { + + } + + public void on_predict_end() + { + + } + + public void on_test_batch_begin(long step) + { + + } + + public void on_test_batch_end(long end_step, Dictionary logs) + { + } + + public void on_test_end(Dictionary logs) + { + } +} diff --git a/src/TensorFlowNET.Keras/Callbacks/ProgbarLogger.cs b/src/TensorFlowNET.Keras/Callbacks/ProgbarLogger.cs new file mode 100644 index 000000000..23b18cd47 --- /dev/null +++ b/src/TensorFlowNET.Keras/Callbacks/ProgbarLogger.cs @@ -0,0 +1,125 @@ +using System.Diagnostics; +using Tensorflow.Keras.Engine; + +namespace Tensorflow.Keras.Callbacks +{ + public class ProgbarLogger : ICallback + { + bool _called_in_fit = false; + int seen = 0; + CallbackParams _parameters; + Stopwatch _sw; + + public Dictionary> history { get; set; } + + public ProgbarLogger(CallbackParams parameters) + { + _parameters = parameters; + } + + public void on_train_begin() + { + _called_in_fit = true; + _sw = new Stopwatch(); + } + public void on_train_end() { } + public void on_test_begin() + { + _sw = new Stopwatch(); + } + public void on_epoch_begin(int epoch) + { + _reset_progbar(); + _maybe_init_progbar(); + Binding.tf_output_redirect.WriteLine($"Epoch: {epoch + 1:D3}/{_parameters.Epochs:D3}"); + } + + public void on_train_batch_begin(long step) + { + _sw.Restart(); + } + + public void on_train_batch_end(long end_step, Dictionary logs) + { + _sw.Stop(); + var elapse = _sw.ElapsedMilliseconds; + var results = string.Join(" - ", logs.Select(x => $"{x.Key}: {(float)x.Value:F6}")); + + var progress = ""; + var length = 30.0 / _parameters.Steps; + for (int i = 0; i < Math.Floor(end_step * length - 1); i++) + progress += "="; + if (progress.Length < 28) + progress += ">"; + else + progress += "="; + + var remaining = ""; + for (int i = 1; i < 30 - progress.Length; i++) + remaining += "."; + + Binding.tf_output_redirect.Write($"{end_step + 1:D4}/{_parameters.Steps:D4} [{progress}{remaining}] - {elapse}ms/step - {results}"); + if (!Console.IsOutputRedirected) + { + Console.CursorLeft = 0; + } + } + + public void on_epoch_end(int epoch, Dictionary epoch_logs) + { + Console.WriteLine(); + } + + void _reset_progbar() + { + seen = 0; + } + + void _maybe_init_progbar() + { + + } + + public void on_predict_begin() + { + _reset_progbar(); + _maybe_init_progbar(); + } + + public void on_predict_batch_begin(long step) + { + + } + + public void on_predict_batch_end(long end_step, Dictionary logs) + { + + } + + public void on_predict_end() + { + + } + + public void on_test_batch_begin(long step) + { + _sw.Restart(); + } + public void on_test_batch_end(long end_step, Dictionary logs) + { + _sw.Stop(); + var elapse = _sw.ElapsedMilliseconds; + var results = string.Join(" - ", logs.Select(x => $"{x.Key}: {x.Value:F6}")); + + Binding.tf_output_redirect.Write($"{end_step + 1:D4}/{_parameters.Steps:D4} - {elapse}ms/step - {results}"); + if (!Console.IsOutputRedirected) + { + Console.CursorLeft = 0; + } + } + + public void on_test_end(Dictionary logs) + { + } + } +} diff --git a/src/TensorFlowNET.Keras/Datasets/Imdb.cs b/src/TensorFlowNET.Keras/Datasets/Imdb.cs index 56b0d2a77..4d6df913b 100644 --- a/src/TensorFlowNET.Keras/Datasets/Imdb.cs +++ b/src/TensorFlowNET.Keras/Datasets/Imdb.cs @@ -3,8 +3,6 @@ using System.IO; using System.Text; using Tensorflow.Keras.Utils; -using Tensorflow.NumPy; -using System.Linq; namespace Tensorflow.Keras.Datasets { @@ -12,11 +10,57 @@ namespace Tensorflow.Keras.Datasets /// This is a dataset of 25,000 movies reviews from IMDB, labeled by sentiment /// (positive/negative). Reviews have been preprocessed, and each review is /// encoded as a list of word indexes(integers). + /// For convenience, words are indexed by overall frequency in the dataset, + /// so that for instance the integer "3" encodes the 3rd most frequent word in + /// the data.This allows for quick filtering operations such as: + /// "only consider the top 10,000 most + /// common words, but eliminate the top 20 most common words". + /// As a convention, "0" does not stand for a specific word, but instead is used + /// to encode the pad token. + /// Args: + /// path: where to cache the data (relative to %TEMP%/imdb/imdb.npz). + /// num_words: integer or None.Words are + /// ranked by how often they occur(in the training set) and only + /// the `num_words` most frequent words are kept.Any less frequent word + /// will appear as `oov_char` value in the sequence data.If None, + /// all words are kept.Defaults to `None`. + /// skip_top: skip the top N most frequently occurring words + /// (which may not be informative). These words will appear as + /// `oov_char` value in the dataset.When 0, no words are + /// skipped. Defaults to `0`. + /// maxlen: int or None.Maximum sequence length. + /// Any longer sequence will be truncated. None, means no truncation. + /// Defaults to `None`. + /// seed: int. Seed for reproducible data shuffling. + /// start_char: int. The start of a sequence will be marked with this + /// character. 0 is usually the padding character. Defaults to `1`. + /// oov_char: int. The out-of-vocabulary character. + /// Words that were cut out because of the `num_words` or + /// `skip_top` limits will be replaced with this character. + /// index_from: int. Index actual words with this index and higher. + /// Returns: + /// Tuple of Numpy arrays: `(x_train, labels_train), (x_test, labels_test)`. + /// + /// ** x_train, x_test**: lists of sequences, which are lists of indexes + /// (integers). If the num_words argument was specific, the maximum + /// possible index value is `num_words - 1`. If the `maxlen` argument was + /// specified, the largest possible sequence length is `maxlen`. + /// + /// ** labels_train, labels_test**: lists of integer labels(1 or 0). + /// + /// Raises: + /// ValueError: in case `maxlen` is so low + /// that no input sequence could be kept. + /// Note that the 'out of vocabulary' character is only used for + /// words that were present in the training set but are not included + /// because they're not making the `num_words` cut here. + /// Words that were not seen in the training set but are in the test set + /// have simply been skipped. /// + /// """Loads the [IMDB dataset](https://ai.stanford.edu/~amaas/data/sentiment/). public class Imdb { string origin_folder = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/"; - string file_name = "imdb.npz"; string dest_folder = "imdb"; /// @@ -31,50 +75,163 @@ public class Imdb /// /// /// - public DatasetPass load_data(string path = "imdb.npz", - int num_words = -1, + public DatasetPass load_data( + string path = "imdb.npz", + int? num_words = null, int skip_top = 0, - int maxlen = -1, + int? maxlen = null, int seed = 113, - int start_char = 1, - int oov_char= 2, + int? start_char = 1, + int? oov_char = 2, int index_from = 3) { - var dst = Download(); + path = data_utils.get_file( + path, + origin: Path.Combine(origin_folder, "imdb.npz"), + file_hash: "69664113be75683a8fe16e3ed0ab59fda8886cb3cd7ada244f7d9544e4676b9f" + ); + path = Path.Combine(path, "imdb.npz"); + var fileBytes = File.ReadAllBytes(path); + var (x_train, x_test) = LoadX(fileBytes); + var (labels_train, labels_test) = LoadY(fileBytes); - var lines = File.ReadAllLines(Path.Combine(dst, "imdb_train.txt")); - var x_train_string = new string[lines.Length]; - var y_train = np.zeros(new int[] { lines.Length }, np.int64); - for (int i = 0; i < lines.Length; i++) + var indices = np.arange(len(x_train)); + np.random.shuffle(indices, seed); + x_train = x_train[indices]; + labels_train = labels_train[indices]; + + indices = np.arange(len(x_test)); + np.random.shuffle(indices, seed); + x_test = x_test[indices]; + labels_test = labels_test[indices]; + + var x_train_array = (int[,])x_train.ToMultiDimArray(); + var x_test_array = (int[,])x_test.ToMultiDimArray(); + var labels_train_array = (long[])labels_train.ToArray(); + var labels_test_array = (long[])labels_test.ToArray(); + + if (start_char != null) + { + var (d1, d2) = (x_train_array.GetLength(0), x_train_array.GetLength(1)); + int[,] new_x_train_array = new int[d1, d2 + 1]; + for (var i = 0; i < d1; i++) + { + new_x_train_array[i, 0] = (int)start_char; + Array.Copy(x_train_array, i * d2, new_x_train_array, i * (d2 + 1) + 1, d2); + } + (d1, d2) = (x_test_array.GetLength(0), x_test_array.GetLength(1)); + int[,] new_x_test_array = new int[d1, d2 + 1]; + for (var i = 0; i < d1; i++) + { + new_x_test_array[i, 0] = (int)start_char; + Array.Copy(x_test_array, i * d2, new_x_test_array, i * (d2 + 1) + 1, d2); + } + x_train_array = new_x_train_array; + x_test_array = new_x_test_array; + } + else if (index_from != 0) { - y_train[i] = long.Parse(lines[i].Substring(0, 1)); - x_train_string[i] = lines[i].Substring(2); + var (d1, d2) = (x_train_array.GetLength(0), x_train_array.GetLength(1)); + for (var i = 0; i < d1; i++) + { + for (var j = 0; j < d2; j++) + { + if (x_train_array[i, j] == 0) + break; + x_train_array[i, j] += index_from; + } + } + (d1, d2) = (x_test_array.GetLength(0), x_test_array.GetLength(1)); + for (var i = 0; i < d1; i++) + { + for (var j = 0; j < d2; j++) + { + if (x_test_array[i, j] == 0) + break; + x_test[i, j] += index_from; + } + } } - var x_train = np.array(x_train_string); + if (maxlen == null) + { + maxlen = max(x_train_array.GetLength(1), x_test_array.GetLength(1)); + } + (x_train_array, labels_train_array) = data_utils._remove_long_seq((int)maxlen, x_train_array, labels_train_array); + (x_test_array, labels_test_array) = data_utils._remove_long_seq((int)maxlen, x_test_array, labels_test_array); + if (x_train_array.Length == 0 || x_test_array.Length == 0) + throw new ValueError("After filtering for sequences shorter than maxlen=" + + $"{maxlen}, no sequence was kept. Increase maxlen."); + + int[,] xs_array = new int[x_train_array.GetLength(0) + x_test_array.GetLength(0), (int)maxlen]; + Array.Copy(x_train_array, xs_array, x_train_array.Length); + Array.Copy(x_test_array, 0, xs_array, x_train_array.Length, x_train_array.Length); + + long[] labels_array = new long[labels_train_array.Length + labels_test_array.Length]; + Array.Copy(labels_train_array, labels_array, labels_train_array.Length); + Array.Copy(labels_test_array, 0, labels_array, labels_train_array.Length, labels_test_array.Length); + + if (num_words == null) + { + var (d1, d2) = (xs_array.GetLength(0), xs_array.GetLength(1)); + num_words = 0; + for (var i = 0; i < d1; i++) + for (var j = 0; j < d2; j++) + num_words = max((int)num_words, (int)xs_array[i, j]); + } - File.ReadAllLines(Path.Combine(dst, "imdb_test.txt")); - var x_test_string = new string[lines.Length]; - var y_test = np.zeros(new int[] { lines.Length }, np.int64); - for (int i = 0; i < lines.Length; i++) + // by convention, use 2 as OOV word + // reserve 'index_from' (=3 by default) characters: + // 0 (padding), 1 (start), 2 (OOV) + if (oov_char != null) { - y_test[i] = long.Parse(lines[i].Substring(0, 1)); - x_test_string[i] = lines[i].Substring(2); + var (d1, d2) = (xs_array.GetLength(0), xs_array.GetLength(1)); + int[,] new_xs_array = new int[d1, d2]; + for (var i = 0; i < d1; i++) + { + for (var j = 0; j < d2; j++) + { + if (xs_array[i, j] == 0 || skip_top <= xs_array[i, j] && xs_array[i, j] < num_words) + new_xs_array[i, j] = xs_array[i, j]; + else + new_xs_array[i, j] = (int)oov_char; + } + } + xs_array = new_xs_array; } + else + { + var (d1, d2) = (xs_array.GetLength(0), xs_array.GetLength(1)); + int[,] new_xs_array = new int[d1, d2]; + for (var i = 0; i < d1; i++) + { + int k = 0; + for (var j = 0; j < d2; j++) + { + if (xs_array[i, j] == 0 || skip_top <= xs_array[i, j] && xs_array[i, j] < num_words) + new_xs_array[i, k++] = xs_array[i, j]; + } + } + xs_array = new_xs_array; + } + + Array.Copy(xs_array, x_train_array, x_train_array.Length); + Array.Copy(xs_array, x_train_array.Length, x_test_array, 0, x_train_array.Length); - var x_test = np.array(x_test_string); + Array.Copy(labels_array, labels_train_array, labels_train_array.Length); + Array.Copy(labels_array, labels_train_array.Length, labels_test_array, 0, labels_test_array.Length); return new DatasetPass { - Train = (x_train, y_train), - Test = (x_test, y_test) + Train = (x_train_array, labels_train_array), + Test = (x_test_array, labels_test_array) }; } (NDArray, NDArray) LoadX(byte[] bytes) { - var y = np.Load_Npz(bytes); - return (y["x_train.npy"], y["x_test.npy"]); + var x = np.Load_Npz(bytes); + return (x["x_train.npy"], x["x_test.npy"]); } (NDArray, NDArray) LoadY(byte[] bytes) @@ -82,16 +239,5 @@ public DatasetPass load_data(string path = "imdb.npz", var y = np.Load_Npz(bytes); return (y["y_train.npy"], y["y_test.npy"]); } - - string Download() - { - var dst = Path.Combine(Path.GetTempPath(), dest_folder); - Directory.CreateDirectory(dst); - - Web.Download(origin_folder + file_name, dst, file_name); - - return dst; - // return Path.Combine(dst, file_name); - } } } diff --git a/src/TensorFlowNET.Keras/Engine/DataAdapters/DataAdapter.cs b/src/TensorFlowNET.Keras/Engine/DataAdapters/DataAdapter.cs index 3314f5c40..590f30a78 100644 --- a/src/TensorFlowNET.Keras/Engine/DataAdapters/DataAdapter.cs +++ b/src/TensorFlowNET.Keras/Engine/DataAdapters/DataAdapter.cs @@ -2,6 +2,7 @@ using System.Collections.Generic; using System.Text; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Util; namespace Tensorflow.Keras.Engine.DataAdapters { @@ -10,7 +11,7 @@ public abstract class DataAdapter protected DataAdapterArgs args; protected IDatasetV2 dataset; - public virtual bool CanHandle(Tensor x, Tensor y = null) + public virtual bool CanHandle(Tensors x, Tensors y = null) => throw new NotImplementedException(); public virtual IDatasetV2 GetDataset() @@ -19,18 +20,90 @@ public virtual IDatasetV2 GetDataset() public virtual int GetSize() => throw new NotImplementedException(""); - public virtual (Tensor, Tensor) Expand1d(Tensor x, Tensor y) + public virtual (Tensors, Tensors) Expand1d(Tensors x, Tensors y) { - if (x.shape.ndim == 1) - x = array_ops.expand_dims(x, axis: -1); - if (y.shape.ndim == 1) - y = array_ops.expand_dims(y, axis: -1); + for(int i = 0; i < x.Length; i++) + { + if (x[i].shape.ndim == 1) + x[i] = array_ops.expand_dims(x[i], axis: -1); + } + for (int i = 0; i < y.Length; i++) + { + if (y[i].shape.ndim == 1) + y[i] = array_ops.expand_dims(y[i], axis: -1); + } return (x, y); } + public virtual (Tensors, Tensors, Tensors) Expand1d(Tensors x, Tensors y, Tensors sample_weight) + { + for (int i = 0; i < x.Length; i++) + { + if (x[i].shape.ndim == 1) + x[i] = array_ops.expand_dims(x[i], axis: -1); + } + for (int i = 0; i < y.Length; i++) + { + if (y[i].shape.ndim == 1) + y[i] = array_ops.expand_dims(y[i], axis: -1); + } + for (int i = 0; i < sample_weight.Length; i++) + { + if (sample_weight[i].shape.ndim == 1) + sample_weight[i] = array_ops.expand_dims(sample_weight[i], axis: -1); + } + return (x, y, sample_weight); + } + public virtual bool ShouldRecreateIterator() { return true; } + + public static ((NDArray, NDArray, NDArray),ValidationDataPack) train_validation_split((NDArray, NDArray, NDArray) x_y_sample_weight, float validation_split) + { + var x = x_y_sample_weight.Item1; + var y = x_y_sample_weight.Item2; + var sample_weight = x_y_sample_weight.Item3; + int train_count = Convert.ToInt32(x.dims[0] * (1 - validation_split)); + var train_x = x[new Slice(0, train_count)]; + var train_y = y[new Slice(0, train_count)]; + ValidationDataPack validation_data; + if (sample_weight != null) + { + validation_data = (x[new Slice(train_count)], y[new Slice(train_count)], sample_weight[new Slice(train_count)]); + sample_weight = sample_weight[new Slice(0, train_count)]; + } + else + { + validation_data = (x[new Slice(train_count)], y[new Slice(train_count)]); + } + + return ((train_x, train_y, sample_weight), validation_data); + } + + public static ((IEnumerable, NDArray, NDArray), ValidationDataPack) train_validation_split((IEnumerable, NDArray, NDArray) x_y_sample_weight, float validation_split) + { + var x = x_y_sample_weight.Item1; + var y = x_y_sample_weight.Item2; + var sample_weight = x_y_sample_weight.Item3; + int train_count = Convert.ToInt32(y.dims[0] * (1 - validation_split)); + var train_x = x.Select(x => x[new Slice(0, train_count)] as NDArray); + var train_y = y[new Slice(0, train_count)]; + var val_x = x.Select(x => x[new Slice(train_count)] as NDArray); + var val_y = y[new Slice(train_count)]; + + ValidationDataPack validation_data; + if (sample_weight != null) + { + validation_data = (val_x, val_y, sample_weight[new Slice(train_count)]); + sample_weight = sample_weight[new Slice(0, train_count)]; + } + else + { + validation_data = (val_x, val_y); + } + return ((train_x, train_y, sample_weight), validation_data); + } } } diff --git a/src/TensorFlowNET.Keras/Engine/DataAdapters/DataHandler.cs b/src/TensorFlowNET.Keras/Engine/DataAdapters/DataHandler.cs index 1ddddd111..a305e5033 100644 --- a/src/TensorFlowNET.Keras/Engine/DataAdapters/DataHandler.cs +++ b/src/TensorFlowNET.Keras/Engine/DataAdapters/DataHandler.cs @@ -2,6 +2,9 @@ using System.Collections.Generic; using Tensorflow.Keras.ArgsDefinition; using static Tensorflow.Binding; +using Tensorflow.Keras.Utils; +using Tensorflow.Util; +using Tensorflow.Framework; namespace Tensorflow.Keras.Engine.DataAdapters { @@ -23,11 +26,13 @@ public class DataHandler long _steps_per_execution_value; int _initial_epoch => args.InitialEpoch; int _epochs => args.Epochs; + NDArray _sample_weight => args.SampleWeight; IVariableV1 _steps_per_execution; public DataHandler(DataHandlerArgs args) { this.args = args; + if (args.StepsPerExecution == null) { _steps_per_execution = tf.Variable(1L); @@ -48,6 +53,7 @@ public DataHandler(DataHandlerArgs args) BatchSize = args.BatchSize, Steps = args.StepsPerEpoch, Epochs = args.Epochs - args.InitialEpoch, + SampleWeight = args.SampleWeight, Shuffle = args.Shuffle, MaxQueueSize = args.MaxQueueSize, Worker = args.Workers, @@ -72,10 +78,75 @@ public DataHandler(DataHandlerArgs args) } _dataset = _adapter.GetDataset(); - _inferred_steps = _infer_steps(args.StepsPerEpoch, _dataset); _current_step = 0; _step_increment = _steps_per_execution_value - 1; _insufficient_data = false; + _configure_dataset_and_inferred_steps(args.X, args.ClassWeight); + } + + void _configure_dataset_and_inferred_steps(Tensors x, Dictionary class_weight) + { + if (_dataset == null) + { + _dataset = _adapter.GetDataset(); + _inferred_steps = _infer_steps(args.StepsPerEpoch, _dataset); + } + + if (class_weight != null) + { + _dataset = _dataset.map(_make_class_weight_map_fn(class_weight)); + } + _inferred_steps = _infer_steps(args.StepsPerEpoch, _dataset); + } + + + Func _make_class_weight_map_fn(Dictionary class_weight) + { + var class_ids = class_weight.Keys.OrderBy(key => key).ToList(); + var expected_class_ids = range(class_ids[0], class_ids[class_ids.Count - 1] + 1); + if (!class_ids.SequenceEqual(expected_class_ids)) + { + throw new ValueError("Expected `class_weight` to be a dict with keys from 0 to one less "+ + $"than the number of classes, found {class_weight}"); + } + + var class_weight_list = new List(); + foreach (var class_id in class_ids) + { + class_weight_list.Add(class_weight[class_id]); + } + var class_weight_tensor = tf.convert_to_tensor(class_weight_list.ToArray()); + + Func _class_weight_map_fn = (Tensors data) => + { + var x = data[0]; + var y = data[1]; + var sw = _sample_weight == null ? null : ops.convert_to_tensor(_sample_weight); + + if (y.shape.rank > 2) + { + throw new ValueError("`class_weight` not supported for 3+ dimensional targets."); + } + + var y_classes = smart_module.smart_cond( + y.shape.rank == 2 && y.shape[1] > 1, + () => math_ops.argmax(y, dimension: 1), + () => math_ops.cast(tf.reshape(y, (-1)), TF_DataType.TF_INT64)); + + var cw = array_ops.gather(class_weight_tensor, y_classes); + if (sw != null) + { + cw = tf.cast(cw, sw.dtype); + cw *= sw; + } + else + { + sw = cw; + } + return new Tensors { x, y, sw }; + }; + + return _class_weight_map_fn; } long _infer_steps(int steps_per_epoch, IDatasetV2 dataset) @@ -93,11 +164,15 @@ long _infer_steps(int steps_per_epoch, IDatasetV2 dataset) public IEnumerable<(int, OwnedIterator)> enumerate_epochs() { + var data_iterator = new OwnedIterator(_dataset); foreach (var epoch in range(_initial_epoch, _epochs)) { if (_insufficient_data) break; - using var data_iterator = new OwnedIterator(_dataset); + if (_adapter.ShouldRecreateIterator()) + { + data_iterator = new OwnedIterator(_dataset); + } yield return (epoch, data_iterator); } // _adapter.on_epoch_end() diff --git a/src/TensorFlowNET.Keras/Engine/DataAdapters/IDataAdapter.cs b/src/TensorFlowNET.Keras/Engine/DataAdapters/IDataAdapter.cs index df414b9fd..bb71b0a2d 100644 --- a/src/TensorFlowNET.Keras/Engine/DataAdapters/IDataAdapter.cs +++ b/src/TensorFlowNET.Keras/Engine/DataAdapters/IDataAdapter.cs @@ -13,10 +13,12 @@ public interface IDataAdapter /// input features /// target labels /// - bool CanHandle(Tensor x, Tensor y = null); + bool CanHandle(Tensors x, Tensors y = null); IDatasetV2 GetDataset(); int GetSize(); - (Tensor, Tensor) Expand1d(Tensor x, Tensor y); + (Tensors, Tensors) Expand1d(Tensors x, Tensors y); + (Tensors, Tensors, Tensors) Expand1d(Tensors x, Tensors y, Tensors sample_weight); + bool ShouldRecreateIterator(); } } diff --git a/src/TensorFlowNET.Keras/Engine/DataAdapters/TensorLikeDataAdapter.cs b/src/TensorFlowNET.Keras/Engine/DataAdapters/TensorLikeDataAdapter.cs index fc61aa715..978a3f51c 100644 --- a/src/TensorFlowNET.Keras/Engine/DataAdapters/TensorLikeDataAdapter.cs +++ b/src/TensorFlowNET.Keras/Engine/DataAdapters/TensorLikeDataAdapter.cs @@ -1,4 +1,5 @@ using System; +using System.Diagnostics; using System.Linq; using Tensorflow.Keras.ArgsDefinition; using static Tensorflow.Binding; @@ -19,7 +20,7 @@ public class TensorLikeDataAdapter : DataAdapter, IDataAdapter public TensorLikeDataAdapter(DataAdapterArgs args) { this.args = args; - _process_tensorlike(); + Tensor sample_weight_tensor = args.SampleWeight != null ? _process_tensorlike(args.SampleWeight) : null; num_samples = (int)args.X.shape[0]; var batch_size = args.BatchSize == -1 ? 32 : args.BatchSize; _batch_size = batch_size; @@ -33,10 +34,13 @@ public TensorLikeDataAdapter(DataAdapterArgs args) indices_dataset = indices_dataset.flat_map(slice_batch_indices); var inputs = new Tensors(); if (args.X != null) - inputs.Add(args.X); + inputs.AddRange(args.X); if (args.Y != null) - inputs.Add(args.Y); + inputs.AddRange(args.Y); + if (sample_weight_tensor != null) + inputs.Add(sample_weight_tensor); dataset = slice_inputs(indices_dataset, inputs); + dataset.FirstInputTensorCount = args.X.Length; } Tensors permutation(Tensors tensor) @@ -50,12 +54,13 @@ Tensors permutation(Tensors tensor) /// /// Convert a Tensor of indices into a dataset of batched indices. /// - /// + /// /// IDatasetV2 slice_batch_indices(Tensor indices) { var num_in_full_batch = num_full_batches * _batch_size; - var first_k_indices = array_ops.slice(indices, new int[] { 0 }, new int[] { num_in_full_batch }); + var first_k_indices = array_ops.slice(indices, new Tensor[] { ops.convert_to_tensor(0) }, + new Tensor[] { ops.convert_to_tensor(num_in_full_batch) }); first_k_indices = array_ops.reshape(first_k_indices, new int[] { num_full_batches, _batch_size }); var flat_dataset = tf.data.Dataset.from_tensor_slices(first_k_indices); if (_partial_batch_size > 0) @@ -79,7 +84,7 @@ IDatasetV2 slice_inputs(IDatasetV2 indices_dataset, Tensors elements) { var indices = inputs[0]; var results = inputs.Skip(1) - .Select(x => gen_array_ops.gather_v2(x, indices, 0)) + .Select(x => array_ops.gather(x, indices, axis: 0)) .ToArray(); return new Tensors(results); }, -1); @@ -87,11 +92,13 @@ IDatasetV2 slice_inputs(IDatasetV2 indices_dataset, Tensors elements) return dataset.with_options(new DatasetOptions { }); } - public override int GetSize() - => _size; + public override int GetSize() => _size; - void _process_tensorlike() + public override bool ShouldRecreateIterator() => false; + + Tensor _process_tensorlike(NDArray sample_weights) { + return tf.convert_to_tensor(sample_weights); } } } diff --git a/src/TensorFlowNET.Keras/Engine/Functional.FromConfig.cs b/src/TensorFlowNET.Keras/Engine/Functional.FromConfig.cs index b0d1b2b6b..375fc9106 100644 --- a/src/TensorFlowNET.Keras/Engine/Functional.FromConfig.cs +++ b/src/TensorFlowNET.Keras/Engine/Functional.FromConfig.cs @@ -11,7 +11,7 @@ namespace Tensorflow.Keras.Engine { public partial class Functional { - public static Functional from_config(ModelConfig config) + public static Functional from_config(FunctionalConfig config) { var (input_tensors, output_tensors, created_layers) = reconstruct_from_config(config); var model = new Functional(input_tensors, output_tensors, name: config.Name); @@ -24,13 +24,13 @@ public static Functional from_config(ModelConfig config) /// /// /// - static (Tensors, Tensors, Dictionary) reconstruct_from_config(ModelConfig config) + public static (Tensors, Tensors, Dictionary) reconstruct_from_config(FunctionalConfig config, Dictionary? created_layers = null) { // Layer instances created during the graph reconstruction process. - var created_layers = new Dictionary(); + created_layers = created_layers ?? new Dictionary(); var node_index_map = new Dictionary<(string, int), int>(); var node_count_by_layer = new Dictionary(); - var unprocessed_nodes = new Dictionary(); + var unprocessed_nodes = new Dictionary>(); // First, we create all layers and enqueue nodes to be processed foreach (var layer_data in config.Layers) process_layer(created_layers, layer_data, unprocessed_nodes, node_count_by_layer); @@ -79,7 +79,7 @@ public static Functional from_config(ModelConfig config) static void process_layer(Dictionary created_layers, LayerConfig layer_data, - Dictionary unprocessed_nodes, + Dictionary> unprocessed_nodes, Dictionary node_count_by_layer) { ILayer layer = null; @@ -88,41 +88,42 @@ static void process_layer(Dictionary created_layers, layer = created_layers[layer_name]; else { - layer = layer_data.ClassName switch - { - "InputLayer" => InputLayer.from_config(layer_data.Config), - "Dense" => Dense.from_config(layer_data.Config), - _ => throw new NotImplementedException("") - }; + layer = generic_utils.deserialize_keras_object(layer_data.ClassName, layer_data.Config); created_layers[layer_name] = layer; } - node_count_by_layer[layer] = _should_skip_first_node(layer) ? 1 : 0; + node_count_by_layer[layer] = layer_data.InboundNodes.Count - (_should_skip_first_node(layer) ? 1 : 0); var inbound_nodes_data = layer_data.InboundNodes; foreach (var node_data in inbound_nodes_data) { if (!unprocessed_nodes.ContainsKey(layer)) - unprocessed_nodes[layer] = node_data; + unprocessed_nodes[layer] = new List() { node_data }; else - unprocessed_nodes.Add(layer, node_data); + unprocessed_nodes[layer].Add(node_data); } } static void process_node(ILayer layer, - NodeConfig node_data, + List nodes_data, Dictionary created_layers, Dictionary node_count_by_layer, Dictionary<(string, int), int> node_index_map) { + var input_tensors = new List(); - var inbound_layer_name = node_data.Name; - var inbound_node_index = node_data.NodeIndex; - var inbound_tensor_index = node_data.TensorIndex; - var inbound_layer = created_layers[inbound_layer_name]; - var inbound_node = inbound_layer.InboundNodes[inbound_node_index]; - input_tensors.Add(inbound_node.Outputs[inbound_node_index]); + for (int i = 0; i < nodes_data.Count; i++) + { + var node_data = nodes_data[i]; + var inbound_layer_name = node_data.Name; + var inbound_node_index = node_data.NodeIndex; + var inbound_tensor_index = node_data.TensorIndex; + + var inbound_layer = created_layers[inbound_layer_name]; + var inbound_node = inbound_layer.InboundNodes[inbound_node_index]; + input_tensors.Add(inbound_node.Outputs[inbound_node_index]); + } var output_tensors = layer.Apply(input_tensors); diff --git a/src/TensorFlowNET.Keras/Engine/Functional.GetConfig.cs b/src/TensorFlowNET.Keras/Engine/Functional.GetConfig.cs index 6615810be..df77e5969 100644 --- a/src/TensorFlowNET.Keras/Engine/Functional.GetConfig.cs +++ b/src/TensorFlowNET.Keras/Engine/Functional.GetConfig.cs @@ -11,7 +11,7 @@ namespace Tensorflow.Keras.Engine { public partial class Functional { - public ModelConfig get_config() + public override IKerasConfig get_config() { return get_network_config(); } @@ -19,15 +19,15 @@ public ModelConfig get_config() /// /// Builds the config, which consists of the node graph and serialized layers. /// - ModelConfig get_network_config() + FunctionalConfig get_network_config() { - var config = new ModelConfig + var config = new FunctionalConfig { Name = name }; - + var node_conversion_map = new Dictionary(); - foreach (var layer in _layers) + foreach (var layer in _self_tracked_trackables) { var kept_nodes = _should_skip_first_node(layer) ? 1 : 0; foreach (var (original_node_index, node) in enumerate(layer.InboundNodes)) @@ -42,23 +42,26 @@ ModelConfig get_network_config() } var layer_configs = new List(); - foreach (var layer in _layers) + using (SharedObjectSavingScope.Enter()) { - var filtered_inbound_nodes = new List(); - foreach (var (original_node_index, node) in enumerate(layer.InboundNodes)) + foreach (var layer in _self_tracked_trackables) { - var node_key = _make_node_key(layer.Name, original_node_index); - if (NetworkNodes.Contains(node_key) && !node.is_input) + var filtered_inbound_nodes = new List(); + foreach (var (original_node_index, node) in enumerate(layer.InboundNodes)) { - var node_data = node.serialize(_make_node_key, node_conversion_map); - filtered_inbound_nodes.append(node_data); + var node_key = _make_node_key(layer.Name, original_node_index); + if (NetworkNodes.Contains(node_key) && !node.is_input) + { + var node_data = node.serialize(_make_node_key, node_conversion_map); + filtered_inbound_nodes.append(node_data); + } } - } - var layer_config = generic_utils.serialize_keras_object(layer); - layer_config.Name = layer.Name; - layer_config.InboundNodes = filtered_inbound_nodes; - layer_configs.Add(layer_config); + var layer_config = generic_utils.serialize_layer_to_config(layer); + layer_config.Name = layer.Name; + layer_config.InboundNodes = filtered_inbound_nodes; + layer_configs.Add(layer_config); + } } config.Layers = layer_configs; diff --git a/src/TensorFlowNET.Keras/Engine/Functional.cs b/src/TensorFlowNET.Keras/Engine/Functional.cs index 01d84794f..75854d82c 100644 --- a/src/TensorFlowNET.Keras/Engine/Functional.cs +++ b/src/TensorFlowNET.Keras/Engine/Functional.cs @@ -1,8 +1,11 @@ using System; using System.Collections.Generic; using System.Linq; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Saving.SavedModel; using Tensorflow.Keras.Utils; +using Tensorflow.Train; using static Tensorflow.Binding; namespace Tensorflow.Keras.Engine @@ -20,6 +23,30 @@ public partial class Functional : Model Dictionary tensor_usage_count; + /// + /// Dictionary of layer dependencies to be included in the checkpoint. + /// + public IDictionary LayerCheckpointDependencies + { + get + { + int weight_layer_index = 0; + Dictionary dependencies = new(); + for(int i = 0; i < Layers.Count; i++) + { + var layer = Layers[i]; + var weights = layer.TrainableWeights.concat(layer.NonTrainableWeights).ToList(); + if(weights.Count > 0) + { + dependencies[$"layer_with_weights-{weight_layer_index}"] = layer; + weight_layer_index++; + } + dependencies[$"layer-{i}"] = layer; + } + return dependencies; + } + } + public Functional(Tensors inputs, Tensors outputs, string name = null) : base(new ModelArgs { @@ -27,6 +54,11 @@ public Functional(Tensors inputs, Tensors outputs, string name = null) Inputs = inputs, Outputs = outputs }) + { + Initialize(inputs, outputs, name); + } + + internal void Initialize(Tensors inputs, Tensors outputs, string name = null) { _input_layers = new List(); _output_layers = new List(); @@ -44,6 +76,14 @@ protected void _init_graph_network(Tensors inputs, Tensors outputs) this.inputs = inputs; this.outputs = outputs; built = true; + if(inputs.Length > 0) + { + _buildInputShape = inputs.shape; + } + else + { + _buildInputShape = new TensorShapeConfig(); + } if (outputs.Any(x => x.KerasHistory == null)) base_layer_utils.create_keras_history(outputs); @@ -65,12 +105,7 @@ protected void _init_graph_network(Tensors inputs, Tensors outputs) } // Keep track of the network's nodes and layers. - var (nodes, nodes_by_depth, layers, _) = MapGraphNetwork(inputs, outputs); - - NetworkNodes = nodes; - NodesByDepth = nodes_by_depth; - if (_layers.Count == 0) - _layers = layers; + (NetworkNodes, NodesByDepth, _self_tracked_trackables, _) = MapGraphNetwork(inputs, outputs); // Build self.input_names and self.output_names. _set_output_names(); @@ -145,7 +180,7 @@ void ComputeTensorUsageCount() var (nodes_in_decreasing_depth, layer_indices) = BuildMap(outputs); var network_nodes = nodes_in_decreasing_depth .Select(node => MakeNodeKey(node.Layer.Name, node.Layer.InboundNodes.IndexOf(node))) - .ToArray(); + .ToList(); var nodes_depths = new Dictionary(); var layers_depths = new Dictionary(); @@ -186,7 +221,7 @@ void ComputeTensorUsageCount() layers_depths[input_layer] = 0; layer_indices[input_layer] = -1; nodes_depths[input_layer.InboundNodes[0]] = 0; - network_nodes.add(MakeNodeKey(input_layer.Name, 0)); + network_nodes.Add(MakeNodeKey(input_layer.Name, 0)); } } @@ -196,7 +231,7 @@ void ComputeTensorUsageCount() { if (!nodes_by_depth.ContainsKey(depth)) nodes_by_depth[depth] = new List(); - nodes_by_depth[depth].append(node); + nodes_by_depth[depth].Add(node); } var layers_by_depth = new Dictionary>(); @@ -204,7 +239,7 @@ void ComputeTensorUsageCount() { if (!layers_by_depth.ContainsKey(depth)) layers_by_depth[depth] = new List(); - layers_by_depth[depth].append(layer); + layers_by_depth[depth].Add(layer); } // Get sorted list of layer depths. @@ -225,7 +260,7 @@ void ComputeTensorUsageCount() // Get sorted list of node depths. depth_keys = nodes_by_depth.Keys.OrderBy(x => x).Reverse(); - return (network_nodes, nodes_by_depth, layers, layers_by_depth); + return (network_nodes.ToArray(), nodes_by_depth, layers, layers_by_depth); } string MakeNodeKey(string layer_name, int node_index) @@ -291,7 +326,7 @@ void BuildMapHelper(Tensor tensor, nodes_in_decreasing_depth.append(node); } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { var tensor_dict = new Dictionary>(); // map input values @@ -314,7 +349,7 @@ protected override Tensors Call(Tensors inputs, Tensor state = null, bool? train var layer_inputs = node.MapArguments(tensor_dict); tf.Logger.Debug($"Depth {depth}: {node.Layer}: {node.Layer.Name}"); - var outputs = node.Layer.Apply(layer_inputs, is_training: training ?? false); + var outputs = node.Layer.Apply(layer_inputs, training: training ?? false); foreach (var output in outputs.Where(x => x != null)) tf.Logger.Information($"Depth {depth}: {node.Layer}: {node.Layer.Name} {output.shape}"); // Update tensor_dict for next or later input @@ -330,5 +365,28 @@ protected override Tensors Call(Tensors inputs, Tensor state = null, bool? train return output_tensors; } + + public override IDictionary _trackable_children(SaveType save_type = SaveType.CHECKPOINT, IDictionary>? cache = null) + { + return LayerCheckpointDependencies.ToDictionary(x => x.Key, x => x.Value.GetTrackable()).Concat(base._trackable_children(save_type, cache)) + .ToDictionary(x => x.Key, x => x.Value); + } + + protected override void _init_set_name(string name, bool zero_based = true) + { + if (string.IsNullOrEmpty(name)) + { + string class_name = GetType().Name; + if (this.GetType() == typeof(Functional)) + { + class_name = "Model"; + } + this.name = base_layer_utils.unique_layer_name(generic_utils.to_snake_case(class_name), zero_based: zero_based); + } + else + { + this.name = name; + } + } } } diff --git a/src/TensorFlowNET.Keras/Engine/Layer.AddWeights.cs b/src/TensorFlowNET.Keras/Engine/Layer.AddWeights.cs index feb5e8e40..2925739bc 100644 --- a/src/TensorFlowNET.Keras/Engine/Layer.AddWeights.cs +++ b/src/TensorFlowNET.Keras/Engine/Layer.AddWeights.cs @@ -22,9 +22,9 @@ protected virtual IVariableV1 add_weight(string name, // If dtype is DT_FLOAT, provide a uniform unit scaling initializer if (dtype.is_floating()) initializer = tf.glorot_uniform_initializer; - else if (dtype.is_integer()) + else if (dtype.is_integer() || dtype.is_unsigned() || dtype.is_bool()) initializer = tf.zeros_initializer; - else + else if(getter is null) throw new ValueError($"An initializer for variable {name} of type {dtype.as_base_dtype()} is required for layer {name}"); } @@ -53,9 +53,9 @@ protected virtual IVariableV1 add_weight(string name, //backend.track_variable(variable); if (trainable == true) - trainable_weights.Add(variable); + _trainable_weights.Add(variable); else - non_trainable_weights.Add(variable); + _non_trainable_weights.Add(variable); return variable; } diff --git a/src/TensorFlowNET.Keras/Engine/Layer.Apply.cs b/src/TensorFlowNET.Keras/Engine/Layer.Apply.cs index 7d3721f12..a3831bffa 100644 --- a/src/TensorFlowNET.Keras/Engine/Layer.Apply.cs +++ b/src/TensorFlowNET.Keras/Engine/Layer.Apply.cs @@ -1,4 +1,5 @@ using System.Threading; +using Tensorflow.Common.Types; using static Tensorflow.Binding; namespace Tensorflow.Keras.Engine @@ -8,11 +9,11 @@ public partial class Layer /// /// Wraps `call`, applying pre- and post-processing steps. /// - /// - /// + /// + /// /// /// - public Tensors Apply(Tensors inputs, Tensor state = null, bool training = false) + public virtual Tensors Apply(Tensors inputs, Tensors states = null, bool? training = false, IOptionalArgs? optional_args = null) { if (callContext.Value == null) callContext.Value = new CallContext(); @@ -30,16 +31,32 @@ public Tensors Apply(Tensors inputs, Tensor state = null, bool training = false) if (!built) MaybeBuild(inputs); - var outputs = Call(inputs, state: state, training: training); + var outputs = Call(inputs, state: states, training: training); // memory leak // _set_connectivity_metadata_(inputs, outputs); _handle_activity_regularization(inputs, outputs); _set_mask_metadata(inputs, outputs, null); + // TODO(Rinne): set save spec if null + scope.__exit__(); return outputs; } + + // TODO(Rinne): remove it and completely fix issue 1084 + [Obsolete] + private bool _enforce_layer_construction = false; + [Obsolete] + internal void enforce_layer_construction() + { + _enforce_layer_construction = true; + } + [Obsolete] + internal void unset_layer_construction() + { + _enforce_layer_construction = false; + } } } diff --git a/src/TensorFlowNET.Keras/Engine/Layer.FlattenLayers.cs b/src/TensorFlowNET.Keras/Engine/Layer.FlattenLayers.cs index e088fdaf4..dd037e243 100644 --- a/src/TensorFlowNET.Keras/Engine/Layer.FlattenLayers.cs +++ b/src/TensorFlowNET.Keras/Engine/Layer.FlattenLayers.cs @@ -10,7 +10,7 @@ public IEnumerable _flatten_layers(bool recursive = true, bool include_s yield return this; var seen_object_ids = new List(); - var deque = new Queue(_layers); + var deque = new Queue(_self_tracked_trackables); while (!deque.empty()) { var layer_or_container = deque.Dequeue(); diff --git a/src/TensorFlowNET.Keras/Engine/Layer.FunctionalConstructionCall.cs b/src/TensorFlowNET.Keras/Engine/Layer.FunctionalConstructionCall.cs index 1d96e5811..e4023c3fd 100644 --- a/src/TensorFlowNET.Keras/Engine/Layer.FunctionalConstructionCall.cs +++ b/src/TensorFlowNET.Keras/Engine/Layer.FunctionalConstructionCall.cs @@ -1,7 +1,5 @@ using System; using Tensorflow.Keras.Utils; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; namespace Tensorflow.Keras.Engine { @@ -9,14 +7,6 @@ public partial class Layer { Tensors FunctionalConstructionCall(Tensors inputs) { - bool mask_arg_passed_by_framework = false; - bool training_arg_passed_by_framework = false; - Tensor training_value = null; - if (training_value == null) - { - training_arg_passed_by_framework = true; - } - if (base_layer_utils.needs_keras_history(inputs)) base_layer_utils.create_keras_history(inputs); diff --git a/src/TensorFlowNET.Keras/Engine/Layer.Layers.cs b/src/TensorFlowNET.Keras/Engine/Layer.Layers.cs index 325358386..81fc26355 100644 --- a/src/TensorFlowNET.Keras/Engine/Layer.Layers.cs +++ b/src/TensorFlowNET.Keras/Engine/Layer.Layers.cs @@ -1,19 +1,44 @@ using System; using System.Collections.Generic; +using System.Linq; namespace Tensorflow.Keras.Engine { public partial class Layer { - protected List _layers = new List(); - public List Layers => _layers; + public virtual List Layers => _self_tracked_trackables; protected void StackLayers(params ILayer[] layers) { - _layers.AddRange(layers); + _self_tracked_trackables.AddRange(layers); } public virtual Shape ComputeOutputShape(Shape input_shape) => throw new NotImplementedException(""); + + protected List _gather_children_variables(bool include_trainable = false, bool include_non_trainable = false) + { + List res = new(); + var nested_layers = _flatten_layers(false, false); + foreach (var layer in nested_layers) + { + if (layer is Layer l) + { + if (include_trainable == true && include_non_trainable == true) + { + res.AddRange(l.Variables); + } + else if (include_trainable == true && include_non_trainable == false) + { + res.AddRange(l.TrainableVariables); + } + else if(include_trainable == false && include_non_trainable == true) + { + res.AddRange(l.NonTrainableVariables); + } + } + } + return res; + } } } diff --git a/src/TensorFlowNET.Keras/Engine/Layer.Serialize.cs b/src/TensorFlowNET.Keras/Engine/Layer.Serialize.cs new file mode 100644 index 000000000..49811417e --- /dev/null +++ b/src/TensorFlowNET.Keras/Engine/Layer.Serialize.cs @@ -0,0 +1,32 @@ +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using Tensorflow.Keras.Saving.SavedModel; +using Tensorflow.Train; + +namespace Tensorflow.Keras.Engine; + +public abstract partial class Layer +{ + public virtual SavedModelSaver TrackableSavedModelSaver => new LayerSavedModelSaver(this); + + public override string ObjectIdentifier => TrackableSavedModelSaver.ObjectIdentifier; + + public string GetTrackingMetadata() => TrackableSavedModelSaver.TrackingMetadata; + + public override IDictionary _trackable_children(SaveType save_type = SaveType.CHECKPOINT, IDictionary>? cache = null) + { + IDictionary children; + if (save_type == SaveType.SAVEDMODEL) + { + Debug.Assert(cache is not null); + children = TrackableSavedModelSaver.trackable_children(cache); + } + else + { + children = new Dictionary(); + } + + return children.Concat(base._trackable_children(save_type, cache)).GroupBy(x => x.Key).Select(g => g.First()).ToDictionary(x => x.Key, x => x.Value); + } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Engine/Layer.cs b/src/TensorFlowNET.Keras/Engine/Layer.cs index 03308ede4..2f758a850 100644 --- a/src/TensorFlowNET.Keras/Engine/Layer.cs +++ b/src/TensorFlowNET.Keras/Engine/Layer.cs @@ -14,17 +14,25 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Newtonsoft.Json.Linq; using System; using System.Collections.Generic; using System.Linq; using System.Threading; using Tensorflow.Eager; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Metrics; using Tensorflow.Keras.Saving; using Tensorflow.Keras.Utils; using Tensorflow.NumPy; using Tensorflow.Train; +using Tensorflow.Training; +using Tensorflow.Training.Saving.SavedModel; +using Tensorflow.Util; using static Tensorflow.Binding; +using Tensorflow.Framework; +using Tensorflow.Sessions; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Engine { @@ -39,16 +47,28 @@ public abstract partial class Layer : AutoTrackable, ILayer /// /// Arguments initialize layer. /// - LayerArgs args; + internal LayerArgs args; /// /// Indicates whether `build` needs to be called upon layer call, to create /// the layer's weights. /// protected bool built; - public bool Built => built; + public bool Built + { + get + { + return built; + } + internal set + { + built = value; + } + } public bool Trainable => args.Trainable; public TF_DataType DType => args.DType; + public bool AutoCast => args.Autocast; + public IRegularizer ActivityRegularizer => args.ActivityRegularizer; /// /// A stateful layer is a layer whose updates are run during inference too, @@ -59,39 +79,187 @@ public abstract partial class Layer : AutoTrackable, ILayer /// Provides information about which inputs are compatible with the layer. /// protected InputSpec inputSpec; + public InputSpec InputSpec => inputSpec; bool dynamic = true; public bool SupportsMasking { get; set; } - protected List trainable_weights; + protected List _trainable_weights; - public virtual List trainable_variables => trainable_weights; + public virtual List TrainableVariables => TrainableWeights; + + protected List _non_trainable_weights; + public List NonTrainableVariables => NonTrainableWeights; + public List Variables => Weights; + + public virtual List TrainableWeights + { + get + { + if (!this.Trainable) + { + return new List(); + } + var children_weights = _gather_children_variables(true); + return children_weights.Concat(_trainable_weights).Distinct().ToList(); + } + } - protected List non_trainable_weights; - public List non_trainable_variables => non_trainable_weights; + public virtual List NonTrainableWeights + { + get + { + if (!this.Trainable) + { + var children_weights = _gather_children_variables(true, true); + return children_weights.Concat(_trainable_weights).Concat(_non_trainable_weights).Distinct().ToList(); + } + else + { + var children_weights = _gather_children_variables(include_non_trainable: true); + return children_weights.Concat(_non_trainable_weights).Distinct().ToList(); + } + } + } + + public virtual List Weights + { + get + { + return TrainableWeights.Concat(NonTrainableWeights).ToList(); + } + set + { + if (Weights.Count() != value.Count()) throw new ValueError( + $"You called `set_weights` on layer \"{this.name}\"" + + $"with a weight list of length {len(value)}, but the layer was " + + $"expecting {len(Weights)} weights."); + foreach (var (this_w, v_w) in zip(Weights, value)) + this_w.assign(v_w, read_value: true); + } + } + + public virtual void set_weights(IEnumerable weights) + { + if (Weights.Count() != weights.Count()) throw new ValueError( + $"You called `set_weights` on layer \"{this.name}\"" + + $"with a weight list of length {len(weights)}, but the layer was " + + $"expecting {len(Weights)} weights."); + + + + // check if the shapes are compatible + var weight_index = 0; + foreach(var w in weights) + { + if (!Weights[weight_index].AsTensor().is_compatible_with(w)) + { + throw new ValueError($"Layer weight shape {w.shape} not compatible with provided weight shape {Weights[weight_index].shape}"); + } + weight_index++; + } + + if (tf.executing_eagerly()) + { + foreach (var (this_w, v_w) in zip(Weights, weights)) + this_w.assign(v_w, read_value: true); + } + else + { + // TODO(Wanglongzhi2001):seems like there exist some bug in graph mode when define model, so uncomment the following when it fixed. + + //Tensors assign_ops = new Tensors(); + //var feed_dict = new FeedDict(); + + //Graph g = tf.Graph().as_default(); + //foreach (var (this_w, v_w) in zip(Weights, weights)) + //{ + // var tf_dtype = this_w.dtype; + // var placeholder_shape = v_w.shape; + // var assign_placeholder = tf.placeholder(tf_dtype, placeholder_shape); + // var assign_op = this_w.assign(assign_placeholder); + // assign_ops.Add(assign_op); + // feed_dict.Add(assign_placeholder, v_w); + //} + //var sess = tf.Session().as_default(); + //sess.run(assign_ops, feed_dict); + + //g.Exit(); + } + } + + public List get_weights() + { + List weights = new List(); + weights.AddRange(Weights.ConvertAll(x => x.numpy())); + return weights; + } protected int id; public int Id => id; protected string name; protected string base_name; - public string Name => name; + public string Name + { + get + { + return name; + } + set + { + name = value; + } + } protected bool computePreviousMask; protected List updates; - public Shape BatchInputShape => args.BatchInputShape; + public KerasShapesWrapper BatchInputShape => args.BatchInputShape; + protected KerasShapesWrapper _buildInputShape = null; + public KerasShapesWrapper BuildInputShape => _buildInputShape; List inboundNodes; public List InboundNodes => inboundNodes; - List outboundNodes; public List OutboundNodes => outboundNodes; + public Dictionary SerializedAttributes { get; set; } + ThreadLocal callContext = new ThreadLocal(); public CallContext CallContext => callContext.Value; - public Tensor[] input => inboundNodes[0].input_tensors; + public Tensor[] input + { + get + { + if(inboundNodes is not null && inboundNodes.Count > 0) + { + return inboundNodes[0].input_tensors; + } + return null; + } + } public Dictionary> NodesByDepth { get; set; } - public Shape output_shape => inboundNodes[0].Outputs.shape; + public Shape OutputShape + { + get + { + if(inboundNodes is not null && inboundNodes.Count > 0) + { + return inboundNodes[0].Outputs.shape; + } + return null; + } + } protected List _self_tracked_trackables; + /// + /// If this value is set, the behavior of layer call will be changed to directly calling this function. + /// + public Func? ReplacedCall { get; set; } = null; + public Layer(LayerArgs args) + { + Initialize(args); + } + + internal virtual void Initialize(LayerArgs args) { this.args = args; // A stateful layer is a layer whose updates are run during inference too, @@ -104,8 +272,8 @@ public Layer(LayerArgs args) id = ops.uid_layer(); _init_set_name(args.Name); - trainable_weights = new List(); - non_trainable_weights = new List(); + _trainable_weights = new List(); + _non_trainable_weights = new List(); computePreviousMask = false; updates = new List(); _self_tracked_trackables = new List(); @@ -116,14 +284,14 @@ public Layer(LayerArgs args) // Manage input shape information if passed. if (args.BatchInputShape == null && args.InputShape != null) { - args.BatchInputShape = new long[] { args.BatchSize }.Concat(args.InputShape.dims).ToArray(); + args.BatchInputShape = new KerasShapesWrapper(new long[] { args.BatchSize }.Concat(args.InputShape.dims).ToArray()); } } bool _in_functional_construction_mode(Tensors inputs) { return tf.Context.executing_eagerly() - && inputs.Count(x => x is not EagerTensor && x is not NDArray) == inputs.Count(); + && inputs.Count(x => x is not EagerTensor && x is not NDArray) == inputs.Count() || _enforce_layer_construction; } public void SetConnectivityMetadata(Tensors inputs, Tensors outputs) @@ -162,10 +330,14 @@ private Tensor compute_mask(Tensor inputs, Tensor mask = null) /// /// /// - /// + /// /// - protected virtual Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected virtual Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { + if(ReplacedCall is not null) + { + return ReplacedCall(inputs); + } return inputs; } @@ -191,7 +363,7 @@ protected void MaybeBuild(Tensors inputs) tf.Context.eager_mode(isFunc: tf.Context.is_build_function()); } - build(inputs); + build(new KerasShapesWrapper(inputs.shape)); if (need_restore_mode) tf.Context.restore_mode(); @@ -199,8 +371,9 @@ protected void MaybeBuild(Tensors inputs) built = true; } - protected virtual void build(Tensors inputs) + public virtual void build(KerasShapesWrapper input_shape) { + _buildInputShape = input_shape; built = true; } @@ -247,46 +420,70 @@ protected virtual void _init_set_name(string name, bool zero_based = true) public int count_params() { if (Trainable) - return layer_utils.count_params(this, weights); + return layer_utils.count_params(this, Weights); return 0; } - List ILayer.trainable_weights + + public virtual IKerasConfig get_config() + => args; + + public virtual void adapt(Tensor data, int? batch_size = null, int? steps = null) { - get - { - return trainable_weights; - } + } - List ILayer.non_trainable_weights + public override void SetAttr(string name, object value) { - get + // TODO(Rinne): deal with "_self_setattr_tracking". + + value = TrackableDataStructure.sticky_attribute_assignment(this, name, value); + + foreach(var val in nest.flatten(value)) { - return non_trainable_weights; + if(val is Metric) + { + // TODO(Rinne): deal with metrics. + } } - } - public List weights - { - get + // TODO(Rinne): deal with "_auto_track_sub_layers". + + foreach(var val in nest.flatten(value)) { - var weights = new List(); - weights.AddRange(trainable_weights); - weights.AddRange(non_trainable_weights); - return weights; + if(val is not IVariableV1 variable) + { + continue; + } + if (variable.Trainable) + { + if (_trainable_weights.Contains(variable)) + { + continue; + } + _trainable_weights.Add(variable); + } + else + { + if (_non_trainable_weights.Contains(variable)) + { + continue; + } + _non_trainable_weights.Add(variable); + } + keras.backend.track_variable(variable); } - set + + // Directly use the implementation of `Trackable`. + var t = this.GetType(); + var field_info = t.GetField(name); + if (field_info is not null) { - if (weights.Count() != value.Count()) throw new ValueError( - $"You called `set_weights` on layer \"{this.name}\"" + - $"with a weight list of length {len(value)}, but the layer was " + - $"expecting {len(weights)} weights."); - foreach (var (this_w, v_w) in zip(weights, value)) - this_w.assign(v_w, read_value: true); + field_info.SetValue(this, value); + } + else + { + CustomizedFields[name] = value; } } - - public virtual LayerArgs get_config() - => args; } } diff --git a/src/TensorFlowNET.Keras/Engine/LossesContainer.cs b/src/TensorFlowNET.Keras/Engine/LossesContainer.cs index 6a91450de..c06fca593 100644 --- a/src/TensorFlowNET.Keras/Engine/LossesContainer.cs +++ b/src/TensorFlowNET.Keras/Engine/LossesContainer.cs @@ -26,11 +26,11 @@ public LossesContainer(ILossFunc losses, string[] output_names = null) /// /// /// - public Tensor Call(Tensor y_true, Tensor y_pred) + public Tensor Call(Tensor y_true, Tensor y_pred, Tensor sample_weight = null) { if (!_built) Build(y_pred); - var loss_value = _losses.Call(y_true, y_pred); + var loss_value = _losses.Call(y_true, y_pred, sample_weight:sample_weight); var loss_metric_value = loss_value; var batch_dim = array_ops.shape(y_true)[0]; diff --git a/src/TensorFlowNET.Keras/Engine/MetricsContainer.cs b/src/TensorFlowNET.Keras/Engine/MetricsContainer.cs index 5eb05eaa7..ee6384107 100644 --- a/src/TensorFlowNET.Keras/Engine/MetricsContainer.cs +++ b/src/TensorFlowNET.Keras/Engine/MetricsContainer.cs @@ -9,15 +9,21 @@ namespace Tensorflow.Keras.Engine { public class MetricsContainer : Container { - string[] _user_metrics; - string[] _metric_names; - Metric[] _metrics; - List _metrics_in_order; + IMetricFunc[] _user_metrics = new IMetricFunc[0]; + string[] _metric_names = new string[0]; + Metric[] _metrics = new Metric[0]; + List _metrics_in_order = new List(); - public MetricsContainer(string[] metrics, string[] output_names = null) + public MetricsContainer(IMetricFunc[] metrics, string[] output_names = null) : base(output_names) { _user_metrics = metrics; + _built = false; + } + + public MetricsContainer(string[] metrics, string[] output_names = null) + : base(output_names) + { _metric_names = metrics; _built = false; } @@ -46,9 +52,11 @@ void _set_metric_names() void _create_ordered_metrics() { - _metrics_in_order = new List(); foreach (var m in _metrics) _metrics_in_order.append(m); + + foreach(var m in _user_metrics) + _metrics_in_order.append(m); } Metric[] _get_metric_objects(string[] metrics, Tensor y_t, Tensor y_p) @@ -56,7 +64,7 @@ Metric[] _get_metric_objects(string[] metrics, Tensor y_t, Tensor y_p) return metrics.Select(x => _get_metric_object(x, y_t, y_p)).ToArray(); } - Metric _get_metric_object(string metric, Tensor y_t, Tensor y_p) + public Metric _get_metric_object(string metric, Tensor y_t, Tensor y_p) { Func metric_obj = null; if (metric == "accuracy" || metric == "acc") @@ -94,7 +102,7 @@ Metric _get_metric_object(string metric, Tensor y_t, Tensor y_p) return new MeanMetricWrapper(metric_obj, metric); } - public IEnumerable metrics + public IEnumerable metrics { get { diff --git a/src/TensorFlowNET.Keras/Engine/Model.Build.cs b/src/TensorFlowNET.Keras/Engine/Model.Build.cs new file mode 100644 index 000000000..233363832 --- /dev/null +++ b/src/TensorFlowNET.Keras/Engine/Model.Build.cs @@ -0,0 +1,51 @@ +using System; +using System.Linq; +using Tensorflow.Graphs; +using Tensorflow.Keras.Saving; +using Tensorflow.Keras.Utils; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace Tensorflow.Keras.Engine +{ + public partial class Model + { + public override void build(KerasShapesWrapper input_shape) + { + if (_is_graph_network || this is Functional || this is Sequential) + { + base.build(input_shape); + return; + } + + if(input_shape is not null && this.inputs is null) + { + var graph = tf.executing_eagerly() ? new FuncGraph("build_graph") : keras.backend.get_graph(); + graph.as_default(); + var shapes = input_shape.ToShapeArray(); + var x = new Tensors(shapes.Select(x => base_layer_utils.generate_placeholders_from_shape(x)).ToArray()); + try + { + Call(x, training: false); + } + catch (InvalidArgumentError) + { + throw new ValueError("You cannot build your model by calling `build` " + + "if your layers do not support float type inputs. " + + "Instead, in order to instantiate and build your " + + "model, `call` your model on real tensor data (of the correct dtype)."); + } + catch (TypeError) + { + throw new ValueError("You cannot build your model by calling `build` " + + "if your layers do not support float type inputs. " + + "Instead, in order to instantiate and build your " + + "model, `call` your model on real tensor data (of the correct dtype)."); + } + graph.Exit(); + } + + base.build(input_shape); + } + } +} diff --git a/src/TensorFlowNET.Keras/Engine/Model.Compile.cs b/src/TensorFlowNET.Keras/Engine/Model.Compile.cs index 7b051f1d0..dabdccf9d 100644 --- a/src/TensorFlowNET.Keras/Engine/Model.Compile.cs +++ b/src/TensorFlowNET.Keras/Engine/Model.Compile.cs @@ -1,6 +1,6 @@ -using System; -using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Losses; +using Tensorflow.Keras.Metrics; using Tensorflow.Keras.Optimizers; namespace Tensorflow.Keras.Engine @@ -10,9 +10,8 @@ public partial class Model LossesContainer compiled_loss; MetricsContainer compiled_metrics; - public void compile(OptimizerV2 optimizer = null, - ILossFunc loss = null, - string[] metrics = null) + public void compile(IOptimizer optimizer, + ILossFunc loss) { this.optimizer = optimizer ?? new RMSprop(new RMSpropArgs { @@ -20,7 +19,28 @@ public void compile(OptimizerV2 optimizer = null, this.loss = loss ?? new MeanSquaredError(); - compiled_loss = new LossesContainer(loss, output_names: output_names); + compiled_loss = new LossesContainer(this.loss, output_names: output_names); + compiled_metrics = new MetricsContainer(new string[0], output_names: output_names); + + int experimental_steps_per_execution = 1; + _configure_steps_per_execution(experimental_steps_per_execution); + + // Initialize cache attrs. + _reset_compile_cache(); + _is_compiled = true; + } + + public void compile(IOptimizer optimizer, + ILossFunc loss, + string[] metrics) + { + this.optimizer = optimizer ?? new RMSprop(new RMSpropArgs + { + }); + + this.loss = loss ?? new MeanSquaredError(); + + compiled_loss = new LossesContainer(this.loss, output_names: output_names); compiled_metrics = new MetricsContainer(metrics, output_names: output_names); int experimental_steps_per_execution = 1; @@ -31,25 +51,58 @@ public void compile(OptimizerV2 optimizer = null, _is_compiled = true; } - public void compile(string optimizer, string loss, string[] metrics) + public void compile(string optimizer, + string loss, + string[] metrics) { - var _optimizer = optimizer switch + this.optimizer = optimizer switch { "rmsprop" => new RMSprop(new RMSpropArgs { }), - _ => throw new NotImplementedException("") + _ => new RMSprop(new RMSpropArgs + { + }) }; - ILossFunc _loss = loss switch + this.loss = loss switch { "mse" => new MeanSquaredError(), "mae" => new MeanAbsoluteError(), - _ => throw new NotImplementedException("") + _ => new MeanSquaredError() }; - compile(optimizer: _optimizer, loss: _loss, metrics: metrics); + compiled_loss = new LossesContainer(this.loss, output_names: output_names); + compiled_metrics = new MetricsContainer(metrics, output_names: output_names); + + int experimental_steps_per_execution = 1; + _configure_steps_per_execution(experimental_steps_per_execution); + + // Initialize cache attrs. + _reset_compile_cache(); + _is_compiled = true; + } + + public void compile(IOptimizer optimizer, + ILossFunc loss, + IMetricFunc[] metrics) + { + this.optimizer = optimizer ?? new RMSprop(new RMSpropArgs + { + }); + + this.loss = loss ?? new MeanSquaredError(); + + compiled_loss = new LossesContainer(this.loss, output_names: output_names); + compiled_metrics = new MetricsContainer(metrics, output_names: output_names); + + int experimental_steps_per_execution = 1; + _configure_steps_per_execution(experimental_steps_per_execution); + + // Initialize cache attrs. + _reset_compile_cache(); + _is_compiled = true; } } } diff --git a/src/TensorFlowNET.Keras/Engine/Model.Evaluate.cs b/src/TensorFlowNET.Keras/Engine/Model.Evaluate.cs index 98e02ed36..ec99d7ef9 100644 --- a/src/TensorFlowNET.Keras/Engine/Model.Evaluate.cs +++ b/src/TensorFlowNET.Keras/Engine/Model.Evaluate.cs @@ -1,9 +1,13 @@ -using Tensorflow.NumPy; using System; using System.Collections.Generic; using System.Linq; +using Tensorflow; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Callbacks; using Tensorflow.Keras.Engine.DataAdapters; +using Tensorflow.Keras.Layers; +using Tensorflow.Keras.Utils; +using Tensorflow.NumPy; using static Tensorflow.Binding; namespace Tensorflow.Keras.Engine @@ -11,7 +15,7 @@ namespace Tensorflow.Keras.Engine public partial class Model { /// - /// Returns the loss value & metrics values for the model in test mode. + /// Returns the loss value and metrics values for the model in test mode. /// /// /// @@ -22,16 +26,25 @@ public partial class Model /// /// /// - public void evaluate(NDArray x, NDArray y, + /// + public Dictionary evaluate(NDArray x, NDArray y, int batch_size = -1, int verbose = 1, + NDArray sample_weight = null, int steps = -1, int max_queue_size = 10, int workers = 1, bool use_multiprocessing = false, - bool return_dict = false) + bool return_dict = false, + bool is_val = false + ) { - data_handler = new DataHandler(new DataHandlerArgs + if (x.dims[0] != y.dims[0]) + { + throw new InvalidArgumentError( + $"The array x and y should have same value at dim 0, but got {x.dims[0]} and {y.dims[0]}"); + } + var data_handler = new DataHandler(new DataHandlerArgs { X = x, Y = y, @@ -39,6 +52,7 @@ public void evaluate(NDArray x, NDArray y, StepsPerEpoch = steps, InitialEpoch = 0, Epochs = 1, + SampleWeight = sample_weight, MaxQueueSize = max_queue_size, Workers = workers, UseMultiprocessing = use_multiprocessing, @@ -46,66 +60,147 @@ public void evaluate(NDArray x, NDArray y, StepsPerExecution = _steps_per_execution }); - Binding.tf_output_redirect.WriteLine($"Testing..."); - foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) + var callbacks = new CallbackList(new CallbackParams { - reset_metrics(); - // callbacks.on_epoch_begin(epoch) - // data_handler.catch_stop_iteration(); - IEnumerable<(string, Tensor)> results = null; - foreach (var step in data_handler.steps()) - { - // callbacks.on_train_batch_begin(step) - results = test_function(iterator); - } - Binding.tf_output_redirect.WriteLine($"iterator: {epoch + 1}, " + string.Join(", ", results.Select(x => $"{x.Item1}: {(float)x.Item2}"))); - } + Model = this, + Verbose = verbose, + Steps = data_handler.Inferredsteps + }); + + return evaluate(data_handler, callbacks, is_val, test_function); + } + + public Dictionary evaluate( + IEnumerable x, + Tensor y, + int verbose = 1, + NDArray sample_weight = null, + bool is_val = false) + { + var data_handler = new DataHandler(new DataHandlerArgs + { + X = new Tensors(x.ToArray()), + Y = y, + Model = this, + SampleWeight = sample_weight, + StepsPerExecution = _steps_per_execution + }); + + var callbacks = new CallbackList(new CallbackParams + { + Model = this, + Verbose = verbose, + Steps = data_handler.Inferredsteps + }); + + return evaluate(data_handler, callbacks, is_val, test_step_multi_inputs_function); } - public KeyValuePair[] evaluate(IDatasetV2 x) + public Dictionary evaluate(IDatasetV2 x, int verbose = 1, bool is_val = false) { - data_handler = new DataHandler(new DataHandlerArgs + var data_handler = new DataHandler(new DataHandlerArgs { Dataset = x, Model = this, StepsPerExecution = _steps_per_execution }); - Binding.tf_output_redirect.WriteLine($"Testing..."); - IEnumerable<(string, Tensor)> logs = null; + var callbacks = new CallbackList(new CallbackParams + { + Model = this, + Verbose = verbose, + Steps = data_handler.Inferredsteps + }); + + Func> testFunction; + + if (data_handler.DataAdapter.GetDataset().structure.Length > 2 || + data_handler.DataAdapter.GetDataset().FirstInputTensorCount > 1) + { + testFunction = test_step_multi_inputs_function; + } + else + { + testFunction = test_function; + } + + return evaluate(data_handler, callbacks, is_val, testFunction); + } + + /// + /// Internal bare implementation of evaluate function. + /// + /// Interations handling objects + /// + /// The function to be called on each batch of data. + /// Whether it is validation or test. + /// + Dictionary evaluate(DataHandler data_handler, CallbackList callbacks, bool is_val, Func> test_func) + { + callbacks.on_test_begin(); + + var logs = new Dictionary(); foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) { reset_metrics(); - // callbacks.on_epoch_begin(epoch) - // data_handler.catch_stop_iteration(); - foreach (var step in data_handler.steps()) { - // callbacks.on_train_batch_begin(step) - logs = test_function(iterator); + callbacks.on_test_batch_begin(step); + logs = test_func(data_handler, iterator); + var end_step = step + data_handler.StepIncrement; + if (!is_val) + callbacks.on_test_batch_end(end_step, logs); + GC.Collect(); } - Binding.tf_output_redirect.WriteLine($"iterator: {epoch + 1}, " + string.Join(", ", logs.Select(x => $"{x.Item1}: {(float)x.Item2}"))); } - return logs.Select(x => new KeyValuePair(x.Item1, (float)x.Item2)).ToArray(); + callbacks.on_test_end(logs); + var results = new Dictionary(logs); + return results; } - IEnumerable<(string, Tensor)> test_function(OwnedIterator iterator) + Dictionary test_function(DataHandler data_handler, OwnedIterator iterator) { var data = iterator.next(); - var outputs = test_step(data[0], data[1]); + var outputs = data.Length == 2 ? test_step(data_handler, data[0], data[1]) : + test_step(data_handler, data[0], data[1], data[2]); tf_with(ops.control_dependencies(new object[0]), ctl => _test_counter.assign_add(1)); return outputs; } - List<(string, Tensor)> test_step(Tensor x, Tensor y) + Dictionary test_step_multi_inputs_function(DataHandler data_handler, OwnedIterator iterator) { - (x, y) = data_handler.DataAdapter.Expand1d(x, y); + var data = iterator.next(); + var x_size = data_handler.DataAdapter.GetDataset().FirstInputTensorCount; + var outputs = data.Length == 2 ? + test_step(data_handler, new Tensors(data.Take(x_size).ToArray()), new Tensors(data.Skip(x_size).ToArray())) : + test_step( + data_handler, + new Tensors(data.Take(x_size).ToArray()), + new Tensors(data.Skip(x_size).Take(x_size).ToArray()), + new Tensors(data.Skip(2 * x_size).ToArray())); + tf_with(ops.control_dependencies(new object[0]), ctl => _test_counter.assign_add(1)); + return outputs; + } + + + Dictionary test_step(DataHandler data_handler, Tensors x, Tensors y) + { + (x,y) = data_handler.DataAdapter.Expand1d(x, y); + var y_pred = Apply(x, training: false); - var loss = compiled_loss.Call(y, y_pred); + var loss = compiled_loss.Call(y, y_pred); compiled_metrics.update_state(y, y_pred); + return metrics.Select(x => (x.Name, x.result())).ToDictionary(x => x.Item1, x => (float)x.Item2); + } - return metrics.Select(x => (x.Name, x.result())).ToList(); + Dictionary test_step(DataHandler data_handler, Tensors x, Tensors y, Tensors sample_weight) + { + (x, y, sample_weight) = data_handler.DataAdapter.Expand1d(x, y, sample_weight); + var y_pred = Apply(x, training: false); + var loss = compiled_loss.Call(y, y_pred, sample_weight: sample_weight); + compiled_metrics.update_state(y, y_pred); + return metrics.Select(x => (x.Name, x.result())).ToDictionary(x => x.Item1, x => (float)x.Item2); } } } diff --git a/src/TensorFlowNET.Keras/Engine/Model.Fit.cs b/src/TensorFlowNET.Keras/Engine/Model.Fit.cs index ab4ba0dec..e1303513e 100644 --- a/src/TensorFlowNET.Keras/Engine/Model.Fit.cs +++ b/src/TensorFlowNET.Keras/Engine/Model.Fit.cs @@ -4,9 +4,15 @@ using System.Linq; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine.DataAdapters; +using System.Diagnostics; +using Tensorflow.Keras.Callbacks; +using Tensorflow.Util; +using OneOf; namespace Tensorflow.Keras.Engine { + + public partial class Model { /// @@ -17,33 +23,58 @@ public partial class Model /// /// /// + /// /// + /// /// - public void fit(NDArray x, NDArray y, + /// + /// + /// + /// + /// + /// + /// + /// + public ICallback fit(NDArray x, NDArray y, int batch_size = -1, int epochs = 1, int verbose = 1, + List callbacks = null, float validation_split = 0f, + ValidationDataPack validation_data = null, + int validation_step = 10, bool shuffle = true, + Dictionary class_weight = null, + NDArray sample_weight = null, int initial_epoch = 0, int max_queue_size = 10, int workers = 1, bool use_multiprocessing = false) { - int train_count = Convert.ToInt32(x.dims[0] * (1 - validation_split)); - var train_x = x[new Slice(0, train_count)]; - var train_y = y[new Slice(0, train_count)]; - var val_x = x[new Slice(train_count)]; - var val_y = y[new Slice(train_count)]; + if (x.dims[0] != y.dims[0]) + { + throw new InvalidArgumentError( + $"The array x and y should have same value at dim 0, but got {x.dims[0]} and {y.dims[0]}"); + } + + // The default dtype in NDArray is double, so we need to cast sample_weight to float to mul with loss which's dtype is float. + sample_weight = sample_weight?.astype(TF_DataType.TF_FLOAT); + + if (validation_split != 0f && validation_data == null) + { + ((x, y, sample_weight), validation_data) = DataAdapter.train_validation_split((x, y, sample_weight), validation_split); + } - data_handler = new DataHandler(new DataHandlerArgs + var data_handler = new DataHandler(new DataHandlerArgs { - X = train_x, - Y = train_y, + X = x, + Y = y, + SampleWeight = sample_weight, BatchSize = batch_size, InitialEpoch = initial_epoch, Epochs = epochs, Shuffle = shuffle, + ClassWeight = class_weight, MaxQueueSize = max_queue_size, Workers = workers, UseMultiprocessing = use_multiprocessing, @@ -51,28 +82,96 @@ public void fit(NDArray x, NDArray y, StepsPerExecution = _steps_per_execution }); - FitInternal(epochs, verbose); + return FitInternal(data_handler, epochs, verbose, callbackList: callbacks, validation_data: validation_data, + train_step_func: train_step_function); } - public void fit(IDatasetV2 dataset, - IDatasetV2 validation_data = null, + + public ICallback fit(IEnumerable x, NDArray y, int batch_size = -1, int epochs = 1, int verbose = 1, + List callbacks = null, float validation_split = 0f, + ValidationDataPack validation_data = null, + bool shuffle = true, + Dictionary class_weight = null, + NDArray sample_weight = null, + int initial_epoch = 0, + int max_queue_size = 10, + int workers = 1, + bool use_multiprocessing = false) + { + foreach(var tx in x) + { + if (tx.dims[0] != y.dims[0]) + { + throw new InvalidArgumentError( + $"The array x and y should have same value at dim 0, but got {tx.dims[0]} and {y.dims[0]}"); + } + } + + sample_weight = sample_weight?.astype(TF_DataType.TF_FLOAT); + + if (validation_split != 0f && validation_data == null) + { + ((x, y, sample_weight), validation_data) = DataAdapter.train_validation_split((x, y, sample_weight), validation_split); + } + + + var data_handler = new DataHandler(new DataHandlerArgs + { + X = new Tensors(x.ToArray()), + Y = y, + SampleWeight = sample_weight, + BatchSize = batch_size, + InitialEpoch = initial_epoch, + Epochs = epochs, + Shuffle = shuffle, + ClassWeight = class_weight, + MaxQueueSize = max_queue_size, + Workers = workers, + UseMultiprocessing = use_multiprocessing, + Model = this, + StepsPerExecution = _steps_per_execution + }); + + if (data_handler.DataAdapter.GetDataset().structure.Length > 2 || + data_handler.DataAdapter.GetDataset().FirstInputTensorCount > 1) + { + return FitInternal(data_handler, epochs, verbose, callbackList: callbacks, validation_data: validation_data, + train_step_func: train_step_multi_inputs_function); + } + else + { + return FitInternal(data_handler, epochs, verbose, callbackList: callbacks, validation_data: validation_data, + train_step_func: train_step_function); + } + } + + public ICallback fit(IDatasetV2 dataset, + int batch_size = -1, + int epochs = 1, + int verbose = 1, + List callbacks = null, + IDatasetV2 validation_data = null, + int validation_step = 10, bool shuffle = true, + Dictionary class_weight = null, int initial_epoch = 0, int max_queue_size = 10, int workers = 1, bool use_multiprocessing = false) { - data_handler = new DataHandler(new DataHandlerArgs + + var data_handler = new DataHandler(new DataHandlerArgs { Dataset = dataset, BatchSize = batch_size, InitialEpoch = initial_epoch, Epochs = epochs, Shuffle = shuffle, + ClassWeight = class_weight, MaxQueueSize = max_queue_size, Workers = workers, UseMultiprocessing = use_multiprocessing, @@ -80,32 +179,163 @@ public void fit(IDatasetV2 dataset, StepsPerExecution = _steps_per_execution }); - FitInternal(epochs, verbose); + Func> trainStepFunction; + + if (data_handler.DataAdapter.GetDataset().structure.Length > 2 || + data_handler.DataAdapter.GetDataset().FirstInputTensorCount > 1) + { + trainStepFunction = train_step_multi_inputs_function; + } + else + { + trainStepFunction = train_step_function; + } + + return FitInternal(data_handler, epochs, validation_step, verbose, callbacks, validation_data: validation_data, + train_step_func: trainStepFunction); } - void FitInternal(int epochs, int verbose) + History FitInternal(DataHandler data_handler, int epochs, int validation_step, int verbose, List callbackList, IDatasetV2 validation_data, + Func> train_step_func) { stop_training = false; _train_counter.assign(0); + var callbacks = new CallbackList(new CallbackParams + { + Model = this, + Verbose = verbose, + Epochs = epochs, + Steps = data_handler.Inferredsteps + }); + + if (callbackList != null) + { + foreach(var callback in callbackList) + callbacks.callbacks.add(callback); + } + + callbacks.on_train_begin(); + foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) { reset_metrics(); - // callbacks.on_epoch_begin(epoch) + callbacks.on_epoch_begin(epoch); // data_handler.catch_stop_iteration(); + var logs = new Dictionary(); + long End_step = 0; foreach (var step in data_handler.steps()) { - // callbacks.on_train_batch_begin(step) - var results = train_step_function(iterator); - if (verbose == 1) + callbacks.on_train_batch_begin(step); + logs = train_step_func(data_handler, iterator); + var end_step = step + data_handler.StepIncrement; + End_step = end_step; + callbacks.on_train_batch_end(end_step, logs); + GC.Collect(); + } + + if (validation_data != null) + { + if (validation_step > 0 && epoch ==0 || (epoch) % validation_step != 0) + continue; + + var val_logs = evaluate(validation_data); + foreach(var log in val_logs) { - var result_pairs = string.Join(", ", results.Select(x => $"{x.Item1}: {(float)x.Item2:F6}")); - Binding.tf_output_redirect.WriteLine($"Epoch: {epoch + 1:D3}/{epochs:D3}, Step: {step + 1:D4}/{data_handler.Inferredsteps:D4}, {result_pairs}"); + logs["val_" + log.Key] = log.Value; } + callbacks.on_train_batch_end(End_step, logs); + } + + GC.Collect(); + + callbacks.on_epoch_end(epoch, logs); + + if (stop_training) + { + break; + } + } + + return callbacks.History; + } + + History FitInternal(DataHandler data_handler, int epochs, int verbose, List callbackList, ValidationDataPack validation_data, + Func> train_step_func) + { + stop_training = false; + _train_counter.assign(0); + var callbacks = new CallbackList(new CallbackParams + { + Model = this, + Verbose = verbose, + Epochs = epochs, + Steps = data_handler.Inferredsteps + }); + + if (callbackList != null) + { + foreach (var callback in callbackList) + callbacks.callbacks.add(callback); + } + callbacks.on_train_begin(); + + foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) + { + reset_metrics(); + callbacks.on_epoch_begin(epoch); + // data_handler.catch_stop_iteration(); + var logs = new Dictionary(); + long End_step = 0; + foreach (var step in data_handler.steps()) + { + callbacks.on_train_batch_begin(step); + logs = train_step_func(data_handler, iterator); + var end_step = step + data_handler.StepIncrement; + End_step = end_step; + callbacks.on_train_batch_end(end_step, logs); GC.Collect(); } - GC.WaitForPendingFinalizers(); + + if (validation_data != null) + { + NDArray val_x; + NDArray[] val_x_array; + NDArray val_y; + NDArray val_sample_weight; + Dictionary val_logs; + if (!validation_data.val_x_is_array) + { + (val_x, val_y, val_sample_weight) = validation_data; + // Because evaluate calls call_test_batch_end, this interferes with our output on the screen + // so we need to pass a is_val parameter to stop on_test_batch_end + val_logs = evaluate(val_x, val_y, sample_weight: val_sample_weight, is_val: true); + + } + else + { + (val_x_array, val_y, val_sample_weight, _) = validation_data; + val_logs = evaluate(val_x_array, val_y, sample_weight: val_sample_weight, is_val: true); + } + foreach (var log in val_logs) + { + logs["val_" + log.Key] = log.Value; + } + // because after evaluate, logs add some new log which we need to print + callbacks.on_train_batch_end(End_step, logs); + } + + callbacks.on_epoch_end(epoch, logs); + + GC.Collect(); + if (stop_training) + { + break; + } } + + return callbacks.History; } + } } diff --git a/src/TensorFlowNET.Keras/Engine/Model.Metrics.cs b/src/TensorFlowNET.Keras/Engine/Model.Metrics.cs index 214b99345..0e33b14e3 100644 --- a/src/TensorFlowNET.Keras/Engine/Model.Metrics.cs +++ b/src/TensorFlowNET.Keras/Engine/Model.Metrics.cs @@ -5,11 +5,11 @@ namespace Tensorflow.Keras.Engine { public partial class Model { - public IEnumerable metrics + public IEnumerable metrics { get { - var _metrics = new List(); + var _metrics = new List(); if (_is_compiled) { diff --git a/src/TensorFlowNET.Keras/Engine/Model.Predict.cs b/src/TensorFlowNET.Keras/Engine/Model.Predict.cs index 6dbce98cc..e3a5aba68 100644 --- a/src/TensorFlowNET.Keras/Engine/Model.Predict.cs +++ b/src/TensorFlowNET.Keras/Engine/Model.Predict.cs @@ -1,15 +1,40 @@ -using Tensorflow.NumPy; -using System; +using System; using System.Collections.Generic; using System.Linq; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine.DataAdapters; using static Tensorflow.Binding; +using Tensorflow.Keras.Callbacks; namespace Tensorflow.Keras.Engine { public partial class Model { + public Tensors predict(IDatasetV2 dataset, + int batch_size = -1, + int verbose = 0, + int steps = -1, + int max_queue_size = 10, + int workers = 1, + bool use_multiprocessing = false) + { + var data_handler = new DataHandler(new DataHandlerArgs + { + Dataset = dataset, + BatchSize = batch_size, + StepsPerEpoch = steps, + InitialEpoch = 0, + Epochs = 1, + MaxQueueSize = max_queue_size, + Workers = workers, + UseMultiprocessing = use_multiprocessing, + Model = this, + StepsPerExecution = _steps_per_execution + }); + + return PredictInternal(data_handler, verbose); + } + /// /// Generates output predictions for the input samples. /// @@ -24,7 +49,7 @@ public partial class Model /// /// /// - public Tensors predict(Tensor x, + public Tensors predict(Tensors x, int batch_size = -1, int verbose = 0, int steps = -1, @@ -46,34 +71,57 @@ public Tensors predict(Tensor x, StepsPerExecution = _steps_per_execution }); - Tensors outputs = null; + return PredictInternal(data_handler, verbose); + } + + Tensors PredictInternal(DataHandler data_handler, int verbose) + { + var callbacks = new CallbackList(new CallbackParams + { + Model = this, + Verbose = verbose, + Epochs = 1, + Steps = data_handler.Inferredsteps + }); + + Tensors batch_outputs = null; _predict_counter.assign(0); - // callbacks.on_predict_begin() + callbacks.on_predict_begin(); foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) { - foreach(var step in data_handler.steps()) + foreach (var step in data_handler.steps()) { - // callbacks.on_predict_batch_begin(step) - var batch_outputs = run_predict_step(iterator); - outputs = batch_outputs; + callbacks.on_predict_batch_begin(step); + var tmp_batch_outputs = run_predict_step(iterator); + if (batch_outputs == null) + { + batch_outputs = tmp_batch_outputs; + } + else + { + for (int i = 0; i < batch_outputs.Length; i++) + batch_outputs[i] = tf.concat(new Tensor[] { batch_outputs[i], tmp_batch_outputs[i] }, axis: 0); + } var end_step = step + data_handler.StepIncrement; - // callbacks.on_predict_batch_end(end_step, {'outputs': batch_outputs}) + callbacks.on_predict_batch_end(end_step, new Dictionary { { "outputs", batch_outputs } }); + GC.Collect(); } - GC.Collect(); } - // callbacks.on_predict_end() - return outputs; + + callbacks.on_predict_end(); + + return batch_outputs; } Tensors run_predict_step(OwnedIterator iterator) { var data = iterator.next(); - var outputs = predict_step(data[0]); - tf_with(ops.control_dependencies(new object[0]), ctl => _predict_counter.assign_add(1)); + var outputs = predict_step(data); + tf_with(ops.control_dependencies(Array.Empty()), ctl => _predict_counter.assign_add(1)); return outputs; } - Tensors predict_step(Tensor data) + Tensors predict_step(Tensors data) { return Apply(data, training: false); } diff --git a/src/TensorFlowNET.Keras/Engine/Model.Save.cs b/src/TensorFlowNET.Keras/Engine/Model.Save.cs index c287309d4..a3956cccc 100644 --- a/src/TensorFlowNET.Keras/Engine/Model.Save.cs +++ b/src/TensorFlowNET.Keras/Engine/Model.Save.cs @@ -1,5 +1,8 @@ using System.Collections.Generic; +using Tensorflow.Functions; using Tensorflow.Keras.Metrics; +using Tensorflow.Keras.Saving; +using Tensorflow.Keras.Saving.SavedModel; using Tensorflow.ModelSaving; namespace Tensorflow.Keras.Engine @@ -18,9 +21,21 @@ public void save(string filepath, bool overwrite = true, bool include_optimizer = true, string save_format = "tf", - SaveOptions options = null) + SaveOptions? options = null, + ConcreteFunction? signatures = null, + bool save_traces = true) { - saver.save(this, filepath); + if (save_format != "tf") + { + saver.save(this, filepath); + } + else + { + using (SharedObjectSavingScope.Enter()) + { + KerasSavedModelUtils.save_model(this, filepath, overwrite, include_optimizer, signatures, options, save_traces); + } + } } } } diff --git a/src/TensorFlowNET.Keras/Engine/Model.Train.cs b/src/TensorFlowNET.Keras/Engine/Model.Train.cs index 31e89c573..8f1ec808c 100644 --- a/src/TensorFlowNET.Keras/Engine/Model.Train.cs +++ b/src/TensorFlowNET.Keras/Engine/Model.Train.cs @@ -1,6 +1,7 @@ using System.Collections.Generic; using System.Linq; using Tensorflow.Gradients; +using Tensorflow.Keras.Engine.DataAdapters; using Tensorflow.Keras.Optimizers; using static Tensorflow.Binding; @@ -8,10 +9,27 @@ namespace Tensorflow.Keras.Engine { public partial class Model { - IEnumerable<(string, Tensor)> train_step_function(OwnedIterator iterator) + Dictionary train_step_function(DataHandler data_handler, OwnedIterator iterator) { var data = iterator.next(); - var outputs = train_step(data[0], data[1]); + // whether have sample_weight + var outputs = data.Length == 2 ? train_step(data_handler, data[0], data[1]) : + train_step(data_handler, data[0], data[1], data[2]); + tf_with(ops.control_dependencies(new object[0]), ctl => _train_counter.assign_add(1)); + return outputs; + } + + Dictionary train_step_multi_inputs_function(DataHandler data_handler, OwnedIterator iterator) + { + var data = iterator.next(); + var x_size = data_handler.DataAdapter.GetDataset().FirstInputTensorCount; + var outputs = data.Length == 2 ? + train_step(data_handler, new Tensors(data.Take(x_size).ToArray()), new Tensors(data.Skip(x_size).ToArray())) : + train_step( + data_handler, + new Tensors(data.Take(x_size).ToArray()), + new Tensors(data.Skip(x_size).Take(x_size).ToArray()), + new Tensors(data.Skip(2 * x_size).ToArray())); tf_with(ops.control_dependencies(new object[0]), ctl => _train_counter.assign_add(1)); return outputs; } @@ -19,9 +37,11 @@ public partial class Model /// /// The logic for one training step. /// - /// + /// + /// + /// /// - List<(string, Tensor)> train_step(Tensor x, Tensor y) + Dictionary train_step(DataHandler data_handler, Tensors x, Tensors y) { (x, y) = data_handler.DataAdapter.Expand1d(x, y); using var tape = tf.GradientTape(); @@ -34,19 +54,57 @@ public partial class Model // self.optimizer.apply_gradients(zip(gradients, trainable_variables)) // The _minimize call does a few extra steps unnecessary in most cases, // such as loss scaling and gradient clipping. - _minimize(tape, optimizer, loss, trainable_variables); + _minimize(tape, optimizer, loss, TrainableVariables); + compiled_metrics.update_state(y, y_pred); + + var dict = new Dictionary(); + metrics.ToList().ForEach(x => + { + var r = x.result(); + if (r.ndim > 0) + { + r = tf.reduce_mean(r); + } + dict[x.Name] = (float)r; + }); + return dict; + } + Dictionary train_step(DataHandler data_handler, Tensors x, Tensors y, Tensors sample_weight = null) + { + (x, y, sample_weight) = data_handler.DataAdapter.Expand1d(x, y, sample_weight); + using var tape = tf.GradientTape(); + var y_pred = Apply(x, training: true); + var loss = compiled_loss.Call(y, y_pred, sample_weight:sample_weight); + + // For custom training steps, users can just write: + // trainable_variables = self.trainable_variables + // gradients = tape.gradient(loss, trainable_variables) + // self.optimizer.apply_gradients(zip(gradients, trainable_variables)) + // The _minimize call does a few extra steps unnecessary in most cases, + // such as loss scaling and gradient clipping. + _minimize(tape, optimizer, loss, TrainableVariables); compiled_metrics.update_state(y, y_pred); - return metrics.Select(x => (x.Name, x.result())).ToList(); + var dict = new Dictionary(); + metrics.ToList().ForEach(x => + { + var r = x.result(); + if (r.ndim > 0) + { + r = tf.reduce_mean(r); + } + dict[x.Name] = (float)r; + }); + return dict; } - void _minimize(GradientTape tape, OptimizerV2 optimizer, Tensor loss, List trainable_variables) + void _minimize(GradientTape tape, IOptimizer optimizer, Tensor loss, List trainable_variables) { var gradients = tape.gradient(loss, trainable_variables); - gradients = optimizer._aggregate_gradients(zip(gradients, trainable_variables)); - gradients = optimizer._clip_gradients(gradients); + gradients = optimizer.aggregate_gradients(zip(gradients, trainable_variables)); + gradients = optimizer.clip_gradients(gradients); - optimizer.apply_gradients(zip(gradients, trainable_variables.Select(x => x as ResourceVariable)), + optimizer.apply_gradients(zip(gradients, trainable_variables), experimental_aggregate_gradients: false); } } diff --git a/src/TensorFlowNET.Keras/Engine/Model.Training.cs b/src/TensorFlowNET.Keras/Engine/Model.Training.cs index 50d934d9d..457b3d694 100644 --- a/src/TensorFlowNET.Keras/Engine/Model.Training.cs +++ b/src/TensorFlowNET.Keras/Engine/Model.Training.cs @@ -10,8 +10,38 @@ namespace Tensorflow.Keras.Engine { public partial class Model { + static Dictionary> weightsCache + = new Dictionary>(); + public void load_weights(string filepath, bool by_name = false, bool skip_mismatch = false, object options = null) { + // Get from cache + if (weightsCache.ContainsKey(filepath)) + { + var filtered_layers = new List(); + foreach (var layer in Layers) + { + var weights = hdf5_format._legacy_weights(layer); + if (weights.Count > 0) + filtered_layers.append(layer); + } + + var weight_value_tuples = new List<(IVariableV1, NDArray)>(); + filtered_layers.Select((layer, i) => + { + var symbolic_weights = hdf5_format._legacy_weights(layer); + foreach(var weight in symbolic_weights) + { + var weight_value = weightsCache[filepath].First(x => x.Item1 == weight.Name).Item2; + weight_value_tuples.Add((weight, weight_value)); + } + return layer; + }).ToList(); + + keras.backend.batch_set_value(weight_value_tuples); + return; + } + long fileId = Hdf5.OpenFile(filepath, true); if(fileId < 0) { @@ -29,8 +59,11 @@ public void load_weights(string filepath, bool by_name = false, bool skip_mismat throw new NotImplementedException(""); else { - hdf5_format.load_weights_from_hdf5_group(fileId, Layers); + var weight_value_tuples = hdf5_format.load_weights_from_hdf5_group(fileId, Layers); Hdf5.CloseFile(fileId); + + weightsCache[filepath] = weight_value_tuples.Select(x => (x.Item1.Name, x.Item2)).ToList(); + keras.backend.batch_set_value(weight_value_tuples); } } diff --git a/src/TensorFlowNET.Keras/Engine/Model.cs b/src/TensorFlowNET.Keras/Engine/Model.cs index 9e38d59ac..7b35d5477 100644 --- a/src/TensorFlowNET.Keras/Engine/Model.cs +++ b/src/TensorFlowNET.Keras/Engine/Model.cs @@ -1,10 +1,12 @@ -using System.Collections.Generic; +using System.Diagnostics; +using Tensorflow.Common.Types; +using Tensorflow.Framework.Models; using Tensorflow.Keras.ArgsDefinition; -using Tensorflow.Keras.Engine.DataAdapters; using Tensorflow.Keras.Losses; -using Tensorflow.Keras.Optimizers; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; +using Tensorflow.Keras.Saving.SavedModel; +using Tensorflow.Keras.Utils; +using Tensorflow.Train; +using Tensorflow.Util; namespace Tensorflow.Keras.Engine { @@ -22,18 +24,33 @@ public partial class Model : Layer, IModel #pragma warning restore CS0414 // The field 'Model._is_compiled' is assigned but its value is never used #pragma warning restore CS0108 // Member hides inherited member; missing new keyword ILossFunc loss; - OptimizerV2 optimizer; + IOptimizer optimizer; IVariableV1 _steps_per_execution; protected bool _is_graph_network; - protected Tensors inputs; + public Tensors inputs; protected Tensors outputs; + protected List input_names; public string[] output_names; IVariableV1 _train_counter; IVariableV1 _test_counter; IVariableV1 _predict_counter; bool _base_model_initialized; bool stop_training; - DataHandler data_handler; + TensorSpec _saved_model_inputs_spec; + + public bool IsGraphNetwork => _is_graph_network; + + public IOptimizer Optimizer + { + get => optimizer; + set => optimizer = value; + } + + public bool Stop_training + { + get => stop_training; + set => stop_training = value; + } public Model(ModelArgs args) : base(args) @@ -41,6 +58,44 @@ public Model(ModelArgs args) _init_batch_counters(); } + public void _set_inputs(TensorSpec inputs) + { + _set_save_spec(inputs); + } + + internal void _set_save_spec(TensorSpec inputs) + { + if(_saved_model_inputs_spec is not null) + { + return; + } + var input_names = this.input_names; + if(input_names is null || input_names.Count == 0) + { + input_names = compile_utils.create_pseudo_input_names(inputs); + } + + var flat_inputs = nest.flatten(inputs); + List specs = new(); + foreach(var (name, tensor) in zip(input_names, flat_inputs)) + { + specs.Add(tf_utils.get_tensor_spec(tensor, dynamic_batch: false, name: name)); + } + var packed_specs = nest.pack_sequence_as(inputs, specs) as TensorSpec; + Debug.Assert(specs is not null); + _saved_model_inputs_spec = packed_specs; + if(this is Sequential && _buildInputShape is null) + { + _buildInputShape = nest.map_structure(x => x is null ? null : x.shape, packed_specs); + } + } + + internal override void Initialize(LayerArgs args) + { + _init_batch_counters(); + base.Initialize(args); + } + void _configure_steps_per_execution(int steps_per_execution) { _steps_per_execution = tf.Variable(steps_per_execution, @@ -70,18 +125,79 @@ void _init_batch_counters() aggregation: VariableAggregation.OnlyFirstReplica); } - public override List trainable_variables + public override List Layers + => _flatten_layers(recursive: false, include_self: false).ToList(); + + public override List TrainableWeights + { + get + { + // skip the assertion of weights created. + var variables = new List(); + + if (!Trainable) + { + return variables; + } + + foreach (var trackable_obj in _self_tracked_trackables) + { + if (trackable_obj.Trainable) + variables.AddRange(trackable_obj.TrainableWeights); + } + + variables.AddRange(_trainable_weights); + + return variables.Distinct().ToList(); + } + } + + public override List NonTrainableWeights { get { + // skip the assertion of weights created. var variables = new List(); - foreach (var layer in _layers) + + foreach (var trackable_obj in _self_tracked_trackables) + { + variables.AddRange(trackable_obj.NonTrainableWeights); + } + + if (!Trainable) { - if (layer.Trainable) - variables.AddRange(layer.trainable_variables); + var trainable_variables = new List(); + foreach (var trackable_obj in _self_tracked_trackables) + { + variables.AddRange(trackable_obj.TrainableWeights); + } + variables.AddRange(trainable_variables); + variables.AddRange(_trainable_weights); + variables.AddRange(_non_trainable_weights); } - return variables; + + return variables.Distinct().ToList(); } } + + public override IDictionary _trackable_children(SaveType save_type = SaveType.CHECKPOINT, IDictionary>? cache = null) + { + if(save_type == SaveType.SAVEDMODEL) + { + //TODO: deal with `train_function`, `test_function`, `predict_function`, `train_tf_function`. + } + var children = base._trackable_children(save_type, cache); + return children; + } + + public override void SetAttr(string name, object value) + { + // TODO(Rinne): deal with "_self_setattr_tracking". + //if(nest.flatten(value).All(v => v is Layer or IVariableV1 || base_layer_utils.has_weights(v))) + //{ + // this._base_model_initialized; + //} + base.SetAttr(name, value); + } } } diff --git a/src/TensorFlowNET.Keras/Engine/Sequential.cs b/src/TensorFlowNET.Keras/Engine/Sequential.cs index 7d8c77fea..6a468ad27 100644 --- a/src/TensorFlowNET.Keras/Engine/Sequential.cs +++ b/src/TensorFlowNET.Keras/Engine/Sequential.cs @@ -21,6 +21,7 @@ limitations under the License. using Tensorflow.Keras.Layers; using Tensorflow.Keras.Utils; using static Tensorflow.KerasApi; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Engine { @@ -44,8 +45,6 @@ public Sequential(SequentialArgs args) : base(args.Inputs, args.Outputs, name: args.Name) { this.args = args; - if (args.Layers == null) - args.Layers = new List(); // SupportsMasking = true; _compute_output_and_mask_jointly = true; _auto_track_sub_layers = false; @@ -54,10 +53,27 @@ public Sequential(SequentialArgs args) _created_nodes = new List(); // Add to the model any layers passed to the constructor. - if (args.Layers != null) + if (args.Layers is not null) { - foreach (var layer in args.Layers) - add(layer); + InitLayers(args.Layers); + } + } + + public void InitLayers(IEnumerable layers) + { + foreach(var layer in layers) + { + // TODO(Rinne): remove it and completely fix issue 1084 + if(layer is Sequential s) + { + s.Layers.ForEach(x => ((Layer)x).enforce_layer_construction()); + } + add(layer); + // TODO(Rinne): remove it and completely fix issue 1084 + if (layer is Sequential s2) + { + s2.Layers.ForEach(x => ((Layer)x).unset_layer_construction()); + } } } @@ -75,7 +91,7 @@ public void add(ILayer layer) { built = false; var set_inputs = false; - if (_layers.Count == 0) + if (_self_tracked_trackables.Count == 0) { if (layer is InputLayer) { @@ -87,7 +103,7 @@ public void add(ILayer layer) { // Instantiate an input layer. var x = keras.Input( - batch_input_shape: layer.BatchInputShape, + batch_input_shape: layer.BatchInputShape.ToSingleShape(), dtype: layer.DType, name: layer.Name + "_input"); @@ -110,6 +126,8 @@ public void add(ILayer layer) } else if (outputs != null) { + // If the model is being built continuously on top of an input layer: + // refresh its output. outputs = layer.Apply(outputs); built = true; } @@ -117,21 +135,16 @@ public void add(ILayer layer) if (set_inputs || _is_graph_network) { _init_graph_network(inputs, outputs); - _is_graph_network = true; + _graph_initialized = true; } else { _self_tracked_trackables.add(layer); - _handle_deferred_layer_dependencies(layer); + // TODO(Rinne): self._handle_deferred_layer_dependencies([layer]) } } - void _handle_deferred_layer_dependencies(params ILayer[] layers) - { - _layers.AddRange(layers); - } - - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { if (!_has_explicit_input_shape) { @@ -156,12 +169,12 @@ void _build_graph_network_for_inferred_shape(Shape input_shape, TF_DataType inpu ops.init_scope(); var inputs = keras.Input(batch_input_shape: input_shape, dtype: input_dtype, - name: $"{_layers[0].Name}_input"); + name: _self_tracked_trackables[0].Name.EndsWith("_input") ? _self_tracked_trackables[0].Name : $"{_self_tracked_trackables[0].Name}_input"); Tensors layer_input = inputs; Tensors layer_output = null; Tensors outputs = null; List created_nodes = new List(); - foreach (var layer in _layers) + foreach (var layer in Layers) { clear_previously_created_nodes(layer, _created_nodes); layer_output = layer.Apply(layer_input); @@ -202,5 +215,8 @@ void track_nodes_created_by_last_call(ILayer layer, List created_nodes) created_nodes.add(prev_layer.OutboundNodes.Last()); } } + + public override List Layers + => base.Layers.Where(x => x is not InputLayer).ToList(); } } diff --git a/src/TensorFlowNET.Keras/GlobalUsing.cs b/src/TensorFlowNET.Keras/GlobalUsing.cs new file mode 100644 index 000000000..85cd9194c --- /dev/null +++ b/src/TensorFlowNET.Keras/GlobalUsing.cs @@ -0,0 +1,8 @@ +global using System; +global using System.Collections.Generic; +global using System.Text; +global using System.Linq; +global using static Tensorflow.Binding; +global using static Tensorflow.KerasApi; +global using Tensorflow.NumPy; +global using Tensorflow.Keras.Engine; \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Initializers.cs b/src/TensorFlowNET.Keras/InitializersApi.cs similarity index 64% rename from src/TensorFlowNET.Keras/Initializers.cs rename to src/TensorFlowNET.Keras/InitializersApi.cs index b432cc97c..d6dfa51be 100644 --- a/src/TensorFlowNET.Keras/Initializers.cs +++ b/src/TensorFlowNET.Keras/InitializersApi.cs @@ -16,18 +16,20 @@ limitations under the License. using Tensorflow.Operations.Initializers; -namespace Tensorflow.Keras +namespace Tensorflow.Keras; + +public partial class InitializersApi : IInitializersApi { - public class Initializers + /// + /// He normal initializer. + /// + /// + /// + public IInitializer HeNormal(int? seed = null) { - /// - /// He normal initializer. - /// - /// - /// - public IInitializer he_normal(int? seed = null) - { - return new VarianceScaling(factor: 2.0f, mode: "fan_in", seed: seed); - } + return new VarianceScaling(scale: 2.0f, mode: "fan_in", seed: seed); } + + public IInitializer Orthogonal(float gain = 1.0f, int? seed = null) + => new Orthogonal(gain: gain, seed: seed); } diff --git a/src/TensorFlowNET.Keras/IsExternalInit.cs b/src/TensorFlowNET.Keras/IsExternalInit.cs new file mode 100644 index 000000000..11f062fa8 --- /dev/null +++ b/src/TensorFlowNET.Keras/IsExternalInit.cs @@ -0,0 +1,4 @@ +namespace System.Runtime.CompilerServices +{ + internal static class IsExternalInit { } +} diff --git a/src/TensorFlowNET.Keras/KerasApi.cs b/src/TensorFlowNET.Keras/KerasApi.cs index d10ced0cb..69c59ab82 100644 --- a/src/TensorFlowNET.Keras/KerasApi.cs +++ b/src/TensorFlowNET.Keras/KerasApi.cs @@ -2,8 +2,11 @@ namespace Tensorflow { + /// + /// Deprecated, will use tf.keras + /// public static class KerasApi { - public static KerasInterface keras { get; } = new KerasInterface(); + public static KerasInterface keras { get; } = KerasInterface.Instance; } } diff --git a/src/TensorFlowNET.Keras/KerasInterface.cs b/src/TensorFlowNET.Keras/KerasInterface.cs index 02362a55e..6bc381095 100644 --- a/src/TensorFlowNET.Keras/KerasInterface.cs +++ b/src/TensorFlowNET.Keras/KerasInterface.cs @@ -10,26 +10,49 @@ using Tensorflow.Keras.Metrics; using Tensorflow.Keras.Models; using Tensorflow.Keras.Optimizers; -using Tensorflow.Keras.Saving; using Tensorflow.Keras.Utils; using System.Threading; +using Tensorflow.Framework.Models; namespace Tensorflow.Keras { - public class KerasInterface + public class KerasInterface : IKerasApi { + private static KerasInterface _instance = null; + private static readonly object _lock = new object(); + + public static KerasInterface Instance + { + get + { + lock (_lock) + { + if (_instance is null) + { + _instance = new KerasInterface(); + } + return _instance; + } + } + } + + static KerasInterface() + { + RevivedTypes.RegisterRevivedTypeCreator("optimizer", new RestoredOptimizer()); + } + public KerasDataset datasets { get; } = new KerasDataset(); - public Initializers initializers { get; } = new Initializers(); + public IInitializersApi initializers { get; } = new InitializersApi(); public Regularizers regularizers { get; } = new Regularizers(); - public LayersApi layers { get; } = new LayersApi(); - public LossesApi losses { get; } = new LossesApi(); - public Activations activations { get; } = new Activations(); + public ILayersApi layers { get; } = new LayersApi(); + public ILossesApi losses { get; } = new LossesApi(); + public IActivationsApi activations { get; } = new Activations(); public Preprocessing preprocessing { get; } = new Preprocessing(); ThreadLocal _backend = new ThreadLocal(() => new BackendImpl()); public BackendImpl backend => _backend.Value; - public OptimizerApi optimizers { get; } = new OptimizerApi(); - public MetricsApi metrics { get; } = new MetricsApi(); - public ModelsApi models { get; } = new ModelsApi(); + public IOptimizerApi optimizers { get; } = new OptimizerApi(); + public IMetricsApi metrics { get; } = new MetricsApi(); + public IModelsApi models { get; } = new ModelsApi(); public KerasUtils utils { get; } = new KerasUtils(); public Sequential Sequential(List layers = null, @@ -40,13 +63,19 @@ public Sequential Sequential(List layers = null, Name = name }); + public Sequential Sequential(params ILayer[] layers) + => new Sequential(new SequentialArgs + { + Layers = layers.ToList() + }); + /// /// `Model` groups layers into an object with training and inference features. /// - /// - /// + /// + /// /// - public Functional Model(Tensors inputs, Tensors outputs, string name = null) + public IModel Model(Tensors inputs, Tensors outputs, string name = null) => new Functional(inputs, outputs, name: name); /// @@ -67,33 +96,16 @@ public Functional Model(Tensors inputs, Tensors outputs, string name = null) /// If set, the layer will not create a placeholder tensor. /// /// - public Tensor Input(Shape shape = null, - int batch_size = -1, - Shape batch_input_shape = null, - TF_DataType dtype = TF_DataType.DtInvalid, - string name = null, - bool sparse = false, - bool ragged = false, - Tensor tensor = null) - { - if (batch_input_shape != null) - shape = batch_input_shape.dims.Skip(1).ToArray(); - - var args = new InputLayerArgs - { - Name = name, - InputShape = shape, - BatchInputShape = batch_input_shape, - BatchSize = batch_size, - DType = dtype, - Sparse = sparse, - Ragged = ragged, - InputTensor = tensor - }; - - var layer = new InputLayer(args); - - return layer.InboundNodes[0].Outputs; - } + public Tensors Input(Shape shape = null, + int batch_size = -1, + string name = null, + TF_DataType dtype = TF_DataType.DtInvalid, + bool sparse = false, + Tensor tensor = null, + bool ragged = false, + TypeSpec type_spec = null, + Shape batch_input_shape = null, + Shape batch_shape = null) => keras.layers.Input(shape, batch_size, name, + dtype, sparse, tensor, ragged, type_spec, batch_input_shape, batch_shape); } } diff --git a/src/TensorFlowNET.Keras/Layers/Activation/ELU.cs b/src/TensorFlowNET.Keras/Layers/Activation/ELU.cs index 3efda3649..23f36c862 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/ELU.