|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Using Google Cloud Functions to support event-based triggering of Cloud AI Platform Pipelines\n", |
| 8 | + "\n", |
| 9 | + "This example shows how you can run a [Cloud AI Platform Pipeline](https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-ai-platform-pipelines) from a [Google Cloud Function](https://cloud.google.com/functions/docs/), thus providing a way for Pipeline runs to be triggered by events (in the interim before this is supported by Pipelines itself). \n", |
| 10 | + "\n", |
| 11 | + "In this example, the function is triggered by the addition of or update to a file in a [Google Cloud Storage](https://cloud.google.com/storage/) (GCS) bucket, but Cloud Functions can have other triggers too (including [Pub/Sub](https://cloud.google.com/pubsub/docs/)-based triggers).\n", |
| 12 | + "\n", |
| 13 | + "The example is Google Cloud Platform (GCP)-specific, and requires a [Cloud AI Platform Pipelines](https://cloud.google.com/ai-platform/pipelines/docs) installation using Pipelines version >= 0.4.\n" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "markdown", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "## Setup\n", |
| 21 | + "\n", |
| 22 | + "### Create a Cloud AI Platform Pipelines installation\n", |
| 23 | + "\n", |
| 24 | + "Follow the instructions in the [documentation](https://cloud.google.com/ai-platform/pipelines/docs) to create a Cloud AI Platform Pipelines installation. " |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "metadata": {}, |
| 30 | + "source": [ |
| 31 | + "### Identify (or create) a Cloud Storage bucket to use for the example" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "metadata": {}, |
| 37 | + "source": [ |
| 38 | + "**Before executing the next cell**, edit it to **set the `TRIGGER_BUCKET` environment variable** to a Google Cloud Storage bucket ([create a bucket first](https://console.cloud.google.com/storage/browser) if necessary). Do *not* include the `gs://` prefix in the bucket name.\n", |
| 39 | + "\n", |
| 40 | + "We'll deploy the GCF function so that it will trigger on new and updated files (blobs) in this bucket." |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": null, |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "%env TRIGGER_BUCKET=REPLACE_WITH_YOUR_GCS_BUCKET_NAME" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "markdown", |
| 54 | + "metadata": {}, |
| 55 | + "source": [ |
| 56 | + "### Give Cloud Function's service account the necessary access\n", |
| 57 | + "\n", |
| 58 | + "First, make sure the Cloud Function API [is enabled](https://console.cloud.google.com/apis/library/cloudfunctions.googleapis.com?q=functions).\n", |
| 59 | + "\n", |
| 60 | + "Functions uses the project's 'appspot'acccount for its service account. It will have the form: \n", |
| 61 | + "` [email protected]`. (This is also the App Engine service account).\n", |
| 62 | + "\n", |
| 63 | + "- Go to your project's [IAM - Service Account page](https://console.cloud.google.com/iam-admin/serviceaccounts).\n", |
| 64 | + "- Find the ` [email protected]` account and copy its email address.\n", |
| 65 | + "- Find the project's Compute Engine (GCE) default service account (this is the default account used for the Pipelines installation). It will have a form like this: `[email protected]`.\n", |
| 66 | + " Click the checkbox next to the GCE service account, and in the 'INFO PANEL' to the right, click **ADD MEMBER**. Add the Functions service account (`[email protected]`) as a **Project Viewer** of the GCE service account. " |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "markdown", |
| 71 | + "metadata": {}, |
| 72 | + "source": [ |
| 73 | + "Next, configure your `TRIGGER_BUCKET` to allow the Functions service account access to that bucket. \n", |
| 74 | + "\n", |
| 75 | + "- Navigate in the console to your list of buckets in the [Storage Browser](https://console.cloud.google.com/storage/browser).\n", |
