Thanks to visit codestin.com Credit goes to github.com
We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent dfc7c5c commit f4eced3Copy full SHA for f4eced3
sklearn/naive_bayes.py
@@ -171,9 +171,9 @@ def _joint_log_likelihood(self, X):
171
joint_log_likelihood = []
172
for i in xrange(np.size(self._classes)):
173
jointi = np.log(self.class_prior_[i])
174
- n_ij = - 0.5 * np.sum(np.log(np.pi * self.sigma[i, :]))
175
- n_ij -= 0.5 * np.sum(((X - self.theta[i, :]) ** 2) / \
176
- (self.sigma[i, :]), 1)
+ n_ij = - 0.5 * np.sum(np.log(np.pi * self.sigma_[i, :]))
+ n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) / \
+ (self.sigma_[i, :]), 1)
177
joint_log_likelihood.append(jointi + n_ij)
178
joint_log_likelihood = np.array(joint_log_likelihood).T
179
return joint_log_likelihood
0 commit comments