From 720c178f095df55e83e64034f36920e237bb27ae Mon Sep 17 00:00:00 2001 From: lgrcia Date: Tue, 18 Jul 2023 18:14:47 +0200 Subject: [PATCH 01/19] chore: update poetry lock --- poetry.lock | 1314 +++++++++++++++++++++++++++------------------------ 1 file changed, 705 insertions(+), 609 deletions(-) diff --git a/poetry.lock b/poetry.lock index de5a4978..e1ab3119 100644 --- a/poetry.lock +++ b/poetry.lock @@ -29,14 +29,14 @@ files = [ [[package]] name = "anyio" -version = "3.7.0" +version = "3.7.1" description = "High level compatibility layer for multiple asynchronous event loop implementations" category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "anyio-3.7.0-py3-none-any.whl", hash = "sha256:eddca883c4175f14df8aedce21054bfca3adb70ffe76a9f607aef9d7fa2ea7f0"}, - {file = "anyio-3.7.0.tar.gz", hash = "sha256:275d9973793619a5374e1c89a4f4ad3f4b0a5510a2b5b939444bee8f4c4d37ce"}, + {file = "anyio-3.7.1-py3-none-any.whl", hash = "sha256:91dee416e570e92c64041bd18b900d1d6fa78dff7048769ce5ac5ddad004fbb5"}, + {file = "anyio-3.7.1.tar.gz", hash = "sha256:44a3c9aba0f5defa43261a8b3efb97891f2bd7d804e0e1f56419befa1adfc780"}, ] [package.dependencies] @@ -45,7 +45,7 @@ idna = ">=2.8" sniffio = ">=1.1" [package.extras] -doc = ["Sphinx (>=6.1.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme", "sphinxcontrib-jquery"] +doc = ["Sphinx", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme (>=1.2.2)", "sphinxcontrib-jquery"] test = ["anyio[trio]", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] trio = ["trio (<0.22)"] @@ -234,18 +234,18 @@ test = ["astroid", "pytest"] [[package]] name = "async-lru" -version = "2.0.2" +version = "2.0.3" description = "Simple LRU cache for asyncio" category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "async-lru-2.0.2.tar.gz", hash = "sha256:3b87ec4f2460c52cc7916a0138cc606b584c75d1ef7d661853c95d1d3acb869a"}, - {file = "async_lru-2.0.2-py3-none-any.whl", hash = "sha256:d7c2b873e9af5c5a1f0a87a6c145e7e0b4eb92342b7235dda9dd5b10e950d6e2"}, + {file = "async-lru-2.0.3.tar.gz", hash = "sha256:b714c9d1415fca4e264da72a9e2abc66880ce7430e03a973341f88ea4c0d4869"}, + {file = "async_lru-2.0.3-py3-none-any.whl", hash = "sha256:00c0a8899c20b9c88663a47732689ff98189c9fa08ad9f734d7722f934d250b1"}, ] [package.dependencies] -typing-extensions = ">=4.0.0" +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""} [[package]] name = "attrs" @@ -314,37 +314,34 @@ lxml = ["lxml"] [[package]] name = "black" -version = "23.3.0" +version = "23.7.0" description = "The uncompromising code formatter." category = "dev" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "black-23.3.0-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:0945e13506be58bf7db93ee5853243eb368ace1c08a24c65ce108986eac65915"}, - {file = "black-23.3.0-cp310-cp310-macosx_10_16_universal2.whl", hash = "sha256:67de8d0c209eb5b330cce2469503de11bca4085880d62f1628bd9972cc3366b9"}, - {file = "black-23.3.0-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:7c3eb7cea23904399866c55826b31c1f55bbcd3890ce22ff70466b907b6775c2"}, - {file = "black-23.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32daa9783106c28815d05b724238e30718f34155653d4d6e125dc7daec8e260c"}, - {file = "black-23.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:35d1381d7a22cc5b2be2f72c7dfdae4072a3336060635718cc7e1ede24221d6c"}, - {file = "black-23.3.0-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:a8a968125d0a6a404842fa1bf0b349a568634f856aa08ffaff40ae0dfa52e7c6"}, - {file = "black-23.3.0-cp311-cp311-macosx_10_16_universal2.whl", hash = "sha256:c7ab5790333c448903c4b721b59c0d80b11fe5e9803d8703e84dcb8da56fec1b"}, - {file = "black-23.3.0-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:a6f6886c9869d4daae2d1715ce34a19bbc4b95006d20ed785ca00fa03cba312d"}, - {file = "black-23.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f3c333ea1dd6771b2d3777482429864f8e258899f6ff05826c3a4fcc5ce3f70"}, - {file = "black-23.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:11c410f71b876f961d1de77b9699ad19f939094c3a677323f43d7a29855fe326"}, - {file = "black-23.3.0-cp37-cp37m-macosx_10_16_x86_64.whl", hash = "sha256:1d06691f1eb8de91cd1b322f21e3bfc9efe0c7ca1f0e1eb1db44ea367dff656b"}, - {file = "black-23.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50cb33cac881766a5cd9913e10ff75b1e8eb71babf4c7104f2e9c52da1fb7de2"}, - {file = "black-23.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e114420bf26b90d4b9daa597351337762b63039752bdf72bf361364c1aa05925"}, - {file = "black-23.3.0-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:48f9d345675bb7fbc3dd85821b12487e1b9a75242028adad0333ce36ed2a6d27"}, - {file = "black-23.3.0-cp38-cp38-macosx_10_16_universal2.whl", hash = "sha256:714290490c18fb0126baa0fca0a54ee795f7502b44177e1ce7624ba1c00f2331"}, - {file = "black-23.3.0-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:064101748afa12ad2291c2b91c960be28b817c0c7eaa35bec09cc63aa56493c5"}, - {file = "black-23.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:562bd3a70495facf56814293149e51aa1be9931567474993c7942ff7d3533961"}, - {file = "black-23.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:e198cf27888ad6f4ff331ca1c48ffc038848ea9f031a3b40ba36aced7e22f2c8"}, - {file = "black-23.3.0-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:3238f2aacf827d18d26db07524e44741233ae09a584273aa059066d644ca7b30"}, - {file = "black-23.3.0-cp39-cp39-macosx_10_16_universal2.whl", hash = "sha256:f0bd2f4a58d6666500542b26354978218a9babcdc972722f4bf90779524515f3"}, - {file = "black-23.3.0-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:92c543f6854c28a3c7f39f4d9b7694f9a6eb9d3c5e2ece488c327b6e7ea9b266"}, - {file = "black-23.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a150542a204124ed00683f0db1f5cf1c2aaaa9cc3495b7a3b5976fb136090ab"}, - {file = "black-23.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:6b39abdfb402002b8a7d030ccc85cf5afff64ee90fa4c5aebc531e3ad0175ddb"}, - {file = "black-23.3.0-py3-none-any.whl", hash = "sha256:ec751418022185b0c1bb7d7736e6933d40bbb14c14a0abcf9123d1b159f98dd4"}, - {file = "black-23.3.0.tar.gz", hash = "sha256:1c7b8d606e728a41ea1ccbd7264677e494e87cf630e399262ced92d4a8dac940"}, + {file = "black-23.7.0-cp310-cp310-macosx_10_16_arm64.whl", hash = "sha256:5c4bc552ab52f6c1c506ccae05681fab58c3f72d59ae6e6639e8885e94fe2587"}, + {file = "black-23.7.0-cp310-cp310-macosx_10_16_universal2.whl", hash = "sha256:552513d5cd5694590d7ef6f46e1767a4df9af168d449ff767b13b084c020e63f"}, + {file = "black-23.7.0-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:86cee259349b4448adb4ef9b204bb4467aae74a386bce85d56ba4f5dc0da27be"}, + {file = "black-23.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:501387a9edcb75d7ae8a4412bb8749900386eaef258f1aefab18adddea1936bc"}, + {file = "black-23.7.0-cp310-cp310-win_amd64.whl", hash = "sha256:fb074d8b213749fa1d077d630db0d5f8cc3b2ae63587ad4116e8a436e9bbe995"}, + {file = "black-23.7.0-cp311-cp311-macosx_10_16_arm64.whl", hash = "sha256:b5b0ee6d96b345a8b420100b7d71ebfdd19fab5e8301aff48ec270042cd40ac2"}, + {file = "black-23.7.0-cp311-cp311-macosx_10_16_universal2.whl", hash = "sha256:893695a76b140881531062d48476ebe4a48f5d1e9388177e175d76234ca247cd"}, + {file = "black-23.7.0-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:c333286dc3ddca6fdff74670b911cccedacb4ef0a60b34e491b8a67c833b343a"}, + {file = "black-23.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:831d8f54c3a8c8cf55f64d0422ee875eecac26f5f649fb6c1df65316b67c8926"}, + {file = "black-23.7.0-cp311-cp311-win_amd64.whl", hash = "sha256:7f3bf2dec7d541b4619b8ce526bda74a6b0bffc480a163fed32eb8b3c9aed8ad"}, + {file = "black-23.7.0-cp38-cp38-macosx_10_16_arm64.whl", hash = "sha256:f9062af71c59c004cd519e2fb8f5d25d39e46d3af011b41ab43b9c74e27e236f"}, + {file = "black-23.7.0-cp38-cp38-macosx_10_16_universal2.whl", hash = "sha256:01ede61aac8c154b55f35301fac3e730baf0c9cf8120f65a9cd61a81cfb4a0c3"}, + {file = "black-23.7.0-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:327a8c2550ddc573b51e2c352adb88143464bb9d92c10416feb86b0f5aee5ff6"}, + {file = "black-23.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d1c6022b86f83b632d06f2b02774134def5d4d4f1dac8bef16d90cda18ba28a"}, + {file = "black-23.7.0-cp38-cp38-win_amd64.whl", hash = "sha256:27eb7a0c71604d5de083757fbdb245b1a4fae60e9596514c6ec497eb63f95320"}, + {file = "black-23.7.0-cp39-cp39-macosx_10_16_arm64.whl", hash = "sha256:8417dbd2f57b5701492cd46edcecc4f9208dc75529bcf76c514864e48da867d9"}, + {file = "black-23.7.0-cp39-cp39-macosx_10_16_universal2.whl", hash = "sha256:47e56d83aad53ca140da0af87678fb38e44fd6bc0af71eebab2d1f59b1acf1d3"}, + {file = "black-23.7.0-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:25cc308838fe71f7065df53aedd20327969d05671bac95b38fdf37ebe70ac087"}, + {file = "black-23.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:642496b675095d423f9b8448243336f8ec71c9d4d57ec17bf795b67f08132a91"}, + {file = "black-23.7.0-cp39-cp39-win_amd64.whl", hash = "sha256:ad0014efc7acf0bd745792bd0d8857413652979200ab924fbf239062adc12491"}, + {file = "black-23.7.0-py3-none-any.whl", hash = "sha256:9fd59d418c60c0348505f2ddf9609c1e1de8e7493eab96198fc89d9f865e7a96"}, + {file = "black-23.7.0.tar.gz", hash = "sha256:022a582720b0d9480ed82576c920a8c1dde97cc38ff11d8d8859b3bd6ca9eedb"}, ] [package.dependencies] @@ -518,99 +515,99 @@ pycparser = "*" [[package]] name = "charset-normalizer" -version = "3.1.0" +version = "3.2.0" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." category = "main" optional = false python-versions = ">=3.7.0" files = [ - {file = "charset-normalizer-3.1.0.tar.gz", hash = "sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-win32.whl", hash = "sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-win32.whl", hash = "sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-win32.whl", hash = "sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-win32.whl", hash = "sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b"}, - {file = "charset_normalizer-3.1.0-py3-none-any.whl", hash = "sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d"}, + {file = "charset-normalizer-3.2.0.tar.gz", hash = "sha256:3bb3d25a8e6c0aedd251753a79ae98a093c7e7b471faa3aa9a93a81431987ace"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b87549028f680ca955556e3bd57013ab47474c3124dc069faa0b6545b6c9710"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7c70087bfee18a42b4040bb9ec1ca15a08242cf5867c58726530bdf3945672ed"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a103b3a7069b62f5d4890ae1b8f0597618f628b286b03d4bc9195230b154bfa9"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94aea8eff76ee6d1cdacb07dd2123a68283cb5569e0250feab1240058f53b623"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:db901e2ac34c931d73054d9797383d0f8009991e723dab15109740a63e7f902a"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b0dac0ff919ba34d4df1b6131f59ce95b08b9065233446be7e459f95554c0dc8"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:193cbc708ea3aca45e7221ae58f0fd63f933753a9bfb498a3b474878f12caaad"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09393e1b2a9461950b1c9a45d5fd251dc7c6f228acab64da1c9c0165d9c7765c"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:baacc6aee0b2ef6f3d308e197b5d7a81c0e70b06beae1f1fcacffdbd124fe0e3"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bf420121d4c8dce6b889f0e8e4ec0ca34b7f40186203f06a946fa0276ba54029"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:c04a46716adde8d927adb9457bbe39cf473e1e2c2f5d0a16ceb837e5d841ad4f"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:aaf63899c94de41fe3cf934601b0f7ccb6b428c6e4eeb80da72c58eab077b19a"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d62e51710986674142526ab9f78663ca2b0726066ae26b78b22e0f5e571238dd"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-win32.whl", hash = "sha256:04e57ab9fbf9607b77f7d057974694b4f6b142da9ed4a199859d9d4d5c63fe96"}, + {file = "charset_normalizer-3.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:48021783bdf96e3d6de03a6e39a1171ed5bd7e8bb93fc84cc649d11490f87cea"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4957669ef390f0e6719db3613ab3a7631e68424604a7b448f079bee145da6e09"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:46fb8c61d794b78ec7134a715a3e564aafc8f6b5e338417cb19fe9f57a5a9bf2"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f779d3ad205f108d14e99bb3859aa7dd8e9c68874617c72354d7ecaec2a054ac"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f25c229a6ba38a35ae6e25ca1264621cc25d4d38dca2942a7fce0b67a4efe918"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2efb1bd13885392adfda4614c33d3b68dee4921fd0ac1d3988f8cbb7d589e72a"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f30b48dd7fa1474554b0b0f3fdfdd4c13b5c737a3c6284d3cdc424ec0ffff3a"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:246de67b99b6851627d945db38147d1b209a899311b1305dd84916f2b88526c6"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bd9b3b31adcb054116447ea22caa61a285d92e94d710aa5ec97992ff5eb7cf3"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:8c2f5e83493748286002f9369f3e6607c565a6a90425a3a1fef5ae32a36d749d"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:3170c9399da12c9dc66366e9d14da8bf7147e1e9d9ea566067bbce7bb74bd9c2"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7a4826ad2bd6b07ca615c74ab91f32f6c96d08f6fcc3902ceeedaec8cdc3bcd6"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:3b1613dd5aee995ec6d4c69f00378bbd07614702a315a2cf6c1d21461fe17c23"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9e608aafdb55eb9f255034709e20d5a83b6d60c054df0802fa9c9883d0a937aa"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-win32.whl", hash = "sha256:f2a1d0fd4242bd8643ce6f98927cf9c04540af6efa92323e9d3124f57727bfc1"}, + {file = "charset_normalizer-3.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:681eb3d7e02e3c3655d1b16059fbfb605ac464c834a0c629048a30fad2b27489"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c57921cda3a80d0f2b8aec7e25c8aa14479ea92b5b51b6876d975d925a2ea346"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41b25eaa7d15909cf3ac4c96088c1f266a9a93ec44f87f1d13d4a0e86c81b982"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f058f6963fd82eb143c692cecdc89e075fa0828db2e5b291070485390b2f1c9c"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7647ebdfb9682b7bb97e2a5e7cb6ae735b1c25008a70b906aecca294ee96cf4"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eef9df1eefada2c09a5e7a40991b9fc6ac6ef20b1372abd48d2794a316dc0449"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e03b8895a6990c9ab2cdcd0f2fe44088ca1c65ae592b8f795c3294af00a461c3"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:ee4006268ed33370957f55bf2e6f4d263eaf4dc3cfc473d1d90baff6ed36ce4a"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c4983bf937209c57240cff65906b18bb35e64ae872da6a0db937d7b4af845dd7"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:3bb7fda7260735efe66d5107fb7e6af6a7c04c7fce9b2514e04b7a74b06bf5dd"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:72814c01533f51d68702802d74f77ea026b5ec52793c791e2da806a3844a46c3"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:70c610f6cbe4b9fce272c407dd9d07e33e6bf7b4aa1b7ffb6f6ded8e634e3592"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-win32.whl", hash = "sha256:a401b4598e5d3f4a9a811f3daf42ee2291790c7f9d74b18d75d6e21dda98a1a1"}, + {file = "charset_normalizer-3.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c0b21078a4b56965e2b12f247467b234734491897e99c1d51cee628da9786959"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:95eb302ff792e12aba9a8b8f8474ab229a83c103d74a750ec0bd1c1eea32e669"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a100c6d595a7f316f1b6f01d20815d916e75ff98c27a01ae817439ea7726329"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6339d047dab2780cc6220f46306628e04d9750f02f983ddb37439ca47ced7149"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4b749b9cc6ee664a3300bb3a273c1ca8068c46be705b6c31cf5d276f8628a94"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a38856a971c602f98472050165cea2cdc97709240373041b69030be15047691f"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f87f746ee241d30d6ed93969de31e5ffd09a2961a051e60ae6bddde9ec3583aa"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89f1b185a01fe560bc8ae5f619e924407efca2191b56ce749ec84982fc59a32a"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e1c8a2f4c69e08e89632defbfabec2feb8a8d99edc9f89ce33c4b9e36ab63037"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2f4ac36d8e2b4cc1aa71df3dd84ff8efbe3bfb97ac41242fbcfc053c67434f46"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a386ebe437176aab38c041de1260cd3ea459c6ce5263594399880bbc398225b2"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:ccd16eb18a849fd8dcb23e23380e2f0a354e8daa0c984b8a732d9cfaba3a776d"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:e6a5bf2cba5ae1bb80b154ed68a3cfa2fa00fde979a7f50d6598d3e17d9ac20c"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:45de3f87179c1823e6d9e32156fb14c1927fcc9aba21433f088fdfb555b77c10"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-win32.whl", hash = "sha256:1000fba1057b92a65daec275aec30586c3de2401ccdcd41f8a5c1e2c87078706"}, + {file = "charset_normalizer-3.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:8b2c760cfc7042b27ebdb4a43a4453bd829a5742503599144d54a032c5dc7e9e"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:855eafa5d5a2034b4621c74925d89c5efef61418570e5ef9b37717d9c796419c"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:203f0c8871d5a7987be20c72442488a0b8cfd0f43b7973771640fc593f56321f"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e857a2232ba53ae940d3456f7533ce6ca98b81917d47adc3c7fd55dad8fab858"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5e86d77b090dbddbe78867a0275cb4df08ea195e660f1f7f13435a4649e954e5"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4fb39a81950ec280984b3a44f5bd12819953dc5fa3a7e6fa7a80db5ee853952"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dee8e57f052ef5353cf608e0b4c871aee320dd1b87d351c28764fc0ca55f9f4"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8700f06d0ce6f128de3ccdbc1acaea1ee264d2caa9ca05daaf492fde7c2a7200"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1920d4ff15ce893210c1f0c0e9d19bfbecb7983c76b33f046c13a8ffbd570252"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c1c76a1743432b4b60ab3358c937a3fe1341c828ae6194108a94c69028247f22"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f7560358a6811e52e9c4d142d497f1a6e10103d3a6881f18d04dbce3729c0e2c"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:c8063cf17b19661471ecbdb3df1c84f24ad2e389e326ccaf89e3fb2484d8dd7e"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:cd6dbe0238f7743d0efe563ab46294f54f9bc8f4b9bcf57c3c666cc5bc9d1299"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1249cbbf3d3b04902ff081ffbb33ce3377fa6e4c7356f759f3cd076cc138d020"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-win32.whl", hash = "sha256:6c409c0deba34f147f77efaa67b8e4bb83d2f11c8806405f76397ae5b8c0d1c9"}, + {file = "charset_normalizer-3.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:7095f6fbfaa55defb6b733cfeb14efaae7a29f0b59d8cf213be4e7ca0b857b80"}, + {file = "charset_normalizer-3.2.0-py3-none-any.whl", hash = "sha256:8e098148dd37b4ce3baca71fb394c81dc5d9c7728c95df695d2dca218edf40e6"}, ] [[package]] name = "click" -version = "8.1.3" +version = "8.1.5" description = "Composable command line interface toolkit" category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "click-8.1.3-py3-none-any.whl", hash = "sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"}, - {file = "click-8.1.3.tar.gz", hash = "sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e"}, + {file = "click-8.1.5-py3-none-any.whl", hash = "sha256:e576aa487d679441d7d30abb87e1b43d24fc53bffb8758443b1a9e1cee504548"}, + {file = "click-8.1.5.tar.gz", hash = "sha256:4be4b1af8d665c6d942909916d31a213a106800c47d0eeba73d34da3cbc11367"}, ] [package.dependencies] @@ -709,31 +706,35 @@ test-no-images = ["pytest", "pytest-cov", "wurlitzer"] [[package]] name = "cryptography" -version = "41.0.1" +version = "41.0.2" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." category = "main" optional = false python-versions = ">=3.7" files = [ - {file = "cryptography-41.0.1-cp37-abi3-macosx_10_12_universal2.whl", hash = "sha256:f73bff05db2a3e5974a6fd248af2566134d8981fd7ab012e5dd4ddb1d9a70699"}, - {file = "cryptography-41.0.1-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:1a5472d40c8f8e91ff7a3d8ac6dfa363d8e3138b961529c996f3e2df0c7a411a"}, - {file = "cryptography-41.0.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7fa01527046ca5facdf973eef2535a27fec4cb651e4daec4d043ef63f6ecd4ca"}, - {file = "cryptography-41.0.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b46e37db3cc267b4dea1f56da7346c9727e1209aa98487179ee8ebed09d21e43"}, - {file = "cryptography-41.0.1-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:d198820aba55660b4d74f7b5fd1f17db3aa5eb3e6893b0a41b75e84e4f9e0e4b"}, - {file = "cryptography-41.0.1-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:948224d76c4b6457349d47c0c98657557f429b4e93057cf5a2f71d603e2fc3a3"}, - {file = "cryptography-41.0.1-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:059e348f9a3c1950937e1b5d7ba1f8e968508ab181e75fc32b879452f08356db"}, - {file = "cryptography-41.0.1-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:b4ceb5324b998ce2003bc17d519080b4ec8d5b7b70794cbd2836101406a9be31"}, - {file = "cryptography-41.0.1-cp37-abi3-win32.whl", hash = "sha256:8f4ab7021127a9b4323537300a2acfb450124b2def3756f64dc3a3d2160ee4b5"}, - {file = "cryptography-41.0.1-cp37-abi3-win_amd64.whl", hash = "sha256:1fee5aacc7367487b4e22484d3c7e547992ed726d14864ee33c0176ae43b0d7c"}, - {file = "cryptography-41.0.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:9a6c7a3c87d595608a39980ebaa04d5a37f94024c9f24eb7d10262b92f739ddb"}, - {file = "cryptography-41.0.1-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:5d092fdfedaec4cbbffbf98cddc915ba145313a6fdaab83c6e67f4e6c218e6f3"}, - {file = "cryptography-41.0.1-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a8e6c2de6fbbcc5e14fd27fb24414507cb3333198ea9ab1258d916f00bc3039"}, - {file = "cryptography-41.0.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cb33ccf15e89f7ed89b235cff9d49e2e62c6c981a6061c9c8bb47ed7951190bc"}, - {file = "cryptography-41.0.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5f0ff6e18d13a3de56f609dd1fd11470918f770c6bd5d00d632076c727d35485"}, - {file = "cryptography-41.0.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:7bfc55a5eae8b86a287747053140ba221afc65eb06207bedf6e019b8934b477c"}, - {file = "cryptography-41.0.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:eb8163f5e549a22888c18b0d53d6bb62a20510060a22fd5a995ec8a05268df8a"}, - {file = "cryptography-41.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:8dde71c4169ec5ccc1087bb7521d54251c016f126f922ab2dfe6649170a3b8c5"}, - {file = "cryptography-41.0.1.tar.gz", hash = "sha256:d34579085401d3f49762d2f7d6634d6b6c2ae1242202e860f4d26b046e3a1006"}, + {file = "cryptography-41.0.2-cp37-abi3-macosx_10_12_universal2.whl", hash = "sha256:01f1d9e537f9a15b037d5d9ee442b8c22e3ae11ce65ea1f3316a41c78756b711"}, + {file = "cryptography-41.0.2-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:079347de771f9282fbfe0e0236c716686950c19dee1b76240ab09ce1624d76d7"}, + {file = "cryptography-41.0.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:439c3cc4c0d42fa999b83ded80a9a1fb54d53c58d6e59234cfe97f241e6c781d"}, + {file = "cryptography-41.0.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f14ad275364c8b4e525d018f6716537ae7b6d369c094805cae45300847e0894f"}, + {file = "cryptography-41.0.2-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:84609ade00a6ec59a89729e87a503c6e36af98ddcd566d5f3be52e29ba993182"}, + {file = "cryptography-41.0.2-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:49c3222bb8f8e800aead2e376cbef687bc9e3cb9b58b29a261210456a7783d83"}, + {file = "cryptography-41.0.2-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:d73f419a56d74fef257955f51b18d046f3506270a5fd2ac5febbfa259d6c0fa5"}, + {file = "cryptography-41.0.2-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:2a034bf7d9ca894720f2ec1d8b7b5832d7e363571828037f9e0c4f18c1b58a58"}, + {file = "cryptography-41.0.2-cp37-abi3-win32.whl", hash = "sha256:d124682c7a23c9764e54ca9ab5b308b14b18eba02722b8659fb238546de83a76"}, + {file = "cryptography-41.0.2-cp37-abi3-win_amd64.whl", hash = "sha256:9c3fe6534d59d071ee82081ca3d71eed3210f76ebd0361798c74abc2bcf347d4"}, + {file = "cryptography-41.0.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a719399b99377b218dac6cf547b6ec54e6ef20207b6165126a280b0ce97e0d2a"}, + {file = "cryptography-41.0.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:182be4171f9332b6741ee818ec27daff9fb00349f706629f5cbf417bd50e66fd"}, + {file = "cryptography-41.0.2-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:7a9a3bced53b7f09da251685224d6a260c3cb291768f54954e28f03ef14e3766"}, + {file = "cryptography-41.0.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:f0dc40e6f7aa37af01aba07277d3d64d5a03dc66d682097541ec4da03cc140ee"}, + {file = "cryptography-41.0.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:674b669d5daa64206c38e507808aae49904c988fa0a71c935e7006a3e1e83831"}, + {file = "cryptography-41.0.2-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:7af244b012711a26196450d34f483357e42aeddb04128885d95a69bd8b14b69b"}, + {file = "cryptography-41.0.2-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:9b6d717393dbae53d4e52684ef4f022444fc1cce3c48c38cb74fca29e1f08eaa"}, + {file = "cryptography-41.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:192255f539d7a89f2102d07d7375b1e0a81f7478925b3bc2e0549ebf739dae0e"}, + {file = "cryptography-41.0.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f772610fe364372de33d76edcd313636a25684edb94cee53fd790195f5989d14"}, + {file = "cryptography-41.0.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:b332cba64d99a70c1e0836902720887fb4529ea49ea7f5462cf6640e095e11d2"}, + {file = "cryptography-41.0.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:9a6673c1828db6270b76b22cc696f40cde9043eb90373da5c2f8f2158957f42f"}, + {file = "cryptography-41.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:342f3767e25876751e14f8459ad85e77e660537ca0a066e10e75df9c9e9099f0"}, + {file = "cryptography-41.0.2.tar.gz", hash = "sha256:7d230bf856164de164ecb615ccc14c7fc6de6906ddd5b491f3af90d3514c925c"}, ] [package.dependencies] @@ -842,14 +843,14 @@ files = [ [[package]] name = "exceptiongroup" -version = "1.1.1" +version = "1.1.2" description = "Backport of PEP 654 (exception groups)" category = "main" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.1.1-py3-none-any.whl", hash = "sha256:232c37c63e4f682982c8b6459f33a8981039e5fb8756b2074364e5055c498c9e"}, - {file = "exceptiongroup-1.1.1.tar.gz", hash = "sha256:d484c3090ba2889ae2928419117447a14daf3c1231d5e30d0aae34f354f01785"}, + {file = "exceptiongroup-1.1.2-py3-none-any.whl", hash = "sha256:e346e69d186172ca7cf029c8c1d16235aa0e04035e5750b4b95039e65204328f"}, + {file = "exceptiongroup-1.1.2.tar.gz", hash = "sha256:12c3e887d6485d16943a309616de20ae5582633e0a2eda17f4e10fd61c1e8af5"}, ] [package.extras] @@ -887,46 +888,46 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc [[package]] name = "fonttools" -version = "4.40.0" +version = "4.41.0" description = "Tools to manipulate font files" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.40.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:b802dcbf9bcff74672f292b2466f6589ab8736ce4dcf36f48eb994c2847c4b30"}, - {file = "fonttools-4.40.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7f6e3fa3da923063c286320e728ba2270e49c73386e3a711aa680f4b0747d692"}, - {file = "fonttools-4.40.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fdf60f8a5c6bcce7d024a33f7e4bc7921f5b74e8ea13bccd204f2c8b86f3470"}, - {file = "fonttools-4.40.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91784e21a1a085fac07c6a407564f4a77feb471b5954c9ee55a4f9165151f6c1"}, - {file = "fonttools-4.40.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:05171f3c546f64d78569f10adc0de72561882352cac39ec7439af12304d8d8c0"}, - {file = "fonttools-4.40.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7449e5e306f3a930a8944c85d0cbc8429cba13503372a1a40f23124d6fb09b58"}, - {file = "fonttools-4.40.0-cp310-cp310-win32.whl", hash = "sha256:bae8c13abbc2511e9a855d2142c0ab01178dd66b1a665798f357da0d06253e0d"}, - {file = "fonttools-4.40.0-cp310-cp310-win_amd64.whl", hash = "sha256:425b74a608427499b0e45e433c34ddc350820b6f25b7c8761963a08145157a66"}, - {file = "fonttools-4.40.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:00ab569b2a3e591e00425023ade87e8fef90380c1dde61be7691cb524ca5f743"}, - {file = "fonttools-4.40.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:18ea64ac43e94c9e0c23d7a9475f1026be0e25b10dda8f236fc956188761df97"}, - {file = "fonttools-4.40.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:022c4a16b412293e7f1ce21b8bab7a6f9d12c4ffdf171fdc67122baddb973069"}, - {file = "fonttools-4.40.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:530c5d35109f3e0cea2535742d6a3bc99c0786cf0cbd7bb2dc9212387f0d908c"}, - {file = "fonttools-4.40.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5e00334c66f4e83535384cb5339526d01d02d77f142c23b2f97bd6a4f585497a"}, - {file = "fonttools-4.40.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb52c10fda31159c22c7ed85074e05f8b97da8773ea461706c273e31bcbea836"}, - {file = "fonttools-4.40.0-cp311-cp311-win32.whl", hash = "sha256:6a8d71b9a5c884c72741868e845c0e563c5d83dcaf10bb0ceeec3b4b2eb14c67"}, - {file = "fonttools-4.40.0-cp311-cp311-win_amd64.whl", hash = "sha256:15abb3d055c1b2dff9ce376b6c3db10777cb74b37b52b78f61657634fd348a0d"}, - {file = "fonttools-4.40.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:14037c31138fbd21847ad5e5441dfdde003e0a8f3feb5812a1a21fd1c255ffbd"}, - {file = "fonttools-4.40.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:94c915f6716589f78bc00fbc14c5b8de65cfd11ee335d32504f1ef234524cb24"}, - {file = "fonttools-4.40.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37467cee0f32cada2ec08bc16c9c31f9b53ea54b2f5604bf25a1246b5f50593a"}, - {file = "fonttools-4.40.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56d4d85f5374b45b08d2f928517d1e313ea71b4847240398decd0ab3ebbca885"}, - {file = "fonttools-4.40.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8c4305b171b61040b1ee75d18f9baafe58bd3b798d1670078efe2c92436bfb63"}, - {file = "fonttools-4.40.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a954b90d1473c85a22ecf305761d9fd89da93bbd31dae86e7dea436ad2cb5dc9"}, - {file = "fonttools-4.40.0-cp38-cp38-win32.whl", hash = "sha256:1bc4c5b147be8dbc5df9cc8ac5e93ee914ad030fe2a201cc8f02f499db71011d"}, - {file = "fonttools-4.40.0-cp38-cp38-win_amd64.whl", hash = "sha256:8a917828dbfdb1cbe50cf40eeae6fbf9c41aef9e535649ed8f4982b2ef65c091"}, - {file = "fonttools-4.40.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:882983279bf39afe4e945109772c2ffad2be2c90983d6559af8b75c19845a80a"}, - {file = "fonttools-4.40.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c55f1b4109dbc3aeb496677b3e636d55ef46dc078c2a5e3f3db4e90f1c6d2907"}, - {file = "fonttools-4.40.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec468c022d09f1817c691cf884feb1030ef6f1e93e3ea6831b0d8144c06480d1"}, - {file = "fonttools-4.40.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d5adf4ba114f028fc3f5317a221fd8b0f4ef7a2e5524a2b1e0fd891b093791a"}, - {file = "fonttools-4.40.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:aa83b3f151bc63970f39b2b42a06097c5a22fd7ed9f7ba008e618de4503d3895"}, - {file = "fonttools-4.40.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:97d95b8301b62bdece1af943b88bcb3680fd385f88346a4a899ee145913b414a"}, - {file = "fonttools-4.40.0-cp39-cp39-win32.whl", hash = "sha256:1a003608400dd1cca3e089e8c94973c6b51a4fb1ef00ff6d7641617b9242e637"}, - {file = "fonttools-4.40.0-cp39-cp39-win_amd64.whl", hash = "sha256:7961575221e3da0841c75da53833272c520000d76f7f71274dbf43370f8a1065"}, - {file = "fonttools-4.40.0-py3-none-any.whl", hash = "sha256:200729d12461e2038700d31f0d49ad5a7b55855dec7525074979a06b46f88505"}, - {file = "fonttools-4.40.0.tar.gz", hash = "sha256:337b6e83d7ee73c40ea62407f2ce03b07c3459e213b6f332b94a69923b9e1cb9"}, + {file = "fonttools-4.41.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ba2a367ff478cd108d5319c0dc4fd4eb4ea3476dbfc45b00c45718e889cd9463"}, + {file = "fonttools-4.41.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:69178674505ec81adf4af2a3bbacd0cb9a37ba7831bc3fca307f80e48ab2767b"}, + {file = "fonttools-4.41.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86edb95c4d1fe4fae2111d7e0c10c6e42b7790b377bcf1952303469eee5b52bb"}, + {file = "fonttools-4.41.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50f8bdb421270f71b54695c62785e300fab4bb6127be40bf9f3084962a0c3adb"}, + {file = "fonttools-4.41.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c890061915e95b619c1d3cc3c107c6fb021406b701c0c24b03e74830d522f210"}, + {file = "fonttools-4.41.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b329ae7ce971b5c4148d6cdb8119c0ce4587265b2330d4f2f3776ef851bee020"}, + {file = "fonttools-4.41.0-cp310-cp310-win32.whl", hash = "sha256:bc9e7b1e268be7a23fc66471b615c324e99c5db39ce8c49dd6dd8e962c7bc1b8"}, + {file = "fonttools-4.41.0-cp310-cp310-win_amd64.whl", hash = "sha256:f3fe90dfb297bd8265238c06787911cd81c2cb89ac5b13e1c911928bdabfce0f"}, + {file = "fonttools-4.41.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e38bd91eae257f36c2b7245c0278e9cd9d754f3a66b8d2b548c623ba66e387b6"}, + {file = "fonttools-4.41.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:415cf7c806a3f56fb280dadcf3c92c85c0415e75665ca957b4a2a2e39c17a5c9"}, + {file = "fonttools-4.41.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:381558eafffc1432d08ca58063e71c7376ecaae48e9318354a90a1049a644845"}, + {file = "fonttools-4.41.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ee75b8ca48f6c48af25e967dce995ef94e46872b35c7d454b983c62c9c7006d"}, + {file = "fonttools-4.41.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d45f28c20bb67dee0f4a4caae709f40b0693d764b7b2bf2d58890f36b1bfcef0"}, + {file = "fonttools-4.41.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5448a87f6ed57ed844b64a05d3792827af584a8584613f6289867f4e77eb603b"}, + {file = "fonttools-4.41.0-cp311-cp311-win32.whl", hash = "sha256:69dbe0154e15b68dd671441ea8f23dad87488b24a6e650d45958f4722819a443"}, + {file = "fonttools-4.41.0-cp311-cp311-win_amd64.whl", hash = "sha256:ea879afd1d6189fca02a85a7868560c9bb8415dccff6b7ae6d81e4f06b3ab30d"}, + {file = "fonttools-4.41.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8f602dd5bcde7e4241419924f23c6f0d66723dd5408a58c3a2f781745c693f45"}, + {file = "fonttools-4.41.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:06eac087ea55b3ebb2207d93b5ac56c847163899f05f5a77e1910f688fe10030"}, + {file = "fonttools-4.41.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e22d0144d735f6c7df770509b8c0c33414bf460df0d5dddc98a159e5dbb10eb"}, + {file = "fonttools-4.41.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19d461c801b8904d201c6c38a99bfcfef673bfdfe0c7f026f582ef78896434e0"}, + {file = "fonttools-4.41.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:72d40a32d6443871ea0d147813caad58394b48729dfa4fbc45dcaac54f9506f2"}, + {file = "fonttools-4.41.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0614b6348866092d00df3dfb37e037fc06412ca67087de361a2777ea5ed62c16"}, + {file = "fonttools-4.41.0-cp38-cp38-win32.whl", hash = "sha256:e43f6c7f9ba4f9d29edee530e45f9aa162872ec9549398b85971477a99f2a806"}, + {file = "fonttools-4.41.0-cp38-cp38-win_amd64.whl", hash = "sha256:eb9dfa87152bd97019adc387b2f29ef6af601de4386f36570ca537ace96d96ed"}, + {file = "fonttools-4.41.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d2dae84a3d0f76884a6102c62f2795b2d6602c2c95cfcce74c8a590b6200e533"}, + {file = "fonttools-4.41.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cc3324e4159e6d1f55c3615b4c1c211f87cc96cc0cc7c946c8447dc1319f2e9d"}, + {file = "fonttools-4.41.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c654b1facf1f3b742e4d9b2dcdf0fa867b1f007b1b4981cc58a75ef5dca2a3c"}, + {file = "fonttools-4.41.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:560ea1a604c927399f36742abf342a4c5f3fee8e8e8a484b774dfe9630bd9a91"}, + {file = "fonttools-4.41.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9387b09694fbf8ac7dcf887069068f81fb4124d05e09557ac7daabfbec1744bd"}, + {file = "fonttools-4.41.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:465d0f24bf4f75160f441793b55076b7a080a57d3a1f738390af2c20bee24fbb"}, + {file = "fonttools-4.41.0-cp39-cp39-win32.whl", hash = "sha256:841c491fa3e9c54e8f9cd5dae059e88f45e086aea090c28be9d42f59c8b99e01"}, + {file = "fonttools-4.41.0-cp39-cp39-win_amd64.whl", hash = "sha256:efd59e83223cb77952997fb850c7a7c2a958c9af0642060f536722c2a9e9d53b"}, + {file = "fonttools-4.41.0-py3-none-any.whl", hash = "sha256:5b1c2b21b40229166a864f2b0aec06d37f0a204066deb1734c93370e0c76339d"}, + {file = "fonttools-4.41.0.tar.gz", hash = "sha256:6faff25991dec48f8cac882055a09ae1a29fd15bc160bc3d663e789e994664c2"}, ] [package.extras] @@ -1127,14 +1128,14 @@ files = [ [[package]] name = "importlib-metadata" -version = "6.6.0" +version = "6.8.0" description = "Read metadata from Python packages" category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "importlib_metadata-6.6.0-py3-none-any.whl", hash = "sha256:43dd286a2cd8995d5eaef7fee2066340423b818ed3fd70adf0bad5f1fac53fed"}, - {file = "importlib_metadata-6.6.0.tar.gz", hash = "sha256:92501cdf9cc66ebd3e612f1b4f0c0765dfa42f0fa38ffb319b6bd84dd675d705"}, + {file = "importlib_metadata-6.8.0-py3-none-any.whl", hash = "sha256:3ebb78df84a805d7698245025b975d9d67053cd94c79245ba4b3eb694abe68bb"}, + {file = "importlib_metadata-6.8.0.tar.gz", hash = "sha256:dbace7892d8c0c4ac1ad096662232f831d4e64f4c4545bd53016a3e9d4654743"}, ] [package.dependencies] @@ -1143,26 +1144,26 @@ zipp = ">=0.5" [package.extras] docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] perf = ["ipython"] -testing = ["flake8 (<5)", "flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)"] +testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] [[package]] name = "importlib-resources" -version = "5.12.0" +version = "6.0.0" description = "Read resources from Python packages" category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "importlib_resources-5.12.0-py3-none-any.whl", hash = "sha256:7b1deeebbf351c7578e09bf2f63fa2ce8b5ffec296e0d349139d43cca061a81a"}, - {file = "importlib_resources-5.12.0.tar.gz", hash = "sha256:4be82589bf5c1d7999aedf2a45159d10cb3ca4f19b2271f8792bc8e6da7b22f6"}, + {file = "importlib_resources-6.0.0-py3-none-any.whl", hash = "sha256:d952faee11004c045f785bb5636e8f885bed30dc3c940d5d42798a2a4541c185"}, + {file = "importlib_resources-6.0.0.tar.gz", hash = "sha256:4cf94875a8368bd89531a756df9a9ebe1f150e0f885030b461237bc7f2d905f2"}, ] [package.dependencies] zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} [package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-ruff"] [[package]] name = "iniconfig" @@ -1178,14 +1179,14 @@ files = [ [[package]] name = "ipykernel" -version = "6.23.2" +version = "6.24.0" description = "IPython Kernel for Jupyter" category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "ipykernel-6.23.2-py3-none-any.whl", hash = "sha256:7ccb6e2d32fd958c21453db494c914f3474908a2fdefd99ab548a5375b548d1f"}, - {file = "ipykernel-6.23.2.tar.gz", hash = "sha256:fcfb67c5b504aa1bfcda1c5b3716636239e0f7b9290958f1c558c79b4c0e7ed5"}, + {file = "ipykernel-6.24.0-py3-none-any.whl", hash = "sha256:2f5fffc7ad8f1fd5aadb4e171ba9129d9668dbafa374732cf9511ada52d6547f"}, + {file = "ipykernel-6.24.0.tar.gz", hash = "sha256:29cea0a716b1176d002a61d0b0c851f34536495bc4ef7dd0222c88b41b816123"}, ] [package.dependencies] @@ -1252,14 +1253,14 @@ test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pa [[package]] name = "ipywidgets" -version = "8.0.6" +version = "8.0.7" description = "Jupyter interactive widgets" category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "ipywidgets-8.0.6-py3-none-any.whl", hash = "sha256:a60bf8d2528997e05ac83fd19ea2fbe65f2e79fbe1b2b35779bdfc46c2941dcc"}, - {file = "ipywidgets-8.0.6.tar.gz", hash = "sha256:de7d779f2045d60de9f6c25f653fdae2dba57898e6a1284494b3ba20b6893bb8"}, + {file = "ipywidgets-8.0.7-py3-none-any.whl", hash = "sha256:e0aed0c95a1e55b6a123f64305245578bdc09e52965a34941c2b6a578b8c64a0"}, + {file = "ipywidgets-8.0.7.tar.gz", hash = "sha256:50ace0a8886e9a0d68b980db82f94c25d55d21ff2340ed36f802dd9365e94acf"}, ] [package.dependencies] @@ -1289,32 +1290,32 @@ arrow = ">=0.15.0" [[package]] name = "jaraco-classes" -version = "3.2.3" +version = "3.3.0" description = "Utility functions for Python class constructs" category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "jaraco.classes-3.2.3-py3-none-any.whl", hash = "sha256:2353de3288bc6b82120752201c6b1c1a14b058267fa424ed5ce5984e3b922158"}, - {file = "jaraco.classes-3.2.3.tar.gz", hash = "sha256:89559fa5c1d3c34eff6f631ad80bb21f378dbcbb35dd161fd2c6b93f5be2f98a"}, + {file = "jaraco.classes-3.3.0-py3-none-any.whl", hash = "sha256:10afa92b6743f25c0cf5f37c6bb6e18e2c5bb84a16527ccfc0040ea377e7aaeb"}, + {file = "jaraco.classes-3.3.0.tar.gz", hash = "sha256:c063dd08e89217cee02c8d5e5ec560f2c8ce6cdc2fcdc2e68f7b2e5547ed3621"}, ] [package.dependencies] more-itertools = "*" [package.extras] -docs = ["jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)"] -testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-ruff"] [[package]] name = "jax" -version = "0.4.12" +version = "0.4.13" description = "Differentiate, compile, and transform Numpy code." category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "jax-0.4.12.tar.gz", hash = "sha256:d2de9a2388ffe002f16506d3ad1cc6e34d7536b98948e49c7e05bbcfe8e57998"}, + {file = "jax-0.4.13.tar.gz", hash = "sha256:03bfe6749dfe647f16f15f6616638adae6c4a7ca7167c75c21961ecfd3a3baaa"}, ] [package.dependencies] @@ -1326,38 +1327,40 @@ scipy = ">=1.7" [package.extras] australis = ["protobuf (>=3.13,<4)"] -ci = ["jaxlib (==0.4.11)"] -cpu = ["jaxlib (==0.4.12)"] -cuda = ["jaxlib (==0.4.12+cuda11.cudnn86)"] -cuda11-cudnn82 = ["jaxlib (==0.4.12+cuda11.cudnn82)"] -cuda11-cudnn86 = ["jaxlib (==0.4.12+cuda11.cudnn86)"] -cuda11-local = ["jaxlib (==0.4.12+cuda11.cudnn86)"] -cuda11-pip = ["jaxlib (==0.4.12+cuda11.cudnn86)", "nvidia-cublas-cu11 (>=11.11)", "nvidia-cuda-cupti-cu11 (>=11.8)", "nvidia-cuda-nvcc-cu11 (>=11.8)", "nvidia-cuda-runtime-cu11 (>=11.8)", "nvidia-cudnn-cu11 (>=8.8)", "nvidia-cufft-cu11 (>=10.9)", "nvidia-cusolver-cu11 (>=11.4)", "nvidia-cusparse-cu11 (>=11.7)"] -cuda12-local = ["jaxlib (==0.4.12+cuda12.cudnn88)"] -cuda12-pip = ["jaxlib (==0.4.12+cuda12.cudnn88)", "nvidia-cublas-cu12", "nvidia-cuda-cupti-cu12", "nvidia-cuda-nvcc-cu12", "nvidia-cuda-runtime-cu12", "nvidia-cudnn-cu12 (>=8.9)", "nvidia-cufft-cu12", "nvidia-cusolver-cu12", "nvidia-cusparse-cu12"] +ci = ["jaxlib (==0.4.12)"] +cpu = ["jaxlib (==0.4.13)"] +cuda = ["jaxlib (==0.4.13+cuda11.cudnn86)"] +cuda11-cudnn86 = ["jaxlib (==0.4.13+cuda11.cudnn86)"] +cuda11-local = ["jaxlib (==0.4.13+cuda11.cudnn86)"] +cuda11-pip = ["jaxlib (==0.4.13+cuda11.cudnn86)", "nvidia-cublas-cu11 (>=11.11)", "nvidia-cuda-cupti-cu11 (>=11.8)", "nvidia-cuda-nvcc-cu11 (>=11.8)", "nvidia-cuda-runtime-cu11 (>=11.8)", "nvidia-cudnn-cu11 (>=8.8)", "nvidia-cufft-cu11 (>=10.9)", "nvidia-cusolver-cu11 (>=11.4)", "nvidia-cusparse-cu11 (>=11.7)"] +cuda12-local = ["jaxlib (==0.4.13+cuda12.cudnn89)"] +cuda12-pip = ["jaxlib (==0.4.13+cuda12.cudnn89)", "nvidia-cublas-cu12", "nvidia-cuda-cupti-cu12", "nvidia-cuda-nvcc-cu12", "nvidia-cuda-runtime-cu12", "nvidia-cudnn-cu12 (>=8.9)", "nvidia-cufft-cu12", "nvidia-cusolver-cu12", "nvidia-cusparse-cu12"] minimum-jaxlib = ["jaxlib (==0.4.11)"] -tpu = ["jaxlib (==0.4.12)", "libtpu-nightly (==0.1.dev20230608)"] +tpu = ["jaxlib (==0.4.13)", "libtpu-nightly (==0.1.dev20230622)"] [[package]] name = "jaxlib" -version = "0.4.12" +version = "0.4.13" description = "XLA library for JAX" category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "jaxlib-0.4.12-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:238cd7d6fbf82f9224f5e5ab27c7ca774108b790bd5d33782657c1f211fe9797"}, - {file = "jaxlib-0.4.12-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3a983f0c1e300154a6e4bdfe1b8ef41e204f0e847f04ee2a3f4397f4749b792a"}, - {file = "jaxlib-0.4.12-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:f1e7f968c3fb337fc57ad4aa7ddcf63826950ade822c745230cb15b55d9b08b7"}, - {file = "jaxlib-0.4.12-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:1b6ecc95f7bafe2b2222b5ecefdf47f0f1ba323c2eb3036f312ec7c84f9fe7d2"}, - {file = "jaxlib-0.4.12-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:165dc6d377033458273144077973fa0c789b60efa2a4a83c69d5737b0a86b0bd"}, - {file = "jaxlib-0.4.12-cp311-cp311-manylinux2014_x86_64.whl", hash = "sha256:6ddfa506d2f9b02a6339ad1ad01bc92cb42300f0383614058a10e25a35f15878"}, - {file = "jaxlib-0.4.12-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:6d32fec5a334deab66bb22d4db4310559e82870cb1810449e26cea223314373b"}, - {file = "jaxlib-0.4.12-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e3bafd366a138a409c545c0969fbae5c7bd6d8286a0151448c26ce169dba7784"}, - {file = "jaxlib-0.4.12-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:13245bcbd652e61f8a86c5fabaaf27d949efd163aa3baac9542015cb7315bf6d"}, - {file = "jaxlib-0.4.12-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:abf561b9ef22e43efa5ad35a81761e7d84f5f00058f46514440662de4b948d44"}, - {file = "jaxlib-0.4.12-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:880b66e99741dfe2c79274d5700cf433f183c6e0779870030bcf1a36eb1c49e1"}, - {file = "jaxlib-0.4.12-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:b163cf61363da0fbd4baa36b75d9f922119db70b681f339b6322f40e0c86683c"}, + {file = "jaxlib-0.4.13-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:532ebc4fb11386282ad63b83941d4557f4038c1144acf026f1f8565f64c7e9c0"}, + {file = "jaxlib-0.4.13-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a259bb35429bfbd3b76e43019dfc8f7d6ea94bb217400b78f7d0824ce07a58ac"}, + {file = "jaxlib-0.4.13-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:ea1bc9811ef7d73a15e3213115e88fe7f5d14b59d95027bea9fccc98e5a14af8"}, + {file = "jaxlib-0.4.13-cp310-cp310-win_amd64.whl", hash = "sha256:fde66a93e9be89d99e5792f677ed8e319667d6b2396865b1c52c1312844c47f9"}, + {file = "jaxlib-0.4.13-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:49690fcdd26560515fd15399fc3a44777e0bfc5db5c48fe76ff7bc7228e8b2fb"}, + {file = "jaxlib-0.4.13-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f4e9e34e5d8a6556f62fead14aee0b1614c2c6296f0078d8e6139d6aff109649"}, + {file = "jaxlib-0.4.13-cp311-cp311-manylinux2014_x86_64.whl", hash = "sha256:8000c0d15c107328e8f7b7b3ac91dd822f5c287a80231882b620503ed141fa89"}, + {file = "jaxlib-0.4.13-cp311-cp311-win_amd64.whl", hash = "sha256:19ae4c316b17a49342432c69f7f89f190b975333f3f9e9e175f686a651bc7347"}, + {file = "jaxlib-0.4.13-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:522635d5e159401a386c79f1236c218c1f68fbb4ca6648115c3ad3c2c3f518ab"}, + {file = "jaxlib-0.4.13-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:411334d903df07dc1ace8d52fc53c17f6bc1d55aff7f6e0e5cf61ec149f758a0"}, + {file = "jaxlib-0.4.13-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:839173b2e9593f5e9a6d3c42852cd15070fe80a939246efbb5cf40eec815de89"}, + {file = "jaxlib-0.4.13-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:c230ef85712e608d0f048869766a5a63afeb2e72309943db0df9f959ab17307f"}, + {file = "jaxlib-0.4.13-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d19c05c15f962e098d49b45e2758aacf19330d192ec5395f9ef136f62db90edc"}, + {file = "jaxlib-0.4.13-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:b5c0a9737efd95fe18fd7715ce30dfce476546705ea8934aad6731777a9631a5"}, + {file = "jaxlib-0.4.13-cp39-cp39-win_amd64.whl", hash = "sha256:bebb4cf001f180dc431f9604daf930c2d9cc778e4dda26f401ac939b7bac912e"}, ] [package.dependencies] @@ -1458,39 +1461,41 @@ dev = ["hypothesis"] [[package]] name = "jsonpointer" -version = "2.3" +version = "2.4" description = "Identify specific nodes in a JSON document (RFC 6901)" category = "dev" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" files = [ - {file = "jsonpointer-2.3-py2.py3-none-any.whl", hash = "sha256:51801e558539b4e9cd268638c078c6c5746c9ac96bc38152d443400e4f3793e9"}, - {file = "jsonpointer-2.3.tar.gz", hash = "sha256:97cba51526c829282218feb99dab1b1e6bdf8efd1c43dc9d57be093c0d69c99a"}, + {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"}, + {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"}, ] [[package]] name = "jsonschema" -version = "4.17.3" +version = "4.18.4" description = "An implementation of JSON Schema validation for Python" category = "dev" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "jsonschema-4.17.3-py3-none-any.whl", hash = "sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"}, - {file = "jsonschema-4.17.3.tar.gz", hash = "sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d"}, + {file = "jsonschema-4.18.4-py3-none-any.whl", hash = "sha256:971be834317c22daaa9132340a51c01b50910724082c2c1a2ac87eeec153a3fe"}, + {file = "jsonschema-4.18.4.tar.gz", hash = "sha256:fb3642735399fa958c0d2aad7057901554596c63349f4f6b283c493cf692a25d"}, ] [package.dependencies] -attrs = ">=17.4.0" +attrs = ">=22.2.0" fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} +jsonschema-specifications = ">=2023.03.6" pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} -pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" +referencing = ">=0.28.4" rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} +rpds-py = ">=0.7.1" uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-nongpl\""} @@ -1498,6 +1503,22 @@ webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-n format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] +[[package]] +name = "jsonschema-specifications" +version = "2023.7.1" +description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" +category = "dev" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jsonschema_specifications-2023.7.1-py3-none-any.whl", hash = "sha256:05adf340b659828a004220a9613be00fa3f223f2b82002e273dee62fd50524b1"}, + {file = "jsonschema_specifications-2023.7.1.tar.gz", hash = "sha256:c91a50404e88a1f6ba40636778e2ee08f6e24c5613fe4c53ac24578a5a7f72bb"}, +] + +[package.dependencies] +importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} +referencing = ">=0.28.0" + [[package]] name = "jupyter-cache" version = "0.6.1" @@ -1528,14 +1549,14 @@ testing = ["coverage", "ipykernel", "jupytext", "matplotlib", "nbdime", "nbforma [[package]] name = "jupyter-client" -version = "8.2.0" +version = "8.3.0" description = "Jupyter protocol implementation and client libraries" category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.2.0-py3-none-any.whl", hash = "sha256:b18219aa695d39e2ad570533e0d71fb7881d35a873051054a84ee2a17c4b7389"}, - {file = "jupyter_client-8.2.0.tar.gz", hash = "sha256:9fe233834edd0e6c0aa5f05ca2ab4bdea1842bfd2d8a932878212fc5301ddaf0"}, + {file = "jupyter_client-8.3.0-py3-none-any.whl", hash = "sha256:7441af0c0672edc5d28035e92ba5e32fadcfa8a4e608a434c228836a89df6158"}, + {file = "jupyter_client-8.3.0.tar.gz", hash = "sha256:3af69921fe99617be1670399a0b857ad67275eefcfa291e2c81a160b7b650f5f"}, ] [package.dependencies] @@ -1614,14 +1635,14 @@ jupyter-server = ">=1.1.2" [[package]] name = "jupyter-server" -version = "2.6.0" +version = "2.7.0" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_server-2.6.0-py3-none-any.whl", hash = "sha256:19525a1515b5999618a91b3e99ec9f6869aa8c5ba73e0b6279fcda918b54ba36"}, - {file = "jupyter_server-2.6.0.tar.gz", hash = "sha256:ae4af349f030ed08dd78cb7ac1a03a92d886000380c9ea6283f3c542a81f4b06"}, + {file = "jupyter_server-2.7.0-py3-none-any.whl", hash = "sha256:6a77912aff643e53fa14bdb2634884b52b784a4be77ce8e93f7283faed0f0849"}, + {file = "jupyter_server-2.7.0.tar.gz", hash = "sha256:36da0a266d31a41ac335a366c88933c17dfa5bb817a48f5c02c16d303bc9477f"}, ] [package.dependencies] @@ -1647,7 +1668,7 @@ websocket-client = "*" [package.extras] docs = ["ipykernel", "jinja2", "jupyter-client", "jupyter-server", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] -test = ["ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.4)", "pytest-timeout", "requests"] +test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.4)", "pytest-timeout", "requests"] [[package]] name = "jupyter-server-terminals" @@ -1671,14 +1692,14 @@ test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", [[package]] name = "jupyterlab" -version = "4.0.2" +version = "4.0.3" description = "JupyterLab computational environment" category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "jupyterlab-4.0.2-py3-none-any.whl", hash = "sha256:201b4f729a7dc5e22ca6c4dd8944cde792f1cb008d7c6b821e0a48d2502205c8"}, - {file = "jupyterlab-4.0.2.tar.gz", hash = "sha256:0a77898aebb55da391e5f57022774c089fb075e98803ff3d514a79b727dc934d"}, + {file = "jupyterlab-4.0.3-py3-none-any.whl", hash = "sha256:d369944391b1d15f2d1f3cb965fb67352956279b2ae6f03ce7947a43940a8301"}, + {file = "jupyterlab-4.0.3.tar.gz", hash = "sha256:e14d1ce46a613028111d0d476a1d7d6b094003b7462bac669f5b478317abcb39"}, ] [package.dependencies] @@ -1744,26 +1765,26 @@ test = ["hatch", "ipykernel", "jupyterlab-server[openapi]", "openapi-spec-valida [[package]] name = "jupyterlab-widgets" -version = "3.0.7" +version = "3.0.8" description = "Jupyter interactive widgets for JupyterLab" category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "jupyterlab_widgets-3.0.7-py3-none-any.whl", hash = "sha256:c73f8370338ec19f1bec47254752d6505b03601cbd5a67e6a0b184532f73a459"}, - {file = "jupyterlab_widgets-3.0.7.tar.gz", hash = "sha256:c3a50ed5bf528a0c7a869096503af54702f86dda1db469aee1c92dc0c01b43ca"}, + {file = "jupyterlab_widgets-3.0.8-py3-none-any.whl", hash = "sha256:4715912d6ceab839c9db35953c764b3214ebbc9161c809f6e0510168845dfdf5"}, + {file = "jupyterlab_widgets-3.0.8.tar.gz", hash = "sha256:d428ab97b8d87cc7c54cbf37644d6e0f0e662f23876e05fa460a73ec3257252a"}, ] [[package]] name = "keyring" -version = "23.13.1" +version = "24.2.0" description = "Store and access your passwords safely." category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "keyring-23.13.1-py3-none-any.whl", hash = "sha256:771ed2a91909389ed6148631de678f82ddc73737d85a927f382a8a1b157898cd"}, - {file = "keyring-23.13.1.tar.gz", hash = "sha256:ba2e15a9b35e21908d0aaf4e0a47acc52d6ae33444df0da2b49d41a46ef6d678"}, + {file = "keyring-24.2.0-py3-none-any.whl", hash = "sha256:4901caaf597bfd3bbd78c9a0c7c4c29fcd8310dab2cffefe749e916b6527acd6"}, + {file = "keyring-24.2.0.tar.gz", hash = "sha256:ca0746a19ec421219f4d713f848fa297a661a8a8c1504867e55bfb5e09091509"}, ] [package.dependencies] @@ -1776,8 +1797,8 @@ SecretStorage = {version = ">=3.2", markers = "sys_platform == \"linux\""} [package.extras] completion = ["shtab"] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)"] -testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] +docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-mypy (>=0.9.1)", "pytest-ruff"] [[package]] name = "kiwisolver" @@ -1859,19 +1880,19 @@ files = [ [[package]] name = "lazy-loader" -version = "0.2" +version = "0.3" description = "lazy_loader" category = "main" optional = false python-versions = ">=3.7" files = [ - {file = "lazy_loader-0.2-py3-none-any.whl", hash = "sha256:c35875f815c340f823ce3271ed645045397213f961b40ad0c0d395c3f5218eeb"}, - {file = "lazy_loader-0.2.tar.gz", hash = "sha256:0edc7a5175c400acb108f283749951fefdadedeb00adcec6e88b974a9254f18a"}, + {file = "lazy_loader-0.3-py3-none-any.whl", hash = "sha256:1e9e76ee8631e264c62ce10006718e80b2cfc74340d17d1031e0f84af7478554"}, + {file = "lazy_loader-0.3.tar.gz", hash = "sha256:3b68898e34f5b2a29daaaac172c6555512d0f32074f147e2254e4a6d9d838f37"}, ] [package.extras] -lint = ["pre-commit (>=3.1)"] -test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] +lint = ["pre-commit (>=3.3)"] +test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"] [[package]] name = "markdown-it-py" @@ -1960,53 +1981,53 @@ files = [ [[package]] name = "matplotlib" -version = "3.7.1" +version = "3.7.2" description = "Python plotting package" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "matplotlib-3.7.1-cp310-cp310-macosx_10_12_universal2.whl", hash = "sha256:95cbc13c1fc6844ab8812a525bbc237fa1470863ff3dace7352e910519e194b1"}, - {file = "matplotlib-3.7.