Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 9a83837

Browse files
[Bot] Combine APIs and create typings
1 parent 7c51e78 commit 9a83837

18 files changed

+5352
-1078
lines changed

data/api.json

Lines changed: 3908 additions & 979 deletions
Large diffs are not rendered by default.

data/typing/numpy.py

Lines changed: 70 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -352,6 +352,7 @@
352352
# usage.networkx: 2
353353
# usage.pandas: 1
354354
# usage.prophet: 3
355+
# usage.pyjanitor: 1
355356
# usage.scipy: 49
356357
# usage.seaborn: 2
357358
# usage.skimage: 31
@@ -874,6 +875,7 @@
874875
# usage.matplotlib: 38
875876
# usage.networkx: 1
876877
# usage.pandas: 77
878+
# usage.pyjanitor: 1
877879
# usage.scipy: 763
878880
# usage.seaborn: 9
879881
# usage.skimage: 36
@@ -965,6 +967,7 @@
965967
# usage.matplotlib: 6
966968
# usage.pandas: 31
967969
# usage.prophet: 2
970+
# usage.pyjanitor: 1
968971
# usage.scipy: 58
969972
# usage.skimage: 2
970973
# usage.sklearn: 12
@@ -1170,6 +1173,7 @@
11701173
# usage.koalas: 10
11711174
# usage.matplotlib: 1
11721175
# usage.pandas: 16
1176+
# usage.pyjanitor: 1
11731177
# usage.scipy: 101
11741178
# usage.skimage: 13
11751179
# usage.sklearn: 2
@@ -1193,6 +1197,7 @@
11931197
# usage.koalas: 10
11941198
# usage.matplotlib: 3
11951199
# usage.pandas: 14
1200+
# usage.pyjanitor: 2
11961201
# usage.scipy: 21
11971202
# usage.skimage: 5
11981203
# usage.sklearn: 14
@@ -1266,6 +1271,7 @@
12661271
# usage.dask: 6
12671272
# usage.matplotlib: 7
12681273
# usage.pandas: 12
1274+
# usage.pyjanitor: 2
12691275
# usage.scipy: 21
12701276
# usage.skimage: 30
12711277
# usage.sklearn: 27
@@ -1294,6 +1300,7 @@
12941300
# usage.matplotlib: 8
12951301
# usage.networkx: 2
12961302
# usage.pandas: 11
1303+
# usage.pyjanitor: 2
12971304
# usage.scipy: 16
12981305
# usage.skimage: 6
12991306
# usage.sklearn: 24
@@ -1444,6 +1451,7 @@
14441451
# usage.dask: 6
14451452
# usage.geopandas: 1
14461453
# usage.pandas: 21
1454+
# usage.pyjanitor: 1
14471455
# usage.scipy: 3
14481456
# usage.sklearn: 3
14491457
# usage.statsmodels: 1
@@ -3316,6 +3324,7 @@ def amax(a: numpy.ndarray):
33163324
"""
33173325
usage.dask: 11
33183326
usage.matplotlib: 35
3327+
usage.pyjanitor: 1
33193328
usage.scipy: 132
33203329
usage.seaborn: 2
33213330
usage.skimage: 81
@@ -4057,6 +4066,7 @@ def amax(
40574066
usage.dask: 149
40584067
usage.matplotlib: 70
40594068
usage.pandas: 41
4069+
usage.pyjanitor: 1
40604070
usage.scipy: 188
40614071
usage.seaborn: 4
40624072
usage.skimage: 110
@@ -4072,6 +4082,7 @@ def amin(a: numpy.ndarray):
40724082
"""
40734083
usage.dask: 14
40744084
usage.matplotlib: 31
4085+
usage.pyjanitor: 1
40754086
usage.scipy: 49
40764087
usage.seaborn: 1
40774088
usage.skimage: 54
@@ -4751,6 +4762,7 @@ def amin(
47514762
usage.matplotlib: 65
47524763
usage.networkx: 2
47534764
usage.pandas: 53
4765+
usage.pyjanitor: 1
47544766
usage.scipy: 98
47554767
usage.seaborn: 2
47564768
usage.skimage: 62
@@ -20861,6 +20873,14 @@ def array(
2086120873
...
2086220874

