Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit b0c987e

Browse files
Oleksandr Kulkovadamant-pwn
authored andcommitted
Enable macros
1 parent 7e60050 commit b0c987e

File tree

13 files changed

+271
-289
lines changed

13 files changed

+271
-289
lines changed

.github/workflows/deploy-prod.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ jobs:
1818
python-version: '3.8'
1919
- name: Install mkdocs-material
2020
run: |
21-
pip install mkdocs-material
21+
pip install mkdocs-material mkdocs-macros-plugin
2222
- name: Build pages
2323
run: |
2424
mkdocs build --strict

.github/workflows/test.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ jobs:
1414
python-version: '3.8'
1515
- name: Install mkdocs-material
1616
run: |
17-
pip install mkdocs-material
17+
pip install mkdocs-material mkdocs-macros-plugin
1818
- name: Set up C++
1919
run: |
2020
sudo apt install -y --no-install-recommends build-essential

README.md

Lines changed: 0 additions & 33 deletions
This file was deleted.

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
src/index_body

mkdocs.yml

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -46,13 +46,21 @@ markdown_extensions:
4646
- pymdownx.emoji:
4747
emoji_index: !!python/name:materialx.emoji.twemoji
4848
emoji_generator: !!python/name:materialx.emoji.to_svg
49+
- meta
50+
51+
plugins:
52+
- search
53+
- macros
54+
#- git-authors
55+
4956
extra:
5057
analytics:
5158
provider: google
5259
property: UA-85220282-1
5360
nav:
5461
- 'Home':
5562
- 'index.md'
63+
- 'navigation.md'
5664
- 'contrib.md'
5765
- 'preview.md'
5866
- 'Algebra':

src/algebra/module-inverse.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ From these results, we can easily find the modular inverse using the [binary exp
7070

7171
Even though this method is easier to understand than the method described in previous paragraph, in the case when $m$ is not a prime number, we need to calculate Euler phi function, which involves factorization of $m$, which might be very hard. If the prime factorization of $m$ is known, then the complexity of this method is $O(\log m)$.
7272

73-
## Finding the modular inverse for every number modulo $m$ {#mod-inv-all-num data-toc-label="Finding the modular inverse for every number modulo m"}
73+
## Finding the modular inverse for every number modulo $m$ { #mod-inv-all-num data-toc-label="Finding the modular inverse for every number modulo m"}
7474

7575
The problem is the following:
7676
we want to compute the modular inverse for every number in the range $[1, m-1]$.

src/algebra/phi-function.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -89,7 +89,7 @@ void phi_1_to_n(int n) {
8989
```
9090

9191

92-
## Divisor sum property {#divsum}
92+
## Divisor sum property { #divsum}
9393

9494
This interesting property was established by Gauss:
9595

src/combinatorics/binomial-coefficients.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,7 @@ long long binomial_coefficient(int n, int k) {
159159
}
160160
```
161161

162-
### Binomial coefficient modulo prime power {#mod-prime-pow}
162+
### Binomial coefficient modulo prime power { #mod-prime-pow}
163163

164164
Here we want to compute the binomial coefficient modulo some prime power, i.e. $m = p^b$ for some prime $p$.
165165
If $p > \max(k, n-k)$, then we can use the same method as described in the previous section.

src/data_structures/disjoint_set_union.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -422,7 +422,7 @@ bool is_bipartite(int v) {
422422
}
423423
```
424424

425-
### Offline RMQ (range minimum query) in $O(\alpha(n))$ on average / Arpa's trick {#arpa data-toc-label="Offline RMQ / Arpa's trick"}
425+
### Offline RMQ (range minimum query) in $O(\alpha(n))$ on average / Arpa's trick { #arpa data-toc-label="Offline RMQ / Arpa's trick"}
426426

427427
We are given an array `a[]` and we have to compute some minima in given segments of the array.
428428

src/data_structures/segment_tree.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -148,7 +148,7 @@ The green vertices are the vertices that we visit and update.
148148

149149
!["Sum Segment Tree Update"](sum-segment-tree-update.png)
150150

151-
### Implementation ### {#implementation}
151+
### Implementation ### { #implementation}
152152

153153
The main consideration is how to store the Segment Tree.
154154
Of course we can define a $\text{Vertex}$ struct and create objects, that store the boundaries of the segment, its sum and additionally also pointers to its child vertices.
@@ -325,7 +325,7 @@ This interesting variation of the Segment Tree can be solved in exactly the same
325325
it is enough to store the GCD / LCM of the corresponding vertex in each vertex of the tree.
326326
Combining two vertices can be done by computing the GCD / LCM of both vertices.
327327

328-
#### Counting the number of zeros, searching for the $k$-th zero {#counting-zero-search-kth data-toc-label="Counting the number of zeros, searching for the k-th zero"}
328+
#### Counting the number of zeros, searching for the $k$-th zero { #counting-zero-search-kth data-toc-label="Counting the number of zeros, searching for the k-th zero"}
329329

330330
In this problem we want to find the number of zeros in a given range, and additionally find the index of the $k$-th zero using a second function.
331331

0 commit comments

Comments
 (0)