@@ -1692,17 +1692,24 @@ static llama_state g_state;
1692
1692
// available llama models
1693
1693
enum e_model {
1694
1694
MODEL_UNKNOWN,
1695
+ MODEL_14M,
1695
1696
MODEL_17M,
1696
1697
MODEL_22M,
1697
1698
MODEL_33M,
1699
+ MODEL_70M,
1698
1700
MODEL_109M,
1699
1701
MODEL_137M,
1702
+ MODEL_160M,
1700
1703
MODEL_335M,
1704
+ MODEL_410M,
1701
1705
MODEL_0_5B,
1702
1706
MODEL_1B,
1707
+ MODEL_1_4B,
1703
1708
MODEL_2B,
1709
+ MODEL_2_8B,
1704
1710
MODEL_3B,
1705
1711
MODEL_4B,
1712
+ MODEL_6_9B,
1706
1713
MODEL_7B,
1707
1714
MODEL_8B,
1708
1715
MODEL_12B,
@@ -1734,6 +1741,7 @@ static const size_t GiB = 1024*MiB;
1734
1741
struct llama_hparams {
1735
1742
bool vocab_only;
1736
1743
bool rope_finetuned;
1744
+ bool use_par_res;
1737
1745
1738
1746
uint32_t n_vocab;
1739
1747
uint32_t n_ctx_train; // context size the model was trained on
@@ -3773,17 +3781,24 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
3773
3781
3774
3782
static const char * llama_model_type_name(e_model type) {
3775
3783
switch (type) {
3784
+ case MODEL_14M: return "14M";
3776
3785
case MODEL_17M: return "17M";
3777
3786
case MODEL_22M: return "22M";
3778
3787
case MODEL_33M: return "33M";
3788
+ case MODEL_70M: return "70M";
3779
3789
case MODEL_109M: return "109M";
3780
3790
case MODEL_137M: return "137M";
3791
+ case MODEL_160M: return "160M";
3781
3792
case MODEL_335M: return "335M";
3793
+ case MODEL_410M: return "410M";
3782
3794
case MODEL_0_5B: return "0.5B";
3783
3795
case MODEL_1B: return "1B";
3796
+ case MODEL_1_4B: return "1.4B";
3784
3797
case MODEL_2B: return "2B";
3798
+ case MODEL_2_8B: return "2.8B";
3785
3799
case MODEL_3B: return "3B";
3786
3800
case MODEL_4B: return "4B";
3801
+ case MODEL_6_9B: return "6.9B";
3787
3802
case MODEL_7B: return "7B";
3788
3803
case MODEL_8B: return "8B";
3789
3804
case MODEL_12B: return "12B";
@@ -4282,6 +4297,52 @@ static void llm_load_hparams(
4282
4297
default: model.type = e_model::MODEL_UNKNOWN;
4283
4298
}
4284
4299
} break;
4300
+ case LLM_ARCH_GPTNEOX:
4301
+ {
4302
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
4303
+ ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
4304
+ switch (hparams.n_layer) {
4305
+ case 6:
4306
+ switch (hparams.n_ff) {
4307
+ case 512: model.type = e_model::MODEL_14M; break;
4308
+ case 2048: model.type = e_model::MODEL_70M; break;
4309
+ default: model.type = e_model::MODEL_UNKNOWN;
4310
+ } break;
4311
+ case 12:
4312
+ switch (hparams.n_ff) {
4313
+ case 3072: model.type = e_model::MODEL_160M; break;
4314
+ default: model.type = e_model::MODEL_UNKNOWN;
4315
+ } break;
4316
+ case 16:
4317
+ switch (hparams.n_ff) {
4318
+ case 8192: model.type = e_model::MODEL_1B; break;
4319
+ default: model.type = e_model::MODEL_UNKNOWN;
4320
+ } break;
4321
+ case 24:
4322
+ switch (hparams.n_ff) {
4323
+ case 4096: model.type = e_model::MODEL_410M; break;
4324
+ case 8192: model.type = e_model::MODEL_1_4B; break;
4325
+ default: model.type = e_model::MODEL_UNKNOWN;
4326
+ } break;
4327
+ case 32:
4328
+ switch (hparams.n_ff) {
4329
+ case 10240: model.type = e_model::MODEL_2_8B; break;
4330
+ case 16384: model.type = e_model::MODEL_6_9B; break;
4331
+ default: model.type = e_model::MODEL_UNKNOWN;
4332
+ } break;
4333
+ case 36:
4334
+ switch (hparams.n_ff) {
4335
+ case 20480: model.type = e_model::MODEL_12B; break;
4336
+ default: model.type = e_model::MODEL_UNKNOWN;
4337
+ } break;
4338
+ case 44:
4339
+ switch (hparams.n_ff) {
4340
+ case 24576: model.type = e_model::MODEL_20B; break;
4341
+ default: model.type = e_model::MODEL_UNKNOWN;
4342
+ } break;
4343
+ default: model.type = e_model::MODEL_UNKNOWN;