| 76 | + "- Click the checkbox next to the `TRIGGER_BUCKET`. In the 'INFO PANEL' to the right, click **ADD MEMBER**. Add the service account (`[email protected]`) with `Storage Object Admin` permissions." |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "markdown", |
| 81 | + "metadata": {}, |
| 82 | + "source": [ |
| 83 | + "## Create a simple GCF function to test your configuration\n", |
| 84 | + "\n", |
| 85 | + "First we'll generate and deploy a simple GCF function, to test that the basics are properly configured. " |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "code", |
| 90 | + "execution_count": null, |
| 91 | + "metadata": {}, |
| 92 | + "outputs": [], |
| 93 | + "source": [ |
| 94 | + "%%bash\n", |
| 95 | + "mkdir -p functions" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "markdown", |
| 100 | + "metadata": {}, |
| 101 | + "source": [ |
| 102 | + "We'll first create a `requirements.txt` file, to indicate what packages the GCF code requires to be installed. (We won't actually need `kfp` for this first 'sanity check' version of a GCF function, but we'll need it below for the second function we'll create, that deploys a pipeline)." |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": null, |
| 108 | + "metadata": {}, |
| 109 | + "outputs": [], |
| 110 | + "source": [ |
| 111 | + "%%writefile functions/requirements.txt\n", |
| 112 | + "kfp" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "markdown", |
| 117 | + "metadata": {}, |
| 118 | + "source": [ |
| 119 | + "Next, we'll create a simple GCF function in the `functions/main.py` file:" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "metadata": {}, |
| 126 | + "outputs": [], |
| 127 | + "source": [ |
| 128 | + "%%writefile functions/main.py\n", |
| 129 | + "import logging\n", |
| 130 | + "\n", |
| 131 | + "def gcs_test(data, context):\n", |
| 132 | + " \"\"\"Background Cloud Function to be triggered by Cloud Storage.\n", |
| 133 | + " This generic function logs relevant data when a file is changed.\n", |
| 134 | + "\n", |
| 135 | + " Args:\n", |
| 136 | + " data (dict): The Cloud Functions event payload.\n", |
| 137 | + " context (google.cloud.functions.Context): Metadata of triggering event.\n", |
| 138 | + " Returns:\n", |
| 139 | + " None; the output is written to Stackdriver Logging\n", |
| 140 | + " \"\"\"\n", |
| 141 | + "\n", |
| 142 | + " logging.info('Event ID: {}'.format(context.event_id))\n", |
| 143 | + " logging.info('Event type: {}'.format(context.event_type))\n", |
| 144 | + " logging.info('Data: {}'.format(data))\n", |
| 145 | + " logging.info('Bucket: {}'.format(data['bucket']))\n", |
| 146 | + " logging.info('File: {}'.format(data['name']))\n", |
| 147 | + " file_uri = 'gs://%s/%s' % (data['bucket'], data['name'])\n", |
| 148 | + " logging.info('Using file uri: %s', file_uri)\n", |
| 149 | + "\n", |
| 150 | + " logging.info('Metageneration: {}'.format(data['metageneration']))\n", |
| 151 | + " logging.info('Created: {}'.format(data['timeCreated']))\n", |
| 152 | + " logging.info('Updated: {}'.format(data['updated']))" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "markdown", |
| 157 | + "metadata": {}, |
| 158 | + "source": [ |
| 159 | + "Deploy the GCF function as follows. (You'll need to wait a moment or two for output of the deployment to display in the notebook). You can also run this command from a notebook terminal window in the `functions` subdirectory." |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": null, |
| 165 | + "metadata": {}, |
| 166 | + "outputs": [], |
| 167 | + "source": [ |
| 168 | + "%%bash\n", |
| 169 | + "cd functions\n", |
| 170 | + "gcloud functions deploy gcs_test --runtime python37 --trigger-resource ${TRIGGER_BUCKET} --trigger-event google.storage.object.finalize" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "markdown", |
| 175 | + "metadata": {}, |
| 176 | + "source": [ |