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/ELU.cs @@ -1,35 +1,45 @@ using System; using System.Collections.Generic; using System.Text; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; using static Tensorflow.Binding; namespace Tensorflow.Keras.Layers { - /// - /// ELU Layer: - /// x = 0 when x > 0, x = alpha( e^x-1 ) elsewhere - /// - public class ELU : Layer { - ELUArgs args; - float alpha => args.Alpha; - public ELU ( ELUArgs args ) : base(args) { - this.args = args; - } - protected override void build ( Tensors inputs ) { - if ( alpha < 0f ) { - throw new ValueError("Alpha must be a number greater than 0."); - } - built = true; - } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { - Tensor output = inputs; - output = tf.where(output > 0f, output, - tf.multiply(alpha, tf.sub(tf.exp(output), 1f))); - return output; - } - public override Shape ComputeOutputShape ( Shape input_shape ) { - return input_shape; + /// + /// ELU Layer: + /// x = 0 when x > 0, x = alpha( e^x-1 ) elsewhere + /// + public class ELU : Layer + { + ELUArgs args; + float alpha => args.Alpha; + public ELU(ELUArgs args) : base(args) + { + this.args = args; + } + + public override void build(KerasShapesWrapper input_shape) + { + if (alpha < 0f) + { + throw new ValueError("Alpha must be a number greater than 0."); } - } + base.build(input_shape); + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + Tensor output = inputs; + output = tf.where(output > 0f, output, + tf.multiply(alpha, tf.sub(tf.exp(output), 1f))); + return output; + } + public override Shape ComputeOutputShape(Shape input_shape) + { + return input_shape; + } + } } diff --git a/src/TensorFlowNET.Keras/Layers/Activation/Exponential.cs b/src/TensorFlowNET.Keras/Layers/Activation/Exponential.cs index aecb3da24..81fefb314 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/Exponential.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/Exponential.cs @@ -3,22 +3,28 @@ using System.Text; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; -using static Tensorflow.Binding; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { - public class Exponential : Layer { - public Exponential ( LayerArgs args ) : base(args) { - // Exponential has no args - } - protected override void build ( Tensors inputs ) { - built = true; - } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { - Tensor output = inputs; - return tf.exp(output); - } - public override Shape ComputeOutputShape ( Shape input_shape ) { - return input_shape; - } - } + public class Exponential : Layer + { + public Exponential(LayerArgs args) : base(args) + { + // Exponential has no args + } + public override void build(KerasShapesWrapper input_shape) + { + base.build(input_shape); + } + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + Tensor output = inputs; + return tf.exp(output); + } + public override Shape ComputeOutputShape(Shape input_shape) + { + return input_shape; + } + } } diff --git a/src/TensorFlowNET.Keras/Layers/Activation/HardSigmoid.cs b/src/TensorFlowNET.Keras/Layers/Activation/HardSigmoid.cs index b498d1b94..e0f91380b 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/HardSigmoid.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/HardSigmoid.cs @@ -3,6 +3,7 @@ using System.Text; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Common.Types; using static Tensorflow.Binding; namespace Tensorflow.Keras.Layers { @@ -10,7 +11,7 @@ public class HardSigmoid : Layer { public HardSigmoid ( LayerArgs args ) : base(args) { // hard sigmoid has no arguments } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { + protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null ) { Tensor x = inputs; return tf.clip_by_value( tf.add(tf.multiply(x, 0.2f), 0.5f), 0f, 1f); diff --git a/src/TensorFlowNET.Keras/Layers/Activation/LeakyReLu.cs b/src/TensorFlowNET.Keras/Layers/Activation/LeakyReLu.cs index 1fbbf4eaf..cfbd0186d 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/LeakyReLu.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/LeakyReLu.cs @@ -3,6 +3,7 @@ using System.Text; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Common.Types; using static Tensorflow.Binding; namespace Tensorflow.Keras.Layers @@ -19,7 +20,7 @@ public LeakyReLu(LeakyReLuArgs args) : base(args) this.args = args; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { return tf.nn.leaky_relu(inputs, alpha: alpha); } diff --git a/src/TensorFlowNET.Keras/Layers/Activation/ReLu6.cs b/src/TensorFlowNET.Keras/Layers/Activation/ReLu6.cs new file mode 100644 index 000000000..5af3f7677 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Activation/ReLu6.cs @@ -0,0 +1,25 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Common.Types; +using static Tensorflow.Binding; + +namespace Tensorflow.Keras.Layers +{ + /// + /// Leaky version of a Rectified Linear Unit. + /// + public class ReLu6 : Layer + { + public ReLu6() : base(new LayerArgs { }) + { + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + return tf.nn.relu6(inputs); + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Activation/SELU.cs b/src/TensorFlowNET.Keras/Layers/Activation/SELU.cs index 388302dac..2e943d5f7 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/SELU.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/SELU.cs @@ -1,8 +1,10 @@ using System; using System.Collections.Generic; using System.Text; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; using static Tensorflow.Binding; namespace Tensorflow.Keras.Layers { @@ -15,13 +17,13 @@ public class SELU : Layer { public SELU ( LayerArgs args ) : base(args) { // SELU has no arguments } - protected override void build ( Tensors inputs ) { - if ( alpha < 0f ) { - throw new ValueError("Alpha must be a number greater than 0."); - } - built = true; + public override void build(KerasShapesWrapper input_shape) { + if ( alpha < 0f ) { + throw new ValueError("Alpha must be a number greater than 0."); + } + base.build(input_shape); } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { + protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensor output = inputs; return tf.where(output > 0f, tf.multiply(scale, output), diff --git a/src/TensorFlowNET.Keras/Layers/Activation/Softmax.cs b/src/TensorFlowNET.Keras/Layers/Activation/Softmax.cs index 3ffae27f6..d018128d5 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/Softmax.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/Softmax.cs @@ -1,6 +1,7 @@ using System; using System.Collections.Generic; using System.Text; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; using static Tensorflow.Binding; @@ -11,8 +12,8 @@ public class Softmax : Layer { public Softmax ( SoftmaxArgs args ) : base(args) { axis = args.axis; } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { - Tensor x = inputs.Length == 2 ? inputs + ((1.0 - tf.cast(inputs[1], inputs.dtype)) * 1e-9) + protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { + Tensor x = inputs.Length == 2 ? inputs[0] + ((1.0 - tf.cast(inputs[1], inputs.dtype)) * 1e-9) : inputs; Tensor e = tf.exp(tf.sub(x, tf.reduce_max(x, axis: this.axis, keepdims: true))); Tensor s = tf.reduce_sum(e, axis: this.axis, keepdims: true); diff --git a/src/TensorFlowNET.Keras/Layers/Activation/Softplus.cs b/src/TensorFlowNET.Keras/Layers/Activation/Softplus.cs index e82b01982..1e6c59b42 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/Softplus.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/Softplus.cs @@ -1,6 +1,7 @@ using System; using System.Collections.Generic; using System.Text; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; using static Tensorflow.Binding; @@ -10,7 +11,7 @@ public class Softplus : Layer { public Softplus ( LayerArgs args ) : base(args) { // Softplus has no arguments } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { + protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensor x = inputs; return tf.log( tf.add(tf.exp(x), 1f)); diff --git a/src/TensorFlowNET.Keras/Layers/Activation/Softsign.cs b/src/TensorFlowNET.Keras/Layers/Activation/Softsign.cs index 59329fd44..5ad33e99d 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/Softsign.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/Softsign.cs @@ -1,6 +1,7 @@ using System; using System.Collections.Generic; using System.Text; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; using static Tensorflow.Binding; @@ -10,7 +11,7 @@ public class Softsign : Layer { public Softsign ( LayerArgs args ) : base(args) { // Softsign has no arguments } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { + protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensor x = inputs; // x / (abs(x) + 1) return tf.div(x, tf.add(1f, tf.abs(x))); diff --git a/src/TensorFlowNET.Keras/Layers/Activation/Swish.cs b/src/TensorFlowNET.Keras/Layers/Activation/Swish.cs index 1dcb92b31..ed0d105a6 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/Swish.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/Swish.cs @@ -1,6 +1,7 @@ using System; using System.Collections.Generic; using System.Text; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; using static Tensorflow.Binding; @@ -10,7 +11,7 @@ public class Swish : Layer { public Swish ( LayerArgs args ) : base(args) { // Swish has no arguments } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { + protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensor x = inputs; // x / (1 + exp(-x)) diff --git a/src/TensorFlowNET.Keras/Layers/Activation/Tanh.cs b/src/TensorFlowNET.Keras/Layers/Activation/Tanh.cs index 99b803942..7e90cf9d8 100644 --- a/src/TensorFlowNET.Keras/Layers/Activation/Tanh.cs +++ b/src/TensorFlowNET.Keras/Layers/Activation/Tanh.cs @@ -3,6 +3,7 @@ using System.Text; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Common.Types; using static Tensorflow.Binding; namespace Tensorflow.Keras.Layers @@ -13,7 +14,7 @@ public Tanh(LayerArgs args) : base(args) { // Tanh has no arguments } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensor x = inputs; diff --git a/src/TensorFlowNET.Keras/Layers/Attention/Attention.cs b/src/TensorFlowNET.Keras/Layers/Attention/Attention.cs index 51a40b58c..e6a8e1a63 100644 --- a/src/TensorFlowNET.Keras/Layers/Attention/Attention.cs +++ b/src/TensorFlowNET.Keras/Layers/Attention/Attention.cs @@ -4,6 +4,7 @@ using System.Collections.Generic; using System.Linq; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Saving; namespace Tensorflow.Keras.Layers { @@ -90,9 +91,10 @@ public Attention(AttentionArgs args) : base(args) }.Contains(this.score_mode)) throw new ValueError("Received: score_mode={score_mode}. Acceptable values are: [\"dot\", \"concat\"]"); } - + // Creates variable when `use_scale` is True or `score_mode` is `concat`. - protected override void build(Tensors inputs) { + public override void build(KerasShapesWrapper input_shape) + { if (this.use_scale) this.scale = this.add_weight(name: "scale", shape: 1, @@ -110,7 +112,7 @@ protected override void build(Tensors inputs) { trainable: true); else this.concat_score_weight = null; - base.build(inputs); + base.build(input_shape); } /// @@ -145,7 +147,7 @@ public override Tensor _calculate_scores(Tensor query, Tensor key) return scores; } - public override LayerArgs get_config() => this.args; + public override IKerasConfig get_config() => this.args; //var config = new Dictionary { // { // "use_scale", diff --git a/src/TensorFlowNET.Keras/Layers/Attention/BaseDenseAttention.cs b/src/TensorFlowNET.Keras/Layers/Attention/BaseDenseAttention.cs index 3f618b5db..970a938d2 100644 --- a/src/TensorFlowNET.Keras/Layers/Attention/BaseDenseAttention.cs +++ b/src/TensorFlowNET.Keras/Layers/Attention/BaseDenseAttention.cs @@ -1,22 +1,18 @@ using Tensorflow.Keras.Engine; using Tensorflow.Keras.ArgsDefinition; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; using System; using System.Collections.Generic; using System.Linq; - -/// -/// Base class for attention layers that can be used in sequence DNN/CNN models. -///This file follows the terminology of https://arxiv.org/abs/1706.03762 Figure 2. -///Attention is formed by three tensors: Query, Key and Value. -/// +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { /// /// Base Attention class for Dense networks. + /// This file follows the terminology of https://arxiv.org/abs/1706.03762 Figure 2. + /// Attention is formed by three tensors: Query, Key and Value. /// This class is suitable for Dense or CNN networks, and not for RNN networks. /// Implementations of attention mechanisms should inherit from this class, and /// reuse the `apply_attention_scores()` method. @@ -113,7 +109,7 @@ public virtual Tensor _calculate_scores(Tensor query, Tensor key) => return (tf.linalg.einsum("bij,bjk->bik", (weights, value)), weights); } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensors _inp; Tensors _mask = null; @@ -252,6 +248,6 @@ public static Tensor _merge_masks(Tensor x, Tensor y) return tf.logical_and(x, y); } - public override LayerArgs get_config() => this.args; + public override IKerasConfig get_config() => this.args; } } diff --git a/src/TensorFlowNET.Keras/Layers/Attention/MultiHeadAttention.cs b/src/TensorFlowNET.Keras/Layers/Attention/MultiHeadAttention.cs index 1b82e0a96..75dd4a41a 100644 --- a/src/TensorFlowNET.Keras/Layers/Attention/MultiHeadAttention.cs +++ b/src/TensorFlowNET.Keras/Layers/Attention/MultiHeadAttention.cs @@ -1,10 +1,12 @@ using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.ArgsDefinition.Core; using Tensorflow.Keras.Engine; using Tensorflow.NumPy; using static Tensorflow.Binding; using static Tensorflow.KerasApi; using System; using System.Linq; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -251,7 +253,7 @@ public Tensors _compute_attention( return (attention_output, attention_scores); } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensors _inp; Tensor _mask = null; @@ -348,7 +350,7 @@ protected Tensors call(Tensors inputs, //} if (return_attention_scores) - return (attention_output, attention_scores); + return (attention_output, attention_scores.Single); return attention_output; } } diff --git a/src/TensorFlowNET.Keras/Layers/Convolution/Conv1D.cs b/src/TensorFlowNET.Keras/Layers/Convolution/Conv1D.cs index d62b33a58..3ee61253c 100644 --- a/src/TensorFlowNET.Keras/Layers/Convolution/Conv1D.cs +++ b/src/TensorFlowNET.Keras/Layers/Convolution/Conv1D.cs @@ -20,9 +20,46 @@ namespace Tensorflow.Keras.Layers { public class Conv1D : Convolutional { - public Conv1D(Conv1DArgs args) : base(args) + public Conv1D(Conv1DArgs args) : base(InitializeUndefinedArgs(args)) { } + + private static Conv1DArgs InitializeUndefinedArgs(Conv1DArgs args) + { + if(args.Rank == 0) + { + args.Rank = 1; + } + if(args.Strides is null) + { + args.Strides = 1; + } + if (string.IsNullOrEmpty(args.Padding)) + { + args.Padding = "valid"; + } + if (string.IsNullOrEmpty(args.DataFormat)) + { + args.DataFormat = "channels_last"; + } + if(args.DilationRate == 0) + { + args.DilationRate = 1; + } + if(args.Groups == 0) + { + args.Groups = 1; + } + if(args.KernelInitializer is null) + { + args.KernelInitializer = tf.glorot_uniform_initializer; + } + if(args.BiasInitializer is null) + { + args.BiasInitializer = tf.zeros_initializer; + } + return args; + } } } diff --git a/src/TensorFlowNET.Keras/Layers/Convolution/Conv2D.cs b/src/TensorFlowNET.Keras/Layers/Convolution/Conv2D.cs index c5c210152..a6963e307 100644 --- a/src/TensorFlowNET.Keras/Layers/Convolution/Conv2D.cs +++ b/src/TensorFlowNET.Keras/Layers/Convolution/Conv2D.cs @@ -20,9 +20,42 @@ namespace Tensorflow.Keras.Layers { public class Conv2D : Convolutional { - public Conv2D(Conv2DArgs args) : base(args) + public Conv2D(Conv2DArgs args) : base(InitializeUndefinedArgs(args)) { } + + private static Conv2DArgs InitializeUndefinedArgs(Conv2DArgs args) + { + if(args.Rank == 0) + { + args.Rank = 2; + } + if (args.Strides is null) + { + args.Strides = (1, 1); + } + if (string.IsNullOrEmpty(args.Padding)) + { + args.Padding = "valid"; + } + if (args.DilationRate == 0) + { + args.DilationRate = (1, 1); + } + if (args.Groups == 0) + { + args.Groups = 1; + } + if (args.KernelInitializer is null) + { + args.KernelInitializer = tf.glorot_uniform_initializer; + } + if (args.BiasInitializer is null) + { + args.BiasInitializer = tf.zeros_initializer; + } + return args; + } } } diff --git a/src/TensorFlowNET.Keras/Layers/Convolution/Conv2DTranspose.cs b/src/TensorFlowNET.Keras/Layers/Convolution/Conv2DTranspose.cs index 9ef4db182..94ad79141 100644 --- a/src/TensorFlowNET.Keras/Layers/Convolution/Conv2DTranspose.cs +++ b/src/TensorFlowNET.Keras/Layers/Convolution/Conv2DTranspose.cs @@ -19,42 +19,72 @@ limitations under the License. using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Utils; using static Tensorflow.KerasApi; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { public class Conv2DTranspose : Conv2D { - public Conv2DTranspose(Conv2DArgs args) : base(args) + public Conv2DTranspose(Conv2DArgs args) : base(InitializeUndefinedArgs(args)) { } - protected override void build(Tensors inputs) + private static Conv2DArgs InitializeUndefinedArgs(Conv2DArgs args) { - var input_shape = inputs.shape; - if (len(input_shape) != 4) + if (args.Strides is null) + { + args.Strides = (1, 1); + } + if (string.IsNullOrEmpty(args.Padding)) + { + args.Padding = "valid"; + } + if (args.DilationRate == 0) + { + args.DilationRate = (1, 1); + } + if (args.Groups == 0) + { + args.Groups = 1; + } + if (args.KernelInitializer is null) + { + args.KernelInitializer = tf.glorot_uniform_initializer; + } + if (args.BiasInitializer is null) + { + args.BiasInitializer = tf.zeros_initializer; + } + return args; + } + + public override void build(KerasShapesWrapper input_shape) + { + var single_shape = input_shape.ToSingleShape(); + if (len(single_shape) != 4) throw new ValueError($"Inputs should have rank 4. Received input shape: {input_shape}"); var channel_axis = _get_channel_axis(); - var input_dim = input_shape[-1]; + var input_dim = single_shape[-1]; var kernel_shape = new Shape(kernel_size[0], kernel_size[1], filters, input_dim); kernel = add_weight(name: "kernel", shape: kernel_shape, initializer: kernel_initializer, regularizer: kernel_regularizer, - trainable: true, - dtype: inputs.dtype); + trainable: true); if (use_bias) bias = add_weight(name: "bias", shape: filters, initializer: bias_initializer, - trainable: true, - dtype: inputs.dtype); + trainable: true); built = true; + _buildInputShape = input_shape; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { var inputs_shape = array_ops.shape(inputs); var batch_size = inputs_shape[0]; @@ -109,10 +139,13 @@ protected override Tensors Call(Tensors inputs, Tensor state = null, bool? train } if (use_bias) - throw new NotImplementedException(""); + tf.nn.bias_add( + outputs, + bias, + data_format: conv_utils.convert_data_format(data_format, ndim: 4)); if (activation != null) - return activation(outputs); + return activation.Apply(outputs); return outputs; } diff --git a/src/TensorFlowNET.Keras/Layers/Convolution/Convolutional.cs b/src/TensorFlowNET.Keras/Layers/Convolution/Convolutional.cs index 5ac2dd003..d8e00d520 100644 --- a/src/TensorFlowNET.Keras/Layers/Convolution/Convolutional.cs +++ b/src/TensorFlowNET.Keras/Layers/Convolution/Convolutional.cs @@ -17,8 +17,10 @@ limitations under the License. using System; using System.Collections.Generic; using System.Linq; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; using Tensorflow.Keras.Utils; using Tensorflow.Operations; using static Tensorflow.Binding; @@ -57,13 +59,13 @@ public Convolutional(ConvolutionalArgs args) : base(args) _tf_data_format = conv_utils.convert_data_format(data_format, rank + 2); } - protected override void build(Tensors inputs) + public override void build(KerasShapesWrapper input_shape) { - Shape input_shape = inputs.shape; int channel_axis = data_format == "channels_first" ? 1 : -1; + var single_shape = input_shape.ToSingleShape(); var input_channel = channel_axis < 0 ? - input_shape.dims[input_shape.ndim + channel_axis] : - input_shape.dims[channel_axis]; + single_shape.dims[single_shape.ndim + channel_axis] : + single_shape.dims[channel_axis]; Shape kernel_shape = kernel_size.dims.concat(new long[] { input_channel / args.Groups, filters }); kernel = add_weight(name: "kernel", shape: kernel_shape, @@ -99,9 +101,10 @@ protected override void build(Tensors inputs) name: tf_op_name); built = true; + _buildInputShape = input_shape; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = false) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = false, IOptionalArgs? optional_args = null) { var outputs = _convolution_op.Apply(inputs, kernel.AsTensor()); if (use_bias) @@ -117,7 +120,7 @@ protected override Tensors Call(Tensors inputs, Tensor state = null, bool? train } if (activation != null) - outputs = activation(outputs); + outputs = activation.Apply(outputs); return outputs; } diff --git a/src/TensorFlowNET.Keras/Layers/Convolution/DepthwiseConv2D.cs b/src/TensorFlowNET.Keras/Layers/Convolution/DepthwiseConv2D.cs new file mode 100644 index 000000000..dae4a4036 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Convolution/DepthwiseConv2D.cs @@ -0,0 +1,167 @@ +using System; +using System.Collections.Generic; +using System.Text; +using System; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; +using Tensorflow.Keras.Utils; +using Tensorflow.Operations; +using Newtonsoft.Json; +using System.Security.Cryptography; + +namespace Tensorflow.Keras.Layers +{ + public class DepthwiseConv2DArgs: Conv2DArgs + { + /// + /// depth_multiplier: The number of depthwise convolution output channels for + /// each input channel.The total number of depthwise convolution output + /// channels will be equal to `filters_in* depth_multiplier`. + /// + [JsonProperty("depth_multiplier")] + public int DepthMultiplier { get; set; } = 1; + + [JsonProperty("depthwise_initializer")] + public IInitializer DepthwiseInitializer { get; set; } + } + + public class DepthwiseConv2D : Conv2D + { + /// + /// depth_multiplier: The number of depthwise convolution output channels for + /// each input channel.The total number of depthwise convolution output + /// channels will be equal to `filters_in* depth_multiplier`. + /// + int DepthMultiplier = 1; + + IInitializer DepthwiseInitializer; + + int[] strides; + + int[] dilation_rate; + + string getDataFormat() + { + return data_format == "channels_first" ? "NCHW" : "NHWC"; + } + + static int _id = 1; + + public DepthwiseConv2D(DepthwiseConv2DArgs args):base(args) + { + args.Padding = args.Padding.ToUpper(); + + if(string.IsNullOrEmpty(args.Name)) + name = "DepthwiseConv2D_" + _id; + + this.DepthMultiplier = args.DepthMultiplier; + this.DepthwiseInitializer = args.DepthwiseInitializer; + + } + + public override void build(KerasShapesWrapper input_shape) + { + //base.build(input_shape); + + var shape = input_shape.ToSingleShape(); + + int channel_axis = data_format == "channels_first" ? 1 : -1; + var input_channel = channel_axis < 0 ? + shape.dims[shape.ndim + channel_axis] : + shape.dims[channel_axis]; + + var arg = args as DepthwiseConv2DArgs; + + if (arg.Strides.ndim != shape.ndim) + { + if (arg.Strides.ndim == 2) + { + this.strides = new int[] { 1, (int)arg.Strides[0], (int)arg.Strides[1], 1 }; + } + else + { + this.strides = conv_utils.normalize_tuple(new int[] { (int)arg.Strides[0] }, shape.ndim, "strides"); + } + } + else + { + this.strides = arg.Strides.dims.Select(o=>(int)(o)).ToArray(); + } + + if (arg.DilationRate.ndim != shape.ndim) + { + this.dilation_rate = conv_utils.normalize_tuple(new int[] { (int)arg.DilationRate[0] }, shape.ndim, "dilation_rate"); + } + + long channel_data = data_format == "channels_first" ? shape[0] : shape[shape.Length - 1]; + + var depthwise_kernel_shape = this.kernel_size.dims.concat(new long[] { + channel_data, + this.DepthMultiplier + }); + + this.kernel = this.add_weight( + shape: depthwise_kernel_shape, + initializer: this.DepthwiseInitializer != null ? this.DepthwiseInitializer : this.kernel_initializer, + name: "depthwise_kernel", + trainable: true, + dtype: DType, + regularizer: this.kernel_regularizer + ); + + var axes = new Dictionary(); + axes.Add(-1, (int)input_channel); + inputSpec = new InputSpec(min_ndim: rank + 2, axes: axes); + + + if (use_bias) + { + bias = add_weight(name: "bias", + shape: ((int)channel_data), + initializer: bias_initializer, + trainable: true, + dtype: DType); + } + + built = true; + _buildInputShape = input_shape; + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, + bool? training = false, IOptionalArgs? optional_args = null) + { + Tensor outputs = null; + + outputs = gen_nn_ops.depthwise_conv2d_native( + inputs, + filter: this.kernel.AsTensor(), + strides: this.strides, + padding: this.padding, + dilations: this.dilation_rate, + data_format: this.getDataFormat(), + name: name + ); + + if (use_bias) + { + if (data_format == "channels_first") + { + throw new NotImplementedException("call channels_first"); + } + else + { + outputs = gen_nn_ops.bias_add(outputs, ops.convert_to_tensor(bias), + data_format: this.getDataFormat(), name: name); + } + } + + if (activation != null) + outputs = activation.Apply(outputs); + + + return outputs; + } + + } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Layers/Core/Dense.cs b/src/TensorFlowNET.Keras/Layers/Core/Dense.cs index f3956811f..db5d626ed 100644 --- a/src/TensorFlowNET.Keras/Layers/Core/Dense.cs +++ b/src/TensorFlowNET.Keras/Layers/Core/Dense.cs @@ -16,9 +16,12 @@ limitations under the License. using System; using System.Collections.Generic; +using System.Diagnostics; using System.Linq; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; using static Tensorflow.Binding; namespace Tensorflow.Keras.Layers @@ -41,10 +44,12 @@ public Dense(DenseArgs args) : this.inputSpec = new InputSpec(min_ndim: 2); } - protected override void build(Tensors inputs) + public override void build(KerasShapesWrapper input_shape) { - Shape input_shape = inputs.shape; - var last_dim = input_shape.dims.Last(); + _buildInputShape = input_shape; + Debug.Assert(input_shape.Shapes.Length <= 1); + var single_shape = input_shape.ToSingleShape(); + var last_dim = single_shape.dims.Last(); var axes = new Dictionary(); axes[-1] = (int)last_dim; inputSpec = new InputSpec(min_ndim: 2, axes: axes); @@ -65,7 +70,7 @@ protected override void build(Tensors inputs) built = true; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensor outputs = null; var rank = inputs.rank; @@ -75,20 +80,15 @@ protected override Tensors Call(Tensors inputs, Tensor state = null, bool? train } else { - outputs = gen_math_ops.mat_mul(inputs, kernel.AsTensor()); + outputs = math_ops.matmul(inputs, kernel.AsTensor()); } if (args.UseBias) outputs = tf.nn.bias_add(outputs, bias); if (args.Activation != null) - outputs = activation(outputs); + outputs = activation.Apply(outputs); return outputs; } - - public static Dense from_config(LayerArgs args) - { - return new Dense(args as DenseArgs); - } } } diff --git a/src/TensorFlowNET.Keras/Layers/Core/EinsumDense.cs b/src/TensorFlowNET.Keras/Layers/Core/EinsumDense.cs index 2bd987a7c..0cbd50846 100644 --- a/src/TensorFlowNET.Keras/Layers/Core/EinsumDense.cs +++ b/src/TensorFlowNET.Keras/Layers/Core/EinsumDense.cs @@ -4,8 +4,10 @@ using System.Collections.Generic; using System.Linq; using System.Text.RegularExpressions; -using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.ArgsDefinition.Core; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -119,10 +121,10 @@ public EinsumDense(EinsumDenseArgs args) : base(args) this.bias_constraint = args.BiasConstraint; } - protected override void build(Tensors inputs) + public override void build(KerasShapesWrapper input_shape) { - var input_shape = inputs.shape; - var shape_data = _analyze_einsum_string(this.equation, this.bias_axes, input_shape, this.partial_output_shape); + var shape_data = _analyze_einsum_string(this.equation, this.bias_axes, + input_shape.ToSingleShape(), this.partial_output_shape); var kernel_shape = shape_data.Item1; var bias_shape = shape_data.Item2; this.full_output_shape = shape_data.Item3; @@ -141,7 +143,7 @@ protected override void build(Tensors inputs) trainable: true); else this.bias = null; - base.build(inputs); + base.build(input_shape); } public override Shape ComputeOutputShape(Shape input_shape) @@ -188,13 +190,13 @@ public override Shape ComputeOutputShape(Shape input_shape) // return new dict(base_config.items().ToList() + config.items().ToList()); //} - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { var ret = tf.linalg.einsum(this.equation, (inputs, this.kernel.AsTensor())); if (this.bias != null) ret += this.bias.AsTensor(); if (this.activation != null) - ret = this.activation(ret); + ret = this.activation.Apply(ret); return ret; } /// diff --git a/src/TensorFlowNET.Keras/Layers/Core/Embedding.cs b/src/TensorFlowNET.Keras/Layers/Core/Embedding.cs index f16fcfa6f..87b42bb7b 100644 --- a/src/TensorFlowNET.Keras/Layers/Core/Embedding.cs +++ b/src/TensorFlowNET.Keras/Layers/Core/Embedding.cs @@ -15,8 +15,10 @@ limitations under the License. ******************************************************************************/ using System.Linq; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; using static Tensorflow.Binding; namespace Tensorflow.Keras.Layers @@ -48,13 +50,13 @@ public Embedding(EmbeddingArgs args) args.InputShape = args.InputLength; if (args.BatchInputShape == null) - args.BatchInputShape = new long[] { args.BatchSize }.Concat(args.InputShape.dims).ToArray(); + args.BatchInputShape = new KerasShapesWrapper(new long[] { args.BatchSize }.Concat(args.InputShape.dims).ToArray()); embeddings_initializer = args.EmbeddingsInitializer ?? tf.random_uniform_initializer; SupportsMasking = mask_zero; } - protected override void build(Tensors inputs) + public override void build(KerasShapesWrapper input_shape) { tf.Context.eager_mode(); embeddings = add_weight(shape: (input_dim, output_dim), @@ -62,9 +64,10 @@ protected override void build(Tensors inputs) name: "embeddings"); tf.Context.graph_mode(); built = true; + _buildInputShape = input_shape; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { var dtype = inputs.dtype; if (dtype != tf.int32 && dtype != tf.int64) diff --git a/src/TensorFlowNET.Keras/Layers/Core/InputLayer.cs b/src/TensorFlowNET.Keras/Layers/Core/InputLayer.cs index 6b064716f..f7385bad5 100644 --- a/src/TensorFlowNET.Keras/Layers/Core/InputLayer.cs +++ b/src/TensorFlowNET.Keras/Layers/Core/InputLayer.cs @@ -18,6 +18,7 @@ limitations under the License. using Tensorflow.Framework.Models; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving.SavedModel; using static Tensorflow.Binding; using static Tensorflow.KerasApi; @@ -39,10 +40,10 @@ public InputLayer(InputLayerArgs args) : built = true; SupportsMasking = true; - if (BatchInputShape != null) + if (BatchInputShape is not null) { - args.BatchSize = (int)BatchInputShape.dims[0]; - args.InputShape = BatchInputShape.dims.Skip(1).ToArray(); + args.BatchSize = (int)(BatchInputShape.ToSingleShape().dims[0]); + args.InputShape = BatchInputShape.ToSingleShape().dims.Skip(1).ToArray(); } // moved to base class @@ -62,9 +63,8 @@ public InputLayer(InputLayerArgs args) : { if (args.InputShape != null) { - args.BatchInputShape = new long[] { args.BatchSize } - .Concat(args.InputShape.dims) - .ToArray(); + args.BatchInputShape = new Saving.KerasShapesWrapper(new long[] { args.BatchSize } + .Concat(args.InputShape.dims).ToArray()); } else { @@ -75,7 +75,7 @@ public InputLayer(InputLayerArgs args) : graph.as_default(); args.InputTensor = keras.backend.placeholder( - shape: BatchInputShape, + shape: BatchInputShape.ToSingleShape(), dtype: DType, name: Name, sparse: args.Sparse, @@ -101,9 +101,6 @@ public InputLayer(InputLayerArgs args) : name: Name); } - public static InputLayer from_config(LayerArgs args) - { - return new InputLayer(args as InputLayerArgs); - } + public override SavedModelSaver TrackableSavedModelSaver => new InputLayerSavedModelSaver(this); } } diff --git a/src/TensorFlowNET.Keras/Layers/Cropping/Cropping1D.cs b/src/TensorFlowNET.Keras/Layers/Cropping/Cropping1D.cs deleted file mode 100644 index cf71e1845..000000000 --- a/src/TensorFlowNET.Keras/Layers/Cropping/Cropping1D.cs +++ /dev/null @@ -1,50 +0,0 @@ -using Tensorflow.Keras.ArgsDefinition; -using Tensorflow.Keras.Engine; - -namespace Tensorflow.Keras.Layers { - public class Cropping1D : Layer { - CroppingArgs args; - public Cropping1D ( CroppingArgs args ) : base(args) { - this.args = args; - } - - protected override void build ( Tensors inputs ) { - if ( args.cropping.rank != 1 ) { - // throw an ValueError exception - throw new ValueError(""); - } - else if ( args.cropping.shape[0] > 2 || args.cropping.shape[0] < 1 ) { - throw new ValueError("The `cropping` argument must be a tuple of 2 integers."); - } - built = true; - } - - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { - Tensor output = inputs; - if ( output.rank != 3 ) { - // throw an ValueError exception - throw new ValueError("Expected dim=3, found dim=" + output.rank); - } - if ( args.cropping.shape[0] == 1 ) { - int crop_start = args.cropping[0]; - output = output[new Slice(), new Slice(crop_start, ( int ) output.shape[1] - crop_start), new Slice()]; - } - else { - int crop_start = args.cropping[0], crop_end = args.cropping[1]; - output = output[new Slice(), new Slice(crop_start, ( int ) (output.shape[1]) - crop_end), new Slice()]; - } - return output; - } - - public override Shape ComputeOutputShape ( Shape input_shape ) { - if ( args.cropping.shape[0] == 1 ) { - int crop = args.cropping[0]; - return new Shape(( int ) (input_shape[0]), ( int ) (input_shape[1] - crop * 2), ( int ) (input_shape[2])); - } - else { - int crop_start = args.cropping[0], crop_end = args.cropping[1]; - return new Shape(( int ) (input_shape[0]), ( int ) (input_shape[1] - crop_start - crop_end), ( int ) (input_shape[2])); - } - } - } -} diff --git a/src/TensorFlowNET.Keras/Layers/Cropping/Cropping2D.cs b/src/TensorFlowNET.Keras/Layers/Cropping/Cropping2D.cs deleted file mode 100644 index 340ba42df..000000000 --- a/src/TensorFlowNET.Keras/Layers/Cropping/Cropping2D.cs +++ /dev/null @@ -1,113 +0,0 @@ -using Tensorflow.Keras.ArgsDefinition; -using Tensorflow.Keras.Engine; - -namespace Tensorflow.Keras.Layers { - /// - /// Crop the input along axis 1 and 2. - /// For example: - /// shape (1, 5, 5, 5) -- crop2D ((1, 2), (1, 3)) --> shape (1, 2, 1, 5) - /// - public class Cropping2D : Layer { - Cropping2DArgs args; - public Cropping2D ( Cropping2DArgs args ) : base(args) { - this.args = args; - } - protected override void build ( Tensors inputs ) { - built = true; - } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { - Tensor output = inputs; - if ( output.rank != 4 ) { - // throw an ValueError exception - throw new ValueError("Expected dim=4, found dim=" + output.rank); - } - if ( args.cropping.shape == new Shape(1) ) { - int crop = args.cropping[0]; - if ( args.data_format == Cropping2DArgs.DataFormat.channels_last ) { - output = output[new Slice(), - new Slice(crop, ( int ) output.shape[1] - crop), - new Slice(crop, ( int ) output.shape[2] - crop), - new Slice()]; - } - else { - output = output[new Slice(), - new Slice(), - new Slice(crop, ( int ) output.shape[2] - crop), - new Slice(crop, ( int ) output.shape[3] - crop)]; - } - } - // a tuple of 2 integers - else if ( args.cropping.shape == new Shape(2) ) { - int crop_1 = args.cropping[0]; - int crop_2 = args.cropping[1]; - if ( args.data_format == Cropping2DArgs.DataFormat.channels_last ) { - output = output[new Slice(), - new Slice(crop_1, ( int ) output.shape[1] - crop_1), - new Slice(crop_2, ( int ) output.shape[2] - crop_2), - new Slice()]; - } - else { - output = output[new Slice(), - new Slice(), - new Slice(crop_1, ( int ) output.shape[2] - crop_1), - new Slice(crop_2, ( int ) output.shape[3] - crop_2)]; - } - } - else if ( args.cropping.shape[0] == 2 && args.cropping.shape[1] == 2 ) { - int x_start = args.cropping[0, 0], x_end = args.cropping[0, 1]; - int y_start = args.cropping[1, 0], y_end = args.cropping[1, 1]; - if ( args.data_format == Cropping2DArgs.DataFormat.channels_last ) { - output = output[new Slice(), - new Slice(x_start, ( int ) output.shape[1] - x_end), - new Slice(y_start, ( int ) output.shape[2] - y_end), - new Slice()]; - } - else { - output = output[new Slice(), - new Slice(), - new Slice(x_start, ( int ) output.shape[2] - x_end), - new Slice(y_start, ( int ) output.shape[3] - y_end) - ]; - } - } - return output; - } - - public override Shape ComputeOutputShape ( Shape input_shape ) { - if ( args.cropping.shape == new Shape(1) ) { - int crop = args.cropping[0]; - if ( args.data_format == Cropping2DArgs.DataFormat.channels_last ) { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1] - crop * 2, ( int ) input_shape[2] - crop * 2, ( int ) input_shape[3]); - } - else { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1], ( int ) input_shape[2] - crop * 2, ( int ) input_shape[3] - crop * 2); - } - } - // a tuple of 2 integers - else if ( args.cropping.shape == new Shape(2) ) { - int crop_1 = args.cropping[0], crop_2 = args.cropping[1]; - if ( args.data_format == Cropping2DArgs.DataFormat.channels_last ) { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1] - crop_1 * 2, ( int ) input_shape[2] - crop_2 * 2, ( int ) input_shape[3]); - } - else { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1], ( int ) input_shape[2] - crop_1 * 2, ( int ) input_shape[3] - crop_2 * 2); - } - } - else if ( args.cropping.shape == new Shape(2, 2) ) { - int crop_1_start = args.cropping[0, 0], crop_1_end = args.cropping[0, 1]; - int crop_2_start = args.cropping[1, 0], crop_2_end = args.cropping[1, 1]; - if ( args.data_format == Cropping2DArgs.DataFormat.channels_last ) { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1] - crop_1_start - crop_1_end, - ( int ) input_shape[2] - crop_2_start - crop_2_end, ( int ) input_shape[3]); - } - else { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1], - ( int ) input_shape[2] - crop_1_start - crop_1_end, ( int ) input_shape[3] - crop_2_start - crop_2_end); - } - } - else { - throw new ValueError(); - } - } - } -} diff --git a/src/TensorFlowNET.Keras/Layers/Cropping/Cropping3D.cs b/src/TensorFlowNET.Keras/Layers/Cropping/Cropping3D.cs deleted file mode 100644 index df102c1fa..000000000 --- a/src/TensorFlowNET.Keras/Layers/Cropping/Cropping3D.cs +++ /dev/null @@ -1,123 +0,0 @@ -using Tensorflow.Keras.ArgsDefinition; -using Tensorflow.Keras.Engine; - -namespace Tensorflow.Keras.Layers { - /// - /// Similar to copping 2D - /// - public class Cropping3D : Layer { - Cropping3DArgs args; - public Cropping3D ( Cropping3DArgs args ) : base(args) { - this.args = args; - } - - protected override void build ( Tensors inputs ) { - built = true; - } - - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { - Tensor output = inputs; - if ( output.rank != 5 ) { - // throw an ValueError exception - throw new ValueError("Expected dim=5, found dim=" + output.rank); - } - - if ( args.cropping.shape == new Shape(1) ) { - int crop = args.cropping[0]; - if ( args.data_format == Cropping3DArgs.DataFormat.channels_last ) { - output = output[new Slice(), - new Slice(crop, ( int ) output.shape[1] - crop), - new Slice(crop, ( int ) output.shape[2] - crop), - new Slice(crop, ( int ) output.shape[3] - crop), - new Slice()]; - } - else { - output = output[new Slice(), - new Slice(), - new Slice(crop, ( int ) output.shape[2] - crop), - new Slice(crop, ( int ) output.shape[3] - crop), - new Slice(crop, ( int ) output.shape[4] - crop)]; - } - - } - // int[1][3] equivalent to a tuple of 3 integers - else if ( args.cropping.shape == new Shape(3) ) { - var crop_1 = args.cropping[0]; - var crop_2 = args.cropping[1]; - var crop_3 = args.cropping[2]; - if ( args.data_format == Cropping3DArgs.DataFormat.channels_last ) { - output = output[new Slice(), - new Slice(crop_1, ( int ) output.shape[1] - crop_1), - new Slice(crop_2, ( int ) output.shape[2] - crop_2), - new Slice(crop_3, ( int ) output.shape[3] - crop_3), - new Slice()]; - } - else { - output = output[new Slice(), - new Slice(), - new Slice(crop_1, ( int ) output.shape[2] - crop_1), - new Slice(crop_2, ( int ) output.shape[3] - crop_2), - new Slice(crop_3, ( int ) output.shape[4] - crop_3)]; - } - } - else if ( args.cropping.shape[0] == 3 && args.cropping.shape[1] == 2 ) { - int x = args.cropping[0, 0], x_end = args.cropping[0, 1]; - int y = args.cropping[1, 0], y_end = args.cropping[1, 1]; - int z = args.cropping[2, 0], z_end = args.cropping[2, 1]; - if ( args.data_format == Cropping3DArgs.DataFormat.channels_last ) { - output = output[new Slice(), - new Slice(x, ( int ) output.shape[1] - x_end), - new Slice(y, ( int ) output.shape[2] - y_end), - new Slice(z, ( int ) output.shape[3] - z_end), - new Slice()]; - } - else { - output = output[new Slice(), - new Slice(), - new Slice(x, ( int ) output.shape[2] - x_end), - new Slice(y, ( int ) output.shape[3] - y_end), - new Slice(z, ( int ) output.shape[4] - z_end) - ]; - } - } - return output; - } - public override Shape ComputeOutputShape ( Shape input_shape ) { - if ( args.cropping.shape == new Shape(1) ) { - int crop = args.cropping[0]; - if ( args.data_format == Cropping3DArgs.DataFormat.channels_last ) { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1] - crop * 2, ( int ) input_shape[2] - crop * 2, ( int ) input_shape[3] - crop * 2, ( int ) input_shape[4]); - } - else { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1], ( int ) input_shape[2] - crop * 2, ( int ) input_shape[3] - crop * 2, ( int ) input_shape[4] - crop * 2); - } - } - // int[1][3] equivalent to a tuple of 3 integers - else if ( args.cropping.shape == new Shape(3) ) { - var crop_start_1 = args.cropping[0]; - var crop_start_2 = args.cropping[1]; - var crop_start_3 = args.cropping[2]; - if ( args.data_format == Cropping3DArgs.DataFormat.channels_last ) { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1] - crop_start_1 * 2, ( int ) input_shape[2] - crop_start_2 * 2, ( int ) input_shape[3] - crop_start_3 * 2, ( int ) input_shape[4]); - } - else { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1], ( int ) input_shape[2] - crop_start_1 * 2, ( int ) input_shape[3] - crop_start_2 * 2, ( int ) input_shape[4] - crop_start_3 * 2); - } - } - else if ( args.cropping.shape == new Shape(3, 2) ) { - int x = args.cropping[0, 0], x_end = args.cropping[0, 1]; - int y = args.cropping[1, 0], y_end = args.cropping[1, 1]; - int z = args.cropping[2, 0], z_end = args.cropping[2, 1]; - if ( args.data_format == Cropping3DArgs.DataFormat.channels_last ) { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1] - x - x_end, ( int ) input_shape[2] - y - y_end, ( int ) input_shape[3] - z - z_end, ( int ) input_shape[4]); - } - else { - return new Shape(( int ) input_shape[0], ( int ) input_shape[1], ( int ) input_shape[2] - x - x_end, ( int ) input_shape[3] - y - y_end, ( int ) input_shape[4] - z - z_end); - } - } - else { - throw new ValueError(); - } - } - } -} diff --git a/src/TensorFlowNET.Keras/Layers/LSTM.cs b/src/TensorFlowNET.Keras/Layers/LSTM.cs deleted file mode 100644 index 73a2df121..000000000 --- a/src/TensorFlowNET.Keras/Layers/LSTM.cs +++ /dev/null @@ -1,34 +0,0 @@ -using System.Linq; -using Tensorflow.Keras.ArgsDefinition; -using Tensorflow.Keras.Engine; - -namespace Tensorflow.Keras.Layers -{ - /// - /// Long Short-Term Memory layer - Hochreiter 1997. - /// - /// See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) - /// for details about the usage of RNN API. - /// - public class LSTM : RNN - { - LSTMArgs args; - InputSpec[] state_spec; - - int units => args.Units; - - public LSTM(LSTMArgs args) : - base(args) - { - this.args = args; - state_spec = new[] { units, units } - .Select(dim => new InputSpec(shape: (-1, dim))) - .ToArray(); - } - - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) - { - return base.Call(inputs, state: state, training: training); - } - } -} diff --git a/src/TensorFlowNET.Keras/Layers/LSTMCell.cs b/src/TensorFlowNET.Keras/Layers/LSTMCell.cs deleted file mode 100644 index dda279a79..000000000 --- a/src/TensorFlowNET.Keras/Layers/LSTMCell.cs +++ /dev/null @@ -1,16 +0,0 @@ -using Tensorflow.Keras.ArgsDefinition; -using Tensorflow.Keras.Engine; - -namespace Tensorflow.Keras.Layers -{ - public class LSTMCell : Layer - { - LSTMCellArgs args; - - public LSTMCell(LSTMCellArgs args) - : base(args) - { - this.args = args; - } - } -} diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs index 0978d0d3e..2c55f8fd5 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.Activation.cs @@ -7,16 +7,17 @@ namespace Tensorflow.Keras.Layers { public partial class LayersApi { - public ELU ELU ( float alpha = 0.1f ) + public ILayer ELU ( float alpha = 0.1f ) => new ELU(new ELUArgs { Alpha = alpha }); - public SELU SELU () - => new SELU(new LayerArgs { }); - public Softmax Softmax ( Axis axis ) => new Softmax(new SoftmaxArgs { axis = axis }); - public Softplus Softplus () => new Softplus(new LayerArgs { }); - public HardSigmoid HardSigmoid () => new HardSigmoid(new LayerArgs { }); - public Softsign Softsign () => new Softsign(new LayerArgs { }); - public Swish Swish () => new Swish(new LayerArgs { }); - public Tanh Tanh () => new Tanh(new LayerArgs { }); - public Exponential Exponential () => new Exponential(new LayerArgs { }); + public ILayer SELU () + => new SELU(new SELUArgs { }); + public ILayer Softmax(int axis = -1) => new Softmax(new SoftmaxArgs { axis = axis }); + public ILayer Softmax ( Axis axis ) => new Softmax(new SoftmaxArgs { axis = axis }); + public ILayer Softplus () => new Softplus(new SoftplusArgs { }); + public ILayer HardSigmoid () => new HardSigmoid(new HardSigmoidArgs { }); + public ILayer Softsign () => new Softsign(new SoftsignArgs { }); + public ILayer Swish () => new Swish(new SwishArgs { }); + public ILayer Tanh () => new Tanh(new TanhArgs { }); + public ILayer Exponential () => new Exponential(new ExponentialArgs { }); } } diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.Attention.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.Attention.cs index 5effd1752..859e9c14d 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.Attention.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.Attention.cs @@ -10,7 +10,7 @@ namespace Tensorflow.Keras.Layers { public partial class LayersApi { - public Attention Attention(bool use_scale = false, + public ILayer Attention(bool use_scale = false, string score_mode = "dot", bool causal = false, float dropout = 0f) => @@ -21,7 +21,7 @@ public Attention Attention(bool use_scale = false, causal = causal, dropout = dropout }); - public MultiHeadAttention MultiHeadAttention(int num_heads, + public ILayer MultiHeadAttention(int num_heads, int key_dim, int? value_dim = null, float dropout = 0f, diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.Cropping.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.Cropping.cs index f4d2230cd..3e3442f25 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.Cropping.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.Cropping.cs @@ -2,23 +2,25 @@ using System; using System.Collections.Generic; using System.Text; -using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Layers.Reshaping; +using Tensorflow.Keras.ArgsDefinition.Reshaping; -namespace Tensorflow.Keras.Layers { - public partial class LayersApi { +namespace Tensorflow.Keras.Layers +{ + public partial class LayersApi { /// /// Cropping layer for 1D input /// /// cropping size - public Cropping1D Cropping1D ( NDArray cropping ) - => new Cropping1D(new CroppingArgs { + public ILayer Cropping1D ( NDArray cropping ) + => new Cropping1D(new Cropping1DArgs { cropping = cropping }); /// /// Cropping layer for 2D input
///
- public Cropping2D Cropping2D ( NDArray cropping, Cropping2DArgs.DataFormat data_format = Cropping2DArgs.DataFormat.channels_last ) + public ILayer Cropping2D ( NDArray cropping, Cropping2DArgs.DataFormat data_format = Cropping2DArgs.DataFormat.channels_last ) => new Cropping2D(new Cropping2DArgs { cropping = cropping, data_format = data_format @@ -27,7 +29,7 @@ public Cropping2D Cropping2D ( NDArray cropping, Cropping2DArgs.DataFormat data_ /// /// Cropping layer for 3D input
///
- public Cropping3D Cropping3D ( NDArray cropping, Cropping3DArgs.DataFormat data_format = Cropping3DArgs.DataFormat.channels_last ) + public ILayer Cropping3D ( NDArray cropping, Cropping3DArgs.DataFormat data_format = Cropping3DArgs.DataFormat.channels_last ) => new Cropping3D(new Cropping3DArgs { cropping = cropping, data_format = data_format diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs index ecf8c0a63..bf06b1418 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.Merging.cs @@ -13,8 +13,8 @@ public partial class LayersApi ///
/// Axis along which to concatenate. /// - public Concatenate Concatenate(int axis = -1) - => new Concatenate(new MergeArgs + public ILayer Concatenate(int axis = -1) + => new Concatenate(new ConcatenateArgs { Axis = axis }); diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.Reshaping.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.Reshaping.cs index 5cfec89ee..2ee99bc79 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.Reshaping.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.Reshaping.cs @@ -6,35 +6,48 @@ namespace Tensorflow.Keras.Layers { public partial class LayersApi { - /// - /// Zero-padding layer for 2D input (e.g. picture). - /// - /// - /// - public ZeroPadding2D ZeroPadding2D ( NDArray padding ) + + /// + /// Upsampling layer for 1D inputs. Repeats each temporal step `size` times along the time axis. + /// + /// + /// + public ILayer UpSampling1D(int size) + => new UpSampling1D(new UpSampling1DArgs + { + Size = size + }); + + /// + /// Zero-padding layer for 2D input (e.g. picture). + /// + /// + /// + public ILayer ZeroPadding2D ( NDArray padding ) => new ZeroPadding2D(new ZeroPadding2DArgs { Padding = padding }); - /// - /// Upsampling layer for 2D inputs.
- /// Repeats the rows and columns of the data by size[0] and size[1] respectively. - ///
- /// - /// - /// - /// - public UpSampling2D UpSampling2D ( Shape size = null, - string data_format = null, - string interpolation = "nearest" ) - => new UpSampling2D(new UpSampling2DArgs { - Size = size ?? (2, 2) - }); + /// + /// Upsampling layer for 2D inputs.
+ /// Repeats the rows and columns of the data by size[0] and size[1] respectively. + ///
+ /// + /// + /// + /// + public ILayer UpSampling2D(Shape size, string data_format, string interpolation) + => new UpSampling2D(new UpSampling2DArgs + { + Size = size, + DataFormat = data_format, + Interpolation = interpolation + }); - /// - /// Permutes the dimensions of the input according to a given pattern. - /// - public Permute Permute ( int[] dims ) + /// + /// Permutes the dimensions of the input according to a given pattern. + /// + public ILayer Permute ( int[] dims ) => new Permute(new PermuteArgs { dims = dims }); @@ -44,12 +57,12 @@ public Permute Permute ( int[] dims ) ///
/// /// - public Reshape Reshape ( Shape target_shape ) - => new Reshape(new ReshapeArgs { - TargetShape = target_shape - }); + public ILayer Reshape ( Shape target_shape ) + => new Reshape(new ReshapeArgs { + TargetShape = target_shape + }); - public Reshape Reshape ( object[] target_shape ) + public ILayer Reshape ( object[] target_shape ) => new Reshape(new ReshapeArgs { TargetShapeObjects = target_shape }); diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.cs index 48856735c..a1e4c11b1 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.cs @@ -1,16 +1,18 @@ using System; -using Tensorflow.NumPy; -using System.Collections.Generic; +using Tensorflow.Framework.Models; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.ArgsDefinition.Core; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Layers; +using Tensorflow.NumPy; using static Tensorflow.Binding; using static Tensorflow.KerasApi; namespace Tensorflow.Keras.Layers { - public partial class LayersApi + public partial class LayersApi : ILayersApi { - public Preprocessing preprocessing { get; } = new Preprocessing(); + public IPreprocessing preprocessing { get; } = new Preprocessing(); /// /// Layer that normalizes its inputs. @@ -38,7 +40,7 @@ public partial class LayersApi /// Note that momentum is still applied to get the means and variances for inference. /// /// Tensor of the same shape as input. - public BatchNormalization BatchNormalization(int axis = -1, + public ILayer BatchNormalization(int axis = -1, float momentum = 0.99f, float epsilon = 0.001f, bool center = true, @@ -84,7 +86,7 @@ public BatchNormalization BatchNormalization(int axis = -1, /// Initializer for the kernel weights matrix (see keras.initializers). /// Initializer for the bias vector (see keras.initializers). /// A tensor of rank 3 representing activation(conv1d(inputs, kernel) + bias). - public Conv1D Conv1D(int filters, + public ILayer Conv1D(int filters, Shape kernel_size, int strides = 1, string padding = "valid", @@ -106,11 +108,32 @@ public Conv1D Conv1D(int filters, DilationRate = dilation_rate, Groups = groups, UseBias = use_bias, - Activation = GetActivationByName(activation), + Activation = keras.activations.GetActivationFromName(activation), KernelInitializer = GetInitializerByName(kernel_initializer), BiasInitializer = GetInitializerByName(bias_initializer) }); - + public ILayer Conv2D(int filters, + Shape kernel_size = null, + Shape strides = null, + string padding = "valid") + => new Conv2D(new Conv2DArgs + { + Rank = 2, + Filters = filters, + KernelSize = (kernel_size == null) ? (5, 5) : kernel_size, + Strides = strides == null ? (1, 1) : strides, + Padding = padding, + DataFormat = null, + DilationRate = (1, 1), + Groups = 1, + UseBias = false, + KernelRegularizer = null, + KernelInitializer =tf.glorot_uniform_initializer, + BiasInitializer = tf.zeros_initializer, + BiasRegularizer = null, + ActivityRegularizer = null, + Activation = keras.activations.Linear, + }); /// /// 2D convolution layer (e.g. spatial convolution over images). /// This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. @@ -131,7 +154,7 @@ public Conv1D Conv1D(int filters, /// Regularizer function applied to the bias vector (see keras.regularizers). /// Regularizer function applied to the output of the layer (its "activation") (see keras.regularizers). /// A tensor of rank 4+ representing activation(conv2d(inputs, kernel) + bias). - public Conv2D Conv2D(int filters, + public ILayer Conv2D(int filters, Shape kernel_size = null, Shape strides = null, string padding = "valid", @@ -161,7 +184,7 @@ public Conv2D Conv2D(int filters, BiasInitializer = bias_initializer == null ? tf.zeros_initializer : bias_initializer, BiasRegularizer = bias_regularizer, ActivityRegularizer = activity_regularizer, - Activation = activation ?? keras.activations.Linear + Activation = activation ?? keras.activations.Linear, }); /// @@ -180,11 +203,8 @@ public Conv2D Conv2D(int filters, /// Boolean, whether the layer uses a bias vector. /// The name of the initializer for the kernel weights matrix (see keras.initializers). /// The name of the initializer for the bias vector (see keras.initializers). - /// The name of the regularizer function applied to the kernel weights matrix (see keras.regularizers). - /// The name of the regularizer function applied to the bias vector (see keras.regularizers). - /// The name of the regularizer function applied to the output of the layer (its "activation") (see keras.regularizers). /// A tensor of rank 4+ representing activation(conv2d(inputs, kernel) + bias). - public Conv2D Conv2D(int filters, + public ILayer Conv2D(int filters, Shape kernel_size = null, Shape strides = null, string padding = "valid", @@ -208,9 +228,41 @@ public Conv2D Conv2D(int filters, UseBias = use_bias, KernelInitializer = GetInitializerByName(kernel_initializer), BiasInitializer = GetInitializerByName(bias_initializer), - Activation = GetActivationByName(activation) + Activation = keras.activations.GetActivationFromName(activation) }); + public ILayer DepthwiseConv2D(Shape kernel_size = null, + Shape strides = null, + string padding = "valid", + string data_format = null, + Shape dilation_rate = null, + int groups = 1, + int depth_multiplier = 1, + string activation = null, + bool use_bias = false, + string kernel_initializer = "glorot_uniform", + string bias_initializer = "zeros", + string depthwise_initializer = "glorot_uniform" + ) + => new DepthwiseConv2D(new DepthwiseConv2DArgs + { + Rank = 2, + Filters = 1, + KernelSize = (kernel_size == null) ? (5, 5) : kernel_size, + Strides = strides == null ? (1) : strides, + Padding = padding, + DepthMultiplier = depth_multiplier, + DataFormat = data_format, + DilationRate = dilation_rate == null ? (1) : dilation_rate, + Groups = groups, + UseBias = use_bias, + KernelInitializer = GetInitializerByName(kernel_initializer), + DepthwiseInitializer = GetInitializerByName(depthwise_initializer == null ? kernel_initializer : depthwise_initializer), + BiasInitializer = GetInitializerByName(bias_initializer), + Activation = keras.activations.GetActivationFromName(activation), + }); + + /// /// Transposed convolution layer (sometimes called Deconvolution). /// @@ -228,20 +280,20 @@ public Conv2D Conv2D(int filters, /// The name of the regularizer function applied to the bias vector (see keras.regularizers). /// The name of the regularizer function applied to the output of the layer (its "activation") (see keras.regularizers). /// A tensor of rank 4+ representing activation(conv2d(inputs, kernel) + bias). - public Conv2DTranspose Conv2DTranspose(int filters, + public ILayer Conv2DTranspose(int filters, Shape kernel_size = null, Shape strides = null, string output_padding = "valid", string data_format = null, Shape dilation_rate = null, string activation = null, - bool use_bias = true, + bool use_bias = false, string kernel_initializer = null, string bias_initializer = null, string kernel_regularizer = null, string bias_regularizer = null, string activity_regularizer = null) - => new Conv2DTranspose(new Conv2DArgs + => new Conv2DTranspose(new Conv2DTransposeArgs { Rank = 2, Filters = filters, @@ -253,7 +305,7 @@ public Conv2DTranspose Conv2DTranspose(int filters, UseBias = use_bias, KernelInitializer = GetInitializerByName(kernel_initializer), BiasInitializer = GetInitializerByName(bias_initializer), - Activation = GetActivationByName(activation) + Activation = keras.activations.GetActivationFromName(activation) }); /// @@ -270,7 +322,7 @@ public Conv2DTranspose Conv2DTranspose(int filters, /// Initializer for the bias vector. /// N-D tensor with shape: (batch_size, ..., input_dim). The most common situation would be a 2D input with shape (batch_size, input_dim). /// N-D tensor with shape: (batch_size, ..., units). For instance, for a 2D input with shape (batch_size, input_dim), the output would have shape (batch_size, units). - public Dense Dense(int units, + public ILayer Dense(int units, Activation activation = null, IInitializer kernel_initializer = null, bool use_bias = true, @@ -294,11 +346,11 @@ public Dense Dense(int units, /// /// Positive integer, dimensionality of the output space. /// N-D tensor with shape: (batch_size, ..., units). For instance, for a 2D input with shape (batch_size, input_dim), the output would have shape (batch_size, units). - public Dense Dense(int units) + public ILayer Dense(int units) => new Dense(new DenseArgs { Units = units, - Activation = GetActivationByName("linear") + Activation = keras.activations.GetActivationFromName("linear") }); /// @@ -312,13 +364,13 @@ public Dense Dense(int units) /// Activation function to use. If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x). /// N-D tensor with shape: (batch_size, ..., input_dim). The most common situation would be a 2D input with shape (batch_size, input_dim). /// N-D tensor with shape: (batch_size, ..., units). For instance, for a 2D input with shape (batch_size, input_dim), the output would have shape (batch_size, units). - public Dense Dense(int units, + public ILayer Dense(int units, string activation = null, Shape input_shape = null) => new Dense(new DenseArgs { Units = units, - Activation = GetActivationByName(activation), + Activation = keras.activations.GetActivationFromName(activation), InputShape = input_shape }); @@ -364,7 +416,7 @@ public Tensor dense(Tensor inputs, } - public EinsumDense EinsumDense(string equation, + public ILayer EinsumDense(string equation, Shape output_shape, string bias_axes, Activation activation = null, @@ -402,7 +454,7 @@ public EinsumDense EinsumDense(string equation, /// /// An integer to use as random seed. /// - public Dropout Dropout(float rate, Shape noise_shape = null, int? seed = null) + public ILayer Dropout(float rate, Shape noise_shape = null, int? seed = null) => new Dropout(new DropoutArgs { Rate = rate, @@ -421,7 +473,7 @@ public Dropout Dropout(float rate, Shape noise_shape = null, int? seed = null) /// Initializer for the embeddings matrix (see keras.initializers). /// /// - public Embedding Embedding(int input_dim, + public ILayer Embedding(int input_dim, int output_dim, IInitializer embeddings_initializer = null, bool mask_zero = false, @@ -446,7 +498,7 @@ public Embedding Embedding(int input_dim, /// If you never set it, then it will be "channels_last". /// /// - public Flatten Flatten(string data_format = null) + public ILayer Flatten(string data_format = null) => new Flatten(new FlattenArgs { DataFormat = data_format @@ -466,23 +518,61 @@ public Flatten Flatten(string data_format = null) /// In this case, values of 'None' in the 'shape' argument represent ragged dimensions. For more information about RaggedTensors, see this guide. /// /// A tensor. - public Tensors Input(Shape shape, + public KerasTensor Input(Shape shape = null, + int batch_size = -1, string name = null, + TF_DataType dtype = TF_DataType.DtInvalid, bool sparse = false, - bool ragged = false) + Tensor tensor = null, + bool ragged = false, + TypeSpec type_spec = null, + Shape batch_input_shape = null, + Shape batch_shape = null) { - var input_layer = new InputLayer(new InputLayerArgs + if(sparse && ragged) + { + throw new ValueError("Cannot set both `sparse` and `ragged` to `true` in a Keras `Input`."); + } + + InputLayerArgs input_layer_config = new() { - InputShape = shape, Name = name, + DType = dtype, Sparse = sparse, - Ragged = ragged - }); + Ragged = ragged, + InputTensor = tensor, + // skip the `type_spec` + }; + + if(shape is not null && batch_input_shape is not null) + { + throw new ValueError("Only provide the `shape` OR `batch_input_shape` argument " + + "to Input, not both at the same time."); + } + + if(batch_input_shape is null && shape is null && tensor is null && type_spec is null) + { + throw new ValueError("Please provide to Input a `shape` or a `tensor` or a `type_spec` argument. Note that " + + "`shape` does not include the batch dimension."); + } + + if(batch_input_shape is not null) + { + shape = batch_input_shape["1:"]; + input_layer_config.BatchInputShape = batch_input_shape; + } + else + { + input_layer_config.BatchSize = batch_size; + input_layer_config.InputShape = shape; + } + + var input_layer = new InputLayer(input_layer_config); return input_layer.InboundNodes[0].Outputs; } - public InputLayer InputLayer(Shape input_shape, + public ILayer InputLayer(Shape input_shape, string name = null, bool sparse = false, bool ragged = false) @@ -502,7 +592,7 @@ public InputLayer InputLayer(Shape input_shape, /// /// /// - public AveragePooling2D AveragePooling2D(Shape pool_size = null, + public ILayer AveragePooling2D(Shape pool_size = null, Shape strides = null, string padding = "valid", string data_format = null) @@ -527,11 +617,11 @@ public AveragePooling2D AveragePooling2D(Shape pool_size = null, /// channels_last corresponds to inputs with shape (batch, steps, features) while channels_first corresponds to inputs with shape (batch, features, steps). /// /// - public MaxPooling1D MaxPooling1D(int? pool_size = null, + public ILayer MaxPooling1D(int? pool_size = null, int? strides = null, string padding = "valid", string data_format = null) - => new MaxPooling1D(new Pooling1DArgs + => new MaxPooling1D(new MaxPooling1DArgs { PoolSize = pool_size ?? 2, Strides = strides ?? (pool_size ?? 2), @@ -564,7 +654,7 @@ public MaxPooling1D MaxPooling1D(int? pool_size = null, /// It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. /// If you never set it, then it will be "channels_last" /// - public MaxPooling2D MaxPooling2D(Shape pool_size = null, + public ILayer MaxPooling2D(Shape pool_size = null, Shape strides = null, string padding = "valid", string data_format = null) @@ -618,7 +708,7 @@ public Tensor max_pooling2d(Tensor inputs, return layer.Apply(inputs); } - public Layer LayerNormalization(Axis? axis, + public ILayer LayerNormalization(Axis? axis, float epsilon = 1e-3f, bool center = true, bool scale = true, @@ -638,46 +728,144 @@ public Layer LayerNormalization(Axis? axis, /// /// Negative slope coefficient. /// - public Layer LeakyReLU(float alpha = 0.3f) + public ILayer LeakyReLU(float alpha = 0.3f) => new LeakyReLu(new LeakyReLuArgs { Alpha = alpha }); + /// - /// Fully-connected RNN where the output is to be fed back to input. + /// Leaky version of a Rectified Linear Unit. /// - /// Positive integer, dimensionality of the output space. + /// Negative slope coefficient. /// - public Layer SimpleRNN(int units) => SimpleRNN(units, "tanh"); + public ILayer ReLU6() + => new ReLu6(); + + + public IRnnCell SimpleRNNCell( + int units, + string activation = "tanh", + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + float dropout = 0f, + float recurrent_dropout = 0f) + => new SimpleRNNCell(new SimpleRNNCellArgs + { + Units = units, + Activation = keras.activations.GetActivationFromName(activation), + UseBias = use_bias, + KernelInitializer = GetInitializerByName(kernel_initializer), + RecurrentInitializer = GetInitializerByName(recurrent_initializer), + BiasInitializer = GetInitializerByName(bias_initializer), + Dropout = dropout, + RecurrentDropout = recurrent_dropout + }); + + public IRnnCell StackedRNNCells( + IEnumerable cells) + => new StackedRNNCells(cells.ToList(), new StackedRNNCellsArgs()); /// - /// Fully-connected RNN where the output is to be fed back to input. + /// /// /// Positive integer, dimensionality of the output space. - /// Activation function to use. If you pass null, no activation is applied (ie. "linear" activation: a(x) = x). + /// The name of the activation function to use. Default: hyperbolic tangent (tanh).. /// - public Layer SimpleRNN(int units, - Activation activation = null) + public ILayer SimpleRNN(int units, + string activation = "tanh", + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + bool return_sequences = false, + bool return_state = false) => new SimpleRNN(new SimpleRNNArgs { Units = units, - Activation = activation + Activation = keras.activations.GetActivationFromName(activation), + KernelInitializer = GetInitializerByName(kernel_initializer), + RecurrentInitializer = GetInitializerByName(recurrent_initializer), + BiasInitializer = GetInitializerByName(bias_initializer), + ReturnSequences = return_sequences, + ReturnState = return_state }); /// /// /// - /// Positive integer, dimensionality of the output space. - /// The name of the activation function to use. Default: hyperbolic tangent (tanh).. + /// + /// + /// + /// + /// + /// + /// /// - public Layer SimpleRNN(int units, - string activation = "tanh") - => new SimpleRNN(new SimpleRNNArgs - { - Units = units, - Activation = GetActivationByName(activation) - }); + public ILayer RNN( + IRnnCell cell, + bool return_sequences = false, + bool return_state = false, + bool go_backwards = false, + bool stateful = false, + bool unroll = false, + bool time_major = false) + => new RNN(cell, new RNNArgs + { + ReturnSequences = return_sequences, + ReturnState = return_state, + GoBackwards = go_backwards, + Stateful = stateful, + Unroll = unroll, + TimeMajor = time_major + }); + + public ILayer RNN( + IEnumerable cell, + bool return_sequences = false, + bool return_state = false, + bool go_backwards = false, + bool stateful = false, + bool unroll = false, + bool time_major = false) + => new RNN(cell, new RNNArgs + { + ReturnSequences = return_sequences, + ReturnState = return_state, + GoBackwards = go_backwards, + Stateful = stateful, + Unroll = unroll, + TimeMajor = time_major + }); + + + public IRnnCell LSTMCell(int uints, + string activation = "tanh", + string recurrent_activation = "sigmoid", + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + bool unit_forget_bias = true, + float dropout = 0f, + float recurrent_dropout = 0f, + int implementation = 2) + => new LSTMCell(new LSTMCellArgs + { + Units = uints, + Activation = keras.activations.GetActivationFromName(activation), + RecurrentActivation = keras.activations.GetActivationFromName(recurrent_activation), + UseBias = use_bias, + KernelInitializer = GetInitializerByName(kernel_initializer), + RecurrentInitializer = GetInitializerByName(recurrent_initializer), + BiasInitializer = GetInitializerByName(bias_initializer), + UnitForgetBias = unit_forget_bias, + Dropout = dropout, + RecurrentDropout = recurrent_dropout, + Implementation = implementation + }); /// /// Long Short-Term Memory layer - Hochreiter 1997. @@ -706,7 +894,7 @@ public Layer SimpleRNN(int units, /// although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. /// /// - public Layer LSTM(int units, + public ILayer LSTM(int units, Activation activation = null, Activation recurrent_activation = null, bool use_bias = true, @@ -739,9 +927,122 @@ public Layer LSTM(int units, GoBackwards = go_backwards, Stateful = stateful, TimeMajor = time_major, - Unroll = unroll + Unroll = unroll, + UnitForgetBias = unit_forget_bias }); + /// + /// Cell class for the GRU layer. + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + /// + public IRnnCell GRUCell( + int units, + string activation = "tanh", + string recurrent_activation = "sigmoid", + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + float dropout = 0f, + float recurrent_dropout = 0f, + bool reset_after = true) + => new GRUCell(new GRUCellArgs + { + Units = units, + Activation = keras.activations.GetActivationFromName(activation), + RecurrentActivation = keras.activations.GetActivationFromName(recurrent_activation), + KernelInitializer = GetInitializerByName(kernel_initializer), + RecurrentInitializer = GetInitializerByName(recurrent_initializer), + BiasInitializer = GetInitializerByName(bias_initializer), + UseBias = use_bias, + Dropout = dropout, + RecurrentDropout = recurrent_dropout, + ResetAfter = reset_after + }); + + /// + /// Gated Recurrent Unit - Cho et al. 2014. + /// + /// Positive integer, dimensionality of the output space. + /// Activation function to use. If you pass `None`, no activation is applied.(ie. "linear" activation: `a(x) = x`). + /// Activation function to use for the recurrent step. If you pass `None`, no activation is applied. (ie. "linear" activation: `a(x) = x`). + /// Boolean, (default `True`), whether the layer uses a bias vector. + /// Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `glorot_uniform`. + /// Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `orthogonal`. + /// Initializer for the bias vector. Default: `zeros`. + /// Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. + /// Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. + /// + /// Boolean. Whether to return the last output in the output sequence, or the full sequence. Default: `False`. + /// Boolean. Whether to return the last state in addition to the output. Default: `False`. + /// Boolean (default `False`). If True, process the input sequence backwards and return the reversed sequence. + /// Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. + /// Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, + /// The shape format of the `inputs` and `outputs` tensors. + /// GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before", True = "after" (default and cuDNN compatible). + /// + public ILayer GRU( + int units, + string activation = "tanh", + string recurrent_activation = "sigmoid", + bool use_bias = true, + string kernel_initializer = "glorot_uniform", + string recurrent_initializer = "orthogonal", + string bias_initializer = "zeros", + float dropout = 0f, + float recurrent_dropout = 0f, + bool return_sequences = false, + bool return_state = false, + bool go_backwards = false, + bool stateful = false, + bool unroll = false, + bool time_major = false, + bool reset_after = true + ) + => new GRU(new GRUArgs + { + Units = units, + Activation = keras.activations.GetActivationFromName(activation), + RecurrentActivation = keras.activations.GetActivationFromName(recurrent_activation), + KernelInitializer = GetInitializerByName(kernel_initializer), + RecurrentInitializer = GetInitializerByName(recurrent_initializer), + BiasInitializer = GetInitializerByName(bias_initializer), + UseBias = use_bias, + Dropout = dropout, + RecurrentDropout = recurrent_dropout, + ReturnSequences = return_sequences, + ReturnState = return_state, + GoBackwards = go_backwards, + Stateful = stateful, + TimeMajor = time_major, + Unroll = unroll, + ResetAfter = reset_after + }); + + public ILayer Bidirectional( + ILayer layer, + string merge_mode = "concat", + NDArray weights = null, + ILayer backward_layer = null) + => new Bidirectional(new BidirectionalArgs + { + Layer = layer, + MergeMode = merge_mode, + Weights = weights, + BackwardLayer = backward_layer + }); + + /// /// /// @@ -749,7 +1050,7 @@ public Layer LSTM(int units, /// /// /// - public Rescaling Rescaling(float scale, + public ILayer Rescaling(float scale, float offset = 0, Shape input_shape = null) => new Rescaling(new RescalingArgs @@ -763,22 +1064,22 @@ public Rescaling Rescaling(float scale, /// /// /// - public Add Add() - => new Add(new MergeArgs { }); + public ILayer Add() + => new Add(new AddArgs { }); /// /// /// /// - public Subtract Subtract() - => new Subtract(new MergeArgs { }); + public ILayer Subtract() + => new Subtract(new SubtractArgs { }); /// /// Global max pooling operation for spatial data. /// /// - public GlobalAveragePooling2D GlobalAveragePooling2D() - => new GlobalAveragePooling2D(new Pooling2DArgs { }); + public ILayer GlobalAveragePooling2D() + => new GlobalAveragePooling2D(new GlobalAveragePooling2DArgs { }); /// /// Global average pooling operation for temporal data. @@ -787,8 +1088,8 @@ public GlobalAveragePooling2D GlobalAveragePooling2D() /// channels_last corresponds to inputs with shape (batch, steps, features) while channels_first corresponds to inputs with shape (batch, features, steps). /// /// - public GlobalAveragePooling1D GlobalAveragePooling1D(string data_format = "channels_last") - => new GlobalAveragePooling1D(new Pooling1DArgs { DataFormat = data_format }); + public ILayer GlobalAveragePooling1D(string data_format = "channels_last") + => new GlobalAveragePooling1D(new GlobalAveragePooling1DArgs { DataFormat = data_format }); /// /// Global max pooling operation for spatial data. @@ -796,8 +1097,8 @@ public GlobalAveragePooling1D GlobalAveragePooling1D(string data_format = "chann /// A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. /// channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). /// - public GlobalAveragePooling2D GlobalAveragePooling2D(string data_format = "channels_last") - => new GlobalAveragePooling2D(new Pooling2DArgs { DataFormat = data_format }); + public ILayer GlobalAveragePooling2D(string data_format = "channels_last") + => new GlobalAveragePooling2D(new GlobalAveragePooling2DArgs { DataFormat = data_format }); /// /// Global max pooling operation for 1D temporal data. @@ -807,8 +1108,8 @@ public GlobalAveragePooling2D GlobalAveragePooling2D(string data_format = "chann /// channels_last corresponds to inputs with shape (batch, steps, features) while channels_first corresponds to inputs with shape (batch, features, steps). /// /// - public GlobalMaxPooling1D GlobalMaxPooling1D(string data_format = "channels_last") - => new GlobalMaxPooling1D(new Pooling1DArgs { DataFormat = data_format }); + public ILayer GlobalMaxPooling1D(string data_format = "channels_last") + => new GlobalMaxPooling1D(new GlobalMaxPooling1DArgs { DataFormat = data_format }); /// /// Global max pooling operation for spatial data. @@ -816,26 +1117,8 @@ public GlobalMaxPooling1D GlobalMaxPooling1D(string data_format = "channels_last /// A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. /// channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). /// - public GlobalMaxPooling2D GlobalMaxPooling2D(string data_format = "channels_last") - => new GlobalMaxPooling2D(new Pooling2DArgs { DataFormat = data_format }); - - - /// - /// Get an activation function layer from its name. - /// - /// The name of the activation function. One of linear, relu, sigmoid, and tanh. - /// - - Activation GetActivationByName(string name) - => name switch - { - "linear" => keras.activations.Linear, - "relu" => keras.activations.Relu, - "sigmoid" => keras.activations.Sigmoid, - "tanh" => keras.activations.Tanh, - "softmax" => keras.activations.Softmax, - _ => throw new Exception($"Activation {name} not found") - }; + public ILayer GlobalMaxPooling2D(string data_format = "channels_last") + => new GlobalMaxPooling2D(new GlobalMaxPooling2DArgs { DataFormat = data_format }); /// /// Get an weights initializer from its name. @@ -848,7 +1131,31 @@ IInitializer GetInitializerByName(string name) "glorot_uniform" => tf.glorot_uniform_initializer, "zeros" => tf.zeros_initializer, "ones" => tf.ones_initializer, + "orthogonal" => tf.orthogonal_initializer, _ => tf.glorot_uniform_initializer }; + + public ILayer CategoryEncoding(int num_tokens, string output_mode = "one_hot", bool sparse = false, NDArray count_weights = null) + => new CategoryEncoding(new CategoryEncodingArgs + { + NumTokens = num_tokens, + OutputMode = output_mode, + Sparse = sparse, + CountWeights = count_weights + }); + + public ILayer Normalization(Shape? input_shape = null, int? axis = -1, float? mean = null, float? variance = null, bool invert = false) + => new Normalization(new NormalizationArgs + { + InputShape = input_shape, + Axis = axis, + Mean = mean, + Variance = variance, + Invert = invert + }); + + + + } } diff --git a/src/TensorFlowNET.Keras/Layers/Merging/Concatenate.cs b/src/TensorFlowNET.Keras/Layers/Merging/Concatenate.cs index 676d5752b..fa82426ce 100644 --- a/src/TensorFlowNET.Keras/Layers/Merging/Concatenate.cs +++ b/src/TensorFlowNET.Keras/Layers/Merging/Concatenate.cs @@ -4,6 +4,7 @@ using System.Text; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; using Tensorflow.Keras.Utils; using static Tensorflow.Binding; using static Tensorflow.KerasApi; @@ -23,7 +24,7 @@ public Concatenate(MergeArgs args) : base(args) this.args = args; } - protected override void build(Tensors inputs) + public override void build(KerasShapesWrapper input_shape) { /*var shape_set = new HashSet(); var reduced_inputs_shapes = inputs.Select(x => x.shape).ToArray(); @@ -37,6 +38,8 @@ protected override void build(Tensors inputs) }).ToArray(); shape_set.Add(shape); }*/ + _buildInputShape = input_shape; + built = true; } protected override Tensors _merge_function(Tensors inputs) diff --git a/src/TensorFlowNET.Keras/Layers/Merging/Merge.cs b/src/TensorFlowNET.Keras/Layers/Merging/Merge.cs index be8f574ec..bcbb20d88 100644 --- a/src/TensorFlowNET.Keras/Layers/Merging/Merge.cs +++ b/src/TensorFlowNET.Keras/Layers/Merging/Merge.cs @@ -4,6 +4,8 @@ using static Tensorflow.Binding; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -14,12 +16,13 @@ public Merge(MergeArgs args) : base(args) } - protected override void build(Tensors inputs) + public override void build(KerasShapesWrapper input_shape) { // output_shape = input_shape.dims[1^]; + _buildInputShape = input_shape; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { return _merge_function(inputs); } diff --git a/src/TensorFlowNET.Keras/Layers/Normalization/BatchNormalization.cs b/src/TensorFlowNET.Keras/Layers/Normalization/BatchNormalization.cs index da8e8c037..655581576 100644 --- a/src/TensorFlowNET.Keras/Layers/Normalization/BatchNormalization.cs +++ b/src/TensorFlowNET.Keras/Layers/Normalization/BatchNormalization.cs @@ -17,8 +17,10 @@ limitations under the License. using System; using System.Collections.Generic; using System.Linq; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; using Tensorflow.Keras.Utils; using static Tensorflow.Binding; @@ -53,13 +55,13 @@ public BatchNormalization(BatchNormalizationArgs args) : base(args) axis = args.Axis.dims.Select(x => (int)x).ToArray(); } - protected override void build(Tensors inputs) + public override void build(KerasShapesWrapper input_shape) { - Shape input_shape = inputs.shape; - var ndims = input_shape.ndim; + var single_shape = input_shape.ToSingleShape(); + var ndims = single_shape.ndim; foreach (var (idx, x) in enumerate(axis)) if (x < 0) - axis[idx] = ndims + x; + args.Axis.dims[idx] = axis[idx] = ndims + x; fused = ndims == 4; @@ -75,7 +77,7 @@ protected override void build(Tensors inputs) var axis_to_dim = new Dictionary(); foreach (var x in axis) - axis_to_dim[x] = (int)input_shape[x]; + axis_to_dim[x] = (int)single_shape[x]; inputSpec = new InputSpec(ndim: ndims, axes: axis_to_dim); var param_dtype = DType == TF_DataType.DtInvalid ? TF_DataType.TF_FLOAT : DType; @@ -119,6 +121,7 @@ protected override void build(Tensors inputs) throw new NotImplementedException("build when renorm is true"); built = true; + _buildInputShape = input_shape; } public override Shape ComputeOutputShape(Shape input_shape) @@ -144,7 +147,7 @@ bool _support_zero_size_input() return false; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensor outputs = null; var training_tensor = training == null diff --git a/src/TensorFlowNET.Keras/Layers/Normalization/LayerNormalization.cs b/src/TensorFlowNET.Keras/Layers/Normalization/LayerNormalization.cs index 51c6423c8..69bdfbaa0 100644 --- a/src/TensorFlowNET.Keras/Layers/Normalization/LayerNormalization.cs +++ b/src/TensorFlowNET.Keras/Layers/Normalization/LayerNormalization.cs @@ -17,8 +17,10 @@ limitations under the License. using System; using System.Collections.Generic; using System.Linq; +using Tensorflow.Common.Types; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; using Tensorflow.Keras.Utils; using static Tensorflow.Binding; @@ -49,17 +51,17 @@ public LayerNormalization(LayerNormalizationArgs args) : base(args) axis = args.Axis.axis; } - protected override void build(Tensors inputs) + public override void build(KerasShapesWrapper input_shape) { - Shape input_shape = inputs.shape; - var ndims = input_shape.ndim; + var single_shape = input_shape.ToSingleShape(); + var ndims = single_shape.ndim; foreach (var (idx, x) in enumerate(axis)) if (x < 0) axis[idx] = ndims + x; var axis_to_dim = new Dictionary(); foreach (var x in axis) - axis_to_dim[x] = (int)input_shape[x]; + axis_to_dim[x] = (int)single_shape[x]; inputSpec = new InputSpec(ndim: ndims, axes: axis_to_dim); var param_dtype = DType == TF_DataType.DtInvalid ? TF_DataType.TF_FLOAT : DType; @@ -82,6 +84,7 @@ protected override void build(Tensors inputs) _fused = _fused_can_be_used(ndims); built = true; + _buildInputShape = input_shape; } bool _fused_can_be_used(int ndims) @@ -99,7 +102,7 @@ public override Shape ComputeOutputShape(Shape input_shape) return input_shape; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { Tensor outputs = null; var inputs_dtype = inputs.dtype.as_base_dtype(); @@ -150,9 +153,22 @@ protected override Tensors Call(Tensors inputs, Tensor state = null, bool? train } else { + var input_dtype = inputs.dtype; + if ((input_dtype == tf.float16) && DType == tf.float32) inputs = tf.cast(inputs, tf.float32); + (Tensor mean, Tensor variance) = tf.nn.moments(inputs, axis, keep_dims: true); - } + (Tensor scale, Tensor offset) = (_broadcast(gamma), _broadcast(beta)); + + outputs = tf.nn.batch_normalization( + inputs, + mean, + variance, + offset: offset, + scale: scale, + variance_epsilon: epsilon); + outputs = tf.cast(outputs, input_dtype); + } // If some components of the shape got lost due to adjustments, fix that. outputs.shape = input_shape; diff --git a/src/TensorFlowNET.Keras/Layers/Normalization/Normalization.cs b/src/TensorFlowNET.Keras/Layers/Normalization/Normalization.cs new file mode 100644 index 000000000..987b56bc4 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Normalization/Normalization.cs @@ -0,0 +1,176 @@ +/***************************************************************************** + Copyright 2023 Haiping Chen. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +******************************************************************************/ + +using Tensorflow.Common.Types; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.Layers +{ + public class Normalization : PreprocessingLayer + { + NormalizationArgs _args; + + int[] axis; + int[] _reduce_axis; + IVariableV1 adapt_mean, adapt_variance, count; + Tensor mean, variance; + Shape _broadcast_shape; + float? input_mean, input_variance; + TF_DataType compute_dtype = tf.float32; + + public Normalization(NormalizationArgs args) : base(args) + { + _args = args; + if (args.Axis == null) + { + axis = new int[0]; + } + else + { + axis = args.Axis.axis; + } + input_mean = args.Mean; + input_variance = args.Variance; + } + + public override void build(KerasShapesWrapper input_shape) + { + base.build(input_shape); + var single_shape = input_shape.ToSingleShape(); + var ndim = single_shape.ndim; + foreach (var (idx, x) in enumerate(axis)) + if (x < 0) + axis[idx] = ndim + x; + + var _keep_axis = axis.Select(d => d >= 0 ? d : d + ndim).ToArray(); + _reduce_axis = range(ndim).Where(d => !_keep_axis.Contains(d)).ToArray(); + var _reduce_axis_mask = range(ndim).Select(d => _keep_axis.Contains(d) ? 0 : 1).ToArray(); + // Broadcast any reduced axes. + _broadcast_shape = new Shape(range(ndim).Select(d => _keep_axis.Contains(d) ? single_shape.dims[d] : 1).ToArray()); + var mean_and_var_shape = _keep_axis.Select(d => single_shape.dims[d]).ToArray(); + + var param_dtype = DType == TF_DataType.DtInvalid ? TF_DataType.TF_FLOAT : DType; + var param_shape = input_shape; + + if(input_mean == null) + { + adapt_mean = add_weight("mean", + mean_and_var_shape, + dtype: tf.float32, + initializer: tf.zeros_initializer, + trainable: false); + + adapt_variance = add_weight("variance", + mean_and_var_shape, + dtype: tf.float32, + initializer: tf.ones_initializer, + trainable: false); + + count = add_weight("count", + Shape.Scalar, + dtype: tf.int64, + initializer: tf.zeros_initializer, + trainable: false); + + finalize_state(); + } + else + { + mean = input_mean * np.ones(mean_and_var_shape); + variance = input_variance * np.ones(mean_and_var_shape); + mean = tf.reshape(mean, _broadcast_shape); + variance = tf.reshape(variance, _broadcast_shape); + mean = tf.cast(mean, compute_dtype); + variance = tf.cast(variance, compute_dtype); + } + } + + public override void reset_state() + { + if (input_mean != null && !built) + { + return; + } + adapt_mean.assign(tf.zeros_like(adapt_mean.AsTensor())); + adapt_variance.assign(tf.ones_like(adapt_variance.AsTensor())); + count.assign(tf.zeros_like(count.AsTensor())); + } + + public override void finalize_state() + { + if (input_mean != null && !built) + { + return; + } + mean = tf.reshape(adapt_mean.AsTensor(), _broadcast_shape); + variance = tf.reshape(adapt_variance.AsTensor(), _broadcast_shape); + } + + public override void update_state(Tensor data) + { + data = tf.cast(data, adapt_mean.dtype); + var (batch_mean, batch_variance) = tf.nn.moments(data, axes: _reduce_axis); + var batch_shape = tf.shape(data, out_type: count.dtype); + + var batch_count = constant_op.constant(1L); + if (_reduce_axis != null) + { + var batch_reduce_shape = tf.gather(batch_shape, constant_op.constant(_reduce_axis)); + batch_count = tf.reduce_prod(batch_reduce_shape); + } + var total_count = batch_count + count.AsTensor(); + var batch_weight = tf.cast(batch_count, dtype: compute_dtype) / tf.cast( + total_count, dtype: compute_dtype); + var existing_weight = 1.0 - batch_weight; + var total_mean = adapt_mean.AsTensor() * existing_weight + batch_mean * batch_weight; + + var total_variance = ( + adapt_variance.AsTensor() + tf.square(adapt_mean.AsTensor() - total_mean) + ) * existing_weight + ( + batch_variance + tf.square(batch_mean - total_mean) + ) * batch_weight; + adapt_mean.assign(total_mean); + adapt_variance.assign(total_variance); + count.assign(total_count); + } + + public override Shape ComputeOutputShape(Shape input_shape) + { + return input_shape; + } + + public override void adapt(Tensor data, int? batch_size = null, int? steps = null) + { + base.adapt(data, batch_size: batch_size, steps: steps); + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + if (_args.Invert) + { + return mean + ( + inputs * tf.maximum(tf.sqrt(variance), keras.backend.epsilon()) + ); + } + else + { + return (inputs - mean) / tf.maximum( + tf.sqrt(variance), keras.backend.epsilon()); + } + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling1D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling1D.cs index d62fb63a4..ffaabec97 100644 --- a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling1D.cs +++ b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling1D.cs @@ -2,6 +2,7 @@ using System.Collections.Generic; using System.Text; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -12,7 +13,7 @@ public GlobalAveragePooling1D(Pooling1DArgs args) { } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { if (data_format == "channels_last") return math_ops.reduce_mean(inputs, 1, false); diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling2D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling2D.cs index 000e4b8b9..e06665173 100644 --- a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling2D.cs +++ b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling2D.cs @@ -2,6 +2,7 @@ using System.Collections.Generic; using System.Text; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -12,7 +13,7 @@ public GlobalAveragePooling2D(Pooling2DArgs args) { } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { if (data_format == "channels_last") return math_ops.reduce_mean(inputs, (1, 2), false); diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling1D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling1D.cs index 2de4671ca..15695e8a7 100644 --- a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling1D.cs +++ b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling1D.cs @@ -2,6 +2,7 @@ using System.Collections.Generic; using System.Text; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -12,7 +13,7 @@ public GlobalMaxPooling1D(Pooling1DArgs args) { } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { if (data_format == "channels_last") return math_ops.reduce_max(inputs, 1, false); diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling2D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling2D.cs index b7e2c9452..76db858da 100644 --- a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling2D.cs +++ b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling2D.cs @@ -2,6 +2,7 @@ using System.Collections.Generic; using System.Text; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -12,7 +13,7 @@ public GlobalMaxPooling2D(Pooling2DArgs args) { } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { if (data_format == "channels_last") return math_ops.reduce_max(inputs, (1, 2), false); diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/Pooling1D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/Pooling1D.cs index 80b36c86d..81a340199 100644 --- a/src/TensorFlowNET.Keras/Layers/Pooling/Pooling1D.cs +++ b/src/TensorFlowNET.Keras/Layers/Pooling/Pooling1D.cs @@ -14,9 +14,12 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using System.Linq; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; using Tensorflow.Keras.Utils; +using Tensorflow.Common.Types; +using static Tensorflow.Binding; namespace Tensorflow.Keras.Layers { @@ -34,19 +37,23 @@ public Pooling1D(Pooling1DArgs args) input_spec = new InputSpec(ndim: 3); } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { - int[] pool_shape; - int[] strides; + int pad_axis = args.DataFormat == "channels_first" ? 2 : 3; + inputs = tf.expand_dims(inputs, pad_axis); + int[] pool_shape = new int[] { args.PoolSize, 1 }; + int[] strides = new int[] { args.Strides, 1 }; + var ndim = inputs[0].ndim; + if (args.DataFormat == "channels_last") { - pool_shape = new int[] { 1, args.PoolSize, 1 }; - strides = new int[] { 1, args.Strides, 1 }; + pool_shape = new int[] { 1 }.Concat(pool_shape).Concat(new int[] { 1 }).ToArray(); + strides = new int[] { 1 }.Concat(strides).Concat(new int[] { 1 }).ToArray(); } else { - pool_shape = new int[] { 1, 1, args.PoolSize }; - strides = new int[] { 1, 1, args.Strides }; + pool_shape = new int[] { 1, 1 }.Concat(pool_shape).ToArray(); + strides = new int[] { 1, 1 }.Concat(strides).ToArray(); } var outputs = args.PoolFunction.Apply( @@ -54,9 +61,9 @@ protected override Tensors Call(Tensors inputs, Tensor state = null, bool? train ksize: pool_shape, strides: strides, padding: args.Padding.ToUpper(), - data_format: conv_utils.convert_data_format(args.DataFormat, 3)); + data_format: conv_utils.convert_data_format(args.DataFormat, ndim)); - return outputs; + return tf.squeeze(outputs, pad_axis); } } } diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/Pooling2D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/Pooling2D.cs index e65bf0388..f83f1e152 100644 --- a/src/TensorFlowNET.Keras/Layers/Pooling/Pooling2D.cs +++ b/src/TensorFlowNET.Keras/Layers/Pooling/Pooling2D.cs @@ -17,6 +17,7 @@ limitations under the License. using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; using Tensorflow.Keras.Utils; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -36,13 +37,13 @@ public Pooling2D(Pooling2DArgs args) input_spec = new InputSpec(ndim: 4); } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { int[] pool_shape; int[] strides; if (args.DataFormat == "channels_last") { - pool_shape = new int[] { 1, (int)args.PoolSize.dims[0], (int)args.PoolSize.dims[1], 1 }; + pool_shape = new int[] { 1, (int)args.PoolSize.dims[0], (int)args.PoolSize.dims[1], 1 }; strides = new int[] { 1, (int)args.Strides.dims[0], (int)args.Strides.dims[1], 1 }; } else diff --git a/src/TensorFlowNET.Keras/Layers/Preprocessing/CategoryEncoding.cs b/src/TensorFlowNET.Keras/Layers/Preprocessing/CategoryEncoding.cs new file mode 100644 index 000000000..20d2a53d5 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Preprocessing/CategoryEncoding.cs @@ -0,0 +1,75 @@ +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Common.Types; +namespace Tensorflow.Keras.Layers +{ + /// + /// This layer provides options for condensing data into a categorical encoding when the total number of tokens are known in advance. + /// + public class CategoryEncoding : Layer + { + CategoryEncodingArgs args; + + public CategoryEncoding(CategoryEncodingArgs args) : base(args) + { + this.args = args; + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + var depth = args.NumTokens; + var max_value = tf.reduce_max(inputs); + var min_value = tf.reduce_min(inputs); + + /*var condition = tf.logical_and(tf.greater(tf.cast(constant_op.constant(depth), max_value.dtype), max_value), + tf.greater_equal(min_value, tf.cast(constant_op.constant(0), min_value.dtype)));*/ + + var bincounts = encode_categorical_inputs(inputs, args.OutputMode, depth, args.DType, + sparse: args.Sparse, + count_weights: args.CountWeights); + + if(args.OutputMode != "tf_idf") + { + return bincounts; + } + + return inputs; + } + + public override Shape ComputeOutputShape(Shape input_shape) + { + return input_shape; + } + + Tensors encode_categorical_inputs(Tensor inputs, string output_mode, int depth, + TF_DataType dtype = TF_DataType.TF_FLOAT, + bool sparse = false, + Tensor count_weights = null) + { + bool binary_output = false; + if (output_mode == "one_hot") + { + binary_output = true; + if (inputs.shape[-1] != 1) + { + inputs = tf.expand_dims(inputs, -1); + } + } + else if (output_mode == "multi_hot") + { + binary_output = true; + } + + var depth_tensor = constant_op.constant(depth); + var result = tf.math.bincount(inputs, + weights: count_weights, + minlength: depth_tensor, + maxlength: depth_tensor, + dtype: dtype, + axis: -1, + binary_output: binary_output); + + return result; + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Preprocessing/PreprocessingLayer.cs b/src/TensorFlowNET.Keras/Layers/Preprocessing/PreprocessingLayer.cs index bd86874b2..a032dcd09 100644 --- a/src/TensorFlowNET.Keras/Layers/Preprocessing/PreprocessingLayer.cs +++ b/src/TensorFlowNET.Keras/Layers/Preprocessing/PreprocessingLayer.cs @@ -3,14 +3,95 @@ using System.Text; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Engine.DataAdapters; namespace Tensorflow.Keras.Layers { public class PreprocessingLayer : Layer { + bool _is_compiled; + bool _is_adapted; + IVariableV1 _steps_per_execution; + PreprocessingLayerArgs _args; public PreprocessingLayer(PreprocessingLayerArgs args) : base(args) { + _args = args; + } + + public override void adapt(Tensor data, int? batch_size = null, int? steps = null) + { + if (!