4344
+ }
4345
+ } break;
4285
4346
default: (void)0;
4286
4347
}
4287
4348
@@ -6033,6 +6094,41 @@ static bool llm_load_tensors(
6033
6094
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
6034
6095
}
6035
6096
} break;
6097
+ case LLM_ARCH_GPTNEOX:
6098
+ {
6099
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
6100
+ // output
6101
+ {
6102
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
6103
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
6104
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
6105
+ }
6106
+
6107
+ for (int i = 0; i < n_layer; ++i) {
6108
+ ggml_context * ctx_layer = ctx_for_layer(i);
6109
+ ggml_context * ctx_split = ctx_for_layer_split(i);
6110
+
6111
+ auto & layer = model.layers[i];
6112
+
6113
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
6114
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
6115
+
6116
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
6117
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
6118
+
6119
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
6120
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
6121
+
6122
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
6123
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
6124
+
6125
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
6126
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
6127
+
6128
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
6129
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
6130
+ }
6131
+ } break;
6036
6132
default:
6037
6133
throw std::runtime_error("unknown architecture");
6038
6134
}
@@ -10560,6 +10656,140 @@ struct llm_build_context {
10560
10656
10561
10657
return gf;
10562
10658
}
10659
+
10660
+ struct ggml_cgraph * build_gptneox() {
10661
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
10662
+
10663
+ const int64_t n_embd_head = hparams.n_embd_head_v;
10664
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
10665
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10666
+
10667
+ struct ggml_tensor * cur;
10668
+ struct ggml_tensor * inpL;
10669
+
10670
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
10671
+
10672
+ // inp_pos - contains the positions
10673
+ struct ggml_tensor * inp_pos = build_inp_pos();
10674
+
10675
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
10676
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
10677
+
10678
+ for (int il = 0; il < n_layer; ++il) {
10679
+ cur = llm_build_norm(ctx0, inpL, hparams,
10680
+ model.layers[il].attn_norm,
10681
+ model.layers[il].attn_norm_b,
10682
+ LLM_NORM, cb, il);
10683
+ cb(cur, "attn_norm", il);
10684
+
10685
+ // self-attention
10686
+ {
10687
+ cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
10688
+ cb(cur, "wqkv", il);
10689
+
10690
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
10691
+ cb(cur, "bqkv", il);
10692
+
10693
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
10694
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
10695
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
10696
+
10697
+ cb(Qcur, "Qcur", il);
10698
+ cb(Kcur, "Kcur", il);
10699
+ cb(Vcur, "Vcur", il);
10700
+
10701
+ Qcur = ggml_rope_ext(
10702
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
10703
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
10704
+ ext_factor, attn_factor, beta_fast, beta_slow
10705
+ );
10706
+ cb(Qcur, "Qcur", il);
10707
+
10708
+ Kcur = ggml_rope_ext(
10709
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
10710
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
10711
+ ext_factor, attn_factor, beta_fast, beta_slow
10712
