Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit ceac93e

Browse files
committed
Use mpl.colormaps in examples
Also don't obtain the Colormap object if it only passed to a colormapping function. Passing the name is sufficient in such cases.
1 parent 67d04a8 commit ceac93e

File tree

10 files changed

+29
-34
lines changed

10 files changed

+29
-34
lines changed

examples/axes_grid1/demo_edge_colorbar.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ def demo_bottom_cbar(fig):
3535
)
3636

3737
Z, extent = get_demo_image()
38-
cmaps = [plt.get_cmap("autumn"), plt.get_cmap("summer")]
38+
cmaps = ["autumn", "summer"]
3939
for i in range(4):
4040
im = grid[i].imshow(Z, extent=extent, cmap=cmaps[i//2])
4141
if i % 2:
@@ -65,7 +65,7 @@ def demo_right_cbar(fig):
6565
cbar_pad="2%",
6666
)
6767
Z, extent = get_demo_image()
68-
cmaps = [plt.get_cmap("spring"), plt.get_cmap("winter")]
68+
cmaps = ["spring", "winter"]
6969
for i in range(4):
7070
im = grid[i].imshow(Z, extent=extent, cmap=cmaps[i//2])
7171
if i % 2:

examples/color/colormap_reference.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -54,9 +54,9 @@ def plot_color_gradients(cmap_category, cmap_list):
5454

5555
axs[0].set_title(cmap_category + ' colormaps', fontsize=14)
5656

57-
for ax, name in zip(axs, cmap_list):
58-
ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
59-
ax.text(-.01, .5, name, va='center', ha='right', fontsize=10,
57+
for ax, cmap_name in zip(axs, cmap_list):
58+
ax.imshow(gradient, aspect='auto', cmap=cmap_name)
59+
ax.text(-.01, .5, cmap_name, va='center', ha='right', fontsize=10,
6060
transform=ax.transAxes)
6161

6262
# Turn off *all* ticks & spines, not just the ones with colormaps.

examples/color/custom_cmap.py

Lines changed: 5 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -69,6 +69,7 @@
6969
7070
"""
7171
import numpy as np
72+
import matplotlib as mpl
7273
import matplotlib.pyplot as plt
7374
from matplotlib.colors import LinearSegmentedColormap
7475

@@ -167,11 +168,9 @@
167168
# of Colormap, not just
168169
# a LinearSegmentedColormap:
169170

170-
blue_red2 = LinearSegmentedColormap('BlueRed2', cdict2)
171-
plt.register_cmap(cmap=blue_red2)
172-
173-
plt.register_cmap(cmap=LinearSegmentedColormap('BlueRed3', cdict3))
174-
plt.register_cmap(cmap=LinearSegmentedColormap('BlueRedAlpha', cdict4))
171+
mpl.colormaps.register(LinearSegmentedColormap('BlueRed2', cdict2))
172+
mpl.colormaps.register(LinearSegmentedColormap('BlueRed3', cdict3))
173+
mpl.colormaps.register(LinearSegmentedColormap('BlueRedAlpha', cdict4))
175174

176175
###############################################################################
177176
# Make the figure:
@@ -184,8 +183,7 @@
184183
im1 = axs[0, 0].imshow(Z, cmap=blue_red1)
185184
fig.colorbar(im1, ax=axs[0, 0])
186185

187-
cmap = plt.get_cmap('BlueRed2')
188-
im2 = axs[1, 0].imshow(Z, cmap=cmap)
186+
im2 = axs[1, 0].imshow(Z, cmap='BlueRed2')
189187
fig.colorbar(im2, ax=axs[1, 0])
190188

191189
# Now we will set the third cmap as the default. One would

examples/images_contours_and_fields/contourf_demo.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@
66
How to use the `.axes.Axes.contourf` method to create filled contour plots.
77
"""
88
import numpy as np
9+
import matplotlib as mpl
910
import matplotlib.pyplot as plt
1011

1112
origin = 'lower'
@@ -86,8 +87,7 @@
8687

8788
# Illustrate all 4 possible "extend" settings:
8889
extends = ["neither", "both", "min", "max"]
89-
cmap = plt.cm.get_cmap("winter")
90-
cmap = cmap.with_extremes(under="magenta", over="yellow")
90+
cmap = mpl.colormaps["winter"].with_extremes(under="magenta", over="yellow")
9191
# Note: contouring simply excludes masked or nan regions, so
9292
# instead of using the "bad" colormap value for them, it draws
9393
# nothing at all in them. Therefore the following would have

examples/images_contours_and_fields/demo_bboximage.py

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,7 @@
77
a bounding box. This demo shows how to show an image inside a `.text.Text`'s
88
bounding box as well as how to manually create a bounding box for the image.
99
"""
10+
import matplotlib as mpl
1011
import matplotlib.pyplot as plt
1112
import numpy as np
1213
from matplotlib.image import BboxImage
@@ -38,18 +39,18 @@
3839
a = np.vstack((a, a))
3940

4041
# List of all colormaps; skip reversed colormaps.
41-
maps = sorted(m for m in plt.colormaps() if not m.endswith("_r"))
42+
cmap_names = sorted(m for m in mpl.colormaps if not m.endswith("_r"))
4243

4344
ncol = 2
44-
nrow = len(maps)//ncol + 1
45+
nrow = len(cmap_names) // ncol + 1
4546

4647
xpad_fraction = 0.3
47-
dx = 1./(ncol + xpad_fraction*(ncol - 1))
48+
dx = 1 / (ncol + xpad_fraction * (ncol - 1))
4849

4950
ypad_fraction = 0.3
50-
dy = 1./(nrow + ypad_fraction*(nrow - 1))
51+
dy = 1 / (nrow + ypad_fraction * (nrow - 1))
5152

