|
425 | 425 | "source": [
|
426 | 426 | "You can verify that the first value is the same as we obtained earlier by manual calculation."
|
427 | 427 | ]
|
| 428 | + }, |
| 429 | + { |
| 430 | + "cell_type": "markdown", |
| 431 | + "metadata": {}, |
| 432 | + "source": [ |
| 433 | + "## Bayesian Networks\n", |
| 434 | + "\n", |
| 435 | + "A Bayesian network is a representation of the joint probability distribution encoding a collection of conditional independence statements.\n", |
| 436 | + "\n", |
| 437 | + "A Bayes Network is implemented as the class **BayesNet**. It consisits of a collection of nodes implemented by the class **BayesNode**. The implementation in the above mentioned classes focuses only on boolean variables. Each node is associated with a variable and it contains a **conditional probabilty table (cpt)**. The **cpt** represents the probability distribution of the variable conditioned on its parents **P(X | parents)**.\n", |
| 438 | + "\n", |
| 439 | + "Let us dive into the **BayesNode** implementation." |
| 440 | + ] |
| 441 | + }, |
| 442 | + { |
| 443 | + "cell_type": "code", |
| 444 | + "execution_count": null, |
| 445 | + "metadata": { |
| 446 | + "collapsed": false |
| 447 | + }, |
| 448 | + "outputs": [], |
| 449 | + "source": [ |
| 450 | + "%psource BayesNode" |
| 451 | + ] |
| 452 | + }, |
| 453 | + { |
| 454 | + "cell_type": "markdown", |
| 455 | + "metadata": {}, |
| 456 | + "source": [ |
| 457 | + "The constructor takes in the name of **variable**, **parents** and **cpt**. Here **variable** is a the name of the variable like 'Earthquake'. **parents** should a list or space separate string with variable names of parents. The conditional probability table is a dict {(v1, v2, ...): p, ...}, the distribution P(X=true | parent1=v1, parent2=v2, ...) = p. Here the keys are combination of boolean values that the parents take. The length and order of the values in keys should be same as the supplied **parent** list/string. In all cases the probability of X being false is left implicit, since it follows from P(X=true).\n", |
| 458 | + "\n", |
| 459 | + "The example below where we implement the network shown in **Figure 14.3** of the book will make this more clear.\n", |
| 460 | + "\n", |
| 461 | + "<img src=\"files/images/bayesnet.png\">\n", |
| 462 | + "\n", |
| 463 | + "The alarm node can be made as follows: " |
| 464 | + ] |
| 465 | + }, |
| 466 | + { |
| 467 | + "cell_type": "code", |
| 468 | + "execution_count": null, |
| 469 | + "metadata": { |
| 470 | + "collapsed": true |
| 471 | + }, |
| 472 | + "outputs": [], |
| 473 | + "source": [ |
| 474 | + "alarm_node = BayesNode('Alarm', ['Burglary', 'Earthquake'], \n", |
| 475 | + " {(True, True): 0.95,(True, False): 0.94, (False, True): 0.29, (False, False): 0.001})" |
| 476 | + ] |
| 477 | + }, |
| 478 | + { |
| 479 | + "cell_type": "markdown", |
| 480 | + "metadata": {}, |
| 481 | + "source": [ |
| 482 | + "It is possible to avoid using a tuple when there is only a single parent. So an alternative format for the **cpt** is" |
| 483 | + ] |
| 484 | + }, |
| 485 | + { |
| 486 | + "cell_type": "code", |
| 487 | + "execution_count": null, |
| 488 | + "metadata": { |
| 489 | + "collapsed": true |
| 490 | + }, |
| 491 | + "outputs": [], |
| 492 | + "source": [ |
| 493 | + "john_node = BayesNode('JohnCalls', ['Alarm'], {True: 0.90, False: 0.05})\n", |
| 494 | + "mary_node = BayesNode('MaryCalls', 'Alarm', {(True, ): 0.70, (False, ): 0.01}) # Using string for parents.\n", |
| 495 | + "# Equvivalant to john_node definition. " |
| 496 | + ] |
| 497 | + }, |
| 498 | + { |
| 499 | + "cell_type": "markdown", |
| 500 | + "metadata": {}, |
| 501 | + "source": [ |
| 502 | + "The general format used for the alarm node always holds. For nodes with no parents we can also use. " |
| 503 | + ] |
| 504 | + }, |
| 505 | + { |
| 506 | + "cell_type": "code", |
| 507 | + "execution_count": null, |
| 508 | + "metadata": { |
| 509 | + "collapsed": true |
| 510 | + }, |
| 511 | + "outputs": [], |
| 512 | + "source": [ |
| 513 | + "burglary_node = BayesNode('Burglary', '', 0.001)\n", |
