diff --git a/third_party/bigframes_vendored/pandas/core/frame.py b/third_party/bigframes_vendored/pandas/core/frame.py index f448ad7939..b771be3041 100644 --- a/third_party/bigframes_vendored/pandas/core/frame.py +++ b/third_party/bigframes_vendored/pandas/core/frame.py @@ -2584,6 +2584,33 @@ def any(self, *, axis=0, bool_only: bool = False): along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty). + **Examples:** + + >>> import bigframes.pandas as bpd + >>> bpd.options.display.progress_bar = None + + >>> df = bpd.DataFrame({"A": [True, True], "B": [False, False]}) + >>> df + A B + 0 True False + 1 True False + + [2 rows x 2 columns] + + Checking if each column contains at least one True element(the default behavior without an explicit axis parameter). + + >>> df.any() + A True + B False + dtype: boolean + + Checking if each row contains at least one True element. + + >>> df.any(axis=1) + 0 True + 1 True + dtype: boolean + Args: axis ({index (0), columns (1)}): Axis for the function to be applied on. @@ -2604,6 +2631,33 @@ def all(self, axis=0, *, bool_only: bool = False): along a DataFrame axis that is False or equivalent (e.g. zero or empty). + **Examples:** + + >>> import bigframes.pandas as bpd + >>> bpd.options.display.progress_bar = None + + >>> df = bpd.DataFrame({"A": [True, True], "B": [False, False]}) + >>> df + A B + 0 True False + 1 True False + + [2 rows x 2 columns] + + Checking if all values in each column are True(the default behavior without an explicit axis parameter). + + >>> df.all() + A True + B False + dtype: boolean + + Checking across rows to see if all values are True. + + >>> df.all(axis=1) + 0 False + 1 False + dtype: boolean + Args: axis ({index (0), columns (1)}): Axis for the function to be applied on. @@ -2620,8 +2674,37 @@ def prod(self, axis=0, *, numeric_only: bool = False): """ Return the product of the values over the requested axis. + **Examples:** + + >>> import bigframes.pandas as bpd + >>> bpd.options.display.progress_bar = None + + >>> df = bpd.DataFrame({"A": [1, 2, 3], "B": [4.5, 5.5, 6.5]}) + >>> df + A B + 0 1 4.5 + 1 2 5.5 + 2 3 6.5 + + [3 rows x 2 columns] + + Calculating the product of each column(the default behavior without an explicit axis parameter). + + >>> df.prod() + A 6.0 + B 160.875 + dtype: Float64 + + Calculating the product of each row. + + >>> df.prod(axis=1) + 0 4.5 + 1 11.0 + 2 19.5 + dtype: Float64 + Args: - aßxis ({index (0), columns (1)}): + axis ({index (0), columns (1)}): Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. numeric_only (bool. default False):