352
352
# usage.networkx: 2
353
353
# usage.pandas: 1
354
354
# usage.prophet: 3
355
+ # usage.pyjanitor: 1
355
356
# usage.scipy: 49
356
357
# usage.seaborn: 2
357
358
# usage.skimage: 31
874
875
# usage.matplotlib: 38
875
876
# usage.networkx: 1
876
877
# usage.pandas: 77
878
+ # usage.pyjanitor: 1
877
879
# usage.scipy: 763
878
880
# usage.seaborn: 9
879
881
# usage.skimage: 36
965
967
# usage.matplotlib: 6
966
968
# usage.pandas: 31
967
969
# usage.prophet: 2
970
+ # usage.pyjanitor: 1
968
971
# usage.scipy: 58
969
972
# usage.skimage: 2
970
973
# usage.sklearn: 12
1170
1173
# usage.koalas: 10
1171
1174
# usage.matplotlib: 1
1172
1175
# usage.pandas: 16
1176
+ # usage.pyjanitor: 1
1173
1177
# usage.scipy: 101
1174
1178
# usage.skimage: 13
1175
1179
# usage.sklearn: 2
1193
1197
# usage.koalas: 10
1194
1198
# usage.matplotlib: 3
1195
1199
# usage.pandas: 14
1200
+ # usage.pyjanitor: 2
1196
1201
# usage.scipy: 21
1197
1202
# usage.skimage: 5
1198
1203
# usage.sklearn: 14
1266
1271
# usage.dask: 6
1267
1272
# usage.matplotlib: 7
1268
1273
# usage.pandas: 12
1274
+ # usage.pyjanitor: 2
1269
1275
# usage.scipy: 21
1270
1276
# usage.skimage: 30
1271
1277
# usage.sklearn: 27
1294
1300
# usage.matplotlib: 8
1295
1301
# usage.networkx: 2
1296
1302
# usage.pandas: 11
1303
+ # usage.pyjanitor: 2
1297
1304
# usage.scipy: 16
1298
1305
# usage.skimage: 6
1299
1306
# usage.sklearn: 24
1444
1451
# usage.dask: 6
1445
1452
# usage.geopandas: 1
1446
1453
# usage.pandas: 21
1454
+ # usage.pyjanitor: 1
1447
1455
# usage.scipy: 3
1448
1456
# usage.sklearn: 3
1449
1457
# usage.statsmodels: 1
@@ -3316,6 +3324,7 @@ def amax(a: numpy.ndarray):
3316
3324
"""
3317
3325
usage.dask: 11
3318
3326
usage.matplotlib: 35
3327
+ usage.pyjanitor: 1
3319
3328
usage.scipy: 132
3320
3329
usage.seaborn: 2
3321
3330
usage.skimage: 81
@@ -4057,6 +4066,7 @@ def amax(
4057
4066
usage.dask: 149
4058
4067
usage.matplotlib: 70
4059
4068
usage.pandas: 41
4069
+ usage.pyjanitor: 1
4060
4070
usage.scipy: 188
4061
4071
usage.seaborn: 4
4062
4072
usage.skimage: 110
@@ -4072,6 +4082,7 @@ def amin(a: numpy.ndarray):
4072
4082
"""
4073
4083
usage.dask: 14
4074
4084
usage.matplotlib: 31
4085
+ usage.pyjanitor: 1
4075
4086
usage.scipy: 49
4076
4087
usage.seaborn: 1
4077
4088
usage.skimage: 54
@@ -4751,6 +4762,7 @@ def amin(
4751
4762
usage.matplotlib: 65
4752
4763
usage.networkx: 2
4753
4764
usage.pandas: 53
4765
+ usage.pyjanitor: 1
4754
4766
usage.scipy: 98
4755
4767
usage.seaborn: 2
4756
4768
usage.skimage: 62
@@ -20861,6 +20873,14 @@ def array(
20861
20873
...
20862
20874
20863
20875
20876
+ @overload
20877
+ def array(_0: unyt.array.unyt_array, /):
20878
+ """
20879
+ usage.pyjanitor: 1
20880
+ """
20881
+ ...
