Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 674302b

Browse files
committed
Add skewt.py as api example.
1 parent 33408fa commit 674302b

File tree

1 file changed

+260
-0
lines changed

1 file changed

+260
-0
lines changed

examples/api/skewt.py

Lines changed: 260 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,260 @@
1+
# This serves as an intensive exercise of matplotlib's transforms
2+
# and custom projection API. This example produces a so-called
3+
# SkewT-logP diagram, which is a common plot in meteorology for
4+
# displaying vertical profiles of temperature. As far as matplotlib is
5+
# concerned, the complexity comes from having X and Y axes that are
6+
# not orthogonal. This is handled by including a skew component to the
7+
# basic Axes transforms. Additional complexity comes in handling the
8+
# fact that the upper and lower X-axes have different data ranges, which
9+
# necessitates a bunch of custom classes for ticks,spines, and the axis
10+
# to handle this.
11+
12+
from matplotlib.axes import Axes
13+
import matplotlib.transforms as transforms
14+
import matplotlib.axis as maxis
15+
import matplotlib.spines as mspines
16+
import matplotlib.path as mpath
17+
from matplotlib.projections import register_projection
18+
19+
# The sole purpose of this class is to look at the upper, lower, or total
20+
# interval as appropriate and see what parts of the tick to draw, if any.
21+
class SkewXTick(maxis.XTick):
22+
def draw(self, renderer):
23+
if not self.get_visible(): return
24+
renderer.open_group(self.__name__)
25+
26+
lower_interval = self.axes.xaxis.lower_interval
27+
upper_interval = self.axes.xaxis.upper_interval
28+
29+
if self.gridOn and transforms.interval_contains(
30+
self.axes.xaxis.get_view_interval(), self.get_loc()):
31+
self.gridline.draw(renderer)
32+
33+
if transforms.interval_contains(lower_interval, self.get_loc()):
34+
if self.tick1On:
35+
self.tick1line.draw(renderer)
36+
if self.label1On:
37+
self.label1.draw(renderer)
38+
39+
if transforms.interval_contains(upper_interval, self.get_loc()):
40+
if self.tick2On:
41+
self.tick2line.draw(renderer)
42+
if self.label2On:
43+
self.label2.draw(renderer)
44+
45+
renderer.close_group(self.__name__)
46+
47+
48+
# This class exists to provide two separate sets of intervals to the tick,
49+
# as well as create instances of the custom tick
50+
class SkewXAxis(maxis.XAxis):
51+
def __init__(self, *args, **kwargs):
52+
maxis.XAxis.__init__(self, *args, **kwargs)
53+
self.upper_interval = 0.0, 1.0
54+
55+
def _get_tick(self, major):
56+
return SkewXTick(self.axes, 0, '', major=major)
57+
58+
@property
59+
def lower_interval(self):
60+
return self.axes.viewLim.intervalx
61+
62+
def get_view_interval(self):
63+
return self.upper_interval[0], self.axes.viewLim.intervalx[1]
64+
65+
66+
# This class exists to calculate the separate data range of the
67+
# upper X-axis and draw the spine there. It also provides this range
68+
