diff --git a/third_party/bigframes_vendored/pandas/core/frame.py b/third_party/bigframes_vendored/pandas/core/frame.py index a7018ed3a2..2a8972f2e5 100644 --- a/third_party/bigframes_vendored/pandas/core/frame.py +++ b/third_party/bigframes_vendored/pandas/core/frame.py @@ -2852,6 +2852,33 @@ def sum(self, axis=0, *, numeric_only: bool = False): def mean(self, axis=0, *, numeric_only: bool = False): """Return the mean of the values over the requested axis. + **Examples:** + + >>> import bigframes.pandas as bpd + >>> bpd.options.display.progress_bar = None + + >>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]}) + >>> df + A B + 0 1 2 + 1 3 4 + + [2 rows x 2 columns] + + Calculating the mean of each column (the default behavior without an explicit axis parameter). + + >>> df.mean() + A 2.0 + B 3.0 + dtype: Float64 + + Calculating the mean of each row. + + >>> df.mean(axis=1) + 0 1.5 + 1 3.5 + dtype: Float64 + Args: axis ({index (0), columns (1)}): Axis for the function to be applied on. @@ -2865,7 +2892,27 @@ def mean(self, axis=0, *, numeric_only: bool = False): raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE) def median(self, *, numeric_only: bool = False, exact: bool = False): - """Return the median of the values over the requested axis. + """Return the median of the values over colunms. + + **Examples:** + + >>> import bigframes.pandas as bpd + >>> bpd.options.display.progress_bar = None + + >>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]}) + >>> df + A B + 0 1 2 + 1 3 4 + + [2 rows x 2 columns] + + Finding the median value of each column. + + >>> df.median() + A 1.0 + B 2.0 + dtype: Float64 Args: numeric_only (bool. default False): @@ -2884,6 +2931,34 @@ def var(self, axis=0, *, numeric_only: bool = False): Normalized by N-1 by default. + **Examples:** + + >>> import bigframes.pandas as bpd + >>> bpd.options.display.progress_bar = None + + >>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]}) + >>> df + A B + 0 1 2 + 1 3 4 + + [2 rows x 2 columns] + + Calculating the variance of each column (the default behavior without an explicit axis parameter). + + >>> df.var() + A 2.0 + B 2.0 + dtype: Float64 + + Calculating the variance of each row. + + >>> df.var(axis=1) + 0 0.5 + 1 0.5 + dtype: Float64 + + Args: axis ({index (0), columns (1)}): Axis for the function to be applied on. @@ -2897,10 +2972,36 @@ def var(self, axis=0, *, numeric_only: bool = False): raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE) def skew(self, *, numeric_only: bool = False): - """Return unbiased skew over requested axis. + """Return unbiased skew over columns. Normalized by N-1. + **Examples:** + + >>> import bigframes.pandas as bpd + >>> bpd.options.display.progress_bar = None + + >>> df = bpd.DataFrame({'A': [1, 2, 3, 4, 5], + ... 'B': [5, 4, 3, 2, 1], + ... 'C': [2, 2, 3, 2, 2]}) + >>> df + A B C + 0 1 5 2 + 1 2 4 2 + 2 3 3 3 + 3 4 2 2 + 4 5 1 2 + + [5 rows x 3 columns] + + Calculating the skewness of each column. + + >>> df.skew() + A 0.0 + B 0.0 + C 2.236068 + dtype: Float64 + Args: numeric_only (bool, default False): Include only float, int, boolean columns.