52-
for i, m in enumerate(maps):
53+
for i, cmap_name in enumerate(cmap_names):
5354
ix, iy = divmod(i, nrow)
5455

5556
bbox0 = Bbox.from_bounds(ix*dx*(1 + xpad_fraction),
@@ -58,7 +59,7 @@
5859
bbox = TransformedBbox(bbox0, ax2.transAxes)
5960

6061
bbox_image = BboxImage(bbox,
61-
cmap=plt.get_cmap(m),
62+
cmap=cmap_name,
6263
norm=None,
6364
origin=None,
6465
**kwargs

examples/images_contours_and_fields/quadmesh_demo.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,8 @@
99
This demo illustrates a bug in quadmesh with masked data.
1010
"""
1111

12-
from matplotlib import cm, pyplot as plt
12+
import matplotlib as mpl
13+
from matplotlib import pyplot as plt
1314
import numpy as np
1415

1516
n = 12
@@ -29,7 +30,7 @@
2930
axs[0].set_title('Without masked values')
3031

3132
# You can control the color of the masked region.
32-
cmap = cm.get_cmap(plt.rcParams['image.cmap']).with_extremes(bad='y')
33+
cmap = mpl.colormaps[mpl.rcParams['image.cmap']].with_extremes(bad='y')
3334
axs[1].pcolormesh(Qx, Qz, Zm, shading='gouraud', cmap=cmap)
3435
axs[1].set_title('With masked values')
3536

examples/images_contours_and_fields/tricontour_smooth_delaunay.py

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,6 @@
2525
"""
2626
from matplotlib.tri import Triangulation, TriAnalyzer, UniformTriRefiner
2727
import matplotlib.pyplot as plt
28-
import matplotlib.cm as cm
2928
import numpy as np
3029

3130

@@ -114,19 +113,18 @@ def experiment_res(x, y):
114113

115114
# Graphical options for tricontouring
116115
levels = np.arange(0., 1., 0.025)
117-
cmap = cm.get_cmap(name='Blues', lut=None)
118116

119117
fig, ax = plt.subplots()
120118
ax.set_aspect('equal')
121119
ax.set_title("Filtering a Delaunay mesh\n"
122120
"(application to high-resolution tricontouring)")
123121

124122
# 1) plot of the refined (computed) data contours:
125-
ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap,
123+
ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap='Blues',
126124
linewidths=[2.0, 0.5, 1.0, 0.5])
127125
# 2) plot of the expected (analytical) data contours (dashed):
128126
if plot_expected:
129-
ax.tricontour(tri_refi, z_expected, levels=levels, cmap=cmap,
127+
ax.tricontour(tri_refi, z_expected, levels=levels, cmap='Blues',
130128
linestyles='--')
131129
# 3) plot of the fine mesh on which interpolation was done:
132130
if plot_refi_tri:

examples/images_contours_and_fields/tricontour_smooth_user.py

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,6 @@
88
"""
99
import matplotlib.tri as tri
1010
import matplotlib.pyplot as plt
11-
import matplotlib.cm as cm
1211
import numpy as np
1312

1413

@@ -66,8 +65,7 @@ def function_z(x, y):
6665
ax.triplot(triang, lw=0.5, color='white')
6766

6867
levels = np.arange(0., 1., 0.025)
69-
cmap = cm.get_cmap(name='terrain', lut=None)
70-
ax.tricontourf(tri_refi, z_test_refi, levels=levels, cmap=cmap)
68+
ax.tricontourf(tri_refi, z_test_refi, levels=levels, cmap='terrain')
7169
ax.tricontour(tri_refi, z_test_refi, levels=levels,
7270
colors=['0.25', '0.5', '0.5', '0.5', '0.5'],
7371
linewidths=[1.0, 0.5, 0.5, 0.5, 0.5])

examples/images_contours_and_fields/trigradient_demo.py

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,6 @@
99
from matplotlib.tri import (
1010
Triangulation, UniformTriRefiner, CubicTriInterpolator)
1111
import matplotlib.pyplot as plt
12-
import matplotlib.cm as cm
1312
import numpy as np
1413

1514

@@ -76,8 +75,7 @@ def dipole_potential(x, y):
7675
ax.triplot(triang, color='0.8')
7776

7877
levels = np.arange(0., 1., 0.01)
79-
cmap = cm.get_cmap(name='hot', lut=None)
80-
ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap,
78+
ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap='hot',
8179
linewidths=[2.0, 1.0, 1.0, 1.0])
8280
# Plots direction of the electrical vector field
8381
ax.quiver(triang.x, triang.y, Ex/E_norm, Ey/E_norm,

examples/pie_and_polar_charts/nested_pie.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88
99
"""
1010

11+
import matplotlib as mpl
1112
import matplotlib.pyplot as plt
1213
import numpy as np
1314

@@ -30,7 +31,7 @@
3031
size = 0.3
3132
vals = np.array([[60., 32.], [37., 40.], [29., 10.]])
3233

33-
cmap = plt.get_cmap("tab20c")
34+
cmap = mpl.colormaps["tab20c"]
3435
outer_colors = cmap(np.arange(3)*4)
3536
inner_colors = cmap([1, 2, 5, 6, 9, 10])
3637

@@ -61,7 +62,7 @@
6162
# Obtain the ordinates of the bar edges
6263
valsleft = np.cumsum(np.append(0, valsnorm.flatten()[:-1])).reshape(vals.shape)
6364

64-
cmap = plt.get_cmap("tab20c")
65+
cmap = mpl.colormaps["tab20c"]
6566
outer_colors = cmap(np.arange(3)*4)
6667
inner_colors = cmap([1, 2, 5, 6, 9, 10])
6768

0 commit comments

Comments
 (0)