Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 902abf9

Browse files
committed
fix bert instance that causes ram issues on coalb
1 parent 6169885 commit 902abf9

File tree

1 file changed

+7
-5
lines changed
  • tutorials/03-advanced/image_captioning

1 file changed

+7
-5
lines changed

tutorials/03-advanced/image_captioning/model.py

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -30,24 +30,26 @@ def __init__(self, embed_size, hidden_size, vocab, num_layers, max_seq_length=20
3030
"""Set the hyper-parameters and build the layers."""
3131
super(DecoderRNN, self).__init__()
3232
Bert_file = "bert-base-uncased.30522.768d.vec"
33+
print("M1")
3334
Lookup = gensim.models.KeyedVectors.load_word2vec_format(Bert_file, binary=False)
34-
35+
bert_embedding = BertEmbedding()
3536
Embed = np.zeros((len(vocab), embed_size))
37+
print("M2")
3638
Embed[vocab('<pad>'),:] = np.random.normal(0, 1, embed_size)
3739
Embed[vocab('<start>'),:] = np.random.normal(0, 1, embed_size)
3840
Embed[vocab('<end>'),:] = np.random.normal(0, 1, embed_size)
3941
Embed[vocab('<unk>'),:] = np.random.normal(0, 1, embed_size)
40-
42+
print("M3")
4143
for word in vocab.__keys__()[4:]:
4244
try:
4345
Embed[vocab(word),:] = Lookup[word]
4446
except:
4547
bert_word = word
46-
token = bert_word.split('\n')
47-
bert_embedding = BertEmbedding()
48+
token = bert_word.split('\n')
4849
pred = bert_embedding(token)
4950
Embed[vocab(word),:] = pred[0][1][0]
50-
51+
52+
print("M4")
5153
self.embed = nn.Embedding(len(vocab), embed_size)
5254
self.embed.weight.data.copy_(torch.FloatTensor(Embed))
5355
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)

0 commit comments

Comments
 (0)