@@ -1628,6 +1628,115 @@ def gfunc32(x):
1628
1628
'blue' : lambda x : 1 - x ,
1629
1629
}
1630
1630
1631
+ # This bipolar color map was generated from CoolWarmFloat33.csv of
1632
+ # "Diverging Color Maps for Scientific Visualization" by Kenneth Moreland.
1633
+ # <http://www.cs.unm.edu/~kmorel/documents/ColorMaps/>
1634
+ _coolwarm_data = {
1635
+ 'red' : [
1636
+ (0.0 , 0.2298057 , 0.2298057 ),
1637
+ (0.03125 , 0.26623388 , 0.26623388 ),
1638
+ (0.0625 , 0.30386891 , 0.30386891 ),
1639
+ (0.09375 , 0.342804478 , 0.342804478 ),
1640
+ (0.125 , 0.38301334 , 0.38301334 ),
1641
+ (0.15625 , 0.424369608 , 0.424369608 ),
1642
+ (0.1875 , 0.46666708 , 0.46666708 ),
1643
+ (0.21875 , 0.509635204 , 0.509635204 ),
1644
+ (0.25 , 0.552953156 , 0.552953156 ),
1645
+ (0.28125 , 0.596262162 , 0.596262162 ),
1646
+ (0.3125 , 0.639176211 , 0.639176211 ),
1647
+ (0.34375 , 0.681291281 , 0.681291281 ),
1648
+ (0.375 , 0.722193294 , 0.722193294 ),
1649
+ (0.40625 , 0.761464949 , 0.761464949 ),
1650
+ (0.4375 , 0.798691636 , 0.798691636 ),
1651
+ (0.46875 , 0.833466556 , 0.833466556 ),
1652
+ (0.5 , 0.865395197 , 0.865395197 ),
1653
+ (0.53125 , 0.897787179 , 0.897787179 ),
1654
+ (0.5625 , 0.924127593 , 0.924127593 ),
1655
+ (0.59375 , 0.944468518 , 0.944468518 ),
1656
+ (0.625 , 0.958852946 , 0.958852946 ),
1657
+ (0.65625 , 0.96732803 , 0.96732803 ),
1658
+ (0.6875 , 0.969954137 , 0.969954137 ),
1659
+ (0.71875 , 0.966811177 , 0.966811177 ),
1660
+ (0.75 , 0.958003065 , 0.958003065 ),
1661
+ (0.78125 , 0.943660866 , 0.943660866 ),
1662
+ (0.8125 , 0.923944917 , 0.923944917 ),
1663
+ (0.84375 , 0.89904617 , 0.89904617 ),
1664
+ (0.875 , 0.869186849 , 0.869186849 ),
1665
+ (0.90625 , 0.834620542 , 0.834620542 ),
1666
+ (0.9375 , 0.795631745 , 0.795631745 ),
1667
+ (0.96875 , 0.752534934 , 0.752534934 ),
1668
+ (1.0 , 0.705673158 , 0.705673158 )],
1669
+ 'green' : [
1670
+ (0.0 , 0.298717966 , 0.298717966 ),
1671
+ (0.03125 , 0.353094838 , 0.353094838 ),
1672
+ (0.0625 , 0.406535296 , 0.406535296 ),
1673
+ (0.09375 , 0.458757618 , 0.458757618 ),
1674
+ (0.125 , 0.50941904 , 0.50941904 ),
1675
+ (0.15625 , 0.558148092 , 0.558148092 ),
1676
+ (0.1875 , 0.604562568 , 0.604562568 ),
1677
+ (0.21875 , 0.648280772 , 0.648280772 ),
1678
+ (0.25 , 0.688929332 , 0.688929332 ),
1679
+ (0.28125 , 0.726149107 , 0.726149107 ),
1680
+ (0.3125 , 0.759599947 , 0.759599947 ),
1681
+ (0.34375 , 0.788964712 , 0.788964712 ),
1682
+ (0.375 , 0.813952739 , 0.813952739 ),
1683
+ (0.40625 , 0.834302879 , 0.834302879 ),
1684
+ (0.4375 , 0.849786142 , 0.849786142 ),
1685
+ (0.46875 , 0.860207984 , 0.860207984 ),
1686
+ (0.5 , 0.86541021 , 0.86541021 ),
