Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 6312741

Browse files
committed
Edits for formatting / indentation
1 parent 59fe472 commit 6312741

File tree

2 files changed

+5
-4
lines changed

2 files changed

+5
-4
lines changed

examples/pylab_examples/fill_between_demo.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
Filling the area between lines
44
==============================
55
6-
This example shows how to use `fill_between` to color between lines based on
6+
This example shows how to use ``fill_between`` to color between lines based on
77
user-defined logic.
88
"""
99

@@ -31,7 +31,7 @@
3131
###############################################################################
3232
# Now fill between y1 and y2 where a logical condition is met. Note
3333
# this is different than calling
34-
# ``fill_between(x[where], y1[where],y2[where] ...)``
34+
# ``fill_between(x[where], y1[where], y2[where] ...)``
3535
# because of edge effects over multiple contiguous regions.
3636

3737
fig, (ax, ax1) = plt.subplots(2, 1, sharex=True)
@@ -53,14 +53,15 @@
5353
# points. A brute-force solution would be to interpolate all
5454
# arrays to a very fine grid before plotting.
5555

56+
5657
###############################################################################
5758
# Use transforms to create axes spans where a certain condition is satisfied:
5859

5960
fig, ax = plt.subplots()
6061
y = np.sin(4*np.pi*x)
6162
ax.plot(x, y, color='black')
6263

63-
# use the data coordinates for the x-axis and the axes coordinates for the y-axis
64+
# use data coordinates for the x-axis and the axes coordinates for the y-axis
6465
import matplotlib.transforms as mtransforms
6566
trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes)
6667
theta = 0.9

examples/userdemo/colormap_normalizations.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@
5757
# with 5-times the amplitude. Linearly, you cannot see detail in the
5858
# negative hump. Here we logarithmically scale the positive and
5959
# negative data separately.
60-
#
60+
#
6161
# Note that colorbar labels do not come out looking very good.
6262

6363
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]

0 commit comments

Comments
 (0)