Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 9a7ec94

Browse files
committed
updated multi-mission grand mesa with sampling on gedi apis
1 parent 8630650 commit 9a7ec94

File tree

1 file changed

+68
-23
lines changed

1 file changed

+68
-23
lines changed

examples/multi_mission_grand_mesa.ipynb

Lines changed: 68 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@
5252
},
5353
"outputs": [],
5454
"source": [
55-
"sliderule.init(\"slideruleearth.io\", verbose=True, organization=\"developers\")"
55+
"sliderule.init(\"slideruleearth.io\", verbose=True)"
5656
]
5757
},
5858
{
@@ -72,16 +72,60 @@
7272
{
7373
"cell_type": "code",
7474
"execution_count": null,
75-
"id": "6c8189bb-3f36-44ce-8e03-e1a270daa800",
75+
"id": "d923a9e7-d634-4cb2-99ae-42f6d1f166a5",
7676
"metadata": {
7777
"tags": []
7878
},
7979
"outputs": [],
8080
"source": [
8181
"asset = \"icesat2\"\n",
82-
"resource = \"ATL03_20220105023009_02111406_005_01.h5\"\n",
82+
"resource = \"ATL03_20220105023009_02111406_005_01.h5\""
83+
]
84+
},
85+
{
86+
"cell_type": "code",
87+
"execution_count": null,
88+
"id": "636f5e23-76c0-492b-9301-c47c8d39c81b",
89+
"metadata": {
90+
"tags": []
91+
},
92+
"outputs": [],
93+
"source": [
8394
"region = sliderule.toregion('grandmesa.geojson')\n",
84-
"catalog = earthdata.stac(short_name=\"HLS\", polygon=region[\"poly\"], time_start=\"2022-01-01T00:00:00Z\", time_end=\"2022-03-01T00:00:00Z\", as_str=True)\n",
95+
"catalog = earthdata.stac(short_name=\"HLS\", polygon=region[\"poly\"], time_start=\"2022-01-01T00:00:00Z\", time_end=\"2022-03-01T00:00:00Z\", as_str=True)"
96+
]
97+
},
98+
{
99+
"cell_type": "code",
100+
"execution_count": null,
101+
"id": "d8c1e30a-fd05-4652-8d5b-f8bc6bb30d78",
102+
"metadata": {
103+
"tags": []
104+
},
105+
"outputs": [],
106+
"source": [
107+
"samples = {\n",
108+
" \"landsat\": {\n",
109+
" \"asset\": \"landsat-hls\",\n",
110+
" \"catalog\": catalog,\n",
111+
" \"closest_time\": \"2022-01-05T00:00:00Z\", \n",
112+
" \"bands\": [\"NDVI\"]\n",
113+
" },\n",
114+
" \"gedi\": {\n",
115+
" \"asset\": \"gedil4b\"\n",
116+
" } \n",
117+
"}"
118+
]
119+
},
120+
{
121+
"cell_type": "code",
122+
"execution_count": null,
123+
"id": "00b01ed7-c5dc-4e72-ac43-cb195b1641ab",
124+
"metadata": {
125+
"tags": []
126+
},
127+
"outputs": [],
128+
"source": [
85129
"parms = { \n",
86130
" \"poly\": region['poly'],\n",
87131
" \"ats\": 5.0,\n",
@@ -100,17 +144,7 @@
100144
" \"use_abs_h\": False, \n",
101145
" \"send_waveform\": False\n",
102146
" },\n",
103-
" \"samples\": {\n",
104-
" \"landsat\": {\n",
105-
" \"asset\": \"landsat-hls\",\n",
106-
" \"catalog\": catalog,\n",
107-
" \"closest_time\": \"2022-01-05T00:00:00Z\", \n",
108-
" \"bands\": [\"NDVI\"]\n",
109-
" },\n",
110-
" \"gedi\": {\n",
111-
" \"asset\": \"gedil4b\"\n",
112-
" } \n",
113-
" } \n",
147+