2086320875

20876+
@overload
20877+
def array(_0: unyt.array.unyt_array, /):
20878+
"""
20879+
usage.pyjanitor: 1
20880+
"""
20881+
...
20882+
20883+
2086420884
@overload
2086520885
def array(_0: List[Tuple[str, int]], /, *, dtype: Type[object]):
2086620886
"""
@@ -23270,6 +23290,7 @@ def array(
2327023290
usage.networkx: 137
2327123291
usage.pandas: 6865
2327223292
usage.prophet: 31
23293+
usage.pyjanitor: 1
2327323294
usage.sample-usage: 3
2327423295
usage.scipy: 7182
2327523296
usage.seaborn: 126
@@ -56111,6 +56132,7 @@ def issubdtype(arg1: numpy.dtype, arg2: Type[numpy.complexfloating]):
5611156132
def issubdtype(arg1: numpy.dtype, arg2: Type[numpy.number]):
5611256133
"""
5611356134
usage.dask: 16
56135+
usage.pyjanitor: 2
5611456136
usage.scipy: 8
5611556137
usage.xarray: 13
5611656138
"""
@@ -56487,6 +56509,7 @@ def issubdtype(
5648756509
usage.dask: 49
5648856510
usage.matplotlib: 35
5648956511
usage.pandas: 83
56512+
usage.pyjanitor: 2
5649056513
usage.scipy: 466
5649156514
usage.skimage: 165
5649256515
usage.sklearn: 44
@@ -60055,6 +60078,7 @@ def mean(a: numpy.ndarray):
6005560078
usage.dask: 21
6005660079
usage.matplotlib: 7
6005760080
usage.prophet: 1
60081+
usage.pyjanitor: 1
6005860082
usage.scipy: 26
6005960083
usage.seaborn: 3
6006060084
usage.skimage: 36
@@ -60673,6 +60697,7 @@ def mean(
6067360697
usage.networkx: 6
6067460698
usage.pandas: 26
6067560699
usage.prophet: 2
60700+
usage.pyjanitor: 1
6067660701
usage.scipy: 89
6067760702
usage.seaborn: 8
6067860703
usage.skimage: 62
@@ -60695,6 +60720,7 @@ def median(a: numpy.ndarray, axis: Tuple[int, int]):
6069560720
def median(a: numpy.ndarray):
6069660721
"""
6069760722
usage.matplotlib: 2
60723+
usage.pyjanitor: 1
6069860724
usage.scipy: 18
6069960725
usage.seaborn: 2
6070060726
usage.skimage: 4
@@ -60924,6 +60950,7 @@ def median(
6092460950
usage.matplotlib: 3
6092560951
usage.pandas: 17
6092660952
usage.prophet: 9
60953+
usage.pyjanitor: 1
6092760954
usage.scipy: 28
6092860955
usage.seaborn: 3
6092960956
usage.skimage: 5
@@ -81205,6 +81232,7 @@ def zeros(_0: int, /):
8120581232
usage.matplotlib: 38
8120681233
usage.networkx: 2
8120781234
usage.prophet: 6
81235+
usage.pyjanitor: 1
8120881236
usage.scipy: 263
8120981237
usage.seaborn: 5
8121081238
usage.skimage: 15
@@ -84200,6 +84228,7 @@ def zeros(
8420084228
usage.networkx: 26
8420184229
usage.pandas: 125
8420284230
usage.prophet: 7
84231+
usage.pyjanitor: 1
8420384232
usage.sample-usage: 1
8420484233
usage.scipy: 2108
8420584234
usage.seaborn: 12
@@ -100024,6 +100053,7 @@ def __rsub__(self, _0: numpy.int64, /):
100024100053
"""
100025100054
usage.dask: 1
100026100055
usage.matplotlib: 8
100056+
usage.pyjanitor: 1
100027100057
usage.scipy: 46
100028100058
usage.seaborn: 1
100029100059
usage.skimage: 11
@@ -100137,12 +100167,20 @@ def __rsub__(self, _0: object, /):
100137100167
"""
100138100168
...
100139100169

100170+
@overload
100171+
def __rsub__(self, _0: pandas.core.series.Series, /):
100172+
"""
100173+
usage.pyjanitor: 1
100174+
"""
100175+
...
100176+
100140100177
def __rsub__(self, _0: object, /):
100141100178
"""
100142100179
usage.dask: 4
100143100180
usage.matplotlib: 15
100144100181
usage.pandas: 32
100145100182
usage.prophet: 1
100183+
usage.pyjanitor: 2
100146100184
usage.scipy: 94
100147100185
usage.seaborn: 1
100148100186
usage.skimage: 30
@@ -100257,6 +100295,13 @@ def __rtruediv__(self, _0: numpy.ma.core.MaskedArray, /):
100257100295
"""
100258100296
...
100259100297