# to the X-axis artist for ticking and gridlines
69+
class SkewSpine(mspines.Spine):
70+
def __init__(self, axes, spine_type):
71+
if spine_type == 'bottom':
72+
loc = 0.0
73+
else:
74+
loc = 1.0
75+
mspines.Spine.__init__(self, axes, spine_type,
76+
mpath.Path([(13, loc), (13, loc)]))
77+
78+
def _adjust_location(self):
79+
trans = self.axes.transDataToAxes.inverted()
80+
if self.spine_type == 'top':
81+
yloc = 1.0
82+
else:
83+
yloc = 0.0
84+
left = trans.transform_point((0.0, yloc))[0]
85+
right = trans.transform_point((1.0, yloc))[0]
86+
87+
pts = self._path.vertices
88+
pts[0, 0] = left
89+
pts[1, 0] = right
90+
self.axis.upper_interval = (left, right)
91+
92+
93+
# This class handles registration of the skew-xaxes as a projection as well
94+
# as setting up the appropriate transformations. It also overrides standard
95+
# spines and axes instances as appropriate.
96+
class SkewXAxes(Axes):
97+
# The projection must specify a name. This will be used be the
98+
# user to select the projection, i.e. ``subplot(111,
99+
# projection='skewx')``.
100+
name = 'skewx'
101+
102+
def _init_axis(self):
103+
#Taken from Axes and modified to use our modified X-axis
104+
self.xaxis = SkewXAxis(self)
105+
self.spines['top'].register_axis(self.xaxis)
106+
self.spines['bottom'].register_axis(self.xaxis)
107+
self.yaxis = maxis.YAxis(self)
108+
self.spines['left'].register_axis(self.yaxis)
109+
self.spines['right'].register_axis(self.yaxis)
110+
111+
def _gen_axes_spines(self):
112+
spines = {'top':SkewSpine(self, 'top'),
113+
'bottom':mspines.Spine.linear_spine(self, 'bottom'),
114+
'left':mspines.Spine.linear_spine(self, 'left'),
115+
'right':mspines.Spine.linear_spine(self, 'right')}
116+
return spines
117+
118+
def _set_lim_and_transforms(self):
119+
"""
120+
This is called once when the plot is created to set up all the
121+
transforms for the data, text and grids.
122+
"""
123+
rot = 30
124+
125+
#Get the standard transform setup from the Axes base class
126+
Axes._set_lim_and_transforms(self)
127+
128+
# Need to put the skew in the middle, after the scale and limits,
129+
# but before the transAxes. This way, the skew is done in Axes
130+
# coordinates thus performing the transform around the proper origin
131+
# We keep the pre-transAxes transform around for other users, like the
132+
# spines for finding bounds
133+
self.transDataToAxes = self.transScale + (self.transLimits +
134+
transforms.Affine2D().skew_deg(0, rot))
135+
136+
# Create the full transform from Data to Pixels
137+
self.transData = self.transDataToAxes + self.transAxes
138+
139+
# Blended transforms like this need to have the skewing applied using
140+
# both axes, in axes coords like before.
141+
self._xaxis_transform = (transforms.blended_transform_factory(
142+
self.transScale + self.transLimits,
143+
transforms.IdentityTransform()) +
144+
transforms.Affine2D().skew_deg(0, rot)) + self.transAxes