20882
+
20883
+
20864
20884
@overload
20865
20885
def array(_0: List[Tuple[str, int]], /, *, dtype: Type[object]):
20866
20886
"""
@@ -23270,6 +23290,7 @@ def array(
23270
23290
usage.networkx: 137
23271
23291
usage.pandas: 6865
23272
23292
usage.prophet: 31
23293
+ usage.pyjanitor: 1
23273
23294
usage.sample-usage: 3
23274
23295
usage.scipy: 7182
23275
23296
usage.seaborn: 126
@@ -56111,6 +56132,7 @@ def issubdtype(arg1: numpy.dtype, arg2: Type[numpy.complexfloating]):
56111
56132
def issubdtype(arg1: numpy.dtype, arg2: Type[numpy.number]):
56112
56133
"""
56113
56134
usage.dask: 16
56135
+ usage.pyjanitor: 2
56114
56136
usage.scipy: 8
56115
56137
usage.xarray: 13
56116
56138
"""
@@ -56487,6 +56509,7 @@ def issubdtype(
56487
56509
usage.dask: 49
56488
56510
usage.matplotlib: 35
56489
56511
usage.pandas: 83
56512
+ usage.pyjanitor: 2
56490
56513
usage.scipy: 466
56491
56514
usage.skimage: 165
56492
56515
usage.sklearn: 44
@@ -60055,6 +60078,7 @@ def mean(a: numpy.ndarray):
60055
60078
usage.dask: 21
60056
60079
usage.matplotlib: 7
60057
60080
usage.prophet: 1
60081
+ usage.pyjanitor: 1
60058
60082
usage.scipy: 26
60059
60083
usage.seaborn: 3
60060
60084
usage.skimage: 36
@@ -60673,6 +60697,7 @@ def mean(
60673
60697
usage.networkx: 6
60674
60698
usage.pandas: 26
60675
60699
usage.prophet: 2
60700
+ usage.pyjanitor: 1
60676
60701
usage.scipy: 89
60677
60702
usage.seaborn: 8
60678
60703
usage.skimage: 62
@@ -60695,6 +60720,7 @@ def median(a: numpy.ndarray, axis: Tuple[int, int]):
60695
60720
def median(a: numpy.ndarray):
60696
60721
"""
60697
60722
usage.matplotlib: 2
60723
+ usage.pyjanitor: 1
60698
60724
usage.scipy: 18
60699
60725
usage.seaborn: 2
60700
60726
usage.skimage: 4
@@ -60924,6 +60950,7 @@ def median(
60924
60950
usage.matplotlib: 3
60925
60951
usage.pandas: 17
60926
60952
usage.prophet: 9
60953
+ usage.pyjanitor: 1
60927
60954
usage.scipy: 28
60928
60955
usage.seaborn: 3
60929
60956
usage.skimage: 5
@@ -81205,6 +81232,7 @@ def zeros(_0: int, /):
81205
81232
usage.matplotlib: 38
81206
81233
usage.networkx: 2
81207
81234
usage.prophet: 6
81235
+ usage.pyjanitor: 1
81208
81236
usage.scipy: 263
81209
81237
usage.seaborn: 5
81210
81238
usage.skimage: 15
@@ -84200,6 +84228,7 @@ def zeros(
84200
84228
usage.networkx: 26
84201
84229
usage.pandas: 125
84202
84230
usage.prophet: 7
84231
+ usage.pyjanitor: 1
84203
84232
usage.sample-usage: 1
84204
84233
usage.scipy: 2108
84205
84234
usage.seaborn: 12
@@ -100024,6 +100053,7 @@ def __rsub__(self, _0: numpy.int64, /):
100024
100053
"""
100025
100054
usage.dask: 1
100026
100055
usage.matplotlib: 8
100056
+ usage.pyjanitor: 1
100027
100057
usage.scipy: 46
100028
100058
usage.seaborn: 1
100029
100059
usage.skimage: 11
@@ -100137,12 +100167,20 @@ def __rsub__(self, _0: object, /):
100137
100167
"""
100138
100168
...
100139
100169
100170
+ @overload
100171
+ def __rsub__(self, _0: pandas.core.series.Series, /):
100172
+ """
100173
+ usage.pyjanitor: 1
100174
+ """
100175
+ ...
100176
+
100140
100177
def __rsub__(self, _0: object, /):
100141
100178
"""
100142
100179
usage.dask: 4
100143
100180
usage.matplotlib: 15
100144
100181
usage.pandas: 32
100145
100182
usage.prophet: 1
100183
+ usage.pyjanitor: 2
100146
100184
usage.scipy: 94
100147
100185
usage.seaborn: 1
100148
100186
usage.skimage: 30
@@ -100257,6 +100295,13 @@ def __rtruediv__(self, _0: numpy.ma.core.MaskedArray, /):
100257
100295
"""
100258
100296
...
100259
100297
100298
+ @overload
100299
+ def __rtruediv__(self, _0: pandas.core.series.Series, /):
100300
+ """
100301
+ usage.pyjanitor: 1
100302
+ """
100303
+ ...