+ );
10713
+ cb(Kcur, "Kcur", il);
10714
+
10715
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
10716
+ model.layers[il].wo, model.layers[il].bo,
10717
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
10718
+ }
10719
+
10720
+ if (il == n_layer - 1) {
10721
+ // skip computing output for unused tokens
10722
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
10723
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
10724
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
10725
+ }
10726
+
10727
+ // ffn
10728
+ if (hparams.use_par_res) {
10729
+ // attention and ffn are computed in parallel
10730
+ // x = x + attn(ln1(x)) + ffn(ln2(x))
10731
+
10732
+ struct ggml_tensor * attn_out = cur;
10733
+
10734
+ cur = llm_build_norm(ctx0, inpL, hparams,
10735
+ model.layers[il].ffn_norm,
10736
+ model.layers[il].ffn_norm_b,
10737
+ LLM_NORM, cb, il);
10738
+ cb(cur, "ffn_norm", il);
10739
+
10740
+ cur = llm_build_ffn(ctx0, cur,
10741
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b,
10742
+ NULL, NULL,
10743
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b,
10744
+ NULL,
10745
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
10746
+ cb(cur, "ffn_out", il);
10747
+
10748
+ cur = ggml_add(ctx0, cur, inpL);
10749
+ cb(cur, "ffn_out", il);
10750
+
10751
+ inpL = ggml_add(ctx0, cur, attn_out);
10752
+ cb(inpL, "l_out", il);
10753
+ } else {
10754
+ // attention and ffn are computed sequentially
10755
+ // x = x + attn(ln1(x))
10756
+ // x = x + ffn(ln2(x))
10757
+
10758
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
10759
+ cb(ffn_inp, "ffn_inp", il);
10760
+
10761
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
10762
+ model.layers[il].ffn_norm,
10763
+ model.layers[il].ffn_norm_b,
10764
+ LLM_NORM, cb, il);
10765
+ cb(cur, "ffn_norm", il);
10766
+
10767
+ cur = llm_build_ffn(ctx0, cur,
10768
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b,
10769
+ NULL, NULL,
10770
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b,
10771
+ NULL,
10772
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
10773
+ cb(cur, "ffn_out", il);
10774
+
10775
+ inpL = ggml_add(ctx0, cur, ffn_inp);
10776
+ cb(inpL, "l_out", il);
10777
+ }
10778
+ }
10779
+
10780
+ cur = llm_build_norm(ctx0, inpL, hparams,
10781
+ model.output_norm,
10782
+ model.output_norm_b,
10783
+ LLM_NORM, cb, -1);
10784
+ cb(cur, "result_norm", -1);
10785
+
10786
+ cur = ggml_mul_mat(ctx0, model.output, cur);
10787
+ cb(cur, "result_output", -1);
10788
+
10789
+ ggml_build_forward_expand(gf, cur);
10790
+
10791
+ return gf;
10792
+ }
10563
10793
};
10564
10794
10565
10795
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -10770,6 +11000,10 @@ static struct ggml_cgraph * llama_build_graph(
10770
11000
{
10771
11001
result = llm.build_olmo();
10772
11002
} break;
11003
+ case LLM_ARCH_GPTNEOX:
11004
+ {
11005
+ result = llm.build_gptneox();
11006
+ } break;
10773
11007
default:
10774
11008
GGML_ASSERT(false);
10775
11009
}
@@ -15762,7 +15996,6 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
15762
15996
// these models do not use RoPE
15763
15997
case LLM_ARCH_GPT2:
15764
15998
case LLM_ARCH_GPTJ:
15765
- case LLM_ARCH_GPTNEOX:
15766
15999
case LLM_ARCH_MPT:
15767
16000
case LLM_ARCH_REFACT:
15768
16001
case LLM_ARCH_BLOOM:
@@ -15798,6 +16031,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
15798
16031
case LLM_ARCH_PHI3:
15799
16032
case LLM_ARCH_GEMMA:
15800
16033
case LLM_ARCH_STARCODER2:
16034
+ case LLM_ARCH_GPTNEOX:
15801
16035
return LLAMA_ROPE_TYPE_NEOX;
15802
16036
15803
16037
// all model arches should be listed explicitly here
0 commit comments