145+
146+
# Now register the projection with matplotlib so the user can select
147+
# it.
148+
register_projection(SkewXAxes)
149+
150+
if __name__ == '__main__':
151+
# Now make a simple example using the custom projection.
152+
from matplotlib.ticker import ScalarFormatter, MultipleLocator
153+
from matplotlib.collections import LineCollection
154+
import matplotlib.pyplot as plt
155+
from StringIO import StringIO
156+
import numpy as np
157+
158+
#Some examples data
159+
data_txt = '''
160+
978.0 345 7.8 0.8 61 4.16 325 14 282.7 294.6 283.4
161+
971.0 404 7.2 0.2 61 4.01 327 17 282.7 294.2 283.4
162+
946.7 610 5.2 -1.8 61 3.56 335 26 282.8 293.0 283.4
163+
944.0 634 5.0 -2.0 61 3.51 336 27 282.8 292.9 283.4
164+
925.0 798 3.4 -2.6 65 3.43 340 32 282.8 292.7 283.4
165+
911.8 914 2.4 -2.7 69 3.46 345 37 282.9 292.9 283.5
166+
906.0 966 2.0 -2.7 71 3.47 348 39 283.0 293.0 283.6
167+
877.9 1219 0.4 -3.2 77 3.46 0 48 283.9 293.9 284.5
168+
850.0 1478 -1.3 -3.7 84 3.44 0 47 284.8 294.8 285.4
169+
841.0 1563 -1.9 -3.8 87 3.45 358 45 285.0 295.0 285.6
170+
823.0 1736 1.4 -0.7 86 4.44 353 42 290.3 303.3 291.0
171+
813.6 1829 4.5 1.2 80 5.17 350 40 294.5 309.8 295.4
172+
809.0 1875 6.0 2.2 77 5.57 347 39 296.6 313.2 297.6
173+
798.0 1988 7.4 -0.6 57 4.61 340 35 299.2 313.3 300.1
174+
791.0 2061 7.6 -1.4 53 4.39 335 33 300.2 313.6 301.0
175+
783.9 2134 7.0 -1.7 54 4.32 330 31 300.4 313.6 301.2
176+
755.1 2438 4.8 -3.1 57 4.06 300 24 301.2 313.7 301.9
177+
727.3 2743 2.5 -4.4 60 3.81 285 29 301.9 313.8 302.6
178+
700.5 3048 0.2 -5.8 64 3.57 275 31 302.7 313.8 303.3
179+
700.0 3054 0.2 -5.8 64 3.56 280 31 302.7 313.8 303.3
180+
698.0 3077 0.0 -6.0 64 3.52 280 31 302.7 313.7 303.4
181+
687.0 3204 -0.1 -7.1 59 3.28 281 31 304.0 314.3 304.6
182+
648.9 3658 -3.2 -10.9 55 2.59 285 30 305.5 313.8 305.9
183+
631.0 3881 -4.7 -12.7 54 2.29 289 33 306.2 313.6 306.6
184+
600.7 4267 -6.4 -16.7 44 1.73 295 39 308.6 314.3 308.9
185+
592.0 4381 -6.9 -17.9 41 1.59 297 41 309.3 314.6 309.6
186+
577.6 4572 -8.1 -19.6 39 1.41 300 44 310.1 314.9 310.3
187+
555.3 4877 -10.0 -22.3 36 1.16 295 39 311.3 315.3 311.5
188+
536.0 5151 -11.7 -24.7 33 0.97 304 39 312.4 315.8 312.6
189+
533.8 5182 -11.9 -25.0 33 0.95 305 39 312.5 315.8 312.7
190+
500.0 5680 -15.9 -29.9 29 0.64 290 44 313.6 315.9 313.7
191+
472.3 6096 -19.7 -33.4 28 0.49 285 46 314.1 315.8 314.1
192+
453.0 6401 -22.4 -36.0 28 0.39 300 50 314.4 315.8 314.4
193+
400.0 7310 -30.7 -43.7 27 0.20 285 44 315.0 315.8 315.0
194+
399.7 7315 -30.8 -43.8 27 0.20 285 44 315.0 315.8 315.0
195+
387.0 7543 -33.1 -46.1 26 0.16 281 47 314.9 315.5 314.9
196+
382.7 7620 -33.8 -46.8 26 0.15 280 48 315.0 315.6 315.0
197+
342.0 8398 -40.5 -53.5 23 0.08 293 52 316.1 316.4 316.1
198+
320.4 8839 -43.7 -56.7 22 0.06 300 54 317.6 317.8 317.6
199+
318.0 8890 -44.1 -57.1 22 0.05 301 55 317.8 318.0 317.8
200+
310.0 9060 -44.7 -58.7 19 0.04 304 61 319.2 319.4 319.2
201+
