|
| 1 | +Automating the Evaluation of Crystallization Experiments |
| 2 | +======================================================== |
| 3 | + |
| 4 | +This is a pretrained model described in the paper: |
| 5 | + |
| 6 | +[Classification of crystallization outcomes using deep convolutional neural networks](https://arxiv.org/abs/1803.10342). |
| 7 | + |
| 8 | +This model takes images of crystallization experiments as an input: |
| 9 | + |
| 10 | + |
| 11 | + |
| 12 | +It classifies it as belonging to one of four categories: crystals, precipitate, clear, or 'others'. |
| 13 | + |
| 14 | +The model is a variant of [Inception-v3](https://arxiv.org/abs/1512.00567) trained on data from the [MARCO](http://marco.ccr.buffalo.edu) repository. |
| 15 | + |
| 16 | +Model |
| 17 | +----- |
| 18 | + |
| 19 | +The model can be downloaded from: |
| 20 | + |
| 21 | +https://storage.googleapis.com/marco-168219-model/savedmodel.zip |
| 22 | + |
| 23 | +Example |
| 24 | +------- |
| 25 | + |
| 26 | +1. Install TensorFlow and the [Google Cloud SDK](https://cloud.google.com/sdk/gcloud/). |
| 27 | + |
| 28 | +2. Download and unzip the model: |
| 29 | + |
| 30 | + ```bash |
| 31 | + unzip savedmodel.zip |
| 32 | + ``` |
| 33 | + |
| 34 | +3. A sample image can be downloaded from: |
| 35 | + |
| 36 | + https://storage.googleapis.com/marco-168219-model/002s_C6_ImagerDefaults_9.jpg |
| 37 | + |
| 38 | + Convert your image into a JSON request using: |
| 39 | + |
| 40 | + ```bash |
| 41 | + python jpeg2json.py 002s_C6_ImagerDefaults_9.jpg > request.json |
| 42 | + ``` |
| 43 | + |
| 44 | +4. To issue a prediction, run: |
| 45 | + |
| 46 | + ```bash |
| 47 | + gcloud ml-engine local predict --model-dir=savedmodel --json-instances=request.json |
| 48 | + ``` |
| 49 | + |
| 50 | +The request should return normalized scores for each class: |
| 51 | + |
| 52 | +<pre> |
| 53 | +CLASSES SCORES |
| 54 | +[u'Crystals', u'Other', u'Precipitate', u'Clear'] [0.926338255405426, 0.026199858635663986, 0.026074528694152832, 0.021387407556176186] |
| 55 | +</pre> |
| 56 | + |
| 57 | +CloudML Endpoint |
| 58 | +---------------- |
| 59 | + |
| 60 | +The model can also be accessed on [Google CloudML](https://cloud.google.com/ml-engine/) by issuing: |
| 61 | + |
| 62 | +```bash |
| 63 | +gcloud ml-engine predict --model marco_168219_model --json-instances request.json |
| 64 | +``` |
| 65 | + |
| 66 | +Ask the author for access privileges to the CloudML instance. |
| 67 | + |
| 68 | +Note |
| 69 | +---- |
| 70 | + |
| 71 | +`002s_C6_ImagerDefaults_9.jpg` is a sample from the |
| 72 | +[MARCO](http://marco.ccr.buffalo.edu) repository, contributed to the dataset under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license. |
| 73 | + |
| 74 | +Author |
| 75 | +------ |
| 76 | + |
| 77 | +[Vincent Vanhoucke ](mailto:[email protected]) (github: vincentvanhoucke) |
| 78 | + |
0 commit comments