_is_compiled) + { + compile(); + } + + if (built) + { + reset_state(); + } + + var data_handler = new DataHandler(new DataHandlerArgs + { + X = new Tensors(data), + BatchSize = _args.BatchSize, + Epochs = 1, + StepsPerExecution = _steps_per_execution + }); + + foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) + { + foreach (var _ in data_handler.steps()) + { + run_step(iterator); + } + } + finalize_state(); + _is_adapted = true; + } + + private void run_step(OwnedIterator iterator) + { + var data = iterator.next(); + _adapt_maybe_build(data[0]); + update_state(data[0]); + } + + public virtual void reset_state() + { + + } + + public virtual void finalize_state() + { + + } + + public virtual void update_state(Tensor data) + { + + } + + private void _adapt_maybe_build(Tensor data) + { + if (!built) + { + var data_shape = data.shape; + var data_shape_nones = Enumerable.Range(0, data.ndim).Select(x => -1).ToArray(); + _args.BatchInputShape = BatchInputShape ?? new Saving.KerasShapesWrapper(new Shape(data_shape_nones)); + build(new Saving.KerasShapesWrapper(data_shape)); + built = true; + } + } + + public void compile(bool run_eagerly = false, int steps_per_execution = 1) + { + _steps_per_execution = tf.Variable( + steps_per_execution, + dtype: tf.int64, + aggregation: VariableAggregation.OnlyFirstReplica + ); + _is_compiled = true; } } } diff --git a/src/TensorFlowNET.Keras/Layers/Rescaling/Rescaling.cs b/src/TensorFlowNET.Keras/Layers/Preprocessing/Rescaling.cs similarity index 82% rename from src/TensorFlowNET.Keras/Layers/Rescaling/Rescaling.cs rename to src/TensorFlowNET.Keras/Layers/Preprocessing/Rescaling.cs index 5fc581af9..7fa367eea 100644 --- a/src/TensorFlowNET.Keras/Layers/Rescaling/Rescaling.cs +++ b/src/TensorFlowNET.Keras/Layers/Preprocessing/Rescaling.cs @@ -1,5 +1,6 @@ using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -17,7 +18,7 @@ public Rescaling(RescalingArgs args) : base(args) this.args = args; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { scale = constant_op.constant(args.Scale, args.DType); offset = constant_op.constant(args.Offset, args.DType); diff --git a/src/TensorFlowNET.Keras/Layers/Preprocessing/Resizing.cs b/src/TensorFlowNET.Keras/Layers/Preprocessing/Resizing.cs index 603e2b071..081966ad4 100644 --- a/src/TensorFlowNET.Keras/Layers/Preprocessing/Resizing.cs +++ b/src/TensorFlowNET.Keras/Layers/Preprocessing/Resizing.cs @@ -4,6 +4,7 @@ using System.Text; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -19,7 +20,7 @@ public Resizing(ResizingArgs args) : base(args) this.args = args; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { return image_ops_impl.resize_images_v2(inputs, new[] { args.Height, args.Width }, method: args.Interpolation); } diff --git a/src/TensorFlowNET.Keras/Layers/Preprocessing/TextVectorization.cs b/src/TensorFlowNET.Keras/Layers/Preprocessing/TextVectorization.cs index 6d37eaa12..6c504006a 100644 --- a/src/TensorFlowNET.Keras/Layers/Preprocessing/TextVectorization.cs +++ b/src/TensorFlowNET.Keras/Layers/Preprocessing/TextVectorization.cs @@ -3,6 +3,7 @@ using System.Text; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; using static Tensorflow.Binding; namespace Tensorflow.Keras.Layers @@ -35,14 +36,14 @@ public override void adapt(IDatasetV2 data, bool reset_state = true) var shape = data.output_shapes[0]; if (shape.ndim == 1) data = data.map(tensor => array_ops.expand_dims(tensor, -1)); - build(data.variant_tensor); + build(new KerasShapesWrapper(data.variant_tensor.shape)); var preprocessed_inputs = data.map(_preprocess); _index_lookup_layer.adapt(preprocessed_inputs); } - protected override void build(Tensors inputs) + public override void build(KerasShapesWrapper input_shape) { - base.build(inputs); + base.build(input_shape); } Tensors _preprocess(Tensors inputs) diff --git a/src/TensorFlowNET.Keras/Layers/RNN.cs b/src/TensorFlowNET.Keras/Layers/RNN.cs deleted file mode 100644 index 293c27fb6..000000000 --- a/src/TensorFlowNET.Keras/Layers/RNN.cs +++ /dev/null @@ -1,119 +0,0 @@ -using System; -using System.Collections.Generic; -using Tensorflow.Keras.ArgsDefinition; -using Tensorflow.Keras.Engine; -// from tensorflow.python.distribute import distribution_strategy_context as ds_context; - -namespace Tensorflow.Keras.Layers -{ - public class RNN : Layer - { - private RNNArgs args; - private object input_spec = null; // or NoneValue?? - private object state_spec = null; - private object _states = null; - private object constants_spec = null; - private int _num_constants = 0; - - public RNN(RNNArgs args) : base(PreConstruct(args)) - { - this.args = args; - SupportsMasking = true; - - // The input shape is unknown yet, it could have nested tensor inputs, and - // the input spec will be the list of specs for nested inputs, the structure - // of the input_spec will be the same as the input. - - //if(stateful) - //{ - // if (ds_context.has_strategy()) // ds_context???? - // { - // throw new Exception("RNNs with stateful=True not yet supported with tf.distribute.Strategy"); - // } - //} - } - - private static RNNArgs PreConstruct(RNNArgs args) - { - if (args.Kwargs == null) - { - args.Kwargs = new Dictionary(); - } - - // If true, the output for masked timestep will be zeros, whereas in the - // false case, output from previous timestep is returned for masked timestep. - var zeroOutputForMask = (bool)args.Kwargs.Get("zero_output_for_mask", false); - - Shape input_shape; - var propIS = (Shape)args.Kwargs.Get("input_shape", null); - var propID = (int?)args.Kwargs.Get("input_dim", null); - var propIL = (int?)args.Kwargs.Get("input_length", null); - - if (propIS == null && (propID != null || propIL != null)) - { - input_shape = new Shape( - propIL ?? -1, - propID ?? -1); - args.Kwargs["input_shape"] = input_shape; - } - - return args; - } - - public RNN New(LayerRnnCell cell, - bool return_sequences = false, - bool return_state = false, - bool go_backwards = false, - bool stateful = false, - bool unroll = false, - bool time_major = false) - => new RNN(new RNNArgs - { - Cell = cell, - ReturnSequences = return_sequences, - ReturnState = return_state, - GoBackwards = go_backwards, - Stateful = stateful, - Unroll = unroll, - TimeMajor = time_major - }); - - public RNN New(IList cell, - bool return_sequences = false, - bool return_state = false, - bool go_backwards = false, - bool stateful = false, - bool unroll = false, - bool time_major = false) - => new RNN(new RNNArgs - { - Cell = new StackedRNNCells(new StackedRNNCellsArgs { Cells = cell }), - ReturnSequences = return_sequences, - ReturnState = return_state, - GoBackwards = go_backwards, - Stateful = stateful, - Unroll = unroll, - TimeMajor = time_major - }); - - - protected Tensor get_initial_state(Tensor inputs) - { - return _generate_zero_filled_state_for_cell(null, null); - } - - Tensor _generate_zero_filled_state_for_cell(LSTMCell cell, Tensor batch_size) - { - throw new NotImplementedException(""); - } - - // Check whether the state_size contains multiple states. - public static bool _is_multiple_state(object state_size) - { - var myIndexerProperty = state_size.GetType().GetProperty("Item"); - return myIndexerProperty != null - && myIndexerProperty.GetIndexParameters().Length == 1 - && !(state_size.GetType() == typeof(Shape)); - } - } -} diff --git a/src/TensorFlowNET.Keras/Layers/Regularization/Dropout.cs b/src/TensorFlowNET.Keras/Layers/Regularization/Dropout.cs index aa3a92a49..ada1851ce 100644 --- a/src/TensorFlowNET.Keras/Layers/Regularization/Dropout.cs +++ b/src/TensorFlowNET.Keras/Layers/Regularization/Dropout.cs @@ -1,4 +1,5 @@ -using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Common.Types; +using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; using Tensorflow.Keras.Utils; using static Tensorflow.Binding; @@ -15,7 +16,7 @@ public Dropout(DropoutArgs args) this.args = args; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { if (training == null) training = false; diff --git a/src/TensorFlowNET.Keras/Layers/Reshaping/Cropping1D.cs b/src/TensorFlowNET.Keras/Layers/Reshaping/Cropping1D.cs new file mode 100644 index 000000000..7d5385e6f --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Reshaping/Cropping1D.cs @@ -0,0 +1,66 @@ +using Tensorflow.Keras.ArgsDefinition.Reshaping; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; + +namespace Tensorflow.Keras.Layers.Reshaping +{ + public class Cropping1D : Layer + { + Cropping1DArgs args; + public Cropping1D(Cropping1DArgs args) : base(args) + { + this.args = args; + } + + public override void build(KerasShapesWrapper input_shape) + { + if (args.cropping.rank != 1) + { + // throw an ValueError exception + throw new ValueError(""); + } + else if (args.cropping.shape[0] > 2 || args.cropping.shape[0] < 1) + { + throw new ValueError("The `cropping` argument must be a tuple of 2 integers."); + } + built = true; + _buildInputShape = input_shape; + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + Tensor output = inputs; + if (output.rank != 3) + { + // throw an ValueError exception + throw new ValueError("Expected dim=3, found dim=" + output.rank); + } + if (args.cropping.shape[0] == 1) + { + int crop_start = args.cropping[0]; + output = output[new Slice(), new Slice(crop_start, (int)output.shape[1] - crop_start), new Slice()]; + } + else + { + int crop_start = args.cropping[0], crop_end = args.cropping[1]; + output = output[new Slice(), new Slice(crop_start, (int)output.shape[1] - crop_end), new Slice()]; + } + return output; + } + + public override Shape ComputeOutputShape(Shape input_shape) + { + if (args.cropping.shape[0] == 1) + { + int crop = args.cropping[0]; + return new Shape((int)input_shape[0], (int)(input_shape[1] - crop * 2), (int)input_shape[2]); + } + else + { + int crop_start = args.cropping[0], crop_end = args.cropping[1]; + return new Shape((int)input_shape[0], (int)(input_shape[1] - crop_start - crop_end), (int)input_shape[2]); + } + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Reshaping/Cropping2D.cs b/src/TensorFlowNET.Keras/Layers/Reshaping/Cropping2D.cs new file mode 100644 index 000000000..4a5c6eabc --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Reshaping/Cropping2D.cs @@ -0,0 +1,142 @@ +using Tensorflow.Keras.ArgsDefinition.Reshaping; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; + +namespace Tensorflow.Keras.Layers.Reshaping +{ + /// + /// Crop the input along axis 1 and 2. + /// For example: + /// shape (1, 5, 5, 5) -- crop2D ((1, 2), (1, 3)) --> shape (1, 2, 1, 5) + /// + public class Cropping2D : Layer + { + Cropping2DArgs args; + public Cropping2D(Cropping2DArgs args) : base(args) + { + this.args = args; + } + public override void build(KerasShapesWrapper input_shape) + { + built = true; + _buildInputShape = input_shape; + } + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + Tensor output = inputs; + if (output.rank != 4) + { + // throw an ValueError exception + throw new ValueError("Expected dim=4, found dim=" + output.rank); + } + if (args.cropping.shape == new Shape(1)) + { + int crop = args.cropping[0]; + if (args.data_format == Cropping2DArgs.DataFormat.channels_last) + { + output = output[new Slice(), + new Slice(crop, (int)output.shape[1] - crop), + new Slice(crop, (int)output.shape[2] - crop), + new Slice()]; + } + else + { + output = output[new Slice(), + new Slice(), + new Slice(crop, (int)output.shape[2] - crop), + new Slice(crop, (int)output.shape[3] - crop)]; + } + } + // a tuple of 2 integers + else if (args.cropping.shape == new Shape(2)) + { + int crop_1 = args.cropping[0]; + int crop_2 = args.cropping[1]; + if (args.data_format == Cropping2DArgs.DataFormat.channels_last) + { + output = output[new Slice(), + new Slice(crop_1, (int)output.shape[1] - crop_1), + new Slice(crop_2, (int)output.shape[2] - crop_2), + new Slice()]; + } + else + { + output = output[new Slice(), + new Slice(), + new Slice(crop_1, (int)output.shape[2] - crop_1), + new Slice(crop_2, (int)output.shape[3] - crop_2)]; + } + } + else if (args.cropping.shape[0] == 2 && args.cropping.shape[1] == 2) + { + int x_start = args.cropping[0, 0], x_end = args.cropping[0, 1]; + int y_start = args.cropping[1, 0], y_end = args.cropping[1, 1]; + if (args.data_format == Cropping2DArgs.DataFormat.channels_last) + { + output = output[new Slice(), + new Slice(x_start, (int)output.shape[1] - x_end), + new Slice(y_start, (int)output.shape[2] - y_end), + new Slice()]; + } + else + { + output = output[new Slice(), + new Slice(), + new Slice(x_start, (int)output.shape[2] - x_end), + new Slice(y_start, (int)output.shape[3] - y_end) + ]; + } + } + return output; + } + + public override Shape ComputeOutputShape(Shape input_shape) + { + if (args.cropping.shape == new Shape(1)) + { + int crop = args.cropping[0]; + if (args.data_format == Cropping2DArgs.DataFormat.channels_last) + { + return new Shape((int)input_shape[0], (int)input_shape[1] - crop * 2, (int)input_shape[2] - crop * 2, (int)input_shape[3]); + } + else + { + return new Shape((int)input_shape[0], (int)input_shape[1], (int)input_shape[2] - crop * 2, (int)input_shape[3] - crop * 2); + } + } + // a tuple of 2 integers + else if (args.cropping.shape == new Shape(2)) + { + int crop_1 = args.cropping[0], crop_2 = args.cropping[1]; + if (args.data_format == Cropping2DArgs.DataFormat.channels_last) + { + return new Shape((int)input_shape[0], (int)input_shape[1] - crop_1 * 2, (int)input_shape[2] - crop_2 * 2, (int)input_shape[3]); + } + else + { + return new Shape((int)input_shape[0], (int)input_shape[1], (int)input_shape[2] - crop_1 * 2, (int)input_shape[3] - crop_2 * 2); + } + } + else if (args.cropping.shape == new Shape(2, 2)) + { + int crop_1_start = args.cropping[0, 0], crop_1_end = args.cropping[0, 1]; + int crop_2_start = args.cropping[1, 0], crop_2_end = args.cropping[1, 1]; + if (args.data_format == Cropping2DArgs.DataFormat.channels_last) + { + return new Shape((int)input_shape[0], (int)input_shape[1] - crop_1_start - crop_1_end, + (int)input_shape[2] - crop_2_start - crop_2_end, (int)input_shape[3]); + } + else + { + return new Shape((int)input_shape[0], (int)input_shape[1], + (int)input_shape[2] - crop_1_start - crop_1_end, (int)input_shape[3] - crop_2_start - crop_2_end); + } + } + else + { + throw new ValueError(); + } + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Reshaping/Cropping3D.cs b/src/TensorFlowNET.Keras/Layers/Reshaping/Cropping3D.cs new file mode 100644 index 000000000..83f86c6fc --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Reshaping/Cropping3D.cs @@ -0,0 +1,152 @@ +using Tensorflow.Keras.ArgsDefinition.Reshaping; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; + +namespace Tensorflow.Keras.Layers.Reshaping +{ + /// + /// Similar to copping 2D + /// + public class Cropping3D : Layer + { + Cropping3DArgs args; + public Cropping3D(Cropping3DArgs args) : base(args) + { + this.args = args; + } + + public override void build(KerasShapesWrapper input_shape) + { + built = true; + _buildInputShape = input_shape; + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + Tensor output = inputs; + if (output.rank != 5) + { + // throw an ValueError exception + throw new ValueError("Expected dim=5, found dim=" + output.rank); + } + + if (args.cropping.shape == new Shape(1)) + { + int crop = args.cropping[0]; + if (args.data_format == Cropping3DArgs.DataFormat.channels_last) + { + output = output[new Slice(), + new Slice(crop, (int)output.shape[1] - crop), + new Slice(crop, (int)output.shape[2] - crop), + new Slice(crop, (int)output.shape[3] - crop), + new Slice()]; + } + else + { + output = output[new Slice(), + new Slice(), + new Slice(crop, (int)output.shape[2] - crop), + new Slice(crop, (int)output.shape[3] - crop), + new Slice(crop, (int)output.shape[4] - crop)]; + } + + } + // int[1][3] equivalent to a tuple of 3 integers + else if (args.cropping.shape == new Shape(3)) + { + var crop_1 = args.cropping[0]; + var crop_2 = args.cropping[1]; + var crop_3 = args.cropping[2]; + if (args.data_format == Cropping3DArgs.DataFormat.channels_last) + { + output = output[new Slice(), + new Slice(crop_1, (int)output.shape[1] - crop_1), + new Slice(crop_2, (int)output.shape[2] - crop_2), + new Slice(crop_3, (int)output.shape[3] - crop_3), + new Slice()]; + } + else + { + output = output[new Slice(), + new Slice(), + new Slice(crop_1, (int)output.shape[2] - crop_1), + new Slice(crop_2, (int)output.shape[3] - crop_2), + new Slice(crop_3, (int)output.shape[4] - crop_3)]; + } + } + else if (args.cropping.shape[0] == 3 && args.cropping.shape[1] == 2) + { + int x = args.cropping[0, 0], x_end = args.cropping[0, 1]; + int y = args.cropping[1, 0], y_end = args.cropping[1, 1]; + int z = args.cropping[2, 0], z_end = args.cropping[2, 1]; + if (args.data_format == Cropping3DArgs.DataFormat.channels_last) + { + output = output[new Slice(), + new Slice(x, (int)output.shape[1] - x_end), + new Slice(y, (int)output.shape[2] - y_end), + new Slice(z, (int)output.shape[3] - z_end), + new Slice()]; + } + else + { + output = output[new Slice(), + new Slice(), + new Slice(x, (int)output.shape[2] - x_end), + new Slice(y, (int)output.shape[3] - y_end), + new Slice(z, (int)output.shape[4] - z_end) + ]; + } + } + return output; + } + public override Shape ComputeOutputShape(Shape input_shape) + { + if (args.cropping.shape == new Shape(1)) + { + int crop = args.cropping[0]; + if (args.data_format == Cropping3DArgs.DataFormat.channels_last) + { + return new Shape((int)input_shape[0], (int)input_shape[1] - crop * 2, (int)input_shape[2] - crop * 2, (int)input_shape[3] - crop * 2, (int)input_shape[4]); + } + else + { + return new Shape((int)input_shape[0], (int)input_shape[1], (int)input_shape[2] - crop * 2, (int)input_shape[3] - crop * 2, (int)input_shape[4] - crop * 2); + } + } + // int[1][3] equivalent to a tuple of 3 integers + else if (args.cropping.shape == new Shape(3)) + { + var crop_start_1 = args.cropping[0]; + var crop_start_2 = args.cropping[1]; + var crop_start_3 = args.cropping[2]; + if (args.data_format == Cropping3DArgs.DataFormat.channels_last) + { + return new Shape((int)input_shape[0], (int)input_shape[1] - crop_start_1 * 2, (int)input_shape[2] - crop_start_2 * 2, (int)input_shape[3] - crop_start_3 * 2, (int)input_shape[4]); + } + else + { + return new Shape((int)input_shape[0], (int)input_shape[1], (int)input_shape[2] - crop_start_1 * 2, (int)input_shape[3] - crop_start_2 * 2, (int)input_shape[4] - crop_start_3 * 2); + } + } + else if (args.cropping.shape == new Shape(3, 2)) + { + int x = args.cropping[0, 0], x_end = args.cropping[0, 1]; + int y = args.cropping[1, 0], y_end = args.cropping[1, 1]; + int z = args.cropping[2, 0], z_end = args.cropping[2, 1]; + if (args.data_format == Cropping3DArgs.DataFormat.channels_last) + { + return new Shape((int)input_shape[0], (int)input_shape[1] - x - x_end, (int)input_shape[2] - y - y_end, (int)input_shape[3] - z - z_end, (int)input_shape[4]); + } + else + { + return new Shape((int)input_shape[0], (int)input_shape[1], (int)input_shape[2] - x - x_end, (int)input_shape[3] - y - y_end, (int)input_shape[4] - z - z_end); + } + } + else + { + throw new ValueError(); + } + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Reshaping/Flatten.cs b/src/TensorFlowNET.Keras/Layers/Reshaping/Flatten.cs index 539b5f624..a6192849d 100644 --- a/src/TensorFlowNET.Keras/Layers/Reshaping/Flatten.cs +++ b/src/TensorFlowNET.Keras/Layers/Reshaping/Flatten.cs @@ -1,5 +1,6 @@ using System; using System.Linq; +using Tensorflow.Common.Types; using Tensorflow.Framework; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; @@ -23,7 +24,7 @@ public Flatten(FlattenArgs args) _channels_first = args.DataFormat == "channels_first"; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { if (_channels_first) { diff --git a/src/TensorFlowNET.Keras/Layers/Reshaping/Permute.cs b/src/TensorFlowNET.Keras/Layers/Reshaping/Permute.cs index 08089900a..7fdb816bf 100644 --- a/src/TensorFlowNET.Keras/Layers/Reshaping/Permute.cs +++ b/src/TensorFlowNET.Keras/Layers/Reshaping/Permute.cs @@ -5,34 +5,45 @@ using Tensorflow.Keras.Utils; using static Tensorflow.Binding; using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { - public class Permute : Layer { - int[] dims, permute; - public Permute ( PermuteArgs args ) : base(args) { - this.dims = args.dims; + public class Permute : Layer + { + int[] dims, permute; + public Permute(PermuteArgs args) : base(args) + { + this.dims = args.dims; + } + public override void build(KerasShapesWrapper input_shape) + { + var single_shape = input_shape.ToSingleShape(); + var rank = single_shape.rank; + if (dims.Length != rank - 1) + { + throw new ValueError("Dimensions must match."); } - protected override void build ( Tensors inputs ) { - var rank = inputs.rank; - if ( dims.Length != rank - 1 ) { - throw new ValueError("Dimensions must match."); - } - permute = new int[inputs.rank]; - dims.CopyTo(permute, 1); - built = true; + permute = new int[single_shape.rank]; + dims.CopyTo(permute, 1); + built = true; + _buildInputShape = input_shape; + } + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + Tensor outputs = inputs; + return tf.transpose(outputs, new Axis(permute)); + } + public override Shape ComputeOutputShape(Shape input_shape) + { + Shape output_shape = new Shape(input_shape.dims); + for (int i = 0; i < dims.Length; i += 1) + { + var d = dims[i]; + var target_dim = input_shape[d]; + output_shape[i + 1] = target_dim; } - protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { - Tensor outputs = inputs; - return tf.transpose(outputs, new Axis(permute)); - } - public override Shape ComputeOutputShape ( Shape input_shape ) { - Shape output_shape = new Shape(input_shape.dims); - for ( int i = 0; i < dims.Length; i += 1 ) { - var d = dims[i]; - var target_dim = input_shape[d]; - output_shape[i + 1] = target_dim; - } - return output_shape; - } - } + return output_shape; + } + } } diff --git a/src/TensorFlowNET.Keras/Layers/Reshaping/Reshape.cs b/src/TensorFlowNET.Keras/Layers/Reshaping/Reshape.cs index 92a772f34..4b3d30e29 100644 --- a/src/TensorFlowNET.Keras/Layers/Reshaping/Reshape.cs +++ b/src/TensorFlowNET.Keras/Layers/Reshaping/Reshape.cs @@ -4,6 +4,7 @@ using System.Collections.Generic; using System; using System.Linq; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -19,7 +20,7 @@ public Reshape(ReshapeArgs args) this.args = args; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { var shapes = new List(); shapes.Add(array_ops.shape(inputs)[0]); diff --git a/src/TensorFlowNET.Keras/Layers/Reshaping/UpSampling1D.cs b/src/TensorFlowNET.Keras/Layers/Reshaping/UpSampling1D.cs new file mode 100644 index 000000000..3bc8d6c6b --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Reshaping/UpSampling1D.cs @@ -0,0 +1,32 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Common.Types; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; + + +namespace Tensorflow.Keras.Layers +{ + /// + /// Upsampling layer for 1D inputs. + /// + public class UpSampling1D : Layer + { + UpSampling1DArgs args; + int size; + + public UpSampling1D(UpSampling1DArgs args) : base(args) + { + this.args = args; + size = args.Size; + inputSpec = new InputSpec(ndim: 3); + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + var output = keras.backend.repeat_elements(inputs, size, axis: 1); + return output; + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Reshaping/UpSampling2D.cs b/src/TensorFlowNET.Keras/Layers/Reshaping/UpSampling2D.cs index 8314151f6..cb579d61e 100644 --- a/src/TensorFlowNET.Keras/Layers/Reshaping/UpSampling2D.cs +++ b/src/TensorFlowNET.Keras/Layers/Reshaping/UpSampling2D.cs @@ -6,9 +6,13 @@ using Tensorflow.Keras.Utils; using static Tensorflow.Binding; using static Tensorflow.KerasApi; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { + /// + /// Upsampling layer for 2D inputs. + /// public class UpSampling2D : Layer { UpSampling2DArgs args; @@ -24,7 +28,7 @@ public UpSampling2D(UpSampling2DArgs args) : base(args) inputSpec = new InputSpec(ndim: 4); } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { return keras.backend.resize_images(inputs, size[0], size[1], diff --git a/src/TensorFlowNET.Keras/Layers/Reshaping/ZeroPadding2D.cs b/src/TensorFlowNET.Keras/Layers/Reshaping/ZeroPadding2D.cs index 7c87100a2..3b37dac46 100644 --- a/src/TensorFlowNET.Keras/Layers/Reshaping/ZeroPadding2D.cs +++ b/src/TensorFlowNET.Keras/Layers/Reshaping/ZeroPadding2D.cs @@ -2,6 +2,7 @@ using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; using Tensorflow.Keras.Utils; +using Tensorflow.Common.Types; using static Tensorflow.KerasApi; namespace Tensorflow.Keras.Layers @@ -26,7 +27,7 @@ public ZeroPadding2D(ZeroPadding2DArgs args, string data_format = null) this.input_spec = new InputSpec(ndim: 4); } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { return keras.backend.spatial_2d_padding(inputs, padding: padding, diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/BaseWrapper.cs b/src/TensorFlowNET.Keras/Layers/Rnn/BaseWrapper.cs new file mode 100644 index 000000000..737f88cd4 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/BaseWrapper.cs @@ -0,0 +1,33 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.Layers +{ + /// + /// Abstract wrapper base class. Wrappers take another layer and augment it in various ways. + /// Do not use this class as a layer, it is only an abstract base class. + /// Two usable wrappers are the `TimeDistributed` and `Bidirectional` wrappers. + /// + public abstract class Wrapper: Layer + { + public ILayer _layer; + public Wrapper(WrapperArgs args):base(args) + { + _layer = args.Layer; + } + + public virtual void Build(KerasShapesWrapper input_shape) + { + if (!_layer.Built) + { + _layer.build(input_shape); + } + built = true; + } + + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/Bidirectional.cs b/src/TensorFlowNET.Keras/Layers/Rnn/Bidirectional.cs new file mode 100644 index 000000000..0566b08ad --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/Bidirectional.cs @@ -0,0 +1,285 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using System.Text; +using Tensorflow.Common.Types; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.Layers +{ + /// + /// Bidirectional wrapper for RNNs. + /// + public class Bidirectional: Wrapper + { + int _num_constants = 0; + bool _support_masking = true; + bool _return_state; + bool _stateful; + bool _return_sequences; + BidirectionalArgs _args; + RNNArgs _layer_args_copy; + RNN _forward_layer; + RNN _backward_layer; + RNN _layer; + InputSpec _input_spec; + public Bidirectional(BidirectionalArgs args):base(args) + { + _args = args; + if (_args.Layer is not ILayer) + throw new ValueError( + "Please initialize `Bidirectional` layer with a " + + $"`tf.keras.layers.Layer` instance. Received: {_args.Layer}"); + + if (_args.BackwardLayer is not null && _args.BackwardLayer is not ILayer) + throw new ValueError( + "`backward_layer` need to be a `tf.keras.layers.Layer` " + + $"instance. Received: {_args.BackwardLayer}"); + if (!new List { "sum", "mul", "ave", "concat", null }.Contains(_args.MergeMode)) + { + throw new ValueError( + $"Invalid merge mode. Received: {_args.MergeMode}. " + + "Merge mode should be one of " + + "{\"sum\", \"mul\", \"ave\", \"concat\", null}" + ); + } + if (_args.Layer is RNN) + { + _layer = _args.Layer as RNN; + } + else + { + throw new ValueError( + "Bidirectional only support RNN instance such as LSTM or GRU"); + } + _return_state = _layer.Args.ReturnState; + _return_sequences = _layer.Args.ReturnSequences; + _stateful = _layer.Args.Stateful; + _layer_args_copy = _layer.Args.Clone(); + // We don't want to track `layer` since we're already tracking the two + // copies of it we actually run. + // TODO(Wanglongzhi2001), since the feature of setattr_tracking has not been implemented. + // _setattr_tracking = false; + // super().__init__(layer, **kwargs) + // _setattr_tracking = true; + + // Recreate the forward layer from the original layer config, so that it + // will not carry over any state from the layer. + if (_layer is LSTM) + { + var arg = _layer_args_copy as LSTMArgs; + _forward_layer = new LSTM(arg); + } + else if(_layer is SimpleRNN) + { + var arg = _layer_args_copy as SimpleRNNArgs; + _forward_layer = new SimpleRNN(arg); + } + // TODO(Wanglongzhi2001), add GRU if case. + else + { + _forward_layer = new RNN(_layer.Cell, _layer_args_copy); + } + //_forward_layer = _recreate_layer_from_config(_layer); + if (_args.BackwardLayer is null) + { + _backward_layer = _recreate_layer_from_config(_layer, go_backwards:true); + } + else + { + _backward_layer = _args.BackwardLayer as RNN; + } + _forward_layer.Name = "forward_" + _forward_layer.Name; + _backward_layer.Name = "backward_" + _backward_layer.Name; + _verify_layer_config(); + + void force_zero_output_for_mask(RNN layer) + { + layer.Args.ZeroOutputForMask = layer.Args.ReturnSequences; + } + + force_zero_output_for_mask(_forward_layer); + force_zero_output_for_mask(_backward_layer); + + if (_args.Weights is not null) + { + var nw = len(_args.Weights); + _forward_layer.set_weights(_args.Weights[$":,{nw / 2}"]); + _backward_layer.set_weights(_args.Weights[$"{nw / 2},:"]); + } + + _input_spec = _layer.InputSpec; + } + + private void _verify_layer_config() + { + if (_forward_layer.Args.GoBackwards == _backward_layer.Args.GoBackwards) + { + throw new ValueError( + "Forward layer and backward layer should have different " + + "`go_backwards` value." + + "forward_layer.go_backwards = " + + $"{_forward_layer.Args.GoBackwards}," + + "backward_layer.go_backwards = " + + $"{_backward_layer.Args.GoBackwards}"); + } + if (_forward_layer.Args.Stateful != _backward_layer.Args.Stateful) + { + throw new ValueError( + "Forward layer and backward layer are expected to have "+ + $"the same value for attribute stateful, got "+ + $"{_forward_layer.Args.Stateful} for forward layer and "+ + $"{_backward_layer.Args.Stateful} for backward layer"); + } + if (_forward_layer.Args.ReturnState != _backward_layer.Args.ReturnState) + { + throw new ValueError( + "Forward layer and backward layer are expected to have " + + $"the same value for attribute return_state, got " + + $"{_forward_layer.Args.ReturnState} for forward layer and " + + $"{_backward_layer.Args.ReturnState} for backward layer"); + } + if (_forward_layer.Args.ReturnSequences != _backward_layer.Args.ReturnSequences) + { + throw new ValueError( + "Forward layer and backward layer are expected to have " + + $"the same value for attribute return_sequences, got " + + $"{_forward_layer.Args.ReturnSequences} for forward layer and " + + $"{_backward_layer.Args.ReturnSequences} for backward layer"); + } + } + + private RNN _recreate_layer_from_config(RNN layer, bool go_backwards = false) + { + var config = layer.get_config() as RNNArgs; + var cell = layer.Cell; + if (go_backwards) + { + config.GoBackwards = !config.GoBackwards; + } + + if (layer is LSTM) + { + var arg = config as LSTMArgs; + return new LSTM(arg); + } + else if(layer is SimpleRNN) + { + var arg = config as SimpleRNNArgs; + return new SimpleRNN(arg); + } + // TODO(Wanglongzhi2001), add GRU if case. + else + { + return new RNN(cell, config); + } + } + + public override void build(KerasShapesWrapper input_shape) + { + _buildInputShape = input_shape; + tf_with(ops.name_scope(_forward_layer.Name), scope=> + { + _forward_layer.build(input_shape); + }); + tf_with(ops.name_scope(_backward_layer.Name), scope => + { + _backward_layer.build(input_shape); + }); + built = true; + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + // `Bidirectional.call` implements the same API as the wrapped `RNN`. + Tensors forward_inputs; + Tensors backward_inputs; + Tensors forward_state; + Tensors backward_state; + // if isinstance(inputs, list) and len(inputs) > 1: + if (inputs.Length > 1) + { + // initial_states are keras tensors, which means they are passed + // in together with inputs as list. The initial_states need to be + // split into forward and backward section, and be feed to layers + // accordingly. + forward_inputs = new Tensors { inputs[0] }; + backward_inputs = new Tensors { inputs[0] }; + var pivot = (len(inputs) - _num_constants) / 2 + 1; + // add forward initial state + forward_inputs.Concat(new Tensors { inputs[$"1:{pivot}"] }); + if (_num_constants != 0) + // add backward initial state + backward_inputs.Concat(new Tensors { inputs[$"{pivot}:"] }); + else + { + // add backward initial state + backward_inputs.Concat(new Tensors { inputs[$"{pivot}:{-_num_constants}"] }); + // add constants for forward and backward layers + forward_inputs.Concat(new Tensors { inputs[$"{-_num_constants}:"] }); + backward_inputs.Concat(new Tensors { inputs[$"{-_num_constants}:"] }); + } + forward_state = null; + backward_state = null; + } + else if (state is not null) + { + // initial_states are not keras tensors, eg eager tensor from np + // array. They are only passed in from kwarg initial_state, and + // should be passed to forward/backward layer via kwarg + // initial_state as well. + forward_inputs = inputs; + backward_inputs = inputs; + var half = len(state) / 2; + forward_state = state[$":{half}"]; + backward_state = state[$"{half}:"]; + } + else + { + forward_inputs = inputs; + backward_inputs = inputs; + forward_state = null; + backward_state = null; + } + var y = _forward_layer.Apply(forward_inputs, forward_state); + var y_rev = _backward_layer.Apply(backward_inputs, backward_state); + + Tensors states = new(); + if (_return_state) + { + states = y["1:"] + y_rev["1:"]; + y = y[0]; + y_rev = y_rev[0]; + } + + if (_return_sequences) + { + int time_dim = _forward_layer.Args.TimeMajor ? 0 : 1; + y_rev = keras.backend.reverse(y_rev, time_dim); + } + Tensors output; + if (_args.MergeMode == "concat") + output = keras.backend.concatenate(new Tensors { y.Single(), y_rev.Single() }); + else if (_args.MergeMode == "sum") + output = y.Single() + y_rev.Single(); + else if (_args.MergeMode == "ave") + output = (y.Single() + y_rev.Single()) / 2; + else if (_args.MergeMode == "mul") + output = y.Single() * y_rev.Single(); + else if (_args.MergeMode is null) + output = new Tensors { y.Single(), y_rev.Single() }; + else + throw new ValueError( + "Unrecognized value for `merge_mode`. " + + $"Received: {_args.MergeMode}" + + "Expected values are [\"concat\", \"sum\", \"ave\", \"mul\"]"); + if (_return_state) + { + if (_args.MergeMode is not null) + return new Tensors { output.Single(), states.Single()}; + } + return output; + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/DropoutRNNCellMixin.cs b/src/TensorFlowNET.Keras/Layers/Rnn/DropoutRNNCellMixin.cs new file mode 100644 index 000000000..27c13f349 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/DropoutRNNCellMixin.cs @@ -0,0 +1,109 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Common.Types; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Utils; + +namespace Tensorflow.Keras.Layers +{ + public abstract class DropoutRNNCellMixin: Layer, IRnnCell + { + public float dropout; + public float recurrent_dropout; + // TODO(Rinne): deal with cache. + public DropoutRNNCellMixin(LayerArgs args): base(args) + { + + } + + public abstract INestStructure StateSize { get; } + public abstract INestStructure OutputSize { get; } + public abstract bool SupportOptionalArgs { get; } + public virtual Tensors GetInitialState(Tensors inputs, Tensor batch_size, TF_DataType dtype) + { + return RnnUtils.generate_zero_filled_state_for_cell(this, inputs, batch_size, dtype); + } + + protected void _create_non_trackable_mask_cache() + { + + } + + public void reset_dropout_mask() + { + + } + + public void reset_recurrent_dropout_mask() + { + + } + + public Tensors? get_dropout_mask_for_cell(Tensors input, bool training, int count = 1) + { + if (dropout == 0f) + return null; + return _generate_dropout_mask( + tf.ones_like(input), + dropout, + training, + count); + } + + // Get the recurrent dropout mask for RNN cell. + public Tensors? get_recurrent_dropout_mask_for_cell(Tensors input, bool training, int count = 1) + { + if (dropout == 0f) + return null; + return _generate_dropout_mask( + tf.ones_like(input), + recurrent_dropout, + training, + count); + } + + public Tensors _create_dropout_mask(Tensors input, bool training, int count = 1) + { + return _generate_dropout_mask( + tf.ones_like(input), + dropout, + training, + count); + } + + public Tensors _create_recurrent_dropout_mask(Tensors input, bool training, int count = 1) + { + return _generate_dropout_mask( + tf.ones_like(input), + recurrent_dropout, + training, + count); + } + + public Tensors _generate_dropout_mask(Tensor ones, float rate, bool training, int count = 1) + { + Tensors dropped_inputs() + { + DropoutArgs args = new DropoutArgs(); + args.Rate = rate; + var DropoutLayer = new Dropout(args); + var mask = DropoutLayer.Apply(ones, training: training); + return mask; + } + + if (count > 1) + { + Tensors results = new Tensors(); + for (int i = 0; i < count; i++) + { + results.Add(dropped_inputs()); + } + return results; + } + + return dropped_inputs(); + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/GRU.cs b/src/TensorFlowNET.Keras/Layers/Rnn/GRU.cs new file mode 100644 index 000000000..0919883d2 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/GRU.cs @@ -0,0 +1,168 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Common.Extensions; +using Tensorflow.Common.Types; +using Tensorflow.Keras.Saving; + + +namespace Tensorflow.Keras.Layers +{ + public class GRU : RNN + { + GRUArgs _args; + private static GRUCell _cell; + + bool _return_runtime; + public GRUCell Cell { get => _cell; } + public int units { get => _args.Units; } + public Activation activation { get => _args.Activation; } + public Activation recurrent_activation { get => _args.RecurrentActivation; } + public bool use_bias { get => _args.UseBias; } + public float dropout { get => _args.Dropout; } + public float recurrent_dropout { get => _args.RecurrentDropout; } + public IInitializer kernel_initializer { get => _args.KernelInitializer; } + public IInitializer recurrent_initializer { get => _args.RecurrentInitializer; } + public IInitializer bias_initializer { get => _args.BiasInitializer; } + public int implementation { get => _args.Implementation; } + public bool reset_after { get => _args.ResetAfter; } + + public GRU(GRUArgs args) : base(CreateCell(args), PreConstruct(args)) + { + _args = args; + + if (_args.Implementation == 0) + { + // Use the red output to act as a warning message that can also be used under the release version + Console.ForegroundColor = ConsoleColor.Red; + Console.WriteLine("Warning: `implementation=0` has been deprecated, "+ + "and now defaults to `implementation=2`."+ + "Please update your layer call."); + Console.ResetColor(); + } + + GRUCell cell = new GRUCell(new GRUCellArgs + { + Units = _args.Units, + Activation = _args.Activation, + RecurrentActivation = _args.RecurrentActivation, + UseBias = _args.UseBias, + Dropout = _args.Dropout, + RecurrentDropout = _args.RecurrentDropout, + KernelInitializer = _args.KernelInitializer, + RecurrentInitializer = _args.RecurrentInitializer, + BiasInitializer = _args.BiasInitializer, + ResetAfter = _args.ResetAfter, + Implementation = _args.Implementation + }); + _cell = cell; + } + + protected override Tensors Call(Tensors inputs, Tensors initial_state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + GRUOptionalArgs? gru_optional_args = optional_args as GRUOptionalArgs; + if (optional_args is not null && gru_optional_args is null) + { + throw new ArgumentException("The type of optional args should be `GRUOptionalArgs`."); + } + Tensors? mask = gru_optional_args?.Mask; + + // Not support ragger input temporarily; + int row_length = 0; + bool is_ragged_input = false; + + _validate_args_if_ragged(is_ragged_input, mask); + + // GRU does not support constants.Ignore it during process. + (inputs, initial_state, _) = this._process_inputs(inputs, initial_state, null); + + if (mask.Length > 1) + { + mask = mask[0]; + } + + var input_shape = inputs.shape; + var timesteps = _args.TimeMajor ? input_shape[0] : input_shape[1]; + + + // TODO(Wanglongzhi2001), finish _could_use_gpu_kernel part + Func step = (cell_inputs, cell_states) => + { + var res = Cell.Apply(cell_inputs, cell_states, training is null ? true : training.Value); + var (output, state) = res; + return (output, state); + }; + + var (last_output, outputs, states) = keras.backend.rnn( + step, + inputs, + initial_state, + constants: null, + go_backwards: _args.GoBackwards, + mask: mask, + unroll: _args.Unroll, + input_length: ops.convert_to_tensor(timesteps), + time_major: _args.TimeMajor, + zero_output_for_mask: base.Args.ZeroOutputForMask, + return_all_outputs: _args.ReturnSequences + ); + + Tensors output; + if (_args.ReturnSequences) + { + output = outputs; + } + else + { + output = last_output; + } + + if (_args.ReturnState) + { + output = new Tensors { output, states }; + } + return output; + } + + private static IRnnCell CreateCell(GRUArgs gruArgs) + { + return new GRUCell(new GRUCellArgs + { + Units = gruArgs.Units, + Activation = gruArgs.Activation, + RecurrentActivation = gruArgs.RecurrentActivation, + UseBias = gruArgs.UseBias, + Dropout = gruArgs.Dropout, + RecurrentDropout = gruArgs.RecurrentDropout, + KernelInitializer = gruArgs.KernelInitializer, + RecurrentInitializer = gruArgs.RecurrentInitializer, + BiasInitializer = gruArgs.BiasInitializer, + ResetAfter = gruArgs.ResetAfter, + Implementation = gruArgs.Implementation + }); + } + + private static RNNArgs PreConstruct(GRUArgs args) + { + return new RNNArgs + { + ReturnSequences = args.ReturnSequences, + ReturnState = args.ReturnState, + GoBackwards = args.GoBackwards, + Stateful = args.Stateful, + Unroll = args.Unroll, + TimeMajor = args.TimeMajor, + Units = args.Units, + Activation = args.Activation, + RecurrentActivation = args.RecurrentActivation, + UseBias = args.UseBias, + Dropout = args.Dropout, + RecurrentDropout = args.RecurrentDropout, + KernelInitializer = args.KernelInitializer, + RecurrentInitializer = args.RecurrentInitializer, + BiasInitializer = args.BiasInitializer + }; + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/GRUCell.cs b/src/TensorFlowNET.Keras/Layers/Rnn/GRUCell.cs new file mode 100644 index 000000000..2b9c01e31 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/GRUCell.cs @@ -0,0 +1,281 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Common.Extensions; +using Tensorflow.Common.Types; +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.Layers +{ + /// + /// Cell class for the GRU layer. + /// + public class GRUCell : DropoutRNNCellMixin + { + GRUCellArgs _args; + IVariableV1 _kernel; + IVariableV1 _recurrent_kernel; + IInitializer _bias_initializer; + IVariableV1 _bias; + INestStructure _state_size; + INestStructure _output_size; + int Units; + public override INestStructure StateSize => _state_size; + + public override INestStructure OutputSize => _output_size; + + public override bool SupportOptionalArgs => false; + public GRUCell(GRUCellArgs args) : base(args) + { + _args = args; + if (_args.Units <= 0) + { + throw new ValueError( + $"units must be a positive integer, got {args.Units}"); + } + _args.Dropout = Math.Min(1f, Math.Max(0f, _args.Dropout)); + _args.RecurrentDropout = Math.Min(1f, Math.Max(0f, this._args.RecurrentDropout)); + if (_args.RecurrentDropout != 0f && _args.Implementation != 1) + { + Debug.WriteLine("RNN `implementation=2` is not supported when `recurrent_dropout` is set." + + "Using `implementation=1`."); + _args.Implementation = 1; + } + Units = _args.Units; + _state_size = new NestList(Units); + _output_size = new NestNode(Units); + } + + public override void build(KerasShapesWrapper input_shape) + { + //base.build(input_shape); + + var single_shape = input_shape.ToSingleShape(); + var input_dim = single_shape[-1]; + + _kernel = add_weight("kernel", (input_dim, _args.Units * 3), + initializer: _args.KernelInitializer + ); + + _recurrent_kernel = add_weight("recurrent_kernel", (Units, Units * 3), + initializer: _args.RecurrentInitializer + ); + if (_args.UseBias) + { + Shape bias_shape; + if (!_args.ResetAfter) + { + bias_shape = new Shape(3 * Units); + } + else + { + bias_shape = (2, 3 * Units); + } + _bias = add_weight("bias", bias_shape, + initializer: _bias_initializer + ); + } + built = true; + } + + protected override Tensors Call(Tensors inputs, Tensors states = null, bool? training = null, IOptionalArgs? optional_args = null) + { + var h_tm1 = states.IsNested() ? states[0] : states.Single(); + var dp_mask = get_dropout_mask_for_cell(inputs, training.Value, count: 3); + var rec_dp_mask = get_recurrent_dropout_mask_for_cell(h_tm1, training.Value, count: 3); + + IVariableV1 input_bias = _bias; + IVariableV1 recurrent_bias = _bias; + if (_args.UseBias) + { + if (!_args.ResetAfter) + { + input_bias = _bias; + recurrent_bias = null; + } + else + { + input_bias = tf.Variable(tf.unstack(_bias.AsTensor())[0]); + recurrent_bias = tf.Variable(tf.unstack(_bias.AsTensor())[1]); + } + } + + + Tensor hh; + Tensor z; + if ( _args.Implementation == 1) + { + Tensor inputs_z; + Tensor inputs_r; + Tensor inputs_h; + if (0f < _args.Dropout && _args.Dropout < 1f) + { + inputs_z = inputs * dp_mask[0]; + inputs_r = inputs * dp_mask[1]; + inputs_h = inputs * dp_mask[2]; + } + else + { + inputs_z = inputs.Single(); + inputs_r = inputs.Single(); + inputs_h = inputs.Single(); + } + + + int startIndex = (int)_kernel.AsTensor().shape[0]; + var _kernel_slice = tf.slice(_kernel.AsTensor(), + new[] { 0, 0 }, new[] { startIndex, Units }); + var x_z = math_ops.matmul(inputs_z, _kernel_slice); + _kernel_slice = tf.slice(_kernel.AsTensor(), + new[] { 0, Units }, new[] { Units, Units}); + var x_r = math_ops.matmul( + inputs_r, _kernel_slice); + int endIndex = (int)_kernel.AsTensor().shape[1]; + _kernel_slice = tf.slice(_kernel.AsTensor(), + new[] { 0, Units * 2 }, new[] { startIndex, endIndex - Units * 2 }); + var x_h = math_ops.matmul(inputs_h, _kernel_slice); + + if(_args.UseBias) + { + x_z = tf.nn.bias_add( + x_z, tf.Variable(input_bias.AsTensor()[$":{Units}"])); + x_r = tf.nn.bias_add( + x_r, tf.Variable(input_bias.AsTensor()[$"{Units}:{Units * 2}"])); + x_h = tf.nn.bias_add( + x_h, tf.Variable(input_bias.AsTensor()[$"{Units * 2}:"])); + } + + Tensor h_tm1_z; + Tensor h_tm1_r; + Tensor h_tm1_h; + if (0f < _args.RecurrentDropout && _args.RecurrentDropout < 1f) + { + h_tm1_z = h_tm1 * rec_dp_mask[0]; + h_tm1_r = h_tm1 * rec_dp_mask[1]; + h_tm1_h = h_tm1 * rec_dp_mask[2]; + } + else + { + h_tm1_z = h_tm1; + h_tm1_r = h_tm1; + h_tm1_h = h_tm1; + } + + startIndex = (int)_recurrent_kernel.AsTensor().shape[0]; + var _recurrent_kernel_slice = tf.slice(_recurrent_kernel.AsTensor(), + new[] { 0, 0 }, new[] { startIndex, Units }); + var recurrent_z = math_ops.matmul( + h_tm1_z, _recurrent_kernel_slice); + _recurrent_kernel_slice = tf.slice(_recurrent_kernel.AsTensor(), + new[] { 0, Units }, new[] { startIndex, Units}); + var recurrent_r = math_ops.matmul( + h_tm1_r, _recurrent_kernel_slice); + if(_args.ResetAfter && _args.UseBias) + { + recurrent_z = tf.nn.bias_add( + recurrent_z, tf.Variable(recurrent_bias.AsTensor()[$":{Units}"])); + recurrent_r = tf.nn.bias_add( + recurrent_r, tf.Variable(recurrent_bias.AsTensor()[$"{Units}: {Units * 2}"])); + } + z = _args.RecurrentActivation.Apply(x_z + recurrent_z); + var r = _args.RecurrentActivation.Apply(x_r + recurrent_r); + + Tensor recurrent_h; + if (_args.ResetAfter) + { + endIndex = (int)_recurrent_kernel.AsTensor().shape[1]; + _recurrent_kernel_slice = tf.slice(_recurrent_kernel.AsTensor(), + new[] { 0, Units * 2 }, new[] { startIndex, endIndex - Units * 2 }); + recurrent_h = math_ops.matmul( + h_tm1_h, _recurrent_kernel_slice); + if(_args.UseBias) + { + recurrent_h = tf.nn.bias_add( + recurrent_h, tf.Variable(recurrent_bias.AsTensor()[$"{Units * 2}:"])); + } + recurrent_h *= r; + } + else + { + _recurrent_kernel_slice = tf.slice(_recurrent_kernel.AsTensor(), + new[] { 0, Units * 2 }, new[] { startIndex, endIndex - Units * 2 }); + recurrent_h = math_ops.matmul( + r * h_tm1_h, _recurrent_kernel_slice); + } + hh = _args.Activation.Apply(x_h + recurrent_h); + } + else + { + if (0f < _args.Dropout && _args.Dropout < 1f) + { + inputs = inputs * dp_mask[0]; + } + + var matrix_x = math_ops.matmul(inputs, _kernel.AsTensor()); + if(_args.UseBias) + { + matrix_x = tf.nn.bias_add(matrix_x, input_bias); + } + var matrix_x_spilted = tf.split(matrix_x, 3, axis: -1); + var x_z = matrix_x_spilted[0]; + var x_r = matrix_x_spilted[1]; + var x_h = matrix_x_spilted[2]; + + Tensor matrix_inner; + if (_args.ResetAfter) + { + matrix_inner = math_ops.matmul(h_tm1, _recurrent_kernel.AsTensor()); + if ( _args.UseBias) + { + matrix_inner = tf.nn.bias_add( + matrix_inner, recurrent_bias); + } + } + else + { + var startIndex = (int)_recurrent_kernel.AsTensor().shape[0]; + var _recurrent_kernel_slice = tf.slice(_recurrent_kernel.AsTensor(), + new[] { 0, 0 }, new[] { startIndex, Units * 2 }); + matrix_inner = math_ops.matmul( + h_tm1, _recurrent_kernel_slice); + } + + var matrix_inner_splitted = tf.split(matrix_inner, new int[] {Units, Units, -1}, axis:-1); + var recurrent_z = matrix_inner_splitted[0]; + var recurrent_r = matrix_inner_splitted[0]; + var recurrent_h = matrix_inner_splitted[0]; + + z = _args.RecurrentActivation.Apply(x_z + recurrent_z); + var r = _args.RecurrentActivation.Apply(x_r + recurrent_r); + + if(_args.ResetAfter) + { + recurrent_h = r * recurrent_h; + } + else + { + var startIndex = (int)_recurrent_kernel.AsTensor().shape[0]; + var endIndex = (int)_recurrent_kernel.AsTensor().shape[1]; + var _recurrent_kernel_slice = tf.slice(_recurrent_kernel.AsTensor(), + new[] { 0, 2*Units }, new[] { startIndex, endIndex - 2 * Units }); + recurrent_h = math_ops.matmul( + r * h_tm1, _recurrent_kernel_slice); + } + hh = _args.Activation.Apply(x_h + recurrent_h); + } + var h = z * h_tm1 + (1 - z) * hh; + if (states.IsNested()) + { + var new_state = new NestList(h); + return new Nest(new INestStructure[] { new NestNode(h), new_state }).ToTensors(); + } + else + { + return new Nest(new INestStructure[] { new NestNode(h), new NestNode(h)}).ToTensors(); + } + + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/LSTM.cs b/src/TensorFlowNET.Keras/Layers/Rnn/LSTM.cs new file mode 100644 index 000000000..c766e8d69 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/LSTM.cs @@ -0,0 +1,126 @@ +using System.Linq; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Common.Types; +using Tensorflow.Common.Extensions; +using Tensorflow.Keras.Saving; + +namespace Tensorflow.Keras.Layers +{ + /// + /// Long Short-Term Memory layer - Hochreiter 1997. + /// + /// See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) + /// for details about the usage of RNN API. + /// + public class LSTM : RNN + { + LSTMArgs _args; + InputSpec[] _state_spec; + InputSpec _input_spec; + bool _could_use_gpu_kernel; + public LSTMArgs Args { get => _args; } + public LSTM(LSTMArgs args) : + base(CreateCell(args), args) + { + _args = args; + _input_spec = new InputSpec(ndim: 3); + _state_spec = new[] { args.Units, args.Units }.Select(dim => new InputSpec(shape: (-1, dim))).ToArray(); + _could_use_gpu_kernel = args.Activation == keras.activations.Tanh + && args.RecurrentActivation == keras.activations.Sigmoid + && args.RecurrentDropout == 0 && !args.Unroll && args.UseBias + && ops.executing_eagerly_outside_functions(); + } + + private static IRnnCell CreateCell(LSTMArgs lstmArgs) + { + return new LSTMCell(new LSTMCellArgs() + { + Units = lstmArgs.Units, + Activation = lstmArgs.Activation, + RecurrentActivation = lstmArgs.RecurrentActivation, + UseBias = lstmArgs.UseBias, + KernelInitializer = lstmArgs.KernelInitializer, + RecurrentInitializer = lstmArgs.RecurrentInitializer, + UnitForgetBias = lstmArgs.UnitForgetBias, + BiasInitializer = lstmArgs.BiasInitializer, + // TODO(Rinne): kernel_regularizer + // TODO(Rinne): recurrent_regularizer + // TODO(Rinne): bias_regularizer + // TODO(Rinne): kernel_constriant + // TODO(Rinne): recurrent_constriant + // TODO(Rinne): bias_constriant + Dropout = lstmArgs.Dropout, + RecurrentDropout = lstmArgs.RecurrentDropout, + Implementation = lstmArgs.Implementation, + DType = lstmArgs.DType, + Trainable = lstmArgs.Trainable + }); + } + + protected override Tensors Call(Tensors inputs, Tensors initial_state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + // skip the condition of ragged input + + (inputs, initial_state, _) = _process_inputs(inputs, initial_state, null); + + Tensor mask = null; + if(optional_args is RnnOptionalArgs rnnArgs) + { + mask = rnnArgs.Mask; + } + + var single_input = inputs.Single; + var input_shape = single_input.shape; + var timesteps = _args.TimeMajor ? input_shape[0] : input_shape[1]; + + _maybe_reset_cell_dropout_mask(Cell); + + Func step = (inputs, states) => + { + var res = Cell.Apply(inputs, states, training is null ? true : training.Value); + var (output, state) = res; + return (output, state); + }; + + var (last_output, outputs, states) = keras.backend.rnn( + step, + inputs, + initial_state, + constants: null, + go_backwards: _args.GoBackwards, + mask: mask, + unroll: _args.Unroll, + input_length: ops.convert_to_tensor(timesteps), + time_major: _args.TimeMajor, + zero_output_for_mask: _args.ZeroOutputForMask, + return_all_outputs: _args.ReturnSequences + ); + + Tensor output; + if (_args.ReturnSequences) + { + output = keras.backend.maybe_convert_to_ragged(false, outputs, (int)timesteps, _args.GoBackwards); + } + else + { + output = last_output; + } + + if (_args.ReturnState) + { + return new Tensor[] { output }.Concat(states).ToArray().ToTensors(); + } + else + { + return output; + } + } + + public override IKerasConfig get_config() + { + return _args; + } + + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/LSTMCell.cs b/src/TensorFlowNET.Keras/Layers/Rnn/LSTMCell.cs new file mode 100644 index 000000000..e4fc6dd22 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/LSTMCell.cs @@ -0,0 +1,233 @@ +using Newtonsoft.Json; +using Serilog.Core; +using System.Diagnostics; +using Tensorflow.Common.Extensions; +using Tensorflow.Common.Types; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.Keras.Utils; + +namespace Tensorflow.Keras.Layers +{ + /// + /// Cell class for the LSTM layer. + /// See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) + /// for details about the usage of RNN API. + /// This class processes one step within the whole time sequence input, whereas + /// `tf.keras.layer.LSTM` processes the whole sequence. + /// + public class LSTMCell : DropoutRNNCellMixin + { + LSTMCellArgs _args; + IVariableV1 _kernel; + IVariableV1 _recurrent_kernel; + IInitializer _bias_initializer; + IVariableV1 _bias; + INestStructure _state_size; + INestStructure _output_size; + public override INestStructure StateSize => _state_size; + + public override INestStructure OutputSize => _output_size; + + public override bool SupportOptionalArgs => false; + public LSTMCell(LSTMCellArgs args) + : base(args) + { + _args = args; + if (args.Units <= 0) + { + throw new ValueError( + $"units must be a positive integer, got {args.Units}"); + } + _args.Dropout = Math.Min(1f, Math.Max(0f, this._args.Dropout)); + _args.RecurrentDropout = Math.Min(1f, Math.Max(0f, this._args.RecurrentDropout)); + if (_args.RecurrentDropout != 0f && _args.Implementation != 1) + { + Debug.WriteLine("RNN `implementation=2` is not supported when `recurrent_dropout` is set." + + "Using `implementation=1`."); + _args.Implementation = 1; + } + + _state_size = new NestList(_args.Units, _args.Units); + _output_size = new NestNode(_args.Units); + } + + public override void build(KerasShapesWrapper input_shape) + { + base.build(input_shape); + var single_shape = input_shape.ToSingleShape(); + var input_dim = single_shape[-1]; + _kernel = add_weight("kernel", (input_dim, _args.Units * 4), + initializer: _args.KernelInitializer + ); + + _recurrent_kernel = add_weight("recurrent_kernel", (_args.Units, _args.Units * 4), + initializer: _args.RecurrentInitializer + ); + + if (_args.UseBias) + { + if (_args.UnitForgetBias) + { + Tensor bias_initializer() + { + return keras.backend.concatenate( + new Tensors( + _args.BiasInitializer.Apply(new InitializerArgs(shape: (_args.Units))), + tf.ones_initializer.Apply(new InitializerArgs(shape: (_args.Units))), + _args.BiasInitializer.Apply(new InitializerArgs(shape: (_args.Units)))), axis: 0); + } + } + else + { + _bias_initializer = _args.BiasInitializer; + } + _bias = add_weight("bias", (_args.Units * 4), + initializer: _bias_initializer + ); + } + built = true; + } + protected override Tensors Call(Tensors inputs, Tensors states = null, bool? training = null, IOptionalArgs? optional_args = null) + { + var h_tm1 = states[0]; // previous memory state + var c_tm1 = states[1]; // previous carry state + + var dp_mask = get_dropout_mask_for_cell(inputs, training.Value, count: 4); + var rec_dp_mask = get_recurrent_dropout_mask_for_cell( + h_tm1, training.Value, count: 4); + + Tensor c; + Tensor o; + if (_args.Implementation == 1) + { + Tensor inputs_i; + Tensor inputs_f; + Tensor inputs_c; + Tensor inputs_o; + if (0f < _args.Dropout && _args.Dropout < 1f) + { + inputs_i = inputs * dp_mask[0]; + inputs_f = inputs * dp_mask[1]; + inputs_c = inputs * dp_mask[2]; + inputs_o = inputs * dp_mask[3]; + } + else + { + inputs_i = inputs; + inputs_f = inputs; + inputs_c = inputs; + inputs_o = inputs; + } + var k = tf.split(_kernel.AsTensor(), num_split: 4, axis: 1); + Tensor k_i = k[0], k_f = k[1], k_c = k[2], k_o = k[3]; + var x_i = math_ops.matmul(inputs_i, k_i); + var x_f = math_ops.matmul(inputs_f, k_f); + var x_c = math_ops.matmul(inputs_c, k_c); + var x_o = math_ops.matmul(inputs_o, k_o); + if (_args.UseBias) + { + var b = tf.split(_bias.AsTensor(), num_split: 4, axis: 0); + Tensor b_i = b[0], b_f = b[1], b_c = b[2], b_o = b[3]; + x_i = gen_nn_ops.bias_add(x_i, b_i); + x_f = gen_nn_ops.bias_add(x_f, b_f); + x_c = gen_nn_ops.bias_add(x_c, b_c); + x_o = gen_nn_ops.bias_add(x_o, b_o); + } + + Tensor h_tm1_i; + Tensor h_tm1_f; + Tensor h_tm1_c; + Tensor h_tm1_o; + if (0f < _args.RecurrentDropout && _args.RecurrentDropout < 1f) + { + h_tm1_i = h_tm1 * rec_dp_mask[0]; + h_tm1_f = h_tm1 * rec_dp_mask[1]; + h_tm1_c = h_tm1 * rec_dp_mask[2]; + h_tm1_o = h_tm1 * rec_dp_mask[3]; + } + else + { + h_tm1_i = h_tm1; + h_tm1_f = h_tm1; + h_tm1_c = h_tm1; + h_tm1_o = h_tm1; + } + var x = new Tensor[] { x_i, x_f, x_c, x_o }; + var h_tm1_array = new Tensor[] { h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o }; + (c, o) = _compute_carry_and_output(x, h_tm1_array, c_tm1); + } + else + { + if (0f < _args.Dropout && _args.Dropout < 1f) + inputs = inputs * dp_mask[0]; + var z = math_ops.matmul(inputs, _kernel.AsTensor()); + z += math_ops.matmul(h_tm1, _recurrent_kernel.AsTensor()); + if (_args.UseBias) + { + z = tf.nn.bias_add(z, _bias); + } + var z_array = tf.split(z, num_split: 4, axis: 1); + (c, o) = _compute_carry_and_output_fused(z_array, c_tm1); + } + var h = o * _args.Activation.Apply(c); + // 这里是因为 Tensors 类初始化的时候会把第一个元素之后的元素打包成一个数组 + return new Nest(new INestStructure[] { new NestNode(h), new NestList(h, c) }).ToTensors(); + } + + /// + /// Computes carry and output using split kernels. + /// + /// + /// + /// + /// + /// + public Tensors _compute_carry_and_output(Tensor[] x, Tensor[] h_tm1, Tensor c_tm1) + { + Tensor x_i = x[0], x_f = x[1], x_c = x[2], x_o = x[3]; + Tensor h_tm1_i = h_tm1[0], h_tm1_f = h_tm1[1], h_tm1_c = h_tm1[2], + h_tm1_o = h_tm1[3]; + + var _recurrent_kernel_tensor = _recurrent_kernel.AsTensor(); + int startIndex = (int)_recurrent_kernel_tensor.shape[0]; + var _recurrent_kernel_slice = tf.slice(_recurrent_kernel_tensor, + new[] { 0, 0 }, new[] { startIndex, _args.Units }); + var i = _args.RecurrentActivation.Apply( + x_i + math_ops.matmul(h_tm1_i, _recurrent_kernel_slice)); + _recurrent_kernel_slice = tf.slice(_recurrent_kernel_tensor, + new[] { 0, _args.Units }, new[] { startIndex, _args.Units}); + var f = _args.RecurrentActivation.Apply( + x_f + math_ops.matmul(h_tm1_f, _recurrent_kernel_slice)); + _recurrent_kernel_slice = tf.slice(_recurrent_kernel_tensor, + new[] { 0, _args.Units * 2 }, new[] { startIndex, _args.Units }); + var c = f * c_tm1 + i * _args.Activation.Apply( + x_c + math_ops.matmul(h_tm1_c, _recurrent_kernel_slice)); + _recurrent_kernel_slice = tf.slice(_recurrent_kernel_tensor, + new[] { 0, _args.Units * 3 }, new[] { startIndex, _args.Units }); + var o = _args.Activation.Apply( + x_o + math_ops.matmul(h_tm1_o, _recurrent_kernel_slice)); + + return new Tensors(c, o); + } + + /// + /// Computes carry and output using fused kernels. + /// + /// + /// + /// + public Tensors _compute_carry_and_output_fused(Tensor[] z, Tensor c_tm1) + { + Tensor z0 = z[0], z1 = z[1], z2 = z[2], z3 = z[3]; + var i = _args.RecurrentActivation.Apply(z0); + var f = _args.RecurrentActivation.Apply(z1); + var c = f * c_tm1 + i * _args.Activation.Apply(z2); + var o = _args.RecurrentActivation.Apply(z3); + return new Tensors(c, o); + } + } + + +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/RNN.cs b/src/TensorFlowNET.Keras/Layers/Rnn/RNN.cs new file mode 100644 index 000000000..fec75559c --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/RNN.cs @@ -0,0 +1,546 @@ +using OneOf; +using System; +using System.Collections.Generic; +using System.Reflection; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.Util; +using Tensorflow.Common.Extensions; +using System.Linq.Expressions; +using Tensorflow.Keras.Utils; +using Tensorflow.Common.Types; +using System.Runtime.CompilerServices; +// from tensorflow.python.distribute import distribution_strategy_context as ds_context; + +namespace Tensorflow.Keras.Layers +{ + /// + /// Base class for recurrent layers. + /// See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) + /// for details about the usage of RNN API. + /// + public class RNN : RnnBase + { + private RNNArgs _args; + private object _input_spec = null; // or NoneValue?? + private object _state_spec = null; + private object _constants_spec = null; + private Tensors _states = null; + private int _num_constants; + protected IVariableV1 _kernel; + protected IVariableV1 _bias; + private IRnnCell _cell; + + public RNNArgs Args { get => _args; } + public IRnnCell Cell + { + get + { + return _cell; + } + init + { + _cell = value; + _self_tracked_trackables.Add(_cell); + } + } + + public RNN(IRnnCell cell, RNNArgs args) : base(PreConstruct(args)) + { + _args = args; + SupportsMasking = true; + + Cell = cell; + + // get input_shape + _args = PreConstruct(args); + + _num_constants = 0; + } + + public RNN(IEnumerable cells, RNNArgs args) : base(PreConstruct(args)) + { + _args = args; + SupportsMasking = true; + + Cell = new StackedRNNCells(cells, new StackedRNNCellsArgs()); + + // get input_shape + _args = PreConstruct(args); + + _num_constants = 0; + } + + // States is a tuple consist of cell states_size, like (cell1.state_size, cell2.state_size,...) + // state_size can be a single integer, can also be a list/tuple of integers, can also be TensorShape or a list/tuple of TensorShape + public Tensors States + { + get + { + if (_states == null) + { + // CHECK(Rinne): check if this is correct. + var nested = Cell.StateSize.MapStructure(x => null); + _states = nested.AsNest().ToTensors(); + } + return _states; + } + set { _states = value; } + } + + private INestStructure compute_output_shape(Shape input_shape) + { + var batch = input_shape[0]; + var time_step = input_shape[1]; + if (_args.TimeMajor) + { + (batch, time_step) = (time_step, batch); + } + + // state_size is a array of ints or a positive integer + var state_size = Cell.StateSize; + if(state_size?.TotalNestedCount == 1) + { + state_size = new NestList(state_size.Flatten().First()); + } + + Func _get_output_shape = (flat_output_size) => + { + var output_dim = new Shape(flat_output_size).as_int_list(); + Shape output_shape; + if (_args.ReturnSequences) + { + if (_args.TimeMajor) + { + output_shape = new Shape(new int[] { (int)time_step, (int)batch }.concat(output_dim)); + } + else + { + output_shape = new Shape(new int[] { (int)batch, (int)time_step }.concat(output_dim)); + + } + } + else + { + output_shape = new Shape(new int[] { (int)batch }.concat(output_dim)); + } + return output_shape; + }; + + Type type = Cell.GetType(); + PropertyInfo output_size_info = type.GetProperty("output_size"); + INestStructure output_shape; + if (output_size_info != null) + { + output_shape = Nest.MapStructure(_get_output_shape, Cell.OutputSize); + } + else + { + output_shape = new NestNode(_get_output_shape(state_size.Flatten().First())); + } + + if (_args.ReturnState) + { + Func _get_state_shape = (flat_state) => + { + var state_shape = new int[] { (int)batch }.concat(new Shape(flat_state).as_int_list()); + return new Shape(state_shape); + }; + + + var state_shape = Nest.MapStructure(_get_state_shape, state_size); + + return new Nest(new[] { output_shape, state_shape } ); + } + else + { + return output_shape; + } + + } + + private Tensors compute_mask(Tensors inputs, Tensors mask) + { + // Time step masks must be the same for each input. + // This is because the mask for an RNN is of size [batch, time_steps, 1], + // and specifies which time steps should be skipped, and a time step + // must be skipped for all inputs. + + mask = nest.flatten(mask)[0]; + var output_mask = _args.ReturnSequences ? mask : null; + if (_args.ReturnState) + { + var state_mask = new List(); + for (int i = 0; i < len(States); i++) + { + state_mask.Add(null); + } + return new List { output_mask }.concat(state_mask); + } + else + { + return output_mask; + } + } + + public override void build(KerasShapesWrapper input_shape) + { + _buildInputShape = input_shape; + input_shape = new KerasShapesWrapper(input_shape.Shapes[0]); + + InputSpec get_input_spec(Shape shape) + { + var input_spec_shape = shape.as_int_list(); + + var (batch_index, time_step_index) = _args.TimeMajor ? (1, 0) : (0, 1); + if (!_args.Stateful) + { + input_spec_shape[batch_index] = -1; + } + input_spec_shape[time_step_index] = -1; + return new InputSpec(shape: input_spec_shape); + } + + Shape get_step_input_shape(Shape shape) + { + + // return shape[1:] if self.time_major else (shape[0],) + shape[2:] + if (_args.TimeMajor) + { + return shape.as_int_list().ToList().GetRange(1, shape.Length - 1).ToArray(); + } + else + { + return new int[] { shape.as_int_list()[0] }.concat(shape.as_int_list().ToList().GetRange(2, shape.Length - 2).ToArray()); + } + + + } + + object get_state_spec(Shape shape) + { + var state_spec_shape = shape.as_int_list(); + // append bacth dim + state_spec_shape = new int[] { -1 }.concat(state_spec_shape); + return new InputSpec(shape: state_spec_shape); + } + + // Check whether the input shape contains any nested shapes. It could be + // (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from + // numpy inputs. + + + if (Cell is Layer layer && !layer.Built) + { + layer.build(input_shape); + layer.Built = true; + } + + this.built = true; + } + + /// + /// + /// + /// + /// List of initial state tensors to be passed to the first call of the cell + /// + /// + /// + /// + /// + protected override Tensors Call(Tensors inputs, Tensors initial_state = null, bool? training = null, IOptionalArgs? optional_args = null) + { + RnnOptionalArgs? rnn_optional_args = optional_args as RnnOptionalArgs; + if(optional_args is not null && rnn_optional_args is null) + { + throw new ArgumentException("The optional args shhould be of type `RnnOptionalArgs`"); + } + Tensors? constants = rnn_optional_args?.Constants; + Tensors? mask = rnn_optional_args?.Mask; + //var (inputs_padded, row_length) = BackendImpl.convert_inputs_if_ragged(inputs); + // 暂时先不接受ragged tensor + int row_length = 0; // TODO(Rinne): support this param. + bool is_ragged_input = false; + _validate_args_if_ragged(is_ragged_input, mask); + + (inputs, initial_state, constants) = _process_inputs(inputs, initial_state, constants); + + _maybe_reset_cell_dropout_mask(Cell); + if (Cell is StackedRNNCells) + { + var stack_cell = Cell as StackedRNNCells; + foreach (IRnnCell cell in stack_cell.Cells) + { + _maybe_reset_cell_dropout_mask(cell); + } + } + + if (mask != null) + { + // Time step masks must be the same for each input. + mask = mask.Flatten().First(); + } + + Shape input_shape; + if (!inputs.IsNested()) + { + // In the case of nested input, use the first element for shape check + // input_shape = nest.flatten(inputs)[0].shape; + // TODO(Wanglongzhi2001) + input_shape = inputs.Flatten().First().shape; + } + else + { + input_shape = inputs.shape; + } + + var timesteps = _args.TimeMajor ? input_shape[0] : input_shape[1]; + + if (_args.Unroll && timesteps == null) + { + throw new ValueError( + "Cannot unroll a RNN if the " + + "time dimension is undefined. \n" + + "- If using a Sequential model, " + + "specify the time dimension by passing " + + "an `input_shape` or `batch_input_shape` " + + "argument to your first layer. If your " + + "first layer is an Embedding, you can " + + "also use the `input_length` argument.\n" + + "- If using the functional API, specify " + + "the time dimension by passing a `shape` " + + "or `batch_shape` argument to your Input layer." + ); + } + + // cell_call_fn = (self.cell.__call__ if callable(self.cell) else self.cell.call) + Func step; + bool is_tf_rnn_cell = false; + if (constants is not null) + { + if (!Cell.SupportOptionalArgs) + { + throw new ValueError( + $"RNN cell {Cell} does not support constants." + + $"Received: constants={constants}"); + } + + step = (inputs, states) => + { + constants = new Tensors(states.TakeLast(_num_constants).ToArray()); + states = new Tensors(states.SkipLast(_num_constants).ToArray()); + states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states[0]) : states; + var (output, new_states) = Cell.Apply(inputs, states, optional_args: new RnnOptionalArgs() { Constants = constants }); + return (output, new_states); + }; + } + else + { + step = (inputs, states) => + { + states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states.First()) : states; + var (output, new_states) = Cell.Apply(inputs, states); + return (output, new_states); + }; + } + + var (last_output, outputs, states) = keras.backend.rnn( + step, + inputs, + initial_state, + constants: constants, + go_backwards: _args.GoBackwards, + mask: mask, + unroll: _args.Unroll, + input_length: row_length != null ? new Tensor(row_length) : new Tensor(timesteps), + time_major: _args.TimeMajor, + zero_output_for_mask: _args.ZeroOutputForMask, + return_all_outputs: _args.ReturnSequences); + + if (_args.Stateful) + { + throw new NotImplementedException("this argument havn't been developed."); + } + + Tensors output = new Tensors(); + if (_args.ReturnSequences) + { + // TODO(Rinne): add go_backwards parameter and revise the `row_length` param + output = keras.backend.maybe_convert_to_ragged(is_ragged_input, outputs, row_length, false); + } + else + { + output = last_output; + } + + if (_args.ReturnState) + { + foreach (var state in states) + { + output.Add(state); + } + return output; + } + else + { + //var tapeSet = tf.GetTapeSet(); + //foreach(var tape in tapeSet) + //{ + // tape.Watch(output); + //} + return output; + } + } + + public override Tensors Apply(Tensors inputs, Tensors initial_states = null, bool? training = false, IOptionalArgs? optional_args = null) + { + RnnOptionalArgs? rnn_optional_args = optional_args as RnnOptionalArgs; + if (optional_args is not null && rnn_optional_args is null) + { + throw new ArgumentException("The type of optional args should be `RnnOptionalArgs`."); + } + Tensors? constants = rnn_optional_args?.Constants; + (inputs, initial_states, constants) = RnnUtils.standardize_args(inputs, initial_states, constants, _num_constants); + + if(initial_states is null && constants is null) + { + return base.Apply(inputs); + } + + // TODO(Rinne): implement it. + throw new NotImplementedException(); + } + + protected (Tensors inputs, Tensors initial_state, Tensors constants) _process_inputs(Tensors inputs, Tensors initial_state, Tensors constants) + { + if (inputs.Length > 1) + { + if (_num_constants != 0) + { + initial_state = new Tensors(inputs.Skip(1).ToArray()); + } + else + { + initial_state = new Tensors(inputs.Skip(1).SkipLast(_num_constants).ToArray()); + constants = new Tensors(inputs.TakeLast(_num_constants).ToArray()); + } + if (len(initial_state) == 0) + initial_state = null; + inputs = inputs[0]; + } + + + if (_args.Stateful) + { + if (initial_state != null) + { + var tmp = new Tensor[] { }; + foreach (var s in nest.flatten(States)) + { + tmp.add(tf.math.count_nonzero(s.Single())); + } + var non_zero_count = tf.add_n(tmp); + initial_state = tf.cond(non_zero_count > 0, States, initial_state); + if ((int)non_zero_count.numpy() > 0) + { + initial_state = States; + } + } + else + { + initial_state = States; + } + //initial_state = Nest.MapStructure(v => tf.cast(v, this.), initial_state); + } + else if (initial_state is null) + { + initial_state = get_initial_state(inputs); + } + + if (initial_state.Length != States.Length) + { + throw new ValueError($"Layer {this} expects {States.Length} state(s), " + + $"but it received {initial_state.Length} " + + $"initial state(s). Input received: {inputs}"); + } + + return (inputs, initial_state, constants); + } + + protected void _validate_args_if_ragged(bool is_ragged_input, Tensors mask) + { + if (!is_ragged_input) + { + return; + } + + if (_args.Unroll) + { + throw new ValueError("The input received contains RaggedTensors and does " + + "not support unrolling. Disable unrolling by passing " + + "`unroll=False` in the RNN Layer constructor."); + } + if (mask != null) + { + throw new ValueError($"The mask that was passed in was {mask}, which " + + "cannot be applied to RaggedTensor inputs. Please " + + "make sure that there is no mask injected by upstream " + + "layers."); + } + + } + + protected void _maybe_reset_cell_dropout_mask(ILayer cell) + { + if (cell is DropoutRNNCellMixin CellDRCMixin) + { + CellDRCMixin.reset_dropout_mask(); + CellDRCMixin.reset_recurrent_dropout_mask(); + } + } + + private static RNNArgs PreConstruct(RNNArgs args) + { + // If true, the output for masked timestep will be zeros, whereas in the + // false case, output from previous timestep is returned for masked timestep. + var zeroOutputForMask = args.ZeroOutputForMask; + + Shape input_shape; + var propIS = args.InputShape; + var propID = args.InputDim; + var propIL = args.InputLength; + + if (propIS == null && (propID != null || propIL != null)) + { + input_shape = new Shape( + propIL ?? -1, + propID ?? -1); + args.InputShape = input_shape; + } + + return args; + } + + public Tensors __call__(Tensors inputs, Tensor state = null, Tensor training = null) + { + throw new NotImplementedException(); + } + + protected Tensors get_initial_state(Tensors inputs) + { + var input = inputs[0]; + var input_shape = array_ops.shape(inputs); + var batch_size = _args.TimeMajor ? input_shape[1] : input_shape[0]; + var dtype = input.dtype; + Tensors init_state = Cell.GetInitialState(null, batch_size, dtype); + return init_state; + } + + public override IKerasConfig get_config() + { + return _args; + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/RnnBase.cs b/src/TensorFlowNET.Keras/Layers/Rnn/RnnBase.cs new file mode 100644 index 000000000..1419da4b2 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/RnnBase.cs @@ -0,0 +1,13 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; + +namespace Tensorflow.Keras.Layers +{ + public abstract class RnnBase: Layer + { + public RnnBase(LayerArgs args): base(args) { } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/SimpleRNN.cs b/src/TensorFlowNET.Keras/Layers/Rnn/SimpleRNN.cs new file mode 100644 index 000000000..9c199eb43 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/SimpleRNN.cs @@ -0,0 +1,35 @@ +using System.Data; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Saving; +using Tensorflow.Operations.Activation; +using static HDF.PInvoke.H5Z; +using static Tensorflow.ApiDef.Types; + +namespace Tensorflow.Keras.Layers +{ + public class SimpleRNN : RNN + { + SimpleRNNArgs args; + public SimpleRNN(SimpleRNNArgs args) : base(CreateCellForArgs(args), args) + { + this.args = args; + } + + private static SimpleRNNCell CreateCellForArgs(SimpleRNNArgs args) + { + return new SimpleRNNCell(new SimpleRNNCellArgs() + { + Units = args.Units, + Activation = args.Activation, + UseBias = args.UseBias, + KernelInitializer = args.KernelInitializer, + RecurrentInitializer = args.RecurrentInitializer, + BiasInitializer = args.BiasInitializer, + Dropout = args.Dropout, + RecurrentDropout = args.RecurrentDropout, + DType = args.DType, + Trainable = args.Trainable, + }); + } + } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/SimpleRNNCell.cs b/src/TensorFlowNET.Keras/Layers/Rnn/SimpleRNNCell.cs new file mode 100644 index 000000000..e74b56925 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/SimpleRNNCell.cs @@ -0,0 +1,119 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; +using Tensorflow.Common.Extensions; +using Tensorflow.Keras.Utils; +using Tensorflow.Graphs; + +namespace Tensorflow.Keras.Layers +{ + /// + /// Cell class for SimpleRNN. + /// See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) + /// for details about the usage of RNN API. + /// This class processes one step within the whole time sequence input, whereas + /// `tf.keras.layer.SimpleRNN` processes the whole sequence. + /// + public class SimpleRNNCell : DropoutRNNCellMixin + { + SimpleRNNCellArgs _args; + IVariableV1 _kernel; + IVariableV1 _recurrent_kernel; + IVariableV1 _bias; + INestStructure _state_size; + INestStructure _output_size; + + public override INestStructure StateSize => _state_size; + public override INestStructure OutputSize => _output_size; + public override bool SupportOptionalArgs => false; + + public SimpleRNNCell(SimpleRNNCellArgs args) : base(args) + { + this._args = args; + if (args.Units <= 0) + { + throw new ValueError( + $"units must be a positive integer, got {args.Units}"); + } + this._args.Dropout = Math.Min(1f, Math.Max(0f, this._args.Dropout)); + this._args.RecurrentDropout = Math.Min(1f, Math.Max(0f, this._args.RecurrentDropout)); + _state_size = new NestNode(args.Units); + _output_size = new NestNode(args.Units); + } + + public override void build(KerasShapesWrapper input_shape) + { + // TODO(Rinne): add the cache. + var single_shape = input_shape.ToSingleShape(); + var input_dim = single_shape[-1]; + + _kernel = add_weight("kernel", (single_shape[-1], _args.Units), + initializer: _args.KernelInitializer + ); + + _recurrent_kernel = add_weight("recurrent_kernel", (_args.Units, _args.Units), + initializer: _args.RecurrentInitializer + ); + + if (_args.UseBias) + { + _bias = add_weight("bias", (_args.Units), + initializer: _args.BiasInitializer + ); + } + + built = true; + } + + // TODO(Rinne): revise the trining param (with refactoring of the framework) + protected override Tensors Call(Tensors inputs, Tensors states = null, bool? training = null, IOptionalArgs? optional_args = null) + { + // TODO(Rinne): check if it will have multiple tensors when not nested. + Tensors prev_output = Nest.IsNested(states) ? new Tensors(states[0]) : states; + var dp_mask = get_dropout_mask_for_cell(inputs, training.Value); + var rec_dp_mask = get_recurrent_dropout_mask_for_cell(prev_output, training.Value); + + Tensor h; + var ranks = inputs.rank; + if (dp_mask != null) + { + + h = math_ops.matmul(math_ops.multiply(inputs.Single, dp_mask.Single), _kernel.AsTensor()); + } + else + { + h = math_ops.matmul(inputs, _kernel.AsTensor()); + } + + if (_bias != null) + { + h = tf.nn.bias_add(h, _bias); + } + + if (rec_dp_mask != null) + { + prev_output = math_ops.multiply(prev_output, rec_dp_mask); + } + Tensor output = h + math_ops.matmul(prev_output, _recurrent_kernel.AsTensor()); + + if (_args.Activation != null) + { + output = _args.Activation.Apply(output); + } + if (Nest.IsNested(states)) + { + return new Nest(new List> { + new Nest(new List> { new Nest(output) }), new Nest(output) }) + .ToTensors(); + } + else + { + return new Tensors(output, output); + } + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Rnn/StackedRNNCells.cs b/src/TensorFlowNET.Keras/Layers/Rnn/StackedRNNCells.cs new file mode 100644 index 000000000..ece2bc5bf --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Rnn/StackedRNNCells.cs @@ -0,0 +1,159 @@ +using System; +using System.ComponentModel; +using System.Linq; +using Tensorflow.Common.Extensions; +using Tensorflow.Common.Types; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Saving; +using Tensorflow.Keras.Utils; + +namespace Tensorflow.Keras.Layers +{ + public class StackedRNNCells : Layer, IRnnCell + { + public IList Cells { get; set; } + public bool _reverse_state_order; + + public StackedRNNCells(IEnumerable cells, StackedRNNCellsArgs args) : base(args) + { + Cells = cells.ToList(); + + _reverse_state_order = args.ReverseStateOrder; + + if (_reverse_state_order) + { + throw new WarningException("reverse_state_order=True in StackedRNNCells will soon " + + "be deprecated. Please update the code to work with the " + + "natural order of states if you rely on the RNN states, " + + "eg RNN(return_state=True)."); + } + } + + public bool SupportOptionalArgs => false; + + public INestStructure StateSize + { + get + { + if (_reverse_state_order) + { + var state_sizes = Cells.Reverse().Select(cell => cell.StateSize); + return new Nest(state_sizes); + } + else + { + var state_sizes = Cells.Select(cell => cell.StateSize); + return new Nest(state_sizes); + } + } + } + + public INestStructure OutputSize + { + get + { + var lastCell = Cells.Last(); + if(lastCell.OutputSize is not null) + { + return lastCell.OutputSize; + } + else if (RnnUtils.is_multiple_state(lastCell.StateSize)) + { + return new NestNode(lastCell.StateSize.Flatten().First()); + } + else + { + return lastCell.StateSize; + } + } + } + + public Tensors GetInitialState(Tensors inputs = null, Tensor batch_size = null, TF_DataType dtype = TF_DataType.DtInvalid) + { + var cells = _reverse_state_order ? Cells.Reverse() : Cells; + List initial_states = new List(); + foreach (var cell in cells) + { + initial_states.Add(cell.GetInitialState(inputs, batch_size, dtype)); + } + return new Tensors(initial_states); + } + + protected override Tensors Call(Tensors inputs, Tensors states = null, bool? training = null, IOptionalArgs? optional_args = null) + { + // Recover per-cell states. + var state_size = _reverse_state_order ? new NestList(StateSize.Flatten().Reverse()) : StateSize; + var nested_states = Nest.PackSequenceAs(state_size, Nest.Flatten(states).ToArray()); + + var new_nest_states = Nest.Empty; + // Call the cells in order and store the returned states. + foreach (var (cell, internal_states) in zip(Cells, nested_states)) + { + RnnOptionalArgs? rnn_optional_args = optional_args as RnnOptionalArgs; + Tensors? constants = rnn_optional_args?.Constants; + + Tensors new_states; + (inputs, new_states) = cell.Apply(inputs, internal_states, optional_args: new RnnOptionalArgs() { Constants = constants }); + + new_nest_states = new_nest_states.MergeWith(new_states); + } + return Tensors.FromNest((inputs, Nest.PackSequenceAs(state_size, Nest.Flatten(new_nest_states).ToArray()))); + } + + public override void build(KerasShapesWrapper input_shape) + { + var shape = input_shape.ToSingleShape(); + foreach(var cell in Cells) + { + if(cell is Layer layer && !layer.Built) + { + // ignored the name scope. + layer.build(shape); + layer.Built = true; + } + INestStructure output_dim; + if(cell.OutputSize is not null) + { + output_dim = cell.OutputSize; + } + else if (RnnUtils.is_multiple_state(cell.StateSize)) + { + output_dim = new NestNode(cell.StateSize.Flatten().First()); + } + else + { + output_dim = cell.StateSize; + } + shape = new Shape(new long[] { shape.dims[0] }.Concat(output_dim.Flatten()).ToArray()); + } + this.Built = true; + } + + public override IKerasConfig get_config() + { + throw new NotImplementedException(); + //def get_config(self): + // cells = [] + // for cell in self.cells: + // cells.append(generic_utils.serialize_keras_object(cell)) + // config = {'cells': cells} + // base_config = super(StackedRNNCells, self).get_config() + // return dict(list(base_config.items()) + list(config.items())) + } + + + public void from_config() + { + throw new NotImplementedException(); + // @classmethod + // def from_config(cls, config, custom_objects = None): + // from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top + // cells = [] + // for cell_config in config.pop('cells'): + // cells.append( + // deserialize_layer(cell_config, custom_objects = custom_objects)) + // return cls(cells, **config) + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/SimpleRNN.cs b/src/TensorFlowNET.Keras/Layers/SimpleRNN.cs deleted file mode 100644 index c1fc4afd6..000000000 --- a/src/TensorFlowNET.Keras/Layers/SimpleRNN.cs +++ /dev/null @@ -1,14 +0,0 @@ -using Tensorflow.Keras.ArgsDefinition; - -namespace Tensorflow.Keras.Layers -{ - public class SimpleRNN : RNN - { - - public SimpleRNN(RNNArgs args) : base(args) - { - - } - - } -} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Layers/StackedRNNCells.cs b/src/TensorFlowNET.Keras/Layers/StackedRNNCells.cs deleted file mode 100644 index 2da206ca8..000000000 --- a/src/TensorFlowNET.Keras/Layers/StackedRNNCells.cs +++ /dev/null @@ -1,164 +0,0 @@ -using System; -using System.Collections.Generic; -using System.ComponentModel; -using Tensorflow.Keras.ArgsDefinition; -using Tensorflow.Keras.Engine; - -namespace Tensorflow.Keras.Layers -{ - public class StackedRNNCells : Layer, RNNArgs.IRnnArgCell - { - public IList Cells { get; set; } - public bool reverse_state_order; - - public StackedRNNCells(StackedRNNCellsArgs args) : base(args) - { - if (args.Kwargs == null) - { - args.Kwargs = new Dictionary(); - } - - Cells = args.Cells; - reverse_state_order = (bool)args.Kwargs.Get("reverse_state_order", false); - - if (reverse_state_order) - { - throw new WarningException("reverse_state_order=True in StackedRNNCells will soon " + - "be deprecated. Please update the code to work with the " + - "natural order of states if you rely on the RNN states, " + - "eg RNN(return_state=True)."); - } - } - - public object state_size - { - get => throw new NotImplementedException(); - //@property - //def state_size(self) : - // return tuple(c.state_size for c in - // (self.cells[::- 1] if self.reverse_state_order else self.cells)) - } - - public object output_size - { - get - { - var lastCell = Cells[Cells.Count - 1]; - - if (lastCell.output_size != -1) - { - return lastCell.output_size; - } - else if (RNN._is_multiple_state(lastCell.state_size)) - { - // return ((dynamic)Cells[-1].state_size)[0]; - throw new NotImplementedException(""); - } - else - { - return Cells[-1].state_size; - } - } - } - - public object get_initial_state() - { - throw new NotImplementedException(); - // def get_initial_state(self, inputs= None, batch_size= None, dtype= None) : - // initial_states = [] - // for cell in self.cells[::- 1] if self.reverse_state_order else self.cells: - // get_initial_state_fn = getattr(cell, 'get_initial_state', None) - // if get_initial_state_fn: - // initial_states.append(get_initial_state_fn( - // inputs=inputs, batch_size=batch_size, dtype=dtype)) - // else: - // initial_states.append(_generate_zero_filled_state_for_cell( - // cell, inputs, batch_size, dtype)) - - // return tuple(initial_states) - } - - public object call() - { - throw new NotImplementedException(); - // def call(self, inputs, states, constants= None, training= None, ** kwargs): - // # Recover per-cell states. - // state_size = (self.state_size[::- 1] - // if self.reverse_state_order else self.state_size) - // nested_states = nest.pack_sequence_as(state_size, nest.flatten(states)) - - // # Call the cells in order and store the returned states. - // new_nested_states = [] - // for cell, states in zip(self.cells, nested_states) : - // states = states if nest.is_nested(states) else [states] - //# TF cell does not wrap the state into list when there is only one state. - // is_tf_rnn_cell = getattr(cell, '_is_tf_rnn_cell', None) is not None - // states = states[0] if len(states) == 1 and is_tf_rnn_cell else states - // if generic_utils.has_arg(cell.call, 'training'): - // kwargs['training'] = training - // else: - // kwargs.pop('training', None) - // # Use the __call__ function for callable objects, eg layers, so that it - // # will have the proper name scopes for the ops, etc. - // cell_call_fn = cell.__call__ if callable(cell) else cell.call - // if generic_utils.has_arg(cell.call, 'constants'): - // inputs, states = cell_call_fn(inputs, states, - // constants= constants, ** kwargs) - // else: - // inputs, states = cell_call_fn(inputs, states, ** kwargs) - // new_nested_states.append(states) - - // return inputs, nest.pack_sequence_as(state_size, - // nest.flatten(new_nested_states)) - } - - public void build() - { - throw new NotImplementedException(); - // @tf_utils.shape_type_conversion - // def build(self, input_shape) : - // if isinstance(input_shape, list) : - // input_shape = input_shape[0] - // for cell in self.cells: - // if isinstance(cell, Layer) and not cell.built: - // with K.name_scope(cell.name): - // cell.build(input_shape) - // cell.built = True - // if getattr(cell, 'output_size', None) is not None: - // output_dim = cell.output_size - // elif _is_multiple_state(cell.state_size) : - // output_dim = cell.state_size[0] - // else: - // output_dim = cell.state_size - // input_shape = tuple([input_shape[0]] + - // tensor_shape.TensorShape(output_dim).as_list()) - // self.built = True - } - - public override LayerArgs get_config() - { - throw new NotImplementedException(); - //def get_config(self): - // cells = [] - // for cell in self.cells: - // cells.append(generic_utils.serialize_keras_object(cell)) - // config = {'cells': cells} - // base_config = super(StackedRNNCells, self).get_config() - // return dict(list(base_config.items()) + list(config.items())) - } - - - public void from_config() - { - throw new NotImplementedException(); - // @classmethod - // def from_config(cls, config, custom_objects = None): - // from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top - // cells = [] - // for cell_config in config.pop('cells'): - // cells.append( - // deserialize_layer(cell_config, custom_objects = custom_objects)) - // return cls(cells, **config) - } - } -} diff --git a/src/TensorFlowNET.Keras/Layers/TensorFlowOpLayer.cs b/src/TensorFlowNET.Keras/Layers/TensorFlowOpLayer.cs index c7b9157bf..6dfec3196 100644 --- a/src/TensorFlowNET.Keras/Layers/TensorFlowOpLayer.cs +++ b/src/TensorFlowNET.Keras/Layers/TensorFlowOpLayer.cs @@ -10,6 +10,7 @@ using static Tensorflow.Binding; using Tensorflow.Functions; using System.Threading; +using Tensorflow.Common.Types; namespace Tensorflow.Keras.Layers { @@ -34,7 +35,7 @@ public TensorFlowOpLayer(TensorFlowOpLayerArgs args) built = true; } - protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { if (tf.Context.executing_eagerly()) return DeFunCall(inputs); @@ -84,8 +85,8 @@ Tensors MakOp(Tensors inputs) inputs.Insert(index, value); } - var (c_op, _) = ops._create_c_op(graph, node_def, inputs.ToArray(), new Operation[0]); - var op = graph._create_op_from_tf_operation(c_op); + var (c_op, op_desc) = ops._create_c_op(graph, node_def, inputs.ToArray(), new Operation[0]); + var op = graph._create_op_from_tf_operation(c_op, desc: op_desc); op._control_flow_post_processing(); // Record the gradient because custom-made ops don't go through the diff --git a/src/TensorFlowNET.Keras/Losses/BinaryCrossentropy.cs b/src/TensorFlowNET.Keras/Losses/BinaryCrossentropy.cs new file mode 100644 index 000000000..0de50a7ec --- /dev/null +++ b/src/TensorFlowNET.Keras/Losses/BinaryCrossentropy.cs @@ -0,0 +1,24 @@ +namespace Tensorflow.Keras.Losses; + +public class BinaryCrossentropy : LossFunctionWrapper +{ + float label_smoothing; + + public BinaryCrossentropy( + bool from_logits = false, + float label_smoothing = 0, + string reduction = null, + string name = null) : + base(reduction: reduction, + name: name == null ? "binary_crossentropy" : name, + from_logits: from_logits) + { + this.label_smoothing = label_smoothing; + } + + public override Tensor Apply(Tensor y_true, Tensor y_pred, bool from_logits = false, int axis = -1) + { + var sum = keras.backend.binary_crossentropy(y_true, y_pred, from_logits: from_logits); + return keras.backend.mean(sum, axis: axis); + } +} diff --git a/src/TensorFlowNET.Keras/Losses/CategoricalCrossentropy.cs b/src/TensorFlowNET.Keras/Losses/CategoricalCrossentropy.cs index c80b1a83d..1af57b552 100644 --- a/src/TensorFlowNET.Keras/Losses/CategoricalCrossentropy.cs +++ b/src/TensorFlowNET.Keras/Losses/CategoricalCrossentropy.cs @@ -1,31 +1,24 @@ -using System; -using System.Collections.Generic; -using System.Text; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; +namespace Tensorflow.Keras.Losses; -namespace Tensorflow.Keras.Losses +public class CategoricalCrossentropy : LossFunctionWrapper { - public class CategoricalCrossentropy : LossFunctionWrapper, ILossFunc - { - float label_smoothing; - public CategoricalCrossentropy( - bool from_logits = false, - float label_smoothing = 0, - string reduction = null, - string name = null) : - base(reduction: reduction, - name: name == null ? "categorical_crossentropy" : name, - from_logits: from_logits) - { - this.label_smoothing = label_smoothing; - } + float label_smoothing; + public CategoricalCrossentropy( + bool from_logits = false, + float label_smoothing = 0, + string reduction = null, + string name = null) : + base(reduction: reduction, + name: name == null ? "categorical_crossentropy" : name, + from_logits: from_logits) + { + this.label_smoothing = label_smoothing; + } - public override Tensor Apply(Tensor y_true, Tensor y_pred, bool from_logits = false, int axis = -1) - { - // Try to adjust the shape so that rank of labels = rank of logits - 1. - return keras.backend.categorical_crossentropy(y_true, y_pred, from_logits: from_logits); - } + public override Tensor Apply(Tensor y_true, Tensor y_pred, bool from_logits = false, int axis = -1) + { + // Try to adjust the shape so that rank of labels = rank of logits - 1. + return keras.backend.categorical_crossentropy(y_true, y_pred, from_logits: from_logits); } } diff --git a/src/TensorFlowNET.Keras/Losses/CosineSimilarity.cs b/src/TensorFlowNET.Keras/Losses/CosineSimilarity.cs index 16ab4b799..cf9df8d0d 100644 --- a/src/TensorFlowNET.Keras/Losses/CosineSimilarity.cs +++ b/src/TensorFlowNET.Keras/Losses/CosineSimilarity.cs @@ -1,28 +1,22 @@ -using System; -using System.Collections.Generic; -using System.Text; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; +namespace Tensorflow.Keras.Losses; -namespace Tensorflow.Keras.Losses +public class CosineSimilarity : LossFunctionWrapper { - public class CosineSimilarity : LossFunctionWrapper, ILossFunc + protected int axis = -1; + + public CosineSimilarity( + string reduction = null, + int axis = -1, + string name = null) : + base(reduction: reduction, name: name == null ? "cosine_similarity" : name) { - protected int axis=-1; - public CosineSimilarity( - string reduction = null, - int axis=-1, - string name = null) : - base(reduction: reduction, name: name == null ? "cosine_similarity" : name) - { - this.axis = axis; - } + this.axis = axis; + } - public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) - { - Tensor y_true_normalize = nn_impl.l2_normalize(y_true, axis : this.axis); - Tensor y_pred_normalize = nn_impl.l2_normalize(y_pred, axis: this.axis); - return -math_ops.reduce_sum(y_true_normalize * y_pred_normalize, axis : constant_op.constant(this.axis)); - } + public override Tensor Apply(Tensor y_true = null, Tensor y_pred = null, bool from_logits = false, int axis = -1) + { + Tensor y_true_normalize = nn_impl.l2_normalize(y_true, axis: this.axis); + Tensor y_pred_normalize = nn_impl.l2_normalize(y_pred, axis: this.axis); + return -math_ops.reduce_sum(y_true_normalize * y_pred_normalize, axis: constant_op.constant(this.axis)); } -} +} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Losses/Huber.cs b/src/TensorFlowNET.Keras/Losses/Huber.cs index a256786f1..61f006d2b 100644 --- a/src/TensorFlowNET.Keras/Losses/Huber.cs +++ b/src/TensorFlowNET.Keras/Losses/Huber.cs @@ -1,36 +1,29 @@ -using System; -using System.Collections.Generic; -using System.Text; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; +namespace Tensorflow.Keras.Losses; -namespace Tensorflow.Keras.Losses +public class Huber : LossFunctionWrapper { - public class Huber : LossFunctionWrapper, ILossFunc + protected Tensor delta = tf.Variable(1.0); + + public Huber( + string reduction = null, + Tensor delta = null, + string name = null) : + base(reduction: reduction, name: name == null ? "huber" : name) { - protected Tensor delta = tf.Variable(1.0) ; - public Huber ( - string reduction = null, - Tensor delta = null, - string name = null) : - base(reduction: reduction, name: name == null ? "huber" : name) - { - this.delta = delta==null? this.delta: delta; - - } + this.delta = delta == null ? this.delta : delta; + } - public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) - { - Tensor y_pred_cast = math_ops.cast(y_pred, dtype: TF_DataType.TF_FLOAT); - Tensor y_true_cast = math_ops.cast(y_true, dtype: TF_DataType.TF_FLOAT); - Tensor delta = math_ops.cast(this.delta, dtype: TF_DataType.TF_FLOAT); - Tensor error = math_ops.subtract(y_pred_cast, y_true_cast); - Tensor abs_error = math_ops.abs(error); - Tensor half = ops.convert_to_tensor(0.5, dtype: abs_error.dtype); - return gen_math_ops.mean(array_ops.where_v2(abs_error <= delta, - half * math_ops.pow(error, 2), - half * math_ops.pow(delta, 2) + delta * (abs_error - delta)), - axis: -1); - } + public override Tensor Apply(Tensor y_true = null, Tensor y_pred = null, bool from_logits = false, int axis = -1) + { + Tensor y_pred_cast = math_ops.cast(y_pred, dtype: TF_DataType.TF_FLOAT); + Tensor y_true_cast = math_ops.cast(y_true, dtype: TF_DataType.TF_FLOAT); + Tensor delta = math_ops.cast(this.delta, dtype: TF_DataType.TF_FLOAT); + Tensor error = math_ops.subtract(y_pred_cast, y_true_cast); + Tensor abs_error = math_ops.abs(error); + Tensor half = ops.convert_to_tensor(0.5, dtype: abs_error.dtype); + return gen_math_ops.mean(array_ops.where_v2(abs_error <= delta, + half * math_ops.pow(error, 2), + half * math_ops.pow(delta, 2) + delta * (abs_error - delta)), + ops.convert_to_tensor(-1)); } } diff --git a/src/TensorFlowNET.Keras/Losses/ILossFunc.cs b/src/TensorFlowNET.Keras/Losses/ILossFunc.cs deleted file mode 100644 index 8bc226df8..000000000 --- a/src/TensorFlowNET.Keras/Losses/ILossFunc.cs +++ /dev/null @@ -1,9 +0,0 @@ -namespace Tensorflow.Keras.Losses -{ - public interface ILossFunc - { - public string Reduction { get; } - public string Name { get; } - Tensor Call(Tensor y_true, Tensor y_pred, Tensor sample_weight = null); - } -} diff --git a/src/TensorFlowNET.Keras/Losses/LogCosh.cs b/src/TensorFlowNET.Keras/Losses/LogCosh.cs index 8acbbe9d2..0c7a9b6e2 100644 --- a/src/TensorFlowNET.Keras/Losses/LogCosh.cs +++ b/src/TensorFlowNET.Keras/Losses/LogCosh.cs @@ -1,26 +1,20 @@ -using System; -using System.Collections.Generic; -using System.Text; -using Tensorflow.Operations; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; +namespace Tensorflow.Keras.Losses; -namespace Tensorflow.Keras.Losses +public class LogCosh : LossFunctionWrapper { - public class LogCosh : LossFunctionWrapper, ILossFunc - { - public LogCosh( - string reduction = null, - string name = null) : - base(reduction: reduction, name: name == null ? "log_cosh" : name){ } + public LogCosh( + string reduction = null, + string name = null) : + base(reduction: reduction, name: name == null ? "log_cosh" : name) + { } - public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) - { - Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); - Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); - Tensor x = y_pred_dispatch - y_true_cast; + public override Tensor Apply(Tensor y_true = null, Tensor y_pred = null, bool from_logits = false, int axis = -1) + { + Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); + Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); + Tensor x = y_pred_dispatch - y_true_cast; - return gen_math_ops.mean(x + gen_math_ops.softplus(-2.0 * x) - math_ops.cast(math_ops.log(tf.Variable(2.0)), x.dtype), axis: -1); - } + return gen_math_ops.mean(x + gen_nn_ops.softplus(-2.0 * x) - math_ops.cast(math_ops.log(tf.Variable(2.0)), x.dtype), + ops.convert_to_tensor(-1)); } -} +} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Losses/Loss.cs b/src/TensorFlowNET.Keras/Losses/Loss.cs index fe017ac42..ce77f6d63 100644 --- a/src/TensorFlowNET.Keras/Losses/Loss.cs +++ b/src/TensorFlowNET.Keras/Losses/Loss.cs @@ -1,45 +1,51 @@ -using System; -using Tensorflow.Keras.Utils; +using Tensorflow.Keras.Utils; -namespace Tensorflow.Keras.Losses +namespace Tensorflow.Keras.Losses; + +/// +/// Loss base class. +/// +public abstract class Loss : ILossFunc { - /// - /// Loss base class. - /// - public abstract class Loss + protected string reduction; + protected string name; + bool _allow_sum_over_batch_size; + protected bool from_logits = false; + string _name_scope; + + public string Reduction => reduction; + public string Name => name; + + public Loss(string reduction = ReductionV2.AUTO, + string name = null, + bool from_logits = false) { - protected string reduction; - protected string name; - bool _allow_sum_over_batch_size; - protected bool from_logits = false; - string _name_scope; - - public string Reduction => reduction; - public string Name => name; - public Loss(string reduction = ReductionV2.AUTO, - string name = null, - bool from_logits = false) - { - this.reduction = reduction == null ? ReductionV2.SUM_OVER_BATCH_SIZE : reduction; - this.name = name; - this.from_logits = from_logits; - _allow_sum_over_batch_size = false; - } + this.reduction = reduction == null ? ReductionV2.SUM_OVER_BATCH_SIZE : reduction; + this.name = name; + this.from_logits = from_logits; + _allow_sum_over_batch_size = false; + } - public virtual Tensor Apply(Tensor y_true, Tensor y_pred, bool from_logits = false, int axis = -1) - { - throw new NotImplementedException(""); - } + public abstract Tensor Apply(Tensor y_true, Tensor y_pred, bool from_logits = false, int axis = -1); - public Tensor Call(Tensor y_true, Tensor y_pred, Tensor sample_weight = null) - { - var losses = Apply(y_true, y_pred, from_logits: from_logits); - return losses_utils.compute_weighted_loss(losses, reduction: this.reduction , sample_weight: sample_weight); - } + public Tensor Call(Tensor y_true, Tensor y_pred, Tensor sample_weight = null) + { + var losses = Apply(y_true, y_pred, from_logits: from_logits); + var reduction = GetReduction(); + return losses_utils.compute_weighted_loss(losses, reduction: reduction, sample_weight: sample_weight); + } - void _set_name_scope() + string GetReduction() + { + return reduction switch { - _name_scope = name; - } + ReductionV2.AUTO => ReductionV2.SUM_OVER_BATCH_SIZE, + _ => reduction + }; + } + + void _set_name_scope() + { + _name_scope = name; } -} +} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Losses/LossFunctionWrapper.cs b/src/TensorFlowNET.Keras/Losses/LossFunctionWrapper.cs index 758b46f4b..f4ee2b346 100644 --- a/src/TensorFlowNET.Keras/Losses/LossFunctionWrapper.cs +++ b/src/TensorFlowNET.Keras/Losses/LossFunctionWrapper.cs @@ -1,16 +1,14 @@ using Tensorflow.Keras.Utils; -namespace Tensorflow.Keras.Losses +namespace Tensorflow.Keras.Losses; + +public abstract class LossFunctionWrapper : Loss { - public class LossFunctionWrapper : Loss - { - public LossFunctionWrapper(string reduction = ReductionV2.AUTO, - string name = null, - bool from_logits = false) - : base(reduction: reduction, - name: name, - from_logits: from_logits) - { - } - } + public LossFunctionWrapper(string reduction = ReductionV2.AUTO, + string name = null, + bool from_logits = false) + : base(reduction: reduction, + name: name, + from_logits: from_logits) + { } } diff --git a/src/TensorFlowNET.Keras/Losses/LossesApi.cs b/src/TensorFlowNET.Keras/Losses/LossesApi.cs index 71cffebb6..79f16a2eb 100644 --- a/src/TensorFlowNET.Keras/Losses/LossesApi.cs +++ b/src/TensorFlowNET.Keras/Losses/LossesApi.cs @@ -1,7 +1,17 @@ namespace Tensorflow.Keras.Losses { - public class LossesApi + public class LossesApi : ILossesApi { + public ILossFunc BinaryCrossentropy(bool from_logits = false, + float label_smoothing = 0, + int axis = -1, + string reduction = "auto", + string name = "binary_crossentropy") + => new BinaryCrossentropy(from_logits: from_logits, + label_smoothing: label_smoothing, + reduction: reduction, + name: name); + public ILossFunc SparseCategoricalCrossentropy(string reduction = null, string name = null,bool from_logits = false) => new SparseCategoricalCrossentropy(reduction: reduction, name: name,from_logits: from_logits); @@ -19,8 +29,8 @@ public ILossFunc MeanAbsolutePercentageError(string reduction = null, string nam public ILossFunc MeanAbsoluteError(string reduction = null, string name = null) => new MeanAbsoluteError(reduction: reduction, name: name); - public ILossFunc CosineSimilarity(string reduction = null, string name = null,int axis=-1) - => new CosineSimilarity(reduction: reduction, name: name, axis: axis); + public ILossFunc CosineSimilarity(string reduction = null, int axis = -1, string name = null) + => new CosineSimilarity(reduction: reduction, axis: axis, name: name); public ILossFunc Huber(string reduction = null, string name = null, Tensor delta=null) => new Huber(reduction: reduction, name: name, delta: delta); @@ -28,5 +38,15 @@ public ILossFunc Huber(string reduction = null, string name = null, Tensor delta public ILossFunc LogCosh(string reduction = null, string name = null) => new LogCosh(reduction: reduction, name: name); + public ILossFunc SigmoidFocalCrossEntropy(bool from_logits = false, + float alpha = 0.25F, + float gamma = 2, + string reduction = "none", + string name = "sigmoid_focal_crossentropy") + => new SigmoidFocalCrossEntropy(from_logits: from_logits, + alpha: alpha, + gamma: gamma, + reduction: reduction, + name: name); } } diff --git a/src/TensorFlowNET.Keras/Losses/MeanAbsoluteError.cs b/src/TensorFlowNET.Keras/Losses/MeanAbsoluteError.cs index 5d0f83d43..19476a68a 100644 --- a/src/TensorFlowNET.Keras/Losses/MeanAbsoluteError.cs +++ b/src/TensorFlowNET.Keras/Losses/MeanAbsoluteError.cs @@ -1,23 +1,16 @@ -using System; -using System.Collections.Generic; -using System.Text; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; +namespace Tensorflow.Keras.Losses; -namespace Tensorflow.Keras.Losses +public class MeanAbsoluteError : LossFunctionWrapper { - public class MeanAbsoluteError : LossFunctionWrapper, ILossFunc - { - public MeanAbsoluteError( - string reduction = null, - string name = null) : - base(reduction: reduction, name: name == null ? "mean_absolute_error" : name){ } + public MeanAbsoluteError( + string reduction = null, + string name = null) : + base(reduction: reduction, name: name == null ? "mean_absolute_error" : name){ } - public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) - { - Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); - Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); - return gen_math_ops.mean(math_ops.abs(y_pred_dispatch - y_true_cast), axis: -1); - } + public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) + { + Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); + Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); + return gen_math_ops.mean(math_ops.abs(y_pred_dispatch - y_true_cast), ops.convert_to_tensor(-1)); } } diff --git a/src/TensorFlowNET.Keras/Losses/MeanAbsolutePercentageError.cs b/src/TensorFlowNET.Keras/Losses/MeanAbsolutePercentageError.cs index 3295b12b1..226c4237a 100644 --- a/src/TensorFlowNET.Keras/Losses/MeanAbsolutePercentageError.cs +++ b/src/TensorFlowNET.Keras/Losses/MeanAbsolutePercentageError.cs @@ -1,24 +1,17 @@ -using System; -using System.Collections.Generic; -using System.Text; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; +namespace Tensorflow.Keras.Losses; -namespace Tensorflow.Keras.Losses +public class MeanAbsolutePercentageError : LossFunctionWrapper { - public class MeanAbsolutePercentageError : LossFunctionWrapper, ILossFunc - { - public MeanAbsolutePercentageError( - string reduction = null, - string name = null) : - base(reduction: reduction, name: name == null ? "mean_absolute_percentage_error" : name){ } + public MeanAbsolutePercentageError( + string reduction = null, + string name = null) : + base(reduction: reduction, name: name == null ? "mean_absolute_percentage_error" : name){ } - public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) - { - Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); - Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); - Tensor diff = math_ops.abs(y_true_cast - y_pred_dispatch) / gen_math_ops.maximum(math_ops.abs(y_true_cast), gen_math_ops.cast(tf.constant(1e-7), y_pred_dispatch.dtype)); - return gen_math_ops.cast(tf.constant(100), y_pred_dispatch.dtype) * gen_math_ops.mean(diff, axis: -1); - } + public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) + { + Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); + Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); + Tensor diff = math_ops.abs(y_true_cast - y_pred_dispatch) / gen_math_ops.maximum(math_ops.abs(y_true_cast), gen_math_ops.cast(tf.constant(1e-7), y_pred_dispatch.dtype)); + return gen_math_ops.cast(tf.constant(100), y_pred_dispatch.dtype) * gen_math_ops.mean(diff, ops.convert_to_tensor(-1)); } } diff --git a/src/TensorFlowNET.Keras/Losses/MeanSquaredError.cs b/src/TensorFlowNET.Keras/Losses/MeanSquaredError.cs index 6ae7d86d4..a937c1963 100644 --- a/src/TensorFlowNET.Keras/Losses/MeanSquaredError.cs +++ b/src/TensorFlowNET.Keras/Losses/MeanSquaredError.cs @@ -1,23 +1,16 @@ -using System; -using System.Collections.Generic; -using System.Text; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; +namespace Tensorflow.Keras.Losses; -namespace Tensorflow.Keras.Losses +public class MeanSquaredError : LossFunctionWrapper { - public class MeanSquaredError : LossFunctionWrapper, ILossFunc - { - public MeanSquaredError( - string reduction = null, - string name = null) : - base(reduction: reduction, name: name==null? "mean_squared_error" : name){ } + public MeanSquaredError( + string reduction = null, + string name = null) : + base(reduction: reduction, name: name==null? "mean_squared_error" : name){ } - public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) - { - Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); - Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); - return gen_math_ops.mean(gen_math_ops.squared_difference(y_pred_dispatch, y_true_cast), axis: -1); - } + public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) + { + Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); + Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); + return gen_math_ops.mean(gen_math_ops.squared_difference(y_pred_dispatch, y_true_cast), ops.convert_to_tensor(-1)); } } diff --git a/src/TensorFlowNET.Keras/Losses/MeanSquaredLogarithmicError.cs b/src/TensorFlowNET.Keras/Losses/MeanSquaredLogarithmicError.cs index 22b5a6ff9..0a4e7d3c5 100644 --- a/src/TensorFlowNET.Keras/Losses/MeanSquaredLogarithmicError.cs +++ b/src/TensorFlowNET.Keras/Losses/MeanSquaredLogarithmicError.cs @@ -1,33 +1,28 @@ -using System; -using System.Collections.Generic; -using System.Text; -using static Tensorflow.Binding; -using static Tensorflow.KerasApi; +namespace Tensorflow.Keras.Losses; -namespace Tensorflow.Keras.Losses +public class MeanSquaredLogarithmicError : LossFunctionWrapper { - public class MeanSquaredLogarithmicError : LossFunctionWrapper, ILossFunc - { - public MeanSquaredLogarithmicError( - string reduction = null, - string name = null) : - base(reduction: reduction, name: name == null ? "mean_squared_logarithmic_error" : name){ } - + public MeanSquaredLogarithmicError( + string reduction = null, + string name = null) : + base(reduction: reduction, name: name == null ? "mean_squared_logarithmic_error" : name) + { } - public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1) + public override Tensor Apply(Tensor y_true = null, Tensor y_pred = null, bool from_logits = false, int axis = -1) + { + Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); + Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); + Tensor first_log = null, second_log = null; + if (y_pred_dispatch.dtype == TF_DataType.TF_DOUBLE) + { + first_log = math_ops.log(math_ops.maximum(y_pred_dispatch, 1e-7) + 1.0); + second_log = math_ops.log(math_ops.maximum(y_true_cast, 1e-7) + 1.0); + } + else { - Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred); - Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype); - Tensor first_log=null, second_log=null; - if (y_pred_dispatch.dtype == TF_DataType.TF_DOUBLE) { - first_log = math_ops.log(gen_math_ops.maximum(y_pred_dispatch, 1e-7) + 1.0); - second_log = math_ops.log(gen_math_ops.maximum(y_true_cast, 1e-7) + 1.0); - } - else { - first_log = math_ops.log(gen_math_ops.maximum(y_pred_dispatch, 1e-7f) + 1.0f); - second_log = math_ops.log(gen_math_ops.maximum(y_true_cast, 1e-7f) + 1.0f); - } - return gen_math_ops.mean(gen_math_ops.squared_difference(first_log, second_log), axis: -1); + first_log = math_ops.log(math_ops.maximum(y_pred_dispatch, 1e-7f) + 1.0f); + second_log = math_ops.log(math_ops.maximum(y_true_cast, 1e-7f) + 1.0f); } + return gen_math_ops.mean(gen_math_ops.squared_difference(first_log, second_log), ops.convert_to_tensor(-1)); } -} +} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Losses/SigmoidFocalCrossEntropy.cs b/src/TensorFlowNET.Keras/Losses/SigmoidFocalCrossEntropy.cs new file mode 100644 index 000000000..ec6dcedf8 --- /dev/null +++ b/src/TensorFlowNET.Keras/Losses/SigmoidFocalCrossEntropy.cs @@ -0,0 +1,47 @@ +using static HDF.PInvoke.H5L.info_t; + +namespace Tensorflow.Keras.Losses; + +public class SigmoidFocalCrossEntropy : LossFunctionWrapper +{ + float _alpha; + float _gamma; + + public SigmoidFocalCrossEntropy(bool from_logits = false, + float alpha = 0.25f, + float gamma = 2.0f, + string reduction = "none", + string name = "sigmoid_focal_crossentropy") : + base(reduction: reduction, + name: name, + from_logits: from_logits) + { + _alpha = alpha; + _gamma = gamma; + } + + public override Tensor Apply(Tensor y_true, Tensor y_pred, bool from_logits = false, int axis = -1) + { + y_true = tf.cast(y_true, dtype: y_pred.dtype); + var ce = keras.backend.binary_crossentropy(y_true, y_pred, from_logits: from_logits); + var pred_prob = from_logits ? tf.sigmoid(y_pred) : y_pred; + + var p_t = (y_true * pred_prob) + ((1f - y_true) * (1f - pred_prob)); + Tensor alpha_factor = constant_op.constant(1.0f); + Tensor modulating_factor = constant_op.constant(1.0f); + + if(_alpha > 0) + { + var alpha = tf.cast(constant_op.constant(_alpha), dtype: y_true.dtype); + alpha_factor = y_true * alpha + (1f - y_true) * (1f - alpha); + } + + if (_gamma > 0) + { + var gamma = tf.cast(constant_op.constant(_gamma), dtype: y_true.dtype); + modulating_factor = tf.pow(1f - p_t, gamma); + } + + return tf.reduce_sum(alpha_factor * modulating_factor * ce, axis = -1); + } +} diff --git a/src/TensorFlowNET.Keras/Losses/SparseCategoricalCrossentropy.cs b/src/TensorFlowNET.Keras/Losses/SparseCategoricalCrossentropy.cs index 0f6e4645b..17ce2d30b 100644 --- a/src/TensorFlowNET.Keras/Losses/SparseCategoricalCrossentropy.cs +++ b/src/TensorFlowNET.Keras/Losses/SparseCategoricalCrossentropy.cs @@ -1,30 +1,41 @@ using static Tensorflow.Binding; -namespace Tensorflow.Keras.Losses +namespace Tensorflow.Keras.Losses; + +public class SparseCategoricalCrossentropy : LossFunctionWrapper { - public class SparseCategoricalCrossentropy : LossFunctionWrapper, ILossFunc + private bool _from_logits = false; + + public SparseCategoricalCrossentropy( + bool from_logits = false, + string reduction = null, + string name = null) : + base(reduction: reduction, name: name == null ? "sparse_categorical_crossentropy" : name) { - public SparseCategoricalCrossentropy( - bool from_logits = false, - string reduction = null, - string name = null) : - base(reduction: reduction, name: name == null ? "sparse_categorical_crossentropy" : name){ } + _from_logits = from_logits; + } - public override Tensor Apply(Tensor target, Tensor output, bool from_logits = false, int axis = -1) + public override Tensor Apply(Tensor target, Tensor output, bool from_logits = false, int axis = -1) + { + target = tf.cast(target, dtype: TF_DataType.TF_INT64); + + if (!