306.1 9144 -43.9 -57.9 20 0.05 305 63 321.5 321.7 321.5
202+
305.0 9169 -43.7 -57.7 20 0.05 303 63 322.1 322.4 322.1
203+
300.0 9280 -43.5 -57.5 20 0.05 295 64 323.9 324.2 323.9
204+
292.0 9462 -43.7 -58.7 17 0.05 293 67 326.2 326.4 326.2
205+
276.0 9838 -47.1 -62.1 16 0.03 290 74 326.6 326.7 326.6
206+
264.0 10132 -47.5 -62.5 16 0.03 288 79 330.1 330.3 330.1
207+
251.0 10464 -49.7 -64.7 16 0.03 285 85 331.7 331.8 331.7
208+
250.0 10490 -49.7 -64.7 16 0.03 285 85 332.1 332.2 332.1
209+
247.0 10569 -48.7 -63.7 16 0.03 283 88 334.7 334.8 334.7
210+
244.0 10649 -48.9 -63.9 16 0.03 280 91 335.6 335.7 335.6
211+
243.3 10668 -48.9 -63.9 16 0.03 280 91 335.8 335.9 335.8
212+
220.0 11327 -50.3 -65.3 15 0.03 280 85 343.5 343.6 343.5
213+
212.0 11569 -50.5 -65.5 15 0.03 280 83 346.8 346.9 346.8
214+
210.0 11631 -49.7 -64.7 16 0.03 280 83 349.0 349.1 349.0
215+
200.0 11950 -49.9 -64.9 15 0.03 280 80 353.6 353.7 353.6
216+
194.0 12149 -49.9 -64.9 15 0.03 279 78 356.7 356.8 356.7
217+
183.0 12529 -51.3 -66.3 15 0.03 278 75 360.4 360.5 360.4
218+
164.0 13233 -55.3 -68.3 18 0.02 277 69 365.2 365.3 365.2
219+
152.0 13716 -56.5 -69.5 18 0.02 275 65 371.1 371.2 371.1
220+
150.0 13800 -57.1 -70.1 18 0.02 275 64 371.5 371.6 371.5
221+
136.0 14414 -60.5 -72.5 19 0.02 268 54 376.0 376.1 376.0
222+
132.0 14600 -60.1 -72.1 19 0.02 265 51 380.0 380.1 380.0
223+
131.4 14630 -60.2 -72.2 19 0.02 265 51 380.3 380.4 380.3
224+
128.0 14792 -60.9 -72.9 19 0.02 266 50 381.9 382.0 381.9
225+
125.0 14939 -60.1 -72.1 19 0.02 268 49 385.9 386.0 385.9
226+
119.0 15240 -62.2 -73.8 20 0.01 270 48 387.4 387.5 387.4
227+
112.0 15616 -64.9 -75.9 21 0.01 265 53 389.3 389.3 389.3
228+
108.0 15838 -64.1 -75.1 21 0.01 265 58 394.8 394.9 394.8
229+
107.8 15850 -64.1 -75.1 21 0.01 265 58 395.0 395.1 395.0
230+
105.0 16010 -64.7 -75.7 21 0.01 272 50 396.9 396.9 396.9
231+
103.0 16128 -62.9 -73.9 21 0.02 277 45 402.5 402.6 402.5
232+
100.0 16310 -62.5 -73.5 21 0.02 285 36 406.7 406.8 406.7'''
233+
234+
# Parse the data
235+
sound_data = StringIO(data_txt)
236+
p,h,T,Td = np.loadtxt(sound_data, usecols=range(0,4), unpack=True)
237+
238+
# Create a new figure. The dimensions here give a good aspect ratio
239+
fig = plt.figure(figsize=(6.5875, 6.2125))
240+
ax = fig.add_subplot(111, projection='skewx')
241+
242+
plt.grid(True)
243+
244+
# Plot the data using normal plotting functions, in this case using
245+
# log scaling in Y, as dicatated by the typical meteorological plot
246+
ax.semilogy(T, p, 'r')
247+
ax.semilogy(Td, p, 'g')
248+
249+
# An example of a slanted line at constant X
250+
l = ax.axvline(0, color='b')
251+
252+
# Disables the log-formatting that comes with semilogy
253+
ax.yaxis.set_major_formatter(ScalarFormatter())
254+
ax.set_yticks(np.linspace(100,1000,10))
255+
ax.set_ylim(1050,100)
256+
257+
ax.xaxis.set_major_locator(MultipleLocator(10))
258+
ax.set_xlim(-50,50)
259+
260+
plt.show()

0 commit comments

Comments
 (0)