@@ -30,24 +30,26 @@ def __init__(self, embed_size, hidden_size, vocab, num_layers, max_seq_length=20
3030 """Set the hyper-parameters and build the layers."""
3131 super (DecoderRNN , self ).__init__ ()
3232 Bert_file = "bert-base-uncased.30522.768d.vec"
33+ print ("M1" )
3334 Lookup = gensim .models .KeyedVectors .load_word2vec_format (Bert_file , binary = False )
34-
35+ bert_embedding = BertEmbedding ()
3536 Embed = np .zeros ((len (vocab ), embed_size ))
37+ print ("M2" )
3638 Embed [vocab ('<pad>' ),:] = np .random .normal (0 , 1 , embed_size )
3739 Embed [vocab ('<start>' ),:] = np .random .normal (0 , 1 , embed_size )
3840 Embed [vocab ('<end>' ),:] = np .random .normal (0 , 1 , embed_size )
3941 Embed [vocab ('<unk>' ),:] = np .random .normal (0 , 1 , embed_size )
40-
42+ print ( "M3" )
4143 for word in vocab .__keys__ ()[4 :]:
4244 try :
4345 Embed [vocab (word ),:] = Lookup [word ]
4446 except :
4547 bert_word = word
46- token = bert_word .split ('\n ' )
47- bert_embedding = BertEmbedding ()
48+ token = bert_word .split ('\n ' )
4849 pred = bert_embedding (token )
4950 Embed [vocab (word ),:] = pred [0 ][1 ][0 ]
50-
51+
52+ print ("M4" )
5153 self .embed = nn .Embedding (len (vocab ), embed_size )
5254 self .embed .weight .data .copy_ (torch .FloatTensor (Embed ))
5355 self .lstm = nn .LSTM (embed_size , hidden_size , num_layers , batch_first = True )
0 commit comments