100304
+
100260
100305
@overload
100261
100306
def __rtruediv__(self, _0: decimal.Decimal, /):
100262
100307
"""
@@ -100278,6 +100323,7 @@ def __rtruediv__(self, _0: object, /):
100278
100323
usage.networkx: 2
100279
100324
usage.pandas: 5
100280
100325
usage.prophet: 2
100326
+ usage.pyjanitor: 1
100281
100327
usage.scipy: 49
100282
100328
usage.seaborn: 4
100283
100329
usage.skimage: 11
@@ -100340,6 +100386,7 @@ def __sub__(self, _0: numpy.int64, /):
100340
100386
"""
100341
100387
usage.dask: 1
100342
100388
usage.matplotlib: 8
100389
+ usage.pyjanitor: 1
100343
100390
usage.scipy: 46
100344
100391
usage.seaborn: 1
100345
100392
usage.skimage: 11
@@ -100399,6 +100446,7 @@ def __sub__(self, _0: object, /):
100399
100446
usage.matplotlib: 33
100400
100447
usage.pandas: 26
100401
100448
usage.prophet: 3
100449
+ usage.pyjanitor: 1
100402
100450
usage.scipy: 154
100403
100451
usage.seaborn: 8
100404
100452
usage.skimage: 25
@@ -108332,6 +108380,7 @@ def __getitem__(self, _0: int, /):
108332
108380
usage.modin: 20
108333
108381
usage.networkx: 52
108334
108382
usage.prophet: 28
108383
+ usage.pyjanitor: 2
108335
108384
usage.sample-usage: 2
108336
108385
usage.scipy: 2217
108337
108386
usage.seaborn: 74
@@ -116132,6 +116181,7 @@ def __getitem__(self, _0: object, /):
116132
116181
usage.networkx: 215
116133
116182
usage.pandas: 2206
116134
116183
usage.prophet: 41
116184
+ usage.pyjanitor: 2
116135
116185
usage.sample-usage: 5
116136
116186
usage.scipy: 9090
116137
116187
usage.seaborn: 245
@@ -117145,6 +117195,7 @@ def __iter__(self, /):
117145
117195
usage.networkx: 11
117146
117196
usage.pandas: 181
117147
117197
usage.prophet: 1
117198
+ usage.pyjanitor: 1
117148
117199
usage.sample-usage: 2
117149
117200
usage.scipy: 302
117150
117201
usage.seaborn: 102
@@ -118190,6 +118241,13 @@ def __mul__(self, _0: numpy.ma.core.MaskedArray, /):
118190
118241
"""
118191
118242
...
118192
118243
118244
+ @overload
118245
+ def __mul__(self, _0: unyt.unit_object.Unit, /):
118246
+ """
118247
+ usage.pyjanitor: 1
118248
+ """
118249
+ ...
118250
+
118193
118251
@overload
118194
118252
def __mul__(self, _0: Tuple[int, int, int], /):
118195
118253
"""
@@ -118219,6 +118277,7 @@ def __mul__(self, _0: object, /):
118219
118277
usage.networkx: 23
118220
118278
usage.pandas: 256
118221
118279
usage.prophet: 23
118280
+ usage.pyjanitor: 1
118222
118281
usage.sample-usage: 1
118223
118282
usage.scipy: 2349
118224
118283
usage.seaborn: 35
@@ -137470,6 +137529,7 @@ def __call__(self, _0: pandas.core.series.Series, _1: pandas.core.series.Series,
137470
137529
"""
137471
137530
usage.dask: 147
137472
137531
usage.koalas: 29
137532
+ usage.pyjanitor: 1
137473
137533
usage.statsmodels: 2
137474
137534
"""
137475
137535
...
@@ -137713,6 +137773,7 @@ def __call__(self, _0: float, /):
137713
137773
usage.matplotlib: 102
137714
137774
usage.networkx: 9
137715
137775
usage.prophet: 5
137776
+ usage.pyjanitor: 2
137716
137777
usage.scipy: 943
137717
137778
usage.seaborn: 11
137718
137779
usage.skimage: 58
@@ -140401,6 +140462,14 @@ def __call__(self, _0: numpy.ndarray, _1: numpy.int64, /):
140401
140462
"""
140402
140463
...
140403
140464
140465
+ @overload
140466
+ def __call__(self, _0: numpy.ndarray, _1: pandas.core.series.Series, /):
140467
+ """
140468
+ usage.dask: 22
140469
+ usage.pyjanitor: 1
140470
+ """
140471
+ ...
140472
+
140404
140473
@overload
140405
140474
def __call__(self, _0: Tuple[int], /):
140406
140475
"""
@@ -140858,13 +140927,6 @@ def __call__(self, _0: numpy.ndarray, _1: dask.dataframe.core.Series, /):
140858
140927
"""
140859
140928
...
140860
140929
140861
- @overload
140862
- def __call__(self, _0: numpy.ndarray, _1: pandas.core.series.Series, /):
140863
- """
140864
- usage.dask: 22
140865
- """
140866
- ...
140867
-
140868
140930
@overload
140869
140931
def __call__(self, _0: dask.dataframe.core.Series, _1: dask.array.core.Array, /):
140870
140932
"""
@@ -141000,6 +141062,7 @@ def __call__(
141000
141062
usage.networkx: 56
141001
141063
usage.pandas: 1228
141002
141064
usage.prophet: 25
141065
+ usage.pyjanitor: 4
141003
141066
usage.sample-usage: 3
141004
141067
usage.scipy: 8018
141005
141068
usage.seaborn: 43
0 commit comments