| 177 | + "After you've deployed, test your deployment by adding a file to the specified `TRIGGER_BUCKET`. Then check in the logs viewer panel (https://console.cloud.google.com/logs/viewer) to confirm that the GCF function was triggered and ran correctly.\n" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "markdown", |
| 182 | + "metadata": {}, |
| 183 | + "source": [ |
| 184 | + "## Deploy a Pipeline from a GCF function\n", |
| 185 | + "\n", |
| 186 | + "Next, we'll create a GCF function that deploys an AI Platform Pipeline when triggered. First, preserve your existing main.py in a backup file:" |
| 187 | + ] |
| 188 | + }, |
| 189 | + { |
| 190 | + "cell_type": "code", |
| 191 | + "execution_count": null, |
| 192 | + "metadata": {}, |
| 193 | + "outputs": [], |
| 194 | + "source": [ |
| 195 | + "%%bash\n", |
| 196 | + "cd functions\n", |
| 197 | + "mv main.py main.py.bak" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "markdown", |
| 202 | + "metadata": {}, |
| 203 | + "source": [ |
| 204 | + "Then, **before executing the next cell**, **edit the `HOST` variable** in the code below. To find this URL, visit the [Pipelines panel](https://console.cloud.google.com/ai-platform/pipelines/) in the Cloud Console. \n", |
| 205 | + "\n", |
| 206 | + "From here, you can find the URL by clicking on the **SETTINGS** link for the Pipelines installation you want to use, and copying the 'host' string displayed in the client example code (prepend `https://` to that string). \n", |
| 207 | + "You can alternately click on **OPEN PIPELINES DASHBOARD** for the Pipelines installation, and copy that URL, removing the `/#/pipelines` suffix." |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": null, |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [], |
| 215 | + "source": [ |
| 216 | + "%%writefile functions/main.py\n", |
| 217 | + "import logging\n", |
| 218 | + "import datetime\n", |
| 219 | + "import logging\n", |
| 220 | + "import time\n", |
| 221 | + " \n", |
| 222 | + "import kfp\n", |
| 223 | + "import kfp.compiler as compiler\n", |
| 224 | + "import kfp.dsl as dsl\n", |
| 225 | + " \n", |
| 226 | + "import requests\n", |
| 227 | + " \n", |
| 228 | + "# TODO: replace with your Pipelines endpoint URL\n", |
| 229 | + "HOST = 'https://<yours>.pipelines.googleusercontent.com'\n", |
| 230 | + " \n", |
| 231 | + "@dsl.pipeline(\n", |
| 232 | + " name='Sequential',\n", |
| 233 | + " description='A pipeline with two sequential steps.'\n", |
| 234 | + ")\n", |
| 235 | + "def sequential_pipeline(filename='gs://ml-pipeline-playground/shakespeare1.txt'):\n", |
| 236 | + " \"\"\"A pipeline with two sequential steps.\"\"\"\n", |
| 237 | + " op1 = dsl.ContainerOp(\n", |
| 238 | + " name='filechange',\n", |
| 239 | + " image='library/bash:4.4.23',\n", |
| 240 | + " command=['sh', '-c'],\n", |
| 241 | + " arguments=['echo \"%s\" > /tmp/results.txt' % filename],\n", |
| 242 | + " file_outputs={'newfile': '/tmp/results.txt'})\n", |
| 243 | + " op2 = dsl.ContainerOp(\n", |
| 244 | + " name='echo',\n", |
| 245 | + " image='library/bash:4.4.23',\n", |
| 246 | + " command=['sh', '-c'],\n", |
| 247 | + " arguments=['echo \"%s\"' % op1.outputs['newfile']]\n", |
| 248 | + " )\n", |
| 249 | + " \n", |
| 250 | + "def get_access_token():\n", |
| 251 | + " url = 'http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/token'\n", |
| 252 | + " r = requests.get(url, headers={'Metadata-Flavor': 'Google'})\n", |
| 253 | + " r.raise_for_status()\n", |
| 254 | + " access_token = r.json()['access_token']\n", |
| 255 | + " return access_token\n", |
| 256 | + " \n", |
| 257 | + "def hosted_kfp_test(data, context):\n", |
| 258 | + " logging.info('Event ID: {}'.format(context.event_id))\n", |
| 259 | + " logging.info('Event type: {}'.format(context.event_type))\n", |
| 260 | + " logging.info('Data: {}'.format(data))\n", |
| 261 | + " logging.info('Bucket: {}'.format(data['bucket']))\n", |
| 262 | + " logging.info('File: {}'.format(data['name']))\n", |
| 263 | + " file_uri = 'gs://%s/%s' % (data['bucket'], data['name'])\n", |
