Closed
Description
Name and Version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4090 Laptop GPU, compute capability 8.9, VMM: yes
version: 5615 (f470bc3)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
Operating systems
No response
Which llama.cpp modules do you know to be affected?
llama-server
Command line
/bin/llama-server \
--model unsloth/Qwen3-30B-A3B/Qwen3-30B-A3B-Q4_K_M.gguf \
--threads 8 \
--ctx-size 40960 \
--n-gpu-layers 20 \
--prio 2 \
--temp 0.6 \
--repeat-penalty 1.1 \
--min-p 0.0 \
--top-k 20 \
--top-p 0.95 \
--port 8080 --host 0.0.0.0
Problem description & steps to reproduce
Compared with the previous commit (with the same model/starting script) speed dropped from ~30t/s to ~8t/s
First Bad Commit
Relevant log output
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4090 Laptop GPU, compute capability 8.9, VMM: yes
build: 5615 (f470bc36) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 32
system_info: n_threads = 8 (n_threads_batch = 8) / 32 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 0.0.0.0, port: 8080, http threads: 31
main: loading model
srv load_model: loading model '/.../unsloth/Qwen3-30B-A3B/Qwen3-30B-A3B-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4090 Laptop GPU) - 12029 MiB free
llama_model_loader: loaded meta data with 35 key-value pairs and 579 tensors from /.../unsloth/Qwen3-30B-A3B/Qwen3-30B-A3B-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3moe
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3-30B-A3B
llama_model_loader: - kv 3: general.basename str = Qwen3-30B-A3B
llama_model_loader: - kv 4: general.quantized_by str = Unsloth
llama_model_loader: - kv 5: general.size_label str = 30B-A3B
llama_model_loader: - kv 6: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 7: qwen3moe.block_count u32 = 48
llama_model_loader: - kv 8: qwen3moe.context_length u32 = 40960
llama_model_loader: - kv 9: qwen3moe.embedding_length u32 = 2048
llama_model_loader: - kv 10: qwen3moe.feed_forward_length u32 = 6144
llama_model_loader: - kv 11: qwen3moe.attention.head_count u32 = 32
llama_model_loader: - kv 12: qwen3moe.attention.head_count_kv u32 = 4
llama_model_loader: - kv 13: qwen3moe.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 14: qwen3moe.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 15: qwen3moe.expert_used_count u32 = 8
llama_model_loader: - kv 16: qwen3moe.attention.key_length u32 = 128
llama_model_loader: - kv 17: qwen3moe.attention.value_length u32 = 128
llama_model_loader: - kv 18: qwen3moe.expert_count u32 = 128
llama_model_loader: - kv 19: qwen3moe.expert_feed_forward_length u32 = 768
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 25: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 151654
llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 28: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 29: general.quantization_version u32 = 2
llama_model_loader: - kv 30: general.file_type u32 = 15
llama_model_loader: - kv 31: quantize.imatrix.file str = Qwen3-30B-A3B-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv 32: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-30B-A3B.txt
llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 384
llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 685
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q4_K: 289 tensors
llama_model_loader: - type q6_K: 49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 17.28 GiB (4.86 BPW)
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch = qwen3moe
print_info: vocab_only = 0
print_info: n_ctx_train = 40960
print_info: n_embd = 2048
print_info: n_layer = 48
print_info: n_head = 32
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 8
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 6144
print_info: n_expert = 128
print_info: n_expert_used = 8
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 40960
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 30B.A3B
print_info: model params = 30.53 B
print_info: general.name = Qwen3-30B-A3B
print_info: n_ff_exp = 768
print_info: vocab type = BPE
print_info: n_vocab = 151936
print_info: n_merges = 151387
print_info: BOS token = 11 ','
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151654 '<|vision_pad|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 20 repeating layers to GPU
load_tensors: offloaded 20/49 layers to GPU
load_tensors: CPU_Mapped model buffer size = 10441.17 MiB
load_tensors: CUDA0 model buffer size = 7250.17 MiB
...................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 40960
llama_context: n_ctx_per_seq = 40960
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: CPU output buffer size = 0.58 MiB
llama_kv_cache_unified: CPU KV buffer size = 2240.00 MiB
llama_kv_cache_unified: CUDA0 KV buffer size = 1600.00 MiB
llama_kv_cache_unified: size = 3840.00 MiB ( 40960 cells, 48 layers, 1 seqs), K (f16): 1920.00 MiB, V (f16): 1920.00 MiB
llama_context: CUDA0 compute buffer size = 2788.50 MiB
llama_context: CUDA_Host compute buffer size = 84.01 MiB
llama_context: graph nodes = 3222
llama_context: graph splits = 396 (with bs=512), 87 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 40960
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 40960
main: model loaded