Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 00370c8

Browse files
larsmansFabian Pedregosa
authored and
Fabian Pedregosa
committed
DOC: fix typos
s/nn/n/ in dictionary and optional
1 parent 4f85e55 commit 00370c8

File tree

6 files changed

+16
-16
lines changed

6 files changed

+16
-16
lines changed

sklearn/base.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ def clone(estimator, safe=True):
3030
3131
"""
3232
estimator_type = type(estimator)
33-
# XXX: not handling dictionnaries
33+
# XXX: not handling dictionaries
3434
if estimator_type in (list, tuple, set, frozenset):
3535
return estimator_type([clone(e, safe=safe) for e in estimator])
3636
elif not hasattr(estimator, '_get_params'):
@@ -75,12 +75,12 @@ def clone(estimator, safe=True):
7575

7676
###############################################################################
7777
def _pprint(params, offset=0, printer=repr):
78-
"""Pretty print the dictionnary 'params'
78+
"""Pretty print the dictionary 'params'
7979
8080
Parameters
8181
----------
8282
params: dict
83-
The dictionnary to pretty print
83+
The dictionary to pretty print
8484
8585
offset: int
8686
The offset in characters to add at the begin of each line.

sklearn/decomposition/tests/test_fastica.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ def center_and_norm(x, axis=-1):
1919
x: ndarray
2020
Array with an axis of observations (statistical units) measured on
2121
random variables.
22-
axis: int, optionnal
22+
axis: int, optional
2323
Axis along which the mean and variance are calculated.
2424
"""
2525
x = np.rollaxis(x, axis)

sklearn/linear_model/bayes.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ class BayesianRidge(LinearModel):
6868
If True, the regressors X are normalized
6969
Default is False
7070
71-
overwrite_X : boolean, optionnal
71+
overwrite_X : boolean, optional
7272
If True, X will not be copied
7373
Default is False
7474
@@ -285,7 +285,7 @@ class ARDRegression(LinearModel):
285285
normalize : boolean, optional
286286
If True, the regressors X are normalized
287287
288-
overwrite_X : boolean, optionnal
288+
overwrite_X : boolean, optional
289289
If True, X will not be copied
290290
Default is False
291291

sklearn/linear_model/coordinate_descent.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ class ElasticNet(LinearModel):
5050
max_iter: int, optional
5151
The maximum number of iterations
5252
53-
overwrite_X : boolean, optionnal
53+
overwrite_X : boolean, optional
5454
If True, X will not be copied
5555
Default is False
5656
@@ -199,7 +199,7 @@ class Lasso(ElasticNet):
199199
normalize : boolean, optional
200200
If True, the regressors X are normalized
201201
202-
overwrite_X : boolean, optionnal
202+
overwrite_X : boolean, optional
203203
If True, X will not be copied
204204
Default is False
205205
@@ -305,7 +305,7 @@ def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None,
305305
normalize : boolean, optional
306306
If True, the regressors X are normalized
307307
308-
overwrite_X : boolean, optionnal
308+
overwrite_X : boolean, optional
309309
If True, X will not be copied
310310
Default is False
311311
@@ -377,7 +377,7 @@ def enet_path(X, y, rho=0.5, eps=1e-3, n_alphas=100, alphas=None,
377377
normalize : boolean, optional
378378
If True, the regressors X are normalized
379379
380-
overwrite_X : boolean, optionnal
380+
overwrite_X : boolean, optional
381381
If True, X will not be copied
382382
Default is False
383383

sklearn/linear_model/least_angle.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -324,7 +324,7 @@ class Lars(LinearModel):
324324
calculations. If set to 'auto' let us decide. The Gram
325325
matrix can also be passed as argument.
326326
327-
overwrite_X : boolean, optionnal
327+
overwrite_X : boolean, optional
328328
If True, X will not be copied
329329
Default is False
330330
@@ -452,7 +452,7 @@ class LassoLars(Lars):
452452
normalize : boolean, optional
453453
If True, the regressors X are normalized
454454
455-
overwrite_X : boolean, optionnal
455+
overwrite_X : boolean, optional
456456
If True, X will not be copied
457457
Default is False
458458
@@ -632,7 +632,7 @@ class LarsCV(LARS):
632632
normalize : boolean, optional
633633
If True, the regressors X are normalized
634634
635-
overwrite_X : boolean, optionnal
635+
overwrite_X : boolean, optional
636636
If True, X will not be copied
637637
Default is False
638638
@@ -790,7 +790,7 @@ class LassoLarsCV(LarsCV):
790790
Cholesky diagonal factors. Increase this for very ill-conditioned
791791
systems.
792792
793-
overwrite_X : boolean, optionnal
793+
overwrite_X : boolean, optional
794794
If True, X will not be copied
795795
Default is False
796796
@@ -862,7 +862,7 @@ class LassoLarsIC(LassoLars):
862862
normalize : boolean, optional
863863
If True, the regressors X are normalized
864864
865-
overwrite_X : boolean, optionnal
865+
overwrite_X : boolean, optional
866866
Default is False.
867867
If True, X will be overwritten
868868

sklearn/linear_model/ridge.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -140,7 +140,7 @@ class Ridge(LinearModel):
140140
normalize : boolean, optional
141141
If True, the regressors X are normalized
142142
143-
overwrite_X : boolean, optionnal
143+
overwrite_X : boolean, optional
144144
If True, X will not be copied
145145
Default is False
146146

0 commit comments

Comments
 (0)