Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 4e3f008

Browse files
committed
DOC minor fixes to rst and image paths
1 parent 5b29e82 commit 4e3f008

File tree

6 files changed

+19
-10
lines changed

6 files changed

+19
-10
lines changed

doc/datasets/index.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -108,8 +108,8 @@ Sample generators
108108
In addition, scikit-learn includes various random sample generators that
109109
can be used to build artifical datasets of controled size and complexity.
110110

111-
.. image:: ../auto_examples/images/plot_random_dataset_1.png
112-
:target: ../auto_examples/plot_random_dataset.html
111+
.. image:: ../auto_examples/datasets/images/plot_random_dataset_1.png
112+
:target: ../auto_examples/datasets/plot_random_dataset.html
113113
:scale: 50
114114
:align: center
115115

doc/modules/pipeline.rst

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,7 @@ Usage
2828
The :class:`Pipeline` is build using a list of ``(key, value)`` pairs, where
2929
the ``key`` a string containing the name you want to give this step and ``value``
3030
is an estimator object::
31+
3132
>>> from sklearn.pipeline import Pipeline
3233
>>> from sklearn.svm import SVC
3334
>>> from sklearn.decomposition import PCA
@@ -40,21 +41,25 @@ is an estimator object::
4041
shrinking=True, tol=0.001, verbose=False))])
4142

4243
The estimators of the pipeline are stored as a list in the ``steps`` attribute::
44+
4345
>>> clf.steps[0]
4446
('reduce_dim', PCA(copy=True, n_components=None, whiten=False))
4547

4648
and as a ``dict`` in ``named_steps``::
49+
4750
>>> clf.named_steps['reduce_dim']
4851
PCA(copy=True, n_components=None, whiten=False)
4952

5053
Parameters of the estimators in the pipeline can be accessed using the
5154
``<estimator>__<parameter>`` syntax::
55+
5256
>>> clf.set_params(svm__C=10) # NORMALIZE_WHITESPACE
5357
Pipeline(steps=[('reduce_dim', PCA(copy=True, n_components=None, whiten=False)), ('svm', SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
5458
kernel='rbf', probability=False, shrinking=True, tol=0.001,
5559
verbose=False))])
5660

5761
This is particularly important for doing grid searches::
62+
5863
>>> from sklearn.grid_search import GridSearchCV
5964
>>> params = dict(reduce_dim__n_components=[2, 5, 10],
6065
... svm__C=[0.1, 10, 100])

doc/presentations.rst

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,12 +13,14 @@ Videos
1313
- `Introduction to scikit-learn
1414
<http://videolectures.net/icml2010_varaquaux_scik/>`_ by `Gael Varoquaux`_ at
1515
ICML 2010
16+
1617
A three minute video from a very early stage of the scikit, explaining the
1718
basic idea and approach we are following.
1819

1920
- `Introduction to statistical learning with scikit
2021
learn <http://archive.org/search.php?query=scikit-learn>`_ by
2122
`Gael Varoquaux`_ at SciPy 2011
23+
2224
An extensive tutorial, consisting of four sessions of one hour.
2325
The tutorial covers basics of machine learning,
2426
many algorithms and how to apply them using scikit-learn. The
@@ -36,10 +38,12 @@ Videos
3638

3739
- `Introduction to Interactive Predictive Analytics in Python with scikit-learn <http://www.youtube.com/watch?v=Zd5dfooZWG4>`_
3840
by `Olivier Grisel`_ at PyCon 2012
41+
3942
3-hours long introduction to prediction tasks using the scikit-learn.
4043

4144
- `scikit-learn - Machine Learning in Python <http://marakana.com/s/scikit-learn_machine_learning_in_python,1152/index.html>`_
4245
by `Jake Vanderplas`_ at the 2012 PyData workshop at Google
46+
4347
Interactive demonstration of some scikit-learn features. 75 minutes.
4448

4549
.. _Gael Varoquaux: http://gael-varoquaux.info

doc/tutorial/basic/tutorial.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -179,8 +179,8 @@ which we have not used to train the classifier::
179179

180180
The corresponding image is the following:
181181

182-
.. image:: ../../auto_examples/images/datasets/plot_digits_last_image_1.png
183-
:target: ../../auto_examples/plot_digits_last_image.html
182+
.. image:: ../../auto_examples/datasets/images/plot_digits_last_image_1.png
183+
:target: ../../auto_examples/datasets/plot_digits_last_image.html
184184
:align: center
185185
:scale: 50
186186

doc/tutorial/statistical_inference/settings.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -31,8 +31,8 @@ needs to be preprocessed to be used by the scikit.
3131

3232
.. topic:: An example of reshaping data: the digits dataset
3333

34-
.. image:: ../../auto_examples/images/datasets/plot_digits_last_image_1.png
35-
:target: ../../auto_examples/plot_digits_last_image.html
34+
.. image:: ../../auto_examples/datasets/images/plot_digits_last_image_1.png
35+
:target: ../../auto_examples/datasets/plot_digits_last_image.html
3636
:align: right
3737
:scale: 60
3838

doc/tutorial/statistical_inference/supervised_learning.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -39,8 +39,8 @@ Nearest neighbor and the curse of dimensionality
3939

4040
.. topic:: Classifying irises:
4141

42-
.. image:: ../../auto_examples/images/datasets/plot_iris_dataset_1.png
43-
:target: ../../auto_examples/plot_iris_dataset.html
42+
.. image:: ../../auto_examples/datasets/images/plot_iris_dataset_1.png
43+
:target: ../../auto_examples/datasets/plot_iris_dataset.html
4444
:align: right
4545
:scale: 65
4646

@@ -546,8 +546,8 @@ creating an decision energy by positioning *kernels* on observations:
546546
`svm_gui.py`; add data points of both classes with right and left button,
547547
fit the model and change parameters and data.
548548

549-
.. image:: ../../auto_examples/images/datasets/plot_iris_dataset_1.png
550-
:target: ../../auto_examples/plot_iris_dataset.html
549+
.. image:: ../../auto_examples/datasets/images/plot_iris_dataset_1.png
550+
:target: ../../auto_examples/datasets/plot_iris_dataset.html
551551
:align: right
552552
:scale: 70
553553

0 commit comments

Comments
 (0)