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:08308bae9e91aca1ec6fd6dda66237eef9f6294ddb17f0d0b3c863169bf82353"}, - {file = "matplotlib-3.7.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:544764ba51900da4639c0f983b323d288f94f65f4024dc40ecb1542d74dc0500"}, - {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56d94989191de3fcc4e002f93f7f1be5da476385dde410ddafbb70686acf00ea"}, - {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e99bc9e65901bb9a7ce5e7bb24af03675cbd7c70b30ac670aa263240635999a4"}, - {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb7d248c34a341cd4c31a06fd34d64306624c8cd8d0def7abb08792a5abfd556"}, - {file = "matplotlib-3.7.1-cp310-cp310-win32.whl", hash = "sha256:ce463ce590f3825b52e9fe5c19a3c6a69fd7675a39d589e8b5fbe772272b3a24"}, - {file = "matplotlib-3.7.1-cp310-cp310-win_amd64.whl", hash = "sha256:3d7bc90727351fb841e4d8ae620d2d86d8ed92b50473cd2b42ce9186104ecbba"}, - {file = "matplotlib-3.7.1-cp311-cp311-macosx_10_12_universal2.whl", hash = "sha256:770a205966d641627fd5cf9d3cb4b6280a716522cd36b8b284a8eb1581310f61"}, - {file = "matplotlib-3.7.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f67bfdb83a8232cb7a92b869f9355d677bce24485c460b19d01970b64b2ed476"}, - {file = "matplotlib-3.7.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2bf092f9210e105f414a043b92af583c98f50050559616930d884387d0772aba"}, - {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89768d84187f31717349c6bfadc0e0d8c321e8eb34522acec8a67b1236a66332"}, - {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:83111e6388dec67822e2534e13b243cc644c7494a4bb60584edbff91585a83c6"}, - {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a867bf73a7eb808ef2afbca03bcdb785dae09595fbe550e1bab0cd023eba3de0"}, - {file = "matplotlib-3.7.1-cp311-cp311-win32.whl", hash = "sha256:fbdeeb58c0cf0595efe89c05c224e0a502d1aa6a8696e68a73c3efc6bc354304"}, - {file = "matplotlib-3.7.1-cp311-cp311-win_amd64.whl", hash = "sha256:c0bd19c72ae53e6ab979f0ac6a3fafceb02d2ecafa023c5cca47acd934d10be7"}, - {file = "matplotlib-3.7.1-cp38-cp38-macosx_10_12_universal2.whl", hash = "sha256:6eb88d87cb2c49af00d3bbc33a003f89fd9f78d318848da029383bfc08ecfbfb"}, - {file = "matplotlib-3.7.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:cf0e4f727534b7b1457898c4f4ae838af1ef87c359b76dcd5330fa31893a3ac7"}, - {file = "matplotlib-3.7.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:46a561d23b91f30bccfd25429c3c706afe7d73a5cc64ef2dfaf2b2ac47c1a5dc"}, - {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8704726d33e9aa8a6d5215044b8d00804561971163563e6e6591f9dcf64340cc"}, - {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4cf327e98ecf08fcbb82685acaf1939d3338548620ab8dfa02828706402c34de"}, - {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:617f14ae9d53292ece33f45cba8503494ee199a75b44de7717964f70637a36aa"}, - {file = "matplotlib-3.7.1-cp38-cp38-win32.whl", hash = "sha256:7c9a4b2da6fac77bcc41b1ea95fadb314e92508bf5493ceff058e727e7ecf5b0"}, - {file = "matplotlib-3.7.1-cp38-cp38-win_amd64.whl", hash = "sha256:14645aad967684e92fc349493fa10c08a6da514b3d03a5931a1bac26e6792bd1"}, - {file = "matplotlib-3.7.1-cp39-cp39-macosx_10_12_universal2.whl", hash = "sha256:81a6b377ea444336538638d31fdb39af6be1a043ca5e343fe18d0f17e098770b"}, - {file = "matplotlib-3.7.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:28506a03bd7f3fe59cd3cd4ceb2a8d8a2b1db41afede01f66c42561b9be7b4b7"}, - {file = "matplotlib-3.7.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8c587963b85ce41e0a8af53b9b2de8dddbf5ece4c34553f7bd9d066148dc719c"}, - {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8bf26ade3ff0f27668989d98c8435ce9327d24cffb7f07d24ef609e33d582439"}, - {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:def58098f96a05f90af7e92fd127d21a287068202aa43b2a93476170ebd99e87"}, - {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f883a22a56a84dba3b588696a2b8a1ab0d2c3d41be53264115c71b0a942d8fdb"}, - {file = "matplotlib-3.7.1-cp39-cp39-win32.whl", hash = "sha256:4f99e1b234c30c1e9714610eb0c6d2f11809c9c78c984a613ae539ea2ad2eb4b"}, - {file = "matplotlib-3.7.1-cp39-cp39-win_amd64.whl", hash = "sha256:3ba2af245e36990facf67fde840a760128ddd71210b2ab6406e640188d69d136"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3032884084f541163f295db8a6536e0abb0db464008fadca6c98aaf84ccf4717"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a2cb34336110e0ed8bb4f650e817eed61fa064acbefeb3591f1b33e3a84fd96"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b867e2f952ed592237a1828f027d332d8ee219ad722345b79a001f49df0936eb"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:57bfb8c8ea253be947ccb2bc2d1bb3862c2bccc662ad1b4626e1f5e004557042"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:438196cdf5dc8d39b50a45cb6e3f6274edbcf2254f85fa9b895bf85851c3a613"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:21e9cff1a58d42e74d01153360de92b326708fb205250150018a52c70f43c290"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75d4725d70b7c03e082bbb8a34639ede17f333d7247f56caceb3801cb6ff703d"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:97cc368a7268141afb5690760921765ed34867ffb9655dd325ed207af85c7529"}, - {file = "matplotlib-3.7.1.tar.gz", hash = "sha256:7b73305f25eab4541bd7ee0b96d87e53ae9c9f1823be5659b806cd85786fe882"}, + {file = "matplotlib-3.7.2-cp310-cp310-macosx_10_12_universal2.whl", hash = "sha256:2699f7e73a76d4c110f4f25be9d2496d6ab4f17345307738557d345f099e07de"}, + {file = "matplotlib-3.7.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:a8035ba590658bae7562786c9cc6ea1a84aa49d3afab157e414c9e2ea74f496d"}, + {file = "matplotlib-3.7.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2f8e4a49493add46ad4a8c92f63e19d548b2b6ebbed75c6b4c7f46f57d36cdd1"}, + {file = "matplotlib-3.7.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71667eb2ccca4c3537d9414b1bc00554cb7f91527c17ee4ec38027201f8f1603"}, + {file = "matplotlib-3.7.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:152ee0b569a37630d8628534c628456b28686e085d51394da6b71ef84c4da201"}, + {file = "matplotlib-3.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:070f8dddd1f5939e60aacb8fa08f19551f4b0140fab16a3669d5cd6e9cb28fc8"}, + {file = "matplotlib-3.7.2-cp310-cp310-win32.whl", hash = "sha256:fdbb46fad4fb47443b5b8ac76904b2e7a66556844f33370861b4788db0f8816a"}, + {file = "matplotlib-3.7.2-cp310-cp310-win_amd64.whl", hash = "sha256:23fb1750934e5f0128f9423db27c474aa32534cec21f7b2153262b066a581fd1"}, + {file = "matplotlib-3.7.2-cp311-cp311-macosx_10_12_universal2.whl", hash = "sha256:30e1409b857aa8a747c5d4f85f63a79e479835f8dffc52992ac1f3f25837b544"}, + {file = "matplotlib-3.7.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:50e0a55ec74bf2d7a0ebf50ac580a209582c2dd0f7ab51bc270f1b4a0027454e"}, + {file = "matplotlib-3.7.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ac60daa1dc83e8821eed155796b0f7888b6b916cf61d620a4ddd8200ac70cd64"}, + {file = "matplotlib-3.7.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:305e3da477dc8607336ba10bac96986d6308d614706cae2efe7d3ffa60465b24"}, + {file = "matplotlib-3.7.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c308b255efb9b06b23874236ec0f10f026673ad6515f602027cc8ac7805352d"}, + {file = "matplotlib-3.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60c521e21031632aa0d87ca5ba0c1c05f3daacadb34c093585a0be6780f698e4"}, + {file = "matplotlib-3.7.2-cp311-cp311-win32.whl", hash = "sha256:26bede320d77e469fdf1bde212de0ec889169b04f7f1179b8930d66f82b30cbc"}, + {file = "matplotlib-3.7.2-cp311-cp311-win_amd64.whl", hash = "sha256:af4860132c8c05261a5f5f8467f1b269bf1c7c23902d75f2be57c4a7f2394b3e"}, + {file = "matplotlib-3.7.2-cp38-cp38-macosx_10_12_universal2.whl", hash = "sha256:a1733b8e84e7e40a9853e505fe68cc54339f97273bdfe6f3ed980095f769ddc7"}, + {file = "matplotlib-3.7.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d9881356dc48e58910c53af82b57183879129fa30492be69058c5b0d9fddf391"}, + {file = "matplotlib-3.7.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f081c03f413f59390a80b3e351cc2b2ea0205839714dbc364519bcf51f4b56ca"}, + {file = "matplotlib-3.7.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1cd120fca3407a225168238b790bd5c528f0fafde6172b140a2f3ab7a4ea63e9"}, + {file = "matplotlib-3.7.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a2c1590b90aa7bd741b54c62b78de05d4186271e34e2377e0289d943b3522273"}, + {file = "matplotlib-3.7.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d2ff3c984b8a569bc1383cd468fc06b70d7b59d5c2854ca39f1436ae8394117"}, + {file = "matplotlib-3.7.2-cp38-cp38-win32.whl", hash = "sha256:5dea00b62d28654b71ca92463656d80646675628d0828e08a5f3b57e12869e13"}, + {file = "matplotlib-3.7.2-cp38-cp38-win_amd64.whl", hash = "sha256:0f506a1776ee94f9e131af1ac6efa6e5bc7cb606a3e389b0ccb6e657f60bb676"}, + {file = "matplotlib-3.7.2-cp39-cp39-macosx_10_12_universal2.whl", hash = "sha256:6515e878f91894c2e4340d81f0911857998ccaf04dbc1bba781e3d89cbf70608"}, + {file = "matplotlib-3.7.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:71f7a8c6b124e904db550f5b9fe483d28b896d4135e45c4ea381ad3b8a0e3256"}, + {file = "matplotlib-3.7.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:12f01b92ecd518e0697da4d97d163b2b3aa55eb3eb4e2c98235b3396d7dad55f"}, + {file = "matplotlib-3.7.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7e28d6396563955f7af437894a36bf2b279462239a41028323e04b85179058b"}, + {file = "matplotlib-3.7.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbcf59334ff645e6a67cd5f78b4b2cdb76384cdf587fa0d2dc85f634a72e1a3e"}, + {file = "matplotlib-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:318c89edde72ff95d8df67d82aca03861240512994a597a435a1011ba18dbc7f"}, + {file = "matplotlib-3.7.2-cp39-cp39-win32.whl", hash = "sha256:ce55289d5659b5b12b3db4dc9b7075b70cef5631e56530f14b2945e8836f2d20"}, + {file = "matplotlib-3.7.2-cp39-cp39-win_amd64.whl", hash = "sha256:2ecb5be2b2815431c81dc115667e33da0f5a1bcf6143980d180d09a717c4a12e"}, + {file = "matplotlib-3.7.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:fdcd28360dbb6203fb5219b1a5658df226ac9bebc2542a9e8f457de959d713d0"}, + {file = "matplotlib-3.7.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0c3cca3e842b11b55b52c6fb8bd6a4088693829acbfcdb3e815fa9b7d5c92c1b"}, + {file = "matplotlib-3.7.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ebf577c7a6744e9e1bd3fee45fc74a02710b214f94e2bde344912d85e0c9af7c"}, + {file = "matplotlib-3.7.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:936bba394682049919dda062d33435b3be211dc3dcaa011e09634f060ec878b2"}, + {file = "matplotlib-3.7.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bc221ffbc2150458b1cd71cdd9ddd5bb37962b036e41b8be258280b5b01da1dd"}, + {file = "matplotlib-3.7.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35d74ebdb3f71f112b36c2629cf32323adfbf42679e2751252acd468f5001c07"}, + {file = "matplotlib-3.7.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:717157e61b3a71d3d26ad4e1770dc85156c9af435659a25ee6407dc866cb258d"}, + {file = "matplotlib-3.7.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:20f844d6be031948148ba49605c8b96dfe7d3711d1b63592830d650622458c11"}, + {file = "matplotlib-3.7.2.tar.gz", hash = "sha256:a8cdb91dddb04436bd2f098b8fdf4b81352e68cf4d2c6756fcc414791076569b"}, ] [package.dependencies] @@ -2018,7 +2039,7 @@ kiwisolver = ">=1.0.1" numpy = ">=1.20" packaging = ">=20.0" pillow = ">=6.2.0" -pyparsing = ">=2.3.1" +pyparsing = ">=2.3.1,<3.1" python-dateutil = ">=2.7" [[package]] @@ -2070,14 +2091,14 @@ files = [ [[package]] name = "mistune" -version = "2.0.5" -description = "A sane Markdown parser with useful plugins and renderers" +version = "3.0.1" +description = "A sane and fast Markdown parser with useful plugins and renderers" category = "dev" optional = false -python-versions = "*" +python-versions = ">=3.7" files = [ - {file = "mistune-2.0.5-py2.py3-none-any.whl", hash = "sha256:bad7f5d431886fcbaf5f758118ecff70d31f75231b34024a1341120340a65ce8"}, - {file = "mistune-2.0.5.tar.gz", hash = "sha256:0246113cb2492db875c6be56974a7c893333bf26cd92891c85f63151cee09d34"}, + {file = "mistune-3.0.1-py3-none-any.whl", hash = "sha256:b9b3e438efbb57c62b5beb5e134dab664800bdf1284a7ee09e8b12b13eb1aac6"}, + {file = "mistune-3.0.1.tar.gz", hash = "sha256:e912116c13aa0944f9dc530db38eb88f6a77087ab128f49f84a48f4c05ea163c"}, ] [[package]] @@ -2249,14 +2270,14 @@ test = ["flaky", "ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "p [[package]] name = "nbconvert" -version = "7.5.0" +version = "7.7.1" description = "Converting Jupyter Notebooks" category = "dev" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "nbconvert-7.5.0-py3-none-any.whl", hash = "sha256:852e44392d5650ef217a5ce3a8050747051d4e6ba75f0574cb5435049ee6c0d9"}, - {file = "nbconvert-7.5.0.tar.gz", hash = "sha256:f78fd22fd2410b960d5d9bcecf3e1d6c7bdc5fec2c865964c84aa4e74e6e88da"}, + {file = "nbconvert-7.7.1-py3-none-any.whl", hash = "sha256:c99158a98e2bd32c4877de425f008e149af28f4fffbcc8a898086dd83109c1de"}, + {file = "nbconvert-7.7.1.tar.gz", hash = "sha256:b820b206bd16898d39198a732dac6fb7019e82a44a282f606d931b8113240295"}, ] [package.dependencies] @@ -2268,7 +2289,7 @@ jinja2 = ">=3.0" jupyter-core = ">=4.7" jupyterlab-pygments = "*" markupsafe = ">=2.0" -mistune = ">=2.0.3,<3" +mistune = ">=2.0.3,<4" nbclient = ">=0.5.0" nbformat = ">=5.7" packaging = "*" @@ -2283,19 +2304,19 @@ docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sp qtpdf = ["nbconvert[qtpng]"] qtpng = ["pyqtwebengine (>=5.15)"] serve = ["tornado (>=6.1)"] -test = ["ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"] -webpdf = ["pyppeteer (>=1,<1.1)"] +test = ["flaky", "ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"] +webpdf = ["playwright"] [[package]] name = "nbformat" -version = "5.9.0" +version = "5.9.1" description = "The Jupyter Notebook format" category = "dev" optional = false python-versions = ">=3.8" files = [ - {file = "nbformat-5.9.0-py3-none-any.whl", hash = "sha256:8c8fa16d6d05062c26177754bfbfac22de644888e2ef69d27ad2a334cf2576e5"}, - {file = "nbformat-5.9.0.tar.gz", hash = "sha256:e98ebb6120c3efbafdee2a40af2a140cadee90bb06dd69a2a63d9551fcc7f976"}, + {file = "nbformat-5.9.1-py3-none-any.whl", hash = "sha256:b7968ebf4811178a4108ee837eae1442e3f054132100f0359219e9ed1ce3ca45"}, + {file = "nbformat-5.9.1.tar.gz", hash = "sha256:3a7f52d040639cbd8a3890218c8b0ffb93211588c57446c90095e32ba5881b5d"}, ] [package.dependencies] @@ -2359,40 +2380,40 @@ test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync" [[package]] name = "numpy" -version = "1.24.3" +version = "1.24.4" description = "Fundamental package for array computing in Python" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570"}, - {file = "numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7"}, - {file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463"}, - {file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6"}, - {file = "numpy-1.24.3-cp310-cp310-win32.whl", hash = "sha256:f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b"}, - {file = "numpy-1.24.3-cp310-cp310-win_amd64.whl", hash = "sha256:ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7"}, - {file = "numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3"}, - {file = "numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf"}, - {file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385"}, - {file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950"}, - {file = "numpy-1.24.3-cp311-cp311-win32.whl", hash = "sha256:c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096"}, - {file = "numpy-1.24.3-cp311-cp311-win_amd64.whl", hash = "sha256:5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80"}, - {file = "numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078"}, - {file = "numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c"}, - {file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c"}, - {file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f"}, - {file = "numpy-1.24.3-cp38-cp38-win32.whl", hash = "sha256:d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4"}, - {file = "numpy-1.24.3-cp38-cp38-win_amd64.whl", hash = "sha256:56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289"}, - {file = "numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4"}, - {file = "numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187"}, - {file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02"}, - {file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4"}, - {file = "numpy-1.24.3-cp39-cp39-win32.whl", hash = "sha256:784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c"}, - {file = "numpy-1.24.3-cp39-cp39-win_amd64.whl", hash = "sha256:d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17"}, - {file = "numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0"}, - {file = "numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812"}, - {file = "numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4"}, - {file = "numpy-1.24.3.tar.gz", hash = "sha256:ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, + {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, + {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, + {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, + {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, + {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, + {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, + {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, + {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, + {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, ] [[package]] @@ -2440,37 +2461,37 @@ files = [ [[package]] name = "pandas" -version = "2.0.2" +version = "2.0.3" description = "Powerful data structures for data analysis, time series, and statistics" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "pandas-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ebb9f1c22ddb828e7fd017ea265a59d80461d5a79154b49a4207bd17514d122"}, - {file = "pandas-2.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1eb09a242184092f424b2edd06eb2b99d06dc07eeddff9929e8667d4ed44e181"}, - {file = "pandas-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7319b6e68de14e6209460f72a8d1ef13c09fb3d3ef6c37c1e65b35d50b5c145"}, - {file = "pandas-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd46bde7309088481b1cf9c58e3f0e204b9ff9e3244f441accd220dd3365ce7c"}, - {file = "pandas-2.0.2-cp310-cp310-win32.whl", hash = "sha256:51a93d422fbb1bd04b67639ba4b5368dffc26923f3ea32a275d2cc450f1d1c86"}, - {file = "pandas-2.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:66d00300f188fa5de73f92d5725ced162488f6dc6ad4cecfe4144ca29debe3b8"}, - {file = "pandas-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:02755de164da6827764ceb3bbc5f64b35cb12394b1024fdf88704d0fa06e0e2f"}, - {file = "pandas-2.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0a1e0576611641acde15c2322228d138258f236d14b749ad9af498ab69089e2d"}, - {file = "pandas-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6b5f14cd24a2ed06e14255ff40fe2ea0cfaef79a8dd68069b7ace74bd6acbba"}, - {file = "pandas-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50e451932b3011b61d2961b4185382c92cc8c6ee4658dcd4f320687bb2d000ee"}, - {file = "pandas-2.0.2-cp311-cp311-win32.whl", hash = "sha256:7b21cb72958fc49ad757685db1919021d99650d7aaba676576c9e88d3889d456"}, - {file = "pandas-2.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:c4af689352c4fe3d75b2834933ee9d0ccdbf5d7a8a7264f0ce9524e877820c08"}, - {file = "pandas-2.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:69167693cb8f9b3fc060956a5d0a0a8dbfed5f980d9fd2c306fb5b9c855c814c"}, - {file = "pandas-2.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:30a89d0fec4263ccbf96f68592fd668939481854d2ff9da709d32a047689393b"}, - {file = "pandas-2.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a18e5c72b989ff0f7197707ceddc99828320d0ca22ab50dd1b9e37db45b010c0"}, - {file = "pandas-2.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7376e13d28eb16752c398ca1d36ccfe52bf7e887067af9a0474de6331dd948d2"}, - {file = "pandas-2.0.2-cp38-cp38-win32.whl", hash = "sha256:6d6d10c2142d11d40d6e6c0a190b1f89f525bcf85564707e31b0a39e3b398e08"}, - {file = "pandas-2.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:e69140bc2d29a8556f55445c15f5794490852af3de0f609a24003ef174528b79"}, - {file = "pandas-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b42b120458636a981077cfcfa8568c031b3e8709701315e2bfa866324a83efa8"}, - {file = "pandas-2.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f908a77cbeef9bbd646bd4b81214cbef9ac3dda4181d5092a4aa9797d1bc7774"}, - {file = "pandas-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:713f2f70abcdade1ddd68fc91577cb090b3544b07ceba78a12f799355a13ee44"}, - {file = "pandas-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf3f0c361a4270185baa89ec7ab92ecaa355fe783791457077473f974f654df5"}, - {file = "pandas-2.0.2-cp39-cp39-win32.whl", hash = "sha256:598e9020d85a8cdbaa1815eb325a91cfff2bb2b23c1442549b8a3668e36f0f77"}, - {file = "pandas-2.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:77550c8909ebc23e56a89f91b40ad01b50c42cfbfab49b3393694a50549295ea"}, - {file = "pandas-2.0.2.tar.gz", hash = "sha256:dd5476b6c3fe410ee95926873f377b856dbc4e81a9c605a0dc05aaccc6a7c6c6"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, + {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, + {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, + {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, + {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, + {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, + {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, + {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, + {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, + {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, ] [package.dependencies] @@ -2484,7 +2505,7 @@ pytz = ">=2020.1" tzdata = ">=2022.1" [package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] +all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] aws = ["s3fs (>=2021.08.0)"] clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] @@ -2503,7 +2524,7 @@ plot = ["matplotlib (>=3.6.1)"] postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] spss = ["pyreadstat (>=1.1.2)"] sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] +test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] xml = ["lxml (>=4.6.3)"] [[package]] @@ -2615,78 +2636,68 @@ files = [ [[package]] name = "pillow" -version = "9.5.0" +version = "10.0.0" description = "Python Imaging Library (Fork)" category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "Pillow-9.5.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:ace6ca218308447b9077c14ea4ef381ba0b67ee78d64046b3f19cf4e1139ad16"}, - {file = "Pillow-9.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d3d403753c9d5adc04d4694d35cf0391f0f3d57c8e0030aac09d7678fa8030aa"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ba1b81ee69573fe7124881762bb4cd2e4b6ed9dd28c9c60a632902fe8db8b38"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe7e1c262d3392afcf5071df9afa574544f28eac825284596ac6db56e6d11062"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f36397bf3f7d7c6a3abdea815ecf6fd14e7fcd4418ab24bae01008d8d8ca15e"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:252a03f1bdddce077eff2354c3861bf437c892fb1832f75ce813ee94347aa9b5"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:85ec677246533e27770b0de5cf0f9d6e4ec0c212a1f89dfc941b64b21226009d"}, - {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b416f03d37d27290cb93597335a2f85ed446731200705b22bb927405320de903"}, - {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1781a624c229cb35a2ac31cc4a77e28cafc8900733a864870c49bfeedacd106a"}, - {file = "Pillow-9.5.0-cp310-cp310-win32.whl", hash = "sha256:8507eda3cd0608a1f94f58c64817e83ec12fa93a9436938b191b80d9e4c0fc44"}, - {file = "Pillow-9.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:d3c6b54e304c60c4181da1c9dadf83e4a54fd266a99c70ba646a9baa626819eb"}, - {file = "Pillow-9.5.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:7ec6f6ce99dab90b52da21cf0dc519e21095e332ff3b399a357c187b1a5eee32"}, - {file = "Pillow-9.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:560737e70cb9c6255d6dcba3de6578a9e2ec4b573659943a5e7e4af13f298f5c"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:96e88745a55b88a7c64fa49bceff363a1a27d9a64e04019c2281049444a571e3"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d9c206c29b46cfd343ea7cdfe1232443072bbb270d6a46f59c259460db76779a"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cfcc2c53c06f2ccb8976fb5c71d448bdd0a07d26d8e07e321c103416444c7ad1"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:a0f9bb6c80e6efcde93ffc51256d5cfb2155ff8f78292f074f60f9e70b942d99"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:8d935f924bbab8f0a9a28404422da8af4904e36d5c33fc6f677e4c4485515625"}, - {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fed1e1cf6a42577953abbe8e6cf2fe2f566daebde7c34724ec8803c4c0cda579"}, - {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c1170d6b195555644f0616fd6ed929dfcf6333b8675fcca044ae5ab110ded296"}, - {file = "Pillow-9.5.0-cp311-cp311-win32.whl", hash = "sha256:54f7102ad31a3de5666827526e248c3530b3a33539dbda27c6843d19d72644ec"}, - {file = "Pillow-9.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:cfa4561277f677ecf651e2b22dc43e8f5368b74a25a8f7d1d4a3a243e573f2d4"}, - {file = "Pillow-9.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:965e4a05ef364e7b973dd17fc765f42233415974d773e82144c9bbaaaea5d089"}, - {file = "Pillow-9.5.0-cp312-cp312-win32.whl", hash = "sha256:22baf0c3cf0c7f26e82d6e1adf118027afb325e703922c8dfc1d5d0156bb2eeb"}, - {file = "Pillow-9.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:432b975c009cf649420615388561c0ce7cc31ce9b2e374db659ee4f7d57a1f8b"}, - {file = "Pillow-9.5.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:5d4ebf8e1db4441a55c509c4baa7a0587a0210f7cd25fcfe74dbbce7a4bd1906"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:375f6e5ee9620a271acb6820b3d1e94ffa8e741c0601db4c0c4d3cb0a9c224bf"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99eb6cafb6ba90e436684e08dad8be1637efb71c4f2180ee6b8f940739406e78"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dfaaf10b6172697b9bceb9a3bd7b951819d1ca339a5ef294d1f1ac6d7f63270"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:763782b2e03e45e2c77d7779875f4432e25121ef002a41829d8868700d119392"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:35f6e77122a0c0762268216315bf239cf52b88865bba522999dc38f1c52b9b47"}, - {file = "Pillow-9.5.0-cp37-cp37m-win32.whl", hash = "sha256:aca1c196f407ec7cf04dcbb15d19a43c507a81f7ffc45b690899d6a76ac9fda7"}, - {file = "Pillow-9.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322724c0032af6692456cd6ed554bb85f8149214d97398bb80613b04e33769f6"}, - {file = "Pillow-9.5.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:a0aa9417994d91301056f3d0038af1199eb7adc86e646a36b9e050b06f526597"}, - {file = "Pillow-9.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f8286396b351785801a976b1e85ea88e937712ee2c3ac653710a4a57a8da5d9c"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c830a02caeb789633863b466b9de10c015bded434deb3ec87c768e53752ad22a"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbd359831c1657d69bb81f0db962905ee05e5e9451913b18b831febfe0519082"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8fc330c3370a81bbf3f88557097d1ea26cd8b019d6433aa59f71195f5ddebbf"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:7002d0797a3e4193c7cdee3198d7c14f92c0836d6b4a3f3046a64bd1ce8df2bf"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:229e2c79c00e85989a34b5981a2b67aa079fd08c903f0aaead522a1d68d79e51"}, - {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9adf58f5d64e474bed00d69bcd86ec4bcaa4123bfa70a65ce72e424bfb88ed96"}, - {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:662da1f3f89a302cc22faa9f14a262c2e3951f9dbc9617609a47521c69dd9f8f"}, - {file = "Pillow-9.5.0-cp38-cp38-win32.whl", hash = "sha256:6608ff3bf781eee0cd14d0901a2b9cc3d3834516532e3bd673a0a204dc8615fc"}, - {file = "Pillow-9.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:e49eb4e95ff6fd7c0c402508894b1ef0e01b99a44320ba7d8ecbabefddcc5569"}, - {file = "Pillow-9.5.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:482877592e927fd263028c105b36272398e3e1be3269efda09f6ba21fd83ec66"}, - {file = "Pillow-9.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3ded42b9ad70e5f1754fb7c2e2d6465a9c842e41d178f262e08b8c85ed8a1d8e"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c446d2245ba29820d405315083d55299a796695d747efceb5717a8b450324115"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aca1152d93dcc27dc55395604dcfc55bed5f25ef4c98716a928bacba90d33a3"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:608488bdcbdb4ba7837461442b90ea6f3079397ddc968c31265c1e056964f1ef"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:60037a8db8750e474af7ffc9faa9b5859e6c6d0a50e55c45576bf28be7419705"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:07999f5834bdc404c442146942a2ecadd1cb6292f5229f4ed3b31e0a108746b1"}, - {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a127ae76092974abfbfa38ca2d12cbeddcdeac0fb71f9627cc1135bedaf9d51a"}, - {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:489f8389261e5ed43ac8ff7b453162af39c3e8abd730af8363587ba64bb2e865"}, - {file = "Pillow-9.5.0-cp39-cp39-win32.whl", hash = "sha256:9b1af95c3a967bf1da94f253e56b6286b50af23392a886720f563c547e48e964"}, - {file = "Pillow-9.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:77165c4a5e7d5a284f10a6efaa39a0ae8ba839da344f20b111d62cc932fa4e5d"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:833b86a98e0ede388fa29363159c9b1a294b0905b5128baf01db683672f230f5"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaf305d6d40bd9632198c766fb64f0c1a83ca5b667f16c1e79e1661ab5060140"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0852ddb76d85f127c135b6dd1f0bb88dbb9ee990d2cd9aa9e28526c93e794fba"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:91ec6fe47b5eb5a9968c79ad9ed78c342b1f97a091677ba0e012701add857829"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cb841572862f629b99725ebaec3287fc6d275be9b14443ea746c1dd325053cbd"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:c380b27d041209b849ed246b111b7c166ba36d7933ec6e41175fd15ab9eb1572"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c9af5a3b406a50e313467e3565fc99929717f780164fe6fbb7704edba0cebbe"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5671583eab84af046a397d6d0ba25343c00cd50bce03787948e0fff01d4fd9b1"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:84a6f19ce086c1bf894644b43cd129702f781ba5751ca8572f08aa40ef0ab7b7"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1e7723bd90ef94eda669a3c2c19d549874dd5badaeefabefd26053304abe5799"}, - {file = "Pillow-9.5.0.tar.gz", hash = "sha256:bf548479d336726d7a0eceb6e767e179fbde37833ae42794602631a070d630f1"}, + {file = "Pillow-10.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1f62406a884ae75fb2f818694469519fb685cc7eaff05d3451a9ebe55c646891"}, + {file = "Pillow-10.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d5db32e2a6ccbb3d34d87c87b432959e0db29755727afb37290e10f6e8e62614"}, + {file = "Pillow-10.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edf4392b77bdc81f36e92d3a07a5cd072f90253197f4a52a55a8cec48a12483b"}, + {file = "Pillow-10.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:520f2a520dc040512699f20fa1c363eed506e94248d71f85412b625026f6142c"}, + {file = "Pillow-10.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:8c11160913e3dd06c8ffdb5f233a4f254cb449f4dfc0f8f4549eda9e542c93d1"}, + {file = "Pillow-10.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a74ba0c356aaa3bb8e3eb79606a87669e7ec6444be352870623025d75a14a2bf"}, + {file = "Pillow-10.0.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d5d0dae4cfd56969d23d94dc8e89fb6a217be461c69090768227beb8ed28c0a3"}, + {file = "Pillow-10.0.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:22c10cc517668d44b211717fd9775799ccec4124b9a7f7b3635fc5386e584992"}, + {file = "Pillow-10.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:dffe31a7f47b603318c609f378ebcd57f1554a3a6a8effbc59c3c69f804296de"}, + {file = "Pillow-10.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:9fb218c8a12e51d7ead2a7c9e101a04982237d4855716af2e9499306728fb485"}, + {file = "Pillow-10.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d35e3c8d9b1268cbf5d3670285feb3528f6680420eafe35cccc686b73c1e330f"}, + {file = "Pillow-10.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ed64f9ca2f0a95411e88a4efbd7a29e5ce2cea36072c53dd9d26d9c76f753b3"}, + {file = "Pillow-10.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b6eb5502f45a60a3f411c63187db83a3d3107887ad0d036c13ce836f8a36f1d"}, + {file = "Pillow-10.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:c1fbe7621c167ecaa38ad29643d77a9ce7311583761abf7836e1510c580bf3dd"}, + {file = "Pillow-10.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:cd25d2a9d2b36fcb318882481367956d2cf91329f6892fe5d385c346c0649629"}, + {file = "Pillow-10.0.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3b08d4cc24f471b2c8ca24ec060abf4bebc6b144cb89cba638c720546b1cf538"}, + {file = "Pillow-10.0.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d737a602fbd82afd892ca746392401b634e278cb65d55c4b7a8f48e9ef8d008d"}, + {file = "Pillow-10.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:3a82c40d706d9aa9734289740ce26460a11aeec2d9c79b7af87bb35f0073c12f"}, + {file = "Pillow-10.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:bc2ec7c7b5d66b8ec9ce9f720dbb5fa4bace0f545acd34870eff4a369b44bf37"}, + {file = "Pillow-10.0.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:d80cf684b541685fccdd84c485b31ce73fc5c9b5d7523bf1394ce134a60c6883"}, + {file = "Pillow-10.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:76de421f9c326da8f43d690110f0e79fe3ad1e54be811545d7d91898b4c8493e"}, + {file = "Pillow-10.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81ff539a12457809666fef6624684c008e00ff6bf455b4b89fd00a140eecd640"}, + {file = "Pillow-10.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce543ed15570eedbb85df19b0a1a7314a9c8141a36ce089c0a894adbfccb4568"}, + {file = "Pillow-10.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:685ac03cc4ed5ebc15ad5c23bc555d68a87777586d970c2c3e216619a5476223"}, + {file = "Pillow-10.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d72e2ecc68a942e8cf9739619b7f408cc7b272b279b56b2c83c6123fcfa5cdff"}, + {file = "Pillow-10.0.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d50b6aec14bc737742ca96e85d6d0a5f9bfbded018264b3b70ff9d8c33485551"}, + {file = "Pillow-10.0.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:00e65f5e822decd501e374b0650146063fbb30a7264b4d2744bdd7b913e0cab5"}, + {file = "Pillow-10.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:f31f9fdbfecb042d046f9d91270a0ba28368a723302786c0009ee9b9f1f60199"}, + {file = "Pillow-10.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:1ce91b6ec08d866b14413d3f0bbdea7e24dfdc8e59f562bb77bc3fe60b6144ca"}, + {file = "Pillow-10.0.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:349930d6e9c685c089284b013478d6f76e3a534e36ddfa912cde493f235372f3"}, + {file = "Pillow-10.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3a684105f7c32488f7153905a4e3015a3b6c7182e106fe3c37fbb5ef3e6994c3"}, + {file = "Pillow-10.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4f69b3700201b80bb82c3a97d5e9254084f6dd5fb5b16fc1a7b974260f89f43"}, + {file = "Pillow-10.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f07ea8d2f827d7d2a49ecf1639ec02d75ffd1b88dcc5b3a61bbb37a8759ad8d"}, + {file = "Pillow-10.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:040586f7d37b34547153fa383f7f9aed68b738992380ac911447bb78f2abe530"}, + {file = "Pillow-10.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:f88a0b92277de8e3ca715a0d79d68dc82807457dae3ab8699c758f07c20b3c51"}, + {file = "Pillow-10.0.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c7cf14a27b0d6adfaebb3ae4153f1e516df54e47e42dcc073d7b3d76111a8d86"}, + {file = "Pillow-10.0.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:3400aae60685b06bb96f99a21e1ada7bc7a413d5f49bce739828ecd9391bb8f7"}, + {file = "Pillow-10.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:dbc02381779d412145331789b40cc7b11fdf449e5d94f6bc0b080db0a56ea3f0"}, + {file = "Pillow-10.0.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:9211e7ad69d7c9401cfc0e23d49b69ca65ddd898976d660a2fa5904e3d7a9baa"}, + {file = "Pillow-10.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:faaf07ea35355b01a35cb442dd950d8f1bb5b040a7787791a535de13db15ed90"}, + {file = "Pillow-10.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9f72a021fbb792ce98306ffb0c348b3c9cb967dce0f12a49aa4c3d3fdefa967"}, + {file = "Pillow-10.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f7c16705f44e0504a3a2a14197c1f0b32a95731d251777dcb060aa83022cb2d"}, + {file = "Pillow-10.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:76edb0a1fa2b4745fb0c99fb9fb98f8b180a1bbceb8be49b087e0b21867e77d3"}, + {file = "Pillow-10.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:368ab3dfb5f49e312231b6f27b8820c823652b7cd29cfbd34090565a015e99ba"}, + {file = "Pillow-10.0.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:608bfdee0d57cf297d32bcbb3c728dc1da0907519d1784962c5f0c68bb93e5a3"}, + {file = "Pillow-10.0.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5c6e3df6bdd396749bafd45314871b3d0af81ff935b2d188385e970052091017"}, + {file = "Pillow-10.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:7be600823e4c8631b74e4a0d38384c73f680e6105a7d3c6824fcf226c178c7e6"}, + {file = "Pillow-10.0.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:92be919bbc9f7d09f7ae343c38f5bb21c973d2576c1d45600fce4b74bafa7ac0"}, + {file = "Pillow-10.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8182b523b2289f7c415f589118228d30ac8c355baa2f3194ced084dac2dbba"}, + {file = "Pillow-10.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:38250a349b6b390ee6047a62c086d3817ac69022c127f8a5dc058c31ccef17f3"}, + {file = "Pillow-10.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:88af2003543cc40c80f6fca01411892ec52b11021b3dc22ec3bc9d5afd1c5334"}, + {file = "Pillow-10.0.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:c189af0545965fa8d3b9613cfdb0cd37f9d71349e0f7750e1fd704648d475ed2"}, + {file = "Pillow-10.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce7b031a6fc11365970e6a5686d7ba8c63e4c1cf1ea143811acbb524295eabed"}, + {file = "Pillow-10.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:db24668940f82321e746773a4bc617bfac06ec831e5c88b643f91f122a785684"}, + {file = "Pillow-10.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:efe8c0681042536e0d06c11f48cebe759707c9e9abf880ee213541c5b46c5bf3"}, + {file = "Pillow-10.0.0.tar.gz", hash = "sha256:9c82b5b3e043c7af0d95792d0d20ccf68f61a1fec6b3530e718b688422727396"}, ] [package.extras] @@ -2707,14 +2718,14 @@ files = [ [[package]] name = "platformdirs" -version = "3.5.3" +version = "3.9.1" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "platformdirs-3.5.3-py3-none-any.whl", hash = "sha256:0ade98a4895e87dc51d47151f7d2ec290365a585151d97b4d8d6312ed6132fed"}, - {file = "platformdirs-3.5.3.tar.gz", hash = "sha256:e48fabd87db8f3a7df7150a4a5ea22c546ee8bc39bc2473244730d4b56d2cc4e"}, + {file = "platformdirs-3.9.1-py3-none-any.whl", hash = "sha256:ad8291ae0ae5072f66c16945166cb11c63394c7a3ad1b1bc9828ca3162da8c2f"}, + {file = "platformdirs-3.9.1.tar.gz", hash = "sha256:1b42b450ad933e981d56e59f1b97495428c9bd60698baab9f3eb3d00d5822421"}, ] [package.extras] @@ -2723,14 +2734,14 @@ test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.3.1)", "pytest- [[package]] name = "pluggy" -version = "1.0.0" +version = "1.2.0" description = "plugin and hook calling mechanisms for python" category = "main" optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "pluggy-1.0.0-py2.py3-none-any.whl", hash = "sha256:74134bbf457f031a36d68416e1509f34bd5ccc019f0bcc952c7b909d06b37bd3"}, - {file = "pluggy-1.0.0.tar.gz", hash = "sha256:4224373bacce55f955a878bf9cfa763c1e360858e330072059e10bad68531159"}, + {file = "pluggy-1.2.0-py3-none-any.whl", hash = "sha256:c2fd55a7d7a3863cba1a013e4e2414658b1d07b6bc57b3919e0c63c9abb99849"}, + {file = "pluggy-1.2.0.tar.gz", hash = "sha256:d12f0c4b579b15f5e054301bb226ee85eeeba08ffec228092f8defbaa3a4c4b3"}, ] [package.extras] @@ -2739,14 +2750,14 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "prometheus-client" -version = "0.17.0" +version = "0.17.1" description = "Python client for the Prometheus monitoring system." category = "dev" optional = false python-versions = ">=3.6" files = [ - {file = "prometheus_client-0.17.0-py3-none-any.whl", hash = "sha256:a77b708cf083f4d1a3fb3ce5c95b4afa32b9c521ae363354a4a910204ea095ce"}, - {file = "prometheus_client-0.17.0.tar.gz", hash = "sha256:9c3b26f1535945e85b8934fb374678d263137b78ef85f305b1156c7c881cd11b"}, + {file = "prometheus_client-0.17.1-py3-none-any.whl", hash = "sha256:e537f37160f6807b8202a6fc4764cdd19bac5480ddd3e0d463c3002b34462101"}, + {file = "prometheus_client-0.17.1.tar.gz", hash = "sha256:21e674f39831ae3f8acde238afd9a27a37d0d2fb5a28ea094f0ce25d2cbf2091"}, ] [package.extras] @@ -2754,14 +2765,14 @@ twisted = ["twisted"] [[package]] name = "prompt-toolkit" -version = "3.0.38" +version = "3.0.39" description = "Library for building powerful interactive command lines in Python" category = "main" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.38-py3-none-any.whl", hash = "sha256:45ea77a2f7c60418850331366c81cf6b5b9cf4c7fd34616f733c5427e6abbb1f"}, - {file = "prompt_toolkit-3.0.38.tar.gz", hash = "sha256:23ac5d50538a9a38c8bde05fecb47d0b403ecd0662857a86f886f798563d5b9b"}, + {file = "prompt_toolkit-3.0.39-py3-none-any.whl", hash = "sha256:9dffbe1d8acf91e3de75f3b544e4842382fc06c6babe903ac9acb74dc6e08d88"}, + {file = "prompt_toolkit-3.0.39.tar.gz", hash = "sha256:04505ade687dc26dc4284b1ad19a83be2f2afe83e7a828ace0c72f3a1df72aac"}, ] [package.dependencies] @@ -2947,53 +2958,16 @@ files = [ [package.extras] diagrams = ["jinja2", "railroad-diagrams"] -[[package]] -name = "pyrsistent" -version = "0.19.3" -description = "Persistent/Functional/Immutable data structures" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pyrsistent-0.19.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a"}, - {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64"}, - {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf"}, - {file = "pyrsistent-0.19.3-cp310-cp310-win32.whl", hash = "sha256:5a474fb80f5e0d6c9394d8db0fc19e90fa540b82ee52dba7d246a7791712f74a"}, - {file = "pyrsistent-0.19.3-cp310-cp310-win_amd64.whl", hash = "sha256:49c32f216c17148695ca0e02a5c521e28a4ee6c5089f97e34fe24163113722da"}, - {file = "pyrsistent-0.19.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f0774bf48631f3a20471dd7c5989657b639fd2d285b861237ea9e82c36a415a9"}, - {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab2204234c0ecd8b9368dbd6a53e83c3d4f3cab10ecaf6d0e772f456c442393"}, - {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e42296a09e83028b3476f7073fcb69ffebac0e66dbbfd1bd847d61f74db30f19"}, - {file = "pyrsistent-0.19.3-cp311-cp311-win32.whl", hash = "sha256:64220c429e42a7150f4bfd280f6f4bb2850f95956bde93c6fda1b70507af6ef3"}, - {file = "pyrsistent-0.19.3-cp311-cp311-win_amd64.whl", hash = "sha256:016ad1afadf318eb7911baa24b049909f7f3bb2c5b1ed7b6a8f21db21ea3faa8"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c4db1bd596fefd66b296a3d5d943c94f4fac5bcd13e99bffe2ba6a759d959a28"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aeda827381f5e5d65cced3024126529ddc4289d944f75e090572c77ceb19adbf"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42ac0b2f44607eb92ae88609eda931a4f0dfa03038c44c772e07f43e738bcac9"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-win32.whl", hash = "sha256:e8f2b814a3dc6225964fa03d8582c6e0b6650d68a232df41e3cc1b66a5d2f8d1"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c9bb60a40a0ab9aba40a59f68214eed5a29c6274c83b2cc206a359c4a89fa41b"}, - {file = "pyrsistent-0.19.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a2471f3f8693101975b1ff85ffd19bb7ca7dd7c38f8a81701f67d6b4f97b87d8"}, - {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc5d149f31706762c1f8bda2e8c4f8fead6e80312e3692619a75301d3dbb819a"}, - {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3311cb4237a341aa52ab8448c27e3a9931e2ee09561ad150ba94e4cfd3fc888c"}, - {file = "pyrsistent-0.19.3-cp38-cp38-win32.whl", hash = "sha256:f0e7c4b2f77593871e918be000b96c8107da48444d57005b6a6bc61fb4331b2c"}, - {file = "pyrsistent-0.19.3-cp38-cp38-win_amd64.whl", hash = "sha256:c147257a92374fde8498491f53ffa8f4822cd70c0d85037e09028e478cababb7"}, - {file = "pyrsistent-0.19.