100298+
@overload
100299+
def __rtruediv__(self, _0: pandas.core.series.Series, /):
100300+
"""
100301+
usage.pyjanitor: 1
100302+
"""
100303+
...
100304+
100260100305
@overload
100261100306
def __rtruediv__(self, _0: decimal.Decimal, /):
100262100307
"""
@@ -100278,6 +100323,7 @@ def __rtruediv__(self, _0: object, /):
100278100323
usage.networkx: 2
100279100324
usage.pandas: 5
100280100325
usage.prophet: 2
100326+
usage.pyjanitor: 1
100281100327
usage.scipy: 49
100282100328
usage.seaborn: 4
100283100329
usage.skimage: 11
@@ -100340,6 +100386,7 @@ def __sub__(self, _0: numpy.int64, /):
100340100386
"""
100341100387
usage.dask: 1
100342100388
usage.matplotlib: 8
100389+
usage.pyjanitor: 1
100343100390
usage.scipy: 46
100344100391
usage.seaborn: 1
100345100392
usage.skimage: 11
@@ -100399,6 +100446,7 @@ def __sub__(self, _0: object, /):
100399100446
usage.matplotlib: 33
100400100447
usage.pandas: 26
100401100448
usage.prophet: 3
100449+
usage.pyjanitor: 1
100402100450
usage.scipy: 154
100403100451
usage.seaborn: 8
100404100452
usage.skimage: 25
@@ -108332,6 +108380,7 @@ def __getitem__(self, _0: int, /):
108332108380
usage.modin: 20
108333108381
usage.networkx: 52
108334108382
usage.prophet: 28
108383+
usage.pyjanitor: 2
108335108384
usage.sample-usage: 2
108336108385
usage.scipy: 2217
108337108386
usage.seaborn: 74
@@ -116132,6 +116181,7 @@ def __getitem__(self, _0: object, /):
116132116181
usage.networkx: 215
116133116182
usage.pandas: 2206
116134116183
usage.prophet: 41
116184+
usage.pyjanitor: 2
116135116185
usage.sample-usage: 5
116136116186
usage.scipy: 9090
116137116187
usage.seaborn: 245
@@ -117145,6 +117195,7 @@ def __iter__(self, /):
117145117195
usage.networkx: 11
117146117196
usage.pandas: 181
117147117197
usage.prophet: 1
117198+
usage.pyjanitor: 1
117148117199
usage.sample-usage: 2
117149117200
usage.scipy: 302
117150117201
usage.seaborn: 102
@@ -118190,6 +118241,13 @@ def __mul__(self, _0: numpy.ma.core.MaskedArray, /):
118190118241
"""
118191118242
...
118192118243

118244+
@overload
118245+
def __mul__(self, _0: unyt.unit_object.Unit, /):
118246+
"""
118247+
usage.pyjanitor: 1
118248+
"""
118249+
...
118250+
118193118251
@overload
118194118252
def __mul__(self, _0: Tuple[int, int, int], /):
118195118253
"""
@@ -118219,6 +118277,7 @@ def __mul__(self, _0: object, /):
118219118277
usage.networkx: 23
118220118278
usage.pandas: 256
118221118279
usage.prophet: 23
118280+
usage.pyjanitor: 1
118222118281
usage.sample-usage: 1
118223118282
usage.scipy: 2349
118224118283
usage.seaborn: 35
@@ -137470,6 +137529,7 @@ def __call__(self, _0: pandas.core.series.Series, _1: pandas.core.series.Series,
137470137529
"""
137471137530
usage.dask: 147
137472137531
usage.koalas: 29
137532+
usage.pyjanitor: 1
137473137533
usage.statsmodels: 2
137474137534
"""
137475137535
...
@@ -137713,6 +137773,7 @@ def __call__(self, _0: float, /):
137713137773
usage.matplotlib: 102
137714137774
usage.networkx: 9
137715137775
usage.prophet: 5
137776+
usage.pyjanitor: 2
137716137777
usage.scipy: 943
137717137778
usage.seaborn: 11
137718137779
usage.skimage: 58
@@ -140401,6 +140462,14 @@ def __call__(self, _0: numpy.ndarray, _1: numpy.int64, /):
140401140462
"""
140402140463
...
140403140464

140465+
@overload
140466+
def __call__(self, _0: numpy.ndarray, _1: pandas.core.series.Series, /):
140467+
"""
140468+
usage.dask: 22
140469+
usage.pyjanitor: 1
140470+
"""
140471+
...
140472+
140404140473
@overload
140405140474
def __call__(self, _0: Tuple[int], /):
140406140475
"""
@@ -140858,13 +140927,6 @@ def __call__(self, _0: numpy.ndarray, _1: dask.dataframe.core.Series, /):
140858140927
"""
140859140928
...
140860140929

140861-
@overload
140862-
def __call__(self, _0: numpy.ndarray, _1: pandas.core.series.Series, /):
140863-
"""
140864-
usage.dask: 22
140865-
"""
140866-
...
140867-
140868140930
@overload
140869140931
def __call__(self, _0: dask.dataframe.core.Series, _1: dask.array.core.Array, /):
140870140932
"""
@@ -141000,6 +141062,7 @@ def __call__(
141000141062
usage.networkx: 56
141001141063
usage.pandas: 1228
141002141064
usage.prophet: 25
141065+
usage.pyjanitor: 4
141003141066
usage.sample-usage: 3
141004141067
usage.scipy: 8018
141005141068
usage.seaborn: 43

0 commit comments

Comments
 (0)