Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 2240422

Browse files
committed
Pushing the docs to 0.18/ for branch: 0.18.X, commit 66fbfae0b304575708f5f688fd93b50a53420cdf
1 parent 41cb10a commit 2240422

File tree

1,056 files changed

+5860
-5814
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,056 files changed

+5860
-5814
lines changed

0.18/.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: 23b2d05764c0f670cc22163af5c32bd2
3+
config: daca7b4e886bb848243b580a93354fb1
44
tags: 645f666f9bcd5a90fca523b33c5a78b7

0.18/_downloads/scikit-learn-docs.pdf

-2.48 KB
Binary file not shown.
-145 Bytes
-145 Bytes
-136 Bytes
-58 Bytes
-231 Bytes
306 Bytes
-325 Bytes
-325 Bytes
12 Bytes
12 Bytes
385 Bytes
385 Bytes
-27 Bytes
-27 Bytes
-130 Bytes
-130 Bytes
149 Bytes
149 Bytes
161 Bytes
-216 Bytes
-356 Bytes
-356 Bytes
117 Bytes
176 Bytes
-38 Bytes
-51 Bytes
-51 Bytes
-79 Bytes
-36 Bytes

0.18/_sources/auto_examples/applications/plot_model_complexity_influence.txt

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -223,69 +223,69 @@ main code
223223
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
224224
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
225225
verbose=0, warm_start=False)
226-
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.028425s
226+
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.025452s
227227

228228
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
229229
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
230230
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
231231
power_t=0.5, random_state=None, shuffle=True, verbose=0,
232232
warm_start=False)
233-
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.020969s
233+
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.019581s
234234

235235
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
236236
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
237237
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
238238
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
239239
verbose=0, warm_start=False)
240-
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.016927s
240+
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.015533s
241241

242242
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
243243
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
244244
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
245245
power_t=0.5, random_state=None, shuffle=True, verbose=0,
246246
warm_start=False)
247-
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.015075s
247+
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.013582s
248248

249249
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
250250
kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
251251
verbose=False)
252-
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000388s
252+
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000359s
253253

254254
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
255255
kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
256256
verbose=False)
257-
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000697s
257+
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000649s
258258

259259
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
260260
kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
261261
verbose=False)
262-
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001193s
262+
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001111s
263263

264264
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
265265
kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
266266
verbose=False)
267-
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001684s
267+
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001559s
268268

269269
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
270270
kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
271271
verbose=False)
272-
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.002029s
272+
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001792s
273273

274274
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
275275
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
276276
max_leaf_nodes=None, min_impurity_split=1e-07,
277277
min_samples_leaf=1, min_samples_split=2,
278278
min_weight_fraction_leaf=0.0, n_estimators=10, presort='auto',
279279
random_state=None, subsample=1.0, verbose=0, warm_start=False)
280-
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000117s
280+
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000108s
281281

282282
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
283283
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
284284
max_leaf_nodes=None, min_impurity_split=1e-07,
285285
min_samples_leaf=1, min_samples_split=2,
286286
min_weight_fraction_leaf=0.0, n_estimators=50, presort='auto',
287287
random_state=None, subsample=1.0, verbose=0, warm_start=False)
288-
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000204s
288+
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000189s
289289

290290
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
291291
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -294,7 +294,7 @@ main code
294294
min_weight_fraction_leaf=0.0, n_estimators=100,
295295
presort='auto', random_state=None, subsample=1.0, verbose=0,
296296
warm_start=False)
297-
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000290s
297+
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000272s
298298

299299
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
300300
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -303,7 +303,7 @@ main code
303303
min_weight_fraction_leaf=0.0, n_estimators=200,
304304
presort='auto', random_state=None, subsample=1.0, verbose=0,
305305
warm_start=False)
306-
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000459s
306+
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000424s
307307

308308
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
309309
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -312,11 +312,11 @@ main code
312312
min_weight_fraction_leaf=0.0, n_estimators=500,
313313
presort='auto', random_state=None, subsample=1.0, verbose=0,
314314
warm_start=False)
315-
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000997s
315+
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000926s
316316

317317

318318
**Total running time of the script:**
319-
(0 minutes 25.287 seconds)
319+
(0 minutes 23.928 seconds)
320320

321321

322322

0.18/_sources/auto_examples/applications/plot_out_of_core_classification.txt

Lines changed: 29 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -353,46 +353,46 @@ maximum
353353
Out::
354354

355355
Test set is 878 documents (108 positive)
356-
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.84s ( 522 docs/s)
357-
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.85s ( 521 docs/s)
358-
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.85s ( 519 docs/s)
359-
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.89s ( 509 docs/s)
356+
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.72s ( 560 docs/s)
357+
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.72s ( 559 docs/s)
358+
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.72s ( 557 docs/s)
359+
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.76s ( 547 docs/s)
360360