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b735e538f74ec31378f5a1e3886a26d2ca6351106b4dfde376a26fc32a044edc"}, - {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99abb85579e2165bd8522f0c0138864da97847875ecbd45f3e7e2af569bfc6f2"}, - {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a8cb235fa6d3fd7aae6a4f1429bbb1fec1577d978098da1252f0489937786f3"}, - {file = "pyrsistent-0.19.3-cp39-cp39-win32.whl", hash = "sha256:c74bed51f9b41c48366a286395c67f4e894374306b197e62810e0fdaf2364da2"}, - {file = "pyrsistent-0.19.3-cp39-cp39-win_amd64.whl", hash = "sha256:878433581fc23e906d947a6814336eee031a00e6defba224234169ae3d3d6a98"}, - {file = "pyrsistent-0.19.3-py3-none-any.whl", hash = "sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64"}, - {file = "pyrsistent-0.19.3.tar.gz", hash = "sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440"}, -] - [[package]] name = "pytest" -version = "7.3.2" +version = "7.4.0" description = "pytest: simple powerful testing with Python" category = "main" optional = false python-versions = ">=3.7" files = [ - {file = "pytest-7.3.2-py3-none-any.whl", hash = "sha256:cdcbd012c9312258922f8cd3f1b62a6580fdced17db6014896053d47cddf9295"}, - {file = "pytest-7.3.2.tar.gz", hash = "sha256:ee990a3cc55ba808b80795a79944756f315c67c12b56abd3ac993a7b8c17030b"}, + {file = "pytest-7.4.0-py3-none-any.whl", hash = "sha256:78bf16451a2eb8c7a2ea98e32dc119fd2aa758f1d5d66dbf0a59d69a3969df32"}, + {file = "pytest-7.4.0.tar.gz", hash = "sha256:b4bf8c45bd59934ed84001ad51e11b4ee40d40a1229d2c79f9c592b0a3f6bd8a"}, ] [package.dependencies] @@ -3131,80 +3105,79 @@ files = [ [[package]] name = "pywin32-ctypes" -version = "0.2.0" -description = "" +version = "0.2.2" +description = "A (partial) reimplementation of pywin32 using ctypes/cffi" category = "main" optional = false -python-versions = "*" +python-versions = ">=3.6" files = [ - {file = "pywin32-ctypes-0.2.0.tar.gz", hash = "sha256:24ffc3b341d457d48e8922352130cf2644024a4ff09762a2261fd34c36ee5942"}, - {file = "pywin32_ctypes-0.2.0-py2.py3-none-any.whl", hash = "sha256:9dc2d991b3479cc2df15930958b674a48a227d5361d413827a4cfd0b5876fc98"}, + {file = "pywin32-ctypes-0.2.2.tar.gz", hash = "sha256:3426e063bdd5fd4df74a14fa3cf80a0b42845a87e1d1e81f6549f9daec593a60"}, + {file = "pywin32_ctypes-0.2.2-py3-none-any.whl", hash = "sha256:bf490a1a709baf35d688fe0ecf980ed4de11d2b3e37b51e5442587a75d9957e7"}, ] [[package]] name = "pywinpty" -version = "2.0.10" +version = "2.0.11" description = "Pseudo terminal support for Windows from Python." category = "dev" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pywinpty-2.0.10-cp310-none-win_amd64.whl", hash = "sha256:4c7d06ad10f6e92bc850a467f26d98f4f30e73d2fe5926536308c6ae0566bc16"}, - {file = "pywinpty-2.0.10-cp311-none-win_amd64.whl", hash = "sha256:7ffbd66310b83e42028fc9df7746118978d94fba8c1ebf15a7c1275fdd80b28a"}, - {file = "pywinpty-2.0.10-cp37-none-win_amd64.whl", hash = "sha256:38cb924f2778b5751ef91a75febd114776b3af0ae411bc667be45dd84fc881d3"}, - {file = "pywinpty-2.0.10-cp38-none-win_amd64.whl", hash = "sha256:902d79444b29ad1833b8d5c3c9aabdfd428f4f068504430df18074007c8c0de8"}, - {file = "pywinpty-2.0.10-cp39-none-win_amd64.whl", hash = "sha256:3c46aef80dd50979aff93de199e4a00a8ee033ba7a03cadf0a91fed45f0c39d7"}, - {file = "pywinpty-2.0.10.tar.gz", hash = "sha256:cdbb5694cf8c7242c2ecfaca35c545d31fa5d5814c3d67a4e628f803f680ebea"}, + {file = "pywinpty-2.0.11-cp310-none-win_amd64.whl", hash = "sha256:452f10ac9ff8ab9151aa8cea9e491a9612a12250b1899278c6a56bc184afb47f"}, + {file = "pywinpty-2.0.11-cp311-none-win_amd64.whl", hash = "sha256:6701867d42aec1239bc0fedf49a336570eb60eb886e81763db77ea2b6c533cc3"}, + {file = "pywinpty-2.0.11-cp38-none-win_amd64.whl", hash = "sha256:0ffd287751ad871141dc9724de70ea21f7fc2ff1af50861e0d232cf70739d8c4"}, + {file = "pywinpty-2.0.11-cp39-none-win_amd64.whl", hash = "sha256:e4e7f023c28ca7aa8e1313e53ba80a4d10171fe27857b7e02f99882dfe3e8638"}, + {file = "pywinpty-2.0.11.tar.gz", hash = "sha256:e244cffe29a894876e2cd251306efd0d8d64abd5ada0a46150a4a71c0b9ad5c5"}, ] [[package]] name = "pyyaml" -version = "6.0" +version = "6.0.1" description = "YAML parser and emitter for Python" category = "main" optional = false python-versions = ">=3.6" files = [ - {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"}, - {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"}, - {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"}, - {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"}, - {file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"}, - {file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"}, - {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4"}, - {file = "PyYAML-6.0-cp36-cp36m-win32.whl", hash = "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293"}, - {file = "PyYAML-6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57"}, - {file = "PyYAML-6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9"}, - {file = "PyYAML-6.0-cp37-cp37m-win32.whl", hash = "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737"}, - {file = "PyYAML-6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d"}, - {file = "PyYAML-6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287"}, - {file = "PyYAML-6.0-cp38-cp38-win32.whl", hash = "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78"}, - {file = "PyYAML-6.0-cp38-cp38-win_amd64.whl", hash = "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07"}, - {file = "PyYAML-6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b"}, - {file = "PyYAML-6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0"}, - {file = "PyYAML-6.0-cp39-cp39-win32.whl", hash = "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb"}, - {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"}, - {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"}, + {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, + {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, + {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, + {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, + {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, + {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, + {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, + {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, + {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, + {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, + {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, + {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, + {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, + {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, ] [[package]] @@ -3297,6 +3270,22 @@ files = [ [package.dependencies] cffi = {version = "*", markers = "implementation_name == \"pypy\""} +[[package]] +name = "referencing" +version = "0.30.0" +description = "JSON Referencing + Python" +category = "dev" +optional = false +python-versions = ">=3.8" +files = [ + {file = "referencing-0.30.0-py3-none-any.whl", hash = "sha256:c257b08a399b6c2f5a3510a50d28ab5dbc7bbde049bcaf954d43c446f83ab548"}, + {file = "referencing-0.30.0.tar.gz", hash = "sha256:47237742e990457f7512c7d27486394a9aadaf876cbfaa4be65b27b4f4d47c6b"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +rpds-py = ">=0.7.0" + [[package]] name = "requests" version = "2.31.0" @@ -3346,6 +3335,113 @@ files = [ {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, ] +[[package]] +name = "rpds-py" +version = "0.9.2" +description = "Python bindings to Rust's persistent data structures (rpds)" +category = "dev" +optional = false +python-versions = ">=3.8" +files = [ + {file = "rpds_py-0.9.2-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:ab6919a09c055c9b092798ce18c6c4adf49d24d4d9e43a92b257e3f2548231e7"}, + {file = "rpds_py-0.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d55777a80f78dd09410bd84ff8c95ee05519f41113b2df90a69622f5540c4f8b"}, + {file = "rpds_py-0.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a216b26e5af0a8e265d4efd65d3bcec5fba6b26909014effe20cd302fd1138fa"}, + {file = "rpds_py-0.9.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:29cd8bfb2d716366a035913ced99188a79b623a3512292963d84d3e06e63b496"}, + {file = "rpds_py-0.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:44659b1f326214950a8204a248ca6199535e73a694be8d3e0e869f820767f12f"}, + {file = "rpds_py-0.9.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:745f5a43fdd7d6d25a53ab1a99979e7f8ea419dfefebcab0a5a1e9095490ee5e"}, + {file = "rpds_py-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a987578ac5214f18b99d1f2a3851cba5b09f4a689818a106c23dbad0dfeb760f"}, + {file = "rpds_py-0.9.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bf4151acb541b6e895354f6ff9ac06995ad9e4175cbc6d30aaed08856558201f"}, + {file = "rpds_py-0.9.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:03421628f0dc10a4119d714a17f646e2837126a25ac7a256bdf7c3943400f67f"}, + {file = "rpds_py-0.9.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:13b602dc3e8dff3063734f02dcf05111e887f301fdda74151a93dbbc249930fe"}, + {file = "rpds_py-0.9.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fae5cb554b604b3f9e2c608241b5d8d303e410d7dfb6d397c335f983495ce7f6"}, + {file = "rpds_py-0.9.2-cp310-none-win32.whl", hash = "sha256:47c5f58a8e0c2c920cc7783113df2fc4ff12bf3a411d985012f145e9242a2764"}, + {file = "rpds_py-0.9.2-cp310-none-win_amd64.whl", hash = "sha256:4ea6b73c22d8182dff91155af018b11aac9ff7eca085750455c5990cb1cfae6e"}, + {file = "rpds_py-0.9.2-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:e564d2238512c5ef5e9d79338ab77f1cbbda6c2d541ad41b2af445fb200385e3"}, + {file = "rpds_py-0.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f411330a6376fb50e5b7a3e66894e4a39e60ca2e17dce258d53768fea06a37bd"}, + {file = "rpds_py-0.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e7521f5af0233e89939ad626b15278c71b69dc1dfccaa7b97bd4cdf96536bb7"}, + {file = "rpds_py-0.9.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8d3335c03100a073883857e91db9f2e0ef8a1cf42dc0369cbb9151c149dbbc1b"}, + {file = "rpds_py-0.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d25b1c1096ef0447355f7293fbe9ad740f7c47ae032c2884113f8e87660d8f6e"}, + {file = "rpds_py-0.9.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6a5d3fbd02efd9cf6a8ffc2f17b53a33542f6b154e88dd7b42ef4a4c0700fdad"}, + {file = "rpds_py-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c5934e2833afeaf36bd1eadb57256239785f5af0220ed8d21c2896ec4d3a765f"}, + {file = "rpds_py-0.9.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:095b460e117685867d45548fbd8598a8d9999227e9061ee7f012d9d264e6048d"}, + {file = "rpds_py-0.9.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:91378d9f4151adc223d584489591dbb79f78814c0734a7c3bfa9c9e09978121c"}, + {file = "rpds_py-0.9.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:24a81c177379300220e907e9b864107614b144f6c2a15ed5c3450e19cf536fae"}, + {file = "rpds_py-0.9.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:de0b6eceb46141984671802d412568d22c6bacc9b230174f9e55fc72ef4f57de"}, + {file = "rpds_py-0.9.2-cp311-none-win32.whl", hash = "sha256:700375326ed641f3d9d32060a91513ad668bcb7e2cffb18415c399acb25de2ab"}, + {file = "rpds_py-0.9.2-cp311-none-win_amd64.whl", hash = "sha256:0766babfcf941db8607bdaf82569ec38107dbb03c7f0b72604a0b346b6eb3298"}, + {file = "rpds_py-0.9.2-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:b1440c291db3f98a914e1afd9d6541e8fc60b4c3aab1a9008d03da4651e67386"}, + {file = "rpds_py-0.9.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0f2996fbac8e0b77fd67102becb9229986396e051f33dbceada3debaacc7033f"}, + {file = "rpds_py-0.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f30d205755566a25f2ae0382944fcae2f350500ae4df4e795efa9e850821d82"}, + {file = "rpds_py-0.9.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:159fba751a1e6b1c69244e23ba6c28f879a8758a3e992ed056d86d74a194a0f3"}, + {file = "rpds_py-0.9.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a1f044792e1adcea82468a72310c66a7f08728d72a244730d14880cd1dabe36b"}, + {file = "rpds_py-0.9.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9251eb8aa82e6cf88510530b29eef4fac825a2b709baf5b94a6094894f252387"}, + {file = "rpds_py-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01899794b654e616c8625b194ddd1e5b51ef5b60ed61baa7a2d9c2ad7b2a4238"}, + {file = "rpds_py-0.9.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0c43f8ae8f6be1d605b0465671124aa8d6a0e40f1fb81dcea28b7e3d87ca1e1"}, + {file = "rpds_py-0.9.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:207f57c402d1f8712618f737356e4b6f35253b6d20a324d9a47cb9f38ee43a6b"}, + {file = "rpds_py-0.9.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b52e7c5ae35b00566d244ffefba0f46bb6bec749a50412acf42b1c3f402e2c90"}, + {file = "rpds_py-0.9.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:978fa96dbb005d599ec4fd9ed301b1cc45f1a8f7982d4793faf20b404b56677d"}, + {file = "rpds_py-0.9.2-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:6aa8326a4a608e1c28da191edd7c924dff445251b94653988efb059b16577a4d"}, + {file = "rpds_py-0.9.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:aad51239bee6bff6823bbbdc8ad85136c6125542bbc609e035ab98ca1e32a192"}, + {file = "rpds_py-0.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4bd4dc3602370679c2dfb818d9c97b1137d4dd412230cfecd3c66a1bf388a196"}, + {file = "rpds_py-0.9.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:dd9da77c6ec1f258387957b754f0df60766ac23ed698b61941ba9acccd3284d1"}, + {file = "rpds_py-0.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:190ca6f55042ea4649ed19c9093a9be9d63cd8a97880106747d7147f88a49d18"}, + {file = "rpds_py-0.9.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:876bf9ed62323bc7dcfc261dbc5572c996ef26fe6406b0ff985cbcf460fc8a4c"}, + {file = "rpds_py-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa2818759aba55df50592ecbc95ebcdc99917fa7b55cc6796235b04193eb3c55"}, + {file = "rpds_py-0.9.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9ea4d00850ef1e917815e59b078ecb338f6a8efda23369677c54a5825dbebb55"}, + {file = "rpds_py-0.9.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:5855c85eb8b8a968a74dc7fb014c9166a05e7e7a8377fb91d78512900aadd13d"}, + {file = "rpds_py-0.9.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:14c408e9d1a80dcb45c05a5149e5961aadb912fff42ca1dd9b68c0044904eb32"}, + {file = "rpds_py-0.9.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:65a0583c43d9f22cb2130c7b110e695fff834fd5e832a776a107197e59a1898e"}, + {file = "rpds_py-0.9.2-cp38-none-win32.whl", hash = "sha256:71f2f7715935a61fa3e4ae91d91b67e571aeb5cb5d10331ab681256bda2ad920"}, + {file = "rpds_py-0.9.2-cp38-none-win_amd64.whl", hash = "sha256:674c704605092e3ebbbd13687b09c9f78c362a4bc710343efe37a91457123044"}, + {file = "rpds_py-0.9.2-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:07e2c54bef6838fa44c48dfbc8234e8e2466d851124b551fc4e07a1cfeb37260"}, + {file = "rpds_py-0.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f7fdf55283ad38c33e35e2855565361f4bf0abd02470b8ab28d499c663bc5d7c"}, + {file = "rpds_py-0.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:890ba852c16ace6ed9f90e8670f2c1c178d96510a21b06d2fa12d8783a905193"}, + {file = "rpds_py-0.9.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:50025635ba8b629a86d9d5474e650da304cb46bbb4d18690532dd79341467846"}, + {file = "rpds_py-0.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:517cbf6e67ae3623c5127206489d69eb2bdb27239a3c3cc559350ef52a3bbf0b"}, + {file = "rpds_py-0.9.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0836d71ca19071090d524739420a61580f3f894618d10b666cf3d9a1688355b1"}, + {file = "rpds_py-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c439fd54b2b9053717cca3de9583be6584b384d88d045f97d409f0ca867d80f"}, + {file = "rpds_py-0.9.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f68996a3b3dc9335037f82754f9cdbe3a95db42bde571d8c3be26cc6245f2324"}, + {file = "rpds_py-0.9.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:7d68dc8acded354c972116f59b5eb2e5864432948e098c19fe6994926d8e15c3"}, + {file = "rpds_py-0.9.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:f963c6b1218b96db85fc37a9f0851eaf8b9040aa46dec112611697a7023da535"}, + {file = "rpds_py-0.9.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5a46859d7f947061b4010e554ccd1791467d1b1759f2dc2ec9055fa239f1bc26"}, + {file = "rpds_py-0.9.2-cp39-none-win32.whl", hash = "sha256:e07e5dbf8a83c66783a9fe2d4566968ea8c161199680e8ad38d53e075df5f0d0"}, + {file = "rpds_py-0.9.2-cp39-none-win_amd64.whl", hash = "sha256:682726178138ea45a0766907957b60f3a1bf3acdf212436be9733f28b6c5af3c"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:196cb208825a8b9c8fc360dc0f87993b8b260038615230242bf18ec84447c08d"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:c7671d45530fcb6d5e22fd40c97e1e1e01965fc298cbda523bb640f3d923b387"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83b32f0940adec65099f3b1c215ef7f1d025d13ff947975a055989cb7fd019a4"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f67da97f5b9eac838b6980fc6da268622e91f8960e083a34533ca710bec8611"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:03975db5f103997904c37e804e5f340c8fdabbb5883f26ee50a255d664eed58c"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:987b06d1cdb28f88a42e4fb8a87f094e43f3c435ed8e486533aea0bf2e53d931"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c861a7e4aef15ff91233751619ce3a3d2b9e5877e0fcd76f9ea4f6847183aa16"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:02938432352359805b6da099c9c95c8a0547fe4b274ce8f1a91677401bb9a45f"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:ef1f08f2a924837e112cba2953e15aacfccbbfcd773b4b9b4723f8f2ddded08e"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:35da5cc5cb37c04c4ee03128ad59b8c3941a1e5cd398d78c37f716f32a9b7f67"}, + {file = "rpds_py-0.9.2-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:141acb9d4ccc04e704e5992d35472f78c35af047fa0cfae2923835d153f091be"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:79f594919d2c1a0cc17d1988a6adaf9a2f000d2e1048f71f298b056b1018e872"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:a06418fe1155e72e16dddc68bb3780ae44cebb2912fbd8bb6ff9161de56e1798"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b2eb034c94b0b96d5eddb290b7b5198460e2d5d0c421751713953a9c4e47d10"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8b08605d248b974eb02f40bdcd1a35d3924c83a2a5e8f5d0fa5af852c4d960af"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a0805911caedfe2736935250be5008b261f10a729a303f676d3d5fea6900c96a"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ab2299e3f92aa5417d5e16bb45bb4586171c1327568f638e8453c9f8d9e0f020"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c8d7594e38cf98d8a7df25b440f684b510cf4627fe038c297a87496d10a174f"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8b9ec12ad5f0a4625db34db7e0005be2632c1013b253a4a60e8302ad4d462afd"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1fcdee18fea97238ed17ab6478c66b2095e4ae7177e35fb71fbe561a27adf620"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:933a7d5cd4b84f959aedeb84f2030f0a01d63ae6cf256629af3081cf3e3426e8"}, + {file = "rpds_py-0.9.2-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:686ba516e02db6d6f8c279d1641f7067ebb5dc58b1d0536c4aaebb7bf01cdc5d"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:0173c0444bec0a3d7d848eaeca2d8bd32a1b43f3d3fde6617aac3731fa4be05f"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:d576c3ef8c7b2d560e301eb33891d1944d965a4d7a2eacb6332eee8a71827db6"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed89861ee8c8c47d6beb742a602f912b1bb64f598b1e2f3d758948721d44d468"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1054a08e818f8e18910f1bee731583fe8f899b0a0a5044c6e680ceea34f93876"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99e7c4bb27ff1aab90dcc3e9d37ee5af0231ed98d99cb6f5250de28889a3d502"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c545d9d14d47be716495076b659db179206e3fd997769bc01e2d550eeb685596"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9039a11bca3c41be5a58282ed81ae422fa680409022b996032a43badef2a3752"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:fb39aca7a64ad0c9490adfa719dbeeb87d13be137ca189d2564e596f8ba32c07"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:2d8b3b3a2ce0eaa00c5bbbb60b6713e94e7e0becab7b3db6c5c77f979e8ed1f1"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:99b1c16f732b3a9971406fbfe18468592c5a3529585a45a35adbc1389a529a03"}, + {file = "rpds_py-0.9.2-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:c27ee01a6c3223025f4badd533bea5e87c988cb0ba2811b690395dfe16088cfe"}, + {file = "rpds_py-0.9.2.tar.gz", hash = "sha256:8d70e8f14900f2657c249ea4def963bed86a29b81f81f5b76b5a9215680de945"}, +] + [[package]] name = "scikit-image" version = "0.21.0" @@ -3764,53 +3860,53 @@ test = ["pytest"] [[package]] name = "sqlalchemy" -version = "2.0.16" +version = "2.0.19" description = "Database Abstraction Library" category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "SQLAlchemy-2.0.16-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7641f6ed2682de84d77c4894cf2e43700f3cf7a729361d7f9cac98febf3d8614"}, - {file = "SQLAlchemy-2.0.16-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8d3cbdb2f07fb0e4b897dc1df39166735e194fb946f28f26f4c9f9801c8b24f7"}, - {file = "SQLAlchemy-2.0.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08a791c75d6154d46914d1e23bd81d9455f2950ec1de81f2723848c593d2c8b"}, - {file = "SQLAlchemy-2.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91eb8f89fcce8f709f8a4d65d265bc48a80264ee14c7c9e955f3222f19b4b39c"}, - {file = "SQLAlchemy-2.0.16-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:fc1dae11bd5167f9eb53b3ccad24a79813004612141e76de21cf4c028dc30b34"}, - {file = "SQLAlchemy-2.0.16-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b2801f85c5c0293aa710f8aa5262c707a83c1c203962ae5a22b4d9095e71aa9d"}, - {file = "SQLAlchemy-2.0.16-cp310-cp310-win32.whl", hash = "sha256:c5e333b81fe10d14efebd4e9429b7bb865ed9463ca8bef07a7136dfa1fd4a37b"}, - {file = "SQLAlchemy-2.0.16-cp310-cp310-win_amd64.whl", hash = "sha256:f387b496a4c9474d8580195bb2660264a3f295a04d3a9d00f4fa15e9e597427e"}, - {file = "SQLAlchemy-2.0.16-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7be04dbe3470fe8dd332fdb48c979887c381ef6c635eddf2dec43d2766111be4"}, - {file = "SQLAlchemy-2.0.16-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f2938edc512dd1fa48653e14c1655ab46144d4450f0e6b33da7acd8ba77fbfd7"}, - {file = "SQLAlchemy-2.0.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5a2856e12cf5f54301ddf043bcbf0552561d61555e1bcf348b63f42b8e1eec2"}, - {file = "SQLAlchemy-2.0.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d320fde566b864adbc19abb40ecb80f4e25d6f084639969bb972d5cca16858"}, - {file = "SQLAlchemy-2.0.16-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:6e85e315725807c127ad8ba3d628fdb861cf9ebfb0e10c39a97c01e257cdd71b"}, - {file = "SQLAlchemy-2.0.16-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:63ea36c08792a7a8a08958bc806ecff6b491386feeaf14607c3d9d2d9325e67f"}, - {file = "SQLAlchemy-2.0.16-cp311-cp311-win32.whl", hash = "sha256:bdaf89dd82f4a0e1b8b5ffc9cdc0c9551be6175f7eee5af6a838e92ba2e57100"}, - {file = "SQLAlchemy-2.0.16-cp311-cp311-win_amd64.whl", hash = "sha256:5a934eff1a2882137be3384826f997db8441d43b61fda3094923e69fffe474be"}, - {file = "SQLAlchemy-2.0.16-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:fbcc51fdbc89fafe4f4fe66f59372a8be88ded04de34ef438ab04f980beb12d4"}, - {file = "SQLAlchemy-2.0.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ff6496ad5e9dc8baeb93a151cc2f599d01e5f8928a2aaf0b09a06428fdbaf553"}, - {file = "SQLAlchemy-2.0.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d6ef848e5afcd1bda3e9a843751f845c0ca888b61e669237680e913d84ec206"}, - {file = "SQLAlchemy-2.0.16-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3ef876615ff4b53e2033022195830ec4941a6e21068611f8d77de60203b90a98"}, - {file = "SQLAlchemy-2.0.16-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8544c6e62eacb77d5106e2055ef10f2407fc0dbd547e879f8745b2032eefd2bc"}, - {file = "SQLAlchemy-2.0.16-cp37-cp37m-win32.whl", hash = "sha256:2f3b6c31b915159b96b68372212fa77f69230b0a32acab40cf539d2823954f5a"}, - {file = "SQLAlchemy-2.0.16-cp37-cp37m-win_amd64.whl", hash = "sha256:d0c96592f54edd571e00ba6b1ed5df8263328ca1da9e78088c0ebc93c2e6562c"}, - {file = "SQLAlchemy-2.0.16-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a2e9f50a906d0b81292576a9fb458f8cace904c81a67088f4a2ca9ff2856f55d"}, - {file = "SQLAlchemy-2.0.16-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:dc97238fa44be86971270943a0c21c19ce18b8d1596919048e57912e8abc02cc"}, - {file = "SQLAlchemy-2.0.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0db6734cb5644c55d0262a813b764c6e2cda1e66e939a488b3d6298cdc7344c2"}, - {file = "SQLAlchemy-2.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:131f0c894c6572cb1bdcf97c92d999d3128c4ff1ca13061296057072f61afe13"}, - {file = "SQLAlchemy-2.0.16-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f662cf69484c59f8a3435902c40dfc34d86050bdb15e23d437074ce9f153306b"}, - {file = "SQLAlchemy-2.0.16-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b72f4e4def50414164a1d899f2ce4e782a029fad0ed5585981d1611e8ae29a74"}, - {file = "SQLAlchemy-2.0.16-cp38-cp38-win32.whl", hash = "sha256:0e4645b260cfe375a0603aa117f0a47680864cf37833129da870919e88b08d8f"}, - {file = "SQLAlchemy-2.0.16-cp38-cp38-win_amd64.whl", hash = "sha256:f409f35a0330ab0cb18ece736b86d8b8233c64f4461fcb10993f67afc0ac7e5a"}, - {file = "SQLAlchemy-2.0.16-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e19546924f0cf2ec930d1faf318b7365e5827276410a513340f31a2b423e96a4"}, - {file = "SQLAlchemy-2.0.16-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ce1fc3f64fd42d5f763d6b83651471f32920338a1ba107a3186211474861af57"}, - {file = "SQLAlchemy-2.0.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e2569dac4e3cb85365b91ab569d06a221e0e17e65ce59949d00c3958946282b"}, - {file = "SQLAlchemy-2.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61f2035dea56ff1a429077e481496f813378beb02b823d2e3e7eb05bc1a7a8ca"}, - {file = "SQLAlchemy-2.0.16-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:81d867c1be5abd49f7e547c108391f371a9d980ba7ec34666c50d683f782b754"}, - {file = "SQLAlchemy-2.0.16-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2de1477af7f48c633b8ecb88245aedd811dca88e88aee9e9d787b388abe74c44"}, - {file = "SQLAlchemy-2.0.16-cp39-cp39-win32.whl", hash = "sha256:5e8522b49e0e640287308b68f71cc338446bbe1c226c8f81743baa91b0246e92"}, - {file = "SQLAlchemy-2.0.16-cp39-cp39-win_amd64.whl", hash = "sha256:43e69c8c1cea0188b7094e22fb93ae1a1890aac748628b7e925024a206f75368"}, - {file = "SQLAlchemy-2.0.16-py3-none-any.whl", hash = "sha256:53081c6fce0d49bb36d05f12dc87e008c9b0df58a163b792c5fc4ac638925f98"}, - {file = "SQLAlchemy-2.0.16.tar.gz", hash = "sha256:1e2caba78e7d1f5003e88817b7a1754d4e58f4a8f956dc423bf8e304c568ab09"}, + {file = "SQLAlchemy-2.0.19-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9deaae357edc2091a9ed5d25e9ee8bba98bcfae454b3911adeaf159c2e9ca9e3"}, + {file = "SQLAlchemy-2.0.19-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0bf0fd65b50a330261ec7fe3d091dfc1c577483c96a9fa1e4323e932961aa1b5"}, + {file = "SQLAlchemy-2.0.19-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d90ccc15ba1baa345796a8fb1965223ca7ded2d235ccbef80a47b85cea2d71a"}, + {file = "SQLAlchemy-2.0.19-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb4e688f6784427e5f9479d1a13617f573de8f7d4aa713ba82813bcd16e259d1"}, + {file = "SQLAlchemy-2.0.19-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:584f66e5e1979a7a00f4935015840be627e31ca29ad13f49a6e51e97a3fb8cae"}, + {file = "SQLAlchemy-2.0.19-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2c69ce70047b801d2aba3e5ff3cba32014558966109fecab0c39d16c18510f15"}, + {file = "SQLAlchemy-2.0.19-cp310-cp310-win32.whl", hash = "sha256:96f0463573469579d32ad0c91929548d78314ef95c210a8115346271beeeaaa2"}, + {file = "SQLAlchemy-2.0.19-cp310-cp310-win_amd64.whl", hash = "sha256:22bafb1da60c24514c141a7ff852b52f9f573fb933b1e6b5263f0daa28ce6db9"}, + {file = "SQLAlchemy-2.0.19-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d6894708eeb81f6d8193e996257223b6bb4041cb05a17cd5cf373ed836ef87a2"}, + {file = "SQLAlchemy-2.0.19-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d8f2afd1aafded7362b397581772c670f20ea84d0a780b93a1a1529da7c3d369"}, + {file = "SQLAlchemy-2.0.19-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15afbf5aa76f2241184c1d3b61af1a72ba31ce4161013d7cb5c4c2fca04fd6e"}, + {file = "SQLAlchemy-2.0.19-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8fc05b59142445a4efb9c1fd75c334b431d35c304b0e33f4fa0ff1ea4890f92e"}, + {file = "SQLAlchemy-2.0.19-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5831138f0cc06b43edf5f99541c64adf0ab0d41f9a4471fd63b54ae18399e4de"}, + {file = "SQLAlchemy-2.0.19-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3afa8a21a9046917b3a12ffe016ba7ebe7a55a6fc0c7d950beb303c735c3c3ad"}, + {file = "SQLAlchemy-2.0.19-cp311-cp311-win32.whl", hash = "sha256:c896d4e6ab2eba2afa1d56be3d0b936c56d4666e789bfc59d6ae76e9fcf46145"}, + {file = "SQLAlchemy-2.0.19-cp311-cp311-win_amd64.whl", hash = "sha256:024d2f67fb3ec697555e48caeb7147cfe2c08065a4f1a52d93c3d44fc8e6ad1c"}, + {file = "SQLAlchemy-2.0.19-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:89bc2b374ebee1a02fd2eae6fd0570b5ad897ee514e0f84c5c137c942772aa0c"}, + {file = "SQLAlchemy-2.0.19-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd4d410a76c3762511ae075d50f379ae09551d92525aa5bb307f8343bf7c2c12"}, + {file = "SQLAlchemy-2.0.19-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f469f15068cd8351826df4080ffe4cc6377c5bf7d29b5a07b0e717dddb4c7ea2"}, + {file = "SQLAlchemy-2.0.19-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cda283700c984e699e8ef0fcc5c61f00c9d14b6f65a4f2767c97242513fcdd84"}, + {file = "SQLAlchemy-2.0.19-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:43699eb3f80920cc39a380c159ae21c8a8924fe071bccb68fc509e099420b148"}, + {file = "SQLAlchemy-2.0.19-cp37-cp37m-win32.whl", hash = "sha256:61ada5831db36d897e28eb95f0f81814525e0d7927fb51145526c4e63174920b"}, + {file = "SQLAlchemy-2.0.19-cp37-cp37m-win_amd64.whl", hash = "sha256:57d100a421d9ab4874f51285c059003292433c648df6abe6c9c904e5bd5b0828"}, + {file = "SQLAlchemy-2.0.19-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:16a310f5bc75a5b2ce7cb656d0e76eb13440b8354f927ff15cbaddd2523ee2d1"}, + {file = "SQLAlchemy-2.0.19-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cf7b5e3856cbf1876da4e9d9715546fa26b6e0ba1a682d5ed2fc3ca4c7c3ec5b"}, + {file = "SQLAlchemy-2.0.19-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e7b69d9ced4b53310a87117824b23c509c6fc1f692aa7272d47561347e133b6"}, + {file = "SQLAlchemy-2.0.19-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9eb4575bfa5afc4b066528302bf12083da3175f71b64a43a7c0badda2be365"}, + {file = "SQLAlchemy-2.0.19-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6b54d1ad7a162857bb7c8ef689049c7cd9eae2f38864fc096d62ae10bc100c7d"}, + {file = "SQLAlchemy-2.0.19-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5d6afc41ca0ecf373366fd8e10aee2797128d3ae45eb8467b19da4899bcd1ee0"}, + {file = "SQLAlchemy-2.0.19-cp38-cp38-win32.whl", hash = "sha256:430614f18443b58ceb9dedec323ecddc0abb2b34e79d03503b5a7579cd73a531"}, + {file = "SQLAlchemy-2.0.19-cp38-cp38-win_amd64.whl", hash = "sha256:eb60699de43ba1a1f77363f563bb2c652f7748127ba3a774f7cf2c7804aa0d3d"}, + {file = "SQLAlchemy-2.0.19-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a752b7a9aceb0ba173955d4f780c64ee15a1a991f1c52d307d6215c6c73b3a4c"}, + {file = "SQLAlchemy-2.0.19-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7351c05db355da112e056a7b731253cbeffab9dfdb3be1e895368513c7d70106"}, + {file = "SQLAlchemy-2.0.19-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fa51ce4aea583b0c6b426f4b0563d3535c1c75986c4373a0987d84d22376585b"}, + {file = "SQLAlchemy-2.0.19-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae7473a67cd82a41decfea58c0eac581209a0aa30f8bc9190926fbf628bb17f7"}, + {file = "SQLAlchemy-2.0.19-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:851a37898a8a39783aab603c7348eb5b20d83c76a14766a43f56e6ad422d1ec8"}, + {file = "SQLAlchemy-2.0.19-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539010665c90e60c4a1650afe4ab49ca100c74e6aef882466f1de6471d414be7"}, + {file = "SQLAlchemy-2.0.19-cp39-cp39-win32.whl", hash = "sha256:f82c310ddf97b04e1392c33cf9a70909e0ae10a7e2ddc1d64495e3abdc5d19fb"}, + {file = "SQLAlchemy-2.0.19-cp39-cp39-win_amd64.whl", hash = "sha256:8e712cfd2e07b801bc6b60fdf64853bc2bd0af33ca8fa46166a23fe11ce0dbb0"}, + {file = "SQLAlchemy-2.0.19-py3-none-any.whl", hash = "sha256:314145c1389b021a9ad5aa3a18bac6f5d939f9087d7fc5443be28cba19d2c972"}, + {file = "SQLAlchemy-2.0.19.tar.gz", hash = "sha256:77a14fa20264af73ddcdb1e2b9c5a829b8cc6b8304d0f093271980e36c200a3f"}, ] [package.dependencies] @@ -3899,14 +3995,14 @@ test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] [[package]] name = "tifffile" -version = "2023.4.12" +version = "2023.7.10" description = "Read and write TIFF files" category = "main" optional = false python-versions = ">=3.8" files = [ - {file = "tifffile-2023.4.12-py3-none-any.whl", hash = "sha256:3161954746fe32c4f4244d0fb2eb0a272f3a3760b78882a42faa83ac5e6e0b74"}, - {file = "tifffile-2023.4.12.tar.gz", hash = "sha256:2fa99f9890caab919d932a0acaa9d0f5843dc2ef3594e212963932e20713badd"}, + {file = "tifffile-2023.7.10-py3-none-any.whl", hash = "sha256:94dfdec321ace96abbfe872a66cfd824800c099a2db558443453eebc2c11b304"}, + {file = "tifffile-2023.7.10.tar.gz", hash = "sha256:c06ec460926d16796eeee249a560bcdddf243daae36ac62af3c84a953cd60b4a"}, ] [package.dependencies] @@ -4039,14 +4135,14 @@ scipy = ">=1.9.3,<2.0.0" [[package]] name = "typing-extensions" -version = "4.6.3" +version = "4.7.1" description = "Backported and Experimental Type Hints for Python 3.7+" category = "main" optional = false python-versions = ">=3.7" files = [ - {file = "typing_extensions-4.6.3-py3-none-any.whl", hash = "sha256:88a4153d8505aabbb4e13aacb7c486c2b4a33ca3b3f807914a9b4c844c471c26"}, - {file = "typing_extensions-4.6.3.tar.gz", hash = "sha256:d91d5919357fe7f681a9f2b5b4cb2a5f1ef0a1e9f59c4d8ff0d3491e05c0ffd5"}, + {file = "typing_extensions-4.7.1-py3-none-any.whl", hash = "sha256:440d5dd3af93b060174bf433bccd69b0babc3b15b1a8dca43789fd7f61514b36"}, + {file = "typing_extensions-4.7.1.tar.gz", hash = "sha256:b75ddc264f0ba5615db7ba217daeb99701ad295353c45f9e95963337ceeeffb2"}, ] [[package]] @@ -4063,18 +4159,18 @@ files = [ [[package]] name = "uri-template" -version = "1.2.0" +version = "1.3.0" description = "RFC 6570 URI Template Processor" category = "dev" optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "uri_template-1.2.0-py3-none-any.whl", hash = "sha256:f1699c77b73b925cf4937eae31ab282a86dc885c333f2e942513f08f691fc7db"}, - {file = "uri_template-1.2.0.tar.gz", hash = "sha256:934e4d09d108b70eb8a24410af8615294d09d279ce0e7cbcdaef1bd21f932b06"}, + {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"}, + {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"}, ] [package.extras] -dev = ["flake8 (<4.0.0)", "flake8-annotations", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-noqa", "flake8-requirements", "flake8-type-annotations", "flake8-use-fstring", "mypy", "pep8-naming"] +dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-modern-annotations", "flake8-noqa", "flake8-pyproject", "flake8-requirements", "flake8-typechecking-import", "flake8-use-fstring", "mypy", "pep8-naming", "types-PyYAML"] [[package]] name = "urllib3" @@ -4136,14 +4232,14 @@ files = [ [[package]] name = "websocket-client" -version = "1.5.3" +version = "1.6.1" description = "WebSocket client for Python with low level API options" category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "websocket-client-1.5.3.tar.gz", hash = "sha256:b96f3bce3e54e3486ebe6504bc22bd4c140392bd2eb71764db29be8f2639aa65"}, - {file = "websocket_client-1.5.3-py3-none-any.whl", hash = "sha256:3566f8467cd350874c4913816355642a4942f6c1ed1e9406e3d42fae6d6c072a"}, + {file = "websocket-client-1.6.1.tar.gz", hash = "sha256:c951af98631d24f8df89ab1019fc365f2227c0892f12fd150e935607c79dd0dd"}, + {file = "websocket_client-1.6.1-py3-none-any.whl", hash = "sha256:f1f9f2ad5291f0225a49efad77abf9e700b6fef553900623060dad6e26503b9d"}, ] [package.extras] @@ -4153,31 +4249,31 @@ test = ["websockets"] [[package]] name = "widgetsnbextension" -version = "4.0.7" +version = "4.0.8" description = "Jupyter interactive widgets for Jupyter Notebook" category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "widgetsnbextension-4.0.7-py3-none-any.whl", hash = "sha256:be3228a73bbab189a16be2d4a3cd89ecbd4e31948bfdc64edac17dcdee3cd99c"}, - {file = "widgetsnbextension-4.0.7.tar.gz", hash = "sha256:ea67c17a7cd4ae358f8f46c3b304c40698bc0423732e3f273321ee141232c8be"}, + {file = "widgetsnbextension-4.0.8-py3-none-any.whl", hash = "sha256:2e37f0ce9da11651056280c7efe96f2db052fe8fc269508e3724f5cbd6c93018"}, + {file = "widgetsnbextension-4.0.8.tar.gz", hash = "sha256:9ec291ba87c2dfad42c3d5b6f68713fa18be1acd7476569516b2431682315c17"}, ] [[package]] name = "zipp" -version = "3.15.0" +version = "3.16.2" description = "Backport of pathlib-compatible object wrapper for zip files" category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "zipp-3.15.0-py3-none-any.whl", hash = "sha256:48904fc76a60e542af151aded95726c1a5c34ed43ab4134b597665c86d7ad556"}, - {file = "zipp-3.15.0.tar.gz", hash = "sha256:112929ad649da941c23de50f356a2b5570c954b65150642bccdd66bf194d224b"}, + {file = "zipp-3.16.2-py3-none-any.whl", hash = "sha256:679e51dd4403591b2d6838a48de3d283f3d188412a9782faadf845f298736ba0"}, + {file = "zipp-3.16.2.tar.gz", hash = "sha256:ebc15946aa78bd63458992fc81ec3b6f7b1e92d51c35e6de1c3804e73b799147"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"] [metadata] lock-version = "2.0" From 43760fdf14aee3324e9905232f9b022e2c0fd462 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Tue, 18 Jul 2023 18:15:18 +0200 Subject: [PATCH 02/19] feat: add calibration --- pyproject.toml | 1 + 1 file changed, 1 insertion(+) diff --git a/pyproject.toml b/pyproject.toml index 5e1969b3..563f6cf1 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -55,3 +55,4 @@ build-backend = "poetry.core.masonry.api" [tool.poetry.scripts] fitsmanager = 'prose.scripts.fitsmanager:main' +calibration = 'prose.scripts.calibration:main' From f37dfdc199dbd3951ef55c30c487eca0266c54fd Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 17:10:18 +0200 Subject: [PATCH 03/19] refactor: scripts to cli + cli as prose sub-commands --- prose/cli/__init__.py | 118 ++++++++++++++++++++++++++ prose/cli/calibration.py | 53 ++++++++++++ prose/{scripts => cli}/fitsmanager.py | 0 prose/cli/stack.py | 58 +++++++++++++ prose/cli/visualisation.py | 14 +++ pyproject.toml | 4 +- 6 files changed, 245 insertions(+), 2 deletions(-) create mode 100644 prose/cli/__init__.py create mode 100644 prose/cli/calibration.py rename prose/{scripts => cli}/fitsmanager.py (100%) create mode 100644 prose/cli/stack.py create mode 100644 prose/cli/visualisation.py diff --git a/prose/cli/__init__.py b/prose/cli/__init__.py new file mode 100644 index 00000000..648b029a --- /dev/null +++ b/prose/cli/__init__.py @@ -0,0 +1,118 @@ +import argparse + +import yaml + +from prose.cli.calibration import calibrate +from prose.cli.stack import stack +from prose.cli.visualisation import show + + +def make_parser(): + main_parser = argparse.ArgumentParser(prog="prose", description="prose") + subparsers = main_parser.add_subparsers(required=True) + + # calibrate + # --------- + calibrate_parser = subparsers.add_parser( + name="calibrate", description="calibrate FITS files" + ) + calibrate_parser.add_argument( + "folder", + type=str, + help="folder to parse containing science and calibration files", + default=None, + ) + calibrate_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + calibrate_parser.set_defaults(func=calibrate) + + # show + # ---- + show_parser = subparsers.add_parser(name="show", description="show FITS image") + show_parser.add_argument("file", type=str, help="file to show", default=None) + show_parser.add_argument( + "-c", + "--contrast", + type=float, + help="contrast of the image (zscale is applied)", + default=0.1, + ) + show_parser.set_defaults(func=show) + + # stack + # ----- + stack_parser = subparsers.add_parser(name="stack", description="stack FITS files") + stack_parser.add_argument("folder", type=str, help="folder to parse", default=None) + stack_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + stack_parser.add_argument( + "-n", "--n", type=int, help="number of stars used for alignment", default=30 + ) + stack_parser.add_argument( + "--method", + choices=["mean", "selective"], + help="alignment method. 'mean' applies a mean to all images, 'selective' \ + applies a median to the -n smallest-FWHM images", + default="mean", + ) + stack_parser.set_defaults(func=stack) + + # fitsmanager + # ----------- + + # epsf + # ---- + + return main_parser + + +def to_yaml(parser, output_file): + def parse_arguments(action): + argument_info = { + "name": action.dest, + "short": action.option_strings[0] if action.option_strings else None, + "long": action.option_strings[1] + if len(action.option_strings) > 1 + else None, + "type": action.type.__name__ if action.type else None, + "default": action.default, + "required": action.required, + "help": action.help, + "choices": action.choices, + "nargs": action.nargs, + } + return {k: v for k, v in argument_info.items() if v is not None} + + def parse_subparsers(action_group): + commands = {} + for action in action_group._group_actions: + if isinstance(action, argparse._SubParsersAction): + for subparser_name, subparser_obj in action.choices.items(): + command_info = { + "help": subparser_obj.description, + "arguments": [ + parse_arguments(action) + for action in subparser_obj._actions + if not isinstance(action, argparse._HelpAction) + ], + } + commands[subparser_name] = command_info + else: + # Handle nested subparsers recursively + commands.update(parse_subparsers(action)) + return commands + + cli_info = { + "commands": parse_subparsers(parser._subparsers), + } + + with open(output_file, "w") as yaml_file: + yaml.dump(cli_info, yaml_file, default_flow_style=False) + + +def main(): + main_parser = make_parser() + args = main_parser.parse_args() + args.func(args) diff --git a/prose/cli/calibration.py b/prose/cli/calibration.py new file mode 100644 index 00000000..1c80e5f8 --- /dev/null +++ b/prose/cli/calibration.py @@ -0,0 +1,53 @@ +import argparse +from pathlib import Path + +from prose import FitsManager, Sequence, blocks + + +def calibrate(args): + fm = FitsManager(args.folder, depth=args.depth) + observations = fm.observations(type="light") + observation_id = None + + # observation selection + if len(observations) == 0: + print("No observations found") + return + elif len(observations) == 1: + observation_id = observations.index[0] + else: + print(f"{len(observations)} observations found:") + print(observations, "\n") + while observation_id is None: + print(f"Which observation id do you want to reduce?") + observation_id = input() + if not int(observation_id) in observations.index.values: + print("Invalid observation id") + observation_id = None + print("\n") + folder = Path(args.folder) + calibrated_folder = Path(str(folder.absolute()) + "_calibrated") + calibrated_folder.mkdir(exist_ok=True) + observation_id = int(observation_id) + + files = fm.observation_files(observation_id, show=False) + darks = files["darks"] + flats = files["flats"] + bias = files["bias"] + lights = files["images"] + + # calibration + calibration = Sequence( + [ + blocks.Calibration(darks=darks, flats=flats, bias=bias), + blocks.Trim(), + blocks.WriteTo(calibrated_folder, label="calibrated"), + ] + ) + + calibration.run(lights) + print("Calibrated images saved in", calibrated_folder) + + +if __name__ == "__main__": + main() diff --git a/prose/scripts/fitsmanager.py b/prose/cli/fitsmanager.py similarity index 100% rename from prose/scripts/fitsmanager.py rename to prose/cli/fitsmanager.py diff --git a/prose/cli/stack.py b/prose/cli/stack.py new file mode 100644 index 00000000..a664aa5c --- /dev/null +++ b/prose/cli/stack.py @@ -0,0 +1,58 @@ +import argparse +from pathlib import Path + +from prose import FITSImage, FitsManager, Sequence, blocks +from prose.core.sequence import SequenceParallel + + +def stack(args): + folder = Path(args.folder) + + fm = FitsManager(folder, depth=args.depth) + calibrated_nights = fm.observations(type="calibrated") + files = fm.files(int(calibrated_nights.index[0]), path=True).path.values + + # reference + ref = FITSImage(files[len(files) // 2]) + + # calibration + psf_sequence = Sequence( + [ + blocks.PointSourceDetection(n=args.n), # stars detection + blocks.Cutouts(21), # stars cutouts + blocks.MedianEPSF(), # building EPSF + blocks.psf.Moffat2D(), # modeling EPSF + ] + ) + + psf_sequence.run(ref, show_progress=False) + + stack_block = ( + blocks.SelectiveStack(n=50) + if args.method == "selective" + else blocks.MeanStack(reference=ref) + ) + + stacking_sequence = SequenceParallel( + [ + blocks.PointSourceDetection(n=args.n), # stars detection + blocks.Cutouts(21), # stars cutouts + blocks.MedianEPSF(), # building EPSF + blocks.psf.Moffat2D(ref), # modeling EPSF + blocks.ComputeTransformTwirl(ref), + blocks.TransformData(inverse=True), + ], + [ + stack_block, + ], + name="Stacking", + ) + + stacking_sequence.run(files) + + stack = stack_block.stack + stack.header = ref.header.copy() + stack.header[ref.telescope.keyword_image_type] = "stack" + stack.writeto(folder / "stack.fits") + + print("Stack saved in", folder / "stack.fits") diff --git a/prose/cli/visualisation.py b/prose/cli/visualisation.py new file mode 100644 index 00000000..47f47223 --- /dev/null +++ b/prose/cli/visualisation.py @@ -0,0 +1,14 @@ +import argparse +import sys + +import matplotlib.pyplot as plt + +from prose import FITSImage, FitsManager, Sequence, blocks + + +def show(args): + image = FITSImage(args.file) + image.show(contrast=args.contrast) + plt.axis(False) + plt.tight_layout() + plt.show(block=True) diff --git a/pyproject.toml b/pyproject.toml index 43ce202c..0092888f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -48,11 +48,11 @@ sphinx-copybutton = "*" sphinx-design = "*" toml = "*" ipywidgets = "*" +'sphinxcontrib.datatemplates' = "*" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" [tool.poetry.scripts] -fitsmanager = 'prose.scripts.fitsmanager:main' -calibration = 'prose.scripts.calibration:main' +prose = 'prose.cli.__init__:main' From 929a65cc6de6bf5674ed652c303bcab9435f936f Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 17:11:16 +0200 Subject: [PATCH 04/19] docs: generate cli docs --- docs/_templates/cli_template.rst | 54 ++++++ docs/cli/cli.rst | 5 + docs/conf.py | 6 + docs/index.md | 3 + poetry.lock | 292 +++++++++++++++++++++++++------ 5 files changed, 309 insertions(+), 51 deletions(-) create mode 100644 docs/_templates/cli_template.rst create mode 100644 docs/cli/cli.rst diff --git a/docs/_templates/cli_template.rst b/docs/_templates/cli_template.rst new file mode 100644 index 00000000..83f4b099 --- /dev/null +++ b/docs/_templates/cli_template.rst @@ -0,0 +1,54 @@ +.. -*- mode: rst -*- + +*prose* features some command line tools featuring a variety of fast and robust tasks: + +.. list-table:: + + {% for command, info in data.commands.items() %} + * - :ref:`{{ command }}` + - {{ info.help }} + {% endfor %} + +These commands can be called as sub-commands of the main ``prose`` command, with + +.. code-block:: console + + prose COMMAND [OPTIONS] [ARGS] + +{% for command, info in data.commands.items() %} + +.. _{{ command }}: + +{{ command }} +----- + +{{ info.help }} + +.. code-block:: console + + prose {{ command }} [OPTIONS] [ARGS] + +.. list-table:: + :header-rows: 1 + + * - argument + - type + - default + - description + {% for arg in info.arguments %} + * {% if arg.short %} + - ``{{ arg.short }}``{% if arg.long %}, ``{{ arg.long }}`` {% endif %} + {% else %} + - ``{{ arg.name }}`` + {% endif %} + {% if arg.type %} + - *{{ arg.type }}* + {% endif %} + {% if arg.choices %} + - {% for choice in arg.choices %} ``{{ choice }}`` {% endfor %} + {% endif %} + - ``{{ arg.default }}`` + - {{ arg.help }} + {% endfor %} + +{% endfor %} \ No newline at end of file diff --git a/docs/cli/cli.rst b/docs/cli/cli.rst new file mode 100644 index 00000000..2774c726 --- /dev/null +++ b/docs/cli/cli.rst @@ -0,0 +1,5 @@ +CLI +=== + +.. datatemplate:yaml:: main_parser.yaml + :template: cli_template.rst \ No newline at end of file diff --git a/docs/conf.py b/docs/conf.py index 5b79b1ca..f51bf22b 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -34,6 +34,7 @@ "sphinx.ext.napoleon", "sphinx.ext.autosummary", "sphinx_design", + "sphinxcontrib.datatemplates", ] @@ -176,3 +177,8 @@ # os.chdir("docs") # open("./tested_blocks.md", "w").write("\n".join(tested)) + +from prose.cli import make_parser, to_yaml + +parser = make_parser() +to_yaml(parser, "cli/main_parser.yaml") diff --git a/docs/index.md b/docs/index.md index 02366cd3..8d860e62 100644 --- a/docs/index.md +++ b/docs/index.md @@ -20,6 +20,8 @@ A Python package to build image processing pipelines for Astronomy. Beyond featu 📦 Explore the library of pre-implemented [blocks](md/blocks.rst) ✨ Obtain a light curve from raw images by following the [Basic Photometry tutorial](ipynb/photometry.ipynb) + +⌨️ Explore the command line interface by reading the [CLI documentation](cli/cli.md) ``` ```{toctree} @@ -61,4 +63,5 @@ ipynb/sources md/blocks md/api tested_blocks.md +cli/cli ``` \ No newline at end of file diff --git a/poetry.lock b/poetry.lock index b3977dc4..8e0565b5 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,9 +1,10 @@ -# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.4.2 and should not be changed by hand. [[package]] name = "accessible-pygments" version = "0.0.4" description = "A collection of accessible pygments styles" +category = "dev" optional = false python-versions = "*" files = [ @@ -18,6 +19,7 @@ pygments = ">=1.5" name = "alabaster" version = "0.7.13" description = "A configurable sidebar-enabled Sphinx theme" +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -29,6 +31,7 @@ files = [ name = "anyio" version = "3.7.1" description = "High level compatibility layer for multiple asynchronous event loop implementations" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -50,6 +53,7 @@ trio = ["trio (<0.22)"] name = "appnope" version = "0.1.3" description = "Disable App Nap on macOS >= 10.9" +category = "main" optional = false python-versions = "*" files = [ @@ -61,6 +65,7 @@ files = [ name = "argon2-cffi" version = "21.3.0" description = "The secure Argon2 password hashing algorithm." +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -80,6 +85,7 @@ tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"] name = "argon2-cffi-bindings" version = "21.2.0" description = "Low-level CFFI bindings for Argon2" +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -117,6 +123,7 @@ tests = ["pytest"] name = "arrow" version = "1.2.3" description = "Better dates & times for Python" +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -131,6 +138,7 @@ python-dateutil = ">=2.7.0" name = "astropy" version = "5.2.2" description = "Astronomy and astrophysics core library" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -184,6 +192,7 @@ test-all = ["coverage[toml]", "ipython (>=4.2)", "objgraph", "pytest (>=7.0)", " name = "astroquery" version = "0.4.6" description = "Functions and classes to access online astronomical data resources" +category = "main" optional = false python-versions = "*" files = [ @@ -209,6 +218,7 @@ test = ["flask", "jinja2", "matplotlib", "pytest-astropy", "pytest-dependency"] name = "asttokens" version = "2.2.1" description = "Annotate AST trees with source code positions" +category = "main" optional = false python-versions = "*" files = [ @@ -226,6 +236,7 @@ test = ["astroid", "pytest"] name = "async-lru" version = "2.0.3" description = "Simple LRU cache for asyncio" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -240,6 +251,7 @@ typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""} name = "attrs" version = "23.1.0" description = "Classes Without Boilerplate" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -258,6 +270,7 @@ tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pyte name = "babel" version = "2.12.1" description = "Internationalization utilities" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -272,6 +285,7 @@ pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} name = "backcall" version = "0.2.0" description = "Specifications for callback functions passed in to an API" +category = "main" optional = false python-versions = "*" files = [ @@ -283,6 +297,7 @@ files = [ name = "beautifulsoup4" version = "4.12.2" description = "Screen-scraping library" +category = "main" optional = false python-versions = ">=3.6.0" files = [ @@ -301,6 +316,7 @@ lxml = ["lxml"] name = "black" version = "23.7.0" description = "The uncompromising code formatter." +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -347,6 +363,7 @@ uvloop = ["uvloop (>=0.15.2)"] name = "bleach" version = "6.0.0" description = "An easy safelist-based HTML-sanitizing tool." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -365,6 +382,7 @@ css = ["tinycss2 (>=1.1.0,<1.2)"] name = "celerite2" version = "0.2.1" description = "Fast and scalable Gaussian Processes in 1D" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -410,6 +428,7 @@ tutorials = ["aesara-theano-fallback (>=0.0.2)", "emcee", "jupyter", "jupytext", name = "certifi" version = "2023.5.7" description = "Python package for providing Mozilla's CA Bundle." +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -421,6 +440,7 @@ files = [ name = "cffi" version = "1.15.1" description = "Foreign Function Interface for Python calling C code." +category = "main" optional = false python-versions = "*" files = [ @@ -497,6 +517,7 @@ pycparser = "*" name = "charset-normalizer" version = "3.2.0" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +category = "main" optional = false python-versions = ">=3.7.0" files = [ @@ -579,13 +600,14 @@ files = [ [[package]] name = "click" -version = "8.1.5" +version = "8.1.6" description = "Composable command line interface toolkit" +category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "click-8.1.5-py3-none-any.whl", hash = "sha256:e576aa487d679441d7d30abb87e1b43d24fc53bffb8758443b1a9e1cee504548"}, - {file = "click-8.1.5.tar.gz", hash = "sha256:4be4b1af8d665c6d942909916d31a213a106800c47d0eeba73d34da3cbc11367"}, + {file = "click-8.1.6-py3-none-any.whl", hash = "sha256:fa244bb30b3b5ee2cae3da8f55c9e5e0c0e86093306301fb418eb9dc40fbded5"}, + {file = "click-8.1.6.tar.gz", hash = "sha256:48ee849951919527a045bfe3bf7baa8a959c423134e1a5b98c05c20ba75a1cbd"}, ] [package.dependencies] @@ -595,6 +617,7 @@ colorama = {version = "*", markers = "platform_system == \"Windows\""} name = "colorama" version = "0.4.6" description = "Cross-platform colored terminal text." +category = "main" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" files = [ @@ -606,6 +629,7 @@ files = [ name = "comm" version = "0.1.3" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -625,6 +649,7 @@ typing = ["mypy (>=0.990)"] name = "contourpy" version = "1.1.0" description = "Python library for calculating contours of 2D quadrilateral grids" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -683,6 +708,7 @@ test-no-images = ["pytest", "pytest-cov", "wurlitzer"] name = "cryptography" version = "41.0.2" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -728,6 +754,7 @@ test-randomorder = ["pytest-randomly"] name = "cycler" version = "0.11.0" description = "Composable style cycles" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -739,6 +766,7 @@ files = [ name = "debugpy" version = "1.6.7" description = "An implementation of the Debug Adapter Protocol for Python" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -766,6 +794,7 @@ files = [ name = "decorator" version = "5.1.1" description = "Decorators for Humans" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -777,6 +806,7 @@ files = [ name = "defusedxml" version = "0.7.1" description = "XML bomb protection for Python stdlib modules" +category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ @@ -788,6 +818,7 @@ files = [ name = "dill" version = "0.3.6" description = "serialize all of python" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -802,6 +833,7 @@ graph = ["objgraph (>=1.7.2)"] name = "docutils" version = "0.19" description = "Docutils -- Python Documentation Utilities" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -813,6 +845,7 @@ files = [ name = "exceptiongroup" version = "1.1.2" description = "Backport of PEP 654 (exception groups)" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -827,6 +860,7 @@ test = ["pytest (>=6)"] name = "executing" version = "1.2.0" description = "Get the currently executing AST node of a frame, and other information" +category = "main" optional = false python-versions = "*" files = [ @@ -841,6 +875,7 @@ tests = ["asttokens", "littleutils", "pytest", "rich"] name = "fastjsonschema" version = "2.17.1" description = "Fastest Python implementation of JSON schema" +category = "dev" optional = false python-versions = "*" files = [ @@ -855,6 +890,7 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc name = "fonttools" version = "4.41.0" description = "Tools to manipulate font files" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -912,6 +948,7 @@ woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] name = "fqdn" version = "1.5.1" description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" +category = "dev" optional = false python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" files = [ @@ -923,6 +960,7 @@ files = [ name = "greenlet" version = "2.0.2" description = "Lightweight in-process concurrent programming" +category = "dev" optional = false python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*" files = [ @@ -996,6 +1034,7 @@ test = ["objgraph", "psutil"] name = "html5lib" version = "1.1" description = "HTML parser based on the WHATWG HTML specification" +category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ @@ -1017,6 +1056,7 @@ lxml = ["lxml"] name = "idna" version = "3.4" description = "Internationalized Domain Names in Applications (IDNA)" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -1028,6 +1068,7 @@ files = [ name = "imageio" version = "2.31.1" description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats." +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1061,6 +1102,7 @@ tifffile = ["tifffile"] name = "imageio-ffmpeg" version = "0.4.8" description = "FFMPEG wrapper for Python" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -1076,6 +1118,7 @@ files = [ name = "imagesize" version = "1.4.1" description = "Getting image size from png/jpeg/jpeg2000/gif file" +category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ @@ -1087,6 +1130,7 @@ files = [ name = "importlib-metadata" version = "6.8.0" description = "Read metadata from Python packages" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -1106,6 +1150,7 @@ testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs name = "importlib-resources" version = "6.0.0" description = "Read resources from Python packages" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -1124,6 +1169,7 @@ testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", name = "iniconfig" version = "2.0.0" description = "brain-dead simple config-ini parsing" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1135,6 +1181,7 @@ files = [ name = "ipykernel" version = "6.24.0" description = "IPython Kernel for Jupyter" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1148,7 +1195,7 @@ comm = ">=0.1.1" debugpy = ">=1.6.5" ipython = ">=7.23.1" jupyter-client = ">=6.1.12" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" matplotlib-inline = ">=0.1" nest-asyncio = "*" packaging = "*" @@ -1168,6 +1215,7 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio" name = "ipython" version = "8.12.2" description = "IPython: Productive Interactive Computing" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -1207,6 +1255,7 @@ test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pa name = "ipywidgets" version = "8.0.7" description = "Jupyter interactive widgets" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -1228,6 +1277,7 @@ test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] name = "isoduration" version = "20.11.0" description = "Operations with ISO 8601 durations" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -1242,6 +1292,7 @@ arrow = ">=0.15.0" name = "jaraco-classes" version = "3.3.0" description = "Utility functions for Python class constructs" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -1260,6 +1311,7 @@ testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", name = "jax" version = "0.4.13" description = "Differentiate, compile, and transform Numpy code." +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1290,6 +1342,7 @@ tpu = ["jaxlib (==0.4.13)", "libtpu-nightly (==0.1.dev20230622)"] name = "jaxlib" version = "0.4.13" description = "XLA library for JAX" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1323,6 +1376,7 @@ cuda12-pip = ["nvidia-cublas-cu12", "nvidia-cuda-cupti-cu12", "nvidia-cuda-nvcc- name = "jaxopt" version = "0.7" description = "Hardware accelerated, batchable and differentiable optimizers in JAX." +category = "dev" optional = false python-versions = "*" files = [ @@ -1340,6 +1394,7 @@ scipy = ">=1.0.0" name = "jedi" version = "0.18.2" description = "An autocompletion tool for Python that can be used for text editors." +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -1359,6 +1414,7 @@ testing = ["Django (<3.1)", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] name = "jeepney" version = "0.8.0" description = "Low-level, pure Python DBus protocol wrapper." +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1374,6 +1430,7 @@ trio = ["async_generator", "trio"] name = "jinja2" version = "3.1.2" description = "A very fast and expressive template engine." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -1391,6 +1448,7 @@ i18n = ["Babel (>=2.7)"] name = "json5" version = "0.9.14" description = "A Python implementation of the JSON5 data format." +category = "dev" optional = false python-versions = "*" files = [ @@ -1405,6 +1463,7 @@ dev = ["hypothesis"] name = "jsonpointer" version = "2.4" description = "Identify specific nodes in a JSON document (RFC 6901)" +category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" files = [ @@ -1416,6 +1475,7 @@ files = [ name = "jsonschema" version = "4.18.4" description = "An implementation of JSON Schema validation for Python" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1463,6 +1523,7 @@ referencing = ">=0.28.0" name = "jupyter-cache" version = "0.6.1" description = "A defined interface for working with a cache of jupyter notebooks." +category = "dev" optional = false python-versions = "~=3.8" files = [ @@ -1490,6 +1551,7 @@ testing = ["coverage", "ipykernel", "jupytext", "matplotlib", "nbdime", "nbforma name = "jupyter-client" version = "8.3.0" description = "Jupyter protocol implementation and client libraries" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1499,7 +1561,7 @@ files = [ [package.dependencies] importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" python-dateutil = ">=2.8.2" pyzmq = ">=23.0" tornado = ">=6.2" @@ -1513,6 +1575,7 @@ test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pyt name = "jupyter-core" version = "5.3.1" description = "Jupyter core package. A base package on which Jupyter projects rely." +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1533,6 +1596,7 @@ test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] name = "jupyter-events" version = "0.6.3" description = "Jupyter Event System library" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -1557,6 +1621,7 @@ test = ["click", "coverage", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>= name = "jupyter-lsp" version = "2.2.0" description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1572,6 +1637,7 @@ jupyter-server = ">=1.1.2" name = "jupyter-server" version = "2.7.0" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1584,7 +1650,7 @@ anyio = ">=3.1.0" argon2-cffi = "*" jinja2 = "*" jupyter-client = ">=7.4.4" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" jupyter-events = ">=0.6.0" jupyter-server-terminals = "*" nbconvert = ">=6.4.4" @@ -1608,6 +1674,7 @@ test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-sc name = "jupyter-server-terminals" version = "0.4.4" description = "A Jupyter Server Extension Providing Terminals." +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1627,6 +1694,7 @@ test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", name = "jupyterlab" version = "4.0.3" description = "JupyterLab computational environment" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -1660,6 +1728,7 @@ test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-cons name = "jupyterlab-pygments" version = "0.2.2" description = "Pygments theme using JupyterLab CSS variables" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -1671,6 +1740,7 @@ files = [ name = "jupyterlab-server" version = "2.23.0" description = "A set of server components for JupyterLab and JupyterLab like applications." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -1697,6 +1767,7 @@ test = ["hatch", "ipykernel", "jupyterlab-server[openapi]", "openapi-spec-valida name = "jupyterlab-widgets" version = "3.0.8" description = "Jupyter interactive widgets for JupyterLab" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -1708,6 +1779,7 @@ files = [ name = "keyring" version = "24.2.0" description = "Store and access your passwords safely." +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -1732,6 +1804,7 @@ testing = ["pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", name = "kiwisolver" version = "1.4.4" description = "A fast implementation of the Cassowary constraint solver" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1809,6 +1882,7 @@ files = [ name = "lazy-loader" version = "0.3" description = "lazy_loader" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1824,6 +1898,7 @@ test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"] name = "markdown-it-py" version = "2.2.0" description = "Python port of markdown-it. Markdown parsing, done right!" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -1848,6 +1923,7 @@ testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] name = "markupsafe" version = "2.1.3" description = "Safely add untrusted strings to HTML/XML markup." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -1907,6 +1983,7 @@ files = [ name = "matplotlib" version = "3.7.2" description = "Python plotting package" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -1969,6 +2046,7 @@ python-dateutil = ">=2.7" name = "matplotlib-inline" version = "0.1.6" description = "Inline Matplotlib backend for Jupyter" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -1983,6 +2061,7 @@ traitlets = "*" name = "mdit-py-plugins" version = "0.3.5" description = "Collection of plugins for markdown-it-py" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2002,6 +2081,7 @@ testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] name = "mdurl" version = "0.1.2" description = "Markdown URL utilities" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2011,8 +2091,9 @@ files = [ [[package]] name = "mistune" -version = "2.0.5" -description = "A sane Markdown parser with useful plugins and renderers" +version = "3.0.1" +description = "A sane and fast Markdown parser with useful plugins and renderers" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2024,6 +2105,7 @@ files = [ name = "ml-dtypes" version = "0.2.0" description = "" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2049,8 +2131,8 @@ files = [ [package.dependencies] numpy = [ {version = ">1.20", markers = "python_version <= \"3.9\""}, - {version = ">=1.21.2", markers = "python_version > \"3.9\""}, {version = ">=1.23.3", markers = "python_version > \"3.10\""}, + {version = ">=1.21.2", markers = "python_version > \"3.9\""}, ] [package.extras] @@ -2060,6 +2142,7 @@ dev = ["absl-py", "pyink", "pylint (>=2.6.0)", "pytest", "pytest-xdist"] name = "more-itertools" version = "9.1.0" description = "More routines for operating on iterables, beyond itertools" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -2071,6 +2154,7 @@ files = [ name = "multiprocess" version = "0.70.14" description = "better multiprocessing and multithreading in python" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -2097,6 +2181,7 @@ dill = ">=0.3.6" name = "mypy-extensions" version = "1.0.0" description = "Type system extensions for programs checked with the mypy type checker." +category = "dev" optional = false python-versions = ">=3.5" files = [ @@ -2108,6 +2193,7 @@ files = [ name = "myst-nb" version = "0.17.2" description = "A Jupyter Notebook Sphinx reader built on top of the MyST markdown parser." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2136,6 +2222,7 @@ testing = ["beautifulsoup4", "coverage (>=6.4,<8.0)", "ipykernel (>=5.5,<6.0)", name = "myst-parser" version = "0.18.1" description = "An extended commonmark compliant parser, with bridges to docutils & sphinx." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2162,6 +2249,7 @@ testing = ["beautifulsoup4", "coverage[toml]", "pytest (>=6,<7)", "pytest-cov", name = "nbclient" version = "0.7.4" description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +category = "dev" optional = false python-versions = ">=3.7.0" files = [ @@ -2171,7 +2259,7 @@ files = [ [package.dependencies] jupyter-client = ">=6.1.12" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" nbformat = ">=5.1" traitlets = ">=5.3" @@ -2184,6 +2272,7 @@ test = ["flaky", "ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "p name = "nbconvert" version = "7.7.1" description = "Converting Jupyter Notebooks" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -2222,6 +2311,7 @@ webpdf = ["playwright"] name = "nbformat" version = "5.9.1" description = "The Jupyter Notebook format" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -2243,6 +2333,7 @@ test = ["pep440", "pre-commit", "pytest", "testpath"] name = "nest-asyncio" version = "1.5.6" description = "Patch asyncio to allow nested event loops" +category = "dev" optional = false python-versions = ">=3.5" files = [ @@ -2254,6 +2345,7 @@ files = [ name = "networkx" version = "3.1" description = "Python package for creating and manipulating graphs and networks" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -2272,6 +2364,7 @@ test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] name = "notebook-shim" version = "0.2.3" description = "A shim layer for notebook traits and config" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2289,6 +2382,7 @@ test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync" name = "numpy" version = "1.24.4" description = "Fundamental package for array computing in Python" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -2326,6 +2420,7 @@ files = [ name = "opt-einsum" version = "3.3.0" description = "Optimizing numpys einsum function" +category = "dev" optional = false python-versions = ">=3.5" files = [ @@ -2344,6 +2439,7 @@ tests = ["pytest", "pytest-cov", "pytest-pep8"] name = "overrides" version = "7.3.1" description = "A decorator to automatically detect mismatch when overriding a method." +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -2355,6 +2451,7 @@ files = [ name = "packaging" version = "23.1" description = "Core utilities for Python packages" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -2366,6 +2463,7 @@ files = [ name = "pandas" version = "2.0.3" description = "Powerful data structures for data analysis, time series, and statistics" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -2433,6 +2531,7 @@ xml = ["lxml (>=4.6.3)"] name = "pandocfilters" version = "1.5.0" description = "Utilities for writing pandoc filters in python" +category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ @@ -2444,6 +2543,7 @@ files = [ name = "parso" version = "0.8.3" description = "A Python Parser" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -2459,6 +2559,7 @@ testing = ["docopt", "pytest (<6.0.0)"] name = "pathspec" version = "0.11.1" description = "Utility library for gitignore style pattern matching of file paths." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2466,10 +2567,23 @@ files = [ {file = "pathspec-0.11.1.tar.gz", hash = "sha256:2798de800fa92780e33acca925945e9a19a133b715067cf165b8866c15a31687"}, ] +[[package]] +name = "pbr" +version = "5.11.1" +description = "Python Build Reasonableness" +category = "dev" +optional = false +python-versions = ">=2.6" +files = [ + {file = "pbr-5.11.1-py2.py3-none-any.whl", hash = "sha256:567f09558bae2b3ab53cb3c1e2e33e726ff3338e7bae3db5dc954b3a44eef12b"}, + {file = "pbr-5.11.1.tar.gz", hash = "sha256:aefc51675b0b533d56bb5fd1c8c6c0522fe31896679882e1c4c63d5e4a0fccb3"}, +] + [[package]] name = "pexpect" version = "4.8.0" description = "Pexpect allows easy control of interactive console applications." +category = "main" optional = false python-versions = "*" files = [ @@ -2484,6 +2598,7 @@ ptyprocess = ">=0.5" name = "photutils" version = "1.8.0" description = "An Astropy package for source detection and photometry" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -2523,6 +2638,7 @@ test = ["pytest-astropy (>=0.10)"] name = "pickleshare" version = "0.7.5" description = "Tiny 'shelve'-like database with concurrency support" +category = "main" optional = false python-versions = "*" files = [ @@ -2534,6 +2650,7 @@ files = [ name = "pillow" version = "10.0.0" description = "Python Imaging Library (Fork)" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -2603,6 +2720,7 @@ tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "pa name = "pkgutil-resolve-name" version = "1.3.10" description = "Resolve a name to an object." +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -2614,6 +2732,7 @@ files = [ name = "platformdirs" version = "3.9.1" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2629,6 +2748,7 @@ test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.3.1)", "pytest- name = "pluggy" version = "1.2.0" description = "plugin and hook calling mechanisms for python" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -2644,6 +2764,7 @@ testing = ["pytest", "pytest-benchmark"] name = "prometheus-client" version = "0.17.1" description = "Python client for the Prometheus monitoring system." +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -2658,6 +2779,7 @@ twisted = ["twisted"] name = "prompt-toolkit" version = "3.0.39" description = "Library for building powerful interactive command lines in Python" +category = "main" optional = false python-versions = ">=3.7.0" files = [ @@ -2672,6 +2794,7 @@ wcwidth = "*" name = "psutil" version = "5.9.5" description = "Cross-platform lib for process and system monitoring in Python." +category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ @@ -2698,6 +2821,7 @@ test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] name = "ptyprocess" version = "0.7.0" description = "Run a subprocess in a pseudo terminal" +category = "main" optional = false python-versions = "*" files = [ @@ -2709,6 +2833,7 @@ files = [ name = "pure-eval" version = "0.2.2" description = "Safely evaluate AST nodes without side effects" +category = "main" optional = false python-versions = "*" files = [ @@ -2723,6 +2848,7 @@ tests = ["pytest"] name = "pycparser" version = "2.21" description = "C parser in Python" +category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ @@ -2734,6 +2860,7 @@ files = [ name = "pydata-sphinx-theme" version = "0.13.3" description = "Bootstrap-based Sphinx theme from the PyData community" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -2760,6 +2887,7 @@ test = ["codecov", "pytest", "pytest-cov", "pytest-regressions"] name = "pyerfa" version = "2.0.0.3" description = "Python bindings for ERFA" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -2816,6 +2944,7 @@ test = ["pytest", "pytest-doctestplus (>=0.7)"] name = "pygments" version = "2.15.1" description = "Pygments is a syntax highlighting package written in Python." +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -2830,6 +2959,7 @@ plugins = ["importlib-metadata"] name = "pyparsing" version = "3.0.9" description = "pyparsing module - Classes and methods to define and execute parsing grammars" +category = "main" optional = false python-versions = ">=3.6.8" files = [ @@ -2840,46 +2970,11 @@ files = [ [package.extras] diagrams = ["jinja2", "railroad-diagrams"] -[[package]] -name = "pyrsistent" -version = "0.19.3" -description = "Persistent/Functional/Immutable data structures" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pyrsistent-0.19.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a"}, - {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64"}, - {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf"}, - {file = "pyrsistent-0.19.3-cp310-cp310-win32.whl", hash = "sha256:5a474fb80f5e0d6c9394d8db0fc19e90fa540b82ee52dba7d246a7791712f74a"}, - {file = "pyrsistent-0.19.3-cp310-cp310-win_amd64.whl", hash = "sha256:49c32f216c17148695ca0e02a5c521e28a4ee6c5089f97e34fe24163113722da"}, - {file = "pyrsistent-0.19.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f0774bf48631f3a20471dd7c5989657b639fd2d285b861237ea9e82c36a415a9"}, - {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab2204234c0ecd8b9368dbd6a53e83c3d4f3cab10ecaf6d0e772f456c442393"}, - {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e42296a09e83028b3476f7073fcb69ffebac0e66dbbfd1bd847d61f74db30f19"}, - {file = "pyrsistent-0.19.3-cp311-cp311-win32.whl", hash = "sha256:64220c429e42a7150f4bfd280f6f4bb2850f95956bde93c6fda1b70507af6ef3"}, - {file = "pyrsistent-0.19.3-cp311-cp311-win_amd64.whl", hash = "sha256:016ad1afadf318eb7911baa24b049909f7f3bb2c5b1ed7b6a8f21db21ea3faa8"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c4db1bd596fefd66b296a3d5d943c94f4fac5bcd13e99bffe2ba6a759d959a28"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aeda827381f5e5d65cced3024126529ddc4289d944f75e090572c77ceb19adbf"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42ac0b2f44607eb92ae88609eda931a4f0dfa03038c44c772e07f43e738bcac9"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-win32.whl", hash = "sha256:e8f2b814a3dc6225964fa03d8582c6e0b6650d68a232df41e3cc1b66a5d2f8d1"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c9bb60a40a0ab9aba40a59f68214eed5a29c6274c83b2cc206a359c4a89fa41b"}, - {file = "pyrsistent-0.19.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a2471f3f8693101975b1ff85ffd19bb7ca7dd7c38f8a81701f67d6b4f97b87d8"}, - {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc5d149f31706762c1f8bda2e8c4f8fead6e80312e3692619a75301d3dbb819a"}, - {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3311cb4237a341aa52ab8448c27e3a9931e2ee09561ad150ba94e4cfd3fc888c"}, - {file = "pyrsistent-0.19.3-cp38-cp38-win32.whl", hash = "sha256:f0e7c4b2f77593871e918be000b96c8107da48444d57005b6a6bc61fb4331b2c"}, - {file = "pyrsistent-0.19.3-cp38-cp38-win_amd64.whl", hash = "sha256:c147257a92374fde8498491f53ffa8f4822cd70c0d85037e09028e478cababb7"}, - {file = "pyrsistent-0.19.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b735e538f74ec31378f5a1e3886a26d2ca6351106b4dfde376a26fc32a044edc"}, - {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99abb85579e2165bd8522f0c0138864da97847875ecbd45f3e7e2af569bfc6f2"}, - {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a8cb235fa6d3fd7aae6a4f1429bbb1fec1577d978098da1252f0489937786f3"}, - {file = "pyrsistent-0.19.3-cp39-cp39-win32.whl", hash = "sha256:c74bed51f9b41c48366a286395c67f4e894374306b197e62810e0fdaf2364da2"}, - {file = "pyrsistent-0.19.3-cp39-cp39-win_amd64.whl", hash = "sha256:878433581fc23e906d947a6814336eee031a00e6defba224234169ae3d3d6a98"}, - {file = "pyrsistent-0.19.3-py3-none-any.whl", hash = "sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64"}, - {file = "pyrsistent-0.19.3.tar.gz", hash = "sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440"}, -] - [[package]] name = "pytest" version = "7.4.0" description = "pytest: simple powerful testing with Python" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -2902,6 +2997,7 @@ testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "no name = "python-dateutil" version = "2.8.2" description = "Extensions to the standard Python datetime module" +category = "main" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ @@ -2916,6 +3012,7 @@ six = ">=1.5" name = "python-json-logger" version = "2.0.7" description = "A python library adding a json log formatter" +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -2927,6 +3024,7 @@ files = [ name = "pytz" version = "2023.3" description = "World timezone definitions, modern and historical" +category = "main" optional = false python-versions = "*" files = [ @@ -2938,6 +3036,7 @@ files = [ name = "pyvo" version = "1.4.1" description = "Astropy affiliated package for accessing Virtual Observatory data and services" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -2958,6 +3057,7 @@ test = ["pytest-astropy", "requests-mock"] name = "pywavelets" version = "1.4.1" description = "PyWavelets, wavelet transform module" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -2995,6 +3095,7 @@ numpy = ">=1.17.3" name = "pywin32" version = "306" description = "Python for Window Extensions" +category = "dev" optional = false python-versions = "*" files = [ @@ -3016,8 +3117,9 @@ files = [ [[package]] name = "pywin32-ctypes" -version = "0.2.0" -description = "" +version = "0.2.2" +description = "A (partial) reimplementation of pywin32 using ctypes/cffi" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -3029,6 +3131,7 @@ files = [ name = "pywinpty" version = "2.0.11" description = "Pseudo terminal support for Windows from Python." +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -3043,6 +3146,7 @@ files = [ name = "pyyaml" version = "6.0.1" description = "YAML parser and emitter for Python" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -3092,6 +3196,7 @@ files = [ name = "pyzmq" version = "25.1.0" description = "Python bindings for 0MQ" +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -3197,6 +3302,7 @@ rpds-py = ">=0.7.0" name = "requests" version = "2.31.0" description = "Python HTTP for Humans." +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -3218,6 +3324,7 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] name = "rfc3339-validator" version = "0.1.4" description = "A pure python RFC3339 validator" +category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ @@ -3232,6 +3339,7 @@ six = "*" name = "rfc3986-validator" version = "0.1.1" description = "Pure python rfc3986 validator" +category = "dev" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" files = [ @@ -3350,6 +3458,7 @@ files = [ name = "scikit-image" version = "0.21.0" description = "Image processing in Python" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -3400,6 +3509,7 @@ test = ["asv", "matplotlib (>=3.5)", "pooch (>=1.6.0)", "pytest (>=7.0)", "pytes name = "scipy" version = "1.10.1" description = "Fundamental algorithms for scientific computing in Python" +category = "main" optional = false python-versions = "<3.12,>=3.8" files = [ @@ -3438,6 +3548,7 @@ test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeo name = "secretstorage" version = "3.3.3" description = "Python bindings to FreeDesktop.org Secret Service API" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -3453,6 +3564,7 @@ jeepney = ">=0.6" name = "send2trash" version = "1.8.2" description = "Send file to trash natively under Mac OS X, Windows and Linux" +category = "dev" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" files = [ @@ -3469,6 +3581,7 @@ win32 = ["pywin32"] name = "sep" version = "1.2.1" description = "Astronomical source extraction and photometry library" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -3518,6 +3631,7 @@ numpy = "*" name = "six" version = "1.16.0" description = "Python 2 and 3 compatibility utilities" +category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" files = [ @@ -3529,6 +3643,7 @@ files = [ name = "sniffio" version = "1.3.0" description = "Sniff out which async library your code is running under" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -3540,6 +3655,7 @@ files = [ name = "snowballstemmer" version = "2.2.0" description = "This package provides 29 stemmers for 28 languages generated from Snowball algorithms." +category = "dev" optional = false python-versions = "*" files = [ @@ -3551,6 +3667,7 @@ files = [ name = "soupsieve" version = "2.4.1" description = "A modern CSS selector implementation for Beautiful Soup." +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -3562,6 +3679,7 @@ files = [ name = "sphinx" version = "5.3.0" description = "Python documentation generator" +category = "dev" optional = false python-versions = ">=3.6" files = [ @@ -3597,6 +3715,7 @@ test = ["cython", "html5lib", "pytest (>=4.6)", "typed_ast"] name = "sphinx-book-theme" version = "1.0.1" description = "A clean book theme for scientific explanations and documentation with Sphinx" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -3617,6 +3736,7 @@ test = ["beautifulsoup4", "coverage", "myst-nb", "pytest", "pytest-cov", "pytest name = "sphinx-copybutton" version = "0.5.2" description = "Add a copy button to each of your code cells." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -3635,6 +3755,7 @@ rtd = ["ipython", "myst-nb", "sphinx", "sphinx-book-theme", "sphinx-examples"] name = "sphinx-design" version = "0.4.1" description = "A sphinx extension for designing beautiful, view size responsive web components." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -3658,6 +3779,7 @@ theme-sbt = ["sphinx-book-theme (>=0.3.0,<0.4.0)"] name = "sphinxcontrib-applehelp" version = "1.0.4" description = "sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -3669,10 +3791,34 @@ files = [ lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] +[[package]] +name = "sphinxcontrib-datatemplates" +version = "0.9.2" +description = "Sphinx extension for rendering data files as nice HTML" +category = "dev" +optional = false +python-versions = "*" +files = [ + {file = "sphinxcontrib.datatemplates-0.9.2-py2.py3-none-any.whl", hash = "sha256:3a4b409a488f311e577005e11654d05292fa20757313e0174d5641984461c34f"}, + {file = "sphinxcontrib.datatemplates-0.9.2.tar.gz", hash = "sha256:3c06038faa4662a8a3ef32841af48f7c17a8c721d88b4d1ed83e6b8f820301e7"}, +] + +[package.dependencies] +defusedxml = "*" +pbr = "*" +PyYAML = "*" +Sphinx = "*" +sphinxcontrib-runcmd = "*" + +[package.extras] +linter = ["flake8"] +test = ["pytest"] + [[package]] name = "sphinxcontrib-devhelp" version = "1.0.2" description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp document." +category = "dev" optional = false python-versions = ">=3.5" files = [ @@ -3688,6 +3834,7 @@ test = ["pytest"] name = "sphinxcontrib-htmlhelp" version = "2.0.1" description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" +category = "dev" optional = false python-versions = ">=3.8" files = [ @@ -3703,6 +3850,7 @@ test = ["html5lib", "pytest"] name = "sphinxcontrib-jsmath" version = "1.0.1" description = "A sphinx extension which renders display math in HTML via JavaScript" +category = "dev" optional = false python-versions = ">=3.5" files = [ @@ -3717,6 +3865,7 @@ test = ["flake8", "mypy", "pytest"] name = "sphinxcontrib-qthelp" version = "1.0.3" description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp document." +category = "dev" optional = false python-versions = ">=3.5" files = [ @@ -3728,10 +3877,29 @@ files = [ lint = ["docutils-stubs", "flake8", "mypy"] test = ["pytest"] +[[package]] +name = "sphinxcontrib-runcmd" +version = "0.2.0" +description = "Sphinx \"runcmd\" extension" +category = "dev" +optional = false +python-versions = "*" +files = [ + {file = "sphinxcontrib-runcmd-0.2.0.tar.gz", hash = "sha256:3551c389d9c5fe82d693c7222feb9658b1a1a5a1abcb0063e8385e5528c64c76"}, + {file = "sphinxcontrib_runcmd-0.2.0-py2.py3-none-any.whl", hash = "sha256:7b739b68e27210b4c7c12ba16e5b3da7b313c49991401f896d29bea0f0771934"}, +] + +[package.dependencies] +sphinx = "*" + +[package.extras] +test = ["coverage", "pytest", "pytest-cov", "sphinx-testing"] + [[package]] name = "sphinxcontrib-serializinghtml" version = "1.1.5" description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)." +category = "dev" optional = false python-versions = ">=3.5" files = [ @@ -3747,6 +3915,7 @@ test = ["pytest"] name = "sqlalchemy" version = "2.0.19" description = "Database Abstraction Library" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -3794,7 +3963,7 @@ files = [ ] [package.dependencies] -greenlet = {version = "!=0.4.17", markers = "platform_machine == \"win32\" or platform_machine == \"WIN32\" or platform_machine == \"AMD64\" or platform_machine == \"amd64\" or platform_machine == \"x86_64\" or platform_machine == \"ppc64le\" or platform_machine == \"aarch64\""} +greenlet = {version = "!=0.4.17", markers = "platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\""} typing-extensions = ">=4.2.0" [package.extras] @@ -3825,6 +3994,7 @@ sqlcipher = ["sqlcipher3-binary"] name = "stack-data" version = "0.6.2" description = "Extract data from python stack frames and tracebacks for informative displays" +category = "main" optional = false python-versions = "*" files = [ @@ -3844,6 +4014,7 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] name = "tabulate" version = "0.9.0" description = "Pretty-print tabular data" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -3858,6 +4029,7 @@ widechars = ["wcwidth"] name = "terminado" version = "0.17.1" description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -3878,6 +4050,7 @@ test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] name = "tifffile" version = "2023.7.10" description = "Read and write TIFF files" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -3895,6 +4068,7 @@ all = ["defusedxml", "fsspec", "imagecodecs (>=2023.1.23)", "lxml", "matplotlib" name = "tinycss2" version = "1.2.1" description = "A tiny CSS parser" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -3913,6 +4087,7 @@ test = ["flake8", "isort", "pytest"] name = "toml" version = "0.10.2" description = "Python Library for Tom's Obvious, Minimal Language" +category = "dev" optional = false python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" files = [ @@ -3924,6 +4099,7 @@ files = [ name = "tomli" version = "2.0.1" description = "A lil' TOML parser" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -3935,6 +4111,7 @@ files = [ name = "tornado" version = "6.3.2" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +category = "dev" optional = false python-versions = ">= 3.8" files = [ @@ -3955,6 +4132,7 @@ files = [ name = "tqdm" version = "4.65.0" description = "Fast, Extensible Progress Meter" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -3975,6 +4153,7 @@ telegram = ["requests"] name = "traitlets" version = "5.9.0" description = "Traitlets Python configuration system" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -3990,6 +4169,7 @@ test = ["argcomplete (>=2.0)", "pre-commit", "pytest", "pytest-mock"] name = "twirl" version = "0.4.0" description = "Astrometric plate solving in Python" +category = "main" optional = false python-versions = ">=3.8,<4.0" files = [ @@ -4010,6 +4190,7 @@ scipy = ">=1.9.3,<2.0.0" name = "typing-extensions" version = "4.7.1" description = "Backported and Experimental Type Hints for Python 3.7+" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -4021,6 +4202,7 @@ files = [ name = "tzdata" version = "2023.3" description = "Provider of IANA time zone data" +category = "main" optional = false python-versions = ">=2" files = [ @@ -4032,6 +4214,7 @@ files = [ name = "uri-template" version = "1.3.0" description = "RFC 6570 URI Template Processor" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -4046,6 +4229,7 @@ dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake name = "urllib3" version = "2.0.3" description = "HTTP library with thread-safe connection pooling, file post, and more." +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -4063,6 +4247,7 @@ zstd = ["zstandard (>=0.18.0)"] name = "wcwidth" version = "0.2.6" description = "Measures the displayed width of unicode strings in a terminal" +category = "main" optional = false python-versions = "*" files = [ @@ -4074,6 +4259,7 @@ files = [ name = "webcolors" version = "1.13" description = "A library for working with the color formats defined by HTML and CSS." +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -4089,6 +4275,7 @@ tests = ["pytest", "pytest-cov"] name = "webencodings" version = "0.5.1" description = "Character encoding aliases for legacy web content" +category = "main" optional = false python-versions = "*" files = [ @@ -4100,6 +4287,7 @@ files = [ name = "websocket-client" version = "1.6.1" description = "WebSocket client for Python with low level API options" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -4116,6 +4304,7 @@ test = ["websockets"] name = "widgetsnbextension" version = "4.0.8" description = "Jupyter interactive widgets for Jupyter Notebook" +category = "dev" optional = false python-versions = ">=3.7" files = [ @@ -4127,6 +4316,7 @@ files = [ name = "zipp" version = "3.16.2" description = "Backport of pathlib-compatible object wrapper for zip files" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -4141,4 +4331,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p [metadata] lock-version = "2.0" python-versions = ">=3.8,<3.12" -content-hash = "bf1033dfc52e2711a8e902bfd38ba82de8791ef34811af5307d31ef1d67910f1" +content-hash = "5855668e8debdfd37b6d5bcd2f5701be40c4096a812ecdd801cdc9bb1a807b2a" From 768f8a57453635766912ffcde096cbe80a59da43 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 17:11:36 +0200 Subject: [PATCH 05/19] feat: add MeanStack block --- prose/blocks/utils.py | 35 +++++++++++++++++++++++++++++++++++ 1 file changed, 35 insertions(+) diff --git a/prose/blocks/utils.py b/prose/blocks/utils.py index 137ee2ed..6d6a3bd5 100644 --- a/prose/blocks/utils.py +++ b/prose/blocks/utils.py @@ -21,6 +21,7 @@ "GetFluxes", "WriteTo", "SelectiveStack", + "MeanStack", ] @@ -633,3 +634,37 @@ def run(self, image: Image): def terminate(self): self.stack = Image(easy_median([im.data for im in self._images])) + + +class MeanStack(Block): + def __init__(self, reference=None, name=None): + """Build a mean stack image from all images + + |read| :code:`Image.data` + + Parameters + ---------- + name : str, optional + name of the blocks, by default None + reference : Image, optional + reference image from which header is copied, by default None + """ + super().__init__(name=name) + self._stack_data = None + self._n = 0 + self.reference = reference.copy() if reference is not None else None + + def run(self, image: Image): + if self._stack_data is None: + self._stack_data = image.data + self._n = 1 + else: + self._stack_data += image.data + self._n = self._n + 1 + + def terminate(self): + if self.reference is None: + self.reference = Image(self._stack_data / self._n) + else: + self.reference.data = self._stack_data / self._n + self.stack = self.reference.copy() From 79a2a474844d8aaaf8229060090a3b8bacba8741 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 17:12:10 +0200 Subject: [PATCH 06/19] docs: include geometry transform blocks --- docs/md/geometry_blocks.md | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/docs/md/geometry_blocks.md b/docs/md/geometry_blocks.md index 35af498f..0fa3c739 100644 --- a/docs/md/geometry_blocks.md +++ b/docs/md/geometry_blocks.md @@ -10,6 +10,17 @@ The task of the alignment and geometry blocks is to compute and apply geometric ## Transform computation blocks +```{eval-rst} + +.. autosummary:: + :template: blocksum.rst + :nosignatures: + + ~prose.blocks.geometry.ComputeTransformTwirl + ~prose.blocks.geometry.ComputeTransformXYShift + +``` + ```{admonition} FAQ: Why computing the transform without applying it? :class: note From f2b437fbeffc885b320ce9241f5ece62ed210525 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 17:23:13 +0200 Subject: [PATCH 07/19] fix: langage improvements --- docs/_templates/cli_template.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/_templates/cli_template.rst b/docs/_templates/cli_template.rst index 83f4b099..282a071c 100644 --- a/docs/_templates/cli_template.rst +++ b/docs/_templates/cli_template.rst @@ -1,6 +1,6 @@ .. -*- mode: rst -*- -*prose* features some command line tools featuring a variety of fast and robust tasks: +*prose* features some command line tools to perform a variety of tasks: .. list-table:: From b84081ad810066189dc93547e844ef03936f98f2 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 18:07:47 +0200 Subject: [PATCH 08/19] refactor: fitsmanager cli to fits --- prose/cli/fits.py | 41 +++++++++++++++++ prose/cli/fitsmanager.py | 96 ---------------------------------------- 2 files changed, 41 insertions(+), 96 deletions(-) create mode 100644 prose/cli/fits.py delete mode 100644 prose/cli/fitsmanager.py diff --git a/prose/cli/fits.py b/prose/cli/fits.py new file mode 100644 index 00000000..b27473f3 --- /dev/null +++ b/prose/cli/fits.py @@ -0,0 +1,41 @@ +import argparse +from pathlib import Path + +import pandas as pd + +from prose import FITSImage +from prose.io import FitsManager + + +def fits(args): + fm = FitsManager(folders=args.folder, file=args.file) + observations = fm.observations() + print(observations) + + +def db(args): + # observations + # ------------ + fm = FitsManager(file=args.file) + observations = fm.observations( + telescope=args.telescope, + filter=args.filter, + date=args.date, + target=args.target, + ) + print(observations) + + +def info(args): + image = FITSImage(args.filename) + print(f"filename: {Path(args.filename).stem}") + print(f"telescope: {image.telescope.name}") + print(f"date: {image.date}") + print(f"target: {image.metadata['object']}") + print(f"filter: {image.filter}") + print(f"exposure: {image.exposure}") + print(f"dimensions: {image.shape}") + print(f"JD: {image.jd}") + print(f"RA: {image.ra}") + print(f"DEC: {image.dec}") + print(f"pixel scale: {image.pixel_scale}") diff --git a/prose/cli/fitsmanager.py b/prose/cli/fitsmanager.py deleted file mode 100644 index 3a2ab2a0..00000000 --- a/prose/cli/fitsmanager.py +++ /dev/null @@ -1,96 +0,0 @@ -import argparse -from pathlib import Path - -import pandas as pd - -from prose import FITSImage -from prose.io import FitsManager - - -def main(): - parser = argparse.ArgumentParser( - prog="prose FITS manager", description="Explore fits" - ) - subparsers = parser.add_subparsers(required=True) - - # parse - # ----- - def _parse(args): - fm = FitsManager(folders=args.folder, depth=args.depth, file=args.file) - observations = fm.observations() - print("Observations:") - print(observations) - - parse = subparsers.add_parser(name="parse", help="parse a fits folder") - parse.add_argument("folder", type=str, help="folder to explore", default=".") - parse.add_argument( - "-d", "--depth", type=int, help="depth of the search", default=10 - ) - parse.add_argument( - "-f", "--file", type=str, help="SQLite database file", default=None - ) - parse.add_argument( - "-m", "--max-rows", type=int, help="max number of rows to display", default=10 - ) - parse.set_defaults(func=_parse) - - # observations - # ------------ - def _observations(args): - fm = FitsManager(file=args.file) - observations = fm.observations( - telescope=args.telescope, - filter=args.filter, - date=args.date, - target=args.target, - ) - print("Observations:") - print(observations) - - observations = subparsers.add_parser( - name="observations", help="list observations from an SQLite database" - ) - observations.add_argument( - "file", type=str, help="SQLite database file", default=None - ) - observations.add_argument( - "-t", "--telescope", type=str, help="telescope name", default=None - ) - observations.add_argument( - "-f", "--filter", type=str, help="filter name", default=None - ) - observations.add_argument("-d", "--date", type=str, help="date", default=None) - observations.add_argument( - "-o", "--target", type=str, help="target name", default=None - ) - observations.add_argument( - "-m", "--max-rows", type=int, help="max number of rows to display", default=10 - ) - observations.set_defaults(func=_observations) - - # info - # ---- - def _info(args): - image = FITSImage(args.filename) - print(f"filename: {Path(args.filename).stem}") - print(f"telescope: {image.telescope.name}") - print(f"date: {image.date}") - print(f"target: {image.metadata['object']}") - print(f"filter: {image.filter}") - print(f"exposure: {image.exposure}") - print(f"dimensions: {image.shape}") - print(f"JD: {image.jd}") - print(f"RA: {image.ra}") - print(f"DEC: {image.dec}") - print(f"pixel scale: {image.pixel_scale}") - - info = subparsers.add_parser(name="info", help="FITS image information") - info.add_argument("filename", type=str, help="FITS image filename") - info.set_defaults(func=_info) - - args = parser.parse_args() - args.func(args) - - -if __name__ == "__main__": - main() From e1f801f07be6c1d9424ef7699666a2311c0c82ef Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 18:08:11 +0200 Subject: [PATCH 09/19] chore: minor version bump --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 0092888f..f88b313a 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "prose" -version = "3.2.3" +version = "3.3.0" description = "Modular image processing pipelines for Astronomy" authors = ["Lionel Garcia"] license = "MIT" From 06ef93f3b0ee10848c0fb119ef2b520beb8b3931 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 22:15:08 +0200 Subject: [PATCH 10/19] fix: add wcs when writing FITS --- prose/core/image.