8
8
from sklearn import datasets
9
9
from sklearn import svm
10
10
11
- from sklearn .preprocessing import LabelBinarizer
11
+ from sklearn .preprocessing import LabelBinarizer , MultiLabelBinarizer
12
12
from sklearn .datasets import make_multilabel_classification
13
13
from sklearn .utils import check_random_state , shuffle
14
14
from sklearn .utils .multiclass import unique_labels
@@ -1061,14 +1061,12 @@ def test_multilabel_classification_report():
1061
1061
1062
1062
n_classes = 4
1063
1063
n_samples = 50
1064
- _ , y_true_ll = make_multilabel_classification (n_features = 1 ,
1065
- n_classes = n_classes ,
1066
- random_state = 0 ,
1067
- n_samples = n_samples )
1068
- _ , y_pred_ll = make_multilabel_classification (n_features = 1 ,
1069
- n_classes = n_classes ,
1070
- random_state = 1 ,
1071
- n_samples = n_samples )
1064
+ # using sequence of sequences is deprecated, but still tested
1065
+ make_ml = ignore_warnings (make_multilabel_classification )
1066
+ _ , y_true_ll = make_ml (n_features = 1 , n_classes = n_classes , random_state = 0 ,
1067
+ n_samples = n_samples )
1068
+ _ , y_pred_ll = make_ml (n_features = 1 , n_classes = n_classes , random_state = 1 ,
1069
+ n_samples = n_samples )
1072
1070
1073
1071
expected_report = """\
1074
1072
precision recall f1-score support
@@ -1081,7 +1079,7 @@ def test_multilabel_classification_report():
1081
1079
avg / total 0.45 0.54 0.47 85
1082
1080
"""
1083
1081
1084
- lb = LabelBinarizer ()
1082
+ lb = MultiLabelBinarizer ()
1085
1083
lb .fit ([range (4 )])
1086
1084
y_true_bi = lb .transform (y_true_ll )
1087
1085
y_pred_bi = lb .transform (y_pred_ll )
@@ -1646,10 +1644,12 @@ def test_multilabel_representation_invariance():
1646
1644
# Generate some data
1647
1645
n_classes = 4
1648
1646
n_samples = 50
1649
- _ , y1 = make_multilabel_classification (n_features = 1 , n_classes = n_classes ,
1650
- random_state = 0 , n_samples = n_samples )
1651
- _ , y2 = make_multilabel_classification (n_features = 1 , n_classes = n_classes ,
1652
- random_state = 1 , n_samples = n_samples )
1647
+ # using sequence of sequences is deprecated, but still tested
1648
+ make_ml = ignore_warnings (make_multilabel_classification )
1649
+ _ , y1 = make_ml (n_features = 1 , n_classes = n_classes , random_state = 0 ,
1650
+ n_samples = n_samples )
1651
+ _ , y2 = make_ml (n_features = 1 , n_classes = n_classes , random_state = 1 ,
1652
+ n_samples = n_samples )
1653
1653
1654
1654
# Be sure to have at least one empty label
1655
1655
y1 += ([], )
@@ -1667,7 +1667,7 @@ def test_multilabel_representation_invariance():
1667
1667
y2_redundant = [x * rng .randint (1 , 4 ) for x in y2 ]
1668
1668
1669
1669
# Binary indicator matrix format
1670
- lb = LabelBinarizer ().fit ([range (n_classes )])
1670
+ lb = MultiLabelBinarizer ().fit ([range (n_classes )])
1671
1671
y1_binary_indicator = lb .transform (y1 )
1672
1672
y2_binary_indicator = lb .transform (y2 )
1673
1673
@@ -1872,21 +1872,19 @@ def test_normalize_option_multilabel_classification():
1872
1872
# Test in the multilabel case
1873
1873
n_classes = 4
1874
1874
n_samples = 100
1875
- _ , y_true = make_multilabel_classification (n_features = 1 ,
1876
- n_classes = n_classes ,
1877
- random_state = 0 ,
1878
- n_samples = n_samples )
1879
- _ , y_pred = make_multilabel_classification (n_features = 1 ,
1880
- n_classes = n_classes ,
1881
- random_state = 1 ,
1882
- n_samples = n_samples )
1875
+ # using sequence of sequences is deprecated, but still tested
1876
+ make_ml = ignore_warnings (make_multilabel_classification )
1877
+ _ , y_true = make_ml (n_features = 1 , n_classes = n_classes ,
1878
+ random_state = 0 , n_samples = n_samples )
1879
+ _ , y_pred = make_ml (n_features = 1 , n_classes = n_classes ,
1880
+ random_state = 1 , n_samples = n_samples )
1883
1881
1884
1882
# Be sure to have at least one empty label
1885
1883
y_true += ([], )
1886
1884
y_pred += ([], )
1887
1885
n_samples += 1
1888
1886
1889
- lb = LabelBinarizer ().fit ([range (n_classes )])
1887
+ lb = MultiLabelBinarizer ().fit ([range (n_classes )])
1890
1888
y_true_binary_indicator = lb .transform (y_true )
1891
1889
y_pred_binary_indicator = lb .transform (y_pred )
1892
1890
0 commit comments