@@ -354,7 +354,7 @@ def __init__(self, resnet_size, bottleneck, num_classes, num_filters,
354
354
kernel_size ,
355
355
conv_stride , first_pool_size , first_pool_stride ,
356
356
block_sizes , block_strides ,
357
- final_size , resnet_version = DEFAULT_VERSION , data_format = None ,
357
+ resnet_version = DEFAULT_VERSION , data_format = None ,
358
358
dtype = DEFAULT_DTYPE ):
359
359
"""Creates a model for classifying an image.
360
360
@@ -376,7 +376,6 @@ def __init__(self, resnet_size, bottleneck, num_classes, num_filters,
376
376
i-th set.
377
377
block_strides: List of integers representing the desired stride size for
378
378
each of the sets of block layers. Should be same length as block_sizes.
379
- final_size: The expected size of the model after the second pooling.
380
379
resnet_version: Integer representing which version of the ResNet network
381
380
to use. See README for details. Valid values: [1, 2]
382
381
data_format: Input format ('channels_last', 'channels_first', or None).
@@ -422,7 +421,6 @@ def __init__(self, resnet_size, bottleneck, num_classes, num_filters,
422
421
self .first_pool_stride = first_pool_stride
423
422
self .block_sizes = block_sizes
424
423
self .block_strides = block_strides
425
- self .final_size = final_size
426
424
self .dtype = dtype
427
425
self .pre_activation = resnet_version == 2
428
426
@@ -542,7 +540,7 @@ def __call__(self, inputs, training):
542
540
inputs = tf .reduce_mean (inputs , axes , keepdims = True )
543
541
inputs = tf .identity (inputs , 'final_reduce_mean' )
544
542
545
- inputs = tf .reshape (inputs , [ - 1 , self . final_size ] )
543
+ inputs = tf .squeeze (inputs , axes )
546
544
inputs = tf .layers .dense (inputs = inputs , units = self .num_classes )
547
545
inputs = tf .identity (inputs , 'final_dense' )
548
546
return inputs
0 commit comments