@@ -39,11 +39,9 @@ setMethod(
39
39
40
40
# Print regression coefficients
41
41
cat(" Regression:\n " )
42
- res <- subset(
43
- x = pt_g ,
44
- subset = dest == " beta" | dest == " gamma" ,
45
- select = c(" rhs" , " par" , " SE" , " zval" , " pval" )
46
- )
42
+ res_rows <- pt_g $ dest == " beta" | pt_g $ dest == " gamma"
43
+ res_cols <- c(" rhs" , " par" , " SE" , " zval" , " pval" )
44
+ res <- pt_g [res_rows , res_cols ]
47
45
rownames(res ) <- res $ rhs
48
46
res <- res [, - 1 ]
49
47
names(res ) <- c(" Estimate" , " SE" , " Est./SE" , " p-value" )
@@ -52,11 +50,9 @@ setMethod(
52
50
if (family != " poisson" ) {
53
51
# Print overdispersion parameter if it exists
54
52
cat(" \n " )
55
- res <- subset(
56
- x = pt_g ,
57
- subset = dest == " overdis" ,
58
- select = c(" par" , " SE" , " zval" , " pval" )
59
- )
53
+ res_rows <- pt_g $ dest == " overdis"
54
+ res_cols <- c(" par" , " SE" , " zval" , " pval" )
55
+ res <- pt_g [res_rows , res_cols ]
60
56
rownames(res ) <- " Dispersion"
61
57
names(res ) <- c(" Estimate" , " SE" , " Est./SE" , " p-value" )
62
58
print(res , digits = 3 , print.gap = 3 )
@@ -65,22 +61,19 @@ setMethod(
65
61
if (no_z | no_lv ) {
66
62
# Print means and variances of the covariates
67
63
cat(" \n Means:\n " )
68
- res <- subset(
69
- x = pt_g ,
70
- subset = dest == " mu_z" | dest == " mu_eta" ,
71
- select = c(" lhs" , " par" , " SE" , " zval" , " pval" )
72
- )
64
+ res_rows <- pt_g $ dest == " mu_z" | pt_g $ dest == " mu_eta"
65
+ res_cols <- c(" lhs" , " par" , " SE" , " zval" , " pval" )
66
+ res <- pt_g [res_rows , res_cols ]
73
67
rownames(res ) <- res $ lhs
74
68
res <- res [, - 1 ]
75
69
names(res ) <- c(" Estimate" , " SE" , " Est./SE" , " p-value" )
76
70
print(res , digits = 3 , print.gap = 3 )
77
71
78
72
cat(" \n Variances:\n " )
79
- res <- subset(
80
- x = pt_g ,
81
- subset = type == " var" & (dest == " Sigma_z" | dest == " Sigma_eta" ),
82
- select = c(" lhs" , " par" , " SE" , " zval" , " pval" )
83
- )
73
+ res_rows <- pt_g $ type == " var" &
74
+ (pt_g $ dest == " Sigma_z" | pt_g $ dest == " Sigma_eta" )
75
+ res_cols <- c(" lhs" , " par" , " SE" , " zval" , " pval" )
76
+ res <- pt_g [res_rows , res_cols ]
84
77
rownames(res ) <- res $ lhs
85
78
res <- res [, - 1 ]
86
79
names(res ) <- c(" Estimate" , " SE" , " Est./SE" , " p-value" )
@@ -90,12 +83,13 @@ setMethod(
90
83
if (no_z + no_lv > = 2 ) {
91
84
# Print covariances of covariates
92
85
cat(" \n Covariances:\n " )
93
- res <- subset(
94
- x = pt_g ,
95
- subset = (type == " cov" &
96
- (dest == " Sigma_z" | dest == " Sigma_eta" )) | dest == " Sigma_z_lv" ,
97
- select = c(" lhs" , " op" , " rhs" , " par" , " SE" , " zval" , " pval" )
98
- )
86
+ res_rows <- (
87
+ pt_g $ type == " cov" &
88
+ (pt_g $ dest == " Sigma_z" | pt_g $ dest == " Sigma_eta" )
89
+ ) |
90
+ pt_g $ dest == " Sigma_z_lv"
91
+ res_cols <- c(" lhs" , " op" , " rhs" , " par" , " SE" , " zval" , " pval" )
92
+ res <- pt_g [res_rows , res_cols ]
99
93
rownames(res ) <- paste(res $ lhs , res $ op , res $ rhs )
100
94
res <- res [, - c(1 : 3 )]
101
95
names(res ) <- c(" Estimate" , " SE" , " Est./SE" , " p-value" )
@@ -107,33 +101,27 @@ setMethod(
107
101
cat(" \n Measurement Model:\n " )
108
102
109
103
cat(" Intercepts:\n " )
110
- res <- subset(
111
- x = pt_g ,
112
- subset = dest == " nu" ,
113
- select = c(" lhs" , " op" , " rhs" , " par" , " SE" , " zval" , " pval" )
114
- )
104
+ res_rows <- pt_g $ dest == " nu"
105
+ res_cols <- c(" lhs" , " op" , " rhs" , " par" , " SE" , " zval" , " pval" )
106
+ res <- pt_g [res_rows , res_cols ]
115
107
rownames(res ) <- paste(res $ lhs , res $ op , res $ rhs )
116
108
res <- res [, - c(1 : 3 )]
117
109
names(res ) <- c(" Estimate" , " SE" , " Est./SE" , " p-value" )
118
110
print(res , digits = 3 , print.gap = 3 )
119
111
120
112
cat(" \n Loadings:\n " )
121
- res <- subset(
122
- x = pt_g ,
123
- subset = dest == " Lambda" ,
124
- select = c(" lhs" , " op" , " rhs" , " par" , " SE" , " zval" , " pval" )
125
- )
113
+ res_rows <- pt_g $ dest == " Lambda"
114
+ res_cols <- c(" lhs" , " op" , " rhs" , " par" , " SE" , " zval" , " pval" )
115
+ res <- pt_g [res_rows , res_cols ]
126
116
rownames(res ) <- paste(res $ lhs , res $ op , res $ rhs )
127
117
res <- res [, - c(1 : 3 )]
128
118
names(res ) <- c(" Estimate" , " SE" , " Est./SE" , " p-value" )
129
119
print(res , digits = 3 , print.gap = 3 )
130
120
131
121
cat(" \n Residual Variances:\n " )
132
- res <- subset(
133
- x = pt_g ,
134
- subset = dest == " Theta" & type == " var" ,
135
- select = c(" lhs" , " op" , " rhs" , " par" , " SE" , " zval" , " pval" )
136
- )
122
+ res_rows <- pt_g $ dest == " Theta" & pt_g $ type == " var"
123
+ res_cols <- c(" lhs" , " op" , " rhs" , " par" , " SE" , " zval" , " pval" )
124
+ res <- pt_g [res_rows , res_cols ]
137
125
rownames(res ) <- paste(res $ lhs , res $ op , res $ rhs )
138
126
res <- res [, - c(1 : 3 )]
139
127
names(res ) <- c(" Estimate" , " SE" , " Est./SE" , " p-value" )
0 commit comments