diff --git a/llama_cpp/llama.py b/llama_cpp/llama.py index 70623d813..3505dcfa1 100644 --- a/llama_cpp/llama.py +++ b/llama_cpp/llama.py @@ -2227,6 +2227,7 @@ def from_pretrained( cls, repo_id: str, filename: Optional[str], + additional_files: Optional[List] = None, local_dir: Optional[Union[str, os.PathLike[str]]] = None, local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", cache_dir: Optional[Union[str, os.PathLike[str]]] = None, @@ -2239,6 +2240,7 @@ def from_pretrained( Args: repo_id: The model repo id. filename: A filename or glob pattern to match the model file in the repo. + additional_files: A list of filenames or glob patterns to match additional model files in the repo. local_dir: The local directory to save the model to. local_dir_use_symlinks: Whether to use symlinks when downloading the model. **kwargs: Additional keyword arguments to pass to the Llama constructor. @@ -2269,6 +2271,7 @@ def from_pretrained( rel_path = Path(file).relative_to(repo_id) file_list.append(str(rel_path)) + # find the only/first shard file: matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)] # type: ignore if len(matching_files) == 0: @@ -2298,6 +2301,35 @@ def from_pretrained( cache_dir=cache_dir, ) + if additional_files: + for additonal_file_name in additional_files: + # find the additional shard file: + matching_additional_files = [file for file in file_list if fnmatch.fnmatch(file, additonal_file_name)] + + if len(matching_additional_files) == 0: + raise ValueError( + f"No file found in {repo_id} that match {additonal_file_name}\n\n" + f"Available Files:\n{json.dumps(file_list)}" + ) + + if len(matching_additional_files) > 1: + raise ValueError( + f"Multiple files found in {repo_id} matching {additonal_file_name}\n\n" + f"Available Files:\n{json.dumps(files)}" + ) + + (matching_additional_file,) = matching_additional_files + + # download the additional file + hf_hub_download( + repo_id=repo_id, + filename=matching_additional_file, + subfolder=subfolder, + local_dir=local_dir, + local_dir_use_symlinks=local_dir_use_symlinks, + cache_dir=cache_dir, + ) + if local_dir is None: model_path = hf_hub_download( repo_id=repo_id, @@ -2311,6 +2343,7 @@ def from_pretrained( else: model_path = os.path.join(local_dir, filename) + # loading the first file of a sharded GGUF loads all remaining shard files in the subfolder return cls( model_path=model_path, **kwargs,