Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit c05e846

Browse files
committed
Update games.py to third edition.
1 parent c3a6fbc commit c05e846

File tree

1 file changed

+48
-59
lines changed

1 file changed

+48
-59
lines changed

games.py

Lines changed: 48 additions & 59 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,5 @@
1-
"""Games, or Adversarial Search. (Chapter 6)
2-
1+
"""Games, or Adversarial Search. (Chapter 5)
32
"""
4-
# (Written for the second edition of AIMA; expect some discrepanciecs
5-
# from the third edition until this gets reviewed.)
63

74
from utils import *
85
import random
@@ -12,46 +9,44 @@
129

1310
def minimax_decision(state, game):
1411
"""Given a state in a game, calculate the best move by searching
15-
forward all the way to the terminal states. [Fig. 6.4]"""
12+
forward all the way to the terminal states. [Fig. 5.3]"""
1613

1714
player = game.to_move(state)
1815

1916
def max_value(state):
2017
if game.terminal_test(state):
2118
return game.utility(state, player)
2219
v = -infinity
23-
for (a, s) in game.successors(state):
24-
v = max(v, min_value(s))
20+
for a in game.actions(state):
21+
v = max(v, min_value(game.result(state, a)))
2522
return v
2623

2724
def min_value(state):
2825
if game.terminal_test(state):
2926
return game.utility(state, player)
3027
v = infinity
31-
for (a, s) in game.successors(state):
32-
v = min(v, max_value(s))
28+
for a in game.actions(state):
29+
v = min(v, max_value(game.result(state, a)))
3330
return v
3431

35-
# Body of minimax_decision starts here:
36-
action, state = argmax(game.successors(state),
37-
lambda ((a, s)): min_value(s))
38-
return action
39-
32+
# Body of minimax_decision:
33+
return argmax(game.actions(state),
34+
lambda a: min_value(game.result(state, a)))
4035

4136
#______________________________________________________________________________
4237

4338
def alphabeta_full_search(state, game):
4439
"""Search game to determine best action; use alpha-beta pruning.
45-
As in [Fig. 6.7], this version searches all the way to the leaves."""
40+
As in [Fig. 5.7], this version searches all the way to the leaves."""
4641

4742
player = game.to_move(state)
4843

4944
def max_value(state, alpha, beta):
5045
if game.terminal_test(state):
5146
return game.utility(state, player)
5247
v = -infinity
53-
for (a, s) in game.successors(state):
54-
v = max(v, min_value(s, alpha, beta))
48+
for a in game.actions(state):
49+
v = max(v, min_value(game.result(state, a), alpha, beta))
5550
if v >= beta:
5651
return v
5752
alpha = max(alpha, v)
@@ -61,17 +56,17 @@ def min_value(state, alpha, beta):
6156
if game.terminal_test(state):
6257
return game.utility(state, player)
6358
v = infinity
64-
for (a, s) in game.successors(state):
65-
v = min(v, max_value(s, alpha, beta))
59+
for a in game.actions(state):
60+
v = min(v, max_value(game.result(state, a), alpha, beta))
6661
if v <= alpha:
6762
return v
6863
beta = min(beta, v)
6964
return v
7065

71-
# Body of alphabeta_search starts here:
72-
action, state = argmax(game.successors(state),
73-
lambda ((a, s)): min_value(s, -infinity, infinity))
74-
return action
66+
# Body of alphabeta_search:
67+
return argmax(game.actions(state),
68+
lambda a: min_value(game.result(state, a),
69+
-infinity, infinity))
7570

7671
def alphabeta_search(state, game, d=4, cutoff_test=None, eval_fn=None):
7772
"""Search game to determine best action; use alpha-beta pruning.
@@ -83,8 +78,9 @@ def max_value(state, alpha, beta, depth):
8378
if cutoff_test(state, depth):
8479
return eval_fn(state)
8580
v = -infinity
86-
for (a, s) in game.successors(state):
87-
v = max(v, min_value(s, alpha, beta, depth+1))
81+
for a in game.actions(state):
82+
v = max(v, min_value(game.result(state, a),
83+
alpha, beta, depth+1))
8884
if v >= beta:
8985
return v
9086
alpha = max(alpha, v)
@@ -94,8 +90,9 @@ def min_value(state, alpha, beta, depth):
9490
if cutoff_test(state, depth):
9591
return eval_fn(state)
9692
v = infinity
97-
for (a, s) in game.successors(state):
98-
v = min(v, max_value(s, alpha, beta, depth+1))
93+
for a in game.actions(state):
94+
v = min(v, max_value(game.result(state, a),
95+
alpha, beta, depth+1))
9996
if v <= alpha:
10097
return v
10198
beta = min(beta, v)
@@ -106,9 +103,9 @@ def min_value(state, alpha, beta, depth):
106103
cutoff_test = (cutoff_test or
107104
(lambda state,depth: depth>d or game.terminal_test(state)))
108105
eval_fn = eval_fn or (lambda state: game.utility(state, player))
109-
action, state = argmax(game.successors(state),
110-
lambda (a, s): min_value(s, -infinity, infinity, 0))
111-
return action
106+
return argmax(game.actions(state),
107+
lambda a: min_value(game.result(state, a),
108+
-infinity, infinity, 0))
112109