" \"samples\": samples\n",
114148
"}"
115149
]
116150
},
@@ -141,7 +175,7 @@
141175
"id": "b779ddf2-f9ea-41c2-bb9a-1db92e277fe7",
142176
"metadata": {},
143177
"source": [
144-
"#### Display GeoDataFrame\n",
178+
"#### Display ATL08 GeoDataFrame\n",
145179
"Notice the columns that start with \"landsat\" and \"gedi\""
146180
]
147181
},
@@ -210,20 +244,31 @@
210244
" \"poly\": region[\"poly\"],\n",
211245
" \"degrade_flag\": 0,\n",
212246
" \"l2_quality_flag\": 1,\n",
213-
" \"beam\": 0\n",
247+
" \"beam\": 0,\n",
248+
" \"samples\": samples\n",
214249
"}\n",
215250
"\n",
216251
"# Turn verbose off\n",
217-
"sliderule.set_verbose(False)\n",
252+
"#sliderule.set_verbose(False)\n",
218253
"\n",
219254
"# Request GEDI L4A Data\n",
220255
"gedi04a = gedi.gedi04ap(parms) "
221256
]
222257
},
258+
{
259+
"cell_type": "markdown",
260+
"id": "3c54c72b-23ee-4fad-b230-2b848c3b9739",
261+
"metadata": {
262+
"tags": []
263+
},
264+
"source": [
265+
"#### Display GEDI 04A GeoDataFrame"
266+
]
267+
},
223268
{
224269
"cell_type": "code",
225270
"execution_count": null,
226-
"id": "4a091f74-f1da-43fe-99d8-5f3d15fde59d",
271+
"id": "ebbe90d5-d695-4818-a20a-9670dccfbff2",
227272
"metadata": {
228273
"tags": []
229274
},
@@ -333,23 +378,23 @@
333378
"\n",
334379
"# Filter DataFrame\n",
335380
"df = mmds[(mmds['rgt'] == 211) & (mmds['gt'] == 30) & (mmds['cycle'] == 14)]\n",
336-
"df = df[df[\"landsat.value\"] < 100]\n",
337-
"df = df[df[\"gedi.value\"] > -100]\n",
381+
"df = df[df[\"landsat.value_gedi04a\"] < 100]\n",
382+
"df = df[df[\"gedi.value_gedi04a\"] > -100]\n",
338383
"\n",
339384
"# Plot SlideRule ATL08 Vegetation Photon Counts\n",
340385
"sc1 = ax.scatter(df.index.values, df[\"veg_ph_count\"].values, c='red', s=2.5)\n",
341386
"legend_elements.append(matplotlib.lines.Line2D([0], [0], color='red', lw=6, label='ATL08'))\n",
342387
"\n",
343388
"# Plot GEDI L4B AGBD\n",
344-
"sc2 = ax.scatter(df.index.values, df[\"gedi.value\"].values, c='blue', s=2.5)\n",
389+
"sc2 = ax.scatter(df.index.values, df[\"gedi.value_gedi04a\"].values, c='blue', s=2.5)\n",
345390
"legend_elements.append(matplotlib.lines.Line2D([0], [0], color='blue', lw=6, label='L4B AGBD'))\n",
346391
"\n",
347392
"# Plot GEDI L4A AGBD\n",
348393
"sc3 = ax.scatter(df.index.values, df[\"agbd\"].values, c='green', s=2.5)\n",
349394
"legend_elements.append(matplotlib.lines.Line2D([0], [0], color='green', lw=6, label='L4A AGBD'))\n",
350395
"\n",
351396
"# Plot LandSat NVDI\n",
352-
"sc3 = ax.scatter(df.index.values, df[\"landsat.value\"].values, c='orange', s=2.5)\n",
397+
"sc3 = ax.scatter(df.index.values, df[\"landsat.value_gedi04a\"].values, c='orange', s=2.5)\n",
353398
"legend_elements.append(matplotlib.lines.Line2D([0], [0], color='orange', lw=6, label='HLS NVDI'))\n",
354399
"\n",
355400
"\n",

0 commit comments

Comments
 (0)