@@ -1692,17 +1692,24 @@ static llama_state g_state;
16921692// available llama models
16931693enum e_model {
16941694 MODEL_UNKNOWN,
1695+ MODEL_14M,
16951696 MODEL_17M,
16961697 MODEL_22M,
16971698 MODEL_33M,
1699+ MODEL_70M,
16981700 MODEL_109M,
16991701 MODEL_137M,
1702+ MODEL_160M,
17001703 MODEL_335M,
1704+ MODEL_410M,
17011705 MODEL_0_5B,
17021706 MODEL_1B,
1707+ MODEL_1_4B,
17031708 MODEL_2B,
1709+ MODEL_2_8B,
17041710 MODEL_3B,
17051711 MODEL_4B,
1712+ MODEL_6_9B,
17061713 MODEL_7B,
17071714 MODEL_8B,
17081715 MODEL_12B,
@@ -1734,6 +1741,7 @@ static const size_t GiB = 1024*MiB;
17341741struct llama_hparams {
17351742 bool vocab_only;
17361743 bool rope_finetuned;
1744+ bool use_par_res;
17371745
17381746 uint32_t n_vocab;
17391747 uint32_t n_ctx_train; // context size the model was trained on
@@ -3773,17 +3781,24 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
37733781
37743782static const char * llama_model_type_name(e_model type) {
37753783 switch (type) {
3784+ case MODEL_14M: return "14M";
37763785 case MODEL_17M: return "17M";
37773786 case MODEL_22M: return "22M";
37783787 case MODEL_33M: return "33M";
3788+ case MODEL_70M: return "70M";
37793789 case MODEL_109M: return "109M";
37803790 case MODEL_137M: return "137M";
3791+ case MODEL_160M: return "160M";
37813792 case MODEL_335M: return "335M";
3793+ case MODEL_410M: return "410M";
37823794 case MODEL_0_5B: return "0.5B";
37833795 case MODEL_1B: return "1B";
3796+ case MODEL_1_4B: return "1.4B";
37843797 case MODEL_2B: return "2B";
3798+ case MODEL_2_8B: return "2.8B";
37853799 case MODEL_3B: return "3B";
37863800 case MODEL_4B: return "4B";
3801+ case MODEL_6_9B: return "6.9B";
37873802 case MODEL_7B: return "7B";
37883803 case MODEL_8B: return "8B";
37893804 case MODEL_12B: return "12B";
@@ -4282,6 +4297,52 @@ static void llm_load_hparams(
42824297 default: model.type = e_model::MODEL_UNKNOWN;
42834298 }
42844299 } break;
4300+ case LLM_ARCH_GPTNEOX:
4301+ {
4302+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
4303+ ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
4304+ switch (hparams.n_layer) {
4305+ case 6:
4306+ switch (hparams.n_ff) {
4307+ case 512: model.type = e_model::MODEL_14M; break;
4308+ case 2048: model.type = e_model::MODEL_70M; break;
4309+ default: model.type = e_model::MODEL_UNKNOWN;
4310+ } break;
4311+ case 12:
4312+ switch (hparams.n_ff) {
4313+ case 3072: model.type = e_model::MODEL_160M; break;
4314+ default: model.type = e_model::MODEL_UNKNOWN;
4315+ } break;
4316+ case 16:
4317+ switch (hparams.n_ff) {
4318+ case 8192: model.type = e_model::MODEL_1B; break;
4319+ default: model.type = e_model::MODEL_UNKNOWN;
4320+ } break;
4321+ case 24:
4322+ switch (hparams.n_ff) {
4323+ case 4096: model.type = e_model::MODEL_410M; break;
4324+ case 8192: model.type = e_model::MODEL_1_4B; break;
4325+ default: model.type = e_model::MODEL_UNKNOWN;
4326+ } break;
4327+ case 32:
4328+ switch (hparams.n_ff) {
4329+ case 10240: model.type = e_model::MODEL_2_8B; break;
4330+ case 16384: model.type = e_model::MODEL_6_9B; break;
4331+ default: model.type = e_model::MODEL_UNKNOWN;
4332+ } break;
4333+ case 36:
4334+ switch (hparams.n_ff) {
4335+ case 20480: model.type = e_model::MODEL_12B; break;
4336+ default: model.type = e_model::MODEL_UNKNOWN;
4337+ } break;
4338+ case 44:
4339+ switch (hparams.n_ff) {
4340+ case 24576: model.type = e_model::MODEL_20B; break;
4341+ default: model.type = e_model::MODEL_UNKNOWN;
4342+ } break;
4343+ default: model.type = e_model::MODEL_UNKNOWN;
4344+ }
4345+ } break;
42854346 default: (void)0;
42864347 }
42874348
@@ -6033,6 +6094,41 @@ static bool llm_load_tensors(
60336094 layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
60346095 }
60356096 } break;
6097+ case LLM_ARCH_GPTNEOX:
6098+ {
6099+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
6100+ // output
6101+ {
6102+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
6103+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
6104+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
6105+ }
6106+
6107+ for (int i = 0; i < n_layer; ++i) {
6108+ ggml_context * ctx_layer = ctx_for_layer(i);
6109+ ggml_context * ctx_split = ctx_for_layer_split(i);
6110+
6111+ auto & layer = model.layers[i];
6112+
6113+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
6114+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
6115+
6116+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
6117+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
6118+
6119+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
6120+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
6121+
6122+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
6123+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
6124+
6125+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
6126+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
6127+
6128+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
6129+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
6130+ }
6131+ } break;
60366132 default:
60376133 throw std::runtime_error("unknown architecture");
60386134 }
@@ -10560,6 +10656,140 @@ struct llm_build_context {
1056010656
1056110657 return gf;
1056210658 }
10659+
10660+ struct ggml_cgraph * build_gptneox() {
10661+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
