@@ -85,7 +85,7 @@ Mark Ayzenshtat, VP, Augmented Intelligence
85
85
</span >
86
86
87
87
`Télécom ParisTech <http://www.telecom-paristech.fr >`_
88
- ------------------------
88
+ --------------------------------------------------------
89
89
90
90
.. raw :: html
91
91
@@ -116,3 +116,42 @@ Alexandre Gramfort, Assistant Professor
116
116
</span >
117
117
118
118
119
+ `AWeber <http://aweber.com/ >`_
120
+ ------------------------------------------
121
+
122
+ .. raw :: html
123
+
124
+ <div class =" logo" >
125
+
126
+ .. image :: images/aweber.png
127
+ :target: http://aweber.com/
128
+
129
+ .. raw :: html
130
+
131
+ </div >
132
+
133
+
134
+ The scikit-learn toolkit is indispensable for the Data Analysis and Management
135
+ team at AWeber. It allows us to do AWesome stuff we would not otherwise have
136
+ the time or resources to accomplish. The documentation is excellent, allowing
137
+ new engineers to quickly evaluate and apply many different algorithms to our
138
+ data. The text feature extraction utilities are useful when working with the
139
+ large volume of email content we have at AWeber. The RandomizedPCA
140
+ implementation, along with Pipelining and FeatureUnions, allows us to develop
141
+ complex machine learning algorithms efficiently and reliably.
142
+
143
+ Anyone interested in learning more about how AWeber deploys scikit-learn in a
144
+ production environment should check out talks from PyData Boston by AWeber's
145
+ Michael Becker available at https://github.com/mdbecker/pydata_2013
146
+
147
+ .. raw :: html
148
+
149
+ <span class =" testimonial-author" >
150
+
151
+ Michael Becker, Software Engineer, Data Analysis and Management Ninjas
152
+
153
+ .. raw :: html
154
+
155
+ </span >
156
+
157
+
0 commit comments