diff --git a/learning.py b/learning.py index db25c42f3..427c15d8a 100644 --- a/learning.py +++ b/learning.py @@ -434,11 +434,11 @@ def predict(example): def NeuralNetLearner(dataset, hidden_layer_sizes=[3], - learning_rate=0.01, epoches=100): + learning_rate=0.01, epochs=100): """Layered feed-forward network. hidden_layer_sizes: List of number of hidden units per hidden layer learning_rate: Learning rate of gradient descent - epoches: Number of passes over the dataset + epochs: Number of passes over the dataset """ i_units = len(dataset.inputs) @@ -447,7 +447,7 @@ def NeuralNetLearner(dataset, hidden_layer_sizes=[3], # construct a network raw_net = network(i_units, hidden_layer_sizes, o_units) learned_net = BackPropagationLearner(dataset, raw_net, - learning_rate, epoches) + learning_rate, epochs) def predict(example): @@ -510,7 +510,7 @@ def network(input_units, hidden_layer_sizes, output_units): return net -def BackPropagationLearner(dataset, net, learning_rate, epoches): +def BackPropagationLearner(dataset, net, learning_rate, epochs): """[Figure 18.23] The back-propagation algorithm for multilayer network""" # Initialise weights for layer in net: @@ -530,7 +530,7 @@ def BackPropagationLearner(dataset, net, learning_rate, epoches): o_nodes = net[-1] i_nodes = net[0] - for epoch in range(epoches): + for epoch in range(epochs): # Iterate over each example for e in examples: i_val = [e[i] for i in idx_i] @@ -583,13 +583,13 @@ def BackPropagationLearner(dataset, net, learning_rate, epoches): return net -def PerceptronLearner(dataset, learning_rate=0.01, epoches=100): +def PerceptronLearner(dataset, learning_rate=0.01, epochs=100): """Logistic Regression, NO hidden layer""" i_units = len(dataset.inputs) o_units = 1 # As of now, dataset.target gives only one index. hidden_layer_sizes = [] raw_net = network(i_units, hidden_layer_sizes, o_units) - learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epoches) + learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs) def predict(example): # Input nodes