361361

362-
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 5.60s ( 698 docs/s)
363-
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.60s ( 697 docs/s)
364-
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 5.61s ( 697 docs/s)
365-
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.64s ( 693 docs/s)
362+
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 5.24s ( 746 docs/s)
363+
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.25s ( 745 docs/s)
364+
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 5.25s ( 745 docs/s)
365+
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.28s ( 740 docs/s)
366366

367367

368-
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 9.23s ( 739 docs/s)
369-
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 9.23s ( 738 docs/s)
370-
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 9.23s ( 738 docs/s)
371-
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 9.27s ( 735 docs/s)
368+
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 8.68s ( 785 docs/s)
369+
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 8.69s ( 785 docs/s)
370+
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 8.69s ( 784 docs/s)
371+
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 8.72s ( 781 docs/s)
372372

373373

374-
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 12.97s ( 752 docs/s)
375-
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 12.97s ( 752 docs/s)
376-
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in 12.98s ( 752 docs/s)
377-
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 13.01s ( 750 docs/s)
374+
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 12.22s ( 798 docs/s)
375+
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 12.22s ( 798 docs/s)
376+
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in 12.23s ( 798 docs/s)
377+
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 12.26s ( 795 docs/s)
378378

379379

380-
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 16.17s ( 722 docs/s)
381-
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 16.17s ( 722 docs/s)
382-
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 16.17s ( 722 docs/s)
383-
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 16.21s ( 720 docs/s)
380+
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.30s ( 763 docs/s)
381+
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.30s ( 763 docs/s)
382+
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.31s ( 763 docs/s)
383+
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 15.34s ( 761 docs/s)
384384

385385

386-
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 19.93s ( 733 docs/s)
387-
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 19.93s ( 733 docs/s)
388-
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 19.93s ( 733 docs/s)
389-
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 19.97s ( 732 docs/s)
386+
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 18.93s ( 772 docs/s)
387+
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 18.94s ( 772 docs/s)
388+
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 18.94s ( 772 docs/s)
389+
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 18.97s ( 770 docs/s)
390390

391391

392-
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 23.39s ( 742 docs/s)
393-
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 23.39s ( 742 docs/s)
394-
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 23.40s ( 741 docs/s)
395-
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 23.43s ( 740 docs/s)
392+
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 22.18s ( 782 docs/s)
393+
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 22.18s ( 782 docs/s)
394+
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 22.19s ( 782 docs/s)
395+
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 22.22s ( 781 docs/s)
396396

397397

398398
Plot results
@@ -523,7 +523,7 @@ Plot results
523523

524524

525525
**Total running time of the script:**
526-
(0 minutes 25.561 seconds)
526+
(0 minutes 24.144 seconds)
527527

528528

529529

0.18/_sources/auto_examples/applications/plot_outlier_detection_housing.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ risk of over-fitting the data.
158158
plt.show()
159159

160160
**Total running time of the script:**
161-
(0 minutes 4.731 seconds)
161+
(0 minutes 4.418 seconds)
162162

163163

164164

0.18/_sources/auto_examples/applications/plot_prediction_latency.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -370,11 +370,11 @@ main code
370370
benchmarking with 100 features
371371
benchmarking with 250 features
372372
benchmarking with 500 features
373-
example run in 3.80s
373+
example run in 3.59s
374374

375375

376376
**Total running time of the script:**
377-
(0 minutes 3.806 seconds)
377+
(0 minutes 3.593 seconds)
378378

379379

380380

0.18/_sources/auto_examples/applications/plot_species_distribution_modeling.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ References
6464

6565
Area under the ROC curve : 0.993919
6666

67-
time elapsed: 6.82s
67+
time elapsed: 6.98s
6868

6969

7070

@@ -247,7 +247,7 @@ References
247247
plt.show()
248248

249249
**Total running time of the script:**
250-
(0 minutes 6.825 seconds)
250+
(0 minutes 6.989 seconds)
251251

252252

253253

0.18/_sources/auto_examples/applications/plot_stock_market.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -335,7 +335,7 @@ Visualization
335335

336336

337337
**Total running time of the script:**
338-
(0 minutes 11.501 seconds)
338+
(0 minutes 11.227 seconds)
339339

340340

341341

0.18/_sources/auto_examples/applications/plot_tomography_l1_reconstruction.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,7 @@ contributed to fewer projections than the central disk.
164164
plt.show()
165165