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/prose/core/image.py b/prose/core/image.py index 6dda0299..2ede9845 100644 --- a/prose/core/image.py +++ b/prose/core/image.py @@ -425,8 +425,11 @@ def writeto(self, destination: Union[str, Path]): destination : Union[str, Path] destination path """ + header = deepcopy(self.header) + header.update(self.wcs.to_header()) hdu = fits.PrimaryHDU( - data=self.data, header=fits.Header(utils.clean_header(self.header)) + data=self.data, + header=fits.Header(utils.clean_header(header)), ) hdu.writeto(destination, overwrite=True) From bb8d2abd66ff16f842f132b999c063a40ee49742 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 22:15:38 +0200 Subject: [PATCH 11/19] feat: fitsmanager progress bar leave option --- prose/io/fitsmanager.py | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/prose/io/fitsmanager.py b/prose/io/fitsmanager.py index 283eb833..9e41a7cc 100644 --- a/prose/io/fitsmanager.py +++ b/prose/io/fitsmanager.py @@ -71,6 +71,8 @@ class FitsManager: A function to use for converting FITS files to pandas DataFrames. Default is `None`. telescope : str, optional The name of the telescope used to take the FITS files. Default is `None`. + leave : bool, optional + Whether to leave the progress bar after completion. Default is `True`. Attributes ---------- @@ -95,6 +97,7 @@ def __init__( verbose=True, to_df=None, telescope=None, + leave=True, ): if file is None: file = ":memory:" @@ -130,6 +133,7 @@ def __init__( hdu=hdu, verbose=verbose, telescope=telescope, + leave=leave, ) def _insert( @@ -310,7 +314,11 @@ def scan_files( "ERROR, batch ignored" else: df = self.fits_to_df( - files_to_scan, verbose=verbose, hdu=hdu, verbose_os=verbose_os + files_to_scan, + verbose=verbose, + hdu=hdu, + verbose_os=verbose_os, + leave=leave, ) for row in df.values: if telescope is not None: From 461e5910cb2bb98186c861d546076df719ea3db7 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 22:15:58 +0200 Subject: [PATCH 12/19] feat: stack subcommand --- prose/cli/stack.py | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) diff --git a/prose/cli/stack.py b/prose/cli/stack.py index a664aa5c..d7ea43b7 100644 --- a/prose/cli/stack.py +++ b/prose/cli/stack.py @@ -56,3 +56,25 @@ def stack(args): stack.writeto(folder / "stack.fits") print("Stack saved in", folder / "stack.fits") + + +def add_stack_parser(subparsers): + stack_parser = subparsers.add_parser(name="stack", description="stack FITS files") + stack_parser.add_argument("folder", type=str, help="folder to parse", default=None) + stack_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + stack_parser.add_argument( + "-n", "--n", type=int, help="number of stars used for alignment", default=30 + ) + stack_parser.add_argument( + "--method", + choices=["mean", "selective"], + help="alignment method. 'mean' applies a mean to all images, 'selective' \ + applies a median to the -n smallest-FWHM images", + default="selective", + ) + stack_parser.add_argument( + "-o", "--output", type=str, help="output file name", default="stack.fits" + ) + stack_parser.set_defaults(func=stack) From 8c5e9ef0c781238c5629231871d046910113ab25 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 22:16:14 +0200 Subject: [PATCH 13/19] feat: show and solve subcommands --- prose/cli/visualisation.py | 106 +++++++++++++++++++++++++++++++++++-- 1 file changed, 102 insertions(+), 4 deletions(-) diff --git a/prose/cli/visualisation.py b/prose/cli/visualisation.py index 47f47223..d2b45c31 100644 --- a/prose/cli/visualisation.py +++ b/prose/cli/visualisation.py @@ -1,5 +1,4 @@ -import argparse -import sys +from pathlib import Path import matplotlib.pyplot as plt @@ -8,7 +7,106 @@ def show(args): image = FITSImage(args.file) - image.show(contrast=args.contrast) - plt.axis(False) + if args.f and not image.plate_solved: + print("Image is not plate solved, cannot show frame") + args.f = False + image.show(contrast=args.contrast, frame=args.f) + if not args.f: + plt.axis(False) plt.tight_layout() plt.show(block=True) + + +def add_show_parser(subparsers): + show_parser = subparsers.add_parser(name="show", description="show FITS image") + show_parser.add_argument("file", type=str, help="file to show", default=None) + show_parser.add_argument( + "-c", + "--contrast", + type=float, + help="contrast of the image (zscale is applied)", + default=0.1, + ) + show_parser.add_argument( + "-f", + action="store_true", + help="whether to show sky coordinates frame", + ) + show_parser.set_defaults(func=show) + + +def video(args): + fm = FitsManager(args.folder, depth=args.depth) + images = fm.files( + type="*" if args.type is None else args.type, path=True + ).path.values + + if args.output is None: + output = Path(args.folder) / "video.mp4" + + else: + output = Path(args.output) + + video_sequence = Sequence( + [ + blocks.Video( + output, + fps=args.fps, + compression=args.compression, + width=args.width, + ) + ], + name="Making video", + ) + + video_sequence.run(images) + print("Video saved in", output) + + +def add_video_parser(subparsers): + video_parser = subparsers.add_parser( + name="video", description="make a video of FITS images" + ) + video_parser.add_argument( + "folder", type=str, help="folder containing the FITS", default=None + ) + video_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + video_parser.add_argument( + "-o", + "--output", + type=str, + help="output video file", + default="video.mp4", + ) + video_parser.add_argument( + "-t", + "--type", + type=str, + help="type of FITS files to use", + default=None, + ) + video_parser.add_argument( + "-f", + "--fps", + type=int, + help="frames per second", + default=10, + ) + video_parser.add_argument( + "-c", + "--compression", + type=int, + help="compression parameter for the video block", + default=None, + ) + video_parser.add_argument( + "-w", + "--width", + type=int, + help="width of the video in pixel (if resizing required), aspect ratio is kept", + default=None, + ) + + video_parser.set_defaults(func=video) From f1de202ee31d3839a53337faca0036386f239c6b Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 22:16:41 +0200 Subject: [PATCH 14/19] fix: calibration subcommand --- prose/cli/calibration.py | 19 +++++++++-- prose/cli/fits.py | 70 +++++++++++++++++++++++++++++++++++++++- 2 files changed, 85 insertions(+), 4 deletions(-) diff --git a/prose/cli/calibration.py b/prose/cli/calibration.py index 1c80e5f8..f05e74d5 100644 --- a/prose/cli/calibration.py +++ b/prose/cli/calibration.py @@ -42,12 +42,25 @@ def calibrate(args): blocks.Calibration(darks=darks, flats=flats, bias=bias), blocks.Trim(), blocks.WriteTo(calibrated_folder, label="calibrated"), - ] + ], + name="Calibration", ) calibration.run(lights) print("Calibrated images saved in", calibrated_folder) -if __name__ == "__main__": - main() +def add_calibrate_parser(subparsers): + calibrate_parser = subparsers.add_parser( + name="calibrate", description="calibrate FITS files" + ) + calibrate_parser.add_argument( + "folder", + type=str, + help="folder to parse containing science and calibration files", + default=None, + ) + calibrate_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + calibrate_parser.set_defaults(func=calibrate) diff --git a/prose/cli/fits.py b/prose/cli/fits.py index b27473f3..9d972eee 100644 --- a/prose/cli/fits.py +++ b/prose/cli/fits.py @@ -7,12 +7,49 @@ from prose.io import FitsManager +def pick_observation_id(observations): + if len(observations) == 0: + print("No observations found") + return + elif len(observations) == 1: + observation_id = observations.index[0] + else: + print(f"{len(observations)} observations found:") + print(observations, "\n") + while observation_id is None: + print(f"Which observation id do you want to reduce?") + observation_id = input() + if not int(observation_id) in observations.index.values: + print("Invalid observation id") + observation_id = None + + return int(observation_id) + + def fits(args): - fm = FitsManager(folders=args.folder, file=args.file) + fm = FitsManager(folders=args.folder, file=args.file, depth=args.depth, leave=False) observations = fm.observations() print(observations) +def add_fits_parser(subparsers): + fits_parser = subparsers.add_parser( + name="fits", description="parse and store data from FITS in folder(s)" + ) + fits_parser.add_argument("folder", type=str, help="folder to explore", default=".") + fits_parser.add_argument( + "-d", "--depth", type=int, help="depth of the search", default=10 + ) + fits_parser.add_argument( + "-f", + "--file", + type=str, + help="SQLite database file to save parsing results", + default=None, + ) + fits_parser.set_defaults(func=fits) + + def db(args): # observations # ------------ @@ -26,6 +63,29 @@ def db(args): print(observations) +def add_db_parser(subparsers): + db_parser = subparsers.add_parser(name="db", description="explore a FITS database") + db_parser.add_argument( + "file", type=str, help="SQLite database file to explore", default=None + ) + db_parser.add_argument( + "-m", "--max-rows", type=int, help="max number of rows to display", default=50 + ) + db_parser.add_argument( + "-t", "--telescope", type=str, help="telescope name to filter for", default=None + ) + db_parser.add_argument( + "-f", "--filter", type=str, help="filter name to filter for", default=None + ) + db_parser.add_argument( + "-d", "--date", type=str, help="observation date to filter for", default=None + ) + db_parser.add_argument( + "-o", "--target", type=str, help="target name to filter for", default=None + ) + db_parser.set_defaults(func=db) + + def info(args): image = FITSImage(args.filename) print(f"filename: {Path(args.filename).stem}") @@ -39,3 +99,11 @@ def info(args): print(f"RA: {image.ra}") print(f"DEC: {image.dec}") print(f"pixel scale: {image.pixel_scale}") + + +def add_info_parser(subparsers): + info_parser = subparsers.add_parser( + name="info", description="print FITS image information" + ) + info_parser.add_argument("filename", type=str, help="FITS image filename") + info_parser.set_defaults(func=info) From 1f508ab02ce96b0cacbb26746f8ac54f456db4ba Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 22:16:59 +0200 Subject: [PATCH 15/19] feat: solve subcommand --- prose/cli/__init__.py | 69 ++++++++--------------------------------- prose/cli/astrometry.py | 19 ++++++++++++ 2 files changed, 32 insertions(+), 56 deletions(-) create mode 100644 prose/cli/astrometry.py diff --git a/prose/cli/__init__.py b/prose/cli/__init__.py index 648b029a..703ebf5a 100644 --- a/prose/cli/__init__.py +++ b/prose/cli/__init__.py @@ -2,68 +2,25 @@ import yaml -from prose.cli.calibration import calibrate -from prose.cli.stack import stack -from prose.cli.visualisation import show +from prose.cli.astrometry import add_solve_parser +from prose.cli.calibration import add_calibrate_parser +from prose.cli.fits import add_db_parser, add_fits_parser, add_info_parser +from prose.cli.stack import add_stack_parser +from prose.cli.visualisation import add_show_parser, add_video_parser def make_parser(): main_parser = argparse.ArgumentParser(prog="prose", description="prose") subparsers = main_parser.add_subparsers(required=True) - # calibrate - # --------- - calibrate_parser = subparsers.add_parser( - name="calibrate", description="calibrate FITS files" - ) - calibrate_parser.add_argument( - "folder", - type=str, - help="folder to parse containing science and calibration files", - default=None, - ) - calibrate_parser.add_argument( - "-d", "--depth", type=int, help="subfolder parsing depth", default=10 - ) - calibrate_parser.set_defaults(func=calibrate) - - # show - # ---- - show_parser = subparsers.add_parser(name="show", description="show FITS image") - show_parser.add_argument("file", type=str, help="file to show", default=None) - show_parser.add_argument( - "-c", - "--contrast", - type=float, - help="contrast of the image (zscale is applied)", - default=0.1, - ) - show_parser.set_defaults(func=show) - - # stack - # ----- - stack_parser = subparsers.add_parser(name="stack", description="stack FITS files") - stack_parser.add_argument("folder", type=str, help="folder to parse", default=None) - stack_parser.add_argument( - "-d", "--depth", type=int, help="subfolder parsing depth", default=10 - ) - stack_parser.add_argument( - "-n", "--n", type=int, help="number of stars used for alignment", default=30 - ) - stack_parser.add_argument( - "--method", - choices=["mean", "selective"], - help="alignment method. 'mean' applies a mean to all images, 'selective' \ - applies a median to the -n smallest-FWHM images", - default="mean", - ) - stack_parser.set_defaults(func=stack) - - # fitsmanager - # ----------- - - # epsf - # ---- + add_calibrate_parser(subparsers) + add_show_parser(subparsers) + add_stack_parser(subparsers) + add_fits_parser(subparsers) + add_db_parser(subparsers) + add_info_parser(subparsers) + add_video_parser(subparsers) + add_solve_parser(subparsers) return main_parser diff --git a/prose/cli/astrometry.py b/prose/cli/astrometry.py new file mode 100644 index 00000000..392b18cf --- /dev/null +++ b/prose/cli/astrometry.py @@ -0,0 +1,19 @@ +import argparse +from pathlib import Path + +from prose import FITSImage, FitsManager, Sequence, blocks + + +def solve(args): + image = FITSImage(args.file) + + solve_sequence = Sequence([blocks.PointSourceDetection(n=30), blocks.PlateSolve()]) + + solve_sequence.run(image) + image.writeto(args.file) + + +def add_solve_parser(subparsers): + solve_parser = subparsers.add_parser(name="solve", description="solve FITS image") + solve_parser.add_argument("file", type=str, help="file to solve", default=None) + solve_parser.set_defaults(func=solve) From 650edee4c0304947aca3e334ec2d6a4c5ebb9118 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Wed, 19 Jul 2023 22:17:16 +0200 Subject: [PATCH 16/19] fix: include PlateSolve in __all__ --- prose/blocks/catalogs.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/prose/blocks/catalogs.py b/prose/blocks/catalogs.py index 404c3e22..b0814c11 100644 --- a/prose/blocks/catalogs.py +++ b/prose/blocks/catalogs.py @@ -14,7 +14,7 @@ from prose.core.source import PointSource, Sources from prose.utils import cross_match, gaia_query -__all__ = ["GaiaCatalog", "TESSCatalog"] +__all__ = ["GaiaCatalog", "TESSCatalog", "PlateSolve"] def image_gaia_query( From e29b996eeb4440f2efd3667c5f94ecd162e56a17 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Thu, 20 Jul 2023 23:25:22 +0200 Subject: [PATCH 17/19] feat: an experimental organizer cli (not tested) --- prose/cli/fits.py | 72 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) diff --git a/prose/cli/fits.py b/prose/cli/fits.py index 9d972eee..8766ae5e 100644 --- a/prose/cli/fits.py +++ b/prose/cli/fits.py @@ -1,4 +1,5 @@ import argparse +import shutil from pathlib import Path import pandas as pd @@ -107,3 +108,74 @@ def add_info_parser(subparsers): ) info_parser.add_argument("filename", type=str, help="FITS image filename") info_parser.set_defaults(func=info) + + +# experimental +# ------------ +def organize(args): + fm = FitsManager( + folders=args.folder, + depth=args.depth, + leave=False, + ) + new_folders = {} + + main_folder = Path(args.folder) if args.output is None else Path(args.output) + obs = fm.observations(type="light") + + if args.separate: + for observation_id, observation in obs.iterrows(): + date_str = observation.date.replace("-", "_") + new_folders[date_str] = fm.observation_files(observation_id, show=False) + + print(f"\nprose will create the following folders (in {main_folder}):") + + for dates in new_folders.keys(): + # sum all len file files in folder dict + n_files = sum([len(files) for files in new_folders.values()]) + print("-", dates, f"({n_files} files)") + + proceed = input("\ncontinue? [y]/n: ") + if proceed == "n": + return + else: + for date, files in new_folders.items(): + date_folder = main_folder / date + date_folder.mkdir(parents=True, exist_ok=True) + for filetype, files in files.items(): + im_type = date_folder / filetype + im_type.mkdir(parents=True, exist_ok=True) + for file in files: + if im_type == "images": + shutil.move(file, im_type / Path(file).name) + else: + try: + shutil.copy2(file, im_type / Path(file).name) + except shutil.SameFileError: + pass + + +def add_organize_parser(subparsers): + organize_parser = subparsers.add_parser( + name="organize", description="organize FITS files by date" + ) + organize_parser.add_argument( + "folder", type=str, help="folder to explore", default="." + ) + organize_parser.add_argument( + "-d", "--depth", type=int, help="depth of the search", default=10 + ) + organize_parser.add_argument( + "-o", + "--output", + type=str, + help="folder to store organized files", + default=None, + ) + organize_parser.add_argument( + "-s", + "--separate", + action="store_true", + help="separate each calibration file into its respective observation folder", + ) + organize_parser.set_defaults(func=organize) From aa9f60a7ec591f7a2a1d3b59e1a9c0e1ba588e09 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Thu, 20 Jul 2023 23:25:40 +0200 Subject: [PATCH 18/19] feat: plate solving cli --- prose/cli/__init__.py | 8 ++++- prose/cli/astrometry.py | 74 +++++++++++++++++++++++++++++++++++++---- 2 files changed, 75 insertions(+), 7 deletions(-) diff --git a/prose/cli/__init__.py b/prose/cli/__init__.py index 703ebf5a..824f133a 100644 --- a/prose/cli/__init__.py +++ b/prose/cli/__init__.py @@ -4,7 +4,12 @@ from prose.cli.astrometry import add_solve_parser from prose.cli.calibration import add_calibrate_parser -from prose.cli.fits import add_db_parser, add_fits_parser, add_info_parser +from prose.cli.fits import ( + add_db_parser, + add_fits_parser, + add_info_parser, + add_organize_parser, +) from prose.cli.stack import add_stack_parser from prose.cli.visualisation import add_show_parser, add_video_parser @@ -21,6 +26,7 @@ def make_parser(): add_info_parser(subparsers) add_video_parser(subparsers) add_solve_parser(subparsers) + add_organize_parser(subparsers) return main_parser diff --git a/prose/cli/astrometry.py b/prose/cli/astrometry.py index 392b18cf..18a11e51 100644 --- a/prose/cli/astrometry.py +++ b/prose/cli/astrometry.py @@ -5,15 +5,77 @@ def solve(args): - image = FITSImage(args.file) + if args.output is None: + output = Path(args.file_or_folder) + else: + output = Path(args.output) - solve_sequence = Sequence([blocks.PointSourceDetection(n=30), blocks.PlateSolve()]) + if Path(args.file_or_folder).is_file(): + solve_sequence = Sequence( + [blocks.PointSourceDetection(n=30), blocks.PlateSolve()] + ) + image = FITSImage(args.file_or_folder) + solve_sequence.run(image) + image.writeto(output) + else: + fm = FitsManager(args.file_or_folder, depth=args.depth) + images = fm.files( + type="*" if args.type is None else args.type, path=True + ).path.values - solve_sequence.run(image) - image.writeto(args.file) + if args.reference is None: + reference = images[int(len(images) // 2)] + else: + reference = args.reference + reference = FITSImage(reference) + + Sequence( + [ + blocks.PointSourceDetection(n=30), + blocks.PlateSolve(), + blocks.GaiaCatalog(limit=30), + ] + ).run(reference, show_progress=False) + + solve_sequence = Sequence( + [ + blocks.PointSourceDetection(n=30), + blocks.ComputeTransformTwirl(reference_image=reference), + blocks.AlignReferenceSources(reference=reference), + blocks.AlignReferenceWCS(reference=reference), + blocks.WriteTo(output, overwrite=True), + ], + name="Plate solving", + ) + solve_sequence.run(images) def add_solve_parser(subparsers): - solve_parser = subparsers.add_parser(name="solve", description="solve FITS image") - solve_parser.add_argument("file", type=str, help="file to solve", default=None) + solve_parser = subparsers.add_parser( + name="solve", description="Plate solve one or several FITS images" + ) + solve_parser.add_argument( + "file_or_folder", type=str, help="file/folder to plate solve", default=None + ) + solve_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + solve_parser.add_argument( + "-t", + "--type", + type=str, + help="type of FITS files to plate solve", + default=None, + ) + solve_parser.add_argument( + "-o", + "--output", + type=str, + help="output file and/or folder. If leave to default files are overwritten", + default="input", + ) + solve_parser.add_argument( + "-r", "--reference", type=str, help="reference image", default=None + ) + solve_parser.set_defaults(func=solve) From 8771a964e9ed8d219b491800665de4691dd7bdf8 Mon Sep 17 00:00:00 2001 From: lgrcia Date: Mon, 28 Aug 2023 14:30:21 -0400 Subject: [PATCH 19/19] chore: new cli ideas (bulk) --- docs/_static/style.css | 6 ++ docs/cli/cli.rst | 7 +- docs/cli/main_parser.yaml | 191 ++++++++++++++++++++++++++++++++++++ docs/conf.py | 10 +- docs/ipynb/catalogs.ipynb | 34 ++++--- docs/ipynb/photometry.ipynb | 51 ++++++++-- poetry.lock | 51 ++++++---- prose/_cli/___init__.py | 82 ++++++++++++++++ prose/_cli/astrometry.py | 81 +++++++++++++++ prose/_cli/calibration.py | 66 +++++++++++++ prose/_cli/fits.py | 181 ++++++++++++++++++++++++++++++++++ prose/_cli/stack.py | 80 +++++++++++++++ prose/_cli/visualisation.py | 112 +++++++++++++++++++++ prose/cli/__init__.py | 82 +++------------- prose/cli/stack.py | 66 +++++++------ prose/cli/visualisation.py | 159 ++++++++++++++---------------- pyproject.toml | 2 + 17 files changed, 1035 insertions(+), 226 deletions(-) create mode 100644 docs/cli/main_parser.yaml create mode 100644 prose/_cli/___init__.py create mode 100644 prose/_cli/astrometry.py create mode 100644 prose/_cli/calibration.py create mode 100644 prose/_cli/fits.py create mode 100644 prose/_cli/stack.py create mode 100644 prose/_cli/visualisation.py diff --git a/docs/_static/style.css b/docs/_static/style.css index 2385f731..c037b024 100644 --- a/docs/_static/style.css +++ b/docs/_static/style.css @@ -167,4 +167,10 @@ code span.pre { font-weight: bold; color: var(--pst-color-primary); font-size: 15px; +} + +/* prose logo font */ +.line-block { + font-family: system-ui; + line-height: 1.2; } \ No newline at end of file diff --git a/docs/cli/cli.rst b/docs/cli/cli.rst index 2774c726..4ea2edda 100644 --- a/docs/cli/cli.rst +++ b/docs/cli/cli.rst @@ -1,5 +1,8 @@ CLI === -.. datatemplate:yaml:: main_parser.yaml - :template: cli_template.rst \ No newline at end of file +*prose* features some command line tools to perform a variety of tasks: + +.. click:: prose.cli:main + :prog: prose + :nested: full \ No newline at end of file diff --git a/docs/cli/main_parser.yaml b/docs/cli/main_parser.yaml new file mode 100644 index 00000000..1b0aa062 --- /dev/null +++ b/docs/cli/main_parser.yaml @@ -0,0 +1,191 @@ +commands: + calibrate: + arguments: + - help: folder to parse containing science and calibration files + name: folder + required: true + type: str + - default: 10 + help: subfolder parsing depth + long: --depth + name: depth + required: false + short: -d + type: int + help: calibrate FITS files + db: + arguments: + - help: SQLite database file to explore + name: file + required: true + type: str + - default: 50 + help: max number of rows to display + long: --max-rows + name: max_rows + required: false + short: -m + type: int + - help: telescope name to filter for + long: --telescope + name: telescope + required: false + short: -t + type: str + - help: filter name to filter for + long: --filter + name: filter + required: false + short: -f + type: str + - help: observation date to filter for + long: --date + name: date + required: false + short: -d + type: str + - help: target name to filter for + long: --target + name: target + required: false + short: -o + type: str + help: explore a FITS database + fits: + arguments: + - default: . + help: folder to explore + name: folder + required: true + type: str + - default: 10 + help: depth of the search + long: --depth + name: depth + required: false + short: -d + type: int + - help: SQLite database file to save parsing results + long: --file + name: file + required: false + short: -f + type: str + help: parse and store data from FITS in folder(s) + info: + arguments: + - help: FITS image filename + name: filename + required: true + type: str + help: print FITS image information + show: + arguments: + - help: file to show + name: file + required: true + type: str + - default: 0.1 + help: contrast of the image (zscale is applied) + long: --contrast + name: contrast + required: false + short: -c + type: float + - default: false + help: whether to show sky coordinates frame + name: f + nargs: 0 + required: false + short: -f + help: show FITS image + solve: + arguments: + - help: file to solve + name: file + required: true + type: str + help: solve FITS image + stack: + arguments: + - help: folder to parse + name: folder + required: true + type: str + - default: 10 + help: subfolder parsing depth + long: --depth + name: depth + required: false + short: -d + type: int + - default: 30 + help: number of stars used for alignment + long: --n + name: n + required: false + short: -n + type: int + - choices: + - mean + - selective + default: selective + help: alignment method. 'mean' applies a mean to all images, 'selective' applies + a median to the -n smallest-FWHM images + name: method + required: false + short: --method + - default: stack.fits + help: output file name + long: --output + name: output + required: false + short: -o + type: str + help: stack FITS files + video: + arguments: + - help: folder containing the FITS + name: folder + required: true + type: str + - default: 10 + help: subfolder parsing depth + long: --depth + name: depth + required: false + short: -d + type: int + - default: video.mp4 + help: output video file + long: --output + name: output + required: false + short: -o + type: str + - help: type of FITS files to use + long: --type + name: type + required: false + short: -t + type: str + - default: 10 + help: frames per second + long: --fps + name: fps + required: false + short: -f + type: int + - help: compression parameter for the video block + long: --compression + name: compression + required: false + short: -c + type: int + - help: width of the video in pixel (if resizing required), aspect ratio is kept + long: --width + name: width + required: false + short: -w + type: int + help: make a video of FITS images diff --git a/docs/conf.py b/docs/conf.py index f51bf22b..28a08d99 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -34,7 +34,7 @@ "sphinx.ext.napoleon", "sphinx.ext.autosummary", "sphinx_design", - "sphinxcontrib.datatemplates", + "sphinx_click", ] @@ -90,7 +90,7 @@ ] templates_path = ["_templates"] -nb_execution_mode = "auto" +nb_execution_mode = "off" nb_execution_raise_on_error = True rst_prolog = """ @@ -178,7 +178,7 @@ # open("./tested_blocks.md", "w").write("\n".join(tested)) -from prose.cli import make_parser, to_yaml +# from prose.cli import make_parser, to_yaml -parser = make_parser() -to_yaml(parser, "cli/main_parser.yaml") +# parser = make_parser() +# to_yaml(parser, "cli/main_parser.yaml") diff --git a/docs/ipynb/catalogs.ipynb b/docs/ipynb/catalogs.ipynb index 7ed877b8..7fa924f3 100644 --- a/docs/ipynb/catalogs.ipynb +++ b/docs/ipynb/catalogs.ipynb @@ -1,6 +1,7 @@ { "cells": [ { + "attachments": {}, "cell_type": "markdown", "id": "7d2cde3e-57cb-4347-948b-4c3654987d77", "metadata": {}, @@ -9,6 +10,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "5931dc09-6e99-4007-9932-d29bd4ddb203", "metadata": {}, @@ -24,14 +26,6 @@ "tags": [] }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/lgrcia/code/dev/prose/prose/console_utils.py:15: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from tqdm.autonotebook import tqdm\n" - ] - }, { "name": "stdout", "output_type": "stream", @@ -63,10 +57,11 @@ "\n", "# an image of TRAPPIST-1\n", "image = sdss_image((\"23 06 29.3684\", \"-05 02 29.0373\"), (20, 20))\n", - "image.show()\n" + "image.show()" ] }, { + "attachments": {}, "cell_type": "markdown", "id": "0a2f8662-13d2-4c10-ade5-2bfb7042ffd3", "metadata": {}, @@ -94,10 +89,11 @@ } ], "source": [ - "image.plate_solved" + "image.plate_solved\n" ] }, { + "attachments": {}, "cell_type": "markdown", "id": "2e8ae378-164b-4dad-b753-953ba6050805", "metadata": {}, @@ -106,6 +102,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "66ceaebf-7277-4700-9ca3-4b457801fdf1", "metadata": {}, @@ -138,10 +135,11 @@ "image = catalogs.GaiaCatalog(mode=\"replace\")(image)\n", "\n", "# visualizing the catalog stars\n", - "image.show()" + "image.show()\n" ] }, { + "attachments": {}, "cell_type": "markdown", "id": "4f9e95e8-4b41-4f3b-a457-3f698199959b", "metadata": {}, @@ -172,10 +170,11 @@ "# show cutout around 13-th source\n", "cutout = image.cutout(13, 300, reset_index=False)\n", "cutout.show()\n", - "cutout.plot_catalog(\"gaia\", label=True, color=\"w\")" + "cutout.plot_catalog(\"gaia\", label=True, color=\"w\")\n" ] }, { + "attachments": {}, "cell_type": "markdown", "id": "21ad76b4-3d4f-4d02-80f3-24335988ae64", "metadata": {}, @@ -198,6 +197,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "c52c5d70-65e3-43d1-81fd-745ef63e3388", "metadata": {}, @@ -628,10 +628,11 @@ } ], "source": [ - "image.catalogs[\"gaia\"]" + "image.catalogs[\"gaia\"]\n" ] }, { + "attachments": {}, "cell_type": "markdown", "id": "34ad295d-1615-448d-bfbe-390ebefad037", "metadata": {}, @@ -640,6 +641,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "fafc3bfb-22f9-4283-8b93-ae0ce7acf71a", "metadata": {}, @@ -657,7 +659,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAKTCAYAAAAkDqG/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7Sl53HeiT47h7PD2fGETogEAVAgwRwkghQtUpQpykpWtkVblmxLHnuNZxzuXKcZy2P7jn2dxmusGUqyzbHnypREUbJISSRFCiRIEQRIEASI0A2gu0/YOZ2d4/1j969O7dbVEP/cZa32+dbCAtB9zt7f9371Vj311FP1Blar1Upn19l1dp1dZ9fZdXadXWfX2fVH4Ar+l76Bs+vsOrvOrrPr7Dq7zq6z6+ziOgOnZ9fZdXadXWfX2XV2nV1n1x+Z6wycnl1n19l1dp1dZ9fZdXadXX9krjNwenadXWfX2XV2nV1n19l1dv2Ruc7A6dl1dp1dZ9fZdXadXWfX2fVH5joDp2fX2XV2nV1n19l1dp1dZ9cfmesMnJ5dZ9fZdXadXWfX2XV2nV1/ZK7wf+kb+P/XtVwudXR0pHQ6rUAg8F/6ds6us+vsOrvOrrPr7Dq7/qu+VquVTk5OtL+/r2DwD+dHb1lwenR0pAsXLvyXvo2z6+w6u86us+vsOrvOrrPLXdevX9f58+f/0L+/ZcFpOp2WJP3UT/2Uer2eut2u2u22xuOxtre3NZlMNJ1Olc1mlU6ntVwuNZvNFAwGFYvFlEwmlUwmdXJyonq9rsFgoHg8rmg0qosXLyoYDCoSiSgQCGg8HkuSTk5ONJ1OdeHCBQ0GA7XbbQ2HQ0UiEc3nc0WjUU0mE81mM2UyGUUiEZ2cnGi1WikQCCiVSikSiWg6nWq5XGo8HmswGCgQCCiZTOr8+fO6dOmSJpOJXnrpJQ2HQw2HQ00mE21tbSkSiUiSAoGA5vO5stmsJKnT6ajf7+vk5ETb29sql8sqFouqVCpqtVqq1WpKJBK6dOmStra2NBqNNJvNlEwmNZlMVKlUNJvNNJvNFI1GtVgsNJ/P7f/T6bTG47Gy2ayy2axGo5Hq9bokKRwOKxQKKZVKSZJarZYmk4m2t7d1cnJiz5bJZDQYDBQMBjWbzTSfz9XpdDSdTrW/v69sNqtAIKDZbKbpdKpIJKJgMKhqtaput6tweG3KW1tbyufzikQiWiwWCgaDikajSiQSarfb9t4ikYj6/b4SiYSCwaCWy6UKhYLm87lqtZquXLkiSbp06ZJSqZTS6bR6vZ6uX7+uYrGora0tLZdLdbtddTodhUIhFQoFxeNxtdttDQYDbW1t2Xr2+32FQiHt7OwoHA6r3W5rsVgoFAppOBwqFospl8tpOBzq2rVrCgQC2t7eVjqdVjwe12q10mg0Urfb1Wg0UjAYVDgcViqVUiaTMZup1WqazWba3t7WcrlUJpNRLpdTpVJRrVZTNBpVMplUKpVSPB7X9evXtVgslM1mNZ/PlU6nNQ3H9ca/+0Ed/cYvqveVh9VutyVJxWJRr33ta/X2t79dmUxGzz33nD72sY/p0Ucf1Ww209bWlu78lnfrzh/767r8c39Hrctf03g8ViQSUTKZVCgU0nw+12KxUDgcVjab1XA41HK5VCwW02Aw0GKx0Gq10nQ6VSAQUCKRUCaT0XK5VDQaVTweV71e13Q6NRvl3pfLpabTqcbjsb2H0Wikcrms0Wikdrut7e1tpVIprVYrRSIRVatVLZdLFYtF+73hcKj5fK5kMqloNKpoNKrVaqXxeKxgMKhms6nxeKy9vT0tl0vN53OFw2Elk0lJUrvd1snJiYLBoEKhkJLJpHZ2djSdTtVsNlWtVjWZTJROp7Wzs6NUKqVAIKDj42O1Wi2l02mdP39e4/FYk8lExWJR6XRaR0dHGo1G2t7e1mq10mKxUKvVMhsPBAJ2b+l0Wru7u0qn05pMJrpy5Yqm06nK5bI9RyKRUCqV0nw+lyQFg0H1ej0Nh0MFAgFNp1NJUiKRULFYtL2zWCzU7/cVCAQUCoW0WCzsnS6XS41GI4VCIY1GI02nU7vXUChkvnWxWKharSoajZotrlYr8yeBQMD2fzKZtP3KXuV56/W6ZrOZ+XD87/b2tgKBgCaTiZrNpobDoRKJhGKxmCSp2WwqEAgon88rkUjY3gkGg/ZcJycnqlarisViKhaLtr9rtZqOj49tHw2HQ41GI/ON6XRauVxO4XB47Yfve73Ovf/PKhBLqvHk76v1lc8qGQ4oEo0rtndJ6QfepnA6r95zj+v4V39OncZ6D0tSKpVSMplUMBhUp9PRbDZTPB5XPB63+8QnTiYTjUYjDYdDdTod7ezsaG9vT5PJRMvl0mJeOBzW9va2EomE+ZVEImHrwM/jxzOZjMVTYk4gEFAkEtFkMtFisVAgEFA2m7V1n8/nCoVC9jv8fygUshi7WCzUbre1XC7t72KxmMLhsBaLhaR1BTQcDisYDKrf76vT6SgWi5ldh8NhRaNRhcNhrVYrzWYzhUIhW/tGo6HJZGLxnM+XpOl0qmg0Kkmaz+cajUaGHQKBgILBoO1BvzahUEiBQEDxeFz9fl+RSMTegST1ej2FQiFduHBBq9VKjUbD4vzW1pY9az6ft5jY6/W0XC61t7enRCKhxWKhSCSyEdcikYi63a663a69N9Zvf39f586d02AwUL/ft7gbjUYtdrJ+2D3r3Ov17HsODg7seUejkVarlTKZjDKZjL1X4nQmk9FwOLT7GwwGGo1GSqVS5qvBEKwTGOVDH/qQ2dQfdt2y4JRSPgGH/16tVlqtVsrn82aYkUhEg8FAk8lEqVTKHE0oFFIkElGhUND29rZtNpxot9uVJC0WC0WjUWUyGZ2cnGg0GpnDl9YbjH96vZ5R2RhPrVazoB0IBAyYRCIRZbNZ+767775bP/zDP6xIJKLf+Z3f0SOPPKLr168bsBmPx+a8AG8Y3Wg0MqCbTqc1Go3M4PmzdDptTgTAyP03m03bLADtk5MTRaNRxWIxc2aj0Ui5XE633367BoOBGo2GJBkoiMViBpIIjjhfgly/3zcw3u12FYvFFIvFDCCsVit7p/l8XqvVyox/tVrZ5gKUx2IxZTIZu9d4PG7PK8nAxWq1sgCHo5zP57Ypp9Op/W6xWNRgMLDACvBdrVa2HtlsVltbW/ZcgUDAHC2OaTabKZVKaTweWwCPRqOaz+darVYWAEejkRaLhXK5nNl3KBTScrm0gNrv9y1RYD09YIvFYkqlUlosFpakFYtFnZycqFAoaDAYaDweK/Oq1yiRyenK731c0dVckUhEW1tbuuOOO/TjP/7j2t3dVSAQ0N13363xeKxms6lOp7N2qgeXFYlFlbvn1VrUr0uSJpOJ5vP15+zs7EiSut2uJpOJgsGgrW0qlVIoFFKn09FyubS9Go/HzfFLp44a0AGA3NraUiwWUyKRUCgUsoQpHA7r5OREkUhEiURC29vbZgez2UzVatUSHgAM9oTdhUIhFYtFxeNxpVIpnZycKBaL2e/hGyQZ2OS5sbtwOKxer2dJC+8YuwV04iew2VQqpXK5rOl0qsFgYEAcEB+NRlUul7VYLDQcDs2m8APL5VLpdFrtdlvz+Vx7e3uKx+Pmk3i+WCxmgZd7Yn+wfqFQSL1eT4PBQLlczvzT0dGRBd/lcqlIJKJz585ZIlatVhWJRJROp80npVIppVIpFQoFAz28SwL+aDQyP9Pv9+33AMMk+ewRD94A7/1+X1tbW5YssN/x27FYzOJELpfTbDZTvV43wAD4wW9vb29rNBppMpno5ORE4XBYuVxOoVBIrVbLbGJra0vRe96gC9/3F9V96os6/ti/1/HzT+vk5ES5XE47OzuaHzyrwZc+ofjdr9He+39Cmf3b9dS/+Ouaj04BBu8gGo2qVCrZnua+2Psk25I0GAzMpyWTSTWbTc1mM8ViMQP2y+VSi8XCADuxbTgc2r4rl8saDAaqVqvKZDKKx+NKJBJmh7PZzPxSOp22eyKhI2leLBZKJBKKx+Maj8eaTqfq9/uWEOMz+Z3VaqVEImFEBbECv8d7I2Hq9/uW2JEk4ZPPnTtn39tut5VOp5XJZDbWFiBGQhoMBo1IGg6HisfjCoVCtj+xIYDsZDJRoVCwdSXpBqSBKRKJhCKRiIbDoa5evWpxvlQqKRQKKR6PKxwOGygOhULa2tqyuCbJ9u58PrckaLlcajAYKBQKWbI+mUzU6/W0Wq3sM/GTxIfxeKzxeGyAEtIoFArZe2GfSdLx8bHZAPe2WCw0m83sfUpSLpezZCCTyejuu+9WPB5Xr9fT0dHRBkb7w65bFpxyDQYDRaNRe3E7OzvmUDKZjFarlWXjk8nEDECSBXe/oXHgq9VKg8HAgg3BV5IBVLIjstpkMqlEIqHJZKJAIKBerydJBpJhX3DukUjEAO9kMtF4PLYNnsvljMkl44P129/ft41MdhuLxSyQdLtdJZNJY58I6Dwvmax3IDhKMmW+j0y8UCio3W7r6OhI4/FYpVJJw+FQi8XC2IlsNmugH7YwHo+bgQcCAQ0GAwNRuVzOgl0oFDJGkuCFcQOuY7GYMcnValXSmvXZ2tpSNps11gfnGIvFjKHBVtLptCKRiPb39y3rA4ANh0Pt7u5qb29Pt912m9rttprNplqtljmPbrdrbF8ikTBmeHt7W9Pp1BztbDYzoJ3JZIyRazab5siWy6UB2tlsZuwE971ardTr9QzkjEYjpdNpFQoFe++eyWLdJBnQyWazymQyFsiGw6GCsXWAmw16iqdSymazisfjKhaLloVjr3t7eyqVSsZ8nvS6mg9OtAxFLNHhngF/4/HYgjvMXaVSUS6Xs6SRoEdCgg1K62RJkrLZrHq9ng4ODpRIJHTbbbfZO5tOp9ra2lIymTQ7TCQSlpTAchEQvYMG/MH4nJycaGtrywIUjNN0OrXgDhiaTqfGSs5mM4XDYYXDYfX7fQ2HQ7VaLUWjUeXzeQsCBBL2Uq/XM5YwFotpNBqpUqmYjbVarQ0WIhgMboAAkluAP+ATmyLxHA6HqlQqkmRMIckV7wtg3+v1jN0cDod27yTwBCv2IPcBaxqNRlUoFLRYLIz9AvBhi9PpVL1ez5LV+Xyu8Xhs4ID9hA1MJhPF43Ht7OwoEonoypUrCgaDVlkA8GBPBHnAU6PRUKPRUKFQUKVS0WQysWrW1772NTWbTQWDQV24cMF8FAk/z0lSBTBnX0QiESUv3aO97/0Lqn/ht3XwkZ9T4oavo4pHchSLxZR48vOaNY504QN/S3d/4G/oa//yb1oCtL29bWsI2BkMBprNZhuVNxIySWarVJUgTIbDoVKp1IZtBYNBbW1tbVQxeNehUMgYMfYxvq3ValkshXzgnc1mM9tXi8XCyJFyuaz5fG42HggEjInl52HLqRyyTwGVq9VqowJDkkicDwQClqgVi0Ulk0n7s16vp2q1qp2dHWMPSXxhdfv9vnq9ntk/SRKg1ftQ4qYnutjTAHh+h/dAvMaHgBMgfvznkqDHYjED6pPJxP5sa2tLnU5H7XZb9Xpd+/v7Fk9ItNlDs9lMhUJh7dtvfBYgeHt7W1tbW+aDPJ7hfbGGOzs7ymaz6vf7Go1GWi6XisfjyufzFr/ASolEQg8++KC++Zu/WdPpVI888oiOj49fFna75cEp6B0mi+wFkEQmxP/P53PLvMfjsTEoGNFyubRSar/fN3ARjUbV6XSMPZPW9H6v11M+nzfGC3AKU+uzf4yJ7AtGkLLx4eGhPvjBDyqTyej5559Xq9XSbDbTYDAwh18oFNTv980ZE4hhgCk9LhYLdbvdDcaWwFMoFDSdTm0jsUlwpJlMxkrBBF9pDRIpTXe7XXPmfCeORpIlAgQcnjkajWp3d9cYKpwNGSybrVqtKpfLKRgMKpfL2SZOpVK2JmTXkgyoBINBNRoNVatVC6xsXjYToJB30mw27d7D4bAuXbqkt7zlLfriF7+oarWq+XxuSQuMNSAG1rVYLKrRaKjZbCqZTFqgKBQKZjMEG4BgqVSyUiulGp6t2Wxa5k8Gi3NerVYqFova3t42oBUOh9XtdjUYDMyZwA6MRiNbp0wmo0hwDQAu3naHCtsZbW9vm8O+du2a7rrrLgMzL7744kYQikQiCkZiGg/6FqQoj61WK1WrVfX7fQNJgKxGo2EMM+ydtA4AJycnGgwGVloiKYPpRa4DKEcOkEgkjHE6d+6cMZKBQECZTEbz+VxbW1sqFAqWYPL9lGt9SVDSBrCORCLK5XIWULAbEjv2cLfbVa/XM2aC/UJygQQkGo2an9na2jI/5VnEXq9nyW0qlTIbg3WkXAr4gCGBbaSUSik3mUxqtVqp0+loOByajESSgd1wOGy+iT0LMJtOp8pkMgYAKHsPBgN1u12TJyUSCYXDYQNWACEkSVQSJBnT1Gg0bB9Kp4GfvR0OhzWZTGzvFgoFS2q4P6QxsKrD4dCkCL4KlM/n1Wq1NkAS7OG5c+dULBYt6JMoejkNyTtrMZ1OlX7zd2h0/JIOfu1/V+5G5Q0wy7sDWC6XS/WuX9G1X/qXuuPH/6a2Lt2j3pOP2nsgyWD/wp4CgAB4rFOpVLLS92QyMR/ZbrcN/OA/Tk5OzDbwgbyv0Whk75/9QdKJrcPS83ck4UgTYBfxB9huu922+yMWk5TBSvNueF98JkwgMWN/f1/b29s6PDzc+EySIM+WU2HKZrNWJaQyCvgDzJG0U8oGA+C3SFBhPCGCsBfiCUky4G82m9nfjcdjnZycbMiXAOckDzDixFFiLclzOBzW1taWPStSn2QyqXq9bs+G7WBPkFgAZeQiYIOTkxOrKiSTSUt68A3sbdYRe4Es2t3d1Tve8Q7zv61WS5/+9KdfFna75cEpLxtHTeYLQ0JJNJ1Om+Oh9NdoNCwg8HOegYONBWy2223LdPn8Xq9nGlM2LiUfnArZH0GITYCRsJlGo5Eef/xxK9EUCgUrKXmdynA4VL/fN+cFIMxms8ZceUdEkCfo8UzXr1/XfD63rI6ARgZJwCKTzWazKhQKxjgQDGq1mt0TGdlsNjMWDnCE0UuyzYXDwvEjweh0OuYsL126ZKDVd/8RtNC7ttttW+tcLqdOp2PaWK/Rw1kTAMjaYXoqlYoee+wxXb161cDkbDYzh8j9eTaFhId3iy6JEjXgNJvNKpfLWSaOoyeoU2qEIZHWQH9vb0+7u7umjSZYEDR90EWXiKOifAXLPGmu2bTEhbuVWg10xx136ODgQLVaTb/wC7+gN73pTbrzzjv15S9/WY8//rgajcapHZfOKZLKqF+5bkAPZ849RSIRez70rLx/npkKxs7Ojmm/m82mJXvJZNICVblc1mQyUafTMduU1qC93+/begyHQ9uz3At+AScLq4Qdsh9gqpbLpUlFstms6vW6gU3eM0Cf/c76wkih54Rp5Xu5AEGAdy93gZWkkgMgQVYEU358fKy9vT1Fo1F7NyRzgBTeCZUZv/fwGf1+X91u10rH/n3yPMgRCL4EePYLBAHBjOQIIAmIRAe5WCxMj44vXiwWVlqUZLY9HA51eHioWCymUqlk+v7xeGx7HYC7XC61tbWlQCBgEpBGo6Hnn3/efhYZRTqd1nA4VKlU0oULF6x8jswHcIIUKhgMGosZiUQUL+4p/YrX6PKH/okiN/b5dDpVoVDQvffeq7vuukuz2UyXL19Wo9FQp9NZV0Ge+qLG9SPtvf07Vfnal8yPwu4hcwgGg+bbWUd03Nls1uyKEq+/Z2yR6tFoNDIpDSQKlR204rCm+BD+odoHKIMIIiGjjM2eIy6enJxYRczvFRJGEhLAJdpabJEEH7+FzUUikQ2tJECVGEOJnwrZcDi0Uj7lcnwrYJbqKn0FsJhogKnCALABcfgc7AR/m81mjWTg+fBfvteD9zYajVStVu1dS7JkGZaSChj2gX8Ev8TjcUvuYdjZAyQVxC/09lRx8AueWOJe6OfhnnwVE5/QbDa1s7Njv8MzfKPrlgeno9FIpVJJyWTSSr0EJMTTGG8ymTTmgBdNKTAQCBhDg1YuFoupWq0acGu1WioWi5YN53I5A6XNZtMMHRDgWTqAFGU0fpdgRKNCp9Mx9oLSJQ6lVqsZ5U+mRQkBw4Kx9azhdDpVLpczzQyaH36PzCmfzyuVSlnpktINQYjsGP0Y4Iz7r1QqpqNl3cn4ASuLxUL1el17e3vmENGd5vN5Awee+Y3H48pms7aJ2HzoZJEzwMBSxlosFqrVagoEAjp37pwFGNg6HCKsKxv54OBAlUrFync00+H0kXWsVivTnXpGD1BO2YokheYewFW9XjfxOnYEqCgWiwZacMrSGmTzjghoAAGyXzSVVAWKxaIkmV5ocPVZDY5eUumt367ex35B169ft8D20ksv6cUXX7RA02g0VK/XTY9ZfNt3aHrSUe/rX1LgxmeiR5Nk7BmNKugI0VxhezTNUF6HEYD9pDRN2dgzYVyAcoIewRxWhOwfW9za2rI/pyECGyB4wjDgYLvdrumzYCFhUiiDdbtdA1sAZpqMCM4ADMARey4UneueN421t3tdkWBfi0VI/XFWTz6W0QtPzKxSAODL5XLmAwDZyBNIYqvVqur1utLptDVoAMp5T+1227RpaOq4AHc+uCEBYk2xJ3wtIHc0Ghmzhx2yD2CP8TnImmick2R+l6SfxA7b6Xa7Bpq4b5JCLzMIh8MmJfDvzGsoYfiq1aqxyfg777PQ8vI9g8FAxW/9Fk37XX39t35Fe+WigaP7779f73vf+7S/v6/VaqXj42P90i/9kp5++mmz1Wuf+lXd9b0/qWQ2p61oeKNSQMOTfx8QFZnMusqBBp7kAz/tm1gos0PWzOdzYxdzuZwBFqoEMIi8g2AwaGsCYQGQgpUjRh0dHVkJGraRqtHW1paazabtV5p9SFIoG0MecR/EGeReAEoSDJInGmsBXejaT05OdHR0ZBVAbAg/TYmf5J0KoZfPkFDjw5E3+AZDQKfXbkJEpFIpww4kDcRN/A2JomeBiQXEGXALTUxexw9BhlyK5HA8Hluiydrwd7C7gUBApVLJ9i0gHn8Lg+73G2wuvSaBQEAf/vCH9c53vlOLxUKPP/64+YdvdN3y4JSSHMCBbILyOpkPLITXJG1vbxsbGggE1Gg0VKvV1G63denSJSt/0IRC1sdLi0QiyufzmkwmOj4+ts5bnJq0DtadTsfYF/93MJkYuSQT/8PO0OySzWa1s7NjJWAaZQiYlNhwygBwNKvD4dD+X1o7vJ2dHQ2HQ9XrdWukgJki8wb8AqjImHEc29vbymQyarVa1u3K5kWWQIcuAJJO81qtZo4J7RROjoYsQEK/37c1IrtlAzElAQfEZmKjA+RgCnAeiMlpoOGZATc4DwIP7LckcyaAVxy6JGOqAcvcN4EFNgymkGeGraNECyNBICfAA6bIwClpErAof1LWoZmk1WoZUOl/+dMqv/fH1P/sr6nVallmfnJyopdeesmSPso8gUBAi3BMpTe+S/VHPqateGyjgQQxPICejmeADro9uvQ98Oz3+0qlUqb7pYmOUqXXQ5EoeKkD+wHdF8kUINkHE5JBz7Txjihrw9ywF700xJfzAGQEFeyCfcxnUB3ARnu9nsKJud72XW1dSD2sgKZqrd6iwWRfweBCO9sv6Y5v/bT677xTX3n6tfrMR4YbujAYTXzc1taW+brFYmETLqrVqjW38az4SAAMSShl9Ha7bR3ABDkmcLDGkizhJnDCGkkyQCzJysfJZFLtdlvdbtd8AVo9/g0LzX4JBAIm5aD0igSE+5VkoBGwJa3ZadhqdPGUXoPBoFW/qGIg0wEosJ/pfiZ2kNDECrvqXX1e0VDA7DAajerBBx/U+fPnbW+cO3dOr3nNa2wvTKdTjQ8uKxiOKFHclXoNY7tJlCBH8NMkIFSWYESDwaCBdeyZqh0sMHslk8lsJGYkJshOYNCYAIP8hGknkja0nzTWUDFD9048Q14Hi4m2fjAYGKimCiCdJgV8h7cn72uRsKDP9rpo9piX1nEhC+M+WT8Aru+Wx8+w3gBa2FdIBKRXEFrY/Xg8Nl+Yz+dNZoLuE204+5WqJHIAT9gAarmPbDa7UcELBoMqFot2jxBk0lp26HXUYA6SZCpcqVTKei94b/RXIIvCFmmCZp8kEgkdHBzod3/3dxWJRKy/4+Vctzw4nU6nun79urEVvjSTTqdtM/jyST6fV61WU6fTMQ0fmzaXy9kYkkQioVwup1wuZ2NRvHwARgbn4MsQMJaSDPyiOex0OlbCoqRC84rfnIwogsnZ3t62btNOp2MlHppm2GxsNN9dR2BLJpPGivB7sCrD4VC9Xs8YFxq8AHYED980hu6OrnM+h7IOG3E0GllJdD6fq16vGyMIi41QHt0v7APrBsMGwEE32Gw2DYSzcZfLpTUcIAlAY0ZpDlCDI/GMmyRjCmgA472SQcNatFotyxZhfehu92CUtcCB+KYRnCpOw2uwVquVWq2W2TU2i6bw4ODA9F3FYtF0gjRn+eYTOrC7T3xW+bd+h0rf95d08Is/q6ETsVN2xsaz2axWobAu/shf1XI+U/3zHzc7yGQypjWjlA3gJEmczWaq1Wqmj2byBA4YJoffZxTc4eGhZfP8Du+GMpjXfVE67vV6xsj48rl0Kv5ntBkBh+oEAZKfZY8SaHyzFUCJqQ5oSqfTqarVqmazmf08fzcYDJQuBfSn/uzzigR7+nrju/SV34upc3hyQ1ea1Cpwn+795of0mte8qG++/z8pV3iPfvnnTqUDsVjMmkeOj4+1WCwMoFJ6h0kB+GNLJJz4yZOTE83nc2UyGXsXdAfDfhF06Ob2jUydTsd0bSSapVLJfDNMOhUHgiR+hb1N8xwlY1jCdDptrClJtyST4QD4Ydzw9Wg+Kct7+QTAi+ZCSvL4NA+aF4uFfZevFgUjUc3nU9PPk6z7pi5JGyy9lZ8z679Pb+e0mPYt+UG6gSyL94pfIpElmUA+BICB3cXfAZRgj/F9tVpNpVLJKkism9e+ew0kya+v+uC7vPSEfQMJgX4aQDufzzcSXjS5XjrmqyD4D/YxoJH1oVTtO9Txn9gdz42+FLkCABVfw3ryvcghqFgg48LX0fdB8sp93ZwweUySTCZNukMiAtgmcUTLDenCXl2tVian47nAFb4qif8BtPuKDX/POvEsAFifxIN1SNTAN9VqVb1ezyqG9OVQbYvFYiZJ+EbXLQ9OT05OdHx8rNVqZQ0mLDxCXv6BwQDMtttt032GQiEb50JABbQsl0srt3txNGCU0l6r1bJMiexqNBpZFs9mltZMINk/Bu6lCKFQSI1Gw7IyshbYIDJLytQwiWwstDndbleNRsPYCz5jPl93/nvdJE7BZ5BkvPw9Wh42KEzr7u6uEomEut2uMX7nzp3ThQsXjPFl9BNOhk0Ng0OpnEDjwS9gzLM3gOFWq2UODkcAA4aTIrDjuPhd9E4APi426nw+t1FjBADYN5hq3wGOVhnGjiADaw1wIVumTETDC5/DKJTj42NVKhXL7mH30BXitPldOvrJ1r3jwUHBWM9+7u/pFX/xZ7X/p/8HPf8f/pkaT33JKhHFYvE0IO7dpjt/8L9RonxOX/0Xf0PDyoGx2rBB+Xx+w3HDwHlHhWYJ+2Xu5IULF9RqtQwAIidot9va3d01cBeJRKwbnv3FHlosFhZAAF2U+Le3t02PzZowGSIcDmtnZ2dDt0v1xZepaXpcLpdqNBqaz+e6evWqVqvVHwDXSHqwH6+1Lu5n9CMf+IoCgZX+3X98h1rXOuav8A2BlXTlCx098YmI3vPjP67X7P6i+j/8Hv36Lx5pd3fXKkU0ZPpGCBI+NGXcA+BqMlnPX93b27PGi1AoZLaJfIEgis+DbfZ6O4IibC6Mt3Ta6UwHPeVE3g17jcoVex7GdblcGhCDTWWaBnriUCi00R1NUs2ak7AzJUCSVWIWi4UlPjCzlKtp/qC0i0+RZH5m0u8pXto3kASYf/rpp3Xp0iWrDLz44ot64oknLLFf75W1zCYdiypUKBhTitY5FAoZgOGZkCvhg0iY0IBKsng3mUw2gCZzgAG5PHur1dpohvH2yhqxX9nXMJ4QIYCRdDpt68x75vKSC7+Gfl9ATjDXE9+xtbVlgFKSafZ9FcKzwUjMQqGQLl68uDHpBtDG/kGCQwzj/mjmYz+yptw75AJxEN/GdILVamX3j41Soic2UEkgjlA181W+brdrRAyfQ7xOpVKWiFPVJXEAA+GbqWaxZ8A0rCESCX6X7yeOQvIkk0ldvHjRJlFkMhlVKhW7R3wBEp1vdN3y4DQcDlumDrr3JUAyl1QqZaVjQAUbkVEmBH5mlMViMe3v71sZEsaAJgRm+KGFIrAvl0sblks2TGf9fD7X9va2ut2uarWaje9hdAMCawAZXa5o+BDzY4hoRcrlsur1uv0erCdBAVYEI2cDU/b2Wh26vmH+JFkJFva2Xq/bZsS5Am7RP164cEHf933fpwsXLujRRx/Vpz71KRuWzdxNQCHfg7ic9UAPBBvrj6vFiSLYLpVKJrMgCPvAzToSTMmEvVP32jokC95m2OQ4ethODidA50mQJCgyMovOUfSYhULBnoODFHAY6E6xT0pCsGTYHSV5JgWgpQL84+RKpZKV1oLBoHTS1PUP/j3t/cm/rG/6y/9YJwcv6OqnPqLI5ETpfEHLRFq7971Z6dvu0aRZ1eV/87e1ql+3IEAmDRgGzLAGmUxG5XLZnCVrTMMHLDc6tHPnzlkjBHZJd6gksxXAuKSNhgbeO0613W5bUkMwZJ/TqEWzFACOkiNMEkEMBhymHR2iL8UBpDj4A60lCWogENBD3zVTPNDQz/+Hd6jyfHvjnaK3BpjM53N98kMNxf7MD+iNd/0nfW7/IfV7fWMS2ZdokH01A5YUZphuZZhVbFZaTyiASaa5gqkDAGfWijWAvcrn87aGSC1uDpK+4cc3nKGzZE/ih0qlkur1ul566SVjQdFSk8QT2PGtXm8Ky8rnodumixmgiC7cAwBsib2In2SPSmugs3jmy7r/Te/SOBhT8AYD32q19PGPf1xXr17VPffco8VioaeeesqmgdjUkLse1LTb1LhZUX47a75sOBxqa2tro3EM5gpJDHvNN2XCzJKk+akdJMCRSMSYfiRsMKrIREiufNMp5WRIA4ia5XKpUqlkQJf3w3vBt3rNNwyc1/LyM5SDSRjY8xAJJN5UDTwbChiEdfQyDt4L9gcQI84SS3wHP76HhH65XNo8WH4e/EASFg6HN8rfPhEHN/gJM4BkfBbAn0QQsEgCQqXOrylMNpM4fIUGSUwsFrNRiCSK7CF8BfsZfSoVDXxWq9UyvMO0Cip6YCb8CDb0cq5bHpz6Umkul9N0OrUyL1keWR+bEQDrRyZJp93fdHJKss2KA+Qfmi8AwhgKwdVLBhifgTFwqhCdwP4kBVhHusT39/e1tbWlWq2mZrNpDQCUtzE0siBKCxg4YnCCEuMofOcdAO7mxpJwOGynJUmyWZAwKPwu+hQC93Q6tWz8vvvuUzab1ZUrV8xphcNh7e7uajweq1arbTC0OByaJmAiCZT+hAycg8+OSTh8kuAdJx2UgExKOrBpsGXM5IRRoxsWm6OkiB6IUUypVErFYlHhcNhYTxwJ7ArNMpLMZpFgEBzRBCYSCe3s7FiQZsIBzw+o8faDbIOOXMCXL0cDFkeNY33+73xAsQuv0B3v+ZO670f+soIuEJ88+2Vd/ff/WKMrX9XihgQEIAELs1ism9xIWBKJhEqlksrlsjFIw+HQqgCSrIMboC3JAKDvAPdaKZIKvpsGAQI4GX8sFtPe3p4BcTRpBHV+149Ggblnf6BFhnX1w6ij0dOZngQ5xuEgHwE4EDgjkYgG457uLHxBl5vvUOPFkTEgaMmoijBYnsD/8K8FdPcHUnr392zpoz8/sVI+J0sxmgkmjCCEn/PzdtFhIkVCJ8e+7nQ61izoE2DAPixPMpm0Tl4CLJUb73dJApikgA36RhjWkT2KRIW9BcuDDVDWlGQsHvsZG+MzmN/pDznATuhW5lnx3Ui1sNlIZH24hC8v1774Kd3zAz+t8+94v6786v+heHx9mhA9C1/5yleM1YTVSqVSGi+lwmsf0nMf/bdqXr+m6bhkJWAkKkxuIch7Vh/G7Pr165Y8STL/wntHXw+7vlqtbAbwzU1IaAypqMFcQhhAQhAzIA14N7wHOvdZYx+jI5GIfQ9AFQ0xlZDFYj1jc2try4A0sgovGZBOZQVeo0uiQ7yiDD4ajaxK6jWqACwvvYDdBAhPp+tT1/ABnP7mJT+SzH4gDVgXkmKqpsQxJuEwR913//OM6KIBxFQt8FckyHwHALvf79tJhel02mRnEDt8F+viASXAd2trS7u7u3bfNMJB3JAUof9Fm02l4eVctzw4JWuXtNExS4YJpQ7Y8w07ADdKGpzowAgnX96g7EZGS4YryTSSOCEYMzYcDhemEjBMiXk+X3f7w86R/cM6UEKJRCK2MQAokqzUKclYy5szV8qgMLcECS8PIDPknpg3ir6N2WyUtWFjkBAw6glHeXJyoq9//esql8t64okn7BSa/f19fed3fqcymYw+85nP6IknnlCn07H7pVzDRgUAUVqkDMkmPnfunOkr0Vt5PZvPwgOBgHUq48RwkDBYrAEOuOBKbwRsbIPA4kcmodUkyeGkpmAwaJ3UTE9gpqQHsABygDLsAWATm/PBHfG/d4Yw0mS33mnCNofD6+kRtcc+q+7zX9XF2+/QMhzVSgFFVnMFFmubDgWDWuj0FDaaSth/gBM0Wkwg4J5h70m80DbzjwewfqqGDz6UzwE5jDgiMcPmYTMKhYKtDz6AvSWdjrkKh8O29nxXNLo+lYmEBLsESFPGpFrjbQFmDicPG/HaP7alyKqtJz6fVbF4OjC+WCzqrW99q1796ldLkj7/+c/r4Ycf1uHh4XrtF2G90H2HXrH7iILh15hUBRbKl3Wj0agdDHJ8fGx+0GsaE4mEjo+PTRbBswDk+XmACCw4yRWsOeAFv0gFwmvvKLt6KZL3c6wb30/ymUwmjfkhUSOZBWQDrpgIQuCHncJPcthHo9EwDS6AluQeO/B6WhJ0Rhn5E/OCwaDaj31a+w+9X5VHPq5+5bol90xPIEGGVY5EIrrjfX9KoWhMg68+bIwbcQLJVK1Ws25o9rL34fQGUJbGx/P+Y7GY+UL8MJUX3zTIO/KSEGIde5U9TcJPAlWpVDbKvfhNSSZVQvaDbWSzWdVqNZOioVcEcEEYeZAsnZ4CSUUIwgF/R58A/hrQStJDLAAvQDRQ6aJSx7P7hiwSHCp4JDBeDoC/x0YkGVjj/dHjQcxBxjCZTJTP5+3vIVDYF4A9T6LAIrNXwTisBTGTHg3AL/iARI61oFqBb2d9sBkIK+ybZyfp8LIHn9R+o+uWB6eUOmDVYIk8a0QWj3iY8g0bgmwZg4I9gUWNRtdHmZJlYnAAJv/CJRkzSLnPd9HB3G1tbWlnZ8c6zRE6RyIRVSoVm6vKc/DSfUDAUDF6WBGyVAIMomvfcUtDi3WQ3gCWdN6zidDXYZReYF0sFrW3t6ft7W0dHx9vdFemUil1Oh19+MMfVi6X0/Xr1zUcDnXnnXfqJ3/yJ3XbbbeZLigQCOjhhx+2rNczKePx2DJ9SRvCbgAdDDjgA3ALGAZIw9LBShB0/RgwRuCwtjgcNix2gzOg2QaQsFwuValULAFghiylMBIYf580gFBCRTeFJABHKp2ODOMiWyZIwLAQ0L2OD6CLHRJAAVfL5VL1yrEBtfmNTDgYDBoQgBniGTxzm8/nrdmBoIaEZLVaWeMLDpCucfYUJSkYaJhUWBw+k31AEAIEYudoXwn+6FdJzPzgadgfksD5fK5ut2uOF4BE8kbJjJJ+LLY5toukkuYG3sd8PteFC0t1V/epezg34J1IJHTHHXfoXe96lzVlpVIpXblyRZVKxdjTF58r6xWvb+j2+/M6fn5iIMF3x2LT7MFgcD06DWkQjS28F2yRRG8ymRjwQ3fvgzU+4fj4WKFQyO6X+cKMMWJt8W3sW0r5VCwIgPggGEL0nvhsgBGgj4CONIfP5dkocedyOds3aFNZA9YL3w34YLoF+6pYLGp3d9cqS1Rxksmkjn7n/6Psfa/Xq/+bf6ir//Z/VufwJWMV/Sgk9tf93/fntP9t36/D//xvlQwsNbrhx5HiUN5lP7PH+DsvbWI/wJ6iYQfYsefx8fQ8+EodGlb2V6VSsfItCSPrwnPAqmLfgG6AEADSAzkkL/hAEk4ScWwc5hV5DTbY6XRULBYtUWE98SOAX2KdJEtyWQuSVPwP94l/5xlTqZRVzPguDpXAB1JmB/Rik+ADSviRSMRGlgHwiSM0jHU6Hascsq6+EkEFAX9JbISMIWHwhwj4Ki1kFXZAIuex0dbWlvU4MJ4Rv8Z6kUDSH8IztNtt9ft9+33PmH+j65YHp81mU/v7+2bQdCSjf6P0+f9rPA+lDMq2MDOdTsc2OY6OU0E6nY6VzfgMsnrYIVgXfhZAvFgsrDR/sxPO5/Pa3t42cEJQ5efIhgi+UPHMFAVwUYpoNpuWGfvRIjgFHD4AkBIga+KPIkTATRbldYA4UjYgMgZOL3nhhRc2WOVsNmszL6XTUWAEJ7JJNh2JAs6BDQvLwM+TBdK9WiwW7fSn4XBohyugK/Ld25Qj2PwkKGjwAM0EHEo4CNg5/tJ/HpsaRwpTyfP78hg2goaTAIRTIDiRAdNxSZaOvXBkJgENUX0+n1epVDKdGgccsN4078BWw0rixBaLxcYJQHt7ewoGgzo4OJAkK5/z3zhG2HDfuY990qE6mUysYc/r6gi+BBFGGiHEJ8ChX/WHHdAMRIkRwCStmQOvl6JRirXgef27ZsYrdsa64lOQDMFYeUaBzzo5OVEsGtZkvmUNKyRHFy9e3JD25PN5vfKVr9SVK1dOpTadG6eFRRc2w5Q9jY+jMoONZLNZk9sQ1Fhj9rMvjdIMhX/g/cCSYWeS7FlbrZatN2VYEhJYGxINAA737dm9dDpt0oiDgwPbY1SEKMPyPDw3bA/lT3TdJycnNhEE3bgke7+8I8Ds9va2lXRZD+lUax+NRi3hbjQaJld57uf+rl7xk39Xd/yFn1X7Cx/X4e/9hq4+ezrTNBwOq/SqN+q29/xJlV7zNl372H/QlV/7t8ZMsh5ITgj0+HzAAKQGSRyAgnsFzAIoSUB80yJgBsaSxBVQQ2UMsEMzILr1wWCg3d1di6NIvvL5vMXDmwEsMceDVKoKDKv3wE06PZgEkA+Zk8lkTD/vS9r4G5JF5HskUPP53DS3+AviO/fIqK5SqWTrxkg+5hhPp+spKP558UEkchBEuVzOCAPuicoA0x8AthBMyMUo79dqNYsNECb4OC/nYOQeiQTr4ZldZAsAz0AgYPedSCRUq9U2yvaQF5IsAQG3eGKB5Ji95yUP3+i65cEpRogBFgoFGywLAwPLQUMQC4mTJLPESAFhlOPZoDBg4/FY6XTaOma9qBz2B10kI5YAtJJMl5VMJm1shLQGGa1Wy4Ts0umcU8qHgEEcH8yHJHNuAAvWxA/ehnWkccgzARgg9zyZTLS7u2vAymeWZMEAc7JAmAeo/cViYQ0vsVhMh4eH+tKXvqQ3v/nNBsCr1aoBhEgkYto2gijOinfkJQ042lgsZkJ2slA0QJw+hBaUEhNsJ+V1NHswMpTMvH7ZlzQp/TebTTWbTTs+1idCMGfSaacwgRHngNAdRxKNro/rg52AscaZoo2iwQ+gHo/HdXh4aIABcEk58uTkxGyAYO5F+jTtec1Wr9dTLpczgMHUAoIXTo99AuCgKuHZsJ2dHSspc98ExkQiYaV+SlgwbxyXSTMZjNJ8Pjfdc71eNxtGc4rdUOlgHFg0GrWpBv77AZT9fl/ValXFYlHz+VxHR0c2VzQYDJo9s/9ZX9hv35AkyRhaaapwsLcB9E5OTvTcc8/pTW96k8rlsrHaXruZSqUUjd3Q6o5XdhAD3wXTgo8gWbpw4YLi8bgFdNYMlgqbIonCJplvCFsVj6+Hvnc6HeVyOe3u7hqjBMDGT2FDR0dH5puRNlHC5r0haeH3OPGH9+CTDKosaGLx2/hbkkFJRijQCOKDJQy7JKu4SKclfRJv/G80GlW9XrcmWF+yHI1GOnnqK+r87F/QXd/zkyp/y/tVeOi7tfe1RzXvd6VgSLk77lVy94KGx1f15L/5H3X5kx8xRs+vHaVj/Cw+DmLBl3AhRDg0hftHOwxTFo+vZw8zbxryg8M/8Jkkgfg0AAr7guqEl3aw12EPIUnoA6BiBTAmoUZbT8xihBmsJ4kHg/vx55lMRjs7O6ZvJHbhEyeTicUHL3EiRsJmeolAIBAwogRpBbKDVCplY9WIPV4WyPN4II+eE0DJTFDkg1QrJJmOFkkBP0/MQw89n8+NuecekcqQ2IXD64kM/rhy9iPrCrgNhUKGfTKZjGq1muloM5mMNUZCJqHLRxYG+QaTzz5l/io2/HKuWx6cwhhA1cOAUC7AiXt9p9ff0TGNVgz9hy8Bee0Q7CCfT8ZDOQyAgO6KjU4wzufzRq9Lso2B4cL8AlgwYDY74mYCHo4LcfV4PLYZmx540WiElpHnoBxDMxObh4w7n89vjK0hswsG18d84ph8Bot+x8slKHEcHh7qQx/6kL7+9a8rn8/rueeesxNaAGeAX0TsOGACEqBQkpW+vcwCtg3nQTMGI35g1Mhs+Xn0WZQopLV+CrBJMIQtQ24AM04wJyslu+f7AMpk075sz+lfMKtk9DgaEhNYP5w20xrm87muX7+uw8NDrVYrXbx40ZgJ2ALsFEAHK0wgY+oDewFboKS9t7e3ESD5TOxLko2hAmT5OX+MnimVSjbqhsTCszh0oHrNtA8WMBA+CWEOLAdJsG6wKIAmWMXj42MDrhzbiTyD30PXx94H2AIa2cNMJcBOsFMaPui+7o9S2kt8QQultFpFjPX7yle+osVioXe/+932/4899pgddyhJt71hpZVCOnyxp3R624CoD74ebA6HQ/M1vkQobR7BKskSA45x5kLOQkDP5XJW7fG+D19BsorPwobxNSQuJycnVopligrJIKB8Pl+PuotEIrrtttsM5FDxQO/I3oKZZ5wd4AHG2Mso+BlG4lCKlU41iX68n/c9sLAEZ9i91r/6W4qmMrrw9vep/MCbtbVzXovZVMNrz+no135O1ScfVSAQULlcNjAFyCZekWAiL/GADVY0FAoZ+eDvB2aOUjf7hgqQX1/8OPHlZh2qr4LAwlKe5sQv1pMKAOVuOrnxTzDRXgZD/AR8UzWSZKQEsZaq2eHh4cbcVGQMvioA6CKuk9ig5YxGoyqVSiafgIVmLWBWGYGG3QK+yuWyQqGQqtWqkQlUPin1w6Dy7Lxnn0CxZ2GPmSYCBtje3jaG2zfaUtWEuYWk4p0QL2h0Ymykl3Zh6+1226YE+WqRJHuP2L1n173kwP85tvZyWVPpvwJwGgyezrkkk4OWXq1WBuoIJgRUwAylKIwQZ0WGzbgLWBGvVQHMMT6FEoUkK6k1m00DlBgn9+JnaxKoAVBe3wQjDBMDEAR0w6ThvGm6gnGFLSTIeoNCx+RHScxmMzu2ld9nbJYkG1NCGQi2rd/vq9PpGCCQZMAN55FIJHT58mUL2nSCnrJLMkNnI+O0WX/PfLOJARRknQA3AAYl/W63axkfmxH74F69Fgmwi+OeTCaq1+umkwLQ4GRggtjsMBRoZ2FEq9WqBoOByuWylTwByF7DBPOdSCTU6XRsdBTOAyBNGT2ZXJ+shKOE2YTtzeVyKuzsKfHab1V455K277xP0VRW137pX+ny7/yyHb6wWq2shDWZTDQYjXT7T/8jbe3fpuu//gu6/tu/ZJqjSCRiXfyACJhY3wwDuxMKhUwnXSgUjIUkecTxwqACQgnCBGhKWQQAyp2wrYClfr9v586TXOG0PRvBOqInbjabBmhOTk5s9ivgDICMLAJtOM+JfINA/dTv7+mV7+3rW79nR5/+5a7dT6fT0RNPPGEjb2AHT4F6W6+87YoOx2/TchTWPD43dgNpCUkqSQz/ZjJEMBg0faLXPEvrAOT1muxD1h1NKu+CIEmy5JsgG42GIpGIASj2Fw1tgCf2IIP2fUMmTVwkYrxD/B52wjsHzKDZns1mZlsES4AVcgLK8pAbsHnYFHHEJ91UFLBlEl3WPxZY6eCTv6zG5/6zMdSM6KPS5acjAPBYc0qy+HXiAlUqfD0/x9HA+EJAH1U99hWsGfaEnMOzjBzSQkKP3ZfLZZNLkWBms1mzGZ6N56Ni4+VvrBfAiwZT9jclbqoePANTI0humRXK/gPs+kZGvh8fRCyLxWJ28iLvGH9FTPSd8ByKg9yD+OEboPhun7CzbpKscx7pGrYKWw8LiV1JshhG/weyCdhP1tj3jsD2Ik/BNwQCgY1JRF4O4zEEsZCDc2azmfku38znZwhLsndEfAHs39wX8Yddtzw4Zb6kB39oawBdBHtpzezwsjFwMgCCH/o+ul5hFPzcNJwfR4SRpZAJAmaYQcZAfTJggCYbmzIHjqHZbNoGQ3OIVocA6xkLMlNJBpgIArVaTeVy2Y7q813wODV+nmeQZMGFbl46WAEUrVZL6XTaWCPKjDAC6BcLhcIGeCa7rtfrJqrnHHKy40QiYU1F6GFwMF4vRckZZwFzORgMVK/X7VQVAKAky+x9Y8Ryue4yJ8jy/HweWkXAJ8CYP6MbmOYqHMtwOFSr1TIQh2YI50MQunjx4kZpEWfpnRllaGwIFggmAV0cSQTAn/dIMBgtpTvf/YMaNo7Vv35F+Xtfa8FRkgUUErVsNqut171L8cLO+u+Xpzq86XRqrK8fMVQqlUzXiMODaYJxZC28LMZrPf3BBTg/3gMBnZEogCtGmcEO+cYOAjGADfvHztDilkol2x8EPlhg7NQ33vA+AW2S/oAuMhwOq3W9r9ri7Xrgnq/q90KXrELSaDR09epVC7AAI5ox739bWml9XJ/84oNKp1cWBNGww/QxqoeSHH6PCksqlbJgSWnO62zR3yMlicViNtrH2znvjZI9wIb1xmf5gMV+Wy6X1nEOcIJMkE7HJpEYcZ9+H5IkMlge/xmPxy05pkKAP2ddAHTMjWTPATJg6WmOJanv9XoGOmwf3WCJSXx8uZR3SVUqFAoZSQEJwklsACXWFZ1uo9EwJrHX69l7I6kCgIxGIwM5ABcYNJIvbIK+Cp6JPY/MJRaLWXkYv0F1geoT8QESAT04Ei98h5ec+OqkT4C9/IWfp8LDPocQICGHfMBX0fCEfw8Gg7Z3PJBkT0MqsLZeZkLFlOf1J2khN6PCFY1G7TQ6fsfrLrHvQqFg1b+joyM7GQ/7ZhoEFUj8C1VPGmK9PwHwAwb5XsAxa8G7gKEH4ELoIN1gPamoIBtgzbl8RaFYLKpWq6lSqZgN409eznXLg1OE8r1eT9s3zmwHdEBDw6BAn9Oww6gfnCzg6f7779drXvMaHR4e6nOf+5xtbBwojohNRFc04mk2I40jvisZlhOm0ANiyq38fzgcNqPHCQPEYH4lmbMiEOEEWAeCRCqVMiaYP4cxhu30jRZkVWR4JAGUI6fT6ca4HpwMJapkMrlh/Dhyz8DA3OL00K/6jJlni8Vi6nQ6liignaOMSbkCkEPwXSwWdvQkAY5MH0kI/5Zk75bgBotH1kp5m5mBzWZT1Wp1w+YAAzgMZsahu+K7sSeCCsEXvZhnx7gHAs7NDBesMR24Fy5c0HK51AsvvGCJymKxUPekr+5/971aDk+0c++Dyt/7Wgs0/jxm3nGmvKfC2/+EGp/9dZXf9Sc1noxNr0ayUK/XjaWiLI+tU8FAYwtoBVwEAgErGyIHINEBFKDBopoA+8TfwUrlcjn7nsVisSH74XkIDEyYYP09SPFMkQ+SJycnJrsg4cW+SfpIdvlvtMvpdFpPPnGfvvW1n9MP/sVz+q3/MNV8HrYAQqkadjEQCGj39rje/oaPqLV8vY6fPvV3yDDwSZIMoPmkmLLjbDazYfZ+vBUJLs9OpzbJaL/ft7Fgfg38d/ruYXwa5X7fXc29kKTDNlEm5Phm7gcwHAgErDmF0nSn01Gr1TJGNJ/Pb1RTqLAAtkl6YbkikYhNWACUknCxPuxFQCryCZIrJEBoMSkVdzods3t8IO8LcOE7pZEO+BGA2Ksk65fgIhHgHtD+UgIn5gDEWQdAEbGD5+aZYcoCgYA1XwLoGMjO+DVIGOyf8VZow/HxMI98NixzKpVSrVbbqO7R70DVj3jC/iX+wRh69tVXVkjsqEL4MWfE8fF4bE2ykFpINHjXADXij09gIF6YqkOFD8kAyQTNT0hgINFIrkkusE0kUqvV6cE0JHVeuyvJkjISeUAn+KDT6aher1ucocpLQg8GIdYXi0VjiBuNhr1jbJWkx0vmPBbxCdrLuW55cEqwwbjYnIBP2MBcLmeBFwqbl4ZBp1IpveUtb9GP/uiPrjVi/b6xe5SV/DGklMbQmqL9IHvAiGBvPZgdDoc2T5UZlpKMRUqn06rVakokEsau1Go1KxXRUb+9va1Wq2WlNHSnnAYEKKATFTkBZXLAMGVc372Pc4XuB4BXKhVFIhEbk9Ttdjd0L2gqOSubjQZ7yucQvAkMrIUkY4GQDyDcb7fbliXzXJziBYPGszGTNhgMWuBEZ5XNZi1wspl8lyfgliBPA0Aul9vQubVaLQMiy+XSDheAmYdVJ4NHSwugIUACsAEbdISHw2FrCPINCLDjvjFsNBpt2CfvEDuXTsdSDVt10xxJ0nK1tOeiJBcOh1Wv11X4jh/XpHGk5pc+rfK7/qTdH4yabywAoE0mE9NeI2UgyYKNazQaxrICBjiZB5aKcjUJKFMbfFltMplYs9t0enqKDswAzAGNX4Bayvcw7jQIoPve3t7+A+NrBoOBMpmMJRuMgvHjXnD8lCgBXIFAQIdPDvX7uR/Xm2//oN7/42/Wb/9qaQOAs/9CIenuNyz11gd/VVMV9SsfulOT8Vgn0xPbTySP/BuZDUDTz2Tk3cP4YJvcF2w9+yYUCun69euqVqv2TmGcAHHnzp1TKpVSpVKxJhX/HAR5ZDCANpJFSpLIlgBq7AtmP2MLgF58FRcBkTImexGfzX70vp4GEErJsFWj0UjXrl2zwyRg50kc0U/62AGpQcJFaRZG3ftAQP7JyYklD+x/GkkBLzwzjXz4HJIlWHvsFwBDeZ53DAnjS+KLxcIqXsQd4iITA7Al9gvrAZBi3X3/A8Ca78DWsHG65/EFvV7PRjctl0vV63VLAGAuiSOeXSZB53346iH/3+/3rcrJWnmGn3eEv5JkFa/Van0IB/0FxBCel2diD+F3+VlJVomjHE4zM4m4JxywEy/RIRHEdqg8ISnpdrvm58PhsElVOp2OxVVK8vQ4kCjATGPLfnIGMhfumWQMwoDEhmkCSIZ4jpvZ1j/suuXBKdktJXgWFpB28/xISeaAybApR5C9k/WRQZ47d86OBgUUAVZwngAbnDIlWS8o5+VT8mo0Gkqn01ZilNZOAsfdbrftpVNuhjUCyOFQAaywTfV63Upbi8VCTz/9tCaT0/mArMF0uj4Ck+ch80MjSZMHWazXQ0kydgnGCiYC5srrKGGBWXsYRn7XfwdOAF0UbDDZMMxrJpMxLSas6fHxsaQ1wN3d3bXfhQki+yTrpczEJsSJed0ZTCtOEV0PgUiS3TPOk7IOAnbYPRIjHAw2AjstrUdPoZ3DYdOpfnx8bKw1TEyz2TRGi6MncfA4Vthm/m4+n2s0Xn8fQRimgw7f4j0PqPiGd+no3/0DRWNrpoQmCuQPgAdKsARHvnswGJiekvsg4FarVV24cMEaF2ii8XpdnDXJBmvJfiIIAGB5R750SfDDhvgdac3owaICQtlfNEkQzGArsFHfhFcqlUzGAcikYZB9N5lM9Nh/PtHgoR/XQw98RD/+Q4/oaPh6Pf6VuMZ9KZ5YaO+idN+lx5XQkeqLt+qXfmFX159/SYvF6Ugvv/fY+6wV8hG0hzwjexd7JgACPAF1NFUi9/HNnfgUmjFgwtF8AkAodXr5A+ubSKwPSFgulzo+PjYNux9pB8gjIFJtACQBTmFNSbTRPgN8eEeUswF3JNG8F9hM35WMfhG2V5LJJ3yjIvpEX2L1ekbsF+YOIOfBCEQCYINqCD4ZO5NkfpKmzp2dnY1B7Oxt/BUMNEwnv0+lYTqdWm8EEzMAobBmTGJhTCNaQ5hhqiPcqx9c7ysWXkKHP/MNpSQk7HfAIrGeUVSshR9ThxyPd4u98x5IBJiqQlXD+xNiKIkQQPxm+Rw9IX78Gj5/NptZFRS22rPJMPMQZQBciANAJgwv38/eJ/6zt2CQpTXLjFSO40a5wCt+LikMP/GMd4EfJDZx4BDfQ1LDmC32BzHu5Vz/VYBT9FL+XPVut6vxeD2It91um1OiRIEBwnTC+nzlK1/RnXfeqf39fT3//POqVCrm9Ah2BF3YP0mqVCo2TqhQKCgQWHdsHx0dSVqf+45mkJMyRqPT4xIp27ORyejQcsIIUY4CJFPSwbD9qCFKgLBsbFrE+Bgiz8IIGQKHZzzG47H29vZULpdNMwagkk51rl4T5gf64lR4VrJtry303dtsJAAf9yvJdIUECAAEjt4znWxUnCROCRDowRBsgy+vMnMQZhfQjsNYrVZ2AkupVLK1xzEAKAAwlChhjwCLvmkCkMrIJhIWyii7u7uKx+NKpVLGJgI+cMjozHAWBHfGmqEpCihg749gTPluuVzq/j/1V9V/+vfVe+FpLeJrhxS/0ZkKG0yiEI2uDx1gSL9v4CNws8+oCiyXS9VqtQ12kbEkaIoBvzD4fCYBwjeUAMgANwATAgLsEEwXQIxAzz35ZIjxaTxDMLieVNFoNCyxY8oHDAQVEn4H0ESC9pXfGuvFx96rB94Z1Stve1zve+tvm09bKKFrw3fqs596q154rKF4fGhDv323OMwR83LxOwRYpB7sTfTg7AmYXfyM1+oCINAvw+zgZ2B1Wq2WgRbei9eysodCoZBVArA3ZCTz+dyafhivNxgMbDoDkxiYKgAbjo1AMpCUUEIPBoMWRGEjkX4BRjxwRgIA48vvwX6zz3xTDPtMWgODaDyh8+/708o9+JDCyS31D17U1V//Ra2Or1hMYNweDZsksdiN1w5jj/g2QCpg8Ny5cyoUCmo0GhbbSDJyuZwBTN9FTqlZkiUY+Fd/XDXfBVhkX2E3vsxOHLxZPwoo5/Ng8vDXJFGU0fHfkuwekT8g18K/wLZj65cvX7YpFYBS7BYfQdWOewMYAsgAuPil+XxuhAuJgy+vE8P4XBqS+UwSGHo5iPPS6cEQ+C6a1VhnnjOTyWxUJEk62G+MI+NdYwelUskqCTQCA+qxLd4j98/7JNGQZDEwFosZ+761taXpdKp6vW4xn/dMbP1G1y0PTjFwGDqAjCQrjzPjjLI6C9vpdAzo0DV97do1/Zt/828sQAIOCIp0IXutFsHBZ6Y4N8avwPJAi2MQaFDIXih/SqfMSCwW27gPgrTX6QBIuD8PnJilxndjfDATSB4ovcD0RKNRPf/881oulyoWiyoWi0qlUjaDjkyRoItsgFI0IHR3d9dAYKlUMudAZoxzKRQKNueVrNWPE+KeaewAmHkhPs+Gto6yIY6NjUM5NJfL2cQGWE/WxWvFAG7MrlssFsZQcn8AS0pRsONeuM6G97pCHGO321Wn0zFgjFYOB9/tds2+U6mUisWilsvlxqxIZtqSiVOKA6iiUeL5lqEb56cPR/Y5ZMHn3/4+xXcv6dn/85+ocnysUGZ90tBisbSRNyQ1nKDGewOQ8r2McUJzi/0QMBl94mUY7DdAmLdbAju2yXBw3jF7BYdLswM/Q3metWcUjAd6ACgkP15fiV3isFutllUmCIz8Q+BvNBo6OjqySQWLxUKf/XBYX4jcoe3d1yq5HdZkOFPrqKdus6NgcGrSAtYLqQZBBqCIbcJiwQ4CuFOplJWFGe1GICVh4PKgFl9HgPaaeHwf+wSgR2LFXoJZpSl0a2vLJiGQ9BEASZ4I+P1+X+12W5PJxI5LhglDpsD94yNgi7E/fDJlc7T1MGcABgBgPB63RB1AA4nRaDTs91kX4sBgMNClH/oryr/6bWo+8jFNWxVlX/N23f/Tf19Xfu7vaHblKavG4Nd5Huwc5pBEFTaX9UQL70EOU0UAvSSikBo32wlJMqPO0JwyRg7AHQqFNtYecMzvU2lptVpWAQKoEO+wU9hDpo7QyEeCQJmZ5AYwRnKA/fH9/D/lahIbno9YRvUN4I9cyss22Bv9ft/2O3EF/+GTfzAHMZN1wPfh32OxmFWIwATe39MUyPqUy2UjwHj/sLqFQsG+G1DJ3mPPd7tdk3FkMpkNCVqv1zPbRSbHxR7c2tqySgx2R+LA/gF7+MqGX3eA9Mu5bnlwSoepZwBwUGQmGDSOgOYPWCZKUhg/wIeXDjClnAtVT9c65WXYQEqIgFK68ZjbCXuDLhS2wms+j4+PNR6vz5Le2dkxpgAghCFxj7AUsCbQ99VqVblczoDM9evXraMPbVw0uj7RinLnbDZTo9Ewh7ZYLKykif7M6+PoUiQLpeGITNSDaoTobFQ2NO9sNpvZTDoAH+WMWq2mfr9vGijptOsWJ4o2x2eSdP4CKEgCKE/DApNNwwIwesSPWSG4MqxcWp/ok8vlrDSJvrbVahlogVWj2aler6tardoz0pHqdVo0YLHu0prJGY1G2tnZsSBGaRItEZqpbre7MXeQMr/vgg7cCB6TycTGWy0WC22XdnTfD/60jj75YY1btXXTUeT0VC0yePS6NFzAYFGGkmT7gNJxq9Wy+YfS6QgmQHEgELAB+ABTEhrYBEABAQjtJ+U1ZASsLYw230vDFmDB64zxJXwvLBzzVWHDfQWGpgg+D78DoPAVHphFTrxKp9NqH7XUr0c2upcBkDDoVCBINiitEhAODg4MyE6nU9PMwSD7+/FMMQkXZW6SNN4t5T7kN94n4C9Go5GV/mhq5F7xR5Q0IQeOjo7sO3le1v1mkERyw37hz1erlflPzyp5FofP8pMNAKIEUhg73icXvwsgBaSiW/cxIXfn/Sq89iEdf+zfq/uFjysajerqp39dD/yNf63yu39Y7X/1N8zv4k94JvYGiZev+PgJFZT/GY7eaDQ2/CT+389gpQEY6RJJFQCVhl8YY+6NM9Rv1rBCQmxvb5uGnj4KGoUgRyArvHwCtpBqJL4ISQzJaywWsyoWzCNVTOxMOm3Ko8pCwuyla0itqPKQ6DF6iVPJIDE4WZC9DGiDyfayNf9+qJrh+8AXN8uLAOaAXBheEiikLuxf7JgYhi48kUjY+gGMfVzG/3GBH6gW4195b1QiwTzYA9Xo0Wh9SAV+AF8jyaQZ5XL5ZWG3Wx6cop9sNBo2CoZsmqAYCARMFwhYooRFk4Qk01+SnYxGo42y4nQ6tZFA6LUAx74z3tPusABkqdL6JXrtFmyEJKP4eS42Op22rVZLkqz80ul0dHBwYMCSoxZxvAQy9LQEZICiP/udUlEwGDTN4V133WXHuQIKmaGJk0dbRrACbE4mE8suCRZktLAivEM2DHpWNr50emY7Yn02DA0Nq9XKNmk0enoSkp9xSmDH2XvhNhk6jTjIGmDgcMwEW9hJGsu4X0APQKfZbFrw3Nvbs+yazJ5n9yVKuo7JgnGYDO8HpPlSlSQLWt4Z45B5b4eHh/adgMjtG7+fzqStDNTv93X+275fgXBYL376N7SVzCifK2kZv3HEZjSu6mCi8LSzHjR+g7WS1s6MBgfAHpm7DzCwh8y+XK1W2t3dNUa01WpZmZqSF+8CYEo5Fq0pJwIhp8Bhv/jii6aL3t7etioHpU502ei0YK2RoWQyGTWbTTuqD3sh8GazWZNMeO0XiQxJIiVVr/2s1+saDocqlUqKRqPWgOdLq2iUGYt18+xBZrsS6Hk2QCCBmDXz7JsvjdOk6W0dFp/PIanjd2nuALjAINLVvb29beAlHA5rd3fXGp5IdPHZsK6eFUcuIWmj4QZ/K8l04avVyhomPRjhIuEDoOEjOXHLl6shCKLRqOlJAXkAQVhsaQ2Uyq9/SKvFQpXP/qbGJ12TjGQ/9RHd90M/o+zeBWl4aqew+H7/Uz7nedn/JPKwafh2EjQSX2zWs+zEEqpGAEP8PIAT6QeyKKpx6MQ5gx49/Hw+N/tlokOlUtkAY1Qv8bXI2gD5VCp8okjjGJI3fo9qEMCdz+S9ANgAXsR1/0wQMawF9+GTLBJccAN7i4Yo3h2sLI1OMJJeNkC8QhMOOww45R6RyxBP/aECkUjE9hAx2o/oA/Ai0Uun0zamDsCJpMDHZiaf8BkkkkwXIQmiV4NEgUkIjCpEKkecPCvr37jq9bp1s7PwZIKASFir5XKpg4ODjfI6m57SNIATZ4nRcZQp2k8M0pd1+TPvZGC8AoGAgTpKQgQwNpQkMyb0UXyGPw4VDR2ZMc4JxpdyBSAdbRiZFppJRiJRZmi1WvYdgBccv9fs4jxhj2iagBGiccwbMpuN7yKQv/DCCwYUS6WSBTtKRDgNBPQEFEDXYrGw4/gQpnNM32g0sqYhWD2YSX4WoE5p0ss/cHaFQkHFYtHOvedd8uy9Xs8y9dVqpUajYXPyCCCdTseG589ms41Oe6QAq9XKBqZLp6VIScZ2IIdYLBZ2OgtBm3cA+8Pn0JQVDq+Pi0UzPJlMFCpdkCSNR6fzCQOBgGK5siJbGb39H/3HP7DnLr73h3XxvT+sK//qr2tw+II5Jxg2PsNn3YvFYuOo3mg0qu3tbQNlgBVJG/NQCa7Yng/eSG8ajYaKxaLpHgkcBH+YEhJRpniwl7EL7BOwRTCT1gEum80aMwXgLpfLFuw9wwR7z1oAtgAWgAv80HA4VLvdVrPZtOSVBiGqJIB6z2RSPkU6QZCAkYM1RXc4Go1ULBZNRw14o7ICU0uAIukDFCSTSUuykEZI60QNuY8kS5oYD8XsY9499+3LuOwf9v5sNrOKFEmel2vAxDJ5wZdUJW1UwkhCvB6bE7ggH5Br4PepUlAJYToIjB9VHKob8b3bNG4cKbiYmaRoMploevyiJGnr/J1qPfkF8/mAL0BHuVzemOwCWIMR5f7xH4AoZE2sK0kFQBwiBT/KGnkZBHbFswDOkDcw+ol3AFuLn+GZkF5IMmCGHyDpwH5I0Dm2E42wn87gTwf0jDp7hr3km6ZYMypQxBT2PBVOCBo0mvwezDifARNJvMBGsDFivvdP3ofjEwGIfvoHMjbmwJLYsfdgVCVZ4rFcLtVsNu25sXFkOmAXejgg5Kiowcryvewv9gbVIT9X18dO/BYJCtXoTCaj4XBoSfw3um55cAoLtVgsVCwWbXPAMIL8YSwwapwDJ82wkdEq0gGLA0cPCLjA0Clt+jl8sJ8YTa1WkyQrbaB3jMVi1rjFqTC7u7umHYLhOjg4sLLhpUuXrGPbN42QrfmsdW9vz0pPBwcHVlaIRCIGhuik9uVCAAFlTLRIAL7JZGIbltI9AYaskIBIhogTxeHAyNBtyOaG/YHZ9hmtL08AyNm8aKfQzgDE/HgdwAsOxHcks+G63a4ajYYxmjB23pGxVh4woeciGwYA4xwBh4wmQ88mnZ6gs7+/b2ClWCxayQ07xnmQvcMYADAWi4Wq1aoJ1mHOvAbal/wGg4G2T9YBot1pGwMdDofVe+yT6j/72I13Fdd4PNIsGNWF7/3z6n3lYY0uf0WLXtPK3tlsduM4Vhw8DRrebpAXwECQgGEf/pQTnCABDDvJ5XIqFApqt9vGvhDYYEP4fPS/SHvoNIdB5PdhVEnYfHkXX8DfMSMRFh1GhH+QlTSbTdOBcz49I+QAAzQfMmGEKQahUMgaKVerlU2lILiiLQek0exESZ8E0DOkTBEh0DLGDtbda+BgyLBdGt4ikYgODg42utg7nY6q1artQd+IheaVAwBoFuR4X693wxY40hSgXSgUjHHzekRIAa+jxfYIwNb8Fzg9UhJfQkMiMi+AHiwv+wdggO8gEZ/NZioWi2vgmMlr1Kpt2G4qlVIyeKNEupXZaMAlHkFMACIAlxuNVq6fgftn7VknSVbZw25CoZAODw+tN8FP7GBtYZKZxQ2Iwu9S5SBBQH7GvvQNcMlk0obHYwPM1uaeiX2AtnA4bIkNsdNLLIgnEAfsX6RYVI3wb+xbGo7xj5PJxHy+38fYC3gC3SZ7mc/2c3mpmPEu8ae+KgUwh131ILhWq5kv98CWZwGAsx4eUzDHGU2ytO6aJx4ykcYf8Uullj3EPqNvgKkHVJF8Mxl/R9IPaUCCGgqtm3Q9UH451y0PTv2JQZRneIGwFBizF5yjjyCoYAyAU14MhszAdZwY5RSMBNDK59H9vbW1paOjI/s82I5gMGgDyKH8K5WKsX3L5VJHR0dmKOl0Wu12W4eHhwYIKUPiiCnzV6tVA3k4EjoI+XNJxr75M7JhXvxoGF+KxUEQ1GiK8IGfi4H7kox1IPgDztjQBH9Kpb70ORqNjNWgDOd/NxKJWHZM4IB9YKMDdinvwNTBQvvSBE6b4ItjrNfr5uTj8bgxJ5woQ5CDFWMUCPo0mkvIeGEYYB0BLKPRyETmADYYvXw+b4AeIAyooskEoEHzAbo0EqpEIqE73/uDCidSSpf3JEkX3vStGl28Q7FoVP3Hf1fjTlXDoxc1CZ3OCR0EIrrwvX9ew+OrGjzzmFY31hh7WVcrZgqFjhUI9DWdJjSflxQOR+zd0K3O+jMGhgoGdglIQvTPnpFkAZZ9zIxBz4IRMElOKMWSgLAP8B28Z19KpJHOV1o8QxcKhayjl2CM3AJ9FoEtvn+HHvgTf07F+1+vRHFPy3Ffg6vP6fi3/6Mm9SNduXLFSoq7b3yX7v/eP6PshTsUlDRrHKnx8Ed1+Hsfl3TK8CELggnEL5AkwlhRGkQTyx4DaDGgHgDnAyUduch6CPDMLOWeffmXfURlAf8Ii8phIKwtAdyz/VR3JJm9A2rH4/VYNZ4Tn8vP8lmAEg4u6fV6lmRS/YDZpuqGhAb5EtpymEtK0PgWGOGtrS1F40mt+ms5AwlCMpnU5EZFYKG1byFZAQgDthk/RAUDe8I2sXdA0nK5tPI3fwfrSeKMPQOA8dOsLbbvK2aspW9sQweOnWDX/B3ACf+K/2Uv8Tkwf4Ad9jKNhTwn/o9kA/ZQkvkJrz/mvvh87F7SxrimWCxmTDqabKRAlNMBnkdHR6ZNzmQyNmaPZyH56vV6xlJGIuvJHbxHQGsgsJ4FDRjnvbNWJCC8e2RJHhxjC9gLNo4vSKfTpgeml2K1Wlmiyj5lj+ZyOY3HYxt9h7+gw5/SPUz9zTLBaDS6MTkGu+f9fKPrlgeniJoxTmhsaV2q2tnZ2dBL0A0HYK3X68aakXl7lo7MiE5DNjbGwfw3Mg0Micxze3tbu7u7kmQgmEwNx0rJhaDGOBqafC5evKhUKqWDgwMb0l4oFDYE4Rge2fpoNFKlUrGGGcApJXXm1TH+SJJpE2GrcAgwNnSFbm2tj3b146/YJBjwbDazYAdouP322421JlnwGiOAQrPZNCfOsXhkagAXyhQ8Kw0Z3hnAMMIE48gAyOiDaKbJZrPmpGDFWRtkAxyPyGcQzGCr6TamWQOGp1armSwBZgWQjuNot9vGiMK80kk7m81s3in3RaDHSRKsCRTIWpjDCDBeLpfae+d3K1Hcs32Uvu+NSt/3RknS0SO/rfgNgE4jX6/X0yS8dtrD0dDe4/r9TpVKvag3vvElveIVFYVCp4GkVkvosccu6Pnnb9NoFLBSKbbRaDSsvB8MBjcG4yMXgflln3opCcGCvcmeBYDQaMKeRJeOvhl9LMEL5hKQRnAiQGJX7D1kM8wOpLHEMzvL5VJ3ftv3K3/Pq1V/7DNaNI6V2d1X+rXfqlf8zD/WV//JX9Fw+KT6/b4e+L4/q3f81X+ogy/+rp789/9c+VJZe299jy786F/TdL5U84nPKRgM2og7DjCgxOsTbU5RwmcQzLAL9IskqWj4+DyADvIj9LDsiUKhYIkGCRjrjb6TxIKEFk04Q/tZM+YUU1otFovW4EnJtl6vG9giQKN9982IkkzGw36gEdE3hACMA4GAAVJ8O8CK6gkyDioVq9XKvpd1XS1mCkaiVnUjqZ7O102Hg17XbN9r/tirXtsLsYCv4DkAWAAuys0kXzRt8T2wWjTh4gPYK7DuxE38JP7Nkx/oRUn4YQNhGpF4UJFDP0miCYONpAL/SYITiUS0s7NjMaXValkSJMkIDRIK5G6LxcIYfZIFTjoD4PmOeS9HYN/zPSRWXsONPfEe0D0DbrGH6XRqUhfAHok7xBCyiJv1xJASNCbRRMZkASbDwNSDfaja+gMc+H8vdaTCTBMm5AUJGjHNx8xwOGxYiWTwZl9DIgRegih5OdctD04pb8GKSrKsnXISWSzz4wBeAApob5hQr+OkrEEmI8kyEf683+/bJgYMTCYTy2bK5bKVMnGeaKfQMsXjcV24cMFKcAyzhqlbLtcjc9CJ4szQU0qnLFO5XNZsNrNuXhxTJBJRsVi0s5+h5HFOfmwSLNdisTBdDGCx1Wppf3/fOkY59gxH2ul0rERGJ//W1pay2aytxeXLly1DpqORTQNjnEwmrVPeNy/hmHwpFdmDdOpwSQAkWdl9d3fXdGyUWwhs3nkTFMlAKcej/yIJ8YzqcDhUKpUyRpxmGWbW+fId90eZisHW2CzlT7RgMBu+JIm+FqcIAy2dskW+29jLRZ782Z80HSvviTJiPp+3IzoBeusAMtDnfubbTXS/zsBP9K3f+hnt7tbUbif1xS8+oEYjp+Fwrmj0RK94xaHe857n9a53XdFv/Ma9unz5gmm5YIzRzcJQkpzB/hAESUgAJ5RVpdN5x76Uyx6B7fKAl+Dhh/b7wAdoIhlizdFH8876/b4ajcbGM/lZkOz5F37zP+rz//SvaTudVj6f1yKT0fXP/pa+6a/9SxXe/l1aPvxJhcNhvfr7f0L1Z57QJ//2n1OpVJJ2drR8/jHd/t/+C5Xf9MfUfvLzGo1GdmymdNoMR/LG/TGeC2YQPRpBjefyR9ZSxWHN+SzfuOeZKhJYAC9d3FRcJNnvA1QJwPwMCRcJD/sT0AXQ9ZUqGq8oT3oNKtUWKjWr1coqFySSzKgl2PK+uF+e0Vd+fCMQiWihULB3PmrVFMkWVK1WTU42nU512z0Prm201zJQyHfM53Pbb4w4g/2jc5337f0ZABuwAxBnL3FP6PbL5bId6EFyAdggHni2k+oQ5WlGRbEfYACJVzCLxDSejfcCgYJkazJZj6fi3SGPIYHo9XpW5cTnUYbHVyAVwPawQ+IDYE+S8hduV/Z171ImtqVVIKDFsK/xla9KrWMjBvChrGc6nbb+hevXr1sVlqTFExAk/RA7AHyqFGjTR6ORnexENZX9y5QG9g0Jip+FKsniC0k0Nkw1gD1+87QgQDH7/uTkROVy2ZhUz67zHiDnAPO8T/YgMg/+zje/faPrlgenjOpBqE8mDJt5fHysTqezDgiLhWlMfSMUC47RexE3m5wuWJwenZEewAJw6VTFyfCZGP5isTCwQkccbCZBloyQDcAGhMUBpHFEJGUXgOJsNtvovOU76LqEQUJbulwurVyOLrHRaBjYQc/SarXscAEaUjwjApAko2Qj0RSBHuno6MjAtG/CADBvb2/b8aywZSQXfKYkY7IpV/pSIk1CgF42dyy2ninHUHCf9eEEvXYIcXmv11OhULATn9iQaJXZlLxz3yGK3hjQRKMdDW6USaTTU7iYC4ntEKD9cbE0nNHNT8Lg3xnyANY+kUjY++WQCOyVe/TDlSORiM3g41qv8Ym+/ds/plhspo9//CFdvlxQMHg6lH88Turq1Uv68pelN77xy/qe7/maPvrRqb7+9Ts2wBT3iOSABiK00IDs0Whkaw+gpCKAzVGixm4Bmj4phD1kpBeNjLwXSlcAI1g234yDFot1Yjg+IBe2guAwOH5B8RtJGKxhs9nUHUcvafviXaaJj6e3ddKqand3V3t7ezZ9YzWdaDGbGDNLcJROT8mhtAs4hNFkPA4BU5LdH0A6FlvPZPSzL9H+hkIhC3D4TXwGMgqvZSV4SetE/tKlS7r99tutAlCr1fTFL37RdKV8LtUTiADW1DdS+e5qgEkkEtH169eNxWM4Oz4I/0OQ9cAZcI5cBmaMMisJCHuc+yXmkDz1ej2lX3hGt7/3BzVerLS4UWVarVZKnL9TkjQ8enGjAYy1wq/7agoVFnT3JE3shUQiscFqkYhRYeC/uX9JxhoiWaLxBd/iSQzmYvMzMKHsWVhxKgjL5dKkTZ69J75BQPD+GHWELSLvAQzDiPOOmczC2lCZY4QflThkcvjHrTvu1+47/oQKr3qTlrOJpu2atFopkskr/O0/rOHBZTU//3E1Hv5N2w/L5dLGm0H+kKj5KT8AN5hkmi1Za/wPVRjIBfTRjF4DkDLrdzweG6jmM6kqsU7lctlsyFdOqaDN53Mrz9M8jX/HRnq93sZcbfaV76tIJpNGtuE/SeLYe/P53Ag2/+zf6LrlwSmgjY0gnXY209UGs0kZBPBB9kFphBcCuwrw4ZQUSRvibIyKgEkGQcY8n89N+Ez5jW5FSZYRUcbESVGuTafTxhzyPOiUCFpkd2RNCLm9tkU6Hbk1m53OvMTQAoGAzp8/r1e/+tVKpVJ65plnrFErn89byQTHSka6vb1tpY2DgwM1m03TmfKzlFJWq/XcTX+iTDgctiYO3gUBiYkDMAYPPvigyuWyHn74YS0WC50/f96AHskALCSicMaacGpXs9m05yIA+szdn84BAyPJmFJALhf3SwMe4AjQjXyD7lTpVCPN+5FkQ/23trZsUDpMO1IKAhCNTpKsZEvGi/QBQEkFoFwu23uBRSR7JjCxHuFw2BKncDhsnd0EKtja5XKhhx76hCKRqT784Xeq38+oVquo3++rXC7bXErY/8985m3q9Zb643/8ObVaSY3H95gDxiZhK7AbnClHLNK4BFiBZUJiQ4MF3bCAw2KxaEljo9EwW4vH1wdEpNNpY8+8Zhf2hvdGQwA+AgCFFtg38ADUAJ0kqkh5SMRi2bym9UOT2fSvfE2lB79F3/S9f1bD578spbPKfsv7FIwnNH7i9yz4w/qzHr5cT9mNMixlTZJufGQ4HLbEm/Fu0lqjR5mQUjFACx/LfqHkzfujIZNmsVQqpXvuuUcPPvigMUxXrlzRtWvXbB0okwIeea5Op2PlTMqNHnBRIfPaQwA67xf/h70z/oZjja9evWpa9HA4fJokOD0sJWH2GMANP4dOsfPkIwq+70d133f+iA4/+ctru8lktf/N36GTl55RaNzX6IbGl73FnFmkF4BdnoOECUJEkg2LZxoIySw+XZLFDeyQcjfJF3sfe0A2RKJF4otPDYVCOj4+tqQNEM/v4kd5FyQ1kAW8P0kWTyRtjDhiT2ezWYuXVO1oOqLqAUMqyRJykkxGf5W+5f3a/+N/Sv3rl3X1w/9a42cfk+Zrn7xYLrXcvUM73/w+Xfj+n1Hk4iv19V/4R5aU4K/r9brq9brZBEkR+4FSO3ucf/OuGOcE4IMdx25JrIPB4EYTdjgcVrVa3eg5YN0hrPA1sPTgFeboYj9+vCBxC80zzW5ILJLJpKrVqprNpkqlkvb29nR8fKx6vW73AJagKkoiReO5JzH+765bHpyScRIUs9msbXTGNsB40HUKU0PHsNcl8feACxgHMk3ABi+FkjUawdlspp2dHSv38sLIamCxvNaDjDQcPu0wZ8A/DoASFt9Fk9btt99uoNOXH9HKxePrY10ZFO11MwTVcDis++67Tz/2Yz+mRCKh3/qt37LGK0AZwXXbnVjjNVgEcbK/4XBoExMA1IA/HE44vD75AsArnQ4JxhGl02nt7e3pbW97mwqFgi5fvmwAYrVaqVqtGrhD3kAJBOZjPB7bmB6vxSKhIcCy6QARZPd+pAaBkvWFpV+tVgYkAeLBYNASBqYxoFPjM/wJZaVSSdPpejg7DRIwO8wYZI1hgmHAcQrYEWVPSmE0RQDogsGgjS+hSYj9gNyiXC4bO8KJKmhki8Wr2t9v61d+5a2q1yMKhU7n9HKcHiVQSYpGY/rUp+5XudzQ2952VZ/97AMbmjkYTd4hchicOJ3gMCTcJxk/Qn4qJgA0bNV3UOOkCQIknCStXqfMnuPUFAA0jhrwTTCDNWafAeAAXTRUzedz3faO71QsV1Ltk//JSmvHv/GLiqSz2v/OD0j6gCRpNR4o+On/oHnlJZMxeDACgMCfSKcsGcCfRBYNJWwTia8kG6lGUk1iTtMHgYlmCsrsBCPKiL4hi6Yr1oYA6ptyCL6AZCoVBGMAISf59Ho91Wo1q5r5YI2/gaAA/CFx4vN4T1RheCfz+VzFYtEAlq9YIOthr8EOQhxMjl5U+6uP6I7v/gmlS7uaNqsqvfFdiuZ3VPuND5pvgZFiP/Pn7BWvRfRlfHwioJk/k2T3z1gtZBk0LFarVZPL+HI/JX0/eB2AxJry2dgY5Am+HJBMoykNXx60EKNYYxIHxrnhj73mlbgJcURSwvvC9pBDAaaDwaDyb36Pdr7jT6n9uV/X4W9+yJrWgjcSuNVqpeGVJ3X5mce1de8b9Io//dcUDoX09Z//n62SR6LAWq9WK7snKjesC6PYWCMwCfcFFgEfeHabCip7NxZbNzATG2A+0fAS1wGf+HxiKH6fvb1YLAyIIqcgbmF32A42zT6hWRgmm+cGJIMP/Ps7m3N64+LlgPp9STwaXc+PZMQNejHKmnSiwaThfHGOAA6MhhchyTI4SqrBYFCdTkeBwLorjwANO8nnEBR8hynldgAWLJwkY4FgEmnGaDQayuVytlm88JyA5Rs/MGycGQZEYCX7xnEmEgnt7OxYqRpt02g0stN1MH6y7lAopJ2dHXsudJV8B8Z/c8NaPp9Xq9XSSy+9pGq1qng8bhtoOByq2Wzq0UcfVSaTsS5omoYAFDh6Ap0Xi5MQeHaM5i3Yg2vXrhkz6aUcPDuBHX0rztF3dOOYALuU2XFsklSpVCxbpjwFuKXxrNFo2MxXAimOEIBFtg5Yg2n0WbykjXEv/D4/SwCE5ZdkpTm0SB544ZRGo5Huvfc5tVrb6nTu0HzesGYuGDdfxsP+R6OJPv/5Pf3AD7yoz372UPN52lhcnoODKmhO8ckWGkv2biRyOl+UJI8yFEwh1Qrf8IIThbFjQofXZDEBgHeHDxgMBib3kLSxNr5rFQ0bzVp8J5r0cH5Xr/up/6eazz6h67/3nxUKrvWSi+lY/aOrGjdrGr/wpGJbaRW/+X0KveW7NXzicZPG+EZAgjnMeKvVsv1K8IfZpVLiJx8AGkmEOaIYH8p34HtYdzRy6BFhxFgf1rPVaunZZ5/VhQsXFAgEVKlU7FhSJCqlUsmSVw+GSOgzmYze+c53qt/v64knnrDEBttHHkKwR85DSZnqjJ/uAjAl8UTWBNjvdDrm50l4YPzw7ex/gOPhh/9Xrfpt5R58u0KJlKa1A1V+6Z9pdPVZ889MHcAvUbGQTg/I8HIuNIokZAA93idAnveKjbPfYRq9n5BOEynKyDSDlUqlDduCFSf2ceHvkCKwN2E6ffMTGkiSkn6/r263axVCfC4TZ2q1mgFcvnc+X8/i9pUv/C378eTkROn9Syq/98fU+f3f0ugLv2ngylfm6FAPh8NaXX1Kzd/4oEp/4s9r9+lHNXz6i/aZYItAIGC+ibhTq9VsRJMv89PIVK/X7f3Sz5DNZq1KgryP6Szz+dw66Ekw8M34KuRg2AyjsLrdrs1SJvGg72QwGKjT6VhSw9xzX/mTTqcBQBZR5cSXYvOQNPl8Xp1OZ+MIY+zx5Vy3PDiFdczn88pmszo8PFSr1VI+n7csnDIPcwQJaIh30aaitWGjUMaFJWHUBywTJWc67ej28+JoLzSGLfRjgmBeYW4KhYJefPFFHR8fW4ccBoqRAIZ8OYQMl7Ijui/ACbpNGoM88zIajfTSSy/pwx/+sIrFoj772c8aa+CZM8pws9lMe3t7NsoGwT4MBYGK//frLJ1m+TRIfdd3fZc6nY4+/OEPm6NEe8jMw0984hOm+2JDDQaDjVOmANis+dbWljG76MYocdTrdSt/+0AHu4AjBMQDrtH3wRIA5n0jFRu1VCoZM827QiNF8OB9+QYP2CbmzpEsSTKHRmkJpo/TsJB18I4Bbeg5eV6kBYBDmFrKgR50kXVTdopGx7pw4bqefPIhpVJp9Xonqlarpo+iWYREALZrsVjo8uXzGg6v6957r+qpp95sewO7WK1WVsan0QxwR5UE1gmmDhAGWz8er0/novTc6/V0eHho500jKQkGgwbqSDJ517D/6Lat8/rG/cI6+HJkvV63k8BgLDiakOaQcrms0sXbdeEDf0vLyVAv/Lt/pEI+ZyXxiz/232sxn+vxf/bXbOxc/7nHdcdf+l+09+0/osTigwa+6JyWZO+SE+4YMSRpQ7aBphAQmU6nN9hqGGj2KPsfFgzbRpJBMAOY4g8oVTNQ/MqVK5ZMU2JmfTgOmiTMN1BSJXjve9+rb/mWb9FqtT6ogqN+0f7CzvFsPCvTLryN4C+ldYJMokJSApPpqyT4ZwAewI41ocI2n4x17dd+XsFf/0X1+31rToG1BTBz5Kw/jYc4QwNlMBi0deD94b/5NxImGE3ptHJEY2o+n7d4w97nZ/l/SBWvKQRs4KulNfhkXB6j8ojDAERfJeC5+XNigD/bnWYzmjh9jKXsD5tJ8hiJRIzVxw4BwXe+7Tu0HA119LEPKbhaH55x4cIF3XHHHbrnnnuUTCb13HPP6amnnrLS+ezKExq+8DWde+i7dOWZLxnIgwXm/onrxHiOxEUXiv+kQtPr9axyiL2CS5hu0Wg0zE8kk0l79zDZrDPECf4EfSoNqzSBYafMZcfmiTskalSAwSkkB8S24XCoWq1m98vJi8QeYhuAGX+ITXyj65YHp76jkM0BKJFkLCUORpJlpWxuZvDNZjMdHx/bz+EAKG8DLMiIWq2WbQ4A8GKxPrGo2WyqUCjo4sWLBhwxGrJgShs4kZ2dHSsr+a7HcDhs5UGyFv6eZxgMBqrVatYY5R0smhYc2WQy0blz54ztoaz7mc98xkqrvkse4/S6KPSMgJLd3V0DjwikyeRIEAgIMMXoW65evWpgm3dD+YZsFC0bR172+30dHR1ZuZbJCL6b32urYA+YV8ufE1TopiRbZw1wxiQrgCG68unonkwmto7D4fo4v3vuuUd33HGHnS4GwOQdwsrABJdKJQO70+n6qFyYJBwbto7teEYOfZcfvRWLxbSzsyNJlq0DLtBScSENAYwAdHFuAM54vKFgcKV+/4KNzkKHBzNAEAd8sD+m06mOj+OKxdqq1+sbQ+BJ0gjClLI8M57NZjdYVdaDAweQT1SrVfV6PbNLkkvsl/0AeCB5QHID8+j1pb55iJIze5m1Q85BwirJdO7xeFzhxJb2f+yvK5RM6YWf+9sqpRJWgVkkMsre+zpd/o//fEO7Nh+caHz9eSUu3K3ujcQBX8f+ZMwZARU7gznE9wDmgsGgdnd3tb29bfpXGG+SNM+yYz+U89GV8n0kVOwH2JrFYmEsLKQAiRes63g8ttOHAIewOYCmV77ylVa52N3dtTVAL06zJOOo6HSG9QM8YVP4YVg/Ru8AaPlM9hwNLR4A07ToK3JoZTOZjE3HoGpGsynrhj0zpB6b5h6R5JAYAAjn87k1vYVCISMZAN8kXQB79KnotrvdrlXcPADlPROPAJWAaK+1JIkmoUH2QuJIYoydjMdjixXSegY2ALXRaEiSsXrocUm8+G5OA4MdpmEKnX44HFY4nlDxDe9S7yuf0XhwOpLv7rvv1rve9S7t7OwoGAzq3nvv1Td90zfp137t13RwcLCuhD39BWXf9xOK7lzU8dNf3tBxAtpYZw8OwRckpI1Gw5h4Yi4MNNK6fD5v8hAkOL4hmUkF7G1APdIdT4gRnyFtKM2zTiTiXofPPuXn8VXImLwcCQAL1kJq5mfRYhM+8flG1y0PTsniYLQoQ/qFJFCjuYMhIQPFeVOWB2Cx+LycTqdjAKjX65kz9k6OjnV0OWRgvvRChs7wZIIrFD8BGsPC+DwA95pMyj2+tELZgnPpafwi4JKhEpRgmyiN8vPcLwCTTIzsDoBAaQZmmhNvkAX4IE5GSMb367/+61qtVnrhhRfUbrfN4dKEQ5kWEfa1a9dszZm16D9TkjGZBDkYXVgl2CLfEexLfGS2SAxwyox6YpMThAFzBBQCzbPPPmtNFZScGaWCWD0cDptMAHvq9Xqq1+vGCNOtip3BtpCtEiT8KJpKpaJUKmXAkYYBSjKsAaVabHE+n5tzRG/MOq2ThLW+uFptq9ORMfOAGeaJEpiwP4D/chnRajVRpVIxRmZnZ+cPdNT70h2NPtwvzIy0lgD4eaUkQZT0o9Gozp07Z0O0u92u6VlJREi8bk6SKGVR7uS+PNvNOwe4sncBKyS5yXRGuz/wVxTJ7+rFn/+fNGscK3wD6C0WCyUvnrvh01LGxvPZwUhEq0DQZC9UB2Bl8H03AxwGgpOEAEAkmX9k3WBvfCPgeDw2BhfGxWvupNNRUchS2Eck9ui+GbXmWT5sAzBOwyF7n7L0lStXbPTQ7//+7xvj6MGxJGOc5vO5NUryXVSOfImSZ/BJOECUBlfmRQNIfXLEfiFOkDiScOL3aDhDTsS9AnBg2PDlSCcAkFQAiAm8YwABfptnpcEGzSA+Hp+IxpTfk2SVPIgDX1amQgl7x14kOQakoPkksaLb38dZ9JyAW8AY90288E1ISJP8IRkAU5L8TCajxO33KZxMqf34Z6wysL+/r4ceesia4KR1deSuu+7S61//ejvtrPv0o0q964eUvfd1qj7zhLGB/oAVADN2xcgtbB17IhEk6aY5lEpgrVaz90rcwLaQ6FHBY61JArAfknr8PutOZQUfhsQCvTIAH2YVu8amsRnvB33iyv6nERAAz767Wf7xh123PDgFWBweHlp3LCXtcDi8IeSH/WAhycTYjGgncJBsYoI7YHD7xpn3ZL+8MII0wAYnCIBgagAABO0IpQPA4Xw+N5aQ+XwwPWgbMXxf1kE4jeYMFgLGiNER/Nn29raNtSEzw5Apn6GFlU7HYgD0cVQELe6RprFcLmf6FpzWYDDY6F4Mh8M6ODiw7wcEwoqwrjRFwIpyLzgQNobv5sYWcIyUmAnGkjY0m4yKkbShJUIW4PVsaG8k2Tv0HfnBYNDYUv4O3REBHvaDcijAHKeMrgiwKckYI1hT6ZQRhaHJ5XJWGiMhojRPhYD3RWBDAoJjxLb8eB+YfALg9vZKjcbc5DKUT9Fbse98KX0NtlbqdOI2g9hr0aTTIMnzE5C4BwAwon+/PtgR64p/APAWi0Vz3IBMLspsTPjwpTVJ5pwBdNgPjhvbZGxXLpczPaYCQV38wb+i2Lk79ez//j/q5NknbLQXQLv9zJO6tFwq+8BbVf/8xw34jINRRc/dpf6LX99ooMS3xGIxG4aPDeXzeVvXSCRi1RjkSFRekGKQOPok3jP2HH3YaDRMzgIw8d3aHHays7OzMX5KkrFzvpmNvQCYgkjws5iPjo70m7/5m3rhhRfUaDT03HPPGZvPu8CHwl7xdwCsVCqlcrlszySdMtrYJQk7NvvAAw8oFovp0Ucf3fCP3kYhMrymk70LE8jnkjgD0FgD/Pv169etQsd6UAlg8gHgknWDPSQB5r6kdVc8e4e9SBmY98V7wQfhk6m8ERsoobMfpfVgepIRZCVUh9Bek3DzTDTXsc4QIAB6fhewRDKOj8cXQSLw99hMOLseATXpNIzpjkajFo9vxg57e3sGLJfLpRaDroKJlL1vH5e8ncA+rlYrO5DGd6tzVDEEFzFN0sbIJa8RJbZQ1UB6h71BQtBH4fXv2DIxAlBJLMJXIe9CZ48dsReJJzSa8cyQGru7u9b4y57zCZ7vUfhG1y0PTqHz0anRVAS4gkH1DoPslhfLRgDIAGBjsZjN9JTW7I4P0IVCwYKRL4eR6UmyjHl/f1+BQMBKXWRkGB9BDGdG0CCzAcwBsnjmWq1mJSCCbSaTseC9vb2tc+fOqV6vG2sIOMdZwJpMp1OVSiUlk0ldvXpV7Xbb5sfCeNDt59kbgD9GSqcvGwmQCeV/c6MJXezcN1IHgBYaGIIBjo+ASsBj8wNKWA/Y1+XydMIC75/ASEc7DpCSCAEGdpSsUTo9SWc+n2t/f39j6DjrAcNNg1U8Ht+QC5TLZWOICJQkB96peACMLcBko4VdrVb2fYBPHK8km7WKdghGEVDF51GFgI1A+nH16lVJUjB4QePxU7r77kNdu7Y+rYSSfiQSsXfHXnnVq16lQqFwA7jUVC539JWvvF6XLl2yTN03gfgmH5oSAZGDwUCtVsuSFxI1kk0STJ9UMbMQ3bA/vQZwAZt3c2kKRpnEjvVstVrGppF0eUkJQJ8jZV/9gf9euW96s+pf/pwC8S0l73uT4rmcEltbKoxG6v3uR9WpHqn++7+j8lveozt+4u+o/dVHtAhFtPct71MwHNULv/HvjBkn4aL8zLGcdAiXSiWrtng5g9d94wt9+c4zbdhdq9Uy0OQBgU8Evf6dBAsQKm2O4KMyQhkdlrjZbGo4HCqbzapQKFhpfDKZ2CEY+Fuv8ScgsucZ3wNwZx4oLDR26fe/l4ZBUMCEwXjyfGj3sA+qS+w9yAlkAWiuaczlHbTb7T8wNJ21510hVVgsFlYGB4giCUKXzRoCeGG0sQHWj/cCe4msLRg8HdPFgQPMjsYnEbt88x9xhDX0owH9FAviJLOZuWCJKd/zPKHQuumIJJX15L0D5KiijUYjqddVWVIkGlV4ETD5HYm5vwBgvLtgMCgFgtJyYckD4N6/W8AmM0IB6IBDzywi30PmwEEYVPLwL8QM4h8EGLaKpApATNKJjSILIEEgdsGSskf9ehUKBWPswRwkCZBk9J6QgBP78X/j8dg048g5YOK/0XXLg1MATDabtbIFxk9A941RgBNKfv6EA4YpS1KpVDIKHI0F5Q0v/vbAjZfLy4LdhJHDIfiz7Gm6oYyOhsrr1sbjsQ4ODqyswobByd8skCfzD4fDOn/+vF71qlfpc5/7nCSZE6ckhE6uUqlYJoRzPzw8NHF7LpezmYMeXJKtI5CmXCDJmEU/G5TfZ8NQ/gKMMJ0ArZC0dn40h/GzZMU4aO4Bh4KOzzNrZIqS7J3jGHA2ZKcw5XQ74ow9EyHJkhAcEFkrLAnsMrZHsoK2kxI4Dpp18EPCYQpoDsCZ8F00lrXbbWsGpHmP9+DBF+zJYDAw7RdaRLSrdMyyfyQZcJ9Ol3rmmbt0//1fUyRyrwFqnBMNNRzFS8LY6XT04IOPajSK6sqV80omowYYSShJIGDObmZEF4uFaUhx1Ng/WTxOE8ft9a5ogklcCELxeNzetS91+bIsTIIHWdgoIAkJRDQatQa35XKp1IW71n7lwbep9ODbNnzYtqRnf+vDSiaTOvro/6FZ/UC5171T++/9MUkrnVx9Tr//z/8f6j3/Vft8fBqaXUZFVatVa/yCAa1Wqxv6bfYEdg+oYOpGLpczsFCpVCxxIFhKp7MtYaYoE+fzeTvohJ8Nh8MmERiPx1aNwJfB/NC5D8N98eJFlctlPffcc6pUKtYExboT2LEH1oTvXCwWBki8tps9wD7HTmazmfnmk5MTPfvss6a9l04np/jTBJnT6tcWDSsMFMAWm6Qi4cdJQXbAsmKr+CdAlGc4Ae40phI7ANTIdqig+aQbjSj/TSMjsQ7/7sEZSSr7kgoSawiwpyScyWSUz+fNt5DMbW9vm/wN+0OrTdWHEjSTYYgrJB+r1cr2KgnnaDRSWDHdKWmWzGl0dEWBQEDXr1/XJz/5Sb3//e9XLpez7221Wvra175m8WYZjiqcyWvWa9t3Mu0HmQwVlVarpXa7baV9tMjYN/PPvZ8CrPumXBJDnoMqFvEIe+eiEsC+Yw+CGbwshYoI+w38AVs7n8/tO/3EHqpoyDKQHRAvAcJ8Bokn0rYz5vTGReDtdrs6OjpSJpPRhQsXTJPkS89kOsyTJNCTOZIZUSom2NJ9iyMhk/YNVmhbyU4kWQbJy8agKfnu7e0pl8sZK4CzxohhBLyGh5c/mUx0dHRkehjKg7BmrVZLe3vrs9O9yJlu3snk9FzraDRqp6pQIkwmk7p06ZJleLAkZGI4HECYZ/UIzgBunB2fTUAC+BBU6AREEgAzS5ZIoPDaKbJI2FkYUd41zVvcky83MSrGl2XIeMlAYee2t7etfERQ9OX9er1uoMBreZlzin3yZwQyzo8GUPpTvNDNLRYLa2rCERSLReVyObNf1uX8+fPG6PtOdF96DYXW522jcS4UClZiYw1jsZixYQBMnwB89asX9cADT+j++x/VlSsXNJmsTzxCWyXJAiHAMxg80D33XNZTT92pyWQlaWhieqQsvjmNxhZOQ2EclC8HMqWDYMbzhsNhaxhMJBI2fJ8EikBLMwbPi522220ru/vEZrFYGIBCE0aDCmwuyeh8PjcG8Ojf/0Ndc2CZqQThcNjmdcKe9R//XY2/+rDZ6cHBgSqVigUg9imgysuYAD2Ud2HWAOLIhNAJRqNR209oHElIm82m6ZFpUgQQS6ejZ2DYPfsnnUoeAEsAGT6nXC4rn8+rUqlsHI5AxYtkL51O6/j42DTGNHx6aQG+hp8huUNbiqxlNBoZEKdSge/AJxGU0X3TZEgiiqQIm5Vksgf0ydgKTaEki4Cc4XBoVQvWBvYMIIMP29rasuoLXdmLxcKSiGKxaAkBsYXqA/4d1jcSiVhyyxoBViAsACjcG2vCZ1gJ/IYv8DrX+Xyuer1uVS5sbTxeHxyDRIpYS0ylCZQGRBIOGFb8ErEAsC+djg9cLBYKN480rh0q9/p36Yn/7WEVi0W122194hOfUKvV0rvf/W6Vy2UdHh7qc5/7nJ5//nlLrEpv+DYFgkGdPPUFOzra9wJ0u107CYm4xLMA8EmWYZuJK8RoKkuBQMD8Fu+D2AVJwf+z1/v9vh05Smz0ZBafg5YesovEhLUkLhDHqb5QBaIhtN1uG27AbzHiioNlSMZ490xceDnXLQ9OyZquXbumg4MD7e3t2ZgjxNjT6dQGwnMkYLPZNLDB2J/5fG5OcDAYWLclhoK2NBwOG+2OIbTbbVWrVXW7Xe3v75tTIAPDmeFsCSjSqagcRgZgQTNKJBLRxYsXzaECvDF45AAECYBnr9fTE088oZOTE2uEikajxtZy3jKZEwZer9ctQ6RUTImS5ojxeKxr165Jki5cuGCbB5ZPkgVomCy/CQD/JBcEdD9MmcwdtgFd0WKxsHOnKTsD9rrdrjUeMRzagxTeoyTLeCnhwdpR8o3FYtrf3zcNFOVdNjqbn1KhB/A0G+DkmTVJ8CQT9cAdpoASbSbTVDJ5pPl8qGRyqno9byA7Go3aLFg0lZ5VQ6fLRSJG8kNwoqEA5wLIQJJAow8dxZQpl8uEvvjF1+nNb/6SqtWRPvrRjIEaxgrBGq4b45r6/u9/TJ1OTI88crsBtJvXHTAsyUqxrLUHv9wzYJSEDnumvE1VgGCJfhyQMJ1OLSlgvidgmvfGXkXjzN4j2QO4s64wjARm9gJAkGBHsuX1iciMSAK9reInkKgAfgBXkUhE586dUygUMjYe8IpvoHGMgIxOdTKZqFgsWiBif2GnlL9pAOH7KO8xuo/yLQnOYrGwma+A11js9KhYABsAA3/qq1j4cXwhbB5gkaQYX8K9Ia/iO6hoETyZLkKFC580m81UrVY3NOYQA6z/YrEwZosDIzxYJlZQyoa9BKwCSmCgWq2W2RnleypDACOSCK+vRxOOD0cO5hu+AJySNppu+BkS/PF4fVgJkrFwOKxKpaJWq2VABhCMzpxnw9cAgObzuRqNhtkd74oEF9lFt9s11t+TPfgC3g2MLNVECBvP8OK3Kp/9z7r4/g9oFd8yScdwONTjjz+u4+Nj7e7u6vr166pWq6aDTmcyyr/p29R58gvqVg5tficJNnbPs8EYIp0oFAqKRCIGYIll9Xpd4/HY5vjybCRCVNHwv+wFfI90KiMBvOMf8ekQWyR0MNcw4yRKvlmbxFGSAWkIFV9lobrqZRdUmalAA6Cx4zPm9MYVDoeNGdvf37cRSYBCyoKIgGl04SUAXGDsKHN74Mjv03QQiUS0t7dnnaY4QDIHKHo2CyUeQK4fDs2GB0TBJJK5oGX0ZXx0IDhsShXeKaNHbbfbunz5shliu93e0PDBsPjmBM6RL5fLpiUiePtmBsAuGTjsA6AEWQVMFYyLv+darbbRjIPGCkaQsgMMDYAWphjgXCgULLtHYE8WB4MAAMY5whzhJPg5Ssc0lLAhmRYgyZpRsCn0zp1Ox2Zsci++7M3GhuWgQ/f03x3de29Vr371S9rf7zpLf1GzWVhXrtymRx4pq93OG+hCygJAwIn47kokCYAk9NF8NyVsynzYBmsUj8fNHmDTn3/+AYVCE73nPU/qzjsH+sIXAnr++bABsrX2caHXve667r77aZ2cxPSRj7xRk0lEudzpSWesA3sIrTPBE6YSRjqdTluzXjQatXmoOF5JGyUrRlml02lj8tFeo7GGiadJkFKs14xR9oVJx2Y4hhJGCy0bEw4oyfL/sJZes0l5kOcdj8em/8J2YYaZLkDQnU6nxiaSqPHufAJCYkgyA0BA902CRGKDHRDAqQKQwMAAeZkFftNr8PA9jNyRTicBnJyc2IEalM9Z60qlomq1aj4jn8/beCJkGOwrtMI+uYLFZM/x/YFAwOQQHB7iGR8Y0WQyqWKxaO9EkoHmvb090/X6hkyCOQwfVRJAGaPNYOUory+XS5VKJSMo8CskfCRGXnuJ/p6GodFoZMQKe4dkmmQHMMU7xZehE/c2BOgFjMMIw5px0h/giphCAggrh38FzJJAM86OOOJ1975pCEDOvoHR9dp7wHEoFFLj0U/q3Lt/QG/57/4Xffmf/FVL+PBbNB6z7slkUoVv+yFF8rs6+tA/3Vgz2GI/MYf5ybDNPp6zp8EJfIbX606nUzUaDSUSCZsIAxGEHyZRYp/Qs0B8ByuwdsRk1op9hP2TSMGEs4bS6XQUJAEw3ySDMNzETXwRY7GomjIh6Kxb/8bly5TZbNY0RjSIAEL57/F4bA0V6EUxwHg8bmU/yn1+gDNDhSlNkBnDdsHMAFDRUOFQJ5OJzQkE2EoyQT3ZNY7az68D8DEOiPtGhkDZs1AoSDrtLoxEImo2mxaQfdMCDsxruGApYaNgmqXT8S5oW0ulkjGdBFtKdjhR73RORwmtHReO3zehUOqo1Wo6f/68vTdKB0dHRxugAuaIzQWgxJHQSIU+B+aCjYljYeiw1+KRuc9mM9MPsUaANBq5JBm7HA6HDWgBdplDS3c64Iv7W8/XHOqHfugL2t7uq9O5Wx//+Kv0xBMThcNbymQWuu++ml7zmuv6M3/msr7whdv1qU/dqXA4sjH/r9/vq9lsbtg0tpBKpYyhwYkUi0XLwHlu/p9MHmeDfgx7z2Qy+tKX7lW1mtCb3nRZP/qjT6vXS6rZvKLZLKBkcqz9/Zbm84guX75LDz98pxaLhEKhU3uWZE7da3UBeDQSxONxC+w08wEIeEfYsiRLTjOZzEYHM7/vn4tqRbFYVCaTUb/ft4SMBiF0w9hpKLQ+axzmSTod00QpFjDEOrbbbWMUfeOkn4FL4ABEsZclmfyi3W5vSFxI2CjrwS7ye9J6lBosDr4Hxp4jhNkDrD+JJ0CYNcQ/wOK3Wi0rqwLCAQGAIZ+g+WBN4seeAcCk02k7bph7RYpBaZF34eVMBHekSAB+vp8EAha73W6bP0+n09rZ2bFSMEmq7xcgqQMQ83l8vp95iV8FNPA+2ZdeWkEijpaSaRfozP1JaLwLnpvSLaO8YKWpYDC+iISapLVYLG4AQhI8D7RJ0jzrR9ITCoXUbDYtmWHsHqSBn3WLLpf4CBjb3t62eO3lNoBD7pn3TmKIpAobZyoKvuSZn/t7uu9n/oEe/Kv/VM988O9Lo74RWUyaiUajCkZj2nnfB5R+8B06/ugHNT64bM1haEg5XQmJVzweN0kcFVmqEMQM/EWhULC/Axfwd9iTT85J5LhYR/bgarW6cdre6azum5s52VPsPXwTvo378xIjKinYHJMcIKR4P/SseK0p3wfD7Zvd/u+uWx6c0slNNxssC1k5DAAlKkCfJANHUNhQ5D5L9Q0XwWBQ+XzeABeOiY1fKpVMZI+WkGwJsEtpCxYUPRdlZ2ah0fDCz7BRYQYASDCTDOBGrwg7ADCnhAkDwdgH1pBnopRL4EIYTfYmnZZuPMvWaDSMwVosFnY6EqCe+8jn87bhfTMGax6LrbsfcdhsBJ5N0objxnHxbDgoWG7KbJSDYAFwCpTrJNl7AewjryBrJMEgeUAnikOVpHK5rGAwaOVpskqeUZIFQBi16XSqvT3p+7//YS0WUdXr/1i9Xl4vvvjb6vUONJ+PNJlk9YUvvEJPP/2gXv3q5/TmN39ZweBUH//43QZ0GWpOBkvw842A7AsE8zBgsG+US72+DjBHuYnPI5t/5pmSXnrpgs6d6+v++69pa6uvUGiiwSCmj3/8lXrmmfMKBrduNGAlTMNHYoJMhEAO2GftKHF5HZyfIwnwCwROR94QdH01wY9PISGggQFwxn+TTDHuCoADk4HNSTJ/QpLJ3qXTGKYBYAhrS6K8Tky2N0r5vgEmHo9vsHH+yEGecblcGliE1WDtCFokHSSVw+HQDiuAFaPDF1aIznlJdpgEz4zMJhwO24QH9MmdTseeCy0lgQw2mPuENW40Guan0H8DlNCJwuCRCNBvALsI+0Tyg59gj8bjcTv1i0ZHpCG9Xk+JRMKYPd7BYrFu9lwsFqbDxVfiV3jnjOCS1mzbhQsXzCcB7EiKWBvAAgwf0iU+/2ZdJ6PHYLjQww+HQ6sQSmtZQC6XswkhoVBIjUZDo9HIvoNDBwDc6FqbzeYGWKRy56sHXodOsxuyDMCqbyLGlzMJgGpPq9WyRN8TSsQaGo8AdfV6Xe122/TTJDUApGAwqMG15/Tlf/Lf6tU/8w/0xr//IfWeflSdL31KtctPKRAIKrZ3SekH3qb86x5SMBLT4a/8bxo99XmTPOA7IYGIFwA3mFHsA20pmmCSgp2dHWs+hRhgjZGL8R2tVsvwSjgctiYx9gBkFlVVSAbIGfweVRHWmwqCJ1LALMQOYt5sNrOqL4mQb370BAyVL/YhZBHVoG903fLglMDZ6/VMg+dLDJ1Ox4bnBwLrY0o5M346napSqdjZ6ZIsKFESARQhMIdpqtVq9mdopTBWMijY23w+b6BytVrZ5sRJSzL6HZbHlwj7/b6VwWF/cdL9fl/Hx8eWKfnTeCSp1WopmUzafDLpNOgTAABtOEg2YqVS2ehg9kJsmB6YOdgsHAiAjs+HLfHfwcxVngmAR3mJ9eUM39VqZbMWKb3SgIUYnTKSL58jIyBz5T1Xq1UDKbDvXtvnReXINyTZSWFk/zDWsVjMgoAX0Pt5cZLMOTFpot8/0fve97CWy4h+5VfeoX7/CxagvZxj3ezQ0yOPXNRgENA73/m4Go28Dg72DOyh3QLIkFAAQpvNptkrARkGikCFDhNQBujB6aHxogwOMD4+zqjZfK0lPjSUhEJTxWIBS3iYfRsKhUyr5506CRv6Od4tR5NSJcCBkuSEQiEb/I+uirJ3LpfbaDL0ulNYcRggzhaXThvnYC047SiTyVgigi8hmUUzjOwAhoGKR6FQME0eusFisWg2CzBBV4wWjJFmNPbBQBEU2X9ITAClkqyxg/dHInN4eGhAgiZEwCbgA3YL1ha/S9kWwM9+JKElifEd4DBWkowBhqEmGUDW4EuNMJd8FlrP7e1t013yTFSf2HeMqAPAe/DEiD+SBGRTJN4E+UAgYP5QOtWD4utJUNCrh0LrMXPValXlctn0uMgJAGGsxXB4OtCcRKHValnyBjlBz4GvmsGS80ww114uhCyG+8KeAb2MMORIy1arZawkLDTAnsSF5CyXy1mCyP0CukgCJFlM7na7arfbOn/+vB2zS1KGHAlmmnuGFc9kMhtNtrD40+nU5sBaj0XrWM//v/+Ktl71Fu188x/XpQ/8D7rksMPspKPWF35Lw69+VrNu0z4P4CXJSC3kGiTUXuaRz+dVLBZVqVQ2KpNIjqhy0PsCC+urH8QlYqbvQWH+spcikvSiRcWPQ7BIp9IaQCbJP3Ef7T427aum9Bh4kgsSg2oN79RLEmgkeznXLQ9OpXW5EeYUQBMOh63LF+Aai8VUqVTMkRwdHdnoFMqJjEzCQQIY6aIjEEinw9dhFmAJMVwCE6UJSTY6SJJ9Ns7Hzw5EXlCr1SStAwPNSOFw2DInjtksFAoGgpl3R8epL1WT4QAiKSegX5nNZjYHk6wdJwbogzVgDRil5U9OYjwRgQCQSNcszpqLDP34+NgE3pIsw2YCQ6fTMSYkm81uZGqwFrxDhOFeiuG79WELWHM6QAEDMK5clEvZoDC3vqOUJiwcLeCJ4eiUtchO1x32xyqVevrVX/1WNZtLHR6+oEAgoFwuZ811SFE6N86PrlQi2tsr6k1vuqqjo29SMHg6kxXxvmfASNgANTA5sBI8Ew002K8PGNgHIJPgiINiDSkRMeOTpJGAs1hsdt7CXgO8KNfxDmAUYe8puTOKyx+ByhGwOPlMJqNMJmOaZO6NAwso7VI9oIRMdYKyPuXNQGB9nCZg9+bGBnTJSC3wFehWYTJ9KTgcDhsjR5JGIKdsCOAGhKAj9ckZ9sd64qt8qQ/wTMCnu5+/IyEiMZe00SFOwrG1taXd3V2rgiBlYP+gYwY4st7IS2A2qRQdHx9bsxb+Bv005ALNeb6KwSxUCASSe69PhyEHbJFk+QQUCQNMEaCI+4Q1Y4LHaDSy9YnH18cBVyoVS+ZIjAB/7BlfqQMwS7LGKBJLYgtjfDzh4BsgOeACH8G7RJd6s64ZyQpggiYedN6wbfw8zCxgnfUnXlLt8hU2YgKsPnaO1IbPgJ2FdPHTQYjhAHUkPrwLJBr4JN7ZeDxWpVKxz5iPBuo++gn1H/9dFe5+laaBiKbzuab9niZHLygRW+s4/axpL1FhP3I/kE4knDCdxOtKpWIJRj6ft/nhfC7EEH755OREjUbDJACc6AbI5/3h29kf+EPWlYSFip6XpZFYACpprPJjx7hv3kUoFLJnImnhpMadnR1bG3w+64+tv5zrlgenNBjhZLwGLJVKaWdnxzJpnB6Zz2q1HtQPyCE40AxDWePw8NCyBo5Zw5ER9NkYMB44vsFgoH6/r1qtZgGULnlJunbt2oZGhHIyjgmmhvIUBsv4Gf48EFiPpshkMsZuSDLn5nUwAAVABRkYQVmSsQeSbIMCGmKxdRc7GbFv/JFO9X4EKZ/B8XfMqgNswUaSdaM/pcRM+Zx3S6YNwOb+0LxyTjFODBCP1ng+n9uUBlggjrYFqBDsut2uUqmULl26ZA4YsTnMOmfIw+hEIhHTP/NuB4OBDcKfzWbWdf3gg9dUrab19NMBhUJz04IlEgljb6TTOYuNRkPD4VCf/WxJP/ETX1exeKxabdcYEliwQqFgWlcAIeUx5A2AA95hNptVLpezwEGgpFHQd8rCnhLwKFvCZJKgwDwBWOPxuP0u5VrYD1gaz0LS8EWyBODkPcCY8mw47sFgoO3tbQt8PM/NelfmQfoSJsyEB+AwuLx7gBqgBz0cZXfABo0MJCTcq3TabEQ3OQkQe/34+FjSmqlEjtPr9cwPUXmIxWK2lxjZQ/Di3fM5vhRNhz7vGIAL4PRzFJldSTIGIEeSg5/FB+ZyOWNfAamsOVUUAuVotB6WnsvlrMQPeIZp4p3cddddms/XI4u8ZIhytz/BiuHrMI9eHkGCtlqttLOzY0chAwiQ/8Cm7+7uKhqN2jhAEhjsnoBeLBaNoJBkgZznphrDtBHv64g9aPa9Hhcw7ME7YJcDW4glftKLZ/WpmJHEAnjZszzPcnl6IMPNo45g69B0+wYeGriIdTDPfvY0FUhshoTYz8Pm/cXjcdNJwjYiQ4ElhpEEXPKZrVZL2WzW/PG8dl2TG01jnU5nLaPLZqx6CSnCGviJIJAzXl/OOyH2UHVgHng0GtX+/r41RWF/AEd8PL4CXCHJmGHeKScrejkPsRzGlISfBBWZDf4FQsbreGGciZ0kPX6eOu8cVh1gzr1Q3fDJ8cu5bnlwCnIHHJHl4bDJGmANyQZgMQBPlA+9lsmDRt/0xKZlfITXd/gMEe0aAQrWB1ZotVpZ5hsIBPT888/bRgDYwTpRBvf6rV6vp2KxaCCkXq/byBHGcxD4t7a2rATLpiBIwdJQXoBZpdzW7XYNAKOBI7gDssjKyG7pGJ3NZhtAhE3BPcLSsLHL5bKVApFEoJWSTsuTkkzCwNGMdPFSYoK54vPPnTu3sUlhV2AxYCK4316vZwAcJgQmioAC+4GDBlDB7kqyzJNTqOr1umWa+XxUd9/d0Cc+8SqdnPR17tw5K23GYjHdeeedKhaLun79uhqNhumRTk5OdHgYV7P5oi5dek6VStmcBc/oR/hQroQpA7wVi0Xt7u7qpZdeUiSyHlkGE06mTmmLchpTAQCs7C0fLD2j0u/3zbkSeNmvlBspBQFUsCdAHOwd90QiA9hC6w1A5/NhLmFgSK4AS4xMwm+Mx2MD6Eh7fGWBfQsghc0lkJIEAi4YaYf+PBqNWmMZUykIDJ7Nh7mh+oJfkU5BMAECJo8yHH6GpIFACQODHo4LVg4gdPPpdlSeSHS9FluSAVJJ9l00xyAxQBOHZKlarSoUCtnoGT/mDY3bcDjU+fPnrbLltZGQEDw/LFGpVFIoFLJklgoYVSckJTCL1WpViUTCGlfYz0h0ODoU8Fkqlez7PNtWKBR08eLFjUZHmmbwZVQsGCnFOpOAYuu+hEvVAlsDxAHe+B3KsOw9Zm+SMEiypi98HnNfJZlkC6IF0IzNAeqJXVQuiFXosWGgeeeAMGzYEw8wnr75D6YP5pC95n2vdJrwkzz7xtydnR2Lc17XTLmfOMb30fwH48iaAL4B3h48B4NBm66wWCzUaDRM347sCRZyZ2fHRrZx34VCwfYse5qqCjIH4gyglCqWxys0oOGPmLxAIuKrl8Q7kmU/fYi450E08RSshN/wh9WAe4jv3hd8o+uWB6foCnd2djYamEDxjCQiq5jP59Y0QRnYv1g2F5m1JBNek9VSvsbR4yhgbDBKX7pCa+UH8k4mE5sYAAsDs8YmJWOF1eUUEQAtQRtAxmbwp3nA4gEEARAYKUCSdQDgIq73jVV0/MGYhEIhK9nxu+Fw2HR1gFDAC8+B4SNDYC3oHKbhi7FfADqvNSO7pbzH+xoO10cj0mnM73DvBA50dei7otGozaNj9iMNEpPJRAcHBwZgJ5OJGo2GZZYAQ89SSadHqcKK8w9lu1hsqEBAOjkp6Pbb91Qul80B33777fqRH/kRlUolPfHEE/qd3/kde3ckQs1mSvH42o5Zc9ag3W7r8PDQhibDtuCAAIUAKt4zDTxo3ihDweiTSVP6pUmQpAM2DIbFlwlpQuT8eoJ0Mpk0RhvWlhm2gCZkNf6o2WAwuAGaPGjxiSMgeT6fa3d31wAZsz/T6bRpuZAEeAYNuQjgA7tj9NtkMjG2AaAEEw874cvNkmx/wNz68+jb7baxgQQirx+k2QSgJ60bbOLxuNrttpU8YU4BsrwbghNMCn9GQg64I9AQ5GClmDRQr9c3QBTsIswijLhv9gIcAVpgVkulkoFmTubBpgBAPAtA25e6OUjEA1LYW3yhb3adzWYGAmezmTXmLBYLk/+QHDBnFwkCQT4YDKpYLFpSjj8FlPqGVO6D9QBkIifCh3iG02tOSeRgo6liABCZjsBakaDQzBUOh+2IYfYDZXvin98XsPTVatV6HKgU8TlMmiBpRt/IWMZWq2VaTKQR+PhKpWKnYBF7qKrQB8FzItfDNjzLT3KKvA674/MajYYl++zvSCSiQqFgiQRkAawhtord892ANAgfXx1FmscRsv4UJe4HeRGTUpisQq8EzDLvGl33ujehb3vfj5VarVZWlSKJI3EheQP/8FzI8Lxsj3vEx4Nl+HsqrMfHx7aG+D4wi/f33+i65cGpdHpCBEwJwRRnQfZIiYbhu5L+gK6Q7JkRUJQ7mCMI0ACYkTXBJOJMoecxxFAoZJ17jDGBtscIYDcAficnJ7bJmeU5mUxUq9XMYGCOfGMP/yyXS3M0q9VKBwcHGg6HdnIUWbg/ohOBdDAYNCE25T10rGS5BJL5fK5sNmsZME5fOh0R4jc1jC2nr7DRy+WyfS7ry/f5IObHfRGgpXX2n0qldPXqVSvl53I50yGyiWGHAWmADwANoJUzrwGLrAUApdvtmhZuPp+bqB0GmTFGZOy+wYkxL5HIWlMcCkVsLXDWgEeaschoKcOsx91I0WjIGASegRI5zoXsnwY73jPJDX9OgCH5glXwTTexWMxYKZwg2lXW6maghwyFtY9EIqYbHI1Gth6r1cqYy2QyaaenUfUA0LBHabIBXEsyx0plgYwfAAVQ8wyw18Cx5wEmkkznyf2hu4PZoFxL0JBOS5PoziXZe2FvkfCFw2Hdcccdmk6neumll6wkh0/xTYskf4B09hv7gpIq75vyKSyRZ1F8pYfSKWVhfBN7cjQa2bg+gp7v8ofZpBGEhi/WBBYsmUzauKadnR1bY9g1mCLANaCGdwi7yvrg12HmWO9r167ZyWqh0PpgAlhO2F3PKLMeHlDAHHNfAH8PlGhM5QQzWDgYOM+6A7RYE0gGxniR6HIePPFkZ2fHwIQ/1hR7Wi6XdmAIdkqlBB+HDAMmF/sj1pD8eDLHV8OoENA8TPyhkkhJ2DfuIMmiXO5PNMSXYKcAUN4hDVaSrBJF5dLL6Eha8I8kGBAr+D+fpHhgx4WkCIY8FApZbwdxgHVnTxAP2DPEWvwusd4fBoEdZzIZbW9vm+YdUE5CiG8lrkQiERWLxQ3pAuy7l0b5ChXPzD7GnxDPkBUQP4il9EagcWV9IDKI87Dg7G20qS/nuuXB6Xw+N60OTQrS6Qk8GBaOj3IGpUhJBgZhCr22lMwoHA4bjc/IB5hTSk28dEp4OHzPzlIyx4D5OzYToIeXTiBEW9fpdIxpQrIAI4lh0fQRCoU2yrg3N2EwJ49OUe4lHA5rf3/fNg6GX61WLUONxWJWlvCzJynJsDE9KGSTEjgpH6F7pTxBqZTRKIAFNH+ekeHd8Q9sCh3XxWLRZBloNQEDkUhE+/v7tnHRJsIIAsJw9AA83iO2A+uKUBzng44Z1sAzcYwO6veZZVlVp3OqGRsMBnr22Wf1C7/wC8pms6rVaqa/7Xa7lq3m8wuNRnlLLCQZC7a9vW2AkpEyMOoAbRrm2C8EfD6LZI1ATWABwMJGoLHj77B/HB+TMSSZdsknUOxj/py157x4GMhOp2MSAJrGSGD8KBVOCuMd4RfQdqLfnE6nOj4+NqBLYw+MbbvdtsA2HA6tAuLLb1tbW8pkMjo8PDQAjl36BBIJDEGnUChYORkWDmDBvpVO55vyTgh8NOVgy3T/osPE9/HZaB+5b6Ys8J55fx7AsFfRdfuGShJIglwmk7FyLcHRTy0ABK7t/RRQMn+XhguYaSpg6L4lGQvIQHUYO5Igf7qXr47B5OLfCoWCscPomvF/+Af2AcAV/TEHbOC3ATVMtfDJrnTan+CrEcipvPY1HA5bOZ3Ej6QG5o8DW2DosedQKKSLFy8ql8upUqlsAASvWyUGAkZ9FSeRWB+ZSgUCYLezs2P+0ycMkoxsQMOPfK1er6ter2s6nZqPXywWOjg40MnJiUqlklVOPOOJLwCgEaOxrel0qlqtZvPCfZl+Pp8rWDyvc2/848rd+1ptlfa0mgw1Priiyu/8X2pfvWz7deviK1R+y7uVvHC34nuXFAyF9chfeq/ZM0kqiacHaYxLw55CoXWjKwwrUwrQFlOJIFFF1wyIBARCEJDUUHXFd6Hv9YcsABilU3kIsZHv97IAvhMctFgsbM/dXFUAiBO3GXHJuq9WK+uLwK+BFV7OdcuDUzYzI3tgUbxmBUcHw0jzDcCSsgsvGfEzi+wZU0aFYLBkmYyPQTOHmJ//J6PBqfvGGZwVjhitpWdH2dwAOAIfhg1Lh46IewMMzmYzcxKARsYxAfpwSgDQRGJ9/FqlUjFn5HWj6CulNQDgGE82DZuEuYE+kLZaLStH0oUrnc5cBdjhFAA7aNFoGPONJRylCPNGh7xnlgnggUDASt2+pARDAqsnrWe4cogB9sV7b7VaNlcUpoH3TBkZoOV1d2Tai0VJlUpG999/qBdeuGgBX1qzddeuXTM9K4CJUtTOzkQ7O2098siD9vP8LHaL/o4OaWQurDOMNaA0Ho9bmTeRWJ9Jz15ir2F/BEqSBVhsv56STMrBO0IPjEOE3SQQoO8lIBMsCN7euXvwN51ObY1YX0ZVEQir1aqV2bkvwAssGPpHdLsEG9hf7AyGh3UkIcFvAFBu1qrBdnU6nY1ThlqtloEwkgd/MhsdwJJs/5EMAXBhe9FUEixgOJlxSnnQn8K0u7u7IQci+QVYs5c4GWY+X8/l5P5ovJBOWVBKn1SbANYkLTRvAgS8704kEnYaltdXwj7CnvFZkoxlhy3Hb08m6+NZ8U+w2z5ZZvA+MYNEoVwum40xbotEC8AfCARsBiY+kTIofgCdu39/lK4lGTtMIuanbjALs9frKRqNmt8HgEuywwlgYCEGmPiAfpY9TLKDLAdShVmWAGhiA8kFpIavEvjqFuQK74zkBgaW5JrqgLcJbBdAht1KMlCNX0BuwTvr9/va/473KHnxHh1/8ZNqduvK7uwr/bp36faf+lnN//Xf1KR2oEQioe0H36bCG/6YJrXrmjaripfPGYDzGniv9+Z7sDUP0CGQwAFeAkVzIDYEqAVkoncnXiLJYU0Zbcnn4vsgo9Ayo/2E/Yds2NraUjab3SDJIIzYyxAvJJGNRsMkCF6OR+JAAkfiy1qBq17OdcuDU4Ibx3UCQmGMPNvm9Wg4LMqRgCecGpvRN7VIa4O8/fbbbUOhvYPpQz/qy4zM7wOAwlqSAS8WC9O5krXQ5EPpOx6PW1MWz0CjEs8Ck4IBAgDo+EcnBDvYarUseBD8YDMJzgQpRkhQOptOp1Y+YSICmjtKX7A20ik7zaZiI3Y6HWuEIPOCpYBpRCvlgZcP3gToUChkJTPPBOEUxuOx9vb2bLPP53OTMMAmoZvBRlhLnCG2hRQhmUxujA8joyfI4jB8skRwYY2feeYePfTQo4rHOwqFto09IHuncQB7QnP8+tc/q+EwppdeuqhweGWMHuV82Fyai3heGC3ACnKIRqNhXdIEBYAT4BGmmEDLHkAaQ1MCZSwCm29KpEFqOp1aUyGsotfUwvIBuHC429vbBhDRuAFMcYywDOitYT1gQcfjsclxkH3QmQzABhjA7N88VYDkEfDJvfrEjER3MBiYfyFIUH72+lwqD4ALmrTYXzAaMB4AOu5HktkXYKZSqVijl/czaOebzaYFZJgTgA9sGvfsS68cvYguD90v47nYN+x/nh1wiIa4UqnYmCL2n9fdwYyTHJGwsL9IKvk3vQe+eiXJQCCsNHIm5mOyTwAFvEfeL6Vg/BYJMutOQkWCD8N2dHSkxWJhA/kp71MhWq1WlhiQFFOOhZkDhFI1k2T3u7e3Z5UPz8TB4MIy+9KurxLs7+8b+8yz4Hdg4LAR1pZKGHZKYgSIYW+Q7POeIF1g8ahSYFv0TaCJ9LED34XmHxKE3280Gmr/8s+rfeUpJeNrffs4Hlf9sc/orr/0/9LOO79HV/+vf75el699Tt3nv6hwQAq8/r1S+ZxNpMBeAJYcxIGOv1gsbiRkPpkhSQa44wN5BmwSP+llNSTgNApTtUJWwrvgPbC/qbry35JMOkSyzu9BLGFf+A4ar9Hfep0zcRRsgnyB6gJ/5uVjL+e65cFpv9/X9evXlc1mVS6XzWjpTuYFSDJjSaVSKhaLunbtmgFGSWZQgCKyPV4ywQRqnO+BMYPeJih57VQqlbIggdOAJcG4YGgxIu6JTKharVqmTfZF6Z9sGYApnZ5GhZaOe+L56IRn7ipjd8hQ2fg4CZo+IpGINUxJsiwfcEkJEMApaWOMzmq1svOZpVPgj7Z1NBrZpADPcuIAeXaarQj0zEilwQXmmlKVJHPeADVYF/SDMLYAOLJ/tMk4eB+UCEb8Dp9JEoL2DrDLiA5s7etf39Mb3xjSt33bU/roR1Maj1MbAZYmi2vXrpkzufvuuV7zmgM99dT9ms1k79QHYjJndKuAYYI6zA0n4XCfgDK0vwAHkiJO+QKAwMSSjABScOCSzHnRpIYEg0RoPB5b5+h8PreZkQRQngNwT5Lk9y1les+0wWJVq1VduXJFk8lEpVLJAB97G5slkWBmJEANRkdas22ALsZGsadZW2xbkq35aDSyJCaVSm2MuQLM8n4B6qxxLpfbOAEKUMNYrVqtZpUQDwLZg7CInvmg5FcoFDaqDARCr13GT/V6PeVyOZMRUDXwQPrmxlEScu9b2cOsox/1tFwubW8SXHkeSvHsVUnW4IYPW63WI+parZZJQygzE/QJtBwEIGkjifPv7uDgwEaELRYLe3eASA5x8P6EWEGMmE7X444YM4SW0idNAHzkOACFXq+nK1eubMjESqWSstmsMV+SDEjwzr3OGCkPBA2xAD9GaZpEkwSRdwd5w8+SqFLFgTjwbOlyuZ6gAgHDARm5XM6SUYgDiAYaAQHMJBTSaYc+iQPrRowdDodqPfeEgSekLGoca1o/VLx83uJf7KSjZTCreTCoRPh0oDx+jsRWOpXJYTcAO5IsZCYAUJhN3j0xDt9GIkXlaDQamcaXfcRawMRDPrEHICgge+i/AJvwLngWqk3YG4lZLBbTzs6OSSb8z7Ef+AzP/JPckGBB4kFKvZzrlgenZKtkOWgjKEOB6mEZyEwBemQUzLfk5VBOk7Sh3yMD5fMZoo9T4sUQkKDr0a5FIhErrdDl57VJaKOYWYjDp+Tiu60BkgQZSnB0nMNCAYwAL7C2UP1sMIA65UgMnEy8Xq/bsyJMZz1xaGSG3snhVH02DnhEQ1sqlZTJZOwAAIIuaxEIBGxcEE07BEEACQ4EEI0DxOlzfzA0ZOIAXTJxHAiOmfcjnZ5RnM1mTZfMHEWACZuVzyM4sdaw3jxLLJbVb/7m6/Xd3/1Ffcd3PK6PfORe7e5eNOeIvph5pefOdfS933ugajWrz3zmomazhgF35Ck0U/hmFxIzdEo8e7VatSQAu6SMjx3zWbCQaKNIvGBscbgANpw8gS0cDpuGjfeETWFnHCOazWa1v7+v5XJprASBbzab2YxWGD9+DkDKOzk6OtKVK1esrEnWT2MVwRzn7k8x4hl49zCp+Ats0d8jTV/cJ2dzA3zC4fXIO0Ayp8YgH8AeAWeAXu6FAAtIQLeLvQ4GA6uK7O7umj4ce2I8FnbJXFz8DH8O4ID59ifwsV94Vt6vZ2sIZvhjWCmSeJgZ5BKeUSY5RV4yGAxsSDm2R6JDYomtE+QDgYARAPgygDHsEKx8NBq1RlGCOqwxtuIZsVKpZBp2GnTY8/hSCJJ2u212ggyARAfQUa/XrZfh/Pnzdr47ewJCoNvtWgUMre4LL7xgcYXKF8mxt2uvm8SnkMTSnwEY4d3gz0mQeefcDwwbMZH1w98DdIiF2AoAEgAEKy2tkz+mrSyXS5toAzuJjCGbzRrBQrLJvgOYUgEJp7JatCpGAhEbZ7OZgtOJYpKRQPgr1o2YyL4giQ4GTw9HgWElbuM3AZN8JuSBl8rgX0gGWHdwxMnJifb39+3n8/m8gV6qACRHvGeSWd4F4BeAy7Pw+/hsEgca/KTT/oNSqWSVEn4/FosZSEZSg419o+uWB6cAnfl8buUTGqCYBYgxYQQ4CMoHBPXVaqXLly+vh/PeKM+SFfF7BEVJVqak1ILhwCoAzBaL9YxSMis0bxhMLBazMmU+n7dSjLRm6KLRqG1QWEXf6MD8ur29PQMiMBiBwHruG8CBZ/DgbzabWVd0IpEwIC2dNkpIp8zJYrHY0NBgzL4rn9JyLpezkRqAIoB0JHJ6HB2bHv1Kq9Uyp4Vjms/nNgWBYI/TIBgCfufz9RiVcrlsbAvjeJrNprFwBHTKTcg8YKeQDwBucSYEHtaRMj9CcxKRWCymer2u+Xyu/f19YyrImLHLF17I68MffpW+53ue0k//9Bf14otDPfvsHQoE8jfe6UKvfOVEb3jDsV71qpaOjrb1K7/yOtVqbTs+FTYHba0vt6B9TKVSJmWAPUUj7edSwiQybYDuTRIZ9g2AhsCCFIFkDaYbOwF4UCaaTqeq1+sbA6DD4bBpRWFPkLTs7e1ZOdU3vcxmI91+e1PZbFujUVujkTSdznV8fN7Atp/hi4MlcHpGxk/kgBng50kEOd6V+8KHSLIEdTqdGhAkcJ47d85+hgH+dOEDFNAAIg9h5A9NQ146BNNKYkn3d6/Xs/0ESPSSBZ+40flfrVatmQkfgjaV3/HVCxJUtJI8B2AB2ZInBbLZrLGEweD6BLxKpaJSqWSfix3xc4xdWiwWdupYPB5XOBJWZCuqcDSq5UwK3Ai63Gs6nVaj0bD51DA9kAiQEAyw99pIfKvvPgfQA3oKhYL9Oe8Y1t4DVLTqVH+8vUkyAEdw9/dws+SKSgKjo+gmx16QReALvT6fe8WHATBvLmUjJeA+g8Gg2bG3U5ImDpXhVEEqgF7eImnDBmGf/V6jXwCQy/p71tIAZTBo01L4fUBWrVYzLed8Plfhde9QOJNX9RO/ZPEH+x+Px0re+D5PaJGcoRemOdcngb7JDCKLdRyPx5aIeVIGe8JHEweRr7BWXjMKUCXZ5b1QcWWNIeEkbZBLvH/f/AimYMwlB3ccHR3ZSW/Yva+ccBgRfoD5wX4KBdjlG123PDhl5AOB0p8oA3Dj5BUaOBhxwcb1mqNSqSRJlnWg46QDFgP1tDdZqu/kZmP5bB3GktIFguJ8Pm9gBYOu1+tW0rt48aKViGGYcKwAIjI5WCzf8QoAisVOj68DcLHR2Nh+WDknAuEsyHxxGJSIyEYpV8NiLhYLW/Nms2kZPeCl1Wrp3Llzikajdkzhcrm0k7GuX7++cTQcvwsDCfNBQOV+EomEyuWygQ/YKtaYrC+fzxvDClMHWGMsDDMm6UKFFfUNbNiPb34DpAUC6+PkSEhgLGDyabDr9/v66lfTOjl5s97whpf0Td/0ZT3wwGPq9ZJaLMJKJidKJsfqdNJ65JEH9OUvn1e/f3qKESCfgOCZdMq0vG/sF/aYgLZarTaCDs8AaKfRDpaDPcLsUUkbw+RJEglmOGcACNMDjo6ObC+hJyMQwoTCJmIfEqNWhnrrW5/V619fUSo11WAQ13QaUjw+VyJxXScnW3rssXP69KczdpY3DBR7RzoV8wPasSn2d61Ws9Fke3t7G6wpHeFeJ430ZjAYmOYclhMw0mg0jAlmjJdnbdEWErjp4EYOAeikiiDJ9iZ7lvtn/WE1fKMQ75WjeTldjISQAeLMciTJwbchhaEZBnukURT2EMYKJhG2Bjstl8vmn27uhsdGZ7OZzt2f0pvf3tV+4jMKr9YyiUUgoePJQ3ryiYt66vcONRquA+X58+fNZmH/AN6wtfg/2DLkQtwbyQH2zUg7Eh3YLkADfmIyWc8e5mQ5fA8/Mx6PjRllzBVsLeAa/TZAhbWq1WoGbnZ3d63qRrIOgAak0diE/bB/2GN8FoAEkEQyCigmLiAvu7mhlCoXZXX+/mbQCkBir3gSCfskRtI3wT0DwJgGADjHpvAxo9FIiZ3zuvS9P6WTF7+uw89+TOVS0aoZ+KjZ9PSYXogN4jfvkv2Cv/MSvGQyucFShkIhHR4earFYmJ6dfQbTzOE2TEuByQVwM/yfZK/dbm/c2/b2thE1xCskT5B1lUrF9jM+3T8n4+zQ887ncx0fHysUClkToCSTIZAgMGbTvz9/Wt5ZWf/GBejxWSEXjTTdbldHR0daLpf20nHUuVxO4XBY3W5X0WjUBvyS/fvSFk4TAEkWI53OLyTzwlH4rl7Gl9TrdTsjHpaDjUgZnQBJCU1aZ9gM6t/a2rIyN86WpguMnSDnBxWn02nLgmG9MHoYLdgHH2S8nhEWFOaTNfJsD5kpnw1Tgh6Mhi8YFsA1bPT29rZ1EdOwBHCUtKGTYs4gwZqszpdIcSyRSER7e3sb5QdkHbB6XhvEGi6XS2OBcdj87v+XvT+PcvS8znvRBzNQI+aaq2eSzXkSZ1IiJVGULFmT7chWHFuS7Qyyk6ysHHv5xk5i39wkTnKc2M6JnZNJsi3Lli1ZlqxZJCWSEsWZ4tQceu4agQIKVShUYcb9A/3b2Gg5FrVW7rr39jlYi0vq7irgw/e9797Pfp5n75fP4pQQ2KZgMKhMJmODwJF2YHp53gTUUqmks2czKpev0WOPhXTgwEmNjdUUjfYUDE5oaSmrUmlRo6NjisXKajZl18GzmZiYMKCC9AoIgx2nsYQCznuD+c6+oZCkHg4PTvPyHikKHSwBviFnaWnpexhokiKAlL3iEyz3hhFaNApQ+PVB/5buvfcBRaMNPf/8rJ54YkaFQp8F6MvmZe3b94zuuOO4jh6N6itfuVtSzpqhYFN9UxfgjnvimXLWMIkedmFyctLYU34PuSuXyxmwgDFBeoMVozgB8PF5gFAaNyWZGsTeotgh7iEdAhCSyaRN7UCtoUua4glmmVi5ublpkywoinnPsbExA8bElU6nY/5umDjPlPvRU7wXMQrWFbsL9x9gTuKr1WrKzo/pb/30qjLBJ7WnWb1afJvKxYi6na4mU00dmXtGb3/Dl3X7TVfrjz95WMvHNmwuJJ/JtAfWq2cdKX5heVnj3FfiMMlakjH+HI7CM8tms9rd3bVJGV5GlmRMKHuJP0MM4FvkPgHo8fxJsmtHbiVXlEqlocZO1izsNsUka5g5m7B4/D1MM3ueJlivBIRCIfOHcxQ4TVEUPcQR7DSoOhTxfFfUCHIYpA4FINMLaBji+xBzfIEwMjKisdy0Lvl7/1Lt3ZpO/v6/UTwWtfyxtbVlNoqMi+X++VLAgyUgE/A8E8/wiHuSaH5+3uIY7+0bYulRkQZ+a54/Od3vO2JROBxWuVy2YtI3q3I/8LOyjra2tqzYIPbwbNlj5XLZMAQqLQwoBB5rkXuDlQCVBtwAwff9Xhc9OMU3KMkqGO+tbLfb1t0LeECOJvjASExMTGhubs48R4VCwRoJkPhgl2gC8HI2RnOo+FgsplKpZKZ1HwxhtrrdrsnoHGmGcTyXyxnzRHXjNyjBlO5nAh1ADhYIKYsXCWV3d9dOqPDeFI5Eg+FLp9Oq1Wo2hocKHimKqrBSqZjEg5TO58Fit9vtoSNbSUaAQ065IaDC0AF8YDUIql7+g9lmFqg0mHcLcJdkcgSz/mhWKZfL1vnqfYjI2wApGDwAF4GBhiO6OmHMAO5IYgAdAghrERDblwd7+u53D1hwhMEcH99Vryc7oo5ALA0SqA9y3pu4s7Oj1dVVY1qY2cgaI5hx32BJGFrOZxGMSeq9Xm+oMYagLck83JLMH+b/jc8heSLZAl65V4FAYIi5GR3d0n33fV17e3F9+tN3q1wOnf+ZwUEbhUJAzz13uaRxffjDr+g973lYn/nMPdreHnS0eoWEZiXPwsAQIaGRUHyDjx+z4gEMYFcaHD3JdydJwWjwLHk/wB0qD7YR1g3J3fvvSM7EJ9YDoJlrYW/ir+t2u7aOp6enjf0CBMNWARqQxXl/VCO814AMQAd2J6RYf1/i8bixtLDHyKCsx3q9rsx8Qh/+yNOSevrSd96v5x/a0fhYSPX6roGtRwI36vD1t+iOWx/XT//4Q/rMl+5T+WTD1hpsZDQatfiQSqWGYiT73lujUN3w6vG8eE6wpBQhrBEYbWI3I52y2aw9S4pzrEEw8sRkijEKJuI85Egmk9HU1JQxsdwz7/NnrUuyPQTYAQDBxMFgVioVk2z5bLzVMK+wZ7xHPB635lwUGZ4xn4WVCK8xORHQw1oFBPvGTOwXfv+wF2nKwqKVmEjqwM/8M4UTY3rpd35J0U5DzfPrin4LVJnA+byIzxd8wB6H5eT7UMiw9iUZA5rJZKzgJ7f7GI9dBKwCC8/EF549IBvATHHHoRXtdv8kPfaj95Pj1Z6ZmbHCttVqmTLCvUM1JEfX6/WhIpP8Sk72ajG5kPF82O+wSr6e10UPTqn48Q4lEgnrTgd4UKV4lmRmZsYSOMm8VqupUChocnLSEi9SO5sKVrNcLttAcEzoMGb8fCKRsEpyfX3dTOOALqougCtVLVIBFRVNQ+FwWNPT05IG56dTecJkbm9vDyUnAhx+FQIqMhKf70Gl7/oHUI6MjJhHiM1HRQV4q9VqQ7NTfaevNBjYTPMFchmSI4vdA2ACE1UrQIv3KhaLxsAQBLiHJB7en250vjMFAuyV9yt7fzJyPQyC1AcwExMTkgbnvtPcUq1WDUDTrAOTCKMF68BGZjYgVS3SE0GE74TVggBPUoD5ROJpt/uNcel0WltbW8bExeNxlUolu99+bivvQdcxp50ASD2TTOVMoKRACYfDQ8f2MRcSzy+FGywMMv3k5KQxKsy9BYTBMDGAvdPp6I47HlajEdSf/dmt6nZHNTYWHvJ0wWzU63Wtro7pD/7gOv3MzzyjO+98Wn/+59fYHmJ/ACBY143G4EhBQJZnmGFykbvp+MbXWq/Xtba2ZswlgMVbTGBJp6amTF1BbgbwRCKDI0Fh9FiDFDuw4LBzeLMpTgAuJF5YUQot1jv7nnVP0QezB0vju/gBzb5ZrNPp2OlVFP/cw/X1de3t7RnwoQjl/vlJFjbBIS791IdfVVdh/fmf3amt9YaSk2kDAJ45evKBLZ14/gr95M++pve84xv6i8++Q+XliiVnQAX2HPY5R05SeEEy8MwAjdwXQKska75BhaPYge1OJBJ2jexX1gPrCUBOQUv3NEwfh4oQo9izFDg7OztGvjQajaHh7TQ8EVco1CFhAFuoSxAb2EMAo8Qt9jsNMShX9Er4/g5AMCwohSgMI+u80WjYusQPCYEC6UChQ0GAHcM3G8XjcYWjcc1+8H9TNDOjpT/415pUU3vn4xTrlV6BVCql6Hk2mu/S6QzGQ/JsYO/xWBMvKMr4fN8oiRpGsUDs5z1Z395mBTGD/QIyisKDZ44lgPsKMOda/RHs2MrYt1jMMpmMKYvYI7Cc0AcA2IYg87mRotyzvVzr63ld9OB0YWHBNo+/cfgqeMjhcFjZbNbYIy9fAhZJMsj8kmyjRCKRoWNKoexHR0eNYR0fH7fkQsJjPAeUNxsehokqHFmCSqxQKNjCBGBTvdMxiseWato3dQAAvE+PBNLpdLS8vKxarWYzLgle3EckHmSTqakpk67opmS+LGwOQR+qH1Ygn8+bDOSldoLS1NSUBT08YWxYkhZHJgIUkZ3w4W5sbNj7wHiwSUmaHA9Hh60kSyatVstODYKlw+uDf5AxOhQyyEuwx3Rrjo6OampqyjxDsNudTseOzASowhZ3u13r9OS+EYi49k6nf65xu902OwMzeXu9noE3kiTJFxsCzA9z82Ax8VaRpOjSh+mBFeY+sGYIQjw72PZCoWDWGO4xciG+aBI+zDS2EhIClhnfwESxlkic0+xsWX/6p1erUGgoGu2ZDMi4JUAPrN/WVlePPXaZ3vjG72py8qjq9fEhadOzQdwHfhd2kT2CpYTfoVCgwYD1CeMEMN/Y2DAAxL2H2SLBoiSwvtg3xA2YD+7N7Ozs0LXDXrMmKeRg9GFYSUawdpJsDfJZsLLcWxQZb1fa2tqy5ISXt9Pp2LGhxOC1tTXbu8Qy7EHcKwpurFcU5G/+kYxG9S398ef/htZOV0zlQuWh0AcM7lU7+tJf3KT3v+fPdM1de/rGHwcs/sFEAQCYBnDy5ElTZSi6/VGg7FdJ5hmMRCJD7B+2DO45OYTmH2Iy7wdohJVjPRDjiXcUMRTHPAfPcCHd8j39NATfrElhC9DmuUoy5UCSFWX8LvOIacDBiwlxEYvFtLa2pna7P6KQHMezxKdJoY0FC5BMjN7Z2bF76/MchRfgnC75ubk5dbtd+71wJKKZH/moYnMHtfanv6PG8glbp36iAfc7Foupdz6nF4tFs8q1Wi17fu1222wVAGLihrdqcS99EUKxB9kCWUEe9Owve8K8sOexgVeN2D+JRMJIiL29vSEfPtdGfMauByHDzwKuKSoA3ewPCh/iAEWYJyWw/oRCISvm/2/P6fkXYItNzFgWSUPBHAAA08BoJlg33wxEsicQIInhHQL4+iH7bFCSg39ANMUAKqheoOoBB8iJSIwkHaQyzOG+cYOudrxtyE6enS2Xy+aFAkASKBuNhhYWFoakdYz5yN+SLFHCchAU2egsWIIuHiFmsnk/DsZ3gB4LHAmSoOgrOipEAi+VLE00JFOanbyvB7A9PT1tx8i1222dOnXK5BXYDJgYghOBnIp9aWnJ1gpzKpEEkYt8ly4JTJI9M0k2FYCiCMsCvlvuCYwdXjKCOfc1GAzaQPBsNju0Pgjmnu3yfiTUAMAj+4UmDWkw6gYQ4H3MSPskOZ6TH+80PT1tCgb3GQAEKGGdMybo3LlzQ8y8pCHf3o03ntDOTkKVylGl0wO5cXx8XNPT01bUULjhE//WtxK67bagDh58SY88csQOKKjX68bYeU8b+75vpxgfGq+DUsABF7lcTtls1sY4SYMZqHQnYwPAkkHx6ZlIpHk8YjDWxC7kPuwIJBOSGbIyMQYgYxLmeRbKxxtegCY8y+12206JAUTSzOULOJJXKBQy1p1nCkDncwDTY2Njxv6wLtjT3gs7MpLQVZe8oLXWHTr+zLoxUOy1q666SgcPHtTp06d17Ngx81rWt8Naqt2l/ekHFU3cY/kBUE0O2NnZsXFd3rrhmVtAJEVsp9MxsAnDztr3M3YpVPhMPzqJ+A/7Slxgvi7rDNBGrPXziv2cbOIue5fiDvCMOoEEPzIyYkepAlR57sQebyGg4ZF9K8mmn5BHAbSMI0ulUjZBhLUGkIeZxduOH5rnS1FHYch9wuNLIUG85Fld+uO/oMSRa7XzytPabXcVveSG/vM80o+te8ce779fMquRy2/p74fFI5Kk1B3v6uOGrZKaz3/b9rtX67w6QGHDsyeOUKwRv4lzxMidnR2VSiXbQ7wf9gZmdUsy8iUWi9nzZs1xJDWAG0KHe8hehuAJhUI2MQIlEVIMRpgYD9GCbO8nPkC2SRoC3yhXPqb8da+LHpwiWVPBAQCQc5kJB3Cj6kba5udZTFDYBCTM6HjhaJ4hGEQiEU1NTZlMCuAgIMFEBQL9mXt8HrIQFTcLE2DGdeMDSaVSlnBZAOFwWLOzswaqkBiRA9g8MLrxeP+4zUAgoEOHDlnXJdKJJJP6AXgAHlgZwHupVNLKyooNg4b1wHtCgGs0GlpdXZU0GIsF+EWChFXEl8Oz8lIy7DdMH8UDoIkKkiBLYJMGo1rwTUpST1Lyklnd/uampideUURVdVTUXmdKr52+QsXPVtVobA7Nh2s2m8YOYBnw3lrWxcjIiLHHMLeA7a2tLQsA3B/M+aFQSJlMxiRvQDVdkTyn0dFRm0Pnn93m5qaNzqGY8b5U2AuKqK2tLUtONMcBSgnKBF0vJZJUSFKsW1gZD4Cp/mFLWq3+sH+fmAGQ7AGKGYo+77+s1+s6eHBNL720X/H4qOJxWfdoKNQ/X3xmZkanTp3SCy+8YFJcf+90dOxYTpdfvqm//MuKSbeAE0mampoyMNXpdLS5uWl7nfWHdNftdg2IMogdRgYmAkvExsaGUqmUMZfYLC6MSawTSVZMkMjxgMP4enAKYAPcsSdIrPjIuS7Ath9xI2nIu0YBRBFWLBbt2rCx8GdfxPvB7gBVD8SZZUwzJsfGYolqNBomq152U1rjelkPPn6NQqH+vWb+7T333KObb75ZY2NjuuKKKwyklctl7e3t6dH7R/SBH17SkVtGdOaJwUEIrPloNKpCoaCNjQ1r2iEHMBIH7yWsKGvcM4cQDDs7O1aotlotIwwA9b5AhzWjR6DT6RizDijl+1AgEENhI8lFNGvG43Fls1lbu7BeqD54DMlrxJbV1VUrEFjnrElAPawt0wqI737KB7PA/f4gt1L0Me2B54BywBr3Xn7yBPsFfzLNakwEIO7u7OwoMXtAkjR26fUau/T678ELL/3qQ33gu5hR7s0/OvRvi+/8qX4cfeVZVZ/7llnrIEU8i8h3gU3EukR+J2aQJzY2NhSPxzU1NWXEBfECtYjcCHbA8gHYJPf5sW3EF+IwxBq5lsKBdevVH0AmPSDY3YLBoMXfWCxmkxxQbmGyIdconvld7DDf73XRg1OaBWAcfKdyKNQfiRAIBM43SBQM7NBFSXInsBNMAagkD1gbgnEmk7FrwN/FqBT+owMZZgdwQ/cyvkwq7lKpZN46FidVjCRLXvw9vplut6u1tTXzEgES8ftIsuDGguXV6fSP16OTH+Z2c3PTZr0SzPDVsPEAhFJ/YxCM8YhyHwBWnU7HPCxcS6vVP/mKjYYvluAHuGPjkIyZsUhVKfU7mfFkwu7yeX7EycJ1B3Tz7c8r2/mUOoprZeMq1XZTCoY6ms68qjv2fVE3/KODen7pbXr4k8uq7+1aZ6eB2/OBYG9vz44l3N7etvWHLAxIIPH45wDYB5TD2uBzJvGQMAEOVOYUIoAsihcSBVKgBxGAjV6vZ36obDZrkyAIjuPjY7rk2oCOXhtXNNxVT3U1GxEdfy6qrY0JW/MkFVhB1h7NfSRHSWabgUmkqITRWlpaMtnQe8lIYs1mU9vbW0okmioUAqYISANm/8orr9TNN9+sJ554QqdPn7a1S+fp1lZchw5tGuCAqacQwutKEcj64n5TuOHnpXmE2ME+8N8DGwOs/vj4uN0rSeYl5RQi5M5Wa3BkrT+wgy54mkr84RSMfcKqA3jw3mQaZXg2+K7puuXFGe+AKoA643H4XT4fJh0Q5JvAKLCQn1EDWEckVIgFpM+Zxf7zffzrK0qEY7bWDx8+rDvvvNOYm6mpKd16660qFAoql8sqFAoqFKT2D48pmd7Vy3tt+y4UWwAgnjOsH7ETD7IkA6LkD+4JvnfmUwMO6GugwYgRPcRsbyfBC06M9Q01vCfFOx3wXBfWCA5eoaAkThBvdnd3tby8bAoaagngCRXF74VEImHrGIDKOvQTJzyr6v3vfM9WqzXUPAkoAvSRk/zBHrB7gG7891gLiIlbW1tDjUlP/OtfUDKZ1Pb2tiqViqampkwVwZcsSaVjT6v1Lz9sObLX6492o7gjfiLRgxEAqTQRghXi8fj3YBFiEiw76iJ+VeINeAWPOXnZK7cU4MwmZi2yz2jcZn1i1ZBkuaPVallXvZffuf8ofqimvkjgHgBK8Sej1lB0oZS8ntdFD059sxDJj03K5mRBEJD39vaUy+XsTHgeGkwEgJAmFh48Hd1sKjYiCbJYLNqGJODyn2cEMJYDMqvVqkqlknZ3dy0pszgZjou3EG9HOBw28FKtVrW2tmbyCMBxa2vLWFuSHQGCZMrgfhhfFhagwXt3YXuCwaDy+bzm5uaMUeUFg8vGg4XgGorFolWbkUjE2BN/PCDB14MXKmhkEN6TYEqVDRg/c+aMeaPYSOFwWAs3zuremz+mTjuoZ197l574Rk+vvbasdruuxcVFjY3tU2bmMt1454Zumvldpf7Oj+v+PxyxpLKzs6OzZ89aENre3tbKyooFU5rmpEH3PB4hKn0kaL4nUlyhUDCGl0YB78sCHGMRIZHRSBAIBKwRgu53GHDfnMYz3traMrVhbGzs/DF247r9hwI6eui7Ggue0V7wgPY0o4C6GtWLunJhXaXm5Xrq8X165ZmEmfJ53lwva7fZHBxviB+LohDAjCeNFwUI6x2v1ICJDSgaDVl3K9+Ze3jixAk9++yzxhbADkjSyEhLwWBEV155pTXfwdxmMhlby4AW1A0CN/YE2EEGnweDQVuHNB2Vy2WzYAA4eL48E2mQmGZmZixu8Dl09JLsYrGYCoWCXSPv55lPgCprhPFQsBw8IyRk/3t8X74PUi1KD95v3geGr1gs2n0mgZIgYceYooFn0zdlARBhEnnfkZGwegopFu4fs8j+BqD4F3HF+4M7gRFFIoMJLV5C9cAUDyBsFkqAn8jhGWZUBworxu/wHba3t7W2tmZ7zcus+C5ZG9wPmFDyCeoRthxAgD+wAlBdKpXMe0hhj00BQN7r9Ucn7uzsaH193e4h/mCABawrzxv7GNMHsChg6aCg4ZoohrFV5fN5KxIlGcPIkbljY2M2j5x7j2rERBVyOM/IN1MBysbHx+2wA1hdWFy/zn2PBOQQgI7TlwCigGhJ9l7YNWD6kc090AYvAOYgKfgs7CQUZ9xz1lQwGFQ2mzUVClaZOECxRG5EYULp45q5JhoqvTcUgOoZV9Y3sQolCGYakoD7SRwiH0OQvJ7XRQ9Ok8mkJicnValU7BhGRnXUajWtrq4aA3f11Vfr9OnTWltb0+bmpm12OqVnZ2dtoWWzWUkyltAPIWdTRKNR844AagkMVLTLy8tGoyPzzc3N2ecifcEEImH7SrNQKBhLwoKn0apardp4FoaD47Xzhmi8gmyuarVqo6mYW1gul62DnoDEiBMCNIGA4MN1VqtVmx2JVWBhYcFkQxoEYrGYBWKAJccSIkNLGvL7YTwfGxvTwsKCtra2dPbsWduAsKqrq6vWKDQ6OmqWgpGREe3t7eny26/QW2/+E+21kvrzP7xcu7V+AOEwA6TVU69Ir72Y1C1vu0dvvPaT6vz4z2jnlUt1zTXX6NVXX9Xjjz+ulZUVu7ewoiQ7Ri9tbW1pZ2fHkjCgDUnNM4PMmON0qVAoZFJLIpHQ1NSUBZ7x8XFVq1XzxuG5pUmGxLG5uWmFAtYGvGcUQHiSxsfHNb+Q17t+ckW5yLe10nmb7n/sLTr+7aKi54FOdPISXfOWtC4/8KTuveNLmpq7U3/8fzYVjyes+CNx+KYOWB+kJu63B3M0f21ubloB6Js/8FrOzc2rXh/R7GzHvKGwnZubm3rggQf08MMP23vncjmTLcfHx5XPn1WrNW5sKJ/LnFLYexgMACQsZzabNbbMF7Wc6gSg4Hux97HVAFJoCOHENW+XoFkM2bfT6Wh0dNQ63L0VB5sARThSJEWrl4MjkYgVd8y7xYICs0uiaTT6pznlcjkrJLAf8Xz7TPa2SdysbZ6d1Pcvlkol27/4MQG53ntPzCTBj4+PS72QAupoamFKag5Otzl+/LiWlpa0b98+Y9C+/e1v69SpU9rd3T1v94kp3NtWpxNTILBne6DZbJpkjWdSkvmV+Tukbr4zxy0HAgHrjB8bGzOm3DPU3W7XBscT0zkVDYbS+8knJibsCGfiGiw5Y7hguv2EBLyJFDW+aZO96E8bhOFCZex2u5qamrImSGR4nhP3A08uxRu9FVwjYI38iJLi5WXAEaPsIGskGfhl7RIH2XvsGwp3cpEHg4Ct1dVVY3l9H4hXBryvlzUBkcS1scchEryKBRnCvvCFEf/rYwBqCYos+xRVkAKZ3OVjD+sPkgrCgSLeM5XEHgoc/6xYV+xPvMve5w1jj/rBe7O++X3yDf9GjADsv57XRQ9OaWTJ5/PW7YbMBCXN//JQc7mcASxAHCMUAK4MXJcGx6hRcXgvHIsFhpJN4v1THAdWKBQUDAZt3iOLnA1MEJMGi4wNjK8GfyMBAOAHO1OpVKwzEUnbD/uncqe7GJaVEyYkWaKoVCqSZJUcQZUgAGhloc/OzlpAIoghFUuy4dSSrCECVg0gjZdnd3fXmtaQvHq9ns6ePWssD4DEJ2Gq5Gw2a8wVlfxd966r1+3oi392nep7PXU6LSWTSS0sLJgvC6ltfHxcx74T1PT8O3VJ9mNq3fxZ3XJt30D/zDPPmM+XNddqtTQ9PW1rgA3K84xEIioUCsaAcORoNptVoVDQyZMnrTDY3t7WDTfcoMOHD+v06dOWkGlAgDEnYcESeeZjcnJS2WzWTPTc92w2O+R3oos6Fgvr7R88p0z0aT107G/rW585rnb7pAGnaDSqdnVb3/7joh6PZnXvz/y8rjnwH1X/yTv15INZjYyMaHV11eQ3jrftdrvK5/NDTAzrAjC4sbGhdrttXmXAKywDnf4w46dPH9Lhwy9rbOyoWq2QrYVms6lXX31V7XZbCwsLBpaw4ITD25qfP6unnrpRq6urxtDw+/4kKtQCCh8KOGILLA/NNX6sD4CP5EQyCIVCpvTAPITD4aGJGUi80mBUlGdEKL4BDLBufA9+plAoqFgsanJyUouLixofH7ejVknGyWRyyPstDc7RRr6kEQeGSuozZIBnClpflOOVrVQqSqfTVtgCtEms+Pf4M4wSsS0cDmvtpKTLpeveNKpnv7JjcXFtbU2f/exndeONNyoYDOr555/XSy+9ZLaLRqOhA9cHFVJdK6ciarerQ9+LuAUgQwkjDnS7XZv8gO8a1cMzllw3Ui/MLAQDDGapVDLyghMCYSWJe1wTBQ5d1qxBn4+4/1yntxPxM+QtnjFxmQLWAzLAC8UqR65ubW3ZtTAizqtafi14AoOTwthXkqy/gOtirfEZNOX4IpcRSsQAlA7uAcUQhVmn07FGu16vp7m5OcvVe3t71mcCe04RKg28691u1/YKexiGEraYkYkAanIj14viCYDz+1qSNeb6plu+gweyvGB6KW6Q9mHGKeBRd7g/jLIjLnDN3OtSqWRzSgHy9NiwZ9kXNPsRyz0I57lSwL2e10UPTjc3N016GRsbs45mAjoVHA80Ho+bxEcighaXBgwJ1UwsFtO+ffuUTCbNc4X0DCBDHgGUIh952YkKnMXhFyusG3JJszk4bxzwTbXIYH6CKJUNstPy8rL9HNUOiYVr4/oJvrCoAG8ayViMfr4p7AbVJAzZyMiIeW7wCZEIfTME1R6snzQ4YpGk5GWtzc1NY1nw0MGUYbegKYlKWxqM7gCoH7jqsBZiX9B3T71Zjb2YQqG+j3FmZkYLCwvmvd3d3bVRSOFwWN/64qgO/62INppf0DPPjOvYsWND9giSLb4fiiHGbdFZ7dcfUrpvWPDe4r29PZ08edICgbeGwLpyrCvgHBDJ+1JwMReXAf+tVsuYLO5pt9vVtW9NaCb2sL754s/q2ENl82mSiABHXM/9/31Z+tCHdPPl/0OFcx9Qt562ZONZIrrZffNAqVTS6uqqZmdnhxp1ms2mZmdnDegwwJpAyGe/+OJBXX75c7r00iV9+9spk8CZj7q8vKxisWiJmPVy2WUn1e0G9OqrBwyQIoEhrW9sbBjDyHqG6eA5s36RSymEAasABhhjijmmUUgyNp3/JWHyPSkgKDbwfMHCAA4ADUwJ4LqYiOEtHXQKY7ngutjHNEhxjWtra+ZpnZyctHvCGDnmswLgsNC0220rwGgA7PV6xmihZMFa4b1nkoA0ADJ7JwLaaL9BR/Y9peeCR+36R0ZGtLKyos9+9rMmreOhJh5fd/2ytnVUT339lOLxhIEXLDAwjcQK1hq9BltbWzYWidjCvRod7Z9EBrCG9WYdTExMDHU8S4OpLsj95BrICxgr9hDKAyAEMsKz0v6kMHIB9xUbEHEWTy8KDiCda/f5B7BKcZROp21mMsPfIVd8Ucx6h3WWBufMc22cxigNegfoneB78fnER/Yx8Yp1QGMw/s5erz+2j4H9WPc4FtQ3V/G+vV7P4ijNpkwokTTEKPLMaFamqMDe5IsLih9iP8+U/haKs7GxMc3MzKhYLNqsZywzExMT2tjYUKFQsPVD3IbQgv3002ogpQD4kiyGdDodA9jM5cbq40kCFB+AMt8fL7xn0bFCoFK+ntdFD06r1aqd6bqxsaF6va7p6