Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 4075725

Browse files
committed
fall back to the original method name and adds element_wise_product method
1 parent fffe727 commit 4075725

File tree

4 files changed

+12
-12
lines changed

4 files changed

+12
-12
lines changed

learning.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -447,7 +447,7 @@ def predict(example):
447447
for layer in learned_net[1:]:
448448
for node in layer:
449449
inc = [n.value for n in node.inputs]
450-
in_val = sum_dotproduct(inc, node.weights)
450+
in_val = dotproduct(inc, node.weights)
451451
node.value = node.activation(in_val)
452452

453453
# Hypothesis
@@ -530,7 +530,7 @@ def BackPropagationLearner(dataset, net, learning_rate, epoches):
530530
for layer in net[1:]:
531531
for node in layer:
532532
inc = [n.value for n in node.inputs]
533-
in_val = sum_dotproduct(inc, node.weights)
533+
in_val = dotproduct(inc, node.weights)
534534
node.value = node.activation(in_val)
535535

536536
# Initialize delta
@@ -554,7 +554,7 @@ def BackPropagationLearner(dataset, net, learning_rate, epoches):
554554
for k in range(h_units)]
555555

556556
delta[i] = [(layer[j].value) * (1 - layer[j].value) *
557-
sum_dotproduct(w[j], delta[i+1])
557+
dotproduct(w[j], delta[i+1])
558558
for j in range(h_units)]
559559

560560
# Update weights
@@ -591,7 +591,7 @@ def predict(example):
591591
for layer in learned_net[1:]:
592592
for node in layer:
593593
inc = [n.value for n in node.inputs]
594-
in_val = sum_dotproduct(inc, node.weights)
594+
in_val = dotproduct(inc, node.weights)
595595
node.value = node.activation(in_val)
596596

597597
# Hypothesis

probability.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -557,11 +557,11 @@ def forward(HMM, fv, ev):
557557
scalar_vector_product(fv[1], HMM.transition_model[1]))
558558
sensor_dist = HMM.sensor_dist(ev)
559559

560-
return(normalize(dotproduct(sensor_dist, prediction)))
560+
return(normalize(element_wise_product(sensor_dist, prediction)))
561561

562562
def backward(HMM, b, ev):
563563
sensor_dist = HMM.sensor_dist(ev)
564-
prediction = dotproduct(sensor_dist, b)
564+
prediction = element_wise_product(sensor_dist, b)
565565

566566
return(normalize(vector_add(scalar_vector_product(prediction[0], HMM.transition_model[0]),
567567
scalar_vector_product(prediction[1], HMM.transition_model[1]))))
@@ -582,7 +582,7 @@ def forward_backward(HMM, ev, prior):
582582
for i in range(1, t+ 1):
583583
fv[i] = forward(HMM, fv[i- 1], ev[i])
584584
for i in range(t, -1, -1):
585-
sv[i- 1] = normalize(dotproduct(fv[i], b))
585+
sv[i- 1] = normalize(element_wise_product(fv[i], b))
586586
b = backward(HMM, b, ev[i])
587587
bv.append(b)
588588

tests/test_utils.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -83,8 +83,8 @@ def test_histogram():
8383
(7, 1), (5, 1)]
8484

8585

86-
def test_sum_dotproduct():
87-
assert sum_dotproduct([1, 2, 3], [1000, 100, 10]) == 1230
86+
def test_dotproduct():
87+
assert dotproduct([1, 2, 3], [1000, 100, 10]) == 1230
8888

8989

9090
def test_vector_add():

utils.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -162,13 +162,13 @@ def histogram(values, mode=0, bin_function=None):
162162
return sorted(bins.items())
163163

164164

165-
def sum_dotproduct(X, Y):
165+
def dotproduct(X, Y):
166166
"""Return the sum of the element-wise product of vectors x and y."""
167167
return sum(x * y for x, y in zip(X, Y))
168168

169169

170-
def dotproduct(X, Y):
171-
"""Return element-wise product of vectors x and y"""
170+
def element_wise_product(X, Y):
171+
"""Return vector as an element-wise product of vectors x and y"""
172172
assert len(X) == len(Y)
173173
return(list(x * y for x, y in zip(X, Y)))
174174

0 commit comments

Comments
 (0)