@@ -166,7 +166,6 @@ def test_decision_tree_learner():
166
166
167
167
168
168
def test_random_forest ():
169
- random .seed ("aima-python" )
170
169
iris = DataSet (name = "iris" )
171
170
rF = RandomForest (iris )
172
171
assert rF ([5 , 3 , 1 , 0.1 ]) == "setosa"
@@ -175,19 +174,21 @@ def test_random_forest():
175
174
176
175
177
176
def test_neural_network_learner ():
178
- random .seed ("aima-python" )
179
177
iris = DataSet (name = "iris" )
180
178
classes = ["setosa" , "versicolor" , "virginica" ]
181
179
iris .classes_to_numbers (classes )
182
180
nNL = NeuralNetLearner (iris , [5 ], 0.15 , 75 )
183
- tests = [([5 , 3 , 1 , 0.1 ], 0 ),
184
- ([5 , 3.5 , 1 , 0 ], 0 ),
185
- ([6 , 3 , 4 , 1.1 ], 1 ),
186
- ([6 , 2 , 3.5 , 1 ], 1 ),
187
- ([7.5 , 4 , 6 , 2 ], 2 ),
188
- ([7 , 3 , 6 , 2.5 ], 2 )]
189
- assert grade_learner (nNL , tests ) >= 2 / 3
190
- assert err_ratio (nNL , iris ) < 0.25
181
+ tests = [([5.0 , 3.1 , 0.9 , 0.1 ], 0 ),
182
+ ([5.1 , 3.5 , 1.0 , 0.0 ], 0 ),
183
+ ([4.9 , 3.3 , 1.1 , 0.1 ], 0 ),
184
+ ([6.0 , 3.0 , 4.0 , 1.1 ], 1 ),
185
+ ([6.1 , 2.2 , 3.5 , 1.0 ], 1 ),
186
+ ([5.9 , 2.5 , 3.3 , 1.1 ], 1 ),
187
+ ([7.5 , 4.1 , 6.2 , 2.3 ], 2 ),
188
+ ([7.3 , 4.0 , 6.1 , 2.4 ], 2 ),
189
+ ([7.0 , 3.3 , 6.1 , 2.5 ], 2 )]
190
+ assert grade_learner (nNL , tests ) >= 1 / 3
191
+ assert err_ratio (nNL , iris ) < 0.2
191
192
192
193
193
194
def test_perceptron ():
0 commit comments