| 514 | + "earthquake_node = BayesNode('Earthquake', '', 0.002)" |
| 515 | + ] |
| 516 | + }, |
| 517 | + { |
| 518 | + "cell_type": "markdown", |
| 519 | + "metadata": {}, |
| 520 | + "source": [ |
| 521 | + "It is possible to use the node for lookup function using the **p** method. The method takes in two arguments **value** and **event**. Event must be a dict of the type {variable:values, ..} The value corresponds to the value of the variable we are interested in (False or True).The method returns the conditional probability **P(X=value | parents=parent_values)**, where parent_values are the values of parents in event. (event must assign each parent a value.)" |
| 522 | + ] |
| 523 | + }, |
| 524 | + { |
| 525 | + "cell_type": "code", |
| 526 | + "execution_count": null, |
| 527 | + "metadata": { |
| 528 | + "collapsed": false |
| 529 | + }, |
| 530 | + "outputs": [], |
| 531 | + "source": [ |
| 532 | + "john_node.p(False, {'Alarm': True, 'Burglary': True}) # P(JohnCalls=False | Alarm=True)" |
| 533 | + ] |
| 534 | + }, |
| 535 | + { |
| 536 | + "cell_type": "markdown", |
| 537 | + "metadata": {}, |
| 538 | + "source": [ |
| 539 | + "With all the information about nodes present it is possible to construct a Bayes Network using **BayesNet**. The **BayesNet** class does not take in nodes as input but instead takes a list of **node_specs**. An entry in **node_specs** is a tuple of the parameters we use to construct a **BayesNode** namely **(X, parents, cpt)**. **node_specs** must be ordered with parents before children." |
| 540 | + ] |
| 541 | + }, |
| 542 | + { |
| 543 | + "cell_type": "code", |
| 544 | + "execution_count": null, |
| 545 | + "metadata": { |
| 546 | + "collapsed": true |
| 547 | + }, |
| 548 | + "outputs": [], |
| 549 | + "source": [ |
| 550 | + "%psource BayesNet" |
| 551 | + ] |
| 552 | + }, |
| 553 | + { |
| 554 | + "cell_type": "markdown", |
| 555 | + "metadata": {}, |
| 556 | + "source": [ |
| 557 | + "The constructor of **BayesNet** takes each item in **node_specs** and adds a **BayesNode** to its **nodes** object variable by calling the **add** method. **add** in turn adds node to the net. Its parents must already be in the net, and its variable must not. Thus add allows us to grow a **BayesNet** given its parents are already present.\n", |
| 558 | + "\n", |
| 559 | + "**burglary** global is an instance of **BayesNet** corresponding to the above example.\n", |
| 560 | + "\n", |
| 561 | + " T, F = True, False\n", |
| 562 | + "\n", |
| 563 | + " burglary = BayesNet([\n", |
| 564 | + " ('Burglary', '', 0.001),\n", |
| 565 | + " ('Earthquake', '', 0.002),\n", |
| 566 | + " ('Alarm', 'Burglary Earthquake',\n", |
| 567 | + " {(T, T): 0.95, (T, F): 0.94, (F, T): 0.29, (F, F): 0.001}),\n", |
| 568 | + " ('JohnCalls', 'Alarm', {T: 0.90, F: 0.05}),\n", |
| 569 | + " ('MaryCalls', 'Alarm', {T: 0.70, F: 0.01})\n", |
| 570 | + " ])" |
| 571 | + ] |
| 572 | + }, |
| 573 | + { |
| 574 | + "cell_type": "code", |
| 575 | + "execution_count": null, |
| 576 | + "metadata": { |
| 577 | + "collapsed": false |
| 578 | + }, |
| 579 | + "outputs": [], |
| 580 | + "source": [ |
| 581 | + "burglary" |
| 582 | + ] |
| 583 | + }, |
| 584 | + { |
| 585 | + "cell_type": "markdown", |
| 586 | + "metadata": {}, |
| 587 | + "source": [ |
| 588 | + "**BayesNet** method **variable_node** allows to reach **BayesNode** instances inside a Bayes Net. It is possible to modify the **cpt** of the nodes directly using this method." |
| 589 | + ] |
| 590 | + }, |
| 591 | + { |
| 592 | + "cell_type": "code", |
| 593 | + "execution_count": null, |
| 594 | + "metadata": { |
| 595 | + "collapsed": false |
| 596 | + }, |
| 597 | + "outputs": [], |
| 598 | + "source": [ |
| 599 | + "type(burglary.variable_node('Alarm'))" |
| 600 | + ] |
| 601 | + }, |
| 602 | + { |
| 603 | + "cell_type": "code", |
| 604 | + "execution_count": null, |
| 605 | + "metadata": { |
| 606 | + "collapsed": false |
| 607 | + }, |
| 608 | + "outputs": [], |
| 609 | + "source": [ |
| 610 | + "burglary.variable_node('Alarm').cpt" |
| 611 | + ] |
428 | 612 | }
|
429 | 613 | ],
|
430 | 614 | "metadata": {
|
|
0 commit comments