Thanks to visit codestin.com Credit goes to github.com
We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent f7c9f24 commit f7d5317Copy full SHA for f7d5317
doc/tutorial.rst
@@ -151,7 +151,7 @@ set, let us use all the images of our dataset apart from the last
151
one:
152
153
>>> clf.fit(digits.data[:-1], digits.target[:-1])
154
-SVC(kernel='rbf', C=1.0, probability=False, degree=3, coef0=0.0, eps=0.001,
+SVC(kernel='rbf', C=1.0, probability=False, degree=3, coef0=0.0, tol=0.001,
155
cache_size=100.0, shrinking=True, gamma=0.000556792873051)
156
157
Now you can predict new values, in particular, we can ask to the
@@ -186,7 +186,7 @@ persistence model, namely `pickle <http://docs.python.org/library/pickle.html>`_
186
>>> iris = datasets.load_iris()
187
>>> X, y = iris.data, iris.target
188
>>> clf.fit(X, y)
189
190
cache_size=100.0, shrinking=True, gamma=0.00666666666667)
191
>>> import pickle
192
>>> s = pickle.dumps(clf)
0 commit comments