| 264 | + " logging.info('Using file uri: %s', file_uri)\n", |
| 265 | + " \n", |
| 266 | + " logging.info('Metageneration: {}'.format(data['metageneration']))\n", |
| 267 | + " logging.info('Created: {}'.format(data['timeCreated']))\n", |
| 268 | + " logging.info('Updated: {}'.format(data['updated']))\n", |
| 269 | + " \n", |
| 270 | + " token = get_access_token() \n", |
| 271 | + " logging.info('attempting to launch pipeline run.')\n", |
| 272 | + " ts = int(datetime.datetime.utcnow().timestamp() * 100000)\n", |
| 273 | + " client = kfp.Client(host=HOST, existing_token=token)\n", |
| 274 | + " compiler.Compiler().compile(sequential_pipeline, '/tmp/sequential.tar.gz')\n", |
| 275 | + " exp = client.create_experiment(name='gcstriggered') # this is a 'get or create' op\n", |
| 276 | + " res = client.run_pipeline(exp.id, 'sequential_' + str(ts), '/tmp/sequential.tar.gz',\n", |
| 277 | + " params={'filename': file_uri})\n", |
| 278 | + " logging.info(res)\n", |
| 279 | + "\n" |
| 280 | + ] |
| 281 | + }, |
| 282 | + { |
| 283 | + "cell_type": "markdown", |
| 284 | + "metadata": {}, |
| 285 | + "source": [ |
| 286 | + "Next, deploy the new GCF function. As before, it will take a moment or two for the results of the deployment to display in the notebook." |
| 287 | + ] |
| 288 | + }, |
| 289 | + { |
| 290 | + "cell_type": "code", |
| 291 | + "execution_count": null, |
| 292 | + "metadata": {}, |
| 293 | + "outputs": [], |
| 294 | + "source": [ |
| 295 | + "%%bash\n", |
| 296 | + "cd functions\n", |
| 297 | + "gcloud functions deploy hosted_kfp_test --runtime python37 --trigger-resource ${TRIGGER_BUCKET} --trigger-event google.storage.object.finalize" |
| 298 | + ] |
| 299 | + }, |
| 300 | + { |
| 301 | + "cell_type": "markdown", |
| 302 | + "metadata": {}, |
| 303 | + "source": [ |
| 304 | + "Add another file to your `TRIGGER_BUCKET`. This time you should see both GCF functions triggered. The `hosted_kfp_test` function will deploy the pipeline. You'll be able to see it running at your Pipeline installation's endpoint, `https://<deployment-name>.endpoints.<project>.cloud.goog/pipeline`, under the given Pipelines Experiment (`gcstriggered` as default)." |
| 305 | + ] |
| 306 | + }, |
| 307 | + { |
| 308 | + "cell_type": "markdown", |
| 309 | + "metadata": {}, |
| 310 | + "source": [ |
| 311 | + "------------------------------------------\n", |
| 312 | + "Copyright 2020, Google, LLC.\n", |
| 313 | + "Licensed under the Apache License, Version 2.0 (the \"License\");\n", |
| 314 | + "you may not use this file except in compliance with the License.\n", |
| 315 | + "You may obtain a copy of the License at\n", |
| 316 | + "\n", |
| 317 | + " http://www.apache.org/licenses/LICENSE-2.0\n", |
| 318 | + "\n", |
| 319 | + "Unless required by applicable law or agreed to in writing, software\n", |
| 320 | + "distributed under the License is distributed on an \"AS IS\" BASIS,\n", |
| 321 | + "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", |
| 322 | + "See the License for the specific language governing permissions and\n", |
| 323 | + "limitations under the License." |
| 324 | + ] |
| 325 | + }, |
| 326 | + { |
| 327 | + "cell_type": "code", |
| 328 | + "execution_count": null, |
| 329 | + "metadata": {}, |
| 330 | + "outputs": [], |
| 331 | + "source": [] |
| 332 | + } |
| 333 | + ], |
| 334 | + "metadata": { |
| 335 | + "kernelspec": { |
| 336 | + "display_name": "Python 3", |
| 337 | + "language": "python", |
| 338 | + "name": "python3" |
| 339 | + }, |
| 340 | + "language_info": { |
| 341 | + "codemirror_mode": { |
| 342 | + "name": "ipython", |
| 343 | + "version": 3 |
| 344 | + }, |
| 345 | + "file_extension": ".py", |
| 346 | + "mimetype": "text/x-python", |
| 347 | + "name": "python", |
| 348 | + "nbconvert_exporter": "python", |
| 349 | + "pygments_lexer": "ipython3", |
| 350 | + "version": "3.6.8" |
| 351 | + } |
| 352 | + }, |
| 353 | + "nbformat": 4, |
| 354 | + "nbformat_minor": 2 |
| 355 | +} |
0 commit comments