_from_logits) { - target = tf.cast(target, dtype: TF_DataType.TF_INT64); + var epsilon = tf.constant(KerasApi.keras.backend.epsilon(), output.dtype); + output = tf.clip_by_value(output, epsilon, 1 - epsilon); + output = tf.log(output); + } - // Try to adjust the shape so that rank of labels = rank of logits - 1. - var output_shape = array_ops.shape_v2(output); - var output_rank = output.shape.ndim; - var target_rank = target.shape.ndim; - var update_shape = target_rank != output_rank - 1; - if (update_shape) - { - target = array_ops.reshape(target, new int[] { -1 }); - output = array_ops.reshape(output, new int[] { -1, output_shape[-1].numpy() }); - } - return tf.nn.sparse_softmax_cross_entropy_with_logits(target, output); + // Try to adjust the shape so that rank of labels = rank of logits - 1. + var output_shape = array_ops.shape_v2(output); + var output_rank = output.shape.ndim; + var target_rank = target.shape.ndim; + var update_shape = target_rank != output_rank - 1; + if (update_shape) + { + target = array_ops.reshape(target, new int[] { -1 }); + output = array_ops.reshape(output, new int[] { -1, output_shape[-1].numpy() }); } + return tf.nn.sparse_softmax_cross_entropy_with_logits(target, output); } -} +} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Metrics/Accuracy.cs b/src/TensorFlowNET.Keras/Metrics/Accuracy.cs new file mode 100644 index 000000000..93a724679 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/Accuracy.cs @@ -0,0 +1,11 @@ +namespace Tensorflow.Keras.Metrics; + +public class Accuracy : MeanMetricWrapper +{ + public Accuracy(string name = "accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + : base((yt, yp) => metrics_utils.accuracy(yt, yp), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/BinaryAccuracy.cs b/src/TensorFlowNET.Keras/Metrics/BinaryAccuracy.cs new file mode 100644 index 000000000..2977588e9 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/BinaryAccuracy.cs @@ -0,0 +1,11 @@ +namespace Tensorflow.Keras.Metrics; + +public class BinaryAccuracy : MeanMetricWrapper +{ + public BinaryAccuracy(string name = "binary_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT, float threshold = 0.5f) + : base((yt, yp) => metrics_utils.binary_matches(yt, yp), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/CategoricalAccuracy.cs b/src/TensorFlowNET.Keras/Metrics/CategoricalAccuracy.cs new file mode 100644 index 000000000..d15cf26c5 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/CategoricalAccuracy.cs @@ -0,0 +1,12 @@ +namespace Tensorflow.Keras.Metrics; + +public class CategoricalAccuracy : MeanMetricWrapper +{ + public CategoricalAccuracy(string name = "categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + : base((yt, yp) => metrics_utils.sparse_categorical_matches( + tf.math.argmax(yt, axis: -1), yp), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/CategoricalCrossentropy.cs b/src/TensorFlowNET.Keras/Metrics/CategoricalCrossentropy.cs new file mode 100644 index 000000000..95720c413 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/CategoricalCrossentropy.cs @@ -0,0 +1,16 @@ +namespace Tensorflow.Keras.Metrics; + +public class CategoricalCrossentropy : MeanMetricWrapper +{ + public CategoricalCrossentropy(string name = "categorical_crossentropy", + TF_DataType dtype = TF_DataType.TF_FLOAT, + bool from_logits = false, + float label_smoothing = 0f, + Axis? axis = null) + : base((yt, yp) => keras.metrics.categorical_crossentropy( + yt, yp, from_logits: from_logits, label_smoothing: label_smoothing, axis: axis ?? -1), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/CosineSimilarity.cs b/src/TensorFlowNET.Keras/Metrics/CosineSimilarity.cs new file mode 100644 index 000000000..2a26bcdfe --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/CosineSimilarity.cs @@ -0,0 +1,11 @@ +namespace Tensorflow.Keras.Metrics; + +public class CosineSimilarity : MeanMetricWrapper +{ + public CosineSimilarity(string name = "cosine_similarity", TF_DataType dtype = TF_DataType.TF_FLOAT, Axis? axis = null) + : base((yt, yp) => metrics_utils.cosine_similarity(yt, yp, axis: axis ?? -1), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/F1Score.cs b/src/TensorFlowNET.Keras/Metrics/F1Score.cs new file mode 100644 index 000000000..fc24136d8 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/F1Score.cs @@ -0,0 +1,13 @@ +namespace Tensorflow.Keras.Metrics; + +public class F1Score : FBetaScore +{ + public F1Score(int num_classes, + string? average = null, + float? threshold = null, + string name = "f1_score", + TF_DataType dtype = TF_DataType.TF_FLOAT) + : base(num_classes, average: average, threshold: threshold, beta: 1f, name: name, dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/FBetaScore.cs b/src/TensorFlowNET.Keras/Metrics/FBetaScore.cs new file mode 100644 index 000000000..a40a7caa9 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/FBetaScore.cs @@ -0,0 +1,131 @@ +namespace Tensorflow.Keras.Metrics; + +public class FBetaScore : Metric +{ + int _num_classes; + string? _average; + Tensor _beta; + Tensor _threshold; + Axis _axis; + int[] _init_shape; + + IVariableV1 true_positives; + IVariableV1 false_positives; + IVariableV1 false_negatives; + IVariableV1 weights_intermediate; + + public FBetaScore(int num_classes, + string? average = null, + float beta = 0.1f, + float? threshold = null, + string name = "fbeta_score", + TF_DataType dtype = TF_DataType.TF_FLOAT) + : base(name: name, dtype: dtype) + { + _num_classes = num_classes; + _average = average; + _beta = constant_op.constant(beta); + _dtype = dtype; + + if (threshold.HasValue) + { + _threshold = constant_op.constant(threshold); + } + + _init_shape = new int[0]; + + if (average != "micro") + { + _axis = 0; + _init_shape = new int[] { num_classes }; + } + + true_positives = add_weight("true_positives", shape: _init_shape, initializer: tf.initializers.zeros_initializer()); + false_positives = add_weight("false_positives", shape: _init_shape, initializer: tf.initializers.zeros_initializer()); + false_negatives = add_weight("false_negatives", shape: _init_shape, initializer: tf.initializers.zeros_initializer()); + weights_intermediate = add_weight("weights_intermediate", shape: _init_shape, initializer: tf.initializers.zeros_initializer()); + } + + public override Tensor update_state(Tensor y_true, Tensor y_pred, Tensor sample_weight = null) + { + if (_threshold == null) + { + _threshold = tf.reduce_max(y_pred, axis: -1, keepdims: true); + // make sure [0, 0, 0] doesn't become [1, 1, 1] + // Use abs(x) > eps, instead of x != 0 to check for zero + y_pred = tf.logical_and(y_pred >= _threshold, tf.abs(y_pred) > 1e-12f); + } + else + { + y_pred = y_pred > _threshold; + } + + y_true = tf.cast(y_true, _dtype); + y_pred = tf.cast(y_pred, _dtype); + + true_positives.assign_add(_weighted_sum(y_pred * y_true, sample_weight)); + false_positives.assign_add( + _weighted_sum(y_pred * (1 - y_true), sample_weight) + ); + false_negatives.assign_add( + _weighted_sum((1 - y_pred) * y_true, sample_weight) + ); + weights_intermediate.assign_add(_weighted_sum(y_true, sample_weight)); + + return weights_intermediate.AsTensor(); + } + + Tensor _weighted_sum(Tensor val, Tensor? sample_weight = null) + { + if (sample_weight != null) + { + val = tf.math.multiply(val, tf.expand_dims(sample_weight, 1)); + } + + return tf.reduce_sum(val, axis: _axis); + } + + public override Tensor result() + { + var precision = tf.math.divide_no_nan( + true_positives.AsTensor(), true_positives.AsTensor() + false_positives.AsTensor() + ); + var recall = tf.math.divide_no_nan( + true_positives.AsTensor(), true_positives.AsTensor() + false_negatives.AsTensor() + ); + + var mul_value = precision * recall; + var add_value = (tf.math.square(_beta) * precision) + recall; + var mean = tf.math.divide_no_nan(mul_value, add_value); + var f1_score = mean * (1 + tf.math.square(_beta)); + + Tensor weights; + if (_average == "weighted") + { + weights = tf.math.divide_no_nan( + weights_intermediate.AsTensor(), tf.reduce_sum(weights_intermediate.AsTensor()) + ); + f1_score = tf.reduce_sum(f1_score * weights); + } + // micro, macro + else if (_average != null) + { + f1_score = tf.reduce_mean(f1_score); + } + + return f1_score; + } + + public override void reset_states() + { + var reset_value = np.zeros(_init_shape, dtype: _dtype); + keras.backend.batch_set_value( + new List<(IVariableV1, NDArray)> + { + (true_positives, reset_value), + (false_positives, reset_value), + (false_negatives, reset_value), + (weights_intermediate, reset_value) + }); + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/HammingLoss.cs b/src/TensorFlowNET.Keras/Metrics/HammingLoss.cs new file mode 100644 index 000000000..2b65424e9 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/HammingLoss.cs @@ -0,0 +1,15 @@ +namespace Tensorflow.Keras.Metrics; + +public class HammingLoss : MeanMetricWrapper +{ + public HammingLoss(string mode, + NDArray threshold = null, + string name = "hamming_loss", + TF_DataType dtype = TF_DataType.TF_FLOAT) + : base((yt, yp) => metrics_utils.hamming_loss_fn(yt, yp, threshold, mode), + name: name, + dtype: dtype) + { + _dtype = dtype; + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/MeanMetricWrapper.cs b/src/TensorFlowNET.Keras/Metrics/MeanMetricWrapper.cs index c422bfa64..7173aae1d 100644 --- a/src/TensorFlowNET.Keras/Metrics/MeanMetricWrapper.cs +++ b/src/TensorFlowNET.Keras/Metrics/MeanMetricWrapper.cs @@ -1,4 +1,5 @@ using System; +using Tensorflow.Keras.Utils; namespace Tensorflow.Keras.Metrics { @@ -17,6 +18,8 @@ public override Tensor update_state(Tensor y_true, Tensor y_pred, Tensor sample_ y_true = math_ops.cast(y_true, _dtype); y_pred = math_ops.cast(y_pred, _dtype); + (y_pred, y_true, _) = losses_utils.squeeze_or_expand_dimensions(y_pred, y_true: y_true); + var matches = _fn(y_true, y_pred); return update_state(matches, sample_weight: sample_weight); } diff --git a/src/TensorFlowNET.Keras/Metrics/Metric.cs b/src/TensorFlowNET.Keras/Metrics/Metric.cs index 21457f155..435eebd48 100644 --- a/src/TensorFlowNET.Keras/Metrics/Metric.cs +++ b/src/TensorFlowNET.Keras/Metrics/Metric.cs @@ -9,7 +9,7 @@ namespace Tensorflow.Keras.Metrics /// /// Encapsulates metric logic and state. /// - public class Metric : Layer + public class Metric : Layer, IMetricFunc { protected IVariableV1 total; protected IVariableV1 count; @@ -56,7 +56,7 @@ public virtual Tensor update_state(Tensor y_true, Tensor y_pred, Tensor sample_w public virtual void reset_states() { - foreach (var v in weights) + foreach (var v in Weights) v.assign(0); } diff --git a/src/TensorFlowNET.Keras/Metrics/MetricsApi.cs b/src/TensorFlowNET.Keras/Metrics/MetricsApi.cs index 3d614e023..e3881cf1a 100644 --- a/src/TensorFlowNET.Keras/Metrics/MetricsApi.cs +++ b/src/TensorFlowNET.Keras/Metrics/MetricsApi.cs @@ -1,8 +1,6 @@ -using static Tensorflow.KerasApi; - -namespace Tensorflow.Keras.Metrics +namespace Tensorflow.Keras.Metrics { - public class MetricsApi + public class MetricsApi : IMetricsApi { public Tensor binary_accuracy(Tensor y_true, Tensor y_pred) { @@ -17,6 +15,23 @@ public Tensor categorical_accuracy(Tensor y_true, Tensor y_pred) return math_ops.cast(eql, TF_DataType.TF_FLOAT); } + public Tensor categorical_crossentropy(Tensor y_true, Tensor y_pred, bool from_logits = false, float label_smoothing = 0, Axis? axis = null) + { + y_true = tf.cast(y_true, y_pred.dtype); + // var label_smoothing_tensor = tf.convert_to_tensor(label_smoothing, dtype: y_pred.dtype); + if (label_smoothing > 0) + { + var num_classes = tf.cast(tf.shape(y_true)[-1], y_pred.dtype); + y_true = y_true * (1.0 - label_smoothing) + (label_smoothing / num_classes); + } + return keras.backend.categorical_crossentropy(y_true, y_pred, from_logits: from_logits, axis: axis); + } + + public Tensor sparse_categorical_crossentropy(Tensor y_true, Tensor y_pred, bool from_logits = false, int? ignore_class = null, Axis? axis = null) + { + return keras.backend.sparse_categorical_crossentropy(y_true, y_pred, from_logits: from_logits, axis: axis ?? -1, ignore_class: ignore_class); + } + /// /// Calculates how often predictions matches integer labels. /// @@ -53,5 +68,54 @@ public Tensor mean_absolute_percentage_error(Tensor y_true, Tensor y_pred) var diff = (y_true - y_pred) / math_ops.maximum(math_ops.abs(y_true), keras.backend.epsilon()); return 100f * keras.backend.mean(math_ops.abs(diff), axis: -1); } + + public Tensor top_k_categorical_accuracy(Tensor y_true, Tensor y_pred, int k = 5) + { + return metrics_utils.sparse_top_k_categorical_matches( + tf.math.argmax(y_true, axis: -1), y_pred, k + ); + } + + public IMetricFunc Accuracy(string name = "accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new Accuracy(name: name, dtype: dtype); + + public IMetricFunc BinaryAccuracy(string name = "binary_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT, float threshold = 5) + => new BinaryAccuracy(); + + public IMetricFunc CategoricalAccuracy(string name = "categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new CategoricalAccuracy(name: name, dtype: dtype); + + public IMetricFunc CategoricalCrossentropy(string name = "categorical_crossentropy", TF_DataType dtype = TF_DataType.TF_FLOAT, bool from_logits = false, float label_smoothing = 0, Axis? axis = null) + => new CategoricalCrossentropy(); + + public IMetricFunc CosineSimilarity(string name = "cosine_similarity", TF_DataType dtype = TF_DataType.TF_FLOAT, Axis? axis = null) + => new CosineSimilarity(name: name, dtype: dtype, axis: axis ?? -1); + + public IMetricFunc F1Score(int num_classes, string? average = null, float? threshold = null, string name = "f1_score", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new F1Score(num_classes, average: average, threshold: threshold, name: name, dtype: dtype); + + public IMetricFunc FBetaScore(int num_classes, string? average = null, float beta = 0.1F, float? threshold = null, string name = "fbeta_score", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new FBetaScore(num_classes, average: average,beta: beta, threshold: threshold, name: name, dtype: dtype); + + public IMetricFunc HammingLoss(string mode, float? threshold = null, string name = "hamming_loss", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new HammingLoss(mode, threshold: threshold, name: name, dtype: dtype); + + public IMetricFunc TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new TopKCategoricalAccuracy(k: k, name: name, dtype: dtype); + + public IMetricFunc Precision(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "precision", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new Precision(thresholds: thresholds, top_k: top_k, class_id: class_id, name: name, dtype: dtype); + + public IMetricFunc Recall(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new Recall(thresholds: thresholds, top_k: top_k, class_id: class_id, name: name, dtype: dtype); + + public IMetricFunc SparseCategoricalCrossentropy(string name = "sparse_categorical_crossentropy", TF_DataType dtype = TF_DataType.TF_FLOAT, bool from_logits = false, int? ignore_class = null, Axis? axis = null) + => new SparseCategoricalCrossentropy(name: name, dtype: dtype, from_logits: from_logits, ignore_class: ignore_class, axis: axis ?? -1); + + public IMetricFunc SparseTopKCategoricalAccuracy(int k = 5, string name = "sparse_top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new SparseTopKCategoricalAccuracy(k: k, name: name, dtype: dtype); + + public IMetricFunc SparseCategoricalAccuracy(string name = "sparse_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + => new SparseCategoricalAccuracy(name: name, dtype: dtype); } } diff --git a/src/TensorFlowNET.Keras/Metrics/Precision.cs b/src/TensorFlowNET.Keras/Metrics/Precision.cs new file mode 100644 index 000000000..a01773e0e --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/Precision.cs @@ -0,0 +1,55 @@ +namespace Tensorflow.Keras.Metrics; + +public class Precision : Metric +{ + Tensor _thresholds; + int _top_k; + int _class_id; + IVariableV1 true_positives; + IVariableV1 false_positives; + bool _thresholds_distributed_evenly; + + public Precision(float thresholds = 0.5f, int top_k = 0, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT) + : base(name: name, dtype: dtype) + { + _thresholds = constant_op.constant(new float[] { thresholds }); + _top_k = top_k; + _class_id = class_id; + true_positives = add_weight("true_positives", shape: 1, initializer: tf.initializers.zeros_initializer()); + false_positives = add_weight("false_positives", shape: 1, initializer: tf.initializers.zeros_initializer()); + } + + public override Tensor update_state(Tensor y_true, Tensor y_pred, Tensor sample_weight = null) + { + return metrics_utils.update_confusion_matrix_variables( + new Dictionary + { + { "tp", true_positives }, + { "fp", false_positives }, + }, + y_true, + y_pred, + thresholds: _thresholds, + thresholds_distributed_evenly: _thresholds_distributed_evenly, + top_k: _top_k, + class_id: _class_id, + sample_weight: sample_weight); + } + + public override Tensor result() + { + var result = tf.divide(true_positives.AsTensor(), tf.add(true_positives, false_positives)); + return _thresholds.size == 1 ? result[0] : result; + } + + public override void reset_states() + { + var num_thresholds = (int)_thresholds.size; + keras.backend.batch_set_value( + new List<(IVariableV1, NDArray)> + { + (true_positives, np.zeros(num_thresholds)), + (false_positives, np.zeros(num_thresholds)) + }); + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/Recall.cs b/src/TensorFlowNET.Keras/Metrics/Recall.cs new file mode 100644 index 000000000..9b58bf5f7 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/Recall.cs @@ -0,0 +1,53 @@ +namespace Tensorflow.Keras.Metrics; + +public class Recall : Metric +{ + Tensor _thresholds; + int _top_k; + int _class_id; + IVariableV1 true_positives; + IVariableV1 false_negatives; + bool _thresholds_distributed_evenly; + + public Recall(float thresholds = 0.5f, int top_k = 1, int class_id = 0, string name = "recall", TF_DataType dtype = TF_DataType.TF_FLOAT) + : base(name: name, dtype: dtype) + { + _thresholds = constant_op.constant(new float[] { thresholds }); + true_positives = add_weight("true_positives", shape: 1, initializer: tf.initializers.zeros_initializer()); + false_negatives = add_weight("false_negatives", shape: 1, initializer: tf.initializers.zeros_initializer()); + } + + public override Tensor update_state(Tensor y_true, Tensor y_pred, Tensor sample_weight = null) + { + return metrics_utils.update_confusion_matrix_variables( + new Dictionary + { + { "tp", true_positives }, + { "fn", false_negatives }, + }, + y_true, + y_pred, + thresholds: _thresholds, + thresholds_distributed_evenly: _thresholds_distributed_evenly, + top_k: _top_k, + class_id: _class_id, + sample_weight: sample_weight); + } + + public override Tensor result() + { + var result = tf.divide(true_positives.AsTensor(), tf.add(true_positives, false_negatives)); + return _thresholds.size == 1 ? result[0] : result; + } + + public override void reset_states() + { + var num_thresholds = (int)_thresholds.size; + keras.backend.batch_set_value( + new List<(IVariableV1, NDArray)> + { + (true_positives, np.zeros(num_thresholds)), + (false_negatives, np.zeros(num_thresholds)) + }); + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/Reduce.cs b/src/TensorFlowNET.Keras/Metrics/Reduce.cs index f7cdb8f56..8874719de 100644 --- a/src/TensorFlowNET.Keras/Metrics/Reduce.cs +++ b/src/TensorFlowNET.Keras/Metrics/Reduce.cs @@ -27,7 +27,7 @@ public Tensor update_state(Tensor values, Tensor sample_weight = null) { if (sample_weight != null) { - (values, sample_weight) = losses_utils.squeeze_or_expand_dimensions( + (values, _, sample_weight) = losses_utils.squeeze_or_expand_dimensions( values, sample_weight: sample_weight); sample_weight = math_ops.cast(sample_weight, dtype: values.dtype); diff --git a/src/TensorFlowNET.Keras/Metrics/SparseCategoricalAccuracy.cs b/src/TensorFlowNET.Keras/Metrics/SparseCategoricalAccuracy.cs new file mode 100644 index 000000000..6cad9aac3 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/SparseCategoricalAccuracy.cs @@ -0,0 +1,11 @@ +namespace Tensorflow.Keras.Metrics; + +public class SparseCategoricalAccuracy : MeanMetricWrapper +{ + public SparseCategoricalAccuracy(string name = "sparse_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + : base((yt, yp) => metrics_utils.sparse_categorical_matches(yt, yp), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/SparseCategoricalCrossentropy.cs b/src/TensorFlowNET.Keras/Metrics/SparseCategoricalCrossentropy.cs new file mode 100644 index 000000000..d517da913 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/SparseCategoricalCrossentropy.cs @@ -0,0 +1,16 @@ +namespace Tensorflow.Keras.Metrics; + +public class SparseCategoricalCrossentropy : MeanMetricWrapper +{ + public SparseCategoricalCrossentropy(string name = "sparse_categorical_crossentropy", + TF_DataType dtype = TF_DataType.TF_FLOAT, + bool from_logits = false, + int? ignore_class = null, + Axis? axis = null) + : base((yt, yp) => keras.metrics.sparse_categorical_crossentropy( + yt, yp, from_logits: from_logits, ignore_class: ignore_class, axis: axis ?? -1), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/SparseTopKCategoricalAccuracy.cs b/src/TensorFlowNET.Keras/Metrics/SparseTopKCategoricalAccuracy.cs new file mode 100644 index 000000000..eb6d9f3b3 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/SparseTopKCategoricalAccuracy.cs @@ -0,0 +1,11 @@ +namespace Tensorflow.Keras.Metrics; + +public class SparseTopKCategoricalAccuracy : MeanMetricWrapper +{ + public SparseTopKCategoricalAccuracy(int k = 5, string name = "sparse_top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + : base((yt, yp) => metrics_utils.sparse_top_k_categorical_matches(yt, yp, k), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/TopKCategoricalAccuracy.cs b/src/TensorFlowNET.Keras/Metrics/TopKCategoricalAccuracy.cs new file mode 100644 index 000000000..63e941024 --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/TopKCategoricalAccuracy.cs @@ -0,0 +1,12 @@ +namespace Tensorflow.Keras.Metrics; + +public class TopKCategoricalAccuracy : MeanMetricWrapper +{ + public TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", TF_DataType dtype = TF_DataType.TF_FLOAT) + : base((yt, yp) => metrics_utils.sparse_top_k_categorical_matches( + tf.math.argmax(yt, axis: -1), yp, k), + name: name, + dtype: dtype) + { + } +} diff --git a/src/TensorFlowNET.Keras/Metrics/metrics_utils.cs b/src/TensorFlowNET.Keras/Metrics/metrics_utils.cs new file mode 100644 index 000000000..3c2f8a7be --- /dev/null +++ b/src/TensorFlowNET.Keras/Metrics/metrics_utils.cs @@ -0,0 +1,310 @@ +using Tensorflow.Keras.Utils; + +namespace Tensorflow.Keras.Metrics; + +public class metrics_utils +{ + public static Tensor accuracy(Tensor y_true, Tensor y_pred) + { + if (y_true.dtype != y_pred.dtype) + y_pred = tf.cast(y_pred, y_true.dtype); + return tf.cast(tf.equal(y_true, y_pred), keras.backend.floatx()); + } + + public static Tensor binary_matches(Tensor y_true, Tensor y_pred, float threshold = 0.5f) + { + y_pred = tf.cast(y_pred > threshold, y_pred.dtype); + return tf.cast(tf.equal(y_true, y_pred), keras.backend.floatx()); + } + + public static Tensor cosine_similarity(Tensor y_true, Tensor y_pred, Axis? axis = null) + { + y_true = tf.linalg.l2_normalize(y_true, axis: axis ?? -1); + y_pred = tf.linalg.l2_normalize(y_pred, axis: axis ?? -1); + return tf.reduce_sum(y_true * y_pred, axis: axis ?? -1); + } + + public static Tensor hamming_loss_fn(Tensor y_true, Tensor y_pred, Tensor threshold, string mode) + { + if (threshold == null) + { + threshold = tf.reduce_max(y_pred, axis: -1, keepdims: true); + // make sure [0, 0, 0] doesn't become [1, 1, 1] + // Use abs(x) > eps, instead of x != 0 to check for zero + y_pred = tf.logical_and(y_pred >= threshold, tf.abs(y_pred) > 1e-12f); + } + else + { + y_pred = y_pred > threshold; + } + + + y_true = tf.cast(y_true, tf.int32); + y_pred = tf.cast(y_pred, tf.int32); + + if (mode == "multiclass") + { + var nonzero = tf.cast(tf.math.count_nonzero(y_true * y_pred, axis: -1), tf.float32); + return 1.0 - nonzero; + } + else + { + var nonzero = tf.cast(tf.math.count_nonzero(y_true - y_pred, axis: -1), tf.float32); + return nonzero / y_true.shape[-1]; + } + } + + /// + /// Creates float Tensor, 1.0 for label-prediction match, 0.0 for mismatch. + /// + /// + /// + /// + public static Tensor sparse_categorical_matches(Tensor y_true, Tensor y_pred) + { + var reshape_matches = false; + var y_true_rank = y_true.shape.ndim; + var y_pred_rank = y_pred.shape.ndim; + var y_true_org_shape = tf.shape(y_true); + + if (y_true_rank > -1 && y_pred_rank > -1 && y_true.ndim == y_pred.ndim ) + { + reshape_matches = true; + y_true = tf.squeeze(y_true, new Shape(-1)); + } + y_pred = tf.math.argmax(y_pred, axis: -1); + y_pred = tf.cast(y_pred, y_true.dtype); + var matches = tf.cast( + tf.equal(y_true, y_pred), + dtype: keras.backend.floatx() + ); + + if (reshape_matches) + { + return tf.reshape(matches, shape: y_true_org_shape); + } + + return matches; + } + + public static Tensor sparse_top_k_categorical_matches(Tensor y_true, Tensor y_pred, int k = 5) + { + var reshape_matches = false; + var y_true_rank = y_true.shape.ndim; + var y_pred_rank = y_pred.shape.ndim; + var y_true_org_shape = tf.shape(y_true); + + if (y_pred_rank > 2) + { + y_pred = tf.reshape(y_pred, (-1, y_pred.shape[-1])); + } + + if (y_true_rank > 1) + { + reshape_matches = true; + y_true = tf.reshape(y_true, new Shape(-1)); + } + + var matches = tf.cast( + tf.math.in_top_k( + predictions: y_pred, targets: tf.cast(y_true, np.int32), k: k + ), + dtype: keras.backend.floatx() + ); + + if (reshape_matches) + { + return tf.reshape(matches, shape: y_true_org_shape); + } + + return matches; + } + + public static Tensor update_confusion_matrix_variables(Dictionary variables_to_update, + Tensor y_true, + Tensor y_pred, + Tensor thresholds, + int top_k, + int class_id, + Tensor sample_weight = null, + bool multi_label = false, + Tensor label_weights = null, + bool thresholds_distributed_evenly = false) + { + var variable_dtype = variables_to_update.Values.First().dtype; + y_true = tf.cast(y_true, dtype: variable_dtype); + y_pred = tf.cast(y_pred, dtype: variable_dtype); + var num_thresholds = thresholds.shape.dims[0]; + + Tensor one_thresh = null; + if (multi_label) + { + one_thresh = tf.equal(tf.cast(constant_op.constant(1), dtype:tf.int32), + tf.rank(thresholds), + name: "one_set_of_thresholds_cond"); + } + else + { + one_thresh = tf.cast(constant_op.constant(true), dtype: dtypes.@bool); + } + + if (sample_weight == null) + { + (y_pred, y_true, _) = losses_utils.squeeze_or_expand_dimensions(y_pred, y_true); + } + else + { + sample_weight = tf.cast(sample_weight, dtype: variable_dtype); + (y_pred, y_true, sample_weight) = losses_utils.squeeze_or_expand_dimensions(y_pred, + y_true, + sample_weight: sample_weight); + } + + if (top_k > 0) + { + y_pred = _filter_top_k(y_pred, top_k); + } + + if (class_id > 0) + { + y_true = y_true[Slice.All, class_id]; + y_pred = y_pred[Slice.All, class_id]; + } + + if (thresholds_distributed_evenly) + { + throw new NotImplementedException(); + } + + var pred_shape = tf.shape(y_pred); + var num_predictions = pred_shape[0]; + + Tensor num_labels; + if (y_pred.shape.ndim == 1) + { + num_labels = constant_op.constant(1); + } + else + { + num_labels = tf.reduce_prod(pred_shape["1:"], axis: 0); + } + var thresh_label_tile = tf.where(one_thresh, num_labels, tf.ones(new int[0], dtype: tf.int32)); + + // Reshape predictions and labels, adding a dim for thresholding. + Tensor predictions_extra_dim, labels_extra_dim; + if (multi_label) + { + predictions_extra_dim = tf.expand_dims(y_pred, 0); + labels_extra_dim = tf.expand_dims(tf.cast(y_true, dtype: tf.@bool), 0); + } + + else + { + // Flatten predictions and labels when not multilabel. + predictions_extra_dim = tf.reshape(y_pred, (1, -1)); + labels_extra_dim = tf.reshape(tf.cast(y_true, dtype: tf.@bool), (1, -1)); + } + + // Tile the thresholds for every prediction. + object[] thresh_pretile_shape, thresh_tiles, data_tiles; + + if (multi_label) + { + thresh_pretile_shape = new object[] { num_thresholds, 1, -1 }; + thresh_tiles = new object[] { 1, num_predictions, thresh_label_tile }; + data_tiles = new object[] { num_thresholds, 1, 1 }; + } + else + { + thresh_pretile_shape = new object[] { num_thresholds, -1 }; + thresh_tiles = new object[] { 1, num_predictions * num_labels }; + data_tiles = new object[] { num_thresholds, 1 }; + } + var thresh_tiled = tf.tile(tf.reshape(thresholds, thresh_pretile_shape), tf.stack(thresh_tiles)); + + // Tile the predictions for every threshold. + var preds_tiled = tf.tile(predictions_extra_dim, data_tiles); + + // Compare predictions and threshold. + var pred_is_pos = tf.greater(preds_tiled, thresh_tiled); + + // Tile labels by number of thresholds + var label_is_pos = tf.tile(labels_extra_dim, data_tiles); + + Tensor weights_tiled = null; + + if (sample_weight != null) + { + /*sample_weight = broadcast_weights( + tf.cast(sample_weight, dtype: variable_dtype), y_pred);*/ + weights_tiled = tf.tile( + tf.reshape(sample_weight, thresh_tiles), data_tiles); + } + + if (label_weights != null && !multi_label) + { + throw new NotImplementedException(); + } + + Func weighted_assign_add + = (label, pred, weights, var) => + { + var label_and_pred = tf.cast(tf.logical_and(label, pred), dtype: var.dtype); + if (weights != null) + { + label_and_pred *= tf.cast(weights, dtype: var.dtype); + } + + return var.assign_add(tf.reduce_sum(label_and_pred, 1)); + }; + + + var loop_vars = new Dictionary + { + { "tp", (label_is_pos, pred_is_pos) } + }; + var update_tn = variables_to_update.ContainsKey("tn"); + var update_fp = variables_to_update.ContainsKey("fp"); + var update_fn = variables_to_update.ContainsKey("fn"); + + Tensor pred_is_neg = null; + if (update_fn || update_tn) + { + pred_is_neg = tf.logical_not(pred_is_pos); + loop_vars["fn"] = (label_is_pos, pred_is_neg); + } + + if(update_fp || update_tn) + { + var label_is_neg = tf.logical_not(label_is_pos); + loop_vars["fp"] = (label_is_neg, pred_is_pos); + if (update_tn) + { + loop_vars["tn"] = (label_is_neg, pred_is_neg); + } + } + + var update_ops = new List(); + foreach (var matrix_cond in loop_vars.Keys) + { + var (label, pred) = loop_vars[matrix_cond]; + if (variables_to_update.ContainsKey(matrix_cond)) + { + var op = weighted_assign_add(label, pred, weights_tiled, variables_to_update[matrix_cond]); + update_ops.append(op); + } + } + + tf.group(update_ops.ToArray()); + return null; + } + + private static Tensor _filter_top_k(Tensor x, int k) + { + var NEG_INF = -1e10; + var (_, top_k_idx) = tf.math.top_k(x, k, sorted: false); + var top_k_mask = tf.reduce_sum( + tf.one_hot(top_k_idx.Single, (int)x.shape[-1], axis: -1), axis: -2); + return x * top_k_mask + NEG_INF * (1 - top_k_mask); + } +} diff --git a/src/TensorFlowNET.Keras/Models/ModelsApi.cs b/src/TensorFlowNET.Keras/Models/ModelsApi.cs index 73b77bc42..2605c41e3 100644 --- a/src/TensorFlowNET.Keras/Models/ModelsApi.cs +++ b/src/TensorFlowNET.Keras/Models/ModelsApi.cs @@ -1,32 +1,15 @@ -using System; -using System.Collections.Generic; -using System.IO; -using System.Text; -using Tensorflow.Keras.Engine; -using Tensorflow.Keras.Saving; -using ThirdParty.Tensorflow.Python.Keras.Protobuf; +using Tensorflow.Keras.Saving; +using Tensorflow.Keras.Saving.SavedModel; -namespace Tensorflow.Keras.Models -{ - public class ModelsApi - { - public Functional from_config(ModelConfig config) - => Functional.from_config(config); - - public void load_model(string filepath, bool compile = true) - { - var bytes = File.ReadAllBytes(Path.Combine(filepath, "saved_model.pb")); - var saved_mode = SavedModel.Parser.ParseFrom(bytes); - - var meta_graph_def = saved_mode.MetaGraphs[0]; - var object_graph_def = meta_graph_def.ObjectGraphDef; +namespace Tensorflow.Keras.Models; - bytes = File.ReadAllBytes(Path.Combine(filepath, "keras_metadata.pb")); - var metadata = SavedMetadata.Parser.ParseFrom(bytes); +public class ModelsApi: IModelsApi +{ + public Functional from_config(FunctionalConfig config) + => Functional.from_config(config); - // Recreate layers and metrics using the info stored in the metadata. - var keras_loader = new KerasObjectLoader(metadata, object_graph_def); - keras_loader.load_layers(compile: compile); - } + public IModel load_model(string filepath, bool compile = true, LoadOptions? options = null) + { + return KerasLoadModelUtils.load_model(filepath, compile: compile, options: options) as Model; } } diff --git a/src/TensorFlowNET.Keras/Optimizers/AdamW.cs b/src/TensorFlowNET.Keras/Optimizers/AdamW.cs new file mode 100644 index 000000000..d111b5d3a --- /dev/null +++ b/src/TensorFlowNET.Keras/Optimizers/AdamW.cs @@ -0,0 +1,64 @@ +namespace Tensorflow.Keras.Optimizers +{ + public class AdamW : Adam + { + string name; + float weight_decay; + DeviceDType deType; + List no_decay_params = null; + public AdamW(float learning_rate= 0.001f, + float weight_decay= 0.004f, + float beta_1= 0.9f, + float beta_2= 0.999f, + float epsilon= 1e-7f, + bool amsgrad = false, + List no_decay_params = null, + string name= "AdamW") : base(learning_rate, beta_1, beta_2, epsilon, amsgrad) + { + this.name = name; + this.weight_decay = weight_decay; + this.no_decay_params = no_decay_params; + } + + protected Operation _decay_weights_op(IVariableV1 var, float learning_rate, Dictionary> apply_state) + { + bool do_decay = _do_use_weight_decay(var.Name); + if (do_decay) return var.assign_add( + -learning_rate * var.AsTensor() * apply_state[deType]["weight_decay"]); + return tf.no_op(); + } + + + protected bool _do_use_weight_decay(string param_name) + { + // Whether to use L2 weight decay for `param_name`. + if (this.weight_decay == 0) + return false; + + if (this.no_decay_params != null) + { + foreach (var name in no_decay_params) + { + if (param_name.Contains(name)) return false; + } + + } + return true; + } + + protected override Operation _resource_apply_dense(IVariableV1 var, Tensor grad, Dictionary> apply_state) + { + var decay = _decay_weights_op(var, _hyper["learning_rate"], apply_state); + tf.control_dependencies(new[] { decay }); + return base._resource_apply_dense(var, grad, apply_state); + } + + protected override void _prepare_local(DeviceDType device_dtype, Dictionary> apply_state) + { + this.deType = device_dtype; + base._prepare_local(device_dtype, apply_state); + apply_state[device_dtype]["weight_decay"] = tf.constant( + weight_decay, name: "adam_weight_decay_rate"); + } + } +} diff --git a/src/TensorFlowNET.Keras/Optimizers/IOptimizer.cs b/src/TensorFlowNET.Keras/Optimizers/IOptimizer.cs deleted file mode 100644 index b6099baf3..000000000 --- a/src/TensorFlowNET.Keras/Optimizers/IOptimizer.cs +++ /dev/null @@ -1,6 +0,0 @@ -namespace Tensorflow.Keras.Optimizers -{ - public interface IOptimizer - { - } -} diff --git a/src/TensorFlowNET.Keras/Optimizers/OptimizerApi.cs b/src/TensorFlowNET.Keras/Optimizers/OptimizerApi.cs index c8e69bc88..a237499f9 100644 --- a/src/TensorFlowNET.Keras/Optimizers/OptimizerApi.cs +++ b/src/TensorFlowNET.Keras/Optimizers/OptimizerApi.cs @@ -1,8 +1,9 @@ using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; namespace Tensorflow.Keras.Optimizers { - public class OptimizerApi + public class OptimizerApi: IOptimizerApi { /// /// Adam optimization is a stochastic gradient descent method that is based on @@ -15,7 +16,7 @@ public class OptimizerApi /// /// /// - public OptimizerV2 Adam(float learning_rate = 0.001f, + public IOptimizer Adam(float learning_rate = 0.001f, float beta_1 = 0.9f, float beta_2 = 0.999f, float epsilon = 1e-7f, @@ -28,6 +29,22 @@ public OptimizerV2 Adam(float learning_rate = 0.001f, amsgrad: amsgrad, name: name); + public IOptimizer AdamW(float learning_rate = 0.001f, + float weight_decay = 0.004f, + float beta_1 = 0.9f, + float beta_2 = 0.999f, + float epsilon = 1e-7f, + bool amsgrad = false, + List no_decay_params = null, + string name = "AdamW") => new AdamW(learning_rate: learning_rate, + beta_1: beta_1, + beta_2: beta_2, + epsilon: epsilon, + amsgrad: amsgrad, + name: name, + weight_decay: weight_decay, + no_decay_params: no_decay_params); + /// /// Construct a new RMSprop optimizer. /// @@ -38,7 +55,7 @@ public OptimizerV2 Adam(float learning_rate = 0.001f, /// /// /// - public OptimizerV2 RMSprop(float learning_rate = 0.001f, + public IOptimizer RMSprop(float learning_rate = 0.001f, float rho = 0.9f, float momentum = 0.0f, float epsilon = 1e-7f, @@ -54,7 +71,7 @@ public OptimizerV2 RMSprop(float learning_rate = 0.001f, Name = name }); - public SGD SGD(float learning_rate) - => new SGD(learning_rate); + public IOptimizer SGD(float learning_rate = 0.01f, float momentum = 0f) + => new SGD(learning_rate, momentum); } } diff --git a/src/TensorFlowNET.Keras/Optimizers/OptimizerV2.cs b/src/TensorFlowNET.Keras/Optimizers/OptimizerV2.cs index 73e35d028..1e4dbe086 100644 --- a/src/TensorFlowNET.Keras/Optimizers/OptimizerV2.cs +++ b/src/TensorFlowNET.Keras/Optimizers/OptimizerV2.cs @@ -1,10 +1,7 @@ -using System; -using System.Collections.Generic; -using System.Linq; -using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; using Tensorflow.Keras.Utils; using Tensorflow.Train; -using static Tensorflow.Binding; namespace Tensorflow.Keras.Optimizers { @@ -17,11 +14,11 @@ public class OptimizerV2 : Trackable, IOptimizer protected bool _hypers_created; protected virtual string _name { get; } - IVariableV1 _iterations; + protected IVariableV1 _iterations; protected ResourceVariable iterations => _iterations as ResourceVariable; List _weights; - Dictionary _hyper; - Dictionary _hyper_variables; + protected Dictionary _hyper; + protected Dictionary _hyper_variables; protected bool _momentum; protected float _initial_decay = 0.0f; protected bool _use_locking = true; @@ -45,10 +42,46 @@ public OptimizerV2(OptimizerV2Args args) : base() _set_hyper("decay", args.InitialDecay); } + public void apply_gradients((Tensor, IVariableV1) grads_and_vars, + string name = null, + bool experimental_aggregate_gradients = true) + => apply_gradients(new[] { grads_and_vars }, + name: name, + experimental_aggregate_gradients: experimental_aggregate_gradients); + + /// + /// Apply gradients to variables. + /// + /// + /// + /// + public void apply_gradients(IEnumerable<(Tensor, IVariableV1)> grads_and_vars, + string name = null, + bool experimental_aggregate_gradients = true) + { + var var_list = grads_and_vars.Select(x => x.Item2).ToArray(); + tf_with(ops.name_scope(_name), delegate + { + ops.init_scope(); + _create_all_weights(var_list); + if (grads_and_vars == null || grads_and_vars.Count() == 0) + return control_flow_ops.no_op(); + + var apply_state = _prepare(var_list); + // if(experimental_aggregate_gradients) + { + // var reduced_grads = _aggregate_gradients(grads_and_vars); + _distributed_apply(grads_and_vars, name, apply_state); + } + + return null; + }); + } + public void apply_gradients((Tensor, ResourceVariable) grads_and_vars, string name = null, bool experimental_aggregate_gradients = true) - => apply_gradients(grads_and_vars, + => apply_gradients(new[] { grads_and_vars }, name: name, experimental_aggregate_gradients: experimental_aggregate_gradients); @@ -74,14 +107,14 @@ public void apply_gradients(IEnumerable<(Tensor, ResourceVariable)> grads_and_va // if(experimental_aggregate_gradients) { // var reduced_grads = _aggregate_gradients(grads_and_vars); - _distributed_apply(grads_and_vars, name, apply_state); + _distributed_apply(grads_and_vars.Select(x => (x.Item1, (IVariableV1)x.Item2)), name, apply_state); } return null; }); } - void apply_grad_to_update_var(ResourceVariable var, Tensor grad, Dictionary> apply_state) + void apply_grad_to_update_var(IVariableV1 var, Tensor grad, Dictionary> apply_state) { _resource_apply_dense(var, grad, apply_state); // if var.constraint is not None: @@ -96,7 +129,7 @@ protected virtual Operation _resource_apply_dense(IVariableV1 var, throw new NotImplementedException("_resource_apply_dense"); } - void _distributed_apply(IEnumerable<(Tensor, ResourceVariable)> grads_and_vars, + void _distributed_apply(IEnumerable<(Tensor, IVariableV1)> grads_and_vars, string name, Dictionary> _apply_state) { @@ -114,12 +147,12 @@ void _distributed_apply(IEnumerable<(Tensor, ResourceVariable)> grads_and_vars, }); } - public Tensor[] _aggregate_gradients(IEnumerable<(Tensor, IVariableV1)> grads_and_vars) + public Tensor[] aggregate_gradients(IEnumerable<(Tensor, IVariableV1)> grads_and_vars) { return grads_and_vars.Select(x => x.Item1).ToArray(); } - public Tensor[] _clip_gradients(Tensor[] grads) + public Tensor[] clip_gradients(Tensor[] grads) { return grads; } @@ -227,7 +260,7 @@ protected virtual void _create_slots(IVariableV1[] var_list) } } - protected IVariableV1 add_slot(IVariableV1 var, string slot_name, IInitializer initializer = null) + public IVariableV1 add_slot(IVariableV1 var, string slot_name, IInitializer initializer = null) { if (initializer == null) initializer = tf.zeros_initializer; diff --git a/src/TensorFlowNET.Keras/Optimizers/RestoredOptimizer.cs b/src/TensorFlowNET.Keras/Optimizers/RestoredOptimizer.cs new file mode 100644 index 000000000..e5cfd2daa --- /dev/null +++ b/src/TensorFlowNET.Keras/Optimizers/RestoredOptimizer.cs @@ -0,0 +1,63 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.Saving; +using Tensorflow.Train; +using Tensorflow.Training; + +namespace Tensorflow.Keras.Optimizers +{ + public class RestoredOptimizer: OptimizerV2, ITrackableWrapper, IKerasConfig + { + public String Identifier { get; } = "optimizer"; + public int Version { get; } = 2; + public int MinConsumerVersion { get; } = 1; + public int MinProducerVersion { get; } = 1; + public RestoredOptimizer(): base(new ArgsDefinition.OptimizerV2Args() { Name = "RestoredOptimizer" }) + { + _hypers_created = true; + } + + public IKerasConfig get_config() + { + throw new NotImplementedException("Restoring functional Optimizers from SavedModels is not currently " + + "supported. Please file a feature request if this limitation bothers you."); + } + + public void SetValue(object name, object value) + { + if(name is not String str) + { + throw new TypeError($"The name of value to set must be string, but got {name.GetType()}"); + } + if(value is Trackable trackable) + { + _track_trackable(trackable, str, overwrite: true); + } + if(value is IVariableV1 resource_variable) + { + if (!_hyper_variables.ContainsKey(str)) + { + _hyper_variables[str] = resource_variable; + } + else + { + keras.backend.set_value(resource_variable, value); + } + } + else if (value is float f) + { + _hyper[str] = f; + } + else + { + throw new NotImplementedException(); + } + } + + public Trackable FromProto(SavedUserObject proto) + { + return new RestoredOptimizer(); + } + } +} diff --git a/src/TensorFlowNET.Keras/Optimizers/SGD.cs b/src/TensorFlowNET.Keras/Optimizers/SGD.cs index f97f4b15f..1d9ceb810 100644 --- a/src/TensorFlowNET.Keras/Optimizers/SGD.cs +++ b/src/TensorFlowNET.Keras/Optimizers/SGD.cs @@ -22,6 +22,8 @@ public SGD(float learning_rate, _set_hyper("decay", decay); _momentum = momentum > 0; + if (momentum < 0 || momentum > 1) + throw new ValueError($"momentum must be a number between 0 and 1, got {momentum}."); _set_hyper("momentum", momentum); @@ -30,6 +32,13 @@ public SGD(float learning_rate, #pragma warning restore CS1717 // Assignment made to same variable } + protected override void _create_slots(IVariableV1[] var_list) + { + if (_momentum) + foreach (var var in var_list) + add_slot(var, "momentum"); + } + protected override void _prepare_local(DeviceDType device_dtype, Dictionary> _apply_state) { @@ -43,7 +52,15 @@ protected override Operation _resource_apply_dense(IVariableV1 var, Tensor grad, { if (_momentum) { - throw new NotImplementedException("_resource_apply_dense"); + var momentum_var = get_slot(var, "momentum"); + return gen_training_ops.resource_apply_keras_momentum( + var.Handle, + momentum_var.Handle, + _get_hyper("learning_rate", var.dtype), + grad, + _get_hyper("momentum", var.dtype), + use_locking: _use_locking, + use_nesterov: nesterov); } var device_dtype = _apply_state.Keys.FirstOrDefault(x => x.Device == var.Device && x.DType == var.dtype.as_base_dtype()); diff --git a/src/TensorFlowNET.Keras/Preprocessings/DatasetUtils.get_training_or_validation_split.cs b/src/TensorFlowNET.Keras/Preprocessings/DatasetUtils.get_training_or_validation_split.cs index 2f3d8f527..18ca404ef 100644 --- a/src/TensorFlowNET.Keras/Preprocessings/DatasetUtils.get_training_or_validation_split.cs +++ b/src/TensorFlowNET.Keras/Preprocessings/DatasetUtils.get_training_or_validation_split.cs @@ -6,7 +6,7 @@ namespace Tensorflow.Keras.Preprocessings public partial class DatasetUtils { /// - /// Potentially restict samples & labels to a training or validation split. + /// Potentially restict samples and labels to a training or validation split. /// /// /// diff --git a/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.Resizing.cs b/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.Resizing.cs index 5e93f5836..0be7f1e6c 100644 --- a/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.Resizing.cs +++ b/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.Resizing.cs @@ -15,7 +15,7 @@ public partial class Preprocessing /// /// /// - public Resizing Resizing(int height, int width, string interpolation = "bilinear") + public ILayer Resizing(int height, int width, string interpolation = "bilinear") => new Resizing(new ResizingArgs { Height = height, diff --git a/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.cs b/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.cs index 994a36d6c..94fc4a207 100644 --- a/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.cs +++ b/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.cs @@ -5,7 +5,7 @@ namespace Tensorflow.Keras { - public partial class Preprocessing + public partial class Preprocessing : IPreprocessing { public Sequence sequence => new Sequence(); public DatasetUtils dataset_utils => new DatasetUtils(); @@ -14,7 +14,7 @@ public partial class Preprocessing private static TextApi _text = new TextApi(); - public TextVectorization TextVectorization(Func standardize = null, + public ILayer TextVectorization(Func standardize = null, string split = "whitespace", int max_tokens = -1, string output_mode = "int", diff --git a/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.image_dataset_from_directory.cs b/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.image_dataset_from_directory.cs index fa19987b1..377ac4de7 100644 --- a/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.image_dataset_from_directory.cs +++ b/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.image_dataset_from_directory.cs @@ -8,6 +8,37 @@ public partial class Preprocessing { public static string[] WHITELIST_FORMATS = new[] { ".bmp", ".gif", ".jpeg", ".jpg", ".png" }; + /// + /// Function that calculates the classification statistics for a given array of classified data. + /// The function takes an array of classified data as input and returns a dictionary containing the count and percentage of each class in the input array. + /// This function can be used to analyze the distribution of classes in a dataset or to evaluate the performance of a classification model. + /// + /// + /// code from copilot + /// + /// + /// + Dictionary get_classification_statistics(int[] label_ids, string[] label_class_names) + { + var countDict = label_ids.GroupBy(x => x) + .ToDictionary(g => g.Key, g => g.Count()); + var totalCount = label_ids.Length; + var ratioDict = label_class_names.ToDictionary(name => name, + name => + (double)(countDict.ContainsKey(Array.IndexOf(label_class_names, name)) + ? countDict[Array.IndexOf(label_class_names, name)] : 0) + / totalCount); + + print("Classification statistics:"); + foreach (string labelName in label_class_names) + { + double ratio = ratioDict[labelName]; + print($"{labelName}: {ratio * 100:F2}%"); + } + + return ratioDict; + } + /// /// Generates a `tf.data.Dataset` from image files in a directory. /// https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory @@ -53,11 +84,13 @@ public IDatasetV2 image_dataset_from_directory(string directory, follow_links: follow_links); (image_paths, label_list) = keras.preprocessing.dataset_utils.get_training_or_validation_split(image_paths, label_list, validation_split, subset); + get_classification_statistics(label_list, class_name_list); var dataset = paths_and_labels_to_dataset(image_paths, image_size, num_channels, label_list, label_mode, class_name_list.Length, interpolation); if (shuffle) dataset = dataset.shuffle(batch_size * 8, seed: seed); dataset = dataset.batch(batch_size); + dataset.class_names = class_name_list; return dataset; } @@ -129,7 +162,7 @@ public IDatasetV2 timeseries_dataset_from_array(Tensor data, int sequence_length var indices = z.map(m => { var (i, positions) = m; - return tf.range(positions[i], positions[i] + sequence_length_tensor * sampling_rate_tensor, sampling_rate_tensor); + return tf.range(positions.Single[i], positions.Single[i] + sequence_length_tensor * sampling_rate_tensor, sampling_rate_tensor); }, num_parallel_calls: -1); var dataset = sequences_from_indices(data, indices, start_index, end_index); diff --git a/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.paths_and_labels_to_dataset.cs b/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.paths_and_labels_to_dataset.cs index b4d583878..232f81eb5 100644 --- a/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.paths_and_labels_to_dataset.cs +++ b/src/TensorFlowNET.Keras/Preprocessings/Preprocessing.paths_and_labels_to_dataset.cs @@ -6,6 +6,32 @@ namespace Tensorflow.Keras { public partial class Preprocessing { + + /// + /// 图片路径转为数据处理用的dataset + /// 通常用于预测时读取图片 + /// + /// + /// + /// + /// + /// 用于调整大小的插值方法。支持`bilinear`、`nearest`、`bicubic`、`area`、`lanczos3`、`lanczos5`、`gaussian`、`mitchellcubic`。 + /// 默认为`'bilinear'`。 + /// + /// + public IDatasetV2 paths_to_dataset(string[] image_paths, + Shape image_size, + int num_channels = 3, + int num_classes = 6, + string interpolation = "bilinear") + { + var path_ds = tf.data.Dataset.from_tensor_slices(image_paths); + var img_ds = path_ds.map(x => path_to_image(x, image_size, num_channels, interpolation)); + var label_ds = dataset_utils.labels_to_dataset(new int[num_classes] , "", num_classes); + + return img_ds; + } + public IDatasetV2 paths_and_labels_to_dataset(string[] image_paths, Shape image_size, int num_channels, diff --git a/src/TensorFlowNET.Keras/Protobuf/SavedMetadata.cs b/src/TensorFlowNET.Keras/Protobuf/SavedMetadata.cs index 61cec6468..f29f2dec3 100644 --- a/src/TensorFlowNET.Keras/Protobuf/SavedMetadata.cs +++ b/src/TensorFlowNET.Keras/Protobuf/SavedMetadata.cs @@ -194,6 +194,18 @@ public SavedObject() { OnConstruction(); } + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + public SavedObject(int nodeId, string nodePath, + global::ThirdParty.Tensorflow.Python.Keras.Protobuf.VersionDef version, string identifier, string metadata) + { + OnConstruction(); + nodeId_ = nodeId; + nodePath_ = nodePath; + identifier_ = identifier; + metadata_ = metadata; + version_ = version; + } + partial void OnConstruction(); [global::System.Diagnostics.DebuggerNonUserCodeAttribute] diff --git a/src/TensorFlowNET.Keras/Protobuf/Versions.cs b/src/TensorFlowNET.Keras/Protobuf/Versions.cs index 40405a5a6..ff9a23c62 100644 --- a/src/TensorFlowNET.Keras/Protobuf/Versions.cs +++ b/src/TensorFlowNET.Keras/Protobuf/Versions.cs @@ -74,6 +74,13 @@ public sealed partial class VersionDef : pb::IMessage { public VersionDef() { OnConstruction(); } + + [global::System.Diagnostics.DebuggerNonUserCodeAttribute] + public VersionDef(int producer, int minConsumer) { + OnConstruction(); + producer_ = producer; + minConsumer_ = minConsumer; + } partial void OnConstruction(); diff --git a/src/TensorFlowNET.Keras/Regularizers.cs b/src/TensorFlowNET.Keras/Regularizers.cs index 98da27a7f..73b72a051 100644 --- a/src/TensorFlowNET.Keras/Regularizers.cs +++ b/src/TensorFlowNET.Keras/Regularizers.cs @@ -1,8 +1,51 @@ -namespace Tensorflow.Keras +using Tensorflow.Operations.Regularizers; + +namespace Tensorflow.Keras { - public class Regularizers + public class Regularizers: IRegularizerApi + { + private static Dictionary _nameActivationMap; + + public IRegularizer l1(float l1 = 0.01f) + => new L1(l1); + public IRegularizer l2(float l2 = 0.01f) + => new L2(l2); + + //From TF source + //# The default value for l1 and l2 are different from the value in l1_l2 + //# for backward compatibility reason. Eg, L1L2(l2=0.1) will only have l2 + //# and no l1 penalty. + public IRegularizer l1l2(float l1 = 0.00f, float l2 = 0.00f) + => new L1L2(l1, l2); + + static Regularizers() { - public IRegularizer l2(float l2 = 0.01f) - => new L2(l2); + _nameActivationMap = new Dictionary(); + _nameActivationMap["L1"] = new L1(); + _nameActivationMap["L1"] = new L2(); + _nameActivationMap["L1"] = new L1L2(); } + + public IRegularizer L1 => l1(); + + public IRegularizer L2 => l2(); + + public IRegularizer L1L2 => l1l2(); + + public IRegularizer GetRegularizerFromName(string name) + { + if (name == null) + { + throw new Exception($"Regularizer name cannot be null"); + } + if (!_nameActivationMap.TryGetValue(name, out var res)) + { + throw new Exception($"Regularizer {name} not found"); + } + else + { + return res; + } + } + } } diff --git a/src/TensorFlowNET.Keras/Regularizers/L1.cs b/src/TensorFlowNET.Keras/Regularizers/L1.cs deleted file mode 100644 index 0f904b6f9..000000000 --- a/src/TensorFlowNET.Keras/Regularizers/L1.cs +++ /dev/null @@ -1,19 +0,0 @@ -using System; - -namespace Tensorflow.Keras -{ - public class L1 : IRegularizer - { - float l1; - - public L1(float l1 = 0.01f) - { - this.l1 = l1; - } - - public Tensor Apply(RegularizerArgs args) - { - return l1 * math_ops.reduce_sum(math_ops.abs(args.X)); - } - } -} diff --git a/src/TensorFlowNET.Keras/Regularizers/L1L2.cs b/src/TensorFlowNET.Keras/Regularizers/L1L2.cs deleted file mode 100644 index f619f1582..000000000 --- a/src/TensorFlowNET.Keras/Regularizers/L1L2.cs +++ /dev/null @@ -1,24 +0,0 @@ -using System; -using static Tensorflow.Binding; -namespace Tensorflow.Keras -{ - public class L1L2 : IRegularizer - { - float l1; - float l2; - - public L1L2(float l1 = 0.0f, float l2 = 0.0f) - { - this.l1 = l1; - this.l2 = l2; - - } - public Tensor Apply(RegularizerArgs args) - { - Tensor regularization = tf.constant(0.0, args.X.dtype); - regularization += l1 * math_ops.reduce_sum(math_ops.abs(args.X)); - regularization += l2 * math_ops.reduce_sum(math_ops.square(args.X)); - return regularization; - } - } -} diff --git a/src/TensorFlowNET.Keras/Regularizers/L2.cs b/src/TensorFlowNET.Keras/Regularizers/L2.cs deleted file mode 100644 index 034bbd236..000000000 --- a/src/TensorFlowNET.Keras/Regularizers/L2.cs +++ /dev/null @@ -1,17 +0,0 @@ -namespace Tensorflow.Keras -{ - public class L2 : IRegularizer - { - float l2; - - public L2(float l2 = 0.01f) - { - this.l2 = l2; - } - - public Tensor Apply(RegularizerArgs args) - { - return l2 * math_ops.reduce_sum(math_ops.square(args.X)); - } - } -} diff --git a/src/TensorFlowNET.Keras/Saving/KerasMetaData.cs b/src/TensorFlowNET.Keras/Saving/KerasMetaData.cs index e98398503..9c82370a9 100644 --- a/src/TensorFlowNET.Keras/Saving/KerasMetaData.cs +++ b/src/TensorFlowNET.Keras/Saving/KerasMetaData.cs @@ -8,17 +8,37 @@ namespace Tensorflow.Keras.Saving { public class KerasMetaData { + [JsonProperty("name")] public string Name { get; set; } [JsonProperty("class_name")] public string ClassName { get; set; } + [JsonProperty("trainable")] + public bool Trainable { get; set; } + [JsonProperty("dtype")] + public TF_DataType DType { get; set; } = TF_DataType.DtInvalid; [JsonProperty("is_graph_network")] public bool IsGraphNetwork { get; set; } [JsonProperty("shared_object_id")] public int SharedObjectId { get; set; } [JsonProperty("must_restore_from_config")] public bool MustRestoreFromConfig { get; set; } + [JsonProperty("config")] public JObject Config { get; set; } [JsonProperty("build_input_shape")] - public TensorShapeConfig BuildInputShape { get; set; } + public KerasShapesWrapper BuildInputShape { get; set; } + [JsonProperty("batch_input_shape")] + public KerasShapesWrapper BatchInputShape { get; set; } + [JsonProperty("activity_regularizer")] + public IRegularizer ActivityRegularizer { get; set; } + [JsonProperty("input_spec")] + public JToken InputSpec { get; set; } + [JsonProperty("stateful")] + public bool? Stateful { get; set; } + [JsonProperty("model_config")] + public KerasModelConfig? ModelConfig { get; set; } + [JsonProperty("sparse")] + public bool Sparse { get; set; } + [JsonProperty("ragged")] + public bool Ragged { get; set; } } } diff --git a/src/TensorFlowNET.Keras/Saving/KerasModelConfig.cs b/src/TensorFlowNET.Keras/Saving/KerasModelConfig.cs new file mode 100644 index 000000000..256c284a5 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/KerasModelConfig.cs @@ -0,0 +1,16 @@ +using Newtonsoft.Json; +using Newtonsoft.Json.Linq; +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.Saving +{ + public class KerasModelConfig + { + [JsonProperty("class_name")] + public string ClassName { get; set; } + [JsonProperty("config")] + public JObject Config { get; set; } + } +} diff --git a/src/TensorFlowNET.Keras/Saving/KerasObjectLoader.cs b/src/TensorFlowNET.Keras/Saving/KerasObjectLoader.cs index fc8cab0c1..0bd816ccb 100644 --- a/src/TensorFlowNET.Keras/Saving/KerasObjectLoader.cs +++ b/src/TensorFlowNET.Keras/Saving/KerasObjectLoader.cs @@ -1,12 +1,28 @@ using Newtonsoft.Json; +using Newtonsoft.Json.Linq; using System; +using System.Collections; using System.Collections.Generic; +using System.ComponentModel; +using System.Diagnostics; using System.Linq; +using System.Reflection; using System.Text.RegularExpressions; +using Tensorflow.Common.Extensions; +using Tensorflow.Framework.Models; using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.Engine; using Tensorflow.Keras.Layers; +using Tensorflow.Keras.Losses; +using Tensorflow.Keras.Metrics; +using Tensorflow.Keras.Saving.SavedModel; +using Tensorflow.Keras.Utils; +using Tensorflow.Train; +using Tensorflow.Training; +using Tensorflow.Training.Saving.SavedModel; +using Tensorflow.Util; using ThirdParty.Tensorflow.Python.Keras.Protobuf; +using static Tensorflow.ApiDef.Types; using static Tensorflow.Binding; using static Tensorflow.KerasApi; @@ -14,17 +30,35 @@ namespace Tensorflow.Keras.Saving { public class KerasObjectLoader { - SavedMetadata _metadata; - SavedObjectGraph _proto; - Dictionary _node_paths = new Dictionary(); - Dictionary model_layer_dependencies = new Dictionary(); - List _traversed_nodes_from_config = new List(); + internal static readonly IDictionary PUBLIC_ATTRIBUTES; + private SavedMetadata _metadata; + private SavedObjectGraph _proto; + private Dictionary _node_paths = new Dictionary(); + private Dictionary model_layer_ids_dependencies = new Dictionary(); + private Dictionary model_layer_dependencies = new Dictionary(); + private List _traversed_nodes_from_config = new List(); + private Dictionary)> loaded_nodes; + private List _models_to_reconstruct; + public Dictionary)> LoadedNodes => loaded_nodes; + + static KerasObjectLoader() + { + var endPoints = new CommonEndPoints(); + PUBLIC_ATTRIBUTES = new Dictionary(); + foreach (var key in endPoints._all_checkpointable_objects.Concat(endPoints._all_functions)) + { + PUBLIC_ATTRIBUTES[key] = null; + } + PUBLIC_ATTRIBUTES[SavedModel.Constants.KERAS_ATTR] = null; + } public KerasObjectLoader(SavedMetadata metadata, SavedObjectGraph object_graph_def) { _metadata = metadata; _proto = object_graph_def; _metadata.Nodes.ToList().ForEach(x => _node_paths[x.NodeId] = x.NodePath); + _models_to_reconstruct = new List(); + loaded_nodes = new Dictionary)>(); } /// @@ -42,15 +76,329 @@ public void load_layers(bool compile = true) continue; } - _load_layer(node_metadata.NodeId, node_metadata.Identifier, node_metadata.Metadata); + loaded_nodes[node_metadata.NodeId] = _load_layer(node_metadata.NodeId, node_metadata.Identifier, node_metadata.Metadata); + } + foreach(var node_metadata in metric_list) + { + try + { + if (node_metadata.Identifier.Equals("_tf_keras_metric")) + { + continue; + } + loaded_nodes[node_metadata.NodeId] = _load_layer(node_metadata.NodeId, node_metadata.Identifier, + node_metadata.Metadata); + } + catch(ValueError e) + { + if (compile) + { + throw e; + } + // TODO: add logging.warning. + } } } - void _load_layer(int node_id, string identifier, string metadata_json) + public string get_path(int node_id) + { + return _node_paths[node_id]; + } + + /// + /// Finish setting up Keras objects. + /// + /// This function is executed after all objects and functions have been created. + /// Call functions and losses are attached to each layer, and once all layers + /// have been fully set up, graph networks are initialized. + /// + /// Subclassed models that are revived from the SavedModel are treated like + /// layers, and have their call/loss functions attached here. + /// + public void finalize_objects() + { + List layers_revived_from_config = new(); + List layers_revived_from_saved_model = new(); + foreach(var item in loaded_nodes) + { + var node_id = item.Key; + var node = item.Value.Item1; + if(node is not Layer || model_layer_ids_dependencies.ContainsKey(node_id)) + { + continue; + } + + _unblock_model_reconstruction(node_id, node as Layer); + + if(node is InputLayer or Metric) + { + continue; + } + + if(node is RevivedLayer or RevivedInputLayer) + { + layers_revived_from_saved_model.Add(node as Layer); + } + else + { + layers_revived_from_config.Add(node as Layer); + } + } + + _finalize_saved_model_layers(layers_revived_from_saved_model); + _finalize_config_layers(layers_revived_from_config); + + _reconstruct_all_models(); + } + + /// + /// Removes tracked references that are only used when loading the model. + /// Now that the node object has been fully loaded, and the checkpoint has + /// been restored, the object no longer needs to track objects added from + /// SerializedAttributes. (Note that saving a training checkpoint still + /// functions correctly, because layers and variables are tracked + /// separately by the Layer object.) + /// + public void del_tracking() + { + foreach(var (node, _) in loaded_nodes.Values) + { + if(node is not Layer layer) + { + continue; + } + foreach(var name in PUBLIC_ATTRIBUTES.Keys) + { + layer._delete_tracking(name); + } + if(node is Functional functional) + { + foreach(var name in functional.UnconditionalDependencyNames.Keys.ToArray()) + { + if(Regex.Match(name, @"^layer(_with_weights)?-[\d+]").Success) + { + functional._delete_tracking(name); + } + } + } + } + } + + private void _reconstruct_all_models() + { + HashSet all_initialized_models = new(); + for(int i = _models_to_reconstruct.Count - 1; i >= 0; i--) + { + int model_id = _models_to_reconstruct[i]; + all_initialized_models.Add(model_id); + var (model, layers) = model_layer_dependencies[model_id]; + _reconstruct_model(model_id, model, layers.ToList()); + _finalize_config_layers(new List() { model }); + } + + Debug.Assert(all_initialized_models.SequenceEqual(model_layer_dependencies.Keys)); + } + + private void _reconstruct_model(int model_id, Model model, List layers) + { + var config = JsonConvert.DeserializeObject(_metadata.Nodes[model_id].Metadata)["config"]; + + if(model.input is not null && model.input.Length > 0) + { + + } + else if(model is Sequential s) + { + if(layers is null || layers.Count == 0 || layers[0] is not InputLayer) + { + if (config["layers"][0]["class_name"].ToObject() == "InputLayer") + { + layers.Insert(0, new InputLayer(config["layers"][0]["config"].ToObject())); + } + else if (config["layers"][0]["config"]["batch_input_shape"] is not null) + { + // TODO(Rinne): implement it + } + } + + // `model.__init__(layers, config["name"])`InitLayers(layers); + s.InitLayers(layers.Select(x => x as ILayer)); + s.Name = config["name"].ToObject(); + if(s.inputs is null || s.inputs.Length == 0) + { + var first_layer = _get_child_layer_node_ids(model_id)[0]; + var input_specs = _infer_inputs(first_layer); + var input_shapes = _infer_input_shapes(first_layer); + // `model._set_inputs(input_specs)` + s._set_inputs(input_specs); + + // skip the check of input_specs is Dictionary + if (!s.Built) + { + s.build(input_shapes); + } + } + } + else + { + // skip the parameter `created_layers`. + var (inputs, outputs, created_layers) = Functional.reconstruct_from_config(generic_utils.deserialize_model_config(config), + layers.ToDictionary(x => x.Name, x => x as ILayer)); + // skip the `model.__init__` + (model as Functional).Initialize(inputs, outputs, config["name"].ToObject()); + (model as Functional).connect_ancillary_layers(created_layers); + } + + _set_network_attributes_from_metadata(model); + _unblock_model_reconstruction(model_id, model); + } + + private void _set_network_attributes_from_metadata(Model revived_object) + { + var metadata = revived_object.SerializedAttributes["metadata"] as KerasMetaData; + if (metadata.DType != TF_DataType.DtInvalid) + { + // TODO(Rinne): set_dtype_policy. + } + revived_object.args.Trainable = metadata.Trainable; + } + + /// + /// Runs the final steps of loading Keras Layers from config. + /// + /// + private void _finalize_config_layers(List layers) + { + foreach(var layer in layers) + { + if (_is_graph_network(layer)) + { + _restore_layer_unconditional_losses(layer); + } + _restore_layer_activation_loss(layer); + _restore_layer_metrics(layer); + + // TODO(Rinne): deal with RNN. + } + } + + /// + /// Runs the final steps of loading Keras Layers from SavedModel. + /// + /// + private void _finalize_saved_model_layers(List layers) + { + foreach(var layer in layers) + { + layer.Built = true; + var keras_attr = _get_keras_attr(layer); + if(keras_attr is not Trackable trackable) + { + continue; + } + if (trackable.CustomizedFields.TryGetValue("call_and_return_conditional_losses", out var layer_call)) + { + Debug.Assert(layer_call is RestoredFunction); + var concrete_functions = ((RestoredFunction)layer_call).ConcreteFunctions; + if (concrete_functions is not null && concrete_functions.Count() > 0) + { + layer.ReplacedCall = use_wrapped_call(layer, ((RestoredFunction)layer_call).Apply); + } + } + } + + foreach(var layer in layers) + { + // TODO(Rinne): deal with `RevivedNetwork`. + + _restore_layer_unconditional_losses(layer); + _restore_layer_activation_loss(layer); + _restore_layer_metrics(layer); + } + } + + private Func use_wrapped_call(Layer layer, Func call) + { + // TODO(Rinne): revise it. + return call; + } + + private void _restore_layer_unconditional_losses(Layer layer) + { + // TODO(Rinne): implement it. + } + + private void _restore_layer_activation_loss(Layer layer) + { + // TODO(Rinne): implement it. + } + + private void _restore_layer_metrics(Layer layer) + { + // TODO(Rinne): implement it. + } + + /// + /// Removes layer from blocking model reconstruction. + /// + /// + /// + private void _unblock_model_reconstruction(int layer_id, Layer layer) + { + foreach(var depencency in model_layer_ids_dependencies) + { + var layer_ids = depencency.Value.Item2; + var layers = model_layer_dependencies.SetDefault(depencency.Key, + (depencency.Value.Item1, new Layer[depencency.Value.Item2.Length])).Item2; + if (!layer_ids.Contains(layer_id)) + { + continue; + } + layers[Array.IndexOf(layer_ids, layer_id)] = layer; + if (layers.All(x => x is not null)) + { + _models_to_reconstruct.Add(depencency.Key); + } + } + } + + private (Trackable, Action) _load_layer(int node_id, string identifier, string metadata_json) { - metadata_json = metadata_json.Replace("\"dtype\": \"float32\"", "\"dtype\": 1"); var metadata = JsonConvert.DeserializeObject(metadata_json); - _revive_from_config(identifier, metadata, node_id); + + if (loaded_nodes.ContainsKey(node_id)) + { + var (node, setter) = loaded_nodes[node_id]; + + _maybe_add_serialized_attributes(node as Layer, metadata); + var config = metadata.Config; + if(_is_graph_network(node as Layer) && generic_utils.validate_config(config)) + { + Debug.Assert(node is Model); + var child_nodes = _get_child_layer_node_ids(node_id); + model_layer_ids_dependencies[node_id] = (node as Model, child_nodes); + if(child_nodes is null || child_nodes.Length == 0) + { + _models_to_reconstruct.Add(node_id); + } + } + return (node, setter); + } + else + { + var (obj, setter) = _revive_from_config(identifier, metadata, node_id); + if (obj is null) + { + (obj, setter) = revive_custom_object(identifier, metadata); + } + if(obj is null) + { + throw new ValueError($"Cannot revive {metadata.Name} from the config or customized object."); + } + Debug.Assert(obj is Layer); + _maybe_add_serialized_attributes(obj as Layer, metadata); + return (obj, setter); + } } /// @@ -59,11 +407,49 @@ void _load_layer(int node_id, string identifier, string metadata_json) /// /// /// - void _revive_from_config(string identifier, KerasMetaData metadata, int node_id) + private (Trackable, Action) _revive_from_config(string identifier, KerasMetaData metadata, int node_id) { - var obj = _revive_graph_network(identifier, metadata, node_id); - obj = obj ?? _revive_layer_or_model_from_config(metadata, node_id); + Trackable obj; + if(identifier == SavedModel.Constants.METRIC_IDENTIFIER) + { + // TODO(Rinne): implement it. + return (null, null); + //throw new NotImplementedException("Not implemented, please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues."); + } + else + { + obj = _revive_graph_network(identifier, metadata, node_id); + obj = obj ?? _revive_layer_or_model_from_config(metadata, node_id); + } + + if(obj is null) + { + return (null, null); + } + var setter = _config_node_setter(_revive_setter); _add_children_recreated_from_config(obj, _proto.Nodes[node_id], node_id); + return (obj, setter); + } + + private (Trackable, Action) revive_custom_object(string identifier, KerasMetaData metadata) + { + if (identifier == SavedModel.Constants.LAYER_IDENTIFIER) + { + return RevivedLayer.init_from_metadata(metadata); + } + else if(identifier == SavedModel.Constants.MODEL_IDENTIFIER || identifier == SavedModel.Constants.SEQUENTIAL_IDENTIFIER + || identifier == SavedModel.Constants.NETWORK_IDENTIFIER) + { + return RevivedNetwork.init_from_metadata(metadata); + } + else if(identifier == SavedModel.Constants.INPUT_LAYER_IDENTIFIER) + { + return RevivedInputLayer.init_from_metadata(metadata); + } + else + { + throw new ValueError($"Cannot revive the layer {identifier}."); + } } Model _revive_graph_network(string identifier, KerasMetaData metadata, int node_id) @@ -71,6 +457,12 @@ Model _revive_graph_network(string identifier, KerasMetaData metadata, int node_ var config = metadata.Config; var class_name = metadata.ClassName; Model model = null; + + if(!metadata.IsGraphNetwork && class_name != "Sequential" && class_name != "Functional") + { + return null; + } + if (class_name == "Sequential") { model = new Sequential(new SequentialArgs @@ -78,34 +470,79 @@ Model _revive_graph_network(string identifier, KerasMetaData metadata, int node_ Name = config.GetValue("name").ToString() }); } - else if (class_name == "Functional") + else if(identifier == Keras.Saving.SavedModel.Constants.SEQUENTIAL_IDENTIFIER) { - throw new NotImplementedException(""); + model = new Sequential(new SequentialArgs + { + Name = class_name + }); + } + else + { + model = new Functional(new Tensors(), new Tensors(), config.TryGetOrReturnNull("name")); } - - if (!metadata.IsGraphNetwork) - return null; // Record this model and its layers. This will later be used to reconstruct // the model. var layers = _get_child_layer_node_ids(node_id); - model_layer_dependencies[node_id] = (model, layers); + model_layer_ids_dependencies[node_id] = (model, layers); + if(layers is null || layers.Length == 0) + { + _models_to_reconstruct.Add(node_id); + } return model; } - Model _revive_layer_or_model_from_config(KerasMetaData metadata, int node_id) + Layer _revive_layer_or_model_from_config(KerasMetaData metadata, int node_id) { var config = metadata.Config; var class_name = metadata.ClassName; var shared_object_id = metadata.SharedObjectId; var must_restore_from_config = metadata.MustRestoreFromConfig; - var obj = class_name switch + + var obj = generic_utils.deserialize_keras_object(class_name, config); + + if(obj is null) { - "Resizing" => Resizing.from_config(config), - _ => throw new NotImplementedException("") - }; + return null; + } + obj.Name = metadata.Name; + // TODO(Rinne): add `trainable`, `dtype`, `stateful` and `save_spec` + + var built = _try_build_layer(obj, node_id, metadata.BuildInputShape); - return null; + if (!built) + { + return null; + } + return obj; + } + + private void _revive_setter(object obj, object name, object value) + { + Debug.Assert(name is string); + Debug.Assert(obj is Layer); + Layer layer = (Layer)obj; + if(PUBLIC_ATTRIBUTES.ContainsKey(name as string)) + { + if(value is Trackable) + { + layer._track_trackable(value as Trackable, name as string); + } + if(layer.SerializedAttributes is null) + { + layer.SerializedAttributes = new Dictionary(); + } + layer.SerializedAttributes[name as string] = value; + } + else if(layer is Functional functional && Regex.Match(name as string, @"^layer(_with_weights)?-[\d+]").Success) + { + functional._track_trackable(value as Trackable, name as string, overwrite: true); + } + else + { + layer.SetAttr(name as string, value); + } } /// @@ -143,34 +580,216 @@ int[] _get_child_layer_node_ids(int node_id) /// /// /// - void _add_children_recreated_from_config(Model obj, SavedObject proto, int node_id) + void _add_children_recreated_from_config(Trackable obj, SavedObject proto, int node_id) { if (_traversed_nodes_from_config.Contains(node_id)) return; var parent_path = _node_paths[node_id]; _traversed_nodes_from_config.Add(node_id); - if (!obj.Built) + obj._maybe_initialize_trackable(); + + if(obj is Layer layer && !layer.Built) + { + var metadata = JsonConvert.DeserializeObject(_metadata.Nodes[node_id].Metadata); + _try_build_layer(layer, node_id, metadata.BuildInputShape); + } + + + List<(Trackable, int, string)> children = new(); + foreach(var refer in proto.Children) + { + var obj_child = obj._lookup_dependency(refer.LocalName); + children.Add((obj_child, refer.NodeId, refer.LocalName)); + } + + var metric_list_node_id = _search_for_child_node(node_id, new string[] { + SavedModel.Constants.KERAS_ATTR, "layer_metrics" + }); + if(metric_list_node_id is not null && obj is Model model && model.metrics is not null) + { + var obj_metrics = model.metrics.ToDictionary(x => x.Name, x => x); + foreach(var refer in _proto.Nodes[metric_list_node_id.Value].Children) + { + if (obj_metrics.TryGetValue(refer.LocalName, out var metric)) + { + var metric_path = $"{Keras.Saving.SavedModel.Constants.KERAS_ATTR}.layer_metrics.{refer.LocalName}"; + children.Add((metric as Metric, refer.NodeId, metric_path)); + } + } + } + + foreach(var (obj_child, child_id, child_name) in children) { - var metadata_json = proto.UserObject.Metadata.Replace("\"dtype\": \"float32\"", "\"dtype\": 1"); - var metadata = JsonConvert.DeserializeObject(metadata_json); - _try_build_layer(obj, node_id, metadata.BuildInputShape); + if(obj_child is null) + { + continue; + } + var child_proto = _proto.Nodes[child_id]; + + // skip the check for registered identifier + + Action setter; + if (SavedModel.Constants.KERAS_OBJECT_IDENTIFIERS.Contains(obj_child.ObjectIdentifier)) + { + setter = _revive_setter; + } + else + { + setter = Loader.setattr; + } + + if (loaded_nodes.ContainsKey(child_id)) + { + // skip the logging.warning + continue; + } + + if(child_proto.KindCase == SavedObject.KindOneofCase.Variable && !string.IsNullOrEmpty(child_proto.Variable.Name)) + { + (obj_child as BaseResourceVariable).handle_name = child_proto.Variable.Name + ":0"; + } + + if(obj_child is TrackableDataStructure) + { + setter = (x, y, z) => { }; + } + + var child_path = $"{parent_path}.{child_name}"; + _node_paths[child_id] = child_path; + _add_children_recreated_from_config(obj_child, child_proto, child_id); + loaded_nodes[child_id] = (obj_child, setter); } } - bool _try_build_layer(Model obj, int node_id, Shape build_input_shape) + private bool _try_build_layer(Layer obj, int node_id, KerasShapesWrapper build_input_shape) { if (obj.Built) return true; + if(build_input_shape is null) + { + build_input_shape = _infer_input_shapes(node_id); + } + + if(build_input_shape is not null) + { + obj.build(build_input_shape); + // In tf python here is a `base_layer.Layer.build(obj, build_input_shape)`. + // On the one hand, C# does not support call a method from specified parent class. + // On the other hand, currently All class derived from Layer call `Layer.Build` or + // move the implementation of `Layer.build` to its own `build` method. + // Therefore we do not call it here. + // However, it's still quite risky once in the future a certain class derived from + // `Layer` does not call `Layer.build`. + + return true; + } + return false; } - bool _try_build_layer(Layer obj, int node_id, Shape build_input_shape) + /// + /// Infers input shape of layer from SavedModel functions. + /// + /// + /// + private TensorSpec _infer_inputs(int layer_node_id) { - if (obj.Built) - return true; + var call_fn_id = _search_for_child_node(layer_node_id, new string[] { "call_and_return_all_conditional_losses" }); + if(call_fn_id is null) + { + return null; + } + + var concrete_functions = _proto.Nodes[call_fn_id.Value].Function.ConcreteFunctions; + if(concrete_functions is null) + { + return null; + } + var call_fn_name = concrete_functions[0]; + var call_fn_proto = _proto.ConcreteFunctions[call_fn_name]; + var structured_input_signature = nested_structure_coder.decode_proto(call_fn_proto.CanonicalizedInputSignature); + Debug.Assert(structured_input_signature is IEnumerable); + var first_enumerator = (structured_input_signature as IEnumerable).GetEnumerator(); + first_enumerator.MoveNext(); + var first = first_enumerator.Current; + Debug.Assert(first is IEnumerable); + var inputs_enumerator = (first as IEnumerable).GetEnumerator(); + inputs_enumerator.MoveNext(); + var inputs = inputs_enumerator.Current as TensorSpec; + return inputs; + } + + private KerasShapesWrapper _infer_input_shapes(int layer_node_id) + { + var inputs = _infer_inputs(layer_node_id); + return new KerasShapesWrapper(nest.map_structure(x => x.shape, inputs)); + } + private int? _search_for_child_node(int parent_id, IEnumerable path_to_child) + { + if(path_to_child is null || path_to_child.Count() == 0) + { + return parent_id; + } + + foreach(var child in _proto.Nodes[parent_id].Children) + { + if(child.LocalName == path_to_child.First()) + { + return _search_for_child_node(child.NodeId, path_to_child.Skip(1)); + } + } + return null; + } + + private bool _is_graph_network(Layer layer) + { + // TODO: deal with `RevivedLayer` + if(layer is Functional) + { + return (layer as Functional).IsGraphNetwork || layer is Sequential; + } return false; } + + private void _maybe_add_serialized_attributes(Layer layer, KerasMetaData metadata) + { + if(layer.SerializedAttributes is null || layer.SerializedAttributes.Count == 0) + { + layer.SerializedAttributes = new Dictionary(); + layer.SerializedAttributes["metadata"] = metadata; + } + } + + private static object _get_keras_attr(Layer layer) + { + if((layer.SerializedAttributes ?? new Dictionary()).TryGetValue(SavedModel.Constants.KERAS_ATTR, out var value)) + { + return value; + } + else + { + return null; + } + } + + /// + /// Creates edges for nodes that are recreated from config. + /// + /// + private Action _config_node_setter(Action setter) + { + void setattr_wrapper(object obj, object name, object value) + { + Debug.Assert(obj is Trackable); + Debug.Assert(name is string); + if((obj as Trackable)._lookup_dependency(name as string) is null) + { + setter(obj, name, value); + } + } + return setattr_wrapper; + } } } diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/Constants.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/Constants.cs new file mode 100644 index 000000000..3ea4f067e --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/Constants.cs @@ -0,0 +1,41 @@ +using System.Collections.Generic; + +namespace Tensorflow.Keras.Saving.SavedModel; + +public static class Constants +{ + /// + /// Namespace used to store all attributes added during serialization. + /// e.g. the list of layers can be accessed using `loaded.keras_api.layers`, in an + /// object loaded from `tf.saved_model.load()`. + /// + public static readonly string KERAS_ATTR = "keras_api"; + /// + /// Keys for the serialization cache. + /// Maps to the keras serialization dict {Layer --> SerializedAttributes object} + /// + public static readonly string KERAS_CACHE_KEY = "keras_serialized_attributes"; + /// + /// Name of Keras metadata file stored in the SavedModel. + /// + public static readonly string SAVED_METADATA_PATH = "keras_metadata.pb"; + + public static readonly string INPUT_LAYER_IDENTIFIER = "_tf_keras_input_layer"; + public static readonly string LAYER_IDENTIFIER = "_tf_keras_layer"; + public static readonly string METRIC_IDENTIFIER = "_tf_keras_metric"; + public static readonly string MODEL_IDENTIFIER = "_tf_keras_model"; + public static readonly string NETWORK_IDENTIFIER = "_tf_keras_network"; + public static readonly string RNN_LAYER_IDENTIFIER = "_tf_keras_rnn_layer"; + public static readonly string SEQUENTIAL_IDENTIFIER = "_tf_keras_sequential"; + + public static readonly IList KERAS_OBJECT_IDENTIFIERS = new List() + { + INPUT_LAYER_IDENTIFIER, + LAYER_IDENTIFIER, + METRIC_IDENTIFIER, + MODEL_IDENTIFIER, + NETWORK_IDENTIFIER, + RNN_LAYER_IDENTIFIER, + SEQUENTIAL_IDENTIFIER + }; +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/ReviveUtils.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/ReviveUtils.cs new file mode 100644 index 000000000..6970b04e5 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/ReviveUtils.cs @@ -0,0 +1,55 @@ +using Newtonsoft.Json.Linq; +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Text; +using System.Text.RegularExpressions; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Utils; +using Tensorflow.Train; + +namespace Tensorflow.Keras.Saving.SavedModel +{ + internal static class ReviveUtils + { + public static T recursively_deserialize_keras_object(JToken config) + { + throw new NotImplementedException(); + if(config is JObject jobject) + { + if (jobject.ContainsKey("class_name")) + { + + } + } + } + + public static void _revive_setter(object obj, object name, object value) + { + Debug.Assert(name is string); + Debug.Assert(obj is Layer); + Layer layer = (Layer)obj; + if (KerasObjectLoader.PUBLIC_ATTRIBUTES.ContainsKey(name as string)) + { + if (value is Trackable trackable) + { + layer._track_trackable(trackable, name as string); + } + if (layer.SerializedAttributes is null) + { + layer.SerializedAttributes = new Dictionary(); + } + layer.SerializedAttributes[name as string] = value; + } + else if (layer is Functional functional && Regex.Match(name as string, @"^layer(_with_weights)?-[\d+]").Success) + { + Debug.Assert(value is Trackable); + functional._track_trackable(value as Trackable, name as string); + } + else + { + layer.SetAttr(name as string, value); + } + } + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedConfig.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedConfig.cs new file mode 100644 index 000000000..036d517b1 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedConfig.cs @@ -0,0 +1,37 @@ +using Newtonsoft.Json; +using Newtonsoft.Json.Linq; +using System; +using System.Collections.Generic; +using System.Text; + +namespace Tensorflow.Keras.Saving.SavedModel +{ + [JsonConverter(typeof(CustomizedRevivedConfigJsonConverter))] + public class RevivedConfig: IKerasConfig + { + public JObject Config { get; set; } + } + + public class CustomizedRevivedConfigJsonConverter : JsonConverter + { + public override bool CanConvert(Type objectType) + { + return objectType == typeof(RevivedConfig); + } + + public override bool CanRead => true; + + public override bool CanWrite => true; + + public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer) + { + ((RevivedConfig)value).Config.WriteTo(writer); + } + + public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer) + { + var config = (JObject)serializer.Deserialize(reader, typeof(JObject)); + return new RevivedConfig() { Config = config }; + } + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedInputLayer.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedInputLayer.cs new file mode 100644 index 000000000..e2cad8a37 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedInputLayer.cs @@ -0,0 +1,46 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Layers; + +namespace Tensorflow.Keras.Saving.SavedModel +{ + public class RevivedInputLayer: InputLayer + { + protected RevivedConfig _config = null; + private RevivedInputLayer(InputLayerArgs args): base(args) + { + + } + + public override IKerasConfig get_config() + { + return _config; + } + + public static (RevivedInputLayer, Action) init_from_metadata(KerasMetaData metadata) + { + InputLayerArgs args = new InputLayerArgs() + { + Name = metadata.Name, + DType = metadata.DType, + Sparse = metadata.Sparse, + Ragged = metadata.Ragged, + BatchInputShape = metadata.BatchInputShape + }; + + RevivedInputLayer revived_obj = new RevivedInputLayer(args); + + revived_obj._config = new RevivedConfig() { Config = metadata.Config }; + + return (revived_obj, Loader.setattr); + } + + public override string ToString() + { + return $"Customized keras input layer: {Name}."; + } + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedLayer.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedLayer.cs new file mode 100644 index 000000000..51e367ce8 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedLayer.cs @@ -0,0 +1,88 @@ +using Newtonsoft.Json.Linq; +using System; +using System.Collections.Generic; +using System.Runtime.CompilerServices; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Utils; +using Tensorflow.Keras.Saving.SavedModel; + +namespace Tensorflow.Keras.Saving.SavedModel +{ + public class RevivedLayer: Layer + { + public static (RevivedLayer, Action) init_from_metadata(KerasMetaData metadata) + { + LayerArgs args = new LayerArgs() + { + Name = metadata.Name, + Trainable = metadata.Trainable + }; + if(metadata.DType != TF_DataType.DtInvalid) + { + args.DType = metadata.DType; + } + if(metadata.BatchInputShape is not null) + { + args.BatchInputShape = metadata.BatchInputShape; + } + + RevivedLayer revived_obj = new RevivedLayer(args); + + // TODO(Rinne): implement `expects_training_arg`. + var config = metadata.Config; + if (generic_utils.validate_config(config)) + { + revived_obj._config = new RevivedConfig() { Config = config }; + } + if(metadata.InputSpec is not null) + { + throw new NotImplementedException(); + } + if(metadata.ActivityRegularizer is not null) + { + throw new NotImplementedException(); + } + // TODO(Rinne): `_is_feature_layer` + if(metadata.Stateful is not null) + { + revived_obj.stateful = metadata.Stateful.Value; + } + + return (revived_obj, ReviveUtils._revive_setter); + } + + protected RevivedConfig _config = null; + + public object keras_api + { + get + { + if (SerializedAttributes.TryGetValue(SavedModel.Constants.KERAS_ATTR, out var value)) + { + return value; + } + else + { + return null; + } + } + } + + protected RevivedLayer(LayerArgs args): base(args) + { + + } + + public override string ToString() + { + return $"Customized keras layer: {Name}."; + } + + public override IKerasConfig get_config() + { + return _config; + } + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedNetwork.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedNetwork.cs new file mode 100644 index 000000000..1860c8c75 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/RevivedNetwork.cs @@ -0,0 +1,40 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Utils; + +namespace Tensorflow.Keras.Saving.SavedModel +{ + public class RevivedNetwork: RevivedLayer + { + private RevivedNetwork(LayerArgs args) : base(args) + { + + } + + public static (RevivedNetwork, Action) init_from_metadata(KerasMetaData metadata) + { + RevivedNetwork revived_obj = new(new LayerArgs() { Name = metadata.Name }); + + // TODO(Rinne): with utils.no_automatic_dependency_tracking_scope(revived_obj) + // TODO(Rinne): revived_obj._expects_training_arg + var config = metadata.Config; + if (generic_utils.validate_config(config)) + { + revived_obj._config = new RevivedConfig() { Config = config }; + } + if(metadata.ActivityRegularizer is not null) + { + throw new NotImplementedException(); + } + + return (revived_obj, ReviveUtils._revive_setter); + } + + public override string ToString() + { + return $"Customized keras Network: {Name}."; + } + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/Save.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/Save.cs new file mode 100644 index 000000000..331b283a0 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/Save.cs @@ -0,0 +1,169 @@ +using System; +using System.Collections.Generic; +using System.IO; +using System.Linq; +using Google.Protobuf; +using Tensorflow.Functions; +using Tensorflow.Keras.Engine; +using Tensorflow.ModelSaving; +using Tensorflow.Train; +using Tensorflow.Keras.Optimizers; +using ThirdParty.Tensorflow.Python.Keras.Protobuf; +using static Tensorflow.Binding; +using Tensorflow.Training; +using System.Diagnostics; + +namespace Tensorflow.Keras.Saving.SavedModel; + +public partial class KerasSavedModelUtils +{ + public static void save_model(Model model, string filepath, bool overwrite, bool include_optimizer, ConcreteFunction? signatures, + SaveOptions? options, bool save_traces = true) + { + if (!overwrite && File.Exists(filepath)) + { + throw new Exception("The file already exists but is not allowed to overwrite it."); + } + + if (save_traces) + { + if(should_skip_serialization(model)) + { + throw new NotImplementedException(); + } + } + + IOptimizer? orig_optimizer = null; + if (!include_optimizer) + { + orig_optimizer = model.Optimizer; + model.Optimizer = null; + model._delete_tracking("optimizer"); + } + + IList saved_nodes; + IDictionary> node_paths; + // skip two scopes of python + using (KerasSavedModelUtils.keras_option_scope(save_traces)) + { + (saved_nodes, node_paths) = Tensorflow.SavedModelUtils.save_and_return_nodes(model, filepath, signatures, options); + } + + var metadata = generate_keras_metadata(saved_nodes, node_paths); + File.WriteAllBytes(Path.Combine(filepath, Constants.SAVED_METADATA_PATH), metadata.ToByteArray()); + //File.WriteAllText(Path.Combine(filepath, Constants.SAVED_METADATA_PATH), metadata.ToString()); + + if (!include_optimizer) + { + model.Optimizer = orig_optimizer!; + } + } + + public static SavedMetadata generate_keras_metadata(IList saved_nodes, + IDictionary> node_paths) + { + var metadata = new SavedMetadata(); + for (int i = 0; i < saved_nodes.Count; i++) + { + var node = saved_nodes[i]; + if (node is not Layer) + { + continue; + } + + Layer layer = (Layer)node; + + var path = node_paths[node]; + string node_path; + if (path is null || path.Count() == 0) + { + node_path = "root"; + } + else + { + node_path = $"root.{string.Join(".", path.Select(x => x.Name))}"; + } + + ThirdParty.Tensorflow.Python.Keras.Protobuf.SavedObject saved_object = new() + { + NodeId = i, + NodePath = node_path, + Version = new ThirdParty.Tensorflow.Python.Keras.Protobuf.VersionDef() + { + Producer = 2, + MinConsumer = 1, + BadConsumers = { } + }, + Identifier = layer.ObjectIdentifier, + Metadata = layer.GetTrackingMetadata() + }; + + metadata.Nodes.Add(saved_object); + } + + return metadata; + } + + public static bool should_skip_serialization(object layer) + { + return false; + } + + /// + /// Returns extra trackable objects to attach to the serialized layer. + /// + /// + /// + /// + public static IDictionary wrap_layer_objects(Layer layer, IDictionary> serialization_cache) + { + // TODO: deal with losses and metrics. Currently, `Layer` lacks these two APIs. + + // TODO: change the inherits of `Variable` and revise the implmentation. + var variables = TrackableDataStructure.wrap_or_unwrap(layer.Variables.Select(x => + { + if (x is ResourceVariable or RefVariable) return (Trackable)x; + else throw new TypeError($"The type{x.GetType()} is not supported for the wrapping of layer."); + }).ToArray()); + var trainable_variables = TrackableDataStructure.wrap_or_unwrap(layer.TrainableVariables.Select(x => + { + if (x is ResourceVariable or RefVariable) return (Trackable)x; + else throw new TypeError($"The type{x.GetType()} is not supported for the wrapping of layer."); + }).ToArray()); + var non_trainable_variables = TrackableDataStructure.wrap_or_unwrap(layer.NonTrainableVariables.Select(x => + { + if (x is ResourceVariable or RefVariable) return (Trackable)x; + else throw new TypeError($"The type{x.GetType()} is not supported for the wrapping of layer."); + }).ToArray()); + var layers = TrackableDataStructure.wrap_or_unwrap(list_all_layers(layer).Select(x => x.GetTrackable()).ToArray()); + + Dictionary res = new(); + Debug.Assert(variables is Trackable); + Debug.Assert(trainable_variables is Trackable); + Debug.Assert(non_trainable_variables is Trackable); + Debug.Assert(layers is Trackable); + res["variables"] = variables as Trackable; + res["trainable_variables"] = trainable_variables as Trackable; + res["non_trainable_variables"] = non_trainable_variables as Trackable; + res["layers"] = layers as Trackable; + + return res; + } + + /// + /// Returns dict of wrapped layer call function and losses in tf.functions. + /// + /// + /// + /// + public static IDictionary wrap_layer_functions(Layer layer, IDictionary> serialization_cache) + { + + // high priority + // TODO: deal with type `RevivedLayer` and `Sequential`. + + // skip the process because of lack of APIs of `Layer`. + + return new Dictionary(); + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/base_serialization.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/base_serialization.cs new file mode 100644 index 000000000..eb88c8953 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/base_serialization.cs @@ -0,0 +1,37 @@ +using System.Collections.Generic; +using System.Linq; +using Tensorflow.Keras.Engine; +using Newtonsoft.Json; +using Tensorflow.Train; + +namespace Tensorflow.Keras.Saving.SavedModel; + +public abstract class SavedModelSaver +{ + protected Trackable _obj; + public SavedModelSaver(Trackable obj) + { + _obj = obj; + } + + public abstract string ObjectIdentifier { get; } + public abstract string TrackingMetadata { get; } + + public abstract IDictionary objects_to_serialize( + IDictionary> serialization_cache); + + public abstract IDictionary functions_to_serialize( + IDictionary> serialization_cache); + + public IDictionary trackable_children(IDictionary> serialization_cache) + { + if (!KerasSavedModelUtils.ShouldHaveTraces) + { + return new Dictionary(); + } + + var children = objects_to_serialize(serialization_cache); + return children.Concat(functions_to_serialize(serialization_cache).ToDictionary(x => x.Key, x => (Trackable)x.Value)) + .ToDictionary(x => x.Key, x => x.Value); + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/layer_serialization.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/layer_serialization.cs new file mode 100644 index 000000000..03693cb57 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/layer_serialization.cs @@ -0,0 +1,165 @@ +using System.Collections.Generic; +using Newtonsoft.Json; +using Newtonsoft.Json.Linq; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Layers; +using Tensorflow.Keras.Utils; +using Tensorflow.Train; + +namespace Tensorflow.Keras.Saving.SavedModel; + +public class LayerSavedModelSaver: SavedModelSaver +{ + private Layer _layer; + public LayerSavedModelSaver(Layer obj): base(obj) + { + _obj = obj; + _layer = obj; + } + public override string ObjectIdentifier + { + get => Constants.LAYER_IDENTIFIER; + } + + public override IDictionary objects_to_serialize(IDictionary> serialization_cache) + { + return get_serialized_attributes(serialization_cache).ObjectsToSerialize; + } + + public override IDictionary functions_to_serialize(IDictionary> serialization_cache) + { + return get_serialized_attributes(serialization_cache).FunctionsToSerialize; + } + + /// + /// Generates or retrieves serialized attributes from cache. + /// + /// + protected ISerializedAttributes get_serialized_attributes(IDictionary> serialization_cache) + { + // TODO: deal with cache. + IDictionary keras_cache; + if(serialization_cache is not null && serialization_cache.ContainsKey(Constants.KERAS_CACHE_KEY)) + { + keras_cache = serialization_cache[Constants.KERAS_CACHE_KEY]; + } + else + { + serialization_cache![Constants.KERAS_CACHE_KEY] = keras_cache = new Dictionary(); + } + if (keras_cache.ContainsKey(_obj)) return keras_cache[_obj]; + + var serialized_attr = keras_cache[_obj] = SerializedAttributes.Create(_obj); + + // TODO: complete the statement. Currently the `Layer` lacks member `_must_restore_from_config`. + if (KerasSavedModelUtils.should_skip_serialization(_obj)) + { + return serialized_attr; + } + + var (object_dict, function_dict) = get_serialized_attributes_internal(serialization_cache); + + serialized_attr.set_and_validate_objects(object_dict); + serialized_attr.set_and_validate_functions(function_dict); + return serialized_attr; + } + + /// + /// Returns dictionary of serialized attributes. + /// + /// + private (IDictionary, IDictionary) get_serialized_attributes_internal(IDictionary> serialization_cache) + { + var objects = KerasSavedModelUtils.wrap_layer_objects(_layer, serialization_cache); + var functions = KerasSavedModelUtils.wrap_layer_functions(_layer, serialization_cache); + + functions["_default_save_signature"] = null; + + return (objects, functions); + } + + public override string TrackingMetadata + { + get + { + JObject metadata = new JObject(); + metadata["name"] = _layer.Name; + metadata["trainable"] = _layer.Trainable; + // TODO: implement `expects_training_arg`. + metadata["expects_training_arg"] = false; + metadata["dtype"] = _layer.DType.as_python_name(); + metadata["batch_input_shape"] = _layer.BatchInputShape is null ? null : JToken.FromObject(_layer.BatchInputShape); + // metadata["stateful"] = _obj.stateful; + // metadata["must_restore_from_config"] = _obj.must_restore_from_config; + // metadata["preserve_input_structure_in_config"] = _obj.preserve_input_structure_in_config; + metadata["autocast"] = _layer.AutoCast; + + if(_layer.InputSpec is not null) + { + metadata["input_spec"] = generic_utils.serialize_keras_object(_layer.InputSpec); + } + + metadata.Merge(get_serialized(_layer), new JsonMergeSettings + { + // Handle conflicts by using values from obj2 + MergeArrayHandling = MergeArrayHandling.Merge + }); + // skip the check of `input_spec` and `build_input_shape` for the lack of members. + // skip the check of `activity_regularizer` for the type problem. + if(_layer.BuildInputShape is not null) + { + metadata["build_input_shape"] = JToken.FromObject(_layer.BuildInputShape); + } + return metadata.ToString(); + } + } + + public static JObject get_serialized(Layer obj) + { + return generic_utils.serialize_keras_object(obj); + } +} + +public class InputLayerSavedModelSaver: SavedModelSaver +{ + public InputLayerSavedModelSaver(Layer obj) : base(obj) + { + + } + public override string ObjectIdentifier => Constants.INPUT_LAYER_IDENTIFIER; + + public override IDictionary functions_to_serialize(IDictionary> serialization_cache) + { + return new Dictionary(); + } + + public override IDictionary objects_to_serialize(IDictionary> serialization_cache) + { + return new Dictionary(); + } + + public override string TrackingMetadata + { + get + { + if(_obj is not InputLayer) + { + throw new TypeError($"The type {_obj.GetType()} cannot be recognized as an input layer."); + } + var layer = (InputLayer)_obj; + var config = (layer.get_config() as InputLayerArgs)!; + var info = new + { + class_name = layer.GetType().Name, + name = layer.Name, + dtype = layer.DType, + sparse = config.Sparse, + ragged = config.Ragged, + batch_input_shape = layer.BatchInputShape, + config = layer.get_config() + }; + return JsonConvert.SerializeObject(info); + } + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/load.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/load.cs new file mode 100644 index 000000000..091dbb810 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/load.cs @@ -0,0 +1,89 @@ +using System.IO; +using Tensorflow.Train; +using ThirdParty.Tensorflow.Python.Keras.Protobuf; + +namespace Tensorflow.Keras.Saving.SavedModel; + +public class KerasLoadModelUtils +{ + /// + /// Corresponding to keras/saving/save.py/load_model + /// + /// + /// + /// + /// + /// + public static Trackable load_model(string filepath, IDictionary? custom_objects = null, + bool compile = true, LoadOptions? options = null) + { + using var savingScope = SharedObjectSavingScope.Enter(); + + using var ctx = LoadContext.load_context(options); + + if (!File.Exists(filepath) && !Directory.Exists(filepath)) + { + throw new IOException($"No file or directory found at {filepath}."); + } + + if (Directory.Exists(filepath)) + { + return load(filepath, compile, options); + } + else + { + throw new NotImplementedException("Model load of h5 format has not been supported. Please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues if it's needed."); + } + } + + private static Trackable load(string path, bool compile = true, LoadOptions? options = null) + { + SavedMetadata metadata; + var meta_graph_def = Loader.parse_saved_model(path).MetaGraphs[0]; + var object_graph_def = meta_graph_def.ObjectGraphDef; + string path_to_metadata_pb = Path.Combine(path, Constants.SAVED_METADATA_PATH); + if (File.Exists(path_to_metadata_pb)) + { + using var stream = new FileStream(path_to_metadata_pb, FileMode.Open, FileAccess.Read); + metadata = SavedMetadata.Parser.ParseFrom(stream); + } + else + { + throw new NotImplementedException("SavedModel saved prior to TF 2.5 detected when loading Keras model, please" + + " use higher version or submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues. to let us know you need it."); + } + + if (metadata.Nodes is null || metadata.Nodes.Count == 0) + { + return Loader.load(path, options: options) as Model; + } + + var keras_loader = new KerasObjectLoader(metadata, object_graph_def); + keras_loader.load_layers(compile: compile); + + Dictionary)> nodes_to_load = new(); + nodes_to_load["root"] = (null, null); + foreach(var item in keras_loader.LoadedNodes) + { + nodes_to_load[keras_loader.get_path(item.Key)] = item.Value; + } + var loaded = Loader.load_partial(path, nodes_to_load, options); + + keras_loader.finalize_objects(); + keras_loader.del_tracking(); + + var model = loaded["root"]; + + if (model is Model && compile) + { + // TODO(Rinne): implement it. + } + + if (!tf.Context.executing_eagerly()) + { + // TODO(Rinne): implement it. + } + + return model; + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/load_context.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/load_context.cs new file mode 100644 index 000000000..11b1201d0 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/load_context.cs @@ -0,0 +1,69 @@ +using System; +using System.Collections.Generic; +using System.Text; +using System.Threading; +using Tensorflow.Training.Saving.SavedModel; + +namespace Tensorflow.Keras.Saving.SavedModel +{ + // TODO: remove this class to common project. + public class ContextHandler: IDisposable + { + public Action DisposeCallBack { get; set; } + public void Dispose() + { + DisposeCallBack.Invoke(true); + } + } + public class LoadContext + { + private bool _entered_load_context; + private LoadOptions? _load_options; + private static ThreadLocal _load_context = new(); + private LoadContext() + { + _entered_load_context = false; + _load_options = null; + } + + public void set_load_options(LoadOptions load_options) + { + _load_options = load_options; + _entered_load_context = true; + } + + private void clear_load_options() + { + _load_options = null; + _entered_load_context = false; + } + + private LoadOptions? load_options() + { + return _load_options; + } + + public static ContextHandler load_context(LoadOptions? load_options) + { + if(_load_context.Value is null) + { + _load_context.Value = new LoadContext(); + } + _load_context.Value.set_load_options(load_options); + return new ContextHandler() + { + DisposeCallBack = _ => _load_context.Value.clear_load_options() + }; + } + + public static LoadOptions? get_load_option() + { + return _load_context.Value.load_options(); + } + + public static bool in_load_context() + { + return _load_context.Value._entered_load_context; + } + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/serialized_attributes.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/serialized_attributes.cs new file mode 100644 index 000000000..325d3327a --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/serialized_attributes.cs @@ -0,0 +1,284 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using System.Text; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Layers; +using Tensorflow.Keras.Metrics; +using Tensorflow.Train; + +namespace Tensorflow.Keras.Saving.SavedModel +{ + // TODO: revise the name of these "Attributes". Since "Attribute" is a significant feature of C#, + // Using the name "Attributes" may be quite confusing. + /// + /// Class that tracks and validates all serialization attributes. + /// + public abstract class SerializedAttributes: ISerializedAttributes + { + protected IDictionary _object_dict; + protected IDictionary _function_dict; + protected AutoTrackable _keras_trackable; + internal HashSet _all_functions; + internal HashSet _all_checkpointable_objects; + + private SerializedAttributes() + { + _object_dict= new Dictionary(); + _function_dict= new Dictionary(); + _keras_trackable= new AutoTrackable(); + _all_functions= new HashSet(); + _all_checkpointable_objects= new HashSet(); + } + + protected SerializedAttributes(IEnumerable checkpointable_objects, IEnumerable functions) + { + _object_dict = new Dictionary(); + _function_dict = new Dictionary(); + _keras_trackable = new AutoTrackable(); + + _all_checkpointable_objects = new HashSet(checkpointable_objects); + _all_functions = new HashSet(functions); + } + + protected SerializedAttributes((IEnumerable, IEnumerable) objects_and_functions) + { + _object_dict = new Dictionary(); + _function_dict = new Dictionary(); + _keras_trackable = new AutoTrackable(); + + _all_checkpointable_objects = new HashSet(objects_and_functions.Item1); + _all_functions = new HashSet(objects_and_functions.Item2); + } + + public IDictionary Functions => _function_dict.Where(x => x.Value is not null).ToDictionary(x => x.Key, x => x.Value!); + + public IDictionary CheckpointableObjects => _object_dict.Where(x => x.Value is not null).ToDictionary(x => x.Key, x => x.Value!); + + /// + /// Returns functions to attach to the root object during serialization. + /// + public IDictionary FunctionsToSerialize + { + get + { + Dictionary functions = new(); + foreach(var pair in Functions) + { + if (_all_functions.Contains(pair.Key)) + { + // TODO: deal with `LayerCall`. + functions[pair.Key] = pair.Value; + } + } + return functions; + } + } + + /// + /// Returns objects to attach to the root object during serialization. + /// + public IDictionary ObjectsToSerialize + { + get + { + var objects = CheckpointableObjects.Where( x=> _all_checkpointable_objects.Contains(x.Key)).ToDictionary(x => x.Key, x => x.Value); + objects[Constants.KERAS_ATTR] = _keras_trackable; + return objects; + } + } + + /// + /// Saves function dictionary, and validates dictionary values. + /// + /// + public IDictionary set_and_validate_functions(IDictionary function_dict) + { + foreach(var key in _all_functions) + { + if (function_dict.ContainsKey(key)) + { + // TODO: deal with type `LayerCall`. + var fn = function_dict[key]; + if (fn is not null && (fn is not Function)) + { + throw new ValueError($"Function dictionary contained a non-function object: {function_dict[key]} (for key {key})."); + } + _function_dict[key] = fn; + + var tf_fn = fn; // TODO: deal with type `LayerCall`. + + // Warning: this implmentation should be considered again. + var properties = _keras_trackable.GetType().GetProperties(); + foreach (var property in properties) + { + if(property.Name == key) + { + property.SetValue(_keras_trackable, tf_fn); + break; + } + } + } + else + { + // high priority + // TODO(Rinne): complete the implementation. + continue; + //throw new ValueError($"Function {key} missing from serialized function dict."); + } + } + return Functions; + } + + /// + /// Saves objects to a dictionary, and validates the values. + /// + /// + public IDictionary set_and_validate_objects(IDictionary object_dict) + { + foreach(var key in _all_checkpointable_objects) + { + if (object_dict.ContainsKey(key)) + { + _object_dict[key] = object_dict[key]; + // Warning: this implmentation should be considered again. + var properties = _keras_trackable.GetType().GetProperties(); + foreach (var property in properties) + { + if (property.Name == key) + { + property.SetValue(_keras_trackable, object_dict[key]); + break; + } + } + } + else + { + // high priority. + // TODO(Rinne): Add the implementation. + continue; + //throw new ValueError($"Object {key} missing from serialized object dict."); + } + } + return CheckpointableObjects; + } + + /// + /// Returns a new SerializedAttribute object (corresponding to `new` of tensorflow python). + /// + /// + public static SerializedAttributes Create(Trackable obj) + { + if(obj is Model) + { + return new ModelAttributes(); + } + else if(obj is Metric) + { + return new MetricAttributes(); + } + else if(obj is RNN) + { + return new RNNAttributes(); + } + else if(obj is Layer) + { + return new LayerAttributes(); + } + else + { + throw new TypeError($"Internal error during serialization: Expected Keras Layer object, got {obj} of type {obj.GetType()}"); + } + } + + protected virtual (IEnumerable, IEnumerable) get_objects_and_functions_recursively(IEnumerable? checkpointable_objects, IEnumerable? functions) + { + return (checkpointable_objects ?? (new List()), functions ?? (new List())); + } + } + + // Note that the current implementation still has some potential risks. + // The tensorflow python says that this class is "Common endpoints shared by all models loadable by Keras". + // However, currently it's just a normal class. + public class CommonEndPoints: SerializedAttributes + { + public CommonEndPoints(IEnumerable checkpointable_objects, IEnumerable functions) : + base(checkpointable_objects.Concat(new string[] { "variables", "trainable_variables", "regularization_losses" }), + functions.Concat(new string[] { "__call__", "call_and_return_all_conditional_losses", "_default_save_signature" })) + { + + } + + public CommonEndPoints() : + base(new string[] { "variables", "trainable_variables", "regularization_losses" }, + new string[] { "__call__", "call_and_return_all_conditional_losses", "_default_save_signature" }) + { + + } + } + + public class LayerAttributes: CommonEndPoints + { + public LayerAttributes(IEnumerable checkpointable_objects, IEnumerable functions) : + //base(checkpointable_objects.Concat(new string[] { "non_trainable_variables", "layers", "metrics", "layer_regularization_losses", "layer_metrics" }), + // functions.Concat(new string[] { "call_and_return_conditional_losses", "activity_regularizer_fn" }) + base(checkpointable_objects.Concat(new string[] { "non_trainable_variables", "layers"}), + functions.Concat(new string[] { "call_and_return_conditional_losses", "activity_regularizer_fn" })) + { + + } + + public LayerAttributes() : + //base(new string[] { "non_trainable_variables", "layers", "metrics", "layer_regularization_losses", "layer_metrics" }, + // new string[] { "call_and_return_conditional_losses", "activity_regularizer_fn" }) + base(new string[] { "non_trainable_variables", "layers" }, + new string[] { }) + { + + } + } + + public class ModelAttributes: LayerAttributes + { + public ModelAttributes(IEnumerable checkpointable_objects, IEnumerable functions): + base(checkpointable_objects, functions) + { + + } + + public ModelAttributes(): base() + { + + } + } + + public class MetricAttributes : SerializedAttributes + { + public MetricAttributes(IEnumerable checkpointable_objects, IEnumerable functions) : + base(checkpointable_objects.Concat(new string[] { "variables" }), functions) + { + + } + + public MetricAttributes() : + base(new string[] { "variables" }, new string[] {}) + { + + } + } + + public class RNNAttributes: LayerAttributes + { + public RNNAttributes(IEnumerable checkpointable_objects, IEnumerable functions) : + base(checkpointable_objects, functions.Concat(new string[] {"states"})) + { + + } + + public RNNAttributes() : + base(new string[] { }, new string[] { "states" }) + { + + } + } +} diff --git a/src/TensorFlowNET.Keras/Saving/SavedModel/utils.cs b/src/TensorFlowNET.Keras/Saving/SavedModel/utils.cs new file mode 100644 index 000000000..51f8d2c91 --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/SavedModel/utils.cs @@ -0,0 +1,47 @@ +using System; +using System.Collections.Generic; +using Tensorflow.Keras.Engine; + +namespace Tensorflow.Keras.Saving.SavedModel; + +public partial class KerasSavedModelUtils +{ + public static bool ShouldHaveTraces { get; internal set; } = true; + + public static SaveOptionsContext keras_option_scope(bool save_traces) + { + var res = new SaveOptionsContext(ShouldHaveTraces); + ShouldHaveTraces = save_traces; + return res; + } + + public static IEnumerable list_all_layers(Layer layer) + { + if(layer is Model) + { + return (layer as Model).Layers; + } + else + { + return new List(layer._flatten_layers(false, false)); + } + } +} + +/// +/// Implementation of this class is different with that of python. +/// But it could be used with `using` the same as `with` of python. +/// +public class SaveOptionsContext: IDisposable +{ + public bool _old_value; + public SaveOptionsContext(bool old_value) + { + _old_value = old_value; + } + + public void Dispose() + { + KerasSavedModelUtils.ShouldHaveTraces = _old_value; + } +} diff --git a/src/TensorFlowNET.Keras/Saving/TensorShapeConfig.cs b/src/TensorFlowNET.Keras/Saving/TensorShapeConfig.cs deleted file mode 100644 index 4c2ecc0d8..000000000 --- a/src/TensorFlowNET.Keras/Saving/TensorShapeConfig.cs +++ /dev/null @@ -1,15 +0,0 @@ -using System; -using System.Collections.Generic; -using System.Linq; - -namespace Tensorflow.Keras.Saving -{ - public class TensorShapeConfig - { - public string ClassName { get; set; } - public int?[] Items { get; set; } - - public static implicit operator Shape(TensorShapeConfig shape) - => shape == null ? null : new Shape(shape.Items.Select(x => x.HasValue ? x.Value : -1).ToArray()); - } -} diff --git a/src/TensorFlowNET.Keras/Saving/hdf5_format.cs b/src/TensorFlowNET.Keras/Saving/hdf5_format.cs index 0c3404772..68b73953d 100644 --- a/src/TensorFlowNET.Keras/Saving/hdf5_format.cs +++ b/src/TensorFlowNET.Keras/Saving/hdf5_format.cs @@ -7,6 +7,8 @@ using static Tensorflow.Binding; using static Tensorflow.KerasApi; using System.Linq; +using System.Text.RegularExpressions; + namespace Tensorflow.Keras.Saving { public class hdf5_format @@ -80,27 +82,22 @@ public static void load_optimizer_weights_from_hdf5_group(long filepath = -1, Di } - public static void load_weights_from_hdf5_group(long f, List layers) + public static List<(IVariableV1, NDArray)> load_weights_from_hdf5_group(long f, List layers) { string original_keras_version = "2.5.0"; string original_backend = null; - if (Hdf5.AttributeExists(f, "keras_version")) - { - var (success, attr) = Hdf5.ReadStringAttributes(f, "keras_version", ""); - if (success) - original_keras_version = attr.First(); - // keras version should be 2.5.0+ - var ver_major = int.Parse(original_keras_version.Split('.')[0]); - var ver_minor = int.Parse(original_keras_version.Split('.')[1]); - if (ver_major < 2 || (ver_major == 2 && ver_minor < 5)) - throw new ValueError("keras version should be 2.5.0 or later."); - } - if (Hdf5.AttributeExists(f, "backend")) - { - var (success, attr) = Hdf5.ReadStringAttributes(f, "backend", ""); - if (success) - original_backend = attr.First(); - } + var (success, attr) = Hdf5.ReadStringAttributes(f, "keras_version", "", true); + if (success) + original_keras_version = attr.First(); + // keras version should be 2.5.0+ + var ver_major = int.Parse(original_keras_version.Split('.')[0]); + var ver_minor = int.Parse(original_keras_version.Split('.')[1]); + if (ver_major < 2 || (ver_major == 2 && ver_minor < 5)) + throw new ValueError("keras version should be 2.5.0 or later."); + + (success, attr) = Hdf5.ReadStringAttributes(f, "backend", "", true); + if (success) + original_backend = attr.First(); var filtered_layers = new List(); foreach (var layer in layers) @@ -136,8 +133,8 @@ public static void load_weights_from_hdf5_group(long f, List layers) long g = H5G.open(f, name); var weight_names = load_attributes_from_hdf5_group(g, "weight_names"); foreach (var i_ in weight_names) - { - (bool success, Array result) = Hdf5.ReadDataset(g, i_); + { + (success, Array result) = Hdf5.ReadDataset(g, i_); if (success) weight_values.Add(np.array(result)); } @@ -155,7 +152,7 @@ public static void load_weights_from_hdf5_group(long f, List layers) weight_value_tuples.AddRange(zip(symbolic_weights, weight_values)); } - keras.backend.batch_set_value(weight_value_tuples); + return weight_value_tuples; } public static void toarrayf4(long filepath = -1, Dictionary custom_objects = null, bool compile = false) @@ -197,8 +194,13 @@ public static void save_weights_to_hdf5_group(long f, List layers) var tensor = val.AsTensor(); if (name.IndexOf("/") > 1) { - var crDataGroup = Hdf5.CreateOrOpenGroup(g, Hdf5Utils.NormalizedName(name.Split('/')[0])); - WriteDataset(crDataGroup, name.Split('/')[1], tensor); + var crDataGroup = g; + string[] name_split = name.Split('/'); + for(int i = 0; i < name_split.Length - 1; i++) + { + crDataGroup = Hdf5.CreateOrOpenGroup(crDataGroup, Hdf5Utils.NormalizedName(name_split[i])); + } + WriteDataset(crDataGroup, name_split[name_split.Length - 1], tensor); Hdf5.CloseGroup(crDataGroup); } else @@ -329,12 +331,10 @@ private static List> Split(Array list, int chunkSize) public static string[] load_attributes_from_hdf5_group(long group, string name) { - if (Hdf5.AttributeExists(group, name)) - { - var (success, attr) = Hdf5.ReadStringAttributes(group, name, ""); - if (success) - return attr.ToArray(); - } + var (success, attr) = Hdf5.ReadStringAttributes(group, name, "", true); + if (success) + return attr.ToArray(); + return null; } @@ -345,8 +345,8 @@ public static void load_attributes_from_hdf5_group(long filepath = -1, Dictionar public static List _legacy_weights(ILayer layer) { - var weights = layer.trainable_weights.Select(x => x).ToList(); - weights.AddRange(layer.non_trainable_weights); + var weights = layer.TrainableWeights.Select(x => x).ToList(); + weights.AddRange(layer.NonTrainableWeights); return weights; } } diff --git a/src/TensorFlowNET.Keras/Saving/serialization.cs b/src/TensorFlowNET.Keras/Saving/serialization.cs new file mode 100644 index 000000000..d5e46d11c --- /dev/null +++ b/src/TensorFlowNET.Keras/Saving/serialization.cs @@ -0,0 +1,125 @@ +using Newtonsoft.Json.Linq; +using System; +using System.Collections.Generic; +using System.Linq; +using System.Reflection; +using System.Text; +using Tensorflow.Keras.Saving.SavedModel; + +namespace Tensorflow.Keras.Saving +{ + // TODO: make it thread safe. + public class SharedObjectSavingScope: IDisposable + { + private class WeakReferenceEqualityComparer: IEqualityComparer> + { + public bool Equals(WeakReference x, WeakReference y) + { + if(!x.TryGetTarget(out var tx)) + { + return false; + } + if(!y.TryGetTarget(out var ty)) + { + return false; + } + return tx.Equals(ty); + } + public int GetHashCode(WeakReference obj) + { + if (!obj.TryGetTarget(out var w)) + { + return 0; + } + return w.GetHashCode(); + } + } + private static SharedObjectSavingScope? _instance = null; + private readonly Dictionary, int> _shared_object_ids= new Dictionary, int>(); + private int _currentId = 0; + /// + /// record how many times the scope is nested. + /// + private int _nestedDepth = 0; + private SharedObjectSavingScope() + { + + } + + public static SharedObjectSavingScope Enter() + { + if(_instance is not null) + { + _instance._nestedDepth++; + return _instance; + } + else + { + _instance = new SharedObjectSavingScope(); + _instance._nestedDepth++; + return _instance; + } + } + + public static SharedObjectSavingScope GetScope() + { + return _instance; + } + + public int GetId(object? obj) + { + if(obj is null) + { + return _currentId++; + } + var maybe_key = _shared_object_ids.Keys.SingleOrDefault(x => new WeakReferenceEqualityComparer().Equals(x, new WeakReference(obj))); + if (maybe_key is not null) + { + return _shared_object_ids[maybe_key]; + } + _shared_object_ids[new WeakReference(obj)] = _currentId++; + return _currentId; + } + + public void Dispose() + { + _nestedDepth--; + if(_nestedDepth== 0) + { + _instance = null; + } + } + } + + public static class serialize_utils + { + public static readonly string SHARED_OBJECT_KEY = "shared_object_id"; + /// + /// Returns the serialization of the class with the given config. + /// + /// + /// + /// + /// + /// + public static JObject serialize_keras_class_and_config(string class_name, JToken config, object? obj = null, int? shared_object_id = null) + { + JObject res = new JObject(); + res["class_name"] = class_name; + res["config"] = config; + + if(shared_object_id is not null) + { + res[SHARED_OBJECT_KEY] = shared_object_id!; + } + + var scope = SharedObjectSavingScope.GetScope(); + if(scope is not null && obj is not null) + { + res[SHARED_OBJECT_KEY] = scope.GetId(obj); + } + + return res; + } + } +} diff --git a/src/TensorFlowNET.Keras/Tensorflow.Keras.csproj b/src/TensorFlowNET.Keras/Tensorflow.Keras.csproj index 3d4484543..eb8ebf93c 100644 --- a/src/TensorFlowNET.Keras/Tensorflow.Keras.csproj +++ b/src/TensorFlowNET.Keras/Tensorflow.Keras.csproj @@ -1,45 +1,52 @@  - netstandard2.0 + netstandard2.0;net6.0 Tensorflow.Keras - 9.0 + 10.0 enable Tensorflow.Keras AnyCPU;x64 - 0.7.0 + 0.15.0 Haiping Chen Keras for .NET - Apache 2.0, Haiping Chen 2021 + Apache 2.0, Haiping Chen since 2018 TensorFlow.Keras https://github.com/SciSharp/TensorFlow.NET https://avatars3.githubusercontent.com/u/44989469?s=200&v=4 https://github.com/SciSharp/TensorFlow.NET - Keras for .NET is a C# version of Keras ported from the python version. - -* Support CIFAR-10 dataset in keras.datasets. -* Support Conv2D functional API. -* Support BatchNormalization layer. -* Building keras model in subclass, functional and sequential api -* Implemented backward_function. -* Support model.load_weights. -* Add Subtract layer -* Text preprocessing -* Preprocessing.timeseries_dataset_from_array -* Fixed memory leak for YOLOv3 model. + + Keras for .NET is a C# version of Keras ported from the python version. + + * Support CIFAR-10 dataset in keras.datasets. + * Support Conv2D functional API. + * Support BatchNormalization layer. + * Building keras model in subclass, functional and sequential api + * Implemented backward_function. + * Support model.load_weights. + * Add Subtract layer + * Text preprocessing + * Preprocessing.timeseries_dataset_from_array + * Fixed memory leak for YOLOv3 model. + * Support RNN and LSTM models + * Support Transformer model + * Support BERT model + Keras for .NET Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. SciSharp STACK - true + False tensorflow, keras, deep learning, machine learning true + packages Git - true + False Open.snk - 0.7.0.0 - 0.7.0.0 + 0.15.0.0 + 0.15.0.0 LICENSE + Debug;Release;GPU @@ -47,6 +54,11 @@ Keras is an API designed for human beings, not machines. Keras follows best prac false + + DEBUG;TRACE + false + + false @@ -55,15 +67,86 @@ Keras is an API designed for human beings, not machines. Keras follows best prac Tensorflow.Keras.xml + + Tensorflow.Keras.xml + + + + True + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + True + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + True + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + True + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + False + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + False + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + False + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + False + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + + + 1 + $(NoWarn),1573,1591,1712,8602,8603,8625,CS0612 + + - - - - + + + diff --git a/src/TensorFlowNET.Keras/Utils/RnnUtils.cs b/src/TensorFlowNET.Keras/Utils/RnnUtils.cs new file mode 100644 index 000000000..1e9f6d845 --- /dev/null +++ b/src/TensorFlowNET.Keras/Utils/RnnUtils.cs @@ -0,0 +1,103 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Text; +using Tensorflow.Common.Types; +using Tensorflow.Keras.Layers; +using Tensorflow.Common.Extensions; + +namespace Tensorflow.Keras.Utils +{ + internal static class RnnUtils + { + internal static Tensors generate_zero_filled_state(Tensor batch_size_tensor, INestStructure state_size, TF_DataType dtype) + { + Func create_zeros = (unnested_state_size) => + { + var flat_dims = new Shape(unnested_state_size).dims; + var init_state_size = new Tensor[] { batch_size_tensor }. + Concat(flat_dims.Select(x => tf.constant(x, dtypes.int32))).ToArray(); + return array_ops.zeros(init_state_size, dtype: dtype); + }; + + // TODO(Rinne): map structure with nested tensors. + if(state_size.TotalNestedCount > 1) + { + return new Tensors(state_size.Flatten().Select(s => create_zeros(s)).ToArray()); + } + else + { + return create_zeros(state_size.Flatten().First()); + } + + } + + internal static Tensors generate_zero_filled_state_for_cell(IRnnCell cell, Tensors inputs, Tensor batch_size, TF_DataType dtype) + { + if (inputs is not null) + { + batch_size = array_ops.shape(inputs)[0]; + dtype = inputs.dtype; + } + return generate_zero_filled_state(batch_size, cell.StateSize, dtype); + } + + /// + /// Standardizes `__call__` to a single list of tensor inputs. + /// + /// When running a model loaded from a file, the input tensors + /// `initial_state` and `constants` can be passed to `RNN.__call__()` as part + /// of `inputs` instead of by the dedicated keyword arguments.This method + /// makes sure the arguments are separated and that `initial_state` and + /// `constants` are lists of tensors(or None). + /// + /// Tensor or list/tuple of tensors. which may include constants + /// and initial states.In that case `num_constant` must be specified. + /// Tensor or list of tensors or None, initial states. + /// Tensor or list of tensors or None, constant tensors. + /// Expected number of constants (if constants are passed as + /// part of the `inputs` list. + /// + internal static (Tensors, Tensors, Tensors) standardize_args(Tensors inputs, Tensors initial_state, Tensors constants, int num_constants) + { + if(inputs.Length > 1) + { + // There are several situations here: + // In the graph mode, __call__ will be only called once. The initial_state + // and constants could be in inputs (from file loading). + // In the eager mode, __call__ will be called twice, once during + // rnn_layer(inputs=input_t, constants=c_t, ...), and second time will be + // model.fit/train_on_batch/predict with real np data. In the second case, + // the inputs will contain initial_state and constants as eager tensor. + // + // For either case, the real input is the first item in the list, which + // could be a nested structure itself. Then followed by initial_states, which + // could be a list of items, or list of list if the initial_state is complex + // structure, and finally followed by constants which is a flat list. + Debug.Assert(initial_state is null && constants is null); + if(num_constants > 0) + { + constants = inputs.TakeLast(num_constants).ToArray().ToTensors(); + inputs = inputs.SkipLast(num_constants).ToArray().ToTensors(); + } + if(inputs.Length > 1) + { + initial_state = inputs.Skip(1).ToArray().ToTensors(); + inputs = inputs.Take(1).ToArray().ToTensors(); + } + } + + return (inputs, initial_state, constants); + } + + /// + /// Check whether the state_size contains multiple states. + /// + /// + /// + public static bool is_multiple_state(INestStructure state_size) + { + return state_size.TotalNestedCount > 1; + } + } +} diff --git a/src/TensorFlowNET.Keras/Utils/base_layer_utils.cs b/src/TensorFlowNET.Keras/Utils/base_layer_utils.cs index 1e6ce4091..e6c9ed422 100644 --- a/src/TensorFlowNET.Keras/Utils/base_layer_utils.cs +++ b/src/TensorFlowNET.Keras/Utils/base_layer_utils.cs @@ -53,7 +53,7 @@ public static IVariableV1 make_variable(VariableArgs args) } /// - /// Makes a layer name (or arbitrary string) unique within a TensorFlow graph. + /// Makes a layer name (or arbitrary string) unique within a TensorFlow graph. (correponding to `backend.unique_object_name` of python.) /// /// /// @@ -165,6 +165,19 @@ public static void CreateKerasHistoryHelper(Tensors tensors, List pro } } + public static bool has_weights(object obj) + { + var obj_type = obj.GetType(); + return obj_type.GetField("trainable_weights") is not null && + obj_type.GetField("non_trainable_weights") is not null && + obj is not Type; + } + + public static Tensor generate_placeholders_from_shape(Shape shape) + { + return array_ops.placeholder(keras.backend.floatx(), shape); + } + // recusive static bool uses_keras_history(Tensor op_input) { diff --git a/src/TensorFlowNET.Keras/Utils/compile_utils.cs b/src/TensorFlowNET.Keras/Utils/compile_utils.cs new file mode 100644 index 000000000..cd4112616 --- /dev/null +++ b/src/TensorFlowNET.Keras/Utils/compile_utils.cs @@ -0,0 +1,22 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Framework.Models; +using Tensorflow.Util; + +namespace Tensorflow.Keras.Utils +{ + internal static class compile_utils + { + public static List create_pseudo_input_names(TensorSpec inputs) + { + return _create_pseudo_names(inputs, "input_"); + } + + private static List _create_pseudo_names(TensorSpec tensors, string prefix) + { + // TODO(Rinne): align with tensorflow + return new List() { $"{prefix}1" }; + } + } +} diff --git a/src/TensorFlowNET.Keras/Utils/data_utils.cs b/src/TensorFlowNET.Keras/Utils/data_utils.cs index 5b84c601f..b0bc15540 100644 --- a/src/TensorFlowNET.Keras/Utils/data_utils.cs +++ b/src/TensorFlowNET.Keras/Utils/data_utils.cs @@ -39,5 +39,54 @@ public static string get_file(string fname, string origin, return datadir; } + + public static (int[,], long[]) _remove_long_seq(int maxlen, int[,] seq, long[] label) + { + /*Removes sequences that exceed the maximum length. + + Args: + maxlen: Int, maximum length of the output sequences. + seq: List of lists, where each sublist is a sequence. + label: List where each element is an integer. + + Returns: + new_seq, new_label: shortened lists for `seq` and `label`. + + */ + var nRow = seq.GetLength(0); + var nCol = seq.GetLength(1); + List new_seq = new List(); + List new_label = new List(); + + for (var i = 0; i < nRow; i++) + { + if (maxlen < nCol && seq[i, maxlen] != 0) + continue; + int[] sentence = new int[maxlen]; + for (var j = 0; j < maxlen && j < nCol; j++) + { + sentence[j] = seq[i, j]; + } + new_seq.Add(sentence); + new_label.Add(label[i]); + } + + int[,] new_seq_array = new int[new_seq.Count, maxlen]; + long[] new_label_array = new long[new_label.Count]; + + for (var i = 0; i < new_seq.Count; i++) + { + for (var j = 0; j < maxlen; j++) + { + new_seq_array[i, j] = new_seq[i][j]; + } + } + + for (var i = 0; i < new_label.Count; i++) + { + new_label_array[i] = new_label[i]; + } + return (new_seq_array, new_label_array); + } } } diff --git a/src/TensorFlowNET.Keras/Utils/generic_utils.cs b/src/TensorFlowNET.Keras/Utils/generic_utils.cs index c2839cdc7..20937e2e5 100644 --- a/src/TensorFlowNET.Keras/Utils/generic_utils.cs +++ b/src/TensorFlowNET.Keras/Utils/generic_utils.cs @@ -14,32 +14,149 @@ You may obtain a copy of the License at limitations under the License. ******************************************************************************/ +using Newtonsoft.Json; +using Newtonsoft.Json.Linq; using System; +using System.Collections; +using System.Collections.Generic; +using System.Data; +using System.Diagnostics; using System.Linq; +using System.Reflection; +using System.Security.AccessControl; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Layers; using Tensorflow.Keras.Saving; +using Tensorflow.Train; +using System.Text.RegularExpressions; namespace Tensorflow.Keras.Utils { public class generic_utils { - public static LayerConfig serialize_keras_object(ILayer instance) + private static readonly string _LAYER_UNDEFINED_CONFIG_KEY = "layer was saved without config"; + /// + /// This method does not have corresponding method in python. It's close to `serialize_keras_object`. + /// + /// + /// + public static LayerConfig serialize_layer_to_config(ILayer instance) { var config = instance.get_config(); + Debug.Assert(config is LayerArgs); return new LayerConfig { - Config = config, + Config = config as LayerArgs, ClassName = instance.GetType().Name }; } + public static JObject serialize_keras_object(IKerasConfigable instance) + { + var config = JToken.FromObject(instance.get_config()); + // TODO: change the class_name to registered name, instead of system class name. + return serialize_utils.serialize_keras_class_and_config(instance.GetType().Name, config, instance); + } + + public static Layer deserialize_keras_object(string class_name, JToken config) + { + var argType = Assembly.Load("Tensorflow.Binding").GetType($"Tensorflow.Keras.ArgsDefinition.{class_name}Args"); + if(argType is null) + { + return null; + } + var deserializationMethod = typeof(JToken).GetMethods(BindingFlags.Instance | BindingFlags.Public) + .Single(x => x.Name == "ToObject" && x.IsGenericMethodDefinition && x.GetParameters().Count() == 0); + var deserializationGenericMethod = deserializationMethod.MakeGenericMethod(argType); + var args = deserializationGenericMethod.Invoke(config, null); + var layer = Assembly.Load("Tensorflow.Keras").CreateInstance($"Tensorflow.Keras.Layers.{class_name}", true, BindingFlags.Default, null, new object[] { args }, null, null); + Debug.Assert(layer is Layer); + + // TODO(Rinne): _shared_object_loading_scope().set(shared_object_id, deserialized_obj) + + return layer as Layer; + } + + public static Layer deserialize_keras_object(string class_name, LayerArgs args) + { + var layer = Assembly.Load("Tensorflow.Keras").CreateInstance($"Tensorflow.Keras.Layers.{class_name}", true, BindingFlags.Default, null, new object[] { args }, null, null); + if (layer is null) + { + return null; + } + Debug.Assert(layer is Layer); + + // TODO(Rinne): _shared_object_loading_scope().set(shared_object_id, deserialized_obj) + + return layer as Layer; + } + + public static LayerArgs deserialize_layer_args(string class_name, JToken config) + { + var argType = Assembly.Load("Tensorflow.Binding").GetType($"Tensorflow.Keras.ArgsDefinition.{class_name}Args"); + var deserializationMethod = typeof(JToken).GetMethods(BindingFlags.Instance | BindingFlags.Public) + .Single(x => x.Name == "ToObject" && x.IsGenericMethodDefinition && x.GetParameters().Count() == 0); + var deserializationGenericMethod = deserializationMethod.MakeGenericMethod(argType); + var args = deserializationGenericMethod.Invoke(config, null); + Debug.Assert(args is LayerArgs); + return args as LayerArgs; + } + + public static FunctionalConfig deserialize_model_config(JToken json) + { + FunctionalConfig config = new FunctionalConfig(); + config.Name = json["name"].ToObject(); + config.Layers = new List(); + var layersToken = json["layers"]; + foreach (var token in layersToken) + { + var args = deserialize_layer_args(token["class_name"].ToObject(), token["config"]); + + List nodeConfig = null; //python tensorflow sometimes exports inbound nodes in an extra nested array + if (token["inbound_nodes"].Count() > 0 && token["inbound_nodes"][0].Count() > 0 && token["inbound_nodes"][0][0].Count() > 0) + { + nodeConfig = token["inbound_nodes"].ToObject>>().FirstOrDefault() ?? new List(); + } + else + { + nodeConfig = token["inbound_nodes"].ToObject>(); + } + + config.Layers.Add(new LayerConfig() + { + Config = args, + Name = token["name"].ToObject(), + ClassName = token["class_name"].ToObject(), + InboundNodes = nodeConfig, + }); + } + config.InputLayers = json["input_layers"].ToObject>(); + config.OutputLayers = json["output_layers"].ToObject>(); + return config; + } + public static string to_snake_case(string name) { - return string.Concat(name.Select((x, i) => + string intermediate = Regex.Replace(name, "(.)([A-Z][a-z0-9]+)", "$1_$2"); + string insecure = Regex.Replace(intermediate, "([a-z])([A-Z])", "$1_$2").ToLower(); + + if (insecure[0] != '_') { - return i > 0 && char.IsUpper(x) && !Char.IsDigit(name[i - 1]) ? - "_" + x.ToString() : - x.ToString(); - })).ToLower(); + return insecure; + } + + return "private" + insecure; + } + + /// + /// Determines whether config appears to be a valid layer config. + /// + /// + /// + public static bool validate_config(JObject config) + { + return !config.ContainsKey(_LAYER_UNDEFINED_CONFIG_KEY); } } } diff --git a/src/TensorFlowNET.Keras/Utils/layer_utils.cs b/src/TensorFlowNET.Keras/Utils/layer_utils.cs index 998086f68..07d9f685e 100644 --- a/src/TensorFlowNET.Keras/Utils/layer_utils.cs +++ b/src/TensorFlowNET.Keras/Utils/layer_utils.cs @@ -103,8 +103,8 @@ public static void print_summary(Model model, int line_length = -1, float[] posi print(string.Join("", range(line_length).Select(x => "_"))); } - var trainable_count = count_params(model, model.trainable_variables); - var non_trainable_count = count_params(model, model.non_trainable_variables); + var trainable_count = count_params(model, model.TrainableVariables); + var non_trainable_count = count_params(model, model.NonTrainableVariables); print($"Total params: {trainable_count + non_trainable_count}"); print($"Trainable params: {trainable_count}"); @@ -137,7 +137,7 @@ static void print_layer_summary(ILayer layer, int[] positions) var fields = new string[] { $"{name} ({layer.GetType().Name})", - $"{layer.output_shape}", + $"{layer.OutputShape}", $"{layer.count_params()}" }; @@ -164,7 +164,7 @@ static void print_layer_summary_with_connections(ILayer layer, int[] positions, var fields = new string[] { $"{name}({layer.GetType().Name})", - $"{layer.output_shape}", + $"{layer.OutputShape}", $"{layer.count_params()}", first_connection }; diff --git a/src/TensorFlowNET.Keras/Utils/losses_utils.cs b/src/TensorFlowNET.Keras/Utils/losses_utils.cs index 8a8772fd0..9ba40ca04 100644 --- a/src/TensorFlowNET.Keras/Utils/losses_utils.cs +++ b/src/TensorFlowNET.Keras/Utils/losses_utils.cs @@ -15,6 +15,7 @@ limitations under the License. ******************************************************************************/ using System; +using System.Xml.Linq; using Tensorflow.Keras.Losses; using static Tensorflow.Binding; @@ -24,34 +25,68 @@ public class losses_utils { public static Tensor compute_weighted_loss(Tensor losses, Tensor sample_weight = null, string reduction = null, string name = null) { - if (sample_weight == null) - sample_weight = losses.dtype == TF_DataType.TF_DOUBLE ? tf.constant(1.0) : tf.constant(1.0f); - var weighted_losses = scale_losses_by_sample_weight(losses, sample_weight); - // Apply reduction function to the individual weighted losses. - var loss = reduce_weighted_loss(weighted_losses, reduction); - // Convert the result back to the input type. - // loss = math_ops.cast(loss, losses.dtype); - return loss; + return tf_with(ops.name_scope("weighted_loss"), scope => + { + if (sample_weight == null) + sample_weight = losses.dtype == TF_DataType.TF_DOUBLE ? tf.constant(1.0) : tf.constant(1.0f); + var weighted_losses = math_ops.multiply(losses, sample_weight); + // Apply reduction function to the individual weighted losses. + var loss = reduce_weighted_loss(weighted_losses, reduction); + // Convert the result back to the input type. + // loss = math_ops.cast(loss, losses.dtype); + return loss; + }); } - public static Tensor scale_losses_by_sample_weight(Tensor losses, Tensor sample_weight) + public static (Tensor, Tensor, Tensor) squeeze_or_expand_dimensions(Tensor y_pred, Tensor y_true = null, Tensor sample_weight = null) { - // losses = math_ops.cast(losses, dtypes.float32); - // sample_weight = math_ops.cast(sample_weight, dtypes.float32); - // Update dimensions of `sample_weight` to match with `losses` if possible. - // (losses, sample_weight) = squeeze_or_expand_dimensions(losses, sample_weight); - return math_ops.multiply(losses, sample_weight); - } + var y_pred_shape = y_pred.shape; + var y_pred_rank = y_pred_shape.ndim; + if (y_true != null) + { + var y_true_shape = y_true.shape; + var y_true_rank = y_true_shape.ndim; + if (y_true_rank > -1 && y_pred_rank > -1) + { + if (y_pred_rank - y_true_rank != 1 || y_pred_shape[-1] == 1) + { + (y_true, y_pred) = remove_squeezable_dimensions(y_true, y_pred); + } + } + } + + if (sample_weight == null) + { + return (y_pred, y_true, sample_weight); + } - public static (Tensor, Tensor) squeeze_or_expand_dimensions(Tensor y_pred, Tensor sample_weight) - { var weights_shape = sample_weight.shape; var weights_rank = weights_shape.ndim; if (weights_rank == 0) - return (y_pred, sample_weight); + return (y_pred, y_true, sample_weight); + + if (y_pred_rank > -1 && weights_rank > -1) + { + if (weights_rank - y_pred_rank == 1) + { + sample_weight = tf.squeeze(sample_weight, -1); + } + else if (y_pred_rank - weights_rank == 1) + { + sample_weight = tf.expand_dims(sample_weight, -1); + } + + return (y_pred, y_true, sample_weight); + } + throw new NotImplementedException(""); } + public static (Tensor, Tensor) remove_squeezable_dimensions(Tensor labels, Tensor predictions, int expected_rank_diff = 0, string name = null) + { + return (labels, predictions); + } + public static Tensor reduce_weighted_loss(Tensor weighted_losses, string reduction) { if (reduction == ReductionV2.NONE) diff --git a/src/TensorFlowNET.Keras/Utils/tf_utils.cs b/src/TensorFlowNET.Keras/Utils/tf_utils.cs index b144ec9f7..ad31fd7ca 100644 --- a/src/TensorFlowNET.Keras/Utils/tf_utils.cs +++ b/src/TensorFlowNET.Keras/Utils/tf_utils.cs @@ -17,6 +17,7 @@ limitations under the License. using System; using System.Linq; using Tensorflow.Framework; +using Tensorflow.Framework.Models; namespace Tensorflow.Keras.Utils { @@ -69,5 +70,29 @@ public static Tensor smart_cond(bool pred, false_fn: false_fn, name: name); } + + public static TensorSpec get_tensor_spec(Tensor t, bool dynamic_batch = false, string name = null) + { + throw new NotImplementedException("The function is waited to be implemented in the future."); + } + + public static TensorSpec get_tensor_spec(TensorSpec t, bool dynamic_batch = false, string name = null) + { + var spec = t; + if (!dynamic_batch) + { + return spec; + } + var dynamic_batch_spec = new TensorSpec(t.shape, t.dtype, t.name); + var shape = dynamic_batch_spec.shape; + if(shape.rank > 0) + { + var shape_list = shape.as_int_list(); + // TODO(Rinne): check if -1 is equivalent to None in python. + shape_list[0] = -1; + dynamic_batch_spec.shape = new Shape(shape_list); + } + return dynamic_batch_spec; + } } } diff --git a/src/TensorFlowNET.Keras/tf.layers.cs b/src/TensorFlowNET.Keras/tf.layers.cs index 3f5ed01ca..da7c23471 100644 --- a/src/TensorFlowNET.Keras/tf.layers.cs +++ b/src/TensorFlowNET.Keras/tf.layers.cs @@ -134,7 +134,7 @@ public Tensors batch_normalization(Tensor inputs, /// /// /// - public Tensor max_pooling2d(Tensor inputs, + public Tensor MaxPooling2D(Tensor inputs, int[] pool_size, int[] strides, string padding = "valid", diff --git a/src/TensorflowNET.Hub/GcsCompressedFileResolver.cs b/src/TensorflowNET.Hub/GcsCompressedFileResolver.cs new file mode 100644 index 000000000..f3e1b9723 --- /dev/null +++ b/src/TensorflowNET.Hub/GcsCompressedFileResolver.cs @@ -0,0 +1,57 @@ +using System.IO; +using System.Threading.Tasks; + +namespace Tensorflow.Hub +{ + public class GcsCompressedFileResolver : IResolver + { + const int LOCK_FILE_TIMEOUT_SEC = 10 * 60; + public string Call(string handle) + { + var module_dir = _module_dir(handle); + + return resolver.atomic_download_async(handle, download, module_dir, LOCK_FILE_TIMEOUT_SEC) + .GetAwaiter().GetResult(); + } + public bool IsSupported(string handle) + { + return handle.StartsWith("gs://") && _is_tarfile(handle); + } + + private async Task download(string handle, string tmp_dir) + { + new resolver.DownloadManager(handle).download_and_uncompress( + new FileStream(handle, FileMode.Open, FileAccess.Read), tmp_dir); + await Task.Run(() => { }); + } + + private static string _module_dir(string handle) + { + var cache_dir = resolver.tfhub_cache_dir(use_temp: true); + var sha1 = ComputeSha1(handle); + return resolver.create_local_module_dir(cache_dir, sha1); + } + + private static bool _is_tarfile(string filename) + { + return filename.EndsWith(".tar") || filename.EndsWith(".tar.gz") || filename.EndsWith(".tgz"); + } + + private static string ComputeSha1(string s) + { + using (var sha = new System.Security.Cryptography.SHA1Managed()) + { + var bytes = System.Text.Encoding.UTF8.GetBytes(s); + var hash = sha.ComputeHash(bytes); + var stringBuilder = new System.Text.StringBuilder(hash.Length * 2); + + foreach (var b in hash) + { + stringBuilder.Append(b.ToString("x2")); + } + + return stringBuilder.ToString(); + } + } + } +} diff --git a/src/TensorflowNET.Hub/HttpCompressedFileResolver.cs b/src/TensorflowNET.Hub/HttpCompressedFileResolver.cs new file mode 100644 index 000000000..a127b28c0 --- /dev/null +++ b/src/TensorflowNET.Hub/HttpCompressedFileResolver.cs @@ -0,0 +1,78 @@ +using System; +using System.Net.Http; +using System.Threading.Tasks; + +namespace Tensorflow.Hub +{ + public class HttpCompressedFileResolver : HttpResolverBase + { + const int LOCK_FILE_TIMEOUT_SEC = 10 * 60; // 10 minutes + + private static readonly (string, string) _COMPRESSED_FORMAT_QUERY = + ("tf-hub-format", "compressed"); + + private static string _module_dir(string handle) + { + var cache_dir = resolver.tfhub_cache_dir(use_temp: true); + var sha1 = ComputeSha1(handle); + return resolver.create_local_module_dir(cache_dir, sha1); + } + + public override bool IsSupported(string handle) + { + if (!is_http_protocol(handle)) + { + return false; + } + var load_format = resolver.model_load_format(); + return load_format == Enum.GetName(typeof(resolver.ModelLoadFormat), resolver.ModelLoadFormat.COMPRESSED) + || load_format == Enum.GetName(typeof(resolver.ModelLoadFormat), resolver.ModelLoadFormat.AUTO); + } + + public override string Call(string handle) + { + var module_dir = _module_dir(handle); + + return resolver.atomic_download_async( + handle, + download, + module_dir, + LOCK_FILE_TIMEOUT_SEC + ).GetAwaiter().GetResult(); + } + + private async Task download(string handle, string tmp_dir) + { + var client = new HttpClient(); + + var response = await client.GetAsync(_append_compressed_format_query(handle)); + + using (var httpStream = await response.Content.ReadAsStreamAsync()) + { + new resolver.DownloadManager(handle).download_and_uncompress(httpStream, tmp_dir); + } + } + + private string _append_compressed_format_query(string handle) + { + return append_format_query(handle, _COMPRESSED_FORMAT_QUERY); + } + + private static string ComputeSha1(string s) + { + using (var sha = new System.Security.Cryptography.SHA1Managed()) + { + var bytes = System.Text.Encoding.UTF8.GetBytes(s); + var hash = sha.ComputeHash(bytes); + var stringBuilder = new System.Text.StringBuilder(hash.Length * 2); + + foreach (var b in hash) + { + stringBuilder.Append(b.ToString("x2")); + } + + return stringBuilder.ToString(); + } + } + } +} diff --git a/src/TensorflowNET.Hub/HttpUncompressedFileResolver.cs b/src/TensorflowNET.Hub/HttpUncompressedFileResolver.cs new file mode 100644 index 000000000..09a497484 --- /dev/null +++ b/src/TensorflowNET.Hub/HttpUncompressedFileResolver.cs @@ -0,0 +1,65 @@ +using System; +using System.Net; + +namespace Tensorflow.Hub +{ + public class HttpUncompressedFileResolver : HttpResolverBase + { + private readonly PathResolver _pathResolver; + + public HttpUncompressedFileResolver() + { + _pathResolver = new PathResolver(); + } + + public override string Call(string handle) + { + handle = AppendUncompressedFormatQuery(handle); + var gsLocation = RequestGcsLocation(handle); + return _pathResolver.Call(gsLocation); + } + + public override bool IsSupported(string handle) + { + if (!is_http_protocol(handle)) + { + return false; + } + + var load_format = resolver.model_load_format(); + return load_format == Enum.GetName(typeof(resolver.ModelLoadFormat), resolver.ModelLoadFormat.UNCOMPRESSED); + } + + protected virtual string AppendUncompressedFormatQuery(string handle) + { + return append_format_query(handle, ("tf-hub-format", "uncompressed")); + } + + protected virtual string RequestGcsLocation(string handleWithParams) + { + var request = WebRequest.Create(handleWithParams); + var response = request.GetResponse() as HttpWebResponse; + + if (response == null) + { + throw new Exception("Failed to get a response from the server."); + } + + var statusCode = (int)response.StatusCode; + + if (statusCode != 303) + { + throw new Exception($"Expected 303 for GCS location lookup but got HTTP {statusCode} {response.StatusDescription}"); + } + + var location = response.Headers["Location"]; + + if (!location.StartsWith("gs://")) + { + throw new Exception($"Expected Location:GS path but received {location}"); + } + + return location; + } + } +} \ No newline at end of file diff --git a/src/TensorflowNET.Hub/KerasLayer.cs b/src/TensorflowNET.Hub/KerasLayer.cs new file mode 100644 index 000000000..20d9851b1 --- /dev/null +++ b/src/TensorflowNET.Hub/KerasLayer.cs @@ -0,0 +1,158 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using Tensorflow.Common.Types; +using Tensorflow.Keras.Engine; +using Tensorflow.Train; +using Tensorflow.Training; +using Tensorflow.Training.Saving.SavedModel; +using static Tensorflow.Binding; + +namespace Tensorflow.Hub +{ + public class KerasLayer : Layer + { + private string _handle; + private LoadOptions? _load_options; + private Trackable _func; + private Func _callable; + + public KerasLayer(string handle, bool trainable = false, LoadOptions? load_options = null) : + base(new Keras.ArgsDefinition.LayerArgs() { Trainable = trainable }) + { + _handle = handle; + _load_options = load_options; + + _func = load_module(_handle, _load_options); + _track_trackable(_func, "_func"); + // TODO(Rinne): deal with _is_hub_module_v1. + + _callable = _get_callable(); + _setup_layer(trainable); + } + + private void _setup_layer(bool trainable = false) + { + HashSet trainable_variables; + if (_func is Layer layer) + { + foreach (var v in layer.TrainableVariables) + { + _add_existing_weight(v, true); + } + trainable_variables = new HashSet(layer.TrainableVariables.Select(v => v.UniqueId)); + } + else if (_func.CustomizedFields.TryGetValue("trainable_variables", out var obj) && obj is IEnumerable trackables) + { + foreach (var trackable in trackables) + { + if (trackable is IVariableV1 v) + { + _add_existing_weight(v, true); + } + } + trainable_variables = new HashSet(trackables.Where(t => t is IVariableV1).Select(t => (t as IVariableV1).UniqueId)); + } + else + { + trainable_variables = new HashSet(); + } + + if (_func is Layer) + { + layer = (Layer)_func; + foreach (var v in layer.Variables) + { + if (!trainable_variables.Contains(v.UniqueId)) + { + _add_existing_weight(v, false); + } + } + } + else if (_func.CustomizedFields.TryGetValue("variables", out var obj) && obj is IEnumerable total_trackables) + { + foreach (var trackable in total_trackables) + { + if (trackable is IVariableV1 v && !trainable_variables.Contains(v.UniqueId)) + { + _add_existing_weight(v, false); + } + } + } + + if (_func.CustomizedFields.ContainsKey("regularization_losses")) + { + if ((_func.CustomizedFields["regularization_losses"] as ListWrapper)?.Count > 0) + { + throw new NotImplementedException("The regularization_losses loading has not been supported yet, " + + "please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues to let us know and add a feature."); + } + } + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optionalArgs = null) + { + _check_trainability(); + + // TODO(Rinne): deal with training_argument + + var result = _callable(inputs); + + return _apply_output_shape_if_set(inputs, result); + } + + private void _check_trainability() + { + if (!Trainable) return; + + // TODO(Rinne): deal with _is_hub_module_v1 and signature + + if (TrainableWeights is null || TrainableWeights.Count == 0) + { + tf.Logger.Error("hub.KerasLayer is trainable but has zero trainable weights."); + } + } + + private Tensors _apply_output_shape_if_set(Tensors inputs, Tensors result) + { + // TODO(Rinne): implement it. + return result; + } + + private void _add_existing_weight(IVariableV1 weight, bool? trainable = null) + { + bool is_trainable; + if (trainable is null) + { + is_trainable = weight.Trainable; + } + else + { + is_trainable = trainable.Value; + } + add_weight(weight.Name, weight.shape, weight.dtype, trainable: is_trainable, getter: x => weight); + } + + private Func _get_callable() + { + if (_func is Layer layer) + { + return x => layer.Apply(x); + } + if (_func.CustomizedFields.ContainsKey("__call__")) + { + if (_func.CustomizedFields["__call__"] is RestoredFunction function) + { + return x => function.Apply(x); + } + } + throw new ValueError("Cannot get the callable from the model."); + } + + private static Trackable load_module(string handle, LoadOptions? load_options = null) + { + //var set_load_options = load_options ?? LoadContext.get_load_option(); + return module_v2.load(handle, load_options); + } + } +} diff --git a/src/TensorflowNET.Hub/Tensorflow.Hub.csproj b/src/TensorflowNET.Hub/Tensorflow.Hub.csproj new file mode 100644 index 000000000..efa37598d --- /dev/null +++ b/src/TensorflowNET.Hub/Tensorflow.Hub.csproj @@ -0,0 +1,36 @@ + + + + netstandard2.0;net6 + 10 + enable + 1.0.0 + TensorFlow.Hub + Apache2.0 + true + true + Yaohui Liu, Haiping Chen + SciSharp STACK + true + Apache 2.0, Haiping Chen $([System.DateTime]::UtcNow.ToString(yyyy)) + https://github.com/SciSharp/TensorFlow.NET + git + http://scisharpstack.org + https://avatars3.githubusercontent.com/u/44989469?s=200&v=4 + TensorFlow, SciSharp, Machine Learning, Deep Learning, Transfer Learning, TensorFlow Hub, TensorFlow.NET, TF.NET, AI + packages + + Google's TensorFlow Hub full binding in .NET Standard. + A library for transfer learning with TensorFlow.NET. + + + + + + + + + + + + diff --git a/src/TensorflowNET.Hub/file_utils.cs b/src/TensorflowNET.Hub/file_utils.cs new file mode 100644 index 000000000..3e959afef --- /dev/null +++ b/src/TensorflowNET.Hub/file_utils.cs @@ -0,0 +1,74 @@ +using SharpCompress.Common; +using SharpCompress.Readers; +using System; +using System.IO; + +namespace Tensorflow.Hub +{ + internal static class file_utils + { + //public static void extract_file(TarInputStream tgz, TarEntry tarInfo, string dstPath, uint bufferSize = 10 << 20, Action logFunction = null) + //{ + // using (var src = tgz.GetNextEntry() == tarInfo ? tgz : null) + // { + // if (src is null) + // { + // return; + // } + + // using (var dst = File.Create(dstPath)) + // { + // var buffer = new byte[bufferSize]; + // int count; + + // while ((count = src.Read(buffer, 0, buffer.Length)) > 0) + // { + // dst.Write(buffer, 0, count); + // logFunction?.Invoke(count); + // } + // } + // } + //} + + public static void extract_tarfile_to_destination(Stream fileobj, string dst_path, Action logFunction = null) + { + using (IReader reader = ReaderFactory.Open(fileobj)) + { + while (reader.MoveToNextEntry()) + { + if (!reader.Entry.IsDirectory) + { + reader.WriteEntryToDirectory( + dst_path, + new ExtractionOptions() { ExtractFullPath = true, Overwrite = true } + ); + } + } + } + } + + public static string merge_relative_path(string dstPath, string relPath) + { + var cleanRelPath = Path.GetFullPath(relPath).TrimStart('/', '\\'); + + if (cleanRelPath == ".") + { + return dstPath; + } + + if (cleanRelPath.StartsWith("..") || Path.IsPathRooted(cleanRelPath)) + { + throw new InvalidDataException($"Relative path '{relPath}' is invalid."); + } + + var merged = Path.Combine(dstPath, cleanRelPath); + + if (!merged.StartsWith(dstPath)) + { + throw new InvalidDataException($"Relative path '{relPath}' is invalid. Failed to merge with '{dstPath}'."); + } + + return merged; + } + } +} diff --git a/src/TensorflowNET.Hub/hub.cs b/src/TensorflowNET.Hub/hub.cs new file mode 100644 index 000000000..4fefe0cc2 --- /dev/null +++ b/src/TensorflowNET.Hub/hub.cs @@ -0,0 +1,17 @@ +using Tensorflow.Hub; + +namespace Tensorflow +{ + public static class HubAPI + { + public static HubMethods hub { get; } = new HubMethods(); + } + + public class HubMethods + { + public KerasLayer KerasLayer(string handle, bool trainable = false, LoadOptions? load_options = null) + { + return new KerasLayer(handle, trainable, load_options); + } + } +} diff --git a/src/TensorflowNET.Hub/module_v2.cs b/src/TensorflowNET.Hub/module_v2.cs new file mode 100644 index 000000000..a8e67311b --- /dev/null +++ b/src/TensorflowNET.Hub/module_v2.cs @@ -0,0 +1,33 @@ +using System.IO; +using Tensorflow.Train; + +namespace Tensorflow.Hub +{ + internal static class module_v2 + { + public static Trackable load(string handle, LoadOptions? options) + { + var module_path = resolve(handle); + + // TODO(Rinne): deal with is_hub_module_v1 + + var saved_model_path = Path.Combine(module_path, Constants.SAVED_MODEL_FILENAME_PB); + var saved_model_pb_txt_path = Path.Combine(module_path, Constants.SAVED_MODEL_FILENAME_PBTXT); + if (!File.Exists(saved_model_path) && !Directory.Exists(saved_model_path) && !File.Exists(saved_model_pb_txt_path) + && !Directory.Exists(saved_model_pb_txt_path)) + { + throw new ValueError($"Trying to load a model of incompatible/unknown type. " + + $"'{module_path}' contains neither '{Constants.SAVED_MODEL_FILENAME_PB}' " + + $"nor '{Constants.SAVED_MODEL_FILENAME_PBTXT}'."); + } + + var obj = Loader.load(module_path, options: options); + return obj; + } + + public static string resolve(string handle) + { + return MultiImplRegister.GetResolverRegister().Call(handle); + } + } +} diff --git a/src/TensorflowNET.Hub/registry.cs b/src/TensorflowNET.Hub/registry.cs new file mode 100644 index 000000000..cdc4589b2 --- /dev/null +++ b/src/TensorflowNET.Hub/registry.cs @@ -0,0 +1,55 @@ +using System; +using System.Collections.Generic; +using System.Linq; + +namespace Tensorflow.Hub +{ + internal class MultiImplRegister + { + private static MultiImplRegister resolver = new MultiImplRegister("resolver", new IResolver[0]); + private static MultiImplRegister loader = new MultiImplRegister("loader", new IResolver[0]); + + static MultiImplRegister() + { + resolver.add_implementation(new PathResolver()); + resolver.add_implementation(new HttpUncompressedFileResolver()); + resolver.add_implementation(new GcsCompressedFileResolver()); + resolver.add_implementation(new HttpCompressedFileResolver()); + } + + string _name; + List _impls; + public MultiImplRegister(string name, IEnumerable impls) + { + _name = name; + _impls = impls.ToList(); + } + + public void add_implementation(IResolver resolver) + { + _impls.Add(resolver); + } + + public string Call(string handle) + { + foreach (var impl in _impls.Reverse()) + { + if (impl.IsSupported(handle)) + { + return impl.Call(handle); + } + } + throw new RuntimeError($"Cannot resolve the handle {handle}"); + } + + public static MultiImplRegister GetResolverRegister() + { + return resolver; + } + + public static MultiImplRegister GetLoaderRegister() + { + return loader; + } + } +} diff --git a/src/TensorflowNET.Hub/resolver.cs b/src/TensorflowNET.Hub/resolver.cs new file mode 100644 index 000000000..2f8c45ba6 --- /dev/null +++ b/src/TensorflowNET.Hub/resolver.cs @@ -0,0 +1,580 @@ +using ICSharpCode.SharpZipLib.Tar; +using System; +using System.Collections.Generic; +using System.ComponentModel; +using System.Diagnostics; +using System.IO; +using System.Linq; +using System.Net; +using System.Net.Http; +using System.Net.Security; +using System.Security.Authentication; +using System.Threading.Tasks; +using System.Web; +using static Tensorflow.Binding; + +namespace Tensorflow.Hub +{ + internal static class resolver + { + public enum ModelLoadFormat + { + [Description("COMPRESSED")] + COMPRESSED, + [Description("UNCOMPRESSED")] + UNCOMPRESSED, + [Description("AUTO")] + AUTO + } + public class DownloadManager + { + private readonly string _url; + private double _last_progress_msg_print_time; + private long _total_bytes_downloaded; + private int _max_prog_str; + + private bool _interactive_mode() + { + return !string.IsNullOrEmpty(Environment.GetEnvironmentVariable("_TFHUB_DOWNLOAD_PROGRESS")); + } + + private void _print_download_progress_msg(string msg, bool flush = false) + { + if (_interactive_mode()) + { + // Print progress message to console overwriting previous progress + // message. + _max_prog_str = Math.Max(_max_prog_str, msg.Length); + Console.Write($"\r{msg.PadRight(_max_prog_str)}"); + Console.Out.Flush(); + + //如果flush参数为true,则输出换行符减少干扰交互式界面。 + if (flush) + Console.WriteLine(); + + } + else + { + // Interactive progress tracking is disabled. Print progress to the + // standard TF log. + tf.Logger.Information(msg); + } + } + + private void _log_progress(long bytes_downloaded) + { + // Logs progress information about ongoing module download. + + _total_bytes_downloaded += bytes_downloaded; + var now = DateTime.Now.Ticks / TimeSpan.TicksPerSecond; + if (_interactive_mode() || now - _last_progress_msg_print_time > 15) + { + // Print progress message every 15 secs or if interactive progress + // tracking is enabled. + _print_download_progress_msg($"Downloading {_url}:" + + $"{tf_utils.bytes_to_readable_str(_total_bytes_downloaded, true)}"); + _last_progress_msg_print_time = now; + } + } + + public DownloadManager(string url) + { + _url = url; + _last_progress_msg_print_time = DateTime.Now.Ticks / TimeSpan.TicksPerSecond; + _total_bytes_downloaded = 0; + _max_prog_str = 0; + } + + public void download_and_uncompress(Stream fileobj, string dst_path) + { + // Streams the content for the 'fileobj' and stores the result in dst_path. + + try + { + file_utils.extract_tarfile_to_destination(fileobj, dst_path, _log_progress); + var total_size_str = tf_utils.bytes_to_readable_str(_total_bytes_downloaded, true); + _print_download_progress_msg($"Downloaded {_url}, Total size: {total_size_str}", flush: true); + } + catch (TarException ex) + { + throw new IOException($"{_url} does not appear to be a valid module. Inner message:{ex.Message}", ex); + } + } + } + private static Dictionary _flags = new(); + private static readonly string _TFHUB_CACHE_DIR = "TFHUB_CACHE_DIR"; + private static readonly string _TFHUB_DOWNLOAD_PROGRESS = "TFHUB_DOWNLOAD_PROGRESS"; + private static readonly string _TFHUB_MODEL_LOAD_FORMAT = "TFHUB_MODEL_LOAD_FORMAT"; + private static readonly string _TFHUB_DISABLE_CERT_VALIDATION = "TFHUB_DISABLE_CERT_VALIDATION"; + private static readonly string _TFHUB_DISABLE_CERT_VALIDATION_VALUE = "true"; + + static resolver() + { + set_new_flag("tfhub_model_load_format", "AUTO"); + set_new_flag("tfhub_cache_dir", null); + } + + public static string model_load_format() + { + return get_env_setting(_TFHUB_MODEL_LOAD_FORMAT, "tfhub_model_load_format"); + } + + public static string? get_env_setting(string env_var, string flag_name) + { + string value = System.Environment.GetEnvironmentVariable(env_var); + if (string.IsNullOrEmpty(value)) + { + if (_flags.ContainsKey(flag_name)) + { + return _flags[flag_name]; + } + else + { + return null; + } + } + else + { + return value; + } + } + + public static string tfhub_cache_dir(string default_cache_dir = null, bool use_temp = false) + { + var cache_dir = get_env_setting(_TFHUB_CACHE_DIR, "tfhub_cache_dir") ?? default_cache_dir; + if (string.IsNullOrWhiteSpace(cache_dir) && use_temp) + { + // Place all TF-Hub modules under /tfhub_modules. + cache_dir = Path.Combine(Path.GetTempPath(), "tfhub_modules"); + } + if (!string.IsNullOrWhiteSpace(cache_dir)) + { + Console.WriteLine("Using {0} to cache modules.", cache_dir); + } + return cache_dir; + } + + public static string create_local_module_dir(string cache_dir, string module_name) + { + Directory.CreateDirectory(cache_dir); + return Path.Combine(cache_dir, module_name); + } + + public static void set_new_flag(string name, string value) + { + string[] tokens = new string[] {_TFHUB_CACHE_DIR, _TFHUB_DISABLE_CERT_VALIDATION, + _TFHUB_DISABLE_CERT_VALIDATION_VALUE, _TFHUB_DOWNLOAD_PROGRESS, _TFHUB_MODEL_LOAD_FORMAT}; + if (!tokens.Contains(name)) + { + tf.Logger.Warning($"You are settinng a flag '{name}' that cannot be recognized. The flag you set" + + "may not affect anything in tensorflow.hub."); + } + _flags[name] = value; + } + + public static string _merge_relative_path(string dstPath, string relPath) + { + return file_utils.merge_relative_path(dstPath, relPath); + } + + public static string _module_descriptor_file(string moduleDir) + { + return $"{moduleDir}.descriptor.txt"; + } + + public static void _write_module_descriptor_file(string handle, string moduleDir) + { + var readme = _module_descriptor_file(moduleDir); + var content = $"Module: {handle}\nDownload Time: {DateTime.Now}\nDownloader Hostname: {Environment.MachineName} (PID:{Process.GetCurrentProcess().Id})"; + tf_utils.atomic_write_string_to_file(readme, content, overwrite: true); + } + + public static string _lock_file_contents(string task_uid) + { + return $"{Environment.MachineName}.{Process.GetCurrentProcess().Id}.{task_uid}"; + } + + public static string _lock_filename(string moduleDir) + { + return tf_utils.absolute_path(moduleDir) + ".lock"; + } + + private static string _module_dir(string lockFilename) + { + var path = Path.GetDirectoryName(Path.GetFullPath(lockFilename)); + if (!string.IsNullOrEmpty(path)) + { + return Path.Combine(path, "hub_modules"); + } + + throw new Exception("Unable to resolve hub_modules directory from lock file name."); + } + + private static string _task_uid_from_lock_file(string lockFilename) + { + // Returns task UID of the task that created a given lock file. + var lockstring = File.ReadAllText(lockFilename); + return lockstring.Split('.').Last(); + } + + private static string _temp_download_dir(string moduleDir, string taskUid) + { + // Returns the name of a temporary directory to download module to. + return $"{Path.GetFullPath(moduleDir)}.{taskUid}.tmp"; + } + + private static long _dir_size(string directory) + { + // Returns total size (in bytes) of the given 'directory'. + long size = 0; + foreach (var elem in Directory.EnumerateFileSystemEntries(directory)) + { + var stat = new FileInfo(elem); + size += stat.Length; + if ((stat.Attributes & FileAttributes.Directory) != 0) + size += _dir_size(stat.FullName); + } + return size; + } + + public static long _locked_tmp_dir_size(string lockFilename) + { + //Returns the size of the temp dir pointed to by the given lock file. + var taskUid = _task_uid_from_lock_file(lockFilename); + try + { + return _dir_size(_temp_download_dir(_module_dir(lockFilename), taskUid)); + } + catch (DirectoryNotFoundException) + { + return 0; + } + } + + private static void _wait_for_lock_to_disappear(string handle, string lockFile, double lockFileTimeoutSec) + { + long? lockedTmpDirSize = null; + var lockedTmpDirSizeCheckTime = DateTime.Now; + var lockFileContent = ""; + + while (File.Exists(lockFile)) + { + try + { + Console.WriteLine($"Module '{handle}' already being downloaded by '{File.ReadAllText(lockFile)}'. Waiting."); + + if ((DateTime.Now - lockedTmpDirSizeCheckTime).TotalSeconds > lockFileTimeoutSec) + { + var curLockedTmpDirSize = _locked_tmp_dir_size(lockFile); + var curLockFileContent = File.ReadAllText(lockFile); + + if (curLockedTmpDirSize == lockedTmpDirSize && curLockFileContent == lockFileContent) + { + Console.WriteLine($"Deleting lock file {lockFile} due to inactivity."); + File.Delete(lockFile); + break; + } + + lockedTmpDirSize = curLockedTmpDirSize; + lockedTmpDirSizeCheckTime = DateTime.Now; + lockFileContent = curLockFileContent; + } + } + catch (FileNotFoundException) + { + // Lock file or temp directory were deleted during check. Continue + // to check whether download succeeded or we need to start our own + // download. + } + + System.Threading.Thread.Sleep(5000); + } + } + + public static async Task atomic_download_async( + string handle, + Func downloadFn, + string moduleDir, + int lock_file_timeout_sec = 10 * 60) + { + var lockFile = _lock_filename(moduleDir); + var taskUid = Guid.NewGuid().ToString("N"); + var lockContents = _lock_file_contents(taskUid); + var tmpDir = _temp_download_dir(moduleDir, taskUid); + + // Function to check whether model has already been downloaded. + Func checkModuleExists = () => + Directory.Exists(moduleDir) && + Directory.EnumerateFileSystemEntries(moduleDir).Any(); + + // Check whether the model has already been downloaded before locking + // the destination path. + if (checkModuleExists()) + { + return moduleDir; + } + + // Attempt to protect against cases of processes being cancelled with + // KeyboardInterrupt by using a try/finally clause to remove the lock + // and tmp_dir. + while (true) + { + try + { + tf_utils.atomic_write_string_to_file(lockFile, lockContents, false); + // Must test condition again, since another process could have created + // the module and deleted the old lock file since last test. + if (checkModuleExists()) + { + // Lock file will be deleted in the finally-clause. + return moduleDir; + } + if (Directory.Exists(moduleDir)) + { + Directory.Delete(moduleDir, true); + } + break; // Proceed to downloading the module. + } + // These errors are believed to be permanent problems with the + // module_dir that justify failing the download. + catch (FileNotFoundException) + { + throw; + } + catch (UnauthorizedAccessException) + { + throw; + } + catch (IOException) + { + throw; + } + // All other errors are retried. + // TODO(b/144424849): Retrying an AlreadyExistsError from the atomic write + // should be good enough, but see discussion about misc filesystem types. + // TODO(b/144475403): How atomic is the overwrite=False check? + catch (Exception) + { + } + + // Wait for lock file to disappear. + _wait_for_lock_to_disappear(handle, lockFile, lock_file_timeout_sec); + // At this point we either deleted a lock or a lock got removed by the + // owner or another process. Perform one more iteration of the while-loop, + // we would either terminate due tf.compat.v1.gfile.Exists(module_dir) or + // because we would obtain a lock ourselves, or wait again for the lock to + // disappear. + } + + // Lock file acquired. + tf.Logger.Information($"Downloading TF-Hub Module '{handle}'..."); + Directory.CreateDirectory(tmpDir); + await downloadFn(handle, tmpDir); + // Write module descriptor to capture information about which module was + // downloaded by whom and when. The file stored at the same level as a + // directory in order to keep the content of the 'model_dir' exactly as it + // was define by the module publisher. + // + // Note: The descriptor is written purely to help the end-user to identify + // which directory belongs to which module. The descriptor is not part of the + // module caching protocol and no code in the TF-Hub library reads its + // content. + _write_module_descriptor_file(handle, moduleDir); + try + { + Directory.Move(tmpDir, moduleDir); + Console.WriteLine($"Downloaded TF-Hub Module '{handle}'."); + } + catch (IOException e) + { + Console.WriteLine(e.Message); + Console.WriteLine($"Failed to move {tmpDir} to {moduleDir}"); + // Keep the temp directory so we will retry building vocabulary later. + } + + // Temp directory is owned by the current process, remove it. + try + { + Directory.Delete(tmpDir, true); + } + catch (DirectoryNotFoundException) + { + } + + // Lock file exists and is owned by this process. + try + { + var contents = File.ReadAllText(lockFile); + if (contents == lockContents) + { + File.Delete(lockFile); + } + } + catch (Exception) + { + } + + return moduleDir; + } + } + internal interface IResolver + { + string Call(string handle); + bool IsSupported(string handle); + } + + internal class PathResolver : IResolver + { + public string Call(string handle) + { + if (!File.Exists(handle) && !Directory.Exists(handle)) + { + throw new IOException($"{handle} does not exist in file system."); + } + return handle; + } + public bool IsSupported(string handle) + { + return true; + } + } + + public abstract class HttpResolverBase : IResolver + { + private readonly HttpClient httpClient; + private SslProtocol sslProtocol; + private RemoteCertificateValidationCallback certificateValidator; + + protected HttpResolverBase() + { + httpClient = new HttpClient(); + _maybe_disable_cert_validation(); + } + + public abstract string Call(string handle); + public abstract bool IsSupported(string handle); + + protected async Task GetLocalFileStreamAsync(string filePath) + { + try + { + var fs = new FileStream(filePath, FileMode.Open, FileAccess.Read); + return await Task.FromResult(fs); + } + catch (Exception ex) + { + Console.WriteLine($"Failed to read file stream: {ex.Message}"); + return null; + } + } + + protected async Task GetFileStreamAsync(string filePath) + { + if (!is_http_protocol(filePath)) + { + // If filePath is not an HTTP(S) URL, delegate to a file resolver. + return await GetLocalFileStreamAsync(filePath); + } + + var request = new HttpRequestMessage(HttpMethod.Get, filePath); + var response = await _call_urlopen(request); + + if (response.IsSuccessStatusCode) + { + return await response.Content.ReadAsStreamAsync(); + } + else + { + Console.WriteLine($"Failed to fetch file stream: {response.StatusCode} - {response.ReasonPhrase}"); + return null; + } + } + + protected void SetUrlContext(SslProtocol protocol, RemoteCertificateValidationCallback validator) + { + sslProtocol = protocol; + certificateValidator = validator; + } + + public static string append_format_query(string handle, (string, string) formatQuery) + { + var parsed = new Uri(handle); + + var queryBuilder = HttpUtility.ParseQueryString(parsed.Query); + queryBuilder.Add(formatQuery.Item1, formatQuery.Item2); + + parsed = new UriBuilder(parsed.Scheme, parsed.Host, parsed.Port, parsed.AbsolutePath, + "?" + queryBuilder.ToString()).Uri; + + return parsed.ToString(); + } + + protected bool is_http_protocol(string handle) + { + return handle.StartsWith("http://") || handle.StartsWith("https://"); + } + + protected async Task _call_urlopen(HttpRequestMessage request) + { + if (sslProtocol != null) + { + var handler = new HttpClientHandler() + { + SslProtocols = sslProtocol.AsEnum(), + }; + if (certificateValidator != null) + { + handler.ServerCertificateCustomValidationCallback = (x, y, z, w) => + { + return certificateValidator(x, y, z, w); + }; + } + + var client = new HttpClient(handler); + return await client.SendAsync(request); + } + else + { + return await httpClient.SendAsync(request); + } + } + + protected void _maybe_disable_cert_validation() + { + if (Environment.GetEnvironmentVariable("_TFHUB_DISABLE_CERT_VALIDATION") == "_TFHUB_DISABLE_CERT_VALIDATION_VALUE") + { + ServicePointManager.ServerCertificateValidationCallback = (_, _, _, _) => true; + Console.WriteLine("Disabled certificate validation for resolving handles."); + } + } + } + + public class SslProtocol + { + private readonly string protocolString; + + public static readonly SslProtocol Tls = new SslProtocol("TLS"); + public static readonly SslProtocol Tls11 = new SslProtocol("TLS 1.1"); + public static readonly SslProtocol Tls12 = new SslProtocol("TLS 1.2"); + + private SslProtocol(string protocolString) + { + this.protocolString = protocolString; + } + + public SslProtocols AsEnum() + { + switch (protocolString.ToUpper()) + { + case "TLS": + return SslProtocols.Tls; + case "TLS 1.1": + return SslProtocols.Tls11; + case "TLS 1.2": + return SslProtocols.Tls12; + default: + throw new ArgumentException($"Unknown SSL/TLS protocol: {protocolString}"); + } + } + } +} diff --git a/src/TensorflowNET.Hub/tf_utils.cs b/src/TensorflowNET.Hub/tf_utils.cs new file mode 100644 index 000000000..96d8c92d6 --- /dev/null +++ b/src/TensorflowNET.Hub/tf_utils.cs @@ -0,0 +1,80 @@ +using System; +using System.IO; + +namespace Tensorflow.Hub +{ + internal class tf_utils + { + public static string bytes_to_readable_str(long? numBytes, bool includeB = false) + { + if (numBytes == null) return numBytes.ToString(); + + var num = (double)numBytes; + + if (num < 1024) + { + return $"{(long)num}{(includeB ? "B" : "")}"; + } + + num /= 1 << 10; + if (num < 1024) + { + return $"{num:F2}k{(includeB ? "B" : "")}"; + } + + num /= 1 << 10; + if (num < 1024) + { + return $"{num:F2}M{(includeB ? "B" : "")}"; + } + + num /= 1 << 10; + return $"{num:F2}G{(includeB ? "B" : "")}"; + } + + public static void atomic_write_string_to_file(string filename, string contents, bool overwrite) + { + var tempPath = $"{filename}.tmp.{Guid.NewGuid():N}"; + + using (var fileStream = new FileStream(tempPath, FileMode.Create)) + { + using (var writer = new StreamWriter(fileStream)) + { + writer.Write(contents); + writer.Flush(); + } + } + + try + { + if (File.Exists(filename)) + { + if (overwrite) + { + File.Delete(filename); + File.Move(tempPath, filename); + } + } + else + { + File.Move(tempPath, filename); + } + } + catch + { + File.Delete(tempPath); + throw; + } + } + + public static string absolute_path(string path) + { + if (path.Contains("://")) + { + return path; + } + + return Path.GetFullPath(path); + } + } +} diff --git a/src/python/.vscode/launch.json b/src/python/.vscode/launch.json new file mode 100644 index 000000000..4d4e27495 --- /dev/null +++ b/src/python/.vscode/launch.json @@ -0,0 +1,16 @@ +{ + // Use IntelliSense to learn about possible attributes. + // Hover to view descriptions of existing attributes. + // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387 + "version": "0.2.0", + "configurations": [ + { + "name": "Python: Current File", + "type": "python", + "request": "launch", + "program": "${workspaceFolder}/xor_keras.py", + "console": "integratedTerminal", + "justMyCode": false + } + ] +} \ No newline at end of file diff --git a/src/python/simple_rnn.py b/src/python/simple_rnn.py new file mode 100644 index 000000000..c5f3b1f2c --- /dev/null +++ b/src/python/simple_rnn.py @@ -0,0 +1,17 @@ +import numpy as np +import tensorflow as tf +import tensorflow.experimental.numpy as tnp + +# tf.experimental.numpy +inputs = np.arange(6 * 10 * 8).reshape([6, 10, 8]).astype(np.float32) +# simple_rnn = tf.keras.layers.SimpleRNN(4) + +# output = simple_rnn(inputs) # The output has shape `[6, 4]`. + +simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences=True, return_state=True) + +# whole_sequence_output has shape `[6, 10, 4]`. +# final_state has shape `[6, 4]`. +whole_sequence_output, final_state = simple_rnn(inputs) +print(whole_sequence_output) +print(final_state) \ No newline at end of file diff --git a/src/python/subclassing.py b/src/python/subclassing.py new file mode 100644 index 000000000..bccbef292 --- /dev/null +++ b/src/python/subclassing.py @@ -0,0 +1,154 @@ +from __future__ import absolute_import, division, print_function + +import tensorflow as tf +from tensorflow.keras import Model, layers +import numpy as np + +# MNIST dataset parameters. +num_classes = 10 # total classes (0-9 digits). + +# Training parameters. +learning_rate = 0.001 +training_steps = 100 +batch_size = 128 +display_step = 10 + +# Network parameters. +conv1_filters = 32 # number of filters for 1st conv layer. +conv2_filters = 64 # number of filters for 2nd conv layer. +fc1_units = 1024 # number of neurons for 1st fully-connected layer. + +# Prepare MNIST data. +from tensorflow.keras.datasets import mnist +(x_train, y_train), (x_test, y_test) = mnist.load_data() +# Convert to float32. +x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32) +# Normalize images value from [0, 255] to [0, 1]. +x_train, x_test = x_train / 255., x_test / 255. + +# Use tf.data API to shuffle and batch data. +train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train)) +train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1) + +# Create TF Model. +class ConvNet(Model): + # Set layers. + def __init__(self): + super(ConvNet, self).__init__() + # Convolution Layer with 32 filters and a kernel size of 5. + self.conv1 = layers.Conv2D(32, kernel_size=5, activation=tf.nn.relu) + # Max Pooling (down-sampling) with kernel size of 2 and strides of 2. + self.maxpool1 = layers.MaxPool2D(2, strides=2) + + # Convolution Layer with 64 filters and a kernel size of 3. + self.conv2 = layers.Conv2D(64, kernel_size=3, activation=tf.nn.relu) + # Max Pooling (down-sampling) with kernel size of 2 and strides of 2. + self.maxpool2 = layers.MaxPool2D(2, strides=2) + + # Flatten the data to a 1-D vector for the fully connected layer. + self.flatten = layers.Flatten() + + # Fully connected layer. + self.fc1 = layers.Dense(1024) + # Apply Dropout (if is_training is False, dropout is not applied). + self.dropout = layers.Dropout(rate=0.5) + + # Output layer, class prediction. + self.out = layers.Dense(num_classes) + + # Set forward pass. + def call(self, x, is_training=False): + x = tf.reshape(x, [-1, 28, 28, 1]) + x = self.conv1(x) + x = self.maxpool1(x) + x = self.conv2(x) + x = self.maxpool2(x) + x = self.flatten(x) + x = self.fc1(x) + x = self.dropout(x) + x = self.out(x) + if not is_training: + # tf cross entropy expect logits without softmax, so only + # apply softmax when not training. + x = tf.nn.softmax(x) + return x +''' +# Build neural network model. +conv_net = ConvNet() + +# Cross-Entropy Loss. +# Note that this will apply 'softmax' to the logits. +def cross_entropy_loss(x, y): + # Convert labels to int 64 for tf cross-entropy function. + y = tf.cast(y, tf.int64) + # Apply softmax to logits and compute cross-entropy. + loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x) + # Average loss across the batch. + return tf.reduce_mean(loss) + +# Accuracy metric. +def accuracy(y_pred, y_true): + # Predicted class is the index of highest score in prediction vector (i.e. argmax). + correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64)) + return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1) + +# Stochastic gradient descent optimizer. +optimizer = tf.optimizers.Adam(learning_rate) + +# Optimization process. +def run_optimization(x, y): + # Wrap computation inside a GradientTape for automatic differentiation. + with tf.GradientTape() as g: + # Forward pass. + pred = conv_net(x, is_training=True) + # Compute loss. + loss = cross_entropy_loss(pred, y) + + # Variables to update, i.e. trainable variables. + trainable_variables = conv_net.trainable_variables + + # Compute gradients. + gradients = g.gradient(loss, trainable_variables) + + # Update W and b following gradients. + optimizer.apply_gradients(zip(gradients, trainable_variables)) + +# Run training for the given number of steps. + +for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1): + # Run the optimization to update W and b values. + run_optimization(batch_x, batch_y) + + if step % display_step == 0: + pred = conv_net(batch_x) + loss = cross_entropy_loss(pred, batch_y) + acc = accuracy(pred, batch_y) + print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc)) + +# Test model on validation set. +pred = conv_net(x_test) +print("Test Accuracy: %f" % accuracy(pred, y_test)) + +conv_net.save_weights('weights.h5') +''' + +conv_net = ConvNet() +conv_net.build(x_test.shape) +conv_net.load_weights('weights.h5') +# Test model on validation set. +pred = conv_net(x_test) +# print("Test Accuracy: %f" % accuracy(pred, y_test)) + +# Visualize predictions. +import matplotlib.pyplot as plt + +# Predict 5 images from validation set. +n_images = 5 +test_images = x_test[:n_images] +predictions = conv_net(test_images) + +# Display image and model prediction. +for i in range(n_images): + plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray') + plt.show() + print("Model prediction: %i" % np.argmax(predictions.numpy()[i])) \ No newline at end of file diff --git a/src/python/xor_keras.py b/src/python/xor_keras.py new file mode 100644 index 000000000..e73886050 --- /dev/null +++ b/src/python/xor_keras.py @@ -0,0 +1,24 @@ +import os +import numpy as np +import tensorflow as tf + +os.environ["CUDA_VISIBLE_DEVICES"] = "-1" +print(tf.__version__) +# https://playground.tensorflow.org/ +# tf.compat.v1.enable_eager_execution() +# tf.debugging.set_log_device_placement(True); +tf.config.run_functions_eagerly(True) + +x = np.array([[ 0, 0 ], [ 0, 1 ], [ 1, 0 ], [ 1, 1 ]]) +y = np.array([[ 0 ], [ 1 ], [ 1 ], [ 0 ] ]) + +model = tf.keras.Sequential() +model.add(tf.keras.Input(2)) +model.add(tf.keras.layers.Dense(32, "relu")) +model.add(tf.keras.layers.Dense(1, "sigmoid")) +model.compile(optimizer = tf.keras.optimizers.Adam(), + loss = tf.keras.losses.MeanSquaredError(), + metrics = ["accuracy"]) +model.fit(x, y, 1, 100) +result = model.evaluate(x, y) +print(model.predict(x, 4)) \ No newline at end of file diff --git a/test/TensorFlow.Kernel.UnitTest/TensorFlow.Kernel.UnitTest.csproj b/test/TensorFlow.Kernel.UnitTest/TensorFlow.Kernel.UnitTest.csproj new file mode 100644 index 000000000..461993408 --- /dev/null +++ b/test/TensorFlow.Kernel.UnitTest/TensorFlow.Kernel.UnitTest.csproj @@ -0,0 +1,24 @@ + + + + net6.0 + enable + enable + + false + true + + + + + + + + + + + + + + + diff --git a/test/TensorFlow.Kernel.UnitTest/array_ops/concat_op_test.cs b/test/TensorFlow.Kernel.UnitTest/array_ops/concat_op_test.cs new file mode 100644 index 000000000..67d0aa602 --- /dev/null +++ b/test/TensorFlow.Kernel.UnitTest/array_ops/concat_op_test.cs @@ -0,0 +1,63 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow; +using Tensorflow.NumPy; +using static Tensorflow.Binding; + +namespace TensorFlow.Kernel.UnitTest +{ + [TestClass] + public class concat_op_test + { + [TestMethod] + public void testConcatEmpty() + { + var t1 = tf.constant(new int[] { }); + var t2 = tf.constant(new int[] { }); + var c = array_ops.concat(new[] { t1, t2 }, 0); + var expected = np.array(new int[] { }); + Assert.IsTrue(Enumerable.SequenceEqual(expected.ToArray(), c.numpy().ToArray())); + } + + [TestMethod] + public void testConcatNegativeAxis() + { + var t1 = tf.constant(new int[,] { { 1, 2, 3 }, { 4, 5, 6 } }); + var t2 = tf.constant(new int[,] { { 7, 8, 9 }, { 10, 11, 12 } }); + var c = array_ops.concat(new[] { t1, t2 }, -2); + var expected = np.array(new int[,,] { { { 1, 2, 3 }, { 4, 5, 6 } }, { { 7, 8, 9 }, { 10, 11, 12 } } }); + Assert.IsTrue(Enumerable.SequenceEqual(expected.ToArray(), c.numpy().ToArray())); + + c = array_ops.concat(new[] { t1, t2 }, -1); + expected = np.array(new int[,] { { 1, 2, 3, 7, 8, 9 }, { 4, 5, 6, 10, 11, 12 } }); + Assert.IsTrue(Enumerable.SequenceEqual(expected.ToArray(), c.numpy().ToArray())); + } + + [TestMethod] + [DataRow(TF_DataType.TF_INT32)] + [DataRow(TF_DataType.TF_INT64)] + [DataRow(TF_DataType.TF_UINT32)] + [DataRow(TF_DataType.TF_UINT64)] + public void testConcatDtype(TF_DataType dtype) + { + var t1 = tf.constant(new int[,] { { 1, 2, 3 }, { 4, 5, 6 } }, dtype: dtype); + var t2 = tf.constant(new int[,] { { 7, 8, 9 }, { 10, 11, 12 } }, dtype: dtype); + var c = array_ops.concat(new[] { t1, t2 }, 1); + var expected = np.array(new int[,] { { 1, 2, 3, 7, 8, 9 }, { 4, 5, 6, 10, 11, 12 } }); + Assert.IsTrue(Enumerable.SequenceEqual(expected.ToArray(), tf.cast(c, TF_DataType.TF_INT32).numpy().ToArray())); + + } + + [TestMethod] + [DataRow(TF_DataType.TF_INT32)] + [DataRow(TF_DataType.TF_INT64)] + public void testConcatAxisType(TF_DataType dtype) + { + var t1 = tf.constant(new int[,] { { 1, 2, 3 }, { 4, 5, 6 } }); + var t2 = tf.constant(new int[,] { { 7, 8, 9 }, { 10, 11, 12 } }); + var c = array_ops.concat(new[] { t1, t2 }, tf.constant(1, dtype: dtype)); + var expected = np.array(new int[,] { { 1, 2, 3, 7, 8, 9 }, { 4, 5, 6, 10, 11, 12 } }); + Assert.IsTrue(Enumerable.SequenceEqual(expected.ToArray(), tf.cast(c, TF_DataType.TF_INT32).numpy().ToArray())); + } + + } +} \ No newline at end of file diff --git a/test/TensorFlowNET.Graph.UnitTest/Basics/QueueTest.cs b/test/TensorFlowNET.Graph.UnitTest/Basics/QueueTest.cs index f0a4ea846..21c5fdbfe 100644 --- a/test/TensorFlowNET.Graph.UnitTest/Basics/QueueTest.cs +++ b/test/TensorFlowNET.Graph.UnitTest/Basics/QueueTest.cs @@ -16,18 +16,16 @@ public void PaddingFIFOQueue() var enqueue = queue.enqueue(numbers); var dequeue_many = queue.dequeue_many(n: 3); - using (var sess = tf.Session()) - { - sess.run(enqueue, (numbers, new[] { 1 })); - sess.run(enqueue, (numbers, new[] { 2, 3 })); - sess.run(enqueue, (numbers, new[] { 3, 4, 5 })); - - var result = sess.run(dequeue_many[0]); - - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 1, 0, 0 }, result[0].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 2, 3, 0 }, result[1].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 3, 4, 5 }, result[2].ToArray())); - } + var sess = tf.Session(); + sess.run(enqueue, (numbers, new[] { 1 })); + sess.run(enqueue, (numbers, new[] { 2, 3 })); + sess.run(enqueue, (numbers, new[] { 3, 4, 5 })); + + var result = sess.run(dequeue_many[0]); + + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 1, 0, 0 }, result[0].