@@ -490,3 +490,37 @@ implemented as an estimator, so it can be used in pipelines. See::
490
490
>>> patches = image.PatchExtractor((2, 2)).transform(five_images)
491
491
>>> patches.shape
492
492
(45, 2, 2, 3)
493
+
494
+ Connectivity graph of an image
495
+ -------------------------------
496
+
497
+ Several estimators in the scikit-learn can use connectivity information between
498
+ features or samples. For instance Ward clustering
499
+ (:ref: `hierarchical_clustering `) can cluster together only neighboring pixels
500
+ of an image, thus forming contiguous patches:
501
+
502
+ .. figure :: ../auto_examples/cluster/images/plot_lena_ward_segmentation_1.png
503
+ :target: ../auto_examples/cluster/plot_lena_ward_segmentation.html
504
+ :align: center
505
+ :scale: 40
506
+
507
+ For this purpose, the estimators use a 'connectivity' matrix, giving
508
+ which samples are connected.
509
+
510
+ The function :func: `img_to_graph ` returns such a matrix from a 2D or 3D
511
+ image. Similarly, :func: `grid_to_graph ` build a connectivity matrix for
512
+ images given the shape of these image.
513
+
514
+ These matrices can be used to impose connectivity in estimators that use
515
+ connectivity information, such as Ward clustering
516
+ (:ref: `hierarchical_clustering `), but also to build precomputed kernels,
517
+ or similarity matrices.
518
+
519
+ .. note :: **Examples**
520
+
521
+ * :ref: `example_cluster_plot_lena_ward_segmentation.py `
522
+
523
+ * :ref: `example_cluster_plot_segmentation_toy.py `
524
+
525
+ * :ref: `example_cluster_plot_feature_agglomeration_vs_univariate_selection.py `
526
+
0 commit comments