10662+
10663+ const int64_t n_embd_head = hparams.n_embd_head_v;
10664+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
10665+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10666+
10667+ struct ggml_tensor * cur;
10668+ struct ggml_tensor * inpL;
10669+
10670+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
10671+
10672+ // inp_pos - contains the positions
10673+ struct ggml_tensor * inp_pos = build_inp_pos();
10674+
10675+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
10676+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
10677+
10678+ for (int il = 0; il < n_layer; ++il) {
10679+ cur = llm_build_norm(ctx0, inpL, hparams,
10680+ model.layers[il].attn_norm,
10681+ model.layers[il].attn_norm_b,
10682+ LLM_NORM, cb, il);
10683+ cb(cur, "attn_norm", il);
10684+
10685+ // self-attention
10686+ {
10687+ cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
10688+ cb(cur, "wqkv", il);
10689+
10690+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
10691+ cb(cur, "bqkv", il);
10692+
10693+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
10694+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
10695+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
10696+
10697+ cb(Qcur, "Qcur", il);
10698+ cb(Kcur, "Kcur", il);
10699+ cb(Vcur, "Vcur", il);
10700+
10701+ Qcur = ggml_rope_ext(
10702+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
10703+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
10704+ ext_factor, attn_factor, beta_fast, beta_slow
10705+ );
10706+ cb(Qcur, "Qcur", il);
10707+
10708+ Kcur = ggml_rope_ext(
10709+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
10710+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
10711+ ext_factor, attn_factor, beta_fast, beta_slow
10712+ );
10713+ cb(Kcur, "Kcur", il);
10714+
10715+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
10716+ model.layers[il].wo, model.layers[il].bo,
10717+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
10718+ }
10719+
10720+ if (il == n_layer - 1) {
10721+ // skip computing output for unused tokens
10722+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
10723+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
10724+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
10725+ }
10726+
10727+ // ffn
10728+ if (hparams.use_par_res) {
10729+ // attention and ffn are computed in parallel
10730+ // x = x + attn(ln1(x)) + ffn(ln2(x))
10731+
10732+ struct ggml_tensor * attn_out = cur;
10733+
10734+ cur = llm_build_norm(ctx0, inpL, hparams,
10735+ model.layers[il].ffn_norm,
10736+ model.layers[il].ffn_norm_b,
10737+ LLM_NORM, cb, il);
10738+ cb(cur, "ffn_norm", il);
10739+
10740+ cur = llm_build_ffn(ctx0, cur,
10741+ model.layers[il].ffn_up, model.layers[il].ffn_up_b,
10742+ NULL, NULL,
10743+ model.layers[il].ffn_down, model.layers[il].ffn_down_b,
10744+ NULL,
10745+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
10746+ cb(cur, "ffn_out", il);
10747+
10748+ cur = ggml_add(ctx0, cur, inpL);
10749+ cb(cur, "ffn_out", il);
10750+
10751+ inpL = ggml_add(ctx0, cur, attn_out);
10752+ cb(inpL, "l_out", il);
10753+ } else {
10754+ // attention and ffn are computed sequentially
10755+ // x = x + attn(ln1(x))
10756+ // x = x + ffn(ln2(x))
10757+
10758+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
10759+ cb(ffn_inp, "ffn_inp", il);
10760+
10761+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
10762+ model.layers[il].ffn_norm,
10763+ model.layers[il].ffn_norm_b,
10764+ LLM_NORM, cb, il);
10765+ cb(cur, "ffn_norm", il);
10766+
10767+ cur = llm_build_ffn(ctx0, cur,
10768+ model.layers[il].ffn_up, model.layers[il].ffn_up_b,
10769+ NULL, NULL,
10770+ model.layers[il].ffn_down, model.layers[il].ffn_down_b,
10771+ NULL,
10772+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
10773+ cb(cur, "ffn_out", il);
10774+
10775+ inpL = ggml_add(ctx0, cur, ffn_inp);
10776+ cb(inpL, "l_out", il);
10777+ }
10778+ }
10779+
10780+ cur = llm_build_norm(ctx0, inpL, hparams,
10781+ model.output_norm,
10782+ model.output_norm_b,
10783+ LLM_NORM, cb, -1);
10784+ cb(cur, "result_norm", -1);
10785+
10786+ cur = ggml_mul_mat(ctx0, model.output, cur);
10787+ cb(cur, "result_output", -1);
10788+
10789+ ggml_build_forward_expand(gf, cur);
10790+
10791+ return gf;
10792+ }
1056310793};
1056410794
1056510795static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -10770,6 +11000,10 @@ static struct ggml_cgraph * llama_build_graph(
1077011000 {
1077111001 result = llm.build_olmo();
1077211002 } break;
11003+ case LLM_ARCH_GPTNEOX:
11004+ {
11005+ result = llm.build_gptneox();
11006+ } break;
1077311007 default:
1077411008 GGML_ASSERT(false);
1077511009 }
@@ -15762,7 +15996,6 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
1576215996 // these models do not use RoPE
1576315997 case LLM_ARCH_GPT2:
1576415998 case LLM_ARCH_GPTJ:
15765- case LLM_ARCH_GPTNEOX:
1576615999 case LLM_ARCH_MPT:
1576716000 case LLM_ARCH_REFACT:
1576816001 case LLM_ARCH_BLOOM:
@@ -15798,6 +16031,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
1579816031 case LLM_ARCH_PHI3:
1579916032 case LLM_ARCH_GEMMA:
1580016033 case LLM_ARCH_STARCODER2:
16034+ case LLM_ARCH_GPTNEOX:
1580116035 return LLAMA_ROPE_TYPE_NEOX;
1580216036
1580316037 // all model arches should be listed explicitly here
0 commit comments