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 2, 3, 0 }, result[1].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 3, 4, 5 }, result[2].ToArray())); } [TestMethod] @@ -45,27 +43,25 @@ public void FIFOQueue() // push back into queue var inc = queue.enqueue(y); - using (var sess = tf.Session()) - { - // init queue - init.run(); + var sess = tf.Session(); + // init queue + init.run(); - // pop out first element and push back calculated y - (int dequeued, _) = sess.run((x, inc)); - Assert.AreEqual(10, dequeued); + // pop out first element and push back calculated y + (int dequeued, _) = sess.run((x, inc)); + Assert.AreEqual(10, dequeued); - (dequeued, _) = sess.run((x, inc)); - Assert.AreEqual(20, dequeued); + (dequeued, _) = sess.run((x, inc)); + Assert.AreEqual(20, dequeued); - (dequeued, _) = sess.run((x, inc)); - Assert.AreEqual(11, dequeued); + (dequeued, _) = sess.run((x, inc)); + Assert.AreEqual(11, dequeued); - (dequeued, _) = sess.run((x, inc)); - Assert.AreEqual(21, dequeued); + (dequeued, _) = sess.run((x, inc)); + Assert.AreEqual(21, dequeued); - // thread will hang or block if you run sess.run(x) again - // until queue has more element. - } + // thread will hang or block if you run sess.run(x) again + // until queue has more element. } [TestMethod] @@ -75,19 +71,17 @@ public void PriorityQueue() var init = queue.enqueue_many(new[] { 2L, 4L, 3L }, new[] { "p1", "p2", "p3" }); var x = queue.dequeue(); - using (var sess = tf.Session()) - { - init.run(); + var sess = tf.Session(); + init.run(); - var result = sess.run(x); - Assert.AreEqual(result[0], 2L); + var result = sess.run(x); + Assert.AreEqual(result[0], 2L); - result = sess.run(x); - Assert.AreEqual(result[0], 3L); + result = sess.run(x); + Assert.AreEqual(result[0], 3L); - result = sess.run(x); - Assert.AreEqual(result[0], 4L); - } + result = sess.run(x); + Assert.AreEqual(result[0], 4L); } [TestMethod] @@ -98,16 +92,14 @@ public void RandomShuffleQueue() var x = queue.dequeue(); string results = ""; - using (var sess = tf.Session()) - { - init.run(); + var sess = tf.Session(); + init.run(); - foreach (var i in range(9)) - results += (int)sess.run(x) + "."; + foreach (var i in range(9)) + results += (int)sess.run(x) + "."; - // output in random order - Assert.IsFalse(results == "1.2.3.4.5.6.7.8.9."); - } + // output in random order + Assert.IsFalse(results == "1.2.3.4.5.6.7.8.9."); } } } diff --git a/test/TensorFlowNET.Graph.UnitTest/Basics/SessionTest.cs b/test/TensorFlowNET.Graph.UnitTest/Basics/SessionTest.cs index 823809847..2300b0948 100644 --- a/test/TensorFlowNET.Graph.UnitTest/Basics/SessionTest.cs +++ b/test/TensorFlowNET.Graph.UnitTest/Basics/SessionTest.cs @@ -19,11 +19,9 @@ public void EvalTensor() var a = constant_op.constant(np.array(3.0).reshape((1, 1))); var b = constant_op.constant(np.array(2.0).reshape((1, 1))); var c = math_ops.matmul(a, b, name: "matmul"); - using (var sess = tf.Session()) - { - var result = c.eval(sess); - Assert.AreEqual(result[0], 6.0); - } + var sess = tf.Session(); + var result = c.eval(sess); + Assert.AreEqual(result[0], 6.0); } } @@ -32,11 +30,9 @@ public void Eval_SmallString_Scalar() { var a = constant_op.constant("123 heythere 123 ", TF_DataType.TF_STRING); var c = tf.strings.substr(a, 4, 8); - using (var sess = tf.Session()) - { - var result = c.eval(sess).StringData(); - Assert.AreEqual(result[0], "heythere"); - } + var sess = tf.Session(); + var result = c.eval(sess).StringData(); + Assert.AreEqual(result[0], "heythere"); } [TestMethod] @@ -47,11 +43,9 @@ public void Eval_LargeString_Scalar() const int size = 30_000; var a = constant_op.constant(new string('a', size), TF_DataType.TF_STRING); var c = tf.strings.substr(a, 0, size - 5000); - using (var sess = tf.Session()) - { - var result = UTF8Encoding.UTF8.GetString(c.eval(sess).ToByteArray()); - Console.WriteLine(result); - } + var sess = tf.Session(); + var result = UTF8Encoding.UTF8.GetString(c.eval(sess).ToByteArray()); + Console.WriteLine(result); } } diff --git a/test/TensorFlowNET.Graph.UnitTest/Basics/TensorTest.cs b/test/TensorFlowNET.Graph.UnitTest/Basics/TensorTest.cs index 46fe69d35..8093c1f23 100644 --- a/test/TensorFlowNET.Graph.UnitTest/Basics/TensorTest.cs +++ b/test/TensorFlowNET.Graph.UnitTest/Basics/TensorTest.cs @@ -3,6 +3,7 @@ using System; using System.Linq; using static Tensorflow.Binding; +using Tensorflow; namespace TensorFlowNET.UnitTest.Basics { @@ -16,15 +17,13 @@ public void sparse_to_dense() var labels = tf.expand_dims(tf.constant(new[] { 0, 1, 2, 3, 4 }), 1); var st = tf.concat(values: new[] { indices, labels }, axis: 1); var onehot = tf.sparse_to_dense(st, (5, 5), 1); - using (var sess = tf.Session()) - { - var result = sess.run(onehot); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 1, 0, 0, 0, 0 }, result[0].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 1, 0, 0, 0 }, result[1].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 1, 0, 0 }, result[2].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 0, 1, 0 }, result[3].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 0, 0, 1 }, result[4].ToArray())); - }; + var sess = tf.Session(); + var result = sess.run(onehot); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 1, 0, 0, 0, 0 }, result[0].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 1, 0, 0, 0 }, result[1].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 1, 0, 0 }, result[2].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 0, 1, 0 }, result[3].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 0, 0, 1 }, result[4].ToArray())); } [TestMethod, Ignore] @@ -39,13 +38,11 @@ public void sparse_tensor_to_dense() new[] { 3L, 4L }); var onehot = tf.sparse_tensor_to_dense(decoded_list); - using (var sess = tf.Session()) - { - var result = sess.run(onehot); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 1, 0, 0, 0 }, result[0].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 2, 0 }, result[1].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 0, 0 }, result[2].ToArray())); - } + var sess = tf.Session(); + var result = sess.run(onehot); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 1, 0, 0, 0 }, result[0].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 2, 0 }, result[1].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 0, 0, 0 }, result[2].ToArray())); } [TestMethod] @@ -56,27 +53,23 @@ public void batch_to_space_nd() int[,] crops = { { 0, 0 }, { 0, 0 } }; var tensor = tf.batch_to_space_nd(inputs, block_shape, crops); - using (var sess = tf.Session()) - { - var result = sess.run(tensor); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 6, 1, 7, 2, 8 }, result[0, 0].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 12, 18, 13, 19, 14, 20 }, result[0, 1].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 3, 9, 4, 10, 5, 11 }, result[0, 2].ToArray())); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 15, 21, 16, 22, 17, 23 }, result[0, 3].ToArray())); - } + var sess = tf.Session(); + var result = sess.run(tensor); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 6, 1, 7, 2, 8 }, result[0, 0].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 12, 18, 13, 19, 14, 20 }, result[0, 1].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 3, 9, 4, 10, 5, 11 }, result[0, 2].ToArray())); + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 15, 21, 16, 22, 17, 23 }, result[0, 3].ToArray())); } - [TestMethod, Ignore] + [TestMethod] public void boolean_mask() { + if (!tf.executing_eagerly()) + tf.enable_eager_execution(); var tensor = new[] { 0, 1, 2, 3 }; var mask = np.array(new[] { true, false, true, false }); var masked = tf.boolean_mask(tensor, mask); - using (var sess = tf.Session()) - { - var result = sess.run(masked); - Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 2 }, masked.ToArray())); - } + Assert.IsTrue(Enumerable.SequenceEqual(new int[] { 0, 2 }, masked.ToArray())); } } } \ No newline at end of file diff --git a/test/TensorFlowNET.Graph.UnitTest/Basics/VariableTest.cs b/test/TensorFlowNET.Graph.UnitTest/Basics/VariableTest.cs index 35525a1a5..3c95501db 100644 --- a/test/TensorFlowNET.Graph.UnitTest/Basics/VariableTest.cs +++ b/test/TensorFlowNET.Graph.UnitTest/Basics/VariableTest.cs @@ -14,7 +14,7 @@ public void InitVariable() var v = tf.Variable(new[] { 1, 2 }); var init = tf.compat.v1.global_variables_initializer(); - using var sess = tf.compat.v1.Session(); + var sess = tf.compat.v1.Session(); sess.run(init); // Usage passing the session explicitly. print(v.eval(sess)); diff --git a/test/TensorFlowNET.Graph.UnitTest/ComplexTest.cs b/test/TensorFlowNET.Graph.UnitTest/ComplexTest.cs new file mode 100644 index 000000000..abb44eeed --- /dev/null +++ b/test/TensorFlowNET.Graph.UnitTest/ComplexTest.cs @@ -0,0 +1,201 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow.NumPy; +using System; +using System.Collections.Generic; +using System.Linq; +using Tensorflow; +using static Tensorflow.Binding; +using Tensorflow.Keras.UnitTest; + +namespace TensorFlowNET.UnitTest.Basics +{ + [TestClass] + public class ComplexTest : EagerModeTestBase + { + // Tests for Complex128 + + [TestMethod] + public void complex128_basic() + { + double[] d_real = new double[] { 1.0, 2.0, 3.0, 4.0 }; + double[] d_imag = new double[] { -1.0, -3.0, 5.0, 7.0 }; + + Tensor t_real = tf.constant(d_real, dtype:TF_DataType.TF_DOUBLE); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); + + Tensor t_complex = tf.complex(t_real, t_imag); + + Tensor t_real_result = tf.math.real(t_complex); + Tensor t_imag_result = tf.math.imag(t_complex); + + NDArray n_real_result = t_real_result.numpy(); + NDArray n_imag_result = t_imag_result.numpy(); + + double[] d_real_result =n_real_result.ToArray(); + double[] d_imag_result = n_imag_result.ToArray(); + + Assert.IsTrue(base.Equal(d_real_result, d_real)); + Assert.IsTrue(base.Equal(d_imag_result, d_imag)); + } + [TestMethod] + public void complex128_abs() + { + tf.enable_eager_execution(); + + double[] d_real = new double[] { -3.0, -5.0, 8.0, 7.0 }; + double[] d_imag = new double[] { -4.0, 12.0, -15.0, 24.0 }; + + double[] d_abs = new double[] { 5.0, 13.0, 17.0, 25.0 }; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); + + Tensor t_complex = tf.complex(t_real, t_imag); + + Tensor t_abs_result = tf.abs(t_complex); + + double[] d_abs_result = t_abs_result.numpy().ToArray(); + Assert.IsTrue(base.Equal(d_abs_result, d_abs)); + } + [TestMethod] + public void complex128_conj() + { + double[] d_real = new double[] { -3.0, -5.0, 8.0, 7.0 }; + double[] d_imag = new double[] { -4.0, 12.0, -15.0, 24.0 }; + + double[] d_real_expected = new double[] { -3.0, -5.0, 8.0, 7.0 }; + double[] d_imag_expected = new double[] { 4.0, -12.0, 15.0, -24.0 }; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); + + Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX128); + + Tensor t_result = tf.math.conj(t_complex); + + NDArray n_real_result = tf.math.real(t_result).numpy(); + NDArray n_imag_result = tf.math.imag(t_result).numpy(); + + double[] d_real_result = n_real_result.ToArray(); + double[] d_imag_result = n_imag_result.ToArray(); + + Assert.IsTrue(base.Equal(d_real_result, d_real_expected)); + Assert.IsTrue(base.Equal(d_imag_result, d_imag_expected)); + } + [TestMethod] + public void complex128_angle() + { + double[] d_real = new double[] { 0.0, 1.0, -1.0, 0.0 }; + double[] d_imag = new double[] { 1.0, 0.0, -2.0, -3.0 }; + + double[] d_expected = new double[] { 1.5707963267948966, 0, -2.0344439357957027, -1.5707963267948966 }; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); + + Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX128); + + Tensor t_result = tf.math.angle(t_complex); + + NDArray n_result = t_result.numpy(); + + double[] d_result = n_result.ToArray(); + + Assert.IsTrue(base.Equal(d_result, d_expected)); + } + + // Tests for Complex64 + [TestMethod] + public void complex64_basic() + { + tf.init_scope(); + float[] d_real = new float[] { 1.0f, 2.0f, 3.0f, 4.0f }; + float[] d_imag = new float[] { -1.0f, -3.0f, 5.0f, 7.0f }; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT); + + Tensor t_complex = tf.complex(t_real, t_imag); + + Tensor t_real_result = tf.math.real(t_complex); + Tensor t_imag_result = tf.math.imag(t_complex); + + // Convert the EagerTensors to NumPy arrays directly + float[] d_real_result = t_real_result.numpy().ToArray(); + float[] d_imag_result = t_imag_result.numpy().ToArray(); + + Assert.IsTrue(base.Equal(d_real_result, d_real)); + Assert.IsTrue(base.Equal(d_imag_result, d_imag)); + } + [TestMethod] + public void complex64_abs() + { + tf.enable_eager_execution(); + + float[] d_real = new float[] { -3.0f, -5.0f, 8.0f, 7.0f }; + float[] d_imag = new float[] { -4.0f, 12.0f, -15.0f, 24.0f }; + + float[] d_abs = new float[] { 5.0f, 13.0f, 17.0f, 25.0f }; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT); + + Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX64); + + Tensor t_abs_result = tf.abs(t_complex); + + NDArray n_abs_result = t_abs_result.numpy(); + + float[] d_abs_result = n_abs_result.ToArray(); + Assert.IsTrue(base.Equal(d_abs_result, d_abs)); + + } + [TestMethod] + public void complex64_conj() + { + float[] d_real = new float[] { -3.0f, -5.0f, 8.0f, 7.0f }; + float[] d_imag = new float[] { -4.0f, 12.0f, -15.0f, 24.0f }; + + float[] d_real_expected = new float[] { -3.0f, -5.0f, 8.0f, 7.0f }; + float[] d_imag_expected = new float[] { 4.0f, -12.0f, 15.0f, -24.0f }; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT); + + Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX64); + + Tensor t_result = tf.math.conj(t_complex); + + NDArray n_real_result = tf.math.real(t_result).numpy(); + NDArray n_imag_result = tf.math.imag(t_result).numpy(); + + float[] d_real_result = n_real_result.ToArray(); + float[] d_imag_result = n_imag_result.ToArray(); + + Assert.IsTrue(base.Equal(d_real_result, d_real_expected)); + Assert.IsTrue(base.Equal(d_imag_result, d_imag_expected)); + + } + [TestMethod] + public void complex64_angle() + { + float[] d_real = new float[] { 0.0f, 1.0f, -1.0f, 0.0f }; + float[] d_imag = new float[] { 1.0f, 0.0f, -2.0f, -3.0f }; + + float[] d_expected = new float[] { 1.5707964f, 0f, -2.0344439f, -1.5707964f }; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT); + + Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX64); + + Tensor t_result = tf.math.angle(t_complex); + + NDArray n_result = t_result.numpy(); + + float[] d_result = n_result.ToArray(); + + Assert.IsTrue(base.Equal(d_result, d_expected)); + } + } +} \ No newline at end of file diff --git a/test/TensorFlowNET.Graph.UnitTest/ControlFlowTest/CondTestCases.cs b/test/TensorFlowNET.Graph.UnitTest/ControlFlowTest/CondTestCases.cs index 917280e49..7063c22cf 100644 --- a/test/TensorFlowNET.Graph.UnitTest/ControlFlowTest/CondTestCases.cs +++ b/test/TensorFlowNET.Graph.UnitTest/ControlFlowTest/CondTestCases.cs @@ -16,18 +16,16 @@ public void testCondTrue_ConstOnly() { var graph = tf.Graph().as_default(); - using (var sess = tf.Session(graph)) - { - var x = tf.constant(2, name: "x"); - var y = tf.constant(5, name: "y"); - - var z = control_flow_ops.cond(tf.less(x, y), - () => tf.constant(22, name: "t22"), - () => tf.constant(55, name: "f55")); - - int result = z.eval(sess); - assertEquals(result, 22); - } + var sess = tf.Session(graph); + var x = tf.constant(2, name: "x"); + var y = tf.constant(5, name: "y"); + + var z = control_flow_ops.cond(tf.less(x, y), + () => tf.constant(22, name: "t22"), + () => tf.constant(55, name: "f55")); + + int result = z.eval(sess); + assertEquals(result, 22); } [TestMethod] @@ -35,18 +33,16 @@ public void testCondFalse_ConstOnly() { var graph = tf.Graph().as_default(); - using (var sess = tf.Session(graph)) - { - var x = tf.constant(2, name: "x"); - var y = tf.constant(1, name: "y"); + var sess = tf.Session(graph); + var x = tf.constant(2, name: "x"); + var y = tf.constant(1, name: "y"); - var z = control_flow_ops.cond(tf.less(x, y), - () => tf.constant(22, name: "t22"), - () => tf.constant(11, name: "f11")); + var z = control_flow_ops.cond(tf.less(x, y), + () => tf.constant(22, name: "t22"), + () => tf.constant(11, name: "f11")); - int result = z.eval(sess); - assertEquals(result, 11); - } + int result = z.eval(sess); + assertEquals(result, 11); } [Ignore("Dependent on UpdateEdge")] diff --git a/test/TensorFlowNET.Graph.UnitTest/ControlFlowTest/WhileContextTestCase.cs b/test/TensorFlowNET.Graph.UnitTest/ControlFlowTest/WhileContextTestCase.cs index 814253585..e93324f3e 100644 --- a/test/TensorFlowNET.Graph.UnitTest/ControlFlowTest/WhileContextTestCase.cs +++ b/test/TensorFlowNET.Graph.UnitTest/ControlFlowTest/WhileContextTestCase.cs @@ -1,5 +1,6 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; using System; +using System.Linq; using Tensorflow; using static Tensorflow.Binding; @@ -23,21 +24,19 @@ public void SimpleWhileLoop() private void _testWhileContextHelper(int maximum_iterations) { // TODO: implement missing code dependencies - using (var sess = this.cached_session()) + using var sess = this.cached_session(); + var i = constant_op.constant(0, name: "i"); + var c = new Func(x => gen_math_ops.less(x, ops.convert_to_tensor(10), name: "c")); + var b = new Func(x => math_ops.add(x, 1, name: "c")); + //control_flow_ops.while_loop( + // c, b, i , maximum_iterations: tf.constant(maximum_iterations)); + foreach (Operation op in sess.graph.get_operations()) { - var i = constant_op.constant(0, name: "i"); - var c = new Func(x => gen_math_ops.less(x, 10, name: "c")); - var b = new Func(x => gen_math_ops.add(x, 1, name: "c")); - //control_flow_ops.while_loop( - // c, b, i , maximum_iterations: tf.constant(maximum_iterations)); - foreach (Operation op in sess.graph.get_operations()) - { - var control_flow_context = op._get_control_flow_context(); - /*if (control_flow_context != null) - self.assertProtoEquals(control_flow_context.to_proto(), - WhileContext.from_proto( - control_flow_context.to_proto()).to_proto(), "");*/ - } + var control_flow_context = op._get_control_flow_context(); + /*if (control_flow_context != null) + self.assertProtoEquals(control_flow_context.to_proto(), + WhileContext.from_proto( + control_flow_context.to_proto()).to_proto(), "");*/ } } diff --git a/test/TensorFlowNET.Graph.UnitTest/GradientTest/GradientTest.cs b/test/TensorFlowNET.Graph.UnitTest/GradientTest/GradientTest.cs index f60fe6d91..cea6de172 100644 --- a/test/TensorFlowNET.Graph.UnitTest/GradientTest/GradientTest.cs +++ b/test/TensorFlowNET.Graph.UnitTest/GradientTest/GradientTest.cs @@ -5,6 +5,7 @@ using System.Linq; using Tensorflow; using static Tensorflow.Binding; +using Tensorflow.Framework; namespace TensorFlowNET.UnitTest.Gradient { @@ -18,11 +19,9 @@ public void BroadcastToGrad() var y = tf.broadcast_to(x, (2, 4, 3)); var grad = tf.gradients(y, x); - using (var sess = tf.Session(graph)) - { - float result = sess.run(grad[0]); - Assert.AreEqual(result, 24.0f); - } + var sess = tf.Session(graph); + float result = sess.run(grad[0]); + Assert.AreEqual(result, 24.0f); } [TestMethod] @@ -33,11 +32,9 @@ public void CumsumGrad() var z = tf.cumsum(y, axis: 1); var grad = tf.gradients(z, x); - using (var sess = tf.Session(graph)) - { - float result = sess.run(grad[0]); - Assert.AreEqual(result, 60.0f); - } + var sess = tf.Session(graph); + float result = sess.run(grad[0]); + Assert.AreEqual(result, 60.0f); } [TestMethod, Ignore] @@ -78,14 +75,12 @@ public void testBatchMatMulGradient() 42.0f, 42.0f, 42.0f, 45.0f, 45.0f, 45.0f }; - using (var sess = tf.Session()) - { - var result = sess.run(g); - var resultList = result[0].ToArray().ToList(); - resultList.AddRange(result[1].ToArray()); - Console.WriteLine(result.ToString()); - CollectionAssert.AreEqual(resultList.ToArray(), checkG); - } + var sess = tf.Session(); + var result = sess.run(g); + var resultList = result[0].ToArray().ToList(); + resultList.AddRange(result[1].ToArray()); + Console.WriteLine(result.ToString()); + CollectionAssert.AreEqual(resultList.ToArray(), checkG); } [TestMethod] @@ -97,11 +92,9 @@ public void testSimpleGradients() var y = f(x); var g = tf.gradients(y, x); - using (var session = tf.Session()) - { - var result = session.run(new[] { y, g[0] }); - return (result[0].ToArray()[0], result[1].ToArray()[0]); - } + var session = tf.Session(); + var result = session.run(new[] { y, g[0] }); + return (result[0].ToArray()[0], result[1].ToArray()[0]); } void test(string name, Func tfF, Func targetF, double[] values) @@ -197,13 +190,11 @@ with tf.compat.v1.Session() as sess: var g1 = tf.gradients(tf.reduce_sum(m, axis: 0)[0], x)[0]; var g2 = tf.gradients(tf.reduce_sum(m, axis: 1)[0], x)[0]; - using (var session = tf.Session()) - { - var (r0, r1, r2) = session.run((g0, g1, g2), new FeedItem(x, new[,] { { 1.0 } })); - self.assertFloat64Equal(6.0, r0[0], $"tf.reduce_sum(...)"); - self.assertFloat64Equal(2.0, r1[0], $"tf.reduce_sum(..., axis = 0)"); - self.assertFloat64Equal(3.0, r2[0], $"tf.reduce_sum(..., axis = 1)"); - } + var session = tf.Session(); + var (r0, r1, r2) = session.run((g0, g1, g2), new FeedItem(x, new[,] { { 1.0 } })); + self.assertFloat64Equal(6.0, r0[0], $"tf.reduce_sum(...)"); + self.assertFloat64Equal(2.0, r1[0], $"tf.reduce_sum(..., axis = 0)"); + self.assertFloat64Equal(3.0, r2[0], $"tf.reduce_sum(..., axis = 1)"); } [TestMethod] @@ -212,12 +203,10 @@ public void testTanhGradient() var a = tf.constant(1f); var b = tf.tanh(a); var g = tf.gradients(b, a); - using (var sess = tf.Session()) - { - var result = sess.run(g); - var actual = result[0]; - Assert.AreEqual(actual, 0.41997434127f); - } + var sess = tf.Session(); + var result = sess.run(g); + var actual = result[0]; + Assert.AreEqual(actual, 0.41997434127f); } @@ -227,14 +216,12 @@ public void testLgammaGrad() var a = tf.constant(5f); var b = tf.lgamma(a); var g = tf.gradients(b, a); - using (var sess = tf.Session()) - { - var result = sess.run(new object[] { g, b }); - var actualDeriv = result[0]; - var actual = result[1]; - Assert.AreEqual(actualDeriv, 1.5061177f); - Assert.AreEqual(actual, 3.17805386f); - } + var sess = tf.Session(); + var result = sess.run(new object[] { g, b }); + var actualDeriv = result[0]; + var actual = result[1]; + Assert.AreEqual(actualDeriv, 1.5061177f); + Assert.AreEqual(actual, 3.17805386f); } [TestMethod] @@ -247,14 +234,12 @@ public void testSliceGrad() tf.constant(new[] { 1 }, tf.int32, new[] { 1 }) ); var g = tf.gradients(b, a); - using (var sess = tf.Session()) - { - var result = sess.run(new object[] { g, b }); - var actualDeriv = np.squeeze(result[0]); - var actual = np.squeeze(result[1]); - Assert.AreEqual(actualDeriv, new float[] { 1, 0 }); - Assert.AreEqual(actual, 0.9640276f); - } + var sess = tf.Session(); + var result = sess.run(new object[] { g, b }); + var actualDeriv = np.squeeze(result[0]); + var actual = np.squeeze(result[1]); + Assert.AreEqual(actualDeriv, new float[] { 1, 0 }); + Assert.AreEqual(actual, 0.9640276f); } [TestMethod] @@ -264,29 +249,26 @@ public void testConcatGrad() var a2 = tf.constant(new[] { 3f }, shape: new[] { 1 }); var a = tf.concat(new List(new[] { a1, a2 }), 0); var g = tf.gradients(a, a1); - using (var sess = tf.Session()) - { - var result = sess.run(new object[] { g, a }); - var actualDeriv = result[0][0]; - var actual = result[1][0]; - Assert.AreEqual(actualDeriv, 1f); - Assert.AreEqual(actual, 2f); - } + var sess = tf.Session(); + var result = sess.run(new object[] { g, a }); + var actualDeriv = result[0][0]; + var actual = result[1][0]; + Assert.AreEqual(actualDeriv, 1f); + Assert.AreEqual(actual, 2f); } [TestMethod] public void testStopGradientFunction() { var ap = tf.constant(1f); - var b = tf.tanh(ap) + gen_array_ops.stop_gradient(ap); + var b = tf.tanh(ap) + array_ops.stop_gradient(ap); var g = tf.gradients(b, ap); - using (var sess = tf.Session()) - { - var result = sess.run(g); - var actual = result[0]; - Assert.AreEqual(actual, 0.41997434127f); - } + var sess = tf.Session(); + var result = sess.run(g); + var actual = result[0]; + Assert.AreEqual(actual, 0.41997434127f); } + [Ignore("TODO")] [TestMethod] public void testUnusedOutput() @@ -407,81 +389,77 @@ public void testBoundaryStop() } - [Ignore("TODO")] [TestMethod] public void testBoundaryContinue() { - //@test_util.run_v1_only("b/120545219") - //def testBoundaryContinue(self): - // # Test that we differentiate both 'x' and 'y' correctly when x is a - // # predecessor of y. - // with self.cached_session(): - // x = constant(1.0) - // y = x * 2.0 - // z = y * 3.0 - // grads = gradients.gradients(z, [x, y]) - // self.assertTrue(all(x is not None for x in grads)) - // self.assertEqual(6.0, grads[0].eval()) + // Test that we differentiate both 'x' and 'y' correctly when x is a + // predecessor of y. + + //TODO: @test_util.run_v1_only("b/120545219") + using (self.cached_session()) + { + var x = tf.constant(1.0); + var y = x * 2.0; + var z = y * 3.0; + var grads = tf.gradients(z, new[] { x, y }); + self.assertTrue(all(grads.Select(x => x != null))); + self.assertEqual(6.0, grads[0].eval()); + } } - [Ignore("TODO")] [TestMethod] public void testAggregationMethodAccumulateN() { + //TODO: @test_util.run_v1_only("b/120545219") - //@test_util.run_v1_only("b/120545219") - //def testAggregationMethodAccumulateN(self): - // with self.cached_session(): - // x = constant(1.0) - // y = x * 2.0 - // z = y + y + y + y + y + y + y + y + y + y - // grads = gradients.gradients( - // z, [x, y], - // aggregation_method=gradients.AggregationMethod. - // EXPERIMENTAL_ACCUMULATE_N) - // self.assertTrue(all(x is not None for x in grads)) - // self.assertEqual(20.0, grads[0].eval()) - // self.assertEqual(10.0, grads[1].eval()) - + using (self.cached_session()) + { + var x = tf.constant(1.0); + var y = x * 2.0; + var z = y + y + y + y + y + y + y + y + y + y; + var grads = tf.gradients(z, new[] { x, y }, + aggregation_method: AggregationMethod.EXPERIMENTAL_ACCUMULATE_N); + self.assertTrue(all(grads.Select(x => x != null))); + self.assertEqual(20.0, grads[0].eval()); + self.assertEqual(10.0, grads[1].eval()); + } } - [Ignore("TODO")] [TestMethod] public void testAggregationMethodAddN() { - //@test_util.run_v1_only("b/120545219") - //def testAggregationMethodAddN(self): - // with self.cached_session(): - // x = constant(1.0) - // y = x * 2.0 - // z = y + y + y + y + y + y + y + y + y + y - // grads = gradients.gradients( - // z, [x, y], aggregation_method=gradients.AggregationMethod.ADD_N) - // self.assertTrue(all(x is not None for x in grads)) - // self.assertEqual(20.0, grads[0].eval()) - // self.assertEqual(10.0, grads[1].eval()) - + //TODO: @test_util.run_v1_only("b/120545219") + using (self.cached_session()) + { + var x = tf.constant(1.0); + var y = x * 2.0; + var z = y + y + y + y + y + y + y + y + y + y; + var grads = tf.gradients(z, new[] { x, y }, + aggregation_method: AggregationMethod.ADD_N); + self.assertTrue(grads.All(x => x != null)); + self.assertEqual(20.0, grads[0].eval()); + self.assertEqual(10.0, grads[1].eval()); + } } - [Ignore("TODO")] [TestMethod] public void testAggregationMethodTree() { - //@test_util.run_v1_only("b/120545219") - //def testAggregationMethodTree(self): - // with self.cached_session(): - // x = constant(1.0) - // y = x * 2.0 - // z = y + y + y + y + y + y + y + y + y + y - // grads = gradients.gradients( - // z, [x, y], - // aggregation_method=gradients.AggregationMethod.EXPERIMENTAL_TREE) - // self.assertTrue(all(x is not None for x in grads)) - // self.assertEqual(20.0, grads[0].eval()) - // self.assertEqual(10.0, grads[1].eval()) + //TODO: @test_util.run_v1_only("b/120545219") + using (self.cached_session()) + { + var x = tf.constant(1.0); + var y = x * 2.0; + var z = y + y + y + y + y + y + y + y + y + y; + var grads = tf.gradients(z, new[] { x, y }, + aggregation_method: AggregationMethod.EXPERIMENTAL_TREE); + self.assertTrue(grads.All(x => x != null)); + self.assertEqual(20.0, grads[0].eval()); + self.assertEqual(10.0, grads[1].eval()); + } } [Ignore("TODO")] @@ -510,24 +488,37 @@ public void testNoGradientForStringOutputs() // self.assertTrue(isinstance(grads[0], ops.Tensor)) } - [Ignore("TODO")] + [Ignore("TODO: CompositeTensors are not supported yet.")] [TestMethod] public void testSingletonIndexedSlices() { + tf.Graph().as_default(); + + // TODO: uncomment when CompositeTensors are supported. + /* + var x = tf.placeholder(TF_DataType.TF_FLOAT); + var y = tf.identity(x); + var dy_indices = tf.placeholder(TF_DataType.TF_INT32); + var dy_values = tf.placeholder(TF_DataType.TF_FLOAT); + var dy = new IndexedSlices(dy_values, dy_indices); + + var dx = tf.gradients(new[] { y }, new[] { x }, grad_ys: new[] { dy })[0]; + // The IndexedSlices gradient of tf.identity is the identity map. + using (var sess = self.cached_session()) + { + var feed_dict = new FeedItem[] + { + ( x, new Tensor(new float[] { 1.0f }) ), + (dy_indices, new Tensor(new int[] { 0 })), + (dy_values, new Tensor(new float[] { 2.0f })) + }; + var result = sess.run(new[] { dx, dy }, feed_dict); + var vdx = result[0]; + var vdy = result[1]; + self.assertEqual(vdx, vdy); + } + */ - //def testSingletonIndexedSlices(self): - // with ops.Graph().as_default(): - // x = array_ops.placeholder(dtypes.float32) - // y = array_ops.identity(x) - // dy = ops.IndexedSlices( - // array_ops.placeholder(dtypes.float32), - // array_ops.placeholder(dtypes.int32)) - // dx, = gradients.gradients(y, x, grad_ys=dy) - // # The IndexedSlices gradient of tf.identity is the identity map. - // with self.cached_session() as sess: - // vdx, vdy = sess.run( - // [dx, dy], feed_dict={x: [1.0], dy.indices: [0], dy.values: [2.0]}) - // self.assertEqual(vdx, vdy) } [Ignore("TODO")] @@ -595,26 +586,25 @@ public void testVariableRefGradient() // self.assertIsNotNone(gradient) } - [Ignore("TODO")] [TestMethod] public void testDependentYs() { - //@test_util.run_v1_only("b/120545219") - //def testDependentYs(self): - // with self.cached_session(): - // x = constant_op.constant(3.0) - // y = math_ops.square(x) - // y1 = math_ops.square(y) - // y2 = math_ops.square(y1) - // g = gradients.gradients([y, y2], x) - // self.assertAllClose(17502.0, g[0].eval()) - // g = gradients.gradients(y + y2, x) - // self.assertAllClose(17502.0, g[0].eval()) - // z = array_ops.identity(y) - // z2 = array_ops.identity(y2) - // g = gradients.gradients([z, z2], x) - // self.assertAllClose(17502.0, g[0].eval()) - + //TODO: @test_util.run_v1_only("b/120545219") + using (self.cached_session()) + { + var x = constant_op.constant(3.0); + var y = math_ops.square(x); + var y1 = math_ops.square(y); + var y2 = math_ops.square(y1); + var g = tf.gradients(new[] { y, y2 }, new[] { x }); + self.assertAllClose(17502.0, g[0].eval()); + g = tf.gradients(y + y2, x); + self.assertAllClose(17502.0, g[0].eval()); + var z = array_ops.identity(y); + var z2 = array_ops.identity(y2); + g = tf.gradients(new[] { z, z2 }, new[] { x }); + self.assertAllClose(17502.0, g[0].eval()); + } } [Ignore("TODO")] @@ -622,75 +612,132 @@ public void testDependentYs() public void testPartialDerivatives() { - //@test_util.run_v1_only("b/120545219") - //def testPartialDerivatives(self): - // with self.cached_session(): - // x = constant_op.constant(1.) - // y = 2 * x - // z = x + y - // totalg = gradients.gradients(z, [x, y]) - // self.assertEqual([3.0, 1.0], [g.eval() for g in totalg]) - // partialg = gradients.gradients(z, [x, y], stop_gradients=[x, y]) - // self.assertEqual([1.0, 1.0], [g.eval() for g in partialg]) + //TODO: @test_util.run_v1_only("b/120545219") + using (self.cached_session()) + { + var x = tf.constant(1.0); + var y = 2 * x; + var z = x + y; + var totalg = tf.gradients(z, new[] { x, y }); + self.assertEqual(new[] { 3.0, 1.0 }, totalg.Select(g => g.eval())); + var partialg = tf.gradients(z, new[] { x, y }, stop_gradients: new[] { x, y }); + self.assertEqual(new[] { 1.0, 1.0 }, partialg.Select(g => g.eval())); + } } - [Ignore("TODO")] + private struct Case + { + public Tensor[] grad1; + public Tensor[] grad2; + public string constants; + public string variables; + } + + [Ignore("FIXME")] [TestMethod] public void testStopGradients() { + + //TODO: @test_util.run_v1_only("b/120545219") + Dictionary makeGraph(RandomizedImpl rng, string stop_gradients) + { + Tensor functionOf(Tensor[] xs, int k) + { + var shape = new Shape(k, k); + // TODO: replace by DefaultIfEmpty() before Aggregate(). + if (!xs.Any()) + { + return rng.random(shape).astype(np.float32); + } + return xs.Select(x => gen_math_ops.mat_mul(rng.random(shape).astype(np.float32), x)) + .Aggregate((t1, t2) => t1 + t2) + + rng.random(shape).astype(np.float32); + } + var a = functionOf(Array.Empty(), 3); + if (stop_gradients.Contains('a')) a = array_ops.stop_gradient(a); + var b = functionOf(new Tensor[] { a }, 3); + if (stop_gradients.Contains('b')) b = array_ops.stop_gradient(b); + var c = functionOf(new Tensor[] { a, b }, 3); + if (stop_gradients.Contains('c')) c = array_ops.stop_gradient(c); + var d = functionOf(new Tensor[] { b, c }, 3); + if (stop_gradients.Contains('d')) d = array_ops.stop_gradient(d); - //@test_util.run_v1_only("b/120545219") - //def testStopGradients(self): - // def _MakeGraph(rng, stop_gradients=()): - // def _FunctionOf(xs, k=3): - // return ops.convert_to_tensor( - // sum(math_ops.matmul(rng.rand(k, k), x) for x in xs) - // + rng.rand(k, k)) - - // a = _FunctionOf([]) - // if "a" in stop_gradients: a = array_ops.stop_gradient(a) - // b = _FunctionOf([a]) - // if "b" in stop_gradients: b = array_ops.stop_gradient(b) - // c = _FunctionOf([a, b]) - // if "c" in stop_gradients: c = array_ops.stop_gradient(c) - // d = _FunctionOf([b, c]) - // if "d" in stop_gradients: d = array_ops.stop_gradient(d) - // return dict(a=a, b=b, c=c, d=d) - - // def _Gradients(ys, xs, **kwargs): - // dydxs = gradients.gradients(ys, xs, **kwargs) - // dydxs = [0. * x if dydx is None else dydx - // for x, dydx in zip(xs, dydxs)] - // return dydxs - // seed = np.random.randint(1000) - // cases = [] - // subsets = [""] + "a b c d ab ac ad bc bd cd abc abd acd bcd abcd".split() - // graph = _MakeGraph(np.random.RandomState(seed)) - // for constants in subsets: - // graph_with_stops = _MakeGraph(np.random.RandomState(seed), constants) - // for variables_ in subsets: - // # compute the gradient when stopped using tf.stop_gradients - // grad1 = _Gradients([graph_with_stops["d"]], - // [graph_with_stops[v] for v in variables_]) - // # compute the gradient when stopped using the stop_gradients kwarg - // grad2 = _Gradients([graph["d"]], - // [graph[v] for v in variables_], - // stop_gradients=[graph[v] for v in constants]) - // cases.append(dict(grad1=grad1, grad2=grad2, - // constants=constants, variables=variables_)) - - // # evaluate all tensors in one call to session.run for speed - // with self.cached_session() as sess: - // results = sess.run([(case["grad1"], case["grad2"]) for case in cases]) - - // for (npgrad1, npgrad2), case in zip(results, cases): - // for a, b in zip(npgrad1, npgrad2): - // np.testing.assert_allclose(a, b) + return new Dictionary + { + { 'a', a }, + { 'b', b }, + { 'c', c }, + { 'd', d } + }; + } + + Tensor[] gradients(Tensor[] ys, Tensor[] xs, Tensor[] stop_gradients = null) + { + var dydxs = tf.gradients(ys, xs, stop_gradients); + dydxs = dydxs.Select((dydx, i) => dydx == null ? xs[i] * 0 : dydx).ToArray(); + return dydxs; + } + var seed = np.random.randint(1000); + // TODO: remove next line when np.random.RandomState implemented. + tf.set_random_seed(seed); + var cases = new List(); + // TODO: add "" case. + var subsets = new List { "" }.Concat("a b c d ab ac ad bc bd cd abc abd acd bcd abcd".Split()); + // TODO: pass np.random.RandomState(seed) instead of np.random + var graph = makeGraph(np.random, string.Empty); + foreach (var constants in subsets) + { + var graphWithStops = makeGraph(np.random, constants); + foreach (var variables_ in subsets) + { + // compute the gradient when stopped using tf.stop_gradients + var grad1 = gradients( + new[] { graphWithStops['d'] }, + variables_.ToCharArray().Select(v => graphWithStops[v]).ToArray() + ); + // compute the gradient when stopped using the stop_gradients from args + var grad2 = gradients( + new[] { graph['d'] }, + variables_.ToCharArray().Select(v => graph[v]).ToArray(), + constants.ToCharArray().Select(c => graph[c]).DefaultIfEmpty(null)?.ToArray() + ); + cases.Add(new Case + { + grad1 = grad1, + grad2 = grad2, + variables = variables_, + constants = constants, + }) ; + } + } + + // evaluate all tensors in one call to session.run for speed + using (var sess = self.cached_session()) + { + var results = sess.run( + cases.Select(case_ => ( + case_.grad1, + case_.grad2 + )).ToArray() + ); + + foreach (var (result, case_) in results.Zip(cases)) + { + var npgrad1 = result[0]; + var npgrad2 = result[1]; + foreach (var (a, b) in npgrad1.Zip(npgrad2)) + { + self.assertAllClose(a, b); + } + } + } } - [Ignore("TODO")] + + + [Ignore("TODO: Unconnected gradients are not implemented")] [TestMethod] public void testUnconnectedGradientsNoneUnconnectedGradients() { @@ -705,12 +752,10 @@ public void testUnconnectedGradientsNoneUnconnectedGradients() // self.assertIsNone(grad[0]) } - [Ignore("TODO")] + [Ignore("TODO: Unconnected gradients are not implemented")] [TestMethod] public void testUnconnectedGradientsZerosUnconnectedGradients() { - - //def testUnconnectedGradientsZerosUnconnectedGradients(self): // with ops.Graph().as_default(): // x = constant(1.0, shape=[2, 2]) @@ -719,15 +764,21 @@ public void testUnconnectedGradientsZerosUnconnectedGradients() // [y], [x], unconnected_gradients="zero") // with self.cached_session() as sess: // self.assertAllEqual([[0.0, 0.0], [0.0, 0.0]], self.evaluate(grads)[0]) + + // tf.Graph().as_default(); + // var x = tf.constant(1.0, shape: new long[] { 2, 2 }); + // var y = tf.constant(3.0, shape: new long[] { 3, 1 }); + // var grads = tf.gradients(new[] { y }, new[] { x }, unconnected_gradients: "zero"); + // using (self.cached_session()) + // { + // self.assertAllEqual(new[,] { { 0.0, 0.0 }, { 0.0, 0.0 } }, self.evaluate(grads)[0]); + // } } - [Ignore("TODO")] + [Ignore("TODO: Unconnected gradients are not implemented")] [TestMethod] public void testUnconnectedGradientsZeroConnectedGradients() { - - - //def testUnconnectedGradientsZeroConnectedGradients(self): // with ops.Graph().as_default(): // x = constant(1.0) @@ -736,9 +787,19 @@ public void testUnconnectedGradientsZeroConnectedGradients() // [y], [x], unconnected_gradients="zero") // with self.cached_session() as sess: // self.assertEquals(3.0, self.evaluate(grad)[0]) + + // tf.Graph().as_default(); + + // var x = tf.constant(1.0f); + // var y = x * 3.0f; + // var grad = tf.gradients(new [] { y }, new [] { x }, unconnected_gradients: "zero"); + // using (var sess = tf.Session()) + // { + // self.assertEquals(3.0, self.evaluate(grad)[0]); + // } } - [Ignore("TODO")] + [Ignore("TODO: Unconnected gradients are not implemented")] [TestMethod] public void testUnknownUnconnectedGradientsValueGiven() { @@ -749,15 +810,6 @@ public void testUnknownUnconnectedGradientsValueGiven() // with self.assertRaisesRegexp( // ValueError, "Unknown value for unconnected_gradients: 'nonsense'"): // gradients.gradients([y], [x], unconnected_gradients="nonsense") - } - - - - /* - - - - */ } } diff --git a/test/TensorFlowNET.Graph.UnitTest/ImageTest.cs b/test/TensorFlowNET.Graph.UnitTest/ImageTest.cs index 29ad9ad83..127b65bf6 100644 --- a/test/TensorFlowNET.Graph.UnitTest/ImageTest.cs +++ b/test/TensorFlowNET.Graph.UnitTest/ImageTest.cs @@ -3,6 +3,8 @@ using System.Linq; using Tensorflow; using static Tensorflow.Binding; +using System; +using System.IO; namespace TensorFlowNET.UnitTest { @@ -22,13 +24,86 @@ public void Initialize() contents = tf.io.read_file(imgPath); } + [TestMethod] + public void adjust_contrast() + { + var input = np.array(0f, 1f, 2f, 3f, 4f, 5f, 6f, 7f, 8f); + var image = tf.reshape(input, new int[] { 3, 3, 1 }); + + var init = tf.global_variables_initializer(); + var sess = tf.Session(); + sess.run(init); + var adjust_contrast = tf.image.adjust_contrast(image, 2.0f); + var result = sess.run(adjust_contrast); + var res = np.array(-4f, -2f, 0f, 2f, 4f, 6f, 8f, 10f, 12f).reshape((3,3,1)); + Assert.AreEqual(result.numpy(), res); + } + + [Ignore] + [TestMethod] + public void adjust_hue() + { + var image = tf.constant(new int[] {1,2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18}); + image = tf.reshape(image, new int[] { 3, 2, 3 }); + var adjusted_image = tf.image.adjust_hue(image, 0.2f); + var res = tf.constant(new int[] {2,1,3, 4, 5, 6,8,7,9,11,10,12,14,13,15,17,16,18}); + res = tf.reshape(res,(3,2,3)); + Assert.AreEqual(adjusted_image, res); + } + + [TestMethod] + public void combined_non_max_suppression() + { + var boxesX = tf.constant(new float[,] { { 200, 100, 150, 100 }, { 220, 120, 150, 100 }, { 190, 110, 150, 100 }, { 210, 112, 150, 100 } }); + var boxes1 = tf.reshape(boxesX, (1, 4, 1, 4)); + var scoresX = tf.constant(new float[,] { { 0.2f, 0.7f, 0.1f }, { 0.1f, 0.8f, 0.1f }, { 0.3f, 0.6f, 0.1f }, { 0.05f, 0.9f, 0.05f } }); + var scores1 = tf.reshape(scoresX, (1, 4, 3)); + + var init = tf.global_variables_initializer(); + var sess = tf.Session(); + sess.run(init); + + var (boxes, scores, classes, valid_detections) = tf.image.combined_non_max_suppression(boxes1, scores1, 10, 10, 0.5f, 0.2f, clip_boxes: false); + var result = sess.run((boxes, scores, classes, valid_detections)); + + var boxes_gt = tf.constant(new float[,] { { 210f, 112f, 150f, 100f }, { 200f, 100f, 150f, 100f }, { 190f, 110f, 150f, 100f }, + { 0f, 0f, 0f, 0f},{ 0f, 0f, 0f, 0f},{ 0f, 0f, 0f, 0f},{ 0f, 0f, 0f , 0f},{ 0f, 0f, 0f, 0f},{ 0f , 0f, 0f, 0f},{ 0f, 0f, 0f, 0f} }); + boxes_gt = tf.reshape(boxes_gt, (1, 10, 4)); + Assert.AreEqual(result.Item1.numpy(), boxes_gt.numpy()); + var scores_gt = tf.constant(new float[,] { { 0.9f, 0.7f, 0.3f, 0f, 0f, 0f, 0f, 0f, 0f, 0f } }); + scores_gt = tf.reshape(scores_gt, (1, 10)); + Assert.AreEqual(result.Item2.numpy(), scores_gt.numpy()); + var classes_gt = tf.constant(new float[,] { { 1f, 1f, 0f, 0f, 0f, 0f, 0f, 0f, 0f, 0f } }); + classes_gt = tf.reshape(classes_gt, (1, 10)); + Assert.AreEqual(result.Item3.numpy(), classes_gt.numpy()); + var valid_detections_gt = tf.constant(new int[,] { { 3 } }); + valid_detections_gt = tf.reshape(valid_detections_gt, (1)); + Assert.AreEqual(result.Item4.numpy(), valid_detections_gt.numpy()); + } + + [TestMethod] + public void crop_and_resize() + { + int BATCH_SIZE = 1; + int NUM_BOXES = 5; + int IMAGE_HEIGHT = 256; + int IMAGE_WIDTH = 256; + int CHANNELS = 3; + var crop_size = tf.constant(new int[] { 24, 24 }); + var image = tf.random.uniform((BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS)); + var boxes = tf.random.uniform((NUM_BOXES, 4)); + var box_ind = tf.random.uniform((NUM_BOXES), minval: 0, maxval: BATCH_SIZE, dtype: TF_DataType.TF_INT32); + var output = tf.image.crop_and_resize(image, boxes, box_ind, crop_size); + Assert.AreEqual((5,24,24,3), output.shape); + } + [TestMethod] public void decode_image() { var img = tf.image.decode_image(contents); Assert.AreEqual(img.name, "decode_image/DecodeImage:0"); } - + [TestMethod] public void resize_image() { @@ -74,23 +149,110 @@ public void TestCropAndResize() var cropSize2_2 = tf.Variable(np.array(4, 4)); var init = tf.global_variables_initializer(); - using (Session sess = tf.Session()) - { - sess.run(init); + var sess = tf.Session(); + sess.run(init); + + var cropped = tf.image.crop_and_resize(image, box, boxInd, cropSize1_1); + + var result = sess.run(cropped); + // check if cropped to 1x1 center was succesfull + Assert.AreEqual(result.size, 1ul); + Assert.AreEqual(result[0, 0, 0, 0], 4f); + + cropped = tf.image.crop_and_resize(image2, box, boxInd, cropSize2_2); + result = sess.run(cropped); + // check if flipped and no cropping occured + Assert.AreEqual(result.size, 16ul); + Assert.AreEqual(result[0, 0, 0, 0], 12f); + } + + [TestMethod] + public void ImageSaveTest() + { + var imgPath = TestHelper.GetFullPathFromDataDir("img001.bmp"); + var jpegImgPath = TestHelper.GetFullPathFromDataDir("img001.jpeg"); + var pngImgPath = TestHelper.GetFullPathFromDataDir("img001.png"); + + File.Delete(jpegImgPath); + File.Delete(pngImgPath); + + var contents = tf.io.read_file(imgPath); + var bmp = tf.image.decode_image(contents); + Assert.AreEqual(bmp.name, "decode_image/DecodeImage:0"); + + var jpeg = tf.image.encode_jpeg(bmp); + var op1 = tf.io.write_file(jpegImgPath, jpeg); + + var png = tf.image.encode_png(bmp); + var op2 = tf.io.write_file(pngImgPath, png); + + this.session().run(op1); + this.session().run(op2); + + Assert.IsTrue(File.Exists(jpegImgPath), "not find file:" + jpegImgPath); + Assert.IsTrue(File.Exists(pngImgPath), "not find file:" + pngImgPath); + + // 如果要测试图片正确性,需要注释下面两行代码 + File.Delete(jpegImgPath); + File.Delete(pngImgPath); + } + + [TestMethod] + public void ImageFlipTest() + { + var imgPath = TestHelper.GetFullPathFromDataDir("img001.bmp"); + + var contents = tf.io.read_file(imgPath); + var bmp = tf.image.decode_image(contents); + + // 左右翻转 + var lrImgPath = TestHelper.GetFullPathFromDataDir("img001_lr.png"); + File.Delete(lrImgPath); + + var lr = tf.image.flip_left_right(bmp); + var png = tf.image.encode_png(lr); + var op = tf.io.write_file(lrImgPath, png); + this.session().run(op); + + Assert.IsTrue(File.Exists(lrImgPath), "not find file:" + lrImgPath); + + // 上下翻转 + var updownImgPath = TestHelper.GetFullPathFromDataDir("img001_updown.png"); + File.Delete(updownImgPath); + + var updown = tf.image.flip_up_down(bmp); + var pngupdown = tf.image.encode_png(updown); + var op2 = tf.io.write_file(updownImgPath, pngupdown); + this.session().run(op2); + Assert.IsTrue(File.Exists(updownImgPath)); + + + // 暂时先人工观测图片是否翻转,观测时需要删除下面这两行代码 + File.Delete(lrImgPath); + File.Delete(updownImgPath); + + // 多图翻转 + // 目前直接通过 bmp 拿到 shape ,这里先用默认定义图片大小来构建了 + var mImg = tf.stack(new[] { bmp, lr }, axis:0); + print(mImg.shape); + + var up2 = tf.image.flip_up_down(mImg); + + var updownImgPath_m1 = TestHelper.GetFullPathFromDataDir("img001_m_ud.png"); // 直接上下翻转 + File.Delete(updownImgPath_m1); + + var img001_updown_m2 = TestHelper.GetFullPathFromDataDir("img001_m_lr_ud.png"); // 先左右再上下 + File.Delete(img001_updown_m2); - var cropped = tf.image.crop_and_resize(image, box, boxInd, cropSize1_1); + var png2 = tf.image.encode_png(up2[0]); + tf.io.write_file(updownImgPath_m1, png2); - var result = sess.run(cropped); - // check if cropped to 1x1 center was succesfull - Assert.AreEqual(result.size, 1ul); - Assert.AreEqual(result[0, 0, 0, 0], 4f); + png2 = tf.image.encode_png(up2[1]); + tf.io.write_file(img001_updown_m2, png2); - cropped = tf.image.crop_and_resize(image2, box, boxInd, cropSize2_2); - result = sess.run(cropped); - // check if flipped and no cropping occured - Assert.AreEqual(result.size, 16ul); - Assert.AreEqual(result[0, 0, 0, 0], 12f); - } + // 如果要测试图片正确性,需要注释下面两行代码 + File.Delete(updownImgPath_m1); + File.Delete(img001_updown_m2); } } } diff --git a/test/TensorFlowNET.Graph.UnitTest/MultithreadingTests.cs b/test/TensorFlowNET.Graph.UnitTest/MultithreadingTests.cs index f657acc74..4b92d0210 100644 --- a/test/TensorFlowNET.Graph.UnitTest/MultithreadingTests.cs +++ b/test/TensorFlowNET.Graph.UnitTest/MultithreadingTests.cs @@ -24,7 +24,7 @@ void Core(int tid) { Assert.IsNull(tf.peak_default_graph()); - using var sess = tf.Session(); + var sess = tf.Session(); var default_graph = tf.get_default_graph(); var sess_graph = sess.graph; Assert.IsNotNull(default_graph); @@ -45,7 +45,7 @@ void Core(int tid) { Assert.IsNull(tf.peak_default_graph()); //tf.Session created an other graph - using var sess = tf.Session(); + var sess = tf.Session(); var default_graph = tf.get_default_graph(); var sess_graph = sess.graph; Assert.IsNotNull(default_graph); @@ -69,7 +69,7 @@ void Core(int tid) beforehand.as_default(); Assert.IsNotNull(tf.peak_default_graph()); - using var sess = tf.Session(); + var sess = tf.Session(); var default_graph = tf.peak_default_graph(); var sess_graph = sess.graph; Assert.IsNotNull(default_graph); @@ -102,7 +102,7 @@ public void TensorCreation() //the core method void Core(int tid) { - using var sess = tf.Session(); + var sess = tf.Session(); for (int i = 0; i < 100; i++) { var t = new Tensor(1); @@ -119,7 +119,7 @@ public void TensorCreation_Array() void Core(int tid) { //tf.Session created an other graph - using var sess = tf.Session(); + var sess = tf.Session(); for (int i = 0; i < 100; i++) { var t = new Tensor(new int[] { 1, 2, 3 }); @@ -142,7 +142,7 @@ void Core(int tid) var a1 = tf.constant(new[] { 2f }, shape: new[] { 1 }); var a2 = tf.constant(new[] { 3f }, shape: new[] { 1 }); var math = a1 + a2; - using var sess = tf.Session(graph); + var sess = tf.Session(graph); for (int i = 0; i < 100; i++) { var result = sess.run(math); @@ -162,7 +162,7 @@ void Core(int tid) tf.compat.v1.disable_eager_execution(); var graph = tf.Graph().as_default(); - using var sess = tf.Session(graph); + var sess = tf.Session(graph); Assert.IsNotNull(tf.get_default_graph()); //graph is created automatically to perform create these operations var a1 = tf.constant(new[] { 2f }, shape: new[] { 1 }); @@ -182,7 +182,7 @@ public void SessionRun_Initialization() //the core method void Core(int tid) { - using var sess = tf.Session(); + var sess = tf.Session(); Assert.IsNotNull(tf.get_default_graph()); //graph is created automatically to perform create these operations var a1 = tf.constant(new[] { 2f }, shape: new[] { 1 }); diff --git a/test/TensorFlowNET.Graph.UnitTest/OperationsTest.cs b/test/TensorFlowNET.Graph.UnitTest/OperationsTest.cs index 89dce0e18..47887e29c 100644 --- a/test/TensorFlowNET.Graph.UnitTest/OperationsTest.cs +++ b/test/TensorFlowNET.Graph.UnitTest/OperationsTest.cs @@ -20,7 +20,7 @@ public class OperationsTest : GraphModeTestBase public void GetAllOpList() { var handle = c_api.TF_GetAllOpList(); - using var buffer = new Buffer(handle); + var buffer = new Buffer(handle); var op_list = OpList.Parser.ParseFrom(buffer.ToArray()); var _registered_ops = new Dictionary(); @@ -39,13 +39,11 @@ public void addInPlaceholder() var b = tf.placeholder(tf.float32); var c = tf.add(a, b); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, 3.0f), - new FeedItem(b, 2.0f)); - Assert.AreEqual(o, 5.0f); - } + var sess = tf.Session(); + var o = sess.run(c, + new FeedItem(a, 3.0f), + new FeedItem(b, 2.0f)); + Assert.AreEqual(o, 5.0f); } [TestMethod] @@ -55,11 +53,9 @@ public void addInConstant() var b = tf.constant(5.0f); var c = tf.add(a, b); - using (var sess = tf.Session()) - { - var o = sess.run(c); - Assert.AreEqual(o, 9.0f); - } + var sess = tf.Session(); + var o = sess.run(c); + Assert.AreEqual(o, 9.0f); } [TestMethod] @@ -69,11 +65,9 @@ public void isFinite() var b = tf.cast(tf.is_finite(a), tf.float32); var check = np.array(1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f); - using (var sess = tf.Session()) - { - var o = sess.run(b); - Assert.IsTrue(np.array_equal(o, check)); - } + var sess = tf.Session(); + var o = sess.run(b); + Assert.IsTrue(np.array_equal(o, check)); } [TestMethod] @@ -83,11 +77,9 @@ public void isNan() var b = tf.cast(tf.is_nan(a), tf.float32); var check = np.array(0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f); - using (var sess = tf.Session()) - { - var o = sess.run(b); - Assert.IsTrue(np.array_equal(o, check)); - } + var sess = tf.Session(); + var o = sess.run(b); + Assert.IsTrue(np.array_equal(o, check)); } [TestMethod] @@ -97,38 +89,30 @@ public void cumSumTest() var b = tf.cumsum(a); var check = np.array(1, 2, 4, 7, 11, 16); - using (var sess = tf.Session()) - { - var o = sess.run(b); - Assert.IsTrue(np.array_equal(o, check)); - } + var sess = tf.Session(); + var o = sess.run(b); + Assert.IsTrue(np.array_equal(o, check)); b = tf.cumsum(a, exclusive: true); check = np.array(0, 1, 2, 4, 7, 11); - using (var sess = tf.Session()) - { - var o = sess.run(b); - Assert.IsTrue(np.array_equal(o, check)); - } + sess = tf.Session(); + o = sess.run(b); + Assert.IsTrue(np.array_equal(o, check)); b = tf.cumsum(a, reverse: true); check = np.array(16, 15, 14, 12, 9, 5); - using (var sess = tf.Session()) - { - var o = sess.run(b); - Assert.IsTrue(np.array_equal(o, check)); - } + sess = tf.Session(); + o = sess.run(b); + Assert.IsTrue(np.array_equal(o, check)); b = tf.cumsum(a, exclusive: true, reverse: true); check = np.array(15, 14, 12, 9, 5, 0); - using (var sess = tf.Session()) - { - var o = sess.run(b); - Assert.IsTrue(np.array_equal(o, check)); - } + sess = tf.Session(); + o = sess.run(b); + Assert.IsTrue(np.array_equal(o, check)); } [TestMethod] @@ -140,38 +124,30 @@ public void logicalOpsTest() var d = tf.cast(tf.logical_and(b, c), tf.int32); var check = np.array(new[] { 0, 0, 0, 0, 0, 0, 0, 0 }); - using (var sess = tf.Session()) - { - var o = sess.run(d); - Assert.IsTrue(np.array_equal(o, check)); - } + var sess = tf.Session(); + var o = sess.run(d); + Assert.IsTrue(np.array_equal(o, check)); d = tf.cast(tf.logical_not(b), tf.int32); check = np.array(new[] { 1, 1, 1, 1, 0, 0, 0, 0 }); - using (var sess = tf.Session()) - { - var o = sess.run(d); - Assert.IsTrue(np.array_equal(o, check)); - } + sess = tf.Session(); + o = sess.run(d); + Assert.IsTrue(np.array_equal(o, check)); d = tf.cast(tf.logical_or(b, c), tf.int32); check = np.array(new[] { 1, 1, 1, 1, 1, 1, 1, 1 }); - using (var sess = tf.Session()) - { - var o = sess.run(d); - Assert.IsTrue(np.array_equal(o, check)); - } + sess = tf.Session(); + o = sess.run(d); + Assert.IsTrue(np.array_equal(o, check)); d = tf.cast(tf.logical_xor(b, c), tf.int32); check = np.array(new[] { 1, 1, 1, 1, 1, 1, 1, 1 }); - using (var sess = tf.Session()) - { - var o = sess.run(d); - Assert.IsTrue(np.array_equal(o, check)); - } + sess = tf.Session(); + o = sess.run(d); + Assert.IsTrue(np.array_equal(o, check)); } [TestMethod] @@ -192,41 +168,33 @@ public void addOpTests() var b = tf.placeholder(tf.int32, shape: new Shape(rows, cols)); var c = tf.reduce_sum(tf.reduce_sum(tf.add(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, intResult); - } + var sess = tf.Session(); + var o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, intResult); // Testing `operator +(Tensor x, Tensor y)` c = tf.reduce_sum(tf.reduce_sum(a + b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, intResult); // Testing `operator +(Tensor x, int y)` c = tf.reduce_sum(tf.reduce_sum(a + secondIntVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, intResult); // Testing `operator +(int x, Tensor y)` c = tf.reduce_sum(tf.reduce_sum(secondIntVal + a, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, intResult); #endregion #region floatTest @@ -241,41 +209,33 @@ public void addOpTests() b = tf.placeholder(tf.float32, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.add(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, floatResult); // Testing `operator +(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a + b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, floatResult); // Testing `operator +(Tensor x, float y) c = tf.reduce_sum(tf.reduce_sum(a + secondFloatVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, floatResult); // Testing `operator +(float x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(secondFloatVal + a, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, floatResult); #endregion #region doubleTest @@ -290,41 +250,33 @@ public void addOpTests() b = tf.placeholder(tf.float64, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.add(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator +(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a + b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, doubleResult); // Testing `operator +(Tensor x, double y) c = tf.reduce_sum(tf.reduce_sum(a + secondDoubleVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, doubleResult); // Testing `operator +(double x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(secondDoubleVal + a, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual(o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual(o, doubleResult); #endregion } @@ -347,50 +299,40 @@ public void subOpTests() var b = tf.placeholder(tf.int32, shape: new Shape(rows, cols)); var c = tf.reduce_sum(tf.reduce_sum(tf.sub(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + var sess = tf.Session(); + var o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator -(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a - b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator -(Tensor x, int y) c = tf.reduce_sum(tf.reduce_sum(a - secondIntVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator -(int x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(secondIntVal - a, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, Math.Abs(intResult)); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, Math.Abs(intResult)); // Testing `operator -(Tensor x) c = tf.reduce_sum(tf.reduce_sum(-a, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResultTwo); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResultTwo); #endregion #region floatTest @@ -406,50 +348,40 @@ public void subOpTests() b = tf.placeholder(tf.float32, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.sub(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); // Testing `operator -(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a - b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); // Testing `operator -(Tensor x, float y) c = tf.reduce_sum(tf.reduce_sum(a - secondFloatVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); // Testing `operator -(float x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(secondFloatVal - a, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, Math.Abs(floatResult)); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, Math.Abs(floatResult)); // Testing `operator -(Tensor x) c = tf.reduce_sum(tf.reduce_sum(-a, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResultTwo); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResultTwo); #endregion #region doubleTest @@ -465,50 +397,40 @@ public void subOpTests() b = tf.placeholder(tf.float64, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.sub(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator -(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a - b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator -(Tensor x, double y) c = tf.reduce_sum(tf.reduce_sum(a - secondDoubleVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator -(double x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(secondDoubleVal - a, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, Math.Abs(doubleResult)); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, Math.Abs(doubleResult)); // Testing `operator -(Tensor x) c = tf.reduce_sum(tf.reduce_sum(-a, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResultTwo); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResultTwo); #endregion } @@ -588,41 +510,33 @@ public void mulOpTests() var b = tf.placeholder(tf.int32, shape: new Shape(rows, cols)); var c = tf.reduce_sum(tf.reduce_sum(tf.multiply(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + var sess = tf.Session(); + var o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator *(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a * b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator *(Tensor x, int y) c = tf.reduce_sum(tf.reduce_sum(a * secondIntVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator *(int x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(firstIntVal * b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); #endregion #region floatTest @@ -637,41 +551,33 @@ public void mulOpTests() b = tf.placeholder(tf.float32, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.multiply(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); // Testing `operator *(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a * b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); // Testing `operator *(Tensor x, float y) c = tf.reduce_sum(tf.reduce_sum(a * secondFloatVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); // Testing `operator *(float x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(firstFloatVal * b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); #endregion #region doubleTest @@ -686,41 +592,33 @@ public void mulOpTests() b = tf.placeholder(tf.float64, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.multiply(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator *(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a * b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator *(Tensor x, double y) c = tf.reduce_sum(tf.reduce_sum(a * secondDoubleVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator *(double x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(firstDoubleVal * b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); #endregion } @@ -743,41 +641,33 @@ public void divOpTests() var b = tf.placeholder(tf.int32, shape: new Shape(rows, cols)); var c = tf.reduce_sum(tf.reduce_sum(gen_math_ops.floor_div(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + var sess = tf.Session(); + var o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator /(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a / b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator /(Tensor x, int y) c = tf.reduce_sum(tf.reduce_sum(a / secondIntVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator /(int x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(firstIntVal / b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); #endregion #region floatTest @@ -792,41 +682,33 @@ public void divOpTests() b = tf.placeholder(tf.float32, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.divide(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); // Testing `operator /(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a / b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); // Testing `operator /(Tensor x, float y) c = tf.reduce_sum(tf.reduce_sum(a / secondFloatVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); // Testing `operator /(float x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(firstFloatVal / b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((float)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((float)o, floatResult); #endregion #region doubleTest @@ -841,41 +723,33 @@ public void divOpTests() b = tf.placeholder(tf.float64, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.divide(a, b), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator /(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(a / b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator /(Tensor x, double y) c = tf.reduce_sum(tf.reduce_sum(a / secondFloatVal, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); // Testing `operator /(double x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(firstFloatVal / b, 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((double)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((double)o, doubleResult); #endregion } @@ -897,41 +771,33 @@ public void greaterThanOpTests() var b = tf.placeholder(tf.int32, shape: new Shape(rows, cols)); var c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + var sess = tf.Session(); + var o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator >(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator >(Tensor x, int y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > intThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator >(int x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(intThreshold > a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResultTwo); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResultTwo); #endregion #region floatTest @@ -946,41 +812,33 @@ public void greaterThanOpTests() b = tf.placeholder(tf.float32, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, floatResult); // Testing `operator >(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, floatResult); // Testing `operator >(Tensor x, float y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > floatThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, floatResult); // Testing `operator >(float x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(floatThreshold > a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResultTwo); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, floatResultTwo); #endregion #region doubleTest @@ -995,41 +853,33 @@ public void greaterThanOpTests() b = tf.placeholder(tf.float64, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, doubleResult); // Testing `operator >(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, doubleResult); // Testing `operator >(Tensor x, double y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > doubleThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, doubleResult); // Testing `operator >(double x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(doubleThreshold > a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResultTwo); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, doubleResultTwo); #endregion } @@ -1051,41 +901,33 @@ public void lessThanOpTests() var b = tf.placeholder(tf.int32, shape: new Shape(rows, cols)); var c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + var sess = tf.Session(); + var o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator <(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator <(Tensor x, int y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < intThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator <(int x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(intThreshold < a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResultTwo); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResultTwo); #endregion #region floatTest @@ -1100,41 +942,33 @@ public void lessThanOpTests() b = tf.placeholder(tf.float32, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, floatResult); // Testing `operator <(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, floatResult); // Testing `operator <(Tensor x, float y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < floatThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, floatResult); // Testing `operator <(float x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(floatThreshold < a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResultTwo); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, floatResultTwo); #endregion #region doubleTest @@ -1149,41 +983,33 @@ public void lessThanOpTests() b = tf.placeholder(tf.float64, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, doubleResult); // Testing `operator <(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, doubleResult); // Testing `operator <(Tensor x, double y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < doubleThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, doubleResult); // Testing `operator <(double x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(doubleThreshold < a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResultTwo); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, doubleResultTwo); #endregion } @@ -1205,41 +1031,33 @@ public void greaterOrEqualThanOpTests() var b = tf.placeholder(tf.int32, shape: new Shape(rows, cols)); var c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater_equal(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + var sess = tf.Session(); + var o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator >=(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + sess = tf.Session(); + o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator >=(Tensor x, int y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= intThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + Assert.AreEqual((int)o, intResult); // Testing `operator >=(int x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(intThreshold >= a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResultTwo); - } + Assert.AreEqual((int)o, intResultTwo); #endregion #region floatTest @@ -1254,41 +1072,33 @@ public void greaterOrEqualThanOpTests() b = tf.placeholder(tf.float32, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater_equal(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + Assert.AreEqual((int)o, floatResult); // Testing `operator >=(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + Assert.AreEqual((int)o, floatResult); // Testing `operator >=(Tensor x, float y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= floatThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + sess.run(c, new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + Assert.AreEqual((int)o, floatResult); // Testing `operator >=(float x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(floatThreshold >= a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResultTwo); - } + Assert.AreEqual((int)o, floatResultTwo); #endregion #region doubleTest @@ -1303,41 +1113,33 @@ public void greaterOrEqualThanOpTests() b = tf.placeholder(tf.float64, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater_equal(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + Assert.AreEqual((int)o, doubleResult); // Testing `operator >=(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + Assert.AreEqual((int)o, doubleResult); // Testing `operator >=(Tensor x, double y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= doubleThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + Assert.AreEqual((int)o, doubleResult); // Testing `operator >=(double x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(doubleThreshold >= a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResultTwo); - } + Assert.AreEqual((int)o, doubleResultTwo); #endregion } @@ -1359,41 +1161,33 @@ public void lessOrEqualThanOpTests() var b = tf.placeholder(tf.int32, shape: new Shape(rows, cols)); var c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less_equal(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, - new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), - new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + var sess = tf.Session(); + var o = sess.run(c, + new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), + new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); + Assert.AreEqual((int)o, intResult); // Testing `operator <=(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))), new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + Assert.AreEqual((int)o, intResult); // Testing `operator <=(Tensor x, int y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= intThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResult); - } + Assert.AreEqual((int)o, intResult); // Testing `operator <=(int x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(intThreshold <= a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, intResultTwo); - } + Assert.AreEqual((int)o, intResultTwo); #endregion #region floatTest @@ -1408,41 +1202,33 @@ public void lessOrEqualThanOpTests() b = tf.placeholder(tf.float32, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less_equal(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + Assert.AreEqual((int)o, floatResult); // Testing `operator <=(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))), new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + Assert.AreEqual((int)o, floatResult); // Testing `operator <=(Tensor x, float y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= floatThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResult); - } + Assert.AreEqual((int)o, floatResult); // Testing `operator <=(float x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(floatThreshold <= a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, floatResultTwo); - } + Assert.AreEqual((int)o, floatResultTwo); #endregion #region doubleTest @@ -1457,41 +1243,33 @@ public void lessOrEqualThanOpTests() b = tf.placeholder(tf.float64, shape: new Shape(rows, cols)); c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less_equal(a, b), tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + Assert.AreEqual((int)o, doubleResult); // Testing `operator <=(Tensor x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= b, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))), new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + Assert.AreEqual((int)o, doubleResult); // Testing `operator <=(Tensor x, double y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= doubleThreshold, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResult); - } + Assert.AreEqual((int)o, doubleResult); // Testing `operator <=(double x, Tensor y) c = tf.reduce_sum(tf.reduce_sum(tf.cast(doubleThreshold <= a, tf.int32), 1)); - using (var sess = tf.Session()) - { - var o = sess.run(c, + sess = tf.Session(); + o = sess.run(c, new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols)))); - Assert.AreEqual((int)o, doubleResultTwo); - } + Assert.AreEqual((int)o, doubleResultTwo); #endregion } diff --git a/test/TensorFlowNET.Graph.UnitTest/PythonTest.cs b/test/TensorFlowNET.Graph.UnitTest/PythonTest.cs deleted file mode 100644 index e49103a18..000000000 --- a/test/TensorFlowNET.Graph.UnitTest/PythonTest.cs +++ /dev/null @@ -1,310 +0,0 @@ -using Microsoft.VisualStudio.TestTools.UnitTesting; -using Newtonsoft.Json.Linq; -using Tensorflow.NumPy; -using System; -using System.Collections; -using System.Linq; -using Tensorflow; -using static Tensorflow.Binding; - -namespace TensorFlowNET.UnitTest -{ - /// - /// Use as base class for test classes to get additional assertions - /// - public class PythonTest - { - #region python compatibility layer - protected PythonTest self { get => this; } - protected int None => -1; - #endregion - - #region pytest assertions - - public void assertItemsEqual(ICollection given, ICollection expected) - { - if (given is Hashtable && expected is Hashtable) - { - Assert.AreEqual(JObject.FromObject(expected).ToString(), JObject.FromObject(given).ToString()); - return; - } - Assert.IsNotNull(expected); - Assert.IsNotNull(given); - var e = expected.OfType().ToArray(); - var g = given.OfType().ToArray(); - Assert.AreEqual(e.Length, g.Length, $"The collections differ in length expected {e.Length} but got {g.Length}"); - for (int i = 0; i < e.Length; i++) - { - /*if (g[i] is NDArray && e[i] is NDArray) - assertItemsEqual((g[i] as NDArray).GetData(), (e[i] as NDArray).GetData()); - else*/ - if (e[i] is ICollection && g[i] is ICollection) - assertEqual(g[i], e[i]); - else - Assert.AreEqual(e[i], g[i], $"Items differ at index {i}, expected {e[i]} but got {g[i]}"); - } - } - - public void assertAllEqual(ICollection given, ICollection expected) - { - assertItemsEqual(given, expected); - } - - public void assertFloat32Equal(float expected, float actual, string msg) - { - float eps = 1e-6f; - Assert.IsTrue(Math.Abs(expected - actual) < eps * Math.Max(1.0f, Math.Abs(expected)), $"{msg}: expected {expected} vs actual {actual}"); - } - - public void assertFloat64Equal(double expected, double actual, string msg) - { - double eps = 1e-16f; - Assert.IsTrue(Math.Abs(expected - actual) < eps * Math.Max(1.0f, Math.Abs(expected)), $"{msg}: expected {expected} vs actual {actual}"); - } - - public void assertEqual(object given, object expected) - { - /*if (given is NDArray && expected is NDArray) - { - assertItemsEqual((given as NDArray).GetData(), (expected as NDArray).GetData()); - return; - }*/ - if (given is Hashtable && expected is Hashtable) - { - Assert.AreEqual(JObject.FromObject(expected).ToString(), JObject.FromObject(given).ToString()); - return; - } - if (given is ICollection && expected is ICollection) - { - assertItemsEqual(given as ICollection, expected as ICollection); - return; - } - if (given is float && expected is float) - { - assertFloat32Equal((float)expected, (float)given, ""); - return; - } - if (given is double && expected is double) - { - assertFloat64Equal((double)expected, (double)given, ""); - return; - } - Assert.AreEqual(expected, given); - } - - public void assertEquals(object given, object expected) - { - assertEqual(given, expected); - } - - public void assert(object given) - { - if (given is bool) - Assert.IsTrue((bool)given); - Assert.IsNotNull(given); - } - - public void assertIsNotNone(object given) - { - Assert.IsNotNull(given); - } - - public void assertFalse(bool cond) - { - Assert.IsFalse(cond); - } - - public void assertTrue(bool cond) - { - Assert.IsTrue(cond); - } - - public void assertAllClose(NDArray array1, NDArray array2, double eps = 1e-5) - { - Assert.IsTrue(np.allclose(array1, array2, rtol: eps)); - } - - public void assertAllClose(double value, NDArray array2, double eps = 1e-5) - { - var array1 = np.ones_like(array2) * value; - // Assert.IsTrue(np.allclose(array1, array2, rtol: eps)); - } - - public void assertProtoEquals(object toProto, object o) - { - throw new NotImplementedException(); - } - - #endregion - - #region tensor evaluation and test session - - //protected object _eval_helper(Tensor[] tensors) - //{ - // if (tensors == null) - // return null; - // return nest.map_structure(self._eval_tensor, tensors); - //} - - protected object _eval_tensor(object tensor) - { - if (tensor == null) - return None; - //else if (callable(tensor)) - // return self._eval_helper(tensor()) - else - { - try - { - //TODO: - // if sparse_tensor.is_sparse(tensor): - // return sparse_tensor.SparseTensorValue(tensor.indices, tensor.values, - // tensor.dense_shape) - //return (tensor as Tensor).numpy(); - } - catch (Exception) - { - throw new ValueError("Unsupported type: " + tensor.GetType()); - } - return null; - } - } - - /// - /// This function is used in many original tensorflow unit tests to evaluate tensors - /// in a test session with special settings (for instance constant folding off) - /// - /// - public T evaluate(Tensor tensor) - { - object result = null; - // if context.executing_eagerly(): - // return self._eval_helper(tensors) - // else: - { - using (var sess = tf.Session()) - { - var ndarray = tensor.eval(sess); - if (typeof(T) == typeof(double)) - { - double x = ndarray; - result = x; - } - else if (typeof(T) == typeof(int)) - { - int x = ndarray; - result = x; - } - else - { - result = ndarray; - } - } - - return (T)result; - } - } - - - public Session cached_session() - { - throw new NotImplementedException(); - } - - //Returns a TensorFlow Session for use in executing tests. - public Session session(Graph graph = null, object config = null, bool use_gpu = false, bool force_gpu = false) - { - //Note that this will set this session and the graph as global defaults. - - //Use the `use_gpu` and `force_gpu` options to control where ops are run.If - //`force_gpu` is True, all ops are pinned to `/device:GPU:0`. Otherwise, if - //`use_gpu` is True, TensorFlow tries to run as many ops on the GPU as - //possible.If both `force_gpu and `use_gpu` are False, all ops are pinned to - //the CPU. - - //Example: - //```python - //class MyOperatorTest(test_util.TensorFlowTestCase): - // def testMyOperator(self): - // with self.session(use_gpu= True): - // valid_input = [1.0, 2.0, 3.0, 4.0, 5.0] - // result = MyOperator(valid_input).eval() - // self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0] - // invalid_input = [-1.0, 2.0, 7.0] - // with self.assertRaisesOpError("negative input not supported"): - // MyOperator(invalid_input).eval() - //``` - - //Args: - // graph: Optional graph to use during the returned session. - // config: An optional config_pb2.ConfigProto to use to configure the - // session. - // use_gpu: If True, attempt to run as many ops as possible on GPU. - // force_gpu: If True, pin all ops to `/device:GPU:0`. - - //Yields: - // A Session object that should be used as a context manager to surround - // the graph building and execution code in a test case. - - Session s = null; - //if (context.executing_eagerly()) - // yield None - //else - //{ - s = self._create_session(graph, config, force_gpu); - //} - return s.as_default(); - } - - // See session() for details. - private Session _create_session(Graph graph, object cfg, bool forceGpu) - { - var prepare_config = new Func((config) => - { - // """Returns a config for sessions. - // Args: - // config: An optional config_pb2.ConfigProto to use to configure the - // session. - // Returns: - // A config_pb2.ConfigProto object. - - //TODO: config - - // # use_gpu=False. Currently many tests rely on the fact that any device - // # will be used even when a specific device is supposed to be used. - // allow_soft_placement = not force_gpu - // if config is None: - // config = config_pb2.ConfigProto() - // config.allow_soft_placement = allow_soft_placement - // config.gpu_options.per_process_gpu_memory_fraction = 0.3 - // elif not allow_soft_placement and config.allow_soft_placement: - // config_copy = config_pb2.ConfigProto() - // config_copy.CopyFrom(config) - // config = config_copy - // config.allow_soft_placement = False - // # Don't perform optimizations for tests so we don't inadvertently run - // # gpu ops on cpu - // config.graph_options.optimizer_options.opt_level = -1 - // # Disable Grappler constant folding since some tests & benchmarks - // # use constant input and become meaningless after constant folding. - // # DO NOT DISABLE GRAPPLER OPTIMIZERS WITHOUT CONSULTING WITH THE - // # GRAPPLER TEAM. - // config.graph_options.rewrite_options.constant_folding = ( - // rewriter_config_pb2.RewriterConfig.OFF) - // config.graph_options.rewrite_options.pin_to_host_optimization = ( - // rewriter_config_pb2.RewriterConfig.OFF) - return config; - }); - //TODO: use this instead of normal session - //return new ErrorLoggingSession(graph = graph, config = prepare_config(config)) - return new Session(graph);//, config = prepare_config(config)) - } - - #endregion - - public void AssetSequenceEqual(T[] a, T[] b) - { - Assert.IsTrue(Enumerable.SequenceEqual(a, b)); - } - } -} diff --git a/test/TensorFlowNET.Graph.UnitTest/SignalTest.cs b/test/TensorFlowNET.Graph.UnitTest/SignalTest.cs new file mode 100644 index 000000000..cc09b101d --- /dev/null +++ b/test/TensorFlowNET.Graph.UnitTest/SignalTest.cs @@ -0,0 +1,102 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow.NumPy; +using System; +using System.Collections.Generic; +using System.Linq; +using Tensorflow; +using static Tensorflow.Binding; +using Tensorflow.Keras.UnitTest; + +namespace TensorFlowNET.UnitTest.Basics +{ + [TestClass] + public class SignalTest : EagerModeTestBase + { + [TestMethod] + public void fft() + { + double[] d_real = new double[] { 1.0, 2.0, 3.0, 4.0 }; + double[] d_imag = new double[] { -1.0, -3.0, 5.0, 7.0 }; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); + + Tensor t_complex = tf.complex(t_real, t_imag); + + Tensor t_frequency_domain = tf.signal.fft(t_complex); + Tensor f_time_domain = tf.signal.ifft(t_frequency_domain); + + Tensor t_real_result = tf.math.real(f_time_domain); + Tensor t_imag_result = tf.math.imag(f_time_domain); + + NDArray n_real_result = t_real_result.numpy(); + NDArray n_imag_result = t_imag_result.numpy(); + + double[] d_real_result = n_real_result.ToArray(); + double[] d_imag_result = n_imag_result.ToArray(); + + Assert.IsTrue(base.Equal(d_real_result, d_real)); + Assert.IsTrue(base.Equal(d_imag_result, d_imag)); + } + [TestMethod] + public void fft2d() + { + double[] d_real = new double[] { 1.0, 2.0, 3.0, 4.0 }; + double[] d_imag = new double[] { -1.0, -3.0, 5.0, 7.0 }; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); + + Tensor t_complex = tf.complex(t_real, t_imag); + + Tensor t_complex_2d = tf.reshape(t_complex,new int[] { 2, 2 }); + + Tensor t_frequency_domain_2d = tf.signal.fft2d(t_complex_2d); + Tensor t_time_domain_2d = tf.signal.ifft2d(t_frequency_domain_2d); + + Tensor t_time_domain = tf.reshape(t_time_domain_2d, new int[] { 4 }); + + Tensor t_real_result = tf.math.real(t_time_domain); + Tensor t_imag_result = tf.math.imag(t_time_domain); + + NDArray n_real_result = t_real_result.numpy(); + NDArray n_imag_result = t_imag_result.numpy(); + + double[] d_real_result = n_real_result.ToArray(); + double[] d_imag_result = n_imag_result.ToArray(); + + Assert.IsTrue(base.Equal(d_real_result, d_real)); + Assert.IsTrue(base.Equal(d_imag_result, d_imag)); + } + [TestMethod] + public void fft3d() + { + double[] d_real = new double[] { 1.0, 2.0, 3.0, 4.0, -3.0, -2.0, -1.0, -4.0 }; + double[] d_imag = new double[] { -1.0, -3.0, 5.0, 7.0, 6.0, 4.0, 2.0, 0.0}; + + Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE); + Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); + + Tensor t_complex = tf.complex(t_real, t_imag); + + Tensor t_complex_3d = tf.reshape(t_complex, new int[] { 2, 2, 2 }); + + Tensor t_frequency_domain_3d = tf.signal.fft2d(t_complex_3d); + Tensor t_time_domain_3d = tf.signal.ifft2d(t_frequency_domain_3d); + + Tensor t_time_domain = tf.reshape(t_time_domain_3d, new int[] { 8 }); + + Tensor t_real_result = tf.math.real(t_time_domain); + Tensor t_imag_result = tf.math.imag(t_time_domain); + + NDArray n_real_result = t_real_result.numpy(); + NDArray n_imag_result = t_imag_result.numpy(); + + double[] d_real_result = n_real_result.ToArray(); + double[] d_imag_result = n_imag_result.ToArray(); + + Assert.IsTrue(base.Equal(d_real_result, d_real)); + Assert.IsTrue(base.Equal(d_imag_result, d_imag)); + } + } +} \ No newline at end of file diff --git a/test/TensorFlowNET.Graph.UnitTest/TensorFlowNET.Graph.UnitTest.csproj b/test/TensorFlowNET.Graph.UnitTest/TensorFlowNET.Graph.UnitTest.csproj index e05d48bba..40dd53f74 100644 --- a/test/TensorFlowNET.Graph.UnitTest/TensorFlowNET.Graph.UnitTest.csproj +++ b/test/TensorFlowNET.Graph.UnitTest/TensorFlowNET.Graph.UnitTest.csproj @@ -24,18 +24,20 @@ - - - - + + + + all runtime; build; native; contentfiles; analyzers; buildtransitive - + + + diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/fingerprint.pb b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/fingerprint.pb new file mode 100644 index 000000000..c37cc37bd --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/fingerprint.pb @@ -0,0 +1 @@ +̟땐͉ Σ(ռ2 \ No newline at end of file diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/keras_metadata.pb b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/keras_metadata.pb new file mode 100644 index 000000000..5fe8f1a65 --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/keras_metadata.pb @@ -0,0 +1,7 @@ + +&root"_tf_keras_sequential*&{"name": "sequential", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": false, "class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 5, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "input_1"}}, {"class_name": "LSTM", "config": {"name": "lstm", "trainable": true, "dtype": "float32", "return_sequences": false, "return_state": false, "go_backwards": false, "stateful": false, "unroll": false, "time_major": false, "units": 32, "activation": "tanh", "recurrent_activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 1}, "recurrent_initializer": {"class_name": "Orthogonal", "config": {"gain": 1.0, "seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "unit_forget_bias": true, "kernel_regularizer": null, "recurrent_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "recurrent_constraint": null, "bias_constraint": null, "dropout": 0.0, "recurrent_dropout": 0.0, "implementation": 2}}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 1, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "shared_object_id": 9, "input_spec": [{"class_name": "InputSpec", "config": {"dtype": null, "shape": {"class_name": "__tuple__", "items": [null, 5, 3]}, "ndim": 3, "max_ndim": null, "min_ndim": null, "axes": {}}}], "build_input_shape": {"class_name": "TensorShape", "items": [null, 5, 3]}, "is_graph_network": true, "full_save_spec": {"class_name": "__tuple__", "items": [[{"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 5, 3]}, "float32", "input_1"]}], {}]}, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 5, 3]}, "float32", "input_1"]}, "keras_version": "2.12.0", "backend": "tensorflow", "model_config": {"class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 5, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "input_1"}, "shared_object_id": 0}, {"class_name": "LSTM", "config": {"name": "lstm", "trainable": true, "dtype": "float32", "return_sequences": false, "return_state": false, "go_backwards": false, "stateful": false, "unroll": false, "time_major": false, "units": 32, "activation": "tanh", "recurrent_activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 1}, "recurrent_initializer": {"class_name": "Orthogonal", "config": {"gain": 1.0, "seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "unit_forget_bias": true, "kernel_regularizer": null, "recurrent_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "recurrent_constraint": null, "bias_constraint": null, "dropout": 0.0, "recurrent_dropout": 0.0, "implementation": 2}, "shared_object_id": 5}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 1, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 6}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 8}]}}, "training_config": {"loss": "binary_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "binary_accuracy"}, "shared_object_id": 11}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Custom>Adam", "config": {"name": "Adam", "weight_decay": null, "clipnorm": null, "global_clipnorm": null, "clipvalue": null, "use_ema": false, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "jit_compile": false, "is_legacy_optimizer": false, "learning_rate": 0.0010000000474974513, "beta_1": 0.9, "beta_2": 0.999, "epsilon": 1e-07, "amsgrad": false}}}}2 + root.layer_with_weights-0"_tf_keras_rnn_layer* {"name": "lstm", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "LSTM", "config": {"name": "lstm", "trainable": true, "dtype": "float32", "return_sequences": false, "return_state": false, "go_backwards": false, "stateful": false, "unroll": false, "time_major": false, "units": 32, "activation": "tanh", "recurrent_activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 1}, "recurrent_initializer": {"class_name": "Orthogonal", "config": {"gain": 1.0, "seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "unit_forget_bias": true, "kernel_regularizer": null, "recurrent_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "recurrent_constraint": null, "bias_constraint": null, "dropout": 0.0, "recurrent_dropout": 0.0, "implementation": 2}, "shared_object_id": 5, "input_spec": [{"class_name": "InputSpec", "config": {"dtype": null, "shape": {"class_name": "__tuple__", "items": [null, null, 3]}, "ndim": 3, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 12}], "build_input_shape": {"class_name": "TensorShape", "items": [null, 5, 3]}}2 +root.layer_with_weights-1"_tf_keras_layer*{"name": "dense", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 1, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 6}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 8, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 32}}, "shared_object_id": 13}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 32]}}2 +root.layer_with_weights-0.cell"_tf_keras_layer*{"name": "lstm_cell", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "LSTMCell", "config": {"name": "lstm_cell", "trainable": true, "dtype": "float32", "units": 32, "activation": "tanh", "recurrent_activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 1}, "recurrent_initializer": {"class_name": "Orthogonal", "config": {"gain": 1.0, "seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "unit_forget_bias": true, "kernel_regularizer": null, "recurrent_regularizer": null, "bias_regularizer": null, "kernel_constraint": null, "recurrent_constraint": null, "bias_constraint": null, "dropout": 0.0, "recurrent_dropout": 0.0, "implementation": 2}, "shared_object_id": 4, "build_input_shape": {"class_name": "__tuple__", "items": [null, 3]}}2 +Rroot.keras_api.metrics.0"_tf_keras_metric*{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 14}2 +Sroot.keras_api.metrics.1"_tf_keras_metric*{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "binary_accuracy"}, "shared_object_id": 11}2 \ No newline at end of file diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/saved_model.pb b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/saved_model.pb new file mode 100644 index 000000000..618c800eb Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/saved_model.pb differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/variables/variables.data-00000-of-00001 b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/variables/variables.data-00000-of-00001 new file mode 100644 index 000000000..ea67db4f4 Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/variables/variables.data-00000-of-00001 differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/variables/variables.index b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/variables/variables.index new file mode 100644 index 000000000..11f13d165 Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/lstm_from_sequential/variables/variables.index differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/fingerprint.pb b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/fingerprint.pb new file mode 100644 index 000000000..361ca3a8a Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/fingerprint.pb differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/keras_metadata.pb b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/keras_metadata.pb new file mode 100644 index 000000000..b98e17337 --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/keras_metadata.pb @@ -0,0 +1,6 @@ + +root"_tf_keras_sequential*{"name": "sequential", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": false, "class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 784]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "input_1"}}, {"class_name": "Transformer", "config": {"name": "transformer", "trainable": true, "dtype": "float32", "a": 784, "b": 10}}, {"class_name": "Softmax", "config": {"name": "softmax", "trainable": true, "dtype": "float32", "axis": -1}}]}, "shared_object_id": 3, "input_spec": [{"class_name": "InputSpec", "config": {"dtype": null, "shape": {"class_name": "__tuple__", "items": [null, 784]}, "ndim": 2, "max_ndim": null, "min_ndim": null, "axes": {}}}], "build_input_shape": {"class_name": "TensorShape", "items": [null, 784]}, "is_graph_network": true, "full_save_spec": {"class_name": "__tuple__", "items": [[{"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 784]}, "float32", "input_1"]}], {}]}, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 784]}, "float32", "input_1"]}, "keras_version": "2.11.0", "backend": "tensorflow", "model_config": {"class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 784]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "input_1"}, "shared_object_id": 0}, {"class_name": "Transformer", "config": {"name": "transformer", "trainable": true, "dtype": "float32", "a": 784, "b": 10}, "shared_object_id": 1}, {"class_name": "Softmax", "config": {"name": "softmax", "trainable": true, "dtype": "float32", "axis": -1}, "shared_object_id": 2}]}}, "training_config": {"loss": "sparse_categorical_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "categorical_accuracy"}, "shared_object_id": 5}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Custom>Adam", "config": {"name": "Adam", "weight_decay": null, "clipnorm": null, "global_clipnorm": null, "clipvalue": null, "use_ema": false, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "jit_compile": false, "is_legacy_optimizer": false, "learning_rate": 0.0010000000474974513, "beta_1": 0.9, "beta_2": 0.999, "epsilon": 1e-07, "amsgrad": false}}}}2 +root.layer_with_weights-0"_tf_keras_layer*{"name": "transformer", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Transformer", "config": {"name": "transformer", "trainable": true, "dtype": "float32", "a": 784, "b": 10}, "shared_object_id": 1, "build_input_shape": {"class_name": "TensorShape", "items": [null, 784]}}2 + root.layer-1"_tf_keras_layer*{"name": "softmax", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Softmax", "config": {"name": "softmax", "trainable": true, "dtype": "float32", "axis": -1}, "shared_object_id": 2, "build_input_shape": {"class_name": "TensorShape", "items": [null, 10]}}2 +9root.keras_api.metrics.0"_tf_keras_metric*{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 6}2 +:root.keras_api.metrics.1"_tf_keras_metric*{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "categorical_accuracy"}, "shared_object_id": 5}2 \ No newline at end of file diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/saved_model.pb b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/saved_model.pb new file mode 100644 index 000000000..f22755e07 Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/saved_model.pb differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/variables/variables.data-00000-of-00001 b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/variables/variables.data-00000-of-00001 new file mode 100644 index 000000000..399265af6 Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/variables/variables.data-00000-of-00001 differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/variables/variables.index b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/variables/variables.index new file mode 100644 index 000000000..e0b0e800a Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/python_func_model/variables/variables.index differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/bias0.npy b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/bias0.npy new file mode 100644 index 000000000..b5a8f8b32 Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/bias0.npy differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/fingerprint.pb b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/fingerprint.pb new file mode 100644 index 000000000..b62a57c3d Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/fingerprint.pb differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/keras_metadata.pb b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/keras_metadata.pb new file mode 100644 index 000000000..e1aab781a --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/keras_metadata.pb @@ -0,0 +1,9 @@ + +$root"_tf_keras_network*${"name": "model", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": false, "class_name": "Functional", "config": {"name": "model", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 28, 28, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "input_1"}, "name": "input_1", "inbound_nodes": []}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "name": "flatten", "inbound_nodes": [[["input_1", 0, 0, {}]]]}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 100, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "dense", "inbound_nodes": [[["flatten", 0, 0, {}]]]}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 10, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "dense_1", "inbound_nodes": [[["dense", 0, 0, {}]]]}, {"class_name": "Softmax", "config": {"name": "softmax", "trainable": true, "dtype": "float32", "axis": -1}, "name": "softmax", "inbound_nodes": [[["dense_1", 0, 0, {}]]]}], "input_layers": [["input_1", 0, 0]], "output_layers": [["softmax", 0, 0]]}, "shared_object_id": 9, "input_spec": [{"class_name": "InputSpec", "config": {"dtype": null, "shape": {"class_name": "__tuple__", "items": [null, 28, 28, 1]}, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}}], "build_input_shape": {"class_name": "TensorShape", "items": [null, 28, 28, 1]}, "is_graph_network": true, "full_save_spec": {"class_name": "__tuple__", "items": [[{"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 28, 28, 1]}, "float32", "input_1"]}], {}]}, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 28, 28, 1]}, "float32", "input_1"]}, "keras_version": "2.11.0", "backend": "tensorflow", "model_config": {"class_name": "Functional", "config": {"name": "model", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 28, 28, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "input_1"}, "name": "input_1", "inbound_nodes": [], "shared_object_id": 0}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "name": "flatten", "inbound_nodes": [[["input_1", 0, 0, {}]]], "shared_object_id": 1}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 100, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "dense", "inbound_nodes": [[["flatten", 0, 0, {}]]], "shared_object_id": 4}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 10, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "dense_1", "inbound_nodes": [[["dense", 0, 0, {}]]], "shared_object_id": 7}, {"class_name": "Softmax", "config": {"name": "softmax", "trainable": true, "dtype": "float32", "axis": -1}, "name": "softmax", "inbound_nodes": [[["dense_1", 0, 0, {}]]], "shared_object_id": 8}], "input_layers": [["input_1", 0, 0]], "output_layers": [["softmax", 0, 0]]}}}2 + root.layer-0"_tf_keras_input_layer*{"class_name": "InputLayer", "name": "input_1", "dtype": "float32", "sparse": false, "ragged": false, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 28, 28, 1]}, "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 28, 28, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "input_1"}}2 + root.layer-1"_tf_keras_layer*{"name": "flatten", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "inbound_nodes": [[["input_1", 0, 0, {}]]], "shared_object_id": 1, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 14}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 28, 28, 1]}}2 +root.layer_with_weights-0"_tf_keras_layer*{"name": "dense", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 100, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["flatten", 0, 0, {}]]], "shared_object_id": 4, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 784}}, "shared_object_id": 15}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 784]}}2 +root.layer_with_weights-1"_tf_keras_layer*{"name": "dense_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 10, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["dense", 0, 0, {}]]], "shared_object_id": 7, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 100}}, "shared_object_id": 16}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 100]}}2 + root.layer-4"_tf_keras_layer*{"name": "softmax", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Softmax", "config": {"name": "softmax", "trainable": true, "dtype": "float32", "axis": -1}, "inbound_nodes": [[["dense_1", 0, 0, {}]]], "shared_object_id": 8, "build_input_shape": {"class_name": "TensorShape", "items": [null, 10]}}2 +Troot.keras_api.metrics.0"_tf_keras_metric*{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 17}2 +Uroot.keras_api.metrics.1"_tf_keras_metric*{"class_name": "MeanMetricWrapper", "name": "sparse_categorical_accuracy", "dtype": "float32", "config": {"name": "sparse_categorical_accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 18}2 \ No newline at end of file diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/kernel1.npy b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/kernel1.npy new file mode 100644 index 000000000..dd70331cf Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/kernel1.npy differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/saved_model.pb b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/saved_model.pb new file mode 100644 index 000000000..771a58c62 Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/saved_model.pb differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/variables/variables.data-00000-of-00001 b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/variables/variables.data-00000-of-00001 new file mode 100644 index 000000000..0061f3865 Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/variables/variables.data-00000-of-00001 differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/variables/variables.index b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/variables/variables.index new file mode 100644 index 000000000..06ba4b293 Binary files /dev/null and b/test/TensorFlowNET.Keras.UnitTest/Assets/simple_model_from_auto_compile/variables/variables.index differ diff --git a/test/TensorFlowNET.Keras.UnitTest/Callbacks/EarlystoppingTest.cs b/test/TensorFlowNET.Keras.UnitTest/Callbacks/EarlystoppingTest.cs new file mode 100644 index 000000000..29648790f --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Callbacks/EarlystoppingTest.cs @@ -0,0 +1,71 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using System.Collections.Generic; +using Tensorflow.Keras.Callbacks; +using Tensorflow.Keras.Engine; +using Tensorflow.NumPy; +using static Tensorflow.KerasApi; + + +namespace Tensorflow.Keras.UnitTest.Callbacks +{ + [TestClass] + public class EarlystoppingTest + { + [TestMethod] + // Because loading the weight variable into the model has not yet been implemented, + // so you'd better not set patience too large, because the weights will equal to the last epoch's weights. + public void Earlystopping() + { + var layers = keras.layers; + var model = keras.Sequential(new List + { + layers.Rescaling(1.0f / 255, input_shape: (28, 28, 1)), + layers.Conv2D(32, 3, padding: "same", activation: keras.activations.Relu), + layers.MaxPooling2D(), + layers.Flatten(), + layers.Dense(128, activation: keras.activations.Relu), + layers.Dense(10) + }); + + + model.summary(); + + model.compile(optimizer: keras.optimizers.RMSprop(1e-3f), + loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), + metrics: new[] { "acc" }); + + var num_epochs = 3; + var batch_size = 8; + + var data_loader = new MnistModelLoader(); + + var dataset = data_loader.LoadAsync(new ModelLoadSetting + { + TrainDir = "mnist", + OneHot = false, + ValidationSize = 59900, + }).Result; + + NDArray x1 = np.reshape(dataset.Train.Data, (dataset.Train.Data.shape[0], 28, 28, 1)); + NDArray x2 = x1; + + var x = new NDArray[] { x1, x2 }; + + // define a CallbackParams first, the parameters you pass al least contain Model and Epochs. + CallbackParams callback_parameters = new CallbackParams + { + Model = model, + Epochs = num_epochs, + }; + // define your earlystop + ICallback earlystop = new EarlyStopping(callback_parameters, "accuracy"); + // define a callbcaklist, then add the earlystopping to it. + var callbacks = new List{ earlystop}; + model.fit(x, dataset.Train.Labels, batch_size, num_epochs, callbacks: callbacks); + } + + } + + +} + diff --git a/test/TensorFlowNET.Keras.UnitTest/EagerModeTestBase.cs b/test/TensorFlowNET.Keras.UnitTest/EagerModeTestBase.cs index 566ade306..635f13a54 100644 --- a/test/TensorFlowNET.Keras.UnitTest/EagerModeTestBase.cs +++ b/test/TensorFlowNET.Keras.UnitTest/EagerModeTestBase.cs @@ -2,7 +2,7 @@ using System; using static Tensorflow.Binding; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest { public class EagerModeTestBase { @@ -33,6 +33,40 @@ public bool Equal(float[] f1, float[] f2) return ret; } + + public void AssertArray(int[] f1, int[] f2) + { + bool ret = false; + for (var i = 0; i < f1.Length; i++) + { + ret = f1[i] == f2[i]; + if (!ret) + break; + } + + if (!ret) + { + Assert.Fail($"Array not Equal:[{string.Join(",", f1)}] [{string.Join(",", f2)}]"); + } + } + + public void AssertArray(float[] f1, float[] f2) + { + bool ret = false; + var tolerance = .00001f; + for (var i = 0; i < f1.Length; i++) + { + ret = Math.Abs(f1[i] - f2[i]) <= tolerance; + if (!ret) + break; + } + + if (!ret) + { + Assert.Fail($"Array float not Equal:[{string.Join(",", f1)}] [{string.Join(",", f2)}]"); + } + } + public bool Equal(double[] d1, double[] d2) { bool ret = false; diff --git a/test/TensorFlowNET.Keras.UnitTest/GradientTest.cs b/test/TensorFlowNET.Keras.UnitTest/GradientTest.cs new file mode 100644 index 000000000..162aa1c5e --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/GradientTest.cs @@ -0,0 +1,75 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using System.Linq; +using Tensorflow.Keras.Engine; +using Tensorflow.NumPy; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace Tensorflow.Keras.UnitTest; + +[TestClass] +public class GradientTest : EagerModeTestBase +{ + public IModel get_actor(int num_states) + { + var inputs = tf.keras.layers.Input(shape: num_states); + var outputs = tf.keras.layers.Dense(1, activation: keras.activations.Tanh).Apply(inputs); + + var model = tf.keras.Model(inputs, outputs); + + return model; + } + + public IModel get_critic(int num_states, int num_actions) + { + // State as input + var state_input = keras.layers.Input(shape: num_states); + + // Action as input + var action_input = keras.layers.Input(shape: num_actions); + + var concat = keras.layers.Concatenate(axis: 1).Apply(new Tensors(state_input, action_input)); + + var outputs = keras.layers.Dense(1).Apply(concat); + + var model = tf.keras.Model(new Tensors(state_input, action_input), outputs); + model.summary(); + + return model; + } + + [TestMethod] + public void GetGradientTest() + { + var numStates = 3; + var numActions = 1; + var batchSize = 64; + var gamma = 0.99f; + + var target_actor_model = get_actor(numStates); + var target_critic_model = get_critic(numStates, numActions); + var critic_model = get_critic(numStates, numActions); + + Tensor state_batch = tf.convert_to_tensor(np.zeros((batchSize, numStates)), TF_DataType.TF_FLOAT); + Tensor action_batch = tf.convert_to_tensor(np.zeros((batchSize, numActions)), TF_DataType.TF_FLOAT); + Tensor reward_batch = tf.convert_to_tensor(np.zeros((batchSize, 1)), TF_DataType.TF_FLOAT); + Tensor next_state_batch = tf.convert_to_tensor(np.zeros((batchSize, numStates)), TF_DataType.TF_FLOAT); + + using (var tape = tf.GradientTape()) + { + var target_actions = target_actor_model.Apply(next_state_batch, training: true); + var target_critic_value = target_critic_model.Apply(new Tensors(new Tensor[] { next_state_batch, target_actions }), training: true); + + var y = reward_batch + tf.multiply(gamma, target_critic_value); + + var critic_value = critic_model.Apply(new Tensors(new Tensor[] { state_batch, action_batch }), training: true); + + var critic_loss = math_ops.reduce_mean(math_ops.square(y - critic_value)); + + var critic_grad = tape.gradient(critic_loss, critic_model.TrainableVariables); + + Assert.IsNotNull(critic_grad); + Assert.IsNotNull(critic_grad.First()); + } + } +} \ No newline at end of file diff --git a/test/TensorFlowNET.Keras.UnitTest/Helpers/RandomDataset.cs b/test/TensorFlowNET.Keras.UnitTest/Helpers/RandomDataset.cs new file mode 100644 index 000000000..e145ce585 --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Helpers/RandomDataset.cs @@ -0,0 +1,30 @@ +using System; +using System.Collections.Generic; +using System.Diagnostics; +using System.Linq; +using System.Text; +using System.Threading.Tasks; +using Tensorflow.NumPy; + +namespace Tensorflow.Keras.UnitTest.Helpers +{ + public class RandomDataSet : DataSetBase + { + private Shape _shape; + + public RandomDataSet(Shape shape, int count) + { + _shape = shape; + Debug.Assert(_shape.ndim == 3); + long[] dims = new long[4]; + dims[0] = count; + for (int i = 1; i < 4; i++) + { + dims[i] = _shape[i - 1]; + } + Shape s = new Shape(dims); + Data = np.random.normal(0, 2, s); + Labels = np.random.uniform(0, 1, (count, 1)); + } + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/InitLayerNameTest.cs b/test/TensorFlowNET.Keras.UnitTest/InitLayerNameTest.cs new file mode 100644 index 000000000..256eb69c1 --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/InitLayerNameTest.cs @@ -0,0 +1,33 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow.Keras.Layers; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace Tensorflow.Keras.UnitTest +{ + [TestClass] + public class InitLayerNameTest + { + [TestMethod] + public void RNNLayerNameTest() + { + var simpleRnnCell = keras.layers.SimpleRNNCell(1); + Assert.AreEqual("simple_rnn_cell", simpleRnnCell.Name); + var simpleRnn = keras.layers.SimpleRNN(2); + Assert.AreEqual("simple_rnn", simpleRnn.Name); + var lstmCell = keras.layers.LSTMCell(2); + Assert.AreEqual("lstm_cell", lstmCell.Name); + var lstm = keras.layers.LSTM(3); + Assert.AreEqual("lstm", lstm.Name); + } + + [TestMethod] + public void ConvLayerNameTest() + { + var conv2d = keras.layers.Conv2D(8, activation: "linear"); + Assert.AreEqual("conv2d", conv2d.Name); + var conv2dTranspose = keras.layers.Conv2DTranspose(8); + Assert.AreEqual("conv2d_transpose", conv2dTranspose.Name); + } + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/InitializerTest.cs b/test/TensorFlowNET.Keras.UnitTest/InitializerTest.cs new file mode 100644 index 000000000..b26b69309 --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/InitializerTest.cs @@ -0,0 +1,15 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using static Tensorflow.Binding; + +namespace Tensorflow.Keras.UnitTest; + +[TestClass] +public class InitializerTest : EagerModeTestBase +{ + [TestMethod] + public void Orthogonal() + { + var initializer = tf.keras.initializers.Orthogonal(); + var values = initializer.Apply(new Tensorflow.InitializerArgs((2, 2))); + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/ActivationTest.