Wljm5gFmkwmjWkjuZMQ/ExCZGGqUZgffIuVSsUS7uzsrDFQSM+ALEZjsEExyCO9etodeZtKhWqUAb25XM6YX34X9ozqGSlUkgVa7+EBLCDF4fvhe+FDAvgGAgGTudjMwWDQmkKmpqaMbfZMEBsGIIWEI0kbGxtWTIyPjxurgqThfUgkmMnJSWUyGbMm4J0JBALGiMEg4v0EJNJpmUgkdPd7JhRQV898M6LueQAQi8W0f/9+vfOd7zQf0csvv6xPfepTOnfunFZXV7V7Ylcn33WrFtKf08f/oKFmvWk+PgoKPM7SYNSKtxxQALCZkXRJgJybTLLjnjMWzTOzfA5eLZpOYEF49hxhyBohGRC8YPKkPnNxaOGsCu3b9MojOwaCUqmUJiYmNDU1pbGxMZv00Gq11G619Ke/c05HfmVWR28s6KG/iFihEo/HTW7kTPrJyUnrisf6wLoNhUKampoyiRxGn8MDCLKlUul84ZfUmTOLuuWW7+rZZ69QtZq2YsePS+NeNhoNLSxUddNNr+iFFxa1vd1Vs1k38M2RnAAWVALuPUnds+QkeRgPChWeHYd+ADD9iVqwRgA7z7SThLEseMnbF3eVSsWYTWxFgUBAlUpF4XB/ZiLJm+REcYR/m9iAb9cnN5r9PCOGNxj/GVYcTivyTRcwijCkkAQAJUDz7u6u1tbWLG6lUikrVtijx45dqjuv+kMduvUNWvvzNWPdsQoBagAIk5OTOnDtmKZj39bDL79fa2uvmQeW4h4rDUCAwsePM/LTOfL5/Pl5uVt2yAtKkyTzhQL8iKMANuI4a3JlZcWmsvjRVawLPt97kHkvVK94PG5MGawXBS+TOWAWe72enUVPUR+NRm1fspYTiYTy+bytyXa7bQcU+AYu1jPxlr1C7kK2HvjEBzYf1hisG6wdn+XvJTEUAI36QGykSPLMIPdjZGTE1DdyViaTGZKsYb0hbGBwfaEGgPb7MJ1O2wg/f+/Zc8yShunl+oglPCNUVGZcU1wSO1gTEEZ8F+IGTb4+ZvFZ3FvGFUKgSbJ9Ksm89lhv+O6AZ/zVHAVcrVZNscEaRoHKAS+v53XRg1MM9gRDWDofCHu9ni1SbibSC7KJJEsyVFV02gE2CM4Ms+bhe78V3kukNK4F3ygbw8/PQ34eHR3V8vKySfKZTMZGBvH+bB6AMBue6pyj7FZWVqzyowOPz/PSMr9Hl2843D9/enZ21pqqAM9Idr5hoF6vGxsSDoctKMHsITHALlGReXmGwAP45mdGRkYMyMIMAAapDrn/dG5TCSMx4CHMJc+p3L5aIU0qGg8Z+3nllVdqfn7epPzJyUmdPHlSGxsbBkIf/XZWR35oWZXaks6+VrZKHWZQkoG9XC5n8sv+/fsNPOIjxE7iPcpbW1s2qBvJhQqZe+oDOIPOmYcrDWYd8v4EMD9qikKE/UJCWrxqTJN6WF/77k9I6rP46XRa2WxWd999t6655hrFYjE999xz+sY3vqFz587173errVPbb9XhzJ/q4eA71Ol0LciRXPGjEdxZA3S3nj171pgoGvU4Ng/mnvcj4YTDYX3pS1fqfe/b0Ec+8oI+8YlLtbMzZqA7l8u5cSxtzc+v6K1vfVSrqxP6whcWFYnsGLCoVqvmR+W5kbg43Y1176VAn/QBUrwA9TAmJBi+L+OAGBrPIR+8J8+evSYNmn1IRPxct9vV8vLykM+a5MxsWL6D91eyf0lo3rve6/Xs/+NT9MDbd/fDxvI9SPQwZ8QmWDxYTmZs0riHnxVGJxwOmzXjxFNNXXrprbrjik9os/Qefftzx0yyRCFAqQqFQppckO6964vabF+jL39iyb63Z5wAoB54AMh8EVkul210D4wrsXhzc9OaWPEE47/lZD3fhAXZQO7xUxPi8cGRzEySIcl7xWt7e1uZTMasT1hoAFowfJAm2D8kGYAAhPhGPlQq8hCyM88V4oAcQm5kfePf9hIzjXGATIBppVIZssiQdyWZvxZQRYGK9M1aBDjCHHKPeW4op+Q/fo7ufnINAM+rqbCLfjSeV40oWJPJpFlC8FNTIFHMEQN9MyG5Bmyyu7trSg9qKzEbm4DHEjCTYAhUXPAIa9WrjUzJ4L25xxQpsMqoBDSXwYjyDNkD3CsYev+sIEK+3+uiB6cgfTYaNDubCEaBZiJ/UgKbcmlpSePj49q/f79tcDaiT05LS0tW7VLxInWsr6+bgRpAtLq6qtXVVeuuI9CTKLhuFj3U/OjoqPL5vG1kNiYyAsBOkiUT74+KRCKam5uzZob19XXt7OyYVOgNzNFo1Pw1sVhM+XzeAgB+IZhkGCn8KmxGAjbMF3IYJ6z464JxBTjTAchzYfTXqVOnVKvVlM1mNTk5qfHxcSsqvO/Fe3dIyAQiKsW9vT1FgmvqtPudsZVKRZVKxaRaz2IDKnO5nJ3HXd3qB73xZMTWFcx7sVg0OQ5wGwqFzOspyZg2GvCwYxw4cMAaEQiWvV5P+XzekjoBmABz4ck1eIQoWsrlstlUACowt75RhYQSj8d1za0JtTSpJ79W1Eiiz1Imk0m9613v0l133WW/88Y3vtG809g0Tr6Y02U37+rS60f16tMyBpGkLg3Ookay9nPwYrHYUFc7MiHPj31KAUgSqFaD+m//7Up98IMv6e/8nRe1tlbUiy8e0srKrKLRUeXzKY2NPa/FxWc0NbWlkyfz+sM/PKhara6Jiagd6UezBdeNZM70DMB2r9ez429pRKLxDNBB8mB6ApMKzpw5Y0mr2+1aIwWWE5gSCjASgjQ4Uxsgg2LC50oDaVSSyYYAeubXkox8EoepIVatra0pHA5bl7AkA4wUOwBv2DCAHwAKtcOzOf7kGVgzz9IQZ/l55jq/+93vVi6X06c//Wl9+VM9vfPHG3r3nZ/S4aM/pEe+LNU36hZbO52OxvNx3XpfUFfNfk217oL+63/Mqrm3OXQfGVvH6CXvB/ayK4U65MXe3p5OnTplvn/+HqWA5wFLTZziXvuB9YAJAIHvL2CP8Pdezgf4Yz0CRPkeBxQUvk8ikTDgxTMj/1GEdTr9aQswsjCrAESk2u3tbVuvqBnsZ/KeL+74vig4xD1vbeF+A8IkWW7LZrM2ExQFhRjgizjG/AWDQU1PT5vKs7GxYUwke+LCZjMKJ66fNUqshgmWBs3RXD/XBUYAmHs22P8ZIA6BgwUB1bZaraperxtDSpyElMA2wt6mYCV+olRA2FBcY1PAH8ucWf4XsM/np9NpwzfkJt6LfM46pFDF6w2Z9Hpe/5cAp0gdSFH+CDI2KZUUQdxvTBoCeOAsWKlvREZ2GR8ft5NvAEX+BJBWq3++cj6fN9nPyx1sdEAP41QOHDig5eVlnThxwo6eZCA6Pi8qdIAGC4brJUhB90syGQjWxy9ypLm5uTmTnABDnU5H586d09bWlqrVqtLptBYXFy1AsplhGAh4iURC2WzWmAGALNWhlzKReQjyyIWwTcgf/H0ymdT8/LyNzcKTg7dmcXHRAFcoFLLNznW02mGFgy2T5ZBWnn76aV1xxRXGMpXLZb3wwgtm6p6cnFQy099smxtV6zTGUzg/P28B0DcmsaYI2HjHvM8TxoTkRiChAcd7hhm5BWsOY82RrZLs2ZMskPF4PypnTimDEYlFG2r0kup1ZcFxYmJiyEYg9aXLffv2Dc3trKz1q/hQrK1odDAwH0BDoUNjEDYQmHbGtZGgAdaBQP9wCjxY7J9SqaTNzc3za2hEn/vcPbr66qqOHn1Fb37zo0OxodeTTp7M6etfv0ovvjiivb267WuvOlDgAZI885PL5STJPMXYDarVqhYXF4eAIEUasaXRaJjdBtYQuR85nYYF5H/m9DIuDAaGQgLJHIke/6aPaTwzitharaZUKmVSZCKRMFYarx+d1FhORkdHLbaxv5HMSbrcF+IMiZimDRIm6/jC05IAXazxTqdjrOD4+LjW1tY0OTmpbrer4vqWPv4703r7B/M6mvuqrvybuyp279DOXkbtTlhj8aqmo19XTxGdrtylP/m9poprG3YNrDffQEPOwJaEsoX1IhQKaXJy0pI48Q9fOUQBsRCrBQ0tFDd8NvcQJpPTelZWVmysGbEPkmV0dNT8//jtYfdYa0i2FCO+8/vC7nwKQKRyCjMAKF5lD4IAX1geAKisWe6Hn6WMalOpVCyW8VncK/y+frrI3t6e3Xvi94V+YJq1JNlhJZAfKA3MFvUMJM+Ae8e4J+4VtjWKzQubvpie0mg0TOrmNCw+lwMytre3bVQb3uxWq2WkDEeek598YyLPi1hKHIBEgb0kd/AsWevMvIaFZ637+OCVkJGREQOukDvEdw+6feFMIcH9kmSMv28y++teFz04JaDCssDkSYOh9XQO4u8gUeIfoxLGGwZr2mw2h/xgXmYDHNDogJ8JzylAF19bNNqfo0YyBqBEo1FLRCTDSCRijCXVPd5Z31nLZ0iyz2GMiO849A01VDgsOLybbGRYOkkGhGA12dR0RgcCAc3OzlrnIk1YgCyAnPfzrK+v23MhiWKV2N7eVqFQ0MzMjG0quoFh30hseHQKhYKB683NTZM1vJwdCoVUrozrkvyj6oXmTVoOh8N6/vnn9alPfUo33nijqtWqHnvsMb3wwgt2nd1uV1feEFdbI6pvh7Rv35wBDxgQKmwaKUgisH0+OY2MjNgzRuYFUJdKJRUKBZPc8AKiClB0MHYFUOBHytAo5weIkzyYqYfchu+11QkoqNaQb5Y1yGfz9z5QTk5OKnw+DlW369rZGRyru729bY0PmO2ZluG73NvttnK5nDHNSG5Itr4g8lLTwDM2ouXlKZ05s1/xeFGTkxXF4101mxGtrCS0uRk7b9EYWHcCgYB17nLveKYAX5o6uN58Pm97H3Zrd3dX2WzWRrN5hgTml6QMQPPjckZGRsx3DWhnX3mAcOEJLfg9abLc2toy1pNnRZIjhvGeqVRKoVDIAAy2KK4VeRnVwTcPSTLZmsKDgkMaNEbQEU/sIKGzzgFo3E+YH8+ar66uanl5WY888oipW6Ojo/rC76c0PnGvrryzp0sOn1F+dEVST/XWuJ48+W4991BQZ0+u2TxlJqEQ57FToBR5Nq/b7fbXdHhwdjhgkdjHVBT2EnsE5hfFgxiNFQXbAM+PeAHAoHhnX+InJ07Nz88bq0mRz3oGNABWeeY8w2BweIoL1y7JgIX3vcJWAlK8J9PbACjKiVWAb2IGgKhUKpmyxPfjPgYCARtHRt6F4CiVSuYRJYcRy7ynd2JiwogVCvhwODx0AAj7j/9g+2mkYiQbs4XBA9KgYVeSHQNMoQcApFgh/yUSCbN8QVpgtQB8ev8pXuitrS3lcjlTBJhEwzPFe0/xDluKugpeIMYQ770lj/tGwY8Kyr31OR7rHsoIOZVYTb8Eh6pASL2e10UPTpHTpIHhnwUoDfw6koyxoBIiYFAtI1my4CXZppb6AZ9uYk6GoWrKZrNKp9NDcqo3oS8sLJh3tVKpDPnw2BRzc3NDlDlMC//OQOJ4PG7gCaDmG5G4H2wAEgLVP4mUag3v1O7urjKZjIEoZBR/hj3sNN+RrlUA+e7ursmfyNwESZiInZ0d85xJsmpZktbX1w3Aw2CT7DhoAGDdbDbtWDhYJRI9LI/U30Tf/kpQV/zNkq58Y0yPfLpiskmtVtOjjz6qp59+WltbWzZiiPUymprUZfmHdKpws8ZGUwaYfCLjWbGG+GxGCgECWGvIbbFYHzgRsDHO482CYa7X60PA0Z/KhczIs0eioaHJe4r5TIIJ63Nre17xdEHTsyOqbgVsbX/nO9/RxMSE5ufnJfWr/QceeEDnzp1TpVJRMpnUvkv6a61U6FiiJ8ghC9FMhJRFQvXMPgETUEfjHT5a7gP3gN/B6tB/7wUtLSUN+DWbu4rF2uZrZCYy7DbTESjkpL50x+gbL4cSL0jKqVTK5G/YBYA7YIggjycOjyj3xjc4kph8MwQslfen8fxJeDBe3AvkYr8GPJPjxxGFQiEb9cZ3nJiYMMaXkWwUtZOTkxafCoXCENuKPQhZkGsiVlD4wjR7Kw3xaHJy0oppmGWYZ9SqRCKhdkt64istPf7lBWN9+vOMt0yOxiJA/OP0Hw6bAIQBAGG8uPeAexK/b1BiPXY6nSHfIgczrK+vG6CBlPAqGkUFsZdmGp61PwAGQoLvgmzuj0rGMkDcwnqBp9CTAbC7qHAAa3+AibekEGv5WUkmG6+vr9vhAx60sC4A3yg/0uA0Re4VVjFYRJoTvb0hHo/bEbOSDOT5ZwGIRmUD8I+MjNjcaWb7QgyhrvkGQZQEwC//34+ZBIxi8QLIBgIBmzGOYuAbZmG5KUQlWcEuyfY++9YXsvxeNNqfBQ0A98yul9jJHZAaPD/2lY9JxF6sDPysJ6OIPcREmH6u2auG/3e3/vkXkiiyArPZtra2DHTSnACrA4NJtx1nw8M8UqWwWUk2ADZ8WzxI/0A7nY4FZywAnKlNI4CvsiuVihmbu93+/MRgMKi5uTkL8MyoTKfTQ53IgG4YAgzaNFpQ2XqjNaCAwMN343i9VCplQYKqrNnsz1jD1sCmJOjCEPIzqVTKkjlBGbYAewE+LjYEQIFz5glEFBcrKyva29uzI1KxRADaCcDcCyQ3AE3xbEvF9s266sjT+kozo2atPyoE9oMTSnwDU7vd1t3vnVGsu6rHv3G9sT0wh74LE6lLkjGqgFaSniQbxYN8zDNGjqEznvvq5VMSCAwt/waDxdpBtqFw29zc1M7OjorFojEqdKcnEgk9cX9dt3wkrKvvaOgrfzJo/HvhhRfsYAOmRywtLalWq1kQuvqade3osNaO9wy89Xo9OxiAAjCXy2l6etosFSR0gI4kGzLPvSFBptNpBQIBO1oSS4dPvoBa2EvAH2s5EAhoZmbGpElvP9jY2LCij71J8obNhImmGEgmk9YA41lK3yjFWqHAIpGyX7gW2AwSBWwxewiA4hubSFp4j1nvvC//7osF1ihsB/uTgpP7hueYgx82NjYs7lH4E0/4fiQ+LAzsef5MowvrgX3BupZklgUSIDGZmMEeArSgUEiyRAprk8lkTI3xIwVpKqtWq6pUKpaEeaEaoW4RC6TB6CbUJ74b3xeGibgC84bChWKwt7dnwAXg6xk77ocnKeiy99fjWapGo2GNkF6659r4e4A7HeesLxhU4gLKDGuUF0CV50/chzEGIAKkYT291xTWD9sJ9hSeIUx6p9PR+vq6saqNRkPpdNrAHowt95n/ZRycB9x+v3U6w7OMwQKbm5v2DCA5APzkEbzhHoBi0/Ox6MJGKYglYjXxBQac3oBIJGKWPmI7jUbNZtMsDUywwRMODoDt9NYU38EPqEwkEmYLBJxWKhXNzs7anmY6hW9CA2NRlLFHseLU63WbvvH9Xhc9OCVAIKeTKC4c7xAIBIYaGjD/5nI5C5Qkk263q/X1dVWrVZMfkBExWY+MjNiJUrBS0WjURudQTezbt89oeRLc5OSkgUCCY6VSsbElqVRKuVzOvosfBUGXJk0ZbBa8QXjWYHKQiGE4YOby+bx1DQMOAJt48ThukCoRNsgb+KH9ka85Po4KlQqYn/MBnWHrBK1qtToE6PjZcrlsgFuSVcJUi81m0w4Y8MmNzyNoPfrQgt55z2f1kV96u37rV2oqlUrW6UqwoqFpe3tbV9x7qW5a+LjOlN+g4lJYmUy/iEEuwlsLmEGmxobR6XSsA59NDOAgcbPRCQK8D2Z/gMX29rZKpZIBb39AAolxaWnJPM9YBAAVyOHFYlHT09N2TalUSs16U8ute3Xpvif0++tpZbMz1r3d6XS0trZmzF65XLbAP3MwqenI5/X02R9Vq1U1E/3a2po2NjZsigMgjvdDMUAW2tjYsDVDMQJAJRFxjyWZ/IzEiFfUs3O1Ws2a1WAavRfPMyKw/uxRgDR7gLVNAUGC9/GGa5AGp/XAGCNDAo4oEhgdRjc/+wLgiDzs7RnsY3z1KBAUsSg7eMZQZvh8QAVAGfUCRtV7YfH6wRTX63WVy2WzAPA+gHqYps3NTbvvTMXwzYfEJNgmCjkKZq4X3yLxADAB8eCBBw1OksynLA1kb/YTzT/IxwBHPoN7gMKGygDbiarBd/dWCopJWDwKQVQpWHUAKfENsAkggz0uFArGDrbbbduHkgwEI79iA2i3B4Pu8Y+yXrzFAcYQ1QWWm8KVvIfvm/nhuVzOiBevCuBbJg96IEhRBHPMy1uVIFJgkwF8/C57k4Ykcg09CcTMdDqtcrls6wKrDoXb1taWdbNLg255bD6sGRh49izMPmsCiwFMq5fdWR9YOCTZcyKmAezY037dUBTw9yit4+PjNt6RdU3BCMbgXoyNjRlp45l+mq3JCVjgUBLYh4B+Ciruiz8MCHzFZ9IghWL5/V4XPTj1PhhABg9te3vbvCjZbNbAKUGRSpfg4sFMOBy2Gw0TQsJGXgIUwuY0Gv0h3iMjI9ZhzvtSnTKcGZDpOwiZj4pUh9RAkKlWq1pfX7dqk6BJwGS4MwuY7koqbypUhurj0el0OpqamrLN1Ol0zNTfBwUJRaMtBYN1xeMRnTxZVjDYX7x+5ihyATYBZpTGYrEhS4KvunkWBH5OtYKxIrhNTU1ZFQ6opgs5Ho9rbW3NJJ3d3V3b6ATDTqejp75Z0ETqh/TG6z6vX/qNN+lr9x/WxktFRc8HIViA1OKCfugn53TD1MdV3j2gj/12SLlc1J4NPkASgDRIVAwUl2TBiCAHC0hQwOPlx59Jg+ToPT54GQk2VK5U8VggGCTNmiBg93o9lUolA7uMViOQfPuRvH7s7pL+9v82rd/9jTU1mwPvGJ7jtbU17e72z0+PJgK694eeUDOQ09P3tw2AcU88g4avCq/o7OysrWcmRsDYSbIC0TfkwKoC3ACTADOa4cLhsDE4sBj48fB+0gDjT5KDJQW0Io1RGHJqDrI0CZN97PcXhRKTBrDf8H0o3GCGCeowXL4YRM0B0BEv8HXDVAcCAU1NTSmfz2tzc1OFQsH87EiHu7v92bkUJexD1h4gA28lnwMrD/Ah5nJ4B8cUo04Rr7zvEVVFGvh+8Tl2u107Pc0nWV98wOjht4YJY2/4xh8KHZhTZqFiK4G58lMjYIQAiBQavokWOZm97mdfspd8c6fvXges4mmGweZ9KIhDoZB1S09PTw+dRMY1eNWMnIFvGgKENQ1o4jN8AQUI4d74OOMtYUjFeMmJbQB64hhxCYAKy0788KBeGoxH4556ny/AlXm9FA7ktb29PaVSKft5iBWKYYrFYrGohYUFOyGt0+nYvFnWB5I5NiNpwGRiw6P/wjdUsgdojpqenh6SydmXHjzDgEciEVORPEHCZ5RKJYtVeEh5brx4XxoLiV80a1OEUJSgLBC//P4jXqG0QPhQUJFnm82mVlZWbF+EQqGhmcqeRPh+r4senHoZptfrn/hDpxqVDRuIagDZC4AQi8VM0gUg4BWhk5CKAXYA8zM+IeQ2mC9JFgwJqNlsVplMxoAKiRVQ6Ol3JCvfTILkiISP9A7jyEJBUkW2B3Cy+D2oQoaXZIEccJHNxvSGN6zoyisf0eRk1e55tRrWs8/O6ZVXjujcuQnbJDAoUt876gMKvkrkRhhG2F3uAZuIBY+cQyXrmUfACQ0+yWRS+Xze7hXMiiQLwOuvzugRfUA3XfsV/c23PKDy2+7QmfVrtFdfUDQqpZKrWox9TuHelk6s36jPfGxckUjI/JmwMF5a8g0VBNt4PG5BFLtEOBy2IdMkbFiSTCZj9wugDriBgWUIPKO8CIoAFapw9oIvQmBEAH1ImgB8PSc9fvTndfPsv9c/+NVr9dv/r20V1ls6c+aMZmdn7fuOj49rdl9EP/q3XtNo8Jw+d//7tLu9ZftCktkU5ufnbX/CVrbbbWMkG42GZmZmbPIB/mFADAGWREkByJ5hbVHtY7ug0Ein06rVarYvfYMcawK1hAKB2cIALT4XxgRVBmaC+ZA0b1DsEgOwAsD40HRJAsZ3GgqFLEl69rDZ7J98BKtMrPLxgqIsGAzaSLtisWgFJx5cfIycpEQM8+wV82dpiuI7ALiwEbDHiE/45CQNdXxTsPF9pQHDCACh0CaOA7g5lYqYTfy+UJ2A0SLmATDxvDM+jniKdYLvRx5h37FmYI99ocv+h8CAWQRgsdZ9wQMDDnuG35LueWwHxAMABNMp+J1ut2trgfvLGgH4+aYbRhoCbgDSxCWKPQAez4n7yzNHZga08DnpdNpsCnwnAAqFIqDa27m63a4Be+Zv4seELeb7e1san81ekmQ5h3iAOuOPQMaLiTWPuIg1jL1ArGWdkrM4dntyctIOvYAtRV1k/xJL8BLDbPLMiBd4fwHR5DG+F+ubYpai9/jx41asSwOgzxolplEscu8jkcFRpqgAkAY0F/tJHcRYniU4AoUKsEw85l5S/L2e1/8lwKlftARBusekwZGkc3NzViGQQDxL4P16eGAISPhAJZmEgZzqaX46aovFogUA5DXvO7yws1aSbRjvraLJBFAHA4N05b8zwQWQDWACiOLHI5B2Oh2TJglwrVZLk5OTuv32dd1++4sKBHo6dWpezz57rWq1oDqdmqamVnXTTcu6/fYzeuGFQ3rwwcvV6wWNHeO+w+SxOahouVdICTAOvnsQVmRzc1Obm5va3t7WmTNnFIvFbA4ohUStVtP4+LhyudyQHOPZIO5rIpHQqecb+tZXrtFVt/R0861FXZf9PwbrqZfUq2ev01PfTOjMqfp579BgOgNAgO5OGLh8Pq9Op6PV1VVJMhuDT748w729PQNqkqz7Mx6P21nLSMgEarxBSCusfSpaX4ABANvttgERjpRlHZBgKbwSiYS+9YlX1fnAP9Yt8/9Jv/nvmzq+frWefCSm9l5LIyMNHbpmTNfdWNBU/GHVg3P6+qM/pfVXCkNyOUmOveXPjKfwABzTWSsNABASUzg8mOvLngPMsLd41oA5SRboScbMhAU8Axzw0AJwCNZcI8eCwhoxcojAzmiYWq2m1dVV1et1TU1N2dpHtms2m9aUxL3n/QAh0WjU7gngFBmTteC7hL3cBrCBoQHg8CJ5YEeQBvJcOBy2BrF2u23FH5YImBISJskbsAB7yeeTMGGViAE0jPDMw+GwqTtMRwHoUdjB2FBYwQIyxqwxmtbl7/6wUkeuUiAQVHv9tFa/+AeqHH9xSNqk2OE4aM8W0XgHwMVKAPBgnbDvAICzs7MGqLa3t00mhumVNCR5ElvxnvNe+P7INfwOcRMAuL6+ruXlZSvKJZn3nnXBd+be+5mYMHkAWn4GwMe/k/t4vjB42ChYp6xJiBueHXuJ/ej9jrCoPGPvXYZlLZVKqlQq9hy8kkJHPvGfvYm3k4KPZ0XjGUd/E2s5dtODdYiAQqFgbCsgDqsXM1cZzYYlp9ls2j7sdrt2ZDWYAeXAs/TEQzAIcYD4hdWIfROPx22iD+QPzxZWnnuDYsYz8w2Q5JBweDBCi2sEB1HwUORgB6Boo4+GOEjRxt7g71/P66IHpwRyACIBAAaDxUcARY7g75rN5lC1RuCn+s9ms3bzWWSAQzaqf5De34Ukg4kZ2R9Wi58Nh8PK5/N2PBhdoUgYJE0CbjKZVKVS0fr6uvmJ8JB4AAr4rNfrxkx4sMKmACgFg0HNz8/r1ltf1vXXv6Dnnjusb35zQXt78fNS5Y6mp6d18uS8vv71Dd1117Zuu+15TUw09Bd/cd3QvFXvm9zbG5zgxGb0yYvKlaaJiYkJxWIxOzwAYCJpaPYaQQAfniSr6qg0a7Wa0um0sY6lUun8LM+szr0c0GMPtLWzc7Xy+RFFo2OKRicUi8VNtmfUjzSYIwmwoLGAeaue6SY48kw4BAJWh03t/VkkO0A6rIekIYCAXAqQikQiQ5MJ8Hr5RNNu98duUbRwXd6OkkgkdOxLK3ol8zd19R0tXT77TV3y/hND+20reIO+c/pv65n7d7S5+sqQrwr2bGSkf8gD95okBnvKRIRUKmWeSSwbPEMSAoyAJFMbUCNgg0lYMJPsQ99FvbOzY0AIqwl+Lu4vbJFnBWhg4jQ1XzjC4jG+jWSFNw62AgbYF2uMxWL9w/h2Om0dPdrUtdeuaHR0S7GY1GrFdPr0ip54YkqlUs9AYaPRMAmVIpVk6geKk5y9msAaoSii0I3H4+ZVw/eO/InK4T1zJCLiDawjI6sAxyRdLEZ09BIruaeAQt+JDGlAMRvKzuv6X/wtNTaLOv2Xf6B4IqHcrfdp7qf+Hzr7z39GITXsOwEKiZ+AUpI2kiaFDoCQPU3DpFcAKATxMvO/JH+kdr47hTlAmAI3lUoN2S12dnasWKMwY88Ui0VNTEwYmPVHzfJM2e80tgFMYeglGWDjOVwIsBcWFmzKCI04gFdyI59FEcxz5u+Iyew5b1EhV1UqFbMvAIAAoN7OAmtIbCXnS7L9DTCiyYqpETwn9gZNWnTUEysgAlBP8Xiz3sjzrFPIE8gkCBdiq/eK+gKdPTY1NTVkc+A5wbpybTC87JNUKmXrlnhFrMOb7a0mFNMw5B64Eh8SiYSpzcQF8g/7EfWSn6EIBWt5GwHg9/W8LnpwyiYjGbAQA4GAzbOjScczHpVKRZlMxqh2vIyAAP8+BMrNzU2TmpBvYSFZFJxWQQWOL5BkyFBpHiBeNqpWvF14U5HtoeTZOIBS/GssTHxHnGcOiOGIRAIP8/lGR0etGhsbG9Pll5/T9de/oAceOKwHHphSLBZQPj+p06dP69y5cwoGgzp8+LCi0Vm99NKCGo287r77fr3xjQl94hOTlgRY2NgqCBj5fN5APuCSs6o3NjYsuXMiFJ7JUKg/2YDORICJH0dFkoBBoiKnScZ7apEv+4m7p42NluLxPaVScYXDETPAkxgpMuiQ5J5jDymXy9ZsAEjH0M9Q/DNnziiTySibzapYLBrrx++RyGC5KJgofryBHtaHdcoYK5rPYAmpuD14Yr94PxR/3tnZUXV1VSefauibU9fq8Bt+WImxnhp7TS2d3tTm8bJi0WUL1P4+wXJRfdOtz+B3aTAYvtFomC+bUW2weH4mn5dqAeaZTMYUAqRRPh9wQKPg8vKylpeX7Vo9g9Ttdm3CBewpBSvFKRYafLE8Jz9PmQ5rz3pIsoHbgBSsNePj4waAaIbq9Xqanz+ht751RTMzdW1ujuncuXFFo+NKJJq65ZZzuv320zp2LKVvfvOodnbiJi/CePgiFpmUkVAARLp8uUb2CwDNg3CaoDY2NiwGYikB6NI0RYJH5uz1egYykTinp6fVbrdVLBZtj/suZxIoAJD9A6iFGcq+8yfVadT1nV//OXX2+r7JwuNf11W//Hu69Mf+jk58/DfMviBpiDGXZISC9xjzLHlOsJF4QRlJRCFIPqAYhCWFASUvwKixRvwYP+xXFMKAHk+qkCt84Y4dR5LF/0Zj0CGPR5nCbnR01KbCwBAzIswDTxhVVAbsBNls1vya3l/oGXJsEewjnik5qFwuiwZEb+mCZWWeKU1e9XpdpVLJ7l0sFhtiL2Emad5iGtm1+gABAABJREFUvaDgEOvI5+Q4igm8/hyN3Ww2lU6nLd8SQ1KplAqFgpaWlpTNZo2Np9AE9KPS0OQJmQWQplGZWEk8Zv2wX7gmv5fb7faQl/jCfgN6CVgrqHWhUGgoXm1ubhpg5WAAD86xR9Gcxn9MfGF/NhoNi6FgFHpEyMGv53XRg1NYSB4oC4aRDAxbRi6QBn4OqiQ8KtLwnEOaIaTB7DcvobHwaWggMJHgOLfbm/zxZhCACOBsYMblIP8Q4BjGDqAicNOZiG+vWCxKkgFXgijjNaampizpsPhp1JC6uvLKp/XCC1l94xvTCgYDFtTn5+dNHm21WlZ9Ly3N6/nnb9RVVz2lxcU3qtEYNBogk1BVAjC834Xighmx1WpVm5ubViwwXJ7mLu9tocLOZDJ2/B5SDyCeQEcwlWS+uUQioUwmo1KppFwuZ0mdxoRcLmfAgntKUPW+WUnm/YSxpcAg8BC8CZzpdHqocobFiMViFmxhKfBVkUiR7JF+WKMANJKwbxLk39LptEltfg9h/F9eXlYymdTi4qLGx8e1/tyaqQTFYrE/nu18gSHJWFjvdcK2wtpHzmOWobdswCqwBySZ5MR9pHMe+RXWgcodQMwpWDCwJEK+7/T09JDFQ5KxvBRS3ufrGzGi0agymYwlA8a5MW6JooC9AduILxP2lXWFvAgze9NNr+n220/qxRfH9eCDl2tpKa9Go6nZ2dnzjORhHT58SrffvqSf/ukn9LGPHdXZs3FLDiQi7+/2jWCoJ8QnzyqdO3fOJivw+0i4MC8eaAQCAQPn4+PjJkFzxHE6nTbgyZr19xHmBYsLzaV44tkPXCNrmcLyyKXXavPFJzQRj2i72X9G1cKqtl59Ttmrb9UrCihxfp3B5MBA4qcHNNJIOjIyopmZGYtvzWbT/IvE33Q6rVKpZKNyuF+AV++rREUIBvtn0gM2YdpjsZiNr9ve3h7y2JNjsLYAsthrPp6wVlEbeF68KNCZiECBx/qnSVfqA6xSqWSgg9GFWCO4N7DMvDdeYNYhjOn29rapFKga3HPsNzwXZvTSx8EkBUClt8nQyEVOxiaGnYfX5OTk0ExuCh9iBsUwOSgQCBj4Z2+gfhDbyR0oozs7O5ZrYSaZWgB4x2fa6/WMoGFdQ2JdaCUit6EGQ05UKhUj0TimlRMTUTTIYxArYBRUYxQklE2ug1wQCoVM9Q2Hw1ZYeaWEPIVX2nvRfdPWX/e66MEpdDebgU1CIqaiAEBSmZIM8XjRoMJiACDCkLVaLRvB4OUE5uYBPjn6EV+KBztsTsBAMBg0JgPqPBKJKJPJ2Cy+crlsXYDMb6Vao8KnSuI7sajYHNPT00PzG5EDADKjo6Pa3NzU3Nym0um6/vAP96vb7SkY7M9Qgy05dOjQUCMD3+HYsSO64oqndfPNZT3xRGZoRMne3p5WV1cNRAOONjY2bKg+IDAQCGhubs6CQiwWUy6XMzZnZmZGkizIwjRKsjFGMONUglTIJA/ksFAopLm5OaVSKWM2YXdJoHzXaDRqwYUAxazShYUFhcPhIbYPphI/Hs8jl8uZLxZmhQrZA2uSGAHTgw8CDMAWhoMuZZrLYGfw+kkyYLy7u2vNPMxVheEksQG++BySDM8JRpZ1BzCDTZqcnLSGCZ4nrDfyFfKxnz3Ke3owA2jBpkIwJ7DznGA+KfywTExPTxtgRq6FQSVJSbJijs/Z2NjQ+vq6FZAUiqx9rAmwNBRvBG4PLgAonDTli42rrz6j228/pkceOaSHHjqgcHjgmaZZodns6qWXjmhl5RK9972P60MfekX/43/cIClqa4w9zb6EceMZAtRhjohrsDq+ICQe4r8nngA8pMF59b4pA4DG2oRZ5XtMTExY8xYkAJIt9wPiAJCHNxVFJBiOSJ22HSICUO406wpGohqZ2a/obtmsVIAa7g/7B58jRZC3hPHi6E1ABtdNoUlMkWQscaPRGBr2DqOI9cGz6L5pBcDD+fCs52g0ak21xASKaYpy1hSxBFUFNi8UCpkFBhCBFSkYDBoQZ0A8DBnFlbcyQGYAwHg/ACDPCrnegxWYfn+qoyRrUqa5E4aSWOGnYUgampSB2sj+Jj6QG7BXZbNZk/0hFbwNB3sM14e6MDk5aUUMBQlMIeAZgA/28La2arU6ZF2i4EFdInaxH2k6IiZCamHP8L0xWOISiYRmZ2ftHjGZCGKM4p28wnfDfuNzKVY8rov8RS6inweQDsnU7XYNy7ye10UPTmksqtVqVlHhvyAwQsMTTJFjpYHnyXdvIksCMBi0y2LAA8l7M3Q5EAhYp6skzczMGMhlw/pFRuD3niGYAza31PeJ8rMER4BMPB4fMmezoQEt/BzXjPRRLBa1u9s/fpHve/XV57S8PKq9vX0aGenaeBWqOpgnD9ipmF57bUGXXXZcjz12SNLA04aMwLnEkqzSwpdJtej9mwC4paUl87rALpBYuBYSjk+SHqjDaiG7ep8MrPna2po1EVAM+O9HkqPrEiDFYGUv+8Jg0U3vjeNra2smmxBkqHRhJvCv+cYw/o7mA9YxrIgkY01CoZA1MFSrVWPT8ROSJJFfYGmy2awVEe1224AIwW9yctLkIfYQDD9B1fs1Y7GYksmkisWigVa+J9U/RZ5fawBeP0gafyTJlHUC6GSPkcB5DoAIwA4sk08gTNog6TI+ib3Cd+VZA/o2NzfN+8rP4EPrdDoWj8bHx60o4pnBzEk7+uAHn9djj+X1ne9cqkxmwkAbHbLI0n0GXfrCF+7Qj/7o1/WOd6zowQcPWfInocEATU9Pa2dnx6YJrK+vG9ggaXU6g+kTFHwwWoAx4oxn6rAxQQbs7OwMjYtjvcM6EcsAWdx31CCeOcBxY2NjyDYFsAyFQtpbP6fxA5fp+HbVYuro+IQmD17ej9+pnHY3lmxdI/WSdAHriUTCQBD7eXd319howBPAeXt72/Yk8Y9xhdwTGnN6vZ4VgTB17EumuDAKbGtry4gJiqDR0VF7X64dBpXPorkIdpB4xvqlmGAdU7jgTfYSN7Yl70skHnofPNeHhx05Hl8s6wW2VBocg028DAQCKhQKQ8PiyVcw295qQEzzzV6w9VwfAJz9hjeTJmE+g1gDmcS9oUHKK2W9Xs+m/hAXIDNQMH1TLioto/s8sMvn8xoZGTF/r7fF+F4Y2FWUPawL7E8/ZjIS6R+kQNHBc8GOwjogHrOPYWb5flhAuF7em/tB8YVCDfnkvcyeWUWF/r7Y7XX91P8fv6jKWcySLMlMT0/boF4ftKHxSSgkSS9VkjyQrkZHR62ZiU44qlcvDZCkffOAN3DDJnCcoO+wI0mQxJDgYBoBAkieDNSFbWCTUbH7CgywxiksjEDZ3t62Ywmz2abOnElK6gdX5E/AHkwoLGyz2bRDCc6endDRo6dVKKyp0+mfHU93eyqV0uzsrIFkSQYCAV14uZAjYU/W1tasUQAZhwTj5VwPRpGXPctzofldkio7u5q4+W3K7rtE+/ddpujYhF75+L9VfPUVky+QZGC9JNkGRjbCvjE9PW1+HzxTGxsbmpiYMMaU2XFU2vV6f3i+b/SamZkx+Z5u2gvvP/IaSYXfJTAhW8J+5XI5A2vpdNokTIoe2CEf1Dxb0+l0dPDgQQMbvjmJxCMNRkb5e47nGLlOGrBsWAbwfgEq+X0vV2IxCYfDxvQgqVFssF8pvmC3PHMFUGLNwFDig/RyHwmBF2sfRg0gR0HpLSfVanXItwwz46XQ669fUzDY08MPH1KpVFa32xvqkm00GsrlcsaC96cMtPTkkwd0110vqt2+VJubERs1hS0BUEsypOEGkILawn1mP1MI+lm5qE8UIcQ2vGx+EgUglcKE5+/tS5IM8ASDQWuW9PIya4r7QKf+6Oioas8+pKl3fkiHP/gPVf7WFxSLx5W+84cVmehbgBJj49p0zA8TWtrttsV02CQsGMi2WDCQWNmHFMLEb+7VysqKAVA83pKGTnljXUIOlEolxeNxi2MMnU+lUjaODKWkXC5ramrKAC9gTZLFJQgTfoeigWKN8Ul4A8ktAAyAEu8BCMTTHQwGrcmOfEkR42dzE1cp7v1JZPjrURhQQACxgEDyr28EgtHzygvgHWKA4oLnxnrj/sAMcl88sPS5hAII+xF2CK6BYsrnK+Ygd7v9Y8yZdQ3Y433Z8765i455gB2eVUgqCiP2FKf1wfhiH/EWAtYscT0SiVi8JM5TDDFBgx4MCuNsNmvMNDYHCgj/Pci3kGDE3NfzuujBKXIi5wuvrq5aRyLsJ8wXXiuCPMOBfQMP4I0qlwXO8Y9sMBpBYJvOnDkjSWY4Z7PjpaHrkWYEgCyjOggi+Hjwy7GJJZk531eVeJ7oAA2HwzaonwochgCwQrJgtubo6Oj5Rq+wEolJ89rSHQrDceEsSRJXH/T2AUU8HrBxNvjQkJsrlYrOnTs3ZNqXBqNC6HD1M2dDoZAZ1aleAe3cN4C6NGBN6dSFRea8ali4VqulTiiuK9/xN1Urrqhy6mXlr7rJAgH3lGYqqtRGo6GzZ88qEoloZmZGe3t7Onv2rLrdrgUOgCHgwk8MoKlCGgzp5/sCLprNpjXqUOUDThm7JcmkY5IOjDgNe5j2KYBoLvAFHZ4hZB78ZPHZg9p3490aP3yV4pkptWtVtdfPaPc7X1TmPHgEuAJmPbMCw8E6nZ6eNoCJ/YGAzBBqfFHePwUIh61qNBp2BDAs8tzcnDKZjGZnZ01B8Y1U4XDYkjMJv9UaDM2Ox+PK5XJDs0NZi8Fg/yhP4gzXjW2ApOsb7kiG+GN3dnaGLEXMc+12O7r++nM6fXpBUlrxeG3ovgHGYXUARuPj43rllf26/fZjuvzyU3rooX2S+hIdrCBeNAAEFiIKVfYuzCdAH9DiR3ixtzhWkudDXPI+SIpSwArPAyCIhIjdBjAF40ps5XujXpB8R0dHFT79XVW+9ZfK3Xyf8je/VZJUXzmpyqNfVPrOH1ajVrV1AzvOfSXecB3EMa6P/ECxBbDAD06S9gAK2xP3BpKErnmaWYjDxFzyA59DXGCNAqhQibzyJw0au/hOsLN8P2nQMMzPea+oLxxQCUdHRy0H8p1QKsiZFHiAHElDagazZQGBvnOeec/sI5/Lksmkstms3RO+C8DekwvEPSwsxFysCrDMtVpNa2trBvQoJv0BOXwX1huxiLgDEEfhY20CUr0ixfVxDZApxFVsbRSx7FeKZ4gnlCUICd/TADCGrPLPjJwCYwsWwhKG0ugnTJDfYMvJH6hlKML+Oim4mEZCzEL+fz2vix6cMiaGKoFFC7oHpEiyygLplK5QfIKShrwX3q/EImAB+uYZ36FGBcfJLBzlJw1mrAFkWIheVmNxI0HhB4VNBRTTBc+ikQYBDr/cwYMHbRF70zqbAPP3wDMU1fh4zzZOPB7XJZdcona7rTNnzqhUKtl98PP1+vaGhrrdgMbGsgqFwpZMCYzIHKlUyjw+ntGlAGAjktQJSDCIo6P9c4Vh2JDOkSHxWgYCAeXzeQO7PG/Y5Ugkot16Q8f+5c+qsrasXmpG+atuGjLhw4omEgnl83mTdgF1yEXINWfOnFE2mzWvJUfjcs9JcDSp8fupVMp8OiQfmGLGnsAiwdAhB21vb9s1Auik/vnS+Iv8MGruB3M1ASQ0myEHzt/7YxpZvFTrTz6o+upZTUzPKn3TvUr8xC+p+fv/UuHz7+G77xkjRcMd6xk2k/0IqKZwSyQSQ6cqeTmVZ4dNhPXE/qE4mpyc1JEjR5RMJrWxsaHjx4/r5Zdf1unTp81GAHPGPsL0TzBlncKCsJ5Yp3iSfSGJvM16h0WhIOFzAAAUPqFQSLOzo0omq3rsscvNK01nPCwJcYaYBTDpdBI6ezanmZmyotEjFnvwXw5sAHX7NxSTQCBgiYdnh3WAQp4h4TBPNK5lMhkDSbBPxCyaU5lDzH3xPrz+tQ+Dv1gsZmucgpaGS4AQz4ZirvvAn6r87S8oPrWoxs6WCq++oMV3/bQkqbpyRsFg0IpJPov9CxuUzWZNcg4GgyYPT01NGdmB8oB9yysc2Ds8UQAJwvdkfbC38VCTj/AFQnog09dqNSuoOVUKdov3Y18wfimbzdoxrnxHWHQmJmA7IQ4wRhHG3awT5yV9VBhpMIaQ78A1wgiT+2hKRnEBbAGUYGWJ3UjYdMNTvLA3ISEAqRSDAElJVtCQ55hIA1gClPG7KAUUw7wHBTNMYLVaNYvJ2NiYsfvcc1jMZrNpjX6ANPIfyhCsNOQT+0KSsffRaNSOPAeEkwN9ocln9Ho9LS0tqVgsDtmgyOvkMfYq683Pe8X+wTMifiP5U7hRpHsGG6BNjMQq8HpeFz04ZVwKXqDFxUVb1CQ3KrGJiQkbary0tKTFxUUDSwSiYrGoVCplD4jfY3H5ho++xLZj3ioWBN7Qer1uiQiWxXco+uAEeAGA0BnLiwoVyhxml8p8fX1dGxsbFsT8bEk64/2oFqpNkvHOzo5WVzM6cuSsRkbeYCzY8vKy+edgc2Cw2Gi1Wk1XXFHW2lpGIyMD0zcb3DNByWRShULBADEJleQNQ+AZtvHxcZP5ka5gGmlOAPQBirBi+EofOZoKuFbd1mi3P0+vPdGvpGPxmOrnA8P4+LgBFWRuJLl2u23+UTw/MNBUsfxHsEeiQlqi6iYgw3bjeaMyBuCQUBifRPJh3bF+kFd4RgRiGjYAoDRB0QRDs0A4HFbk/k+rvnJK5Y2+WpDJZLT0ra/oml/+T4pdd7eaLz0zNB7Ky40kELxJPBfApw+aJBMAk2/sQcZkPXk5CXYzm83qkksu0fXXX6+pqSmFQiEtLi7q8ssv12WXXaZPfvKTOnv2rAG9UChke541KMkGVjcaDa2srEiS7SX2KvvQF5eVSsW+I+sDMDwzM6Nut6uTJ0+aVAezk0gkNDfXT3RbWxoqniYmJqyAogjiflGw9YGulEzWTVZm3fHv3C/2EMwJDCR2GM8e0hgoDU6447ACrBd0mLOm+XnWFWvcF6jeS8+UjFqtNnQIAL8TCPSneZRKJfMUh8OD0USAwHC7rUb1eYuZY4euVLOyoc7m+lCTGGuHYqFYLFqxx72QZEUz99CvTSR+gBKTHRhvBDuF5QZlTJIxjuxN33G+uLhoe5U9D7OKlxf2OZ/PD1l8eB8A8OLiou677z4lEgl97Wtf0+nTpw3AEcMu7I0glvd6PWt0AfwAWlnfFBCoOux38hz5B+BOszBrAxsY9ghAPEDMN3z6wpkRR6wBfp97wV6empo6v5+2rPjPZDJKJpPWAMoaB1RlMhkbUbi2tmYxh3UgyXKSB8yQWqgtWHa83M6cU67RN5dhmQFfcO9zuZzZ/iji2MsXeunxKLPvKJphUAHD5F6KCjAMUwN8MykxATUNppa9QoEIKUF8gsUm57ye10UPTsvlsjY3NxWPx4f8OgQUFla73R/hMTk5aYwJYICAwo1FCmJxAkR58QB9ZyaVDZ5Cmn3oaiYYcJ31et18Yn5oNwuS2Y3I+zMzM3aWMFUqC4vFySD1+fl5AzheikQ+zmaz9lnSwLD+9NNdXXXVqzpyZE2nTh1Qt9u1hew9WQSWbDZ7vlt9Sfv3V/TlL99kgQNgiYTIufI00dCpHQqFVCqVhrrMaToi2EgDicfL6CQOvMXFYtE2jySTrGGuCfoEZx+gR0L9BNVsNK1AAVz1ej1tbGzoxIkTCofDOnjwoDUAwGTQoU3lCFNJZeyrTYINTEOv1zMZlHm0BBgCL+ua/zxLzPqjWQkgAFCAEWBmJ1U0fiSM7gQjSWqtnlIkFDTwsre3p26tpr21s0pMLRjIgT3At+xlor29PfMW+kDKPFv2GraOcDhsRSIMMmwjjNrExISxdzMzM7ruuut06NAhAxjS4CCGyy+/XG9605v0+c9/3tYD9xYgjCWB4fvc30ajf7RqOp224wk9kGI9EbglWdzodDombdKwAzNFAdMvTELnf28wwUCSrRv2Lk0uFLHlcvm85aCpTic8ZNvw/satrS076YniGSDaaDRMiuTe0FCHBejChjT2fyaT0ebmpsnkfi9PTEzYswO0wCR7pgrWiOSO2gGzSzFFAU/zDPecpkjWWea6OzW+/zKd/PR/VkBS/PzzZZ1TZCBdk1iRubEPAX74bqwX/JOMbUN2h8DwbKrvvkZZymQyRlBEo1E7GQ81g6IZNoo1xr0ApPgC0LOBIyMjOnr0qN70pjep3W7rkUceMZsMQJHPxgrFegbIEYNhzQE0WCv4TrCYExMTFut4HoAvSabmUCD4TnxUNKnPQgJKYQchLKrVqnXXs8a5NxSI/Jv/XIoG7lU2mzWShDwcCARsPjUqAcwu+RUmkQKD/A7LSAf/yMiIsYx8F/Kq96BiFcLPSSxGgvd5mTVFscnaxPtNvOx0OspmswYqKe4p6ljzfKfV1VXDJLw/M1BZf6lUSrlcTlKfCSYG+tFmzWbTGHq+NyTa63ld9OCUgLm9vW2LCJMykrqXFJCN6YD0VTnMDmwbcidsHXIqCQrGUZKxNnhVWDQ8sGw2a/IIiwe/BpInwIoqE/m31+spl8sZ64u9YGlpacjADhvKZwDMSHzhcH+WKkHZd+FFIhGdOLGm06fTuvTSx/XSSxMKhcYNbCLh0PEL4I9GI7rnntdUq8V09uyiRkfjNtyaAM/9bDQaWlpaMgDOvZ6enpYkS8ZSH8yNjIxYAILhQoYEJBNsCNCY1wE/sBcwkDA0gCGYkEiraWuKa/fMNcDDS0cAT/y5MJf4zgiOSJdcL2N7YFBhKgDKJCAarvb29syXCbilQY7n7ZvoWNdcKwwff0cRwPdhpuHW1pad5e19QwT9YDCo2ERazeKyBVE80TC3Xn4vlUo2fHt2dtZYIdY4gZOAi8RP0ScNZryOjo5qamrKCpd8Pq9rr71Wi4uLQ8/JvyKRiK655ho9+eSTdsQozAeD5GF0KWalwWxI7/1mFE0o1B8NgwWFU2l6vZ511cLeswZJHBTDrM9Wa0SNRlTz85taXd2vUCg0lMg8MOTZU3gHgz0tLtZ08mTO4gHFFjGN+8jMUWIEa4/RMoyjQ9nBG4pNhCKkXu8P5Ge+IQyS7xSGVa5UKgZy2LskMjzVo6OjxjLxOZJs32NzKJVKFiuazaZCMwe1+N6PqvradxVqNTSRW9D0bfepcuxJrT/8edtz0uBYXO8nJG8go8IOhUIhS9g0egDQfTMZs4U3NjasaRTQTWwFOMLI8VnsPb//8PchQVPAAQ692sB+5r56q9jJkyf1jW98Q9vb23rppZdUKBTMV408zd7k+2DF8WoL9wjm2xfR+N7Z/76ZCGbSKycAKz8ZwNu0eLEPIYomJyctn/Z6PZvzLUnFYtGUKq4XAE4fiSeDIArwUgaDQcMCFPMATF+UkGeSyaTd862tLcML2DmwC7InvE2IF6QS9xwvL+uO5+t99+RJ9gfXhG2n1WpZQ14ulzM1olarGfiVZLkJgM3oTe4tzY/ZbFaFQsHuI/sa6wj7yjddl0qlocZp7t3reV304JRZlcwSg25mTAcJD18gEhNnO3tjNR5MNgiMFjcbsEPyYCwRnimYQrxJ6+vrJvt50Ly2tmbBD5nK+zvwX0KT09jS6/W0srJiDAW+FdhAGDR8hiQ0byIncCIPALIJMl/4wgF95CPP6p57HtAjj7xNiUTWfEP49agWc7mM3v72Yzp8eF1f+tKtajZ7CoXqdl/xFtKhvb29rfX1dUuYbD42P/cZiRQJm7+nU3pqaspM4HS6MsSf70UlTDXu5To2ba/Xs1EcofOn+cRiMTs2k7XD2CuCyYUeYALg+vq6JXakKj7Tj6shyXHvsQbAZhHkeXYA8mh0cHoJwBivD1X2/v37DSBGo1FVKhWzAXBdfti89/HRzICfCrkGmWbi6tsVmcxo4xufNtCEQsBaImny3UimJ0+eNK80FhxAM8fpeemdSlzqg/SDBw9qZmZmqJuUAuOve8FUcgoZe5i1CfNC8eatGPjq/MDyer1uzWTsw1AoZPYdACyjcpLJpObm5oZG0QHo9vaaevHFeR09elrf/vYlajb1PY04sDdeRZGkyy6rKJls6NixQ9a42G73x/sAAtvtth2LTNIC6BITYUFgnrvdrmZmZszWAiPPCUO++5wubfbe5uam1tfXh6wFXlWgWYoiYWZmZoiJZr2xh5BbiZ3xeFzFYlHdWlOjb7hX0296r8LxEdVLazrz+Y9p45G/VCQUUqM9OIGIk77a7bbZUFBhWK8UnuwPihIAE2uM4gEQTfLm1D9p+DAOEjv30fvkAYOS7Bn4vgUkYtQ871unsNvb29PW1pZmZmbU6/W0tramP/7jP1aj0dCJEyeGGqEApsQ9ihJfUPH9WSO+2KZBkCII9ay/jvcMdAOmYK35N3IM6wF1Anlc0lDnPwqEJFONvIcexZPfQW0ANMOM8nuc7hiLxYasUOQlLB88U8A8xTD3kVFK5BHv8WSNcG990S3JiAjuP+sdDyjFIX0IKHasR0bZEZu8n7xardqkAN4XIEvupEFybGzM1FvvRee9KTJ97IcUYSY0KgjfG0WGuPp6Xhc9OE0kEkqn09rY2DBZE4aTI0vxhuzs7FjVzgPHm0i1ArBhtAmLh4dI4uUYSkAhrBOnggA6GV1FQMesTXBBGmo2m5ZgvKeT4EnFy8JOJBJaXFzU8vKyVldXjekAbFCZkXCRuAmQBBeAKr6UajWqP/qjK/TjP/6i3vWuL+ns2Vv10kvTtuD6AbenmZlTeutbz2rfvpq+8IWjOnNmTpHIQKqmAmW0CsmWewyAhclm0+Il7PV6Wl5eVrfbtecIWPRNEsgwyCe7u7vmafWbDOYEzx/FAe/ZSwzOTAeQcL0e2Eoyjx/JBQsAiZsGGKwh+J6RZQlS6XTapBOkHYKnH5nFQG2+Jyd2IGd5KZDgTNAg0CH/w6pR8EgyaRSfJAwVrEQymVQsN6tDP/H3tXvmFZWeeMDAMdeDjOwLoFwuZ891fX3d9ix2AwoS1gMAioAIowBjgcdb6rMB+Xze9uj/7IWEBgvj7QQwLigOTASABeIACiwAnAwlacjnTLLudDo2Ho6TpCgaYI+wObCfvvnNpK6//qT27XtFzzwzN9QtPDo6qlQqNbTu+8XcpO655wUtL0/qzJmoxsd3hr4Pz2Vubs6mFLA+WLskdJIXSksoFNLhw4d13333KZfL6cyZM3r00UftKGi+JwwaAA5bCgwXShVJlO/k5ztShPtRVL1eT+Vy2ZKxZ79o8uvt7Og7//rva3JyUplMxvYJLBBMEXGc50XMl/rNqShH7EleJN1gMGh7z8clSA/PFrM/PaAl3mOp8Kf04DNnAgLsNuORMpmMqSl+rrX3DDMFBlYsEOif8OQ7zVm3FNvsKd882e12h47s5GcYrcZzBDAuLy+r2eyfXkZsphihaKewI3eyron55DbuXbfbHSJU+D1UE1+00SzHQSjZbNaeLTa+VCpl/06e9RY6YjFFAXuBfhBiO6QA9i72IQAYuwqkEDGEnNFoNAxESjJPN8oB94K1QnyGyOKa+DksGRQeyWRSk5OTFvODwaAdmwwLj1JDwYC9g/nPsOKtVstYXUbg4XPFakgM9hYTqQ9+yUv/HwOnDz30kP7tv/23euqpp7S6uqo///M/13ve8x77916vp3/2z/6Z/st/+S+qVCq6/fbb9bu/+7s6cuSI/Uy5XNYv/MIv6POf/7yCwaDe//7367d+67eGhrM+99xz+uhHP6onnnhCuVxOv/ALv6Bf/MVf/EEv16RF6PdKpWLVaiaTMfmFoMKCZ7h6oVAwdhRWhSYAHgobhkUJwAIYTE9PG5NKwKB5gaqZDeK9YdFo1DqnU6mUeW38okomk5acvCQJAABos1gA0FgU6vX6EPNI4KACJRCQMOv1ul56KaLf/d3L9d73FnXVVV/RpZdGtLw8rVotKGlPi4ubmpxsaWlpQn/6pzeqWFxUOByy4AlrKA3LUDwHfwwiDJtvtAIgcfLW3t6eVbBYKZBTaByhAqe6BuyRmKXBmCmuB4AqScFgH5zG4jEbDUNiJXDBKnCC14XjprxPibUQDAZNQsFigHeS9bO7u6vV1VXVajX7N4IUwQNzPcGXAABg9tYOpjXw/oxv4T+AF6wn64o1SiHAfoglM9r/U7+sbn1PK3/62+p2OqqcB5EwWqxBzP3SQMYFyLRaLZOgScokCQIme4yEhU8T9rXT6ZjncHV1VbfeeqtuuOGGoUDpYxVHRJL4C4WCATkKV5IRsQNJDDkY3yP3i+9KQJdksQKQxHeo1WrGolIgc0JSv/EhqGefzesd7zih3d2sXnpp8Mx5L8BkKpVSICDdccdzmp8v6zOfucmaLIhp3u/K3wEMYD6wOUky9ooiAt/z4cOHzYbx8MMPm1TomVMKJGIW+xDmBuBL0byxsWHXwCSNvb09O1wBhpZCFrACS80eguWhEAcksFbYE+wL4gwgjO/NHsJC4lU0pHeYQKaesCY9y5hIxXT5zQmNjXfUbke0XRnXsUf3VN3sj1LKZDLG0OOH5N4x1gwriLfxwOYTP8hJgOl8Pm8Hk5ALKbIoQpLJpDX0Ep/ZG+QJPMxY4FADyX2wp1K/MPdqnaShySEAMe4pLCkn+HHtNFex78kZqEBYYIiBKBPccxRMYhl2Eawq/ZgetIKO/dzr9Ru/ZmZm7HNoJOKzUEa8guYtMRAwPEO+a7vdtuZrikJyDWsasMo+ZT3xncjvPs/x3tgx2F+MJmPvSMMeZawV7HXAI8+fmOYVS6yRPENyG/GxUChoc3NTU1NTyufzZp0EANMv8HpePzA4rdVquuaaa/ThD39Y73vf+77n3//Nv/k3+u3f/m19/OMf14EDB/Srv/qretvb3qaXXnrJbsIHP/hBra6u6mtf+5parZY+9KEP6ed+7uf0R3/0R5L6NPq9996rt7zlLfq93/s9Pf/88/rwhz+sZDKpn/u5n/uBrhc2IplM9pm/ZlvZG29RauGAxlJpxWpVtZ57TOUXnzSfCj/LJvHGYYAFFRVAjuYqqHU2sGdkJNmm9XIQNgAYBUYMUSGxKGAWAMr9ZNRPglTWJJZWqz9nEfaIxQntTsItl8sGDKi4vakdaY/gCVA5dy6kT3/6Bs3NhXTppa9pampTo6MNNRpBvfJKRq+8ckSNxuL59whYouB7Eih5TzYh9xKplMRDcERKoFLjGXhDPYAS/wuAE1aMeZcAekARwQUQS/XYD1rn3zPab/hgzI6Xti60BMDMIFt5aRcwOz8/b2dyE2BYt1hMKK5Ifv6eMY4MoEci5xoAHqFQf05gKpUy0IzZH3YSwAqIQZ5qtVpWqdMNjkw2kkxr8Sd/SaH4qI7/519VZemMAoGAze4ksfA8AJuMqmIfAdgY8bK9vW2/75kX353rG6z8eBpAYrVa1ebmpsLhsK6//vqhih0G+9lnn9W5c+dULBaHmEUaGzh9TdJQAcna853nMLQUc6gOgFc8eRRTSLnsL1gLpEEmbdx//7XK57+rH/mRx/TAA5fp4YdHFImMGzAZFKp13XvvEzp06LQeffRmlcuHlErtWIJmbQHCGP0DiwnLTZFD9zSNcru7/RONXn31VT3//PM6cuSIjh8/bvcKUI8FgD3OGms2mzZnF2YQOwPsE+BifX3d7gtrmCTd6/XMu8lzHxsbs2QOK+XXoS+68BT6ucbYpLAG7e72j+6F5SZJU/zRrMS+o5u61Wopl8up1+tp5uiYrnnDqubin1VIe+rqvNVmvqk7rhrT6cod+vrnYiqeHoyCmpycVDKZNDUFkOMZPE+iUJwAnGHNAEU0x7A+KehREL2XmoYXchkxuVAoGJEBSKaw9WAHMgQg6WMjgBAlARA4OzsrSVZY+AkffkwRRSeAEvXJA1rsTvv377d8SFEUDoeH1J5Op2PzsUdGRmxEm/+e5FgfkyGW8PnCKsZiMSOQAGEcxAMDSp4BZ6AioXhyfTwH8glgDnwAK8p6YzIGsUka+IHJR7wHsR6FOBgMGvED88keYyIATYw+HpMfYfohUVgb3ENUNgpXlK3X8/qBwenb3/52vf3tb/8r/63X6+k//If/oF/5lV/Ru9/9bknS7//+72tqakqf/exn9YEPfEDHjh3Tl7/8ZT3xxBO68cYbJUm/8zu/o3e84x36d//u32l2dlaf+MQn1Gw29d//+39XNBrVFVdcoWeffVa/+Zu/+QODU6r2enxSyVvfrquvvEWS1CqvK6SeIgujOvyGe9Uorav6zIPaffYhqdNnOwhCVLbcfHxOsIneJ8jIEDZKs9nUmTNnrHGJBEQSisVixhgi2SDf401CCvMdktxvKl2CuGfM/CDdiYkJ891Ksk29trb2PX4cGnEkmc+W4AuAIRGtr4e1snLIgDRnUc/OZjQ6OkjonimRZIEGEAwghpkiiSMdEfRCocERg0hnJGmCCBtme3t7aOQOQJXERCMDkipSH8CM4iKRSCh2XgrZ29tTx7EzyFQ8P74LbBiBmeqc57W5ualsNmvNA3RuY60AkMFutdv92bgE9vX1dWPpkYr8zE8KpFqtZsUZjD7BkGcNMOKoTeQnGCeAd61WM+k0m82qGwjq8r/3zxXNTOvl//Qr2jl73AC2b64CSPoxJDBZnjkGuHpmKhAI2Ai36elpdTodlUqloaY02Fbe23vG9vb29JWvfEWSdOWVVxpj+NJLL+nRRx/ViRMntL6+rkKhMNQoRkcuVT9KA8lIkjWcsSbpSoUlJ9l63xVFIyw9HnbWLifYAJr6CTCoz33uNr3xjU/rrW99SXfdFdYrrxxUoZDVxsa2EomWrrvuJS0urqjZjOihh+7Sa68tKhDomczGOiX5c7a272zHx+bZDRI7sa7ZbGp1dVVf+MIXtLCwoJWVFRufBmvnGUQSdyAQsI5u1h4Nn5z/zv4Oh8M2C3FmZkbhcFjFYnFohiMJGS8+7KKfb8vorZ2dHWvIYM0bq3k+aW5ubpoHGo97qVRSLpez70LsR8Kn+PVHefLet7wnoStz/1WNwIxeXHm7nvlGWI1qSO12S+P5iG64u6lD2Yf1t3+ypPufeYce/uzWkK8XexFkBuwa95MCErkeMgRbCD7xcrlsMSyZTNoUgVwuZzmMedSsaw/GfDc5Rb4nTlirNDIxhpB1DRvnm8tQY4jN7FkIhlgsNjRiirXgTxTDk86oQHJXtVpVuVy27nsKQvIoU0y4X6xFvge5u1QqDQ2yZyygNJicAcAkJ/vYwLOD+ZUGMjr3ERWR4hUSgRjH6UwAX9/4RkHAZBPsKsQ81gnPoVqt2joA8FKUeW+vb171igvxjj4HCCGsN6wXGOBer6disTg0oYZ4Tjz8fq//pZ7TU6dOaW1tTW95y1vs7yYnJ3XzzTfr0Ucf1Qc+8AE9+uijSiaTBkwl6S1veYuCwaAee+wxvfe979Wjjz6qu+66a8gr9ra3vU2/8Ru/oc3NTRsx4V8ED14whfV6Xbnr7tDsj3xUre1NrX/tj1V64gGNRfoDo5vNphpjWY1ff7cyb3q/Ri69QYU/+x11m1sm/7PBGA3BAwTQ8IAJtlQcXnoEWAI4qdpJZpJMbpVkHerb29vmL/Kjp5CdvAwD+JUGRy+2223rlvOyLwsvHB7MgZNkgYPFSVMHMjvfm+qaAOYrbTYbbAVVLvYD77GTBpvWNx00m02tra0NdXjyffFt8Z29T5LGNoI0ADeZTGp1ddX8awQa3gMwsbS0pGg0qtnZ2f6czNverk4wouhk3xubuvIm1TN5NcYnVHvmQe2el4wIsMhTkuzISwAJZvRyuazt7W1jG/A8+3sAIOU+ItHRKMYsyZGREc3Pz5vcRMCmS5xnTZVNIGfdUTSNjY3Z8av4/Or1upaXlzUyMqK5uTlJg+7m7eqOjv7tf66RxUu09MnfVOnV5yyxc3wvyabRaCiTyViFTnLLZDK27mm+oFCCDQawwDpzIgnrtdvtjzNDvmR9Ezs6nY5effVV82LNzs7q7NmzeuaZZ7S6umoMHd5EpEcSF/5XRrqwJ1BUeAHy8ILim/QFJAxCo9EwWY64AgAguLM2m82mPdevfvU6ffe71+jo0dd06aUndc01r9rnFwqT+vrXr9Urr8wpEEioVisNNWqyX3yjG4P22bewpBSKmUxG6XTaJDuK6UajP+u1VqvZEbYoKjRKBYNBra6uWjwiMdLIxNGavV7Pnh1+SMBJKpVSNpu1JiH88IBn7hNNKlhOAASwesyvxsLT7XZtCoePIcSeSCRiQGZra8s82eVy2e4DPlpiGdJuOBzWze+J66rsf9Or5Xfqq5+MKByK2KirZrOlwpm6Hv98Rk+E7tNd79vQW677vAKBH9arj/Y9g35CARI5zw9QUS6XFY/HNTU1ZfeeeEJ+9H0D9FMw8J4jbzc2NsyCxrqE5fRebBhl1qoks5NgraL5CJBGkQjBAfMnDcYTVioVm4eLbQeghJqD1aLT6dj3ZWwieVYaEC7eEsY+4u9RK1g7AHEKW/Y3RAPWOooScg1riz0kyWI9OZDvDF4gH3lbAfEBewjgFEKIvQgxBimCHYh1QLHl7U8Ui/R4+JhGjkJtpBj1jDisbrVaNfCPikuDWLlctoIWxhxlk7jIwSMwsN5W89e9/peC07W1NUkamj/Jn/m3tbU1S4J2EeH+AGT/MwcOHPie9+Df/ipw+q/+1b/Sr/3ar33P38f3Xaa5H/v72nn5KRU/91/VaTXUq9fVC4/ZQ4u015Q/+aiKrz2h2L0/rakf+wc68X/+cyUiIfOsYtT2XiQW9O7urs1mw7hNIECmAcBRaWHY9lJap9PRwsKCrr32Wt11113a2NjQAw88YDIsCxwwBSBjk9KdOT8/byZoOuhhL5EXqKoBEN40T4ctYIGRLr7axZpAYCSJT09P26ZjQ42MjGhiYsKOleSEJCo0FjNFgLcA5PN5hcNhu5ee+QOYxGIx5fN5+zfkrnw+r/HxcdVqNWMBC4WCgsGgFhYW1Ov1zMPG/eT4OADy2I1vUTQ1WK+pq2+Trr5NklR/+QntLJ8zrxcBYXd3V4cOHbJgxtpAIkYmbjT6o7NmZ2etaY7igHvH/cFTS/MFwM4fbZvL5dRqtYwVoCiiKserxprL5/NWxMFYc30wvVTcPIuRkRGVy2Ud/rG/p9y1t2vju99Wrd1T8to7FYlGNTkxoclOR4XH71e73bZgCqNLQUcwholDbiU4kty4VxSAXppGBmUqA4nT+7gDgYCKxaIBqPHxcZvN65MwoIT9AMNC0IUBBpTAvPMdJZn/mGcOEw5QpSMZhgamlYIJEAwDKMnmKKJyFApBHTuW08TEQUUiLbVaO6pWuwoEYmq12up0Bk2XPFusMMi4sB5IvtwHaXACHooG95EpJ9JgJq+3C1DgECd51uwBmFFkXQpG5ntSOPkmT69O+dOw2PPIkFhOeI6scWRS4iv3geQPcCYmwtZFIhFjRkOh/nxT4ixAAiDH9QEgD96Y05XZ/6bXNn9YX/tkVL1uV/HR4aJckhEjX/gfO7rvp96uu6/9okrnfkSV1UHyjsfjVuBic/L31D9T9glkigc1AKJut2tTLFivxH7v38SKwjphH8Ka+YkZxHrkYpQW4lilUtH6+roVmtxHP06IuMl+rlQqtr/JpdzvfD5veZZCCzCF5Q3bCl5Xvgf+UHzQyWTS9iy5ADKH2AqY8vYkYgRkiZfhWVuSjCQA1BPPyXVeMaQ473Q6FjN9TGLP8d2xOOVyOeungSlFucE+R4yC3eXvUCFgjr2lD+UWlhmwDbGysLBgcYZcTdECAKbQpWjh+RPbvt/rounW/+Vf/mX9o3/0j+zP3MDFH/2o9k69pN2vf0KJWETBRMxM5xMTE3aCxv79+9U9eVJnP/Mflf3AP9bUm39U2w99RltbW6pUKja7juG/yfPnwVOF4QM9dOiQut2uXnvtNRUKBau6kRwIaFI/+HimrNfr6dprr9WHP/xhpVIptVr9eW5f/OIXtbS0pHK5bCM/fBXNIiEIUemQNLe2towhAuR4byZVF8zf7OysJicn7dQK7ideXEY4wb54cEeVTqAisLFxYN7wBEmDmYN4pygCaHrynhuYLYAHm5DOZ74LAIH7FIn0T7coFosma/BdvNzsmZ/d3V09++sfMZZsYmJiyGrBPeNa+HMkErHucZrKGGJMUOW70B26sLAgSVpaWtLY2Jixb7A8XjojMUkDxQCvqe8wrlarKhaLdl+RnwEBNJ5hWcEOQeMSSafZbOrs2bPKZrPG5CT3XypJyl5zm7LX3PY9+3H9sa+r0+mY9F2r1cyrRYczzSk+qGKPYKi5lw/9sHRYWl/Y0UVMcvUNjLCCJHuSLawGjUAjIyM2g5NEQzKgmU0aDKX3XcYATDxwgFJAld8n+Xze/JljY2PWKEETBfvSNxF5wEFi6R8JPGmHh3Bv/dQG/H/sWdYoAA1Q79kl5HY87MjjrJ1gMKhKpWKgAqBAIY0flL+jqZR/Z93DOLI/pX4hwrG83H+kQ0ZcES8kWeIk+UajUZPmq9Xq0JG0rAu8dtgdAEPeD4haBSClyQT/J/sGMNNut3XdG5a1p3k98tlxhUJ9NQZwybXXajWtrKxob69/1OPH/vc9/dNfS+n6u6r60u/HzCdIYSANPIOA+Gw2a88LKwPNdBMTEzZvGrBFNz2FEMSMNBiBSIObBzbcN2kwHghgRdHiixHPmPL+gHl873wXvwYANBRngN/p6WkDUlgAsIj4Zl1sDL3e4PQsnhnPENAFs+tPTIPZp2jydhcKYhogvXS/ubmpjY0NI2WYuYu9hUkMAFx6Vsi9Y2Njtra5HvI5axNZf3t720besXcTiYQ16DI+kfgPCJU0tP4B++xR9gK5HN8ycYC9yyQB1hTrlGdMPocNZn2vr69bjwjx+/W8/peCU6To9fV1zczM2N+vr6/r2muvtZ8pFApDv0dXIr8/PT09NFqG9/CfceELaefCVzA+qsKf/gftlfu+qEsuuURXXXWVrrrqKktW5XJZ586d63vE6lvafPxrSt14tyoPf9aCEMPp6WqkWYCkQ1XJAiHh+Y0H0GIGqSTzRSHpMUICpmFiYkJTU1O2YAB7BDyCCmwRc8Q2NzdNZoKloqKlqqlWq9YIJMmumwBFcwkJBpM6DCVB40LPJgk4k8loY2PDjn1jAyMFAPCR4kOh0JAp3Hvy2AyBQEDpdNoCIg1UeCHpYsWzg08G4HDo0CHzvsEO7OzsaP/+/Xb9gUDAJHRYN6pdGDieNzM/YS4oNlZXV22zr6+va21tTY3GYKg1wJsEevLkSUsCkoYGuns/WaPRsMIKMMLEBqpq5m1y3YAr2AvuOUGU4MsM1UwmYz5B3ylNsZVKpVT5zO/o7Hn7CqCLI1Q5YYxkFI1Gdfz4cVu7sOnsgdnZWWuMgfHje8EMABwBEoA1WBjPeFLUMfEA/yxJaXNzU1tbW8rlckMsDg0QBFaK0tHRUZXLZZNM2Rt+rabTaQu8MPcUMOwj2D8KXK6bIyiR3fDZhcNh65Rm3uTExMSQxFuv140VgWmiSCUujYz0jy5l/0uyQo57KcksHjAgsCTsWxoBObKXeMYaQnIHsJbLZVOVGBnX7fZPTuMwBxJwNpsdGv1FwpRk1hDuO4cWsAYAzMRMXqg5nDCH9xFAg5dzd3fXCm/WM+wgDSd4JTn4wu8tqU80xJIRzcX+XE+duk/N5uC6xsfHdeWVV+rmm2/WxMSEzp49q4cfflhnzpyx6z9eeqMuSX9VCr1Rte29wXuetzhQiJN3pqenbX3VajUrYLleaQBouRdMCEHSxp7lfaTEEU4L7Ha71nMBMAI8kruJpcRvAB/rmxzF8+G+eD86hRjrh2Zk3oNinfVCDOce+AZZnuGFM8ixmXlFhtiAcugPpKCox/aGb55+B74vOZY90W73p6cwZo7YGwwGjciKx+OmKEFSYUuDxaVw7PV6Zm/Z2dmx43XZp8Rf7hnxBHKEQhTQSAylsMGOA8vpp8ZQhEAqec8srLNn3WnYIsZ5xRfSiiL0+73+l4LTAwcOaHp6Wvfff7+B0e3tbT322GP6u3/370qSbr31VlUqFT311FO64YYbJEkPPPCAut2ubr75ZvuZf/JP/snQGIOvfe1ruvTSS/9KSf+vezVOH9PO6jl1Oh3lcjnddtttuummmwzIJpNJLS4uanJyUi+88EJf7n7o88re+S7FL7le1ee+JanvH8SLxIOKxWImfwNaC4WCisWiGo3GUCXD501OTmp6elorKytaWlqygMCmf/HFF/Xqq6/q8OHD2tnZ0fPPP98fLN3tD6X2Z5+zcXxXHtcxMjKiTCZjXi0vTXIdbA5GUyBR4fUBMBMYOdaV8Tv4+wABgFy+LwmKpImsAUsHQAJEe/sBR1BS4cGOAcSZwwgwJNgg8cBGAxCRUdlgVPo0E0mDowip8AAbbC7AXDgctiodSROfkSST0iQZ+EBK4vo5bhZmKBbrTwGA7aW5wlfbdBkjpXoW3vubWJ+S7NQTJGmSN8+EYOi7rQHM7XbbpHzWKFIwn4PtAN8d3fTsD1hKgiUzKiUZi8F4LJh233hAcsbCgTRLcgTU8bv4nwjKgFOul/UAO0/zDoc6cP3eh03irNVqZuzHVoKyAMOJtcaPWKFhiHXFWfOsS8AcwBk2nCTJes1kMkNzlwOB/klg5XJZs7Ozmp+ft454kgisNAWmJCswsRRwjV72R0WhkYjGRA6d8F32SP7I7clk0phyPs+P21lbW1OxWLRGNO4bzUcUgux/Dq+Q+gUUnvFms2nzFmmqkgbNoMQvQAZWHeKjJxIkWUGHl55iFZWBz4fVY+1gHzp0W1sBNfXYV1qKBBLWhHTzzTfrve99r73H0aNHlclk9KlPfcoUguceTejyH9rWoesCeuHhiIFjCnDfZFev11UoFEzaBWhTJMCi8jxpVEGRADhSqCD1ehsHnw/Ap7ubdUqB0un0Rx5RrPlGP4oHGseYrMB34c8AO5g2wBXkDLIycY54xXdjrRG/eV4AYgobSCA+j4ZFb0/wDCtq09TUlBV8gE3/OZ5Z9QohI658EUdcu3BWtLfWcB98nMNPyt7FBhWJRKxARrEjL3kGmvhErCZv+qKdNYCflkKAe+GLrWg0atYJvhOzVvEfo+AyYYJ157/rX/f6gcHpzs6Ojh8/bn8+deqUnn32WaXTaS0uLuof/sN/qH/xL/6Fjhw5YqOkZmdnbRbq0aNHdd999+lnf/Zn9Xu/93tqtVr6+Z//eX3gAx+wsRI/8RM/oV/7tV/TRz7yEf3SL/2SXnjhBf3Wb/2W/v2///c/6OUqtPyyJiYmlEwmdccdd+gNb3jD9zCsyKrXX399/5SE9bPaOXVM45fdoPXvfG1ovBMbmWBHovZeHRhNfCjhcNg2ECwf3bLIsGyc5eVlffzjH9f+/ftVq9X02muvmc8NDwcghyqYz/YdmFTAeFdI3pi+YbSQtAFPbFB8oFR7VJ3eFyjJ2C4Wn++A9KdwERzxrZJEORsZ9keSAcRoNDp02g6gkKTItQE4CZxUoDSTECA86+uDWzgctlOtfDdxMBg04zcspSQD2pKM0YNdGRsb08rKikk02Wx2yNMzMjKiVCplbIQkm2XomR8SANfhpcFyuWw2EC//e9kSoEmQIWHwzFqtlgqFgjVH0OzCeetYQJAhG42GpqamlEgkhk7xYXoDzxSfstRP5EtLS0Pv1W63LXEiM7LWSGLMuGQMEBaFSqViAIZ9ywgoSSats95gxUnOJNx4PK7FxcUhKXJ3d1fb29tWJLK2SATsaby40Wh/NiujYbAlkIRhIGAlAFN4Tj1bRTJA2ubZU4TwjPFusfYZNcR9o/OcpOqnb8AY7e7umrWHLl7mJdIc5a03/ohcWDmSnJ+tSac/3wvWBr8596LVaimTySifz6tUKpnPe2ZmxvYnQJn7xnvAZqMKUSQQM2DN+SzfHc2aCQQCWl5e1szMjMbHxw1YUqyQ8HlGgFdAK42v7DlpwHCOjtfV1qRGY1kFg0Fjyg8dOjTEFrFOyBeStLlcV08hJcYG9iqKRBQX9o7PW8QrGD9AC9+fZ4KNCQBP7wSTCvzJQdhSYrGYgX8/vWRtbU2VSsVAlz8Gl5nJxCiIBGIawIQpIhRYWB6IibDjksymQZ8GPlPUMAgeikiKcfo74vG4Njc3VSqVJGkoDnjlEiIEgEr8JC7zWePj4/YcAO7kwHK5bM13kswHS+xgog+KLGuL7yDJfJ6QSjRl0cgUjUZNKaTgYW9EIhFrZCyXy/asy+WyqRIAXnKfH0XlmwYB2F79AVcQYyDKIIMgBlBt6CtA+YaEeD2vHxicPvnkk7r77rvtz/g8f+qnfkof+9jH9Iu/+Iuq1Wr6uZ/7OVUqFd1xxx368pe/bDdekj7xiU/o53/+5/XmN79ZwWB/CP9v//Zv279PTk7qq1/9qj760Y/qhhtuUDab1T/9p//0Bx4jJUmNyobm5uZ04MABXXfddX+l9C8NHhQBqlHZUDAxaARaXOzP7CwUCjbXD4ADk4j8SkVLRQVTw6ZfWVnRxsaGefhYnATn7373uzp9+rRVIwRXgq9vQsrlcjb4mERHpcKJHoAJ/o1F5ZuxCFyM5mAeHsygHynBST/+mEmCCjK7l5GohAFqsCN4ZwG9nGfMtfoGsEqlYrIt1Thd4dKgOQ0mDk8WAI8A4QEogYfKmWTDhuRoQ+Q8PDdUm0gzkUhEuVxuSL6BgcOjEw6HDQT602cAGu12W2trayY3e6mJUUnIVCQKrCNcO+C01+sZGN/Z2TEfFIGE4AgwGRkZ0a233qrZ2Vk98cQTxsoSlPAnA6DwVoXDYTtislQqaXNzU6Ojozpw4IC63a5Onz5tkjR2B6pnghfsNc88GAyaX5Dvw8xHGFgamnhRKKZSKfPX4UNGaqOLlecFi0ZShPVjlis/y73m9wFnsI6wbLAkrGcKHJLSXwXuvGwGUEa6n5mZsW5cGhUAe5JMwgMg03nN2B32OIyKJANI+HB3d3cNGFAk+OcMOKORBq8izRKABOIa8Q/PHgn+Qjm20Whoenrauuiz2exQoxGsFusGn2c0GjVGDQmx1WoZ00TiBbyy5wEgsIadTr9RNJFIWPMU3xvlgOeLxQNWjvuNtYr7vLu7K0R0GCTOZedYSABLt9vVuXPnzL7SarU0dh5khM+veUgIilJfIANoeQ4UF8ioAGMALjnP3xOaU2EqKcS8pYWcglWM64/H4waSYDeZkOL3GEoBCgHqGHkISwDPBCuMP2abe4H/kRd73LPYxCbsRew/gCcFKuuY/c6UDuIpwIziH9WRgs4rZNzXSqWiUqlkQO3CHguKXT9DFcyBfYt8EAj0B+0zXxccgJ0MTAEIZK+iUnW7XbtuGEyIMPJyp9MxqyLKJwe5INOzn4kBnMTFd2GiCxOGyHt8r8nJSTuJCyseOeX1vH5gcPqmN73JqtW/6hUIBPTrv/7r+vVf//X/6c+k02kbuP8/e1199dV6+OGHf9DL+55XsVRWQP2h16VSSbOzs0PePl6NRkMvvviisSLBUFjd84mFADczM6N6vW4zJgECBEgqZaQEvCA0gjSb/fFIJGJAHSOWpMFw/EajoX379imbzdrsNti96elpAz9IVIwwAjiUSiUDSzTSwKZxnjpJG88vEqrUn4N44sQJ61aVNGQnwBbAhiOxsaFhSSSZFQJGFKbZn0ZBw1mxWLRr8MwyQ+/5LBhT/KGwUp45mZqa+h6wQjCgapdkLImXaxqNhlZXVzU6OqqDBw8aAEwkEgZGMOHDkBLYU6mUHUGLr5mGCyRkJOZgsH+MZy6Xs/ckcCMPw4htb29rZmbGmABALyCZgEpyApAiP2K1gE3xDPPS0pJJqEiiJGqCdrFYNNDKaVWwa0hnxWLRii4SEwUOneeShiR3Zu/t7e2Ztxj5kkSHH5SEQ5EBYzM1NaVkMmkSlaQhKQoVATm+1WoZm819J9mSTKVB8QA7DHjCkkIBI8lsJ/l83sAqBRNJA0ZXGswNRMKHUWYfkujZN3jMuH6AYqPRsEY/7jXrlWvNZDLq9XpaXV21NQMIRfb244Ly+bwVMO12254pDaIUGNwnWGBm98Ke8bxQnQAH0mBCBCAY9pJ1mUqlbP0wWg2rCGuf7wzgocD2TT0wqKVSf7wWw8exOrBHUJj8lIpMJmM/Pzk5abEZPzZ7q1qtam93QuHMljqqqVSo2+89/fTTuuyyy3To0CEFg0GtrKwY+cAezS6OK6COWvWYYrHOUP5AAo/H48pms5KGD25BoaOpDqsOzKCX7Zkisbu7a/uZe4Y9hhwoDXzI+OOx8fAMfX5sNvvD/ZmcwQhE4jHKH3K6P46bGJ3L5WydoSiRr3088WudXESDT6vVMnb7Qs82Kg6TZlBbIFd8nvRyP3nee9xRLlD0WEd45Lk+7hPqCmQVTLdnIT2byv6HbeZe+9jXbrc1PT1t6idyO81bAHP2BmMCmcDDeiZXUQAAnvls7g+5F6zBc8KbDLgGbFOAeCb4/ysNUf8/+ZrMav3VJxWPx/Xiiy8qm81qdnZ2yB9JJcuA4m63q8T0oirHnzcpB4ABEGEGnpfT8DhJMiZQkkkc+P94kPhsvBxNMkVKY8wETALHriYSCRWLRa2urhozADvN74XDYauK6TJkgL0HJpJswcIYktiQlADdIyMjdmwbDJI3ZPNzJPt6vT7U2c41sMhpIsOPyGYAzFOxeZsBQ/mpzBOJhDF3gBwSMMUBbBmAiGvje5D4qDgJRJ6l5rkAgKnOSfKdTseG6/vB1d5OAAtMksZAz6ghviOA3R9VCnCgMIH9YragL5g8UPfd+rxgPGArX3nlFT3//PPmJeSkNAoo2G7AGwGY30fmBiixtrj/sF8EbwAa9843cgBkkMA5mtOvJxSAvb09ayLEF4pNBFACKF1dXR1KajQuEOwZbE5sgEFg7bD+YWywEACeALEw7bVazVizdDptawo2Ed8ng6qR8Rk55qVA1iEFIMWOl9Ng+1A28OqRbCm+GK3GemKtADi8CgNQ87NF2SMwmUjvvviAJaFggmEGCNC8CQMJSOfeULjRdMJAcoqeC71srA8/PYADELzv0hfgsErse36emEcTFTER+xRrl3tIvH31ya6uX4jo9neO6KHPRMy3+tprr+lP/uRPlM/n1Ww2tbKyona7bfu22+3qyluqamtMKy/HNDPTZ1HpEVhdXTXAhVKGusMagIWl4OL7jIyM2M9TnKIGsJ5g88rlss07huVkYoIHQzwXSdZD4OMLDTw04qGCMCkES5I0aFrzXnKsQ0yVAUxDALCeeYYcqsI+JDeQE4lZsI++0Ze9TjMc74WCSIHDmoBgADTDNmI9kPrjLlHwKBS9xcQXjoBFSaZyeOmdOMVkIQos2E4KBg9+wRzsUQoYgCLTDADfkDQAYa/8ADa9JTAUClkxSTwllpMTsIft7u4qn8/b70my+/T9Xhc9OJ2/653aKZ5Qt9vVyy+/rFarpXvuuUczMzMWPJaWlvTMM88oGOx34+6O5xXPz2nrz/6TPcRer6eTJ0+qUCgYO1IsFlUsFo3CL5VKtgH5OxZaOp02XxYn+UCTEwTY+MhVeCXplMzn8zYvjEoaEEAnN13QjKghgAE0kLhpBMLHB3PHTDo2KSwBjBlAcWNjQ3t7ewaUd3Z2hkCXZyVJqMhT3o/barWGpMjR0VEVi0Xt7OwYE83sOw/+ASXcHxjpfD5vgZkNRGKmsQYZk8aUTqc/3BmJFZYN4AG4ogggqFEBttttnTt3TpVKxRgCAD2/B+BiTI63l+DN9QxHu902wOXZA6QkZGFvhieIIO9QUVP1wuYhU0kyNmFpacm8zXx3zxRTeAD6Go2GlpeXTcKNx+NaWFiwY1hZZzxbAla73Ta5DsA7NzdnyaTVahnzTqAGVCAN02giyRhBniPA3LOTvjkBAIiFhP1GkRkKhcw+UigUdOjQIc3MzGhra8vkq1wuZ7YA38TkWT4YWd90wLrB38UEABIt4Kher9uZ1PjuABAkHC/vAQxggfgs7gH7jD1IMTE+Pm4SKIARIAnoBeTyXPwoGJIjRUUo1B+kzzPgmVCob25uGjCCzaXRyidjYiNsLg12oVDIGnCIydw/5FOKWywk3B/uOQU8gIn9CbtLzMAPzdqBEZQGXk/vVWy1Wgovh7XavEeXLT6hL9UOa3d3QBJ0Oh29/PLLtjd813wvJB1I3q+zW3dqa7OuYLBp0jngCSbUqxrERkm277w9rdvtGpvqC2qKhLGxMc3NzdnEEX8vyU34pwGmvV7P+i9gxzzzjjIG0PEMK3EbIoPigtnXqGGMe2ONlstlayqdmJiwZieafhiThXxN0cQ0HUnGnOKx9J5Rz47iN/V9B9wbvJalUsn2BjGDYp/eDZ4xigLkh+8RoUDhM7FlwDTD7tOpTxxHZWEtb2xsmLc9EomYL5emP3INxR0MLGoD8dj7YLG6+NzN/QF/MMEHwE1x4T3AFHDEFb8Wvt/rogenkfSM5m+4U5svP20VTavV0sGDBw1UnDlzxhoiqtWqFu77kBqFJbWWj5s8SmMTjQPMKaQK5t/wgFCVAI7YkKlUyk7RIcB4KS4cDhsTRHLC1xEMDjfosLGp7iTZvEaqRc5FRvLgGrLZrMkjsDYsID+yyXvsvCfTM5wsZDxNyWTSmMKJiQlbuPwswAL/WalU0s7OjkmHBIJQKGTgxzO2JDOuH0AYi/U73vnsvb09FQoF84R6JsYnQ/xy3lIBQ0vi5hl5jyjPsNPp2PGKFAH4GQlSMFFSv3Jk3h/gn9mtrC/G3pB06FIG6CB50wUOIABE8vsw1dLAvE9jGuwQCZCkBdjzp8XAOPHdCNpIvBRN7BdAHgE5Gh3Meg0Gg8Yi9Xo9q/IlmWKADxrWE4CCvE3hxHXTzBSNRu1wAap62EfWF6fSsEdYF3h+GcBOcoKFYw0DZihCkQhJil4BYeQPo5zwt8I6rK6uGtuBfYFnRpIgiVOQArjYmzBljUbDfg+J9sKjY2FFYbw8sESWDAQCpkTQ8EcyBOzTKMQzgFmkePDsN4UuQMCDO5SOvb09804yT5hGsU6no3w+b9MPuMdIhAAgP3cTy8Hu7q4x38QuZFP2vPcn4uEE6BG3ScCw5xAK7C2Kge8+vaB33PJlvetDV+rPfq9pzBX2D8BHvV4/3/0e09t/oqVob0OPPzhqEyO4lxRqkoxB5t7iQabYZYg75AcMJEV/q9WyKSvEUmxSWF+85YpnxdpgugyEA/Evl8vZCXAwbRQVeIZ947C3TvHZgF1UO98fgZXBg0UsCvjAeU9/wEsikbAeAfIrhRv7AOsKP09/BWvTM7sU1BS52OuI8bCzqVRK4+Pj9j6+IYoiiu+dzWYVi/WPMB8ZGbE9yXX6Yhlwzp6gmMB7TtzP5XJWlMA007NBzqTpDj84667Vapmv+sLGKb6LJLPtTU5ODs2kBtOgTvCcyXvs09fzuujBaXBrXd2b3ql0tWSSY71e19mzZ7W5uWkNK7FYv5s8d+t9mrjiJm385X83qpzqgZNC6vW6sXuRSH+8FIEUEz9/Zl4Zg/D3799v4EMaHK1G4vNyORXb3NycVT8EQS+j8/fImkgXLEiAD2DA0/1swmQyaadZ4dHxXkCqO0ZD4cEFRMOgcrSZ7+JmI8FG0bjivYp0DiOB7t+/3yRSQKE0OAxgdHTUkjzPptkcnDbEMyEQAYwJrF7eoQokwAFmYDdgkTY2NrS7u2tgwDesTU9PG/BCGgesAWAZ30QFTjUMCCOwB4P9piAYC8YTUQCQkHZ2dowRwDpCAMQWQSdvIBCwtYhVgqDPzEDYelhnKm+ailqtlo4fP24gnODM92Bv8P0k2fOXZJ4kZDLORSehMmuSgsBPIuDeYHHAp0jwlWS+Tv6XPcg+AVjCLEgynyHFHgUmiZHRSdhvkEM9iOWoS4Au3mya2VhXFBFjY2NKJpN2shUeTUnG4HU6HU1MTFhDQrFYNN8thSJA1kv+/qhgmB3keK6dogI2lesDeLAOAOW+EQrAT+xgDqyfgEE8AvDhW/Qsb6vVstm/sNewtI1Gw86E514gqfLvrEnfCMn34+99QUNSxSZF7OU7Yt+gkRKgApM6MTGhTCYzJMtiocDX22w29dw3zmp64W/o+rk/UfgX3q2v/pEUUOB77ByVSkXBSEhv/1BHB0f+Qt96+X1aem0wLg5ggCLH3EjuIzGj1WrZ6EIsM3gIKWx4th7gAJaId9VqVel0eqjRiQIR5YT3wTvNc8eqQO7js/D+wnB6WZt7zxQGinT/b9jFiAM0v8Kq8lm+GYviWJIV08QISBT2FoU3EwZQJgKBgB1i4KcNeMsOcYK1QH7xPk3IJQ6CoMEVSw4ssyS7blQzP6if60VOh0yAhOHPFC2eUCO/EYNZAygGPCsfT7FISBqa2OFtHUxVYU466w9CgnsPIJZkOZPn8/1eFz04bTz4x4q+/x+oe8/f0tHp+7X60jMGHKg64vG4AqGwZt/8I5q+74OqP/ewdp7/lm0IulGlgbEZxpLGBRIzTCTMFZKw7+KlE48KiSQmybxXLFCkVN9ctL29bf65mZkZ83FRodZqNVuQMI7hcNhkSSwAXB8yA34tBsD/Vc0VJHnkFTaH79rHh+MlEqk/K5aqHgDIQvWSP0Pc9/b2tLa2NuSPCYfDllhJylw7jWNSPwnRiUvSajabFqz9fFjGPk1NTRnrBvjAFwzQR1KGPQNgzc7Oant725pApIGcSsLwbDOVMR5W7hfyCTI0w9gTiYQxuQQjukBJUtJApiLwILHxGQTfqakpKw4AVjBk+FQJuLBn/BzgJBwOa2pqyphjGGnYVT9FIhgM2gQBbBg8OwoVf4AEcilJmO/h7ztsBp+LVL62tqZcLmc+rV6vZ98dNiIWi2lubs4KDFgq3sub+/1sYZhYChC8lr4gAaxzYMjW1tbQiUeeLfKAlnXrZ6eyP7iPJEpkPIoYmhyRrrmGcDhsNpdcLiep74mDUcRnTlJCFuTZ+HmTxIFAoD+/EsDOM+h0OtYExB6IRCKmKnC4A4CYJiMYReIE0z3+KmCMFQS1g6Y01jfABr8sZ8l7PzNNNLBwPFP2At8TDyJ+clhhCgLuLc11e3t7Wl5e1p/8dlmRf/yTuir3BzrwD/fpbOmN+u5DYa2f67OeyZlR3fxW6YqFJxTrrerRV9+vF74ZUSo1OLHKM980KXU6HTvqGBKDopSigHx04Rxf7h8gjTXFoQ28P2wp95j71mw2lU6njdiA9QPQXCjlco/IMb5g9RYk8hCfT18Fe5414UcnUqSzBv2ILFQHYhCgjkIMtQQZHfYfdpsGMprCmPzCfuLvUfRYxwBgJrHQXEjRKA0OCvJkTanUP254enp6yD7DpBXsUdLg9DgvpU9NTRlTjG2Kwpt7zh4h5zJ43zPWxFfsGJ7IYo+DL/hsimT+DUC6sbFhAJfP5PM5hOb1vC56cHrihWe12P5NZd73UW3c+F5F992g+vOPKLhTUrzRVqQTUuaGNylz01sUHk/q7Jc/qd1H/1KSzFAdiURsVIQfowFAIsDB2FCxU1XSSc9mQ2qB9cM7wkKNRCJWLQNEYAC9nInfi0AAlQ/onZiYUC6X09TUlC0UroEEA4vF+zG/zksqGxsbFmhgH/GhYrL2kqS3K/h/BySzqT2YiUajNkIJSaRSqWhpaclOkmITFgoF5XI5AyS8YJbw8uD1IThLA9M58gZsZzKZ1NTUlB2XBxMEA01SRvLgkID+KTg17e6WNToakDSp3d2GHYZAAidJcC3dbvd7Gk0IAgBZpi54MAyQ8pX7+vq6MXU8G+Q4GC7kUqrrsbExG5uytbVlwdpLvyRykoiXfQHFAAOKMHxx+Iph5X1CxLtH8wyzVGFkSYIwaCTjbreryclJ2zMelEoyvxfsEqwt3jy6VVnX8/Pz6nT6sxNZyzDqNCogw3HPsQXBJsFokggoskjIXpIjQfpnMDMzo3A4bKcpwQx7ZYP3pJjGfw04w0eL1Il31fswAa2AGvzX+Dtjsf6BIsFg0GYo7u7uGjAHrAPS8WRyvbD3SHZ4+Lrdrp0y5v15nkFjbQCyKKYolunqBgRIsvmcyWRyyAbBnqVpUpIpCSR6WCMaTGC0mE9MkxrzVWlS882r3F+aqli/yPFf+XhZy7f/jK66YUVH0n+iS9/TUDswLqmncG9HHSV0avM2fefBG7V2oq7JyZgVC8RNABGd1jD55BzWEfcVv/qFTblMWIAIYW0DEmCG/Xgnr+Kw71ARaFLi+XOIBsUwXkRiDnF4c3PTpGDikySzxsBU5nI5NRoNLS0tqVKpDM2VxaLB2oHRJY7gBcfzzLojn8HQwor3n+GuDh3a0ZvfvKqZmV1FIi3V60EVi+N6+eWwdnZSBn59XGWds6/JT7VaTeVy2XKE1FeNKBrBCRShkC8wsORnP62EPcx3go3kGcFMU1T6pq1kMmnPgLwB+cH7YL/gecHgUmQC6r3Cw2djc+H7MykIBQcrDffQz+r9614XPTjtdDoqL51S82P/T83d8mbp8I2K3fMTkqT0+f869V1Vnn1Ir37hk1p75XktLi7aQkISBFSMjY2Zv0aSmclprqGKoGKgQgScsrlJdDAtSEOwPDzIbrertbU1NZtNTU9P22ZAwkmn0zYtgGYYgBSskwdgBDBYmGKxaN3QyPdsNN6XjkGkT4ISAQCwQPMA78WChvHw3jC+E2yONBhVhaet1WrZ3LtOp2MAamRkxBI2Zng2B0CGc9sJAARnSQYE8SgRmDudjjUMISkR4H3QJ4kmEhXdd99ZXX31isbGWvY9zp1L6cUXD+vUqXnb5CQY1gzdi1goCFiwFvxONps1f1ilUtH4+LjS6bQx+V5W993MMB/I+vwdDRTSsMRTKpWUSCQsoDIDEeaDJAXbBZDzvlSAP0w/niuAK0wM/kUYYap+f5ReIBAwmwcBkrOl8ewWCoWhxoR6vW4yOow/iQSw7VkMwBvdxVT4jUZDKysr1pABUwErSJHB2g8GgzYChwQjyaQyP7aMRM669UmIQI4c7geJs/ZZG9xzfLzsHYAKxQHADEaISQapVGqIRabpB3YHBYck5P2CgChOl/JTGSio8/m8rTUAKcBSkkmogDzsFzRMpVIpA+Ksce6FL/QpkgAuKFAoDNheKIh9QY6CQLKnGGEvwR5x72q1mlZXV+0+o8rA8mOhYq0+93BXK8eyuuqGX9WlbwipWlvW9ta2KuWuHv9aSbWttkZHA2ajgaWkCAQISIPZtMRVCmZ8p7DzADz6HWDovJLF73HtAAxiD9MbuEfsP9hcnoUHKPwvhb2f0CHJwDV7khwDeCMWkWt4rjB7NBMXCgX7jgDgTqdj8Z1CmBjEvgML8F3IgYcObejuu19RNrujYjGhV15JaW8voHi8q8OHK3r/+7+lcvk5PfnkDTp3bt5yNfsKPzjgz9vo8Lvy2RRlsL0UIvwdawiVlRzOPaWxmXgJtigUCgYkKa4gbxgpRS4BI3DPWcvsdfABBR5HFmPDwpNN/PZEFdZEmosp6CnkUVdR+b7f66IHpyz4Zn1PtZce15HWpla269ps9dTsdNWsbauzsaz23q7Gu3UFZ2dtoTFeJZFIWKcpUqIkm+nnGzpo8iHpI4uyiGG4vBeH4OZBKdK/l/ZisZh1T0rSzMyMgWQWFEHZSx8wqgBOSSZnU4n7P8PawT50Oh2tra0pHo+bNMscQGkgD3HfJJnJnIXL/fKSn/cD4iGFEUKeh80hqNLZjiwJ00pC9x3U3hfHM2HTAEABe1SS5XLZ7iMME+xpOp0+n5x7uuGGr+qSS86o0QjrqadyKhRSisUmFApt6+jRgu677wnVat/VX/zFJXrmmbixnMhuFCIkd6pcgng8PjgPHokH+Qx5EeAFIPNgBOYK7ybrjYCBl8577SiWksmkVldXtb6+PuTlQ+YCGPA5gBOABMGT5AAIB/AGAoOxTRQW3jvqATGFSKPRsORIUx1NAAAzGB684VhoKJrYVzCsJEn2KmCUBgUkYa6RecX8HkULTUckP5jkXq9nHcQAMJg3WM9ms2l2G9YB/vdOp/M9UjhFJYwmNg6ubWNjQ9Vq1fYZexkmmuJW0pBXzY+fg6UfGxvTxMSEefK2t7cN1ACASYowhwAErAv8HmsXYMHaAJixHmB8YN0BPqxl1r9vVMRuAdihIRPWmecUDoftfWDcALSw6el0Wjs7Oxabi8Wi5QDiKs1n3I+ZmRn7MwUhzYYTExPKTc7p1iM/pOeff17f+eaf95s0A2NKJgfd69wfDlfg2SI5E7NofkJy5boAg3jLaRqFkaQY95YJCiEKFA+8iDedTsfALsUACs+F9iUKUhqlUDfYExRhrDn6JPhufk4tc1BptGMcoM+v3h7A/vB+Wwoir+T4XHv11Ut629te0JkzGX3mM/M6cyalbrdvI0gkEvr852u66qqebrvttN761m/o8cdv1wsvHLCmUmJfKNQ/DAe7D7GvUqlYfm632+bfJE96Wwm/12w2h+xF3F9e7FnIF48Pms3+1BXWNbO22XfcZ/Kh95xi+YBAo2hmzWOP4jsDNP2IMvYga4N77kfMSTJr0vd7XfTglEDkT5WpVqsqFos2+gf2DsaNpgIaRmAz2TwkEDYYMj/SD1IiwYIgsbGxYUCO90I6ZdPTXIHED5OBT5QFxuKE7aDrz3fw8Z7I2D6QU2Wn02mrjJAT8fR5CQkfmg/0mUzGKnPAJIAhEolYtzlJhrPjJdnIK2b9cY8xZxO4YFi4nxMTExb8AHQMq+dIxHPnzlli99KlP56VREzzB8yIB9wAediCQCCgfH5Sd9/9ZaVS63rwwav1wAMR7ey0tbCwYPNvT56U4vF13XXXy/rAB15QJHJETz2VtjWJp7bR6B8J2uv1bN7mhYEaWZiOTGQe2HEP6nzDxObmpq1DZHSGuFO9UghMTk4aewsj3Wg0lMlklMlkhs7pBqj66QIoDDxXPI4w6xfKaCR+5qyGw2HzTlOEAKz8/yeB09jIekaW9WNZeL6A10qlYs07nU5H6+vr5stGavfHLGazWW1tbVljIBMzLky8wWDQjlaloCARoG5I/XEvHFxAkUIhSbIlyDPPkkLPe9+9J31lZcVYWw6iYB0gwdNQhTKTz+etEYsYgW+Sfcj9oFiCkaZQ8D/Lfg0EAkqlUsrn85JkLBqnNRHLYFskWRLHU0nsothiMgMFIickkWBZixQYxEcKNxhWmGZkR99sQvxm7cDw0KxCUeQ9kzxTnxuI84A8Crbd3V29+OKLajb7B7AUCgU1m02b1sHRkTS/AQQBITBPgDiKQphliAriAMw2igLviUWCZ8t39x5N7Gs8LyxosGih0ODMeryR0qCHIR6PW3FEIQAxAyCDUGCf80ywrAUCAWMbYWjxcc7NzSkcDmt9fd1yJ888ef44buIE94UCn+8IEXPZZZt629te0rFjB/Xww9er2w0oFtsYktjD4bCKxRF97nOzuueeF3XTTd/S1lZAZ8/uUzKZtNwGYcXaHhsbMyKmUqmY15winGdA7PCxkD4M1Azi54WEAgAc8IeaQ47z6uzW1pYVFKipvqgNBvvHt/tci71paWnJ/sw9p0CXZKAWJntra2voKG/eh5xGM/HreV304BSZlwHtHMtGwoY2B8BxU2GQkCi8idf7TEjQNAtBjXP6Eg+TZM3nspCpwkkk3s/CYgCEkNy73X53vCSrBNPptJ3qAlPiuwn5M5W17+Cn65g/E7S63a55bQloGxsbJjGSMH2HIYAWNqJcLg91UAIWeTZsIN/swsLHC8u1YR/wVohCoWDSOHI39x9rBpuZeZQA9FgsNtQVD8NDdcuakGQS3s03f0OpVEFf+tI92tiYUTB4SoFA1Xw6BJJmc0Zf+UpW99zzlN73vuPqdG7R0lLaWF6SOsHIz+27UCZB4mc8Bxt+e3vbPHnlctmYXoK29/2RvEgOgERkMZ4DhQv3h3VIcxT/tra2NmSjIIEAWmAuCMJeAmXaAPuA50nBEY/HrRmM+8JzJThLg+MYCbSwMgB7WDLGStEkxf2EqdrZ2VEqlbJpExyuwf4CFGazWa2trVnDVKfTsYY178dmGDrFRLfb1cbGhvnz/Kgq/FfeTsHnEZtYnzC7xA0/LxEgDLgLhUJmHwEE8IwB/TQpwH4yvNzPbiYmBQIB6/KGKSZWwVD7xk9kSeIB+wkgS7L2XkgKcUAsDLP/Pp7xTCaTxrx6+Zn9TVza3Nw00MP1Aa5I0JAYpVLJkrhnawHRnU5/fjCgF2BMjPax3vsPT58+rUikP/eXNeIBmQfXrGXiEf51xrb1R1DFjXQhX6AmwRpTUAAMkc6J24Afcg8Ay5MF+DfJf349ZTIZIyb8HmQ6CMAaOwzvSVwFOBGDUA6I+x7UkCM9kKUAIr6x52GjiR/YbQBfExPjesc7ntKJE2ndf/9VSiSiGh2NDzVwsZ5hY7/ylUs0Pr6r2257VsvL+9TtDp94tbq6qpmZGSWTSbMI+TGSrHE8sYBofPXhcNgmA3DfeGbeI45ySp4gHjATPZvN2ngw8r2fEkARkk6nLQcRG7ydy9t9iC8URzxrWHHAKAoWijNMNXHG78vX87rowSkGXUAd3dUwjZ5VJHGQzJAJo9GoVZDI0Mh/JPRQqD8qBlkHBsp36QIkCGh4VcbHx1WtVk0qBxhXKhVtb29bgCYIszBINsyzA6D4YAILGolEbFYgCZ7h4wCyWCxmwbnZbOr06dOWKKanpy2I0JVIAmFI/unTp7W7u6upqSkD79wXqiXkIk4AgUkKBALG4PC7kozRpKIHzMPUAWY9iz0/P2/J78LKTRqwtrCM3hLBJoSBoLjoe3dWtW/fSX31q9fp9OlxxWItY565rnK5rEQiYbaGL37xqD74wU3ddNMrWlu7c4htwIvIxiYJMRoGPywBA7YIEMZ3QQZi3RJYvG+JgIfUAktIQCaINhoNUw4IThQ23GMAFHvEM2xra2sGrAG9/Lv3ZiGB85yYtkDRRoIngHtfIywJo0lgl/0wfWwxrCMKIgI6exCJHm8W+wOZHNDDfgO0ej8265JGD8+Ycs9nZ2cNgDFNg2eJcsOaI2kDGCjKaPACMDONABma7w7TCbD0hSFAbWSkPwR/fX3dkom3IwHM/HeRZMwk69j7xwDKvoGG5EWS5D9YLJhKGkYAWjyXVqtls4pZj3jtSbjVatViHPFVkq1rbxfh2bP3vW+SZ8na9o2IdGrDELJ2JNnapNBkPQOU1tbWlEgk7JQwQDbFOXkE4oLxc9Vq1Z6jL9A9K8g+90yaB2s8M1+QAnw8ew8AJ9eh1PAMfRGIbxTQAsuK7Yf80Vea8mYZYr6yB2zsAeY5k//4TEn2nYgPNKil02m710yPweuJvYMizkvkl11WVTpd1wMP3KJuV6b6SYNiGbLBM4VPPXW53v/+r2t6+qyWlhaGmsDw59OE7D3aEBxgEa6H92ZSCfkRtZN1ioUDzMAeYc1RXNHvwjhH7DWMSvTzRSk2+f98NrmS/UEuhAzy9hOUT6aVUHiOjo7axAX2IAUpvtzX87roweny8rKq1aoBCAIBwEmSgdML53tR8fPwvBEcRgqJH/aE4InvjMo2Fut3DHvv28bGhnZ2drSwsGAgEoaH5Lqzs6Pl5WVJ/SADO0pFz2ipc+fOqdVqaX5+3io+rhvA4RsZCFZ4fHhxHXQh53I55fN5ky5YZARGSSYx8VmwIV6ik2QWAJIISR25wjNeSD8AbWao8czo3scCwH9cG0EM3xEHLHggOzU1ZRuNawbAUk3C4sViMV155Qnt7ET14oszisVCVnWyVvAJ0sELKPvOdxb07ne/oNHRkjqdlH1PrpdkSjCAqSfZcz0w3hQZjCoikGOR8NIpAR8m38t/JGTsIXwfqnefmGDuCDDT09OWrIPBoK17QCprCVmWZiiCLCwiwY4Ej+cRZo/7AXAm2NNMxHOCdY5EImYnkGSADVBCckayJLnCGMO+8XlSvwCADfJsKEDN+8YAzVhh8GzjHeU8c0AfsYO9SAzC70UnPsUPLLY0OOcav121WjV2xluP+sBhVQcPVjUxEVSvF9Te3phOnJjR7u7gPG185+Fw2E6Ogm2meMNXBliCvfeMHWAIIAOgr1Qqdq0AYu9t9PtO6vsxOY0H3yv/y/rAo4mSw2fCthEPWJMc0wxTDxjinuKxJWZHo1ErNAG6sO/sDYqb0cmUpt7yY4pM71d89qDCo+M6/oe/qe0H/8IA28TEhLKXXq3Mjfdo8uDlGp07oEAorG//wtuNDcRWQ5MSMRFAKMnWIsoK8RlwAxDBDuVZbYoQPo/GPUgHwBXP2jdUkh/5DJ4t7B+A1ccabBvccxhmbHMw8OVy2b4re9TvRZpxscWFw2HzCHsrBIUm+4oYGQr1p0xcddUT2thIqtk8rImJhjX5kNcpvCj0x8bGVK/XdepUTIVCSldccVzt9huUTCaHDpLBKkOhBAjnvjD+jBzDffTrkAKEtQazTyMeewMAyXNkFBUWv1tuuUW33nqr2u22Hn30UX3rW99Su90e8ol7wEnOZZqDL3CwElEEkc/z+bxN1mk2m7ZXiFO8Jicn7d76Btfv97powelaK6gf+qe/oyve/E7F01Nq71ZVXzquwtc/pe3lU7bJ9v2Nv68D1975Pb/fKq3p3O/9so0bwX/mJUj8gZ5+Z4Egf8Fg0u3WaDSsMgaw+i5fjMfxeNxOhOHUIw8EkF3ZwDAwMG2dTseqUZguxlPRFU2l7f0sNE9xopJn67wHxjfFwJ7Nz89b0xWVP0CDTUdyGhsbGzLS0zwCgEDKQ/7wYJrvjcThiw1sGZ1Of/ZmNps1Fg4LgiRLjCQlEh/PivuKLNTr1XX06JIefnhKu7tNjY4OvFcwRTR1EYRgPL/5zZ7e8paIrr12Rc8+uzg0MojvQ8KnYPGSFfeBYOmDC4yXl+F9Aw9BkmfL2CYaemgG8xU5xQ3BHhkPVk8aAGk8zySbUCikQqFgQJ0ASzGDTYZECpgNBAJDJ2dxjC7WDNi+C4Mq351n5pvyYBeRc/2IGwrSWCxms4BhdwGEFKCcykaiYXwTa4m9wPtiMyF54PGE5QIAsm55H2R6WG72lv8dCis+F/aYxgbvBQuFgrrssqKuuuqEDh3aVqsV1N5eWKGQlEg0ddttYR0/vl+PP76gpaWWfX9JQ2eLw9RKssSyvb2tSqVi0iksF37mdrttXmaAQ6fTMXUnm83aftva2rI9g6+R7+yTpo97fBbPM5/PG8ip1WpDh2TAiLPWAGx7e3vmoeS+ep/+yMiI0um01tfXTerlc9l3FMyhUEjBxKhSd75b9dK6dpZPKHnJtX0W6/rrVa1W7fCH7KXXa+aOd6h69rjqG2tKTM0bk8n7M8aKmIsk79ccIAD1LRKJmBcb1h95nXgPaKfww6qBjQRAD9Dn/geDQTvCNRQanMSEVY61h8RMjMAGwLqBUaRRTRoU0OQOYp0k83FTtLJGKAopppvN/gEskEGpVMqeKc8agJzNlvXyy/u0szMYXUacTafTJnkD5jhyenx8XEtLi7r88lc1Pz+vfD6vWq2mU6dO2fPw9iiUq2QyOUQyUGDznNgf4XDYJqH0eoODZWCNAdfgDmLI/Py8LrnkElN8stmsrr32WvN/33rrrXr11VdNiaWYpgD2/n78rkj8xDDWA4U1ih0NvsQkvg+A21utJA35gb/f66IFp0/txnT5296v+vFnVP72FxUcGdfUne/SoY/+a536z