Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit ae7a4ad

Browse files
committed
Remove unused param precompute from MultiTask models
1 parent 083b5f5 commit ae7a4ad

File tree

1 file changed

+12
-18
lines changed

1 file changed

+12
-18
lines changed

sklearn/linear_model/coordinate_descent.py

Lines changed: 12 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -889,7 +889,13 @@ def _path_residuals(X, y, train, test, path, path_params, alphas=None,
889889
y_test = y[test]
890890
fit_intercept = path_params['fit_intercept']
891891
normalize = path_params['normalize']
892-
precompute = path_params['precompute']
892+
893+
if y.ndim == 1:
894+
precompute = path_params['precompute']
895+
else:
896+
# No Gram variant of multi-task exists right now.
897+
# Fall back to default enet_multitask
898+
precompute = False
893899

894900
X_train, y_train, X_mean, y_mean, X_std, precompute, Xy = \
895901
_pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept,
@@ -1638,11 +1644,6 @@ class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin):
16381644
List of alphas where to compute the models.
16391645
If not provided, set automatically.
16401646
1641-
precompute : True | False | 'auto' | array-like
1642-
Whether to use a precomputed Gram matrix to speed up
1643-
calculations. If set to ``'auto'`` let us decide. The Gram
1644-
matrix can also be passed as argument.
1645-
16461647
n_alphas : int, optional
16471648
Number of alphas along the regularization path
16481649
@@ -1716,8 +1717,7 @@ class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin):
17161717
... #doctest: +NORMALIZE_WHITESPACE
17171718
MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001,
17181719
fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100,
1719-
n_jobs=1, normalize=False, precompute='auto', tol=0.0001,
1720-
verbose=0)
1720+
n_jobs=1, normalize=False, tol=0.0001, verbose=0)
17211721
>>> print(clf.coef_)
17221722
[[ 0.52875032 0.46958558]
17231723
[ 0.52875032 0.46958558]]
@@ -1740,7 +1740,7 @@ class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin):
17401740
path = staticmethod(enet_path)
17411741

17421742
def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None,
1743-
fit_intercept=True, normalize=False, precompute='auto',
1743+
fit_intercept=True, normalize=False,
17441744
max_iter=1000, tol=1e-4, cv=None, copy_X=True,
17451745
verbose=0, n_jobs=1):
17461746
self.l1_ratio = l1_ratio
@@ -1749,7 +1749,6 @@ def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None,
17491749
self.alphas = alphas
17501750
self.fit_intercept = fit_intercept
17511751
self.normalize = normalize
1752-
self.precompute = precompute
17531752
self.max_iter = max_iter
17541753
self.tol = tol
17551754
self.cv = cv
@@ -1781,11 +1780,6 @@ class MultiTaskLassoCV(LinearModelCV, RegressorMixin):
17811780
List of alphas where to compute the models.
17821781
If not provided, set automaticlly.
17831782
1784-
precompute : True | False | 'auto' | array-like
1785-
Whether to use a precomputed Gram matrix to speed up
1786-
calculations. If set to ``'auto'`` let us decide. The Gram
1787-
matrix can also be passed as argument.
1788-
17891783
n_alphas : int, optional
17901784
Number of alphas along the regularization path
17911785
@@ -1856,10 +1850,10 @@ class MultiTaskLassoCV(LinearModelCV, RegressorMixin):
18561850
path = staticmethod(lasso_path)
18571851

18581852
def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True,
1859-
normalize=False, precompute='auto', max_iter=1000, tol=1e-4,
1860-
copy_X=True, cv=None, verbose=False, n_jobs=1):
1853+
normalize=False, max_iter=1000, tol=1e-4, copy_X=True,
1854+
cv=None, verbose=False, n_jobs=1):
18611855
super(MultiTaskLassoCV, self).__init__(
18621856
eps=eps, n_alphas=n_alphas, alphas=alphas,
18631857
fit_intercept=fit_intercept, normalize=normalize,
1864-
precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X,
1858+
max_iter=max_iter, tol=tol, copy_X=copy_X,
18651859
cv=cv, verbose=verbose, n_jobs=n_jobs)

0 commit comments

Comments
 (0)