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/ActivationTest.cs index 904601b35..cc99f4a04 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/ActivationTest.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/ActivationTest.cs @@ -1,12 +1,10 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using System; -using System.Collections.Generic; -using static Tensorflow.Binding; using Tensorflow.NumPy; +using static Tensorflow.Binding; using static Tensorflow.KerasApi; -using Tensorflow; -namespace TensorFlowNET.Keras.UnitTest { +namespace Tensorflow.Keras.UnitTest.Layers +{ [TestClass] public class ActivationTest : EagerModeTestBase { @@ -51,7 +49,7 @@ public void Softplus() Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); Tensor output = keras.layers.Softplus().Apply(input); NDArray expected = new NDArray(new float[] { 0.04858733f, 0.12692805f, 0.31326166f, 0.6931472f, 1.3132616f, 2.126928f }); - Assert.AreEqual(expected, output.numpy()); + Assert.IsTrue(expected == output.numpy()); } [TestMethod] @@ -94,5 +92,16 @@ public void Swish() NDArray expected = new NDArray(new float[] { -0.14227762f, -0.23840584f, -0.26894143f, 0f, 0.7310586f, 1.761594f }); Assert.AreEqual(expected, output.numpy()); } + + /// + /// https://www.tensorflow.org/addons/api_docs/python/tfa/activations/mish + /// + [TestMethod] + public void Mish() + { + var x = tf.constant(new[] { 1.0, 0.0, 1.0 }, dtype: tf.float32); + var output = keras.activations.Mish.Apply(x); + Assert.AreEqual(new[] { 0.86509836f, 0f, 0.86509836f }, output.numpy()); + } } } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/AttentionTest.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/AttentionTest.cs index 0c02b5db1..95ef923eb 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/AttentionTest.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/AttentionTest.cs @@ -1,15 +1,11 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using System; -using System.Collections.Generic; +using Tensorflow.Keras.Layers; +using Tensorflow.Keras.Utils; using Tensorflow.NumPy; using static Tensorflow.Binding; using static Tensorflow.KerasApi; -using Tensorflow.Keras.Layers; -using Tensorflow; -using Tensorflow.Keras.ArgsDefinition; -using Tensorflow.Keras.Utils; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class AttentionTest : EagerModeTestBase @@ -83,7 +79,7 @@ public void test_calculate_scores_multi_dim() { 2.5f, 2.6f, 2.7f, 2.8f }, { 3.5f, 3.6f, 3.7f, 3.8f } } }, dtype: np.float32); - var attention_layer = keras.layers.Attention(); + var attention_layer = (Attention)keras.layers.Attention(); //attention_layer.build(((1, 2, 4), (1, 3, 4))); var actual = attention_layer._calculate_scores(query: q, key: k); // Expected tensor of shape [1, 2, 3]. @@ -98,7 +94,7 @@ public void test_calculate_scores_multi_dim() { 7.6400003f, 12.24f, 16.84f }, { 14.24f, 22.84f, 31.439999f } } }, dtype: np.float32); - Assert.AreEqual(expected, actual.numpy()); + Assert.IsTrue(expected == actual.numpy()); } [TestMethod] @@ -116,9 +112,10 @@ public void test_calculate_scores_multi_dim_concat() { 2.5f, 2.6f, 2.7f, 2.8f }, { 3.5f, 3.6f, 3.7f, 3.8f } } }, dtype: np.float32); - var attention_layer = keras.layers.Attention(score_mode: "concat"); + var attention_layer = (Attention)keras.layers.Attention(score_mode: "concat"); //attention_layer.concat_score_weight = 1; - attention_layer.concat_score_weight = base_layer_utils.make_variable(new VariableArgs() { + attention_layer.concat_score_weight = base_layer_utils.make_variable(new VariableArgs() + { Name = "concat_score_weight", Shape = (1), DType = TF_DataType.TF_FLOAT, @@ -156,9 +153,9 @@ public void test_masked_attention() var query = keras.Input(shape: (4, 8)); var value = keras.Input(shape: (2, 8)); - var mask_tensor = keras.Input(shape:(4, 2)); + var mask_tensor = keras.Input(shape: (4, 2)); var attention_layer = keras.layers.MultiHeadAttention(num_heads: 2, key_dim: 2); - attention_layer.Apply(new[] { query, value, mask_tensor }); + attention_layer.Apply(new Tensor[] { query, value, mask_tensor }); var from_data = 10 * np.random.randn(batch_size, 4, 8); var to_data = 10 * np.random.randn(batch_size, 2, 8); diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/CosineSimilarity.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/CosineSimilarity.Test.cs index 71a436278..5294a838c 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/CosineSimilarity.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/CosineSimilarity.Test.cs @@ -1,11 +1,9 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow.NumPy; -using Tensorflow; using Tensorflow.Keras.Losses; -using static Tensorflow.Binding; +using Tensorflow.NumPy; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class CosineSimilarity @@ -16,7 +14,7 @@ public class CosineSimilarity NDArray y_pred_float = new float[,] { { 1.0f, 0.0f }, { 1.0f, 1.0f } }; [TestMethod] - + public void _Default() { //>>> # Using 'auto'/'sum_over_batch_size' reduction type. @@ -27,7 +25,7 @@ public void _Default() //>>> # loss = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1)) //>>> # = -((0. + 0.) + (0.5 + 0.5)) / 2 //-0.5 - var loss = keras.losses.CosineSimilarity(axis : 1); + var loss = keras.losses.CosineSimilarity(axis: 1); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)(-0.49999997f), call.numpy()); } @@ -41,7 +39,7 @@ public void _Sample_Weight() //- 0.0999 var loss = keras.losses.CosineSimilarity(); var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.8f, 0.2f }); - Assert.AreEqual((NDArray) (- 0.099999994f), call.numpy()); + Assert.AreEqual((NDArray)(-0.099999994f), call.numpy()); } [TestMethod] @@ -53,7 +51,7 @@ public void _SUM() //... reduction = tf.keras.losses.Reduction.SUM) //>>> cosine_loss(y_true, y_pred).numpy() //- 0.999 - var loss = keras.losses.CosineSimilarity(axis: 1,reduction : ReductionV2.SUM); + var loss = keras.losses.CosineSimilarity(axis: 1, reduction: ReductionV2.SUM); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)(-0.99999994f), call.numpy()); } @@ -67,7 +65,7 @@ public void _None() //... reduction = tf.keras.losses.Reduction.NONE) //>>> cosine_loss(y_true, y_pred).numpy() //array([-0., -0.999], dtype = float32) - var loss = keras.losses.CosineSimilarity(axis :1, reduction: ReductionV2.NONE); + var loss = keras.losses.CosineSimilarity(axis: 1, reduction: ReductionV2.NONE); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)new float[] { -0f, -0.99999994f }, call.numpy()); } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/Huber.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/Huber.Test.cs index ca18b743a..7bf5f5191 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/Huber.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/Huber.Test.cs @@ -1,11 +1,9 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow.NumPy; -using Tensorflow; using Tensorflow.Keras.Losses; -using static Tensorflow.Binding; +using Tensorflow.NumPy; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class Huber @@ -16,7 +14,7 @@ public class Huber NDArray y_pred_float = new float[,] { { 0.6f, 0.4f }, { 0.4f, 0.6f } }; [TestMethod] - + public void _Default() { //>>> # Using 'auto'/'sum_over_batch_size' reduction type. @@ -49,7 +47,7 @@ public void _SUM() //... reduction = tf.keras.losses.Reduction.SUM) //>>> h(y_true, y_pred).numpy() //0.31 - var loss = keras.losses.Huber(reduction : ReductionV2.SUM); + var loss = keras.losses.Huber(reduction: ReductionV2.SUM); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)0.31f, call.numpy()); } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs index fbe4330ca..15c6e80fe 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs @@ -1,10 +1,10 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; +using System.Linq; using Tensorflow.NumPy; -using Tensorflow; -using Tensorflow.Operations; using static Tensorflow.KerasApi; +using static Tensorflow.Binding; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class LayersConvolutionTest : EagerModeTestBase @@ -14,7 +14,7 @@ public void BasicConv1D() { var filters = 8; - var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear"); + var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear"); var x = np.arange(256.0f).reshape((8, 8, 4)); var y = conv.Apply(x); @@ -195,5 +195,128 @@ public void BasicConv2D_ksize_dilation_same() Assert.AreEqual(x.dims[2], y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } + + + [TestMethod] + public void BasicDepthwiseConv2D() + { + var conv = keras.layers.DepthwiseConv2D(kernel_size:3, strides:1, activation: null, + padding:"same", depthwise_initializer: "ones"); + + var x = np.arange(2 * 9* 9* 3).reshape((2, 9, 9, 3)); + var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); + + var y = conv.Apply(x2); + + print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); + + + Assert.AreEqual(4, y.shape.ndim); + var arr = y.numpy().reshape((2, 9, 9, 3)); + + AssertArray(x[new int[] { 1, 1, 1 }].ToArray(), new int[] { 273, 274, 275 }); + AssertArray(arr[new int[] { 1, 1, 1 }].ToArray(), new float[] { 2457f, 2466f, 2475f }); + + var bn = keras.layers.BatchNormalization(); + var y2 = bn.Apply(y); + arr = y2.numpy().ToArray(); + + double delta = 0.0001; // 误差范围 + + Assert.AreEqual(arr[0], 59.97002f, delta); + Assert.AreEqual(arr[1], 63.96802f, delta); + } + + + [TestMethod] + public void BasicDepthwiseConv2D_strides_2() + { + var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: (1, 2, 2, 1), activation: null, + padding: "same", depthwise_initializer: "ones"); + + var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); + var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); + + var y = conv.Apply(x2); + + print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); + + Assert.AreEqual(4, y.shape.ndim); + var arr = y.numpy().reshape((2, 5, 5, 3)); + + AssertArray(x[new int[] { 1, 1, 1 }].ToArray(), new int[] { 273, 274, 275 }); + AssertArray(arr[new int[] { 1, 1, 1 }].ToArray(), new float[] { 2727f, 2736f, 2745f }); + + var bn = keras.layers.BatchNormalization(); + var y2 = bn.Apply(y); + arr = y2.numpy().ToArray(); + + double delta = 0.0001; // 误差范围 + + Assert.AreEqual(arr[0], 59.97002f, delta); + Assert.AreEqual(arr[1], 63.96802f, delta); + } + + + + [TestMethod] + public void BasicDepthwiseConv2D_strides_3() + { + var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 3, activation: null, + padding: "same", depthwise_initializer: "ones"); + + var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); + var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); + + var y = conv.Apply(x2); + + print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); + + Assert.AreEqual(4, y.shape.ndim); + var arr = y.numpy().reshape((2, 3, 3, 3)); + + AssertArray(x[new int[] { 1, 1, 1 }].ToArray(), new int[] { 273, 274, 275 }); + AssertArray(arr[new int[] { 1, 1, 1 }].ToArray(), new float[] { 3267f, 3276f, 3285f }); + + var bn = keras.layers.BatchNormalization(); + var y2 = bn.Apply(y); + arr = y2.numpy().ToArray(); + + double delta = 0.0001; // 误差范围 + + Assert.AreEqual(arr[0], 269.86508f, delta); + Assert.AreEqual(arr[1], 278.8606f, delta); + + } + [TestMethod] + public void BasicDepthwiseConv2D_UseBias() + { + var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 1, activation: null, + use_bias: true, padding: "same", + depthwise_initializer: "ones", + bias_initializer:"ones" + ); + + var weight = conv.get_weights(); + + var x = np.arange(9 * 9 * 3).reshape((1, 9, 9, 3)); + var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); + var y = conv.Apply(x2); + + Assert.AreEqual(4, y.shape.ndim); + var arr = y.numpy().ToArray(); + + Assert.AreEqual(arr[0], 61f); + Assert.AreEqual(arr[1], 65f); + + var bn = keras.layers.BatchNormalization(); + var y2 = bn.Apply(y); + arr = y2.numpy().ToArray(); + + double delta = 0.0001; // 误差范围 + + Assert.AreEqual(arr[0], 60.96952f, delta); + Assert.AreEqual(arr[1], 64.96752f, delta); + } } } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Cropping.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Cropping.Test.cs index b99a9abbf..b7981facb 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Cropping.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Cropping.Test.cs @@ -1,39 +1,43 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow; using Tensorflow.NumPy; using static Tensorflow.Binding; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest { - [TestClass] - public class LayersCroppingTest : EagerModeTestBase { - [TestMethod] - public void Cropping1D () { - Shape input_shape = (1, 5, 2); - var x = tf.zeros(input_shape); - var cropping_1d = keras.layers.Cropping1D(new[] { 1, 2 }); - var y = cropping_1d.Apply(x); - Assert.AreEqual((1, 2, 2), y.shape); - } +namespace Tensorflow.Keras.UnitTest.Layers +{ + [TestClass] + public class LayersCroppingTest : EagerModeTestBase + { + [TestMethod] + public void Cropping1D() + { + Shape input_shape = (1, 5, 2); + var x = tf.zeros(input_shape); + var cropping_1d = keras.layers.Cropping1D(new[] { 1, 2 }); + var y = cropping_1d.Apply(x); + Assert.AreEqual((1, 2, 2), y.shape); + } - [TestMethod] - public void Cropping2D () { - Shape input_shape = (1, 5, 6, 1); - NDArray cropping = new NDArray(new[,] { { 1, 2 }, { 1, 3 } }); - var x = tf.zeros(input_shape); - var cropping_2d = keras.layers.Cropping2D(cropping); - var y = cropping_2d.Apply(x); - Assert.AreEqual((1, 2, 2, 1), y.shape); - } + [TestMethod] + public void Cropping2D() + { + Shape input_shape = (1, 5, 6, 1); + NDArray cropping = new NDArray(new[,] { { 1, 2 }, { 1, 3 } }); + var x = tf.zeros(input_shape); + var cropping_2d = keras.layers.Cropping2D(cropping); + var y = cropping_2d.Apply(x); + Assert.AreEqual((1, 2, 2, 1), y.shape); + } - [TestMethod] - public void Cropping3D () { - Shape input_shape = new Shape(1, 5, 6, 7, 1); - NDArray cropping = new NDArray(new[,] { { 1, 2 }, { 1, 3 }, { 1, 4 } }); - var x = tf.zeros(input_shape); - var cropping_3d = keras.layers.Cropping3D(cropping); - var y = cropping_3d.Apply(x); - Assert.AreEqual(new Shape(1, 2, 2, 2, 1), y.shape); - } - } + [TestMethod] + public void Cropping3D() + { + Shape input_shape = new Shape(1, 5, 6, 7, 1); + NDArray cropping = new NDArray(new[,] { { 1, 2 }, { 1, 3 }, { 1, 4 } }); + var x = tf.zeros(input_shape); + var cropping_3d = keras.layers.Cropping3D(cropping); + var y = cropping_3d.Apply(x); + Assert.AreEqual(new Shape(1, 2, 2, 2, 1), y.shape); + } + } } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Merging.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Merging.Test.cs index b2faaf477..9bc2fa767 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Merging.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Merging.Test.cs @@ -1,20 +1,24 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; +using System.Collections.Generic; using Tensorflow.NumPy; -using Tensorflow; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class LayersMergingTest : EagerModeTestBase { [TestMethod] - public void Concatenate() + [DataRow(1, 4, 1, 5)] + [DataRow(2, 2, 2, 5)] + [DataRow(3, 2, 1, 10)] + public void Concatenate(int axis, int shapeA, int shapeB, int shapeC) { - var x = np.arange(20).reshape((2, 2, 5)); - var y = np.arange(20, 30).reshape((2, 1, 5)); - var z = keras.layers.Concatenate(axis: 1).Apply(new Tensors(x, y)); - Assert.AreEqual((2, 3, 5), z.shape); + var x = np.arange(10).reshape((1, 2, 1, 5)); + var y = np.arange(10, 20).reshape((1, 2, 1, 5)); + var z = keras.layers.Concatenate(axis: axis).Apply(new Tensors(x, y)); + Assert.AreEqual((1, shapeA, shapeB, shapeC), z.shape); } + } } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Reshaping.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Reshaping.Test.cs index a79c517bd..5b16cc908 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Reshaping.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Reshaping.Test.cs @@ -1,43 +1,58 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow; +using System; using Tensorflow.NumPy; using static Tensorflow.Binding; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest { - [TestClass] - public class LayersReshapingTest : EagerModeTestBase { - [TestMethod] - public void ZeroPadding2D () { - Shape input_shape = (1, 1, 2, 2); - var x = np.arange(input_shape.size).reshape(input_shape); - var zero_padding_2d = keras.layers.ZeroPadding2D(new[,] { { 1, 0 }, { 1, 0 } }); - var y = zero_padding_2d.Apply(x); - Assert.AreEqual((1, 2, 3, 2), y.shape); - } +namespace Tensorflow.Keras.UnitTest.Layers +{ + [TestClass] + public class LayersReshapingTest : EagerModeTestBase + { + [TestMethod] + public void ZeroPadding2D() + { + Shape input_shape = (1, 1, 2, 2); + var x = np.arange(input_shape.size).reshape(input_shape); + var zero_padding_2d = keras.layers.ZeroPadding2D(new[,] { { 1, 0 }, { 1, 0 } }); + var y = zero_padding_2d.Apply(x); + Assert.AreEqual((1, 2, 3, 2), y.shape); + } - [TestMethod] - public void UpSampling2D () { - Shape input_shape = (2, 2, 1, 3); - var x = np.arange(input_shape.size).reshape(input_shape); - var y = keras.layers.UpSampling2D(size: (1, 2)).Apply(x); - Assert.AreEqual((2, 2, 2, 3), y.shape); - } + [TestMethod] + public void UpSampling1D() + { + Shape input_shape = (2, 2, 3); + var x = np.arange(input_shape.size).reshape(input_shape); + var y = tf.keras.layers.UpSampling1D(size: 2).Apply(x); + Assert.AreEqual((2, 4, 3), y.shape); + } - [TestMethod] - public void Reshape () { - var inputs = tf.zeros((10, 5, 20)); - var outputs = keras.layers.LeakyReLU().Apply(inputs); - outputs = keras.layers.Reshape((20, 5)).Apply(outputs); - Assert.AreEqual((10, 20, 5), outputs.shape); - } + [TestMethod] + public void UpSampling2D() + { + Shape input_shape = (2, 2, 1, 3); + var x = np.arange(input_shape.size).reshape(input_shape); + var y = keras.layers.UpSampling2D(size: (1, 2)).Apply(x); + Assert.AreEqual((2, 2, 2, 3), y.shape); + } - [TestMethod] - public void Permute () { - var inputs = tf.zeros((2, 3, 4, 5)); - var outputs = keras.layers.Permute(new int[] { 3, 2, 1 }).Apply(inputs); - Assert.AreEqual((2, 5, 4, 3), outputs.shape); - } + [TestMethod] + public void Reshape() + { + var inputs = tf.zeros((10, 5, 20)); + var outputs = keras.layers.LeakyReLU().Apply(inputs); + outputs = keras.layers.Reshape((20, 5)).Apply(outputs); + Assert.AreEqual((10, 20, 5), outputs.shape); + } - } + [TestMethod] + public void Permute() + { + var inputs = tf.zeros((2, 3, 4, 5)); + var outputs = keras.layers.Permute(new int[] { 3, 2, 1 }).Apply(inputs); + Assert.AreEqual((2, 5, 4, 3), outputs.shape); + } + + } } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/LayersTest.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/LayersTest.cs index 53a13394f..7ebb53db3 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/LayersTest.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/LayersTest.cs @@ -1,13 +1,12 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow.NumPy; +using System; using System.Collections.Generic; -using Tensorflow; -using Tensorflow.Keras; +using System.Linq; +using Tensorflow.NumPy; using static Tensorflow.Binding; using static Tensorflow.KerasApi; -using System.Linq; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { /// /// https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers @@ -111,6 +110,17 @@ public void Embedding() var output_array = model.predict(input_array); Assert.AreEqual((32, 10, 64), output_array.shape); } + [TestMethod] + public void EmbeddingGrad() + { + var inputs = keras.layers.Input(shape: new[] { 32, 10 }); + var outputs = keras.layers.Embedding(1000, 64, input_length: 10).Apply(inputs); + var model = keras.Model(inputs: inputs, outputs: outputs); + var input_array = np.random.randint(1000, size: (1, 32, 10)); + var output_array = np.random.random(size: (1, 32, 10, 64)); + model.compile("rmsprop", "mse", new[] { "accuracy" }); + model.fit(input_array, output_array); + } /// /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense @@ -147,16 +157,6 @@ public void EinsumDense() Assert.AreEqual(expected_output, actual_output); } - [TestMethod] - [Ignore] - public void SimpleRNN() - { - var inputs = np.random.rand(32, 10, 8).astype(np.float32); - var simple_rnn = keras.layers.SimpleRNN(4); - var output = simple_rnn.Apply(inputs); - Assert.AreEqual((32, 4), output.shape); - } - [TestMethod] public void Resizing() { @@ -174,6 +174,130 @@ public void LayerNormalization() Tensor output = layer.Apply(inputs); Assert.AreEqual((5, 2), output.shape); Assert.IsTrue(output[0].numpy().Equals(new[] { -0.99998f, 0.99998f })); + + // test_layernorm_weights + Assert.AreEqual(len(layer.TrainableWeights), 2); + Assert.AreEqual(len(layer.Weights), 2); + + var beta = layer.Weights.Where(x => x.Name.StartsWith("beta")).Single(); + var gamma = layer.Weights.Where(x => x.Name.StartsWith("gamma")).Single(); + + // correctness_test + layer = keras.layers.LayerNormalization(axis: -1, epsilon: (float) 1e-12); + var x = np.random.normal(loc: 5.0f, scale: 10.0f, size: (1000, 2, 2, 2)).astype(tf.float32); + + output = layer.Apply(x); + + var y = (output - beta.numpy()) / gamma.numpy(); + + var y_mean = np.mean(y.numpy()); + var y_std = np.sqrt(np.sum(np.power(y.numpy() - np.mean(y.numpy()), 2)) / 8000); + Assert.IsTrue(tf.greater(np.array(0.1f), tf.abs(y_std - 1.0)).ToArray()[0]); + Assert.IsTrue(tf.greater(np.array(0.1f), tf.abs(y_mean)).ToArray()[0]); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Normalization + /// + [TestMethod] + public void Normalization() + { + // Calculate a global mean and variance by analyzing the dataset in adapt(). + var adapt_data = np.array(new[] { 1f, 2f, 3f, 4f, 5f }); + var input_data = np.array(new[] { 1f, 2f, 3f }); + var layer = tf.keras.layers.Normalization(axis: null); + layer.adapt(adapt_data); + var x = layer.Apply(input_data); + Assert.AreEqual(x.numpy(), new[] { -1.4142135f, -0.70710677f, 0f }); + + // Calculate a mean and variance for each index on the last axis. + adapt_data = np.array(new[,] + { + { 0, 7, 4 }, + { 2, 9, 6 }, + { 0, 7, 4 }, + { 2, 9, 6 } + }, dtype: tf.float32); + input_data = np.array(new[,] { { 0, 7, 4 } }, dtype: tf.float32); + layer = tf.keras.layers.Normalization(axis: -1); + layer.adapt(adapt_data); + x = layer.Apply(input_data); + Equal(x.numpy().ToArray(), new[] { -1f, -1f, -1f }); + + // Pass the mean and variance directly. + input_data = np.array(new[,] { { 1f }, { 2f }, { 3f } }, dtype: tf.float32); + layer = tf.keras.layers.Normalization(mean: 3f, variance: 2f); + x = layer.Apply(input_data); + Equal(x.numpy().ToArray(), new[] { -1.4142135f, -0.70710677f, 0f }); + + // Use the layer to de-normalize inputs (after adapting the layer). + adapt_data = np.array(new[,] + { + { 0, 7, 4 }, + { 2, 9, 6 }, + { 0, 7, 4 }, + { 2, 9, 6 } + }, dtype: tf.float32); + input_data = np.array(new[,] { { 1, 2, 3 } }, dtype: tf.float32); + layer = tf.keras.layers.Normalization(axis: -1, invert: true); + layer.adapt(adapt_data); + x = layer.Apply(input_data); + Equal(x.numpy().ToArray(), new[] { -2f, -10f, -8f }); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/CategoryEncoding + /// + [TestMethod] + public void CategoryEncoding() + { + // one-hot + var inputs = np.array(new[] { 3, 2, 0, 1 }); + var layer = tf.keras.layers.CategoryEncoding(4); + + Tensor output = layer.Apply(inputs); + Assert.AreEqual((4, 4), output.shape); + Assert.IsTrue(output[0].numpy().Equals(new[] { 0, 0, 0, 1f })); + Assert.IsTrue(output[1].numpy().Equals(new[] { 0, 0, 1, 0f })); + Assert.IsTrue(output[2].numpy().Equals(new[] { 1, 0, 0, 0f })); + Assert.IsTrue(output[3].numpy().Equals(new[] { 0, 1, 0, 0f })); + + // multi-hot + inputs = np.array(new[,] + { + { 0, 1 }, + { 0, 0 }, + { 1, 2 }, + { 3, 1 } + }); + layer = tf.keras.layers.CategoryEncoding(4, output_mode: "multi_hot"); + output = layer.Apply(inputs); + Assert.IsTrue(output[0].numpy().Equals(new[] { 1, 1, 0, 0f })); + Assert.IsTrue(output[1].numpy().Equals(new[] { 1, 0, 0, 0f })); + Assert.IsTrue(output[2].numpy().Equals(new[] { 0, 1, 1, 0f })); + Assert.IsTrue(output[3].numpy().Equals(new[] { 0, 1, 0, 1f })); + + // using weighted inputs in "count" mode + inputs = np.array(new[,] + { + { 0, 1 }, + { 0, 0 }, + { 1, 2 }, + { 3, 1 } + }); + var weights = np.array(new[,] + { + { 0.1f, 0.2f }, + { 0.1f, 0.1f }, + { 0.2f, 0.3f }, + { 0.4f, 0.2f } + }); + layer = tf.keras.layers.CategoryEncoding(4, output_mode: "count", count_weights: weights); + output = layer.Apply(inputs); + Assert.IsTrue(output[0].numpy().Equals(new[] { 0.1f, 0.2f, 0f, 0f })); + Assert.IsTrue(output[1].numpy().Equals(new[] { 0.2f, 0f, 0f, 0f })); + Assert.IsTrue(output[2].numpy().Equals(new[] { 0f, 0.2f, 0.3f, 0f })); + Assert.IsTrue(output[3].numpy().Equals(new[] { 0f, 0.2f, 0f, 0.4f })); } } } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/LogCosh.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/LogCosh.Test.cs index 7c521a509..9bfd28b43 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/LogCosh.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/LogCosh.Test.cs @@ -1,11 +1,9 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow.NumPy; -using Tensorflow; using Tensorflow.Keras.Losses; -using static Tensorflow.Binding; +using Tensorflow.NumPy; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class LogCosh @@ -16,7 +14,7 @@ public class LogCosh NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 0.0f, 0.0f } }; [TestMethod] - + public void _Default() { //>>> # Using 'auto'/'sum_over_batch_size' reduction type. @@ -32,9 +30,9 @@ public void _Default() public void _Sample_Weight() { - //>>> # Calling with 'sample_weight'. - //>>> l(y_true, y_pred, sample_weight =[0.8, 0.2]).numpy() - //0.087 + //>>> # Calling with 'sample_weight'. + //>>> l(y_true, y_pred, sample_weight =[0.8, 0.2]).numpy() + //0.087 var loss = keras.losses.LogCosh(); var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.8f, 0.2f }); Assert.AreEqual((NDArray)0.08675616f, call.numpy()); @@ -49,7 +47,7 @@ public void _SUM() //... reduction = tf.keras.losses.Reduction.SUM) //>>> l(y_true, y_pred).numpy() //0.217 - var loss = keras.losses.LogCosh(reduction : ReductionV2.SUM); + var loss = keras.losses.LogCosh(reduction: ReductionV2.SUM); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)0.2168904f, call.numpy()); } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/MeanAbsoluteError.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/MeanAbsoluteError.Test.cs index c303fd745..1ef83adeb 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/MeanAbsoluteError.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/MeanAbsoluteError.Test.cs @@ -1,11 +1,9 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow.NumPy; -using Tensorflow; using Tensorflow.Keras.Losses; -using static Tensorflow.Binding; +using Tensorflow.NumPy; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class MeanAbsoluteError @@ -50,7 +48,7 @@ public void _SUM() //... reduction = tf.keras.losses.Reduction.SUM) //>>> mae(y_true, y_pred).numpy() //1.0 - var loss = keras.losses.MeanAbsoluteError( reduction: ReductionV2.SUM); + var loss = keras.losses.MeanAbsoluteError(reduction: ReductionV2.SUM); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)(1.0f), call.numpy()); } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/MeanAbsolutePercentageError.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/MeanAbsolutePercentageError.Test.cs index 4adda82ab..440168396 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/MeanAbsolutePercentageError.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/MeanAbsolutePercentageError.Test.cs @@ -1,11 +1,9 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow.NumPy; -using Tensorflow; using Tensorflow.Keras.Losses; -using static Tensorflow.Binding; +using Tensorflow.NumPy; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class MeanAbsolutePercentageError @@ -49,7 +47,7 @@ public void _SUM() //... reduction = tf.keras.losses.Reduction.SUM) //>>> mape(y_true, y_pred).numpy() //100. - var loss = keras.losses.MeanAbsolutePercentageError( reduction: ReductionV2.SUM); + var loss = keras.losses.MeanAbsolutePercentageError(reduction: ReductionV2.SUM); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)(100f), call.numpy()); } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/MeanSquaredError.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/MeanSquaredError.Test.cs index 8d43fae44..828d65e55 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/MeanSquaredError.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/MeanSquaredError.Test.cs @@ -1,14 +1,11 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; using Tensorflow.NumPy; -using Tensorflow; -using Tensorflow.Keras.Losses; -using static Tensorflow.Binding; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] - public class MeanSquaredErrorTest + public class MeanSquaredErrorTest { //https://keras.io/api/losses/regression_losses/#meansquarederror-class @@ -16,7 +13,7 @@ public class MeanSquaredErrorTest private NDArray y_pred = new double[,] { { 1.0, 1.0 }, { 1.0, 0.0 } }; [TestMethod] - + public void Mse_Double() { var mse = keras.losses.MeanSquaredError(); @@ -25,7 +22,7 @@ public void Mse_Double() } [TestMethod] - + public void Mse_Float() { NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } }; diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/MeanSquaredLogarithmicError.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/MeanSquaredLogarithmicError.Test.cs index e6b222777..5cecab0cc 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/MeanSquaredLogarithmicError.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/MeanSquaredLogarithmicError.Test.cs @@ -1,11 +1,9 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow.NumPy; -using Tensorflow; using Tensorflow.Keras.Losses; -using static Tensorflow.Binding; +using Tensorflow.NumPy; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class MeanSquaredLogarithmicError @@ -49,7 +47,7 @@ public void _SUM() //... reduction = tf.keras.losses.Reduction.SUM) //>>> msle(y_true, y_pred).numpy() //0.480 - var loss = keras.losses.MeanSquaredLogarithmicError( reduction: ReductionV2.SUM); + var loss = keras.losses.MeanSquaredLogarithmicError(reduction: ReductionV2.SUM); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)(0.48045287f), call.numpy()); } diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/ModelSaveTest.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/ModelSaveTest.cs deleted file mode 100644 index 0a1098af7..000000000 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/ModelSaveTest.cs +++ /dev/null @@ -1,31 +0,0 @@ -using Microsoft.VisualStudio.TestTools.UnitTesting; -using Tensorflow.Keras.Engine; -using static Tensorflow.KerasApi; - -namespace TensorFlowNET.Keras.UnitTest -{ - /// - /// https://www.tensorflow.org/guide/keras/save_and_serialize - /// - [TestClass] - public class ModelSaveTest : EagerModeTestBase - { - [TestMethod] - public void GetAndFromConfig() - { - var model = GetFunctionalModel(); - var config = model.get_config(); - var new_model = keras.models.from_config(config); - Assert.AreEqual(model.Layers.Count, new_model.Layers.Count); - } - - Functional GetFunctionalModel() - { - // Create a simple model. - var inputs = keras.Input(shape: 32); - var dense_layer = keras.layers.Dense(1); - var outputs = dense_layer.Apply(inputs); - return keras.Model(inputs, outputs); - } - } -} diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/PoolingTest.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/PoolingTest.cs index 8af408555..a3516bc83 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/PoolingTest.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/PoolingTest.cs @@ -1,11 +1,8 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; using Tensorflow.NumPy; -using System.Linq; -using Tensorflow; -using static Tensorflow.Binding; using static Tensorflow.KerasApi; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest.Layers { /// /// https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers @@ -226,11 +223,11 @@ public void GlobalMax2DPoolingChannelsFirst() Assert.AreEqual(expected, y[0].numpy()); } - [TestMethod, Ignore("There's an error generated from TF complaining about the shape of the pool. Needs further investigation.")] + [TestMethod] public void Max1DPoolingChannelsLast() { var x = input_array_1D; - var pool = keras.layers.MaxPooling1D(pool_size:2, strides:1); + var pool = keras.layers.MaxPooling1D(pool_size: 2, strides: 1); var y = pool.Apply(x); Assert.AreEqual(4, y.shape[0]); @@ -239,7 +236,7 @@ public void Max1DPoolingChannelsLast() var expected = np.array(new float[,,] { - {{2.0f, 2.0f, 3.0f, 3.0f, 3.0f}, + {{1.0f, 2.0f, 3.0f, 3.0f, 3.0f}, { 1.0f, 2.0f, 3.0f, 3.0f, 3.0f}}, {{4.0f, 5.0f, 6.0f, 3.0f, 3.0f}, diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/Rnn.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/Rnn.Test.cs new file mode 100644 index 000000000..67e2b0464 --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/Rnn.Test.cs @@ -0,0 +1,167 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using System; +using System.Collections.Generic; +using System.Linq; +using System.Text; +using System.Threading.Tasks; +using Tensorflow.Common.Types; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Layers; +using Tensorflow.Keras.Saving; +using Tensorflow.NumPy; +using Tensorflow.Train; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace Tensorflow.Keras.UnitTest.Layers +{ + [TestClass] + public class Rnn + { + [TestMethod] + public void SimpleRNNCell() + { + var cell = tf.keras.layers.SimpleRNNCell(64, dropout: 0.5f, recurrent_dropout: 0.5f); + var h0 = new Tensors { tf.zeros(new Shape(4, 64)) }; + var x = tf.random.normal((4, 100)); + var (y, h1) = cell.Apply(inputs: x, states: h0); + var h2 = h1; + Assert.AreEqual((4, 64), y.shape); + Assert.AreEqual((4, 64), h2[0].shape); + } + + [TestMethod] + public void StackedRNNCell() + { + var inputs = tf.ones((32, 10)); + var states = new Tensors { tf.zeros((32, 4)), tf.zeros((32, 5)) }; + var cells = new IRnnCell[] { tf.keras.layers.SimpleRNNCell(4), tf.keras.layers.SimpleRNNCell(5) }; + var stackedRNNCell = tf.keras.layers.StackedRNNCells(cells); + var (output, state) = stackedRNNCell.Apply(inputs, states); + Assert.AreEqual((32, 5), output.shape); + Assert.AreEqual((32, 4), state[0].shape); + } + + [TestMethod] + public void LSTMCell() + { + var inputs = tf.ones((2, 100)); + var states = new Tensors { tf.zeros((2, 4)), tf.zeros((2, 4)) }; + var rnn = tf.keras.layers.LSTMCell(4); + var (output, new_states) = rnn.Apply(inputs, states); + Assert.AreEqual((2, 4), output.shape); + Assert.AreEqual((2, 4), new_states[0].shape); + } + + [TestMethod] + public void TrainLSTMWithMnist() + { + var input = keras.Input((784)); + var x = keras.layers.Reshape((28, 28)).Apply(input); + x = keras.layers.LSTM(50, return_sequences: true).Apply(x); + x = keras.layers.LSTM(100).Apply(x); + var output = keras.layers.Dense(10, activation: "softmax").Apply(x); + + var model = keras.Model(input, output); + model.summary(); + model.compile(keras.optimizers.Adam(), keras.losses.CategoricalCrossentropy(), new string[] { "accuracy" }); + + var data_loader = new MnistModelLoader(); + var dataset = data_loader.LoadAsync(new ModelLoadSetting + { + TrainDir = "mnist", + OneHot = true, + ValidationSize = 55000, + }).Result; + var sample_weight = np.ones(((int)dataset.Train.Data.shape[0])); + model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size: 16, epochs: 1, sample_weight:sample_weight); + } + + [TestMethod] + public void SimpleRNN() + { + var input = keras.Input((784)); + var x = keras.layers.Reshape((28, 28)).Apply(input); + x = keras.layers.SimpleRNN(10).Apply(x); + var output = keras.layers.Dense(10, activation: "softmax").Apply(x); + + var model = keras.Model(input, output); + model.summary(); + model.compile(keras.optimizers.Adam(), keras.losses.CategoricalCrossentropy(), new string[] { "accuracy" }); + + var data_loader = new MnistModelLoader(); + var dataset = data_loader.LoadAsync(new ModelLoadSetting + { + TrainDir = "mnist", + OneHot = false, + ValidationSize = 58000, + }).Result; + + model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size: 16, epochs: 2); + } + + [TestMethod] + public void RNNForSimpleRNNCell() + { + var inputs = tf.random.normal((32, 10, 8)); + var cell = tf.keras.layers.SimpleRNNCell(10, dropout: 0.5f, recurrent_dropout: 0.5f); + var rnn = tf.keras.layers.RNN(cell: cell); + var cgf = rnn.get_config(); + var output = rnn.Apply(inputs); + Assert.AreEqual((32, 10), output.shape); + + } + [TestMethod] + public void RNNForStackedRNNCell() + { + var inputs = tf.random.normal((32, 10, 8)); + var cells = new IRnnCell[] { tf.keras.layers.SimpleRNNCell(4), tf.keras.layers.SimpleRNNCell(5) }; + var stackedRNNCell = tf.keras.layers.StackedRNNCells(cells); + var rnn = tf.keras.layers.RNN(cell: stackedRNNCell); + var output = rnn.Apply(inputs); + Assert.AreEqual((32, 5), output.shape); + } + + [TestMethod] + public void RNNForLSTMCell() + { + var inputs = tf.ones((5, 10, 8)); + var rnn = tf.keras.layers.RNN(tf.keras.layers.LSTMCell(4)); + var output = rnn.Apply(inputs); + Console.WriteLine($"output: {output}"); + Assert.AreEqual((5, 4), output.shape); + } + + [TestMethod] + public void GRUCell() + { + var inputs = tf.random.normal((32, 10, 8)); + var rnn = tf.keras.layers.RNN(tf.keras.layers.GRUCell(4)); + var output = rnn.Apply(inputs); + Assert.AreEqual((32, 4), output.shape); + rnn = tf.keras.layers.RNN(tf.keras.layers.GRUCell(4, reset_after:false, use_bias:false)); + output = rnn.Apply(inputs); + Assert.AreEqual((32, 4), output.shape); + + } + + [TestMethod] + public void GRU() + { + var inputs = tf.ones((32, 10, 8)); + var gru = tf.keras.layers.GRU(4); + var output = gru.Apply(inputs); + Assert.AreEqual((32, 4), output.shape); + } + + [TestMethod] + public void Bidirectional() + { + var bi = tf.keras.layers.Bidirectional(keras.layers.LSTM(10, return_sequences:true)); + var inputs = tf.random.normal((32, 10, 8)); + var outputs = bi.Apply(inputs); + Assert.AreEqual((32, 10, 20), outputs.shape); + } + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/Losses/LossesTest.cs b/test/TensorFlowNET.Keras.UnitTest/Losses/LossesTest.cs new file mode 100644 index 000000000..0bb1d0110 --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Losses/LossesTest.cs @@ -0,0 +1,57 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow.NumPy; +using static Tensorflow.Binding; + +namespace Tensorflow.Keras.UnitTest.Losses; + +[TestClass] +public class LossesTest : EagerModeTestBase +{ + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy + /// + [TestMethod] + public void BinaryCrossentropy() + { + // Example 1: (batch_size = 1, number of samples = 4) + var y_true = tf.constant(new float[] { 0, 1, 0, 0 }); + var y_pred = tf.constant(new float[] { -18.6f, 0.51f, 2.94f, -12.8f }); + var bce = tf.keras.losses.BinaryCrossentropy(from_logits: true); + var loss = bce.Call(y_true, y_pred); + Assert.AreEqual((float)loss, 0.865458f); + + // Example 2: (batch_size = 2, number of samples = 4) + y_true = tf.constant(new float[,] { { 0, 1 }, { 0, 0 } }); + y_pred = tf.constant(new float[,] { { -18.6f, 0.51f }, { 2.94f, -12.8f } }); + bce = tf.keras.losses.BinaryCrossentropy(from_logits: true); + loss = bce.Call(y_true, y_pred); + Assert.AreEqual((float)loss, 0.865458f); + + // Using 'sample_weight' attribute + loss = bce.Call(y_true, y_pred, sample_weight: tf.constant(new[] { 0.8f, 0.2f })); + Assert.AreEqual((float)loss, 0.2436386f); + + // Using 'sum' reduction` type. + bce = tf.keras.losses.BinaryCrossentropy(from_logits: true, reduction: Reduction.SUM); + loss = bce.Call(y_true, y_pred); + Assert.AreEqual((float)loss, 1.730916f); + + // Using 'none' reduction type. + bce = tf.keras.losses.BinaryCrossentropy(from_logits: true, reduction: Reduction.NONE); + loss = bce.Call(y_true, y_pred); + Assert.IsTrue(new NDArray(new float[] { 0.23515666f, 1.4957594f }) == loss.numpy()); + } + + /// + /// https://www.tensorflow.org/addons/api_docs/python/tfa/losses/SigmoidFocalCrossEntropy + /// + [TestMethod] + public void SigmoidFocalCrossEntropy() + { + var y_true = np.expand_dims(np.array(new[] { 1.0f, 1.0f, 0 })); + var y_pred = np.expand_dims(np.array(new[] { 0.97f, 0.91f, 0.03f })); + var bce = tf.keras.losses.SigmoidFocalCrossEntropy(); + var loss = bce.Call(y_true, y_pred); + Assert.AreEqual(new[] { 6.8532745e-06f, 1.909787e-04f, 2.0559824e-05f }, loss.numpy()); + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/Metrics/MetricsTest.cs b/test/TensorFlowNET.Keras.UnitTest/Metrics/MetricsTest.cs new file mode 100644 index 000000000..560d3580c --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Metrics/MetricsTest.cs @@ -0,0 +1,322 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow.NumPy; +using static Tensorflow.Binding; + +namespace Tensorflow.Keras.UnitTest.Layers.Metrics; + +[TestClass] +public class MetricsTest : EagerModeTestBase +{ + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Accuracy + /// + [TestMethod] + public void Accuracy() + { + var y_true = np.array(new[,] { { 1 }, { 2 }, { 3 }, { 4 } }); + var y_pred = np.array(new[,] { { 0f }, { 2f }, { 3f }, { 4f } }); + var m = tf.keras.metrics.Accuracy(); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.75f); + + m.reset_states(); + var weights = np.array(new[] { 1f, 1f, 0f, 0f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 0.5f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/BinaryAccuracy + /// + [TestMethod] + public void BinaryAccuracy() + { + var y_true = np.array(new[,] { { 1 }, { 1 }, { 0 }, { 0 } }); + var y_pred = np.array(new[,] { { 0.98f }, { 1f }, { 0f }, { 0.6f } }); + var m = tf.keras.metrics.BinaryAccuracy(); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.75f); + + m.reset_states(); + var weights = np.array(new[] { 1f, 0f, 0f, 1f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 0.5f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalAccuracy + /// + [TestMethod] + public void CategoricalAccuracy() + { + var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } }); + var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } }); + var m = tf.keras.metrics.CategoricalAccuracy(); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.5f); + + m.reset_states(); + var weights = np.array(new[] { 0.7f, 0.3f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 0.3f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SparseCategoricalAccuracy + /// + [TestMethod] + public void SparseCategoricalAccuracy() + { + var y_true = np.array(new[] { 2, 1 }); + var y_pred = np.array(new[,] { { 0.1f, 0.6f, 0.3f }, { 0.05f, 0.95f, 0f } }); + var m = tf.keras.metrics.SparseCategoricalAccuracy(); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.5f); + + m.reset_states(); + var weights = np.array(new[] { 0.7f, 0.3f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 0.3f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalCrossentropy + /// + [TestMethod] + public void CategoricalCrossentropy() + { + var y_true = np.array(new[,] { { 0, 1, 0 }, { 0, 0, 1 } }); + var y_pred = np.array(new[,] { { 0.05f, 0.95f, 0f }, { 0.1f, 0.8f, 0.1f } }); + var m = tf.keras.metrics.CategoricalCrossentropy(); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 1.1769392f); + + m.reset_states(); + var weights = np.array(new[] { 0.3f, 0.7f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 1.6271976f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SparseCategoricalCrossentropy + /// + [TestMethod] + public void SparseCategoricalCrossentropy() + { + var y_true = np.array(new[] { 1, 2 }); + var y_pred = np.array(new[,] { { 0.05f, 0.95f, 0f }, { 0.1f, 0.8f, 0.1f } }); + var m = tf.keras.metrics.SparseCategoricalCrossentropy(); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 1.1769392f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CosineSimilarity + /// + [TestMethod] + public void CosineSimilarity() + { + var y_true = np.array(new[,] { { 0, 1 }, { 1, 1 } }); + var y_pred = np.array(new[,] { { 1f, 0f }, { 1f, 1f } }); + var m = tf.keras.metrics.CosineSimilarity(axis: 1); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.49999997f); + + m.reset_states(); + var weights = np.array(new[] { 0.3f, 0.7f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 0.6999999f); + } + + /// + /// https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/F1Score + /// + [TestMethod] + public void F1Score() + { + var y_true = np.array(new[,] { { 1, 1, 1 }, { 1, 0, 0 }, { 1, 1, 0 } }); + var y_pred = np.array(new[,] { { 0.2f, 0.6f, 0.7f }, { 0.2f, 0.6f, 0.6f }, { 0.6f, 0.8f, 0f } }); + var m = tf.keras.metrics.F1Score(num_classes: 3, threshold: 0.5f); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, new[] { 0.5f, 0.8f, 0.6666667f }); + } + + /// + /// https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/FBetaScore + /// + [TestMethod] + public void FBetaScore() + { + var y_true = np.array(new[,] { { 1, 1, 1 }, { 1, 0, 0 }, { 1, 1, 0 } }); + var y_pred = np.array(new[,] { { 0.2f, 0.6f, 0.7f }, { 0.2f, 0.6f, 0.6f }, { 0.6f, 0.8f, 0f } }); + var m = tf.keras.metrics.FBetaScore(num_classes: 3, beta: 2.0f, threshold: 0.5f); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, new[] { 0.3846154f, 0.90909094f, 0.8333334f }); + } + + /// + /// https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/HammingLoss + /// + [TestMethod] + public void HammingLoss() + { + // multi-class hamming loss + var y_true = np.array(new[,] + { + { 1, 0, 0, 0 }, + { 0, 0, 1, 0 }, + { 0, 0, 0, 1 }, + { 0, 1, 0, 0 } + }); + var y_pred = np.array(new[,] + { + { 0.8f, 0.1f, 0.1f, 0.0f }, + { 0.2f, 0.0f, 0.8f, 0.0f }, + { 0.05f, 0.05f, 0.1f, 0.8f }, + { 1.0f, 0.0f, 0.0f, 0.0f } + }); + var m = tf.keras.metrics.HammingLoss(mode: "multiclass", threshold: 0.6f); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.25f); + + // multi-label hamming loss + y_true = np.array(new[,] + { + { 1, 0, 1, 0 }, + { 0, 1, 0, 1 }, + { 0, 0, 0, 1 } + }); + y_pred = np.array(new[,] + { + { 0.82f, 0.5f, 0.9f, 0.0f }, + { 0f, 1f, 0.4f, 0.98f }, + { 0.89f, 0.79f, 0f, 0.3f } + }); + m = tf.keras.metrics.HammingLoss(mode: "multilabel", threshold: 0.8f); + m.update_state(y_true, y_pred); + r = m.result().numpy(); + Assert.AreEqual(r, 0.16666667f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/TopKCategoricalAccuracy + /// + [TestMethod] + public void TopKCategoricalAccuracy() + { + var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } }); + var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } }); + var m = tf.keras.metrics.TopKCategoricalAccuracy(k: 1); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.5f); + + m.reset_states(); + var weights = np.array(new[] { 0.7f, 0.3f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 0.3f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SparseTopKCategoricalAccuracy + /// + [TestMethod] + public void SparseTopKCategoricalAccuracy() + { + var y_true = np.array(new[] { 2, 1 }); + var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } }); + var m = tf.keras.metrics.SparseTopKCategoricalAccuracy(k: 1); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.5f); + + m.reset_states(); + var weights = np.array(new[] { 0.7f, 0.3f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 0.3f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/top_k_categorical_accuracy + /// + [TestMethod] + public void top_k_categorical_accuracy() + { + var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } }); + var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } }); + var m = tf.keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k: 3); + Assert.AreEqual(m.numpy(), new[] { 1f, 1f }); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Precision + /// + [TestMethod] + public void Precision() + { + var y_true = np.array(new[] { 0, 1, 1, 1 }); + var y_pred = np.array(new[] { 1, 0, 1, 1 }); + var m = tf.keras.metrics.Precision(); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.6666667f); + + m.reset_states(); + var weights = np.array(new[] { 0f, 0f, 1f, 0f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 1f); + + // With top_k=2, it will calculate precision over y_true[:2] + // and y_pred[:2] + m = tf.keras.metrics.Precision(top_k: 2); + m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 })); + r = m.result().numpy(); + Assert.AreEqual(r, 0f); + + // With top_k=4, it will calculate precision over y_true[:4] + // and y_pred[:4] + m = tf.keras.metrics.Precision(top_k: 4); + m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 })); + r = m.result().numpy(); + Assert.AreEqual(r, 0.5f); + } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Recall + /// + [TestMethod] + public void Recall() + { + var y_true = np.array(new[] { 0, 1, 1, 1 }); + var y_pred = np.array(new[] { 1, 0, 1, 1 }); + var m = tf.keras.metrics.Recall(); + m.update_state(y_true, y_pred); + var r = m.result().numpy(); + Assert.AreEqual(r, 0.6666667f); + + m.reset_states(); + var weights = np.array(new[] { 0f, 0f, 1f, 0f }); + m.update_state(y_true, y_pred, sample_weight: weights); + r = m.result().numpy(); + Assert.AreEqual(r, 1f); + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/Model/ModelBuildTest.cs b/test/TensorFlowNET.Keras.UnitTest/Model/ModelBuildTest.cs new file mode 100644 index 000000000..d4b11a9b2 --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Model/ModelBuildTest.cs @@ -0,0 +1,62 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using System; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace Tensorflow.Keras.UnitTest.Model +{ + [TestClass] + public class ModelBuildTest + { + [TestMethod] + public void DenseBuild() + { + // two dimensions input with unknown batchsize + var input = tf.keras.layers.Input((17, 60)); + var dense = tf.keras.layers.Dense(64); + var output = dense.Apply(input); + var model = tf.keras.Model(input, output); + model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.CategoricalCrossentropy()); + + // one dimensions input with unknown batchsize + var input_2 = tf.keras.layers.Input((60)); + var dense_2 = tf.keras.layers.Dense(64); + var output_2 = dense_2.Apply(input_2); + var model_2 = tf.keras.Model(input_2, output_2); + model_2.compile(tf.keras.optimizers.Adam(), tf.keras.losses.CategoricalCrossentropy()); + + // two dimensions input with specified batchsize + var input_3 = tf.keras.layers.Input((17, 60), 8); + var dense_3 = tf.keras.layers.Dense(64); + var output_3 = dense_3.Apply(input_3); + var model_3 = tf.keras.Model(input_3, output_3); + model_3.compile(tf.keras.optimizers.Adam(), tf.keras.losses.CategoricalCrossentropy()); + + // one dimensions input with specified batchsize + var input_4 = tf.keras.layers.Input((60), 8); + var dense_4 = tf.keras.layers.Dense(64); + var output_4 = dense_4.Apply(input_4); + var model_4 = tf.keras.Model(input_4, output_4); + model_4.compile(tf.keras.optimizers.Adam(), tf.keras.losses.CategoricalCrossentropy()); + } + + [TestMethod] + public void NestedSequential() + { + var block1 = keras.Sequential(new[] { + keras.layers.InputLayer((3, 3)), + keras.Sequential(new [] + { + keras.layers.Flatten(), + keras.layers.Dense(5) + } + ) + }); + block1.compile(tf.keras.optimizers.Adam(), tf.keras.losses.CategoricalCrossentropy()); + + var x = tf.ones((1, 3, 3)); + var y = block1.predict(x); + Console.WriteLine(y); + } + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/Model/ModelLoadTest.cs b/test/TensorFlowNET.Keras.UnitTest/Model/ModelLoadTest.cs new file mode 100644 index 000000000..c733537e7 --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Model/ModelLoadTest.cs @@ -0,0 +1,218 @@ +using Microsoft.VisualStudio.TestPlatform.Utilities; +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Newtonsoft.Json.Linq; +using System.Collections.Generic; +using System.Linq; +using System.Xml.Linq; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Optimizers; +using Tensorflow.Keras.UnitTest.Helpers; +using Tensorflow.NumPy; +using static HDF.PInvoke.H5Z; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace Tensorflow.Keras.UnitTest.Model; + +[TestClass] +public class ModelLoadTest +{ + [TestMethod] + public void SimpleModelFromAutoCompile() + { + var model = tf.keras.models.load_model(@"Assets/simple_model_from_auto_compile"); + model.summary(); + + model.compile(new Adam(0.0001f), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" }); + + // check the weights + var kernel1 = np.load(@"Assets/simple_model_from_auto_compile/kernel1.npy"); + var bias0 = np.load(@"Assets/simple_model_from_auto_compile/bias0.npy"); + + Assert.IsTrue(kernel1.Zip(model.TrainableWeights[2].numpy()).All(x => x.First == x.Second)); + Assert.IsTrue(bias0.Zip(model.TrainableWeights[1].numpy()).All(x => x.First == x.Second)); + + var data_loader = new MnistModelLoader(); + var num_epochs = 1; + var batch_size = 8; + + var dataset = data_loader.LoadAsync(new ModelLoadSetting + { + TrainDir = "mnist", + OneHot = false, + ValidationSize = 58000, + }).Result; + + model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs); + } + + [TestMethod] + public void AlexnetFromSequential() + { + new ModelSaveTest().AlexnetFromSequential(); + var model = tf.keras.models.load_model(@"./alexnet_from_sequential"); + model.summary(); + + model.compile(new Adam(0.001f), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" }); + + var num_epochs = 1; + var batch_size = 8; + + var dataset = new RandomDataSet(new Shape(227, 227, 3), 16); + + model.fit(dataset.Data, dataset.Labels, batch_size, num_epochs); + } + + [TestMethod] + public void ModelWithSelfDefinedModule() + { + var model = tf.keras.models.load_model(@"Assets/python_func_model"); + model.summary(); + + model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" }); + + var data_loader = new MnistModelLoader(); + var num_epochs = 1; + var batch_size = 8; + + var dataset = data_loader.LoadAsync(new ModelLoadSetting + { + TrainDir = "mnist", + OneHot = false, + ValidationSize = 55000, + }).Result; + + model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs); + } + + [Ignore] + [TestMethod] + public void LSTMLoad() + { + var model = tf.keras.models.load_model(@"Assets/lstm_from_sequential"); + model.summary(); + model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.MeanSquaredError(), new string[] { "accuracy" }); + var inputs = tf.random.normal(shape: (10, 5, 3)); + var outputs = tf.random.normal(shape: (10, 1)); + model.fit(inputs.numpy(), outputs.numpy(), batch_size: 10, epochs: 5, workers: 16, use_multiprocessing: true); + } + + [Ignore] + [TestMethod] + public void VGG19() + { + var model = tf.keras.models.load_model(@"D:\development\tf.net\models\VGG19"); + model.summary(); + + var classify_model = keras.Sequential(new System.Collections.Generic.List() + { + model, + keras.layers.Flatten(), + keras.layers.Dense(10), + }); + classify_model.summary(); + + classify_model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" }); + + var x = np.random.uniform(0, 1, (8, 512, 512, 3)); + var y = np.ones(8); + + classify_model.fit(x, y, batch_size: 4); + } + + [Ignore] + [TestMethod] + public void TestModelBeforeTF2_5() + { + var a = keras.layers; + var model = tf.saved_model.load(@"D:\development\temp\saved_model") as Tensorflow.Keras.Engine.Model; + model.summary(); + } + + + [TestMethod] + public void BiasRegularizerSaveAndLoad() + { + var savemodel = keras.Sequential(new List() + { + tf.keras.layers.InputLayer((227, 227, 3)), + tf.keras.layers.Conv2D(96, (11, 11), (4, 4), activation:"relu", padding:"valid"), + tf.keras.layers.BatchNormalization(), + tf.keras.layers.MaxPooling2D((3, 3), strides:(2, 2)), + + tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1L2), + tf.keras.layers.BatchNormalization(), + + tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L2), + tf.keras.layers.BatchNormalization(), + + tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1), + tf.keras.layers.BatchNormalization(), + tf.keras.layers.MaxPooling2D((3, 3), (2, 2)), + + tf.keras.layers.Flatten(), + + tf.keras.layers.Dense(1000, activation: "linear"), + tf.keras.layers.Softmax(1) + }); + + savemodel.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" }); + + var num_epochs = 1; + var batch_size = 8; + + var trainDataset = new RandomDataSet(new Shape(227, 227, 3), 16); + + savemodel.fit(trainDataset.Data, trainDataset.Labels, batch_size, num_epochs); + + savemodel.save(@"./bias_regularizer_save_and_load", save_format: "tf"); + + var loadModel = tf.keras.models.load_model(@"./bias_regularizer_save_and_load"); + loadModel.summary(); + + loadModel.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" }); + + var fitDataset = new RandomDataSet(new Shape(227, 227, 3), 16); + + loadModel.fit(fitDataset.Data, fitDataset.Labels, batch_size, num_epochs); + } + + + [TestMethod] + public void CreateConcatenateModelSaveAndLoad() + { + // a small demo model that is just here to see if the axis value for the concatenate method is saved and loaded. + var input_layer = tf.keras.layers.Input((8, 8, 5)); + + var conv1 = tf.keras.layers.Conv2D(2, kernel_size: 3, activation: "relu", padding: "same"/*, data_format: "_conv_1"*/).Apply(input_layer); + conv1.Name = "conv1"; + + var conv2 = tf.keras.layers.Conv2D(2, kernel_size: 3, activation: "relu", padding: "same"/*, data_format: "_conv_2"*/).Apply(input_layer); + conv2.Name = "conv2"; + + var concat1 = tf.keras.layers.Concatenate(axis: 3).Apply((conv1, conv2)); + concat1.Name = "concat1"; + + var model = tf.keras.Model(input_layer, concat1); + model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.CategoricalCrossentropy()); + + model.save(@"Assets/concat_axis3_model"); + + + var tensorInput = np.arange(320).reshape((1, 8, 8, 5)).astype(TF_DataType.TF_FLOAT); + + var tensors1 = model.predict(tensorInput); + + Assert.AreEqual((1, 8, 8, 4), tensors1.shape); + + model = null; + keras.backend.clear_session(); + + var model2 = tf.keras.models.load_model(@"Assets/concat_axis3_model"); + + var tensors2 = model2.predict(tensorInput); + + Assert.AreEqual(tensors1.shape, tensors2.shape); + } + +} diff --git a/test/TensorFlowNET.Keras.UnitTest/Model/ModelSaveTest.cs b/test/TensorFlowNET.Keras.UnitTest/Model/ModelSaveTest.cs new file mode 100644 index 000000000..0854a09da --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Model/ModelSaveTest.cs @@ -0,0 +1,212 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using System.Collections.Generic; +using System.Diagnostics; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Models; +using Tensorflow.Keras.Optimizers; +using Tensorflow.Keras.Saving; +using Tensorflow.Keras.UnitTest.Helpers; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace Tensorflow.Keras.UnitTest.Model +{ + /// + /// https://www.tensorflow.org/guide/keras/save_and_serialize + /// + [TestClass] + public class ModelSaveTest : EagerModeTestBase + { + [TestMethod] + public void GetAndFromConfig() + { + var model = GetFunctionalModel(); + var config = model.get_config(); + Debug.Assert(config is FunctionalConfig); + var new_model = new ModelsApi().from_config(config as FunctionalConfig); + Assert.AreEqual(model.Layers.Count, new_model.Layers.Count); + } + + IModel GetFunctionalModel() + { + // Create a simple model. + var inputs = keras.Input(shape: 32); + var dense_layer = keras.layers.Dense(1); + var outputs = dense_layer.Apply(inputs); + return keras.Model(inputs, outputs); + } + + [TestMethod] + public void SimpleModelFromAutoCompile() + { + var inputs = tf.keras.layers.Input((28, 28, 1)); + var x = tf.keras.layers.Flatten().Apply(inputs); + x = tf.keras.layers.Dense(100, activation: "relu").Apply(x); + x = tf.keras.layers.Dense(units: 10).Apply(x); + var outputs = tf.keras.layers.Softmax(axis: 1).Apply(x); + var model = tf.keras.Model(inputs, outputs); + + model.compile(new Adam(0.001f), + tf.keras.losses.SparseCategoricalCrossentropy(), + new string[] { "accuracy" }); + + var data_loader = new MnistModelLoader(); + var num_epochs = 1; + var batch_size = 50; + + var dataset = data_loader.LoadAsync(new ModelLoadSetting + { + TrainDir = "mnist", + OneHot = false, + ValidationSize = 58000, + }).Result; + + model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs); + + model.save("./pb_simple_compile", save_format: "tf"); + } + + [TestMethod] + public void SimpleModelFromSequential() + { + var model = keras.Sequential(new List() + { + tf.keras.layers.InputLayer((28, 28, 1)), + tf.keras.layers.Flatten(), + tf.keras.layers.Dense(100, "relu"), + tf.keras.layers.Dense(10), + tf.keras.layers.Softmax() + }); + + model.summary(); + + model.compile(new Adam(0.001f), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" }); + + var data_loader = new MnistModelLoader(); + var num_epochs = 1; + var batch_size = 50; + + var dataset = data_loader.LoadAsync(new ModelLoadSetting + { + TrainDir = "mnist", + OneHot = false, + ValidationSize = 58000, + }).Result; + + model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs); + + model.save("./pb_simple_sequential", save_format: "tf"); + } + + [TestMethod] + public void AlexnetFromSequential() + { + var model = keras.Sequential(new List() + { + tf.keras.layers.InputLayer((227, 227, 3)), + tf.keras.layers.Conv2D(96, (11, 11), (4, 4), activation:"relu", padding:"valid"), + tf.keras.layers.BatchNormalization(), + tf.keras.layers.MaxPooling2D((3, 3), strides:(2, 2)), + + tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: "relu"), + tf.keras.layers.BatchNormalization(), + tf.keras.layers.MaxPooling2D((3, 3), (2, 2)), + + tf.keras.layers.Conv2D(384, (3, 3), (1, 1), "same", activation: "relu"), + tf.keras.layers.BatchNormalization(), + + tf.keras.layers.Conv2D(384, (3, 3), (1, 1), "same", activation: "relu"), + tf.keras.layers.BatchNormalization(), + + tf.keras.layers.Conv2D(256, (3, 3), (1, 1), "same", activation: "relu"), + tf.keras.layers.BatchNormalization(), + tf.keras.layers.MaxPooling2D((3, 3), (2, 2)), + + tf.keras.layers.Flatten(), + tf.keras.layers.Dense(4096, activation: "relu"), + tf.keras.layers.Dropout(0.5f), + + tf.keras.layers.Dense(4096, activation: "relu"), + tf.keras.layers.Dropout(0.5f), + + tf.keras.layers.Dense(1000, activation: "linear"), + tf.keras.layers.Softmax(1) + }); + + model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" }); + + var num_epochs = 1; + var batch_size = 8; + + var dataset = new RandomDataSet(new Shape(227, 227, 3), 16); + + model.fit(dataset.Data, dataset.Labels, batch_size, num_epochs); + + model.save("./alexnet_from_sequential", save_format: "tf"); + + // The saved model can be test with the following python code: + #region alexnet_python_code + //import pathlib + //import tensorflow as tf + + //def func(a): + // return -a + + //if __name__ == '__main__': + // model = tf.keras.models.load_model("./pb_alex_sequential") + // model.summary() + + // num_classes = 5 + // batch_size = 128 + // img_height = 227 + // img_width = 227 + // epochs = 100 + + // dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" + // data_dir = tf.keras.utils.get_file('flower_photos', origin = dataset_url, untar = True) + // data_dir = pathlib.Path(data_dir) + + // train_ds = tf.keras.preprocessing.image_dataset_from_directory( + // data_dir, + // validation_split = 0.2, + // subset = "training", + // seed = 123, + // image_size = (img_height, img_width), + // batch_size = batch_size) + + // val_ds = tf.keras.preprocessing.image_dataset_from_directory( + // data_dir, + // validation_split = 0.2, + // subset = "validation", + // seed = 123, + // image_size = (img_height, img_width), + // batch_size = batch_size) + + + // model.compile(optimizer = 'adam', + // loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True), + // metrics =['accuracy']) + + // model.build((None, img_height, img_width, 3)) + + // history = model.fit( + // train_ds, + // validation_data = val_ds, + // epochs = epochs + // ) + #endregion + } + + [TestMethod] + public void SaveAfterLoad() + { + var model = tf.keras.models.load_model(@"Assets/simple_model_from_auto_compile"); + model.summary(); + + model.save("Assets/saved_auto_compile_after_loading"); + + //model = tf.keras.models.load_model(@"Assets/saved_auto_compile_after_loading"); + //model.summary(); + } + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/MultiInputModelTest.cs b/test/TensorFlowNET.Keras.UnitTest/MultiInputModelTest.cs new file mode 100644 index 000000000..54b76d41a --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/MultiInputModelTest.cs @@ -0,0 +1,145 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using System; +using Tensorflow.Keras.Optimizers; +using Tensorflow.NumPy; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace Tensorflow.Keras.UnitTest +{ + [TestClass] + public class MultiInputModelTest + { + [TestMethod] + public void LeNetModel() + { + var inputs = keras.Input((28, 28, 1)); + var conv1 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs); + var pool1 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv1); + var conv2 = keras.layers.Conv2D(32, (3, 3), activation: "relu", padding: "same").Apply(pool1); + var pool2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2); + var flat1 = keras.layers.Flatten().Apply(pool2); + + var inputs_2 = keras.Input((28, 28, 1)); + var conv1_2 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs_2); + var pool1_2 = keras.layers.MaxPooling2D((4, 4), 4).Apply(conv1_2); + var conv2_2 = keras.layers.Conv2D(32, (1, 1), activation: "relu", padding: "same").Apply(pool1_2); + var pool2_2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2_2); + var flat1_2 = keras.layers.Flatten().Apply(pool2_2); + + var concat = keras.layers.Concatenate().Apply((flat1, flat1_2)); + var dense1 = keras.layers.Dense(512, activation: "relu").Apply(concat); + var dense2 = keras.layers.Dense(128, activation: "relu").Apply(dense1); + var dense3 = keras.layers.Dense(10, activation: "relu").Apply(dense2); + var output = keras.layers.Softmax(-1).Apply(dense3); + + var model = keras.Model((inputs, inputs_2), output); + model.summary(); + + var data_loader = new MnistModelLoader(); + + var dataset = data_loader.LoadAsync(new ModelLoadSetting + { + TrainDir = "mnist", + OneHot = false, + ValidationSize = 59900, + }).Result; + + var loss = keras.losses.SparseCategoricalCrossentropy(); + var optimizer = new Adam(0.001f); + model.compile(optimizer, loss, new string[] { "accuracy" }); + + NDArray x1 = np.reshape(dataset.Train.Data, (dataset.Train.Data.shape[0], 28, 28, 1)); + NDArray x2 = x1; + + var x = new NDArray[] { x1, x2 }; + model.fit(x, dataset.Train.Labels, batch_size: 8, epochs: 3); + + x1 = x1["0:8"]; + x2 = x1; + + x = new NDArray[] { x1, x2 }; + var y = dataset.Train.Labels["0:8"]; + (model as Engine.Model).evaluate(x, y); + + x1 = np.ones((1, 28, 28, 1), TF_DataType.TF_FLOAT); + x2 = np.zeros((1, 28, 28, 1), TF_DataType.TF_FLOAT); + var pred = model.predict((x1, x2)); + Console.WriteLine(pred); + } + + [TestMethod] + public void LeNetModelDataset() + { + var inputs = keras.Input((28, 28, 1)); + var conv1 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs); + var pool1 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv1); + var conv2 = keras.layers.Conv2D(32, (3, 3), activation: "relu", padding: "same").Apply(pool1); + var pool2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2); + var flat1 = keras.layers.Flatten().Apply(pool2); + + var inputs_2 = keras.Input((28, 28, 1)); + var conv1_2 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs_2); + var pool1_2 = keras.layers.MaxPooling2D((4, 4), 4).Apply(conv1_2); + var conv2_2 = keras.layers.Conv2D(32, (1, 1), activation: "relu", padding: "same").Apply(pool1_2); + var pool2_2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2_2); + var flat1_2 = keras.layers.Flatten().Apply(pool2_2); + + var concat = keras.layers.Concatenate().Apply((flat1, flat1_2)); + var dense1 = keras.layers.Dense(512, activation: "relu").Apply(concat); + var dense2 = keras.layers.Dense(128, activation: "relu").Apply(dense1); + var dense3 = keras.layers.Dense(10, activation: "relu").Apply(dense2); + var output = keras.layers.Softmax(-1).Apply(dense3); + + var model = keras.Model((inputs, inputs_2), output); + model.summary(); + + var data_loader = new MnistModelLoader(); + + var dataset = data_loader.LoadAsync(new ModelLoadSetting + { + TrainDir = "mnist", + OneHot = false, + ValidationSize = 59900, + }).Result; + + var loss = keras.losses.SparseCategoricalCrossentropy(); + var optimizer = new Adam(0.001f); + model.compile(optimizer, loss, new string[] { "accuracy" }); + + NDArray x1 = np.reshape(dataset.Train.Data, (dataset.Train.Data.shape[0], 28, 28, 1)); + + var multiInputDataset = tf.data.Dataset.zip( + tf.data.Dataset.from_tensor_slices(x1), + tf.data.Dataset.from_tensor_slices(x1), + tf.data.Dataset.from_tensor_slices(dataset.Train.Labels) + ).batch(8); + multiInputDataset.FirstInputTensorCount = 2; + + model.fit(multiInputDataset, epochs: 3); + + x1 = x1["0:8"]; + + multiInputDataset = tf.data.Dataset.zip( + tf.data.Dataset.from_tensor_slices(x1), + tf.data.Dataset.from_tensor_slices(x1), + tf.data.Dataset.from_tensor_slices(dataset.Train.Labels["0:8"]) + ).batch(8); + multiInputDataset.FirstInputTensorCount = 2; + + (model as Engine.Model).evaluate(multiInputDataset); + + x1 = np.ones((1, 28, 28, 1), TF_DataType.TF_FLOAT); + var x2 = np.zeros((1, 28, 28, 1), TF_DataType.TF_FLOAT); + + multiInputDataset = tf.data.Dataset.zip( + tf.data.Dataset.from_tensor_slices(x1), + tf.data.Dataset.from_tensor_slices(x2) + ).batch(8); + multiInputDataset.FirstInputTensorCount = 2; + + var pred = model.predict(multiInputDataset); + Console.WriteLine(pred); + } + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/MultiThreadsTest.cs b/test/TensorFlowNET.Keras.UnitTest/MultiThreadsTest.cs index ffe3d6f43..3706e65c8 100644 --- a/test/TensorFlowNET.Keras.UnitTest/MultiThreadsTest.cs +++ b/test/TensorFlowNET.Keras.UnitTest/MultiThreadsTest.cs @@ -1,17 +1,17 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; using System; +using System.Threading.Tasks; using Tensorflow.Keras.Engine; +using Tensorflow.NumPy; using static Tensorflow.Binding; using static Tensorflow.KerasApi; -using System.Threading.Tasks; -using Tensorflow.NumPy; -using Microsoft.VisualStudio.TestTools.UnitTesting; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest { - [TestClass, Ignore] + [TestClass] public class MultiThreads { - [TestMethod] + [TestMethod, Ignore("Failed on MacOS")] public void Test1() { //Arrange @@ -26,7 +26,7 @@ public void Test1() } - [TestMethod] + [TestMethod, Ignore("Failed on MacOS")] public void Test2() { //Arrange @@ -40,7 +40,7 @@ public void Test2() } - [TestMethod] + [TestMethod, Ignore("Failed on MacOS")] public void Test3Multithreading() { //Arrange @@ -51,7 +51,7 @@ public void Test3Multithreading() //Sanity check without multithreading for (int i = 0; i < 2; i++) { - Functional clone = BuildModel(); + var clone = BuildModel(); clone.load_weights(savefile); //Predict something @@ -71,7 +71,7 @@ public void Test3Multithreading() }); } - Functional BuildModel() + IModel BuildModel() { tf.Context.reset_context(); var inputs = keras.Input(shape: 2); @@ -81,7 +81,7 @@ Functional BuildModel() var outputs = DenseLayer.Apply(inputs); // build keras model - Functional model = keras.Model(inputs, outputs, name: Guid.NewGuid().ToString()); + var model = tf.keras.Model(inputs, outputs, name: Guid.NewGuid().ToString()); // show model summary model.summary(); diff --git a/test/TensorFlowNET.Keras.UnitTest/OutputTest.cs b/test/TensorFlowNET.Keras.UnitTest/OutputTest.cs index bdb06da7f..15fbe11a4 100644 --- a/test/TensorFlowNET.Keras.UnitTest/OutputTest.cs +++ b/test/TensorFlowNET.Keras.UnitTest/OutputTest.cs @@ -1,14 +1,8 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using System; -using System.Collections.Generic; -using System.Linq; -using System.Text; -using System.Threading.Tasks; using static Tensorflow.Binding; using static Tensorflow.KerasApi; -using Tensorflow.Keras; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest { [TestClass] public class OutputTest diff --git a/test/TensorFlowNET.Keras.UnitTest/PreprocessingTests.cs b/test/TensorFlowNET.Keras.UnitTest/PreprocessingTests.cs index 0a621e45a..82c84e794 100644 --- a/test/TensorFlowNET.Keras.UnitTest/PreprocessingTests.cs +++ b/test/TensorFlowNET.Keras.UnitTest/PreprocessingTests.cs @@ -1,14 +1,8 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; -using System; using System.Linq; -using System.Collections.Generic; -using System.Text; -using Tensorflow.NumPy; using static Tensorflow.KerasApi; -using Tensorflow; -using Tensorflow.Keras.Datasets; -namespace TensorFlowNET.Keras.UnitTest +namespace Tensorflow.Keras.UnitTest { [TestClass] public class PreprocessingTests : EagerModeTestBase @@ -71,8 +65,8 @@ public void TokenizeWithOOV() Assert.AreEqual(28, tokenizer.word_index.Count); - Assert.AreEqual(1, tokenizer.word_index[OOV]); - Assert.AreEqual(8, tokenizer.word_index["worst"]); + Assert.AreEqual(1, tokenizer.word_index[OOV]); + Assert.AreEqual(8, tokenizer.word_index["worst"]); Assert.AreEqual(13, tokenizer.word_index["number"]); Assert.AreEqual(17, tokenizer.word_index["were"]); } @@ -204,13 +198,13 @@ public void TokenizeTextsToSequencesWithOOV() for (var i = 0; i < sequences.Count; i++) for (var j = 0; j < sequences[i].Length; j++) - Assert.AreNotEqual(tokenizer.word_index[OOV], sequences[i][j]); + Assert.AreNotEqual(tokenizer.word_index[OOV], sequences[i][j]); } [TestMethod] public void TokenizeTextsToSequencesWithOOVPresent() { - var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV, num_words:20); + var tokenizer = keras.preprocessing.text.Tokenizer(oov_token: OOV, num_words: 20); tokenizer.fit_on_texts(texts); var sequences = tokenizer.texts_to_sequences(texts); @@ -255,7 +249,7 @@ public void PadSequencesPrePaddingTrunc() tokenizer.fit_on_texts(texts); var sequences = tokenizer.texts_to_sequences(texts); - var padded = keras.preprocessing.sequence.pad_sequences(sequences,maxlen:15); + var padded = keras.preprocessing.sequence.pad_sequences(sequences, maxlen: 15); Assert.AreEqual(4, padded.dims[0]); Assert.AreEqual(15, padded.dims[1]); @@ -348,7 +342,7 @@ public void TextToMatrixCount() Assert.AreEqual(27, tokenizer.word_index.Count); - var matrix = tokenizer.texts_to_matrix(texts, mode:"count"); + var matrix = tokenizer.texts_to_matrix(texts, mode: "count"); Assert.AreEqual(texts.Length, matrix.dims[0]); diff --git a/test/TensorFlowNET.Keras.UnitTest/Tensorflow.Keras.UnitTest.csproj b/test/TensorFlowNET.Keras.UnitTest/Tensorflow.Keras.UnitTest.csproj index 6d0b1ca35..edac1c2ff 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Tensorflow.Keras.UnitTest.csproj +++ b/test/TensorFlowNET.Keras.UnitTest/Tensorflow.Keras.UnitTest.csproj @@ -1,10 +1,9 @@ - + net6.0 false - AnyCPU;x64 @@ -14,18 +13,75 @@ - - - - + + + + all runtime; build; native; contentfiles; analyzers; buildtransitive - + + + + + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + + + PreserveNewest + diff --git a/test/TensorFlowNET.Native.UnitTest/Attributes/AttributesTestcs.cs b/test/TensorFlowNET.Native.UnitTest/Attributes/AttributesTestcs.cs index f1df976bc..4db19ed55 100644 --- a/test/TensorFlowNET.Native.UnitTest/Attributes/AttributesTestcs.cs +++ b/test/TensorFlowNET.Native.UnitTest/Attributes/AttributesTestcs.cs @@ -48,7 +48,7 @@ private void ATTR_TEST_REGISTER_OP(string type) private void EXPECT_TF_META(Operation oper, string attr_name, int expected_list_size, TF_AttrType expected_type, uint expected_total_size) { - var m = c_api.TF_OperationGetAttrMetadata(oper, attr_name, s_.Handle); + var m = c_api.TF_OperationGetAttrMetadata(oper, attr_name, s_); EXPECT_EQ(TF_Code.TF_OK, s_.Code); char e = expected_list_size >= 0 ? (char)1 : (char)0; /*EXPECT_EQ(e, m.is_list); @@ -63,7 +63,7 @@ public void String() var desc = init("string"); c_api.TF_SetAttrString(desc, "v", "bunny", 5); - var oper = c_api.TF_FinishOperation(desc, s_.Handle); + var oper = c_api.TF_FinishOperation(desc, s_); //ASSERT_EQ(TF_Code.TF_OK, s_.Code); //EXPECT_TF_META(oper, "v", -1, TF_AttrType.TF_ATTR_STRING, 5); //var value = new char[5]; @@ -86,8 +86,6 @@ public void GetAttributesTest() public void Dispose() { - graph_.Dispose(); - s_.Dispose(); } } } diff --git a/test/TensorFlowNET.Native.UnitTest/CApiColocationTest.cs b/test/TensorFlowNET.Native.UnitTest/CApiColocationTest.cs index 09b88e139..c162cb725 100644 --- a/test/TensorFlowNET.Native.UnitTest/CApiColocationTest.cs +++ b/test/TensorFlowNET.Native.UnitTest/CApiColocationTest.cs @@ -59,7 +59,7 @@ private void FinishAndVerify(OperationDescription desc, string[] expected) private void VerifyCollocation(Operation op, string[] expected) { - var handle = c_api.TF_OperationGetAttrMetadata(op, "_class", s_.Handle); + var handle = c_api.TF_OperationGetAttrMetadata(op, "_class", s_); TF_AttrMetadata m = new TF_AttrMetadata(); if (expected.Length == 0) { @@ -98,8 +98,6 @@ public void StringList() public void Dispose() { - graph_.Dispose(); - s_.Dispose(); } } } diff --git a/test/TensorFlowNET.Native.UnitTest/CApiTest.cs b/test/TensorFlowNET.Native.UnitTest/CApiTest.cs index 2432ec1fd..fb4ed482e 100644 --- a/test/TensorFlowNET.Native.UnitTest/CApiTest.cs +++ b/test/TensorFlowNET.Native.UnitTest/CApiTest.cs @@ -45,10 +45,10 @@ protected void TF_AddInput(OperationDescription desc, TF_Output input) => c_api.TF_AddInput(desc, input); protected Operation TF_FinishOperation(OperationDescription desc, Status s) - => c_api.TF_FinishOperation(desc, s.Handle); + => c_api.TF_FinishOperation(desc, s); protected void TF_SetAttrTensor(OperationDescription desc, string attrName, Tensor value, Status s) - => c_api.TF_SetAttrTensor(desc, attrName, value, s.Handle); + => c_api.TF_SetAttrTensor(desc, attrName, value, s); protected void TF_SetAttrType(OperationDescription desc, string attrName, TF_DataType dtype) => c_api.TF_SetAttrType(desc, attrName, dtype); diff --git a/test/TensorFlowNET.Native.UnitTest/Functions/FunctionTest.cs b/test/TensorFlowNET.Native.UnitTest/Functions/FunctionTest.cs index 265509aec..9230bc731 100644 --- a/test/TensorFlowNET.Native.UnitTest/Functions/FunctionTest.cs +++ b/test/TensorFlowNET.Native.UnitTest/Functions/FunctionTest.cs @@ -18,7 +18,7 @@ public class FunctionTest : CApiTest, IDisposable string func_name_ = "MyFunc"; string func_node_name_ = "MyFunc_0"; Status s_; - IntPtr func_; + SafeFuncGraphHandle func_; [TestInitialize] public void Initialize() @@ -402,7 +402,7 @@ void DefineT(int num_opers, Operation[] opers, inputs.Length, inputs.ToArray(), outputs.Length, outputs.ToArray(), output_names == null || output_names.Length == 0 ? null : output_names, - IntPtr.Zero, null, s_.Handle); + IntPtr.Zero, null, s_); if (expect_failure) { @@ -413,7 +413,7 @@ void DefineT(int num_opers, Operation[] opers, ASSERT_EQ(TF_OK, s_.Code, s_.Message); ASSERT_NE(func_, IntPtr.Zero); ASSERT_EQ(func_name_, c_api.StringPiece(c_api.TF_FunctionName(func_))); - c_api.TF_GraphCopyFunction(host_graph_, func_, IntPtr.Zero, s_.Handle); + c_api.TF_GraphCopyFunction(host_graph_, func_, new SafeFuncGraphHandle(IntPtr.Zero), s_); ASSERT_EQ(TF_OK, s_.Code, s_.Message); } diff --git a/test/TensorFlowNET.Native.UnitTest/Gradients/GradientsTest.cs b/test/TensorFlowNET.Native.UnitTest/Gradients/GradientsTest.cs index 2cdd50193..79fa44890 100644 --- a/test/TensorFlowNET.Native.UnitTest/Gradients/GradientsTest.cs +++ b/test/TensorFlowNET.Native.UnitTest/Gradients/GradientsTest.cs @@ -44,18 +44,14 @@ private void TestGradientsSuccess(bool grad_inputs_provided) private bool GetGraphDef(Graph graph, out GraphDef graph_def) { graph_def = null; - using (var s = new Status()) - { - using (var buffer = new Buffer()) - { - c_api.TF_GraphToGraphDef(graph, buffer.Handle, s.Handle); - bool ret = TF_GetCode(s) == TF_OK; - EXPECT_EQ(TF_OK, TF_GetCode(s)); - if (ret) - graph_def = GraphDef.Parser.ParseFrom(buffer.ToArray()); - return ret; - } - } + var s = new Status(); + var buffer = new Buffer(); + c_api.TF_GraphToGraphDef(graph, buffer, s); + bool ret = TF_GetCode(s) == TF_OK; + EXPECT_EQ(TF_OK, TF_GetCode(s)); + if (ret) + graph_def = GraphDef.Parser.ParseFrom(buffer.ToArray()); + return ret; } private void RunGraphsAndCompareOutputs(TF_Output[] grad_outputs, TF_Output[] expected_grad_outputs) @@ -111,9 +107,9 @@ private void AddGradients(bool grad_inputs_provided, string prefix, TF_Output[] IntPtr[] handles = new IntPtr[2] { IntPtr.Zero, IntPtr.Zero }; c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs, - ninputs, grad_inputs, s_.Handle, handles); + ninputs, grad_inputs, s_, handles); - var op = new Operation(handles[0]); + // var op = new Operation(handles[0]); } else { @@ -275,9 +271,6 @@ public void OpWithNoGradientRegistered_NoGradInputs() public void Dispose() { - graph_.Dispose(); - expected_graph_.Dispose(); - s_.Dispose(); } } } diff --git a/test/TensorFlowNET.Native.UnitTest/Graphs/GraphBuildTest.cs b/test/TensorFlowNET.Native.UnitTest/Graphs/GraphBuildTest.cs index 751dc3555..ed39882e5 100644 --- a/test/TensorFlowNET.Native.UnitTest/Graphs/GraphBuildTest.cs +++ b/test/TensorFlowNET.Native.UnitTest/Graphs/GraphBuildTest.cs @@ -9,7 +9,7 @@ public class GraphBuildTest : CApiTest [TestMethod, Ignore("Waiting to merge https://github.com/tensorflow/tensorflow/pull/43383")] public void UpdateEdge() { - using var graph = new Graph().as_default(); + var graph = new Graph().as_default(); var one = tf.constant(1, name: "one"); var two = tf.constant(2, name: "two"); diff --git a/test/TensorFlowNET.Native.UnitTest/Graphs/GraphTest.cs b/test/TensorFlowNET.Native.UnitTest/Graphs/GraphTest.cs index e40fd5c8a..33b5cd9f3 100644 --- a/test/TensorFlowNET.Native.UnitTest/Graphs/GraphTest.cs +++ b/test/TensorFlowNET.Native.UnitTest/Graphs/GraphTest.cs @@ -35,7 +35,7 @@ public void Graph() EXPECT_EQ(attr_value.Type, DataType.DtInt32); // Test not found errors in TF_Operation*() query functions. - EXPECT_EQ(-1, c_api.TF_OperationOutputListLength(feed, "bogus", s.Handle)); + EXPECT_EQ(-1, c_api.TF_OperationOutputListLength(feed, "bogus", s)); EXPECT_EQ(TF_Code.TF_INVALID_ARGUMENT, s.Code); Assert.IsFalse(c_test_util.GetAttrValue(feed, "missing", ref attr_value, s)); EXPECT_EQ("Operation 'feed' has no attr named 'missing'.", s.Message); @@ -191,9 +191,6 @@ public void Graph() ASSERT_TRUE(found_scalar_const); ASSERT_TRUE(found_add); ASSERT_TRUE(found_neg); - - graph.Dispose(); - s.Dispose(); } /// @@ -213,16 +210,15 @@ public void ImportGraphDef() // Export to a GraphDef. var graph_def = new Buffer(); - c_api.TF_GraphToGraphDef(graph, graph_def.Handle, s.Handle); + c_api.TF_GraphToGraphDef(graph, graph_def, s); EXPECT_EQ(TF_Code.TF_OK, s.Code); // Import it, with a prefix, in a fresh graph. - graph.Dispose(); graph = new Graph().as_default(); using (var opts = c_api.TF_NewImportGraphDefOptions()) { c_api.TF_ImportGraphDefOptionsSetPrefix(opts, "imported"); - c_api.TF_GraphImportGraphDef(graph, graph_def.Handle, opts, s.Handle); + c_api.TF_GraphImportGraphDef(graph, graph_def, opts, s); EXPECT_EQ(TF_Code.TF_OK, s.Code); } @@ -265,7 +261,7 @@ static SafeImportGraphDefResultsHandle ImportGraph(Status s, Graph graph, Buffer EXPECT_EQ(2, c_api.TF_ImportGraphDefOptionsNumReturnOutputs(opts)); c_api.TF_ImportGraphDefOptionsAddReturnOperation(opts, "scalar"); EXPECT_EQ(1, c_api.TF_ImportGraphDefOptionsNumReturnOperations(opts)); - var results = c_api.TF_GraphImportGraphDefWithResults(graph, graph_def.Handle, opts, s.Handle); + var results = c_api.TF_GraphImportGraphDefWithResults(graph, graph_def, opts, s); EXPECT_EQ(TF_Code.TF_OK, s.Code); return results; @@ -305,7 +301,7 @@ static SafeImportGraphDefResultsHandle ImportGraph(Status s, Graph graph, Buffer c_api.TF_ImportGraphDefOptionsSetPrefix(opts, "imported3"); c_api.TF_ImportGraphDefOptionsAddControlDependency(opts, feed); c_api.TF_ImportGraphDefOptionsAddControlDependency(opts, feed2); - c_api.TF_GraphImportGraphDef(graph, graph_def.Handle, opts, s.Handle); + c_api.TF_GraphImportGraphDef(graph, graph_def, opts, s); EXPECT_EQ(TF_Code.TF_OK, s.Code); } @@ -330,7 +326,7 @@ static SafeImportGraphDefResultsHandle ImportGraph(Status s, Graph graph, Buffer // Export to a graph def so we can import a graph with control dependencies graph_def = new Buffer(); - c_api.TF_GraphToGraphDef(graph, graph_def.Handle, s.Handle); + c_api.TF_GraphToGraphDef(graph, graph_def, s); EXPECT_EQ(TF_Code.TF_OK, s.Code); // Import again, with remapped control dependency, into the same graph @@ -338,7 +334,7 @@ static SafeImportGraphDefResultsHandle ImportGraph(Status s, Graph graph, Buffer { c_api.TF_ImportGraphDefOptionsSetPrefix(opts, "imported4"); c_api.TF_ImportGraphDefOptionsRemapControlDependency(opts, "imported/feed", feed); - c_api.TF_GraphImportGraphDef(graph, graph_def.Handle, opts, s.Handle); + c_api.TF_GraphImportGraphDef(graph, graph_def, opts, s); ASSERT_EQ(TF_Code.TF_OK, s.Code); } @@ -380,7 +376,6 @@ public void ImportGraphDef_WithReturnOutputs() ASSERT_EQ(TF_Code.TF_OK, s.Code); // Import it in a fresh graph with return outputs. - graph.Dispose(); graph = new Graph().as_default(); var opts = new ImportGraphDefOptions(); opts.AddReturnOutput("feed", 0); @@ -401,11 +396,6 @@ public void ImportGraphDef_WithReturnOutputs() EXPECT_EQ(0, return_outputs[0].index); EXPECT_EQ(scalar, return_outputs[1].oper); EXPECT_EQ(0, return_outputs[1].index); - - opts.Dispose(); - graph_def.Dispose(); - graph.Dispose(); - s.Dispose(); } /// @@ -422,16 +412,14 @@ public void ImportGraphDef_MissingUnusedInputMappings() public void ImportGraphMeta() { var dir = "my-save-dir/"; - using (var sess = tf.Session()) - { - var new_saver = tf.train.import_meta_graph(dir + "my-model-10000.meta"); - new_saver.restore(sess, dir + "my-model-10000"); - var labels = tf.constant(0, dtype: tf.int32, shape: new int[] { 100 }, name: "labels"); - var batch_size = tf.size(labels); - var logits = tf.get_collection("logits")[0] as Tensor; - var loss = tf.losses.sparse_softmax_cross_entropy(labels: labels, - logits: logits); - } + var sess = tf.Session(); + var new_saver = tf.train.import_meta_graph(dir + "my-model-10000.meta"); + new_saver.restore(sess, dir + "my-model-10000"); + var labels = tf.constant(0, dtype: tf.int32, shape: new int[] { 100 }, name: "labels"); + var batch_size = tf.size(labels); + var logits = tf.get_collection("logits")[0] as Tensor; + var loss = tf.losses.sparse_softmax_cross_entropy(labels: labels, + logits: logits); } } } diff --git a/test/TensorFlowNET.Native.UnitTest/Lite/TfLiteTest.cs b/test/TensorFlowNET.Native.UnitTest/Lite/TfLiteTest.cs index e16655575..4d0d6d8c9 100644 --- a/test/TensorFlowNET.Native.UnitTest/Lite/TfLiteTest.cs +++ b/test/TensorFlowNET.Native.UnitTest/Lite/TfLiteTest.cs @@ -13,6 +13,7 @@ namespace Tensorflow.Native.UnitTest public class TfLiteTest { [TestMethod] + [Ignore] public void TfLiteVersion() { var ver = c_api_lite.StringPiece(c_api_lite.TfLiteVersion()); @@ -20,6 +21,7 @@ public void TfLiteVersion() } [TestMethod] + [Ignore] public unsafe void SmokeTest() { var model = c_api_lite.TfLiteModelCreateFromFile("Lite/testdata/add.bin"); @@ -85,6 +87,7 @@ public unsafe void SmokeTest() } [TestMethod] + [Ignore] public unsafe void QuantizationParamsTest() { var model = c_api_lite.TfLiteModelCreateFromFile("Lite/testdata/add_quantized.bin"); diff --git a/test/TensorFlowNET.Native.UnitTest/Sessions/CSession.cs b/test/TensorFlowNET.Native.UnitTest/Sessions/CSession.cs index ee0f6edf5..e79571000 100644 --- a/test/TensorFlowNET.Native.UnitTest/Sessions/CSession.cs +++ b/test/TensorFlowNET.Native.UnitTest/Sessions/CSession.cs @@ -11,7 +11,7 @@ namespace Tensorflow.Native.UnitTest /// public class CSession { - private IntPtr session_; + private SafeSessionHandle session_; private List inputs_ = new List(); private List input_values_ = new List(); @@ -22,11 +22,8 @@ public class CSession public CSession(Graph graph, Status s, bool user_XLA = false) { - lock (Locks.ProcessWide) - { - var config = new ConfigProto { InterOpParallelismThreads = 4 }; - session_ = new Session(graph, config, s); - } + var config = new ConfigProto { InterOpParallelismThreads = 4 }; + session_ = new Session(graph, config, s); } public void SetInputs(Dictionary inputs) @@ -85,7 +82,7 @@ public unsafe void Run(Status s) c_api.TF_SessionRun(session_, null, inputs_ptr, input_values_ptr, inputs_ptr.Length, outputs_ptr, output_values_ptr, outputs_.Count, targets_ptr, targets_.Count, - IntPtr.Zero, s.Handle); + IntPtr.Zero, s); s.Check(); diff --git a/test/TensorFlowNET.Native.UnitTest/Sessions/SessionTest.cs b/test/TensorFlowNET.Native.UnitTest/Sessions/SessionTest.cs index 066c705c6..74f9366c7 100644 --- a/test/TensorFlowNET.Native.UnitTest/Sessions/SessionTest.cs +++ b/test/TensorFlowNET.Native.UnitTest/Sessions/SessionTest.cs @@ -14,8 +14,8 @@ public class SessionTest : CApiTest [TestMethod] public void Session() { - using var s = new Status(); - using var graph = new Graph(); + var s = new Status(); + var graph = new Graph(); // Make a placeholder operation. var feed = c_test_util.Placeholder(graph, s); diff --git a/test/TensorFlowNET.Native.UnitTest/Tensorflow.Native.UnitTest.csproj b/test/TensorFlowNET.Native.UnitTest/Tensorflow.Native.UnitTest.csproj index d7af03765..c054a8707 100644 --- a/test/TensorFlowNET.Native.UnitTest/Tensorflow.Native.UnitTest.csproj +++ b/test/TensorFlowNET.Native.UnitTest/Tensorflow.Native.UnitTest.csproj @@ -1,4 +1,4 @@ - + net6.0 @@ -44,19 +44,18 @@ - - - - + + + + all runtime; build; native; contentfiles; analyzers; buildtransitive - - + diff --git a/test/TensorFlowNET.Native.UnitTest/Tensors/TensorTest.cs b/test/TensorFlowNET.Native.UnitTest/Tensors/TensorTest.cs index 74fc8da4e..6ccc6cdd1 100644 --- a/test/TensorFlowNET.Native.UnitTest/Tensors/TensorTest.cs +++ b/test/TensorFlowNET.Native.UnitTest/Tensors/TensorTest.cs @@ -139,45 +139,45 @@ public void SetShape() var feed_out_0 = new TF_Output(feed, 0); // Fetch the shape, it should be completely unknown. - int num_dims = c_api.TF_GraphGetTensorNumDims(graph, feed_out_0, s.Handle); + int num_dims = c_api.TF_GraphGetTensorNumDims(graph, feed_out_0, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); EXPECT_EQ(-1, num_dims); // Set the shape to be unknown, expect no change. - c_api.TF_GraphSetTensorShape(graph, feed_out_0, null, -1, s.Handle); + c_api.TF_GraphSetTensorShape(graph, feed_out_0, null, -1, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); - num_dims = c_api.TF_GraphGetTensorNumDims(graph, feed_out_0, s.Handle); + num_dims = c_api.TF_GraphGetTensorNumDims(graph, feed_out_0, s); EXPECT_EQ(-1, num_dims); // Set the shape to be 2 x Unknown long[] dims = { 2, -1 }; - c_api.TF_GraphSetTensorShape(graph, feed_out_0, dims, dims.Length, s.Handle); + c_api.TF_GraphSetTensorShape(graph, feed_out_0, dims, dims.Length, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); - num_dims = c_api.TF_GraphGetTensorNumDims(graph, feed_out_0, s.Handle); + num_dims = c_api.TF_GraphGetTensorNumDims(graph, feed_out_0, s); EXPECT_EQ(2, num_dims); // Get the dimension vector appropriately. var returned_dims = new long[dims.Length]; - c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, num_dims, s.Handle); + c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, num_dims, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); Assert.IsTrue(Enumerable.SequenceEqual(dims, returned_dims)); // Set to a new valid shape: [2, 3] dims[1] = 3; - c_api.TF_GraphSetTensorShape(graph, feed_out_0, dims, dims.Length, s.Handle); + c_api.TF_GraphSetTensorShape(graph, feed_out_0, dims, dims.Length, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); // Fetch and see that the new value is returned. - c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, num_dims, s.Handle); + c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, num_dims, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); Assert.IsTrue(Enumerable.SequenceEqual(dims, returned_dims)); // Try to set 'unknown' with unknown rank on the shape and see that // it doesn't change. - c_api.TF_GraphSetTensorShape(graph, feed_out_0, null, -1, s.Handle); + c_api.TF_GraphSetTensorShape(graph, feed_out_0, null, -1, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); - c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, num_dims, s.Handle); + c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, num_dims, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); EXPECT_EQ(2, num_dims); EXPECT_EQ(2, (int)returned_dims[0]); @@ -187,21 +187,21 @@ public void SetShape() // it doesn't change. dims[0] = -1; dims[1] = -1; - c_api.TF_GraphSetTensorShape(graph, feed_out_0, dims, 2, s.Handle); + c_api.TF_GraphSetTensorShape(graph, feed_out_0, dims, 2, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); - c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, num_dims, s.Handle); + c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, num_dims, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); EXPECT_EQ(2, num_dims); EXPECT_EQ(2, (int)returned_dims[0]); EXPECT_EQ(3, (int)returned_dims[1]); // Try to fetch a shape with the wrong num_dims - c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, 5, s.Handle); + c_api.TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, 5, s); Assert.IsTrue(s.Code == TF_Code.TF_INVALID_ARGUMENT); // Try to set an invalid shape (cannot change 2x3 to a 2x5). dims[1] = 5; - c_api.TF_GraphSetTensorShape(graph, feed_out_0, dims, 2, s.Handle); + c_api.TF_GraphSetTensorShape(graph, feed_out_0, dims, 2, s); Assert.IsTrue(s.Code == TF_Code.TF_INVALID_ARGUMENT); // Test for a scalar. @@ -209,14 +209,13 @@ public void SetShape() Assert.IsTrue(s.Code == TF_Code.TF_OK); var three_out_0 = new TF_Output(three, 0); - num_dims = c_api.TF_GraphGetTensorNumDims(graph, three_out_0, s.Handle); + num_dims = c_api.TF_GraphGetTensorNumDims(graph, three_out_0, s); Assert.IsTrue(s.Code == TF_Code.TF_OK); EXPECT_EQ(0, num_dims); - c_api.TF_GraphGetTensorShape(graph, feed_out_0, dims, num_dims, s.Handle); + c_api.TF_GraphGetTensorShape(graph, feed_out_0, dims, num_dims, s); Assert.IsTrue(s.Code == TF_Code.TF_INVALID_ARGUMENT); graph.Exit(); - s.Dispose(); } } } \ No newline at end of file diff --git a/test/TensorFlowNET.Native.UnitTest/c_test_util.cs b/test/TensorFlowNET.Native.UnitTest/c_test_util.cs index 50e747e90..4044046bd 100644 --- a/test/TensorFlowNET.Native.UnitTest/c_test_util.cs +++ b/test/TensorFlowNET.Native.UnitTest/c_test_util.cs @@ -23,7 +23,7 @@ public static Operation Add(Operation l, Operation r, Graph graph, Status s, str c_api.TF_AddInputList(desc, inputs, inputs.Length); - var op = c_api.TF_FinishOperation(desc, s.Handle); + var op = c_api.TF_FinishOperation(desc, s); s.Check(); return op; @@ -33,37 +33,29 @@ public static Operation Add(Operation l, Operation r, Graph graph, Status s, str [SuppressMessage("ReSharper", "RedundantAssignment")] public static bool GetAttrValue(Operation oper, string attr_name, ref AttrValue attr_value, Status s) { - lock (Locks.ProcessWide) - { - using (var buffer = new Buffer()) - { - c_api.TF_OperationGetAttrValueProto(oper, attr_name, buffer.Handle, s.Handle); - attr_value = AttrValue.Parser.ParseFrom(buffer.ToArray()); - } + var buffer = new Buffer(); - return s.Code == TF_Code.TF_OK; - } + c_api.TF_OperationGetAttrValueProto(oper, attr_name, buffer, s); + attr_value = AttrValue.Parser.ParseFrom(buffer.ToArray()); + + return s.Code == TF_Code.TF_OK; } public static GraphDef GetGraphDef(Graph graph) { - lock (Locks.ProcessWide) - { - using (var s = new Status()) - using (var buffer = new Buffer()) - { - c_api.TF_GraphToGraphDef(graph, buffer.Handle, s.Handle); - s.Check(); - return GraphDef.Parser.ParseFrom(buffer.ToArray()); - } - } + var s = new Status(); + var buffer = new Buffer(); + + c_api.TF_GraphToGraphDef(graph, buffer, s); + s.Check(); + return GraphDef.Parser.ParseFrom(buffer.ToArray()); } - public static FunctionDef GetFunctionDef(IntPtr func) + public static FunctionDef GetFunctionDef(SafeFuncGraphHandle func) { - using var s = new Status(); - using var buffer = new Buffer(); - c_api.TF_FunctionToFunctionDef(func, buffer.Handle, s.Handle); + var s = new Status(); + var buffer = new Buffer(); + c_api.TF_FunctionToFunctionDef(func, buffer, s); s.Check(true); var func_def = FunctionDef.Parser.ParseFrom(buffer.ToArray()); return func_def; @@ -192,7 +184,7 @@ public static Operation Neg(Operation n, Graph graph, Status s, string name = "n OperationDescription desc = c_api.TF_NewOperation(graph, "Neg", name); var neg_input = new TF_Output(n, 0); c_api.TF_AddInput(desc, neg_input); - var op = c_api.TF_FinishOperation(desc, s.Handle); + var op = c_api.TF_FinishOperation(desc, s); s.Check(); return op; @@ -210,7 +202,7 @@ public static Operation Placeholder(Graph graph, Status s, string name = "feed", c_api.TF_SetAttrShape(desc, "shape", dims, dims.Length); } - var op = c_api.TF_FinishOperation(desc, s.Handle); + var op = c_api.TF_FinishOperation(desc, s); s.Check(); return op; @@ -222,10 +214,10 @@ public static Operation Const(Tensor t, Graph graph, Status s, string name) lock (Locks.ProcessWide) { var desc = c_api.TF_NewOperation(graph, "Const", name); - c_api.TF_SetAttrTensor(desc, "value", t, s.Handle); + c_api.TF_SetAttrTensor(desc, "value", t, s); s.Check(); c_api.TF_SetAttrType(desc, "dtype", t.dtype); - var op = c_api.TF_FinishOperation(desc, s.Handle); + var op = c_api.TF_FinishOperation(desc, s); s.Check(); return op; diff --git a/test/TensorFlowNET.UnitTest/Basics/ThreadSafeTest.cs b/test/TensorFlowNET.UnitTest/Basics/ThreadSafeTest.cs new file mode 100644 index 000000000..6a633448c --- /dev/null +++ b/test/TensorFlowNET.UnitTest/Basics/ThreadSafeTest.cs @@ -0,0 +1,41 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using System; +using System.Collections.Generic; +using System.IO; +using System.Linq; +using System.Text; +using System.Threading; +using System.Threading.Tasks; +using Tensorflow; +using static Tensorflow.Binding; + +namespace TensorFlowNET.UnitTest.Basics +{ + [TestClass] + public class ThreadSafeTest + { + [TestMethod] + public void GraphWithMultiThreads() + { + List threads = new List(); + + const int THREADS_COUNT = 5; + + for (int t = 0; t < THREADS_COUNT; t++) + { + Thread thread = new Thread(() => + { + Graph g = new Graph(); + Session session = new Session(g); + session.as_default(); + var input = tf.placeholder(tf.int32, shape: new Shape(6)); + var op = tf.reshape(input, new int[] { 2, 3 }); + }); + thread.Start(); + threads.Add(thread); + } + + threads.ForEach(t => t.Join()); + } + } +} diff --git a/test/TensorFlowNET.UnitTest/Basics/TrainSaverTest.cs b/test/TensorFlowNET.UnitTest/Basics/TrainSaverTest.cs index 2a4a79dcb..ca073e1ef 100644 --- a/test/TensorFlowNET.UnitTest/Basics/TrainSaverTest.cs +++ b/test/TensorFlowNET.UnitTest/Basics/TrainSaverTest.cs @@ -17,10 +17,8 @@ public void ExportGraph() public void ImportGraph() { - using (var sess = tf.Session()) - { - var new_saver = tf.train.import_meta_graph("C:/tmp/my-model.meta"); - } + var sess = tf.Session(); + var new_saver = tf.train.import_meta_graph("C:/tmp/my-model.meta"); //tf.train.export_meta_graph(filename: "linear_regression.meta.bin"); // import meta @@ -60,14 +58,12 @@ public void Save1() // Add ops to save and restore all the variables. var saver = tf.train.Saver(); - using (var sess = tf.Session()) - { - sess.run(init_op); + var sess = tf.Session(); + sess.run(init_op); - // Save the variables to disk. - var save_path = saver.save(sess, "/tmp/model1.ckpt"); - Console.WriteLine($"Model saved in path: {save_path}"); - } + // Save the variables to disk. + var save_path = saver.save(sess, "/tmp/model1.ckpt"); + Console.WriteLine($"Model saved in path: {save_path}"); } public void Save2() @@ -84,17 +80,15 @@ public void Save2() // Add ops to save and restore all the variables. var saver = tf.train.Saver(); - using (var sess = tf.Session()) - { - sess.run(init_op); - // o some work with the model. - inc_v1.op.run(); - dec_v2.op.run(); - - // Save the variables to disk. - var save_path = saver.save(sess, "/tmp/model2.ckpt"); - Console.WriteLine($"Model saved in path: {save_path}"); - } + var sess = tf.Session(); + sess.run(init_op); + // o some work with the model. + inc_v1.op.run(); + dec_v2.op.run(); + + // Save the variables to disk. + var save_path = saver.save(sess, "/tmp/model2.ckpt"); + Console.WriteLine($"Model saved in path: {save_path}"); } } } diff --git a/test/TensorFlowNET.UnitTest/Dataset/DatasetTest.cs b/test/TensorFlowNET.UnitTest/Dataset/DatasetTest.cs index 8317346ea..183544ab6 100644 --- a/test/TensorFlowNET.UnitTest/Dataset/DatasetTest.cs +++ b/test/TensorFlowNET.UnitTest/Dataset/DatasetTest.cs @@ -1,7 +1,10 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; using System; +using System.Collections.Generic; using System.Linq; +using Tensorflow.NumPy; using static Tensorflow.Binding; +using static Tensorflow.KerasApi; namespace TensorFlowNET.UnitTest.Dataset { @@ -195,5 +198,40 @@ public void Shuffle() Assert.IsFalse(allEqual); } + [Ignore] + [TestMethod] + public void GetData() + { + var vocab_size = 20000; // Only consider the top 20k words + var maxlen = 200; // Only consider the first 200 words of each movie review + var dataset = keras.datasets.imdb.load_data(num_words: vocab_size, maxlen: maxlen); + var x_train = dataset.Train.Item1; + var y_train = dataset.Train.Item2; + var x_val = dataset.Test.Item1; + var y_val = dataset.Test.Item2; + + x_train = keras.preprocessing.sequence.pad_sequences(RemoveZeros(x_train), maxlen: maxlen); + x_val = keras.preprocessing.sequence.pad_sequences(RemoveZeros(x_val), maxlen: maxlen); + print(len(x_train) + " Training sequences"); + print(len(x_val) + " Validation sequences"); + } + IEnumerable RemoveZeros(NDArray data) + { + var data_array = (int[,])data.ToMultiDimArray(); + List new_data = new List(); + for (var i = 0; i < data_array.GetLength(0); i++) + { + List new_array = new List(); + for (var j = 0; j < data_array.GetLength(1); j++) + { + if (data_array[i, j] == 0) + break; + else + new_array.Add(data_array[i, j]); + } + new_data.Add(new_array.ToArray()); + } + return new_data; + } } } diff --git a/test/TensorFlowNET.UnitTest/EagerModeTestBase.cs b/test/TensorFlowNET.UnitTest/EagerModeTestBase.cs index d08f4e505..b7b9ae128 100644 --- a/test/TensorFlowNET.UnitTest/EagerModeTestBase.cs +++ b/test/TensorFlowNET.UnitTest/EagerModeTestBase.cs @@ -20,6 +20,20 @@ public bool Equal(float f1, float f2) return Math.Abs(f1 - f2) <= tolerance; } + public bool Equal(long[] l1, long[] l2) + { + if (l1.Length != l2.Length) + return false; + + for (var i = 0; i < l1.Length; i++) + { + if (l1[i] != l2[i]) + return false; + } + + return true; + } + public bool Equal(float[] f1, float[] f2) { bool ret = false; diff --git a/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs b/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs index e41e1d617..1cfceb3e3 100644 --- a/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs +++ b/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs @@ -62,7 +62,7 @@ public void SquaredDifference_1D() // Calcute the gradient of (x1-x2)^2 // by Automatic Differentiation in Eager mode // Expected is 2*(abs(x1-x2)) - Tensor x1 = new NDArray( new float[] { 1, 3, 5, 21, 19, 17 }); + Tensor x1 = new NDArray(new float[] { 1, 3, 5, 21, 19, 17 }); Tensor x2 = new NDArray(new float[] { 29, 27, 23, 7, 11, 13 }); float[] expected = new float[] { @@ -173,5 +173,34 @@ public void ConditionalMultiply() var result = grad(x, 4); Assert.AreEqual((float)result, 4.0f); } + + [TestMethod] + public void Tile() + { + var a = tf.constant(new int[] { 1 }, TF_DataType.TF_FLOAT); + var b = tf.constant(new int[] { 2 }); + using (var tape = tf.GradientTape()) + { + tape.watch(a); + var y = tf.tile(a, b); + var grad = tape.gradient(y, a); + Assert.AreEqual((float)grad.numpy(), 2.0f); + } + } + + [TestMethod] + public void GatherNdTest() + { + var x = tf.constant(new float[,] { { 1.0f, 2.0f, 3.0f }, { 1.0f, 2.0f, 3.0f }, { 1.0f, 2.0f, 3.0f } }, dtype: TF_DataType.TF_FLOAT); + var indices = tf.constant(new int[,] { { 0, 1 }, { 1, 1 }, { 2, 1 } }, dtype: TF_DataType.TF_INT32); + using (var tape = tf.GradientTape()) + { + tape.watch(x); + var res = tf.gather_nd(x, indices); + var grad = tape.gradient(res, x); + var expected = np.array(new float[,] { { 0f, 1f, 0f }, { 0f, 1f, 0f }, { 0f, 1f, 0f } }); + Assert.IsTrue(Enumerable.SequenceEqual(grad.ToArray(), expected.ToArray())); + } + } } } diff --git a/test/TensorFlowNET.UnitTest/ManagedAPI/ArrayOpsTest.cs b/test/TensorFlowNET.UnitTest/ManagedAPI/ArrayOpsTest.cs index 6a12ed20b..e25c9779d 100644 --- a/test/TensorFlowNET.UnitTest/ManagedAPI/ArrayOpsTest.cs +++ b/test/TensorFlowNET.UnitTest/ManagedAPI/ArrayOpsTest.cs @@ -2,6 +2,8 @@ using Tensorflow.NumPy; using Tensorflow; using static Tensorflow.Binding; +using System.Linq; +using Tensorflow.Operations; namespace TensorFlowNET.UnitTest.ManagedAPI { @@ -18,7 +20,7 @@ public void Slice() var input_array = tf.constant(np.array(new int[] { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6 }).reshape((3,2,3))); var indices = tf.constant(np.array(new int[] { 0, 2 })); - var r1 = array_ops.slice(input_array, new int[] { 1, 0, 0 }, new int[] { 1, 1, 3 }); + var r1 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 1, 3 })); Assert.AreEqual(new Shape(1,1,3), r1.shape); var r1np = r1.numpy(); Assert.AreEqual(r1np[0, 0, 0], 3); @@ -26,7 +28,7 @@ public void Slice() Assert.AreEqual(r1np[0, 0, 2], 3); - var r2 = array_ops.slice(input_array, new int[] { 1, 0, 0 }, new int[] { 1, 2, 3 }); + var r2 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 2, 3 })); Assert.AreEqual(new Shape(1, 2, 3), r2.shape); var r2np = r2.numpy(); Assert.AreEqual(r2np[0, 0, 0], 3); @@ -36,7 +38,7 @@ public void Slice() Assert.AreEqual(r2np[0, 1, 1], 4); Assert.AreEqual(r2np[0, 1, 2], 4); - var r3 = array_ops.slice(input_array, new int[] { 1, 0, 0 }, new int[] { 2, 1, 3 }); + var r3 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 2, 1, 3 })); Assert.AreEqual(new Shape(2, 1, 3), r3.shape); var r3np = r3.numpy(); Assert.AreEqual(r3np[0, 0, 0], 3); @@ -92,5 +94,333 @@ public void TensorArray() Assert.AreEqual(ta.read(1).numpy(), 20f); Assert.AreEqual(ta.read(2).numpy(), 30f); } + + /// + /// https://www.tensorflow.org/api_docs/python/tf/reverse + /// + [TestMethod] + public void ReverseArray() + { + var a = tf.random.normal((2, 3)); + var b = tf.reverse(a, -1); + Assert.IsTrue(Equal(a[0].ToArray().Reverse().ToArray(), b[0].ToArray())); + Assert.IsTrue(Equal(a[1].ToArray().Reverse().ToArray(), b[1].ToArray())); + } + + [TestMethod] + public void ReverseImgArray3D() + { + // 创建 sourceImg 数组 + var sourceImgArray = new float[,,] { + { + { 237, 28, 36 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + }; + var sourceImg = ops.convert_to_tensor(sourceImgArray); + + // 创建 lrImg 数组 + var lrImgArray = new float[,,] { + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 237, 28, 36 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + }; + var lrImg = ops.convert_to_tensor(lrImgArray); + + var lr = tf.image.flip_left_right(sourceImg); + Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr.numpy().ToArray()), "tf.image.flip_left_right fail."); + + var lr2 = tf.reverse(sourceImg, 1); + Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr2.numpy().ToArray()), "tf.reverse (axis=1) fail."); + + var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 })); + Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail."); + + // 创建 udImg 数组 + var udImgArray = new float[,,] { + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 237, 28, 36 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + }; + var udImg = ops.convert_to_tensor(udImgArray); + + var ud = tf.image.flip_up_down(sourceImg); + Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud.numpy().ToArray()), "tf.image.flip_up_down fail."); + + var ud2 = tf.reverse(sourceImg, new Axis(0)); + Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud2.numpy().ToArray()), "tf.reverse (axis=0) fail."); + + var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 })); + Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=0 fail."); + } + + [TestMethod] + public void ReverseImgArray4D() + { + // 原图左上角,加一张左右翻转后的图片 + var m = new float[,,,] { + { + { + { 237, 28, 36 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + }, + { + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 237, 28, 36 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + } + }; + var sourceImg = ops.convert_to_tensor(m); + + var lrArray = new float[,,,] { + { + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 237, 28, 36 }, + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + }, + { + { + { 237, 28, 36 }, + { 255, 255, 255 }, + { 255, 255, 255 }, + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + } + }; + var lrImg = ops.convert_to_tensor(lrArray); + + // 创建 ud 数组 + var udArray = new float[,,,] { + { + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 237, 28, 36 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + }, + { + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 237, 28, 36 } + } + } + }; + var udImg = ops.convert_to_tensor(udArray); + + var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 })); + Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail."); + + var ud2 = tf.reverse(sourceImg, new Axis(1)); + Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud2.numpy().ToArray()), "tf.reverse (axis=1) fail."); + + var ud = tf.image.flip_up_down(sourceImg); + Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud.numpy().ToArray()), "tf.image.flip_up_down fail."); + + // 左右翻转 + var lr = tf.image.flip_left_right(sourceImg); + Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr.numpy().ToArray()), "tf.image.flip_left_right fail."); + + var lr2 = tf.reverse(sourceImg, 0); + Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr2.numpy().ToArray()), "tf.reverse (axis=1) fail."); + + var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 })); + Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail."); + + } + + [TestMethod] + public void ReverseImgArray4D_3x3() + { + // 原图左上角,加一张左右翻转后的图片 + var m = new float[,,,] { + { + { + { 237, 28, 36 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + }, + { + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 237, 28, 36 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + } + }; + var sourceImg = ops.convert_to_tensor(m); + + var lrArray = new float[,,,] { + { + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 237, 28, 36 }, + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + }, + { + { + { 237, 28, 36 }, + { 255, 255, 255 }, + { 255, 255, 255 }, + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + } + }; + var lrImg = ops.convert_to_tensor(lrArray); + + // 创建 ud 数组 + var udArray = new float[,,,] { + { + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 237, 28, 36 }, + { 255, 255, 255 }, + { 255, 255, 255 } + } + }, + { { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 255, 255, 255 } + }, + { + { 255, 255, 255 }, + { 255, 255, 255 }, + { 237, 28, 36 } + } + } + }; + var udImg = ops.convert_to_tensor(udArray); + + var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 })); + Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail."); + + var ud2 = tf.reverse(sourceImg, new Axis(1)); + Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud2.numpy().ToArray()), "tf.reverse (axis=1) fail."); + + var ud = tf.image.flip_up_down(sourceImg); + Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud.numpy().ToArray()), "tf.image.flip_up_down fail."); + + // 左右翻转 + var lr = tf.image.flip_left_right(sourceImg); + Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr.numpy().ToArray()), "tf.image.flip_left_right fail."); + + var lr2 = tf.reverse(sourceImg, 0); + Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr2.numpy().ToArray()), "tf.reverse (axis=1) fail."); + + var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 })); + Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail."); + + } } } diff --git a/test/TensorFlowNET.UnitTest/ManagedAPI/ControlFlowApiTest.cs b/test/TensorFlowNET.UnitTest/ManagedAPI/ControlFlowApiTest.cs index 8366c070c..23dc1d44d 100644 --- a/test/TensorFlowNET.UnitTest/ManagedAPI/ControlFlowApiTest.cs +++ b/test/TensorFlowNET.UnitTest/ManagedAPI/ControlFlowApiTest.cs @@ -28,8 +28,8 @@ public void WhileLoopTwoInputsEagerMode() var i = tf.constant(2); var j = tf.constant(3); - Func c = (x) => tf.less(x[0] + x[1], 10); - Func b = (x) => new[] { tf.add(x[0], 1), tf.add(x[1], 1) }; + Func c = (x) => tf.less(x[0] + x[1], 10); + Func b = (x) => new[] { tf.add(x[0], 1), tf.add(x[1], 1) }; var r = tf.while_loop(c, b, new[] { i, j }); Assert.AreEqual(5, (int)r[0]); Assert.AreEqual(6, (int)r[1]); @@ -57,12 +57,10 @@ public void ScanFunctionGraphMode() var input = tf.placeholder(TF_DataType.TF_FLOAT, new Shape(6)); var scan = tf.scan(fn, input); - using (var sess = tf.Session()) - { - sess.run(tf.global_variables_initializer()); - var result = sess.run(scan, new FeedItem(input, np.array(1, 2, 3, 4, 5, 6))); - Assert.AreEqual(new float[] { 1, 3, 6, 10, 15, 21 }, result.ToArray()); - } + var sess = tf.Session(); + sess.run(tf.global_variables_initializer()); + var result = sess.run(scan, new FeedItem(input, np.array(1, 2, 3, 4, 5, 6))); + Assert.AreEqual(new float[] { 1, 3, 6, 10, 15, 21 }, result.ToArray()); } } } diff --git a/test/TensorFlowNET.UnitTest/ManagedAPI/MathApiTest.cs b/test/TensorFlowNET.UnitTest/ManagedAPI/MathApiTest.cs index 42ac641b1..411deb18f 100644 --- a/test/TensorFlowNET.UnitTest/ManagedAPI/MathApiTest.cs +++ b/test/TensorFlowNET.UnitTest/ManagedAPI/MathApiTest.cs @@ -1,6 +1,8 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; +using System; using System.Linq; using Tensorflow; +using Tensorflow.NumPy; using static Tensorflow.Binding; namespace TensorFlowNET.UnitTest.ManagedAPI @@ -57,5 +59,26 @@ public void Erf() var actual = erf.ToArray(); Assert.IsTrue(Equal(expected, actual)); } + + [TestMethod] + public void ReduceEuclideanNorm() + { + var x = tf.constant(new[,] { { 1, 2, 3 }, { 1, 1, 1 } }); + Assert.AreEqual(tf.math.reduce_euclidean_norm(x).numpy(), 4); + + var y = tf.constant(new[,] { { 1, 2, 3 }, { 1, 1, 1 } }, dtype: tf.float32); + Assert.IsTrue(Equal(tf.math.reduce_euclidean_norm(y).numpy(), 4.1231055f)); + + Assert.IsTrue(Equal(tf.math.reduce_euclidean_norm(y, 0).ToArray(), + new float[] { np.sqrt(2f), np.sqrt(5f), np.sqrt(10f) })); + + Assert.IsTrue(Equal(tf.math.reduce_euclidean_norm(y, 1).ToArray(), + new float[] { np.sqrt(14f), np.sqrt(3f) })); + + Assert.IsTrue(Equal(tf.math.reduce_euclidean_norm(y, 1, keepdims: true).ToArray(), + new float[] { np.sqrt(14f), np.sqrt(3f) })); + + Assert.AreEqual(tf.math.reduce_euclidean_norm(y, (0, 1)).numpy(), np.sqrt(17f)); + } } } diff --git a/test/TensorFlowNET.UnitTest/ManagedAPI/RaggedTensorTest.cs b/test/TensorFlowNET.UnitTest/ManagedAPI/RaggedTensorTest.cs new file mode 100644 index 000000000..7a3de882e --- /dev/null +++ b/test/TensorFlowNET.UnitTest/ManagedAPI/RaggedTensorTest.cs @@ -0,0 +1,26 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using System.Text; +using System.Threading.Tasks; +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow; +using Tensorflow.NumPy; +using static Tensorflow.Binding; + +namespace TensorFlowNET.UnitTest.ManagedAPI +{ + public class RaggedTensorTest :EagerModeTestBase + { + [TestMethod] + public void Test_from_row_lengths() + { + var row_lengths = tf.convert_to_tensor(np.array(new int[] { 2, 0, 3, 1, 1 }, TF_DataType.TF_INT64)); + var rp = RowPartition.from_row_lengths(row_lengths, validate: false); + var rp_row_lengths = rp.row_lengths(); + var rp_nrows = rp.nrows(); + Assert.IsTrue(rp_nrows.ToArray()[0] == rp.nrows().ToArray()[0]); + + } + } +} diff --git a/test/TensorFlowNET.UnitTest/NumPy/Array.Sorting.Test.cs b/test/TensorFlowNET.UnitTest/NumPy/Array.Sorting.Test.cs index 2a617d409..289172a45 100644 --- a/test/TensorFlowNET.UnitTest/NumPy/Array.Sorting.Test.cs +++ b/test/TensorFlowNET.UnitTest/NumPy/Array.Sorting.Test.cs @@ -5,7 +5,6 @@ using System.Text; using Tensorflow; using Tensorflow.NumPy; -using static Tensorflow.Binding; namespace TensorFlowNET.UnitTest.NumPy { @@ -30,5 +29,16 @@ public void argsort() Assert.AreEqual(ind[0], new[] { 0, 1 }); Assert.AreEqual(ind[1], new[] { 1, 0 }); } + + /// + /// https://numpy.org/doc/stable/reference/generated/numpy.sort.html + /// + [TestMethod] + public void sort() + { + var x = np.array(new int[] { 3, 1, 2 }); + var sorted = np.sort(x); + // Assert.IsTrue(sorted.ToArray() is [1, 2, 3]); + } } } diff --git a/test/TensorFlowNET.UnitTest/NumPy/OperatorsTest.cs b/test/TensorFlowNET.UnitTest/NumPy/OperatorsTest.cs new file mode 100644 index 000000000..e4989a1dc --- /dev/null +++ b/test/TensorFlowNET.UnitTest/NumPy/OperatorsTest.cs @@ -0,0 +1,33 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow.NumPy; + +namespace TensorFlowNET.UnitTest.NumPy +{ + [TestClass] + public class OperatorsTest + { + [TestMethod] + public void EqualToOperator() + { + NDArray n1 = null; + NDArray n2 = new NDArray(1); + + Assert.IsTrue(n1 == null); + Assert.IsFalse(n2 == null); + Assert.IsFalse(n1 == 1); + Assert.IsTrue(n2 == 1); + } + + [TestMethod] + public void NotEqualToOperator() + { + NDArray n1 = null; + NDArray n2 = new NDArray(1); + + Assert.IsFalse(n1 != null); + Assert.IsTrue(n2 != null); + Assert.IsTrue(n1 != 1); + Assert.IsFalse(n2 != 1); + } + } +} diff --git a/test/TensorFlowNET.UnitTest/NumPy/Persistence.Test.cs b/test/TensorFlowNET.UnitTest/NumPy/Persistence.Test.cs new file mode 100644 index 000000000..21db6acc0 --- /dev/null +++ b/test/TensorFlowNET.UnitTest/NumPy/Persistence.Test.cs @@ -0,0 +1,42 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow.NumPy; + +namespace TensorFlowNET.UnitTest.NumPy; + +/// +/// https://numpy.org/doc/stable/reference/generated/numpy.save.html +/// +[TestClass] +public class PersistenceTest : EagerModeTestBase +{ + [TestMethod] + public void SaveNpy() + { + var x = np.arange(10f).reshape((2, 5)); + np.save("arange.npy", x); + + var x2 = np.load("arange.npy"); + Assert.AreEqual(x.shape, x2.shape); + } + + [TestMethod] + public void SaveNpz() + { + var x = np.arange(10f).reshape((2, 5)); + var y = np.arange(10f).reshape((5, 2)); + + np.savez("arange.npz", x, y); + var z = np.loadz("arange.npz"); + + np.savez("arange_named.npz", new { x, y }); + z = np.loadz("arange_named.npz"); + Assert.AreEqual(z["x"].shape, x.shape); + Assert.AreEqual(z["y"].shape, y.shape); + + np.savez_compressed("arange_compressed.npz", x, y); + np.savez_compressed("arange_compressed_named.npz", new { x, y }); + z = np.loadz("arange_compressed_named.npz"); + Assert.AreEqual(z["x"].shape, x.shape); + Assert.AreEqual(z["y"].shape, y.shape); + } +} diff --git a/test/TensorFlowNET.UnitTest/NumPy/ShapeTest.cs b/test/TensorFlowNET.UnitTest/NumPy/ShapeTest.cs new file mode 100644 index 000000000..f5a8685be --- /dev/null +++ b/test/TensorFlowNET.UnitTest/NumPy/ShapeTest.cs @@ -0,0 +1,44 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using Tensorflow.NumPy; +using System; +using System.Linq; +using static Tensorflow.Binding; +using Tensorflow; + +namespace TensorFlowNET.UnitTest.NumPy +{ + [TestClass] + public class ShapeTest : EagerModeTestBase + { + [Ignore] + [TestMethod] + public unsafe void ShapeGetLastElements() + { + // test code from function _CheckAtLeast3DImage + // 之前的 _CheckAtLeast3DImage 有bug,现在通过测试,下面的代码是正确的 + // todo: shape["-3:"] 的写法,目前有bug,需要修复,单元测试等修复后再放开,暂时先忽略测试 + + var image_shape = new Shape(new[] { 32, 64, 3 }); + var image_shape_4d = new Shape(new[] { 4, 64, 32, 3 }); + + var image_shape_last_three_elements = new Shape(new[] { + image_shape.dims[image_shape.dims.Length - 3], + image_shape.dims[image_shape.dims.Length - 2], + image_shape.dims[image_shape.dims.Length - 1]}); + + var image_shape_last_three_elements2 = image_shape["-3:"]; + + Assert.IsTrue(Equal(image_shape_last_three_elements.dims, image_shape_last_three_elements2.dims), "3dims get fail."); + + var image_shape_last_three_elements_4d = new Shape(new[] { + image_shape_4d.dims[image_shape_4d.dims.Length - 3], + image_shape_4d.dims[image_shape_4d.dims.Length - 2], + image_shape_4d.dims[image_shape_4d.dims.Length - 1]}); + + var image_shape_last_three_elements2_4d = image_shape_4d["-3:"]; + + Assert.IsTrue(Equals(image_shape_last_three_elements_4d.dims, image_shape_last_three_elements2_4d.dims), "4dims get fail."); + } + + } +} \ No newline at end of file diff --git a/test/TensorFlowNET.UnitTest/Numpy/Math.Test.cs b/test/TensorFlowNET.UnitTest/Numpy/Math.Test.cs index a0e6fa4ec..65cdaedd9 100644 --- a/test/TensorFlowNET.UnitTest/Numpy/Math.Test.cs +++ b/test/TensorFlowNET.UnitTest/Numpy/Math.Test.cs @@ -65,5 +65,47 @@ public void power() var y = np.power(x, 3); Assert.AreEqual(y, new[] { 0, 1, 8, 27, 64, 125 }); } + [TestMethod] + public void square() + { + var x = np.arange(6); + var y = np.square(x); + Assert.AreEqual(y, new[] { 0, 1, 4, 9, 16, 25 }); + } + [TestMethod] + public void dotproduct() + { + var x1 = new NDArray(new[] { 1, 2, 3 }); + var x2 = new NDArray(new[] { 4, 5, 6 }); + double result1 = np.dot(x1, x2); + NDArray y1 = new float[,] { + { 1.0f, 2.0f, 3.0f }, + { 4.0f, 5.1f,6.0f }, + { 4.0f, 5.1f,6.0f } + }; + NDArray y2 = new float[,] { + { 3.0f, 2.0f, 1.0f }, + { 6.0f, 5.1f, 4.0f }, + { 6.0f, 5.1f, 4.0f } + }; + double result2 = np.dot(y1, y2); + Assert.AreEqual(result1, 32); + Assert.AreEqual(Math.Round(result2, 2), 158.02); + } + [TestMethod] + public void maximum() + { + var x1 = new NDArray(new[,] { { 1, 2, 3 }, { 4, 5.1, 6 } }); + var x2 = new NDArray(new[,] { { 3, 2, 1 }, { 6, 5.1, 4 } }); + var y0 = np.maximum(x1,x2); + var y1 = np.maximum(x1, x2, axis: 0); + var y2 = np.maximum(x1, x2, axis: 1); + var y3 = new NDArray(new[,] { { 3, 2, 3 }, { 6, 5.1, 6 } }); + var y4 = new NDArray(new[] { 6, 5.1, 6 }); + var y5 = new NDArray(new[] { 3.0, 6 }); + Assert.AreEqual(y0, y3); + Assert.AreEqual(y1, y4); + Assert.AreEqual(y2, y5); + } } } diff --git a/test/TensorFlowNET.UnitTest/StatusTest.cs b/test/TensorFlowNET.UnitTest/StatusTest.cs index 5106cb6f4..6dcdc158e 100644 --- a/test/TensorFlowNET.UnitTest/StatusTest.cs +++ b/test/TensorFlowNET.UnitTest/StatusTest.cs @@ -28,7 +28,6 @@ public void SetStatus() public void DeleteStatus() { var s = new Status(); - s.Dispose(); } } } diff --git a/test/TensorFlowNET.UnitTest/Tensorflow.Binding.UnitTest.csproj b/test/TensorFlowNET.UnitTest/Tensorflow.Binding.UnitTest.csproj index ffb583c94..5264cb104 100644 --- a/test/TensorFlowNET.UnitTest/Tensorflow.Binding.UnitTest.csproj +++ b/test/TensorFlowNET.UnitTest/Tensorflow.Binding.UnitTest.csproj @@ -2,17 +2,11 @@ net6.0 - false - false - false - Open.snk - - 9.0 - + 10.0 AnyCPU;x64 @@ -47,16 +41,17 @@ - - - - - + + + + + + diff --git a/test/TensorFlowNET.UnitTest/Training/GradientDescentOptimizerTests.cs b/test/TensorFlowNET.UnitTest/Training/GradientDescentOptimizerTests.cs new file mode 100644 index 000000000..3b53ff9cd --- /dev/null +++ b/test/TensorFlowNET.UnitTest/Training/GradientDescentOptimizerTests.cs @@ -0,0 +1,232 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using System; +using System.Linq; +using Tensorflow; +using Tensorflow.NumPy; +using static Tensorflow.Binding; + +namespace TensorFlowNET.UnitTest.Training +{ + [TestClass] + public class GradientDescentOptimizerTest : PythonTest + { + private static TF_DataType GetTypeForNumericType() where T : struct + { + return Type.GetTypeCode(typeof(T)) switch + { + TypeCode.Single => np.float32, + TypeCode.Double => np.float64, + _ => throw new NotImplementedException(), + }; + } + + private void TestBasic() where T : struct + { + var dtype = GetTypeForNumericType(); + + // train.GradientDescentOptimizer is V1 only API. + tf.Graph().as_default(); + using (var sess = self.cached_session()) + { + var var0 = tf.Variable(new[] { 1.0, 2.0 }, dtype: dtype); + var var1 = tf.Variable(new[] { 3.0, 4.0 }, dtype: dtype); + var grads0 = tf.constant(new[] { 0.1, 0.1 }, dtype: dtype); + var grads1 = tf.constant(new[] { 0.01, 0.01 }, dtype: dtype); + var optimizer = tf.train.GradientDescentOptimizer(3.0f); + var grads_and_vars = new[] { + Tuple.Create(grads0, var0 as IVariableV1), + Tuple.Create(grads1, var1 as IVariableV1) + }; + var sgd_op = optimizer.apply_gradients(grads_and_vars); + + var global_variables = tf.global_variables_initializer(); + sess.run(global_variables); + + var initialVar0 = sess.run(var0); + var initialVar1 = sess.run(var1); + // Fetch params to validate initial values + self.assertAllCloseAccordingToType(new[] { 1.0, 2.0 }, self.evaluate(var0)); + self.assertAllCloseAccordingToType(new[] { 3.0, 4.0 }, self.evaluate(var1)); + // Run 1 step of sgd + sgd_op.run(); + // Validate updated params + self.assertAllCloseAccordingToType( + new[] { 1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1 }, + self.evaluate(var0)); + self.assertAllCloseAccordingToType( + new[] { 3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01 }, + self.evaluate(var1)); + // TODO: self.assertEqual(0, len(optimizer.variables())); + } + } + + [TestMethod] + public void TestBasic() + { + //TODO: add np.half + TestBasic(); + TestBasic(); + } + + private void TestMinimizeResourceVariable() where T : struct + { + var dtype = GetTypeForNumericType(); + + // train.GradientDescentOptimizer is V1 only API. + tf.Graph().as_default(); + using (var sess = self.cached_session()) + { + var var0 = tf.Variable(new[,] { { 1.0f, 2.0f } }, dtype: dtype); + var var1 = tf.Variable(new[] { 3.0 }, dtype: dtype); + var x = tf.constant(new[,] { { 4.0f }, { 5.0f } }, dtype: dtype); + + var pred = math_ops.matmul(var0, x) + var1; + var loss = pred * pred; + var sgd_op = tf.train.GradientDescentOptimizer(1.0f).minimize(loss); + + var global_variables = tf.global_variables_initializer(); + sess.run(global_variables); + + sess.run(new[] { var0, var1 }); + // Fetch params to validate initial values + self.assertAllCloseAccordingToType(new[,] { { 1.0, 2.0 } }, self.evaluate(var0)); + self.assertAllCloseAccordingToType(new[] { 3.0 }, self.evaluate(var1)); + // Run 1 step of sgd + sgd_op.run(); + // Validate updated params + var np_pred = 1.0 * 4.0 + 2.0 * 5.0 + 3.0; + var np_grad = 2 * np_pred; + self.assertAllCloseAccordingToType( + new[,] { { 1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0 } }, + self.evaluate(var0)); + self.assertAllCloseAccordingToType( + new[] { 3.0 - np_grad }, + self.evaluate(var1)); + } + } + + [TestMethod] + public void TestMinimizeResourceVariable() + { + //TODO: add np.half + TestMinimizeResourceVariable(); + TestMinimizeResourceVariable(); + } + + private void TestTensorLearningRate() where T : struct + { + var dtype = GetTypeForNumericType(); + + // train.GradientDescentOptimizer is V1 only API. + tf.Graph().as_default(); + using (var sess = self.cached_session()) + { + var var0 = tf.Variable(new[] { 1.0, 2.0 }, dtype: dtype); + var var1 = tf.Variable(new[] { 3.0, 4.0 }, dtype: dtype); + var grads0 = tf.constant(new[] { 0.1, 0.1 }, dtype: dtype); + var grads1 = tf.constant(new[] { 0.01, 0.01 }, dtype: dtype); + var lrate = constant_op.constant(3.0); + var grads_and_vars = new[] { + Tuple.Create(grads0, var0 as IVariableV1), + Tuple.Create(grads1, var1 as IVariableV1) + }; + var sgd_op = tf.train.GradientDescentOptimizer(lrate) + .apply_gradients(grads_and_vars); + + var global_variables = tf.global_variables_initializer(); + sess.run(global_variables); + + var initialVar0 = sess.run(var0); + var initialVar1 = sess.run(var1); + // Fetch params to validate initial values + self.assertAllCloseAccordingToType(new[] { 1.0, 2.0 }, self.evaluate(var0)); + self.assertAllCloseAccordingToType(new[] { 3.0, 4.0 }, self.evaluate(var1)); + // Run 1 step of sgd + sgd_op.run(); + // Validate updated params + self.assertAllCloseAccordingToType( + new[] { 1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1 }, + self.evaluate(var0)); + self.assertAllCloseAccordingToType( + new[] { 3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01 }, + self.evaluate(var1)); + // TODO: self.assertEqual(0, len(optimizer.variables())); + } + } + + [TestMethod] + public void TestTensorLearningRate() + { + //TODO: add np.half + TestTensorLearningRate(); + TestTensorLearningRate(); + } + + public void TestGradWrtRef() where T : struct + { + var dtype = GetTypeForNumericType(); + + var graph = tf.Graph().as_default(); + using (var sess = self.cached_session()) + { + var opt = tf.train.GradientDescentOptimizer(3.0f); + var values = new[] { 1.0, 3.0 }; + var vars_ = values.Select( + v => tf.Variable(new[] { v }, dtype: dtype) as IVariableV1 + ).ToList(); + var grads_and_vars = opt.compute_gradients(tf.add(vars_[0], vars_[1]), vars_); + sess.run(tf.global_variables_initializer()); + foreach (var (grad, _) in grads_and_vars) + self.assertAllCloseAccordingToType(new[] { 1.0 }, self.evaluate(grad)); + + } + } + + [TestMethod] + public void TestGradWrtRef() + { + TestGradWrtRef(); + TestGradWrtRef(); + } + + public void TestWithGlobalStep() where T : struct + { + var dtype = GetTypeForNumericType(); + + tf.Graph().as_default(); + using (var sess = self.cached_session()) + { + var global_step = tf.Variable(0, trainable: false); + var var0 = tf.Variable(new[] { 1.0, 2.0 }, dtype: dtype); + var var1 = tf.Variable(new[] { 3.0, 4.0 }, dtype: dtype); + var grads0 = tf.constant(new[] { 0.1, 0.1 }, dtype: dtype); + var grads1 = tf.constant(new[] { 0.01, 0.01 }, dtype: dtype); + var grads_and_vars = new[] { + Tuple.Create(grads0, var0 as IVariableV1), + Tuple.Create(grads1, var1 as IVariableV1) + }; + var sgd_op = tf.train.GradientDescentOptimizer(3.0f) + .apply_gradients(grads_and_vars, global_step: global_step); + + sess.run(tf.global_variables_initializer()); + // Fetch params to validate initial values + self.assertAllCloseAccordingToType(new[] { 1.0, 2.0 }, self.evaluate(var0)); + self.assertAllCloseAccordingToType(new[] { 3.0, 4.0 }, self.evaluate(var1)); + // Run 1 step of sgd + sgd_op.run(); + // Validate updated params and global_step + self.assertAllCloseAccordingToType(new[] { 1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1 }, self.evaluate(var0)); + self.assertAllCloseAccordingToType(new[] { 3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01 }, self.evaluate(var1)); + Assert.AreEqual(1, self.evaluate(global_step)); + } + + } + + [TestMethod] + public void TestWithGlobalStep() + { + TestWithGlobalStep(); + TestWithGlobalStep(); + } + } +} diff --git a/test/TensorFlowNET.UnitTest/PythonTest.cs b/test/Tensorflow.UnitTest/PythonTest.cs similarity index 51% rename from test/TensorFlowNET.UnitTest/PythonTest.cs rename to test/Tensorflow.UnitTest/PythonTest.cs index 0ee8762c5..1ccd39f02 100644 --- a/test/TensorFlowNET.UnitTest/PythonTest.cs +++ b/test/Tensorflow.UnitTest/PythonTest.cs @@ -1,9 +1,7 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; using Newtonsoft.Json.Linq; using Tensorflow.NumPy; -using System; using System.Collections; -using System.Linq; using Tensorflow; using static Tensorflow.Binding; @@ -88,9 +86,9 @@ public void assertEqual(object given, object expected) Assert.AreEqual(JObject.FromObject(expected).ToString(), JObject.FromObject(given).ToString()); return; } - if (given is ICollection && expected is ICollection) + if (given is ICollection collectionGiven && expected is ICollection collectionExpected) { - assertItemsEqual(given as ICollection, expected as ICollection); + assertItemsEqual(collectionGiven, collectionExpected); return; } if (given is float && expected is float) @@ -135,13 +133,83 @@ public void assertTrue(bool cond) public void assertAllClose(NDArray array1, NDArray array2, double eps = 1e-5) { - Assert.IsTrue(np.allclose(array1, array2, rtol: eps)); + CollectionAssert.AreEqual(array1.ToArray(), array2.ToArray(), new CollectionComparer(eps)); + + //TODO: Assert.IsTrue(np.allclose(array1, array2, rtol: eps)); } public void assertAllClose(double value, NDArray array2, double eps = 1e-5) { + if (array2.shape.IsScalar) + { + double value2 = array2; + Assert.AreEqual(value, value2, eps); + return; + } var array1 = np.ones_like(array2) * value; - Assert.IsTrue(np.allclose(array1, array2, rtol: eps)); + CollectionAssert.AreEqual(array1.ToArray(), array2.ToArray(), new CollectionComparer(eps)); + + //TODO: Assert.IsTrue(np.allclose(array1, array2, rtol: eps)); + } + + private class CollectionComparer : IComparer + { + private readonly double _epsilon; + + public CollectionComparer(double eps = 1e-06) + { + _epsilon = eps; + } + public int Compare(object? x, object? y) + { + if (x == null && y == null) + { + return 0; + } + else if (x == null) + { + return -1; + } + else if (y == null) + { + return 1; + } + + var a = Convert.ToDouble(x); + var b = Convert.ToDouble(y); + + double delta = Math.Abs(a - b); + if (delta < _epsilon) + { + return 0; + } + return a.CompareTo(b); + } + } + + public void assertAllCloseAccordingToType( + double[,] expected, + T[,] given, + double eps = 1e-6, + float float_eps = 1e-6f) + { + Assert.AreEqual(expected.GetLength(0), given.GetLength(0)); + Assert.AreEqual(expected.GetLength(1), given.GetLength(1)); + + var flattenGiven = given.Cast().ToArray(); + assertAllCloseAccordingToType(expected, flattenGiven, eps, float_eps); + } + + public void assertAllCloseAccordingToType( + ICollection expected, + ICollection given, + double eps = 1e-6, + float float_eps = 1e-6f) + { + // TODO: check if any of arguments is not double and change toletance + // remove givenAsDouble and cast expected instead + var givenAsDouble = given.Select(x => Convert.ToDouble(x)).ToArray(); + CollectionAssert.AreEqual(expected, givenAsDouble, new CollectionComparer(eps)); } public void assertProtoEquals(object toProto, object o) @@ -153,6 +221,20 @@ public void assertProtoEquals(object toProto, object o) #region tensor evaluation and test session + private Session? _cached_session = null; + private Graph? _cached_graph = null; + private object? _cached_config = null; + private bool _cached_force_gpu = false; + + private void _ClearCachedSession() + { + if (self._cached_session != null) + { + self._cached_session.Dispose(); + self._cached_session = null; + } + } + //protected object _eval_helper(Tensor[] tensors) //{ // if (tensors == null) @@ -160,7 +242,7 @@ public void assertProtoEquals(object toProto, object o) // return nest.map_structure(self._eval_tensor, tensors); //} - protected object _eval_tensor(object tensor) + protected object? _eval_tensor(object tensor) { if (tensor == null) return None; @@ -191,28 +273,48 @@ protected object _eval_tensor(object tensor) /// public T evaluate(Tensor tensor) { - object result = null; + object? result = null; // if context.executing_eagerly(): // return self._eval_helper(tensors) // else: { - using (var sess = tf.Session()) + var sess = tf.get_default_session(); + var ndarray = tensor.eval(sess); + + if (typeof(T) == typeof(int)) { - var ndarray = tensor.eval(sess); - if (typeof(T) == typeof(double)) - { - double x = ndarray; - result = x; - } - else if (typeof(T) == typeof(int)) - { - int x = ndarray; - result = x; - } - else - { - result = ndarray; - } + int i = ndarray; + result = i; + } + else if (typeof(T) == typeof(float)) + { + float f = ndarray; + result = f; + } + else if (typeof(T) == typeof(double)) + { + double d = ndarray; + result = d; + } + else if ( + typeof(T) == typeof(double[]) + || typeof(T) == typeof(double[,])) + { + result = ndarray.ToMultiDimArray(); + } + else if (typeof(T) == typeof(float[]) + || typeof(T) == typeof(float[,])) + { + result = ndarray.ToMultiDimArray(); + } + else if (typeof(T) == typeof(int[]) + || typeof(T) == typeof(int[,])) + { + result = ndarray.ToMultiDimArray(); + } + else + { + result = ndarray; } return (T)result; @@ -220,13 +322,60 @@ public T evaluate(Tensor tensor) } - public Session cached_session() + ///Returns a TensorFlow Session for use in executing tests. + public Session? cached_session( + Graph? graph = null, object? config = null, bool use_gpu = false, bool force_gpu = false) { - throw new NotImplementedException(); + // This method behaves differently than self.session(): for performance reasons + // `cached_session` will by default reuse the same session within the same + // test.The session returned by this function will only be closed at the end + // of the test(in the TearDown function). + + // Use the `use_gpu` and `force_gpu` options to control where ops are run.If + // `force_gpu` is True, all ops are pinned to `/ device:GPU:0`. Otherwise, if + // `use_gpu` is True, TensorFlow tries to run as many ops on the GPU as + // possible.If both `force_gpu and `use_gpu` are False, all ops are pinned to + // the CPU. + + // Example: + // python + // class MyOperatorTest(test_util.TensorFlowTestCase) : + // def testMyOperator(self): + // with self.cached_session() as sess: + // valid_input = [1.0, 2.0, 3.0, 4.0, 5.0] + // result = MyOperator(valid_input).eval() + // self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0] + // invalid_input = [-1.0, 2.0, 7.0] + // with self.assertRaisesOpError("negative input not supported"): + // MyOperator(invalid_input).eval() + + + // Args: + // graph: Optional graph to use during the returned session. + // config: An optional config_pb2.ConfigProto to use to configure the + // session. + // use_gpu: If True, attempt to run as many ops as possible on GPU. + // force_gpu: If True, pin all ops to `/device:GPU:0`. + + // Yields: + // A Session object that should be used as a context manager to surround + // the graph building and execution code in a test case. + + + // TODO: + // if context.executing_eagerly(): + // return self._eval_helper(tensors) + // else: + { + var sess = self._get_cached_session( + graph, config, force_gpu, crash_if_inconsistent_args: true); + using var cached = self._constrain_devices_and_set_default(sess, use_gpu, force_gpu); + return cached; + } } //Returns a TensorFlow Session for use in executing tests. - public Session session(Graph graph = null, object config = null, bool use_gpu = false, bool force_gpu = false) + public Session session(Graph? graph = null, object? config = null, bool use_gpu = false, bool force_gpu = false) { //Note that this will set this session and the graph as global defaults. @@ -260,7 +409,7 @@ public Session session(Graph graph = null, object config = null, bool use_gpu = // A Session object that should be used as a context manager to surround // the graph building and execution code in a test case. - Session s = null; + Session? s = null; //if (context.executing_eagerly()) // yield None //else @@ -270,8 +419,42 @@ public Session session(Graph graph = null, object config = null, bool use_gpu = return s.as_default(); } + private Session? _constrain_devices_and_set_default(Session sess, bool use_gpu, bool force_gpu) + { + // Set the session and its graph to global default and constrain devices.""" + if (tf.executing_eagerly()) + return null; + else + { + sess.graph.as_default(); + sess.as_default(); + { + if (force_gpu) + { + // TODO: + + // Use the name of an actual device if one is detected, or + // '/device:GPU:0' otherwise + /* var gpu_name = gpu_device_name(); + if (!gpu_name) + gpu_name = "/device:GPU:0" + using (sess.graph.device(gpu_name)) { + yield return sess; + }*/ + return sess; + } + else if (use_gpu) + return sess; + else + using (sess.graph.device("/device:CPU:0")) + return sess; + } + + } + } + // See session() for details. - private Session _create_session(Graph graph, object cfg, bool forceGpu) + private Session _create_session(Graph? graph, object? cfg, bool forceGpu) { var prepare_config = new Func((config) => { @@ -314,6 +497,54 @@ private Session _create_session(Graph graph, object cfg, bool forceGpu) return new Session(graph);//, config = prepare_config(config)) } + private Session _get_cached_session( + Graph? graph = null, + object? config = null, + bool force_gpu = false, + bool crash_if_inconsistent_args = true) + { + // See cached_session() for documentation. + if (self._cached_session == null) + { + var sess = self._create_session(graph, config, force_gpu); + self._cached_session = sess; + self._cached_graph = graph; + self._cached_config = config; + self._cached_force_gpu = force_gpu; + return sess; + } + else + { + + if (crash_if_inconsistent_args && self._cached_graph != null && !self._cached_graph.Equals(graph)) + throw new ValueError(@"The graph used to get the cached session is + different than the one that was used to create the + session. Maybe create a new session with + self.session()"); + if (crash_if_inconsistent_args && self._cached_config != null && !self._cached_config.Equals(config)) + { + throw new ValueError(@"The config used to get the cached session is + different than the one that was used to create the + session. Maybe create a new session with + self.session()"); + } + if (crash_if_inconsistent_args && !self._cached_force_gpu.Equals(force_gpu)) + { + throw new ValueError(@"The force_gpu value used to get the cached session is + different than the one that was used to create the + session. Maybe create a new session with + self.session()"); + } + return self._cached_session; + } + } + + [TestCleanup] + public void Cleanup() + { + _ClearCachedSession(); + } + #endregion public void AssetSequenceEqual(T[] a, T[] b) diff --git a/test/Tensorflow.UnitTest/Tensorflow.UnitTest.csproj b/test/Tensorflow.UnitTest/Tensorflow.UnitTest.csproj new file mode 100644 index 000000000..9ad6bc7a5 --- /dev/null +++ b/test/Tensorflow.UnitTest/Tensorflow.UnitTest.csproj @@ -0,0 +1,24 @@ + + + + net6.0 + enable + enable + + false + true + + + + + + + + + + + + + + + diff --git a/test/TensorflowNET.Hub.Unittest/KerasLayerTest.cs b/test/TensorflowNET.Hub.Unittest/KerasLayerTest.cs new file mode 100644 index 000000000..b9a8ed804 --- /dev/null +++ b/test/TensorflowNET.Hub.Unittest/KerasLayerTest.cs @@ -0,0 +1,47 @@ +using static Tensorflow.Binding; +using static Tensorflow.HubAPI; + +namespace Tensorflow.Hub.Unittest +{ + [TestClass] + public class KerasLayerTest + { + [Ignore] + [TestMethod] + public void SmallBert() + { + var layer = hub.KerasLayer("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-256_A-4/1"); + + var input_type_ids = tf.convert_to_tensor(new int[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, dtype: tf.int32); + input_type_ids = tf.reshape(input_type_ids, (1, 128)); + var input_word_ids = tf.convert_to_tensor(new int[] { 101, 2129, 2024, 2017, 102, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0 }, dtype: tf.int32); + input_word_ids = tf.reshape(input_word_ids, (1, 128)); + var input_mask = tf.convert_to_tensor(new int[] { 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, dtype: dtypes.int32); + input_mask = tf.reshape(input_mask, (1, 128)); + + var result = layer.Apply(new Tensors(input_type_ids, input_word_ids, input_mask)); + } + + } +} \ No newline at end of file diff --git a/test/TensorflowNET.Hub.Unittest/Tensorflow.Hub.Unittest.csproj b/test/TensorflowNET.Hub.Unittest/Tensorflow.Hub.Unittest.csproj new file mode 100644 index 000000000..c93b89256 --- /dev/null +++ b/test/TensorflowNET.Hub.Unittest/Tensorflow.Hub.Unittest.csproj @@ -0,0 +1,23 @@ + + + + net6 + enable + enable + + false + + + + + + + + + + + + + + + diff --git a/test/TensorflowNET.Hub.Unittest/Usings.cs b/test/TensorflowNET.Hub.Unittest/Usings.cs new file mode 100644 index 000000000..ab67c7ea9 --- /dev/null +++ b/test/TensorflowNET.Hub.Unittest/Usings.cs @@ -0,0 +1 @@ +global using Microsoft.VisualStudio.TestTools.UnitTesting; \ No newline at end of file diff --git a/src/TensorFlowNet.Benchmarks/Crash/RepeatDataSetCrash.cs b/tools/TensorFlowNET.Benchmarks/Crash/RepeatDataSetCrash.cs similarity index 100% rename from src/TensorFlowNet.Benchmarks/Crash/RepeatDataSetCrash.cs rename to tools/TensorFlowNET.Benchmarks/Crash/RepeatDataSetCrash.cs diff --git a/src/TensorFlowNet.Benchmarks/Leak/GpuLeakByCNN.cs b/tools/TensorFlowNET.Benchmarks/Leak/GpuLeakByCNN.cs similarity index 100% rename from src/TensorFlowNet.Benchmarks/Leak/GpuLeakByCNN.cs rename to tools/TensorFlowNET.Benchmarks/Leak/GpuLeakByCNN.cs diff --git a/src/TensorFlowNet.Benchmarks/Leak/SavedModelCleanup.cs b/tools/TensorFlowNET.Benchmarks/Leak/SavedModelCleanup.cs similarity index 61% rename from src/TensorFlowNet.Benchmarks/Leak/SavedModelCleanup.cs rename to tools/TensorFlowNET.Benchmarks/Leak/SavedModelCleanup.cs index 09e20058e..9231f3a80 100644 --- a/src/TensorFlowNet.Benchmarks/Leak/SavedModelCleanup.cs +++ b/tools/TensorFlowNET.Benchmarks/Leak/SavedModelCleanup.cs @@ -23,16 +23,14 @@ public void Run() var ClassifierModelPath = Path.Combine(modelDir, "Leak", "TestModel", "saved_model"); for (var i = 0; i < 1024; i++) - { - using (var sess = Session.LoadFromSavedModel(ClassifierModelPath)) { - using (var g = sess.graph.as_default()) { - var inputOp = g.OperationByName("inference_input"); - var outputOp = g.OperationByName("StatefulPartitionedCall"); + { + var sess = Session.LoadFromSavedModel(ClassifierModelPath); + var g = sess.graph.as_default(); + var inputOp = g.OperationByName("inference_input"); + var outputOp = g.OperationByName("StatefulPartitionedCall"); - var inp = np.zeros(new Shape(new int[] { 1, 2, 96 }), TF_DataType.TF_FLOAT); - sess.run(outputOp.outputs[0], new FeedItem(inputOp.outputs[0], inp)); - } - } + var inp = np.zeros(new Shape(new int[] { 1, 2, 96 }), TF_DataType.TF_FLOAT); + sess.run(outputOp.outputs[0], new FeedItem(inputOp.outputs[0], inp)); } } } diff --git a/src/TensorFlowNet.Benchmarks/Leak/TestModel/saved_model/saved_model.pb b/tools/TensorFlowNET.Benchmarks/Leak/TestModel/saved_model/saved_model.pb similarity index 100% rename from src/TensorFlowNet.Benchmarks/Leak/TestModel/saved_model/saved_model.pb rename to tools/TensorFlowNET.Benchmarks/Leak/TestModel/saved_model/saved_model.pb diff --git a/src/TensorFlowNet.Benchmarks/Leak/TestModel/saved_model/variables/variables.data-00000-of-00001 b/tools/TensorFlowNET.Benchmarks/Leak/TestModel/saved_model/variables/variables.data-00000-of-00001 similarity index 100% rename from src/TensorFlowNet.Benchmarks/Leak/TestModel/saved_model/variables/variables.data-00000-of-00001 rename to tools/TensorFlowNET.Benchmarks/Leak/TestModel/saved_model/variables/variables.data-00000-of-00001 diff --git a/src/TensorFlowNet.Benchmarks/Leak/TestModel/saved_model/variables/variables.index b/tools/TensorFlowNET.Benchmarks/Leak/TestModel/saved_model/variables/variables.index similarity index 100% rename from src/TensorFlowNet.Benchmarks/Leak/TestModel/saved_model/variables/variables.index rename to tools/TensorFlowNET.Benchmarks/Leak/TestModel/saved_model/variables/variables.index diff --git a/src/TensorFlowNet.Benchmarks/Program.cs b/tools/TensorFlowNET.Benchmarks/Program.cs similarity index 100% rename from src/TensorFlowNet.Benchmarks/Program.cs rename to tools/TensorFlowNET.Benchmarks/Program.cs diff --git a/src/TensorFlowNet.Benchmarks/README.md b/tools/TensorFlowNET.Benchmarks/README.md similarity index 100% rename from src/TensorFlowNet.Benchmarks/README.md rename to tools/TensorFlowNET.Benchmarks/README.md diff --git a/src/TensorFlowNet.Benchmarks/TensorBenchmark.cs b/tools/TensorFlowNET.Benchmarks/TensorBenchmark.cs similarity index 93% rename from src/TensorFlowNet.Benchmarks/TensorBenchmark.cs rename to tools/TensorFlowNET.Benchmarks/TensorBenchmark.cs index c1aadd469..fa99755e2 100644 --- a/src/TensorFlowNet.Benchmarks/TensorBenchmark.cs +++ b/tools/TensorFlowNET.Benchmarks/TensorBenchmark.cs @@ -1,10 +1,8 @@ using BenchmarkDotNet.Attributes; -using Tensorflow; -using Tensorflow.Eager; namespace TensorFlowBenchmark { - [SimpleJob(launchCount: 1, warmupCount: 1, targetCount: 10)] + [SimpleJob(launchCount: 1, warmupCount: 1)] [MinColumn, MaxColumn, MeanColumn, MedianColumn] public class TensorBenchmark { diff --git a/src/TensorFlowNet.Benchmarks/Tensorflow.Benchmark.csproj b/tools/TensorFlowNET.Benchmarks/Tensorflow.Benchmark.csproj similarity index 91% rename from src/TensorFlowNet.Benchmarks/Tensorflow.Benchmark.csproj rename to tools/TensorFlowNET.Benchmarks/Tensorflow.Benchmark.csproj index ee0c113f2..dd6f9538b 100644 --- a/src/TensorFlowNet.Benchmarks/Tensorflow.Benchmark.csproj +++ b/tools/TensorFlowNET.Benchmarks/Tensorflow.Benchmark.csproj @@ -36,12 +36,12 @@ - - + + - + diff --git a/src/TensorFlowNet.Benchmarks/Unmanaged/StructCastBenchmark.cs b/tools/TensorFlowNET.Benchmarks/Unmanaged/StructCastBenchmark.cs similarity index 96% rename from src/TensorFlowNet.Benchmarks/Unmanaged/StructCastBenchmark.cs rename to tools/TensorFlowNET.Benchmarks/Unmanaged/StructCastBenchmark.cs index d4b0fee99..6e2b71605 100644 --- a/src/TensorFlowNet.Benchmarks/Unmanaged/StructCastBenchmark.cs +++ b/tools/TensorFlowNET.Benchmarks/Unmanaged/StructCastBenchmark.cs @@ -16,7 +16,7 @@ public UnmanagedStruct(int _) } } - [SimpleJob(launchCount: 1, warmupCount: 2, targetCount: 10)] + [SimpleJob(launchCount: 1, warmupCount: 2)] [MinColumn, MaxColumn, MeanColumn, MedianColumn] public unsafe class StructCastBenchmark { diff --git a/src/TensorFlowNET.Console/Diagnostician.cs b/tools/TensorFlowNET.Console/Diagnostician.cs similarity index 100% rename from src/TensorFlowNET.Console/Diagnostician.cs rename to tools/TensorFlowNET.Console/Diagnostician.cs diff --git a/src/TensorFlowNET.Console/Exploring.cs b/tools/TensorFlowNET.Console/Exploring.cs similarity index 100% rename from src/TensorFlowNET.Console/Exploring.cs rename to tools/TensorFlowNET.Console/Exploring.cs diff --git a/src/TensorFlowNET.Console/MemoryBasicTest.cs b/tools/TensorFlowNET.Console/MemoryBasicTest.cs similarity index 97% rename from src/TensorFlowNET.Console/MemoryBasicTest.cs rename to tools/TensorFlowNET.Console/MemoryBasicTest.cs index 3b0deeabb..2bb11a02d 100644 --- a/src/TensorFlowNET.Console/MemoryBasicTest.cs +++ b/tools/TensorFlowNET.Console/MemoryBasicTest.cs @@ -112,7 +112,7 @@ public Action Conv2DWithTensor var strides = new[] { 1, 1, 1, 1 }; var dilations = new[] { 1, 1, 1, 1 }; - var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("Conv2D", null, input, filter) + var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(tf.Context, "Conv2D", null, input, filter) { attrs = ConvertToDict(new { @@ -134,7 +134,7 @@ public Action Conv2DWithVariable var strides = new[] { 1, 1, 1, 1 }; var dilations = new[] { 1, 1, 1, 1 }; - var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("Conv2D", null, input, filter) + var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(tf.Context, "Conv2D", null, input, filter) { attrs = ConvertToDict(new { diff --git a/src/TensorFlowNET.Console/MemoryFuncGraphTest.cs b/tools/TensorFlowNET.Console/MemoryFuncGraphTest.cs similarity index 100% rename from src/TensorFlowNET.Console/MemoryFuncGraphTest.cs rename to tools/TensorFlowNET.Console/MemoryFuncGraphTest.cs diff --git a/src/TensorFlowNET.Console/MemoryKerasTest.cs b/tools/TensorFlowNET.Console/MemoryKerasTest.cs similarity index 100% rename from src/TensorFlowNET.Console/MemoryKerasTest.cs rename to tools/TensorFlowNET.Console/MemoryKerasTest.cs diff --git a/src/TensorFlowNET.Console/MemoryMonitor.cs b/tools/TensorFlowNET.Console/MemoryMonitor.cs similarity index 92% rename from src/TensorFlowNET.Console/MemoryMonitor.cs rename to tools/TensorFlowNET.Console/MemoryMonitor.cs index 92cd224f2..f9a6bfd1d 100644 --- a/src/TensorFlowNET.Console/MemoryMonitor.cs +++ b/tools/TensorFlowNET.Console/MemoryMonitor.cs @@ -23,11 +23,9 @@ public void WarmUp() var x = tf.placeholder(tf.float64, shape: (1024, 1024)); var log = tf.log(x); - using (var sess = tf.Session()) - { - var ones = np.ones((1024, 1024), dtype: np.float64); - var o = sess.run(log, new FeedItem(x, ones)); - } + var sess = tf.Session(); + var ones = np.ones((1024, 1024), dtype: np.float64); + var o = sess.run(log, new FeedItem(x, ones)); // Thread.Sleep(1); } diff --git a/src/TensorFlowNET.Console/Program.cs b/tools/TensorFlowNET.Console/Program.cs similarity index 96% rename from src/TensorFlowNET.Console/Program.cs rename to tools/TensorFlowNET.Console/Program.cs index 4b7f52deb..5f12badb0 100644 --- a/src/TensorFlowNET.Console/Program.cs +++ b/tools/TensorFlowNET.Console/Program.cs @@ -1,4 +1,5 @@ using System; +using Tensorflow.Keras; using static Tensorflow.Binding; namespace Tensorflow @@ -10,6 +11,9 @@ static void Main(string[] args) var diag = new Diagnostician(); // diag.Diagnose(@"D:\memory.txt"); + var rnn = new SimpleRnnTest(); + rnn.Run(); + // this class is used explor new features. var exploring = new Exploring(); // exploring.Run(); diff --git a/tools/TensorFlowNET.Console/SimpleRnnTest.cs b/tools/TensorFlowNET.Console/SimpleRnnTest.cs new file mode 100644 index 000000000..ae6ebb8a8 --- /dev/null +++ b/tools/TensorFlowNET.Console/SimpleRnnTest.cs @@ -0,0 +1,26 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras; +using Tensorflow.NumPy; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace Tensorflow +{ + public class SimpleRnnTest + { + public void Run() + { + var inputs = np.random.random((6, 10, 8)).astype(np.float32); + //var simple_rnn = tf.keras.layers.SimpleRNN(4); + //var output = simple_rnn.Apply(inputs); // The output has shape `[32, 4]`. + + var simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences: true, return_state: true); + + // whole_sequence_output has shape `[32, 10, 4]`. + // final_state has shape `[32, 4]`. + var (whole_sequence_output, final_states) = simple_rnn.Apply(inputs); + } + } +} diff --git a/src/TensorFlowNET.Console/Tensorflow.Console.csproj b/tools/TensorFlowNET.Console/Tensorflow.Console.csproj similarity index 67% rename from src/TensorFlowNET.Console/Tensorflow.Console.csproj rename to tools/TensorFlowNET.Console/Tensorflow.Console.csproj index 058722eb8..bb60b6b63 100644 --- a/src/TensorFlowNET.Console/Tensorflow.Console.csproj +++ b/tools/TensorFlowNET.Console/Tensorflow.Console.csproj @@ -6,7 +6,7 @@ Tensorflow Tensorflow AnyCPU;x64 - 9.0 + 10.0 @@ -20,12 +20,9 @@ - - - - - - + + + diff --git a/tools/Tensorflow.CodeGen/DescriptionGenerator.cs b/tools/Tensorflow.CodeGen/DescriptionGenerator.cs new file mode 100644 index 000000000..0437370a1 --- /dev/null +++ b/tools/Tensorflow.CodeGen/DescriptionGenerator.cs @@ -0,0 +1,263 @@ +using Microsoft.CodeAnalysis.CSharp; +using Protobuf.Text; +using System; +using System.Collections.Generic; +using System.Linq; +using System.Reflection.Metadata.Ecma335; +using System.Text; +using System.Text.RegularExpressions; +using System.Threading.Tasks; + +namespace Tensorflow.CodeGen +{ + public class DescriptionGenerator + { + private static readonly string replaceStrInner = "~~%~~"; + private static readonly string replaceStrInnerQuotationMarks = "^%^"; + Dictionary> _opDescriptions = new Dictionary>(); + Dictionary _opDescriptionDefs = new Dictionary(); + public DescriptionGenerator(string apiDefDirectory) + { + DirectoryInfo directory = new DirectoryInfo(apiDefDirectory); + + int errors = 0; + foreach (FileInfo file in directory.GetFiles()) + { + string target = file.Name.Split('.')[0].Split('_').Last(); + OpDef op = null; + try + { + op = ReadOpDefs(file.FullName).Op[0]; + } + catch + { + errors++; + continue; + } + _opDescriptionDefs[target] = op; + _opDescriptions[target] = new Dictionary(); + foreach (var arg in op.InputArg) + { + string argName = arg.Name; + var token = SyntaxFactory.ParseToken(argName); + if (token.IsKeyword()) + { + argName = $"{argName}_"; + } + _opDescriptions[target][argName] = arg.Description ?? ""; + } + foreach (var arg in op.Attr) + { + var token = SyntaxFactory.ParseToken(arg.Name); + string realKey = arg.Name; + if (token.IsKeyword()) + { + realKey += "_"; + } + _opDescriptions[target][realKey] = arg.Description ?? ""; + } + _opDescriptions[target]["SUMMARY"] = op.Summary ?? ""; + _opDescriptions[target]["DESC"] = op.Description ?? ""; + } + Console.WriteLine($"Warning: {errors} description files cannot be analyzed! Please revise it if " + + $"the failed files number is large, or ignore it."); + } + + /// + /// + /// + /// + /// + public void AppendDescription(OpDef fullOp, StringBuilder sb) + { + var opName = fullOp.Name; + if(_opDescriptions.TryGetValue(opName, out var op)) + { + var def = _opDescriptionDefs[opName]; + sb.AppendLine("/// "); + sb.AppendLine($"/// {op["SUMMARY"]}"); + sb.AppendLine("/// "); + + string totalDesc = op["DESC"]; + if (!string.IsNullOrEmpty(totalDesc)) + { + totalDesc = totalDesc.Replace(replaceStrInnerQuotationMarks, "\""); + sb.AppendLine("/// "); + string[] lines = totalDesc.Split(replaceStrInner); + foreach (var line in lines) + { + sb.AppendLine($"/// {line}"); + } + sb.AppendLine("/// "); + } + + var argNames = GetInputArgNames(fullOp); + foreach (var argName in argNames) + { + if(op.TryGetValue(argName, out var desc)) + { + desc = desc.Replace(replaceStrInnerQuotationMarks, "\""); + string[] lines = desc.Split(replaceStrInner); + sb.AppendLine($"/// "); + foreach (var line in lines) + { + sb.AppendLine($"/// {line}"); + } + sb.AppendLine("/// "); + } + else + { + sb.AppendLine($"/// "); + } + } + + List returnValueDescs = new(); + foreach (var arg in def.OutputArg) + { + if (!string.IsNullOrEmpty(arg.Description)) + { + returnValueDescs.Add($"{arg.Name}: {arg.Description}"); + } + } + string returnValueDesc = ""; + if (returnValueDescs.Count > 0) + { + returnValueDesc = string.Join(" && ", returnValueDescs); + } + sb.AppendLine($"/// {returnValueDesc}"); + } + else + { + sb.AppendLine("/// "); + sb.AppendLine($"///"); + sb.AppendLine("/// "); + + var argNames = GetInputArgNames(fullOp); + foreach (var argName in argNames) + { + sb.AppendLine($"/// "); + } + + sb.AppendLine($"/// "); + } + } + + /// + /// + /// + /// + /// + /// + /// + public List GetInputArgNames(OpDef op) + { + List names = new(); + foreach (var arg in op.InputArg) + { + string argName = arg.Name; + var token = SyntaxFactory.ParseToken(argName); + if (token.IsKeyword()) + { + argName = $"{argName}_"; + } + names.Add(argName); + } + var attrValueDic = Utils.GetAttrsDefaultValue(op, out var dynamicDefaultValues); + foreach (var (key, typeStr, value) in attrValueDic) + { + var token = SyntaxFactory.ParseToken(key); + string realKey = key; + if (token.IsKeyword()) + { + realKey += "_"; + } + names.Add(realKey); + } + return names; + } + + private static OpList ReadOpDefs(string path) + { + var text = File.ReadAllText(path); + text = RemoveLintTags(text); + text = PreProcessText(text); + + string pattern = @"< { + string matchedText = match.Value; + string innerText = match.Groups[1].Value; + innerText = innerText.Replace("\"", replaceStrInnerQuotationMarks) + .Replace("\r\n", replaceStrInner).Replace("\n", replaceStrInner); // 替换内部换行符 + return replaceStrPrefix + innerText + replaceStrSuffix; // 替换首尾 + }, RegexOptions.Multiline); + + var opDefs = new TextParser(TextParser.Settings.Default.WithIgnoreUnknownFields(true)).Parse(replacedText); + return opDefs; + } + + static string PreProcessText(string input) + { + int depth = 0; + int endBlockDepth = -1; + StringBuilder sb = new StringBuilder(); + for (int i = 0; i < input.Length; i++) + { + char c = input[i]; + if (c == '{') + { + depth++; + sb.Append(c); + } + else if (c == '}') + { + if (depth == endBlockDepth) + { + sb.Append("END\n"); + endBlockDepth = -1; + } + sb.Append(c); + depth--; + } + else if (c == '<' && i + 5 < input.Length && input.Substring(i, 5) == "< x.IsRef, null); + sb.AppendLine($"throw new RuntimeError(\"{funcName} op does not support eager execution. Arg {possibleRefArg.Name} is a ref.\");"); + } + else + { + sb.Append("try\n{\n"); + + AppendFastPathExecute(op, sb); + if (outputArgsCount == 0) + { + sb.AppendLine("return null;"); + } + else if (outputArgsCount == 1 && string.IsNullOrEmpty(op.OutputArg[0].NumberAttr) + && string.IsNullOrEmpty(op.OutputArg[0].TypeListAttr)) + { + sb.AppendLine("return _fast_path_result[0];"); + } + else + { + sb.AppendLine("return _fast_path_result;"); + } + + sb.AppendLine("}"); // try + + sb.Append("catch(NotOkStatusException ex1)\n{\n"); + sb.AppendLine("throw ex1;"); + sb.AppendLine("}"); // catch + + sb.Append("catch(InvalidArgumentError ex2)\n{\n"); + sb.AppendLine("throw ex2;"); + sb.AppendLine("}"); // catch + + sb.Append("catch(Exception)\n{\n"); + sb.AppendLine("}"); // catch + + sb.Append("try\n{\n"); + AppendEagerFallbackCall(op, sb); + sb.AppendLine("}"); // try + + sb.Append("catch(Exception)\n{\n"); + sb.AppendLine("}"); // catch + } + + sb.AppendLine("}"); // if + + foreach(var (name, type, value) in attrValueDic.Where(x => x.Item2 == "string")) + { + if(value != "NOVALUE") + { + sb.AppendLine($"if({name} is null)"); + sb.AppendLine("{"); + sb.AppendLine($"{name} = {value};"); + sb.AppendLine("}"); + } + } + + // begin to use op helper. + AppendOpHelperCall(op, sb); + sb.AppendLine("var _result = _op.outputs;"); + + // check if it needs to record gradient. + sb.Append("if(_execute.must_record_gradient())\n{\n"); + sb.Append("object[] _attrs = new object[]{"); + foreach (var attr in op.Attr) + { + string attrRealName = attr.Name; + if (SyntaxFactory.ParseToken(attrRealName).IsKeyword()) + { + attrRealName += "_"; + } + if (attr.Type == "type") + { + sb.Append($"\"{attr.Name}\", _op._get_attr_type(\"{attrRealName}\"), "); + } + else if (attr.Type == "int") + { + sb.Append($"\"{attr.Name}\", _op._get_attr_int(\"{attrRealName}\"), "); + } + else if (attr.Type == "bool") + { + sb.Append($"\"{attr.Name}\", _op._get_attr_bool(\"{attrRealName}\"), "); + } + else + { + sb.Append($"\"{attr.Name}\", _op.get_attr(\"{attr.Name}\"), "); + } + } + if (sb[sb.Length - 1] == ' ' && sb[sb.Length - 2] == ',') + { + sb.Remove(sb.Length - 2, 2); + } + sb.Append("};\n"); + sb.AppendLine($"_execute.record_gradient(\"{op.Name}\", _op.inputs, _attrs, _result);"); + + sb.AppendLine("}"); // if + + if (outputArgsCount == 0) + { + sb.AppendLine("return _op;"); + } + else if (outputArgsCount == 1 && string.IsNullOrEmpty(op.OutputArg[0].NumberAttr) + && string.IsNullOrEmpty(op.OutputArg[0].TypeListAttr)) + { + sb.AppendLine("return _result[0];"); + } + else + { + sb.AppendLine("return _result;"); + } + sb.AppendLine("}"); // body + + sb.AppendLine(); + + AppendEagerFallbackDefinition(op, sb); + } + + public void AppendArgs(OpDef op, StringBuilder sb) + { + foreach (var arg in op.InputArg) + { + string argName = arg.Name; + var token = SyntaxFactory.ParseToken(argName); + if (token.IsKeyword()) + { + argName = $"{argName}_"; + } + if (!string.IsNullOrEmpty(arg.NumberAttr) || !string.IsNullOrEmpty(arg.TypeListAttr)) + { + sb.Append($"Tensors {argName}, "); + } + else + { + sb.Append($"Tensor {argName}, "); + } + } + var attrValueDic = Utils.GetAttrsDefaultValue(op, out var dynamicDefaultValues); + foreach (var (key, typeStr, value) in attrValueDic.Where(x => x.Item3 == "NOVALUE")) + { + var token = SyntaxFactory.ParseToken(key); + string realKey = key; + if (token.IsKeyword()) + { + realKey += "_"; + } + sb.Append($"{typeStr} {realKey}, "); + } + foreach (var (key, typeStr, value) in attrValueDic.Where(x => x.Item3 != "NOVALUE")) + { + var token = SyntaxFactory.ParseToken(key); + string realKey = key; + if (token.IsKeyword()) + { + realKey += "_"; + } + sb.Append($"{typeStr} {realKey} = {value}, "); + } + sb.Append($"string? name = null"); + } + + public void AppendFastPathExecute(OpDef op, StringBuilder sb) + { + sb.Append($"var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, \"{op.Name}\", name)"); + sb.Append("{ args = new object[]{ "); + foreach (var arg in op.InputArg) + { + string attrArgName = arg.Name; + if (SyntaxFactory.ParseToken(attrArgName).IsKeyword()) + { + attrArgName += "_"; + } + sb.Append($"{attrArgName}, "); + } + if (sb[sb.Length - 1] == ' ' && sb[sb.Length - 2] == ',') + { + sb.Remove(sb.Length - 2, 2); + } + + sb.Append("}, attrs = new Dictionary(){ "); + var attrValueDic = Utils.GetAttrsDefaultValue(op, out var _); + foreach (var (key, _, _) in attrValueDic) + { + sb.Append($"[\"{key}\"] = {key}, "); + } + + if (sb[sb.Length - 1] == ' ' && sb[sb.Length - 2] == ',') + { + sb.Remove(sb.Length - 2, 2); + } + sb.Append("}});\n"); + } + + public void AppendEagerFallbackCall(OpDef op, StringBuilder sb) + { + string funcName = $"{Utils.ConvertToUnderscore(op.Name)}_eager_fallback"; + sb.Append($"return {funcName}("); + foreach (var arg in op.InputArg) + { + string inputArgRealName = arg.Name; + if (SyntaxFactory.ParseToken(inputArgRealName).IsKeyword()) + { + inputArgRealName += "_"; + } + sb.Append($"{inputArgRealName}, "); + } + var attrValueDic = Utils.GetAttrsDefaultValue(op, out var _); + foreach (var (key, _, _) in attrValueDic) + { + string keyRealName = key; + if (SyntaxFactory.ParseToken(keyRealName).IsKeyword()) + { + keyRealName += "_"; + } + sb.Append($"{key}: {keyRealName}, "); + } + sb.Append("name: name, ctx: _ctx);\n"); + } + + public void AppendEagerFallbackDefinition(OpDef op, StringBuilder sb) + { + sb.Append("public static "); + int outputArgsCount = op.OutputArg.Count; + if (outputArgsCount == 0) + { + sb.Append("Operation "); + } + else if (outputArgsCount == 1 && string.IsNullOrEmpty(op.OutputArg[0].NumberAttr) + && string.IsNullOrEmpty(op.OutputArg[0].TypeListAttr)) + { + sb.Append("Tensor "); + } + else + { + sb.Append("Tensor[] "); + } + string opName = op.Name; + string funcName = Utils.ConvertToUnderscore(op.Name); + sb.Append($" {funcName}_eager_fallback("); + AppendFallBackFunctionArgs(op, sb); + sb.Append(")\n{\n"); + + var possibleRefArg = op.InputArg.FirstOrDefault(x => x.IsRef, null); + if (possibleRefArg is not null) + { + sb.AppendLine($"throw new RuntimeError($\"{funcName} op does not support eager execution." + + $" Arg '{possibleRefArg.Name}' is a ref.\");"); + sb.AppendLine("}"); // body + return; + } + + if(op.InputArg.Any(x => !string.IsNullOrEmpty(x.NumberAttr))) + { + sb.AppendLine("List _inputs_flat_list = new();"); + foreach (var arg in op.InputArg) + { + string realArgName = arg.Name; + if (SyntaxFactory.ParseToken(realArgName).IsKeyword()) + { + realArgName = $"{realArgName}_"; + } + if (string.IsNullOrEmpty(arg.NumberAttr)) + { + sb.AppendLine($"_inputs_flat_list.Add({realArgName});"); + } + else + { + sb.AppendLine($"_inputs_flat_list.AddRange({realArgName});"); + } + } + sb.AppendLine($"var _inputs_flat = _inputs_flat_list.ToArray();"); + } + else + { + sb.Append("Tensor[] _inputs_flat = new Tensor[]{"); + foreach (var arg in op.InputArg) + { + string realArgName = arg.Name; + if (SyntaxFactory.ParseToken(realArgName).IsKeyword()) + { + realArgName = $"{realArgName}_"; + } + sb.Append($"{realArgName}, "); + } + if (sb[sb.Length - 1] == ' ' && sb[sb.Length - 2] == ',') + { + sb.Remove(sb.Length - 2, 2); + } + sb.Append("};\n"); + } + + sb.Append("object[] _attrs = new object[]{"); + foreach (var attr in op.Attr) + { + if (attr.Type == "type") + { + bool found = false; + foreach (var arg in op.InputArg) + { + string realArgName = arg.Name; + if (SyntaxFactory.ParseToken(realArgName).IsKeyword()) + { + realArgName = $"{realArgName}_"; + } + if (arg.TypeAttr == attr.Name) + { + sb.Append($"\"{attr.Name}\", {realArgName}.dtype, "); + found = true; + break; + } + } + if (!found) + { + string attrRealName = attr.Name; + if (SyntaxFactory.ParseToken(attrRealName).IsKeyword()) + { + attrRealName = $"{attrRealName}_"; + } + sb.Append($"\"{attr.Name}\", {attrRealName}, "); + } + } + else if(attr.Type == "list(type)") + { + if (op.InputArg.Any(x => x.TypeListAttr == attr.Name)) + { + continue; + } + } + else if(attr.Type == "int" && op.InputArg.Any(x => x.NumberAttr == attr.Name)) + { + bool found = false; + foreach (var arg in op.InputArg) + { + string realArgName = arg.Name; + if (SyntaxFactory.ParseToken(realArgName).IsKeyword()) + { + realArgName = $"{realArgName}_"; + } + if (arg.NumberAttr == attr.Name) + { + sb.Append($"\"{attr.Name}\", {realArgName}.Length, "); + found = true; + break; + } + } + } + else + { + sb.Append($"\"{attr.Name}\", {attr.Name}, "); + } + } + if (sb[sb.Length - 1] == ' ' && sb[sb.Length - 2] == ',') + { + sb.Remove(sb.Length - 2, 2); + } + sb.Append("};\n"); + + sb.AppendLine($"var _result = _execute.execute(\"{op.Name}\", {outputArgsCount}, inputs: _inputs_flat, " + + $"attrs: _attrs, ctx: ctx, name: name);"); + + sb.Append("if(_execute.must_record_gradient())\n{\n"); + + sb.AppendLine($"_execute.record_gradient(\"{op.Name}\", _inputs_flat, _attrs, _result);"); + + sb.AppendLine("}"); // if + + if (outputArgsCount == 0) + { + sb.AppendLine("return null;"); + } + else if (outputArgsCount == 1 && string.IsNullOrEmpty(op.OutputArg[0].NumberAttr) + && string.IsNullOrEmpty(op.OutputArg[0].TypeListAttr)) + { + sb.AppendLine("return _result[0];"); + } + else + { + sb.AppendLine("return _result;"); + } + + sb.AppendLine("}"); // body + } + + public void AppendFallBackFunctionArgs(OpDef op, StringBuilder sb) + { + foreach (var arg in op.InputArg) + { + string argName = arg.Name; + var token = SyntaxFactory.ParseToken(argName); + if (token.IsKeyword()) + { + argName = $"{argName}_"; + } + if (!string.IsNullOrEmpty(arg.NumberAttr)) + { + sb.Append($"Tensors {argName}, "); + } + else + { + sb.Append($"Tensor {argName}, "); + } + } + var attrValueDic = Utils.GetAttrsDefaultValue(op, out var _); + foreach (var (key, typeStr, _) in attrValueDic) + { + var token = SyntaxFactory.ParseToken(key); + string realKey = key; + if (token.IsKeyword()) + { + realKey += "_"; + } + sb.Append($"{typeStr} {realKey}, "); + } + sb.Append($"string name, Context ctx"); + } + + public void AppendOpHelperCall(OpDef op, StringBuilder sb) + { + sb.AppendLine("Dictionary keywords = new();"); + foreach (var arg in op.InputArg) + { + string realArgName = arg.Name; + if (SyntaxFactory.ParseToken(realArgName).IsKeyword()) + { + realArgName += "_"; + } + sb.AppendLine($"keywords[\"{arg.Name}\"] = {realArgName};"); + } + var attrValueDic = Utils.GetAttrsDefaultValue(op, out var _); + foreach (var (key, _, _) in attrValueDic) + { + sb.AppendLine($"keywords[\"{key}\"] = {key};"); + } + sb.AppendLine($"var _op = tf.OpDefLib._apply_op_helper(\"{op.Name}\", name, keywords);"); + } + + private static bool HasRefArgs(OpDef op) + { + return op.InputArg.Any(x => x.IsRef); + } + } +} diff --git a/tools/Tensorflow.CodeGen/GenOpsWriter.cs b/tools/Tensorflow.CodeGen/GenOpsWriter.cs new file mode 100644 index 000000000..9eefca07e --- /dev/null +++ b/tools/Tensorflow.CodeGen/GenOpsWriter.cs @@ -0,0 +1,81 @@ +using Protobuf.Text; +using System; +using System.Collections.Generic; +using System.Linq; +using System.Text; +using System.Threading.Tasks; + +namespace Tensorflow.CodeGen +{ + public class GenOpsWriter + { + private string _basePath; + private Dictionary _opMap; + private OpClassifier _opClassifier; + private FunctionGenerator _fg = new(); + private DescriptionGenerator _dg; + + public GenOpsWriter(string basePath, string pythonFilesDirectory, string apiDefFilesDirectory, string opDefFilename) + { + _basePath = basePath; + + var opDefs = Utils.ReadAllOpDefs(opDefFilename); + _opMap = opDefs.Op.ToDictionary( + x => Utils.ConvertToUnderscore(x.Name), x => x); + _opClassifier = new OpClassifier(pythonFilesDirectory, opDefs.Op.Select(x => Utils.ConvertToUnderscore(x.Name))); + _dg = new DescriptionGenerator(apiDefFilesDirectory); + } + + public void WriteAll() + { + foreach(var (target, set) in _opClassifier.OpSet) + { + StringBuilder sb = new StringBuilder(); + + // Write file header. + sb.AppendLine("/*Wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit.*/"); + sb.AppendLine(); + + // Add commonly used namespaces. + sb.AppendLine("using Tensorflow.Eager;"); + sb.AppendLine("using Tensorflow.Contexts;"); + sb.AppendLine("using Tensorflow.Exceptions;"); + sb.AppendLine("using static Tensorflow.Binding;"); + sb.AppendLine(); + + // Specify the namespace + sb.AppendLine("namespace Tensorflow;"); + sb.AppendLine(); + + // Write class name + sb.AppendLine($"public static class {target}"); + sb.AppendLine("{"); + + foreach(var funcName in set) + { + if(_opMap.ContainsKey(funcName)) + { + var opDef = _opMap[funcName]; + + // write the descriptions. + _dg.AppendDescription(opDef, sb); + + // write the function body. + _fg.AppendFunction(opDef, sb); + } + else if (funcName.StartsWith("_")) + { + var opDef = _opMap[funcName.Substring(1)]; + _fg.AppendFunction(opDef, sb); + } + } + + // Close class scope. + sb.AppendLine("}"); + + string fullFilePath = Path.Combine(_basePath, $"{target}.cs"); + File.WriteAllText(fullFilePath, sb.ToString()); + } + } + } +} diff --git a/tools/Tensorflow.CodeGen/OpClassifier.cs b/tools/Tensorflow.CodeGen/OpClassifier.cs new file mode 100644 index 000000000..2d22c5d22 --- /dev/null +++ b/tools/Tensorflow.CodeGen/OpClassifier.cs @@ -0,0 +1,51 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using System.Text; +using System.Threading.Tasks; +using System.Text.RegularExpressions; + +namespace Tensorflow.CodeGen +{ + public class OpClassifier + { + private static readonly string _filenamePattern = @"^gen_[a-z_]*_ops.py$"; + private static readonly string _pythonFunctionPattern = @"def\s+(\w+\d*\w*)\((?:\s*\w+\s*(?:=\s*[\S]*)*,\s*)*\s*name=None\):"; + private Dictionary> _opSet = new(); + public Dictionary> OpSet => _opSet; + public OpClassifier(string pythonFileFolder, IEnumerable funcNames) + { + DirectoryInfo directory = new DirectoryInfo(pythonFileFolder); + + Dictionary fileContentMap = new(); + foreach (FileInfo file in directory.GetFiles()) + { + if (Regex.IsMatch(file.Name, _filenamePattern)) + { + Console.WriteLine(file.Name); + string filenamePrefix = file.Name.Split('.')[0]; + string content = File.ReadAllText(file.FullName); + fileContentMap[filenamePrefix] = content; + } + } + + foreach(var funcName in funcNames) + { + Console.WriteLine(funcName); + string funcPattern = @$"^def\s+{funcName}\("; + string fallbackFuncPattern = @$"^def\s+{funcName}_eager_fallback\("; + foreach (var (target, content) in fileContentMap) + { + if(content.Contains($"def {funcName}") && content.Contains($"def {funcName}_eager_fallback")) + { + _opSet.SetDefault(target, new HashSet()).Add(funcName); + } + else if (content.Contains($"def _{funcName}") && content.Contains($"def _{funcName}_eager_fallback")) + { + _opSet.SetDefault(target, new HashSet()).Add(funcName); + } + } + } + } + } +} diff --git a/tools/Tensorflow.CodeGen/Program.cs b/tools/Tensorflow.CodeGen/Program.cs new file mode 100644 index 000000000..cea52e0b4 --- /dev/null +++ b/tools/Tensorflow.CodeGen/Program.cs @@ -0,0 +1,13 @@ +using OneOf.Types; +using Protobuf.Text; +using System.Diagnostics; +using System.Text; +using System.Xml.Linq; +using Tensorflow.CodeGen; + +GenOpsWriter writer = new(@"D:\development\tf.net\gen_ops_v2", + @"D:\Apps\miniconda3\envs\tf2.11\Lib\site-packages\tensorflow\python\ops", + @"D:\development\tf.net\tensorflow-2.11.0\tensorflow\core\api_def\base_api", + @"D:\development\tf.net\tensorflow-2.11.0\tensorflow\core\ops\ops.pbtxt"); + +writer.WriteAll(); diff --git a/tools/Tensorflow.CodeGen/Tensorflow.CodeGen.csproj b/tools/Tensorflow.CodeGen/Tensorflow.CodeGen.csproj new file mode 100644 index 000000000..2afc68a3c --- /dev/null +++ b/tools/Tensorflow.CodeGen/Tensorflow.CodeGen.csproj @@ -0,0 +1,18 @@ + + + + Exe + net6.0 + enable + enable + + + + + + + + + + + diff --git a/tools/Tensorflow.CodeGen/Utils.cs b/tools/Tensorflow.CodeGen/Utils.cs new file mode 100644 index 000000000..6c69b7f95 --- /dev/null +++ b/tools/Tensorflow.CodeGen/Utils.cs @@ -0,0 +1,271 @@ +using Protobuf.Text; +using System; +using System.Collections.Generic; +using System.Linq; +using System.Reflection.Metadata.Ecma335; +using System.Text; +using System.Threading.Tasks; + +namespace Tensorflow.CodeGen +{ + public static class Utils + { + public static string ConvertToUnderscore(string input) + { + if (string.IsNullOrEmpty(input)) + { + return input; + } + + StringBuilder result = new StringBuilder(); + + int state = 1; // the previous char was not lowered. + for (int i = 0; i < input.Length; i++) + { + char current = input[i]; + + // 首字母不需要添加下划线 + if (char.IsUpper(current)) + { + if(i > 0) + { + char pre = input[i - 1]; + if (char.IsDigit(pre)) + { + result.Append(char.ToLower(current)); + continue; + } + } + if (state == 0) + { + result.Append("_"); + state = 1; + } + result.Append(char.ToLower(current)); + } + else + { + result.Append(char.ToLower(current)); + state = 0; + } + } + + return result.ToString(); + } + + public static OpList ReadAllOpDefs(string path) + { + var text = File.ReadAllText(path); + var opDefs = OpList.Parser.ParseText(text); + return opDefs; + } + + // name, type string, default value + public static List<(string, string, string)> GetAttrsDefaultValue(OpDef op, out Dictionary dynamicDefaultValues) + { + dynamicDefaultValues = new(); + List<(string, string, string)> res = new(); + foreach (var attr in op.Attr) + { + if (attr.Type == "type") + { + bool found = op.InputArg.Any(x => x.TypeAttr == attr.Name); + if (!found) + { + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.Type) + { + string name = Enum.GetName(typeof(TF_DataType), attr.DefaultValue.Type.as_tf_dtype()); + string enumPath = typeof(TF_DataType).Name + "." + name; + res.Add((attr.Name, "TF_DataType", enumPath)); + } + else + { + res.Add((attr.Name, "TF_DataType", "NOVALUE")); + } + } + } + else if (attr.Type == "int") + { + if (op.InputArg.Any(x => x.NumberAttr == attr.Name)) + { + continue; + } + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.I) + { + res.Add((attr.Name, "int", attr.DefaultValue.I.ToString())); + } + else + { + res.Add((attr.Name, "int", "0")); + } + } + else if (attr.Type == "float") + { + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.F) + { + res.Add((attr.Name, "float", attr.DefaultValue.F.ToString() + "f")); + } + else + { + res.Add((attr.Name, "float", "NOVALUE")); + } + } + else if (attr.Type == "string") + { + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.S) + { + res.Add((attr.Name, "string", $"\"{attr.DefaultValue.S.ToStringUtf8()}\"")); + } + else + { + res.Add((attr.Name, "string", "NOVALUE")); + } + } + else if (attr.Type == "bool") + { + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.B) + { + res.Add((attr.Name, "bool", attr.DefaultValue.B.ToString().ToLower())); + } + else + { + res.Add((attr.Name, "bool", "NOVALUE")); + } + } + else if (attr.Type == "shape") + { + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.Shape) + { + if (attr.DefaultValue.Shape.UnknownRank) + { + res.Add((attr.Name, "Shape", $"null")); + } + else + { + Shape shape = new Shape(attr.DefaultValue.Shape); + string expression = $"new Shape({string.Join(", ", shape.dims)})"; + dynamicDefaultValues[attr.Name] = expression; + res.Add((attr.Name, "Shape", $"null")); + } + } + else + { + res.Add((attr.Name, "Shape", "NOVALUE")); + } + } + else if (attr.Type == "list(type)") + { + if(op.InputArg.Any(x => x.TypeListAttr == attr.Name)) + { + continue; + } + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.Type) + { + List values = new(); + foreach (var value in attr.DefaultValue.List.Type) + { + values.Add(value.as_tf_dtype()); + } + string expression = "new TF_DataType[]{" + $"{string.Join(", ", values)}" + "}"; + dynamicDefaultValues[attr.Name] = expression; + res.Add((attr.Name, "TF_DataType[]", $"null")); + } + else + { + res.Add((attr.Name, "TF_DataType[]", "NOVALUE")); + } + } + else if (attr.Type == "list(shape)") + { + res.Add((attr.Name, "Shape[]", "NOVALUE")); + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.List) + { + List exps = new(); + foreach (var value in attr.DefaultValue.List.Shape) + { + exps.Add($"new Shape({string.Join(", ", value.Dim.Select(x => x.Size))})"); + } + string expression = "new Shape[]{" + $"{string.Join(", ", exps)}" + "}"; + dynamicDefaultValues[attr.Name] = expression; + res.Add((attr.Name, "string[]", $"null")); + } + else + { + res.Add((attr.Name, "string[]", "NOVALUE")); + } + } + else if (attr.Type == "list(string)") + { + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.List) + { + List values = new(); + foreach (var value in attr.DefaultValue.List.S) + { + values.Add(value.ToStringUtf8()); + } + string expression = "new string[]{" + $"{string.Join(", ", values)}" + "}"; + dynamicDefaultValues[attr.Name] = expression; + res.Add((attr.Name, "string[]", $"null")); + } + else + { + res.Add((attr.Name, "string[]", "NOVALUE")); + } + } + else if (attr.Type == "list(int)") + { + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.List) + { + List values = new(); + foreach (var value in attr.DefaultValue.List.I) + { + values.Add((int)value); + } + string expression = "new int[]{" + $"{string.Join(", ", values)}" + "}"; + dynamicDefaultValues[attr.Name] = expression; + res.Add((attr.Name, "int[]", $"null")); + } + else + { + res.Add((attr.Name, "int[]", "NOVALUE")); + } + } + else if (attr.Type == "list(float)") + { + if (attr.DefaultValue is not null && attr.DefaultValue.ValueCase == AttrValue.ValueOneofCase.List) + { + List values = new(); + foreach (var value in attr.DefaultValue.List.F) + { + values.Add(value); + } + string expression = "new float[]{" + $"{string.Join(", ", values)}" + "}"; + dynamicDefaultValues[attr.Name] = expression; + res.Add((attr.Name, "float[]", $"null")); + } + else + { + res.Add((attr.Name, "float[]", "NOVALUE")); + } + } + else if (attr.Type == "func") + { + res.Add((attr.Name, "object", "NOVALUE")); + } + else if (attr.Type == "list(func)") + { + res.Add((attr.Name, "object[]", "NOVALUE")); + } + else if (attr.Type == "tensor") + { + res.Add((attr.Name, "TensorProto", "NOVALUE")); + } + else + { + throw new NotImplementedException(); + } + } + return res; + } + } +} diff --git a/tools/Tensorflow.Redist.NativeLibrarySplitter/Program.cs b/tools/Tensorflow.Redist.NativeLibrarySplitter/Program.cs new file mode 100644 index 000000000..cdc011ea9 --- /dev/null +++ b/tools/Tensorflow.Redist.NativeLibrarySplitter/Program.cs @@ -0,0 +1,212 @@ + +// =================================================================== // +// This is a tool to split the native .so file of linux gpu library // +// =================================================================== // + +using System.Security.Cryptography; + +string filename = "libtensorflow.so"; +int count = 5; +SplitFile(filename, count); + +static void SplitFile(string filename, int count) +{ + // 打开读取二进制文件的文件流 + using (FileStream input = new FileStream(filename, FileMode.Open, FileAccess.Read)) + { + long filesize = new FileInfo(filename).Length; // 获取文件大小 + long fragmentSize = (long)(filesize / count + 1); // 计算每个分片的大小 + + byte[] buffer = new byte[fragmentSize]; // 设置缓冲区大小 + int bytesRead; // 存储读取长度 + int fragmentIndex = 1; // 分片计数器 + + // 使用循环遍历分片并写入相应的文件 + while ((bytesRead = input.Read(buffer, 0, buffer.Length)) > 0) + { + string outputFileName = $"{filename}.fragment{fragmentIndex++}"; + using (FileStream output = new FileStream(outputFileName, FileMode.Create, FileAccess.Write)) + { + output.Write(buffer, 0, bytesRead); + } + } + + // 计算整个文件的 SHA-256 哈希值并写入 .sha 文件 + using (SHA256 sha256Hash = SHA256.Create()) + { + input.Seek(0, SeekOrigin.Begin); + byte[] hashValue = sha256Hash.ComputeHash(input); + + string shaFileName = $"{filename}.sha"; + using (StreamWriter writer = new StreamWriter(shaFileName, false)) + { + writer.Write(BitConverter.ToString(hashValue).Replace("-", "")); + } + } + } +} + +// Resume the file from fregments. Thanks for the code in TorchSharp! +static void Restitch(string RestitcherPackage) +{ + // !!!!!!!------------------------------NOTE------------------------------------!!!!!! + // !!!!!!! This code is manually copied into pkg\common\RestitchPackage.targets !!!!!! + // !!!!!!!------------------------------NOTE------------------------------------!!!!!! + // + // vvvvvvvvvvvvvvvvvvvvvvvvvvvvv START HERE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv + try + { + if (Directory.Exists(RestitcherPackage)) + { + using (var writer = File.CreateText("obj/tensorflow_redist_build_log.txt")) + { + foreach (var p in Directory.EnumerateFiles(RestitcherPackage, "*", SearchOption.AllDirectories)) + { + + var primaryFile = Path.GetFullPath(p); + writer.WriteLine("Found primary file at {0}", primaryFile); + + // See if there are fragments in the parallel nuget packages. If the primary is + // some-package-primary\runtimes\....\a.so + // some-package-primary\runtimes\....\a.so.sha + // then the expected fragments are + // some-package-fragment1\fragments\....\a.so + // some-package-fragment2\fragments\....\a.so + // some-package-fragment3\fragments\....\a.so + // some-package-fragment4\fragments\....\a.so + // some-package-fragment5\fragments\....\a.so + // some-package-fragment6\fragments\....\a.so + // some-package-fragment7\fragments\....\a.so + // some-package-fragment8\fragments\....\a.so + // some-package-fragment9\fragments\....\a.so + // some-package-fragment10\fragments\....\a.so + var shaFile = primaryFile + ".sha"; + var fragmentFile1 = primaryFile.Replace("-primary", "-fragment1").Replace("runtimes", "fragments") + ".fragment1"; + var fragmentFile2 = primaryFile.Replace("-primary", "-fragment2").Replace("runtimes", "fragments") + ".fragment2"; + var fragmentFile3 = primaryFile.Replace("-primary", "-fragment3").Replace("runtimes", "fragments") + ".fragment3"; + var fragmentFile4 = primaryFile.Replace("-primary", "-fragment4").Replace("runtimes", "fragments") + ".fragment4"; + var fragmentFile5 = primaryFile.Replace("-primary", "-fragment5").Replace("runtimes", "fragments") + ".fragment5"; + + + if (File.Exists(fragmentFile1)) writer.WriteLine("Found fragment file at {0}", fragmentFile1); + if (File.Exists(fragmentFile2)) writer.WriteLine("Found fragment file at {0}", fragmentFile2); + if (File.Exists(fragmentFile3)) writer.WriteLine("Found fragment file at {0}", fragmentFile3); + if (File.Exists(fragmentFile4)) writer.WriteLine("Found fragment file at {0}", fragmentFile4); + if (File.Exists(fragmentFile5)) writer.WriteLine("Found fragment file at {0}", fragmentFile5); + + if (File.Exists(fragmentFile1)) + { + var tmpFile = Path.GetTempFileName(); + + { + writer.WriteLine("Writing restored primary file at {0}", tmpFile); + using (var os = File.OpenWrite(tmpFile)) + { + + //writer.WriteLine("Writing bytes from {0} to {1}", primaryFile, tmpFile); + //var primaryBytes = File.ReadAllBytes(primaryFile); + + //os.Write(primaryBytes, 0, primaryBytes.Length); + if (File.Exists(fragmentFile1)) + { + writer.WriteLine("Writing fragment bytes from {0} to {1}", fragmentFile1, tmpFile); + var fragmentBytes1 = File.ReadAllBytes(fragmentFile1); + os.Write(fragmentBytes1, 0, fragmentBytes1.Length); + } + if (File.Exists(fragmentFile2)) + { + writer.WriteLine("Writing fragment bytes from {0} to {1}", fragmentFile2, tmpFile); + var fragmentBytes2 = File.ReadAllBytes(fragmentFile2); + os.Write(fragmentBytes2, 0, fragmentBytes2.Length); + } + if (File.Exists(fragmentFile3)) + { + writer.WriteLine("Writing fragment bytes from {0} to {1}", fragmentFile3, tmpFile); + var fragmentBytes3 = File.ReadAllBytes(fragmentFile3); + os.Write(fragmentBytes3, 0, fragmentBytes3.Length); + } + if (File.Exists(fragmentFile4)) + { + writer.WriteLine("Writing fragment bytes from {0} to {1}", fragmentFile4, tmpFile); + var fragmentBytes4 = File.ReadAllBytes(fragmentFile4); + os.Write(fragmentBytes4, 0, fragmentBytes4.Length); + } + if (File.Exists(fragmentFile5)) + { + writer.WriteLine("Writing fragment bytes from {0} to {1}", fragmentFile5, tmpFile); + var fragmentBytes5 = File.ReadAllBytes(fragmentFile5); + os.Write(fragmentBytes5, 0, fragmentBytes5.Length); + } + } + } + + var shaExpected = File.Exists(shaFile) ? File.ReadAllText(shaFile).ToUpper() : ""; + writer.WriteLine($"real sha: {shaExpected}"); + + using (var sha256Hash = System.Security.Cryptography.SHA256.Create()) + { + using (var os2 = File.OpenRead(tmpFile)) + { + + byte[] bytes = sha256Hash.ComputeHash(os2); + var builder = new System.Text.StringBuilder(); + for (int i = 0; i < bytes.Length; i++) + { + builder.Append(bytes[i].ToString("x2")); + } + var shaReconstituted = builder.ToString().ToUpper(); + if (shaExpected != shaReconstituted) + { + string msg = + $"Error downloading and reviving packages. Reconsituted file contents have incorrect SHA\n\tExpected SHA: ${shaExpected}\n\tActual SHA: ${shaReconstituted}\n\tFile was reconstituted from:" + + $"\n\t{primaryFile} (length ${new FileInfo(primaryFile).Length})" + + (File.Exists(fragmentFile1) ? $"\n\t{fragmentFile1} (length ${new FileInfo(fragmentFile1).Length})" : "") + + (File.Exists(fragmentFile2) ? $"\n\t{fragmentFile2} (length ${new FileInfo(fragmentFile2).Length})" : "") + + (File.Exists(fragmentFile3) ? $"\n\t{fragmentFile3} (length ${new FileInfo(fragmentFile3).Length})" : "") + + (File.Exists(fragmentFile4) ? $"\n\t{fragmentFile4} (length ${new FileInfo(fragmentFile4).Length})" : "") + + (File.Exists(fragmentFile5) ? $"\n\t{fragmentFile5} (length ${new FileInfo(fragmentFile5).Length})" : ""); + writer.WriteLine(msg); + throw new Exception(msg); + } + } + + } + + writer.WriteLine("Deleting {0}", primaryFile); + File.Delete(primaryFile); + if (File.Exists(primaryFile)) + throw new Exception("wtf?"); + + writer.WriteLine("Moving {0} --> {1}", tmpFile, primaryFile); + File.Move(tmpFile, primaryFile); + + writer.WriteLine("Deleting {0}", fragmentFile1); + File.Delete(fragmentFile1); // free up space and prevent us doing this again + + writer.WriteLine("Deleting {0}", fragmentFile2); + if (File.Exists(fragmentFile2)) + File.Delete(fragmentFile2); // free up space and prevent us doing this again + + writer.WriteLine("Deleting {0}", fragmentFile3); + if (File.Exists(fragmentFile3)) + File.Delete(fragmentFile3); // free up space and prevent us doing this again + + writer.WriteLine("Deleting {0}", fragmentFile4); + if (File.Exists(fragmentFile4)) + File.Delete(fragmentFile4); // free up space and prevent us doing this again + + writer.WriteLine("Deleting {0}", fragmentFile5); + if (File.Exists(fragmentFile5)) + File.Delete(fragmentFile5); // free up space and prevent us doing this again + } + } + } + } + } + catch (Exception ex) + { + Console.Error.WriteLine(ex.ToString()); + Console.Error.WriteLine(ex.StackTrace); + } + // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ END HERE^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +} \ No newline at end of file diff --git a/tools/Tensorflow.Redist.NativeLibrarySplitter/Tensorflow.Redist.NativeLibrarySplitter.csproj b/tools/Tensorflow.Redist.NativeLibrarySplitter/Tensorflow.Redist.NativeLibrarySplitter.csproj new file mode 100644 index 000000000..74abf5c97 --- /dev/null +++ b/tools/Tensorflow.Redist.NativeLibrarySplitter/Tensorflow.Redist.NativeLibrarySplitter.csproj @@ -0,0 +1,10 @@ + + + + Exe + net6.0 + enable + enable + + + diff --git a/tools/Tensorflow.UnitTest.RedistHolder/EmptyClass.cs b/tools/Tensorflow.UnitTest.RedistHolder/EmptyClass.cs new file mode 100644 index 000000000..563f18b8f --- /dev/null +++ b/tools/Tensorflow.UnitTest.RedistHolder/EmptyClass.cs @@ -0,0 +1,3 @@ +internal class EmptyClass +{ +} diff --git a/tools/Tensorflow.UnitTest.RedistHolder/Tensorflow.UnitTest.RedistHolder.csproj b/tools/Tensorflow.UnitTest.RedistHolder/Tensorflow.UnitTest.RedistHolder.csproj new file mode 100644 index 000000000..0d1018cab --- /dev/null +++ b/tools/Tensorflow.UnitTest.RedistHolder/Tensorflow.UnitTest.RedistHolder.csproj @@ -0,0 +1,12 @@ + + + + netstandard2.0 + + + + + + + + diff --git a/scripts/Copy-NativeTensorFlowLibs.ps1 b/tools/scripts/Copy-NativeTensorFlowLibs.ps1 similarity index 100% rename from scripts/Copy-NativeTensorFlowLibs.ps1 rename to tools/scripts/Copy-NativeTensorFlowLibs.ps1 diff --git a/tensorflowlib/README.md b/tools/tensorflowlib/README.md similarity index 100% rename from tensorflowlib/README.md rename to tools/tensorflowlib/README.md