166166
**Total running time of the script:**
167-
(0 minutes 9.886 seconds)
167+
(0 minutes 9.273 seconds)
168168

169169

170170

0.18/_sources/auto_examples/bicluster/plot_spectral_biclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ representation of the checkerboard structure.
106106
plt.show()
107107

108108
**Total running time of the script:**
109-
(0 minutes 0.870 seconds)
109+
(0 minutes 0.790 seconds)
110110

111111

112112

0.18/_sources/auto_examples/bicluster/plot_spectral_coclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ the biclusters.
9393
plt.show()
9494

9595
**Total running time of the script:**
96-
(0 minutes 0.236 seconds)
96+
(0 minutes 0.218 seconds)
9797

9898

9999

0.18/_sources/auto_examples/calibration/plot_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ Plot the data and the predicted probabilities
158158

159159

160160
**Total running time of the script:**
161-
(0 minutes 0.284 seconds)
161+
(0 minutes 0.265 seconds)
162162

163163

164164

0.18/_sources/auto_examples/calibration/plot_calibration_curve.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -214,7 +214,7 @@ but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).
214214
plt.show()
215215

216216
**Total running time of the script:**
217-
(0 minutes 2.280 seconds)
217+
(0 minutes 2.107 seconds)
218218

219219

220220

0.18/_sources/auto_examples/calibration/plot_calibration_multiclass.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ would have resulted in a similar decrease in log-loss.
204204
plt.show()
205205

206206
**Total running time of the script:**
207-
(0 minutes 0.707 seconds)
207+
(0 minutes 0.659 seconds)
208208

209209

210210

0.18/_sources/auto_examples/calibration/plot_compare_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -146,7 +146,7 @@ Plot calibration plots
146146

147147

148148
**Total running time of the script:**
149-
(0 minutes 2.616 seconds)
149+
(0 minutes 2.477 seconds)
150150

151151

152152

0.18/_sources/auto_examples/classification/plot_classification_probability.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ a result it can identify only the first class.
113113
plt.show()
114114

115115
**Total running time of the script:**
116-
(0 minutes 2.581 seconds)
116+
(0 minutes 2.398 seconds)
117117

118118

119119

0.18/_sources/auto_examples/classification/plot_classifier_comparison.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ set.
153153
plt.show()
154154

155155
**Total running time of the script:**
156-
(0 minutes 8.017 seconds)
156+
(0 minutes 8.348 seconds)
157157

158158

159159

0.18/_sources/auto_examples/classification/plot_digits_classification.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ This example is commented in the
120120
plt.show()
121121

122122
**Total running time of the script:**
123-
(0 minutes 0.792 seconds)
123+
(0 minutes 0.741 seconds)
124124

125125

126126

0.18/_sources/auto_examples/classification/plot_lda.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ Shows how shrinkage improves classification.
8686
plt.show()
8787

8888
**Total running time of the script:**
89-
(0 minutes 6.121 seconds)
89+
(0 minutes 5.799 seconds)
9090

9191

9292

0.18/_sources/auto_examples/classification/plot_lda_qda.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -197,7 +197,7 @@ plot functions
197197

198198

199199
**Total running time of the script:**
200-
(0 minutes 0.417 seconds)
200+
(0 minutes 0.391 seconds)
201201

202202

203203

0.18/_sources/auto_examples/cluster/plot_adjusted_for_chance_measures.txt

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -45,21 +45,21 @@ value of k on various overlapping sub-samples of the dataset.
4545
Out::
4646

4747
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=100
48-
done in 0.043s
48+
done in 0.040s
4949
Computing v_measure_score for 10 values of n_clusters and n_samples=100
50-
done in 0.063s
50+
done in 0.060s
5151
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=100
52-
done in 0.475s
52+
done in 0.436s
5353
Computing mutual_info_score for 10 values of n_clusters and n_samples=100
54-
done in 0.053s
54+
done in 0.050s
5555
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=1000
56-
done in 0.066s
56+
done in 0.062s
5757
Computing v_measure_score for 10 values of n_clusters and n_samples=1000
58-
done in 0.085s
58+
done in 0.079s
5959
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=1000
60-
done in 0.302s
60+
done in 0.283s
6161
Computing mutual_info_score for 10 values of n_clusters and n_samples=1000
62-
done in 0.069s
62+
done in 0.065s
6363

6464

6565

@@ -171,7 +171,7 @@ value of k on various overlapping sub-samples of the dataset.
171171
plt.show()
172172

173173
**Total running time of the script:**
174-
(0 minutes 1.392 seconds)
174+
(0 minutes 1.299 seconds)
175175

176176

177177

0 commit comments

Comments
 (0)