1687
+ (0.53125 , 0.848937047 , 0.848937047 ),
1688
+ (0.5625 , 0.827384882 , 0.827384882 ),
1689
+ (0.59375 , 0.800927443 , 0.800927443 ),
1690
+ (0.625 , 0.769767752 , 0.769767752 ),
1691
+ (0.65625 , 0.734132809 , 0.734132809 ),
1692
+ (0.6875 , 0.694266682 , 0.694266682 ),
1693
+ (0.71875 , 0.650421156 , 0.650421156 ),
1694
+ (0.75 , 0.602842431 , 0.602842431 ),
1695
+ (0.78125 , 0.551750968 , 0.551750968 ),
1696
+ (0.8125 , 0.49730856 , 0.49730856 ),
1697
+ (0.84375 , 0.439559467 , 0.439559467 ),
1698
+ (0.875 , 0.378313092 , 0.378313092 ),
1699
+ (0.90625 , 0.312874446 , 0.312874446 ),
1700
+ (0.9375 , 0.24128379 , 0.24128379 ),
1701
+ (0.96875 , 0.157246067 , 0.157246067 ),
1702
+ (1.0 , 0.01555616 , 0.01555616 )],
1703
+ 'blue' : [
1704
+ (0.0 , 0.753683153 , 0.753683153 ),
1705
+ (0.03125 , 0.801466763 , 0.801466763 ),
1706
+ (0.0625 , 0.84495867 , 0.84495867 ),
1707
+ (0.09375 , 0.883725899 , 0.883725899 ),
1708
+ (0.125 , 0.917387822 , 0.917387822 ),
1709
+ (0.15625 , 0.945619588 , 0.945619588 ),
1710
+ (0.1875 , 0.968154911 , 0.968154911 ),
1711
+ (0.21875 , 0.98478814 , 0.98478814 ),
1712
+ (0.25 , 0.995375608 , 0.995375608 ),
1713
+ (0.28125 , 0.999836203 , 0.999836203 ),
1714
+ (0.3125 , 0.998151185 , 0.998151185 ),
1715
+ (0.34375 , 0.990363227 , 0.990363227 ),
1716
+ (0.375 , 0.976574709 , 0.976574709 ),
1717
+ (0.40625 , 0.956945269 , 0.956945269 ),
1718
+ (0.4375 , 0.931688648 , 0.931688648 ),
1719
+ (0.46875 , 0.901068838 , 0.901068838 ),
1720
+ (0.5 , 0.865395561 , 0.865395561 ),
1721
+ (0.53125 , 0.820880546 , 0.820880546 ),
1722
+ (0.5625 , 0.774508472 , 0.774508472 ),
1723
+ (0.59375 , 0.726736146 , 0.726736146 ),
1724
+ (0.625 , 0.678007945 , 0.678007945 ),
1725
+ (0.65625 , 0.628751763 , 0.628751763 ),
1726
+ (0.6875 , 0.579375448 , 0.579375448 ),
1727
+ (0.71875 , 0.530263762 , 0.530263762 ),
1728
+ (0.75 , 0.481775914 , 0.481775914 ),
1729
+ (0.78125 , 0.434243684 , 0.434243684 ),
1730
+ (0.8125 , 0.387970225 , 0.387970225 ),
1731
+ (0.84375 , 0.343229596 , 0.343229596 ),
1732
+ (0.875 , 0.300267182 , 0.300267182 ),
1733
+ (0.90625 , 0.259301199 , 0.259301199 ),
1734
+ (0.9375 , 0.220525627 , 0.220525627 ),
1735
+ (0.96875 , 0.184115123 , 0.184115123 ),
1736
+ (1.0 , 0.150232812 , 0.150232812 )]
1737
+ }
1738
+
1739
+
1631
1740
datad = {
1632
1741
'afmhot' : _afmhot_data ,
1633
1742
'autumn' : _autumn_data ,
@@ -1700,4 +1809,4 @@ def gfunc32(x):
1700
1809
datad ['gist_rainbow' ]= _gist_rainbow_data
1701
1810
datad ['gist_stern' ]= _gist_stern_data
1702
1811
datad ['gist_yarg' ]= _gist_yarg_data
1703
-
1812
+ datad [ 'coolwarm' ] = _coolwarm_data
0 commit comments