113110
#______________________________________________________________________________
114111
# Players for Games
@@ -120,21 +117,21 @@ def query_player(game, state):
120117

121118
def random_player(game, state):
122119
"A player that chooses a legal move at random."
123-
return random.choice(game.legal_moves(state))
120+
return random.choice(game.actions(state))
124121

125122
def alphabeta_player(game, state):
126123
return alphabeta_search(state, game)
127124

128125
def play_game(game, *players):
129126
"""Play an n-person, move-alternating game.
130-
>>> play_game(Fig62Game(), alphabeta_player, alphabeta_player)
127+
>>> play_game(Fig52Game(), alphabeta_player, alphabeta_player)
131128
3
132129
"""
133130
state = game.initial
134131
while True:
135132
for player in players:
136133
move = player(game, state)
137-
state = game.make_move(move, state)
134+
state = game.result(state, move)
138135
if game.terminal_test(state):
139136
return game.utility(state, game.to_move(game.initial))
140137

@@ -144,17 +141,17 @@ def play_game(game, *players):
144141
class Game:
145142
"""A game is similar to a problem, but it has a utility for each
146143
state and a terminal test instead of a path cost and a goal
147-
test. To create a game, subclass this class and implement
148-
legal_moves, make_move, utility, and terminal_test. You may
149-
override display and successors or you can inherit their default
150-
methods. You will also need to set the .initial attribute to the
151-
initial state; this can be done in the constructor."""
144+
test. To create a game, subclass this class and implement actions,
145+
result, utility, and terminal_test. You may override display and
146+
successors or you can inherit their default methods. You will also
147+
need to set the .initial attribute to the initial state; this can
148+
be done in the constructor."""
152149

153-
def legal_moves(self, state):
150+
def actions(self, state):
154151
"Return a list of the allowable moves at this point."
155152
abstract
156153

157-
def make_move(self, move, state):
154+
def result(self, state, move):
158155
"Return the state that results from making a move from a state."
159156
abstract
160157

@@ -164,7 +161,7 @@ def utility(self, state, player):
164161

165162
def terminal_test(self, state):
166163
"Return True if this is a final state for the game."
167-
return not self.legal_moves(state)
164+
return not self.actions(state)
168165

169166
def to_move(self, state):
170167
"Return the player whose move it is in this state."
@@ -174,17 +171,12 @@ def display(self, state):
174171
"Print or otherwise display the state."
175172
print state
176173

177-
def successors(self, state):
178-
"Return a list of legal (move, state) pairs."
179-
return [(move, self.make_move(move, state))
180-
for move in self.legal_moves(state)]
181-
182174
def __repr__(self):
183175
return '<%s>' % self.__class__.__name__
184176

185-
class Fig62Game(Game):
186-
"""The game represented in [Fig. 6.2]. Serves as a simple test case.
187-
>>> g = Fig62Game()
177+
class Fig52Game(Game):
178+
"""The game represented in [Fig. 5.2]. Serves as a simple test case.
179+
>>> g = Fig52Game()
188180
>>> minimax_decision('A', g)
189181
'a1'
190182
>>> alphabeta_full_search('A', g)
@@ -199,15 +191,12 @@ class Fig62Game(Game):
199191
utils = Dict(B1=3, B2=12, B3=8, C1=2, C2=4, C3=6, D1=14, D2=5, D3=2)
200192
initial = 'A'
201193

202-
def legal_moves(self, state):
203-
return [move for (move, next) in self.successors(state)]
194+
def actions(self, state):
195+
return self.succs.get(state, {}).keys()
204196

205-
def make_move(self, move, state):
197+
def result(self, state, move):
206198
return self.succs[state][move]
207199

208-
def successors(self, state):
209-
return self.succs.get(state, {}).items()
210-
211200
def utility(self, state, player):
212201
if player == 'MAX':
213202
return self.utils[state]
@@ -231,11 +220,11 @@ def __init__(self, h=3, v=3, k=3):
231220
for y in range(1, v+1)]
232221
self.initial = Struct(to_move='X', utility=0, board={}, moves=moves)
233222

234-
def legal_moves(self, state):
223+
def actions(self, state):
235224
"Legal moves are any square not yet taken."
236225
return state.moves
237226

238-
def make_move(self, move, state):
227+
def result(self, state, move):
239228
if move not in state.moves:
240229
return state # Illegal move has no effect
241230
board = state.board.copy(); board[move] = state.to_move
@@ -291,12 +280,12 @@ class ConnectFour(TicTacToe):
291280
def __init__(self, h=7, v=6, k=4):
292281
TicTacToe.__init__(self, h, v, k)
293282

294-
def legal_moves(self, state):
283+
def actions(self, state):
295284
return [(x, y) for (x, y) in state.moves
296285
if y == 0 or (x, y-1) in state.board]
297286

298287
__doc__ += random_tests("""
299-
>>> play_game(Fig62Game(), random_player, random_player)
288+
>>> play_game(Fig52Game(), random_player, random_player)
300289
6
301290
>>> play_game(TicTacToe(), random_player, random_player)
302291
0

0 commit comments

Comments
 (0)