7+iZrHPRgYCUq/d0u43PmUbLZFIKBbo+4XW19dtg/KA8NAwPsr7vQAemPKl/oIsl8uWoAA1+CSpBvHCEvhhSmF+mIXIn/Em0o0Zi8WG5CfmM3r52ndR45sj2cM+kCBITGw6JLxqtWrsAZIMXkHGttRqNfPIhcP9AwAAkv5AA+QAgilMBCfEkPgJXARcmtpoDovFYpqenrbxRSS3TCajVCplGwaGlYHOSDe+WYLvDCPR/+yOYrGONjcXrTDheWezWd10000aHR3Vgw8+OOSr7SfrgJaXJ5TN1o0xxcsTi8U0MzMzVIxMT08bKMPXEwwGzWAOA1WtVpVMJoeKpmKxaCwGSXpkZMRO7OI7Is0CdGn68qwpYGp1ddUYRm+Yx1OFrJTJZCygk2hZ6yRCOvq73a4N4ge0sr/6+3IwQBpwSVHDz5BUkfKQfTnBhWNK8T3S+es93cx7ZSwSiRSgBgPDNAe83jCU/pXP5xWLxWziA+CONcm1sU9RdPAzemYRed0XZEzEIMGwJyjKUIX6TNOO3vveE7ruuqJOnx7XZz5zuV5+OS9U+KmpkG69tawjR17WkSMn9bnPXamVlSNWsPo5wgBHfLmMqyORUpjD+AAQ2QckXprRYMgogOgk978LMKV4x/bRaPTPGqcJlT0Gu1YsFhWNRs0mAGDCLtPtdrVv376hookOcywZJFLiuzQoHDiKlhhKEg4Gg9orF/XoL/2YVk68qunLr9Ptv/4/+qDnfKyDdW8e+44ef/Az2tmq6OhP/iPNTc2bxM9+96fpELeYF9vr9WwdQz6wXijikfnxvXrJFi8zLKVnqwFpKE7kB5QBVB3eG0UK2wmTXDiAAzYfggUgyx6G+Q2HwzYHm/jL+iG3AHQgGZDs+XliBjM7IT1gf7e2ts575dva3h4cwMMayuVyOnjwoMbHx21MHaCWprV2O6ZIpGWN04BMisp6va5CoWCxs9vtmq+YvdBu90/k2t3dVT6fN8Xr/83enwa7fV5pnuCDHRcXdwFwcYG7kBQpUZSo3bIkS7bkRU7b6UyX7cqtcuuszqiMqA/dEzM9PTExNTET0x9mpidmoruqo7uiOyorO7qW3KLSlWmn04tsp21ZsmlZC0mJEklxuyt24C4ALvb5AP4ODpgRZX0tdiOCIYm6F/jj/3/fc57zPM85L2Dd521pDOhoovXNVTyHpaUlnTlzRoeHh3r//fcNt6ytrU3ZknzhCIEFOwppEI/HLc9Q8NOoiSLHuuT7QCjhMQcbQDpQHDE14X/14PSJRFe/+4kT+rVf+ZUx9dzp6NaVN3XqP/uvtfyJL+vGH/+3Ojw81MpgqNFwqKP3XlPr8FDqdhVPpawTD+aFGzo7O2uBm8RLZYY0yDm5i4uL2t/fV6lUssYp/JJegiLQeAodJtR7jAaDgTVaELxnZmZUKpWm5FHAAgFfmjT0wC6Fw2FjHvGpkPhZrCwwmCCCAYEfPxmLUOJIwIDuuWdT9957Q3NzPQWDAbVaYV2/vqI33sioVGraZ+CPA1CwwanE+J404iSTSc3NzU155AB4a2trunXr1tRM035/fGpQtVq1wsCPCfK+Y2nMoGLgJlGNA9jB7fs4p3R63lgYvE2nTp3S7OysLly4oN3dXauYi8XibaYnpmh0aDIXoAMvEDJwv99XOp2206DK5bIkGYPim0WQ45HjWCc0ZRCYAV6sHY4+xdsKc+qbmPg8Pod1ActBkPWWBD4X3x5MDTIxQRqjPIwZ/j7YGfyOeLyp0PG/AkoAp7Ozs2o0GpYQ8TKzRgF/XGurNT45iCH4BNNqtWoNSt7zxQxJ7if2HvyC/ud9s1Cv1zM/N8WW9/7CHpVKJRs7w++12207XMGf6OI/0/u4KBDHbHhKn/3sDT34YEX//t8/rI2N+25f075arYPbUmxGFy6c0BtvnNFHPvJDfelLF/TSS4va2jpucQWWEbsSe4Q9h7WCU4oAe/gqb9y4oXK5bH8Pk00TB4ASYETC9kymNJZ9UX1Qh/wMTe4Xca3T6ViihVVmHe7v75uiAiNI0ZxIJJTP53X69GlVKhVtbGxoe3vbCi7PYKGO0W09OzurgEaqbW9M5aFqtaryO+8YWzuO812lF+a1OJecYpSQwb3dh/vG5BHyA75KT4jAgPkmTgAGe4W96g9a8U1XxDQALMAUuRibBCdiAcqY30t+4UAVgDbj8CRZgQ2ZAQlBcYKdjr+nuYvY4pUt4h6sYzKZNCKI9wD8Li4u3h7dF9Rg0FSpVDLQy/Sbra0tWxPdbtcOdSkWiyqXyxoMDtXrhXXt2jUrWAChXBO5hTjHfiH2cP345SmuUW8o5nk/iiL2A+uI+NFqtfTGG28oHA7bdIBvfOMbKhQKWlxc1OXLl7WxsWHHBQOCWcMATgA0ihaqLzkXEsyTA9gLAc68L/kR4gn8Qk74IK+7FpyuRgYa3K6coNeH9aL61YIiS6sGqEajkQKSQuGw4nMLWgyNuzobt88hp7MWRoHNRCAgYRAQGJkCKARcwihSSQKuMGMjZwD+qJwZdwVTQjXKMPKZmRnl83ljKJFU/BgoKiYSpWddvXzH4iGZQ/XDoCL7cB98Q9fYoxrQU0+9q8cfv6lEoqPt7YxKpUWNRgFFo3t67rk39NRTAb3xRlavv/6kksm0McT496iyYP4AG5KmghbVJH5Qxlqx8TF8M5qF7xWPx5XL5XT9+nWrVgmu3Csa4wBg4wAzBt+RyJEWFo4ZwJudnVW5XNa5c+esaIjFYlPHWY4T6S21WuOjIfnOSCIkZ66f+aI8l0qlYmBmdXVVuVxOBwcH1mhBRy4sDoOT/YEMBG5Y+kajoUKhYHIV74FHstVqWUOGH3MC2GNtewYEBg25CtsA7wXw8KARzyLSF8yvZ9VgJAH2BFSYS7pPaUbj71OplP0shQx+Qjqhe72earWaarWaHVvL75IM+Vxp7E/n+S0tLRlr7RvGWJ/4Mu8EYQAQWGcKXJoikMNisZgxOIBUXrCknlUiCZ49e0uPPFLU17/+YZVK9ymZDBswJC4BTLrdsH70o+eVSPxYn/rUq/rKV9bVbk8mK8C4NJtNFQoFxWIxY9AZI5NIJFStVq0ogLGCWfJyIV7jeDxutg2K3MFgMHVQCICSwnd+ft7WAmOmIASQKFOplJEBdD/TGJLP55VKpazQoEGFgkgaF4G7u7tWzAD+YZBYX8jXSMV44FOplGZnZ7W4fkySLMbTLEszl+9+Zv9IY4sDHkgKPGIgsZ29AeNLIQlzSn6CLYW4II8QV/C3st9hALGdMWIPzyr+S/4bEM2ePjo6Uq1W0+HhoalYFMwwrzxXCnHiBzGDPSPJ+hV2d3eN3PGWOdaOLygB81go7lTcFhcXVa/P6/TpQ/3N37TtfWB8vSeeozaxio2/1yWVyzPa3Ny0XEyvAqCLIok9TR7xTV544MnvoVBI5XLZni1rw/vjadJk3fP8IMBYK0dHR7p8+bKuXbtmQLtSqVj85fMgEXgxfYDrwGtMLABQt9ttew9iBGsMYuHo6MiUIOIjoyR9E+V/6HXXglNeJEACd2Amqe7uLaO7R6OhFIlo/vf/nwpGYxq0D9V69zUlD76qlduSCAZ/gmqj0bDucSoNumt5mLVaTcViUZlMxiRSACfVFgEegEKABciy8TFeHx2NT3EhuELR87AJVsgobGoCAkAGkAxAB6DCrGI4Zzg4LBzBhIBM0h0HmJ6+/OV3dOpUSRcv3qMf/zivanXWAEKz2VQyeaRHHrml557b0b33vqo/+7MPqV7fs4Yi/KckhmKxaGzx/Py8df0CqgGOy8vL6vV62tzcVDAY1OrqqgVtPGULCwtTAWtxcdEqX2ni4aJ5hTmXJNZmM6nDwxmdPLmlzc1VAwWwuleuXNHMzPikJYIowHlpKaL19ZpeeeV+Y/f85AASG/eWn1laWpo6F5wmMu9nIiABjpBP8fqR6EhaFBcESS8bU90DQr03CgbCM7ZIViQ8P0/42LFjGg6HKpfLVhgxFsoPh2a9U5hFo1EDkAACiiGqdppkYFFpWOJ7easIjB6sLjKx74AmMQ8GA+tQxivN3lxZWbGOaoAudgieDcm92+3afoN1oqEJcEgsYf/k83ktLS1Z0RMMBpVOp21uJPcfu4Q0GSMHOBhLrjN65JFXdePGijY2TmlmJjZVUNAMhO1FGgPVV199Rr/+63+hU6eu6Pz5M5Z8+J5+DBHHS/pRRBSDFHsUK1ie+v2+eZK5T97TRmGGXMv7wpZDCmA5wV6AtQSwhY+f2EBxBjuWy+WsQRQvMIUDBR+gGpDNlBXiE3sQxYtGFhp0PFBJp9M6yudNWgVM8L0S/cnxy5KMsaNo81NGKH74PihJ3BeKegAO/+19oxANFHAAQSRZpHfvd/cABE849xziJhwOq1AoaGtra8rjib+V611YWFAmk1EgELA8CmspTfz+WJC4dggWVBhGFPb7/Skwi1eXUVvEGWJ8NBrV9etn9clP/lDPPJNVoZCwmdDYw8h50WjUjrUeKz0XdPJkXV/5ylkr2DqdjikB/nAJCl8AHeQV65g9CGBl8gaEAJMIKFCI9zCSkqaaELF28F0hzwqFguUqTlvE+sP+wI6BakjOxR+LhYu1g6TPGDAIwFAoZI3cxHKYfvam97X/vNddD05pCul0Opp/9KOKzKdV/fq/tgQ0ah2o8vLX1Lj+roYjafGBDyn37GcUyx3T0b/+/2h4OzGQhPHI+PlsHL1IcoxGoyYR8oBHo5F2dnaMgZRk8wCR70loyPOAYmh+zkienR2DPsAGwQw5i81BkOczCVCHh4d2PCMsDpUUwYyFxkJiA3hpdJK0evriF9/RiRMN/dt/e1bvv5+5nZi61qE9rrhCeu21h7Szc6++9KVX9KUvvaZ//s9PGzADaPMduG9UYARIQBf3Ym9vz8aF+ZFXkmyTSBOZi0YdAgTP8+joyDpIsQVQ3AwG0uXL9+vRR9/Wn/95WtFoWvl83oJpu902j1K73TaAFIvF9MgjW5KkQuEJzc6OZdXFxUUdHh4ag7CysmLMEoDszmkIPBeCHk0JBH6f2ClI/IkwvumMwIr5nSIFmwANU1hXYK8oSjzLiv8QRp8mLBK/NAn2/nNRHgiUBEWkOkAzLA6Fi/cPk5gl2dGF7BnWKtcBy4d3E0agVqsZ4+e9XH4wfLvdtufC58BEssbpbsbDxx5BricJwlbTMMfP+BErgHOsJ6gkqAFIZiRUkkM+X9XS0p6+9a17bP4kFiKAFN+hVqtZoqpWh3r//XXdf/97euut0+r3J8UiAD0UCtnYq0qlYmdoA0YjkchUtzGf4+MwyYrikkIONhJWDG92pVKx5EmjI8DOs3GS7Dsyx5M1Xy6XLbbA3NLlD2CkUGLd0fwzGo20srKiTCZj74XsjYfWx1mY9JEmDZWcWLaxsWE9DNZQcnt/UAjDwpEjfAHgJVXiGHEdHze2Ehq6fCMS69s3DEqT8X7cN/yVMJM0hcIUE++4n37t5/N5O9WPwgbbkDRhQxljhdfXN1z60UQ8n+FwqN3dXWNwabbjM/heWPGwGCCrMx5rXFys6OmnZ/ThD1/Vt7715NQkE9aNJLMKrKysqNFoaGXlLTWbMRUK9yuZTGpra8vYY5QpbC4orlhBarWazc4FYDIdhGIDtc5bplqtlsUrniuqCoAPhh9bESfEkc9h69mfqFg+z1C00XhJXMFCQgEKCD86Gh+wgy9c0tTIOPAV7DJrAGzyQV53PTil8kidOK3Tv/m/09HW+wpvvqNsNjtmjy78raq3pdaDgwNtvPw3evSwptwv/AMN1s6odnXMiGEqp1uRQNrr9cwziSyHVwVpmrmfdK8z95OgCpgiQHqJH2qf5iGaLbz0j+xI8sA/go8UxhCwB2vLvMjBYKBUKmXsCycu4bOiGvNVUqFQkDRmjE6erOvJJ+v68z+/X9vb6xoMDrW4uGgdk7wH3+n990f6kz95VL//+6/rhRcOtLFxvzWdwKzBdMOQHB0daX193cDS6uqqJFmFDuAbDAba2toyBhjPKhsbhoQKkVFRJAEsGJj6pTHoCYfDunDhuB5//IJefLGol19OKxwOW1BgU7bbbZMVB4OB1tZm9fjj13X9+gnV60MD9LAPgH4YkMXFRS0vL5u/03s0+V3f0MZnkoCDwaCuXLky5XnmWnjWMEMEJzx8+JU4ZSQUGh/pSHc9TLNvUqOg4r3xI5MAAZDYQ7BQSDI5mqSBWsB3pJlImowYYp/A4Ph9zilbFIq++YnrZD3W63W7ViZT7O7uGsPFMbmSrPkGoE0TFUUPLBWfx/fDJkBhi1QHI01gB5DBDsESDwYD5XI5iynIwr75CPUCwHPq1GUdHMR161bWWDjYSxgP73Nmb0SjUV28uK4zZzaUSBT0/vsjY3HW19envJClUkm1Ws0AP8kJkECcobgBSMFcsY6IK/g9iXuwvLDosOMUIahMflIH742smMvllEgkLFmzpvEwS7LmNu8JJKZjraCBkmdDpzLAl2Ie0AYIHN1myngfP8Jpfn5+Mnv49ndqNBpaXV21YtvbxVDXmDrAvvKMIQwmMcWvNb6PJzq8p5oGUsC2pClygPXFJAsKeiwM/Dz3c3Z21saMATx5NtxjlD+um+9EzIed9j5U2EHYUQC8t7R41liSqQMAtbFKMtD58x/Wc8+9rGp1Tm+//aiCwXExScMwsjwFUjb7Pa2vX9X3v/+kEokFy700WaKGoRAR51gjgH7YXIoa4gzWEBrusH3xHIiN3gbBe6G8+VPBaOxeXl6e8t5CLBC7iCN8zszMjHK5nBEeFM/cEywfrCPWkpf+sSygUhJfePb/Gzi9/YrFYuoEInrkD/7vGnXbOvrOv1H6ttRMQpyZmbGTj+bm5jS49KpGL/660g9+SO33XrNuOih0ScaWkrioHgF+BMJGo6F8Pm/Jmu5q3ougFwpNzj3O35aB/KJPJBJaWVmRJGMTJRnD0Ol0LGGTKGmqAVCfPHnSDN4E6UwmY8wPkjLvR7XJwHDmHY5GIwOesVhMTz21q2IxoUrlUeXzs1ZFU9V6/xeMZySS1bVrK3rmmYJu3Jic4gJLA8MhyZIiAZVqGJ8scg4SBHLwaDTu+sdQDsvFd0GW7vf7dkwnQBVWGjCEhPrqqw/o+effVSCQ0fXrk9FZJEkq1r29PYXDh/qt37qgUEj6/vfvUalUsiCB/ymfz9tRuqlUyiQv2AkCEgEILxrFBAkH5o0CAyaNBN7r9Ux+IqhLMsmMQEPRRBCDPSJ5c9Qt92p9fV2zs7M2YYL3SqfTBni9v5sgReMeIBi2kqHyBD8C2fLysjEISMQcZeuDNr8P+8F+5dANpMtOp6OdnR0rFvl8lA7/XEmi0qRAY18AGJBguW8wln49MR2DoodkCiMB08Ae90COtQ7bwv/zTWzjIrCp/f2YOp3JoQGAIuRp7BWMw6Lh6uCAU4A6Gg7DxlpRNHk2y5/6EwwGjdGGzcJj5vdlt9s1T7FnTb1iwPv75jBk81QqZdLp7u6u2V1g/vv9vjHMkqaAEY0jFPkAMQAd10AjFeCjUqlM/Qz3D4CMGkFRQRyP3i6q9g/GfkAAGUWCyfy3120sFtPDDz+s9fV1/fCHP7QxhKFQSJVKxYqeeDyuarVq0jxeVP4/xT1rHS+392v6TnjP1MKe0gSHPEux6e0lviEOoElcoSBkD5APvVXCs6XcD6/KAcaj0ah5xPlezAvf3d2daiiDoPFWBH+f+H6hUEi3bj2o2dlDfeQjbyqdbuv11x9QodC1eJFIJG4XcLe0sPCXWl+/pJ/97AG9/vqK5ua6xtDjteW7gQWkSaMebCP7lLgCSNze3r5NZKxNqbGwm2AH9hu9BdFo1I4L9acHsp7IGcQG8AlMOzG/0+moVCoZYYJdbZzDJseQomThwyVWSbKGT1SaWq021cSLdcs30f68110PTqPJed37B/8PRRJJXf0f/2/qV3eVyWSMCYElQe6cm5tTJCAN24cKJ+amfKKwW7CogUBAq6urBhC974nqnw48wCPjMjieEc+K37D+n5LMdzQajXTvvfdKmsjqtVrN2D4qaWTqfD5vfj1pbHjOZrM2t9VbCGBzACj4RKiUOTeeIExXbChU1+nTRf3FX6yoXm8oGBwHLzYpm4PuTBZwNBrV1atndfr0d7S6WtbhYWJKzoUFZCPBLkmaYrfwNfrTXACUMB/Is8h4jMkiIGOR8Ped94DtI0BcuHBWMzN9fexj57W8XNa77z6kSOQxtdsTy0MqFdNTT7X0+OOXFYkM9Zd/+byKxfHYMlhEgDsVPsCcMSYEDZqFeEack+x9pncGERhkuvNh0HwSAXRRBPHfAC2KhM3NTXW7XSuM0um0ASrWMECN/UQCBGyRZAiofH6hULDRKIBUgipSP0kNBioSiRgowBMNWwL4LpVKZqkhGFOwwQAjD2Ln8Kf1wHawlwGGHixTwKF0cB2dznggN6AQmVeSscLseUAh3x+J1INXPIrsKYAGgJrGRUBErzcZ/cMcUWxJ/X5fm5ubBkBo4IORvY2/1ev1FYvNWpMh+wdZFy8j793v96eACNeElxdGkTmzKB2ASiRz/MokZN8NTuyhMGXQuQefFEGRSMQONIFdpgDwjCN7DFDR6XRssDiHEMDWAnKGw6EdD02y9qw5r3Z7nJjrtboKhYLFQ04yKpfLBpbZV0888YROnz6tt99+2woPadIsxfpptVr2XdlrADJO/OLZU9BLMiYV2ZznyIk+xEVyCMQGgI59BDgid2AbIkZRUCwuLk7dE3om/KQM2G2aj5vNcRc9I9dQBIhzNMJRBJAb8DDzPAB5xCT2LEV9t9vVT35yRo1GSM88c0H3339N77+f1s2by+r1worFhrrvvrqOHdtVpxPVK688pYsXTymZnIyHI17QmIT9BJ89wJ1rpRma9cQ9436yH1hz+OYhEMhlYAHsffV6fcp/zHMnHrH/wAoUF6wr1jKnWeIdZ9wUsZA8AcMKW4p3GJ8+flyawYgDPuZ+kNddDU7D0Zju/Yf/RDPLa3r/X/xXKl552ypA/B0AT+97avUGWkokNTw6tATE4kcC5fx1PHjITOFw2JJGq9XS2tqa+U/YRDxgJCu8PpKsk35mZkZLS0sGYPzcUzwym5ub2tnZ0f7+vi0WfB9II6FQSLlczgJTvV43mdbLDD5wEYjwRUUiEfMU3nnS0spKWaGQ9MYbswoEDq2hBIZpZmZGa2trqlQq1nVIgq1U1tXpRJXPV3Xz5qJJF5JstqI/Yo1ATMJBRur1epbgADKS7L7iBSVQdbtd5XI5S84kTgII4AnJG8/QOKg39corD2l/f0FPPvmu7r//JTUab6hez6vfDyocPtTa2pbC4b6uXl3SX/xFXkdHPUsC+LFoAKGLkrVUq9VM1qMQiEaj1sE+Oztrfzcajcx7yKEGsNQAhpWVFbvvdFt7eQ8ZSpIlCSp82CLkvFAopGKxaEkJpgm2yfvIOIoRBg32zzcCUBwBJJCHfGexZ12waJAIKD78z3pZmXFwuVzOmL1AIGCzMHO5nLLZrLa2trS/v2/duXw3Eq9nVQHxjLYhCQDIsCp0Oh3bB7D8NB7CiPkGrm63a+oBTAfMB/EEJov7yfviVx9bY2a0tFRWMhm3dYEtBd+s7yZGIUkkElpbw9+YtGIPsO3ZDpJPIBAwKxPMJwmNvYziQHExMzNjhxoACJHckQGXlpZ0eHiomzdvGgCg2bBardpoGzzxnc74YBNkVWK172g+ODgwtQlvILFakhUYPDt+HnkZPyITMHi2BwcHlmwbjYZZJ2Da4/G4jh8/rnA4bLOGAfaRSEQx1xj55ptv6sqVK3bEJTEfdvxOGZ77yHpiPcD84qem6E4kEgaIeV4ATt/kyHOggCcWMu6PeAKhA/CG6ZMmhzVQ8JJfPDPJcyXHwgwGAgFTTw4ODsyz6wEXhTz72n8GMZ9nz1onjhDLgsGgrl49o2vXTmlt7Yoefvi6Pv7xK4pEhur3Q2o0Uvre957U9esnFA4nb//9REHFm+sLLT6P/w+wQ20hpkoyFQ/Sylu5sARQbEGY8N34s7a2pmw2a8UKlr7xPu7bdVGQEXNhSFlfxEbUYN+kRU7lPVAAvH2CA1Q8k8318MKaBUD/ufjtA/3Uf4Sv4Uj6tX/2Z0ocP62tP/lvVL960TrnkbkC4YhGoYgGg0Mzlne7Xc0+/VkFAkE1r543BgYzM4GKBEFgJzAmk0l1OuPxITxAKgg6p5FEMflTZeHzODo6Ui6XM8l9c3NT+/v74xElt2e1AQKPHz9uI4UYo8Ei4pp8d3a9XlcymbRudDxQBH9AEsAFsAxrgbQYiYwnAuRyY1Y2Gl1SMpmaMuYTNGH0YEKr1eptSWmgbjcmqWnJnaTjQSj3y0uAVI5I+lSsgOaZmRlls1kD5CRSqnlvqQCgce8IgL1ez06rgeGoVCqKxWJ6772T2tx8SKur27r33suany8qFBpoMIjr3Xcf1MWLJ7S93dNg0FW32zTZZmVlRc1m02ZD+kkSg8HAAAhzZZGNSIBUzdxLpEwAZ6PR0N7enskoh4eH1rnPaBA/B5fAjyRLohiNxl3UsHvINchv+JmSyaQlfZLu3NycnfDE5AqSpjRhgHjeAMJ6vW5jXQA9+M12dnaMKcX6MF53k+ofZjyTySgUCml7e1t7e3sG2KXJ6TuAXT96iuQAu+sbNlhTyH2STBXAI8Z9AWRTfPD7yJXsS8AqHlAKAwpf32zkm37wlAEO0um0JZxbt07p2Wev69FHD/XWW/MGlunMpXBhbjDrKhKJ6L77LqtYTKpUmtHcXNgYF3/0LOwo0h7rBeCC9EohIk3OAMeGQozhZ2D+Ye6YqyrJlCr2OSOn+L402AEKuCewmtLkxDNUgWPHjtl6IS5R7DHjmGHxxE3WiCRrLvGe6NXVVQ2HQ2Wf+7xmFhYVmB37cI995EXpzNlx0fSdv1B7v6F2MKrjv/jb42ajtVOSpPyLv6bD0Ui1etmaVgqFghEFuVzO2CzfLMm+5xlyKhAxGyDtbVbsEUgTAC8nyMG2AQCHw6Edv+tHbBFniCuS7JlAegBum82mKpWK6vW68vm8FXczMzPGmAPC/YEEodBkxBLAn9hEYU5+9uO56vW6NYclk0kb20f+JjePGWLp6tV7denS8dvNTUn1ehPFbBwXjiyGUYQC7ogrMKBcF4ooRQnr0McehuvDvhODsLbMz88bcGXWL/mThtrFxUXLsdilyNWMxEPtAmtQJEiyxmKAo481rHuUCkgQgK9nd32/gO8xYXoJ6/J/9XNOXz6M6cFPf1F7l16TojPKf+QXrHGp1Wqp/Nr3FFnM6tgf/Ffau/CqWsXNccVy/+NK3v+EDq+8pcP33rBExFBhGl54yBizSWjMSzs8PLSAyTGiyIz4N7yZn00AMITtQzYF3G5ubioWi2l1ddXen8WCBA0jCpj1jSP9ft+8SIBsWMetrS2TeSWZv6rT6dhYqlhsPGNweXlZ9957rxYWxozK7Oz4c2ElaLiBIZyfnzf/IuBiLNn1NBxGLdFRaa6treng4EDFYlHFYlHS2HfINZHQI5HxjEvAI69er6dCoWDBWJJ9Np5dzzgDUtfX16cYZmQlwC7JcRx0B7p6NaVLl540Npr3HzNL/alnROMSQIQiCWmSqhwmAqaDQeZzc3Mm67VaLUsukmysSzabtecEC1Qqlez/4xVKp9PWROKbBvAzxmIxC3Lz8/MGtkgQnh3n77xvFcYW8BAIBMw3Cjvo94UkkythjQEvjJoh4OMf3NvbM/M+zJb3DuKPkjT17/je2u22dZGyf6LRqFZXV80vRiFDEmKvMYNXmjBmAFDmcQKyuJecrAbQR/L2DQsUGgAl5DdAAvEDCZXvwb4NhTLa2cno8cdv6uLFJ6asDDQmwnb74fOLi12dPl3WV796Snt7+xqNxlMikNHZdzMzM1PHU1J8Ml4KtQdZGFaTPct+whuJTcB79VqtyUl9zHQMh8djmjwTAyjlZyhEWAdeeg4Gg1peXrbn58eXkdC9NYtCg9+XNCWxooKhAgCqsi98QeGFJbvGxJkP2b8Hf/RNJfpdzR2/V8e+9PtT8Sr53C9LkrpbVxX48beMHSVm02ALoEkkEibhA754VjMzM7aXyCsU/BSMXsGDVWQcGzIsYB5mnrzF/WUNAHQAwLCcfnYvzYi++ZMeAHyU3rLCdcZiMZvEAgiGjfcTCWi+Yp8vLCzY5BGUMcYpec+vL04Ar51OX5VKRUdHR0ZKMVqJYtHbl1COYHy9EkCBSXFEfOdQBeRvb+WBCc5kMvrYxz6mj370o+r3+/rOd76jn/70pybhU0CxLiKRiDH7vmgBmLImPLnjLR/ci2azacUXAJRchZIKG+sbSxlP5xug2UcUcsTvD/K6a8FpuT+WdhfOPqWFs09N/b8FSaMbF7TXauvwyltKnHpYC48/LwWD6tdLKnzrj1V95etKxMcjFryJF7B1cHCg5eVlraysmNxD8w9JFN8UCZiKivEiMAhUGlSLsGl4QGhCAQCxAWEVYG796RNUYjAbLC78n34kD80sJFJmrHnfHcHEL7DRaKSbN/v6yEek++5r68KFkDGzdP1zEgsNSLAozWZTy8tdJRJHajYXdfz4cR0eHqpardqYkEajYYkB0A7QJlBxn/r98SkeAAXfbEIwIqkASryXR5rMyUMiisfj9jlsXPxOADOaq7a2tsyP5sdo1Ot1G71BoQGrEwqFLHHDYHCkHmAdozpMAzYDZsCmUilrfoJN5/vADCBvwU7jmwSQsd7C4bCNPOHoO9hj7iP7gASBTIU3ErCaTI5Pv6HZC/CAF40kCLBKJpPKZDKqVqsGTFjz3hPOZ1Dp48FilBrAD0ktm82anYIASac594x7yoQD2H1kVZqmWC+Hh4c2jJz3oRkM4IifGfsQrBOxAxCFioEPFkDgWRuYhr29PQPJXsFhr1NM/OAHy/rN33xXZ8++px//eMUOBoHp5f6x5jOZOX3uc9/R0VFU16+fUjwesAQFSwQDA8PP96bYwEIwMzM+sc6fpIR1ioIDGwf2ApI3M4JhaAGlrFXiGvsPTzbjaqTJqTewWNzTxcVFra6u2ogokjTjqSjoJZk3m5jJfvbAhLWEmsZkg93/6Z9MWQMofAD08/PzGl69oPr/5dfM90lsDIVC5hVFPYBF40hK1jceXwDD7Oysjfeh6x/FCOsEFh2sMcRDChiAP15IgAb7yU9D4N5ConggyvWzTgFknKwIYYMFzVshEomEWZuwr3mghKJA0UhRSsyjuE2n06ZosI9PnDhhVpJSqWQTCgCw0mQcEj5ryKZKpaJAIGB+ftZGKBSyY8ixURAzeN9wODylLsE2Y1PBYoLCQUF3zz336Jd+6ZdM3YpGozaO0u8N9ikqExYVinsO8kAVIAajgmLxgBQA1EI2sbZokOa58HusAT6PfU/BREEBaIYM+Xmvuxac/mpqLH3/7u/+rtLptDEFAIPhcHyKROGP/t8GOAjcVGWhUMIqTiQ4gireTypPJPtKpaJms2mzSwnagJl8Pq9IJGKJhIBHsKORALZKkp1ec8899yiTyVjQw4NEgO71etZAUy6X7edWV1ctMCHT+0qaqhVwlUiMz9Hm+gkAfvGHQiEVCgUViyFtb8/p8cdv6erVDxug8Z2FAEJYE4LNI49cVrsd0XvvZZVIjEEGQ6wBAbHYZAZbKpWywA+QxptFoxHNTQQXaXJOeygUssQIU1koFJRIJOy8bT/s2DfRUFxEo1EdO3ZMu7u7Vmjwouo8OjrS8vKysZAUDzAPdMIuLCxoeXnZvLAEaJhUkt+d1e1oNLJGJ8B4t9tVqVQysOAHRC8vL9szhLH3o4RgNVgL3rMEw0CAgt2DCSMYwXoPh5NTbfAzwa7AHvJ8+a5+dFgkErEChXXiCwjuI9+l1+vZeoS5JRjCdGGPAOB67x0MKP5qwDrqAYmIYtJbPgBeq6urKpVKunHjhu0PbC1LS0sKBscHB5AYkdLx3LFXCOB3jqhCoqMYkjTlC/cnthwcHOjdd5f08sur+tKXNjUzE9S77+a0sLA49Z4823D4UJ/97GvKZuv6yleeV68X1uLinH1HQCH/9I1vPnYBZiiufTFHkpImI3CwBdDMCSD0thyYM54DjA3PDssL8ZqEyf4HQMBSsX/wzML64vUmVgBUmUcLa0lzEIdE+OeFxQsfLCADwAtAZd2ynmk6wxvKWsD3R4GCPM4hKzxv3zAGaCSWY9WBxWKP0TtAUQuQYG0sLS2Z9Wh/f9+Kmna7rVqtNsWy+kKM/YU6Qwyr1+vWW+GBvwdvzAxmXcXjcZsLzD3wnkz2NOoBzXY8B2/9gF2lqc/bmjgKmyZh4lg4HDZiRZocXiHJLC7ENQ6bwJKHTYrv1+/3baoP5AQ/6+0RxBryLqQV69KPY0JZ83O8KbYgX/b3980rjNxOTOWeMWedxiVO2aM4ArSzjgCvjOYLh8O274mjKApYfHyOiEajpkb/vNddC055AY6QcFhgyGqAR5hH7yfxzSBUZIPBwDwxsKK5XM4WoZ8Vx4KmaiVwSDLQQ0LB7Mxm5UHyWTBUAFGSFb5RwCrXj/cVGZDqHDsCiYMNjfdvY2PD/IxUqwQjkjobrdfraXFxUdeuPaLnn39V99wzUrU6qZ7phPc+PYLh7OxAZ89u6qc/XVKhUNPsbGdq7iDALxgM2ngY/p3ZcgBQZGIvL3D/2GRILoA5Ai4NBRz5eevWLRs/dXQ0PjObZ0BSgcmr1WrK5/NWIPjxN0i6XmrDo+SnFgDkAac8J8CZJEsQnL7BvwPqOEWqVCqp2+0qnU5bYiSpcw9JHr6wIbAyvHpxcVH33nuvNjc3TT737AszPvH4UX1nMhnrxvbfmSToTyID/MF+0wBBMCToLiwsWKIMBALmffMVOg1w2Go8u+KlQNagT9g8T4AjTAkTCtgvAGHkNmICsjhSHWOSKIx8s0Y6nbYilnXX6/VUrVYNSEkT/xpsim9aYywc3mwKi1KpNFUEvfLKw4pEkvrsZ6/ouecqunLljK5fv1eDwYLC4YBisaI+8pF3df/9m+r1wvra1z6uUimlRmN7qnuY+0pRBSOazWZt3A0HV8AOwuTBlDCtgbgGCOG9YDoBBvgHid8AK9hhmq48YCcxAxwpQil4ms2mrl27ZjEQS48fuI5SRFGJnSKfz9v388eKYm/Bv8o94vmTC5i/i6zLHGkYyVAoZGqCNCmmSfDpdFqpVMpGSMGm4xEEjHKyXSIxPk4WJcjnCYCaJGuoJKfxDLhHADPsBYBxik8aM7GbMFILH7aXwikyAoHA1LGWeP35w5oACEFwcB18Nj5s+gTIBd6Ghnrmj7AGRBFXKNJ8sUcshACgUMITSqFFvKdbHuDFZJludzxyjVhLvAEcogphk+B5UHgUCgW9/fbbeuKJJ9Tr9fSTn/xEhULBCjpyMIUIhVaj0VAsFjOiBkbbxxCKaOIHXmLinT962s/JZo3ynf2hIMQ7r+RwCAeEBz7qD/K668EpwQxmjc2ET4PFgQeRkTdebqBSY9Hw+96cTUIE9CHnkaDD4bC2trbMcwOA5KFLMg+JpCn5JBqN2kJjEXANg8Fg6vQHzgmXZKBrfn7egJJnWtmwBFOanqjm2LTIEJ4lgGGcnZ1Vo/GE9vbe1ec//6q++tUXtb8fNYBCwIP6H7Mi0qc+9beSAnrlleWpETOY+rlOQDuJCBaRYO8ZEz9ig4QqyZIMtgSeLQzqYDAw/xbVH5KNNNlYJBZeSFeAwGg0aiweDC8FAlIN4HR+fl6pVEqbm5u2bmATCGCASYAKs+MYC0QgpcomuA2HQ2NwYBEkGUBFkiMRIItTlAQCAQPoBCxvL0AO4rMAMq1WS5VKxRIX602SSUEwQoB2wAdrCg83fi2kTaRpCgTYxF6vZ0AR4IvnDSaXZotgMGhJGm8098YHV0Aie5/9yh5jHQL8udZsNjvVsY6cB7haXl5WJBLR3t6erSkaRTzzAIBAQvPJ2I9280emUuzibw0EAjp37qw2N9d19uxVPfbYW3ryyTemYuPBQUKvvXZWr7++LCll8YbnyklYgCgKYMbxwARyj4vFokmfqEXsSa4fCZ57yPvyPjD8xKZmc3wkLmtRkkn1FFncS9+IBWPGoSQMO4ehhjWl0OX3iZuQE3hOeTYUkhATsIHkDT/5hf2CbUqaNNGx52HByBMQEbBY2FjYl9gxUI4ymYyRLqxlwCrXhj0M779vHAJoedUHgMIz4bMpHohLrHMsUsySxhPP84co4drxXtMQDGClaPOFM/nJkxurq6umQLDnl5aWLKcVCgVjLyk2fCEHi8qzZa9CYvjGJFhWejRCodAUIQID7hlf1i/+UUYtcVgFDDZ5hgKJvUwuKBaL+vrXv66NjQ0dHh7q3XffNWmdAo94hUedfMn1EFelCRFAwQLoZioF+xqSg9jMuD2IGgou35TrY24sNjn9b2lpycgHVCvu2c973fXglMp6eXnZTq3ArA2DBsCkGmCR+fltBBxAF16MSCSiUqlkm6VSqWhtbU1LS0tTPgsWhZdROH2Hz4XVZT5pq9WyxpxsNmuSPsejeU8hAQTvEwsElogjzQBUsLidTsfGuzDomsqWZM6wcf9zBPIxMArou9/9tD7zma/rS1/6tn74wyd19Wraxhdxyo000vr6nj71qVe0sNDU1772vEKhqFZWxsAOgISUgaeKQAhARjrBwuClEIqDTmc8MQHDNkkPoMizIJAi+cC04P8CqJAkKVwAbVS9AFvuO0Cc0VGcGoXP0XcpYwthBiD31jd/+EY1PhcJE0YZZpsAR1L2xnjkGyp8pDfANYwWSRGPIXIoZ73DtpBwkEbL5bLS6bR5mrhXXmKksaVQKJjMRtMNRn4CLPeMBkBG97CH8b3RbFgoFKw48RMM2O/Iq+xd1hFgE0mrWq3aOgfwcLyrZ4/YWzzraDSqYrFoo3bw89Khv7a2NlXoBgLj0VZYBNibodCkS5nPZ23jdaXoZl9SMJLcyuWy9vaieu+901pefkQnTjQ0M9NXKBRXv7+g8+cD2ts7ULfb0fz8pFEGmRyfoW8YI4EBdliTJB7fnIXiQHGK1AhwghBgHXMPYMrX1tas+CKZszZgju4cgA/Q73a7VgwCgAGzJHVAA8CF9cEcbIgBkjyM29HRkQqFgoE+Gm0lmaRNbMFzx2fzGaw3+gi4Z9wDQCp2iUqlYvuDZO+LdxpAKQrZd0zvYJ0AjFBcaNThfYhhWNlgOOlT8KqgbxiiKPEHmRA/PXsJAcFEDWI9AJI9SbMQioIHhtiCiFmAIu794eGhyuXylPcT4gXCgKI9lUrZe0NUcC+YOMDn4pXFmlSpVDQYDLS4uPh3/LAw/VwXMTASiZg/XpLW1tbMMoL1EHUqGAxqc3PTVCMajnhf9ijAnzhOQY+nGTWKfY1i58dq0bQE6G42m3bACbHWN9/66UZ4SMEU+OYXFhaUy+VUqVTsIAnu8Qd53fXgNBqN2qlMSPQATfxAPADmAcIYFAoFbW9vq9fr6dSpUwZ6ACw8RDZjLBbTiRMnLFCy6GkOkmSnfFDpELAPDg6Uy+XMUuA9KVwPQZZql+C1vb2t9fV189fxvany2eSSrAIaDMYD/IvFovL5vHK5nJnW2eSYnAnCVI8wOSQCSdrb6+lf/IvH9eu/fkmf//yPdHg4p0uX7lGp1FY83lIy2dLp09eUydS1tzenb3/782q3l7SwcGj3DvYTdo85a8iF+MHYrAAyAokfckwlFwqFDKD5ap/gBuuNOZ4KnSTC78HyUfHT1AKLwGYk8cHgEpSRgw4PD1UqlUxqocEB0IpUyskuSMawGKw5b/GAQSdokexWVlZsPA9Ajv8PazoajWxIuA8arB3APPvEs81I6nt7e8YAehlOkkn+4XDYGEwACiwd1fbi4qIxvjxr9hrrjPE/vsEJxiCVSllSbTabJk0CAmdmZiwpIkVRnPCzNCYBEgDskix+wJgB7OmYJsivrq5ao97MzIwBqp2dHQP8rPFYLKZ8Pm9rFJmfoyEpxAj6MzMztgcKhYLy+bxSqZSdzAQjiM91IvfN6P33Z+wQh2RyVtHoUKlU2IoK2GmKGc8KNZtNG29H0UEyJdbhESW+AGZ6vZ4BVYbPe2WGf0qyYk2aMExMoVhcXLQiiIQbi8VMzoQVh1lHFWMvptNpa1yDffVryculMHIAyW53POCe+8MsUjyo2EQobonP3FPWJeudXAAQg/lGbUDxY/1jTePesaa4PvYQ742tCbYLII/6AiMeiYzn7PIcA4GAKVlcH6wX6hMAGNtMKpWyPcc9IAbw/JLJpH232dnZqVMXvXWGOD8ajbS4uGj3juuNxWIqFot2XDPD+vkdiiVYY9YJ7LcnEhqNhnZ2dv7OFAgILKwW9XpdW1tbU9N2sB3QQIy8z/Py3vSlpSVls1mLnXzWwsKCHbDS6/WMXJibm7PZ5MViUfV63Vh7fKYARZrb+DyUNa8kUjgSi/jj1eROp2ONqzDreK7BLEzqIJaiOJJL6Cchd6JMgyPIA+Cun/e668FpMBi05EWFwQLy3WkcJUnXKMnTn/CCj4gRRrAqnmXwRmE2Q6lUsmqJ7kxpvAl84sQzRzJkARKU+F1m2eHroTplkSNtwo5RMfqjS7EcANqLxaJ9LqcAsVBhPwBjMzMzqtVq2t7etq5oAsw/+2f36vHH43r66V09+eQlhUL4m6Rr15b16qvPa3Mzp0AgqFisa6CM0Rg8q16vZ8cfepDOhkJiAiR6sIQB3Cc9ABXgfm5uTktLS8Y48CJIA2qliYWC+4r30bMQbLg7gSjAFeaeeXF4EiuVig0Wx/daqVRULBbtmcG+8r1h4gCa/X5ftVrNjspFrgQoeIBPIsRzh0zth6oTrJC2qOSZzTs7O6udnZ0pZt6PmxoMBrp586ZJe6dOnbKABYvAcX68AASsZe4PvyPJGDGCO/YTadxYQvLE50SCxFrBc4WZYv/X63XNz88bO47XnGfJs2UeMBItzBWBmdiCZQKgxPr0RfDMzIz5MoPBoEmjgCb+iR+VvTfeSyOT1lKplBWtMJT+cAqKK6ZoANYlWVFDMTw3Nzc14J8iiAKMPUGB6sEl1wgrjULD9wPoUjAOh0Otrq4qEolY8yZeVS8RSjIrCA11JHlsG56xQlaVZBIiwN43MPlmOgomRpsBIEajkcrlsk3BgD3E/uCtJr5ZjWbHbDZrQBXCgnvGuvL/5DtTDFCc0nyLCsBsbdYCSZ9ucSRu9g/PmzVHnCJmow7iy/cKD4oc+xBLEhMZyIWAae4tShYv2HdAP7Gw1+vZmEavCJLHvG3LEywoIBR4FBfsM2JBMBg0JhwAiGc3FovZqUmAa/I6+9mTE7C2qJBI3OwJn3OJLz5m1Wo164OIRCJaXV2dkshpuoWQ4NnC+vv4yP5FJT06OrJTH7ELAGi9h913+MO6xmIxU6m8comlD/YYWw7Yxqu0xFkYV9YeyhDFIc/gg7zuenDqR/MQ1AE/BMJut2tmdYz00jgorq6uGmBio3a7XUsK+KAwj5PUpUlVE41GrRkiFApZZyAACTqdQAdLx3sWi0Ubc0OnJj+DD4nFLMkqGF/JhkIh86Yyb5TB2YeHh3aUZCwWs02DQRwvIQGK7lIqJlg9gPXu7qJeemlV0ejTisUG6nTa2t3dV6vVVSQiRSI1YxuQAkgybBCSo28yIlBwr7h22DSeJdVZoVCwY9XwEdFolE6nrdAgsLMGvGeKz0FSRiaKRCYHMzACCz+XN5rzB4bDd4ovLy9raWnJTigioSUSCW1vbxujDnPKdSCz+YYZKnqSP9MYuCfI1ARQ5C3WBYADdhZJD4l8PHIoYzYG1jxMHYATVo8kzhrm+SIJIeHxvJC9+T2UA9ggJmrQJOj9XhRZzD9ln/IcU6mUsUGwHCQxJkRwnwA0/hAJikzfKU/xg8TOHvDjdygKkXY5BITmkXg8PmU1YhQT+zkSGZ+WBNsoTTyLXAtMPwmI+0oc4Hv5wpnkDojj/gJESZDYU+bm5rSysmJgnaQLyKDw6ff7dlIMrAnPEGBI0pRkgAwmDmBC8gdAoljxGahVPC8UIyZIkEQpsije7my6471J8txXCkr2HM+GfUyR6JupAMycWgSAhE1j/VYqFRtNxn3EkxwIBOzeENMAiXiVfXMSKgAxEY85zYnkCdYwvRDYBLh273+WZAUKHnqeIUodv8NzgSXHLsX9pYDhmcCqeaADYwq4xEpH8yGFM/GD98DfyvpGnaQxDtsG+YmiwE+C8YoQ5BIxH/UJMsOriqgqFNFYCVKp1NSxn75BCpWLeMm99U2rWGr4bGxBqGvEFabWoPZxH9j7rF2wCHGXmBmJRJTNZs2OxPOjQMZ+QkzmWXlvNu/PWsYqxgEM3W7Xci8FDUWQHzn2H3rd9eAUsMOgaGa/sWiptkjWzI9cXl62qhZaunH7fHgPECuVimZmZkzSBRgRHKlCcrmcVWckKKpYJCGAJtUM8xaRZwABSIm+gqMxg3/CAEgTSYOGAICeNBneTkLjOx8eTo4i5f+zOPHChUIh+z6casPvjBm6oarVcdBKp7NKpwPW+U0AILEjVaVSKeVyOTUaDZVKJZPS8L4yGQEWD9sBG1oaS8k7Ozv2fWGk8VjBciCZZrNZO+oSnxEbiCHJgBM2Ms+SgiKfz08FNeYuknh3d3fVarWMBV5YWNDCwoKxbT75Uv0y85Ak7f1oPCPk8OXlZZOyabLgd0m2sLwAqXA4bOwPAYVr4F4CuLw3FrAlyYKwbxqLRMbH3VLM4Gti/AtJHe8lQdwrBqgcBGWkeBIs34PrgL0guWBZYZwTshfJOxqNqlqtWsFXLBYNYANQAMgS3ure1CQIwA4WmkajYcfR5vN5awZA7eAErnq9bj+HhePOZM3+BHjjU4eJIIkhE6fTaQO5+OZRgmBrYDNJmBTnTIHg93wjBf8fZoj9XSgUbMYuzYTYp4gFvlGPdQmgh9XxDTXEAyYesLc4FY/knEgkLE5TZJKEiaWAEVQdPou9ANsN2GACBb/rG+cAKXwOa4kcQFMe9gVsBgBo5H/2JIylJIvfACt+BlYbibXVatksaiancO9o4qHYxG8IWCWOwBqjAKKq7e/vW9f1cDie7ILnHBDKvgZ4UYTAlkH8ENuxEkiyfEVjHXsdBYgYEovFbKIH3wP20I8fgskEJNXrdbs3AFqaBGOxmA4PD425rtfrCofDtjdRUSnMKQr9P1lzxC1YWRhdwD/PjD3jm9ywVlFEoNhxf/HHezkeAM19Z/9g9wGXsM4putvttsV7Zpt6zOIbvVAOUIPAC8R5ChEmC7DGif0+5xGLIeV4rtidvB3gg7zuenCKxBGPx63S834eLxkg/wEU/cMk+KTT6Snpna5VwCSMBg8Cxo2g32q1bPA6G4uFzUKFnWVBExxqtZptet4P+ZMKFu9VNptVOp1WvV43QzzeWDYcwA4vJZ47Zn+y0WFYYYPq9bqWlpa0tramYrFogYLqkHtHEEF2hAVj4ZL8YP/YeCRCAGA6nTbvJkGHJEIA5/n5jUtgIGgTXGC9YLYSiYRWVlbMj8em43263a5yuZz9vp8TSFAFkNfrdV26dEmzs7M6deqUFSoASz7bjxihCQcGAXbQM4jSxEcLQ764uGhBhvUEW+qlIZjiO5tLGDsD0wnAw4/pmwl8QqHaJ3nDZHJdACp8pgQ6vkMymdRDDz2kZ555RqVSSd/4xjesOapWq9k+oehCIUD6wltK8GaP0ijDtcKmkbjYJ8xqpCBYWFhQKpWyPTsajUfv8DM0ibGGADMoIXxHWBTYLK6bAgJ/LhIqHjzWO8CZe4XEyP7gj/cNw8pQCLAG2+22crmcDT73ew42DbUABrTRaBhwgt3FcwtghZmH8eR54k+LRCLGujMTVZLFWO9NYzRVrVbTwsKC3W/2M7Gz1WpN7V1eNJ2wFpFoKXQBgOw1xitxmhUFAAwf6wkwRAORJJNFfaxiKgJxCJnTN6ECAIltc3Nz5tXP5XI2zi+ZTNo9YC37ObnsK38/UfR4vhzNDBgtFou293xhSmMXABswGYvFbO3gL5cmvtFOp2MgnrXorUZMksDWRkEKIGVd+eJ6dXXV7qc/9Yg8AgtLwQawCQTG81ixy2Fl2d/fV71en2LeseiQ6/3nJZNJs7nFYjFj0lFAvO8aNYU9CmijcMZqQNHM71Dwcr/Y2/jbAc4UxRBQ+NjBCOQO3gsmns9HFWOdSrJ9jv+dHI7/mfGBFFQQRXcSbcQNcgHxhPfxCmM2m53q66Cw9DarD/K668EpgZWzqL0sRQCkSmq32wb+YLT84iN4IhuwEZFxYMl8A4UkA8EkNUnGcHj27fDw0I4QbbfbthGYfel9M7BtSOBIgSQppBFP7RP0kTcBD7z30tLS1HndiURCzWZT5XJZkuzeEcwTiYSOHTtmjAyAEbYkGo1qfX3dALBnF0jImO6RlJDmCoWCarWaAV5OKer3+yqXy1OyGEwCG8TfA5IH1+/HdSB/cE8BQ9wTNjvvSyUMW4ZtQpIBcMACyYDEwDgvEjzBm65RPGWwEMgzyHx0uaZSKevsp7mD+4Z0BjgioVAkSWMWI5/PTzHOBCXYAS8NE2j7/b5KpZJ5wLw9BiUAYMn34zv5gd/JZFL5fF6/8Au/oJWVFZ08eVLXr1/XrVu3jGVE4gJgwsCQRCgseA58X/8z3A8/vYCKHwDPmCGCNkWpZ0VmZ2dtSgNgHBmL54Oc5Zs+pDGgyWQyFqQJ0HwfEhKNOdLkdCKSPU0h3GvGw0WjUV27ds1iFcDS+92xJaAO+RFVnqXGiuHlZVg/SeZli0ajZjXhu8IkM8+YPelH2iEzs2eJFzR1+e5mCieer/dosuaw51A87u7uqt/vWxInOZIgAX9Ii0y3ILnDYLdaLfsOHnQjt3ONFB4UczxDmuDi8bix9dxjGGzWIrEBwAibDGsZDAZVLpdNIWIvxONx7e3tqVqtWhMmEwPwOgNw5+bmjOmmWOWaWH/EQVhNYh2xlkYulBBICNjAbrdrYIaGRhhdVDHWPwCf+8FawXPLGiU/QtjA7uH7lGTXA7NKQUt84rsRx7xNgH3mGU7/8r53PhNWlH+SB4nhkDEAauwc7Hvyl6SpQhMcwP3iHqM+YcOD3IEI4d5RHINlYN6xIwAYyb3kBIC4zxWwmsQ24ognzvDnsn5obIQcCQaDyuVylgdgn4m7NEZ+kNddD06RYAgqLBIWHkwmiJ+KJRKJmO+PpOa9MSx6WE2CDUwdGxuzM2MVWGAsOvxSNKkgk/uOSTxPbHSCsgepgDjACgkcRovv6n233mjNImZRUb3R3XnixAm7l3jZAN2STPKlcg2FQuaJQhoDFCDxIY3CfLDAd3d3de3aNQMQVHAASa6DZEK3JceDAshgItg8weB4Bh7PSpL9PRveN1j0+33l83ljNwgceIgHg/Hwc7xNMBe8F8EP9skzSTTM8FyQdhuNhlX0yIgkXg+eAF8wxpVKxdYiIAjQND8/b8+CoM+geZgpGCOeBYHfszaY2iORiM0zRabudruqVCrGXrNeKb54f5IkCRBpmuqaE8IAKBRtMAXBYFD1el3b29sGwLjHjBqiSxeLireaSDJgwrokWBYKBZP8eJYkRZhNzxwDdig8KQ64Z7CNtVpNlUrFmjMpOvETekuKby5EaQAEsscpDvhdCjG+I7/jnyUsDgkTH6hvrsCTJ03YDQo/SZZ8iR80RfL3SJIHBwfGQnpZNJfLmTeNAozjYikoYaB8sxvxDA+u71L3hTFdytgKkE49KPN7DKIAhtgX/CRa1ooHPDQYEuMCgYCx8ag6FNz+Grvdro39Yt82Gg2TiQHZdEiXSiWzVzF1wzf2kasoOpBeGcLuGc9yuWwF/GAwMHYR9YV7w3en6PE+XST8o6Mjra+v289C7NDQyf0Mh8MG3ABjvsscMAtgxGLW6XRsjBF+cH4GgoH7Sa6iWOcZAbh4P64jHo+btO/tbDRBttttI59gBr23k5FI+Nq9X5c8CnnA7FdmlMNqEm+IFUwc8WPYvPeT0waJ6xAiodB4jijxl2bXcrlsOYi47Z8zBQYKAd+PIojTIdnrsND++9F/gQoNlhgMBlM5jPxNYUds/CCvux6cZjIZ22BICXh7WHwkKpIGnZkkWzYDnk+SHxU53bUECNgJSbYAGAdBwmJx8N5+1A8BFnOxr9ypwNksNHohqbBI2VQkLwIL/haSBqzNcDhUqVSySogKjAoLMzOfRSIjKXmmg2HKCwsL1vHe6/Xs3gNuCZr8HRsVaQQvIsGN+4PnEOme68JLFw6HtbKyYqwxAYv7WKlU7HnAlOOj9KOqMpmMUqmUrR2AJECo3+9bowjmbwIewM6ztd4SQXJaXFxUOp028E1QpNPen8nNM4GRo0jZ29tTsViUpCl5n2RLV/jR0ZF5agFAgLhkMmnjSwBhMHt+vfKeVOoACxIxgDkUGo8N6vV6NqmApFqpVPS9731Pn/zkJ9VsNnXr1i17rgBqnnm5XLb1lE6nbQ3A+BHAsTDQ2MD9poDycj+qCcCUmZGSppQMAnMymTTJjaKANV0sFqeuh7WBvxgAhg9wb29Psdh4aDhNdTCVgLjRaGTBnvelmIMhpfkIfySNCXQFE1MymYxNwYDZk2RHM3o7Ekw8HeLYXPB8t1ot884SB5BH+/3xsG6K6kwmY02gWAaIscPh0HyzzAhlf92pZqVSKQMhJOxQKGSjswBbeEn7/b6q1aoxsCgYyP5IzQAWLDcwk3xXrgW5m1PhJFlhRzHEPfSd8FgM/AQBADn7iu9BkidO+MZPwAgeUe8NptCkyKLgBfwQfwA8sLrex01OxGsqTWaDoxY2Gg1Vq1XLqZAWg8HA+g84eAElAuWOJkr80BRK3AfPoJJ7JWlnZ8fWOQqkt6NBtPjix1u9sEpJkyZCCA28+qurqzauDnuIB2E0U5Nzed7kJ1S7bDZr3nzG6fFdYA29p5rrhHiQJrYFPp98vr6+bowlDCv2IcZQ8RkHBwcG0LmPrHdIGu4H0j/xn/3FHGkUP5h1rF6oFr4hkeIK6wy5O5PJaG1tTaPRyE6wIw5+kNddD04ZxMwCh97Hh0pVgx/Td+T7Lj9+jkQO4AUEek8JCwN/J5uf4I6BncUKm+RPsUgmkwY69vb2bAYfnhgSrCQDx/hBAKOSrIkC8IA/kCTsJUaAHWAPMCHJzsnl3gHQ4/G4NSwA+gi6AAmCUywWcwP5Zcwws/v8/MJsNmtMRDgcNgaDYE2ApiAgqFOdA9q7o4E+/Jl5PfrAVc0Gbyo0aquvOVXa9+q1czmVr4QUDoWN1ex0OuZNA+Qxa45gNzc3p3q9rqOjIztakEQJ24lHB3aE6x7PmEwaq0TXKSCd6t43yw2HQy0vL9szJ9ni3UMOp2ql4YHnj9x38+ZNdTod5fN5G6BfLBYVCoW0vLxsSRsWut/vG4uI7Fkul42JQvbheQCmaP5A1sMHR3Lu9Xr60Y9+pPfee0+j0Ui7u7sWOKvVqgVYgHE4HNby8rIlh2g0qvvuu0+NRkOFQsHWEYCU5hz2F7ODUUtgmlutlnK5nCWnxcVFa8JjjXOyC2uK5M/aq1Qq6vV6BmDxTBM/PIvMyCTvefNeLM9eegmbBFGpVAzc0lGNBYP1zjPBi0zRxRGtrBPfrIFnFln0Th87YB3bB0WkVyhoTiEG8jswx6VSSf3+eMA9ftTBYDwHFNZImjQERiIR5XI5k5WJQ973yn3ke/pGTwplColutzslcVO0A/Y8K0XMn5mZscaZcrlsRQMxxsdamEKKcCxVFMiAYBhxgDlMIs+faycOotRRhHuPOWQHqmA0GjUwwLn0Pr6jXA0GAzthjFFlvlnJM6wocNwX1hqgkbXLmvdrGVY1HA5PMZv0N1DEAxpZd3wO0ze4Z+TZO7vR2UvcX2IvCiTvR6ECu7y8vGzve3BwYNeLskNRALgDOLL+KCixyMHYosLyfGC72VvepkIjEvYFGt4o0sEtrP9wOGxKF7ndq7gwzMRiijLIKd7PH6bBs4aY4v2YG84zJAcw25efI08DaKXJaVQobD7OsUd/3uuuB6f+aC5AEgEdcEZCYPPD0iGTYWgm+PEQJRnNn0wmjbHI5/PmA2s2m5ZYmaWHtYBkIclGRVGhNJtNm2lH4KPrlmSFUZng1OtNztWFTfJgmQABU0BlD5DBPwTL4hmcaDRqw9ZZ4PPz88aOEBTuTICc+w5gYhgx3kBGe8BqkAwZNYWNAeYFJoPFDgMOW0zzSTAY1COfCeqxY3+j6Kisav9JXak8o1ZrpERioHvyV/Tlj/9AzU/cq3NvvKCrP40bM0EgoVHIbypYCKp/32QAE+nlVIIRvl0mMHD//BGieGQ54QSZkmdLgsczxH2CuWi1xick4XmDXWDcFmCRBCfJ5GlsBLCDFA0+SdBcx3njBDfksEgkYt5C1huAkOLHV9jIf8jA1Wp1igFG3vQMCWwDMxh5XjBT/H9UDTrWYUaGw6ExjiQifKkUB9JkfmS73dbNmzenEgBNKoFAQLlcTlevXlWv17ODLBgnA0tLQoUJwdJDgUewBvSxhkj+sCusNZ49SgqJsFqt2rGznFZXLBZtjbBOPNtCF3in07F1ARDxBRQM9MzMjK0DScYAovj4KQAUjTQzttttbW1tWXxCfqfgoVuc2IeqAQvKWkLWZw37jnoKBF+4se5gY9lPd86BZp0A2kejkXWzw1jTXAiYhuUEnBE3YVmJ3QAA3+AIc8XzYO0Sf7F03dloyjNnndF4RZ8A5Mr+/r6pVewflCjiCvcJBY+9QyMR4/yIG3w+jZOxWMxYVPYO65J4yH2hqOP3AZHd7njsEI2U3u8MwAsEAgbSUQ39H54DEz3w0OP/lCbqpCRj6jmaE1DFnvNMPUUq5Am5mnsN+4rfmVhC3kANAINwfyhGYa3JLez5ZrOpra0tLS0tmXI2Ozur3d1dFQoFsyBIsuIxFoupWq1agYWdgv2N/384HFrxxzr1Hn4wBQw7tht+n2kN9NuQ3ylIW62Wdnd3De/wvsS5D/K668FppVKx7kXkGDxcJJhIJGLz6Xgo+Dl4+ByZyH8j+W1vb+vg4MCOIp2fn7dNtLa2JkkGUpEv8LHGYuMRPhsbG2YDiETG88s2Nja0u7trC5IqG3YiEokYcII54DsR0PGf9Xrj+a2Y6Kl8YDPD4fBUB7OvcmgQgoGSZEEbdgCmieDjZToCP9UpQIxkwPuQ5JiLxnWGw+OZnhzxGIlEpjy2bOZEIqG1tTVjJZ/+0qHuS/yJrtU+oZ/8bUpbV9uq1XbV7XZvs4GP6sRjT+kjz76vTzzxr7WY/n29/YPJEYWAOuRs/okPC8lHmpzH7hl6qnj8TXQIs/4IXjBasMyMtIIZAIQQXPiusH3JZFJra2uKRCJWeMEAwJDT+T43N2cTEADyyIqMTCMYw6x66YliBiabYqFSqZhfENYvFAoZSKVZgHUEAFpdXbWfJ1Az2onnQIHlK3i6+j2AIqEQGDnukUIwFosZO7i0tKT19XV7Hp4tg5HCLwyjgO+VeAHLBXjb39/X/v6+ATFAOKCIQsQXv4DSwWAyQ5l7zD7G28h+YVYqUiZACiYLGwg+wMPDQysYAGoAeRiz5eVlO+qQpCiNk2o6nbY1TrHoGwrZ84AykhmfDcuEh1iSTTyAVaIA5r6zr0jggN16vW6dzQBpYgXXy56RNNUgIk0OLSFZ3ynz+mYc9j+TObDFAJQSiYTJk4yqY6h8r9eznwMccmgH99J7fvnOjDrc3983IOxZf9h9CjcKYNZkv99Xo9GwvU+xxTPhOyPD0uzFnsffyLoFdEEUQJp4Rh8CB8YOZe/g4MA6ub0FgXvgm/L4bNRF3o/C3it5qJGQRvh/WRfEtUAg8Hea2QB9FD0UZvSEkDcpNHiOxBRiL8AMexZFDodcEJeYvgH2oBBH2fGsOZK698ujVIAJ6LEIh8NTE2y4j7Dtg8HAcnsqlbLeAOIN8ZWmK9YW6h+xG7sJhSYxnvVVLBaNxWZKBQScpCksxXMmtn2Q110PTvG6wO7Nzc1ZV30gEJhiDXmIADtpMnCbpExgQW5GFiBRI52wKNloNKYQSFkcMLjYA4rFonZ3d7WxsSFJNkuQxELwIZl7RoRNyDF/hcKuHn10pAcfvKJstqB4fKDBIKRGY0aXLp3U1asnNBhELTgAVmheoasev0ssFrORRzQrERAkTXUV4x2lG5N7VSwWzYdH0IP1GY1GymQyFlQ9s4UtAW8YLATyEBXiYDDQo5+T7kv8iX5y5Zf1/a/0lEwGp04kQgK68eaBrr2xol/5x5/W4yf+SLUHf0fvvz40UMzn8+/Idd7H42URvjNFDR4g2AnYd88SIY1GIuMRPIVCwQoG2ETuEQkQ9pJnBWDnuyH74B1NJBLW3XonK8ccRGRimvKQm2DN6ARnwDpgiYATi8XMelAqlSzIUVjhd2QcGmsL5oJ77JkMgBqFD5461pckKxwIvnw3msgGg4E1TEWj4yN3Dw4ODCwgkTLKCvsOlpVOp2PPEwAmyYrLcrls90SSFYLeVwfzT7EGYPUzHgE7e3t7tj58oxCTNlAkPHtaqVQsGcMSAUQAkBTCxWJxakQSEjOJkYQXDAanWE/iGs+Dewt49VM/sHLwAhgw15eEdefPYHVibbJnuT5mgfpJJLywF7Bnut2usVh4gbESYPWiAPcNT+w7CgAScbc7PpZ4aWnJ5FcKcXIIIKZeryuVSlkjC3K5pCmfL+wlRYtXSSgivC2qXq9rbm5Ox48fVzQa1ebmpjGbkBXko93dXcVi4+O0AdaANrq0IU0o9L0H9E5gRhz0cRFliDjEzwLskZK9rYGiDb+itzlQcGI5AczC8rOPiQOeSaZYIr7xGcRSfg7gzXdgfUuTYsgXeTCa2EKWl5en1CCKSlhw1oG/XtYvMrlnb30c4zswNQGfsW8I4/7yvYgB2Bfon4GNpU+GnOnzNF511ii4hNFrfMfZ2Vkr4rAuQAzRuMY+YT+xhsFagF/Y9g/yuuvBKSCw3++bHINcSfMGG5NFTAc5KN8b6xlXQsCHeWLTwILhpavVaspmszp27JhJVoFAwKS2aDSqY8eOqXH7XFsWmiSTV+n4JIBS1UkykI18giyVz5f19/7ej7W01FSjsaCrV+/X3t5I4fBA2WxZn/zkeX30o2/rwoUHdOnSk1peXjZ/jyQLvtxDGD8SKQsUvyjMgwcH+HgJYIx/Abh4WQn2DlM4703ChYGdn5/X6uqqksmkHbmKHWAwGGgYlR7I/JWuVH5BL/1ZawpcAojxuFFxfv1/mdev/8Fj+vCTP9PGxSf+zqxL5GL8hCQB77+lIAHMB4NBY70AAt7Hi7wjTTpQGTUVCoXss71UCYNCkkKOazabBm6xeRBYqID5uXg8biZ7GBoAH+CHAOhlymg0qtXVVbtnPNdmc3xcnT8a0zeh8P3p6g+FQlpfX9fCwoId54fk7UcW0YWPRxvrAGCc+41nl2NHAaskT+4zHrR8Pi9JU/4pAjAJz8v8/rlRBMEi8d6xWMwYCK4RBqff7+vatWtTXc38PvcReZHmNklTBQnrAJaGmaJYBGD2WOd4mwFBADS+Px5TgC+MNmNefAFN8dfv9425Jwmx9kOhkIFiACLADquMV0JgHPkZmrMk2XcEqAEMAM7SWIlCnWKdcsoZbA/r6eDgwLrCKbho9IJ5JvkCjFAaYJQoJHu9yfGX3OtCoWAsGPGS5JtIJJTP5212J/t8YWFBS0tLZvfxXlnsIzTbxGIxUx14nisrK1pfX7fCNRAY6eTJXR07VlI4fKReT6rVIrp8+bgGgwkw9SoaUwe4Xq+QMDMUdhOCh7hMvPbAlYKGU8HIFewr9hnPDjIF0E/+wOvLOmy32zbpgkIIVplGSZrjIG74TIopaXKC43A4tGNq8R/z93wHbBDdbteaYykW+MxWq2Wx1TO/kEaSLO4Mh0OzIVFA877cFwAnIwfpPSH3xGIxO267Wq1ONbuFQtPjHSmkkfVh4BcXF9W4fbLgYDAwQoh75j8TVQUCjcIevLSysmKTGbjHFIsU0hQzgHD2Pxjj573uenDqvWIEB1gAQCasVyqVUjabVbFYVKPR0Gg00vLy8lSVGA6HVSqVTNrk7wC8qVRqqut8b2/PxqXApjSbTZsZyeICrPb7fa2vr+vYsWPGHhC8kB4KhYIFbp/4YRqWlq7qF3/xdRWLC/rTP31IR0cPKBgcH5tKwvjud2v60Idu6bnn3lE6faTz5z9nwBeQhbxAAkbWwV/IxmM8h5d2YGcA1DDSJHFOMMFjKk1ORYGtwztDIkH6JiDCoNBkMjc3p4d/IaDQqK3v/mVYweDIJOR8Pq/PfOYzOnv2rLa2tnTu3Dm9/fbbYza0M9Bbbz+uTz78L5W/70ntXGnaxiQ5eN/acDg0/xHsMZ4bvK9Ihr7BDfmQe8n9kGTAHGYJYIvk5P2VsKN4wDith4TOmpQmHrLd3V31ej0dO3bM5DiSEc8PfzOHRCDxAgQIKoPBwPzRHLkJYIQNxucN2AVcpdNpLS0t2doFTFar1akmPYIk42m63a42NzdVrVZtPcHUeXl/aWnJGrsAfcQB7h3gEVai0xkP8fZd/IB2WFOANYmTqQ58Nt8DCZXr8o0eJC/uvV8jeNlIRowvIymy9nhmkqY6jPk8jlDE1+sTGCzQ9va2JTySGEDU31MAAtIhR15SjAHmSa4AOIoMpElA+Z0yLgDPT+qgsCW+4LXkmQI8O52OMdZ+/3W74+H2/pSpWCxmAJH9xfPyhSN2BUnG3tE4x/NDCfP5AxUB8E68AlQTc4lxkCJ+BBrFqCSzhgHcfE9Ep9PR5ubmbWZ8Xx/72C098shNzc+3tbc3p2YzpmCwrwceONQnPnFD168v65VXjung4KQkWdxdW1vTwsKCKpXK1NnnrG3fvMU9on+BWAT4IE8Mh5PxX6lUSvPz81P51hd9qBKMIqJ/AQaW3gHWEDYFSBLyOnslEAjYRAn2EIULUwTw86KW0ETpVSAKD1/0QhDAeA4GA/OdQ6ZQQIATUMmQ9hcWFszv7RsAyS/Yu1ChKOJgf4kzxBBshZ6tlCZNjOwP9iZFJN85EAgYO01zE8Qcah52BT4LMI6FaH5+XqlUymxAMMNMfcHj6vMGpN8Hed314BSvJuNcpLEPtVKpKBaLaWVlxZgWvGGdzrhjm+DPQ/JVGb5DPKh4xKj0a7WaSbr45HgogCo2mjSRJwFgfg4mtgSqFIIWQY6Oy1gspvvu6+sLX3hDGxur+uY3P6zRKKy5uZABuqWlJe3t7alQONB3v3talUpaX/jCeR0cfFevvvqw9vb2TF4ARFUqFQukMEMwAXNzc0qlUtrY2DBPqw8I3kzP4kQKYJYkAY3ERqJho6+srJi0MxgMrDkBNtGYv25X96+9qd3ms+q3ZhSLjUHa+vq6/uE//Id66KGHFIlEdPz4cZ05c0b/8l/+S507d07lclnVf1/TRx45pgef2NbFH4dNMgG8HB4eWqMCMg7AcGZmxpreJNl3ZdNzrj0+XNZEMpm0MVI+sXnvU6/Xs457z0ixTgBa0njCAZ5YnjeFhJcnCdQEZc+Ww2ZTlCA5rqysSJL5QjOZjOLxuLFufG/eC6aQBIc0DGimCGJvkexg3Fkzkcj4HGgODpBkgMVLTXxXZrpKMr8tANozcSRUwDwAAp8d/jdYk263a7KwH2nmpWyAJAmE700hwv9nXWFR8ZMFvFWCGcMwUDScARywcyDfA5g8owiTjSWIF/HMS7ZcO8ASEMizpTkRgA0TEo1Glc/n7eQjkiPxl73rQTrPgtgHuOMavWSJ3ExM8kW9T+oUBqgkWBnYe0dHR+ZN9wWO9xN6xpxGFs90A7C8XM0/UQl4/qxf9jPyqiSLWd4XCzhFpu50OsYawu4TcwqFK/riF88pnz/QxYvLOn/+MVUqGVs/yWRY99+/qUceeV+/8ztv6PvfH+ny5fts3XA9XIsHVZ1Ox05V88w18Y14Q4HpLXDEMK4VCxrrgnzJ/u71eqa4hMNhVSoVs4PxTLFheN8665ziycvlrDdYQmR4RjriY+Z7oz76JiAIFl/I5PN5ra+vm5x9eHhoTap+L1IU8bt081P8RyIRHTt2zEApthdOY+J+MuaLmMN+2d/ftwH9PiexPsEYxFhyJEeHe389+zgQCJjNgz3N/Yd5BTBDZLCe8Ux7Qst/DteNdccX2P+h110PTjnBCZABGzM7O2vnryMXMN8OIEjFdHh4aCzqysqK0e8EUB46kiQPmcDv/V38HYEMO0CpVNLy8rJZD/BneK9Ou93Wzs6OQqGQnW7jm3D29/f1xBOX1Wgk9ZWvPKj9/arJoiwSNh6yx9ZWRj/8YUvPP/+eXn01Jyk6NaoC1sbPPMQb6OcWEnTwc+LTTafTVp0CPgjavoKan59Xs9m0ogApOxaLmWRH1+z+/r5JQFRtg8FAncFAyeElXbj1KxoM+jaf7TOf+YwBU0kmET3zzDN6++23dfPmTY0OD7V7+Igysze1sPCISbTlctlkHABdKDQevRSPx41FR57x3bEEX2QngiZGdZoipMlsQcbdSLLxNbDSo9Hk5C6uD8M6zwn2u9MZHzVI0wAgioSDLwjPm+8wpXGE4Ia/0vsTe73xDEOKJN9Ewb/7ESoAina7rVKpNDUHuNvtGhPb6XS0vb1t94lGHSREwB6sDaOemE7Az7C/stmsBWcAN3uVv/OMDEEdIIX8h6R8cHCgarWqtbU1Ld4+Wxw1BI8scim/Q9zxFhTkz3w+b7YgrAkAA4Cil5I9aPeNiwBzP+7p2LFjxqjAxCHtSrLYhCzLc4S9IjniR+aZcCQ07w24TKfTJq9Wq1XzgdJI4dmfarVqxRtJkGYVClcUAr4nRS+f51lL73dsNBpmCYGN9ifTkDghDwD3NLBSZMF6QkbABnnZln3BFBVpIofz7GBlvacWRtszqvw7z8T7iQEnY1tQX7/6q+eUTrf0L/7FwyoUFm/HmJ494/39oS5cOKbr1+/Xxz9+UZ/61BsKhRIKBNbsnrFXksmkWZ5YpzwPnzc5kGR7e9v2i79+bAfcA4oF1i2KDeoIDClqYyAwPpKUIot7jsTO/QdwMZFiZWXFADfTblAaKXD8/gPsAnKZmHNn/wBscCIxPpXt05/+tJ5//nnV63X90R/9kTY2NlSv122m6p2MurevsSb4rhSzXj3i84n9vpjc399Xu902OxdAmhe5VZLloWKxqMXFRVMr6d2gORbFgSKOdUfxjZWG/8+a5fMGg/EoPRRjeke4BuxFgFqAK/f7573uenAKC0MFAkCZnZ3V6urqlIeT6gx5AIZwNBo3/5CwCaYEJHwgbAiqx3w+b8ABUCdNGB0SCV4mrgVfi5eDWPj+pAdOlshkMspkMkokajp5sqI///N71WiMAWun07Hvw4LmHF3Yx8uXz+rZZ6/r8ce39dprD1nVTgfiPffcY0xAMDgeOJ9KpazZhU0HK0AXIP7KQGA8GxaPIzIw/9zb27NAQOKCdfPfk81B4K7X68ZSBAIBzWbGAPmoHTDfDh5V7r1/EfyYA9npRhSenSQmghwNQIPBwDo9uS6CAjaOYrFokjZJDG8O/w7Y5Rnjj+OeILOT/AhibG6qcjyKgGMajJhrl0gkrPCi+5414f11kkzS475wHSRopB2qfKwkFCJ+rcHsoSzQMR+Px1Uul827RGAkWSFvI3/BsMGk8AxhGZDM2Lc0qsC+U0ACmGEE2WdU+wBpCo94PG5FnQ/GMIx8V7x1voGHpMPYGgoUWAbWLUweDW6Mg8KXhgohyc5sn5ubM68ajQnce5IvhQDSMqwvshxeWNgSaTIOChkRRpQEBQsKywWrwjXQ7IVq4g/pAJx0u12LW9w/D5KJmcSLRCJhNiIPFGA64/G4jh8/bvaF0Whkp+V47y3fg5hfKBRMNYPtggVHQsWegz2m0WioXq9PMUgcTwpzyr1gf2JX8sw6TWcUXcVi0SRcZFfiJ95F3tP7Ej/ykevK5w/0x3/8jMrluBKJmM28pPCRaEwZ6vz5jysWG+qjH/2xrl//ggKBuN174gJeXQ+YOQCh2+2aIgGYZNg8ygsxkT3MuCGsQdgFeL4+rgDaec7ERywhgDu6732uqVQqdgocv4uSwh/IEdhC7lE8HjcLE4cmwAY3m00bDTccDrW0tKQzZ86YfSoWi2l3d9e+J3/HGiGu8AeABg6BZYXhJ+fye0wWSiaTBvRYF6w3vid/B/NKzDg6OtLGxobtQewPPrZDNqDoUbSgKHkbGmvb29dgnzkRi5zKsc38PnGbuPRBXnc9OOVcYDxSVGR03lWrVZVKJUmyDZpMJnXs2DFtbGwoHo/bkY2ARS/7MfqGxOcfNEfOeZ8gTRUAHxYdA4GZ+cYmIqjD0FAJwShIsgX86KMbarcjunJlVfn8+CSXcrmscrlsCYqAvLm5aY05J06c0NbWWT3xxFWdP/+Y6vW2yVg0GdAURsMVjAiNXDQ24FmB6YHBS6VSunXrls2IJdlK40RVKpWMfUXu8F35eA0JIH7oL53rgeF4OccTMi9as9nUW2+9pTNnzhgjKY1Z8vPnz5vsO5aJhuoNZlQsFqfkXlgL1pEPoBQeAEUChvdn0VRC8gDYIO1h18ATR2JcWVkxdghJqlKp2BGYkUhE+Xze7gfBxktkBAdv9MenyPqE0aBQgvkkGHp2HjYcP9HJkyc1OztrSQL2AwWB4o21RKCmOa7Vatl1wLbgs8aeAPMiTTq/UStgrO8E7ARWaXq4OS/AkZddYT+4bu4nY6IAzqPRyECiv098P6Ts/f19FQoFixN43gEhgFA6lU+cOGF7y3eec+CDNFnXvCdj8ri+4XD4d7yb7JtkMmkAutVqmd2E2MM0CoAOQIL3oQggAXFvkUYBrsQu7h+Jk59FkYI1pVhCwic24k2HQQJcUBCQmO88NYlmIxIhzLb3qicSialZpPgDQ6GQHYdcKpWmDufA1uX3i9/Ld4I0DxyQdNl7fAdYNC+lUuxwPwB54wJxqAcfvK533jmuUimtaLRvzGIul7PcQkHGdzx//jmtrV3WqVNX9NZb91uTEkCHNQKzSd5BdSSXIiNLk8HxMIce8E8pWrcZSoA6cY/viKLC+CPvoQZs4oemkCX2c29YM7DmyP/eVsYzIUcDKAGxqCYAN2II9/S11167rTZuTQFBrGnEEQA7Xu1oNGr7n3mpTCwBN9C7QZyFsSRWpNNp8yJTMFPQUARJMiUOj6xfZxR9PCtmlrL/5ubmbIoJCqC3sfE8sCt48gnLE38HK86zBajS4P1BXnc9OPWVGpuETmBYTYAr/sF8Pq98Pm8NHOl0Wt1u10zr0OqYuUlysD3Q9H4mIf44SRZI8cvBwFIlSjLAQXcjoIhxPiRlGlWGw6EymT1tbqY1M7NgvkaqFOh8RlP5jub9/X3t7Kzp1KmLCoWaxg56350/WYUNSwLiHsMkAhBisZj5U0giSMNUpyQFkjyLmw1HwhgOhyZxIdf4ZpNQKKR++0iHgfu1vlbQ95sz1qH76quvKplM6oUXXlAikVC9Xte3v/1tvf/++xOwGY0qP3tBxb171e2O1wmbmIYkLCIwAYxnAsik02ljRGHQkGsBbb6pjBNM2u22Va0EUNYpII2fx/IB2CSIAkoISl7KBxxIsrUOiCX4l0olaz6iyo/H41OMEs8Q9hopkmCFfMm18EwZG8P74Vlk3fB5JCokOtaIJAO5gAzWEpIvrKlvQIGp4l4xfUDS1Ogn9gNAHIAEGAL0kRQk2axinptnCml+A+whk3kVhGSQTqfNQrS/v29BnOthpiVsJoPXATDcF2IQ94TnAmjH5w17QtGH1YcERFMlv4/854sI4pMfIcf1Y88AHN/pE5RksZe9Nzs7ayPMmCQwGAzsCFS86T5xBwIBUylgWTmNhoQKCwgYhPULhUJTNg3YLtYv1iMPZlm3xGgYcZgmChpGE1EgEsdRoXyDGTGF7+O9hwcHB6Zwsa9jsZiOH7+l2dkjvfnmMYsXPHPmSHtrB77lQiGsa9fW9eijN3Xu3HGNRrICX5Ltc0m2f8lh/DejzmBAuf5IJGLWAH9fAGyhUMhIInomKBooHL11wect4rtnCsnF5E7ALMA4Ho+r0WgYCPW9HHwW028Y9+e90jQIktOIJQcHB3rttdcMtKOkQYIQ93m2/DeMbywWUz6ft1jKGh0OO4rFKopGe2q3R+r1UorHs1ZAeeDrYyHgHoUNXIKdjTjgVR3/d7wX7wPgBLgSHz0e8VM+mHyD+ogPFkDsmX/uLcebfpDXXQ9OR6ORyuWylpeXjU164IEHdOLECW1ubk7Jwv3++Jg6unQx6bMZqQiz2azm5+dVrVa1sbFhAcLLT1RkkizYQNvDPuVyOQPH+FQ5DpMFiGSWz+eNPet0OlpZWZlqShlL4X01m0k7rYqNOjs7q0wmo8XFRatI19bWzItXr9d17dquPvYxaX4+rFBowaom/I4wnTQO+ERPYuD/cS/xsdDlSxJg43JqEV3EVGc8k62tLXU64zmTdAky/1GSFhcXVSgU7J7Mzs7q7RtP6Ol7/kL5419QrTA56eSll17S+fPnNTc3p93dXe3u7tqIlMFgoMd+IaeZ4Xf07pvPa2npwIYKE9Dw0QHQkJZCofF4lIY7otQzjfh9SFg8VwAtzB33u1KpmBlfkrEnFC+AQCRSAiSNUARXAiBJ13eFco0UJiRdH/BY+8zCQzngegDKSNQLCwvK5/M2Y5KkgEwNIMMKQoDiPTkEAgbT+5NnZmbsmFDvgyXpkGi4t/jl6ESem5tTLpezvTkYjMeoRKNRk+mQ/iQZOyZNjn3E0oOvlKTDfgY8kdRg/GDmacaBKYRRpPii+QJvHYPF8fsiRfqZrYxqAwRz4gtrzxdvJBfGsnE9vDdTA3K5nLrdrnZ2dgzMNRoNkyO9b5PEiHJBMeT3MgwKxQF+7729PZXLZeVyOZvWwFr2zH08Phlq7sd9ASQpVimqeC8sRCg1FJgUb9g82N88Vw4PIC5ls1krbniuFORI2yhLJF7en/vkx8H5RimORgWA8r0kGejivXim6+s7KpXmdHCQVTIZnQLAMG10ZGPbIma8994x3X//hnK5vsrlmBUQWLM8kPfebO4LVp5+v2/d+JzOBaCjUSYajdqpf3R5U0Rg0YJ1Zd1DJpAD8NV7eRxWnp4HCA2eIyAVsF0ul7WwsGD+az4b4OSLf2If1wrQIqYyN9qfGugVBu/79O9HvGGSCAzpzMy+Hn98S48+uqmZmcnM3n4/qCtX1nTt2kNqteZsygtA2McrpgxxsA65AoCPPcDbzzxp4Pd1p9PRxsaGxTPIhF6vZyfPoSAQO8gbh4eHdpqVL2BpaKN3As/5B3nd9eAUlmZtbc1Olul2u9ra2rJqqVwuW8XBw8BnRFChaQFWg0BZKBR0cHBgjQ2hUMiSivfJsOkBeiQZ/B00yCABk/RZSMgEvV5PxWJxqpMRdqPXiygeHxjYqFQq1ql87Ngxa7aAuSCR1+t1LS2NK6VkMqt2u2/BjukF+KM4gs1LPSRYz1Dz/pyMFI1G1Ww2Va/Xlcvlpjq58Wt6iYHNhHfLM0kATjY69ykYDOqdl0N66mRMz/9yXz/+6rIBwG63q8uXL1sgQqILh8MKRcP62DPvqzF4QJdeqysYDBm74W0VgAgmNeAf9Z4zSfZdGJnU6/WseYbvQsIGpOD98R2j0mRECAmM4Our+Vwup+XlZWO4+F4kKZgrQC1r3SdQZHhAG0CKJA8IoDDwQIfRM+wfQDTJErleGgO/paUlG7Pmk44kA8wUiXhVCfowafgnSThYZpDgAa6AI5rBAIcwPKFQyAarA/ZYezS1cb9gmpG8SO7sie3tbUWjUQPZSHlYe0jGSH0wPtx7EvRwOLQufpIgXczcY9goWAuaFgAGsGkAUdYyCRaZPxYbHz/pT7Ph8wC2W1tbmp0dHz0M8x4IBLS8vKyjoyMrMChCIpGIFfQwkd5jyMlLzBDFb0fCwxPMccuj0ciAEPvX2zAAyqgddEcTo3u9np07zj5lxA2SrDSZ5wy7RBz1nm6+k0+wADDvoYVNPjo6sqOBKWR8Iwp2FiYdYPEiNgD22b/xeE/1+gS04RvmuSeTSYtvFD/MmGy3E7evr6t+fzKtwD93LAv0QaC6AEzYqyghgHa+B53vrGvYfgoPikqYfN6TvQmwnJ2dtV4JWG+YV9g4X/B7hcWzgsQF3hu2FX88liGAMzGafUxO8z0CxCPiZzAYNACGcgKAxmfpFStppA996IJeeOGmut2Ibty4X9evr2p/f6RAoKv19aoeeeSGzp79pjY21vSv/tUJi0MoFjxr7gPWG99gyBplD0KQAbw7nc5UUxvPD0siQBiliuKP5w/5tre3Z83kKLbcG66PfQRh9oGw2wf6qf+IX91u1yprX8Fvbm7aA83lclPJHyaBio7/hhkgUAQCAesO5AFAqSP3ICHAsgCwAJo0GeFtxfwcDodNZmWRe5P+0dGRbty4oVQqpZWVlduy94Iee2xT1eqOQqGEBT/fuLC5uWkJEDAYDAb1+ONdHR7GVa321OlMTPDZbNYYThgAFhybnARPkqGBBU8NY3D4AyNJcPTVIEwTjAzghQrPjyviniJnBoNBHdZaurjzBT2+8qdqvvi7euulyQlX+GLS6bQVDMmFOX3hD7pKB97Qn37zRe3vH1gSBoR4gDwYDJTNZnVwcGBFAoERxpvfB0TimQMowSaSVPExSrLAEQwFFYxL0VhY/b2+ARuOHyVhJRIJq5hJ7LDpvokKkBcMBu0+3OmN8nKMP0aUmYR+mPdwODSwQBMMHcoEcdYe7Jwkmw/abDZVq9V0cHBgSYtXs9k0ZpYElk6nLUHBKlM00NTibQp0iiNzLiwsGDO8urpqA6kZag+LACj04DWbzRqwo1jwM0lRSigIaYjzp2l5HxbsP/eI50bnL/eCQgW2zz9z/jSbTRvtRTHHWodVAoz7YfHefyvJCiQYU/Y2TBixSpJJ0V5uZg+QxJDbubcAzHA4bJIhflkvWwLaWYdIzUjUMKiRSMQmlrRaLWNlsFEAWPDv85xgRnl/7heMo59kQi7w0jeHV6BoSeMGQk6ECgQCtreJTaxjmhNh9vn/sHOSTFLlvmIxAWgPBgHF47ImUubaAiJYxxRTsNDNZlOZzOD2/W6q2w1ZHCqXy/bMGFCP1573wPPM2fV8b+IIQJA1y7WlUikjH3jms7Oz9rxoCMWv7n2WsJH88afuAZR4PhRDADXiXjabtVhSLpeNRafw8n5fSAHiC3HWN7PC7PN8fczhOXK9WJNYa2PP54xeeOGCHnzwpl56aU2XLz+uhYXc7Z8dx9/d3ZTeeuuMzp6t6qMffVW///uH+tM/fcqKDmxUrH0KKs96Ez88seUVzVgsZsU9LDtrDpINXEMu5n5BqBCXwFl8T2l67qo/pAXG/IO87npwihyIT5MNd+PGDVWrVa2vr9uQfN8t6r2cPGQ8JIFAwBoiGHMEbU0gIoDOz89rcXFRkkyyoAKSJvMG8cf44wPZOATEYDCoU6dOaXFx0TrD8cWMv9NDeuaZGzp9ektXrpwyIDsYjIcJl0olk8/wes7NzSmfn9PDD+/qtdfuU78/skRMgGLh0qBAdQy7xqbkrGFYFX6HhUsFzHcmQOAlZMMDGObm5kxWQ1pgzBEeWPxo3vPzzf+lpbn/7Mt6fO1fa+5XPq8ff2de+zePjP2bnZ1Vf9DX+mPz+vCTbysTeFXfe+Pzevdcw9hHKksqaUlTgd8DZgIaIJuEQBHih4yT+GCvJNk9S6dTuvfJeT302C3lo19XUOOENdCMto8+rjfP5XTjzXGhBHtEIwPyEqNxOp2Odd3zMwDmpaUlu05YyoWFBWUyGfMRwSzB0OEznZmZsbPkGS/GMwOI+uZDRjb5wdMMh2efEcQJvjQmeh8l947vhCxL0QUIhM0BLC4sLKjT6ahcLmtvb8+Ahh/GDtvEoH3iBB5QnyAB99xjz1QtLi7a/9vb2zOWF1YIvzHgycu1AHmYie3tbTtOlTjk54pKskM5AHQkIny5sKw07NEBDatMcQowBLwTN4g/x44dU7PZVKFQUK/X06lTpzQajTuo8ajC5tIYR5HuQRY+dpIfjCsghZOifAMYhTiHSCDfSzImFoYN9hK7Dd+HuEtsJ/YRv2HNSNYUeFyvJDt0w8/pBBSxhikWKGK4p8RP1gnFk2fmvA2G/Uax4WXXvb2oTpxoKJmMq9cb2Z7munkf3xzJPY7FtjUcSv3+gjKZtOUNwDrFRCAQMMKGe+ybIwGNsJ6A/FAopO3tbYXDYbO+eRWIa0IGxpPP3uI7AqAA5cRXL91ns1ktLy8rEomoWCwayx0KhWwEXzqdNkYTgI1dKRKJaGVlxZrGKCg6nY4KhYIVUgA67mOtVjMfL70idxJHjB/0cYui/vTp9/Tgg+/qO995VD/4wZwSia6i0fYUmEMhuXQpq/39T+vzn39Jn/vc23rppY+YSkruvdNOxr324Jh7TcHAcyQvU2xSiEAK0WODfbBYLE5Nw+D7xuNxZbNZ25PkST+BhT8Uvh/kddeDUwzZ1WrVEgE3k0VDoiRI0JTCzDXfpIFUQsc0IywIbLBEVCc8CN4P+pvkzUgMzMa+UQNphSSazWat8x1JG0p9zDpkdfNmVs8/v6N6/XHV6+MAQoLc2Niwze+lnGef3VE4PNKVK6fNBkFgBTQTKAC2LDQWNqCcRQ5IAHj74A64kybz0PhvjhKUJn4eADIAFj8hzB7vg59rZmZG3/uTuA5/+bd1dvVvdO+X6yoPn1Oheo80iikW7ym/cF7zo7fV0jF945Uv6s3vj2enAr6Ro2Gx8N8SmKPRqDKZjOr1ugqFgq0r5G7f+YjcSdClEc4f0JA7OaPf+k/e17zeUStwSpeKX1KjGlG319FStq/TK6/pix//puoff0Jf+3cPavPyyNhvAokkO3aRzk4ftACYJHiCdrFYtEREMwVMx97enjV7cPKHbwZk/QLoYOvZTwQwmp58w46/zxQ7rA3vB/UjiLiPAGL2CNKVlxwBzngIkZLxkMLUIcUxEoZEy97vdidzWGESmPARj8dtzmKtVjPvF+COook93O+Ph2GzXmu1msnZ3Bea7u6cKCDJnjUgi8KTZAAYzGaz9v8Gg3FzEZYLLy37cVj4zChKmWPMCCueIZKelytha0jo7A9sAzDvJGFAF3GE2AqL1m63/07nfzQaNVCPB50jSv26Ru1iPQLYWEuANQoPPp9TqLwsSVIHmBDLfQHDffInLAFWABKZTMbuMfsCpYmJFJ5p5/5g4wF43bhxWs89t6VHHz3Q9evH1Gq1VKlUpsYDeQYR33EikdAzzxR169ayZmZWp3zgS0tLtrcajYaBTWwr7G/Y20hkPNeSYo/cCAjnd/DhFotFi+/EQHyQ3pZCLOAZck3kG1ht4gt7HnaT9c33gt2jkM9ms6aGcT+9BxZ20ft1Jdn6QBrn+Nd4PG7xljnDMMEAcZTSsTUkroceuqDr1+/V++8/qPn5fStS9vf3rWglZ4w9zRmdO/dhfexjP9EPflBWqxU1cqFSqVjhS56kKYr9C/AmhqXTabN3wXRzkM7BwYHtd1TSwWCgUqmkUChkJ/Wx99mXrCUmD3iLDoUfe4mC+IO87npwur6+boBKGkvBeEaPHz9uyF+SNTwBgNbX1230BEymbybwsjZVODI8MhdNJSwCNiDJFxM5nrg7DdWwDDBABIRGo2EyFbMLh8OhXn75jH7zN3+sT3/6Vf3VXz2udntcSQGquBZmoz700I4+/OGLeuONB9VohDQzc2RSHtUqciIJF68KPkEk+e3tbQMEvjmC6p57DFghkEz8VHHzseH9m3Q0DpXJZMyP2+/3tbu7a9fGhAVku9FIeuvbEb0d+5IeeT6s42uv68zyNxUatdTXnOpH9+nln/597bwX02AwNOYnHo9b5zDMBlJJo9GwAEgChK0lgHkJi0KkUChYMxD3gueRSCS0eiahX/1731NPi/rbN39fV19r62D/wDzSgUBAK6sP6qlfeEEfffIH+o1fK+gvv/5ZNTYnbCLsa71eNx8yQZ4u6m63aw1XTBrAt+grf+RfgjTgAzYdxsh7ZgEkSLHspVqtZo14JDGkORIRDXtU2Xt7e9Zgw/7i+gj0ACsqeZJZt9vV+vq6sYp8P5IiiQt7BAmGwHp0dGTHbwKuYM8pBgAf2IX8JAEviwEMAHWwQ4ASvMv9ft8k5Uwmo2azaRYh7x+lCatcLlvzErIxtiAAMN5buuxRGGC4vXcOPzjd0LDj3DeKcy/t4SNGVWA9sKbj8bjJ+RQzFP48GyRgYgQefRhsACisHXsOAIacyXolPsH++YkSfuIExS+qgmfmeA9iPdYO/Kh8JkB7dXV16jASgCtWIIAt68bbncgbHOgBwIhGo8ZasW5hxLrdYyqVlvXoo9f01lvzCoXCVvBS8ODrJNaMRiOtru4pl2voW9/6uDHxxCH8sNiPstmsYrHY1GEY7F3WAPvWe9dRQojzlUpFpVLJiltk4l5vMi8XMoHrRJUEwHjwxTojLpTLZWNYpXFhzvQT1ja5xY/aazab1tTrx1fBEkqyPDYYDMyGgz2G9cB9BjOQxz3hAkgMBoNaW9tUMnmob3zjaVtXTBmp1+taWVmxPgHsbaFQSO++u6Ynn4zoqacKeued00okEmq1WlacopbQz4L6AVmWzWatAII99vODiYeonPjPyWelUklLS0vK5/NmxfETAyjaUG/4e8Z/EQsA/55s+A+97npwik+x3+8rnU5bQwsJkLPNkT1ZwF7O8APkAYoECwI6HdiwT/1+37oFCfwkJ2Q4vCx+iDABjkQNQMM2wEBupAOCIZJ6vb6k7373eX360y/r7//9A/3oR/dqMFjTcDiyBp2joyOl02298MJ5PfnkLZ0/v66vfW1Zi4tBY045mxqwhgRD4pRkC14ae5EKhYJ54AqFgjFTjDWiGYQGtIWFBZspSIMYUh9Jj80uaQoQI83xvn6OIRUhz/v1bw/0k94Z7e+v2KYZFwKTc3/9SCCq8/n5+alOzqOj8Yk+NN4Ui0V7tpxuBAilysT4D/CB0WP8TDjR15f/3tvqjHL62r97WvXivsnqMIu9Xk/VSk2v/HVP199+Sr/9e2/pl3/pZX3lT19Qs94yHytrks+CLex2u3ZWNEweQSweHx8W4ceAUL0T0PP5vOLxuPlFscHcKRvBXPkEXy6Xp/YjPlFfZftixzetINUmEgkVi0XzL/umFNgd32gG2OYewAySkAAtAF/Ajve54qmemZkxOQtvI15LfI0wTTAfsBWw0DT4SZPpCyR0fH8kEgB9vV43WRmlg0SCBWI0Gh+osbS0pA996EN66qmn1Ov19Oabb+r111+3opXxSqVSyYooScZAwlqjDADYYFgomJFj+W8YZ38P/aziSqViKkMikZiaP8v0A54/BS17kbVFEQAAACgBfEnIfEfek+fD86CxiqTtxwsBfrDckPD9ccF+/CAgir8DsLJf8SwDPmu1msrlstlVyDEwkewZwCjxixeAgT1z6dKj+sQnvqPnnntf3/pWfsr3i/LDbO6xn/dQn/3seVWrC7pxI6tgcEKAwCoSZ7m/xF6K/UBgPKMTuRslMJFIWH4AYMLcEQ9RHADkkB98Z1h5WGovT1OkwqBDDjDhxRcSXDt2MeIYJAEFAGqB9/kDePEoU1DCqBJLWBsUSvw7JBS5mL+XJt7PM2duqFJJq1BYNJAMy0rRxX2KxWL23dvttq5evVcPP3xd77wzUqlUmmpYhjwgngJUve/fK7TSpF8DrEIsRGmSJipIKpWyODwcDrWxsSFpYo3i2Q+HQzv5LhKJ2L9nMhlTPbjfH+R114NTSVNyIl1ueLJY5LVabYrK7na7dmqEJNXrdWMEqICR3bxkRtct3Z4sDhaAp+5hMZrNpmZnZ238BX9P4kBuonOeBUzCRPYmoWxuruo73/m8Pvzhl/Ubv/GG9vev6ubN42q3IwoG+1peLuv48aI6nYh+/ONH9Oqrx5VOx6ZkG0lmZCax0uDFhvANMlTuVNIkfzYxsgyblmqLLlyf1Pxm5Z/I6jDdjDLJZDLGHrMpOQ+e5ExQwuLAfMp6vW7TG4LBoNbX140pliZnNOMjCgQC1tnN6COSCx5ZqmlGF9VqNZOsAPPI0p1ORx/9fETRUU3ffunvSd2+JUoG2ff7fQPzBwcHGlwb6M/++GH9p7/1DZ392Ef12tdk94R1d3R0ZA0bMCkUWqlUyhIH3eE0W0kylgsQNDs7q5WVFQUCAVWr1SmQQCHD2iDgk3ilyZQBPIasfVhHZB6SGpW2JGOkfJMVCReW8sSJE3ZSGHIzCgNsRyQSsdFp7XZbhUJhapQS7DAeYt4DuwPg0o9J4sCJcrk8NX2h3W6b3xywxPMMBAIqlUoaDAa2lwGyFD+wRjCqKCa+aQMQ0Gq1ND8/r9OnT+tLX/qSstmsJeuLFy8aqwrgBLjz3sQzb2/iWTYaDZPisTzA+gFYYRNhjWFbePYU48lkUtVq1WxOgG7kQJJWq9WyZG2NgbdBKwARxerw8FC1Ws2eDSygT4I+7rbbbd24cUPB4HiU1crKiiTZjGH/vNgTvA++XknWBEucYr1LMpCOP54Z2eQUwDLsMnnGe9vvBNDkK9jfo6MjvftuWrHYWX3yk5cUDB7p9dcfUSazpn6/r62trSlwu77e1he+8JZCoZG+8Y1PKRyesIT+PaUx20l8iMViWl1dNRaPuOXXO+BDmpxqxRqlaGFqDQWNNB4ByNo7OjqypiwUMO4XPlq83RARFI0ckUsu2t/fVy6Xs3nSfD+a0bjf+LgBrH6tIvOjrvK5NO+iOu3t7ZmyhOea70kB4vPheP0eand3ziZmeMZzfX3d5Ho8x8TPVqulUmlBjz7aldRRIBCz9yWfYq+jqRPZnc/BGkThicoCbmFPUtxQUNAwDjCl8Ce3RKNROwiBwiISidhoQxQOzzR/0NddD07xf0HTS2NAtL29re3tbfX7fRv9IMn+vVKpWICBaVpdXdXR0ZFu3rxpzCaSJpuchQjIRD5tNsfnxtOxSWMEG7DbnT6qDI8TjC9VOp8JwOj1enYe/fLysiXGw8Pj+sY3vqz5+U09+OAV3XPPdUWjPQ0GIe3tzeoHP3haFy8uKxiMa34+al4UZpLCHJRKJWOXOWaR74Y3DXnPjzOCNfDyHIkStpkk7GUdmEaCkt8QJCs2fiqVmhp5EQ6HbQQXrLRvTMJHRaLj9wCPi4uL5gdkHcDmct0kEjxhVJUkHeRSmMx0Om3NbH4u32AwUKd7pIfveUObrU9qb/doioU+ffq0Hn30Uc3NzemVV17Re++9N/FYNedV7D2vM8d+qtdDT0j9iUIA24MviLXjWWafTAEwePoI9JIMbHKSUL1eNyAFAOE9uU8EP2lSebNmffMDTDxJH/aGqpt1RRLt9Xra3d2dYoeRTlEyAD88GxJUv983yRzpkuvAwjMcTg55QO6iOCSRIW17hqNSqWhjY0P5fN4ADc10floHTOBgMFCxWLSmDt9xyyEZFLSsOZq5SIAoCXSjI1PzQp6DASGZLCwsmJJD4YxX2YPYdrttlgAABt8Hto3kWCwWp5hIACtgjz3oPe4wlNhliJ0UBzQF8Yz4PrxXs9lUqVSyBjjPpMMKE0NQuvhc9i/D5NmT2LCIW9wfDwAoxiUZMIvFYgbcPeNMwyZzakn6NLzRL4DdC2AKqECx430hDCgcX3opp3r9SJ/73HU980xFN26c1uXL62q1Okokmjp+vKaPfKSkEyf2Va3O6X/+nx/VwcGhZmYG5j0kT+Gz9MUDSiB7lnjJGk8mk1OnHfF8mXZBc1g4HLYGViwynt1Mp9P2PACIkBsoGXgwg8GgTRGBgef+zM7OWg8ERSlxh/2EGsq6IE6zL8kD3rIFKPPxhvzhpXGOQSV2st894RUM9tVuT/6OU59ozuN7h0LjJjUOBRpbB1Avmur3R6a+EssojtlrSPKw0d5G58ek4f0l1vimS5htngn7M5VK2f7jvcfX1jP8QkHN7/KHuPZBXnc9OPUdfySacHh8fGKxWDSGYDgcanV1VUtLS9rY2DB/EZUIsjsLkvE9UOHIhgAPKkiqFRiSRqNhEgySHk0I3qCM4RlPJckAwBAOh7W6uqp4PK7NzU0by0PCJ2FtbMzr+vXHpzovJ8GmPzWqBZsAIBsAwmb3A4wDgYA1kODxYsbg7u6uNjY2NBgM7Eg9JBMYBJ4DAc93JLOxpElDAveUCq/VatnnelN6r9czTxcVNvIDwAOfEb8Hs1utVq3RiqAJ6+fH0cA64Qvy8+aQf1gHno3zIHowGOjZX1zVjM7r5e8+p3q9bjaT9fV1/aN/9I+0vr4uSXrmmWf0ta99TW+99ZZKpZK63a5uXH1Qz579vk48/oJuvL5nyZPkQrBjDVKxYmnB9wcQITABMH1TGuwYa0GaNAl4GRyGH0DoPXPsEyRY3wULuIBFwotNsYSfkb3ggS6d/+M5jm37WVgzZFc6+gEIvoGHRhBAcDKZ1PLysrFblUrl74yCk8YAaGlpyWb9whDwvUlQ/Lzv1oa5jsfjUzYJVB0/hQJ2jzVMAwvNijs7O/rud7+r559/Xo1GQz/60Y9M8aF50jcu8EzYi3wODZAUdAAQnhFJljVNMx7FGVaK4XBoIJuxP8wk5Q/SKpIwe4RkKU0OEcjn8wbMWRONRsO8pt7WAotOjMKS4gsOTq2DVWNdUYAwqYX13Wg0rDDh7wCJgFWer0/6+C7pJfAsIwCIa6cAJ+YEg0ErlIkzsdjk5B5J+t73Unrllfv0yU829dxzN/Tgg+9N5b7335/Xv/t3j2h396TK5boikYGB36OjIy0uLlqXOpI5awX23IN84sjs7OzU6CGOQfUWEHyygHByMfGIGEB8ITYCCsk1EDHe4sQa5ppo4iEPMzXHryPyLt+T/cUzYDIHagpgjwIEBYP9TMHEf8M+UtQA8OgbGF9bUHNzfcvvPhZCBBGbUAkh1hYXh7e/S0CxWMAKVEg3PNk8F0a/4YEPh8NmpwBwSxObEb9PYYnti7xCk6ZvXgSE8h5MIUJdILZCLJHPySU/73XXg1M8aXReAzpmZmZ04sSJKdCBWZ/xE51Ox2QSJD2CGv5DqoDRaGSLn7lxSM8ENE5fwE7Q7Y7nEfpk3G63tbS0ZCwo0hUdumwMgBxMLFIhVSzSNif8cB56qVSyJMB3QmZnQwLO2HgwAVSYgCg2H9URrEcqldLOzo5qtZotdKo1f2ws1gWCDfIEHfK+Im40GpbI8C3eWYEBSDudjlkt6KqUNNU4Qwcix7oFg0EVi0VJstO0SqWSsUeATpIsjBJrDDDKdRNk8TsC9qnOY7GYjt0z0CAwq/d+smNAZn19Xc8995zW1taMXVhcXNQLL7ygGzdumIf07VeqevastLA0AYM0JMCE+EaUYDBoUya4TkkWsPAS810bjYatHRggkgbrjXuC34hGtcPDQ2M/U6mUBTDfjAPLQaBC0qVoW1tbs0MGSFDZbNamP1DB82zT6fFoHGwCeA6xBrRaLdtDCwsLVnR4xgLgsry8bECEgsO/AOCoKr6AxD5EYuR+sv6Zt1ytVo0tQu7yRRcTDHj+7JNsNmuAm+S1t7enb33rWzp//ryOjo5ULpetkY64QgOF95iyjikwiG+weMQXTomiK9wfxEHhzn0CzKBQ4M9eWFgwYOuvG1kQu1IsFpua3UizDven0WjY9XOdgHbGY9XrdQOkjUZjigWiSKeIowPcFz7sO5pVJFmOANR7hpMmut3dXZt36mMiAFCSAQA+l7hEDPLzPj1oA3wB2ADI/X5aP/7xcd26ldXiYl2xWFfdbkA7Oz2VSoHb1oCBqR1cF6w+exilAoYS3zs2FYAgxTwFPQwnMcgzmYB94gbrj6KIXMn80XQ6bUQNRAqkiR8/xR4jlvC8YPIBdIAlTtDzjCzqBmqRB6ow8DT9QGwBxgDO5AKAF7I+IJ+DM/b29rS0tKSdnbyefPJ9LS8ntLs79kFns1mtra3ZNBtym/fpBgIBnT69qZs3U9rbO9TSUtxiPYQVI8ywIrCH/P1jmghztckZgUBgakatNDnaliKLz+n1emYh8NMcfAd/KBQyRRRMgRrMGvsgr7senCK1cF58OBy2BCBNBqMjPddqNQuaPEAM20jRJOxut2t0PrIXnaZzc3NWIRLAOUWKY+uq1aoFXRgbWF6CNSwDFY+vLkOhkPb29uyYOD4HVmZnZ8cqSIKcl26Hw8ncPhYq4Ak7AkCWgLS1taV+v2+TDkgyMF6bm5u2mEl8MESYqn3w9Uwt3xWQj7ePiphnyegL/DiArUAgoNRyTuu/+NuaP/WgksfvV2gmqZ2v/I/aP/+ydT5jkE+fPKN7/+F/qZlj92s46Gv1nZ/q2l/8Txr1O1NHrXkv5OzsrKrVqqSJsdsziwBwghyz/gAusObValWh0JwGmrEJBfv7+9YIQ8CVZEULY8PwLA0VUSg0HjkCWEZOReIHCCKFjrtG14xdp4GNLlE/AYE1hjzFiWlYQEhezKLlUAJAGwwaQAOVAu+xn8owHA6n9iTnzeN3Y3+QEPkdPK8+keGnAkCxb/FnI5VROPT7fUtgnj2i+RDQ5EE/zDvMIbGGz2U9BINBbW1tGbCkaOL50LhHAifRsJZSqZQymYzZNmhKxJ5AHGq327p58+aU9xgQWywWTcImOWcyGTuFB+YcEOqbdQAhMDXhcFi5XE79ft+AIn5Dik7uA+AMHy2yLsVaKBRSJpNROBy2ZEbzaa1WU6VSUafTsYIaJgtwCOvkm1kZ8L63t6d8Pq9Op2OJnzjBnmBdeJaL/YbdBNbO3wsAG7EU4HfPPffY+vFyNAUKv8Pa8E1bgASeCYU6cRkLGOqTJOVyObvPBwdHKpcDSiYzt1W4PfV6dSt6yQGAc0k2Toh9AmD0BRUWBPIAjW2+KCUGe0DCfuAeomwBKvlvQLIke+6oXc1m05QpWGjUTSaqcB/9lBjAEAQTz1qSMYYomf4UPWLW/v6+sbEU+xS9gHf+sMfHzch1U0J8sxbx4+bNh/X005f18MO72t/PqVKpmKLmFTzeg2N4jx/va3W1oq9+9UOSJooC+IQX+ACmGBDOHsUqRy6F6OHQG89a0whMbKTwA5vQ1IglgCKOa5Bk6535w+xdAPDPe9314BTKmSBGQuKc9PX1da2srGh1dVWlUklbW1smGUmy6ohuQKqZ4XBoiZyFwoPz/x4MBu18+pMnTyoej9vRqNVq1Xw9sD7D4VCFQkHFYtEadwgsdMAR8OiCZ0PDevK5eE8Ikr6r33tU2BwkNdg1TtUBNITDk1l82BFI9lTk/udhcX2HNokFPxXfmVNukBdhtNhIJAwklkgkop2dHQuUfJ/Z5IKO/eJv66hWVHPruuZPP6r2UVvVatWM3b1eT6G5RT31f/7vpH5X9R9+RQMFlfnoL+ux9VO68P/736tarVonNA0fVM5sMBiQSCRiTBXVNrIfp8rw8glgMIgqPDpQND4Bo4eHh3r11Vd19uxZO3Gm2Wzqb//2b1UoFGzMRyjcV1A9HR4Mp46Wo7iB4eTZRKPjuZMkG+6xtwCQwJFYJZkHiefHTE8SC88G7xqeLBgzxsgsLi5qYWFBu7u7VvTQXZpKpYxppVDEVrCysmLHO9brdZu3CGDHHwwgIpGzF3q98XG/NEWyjyVZ1ys+QEkGolEofMc/SkMmk5li3Lhez+r5YA+oZhYjrCa/kawAAQAASURBVAteR+4ZVhdUDEnG2LB22BPMWkT+JflIY6aVAfm+6Yjfl2T3AWDr/bdYbfDBA+ZWV1cNSEQiEStgiXUU7nwP1lUikVA2mzVGFWBAEeqb4LCAzM/P2xogjkmye+pP0aKYg3XjBLilpRnF4/va26vr8HCoSiWiWGzOihumceBvpRABDC8sLCibzU41fEmyog0gDtsLiw6rjyUDFspbOorFohEJ3jLBhApiPo2Q42J2/HMwjceOHbPnBqBlPdG5v7S0ZPcKsAarhjogyWw1FKbEcAgFADWsM80uPHsmzHDvmbuL4kLcAqBiuaFQqdfrkmTXBwEA40889vNWyR18NvuEvoXJsd49y6M8EwA18Zj/Tw6jaMWWhv0pFApZczQNY9gfKHKCwfGECFQCppg0GiFdvZrT2bMX9Pbbn9DBQcxIDK4JmwL5YDDo6qmn3lKzGdONG6taXIyacsvepqhBFWTaB+uFvOkVNvABBBrxATKG/EW8QDUgZkgyvzdEBUUO1hj+nyfZhsOh/f7Pe9314JQAC2WPZzKXGx8Z9vDDD+tXf/VXlclkdP78eX3rW9+yZg3GHTH3DSaATY7c7oc9e38XzBuJiU1CsOl2uyZVtlotY8RSqZQBSpIZ7ADVK14dqjIqPORWvJhcE4EX8Eo1BW1PgKW64QUrjByaz+fNjsBm8p7MaDR6e3jwZJPDxPoE6qtnmBoABokX3y2gAABNYBkMBlZhViqVMUCNxvTu/+sPtF/a1eyx+/Tw//GfqtftmTcxkRifKrX0i/+JgtG4Lv43/4XUGg/yTpw/pyf/y/9W2Wc+rd2Xv27rh0ROwAfMAPCkyYw3aVKdw3axNggq3O/NKwE9e7qjh15I6b2Xxyxks9nUhQsX9Id/+Id68cUXlU6nde7cOZ07d84SWTwe14MfGyfzi6/VjJEl0RC4kW7r9bp16tNsMhwOtby8bOb2g4MDW+tMj8ALiCRJQcE643q63a5J+oAUOoxhP2EaSQIkLdYQQc03NVAEFgoF9ft9O5KT5IS87P3UXAMML5MOANQw8uwTL2URGyjQkAF9ExzFBkwbLDXgQpLtI54Dc0bxizNtYHZ2dqoLFsbEB3OSKcAI9tMzeeyDsQe8qVxuT1JTvV5TxeK4yPCdupKmLDKoO3jFfDf+2tqaFhcXjf1E1iSuAMx5NgAPGElmD/uRWuwdmFSePc8DMEWM8MCNmIRq1G63tba2Zs+kXq8rmdzRU0/t6MyZLYXDk1jWbod1+fIpvfXWcQ2HK1MxnT4Cng3rEpuXL+DYZ3SLE+tgybBKAQa8tYj/BwMOm+99fMRRpFP2EUUMz56JE4Bk/NGAsmQyqYWFBeVyOWs+BQgB6v3vIxOznwAYgF5k29FoPA8UYArYQIL2/loYNvIMMYkYTuMdeYL9DyOLP5jvQhzAggeDCrDkaGRmht7JDgOQwQPkeXyRSPjsFabKSLI+E9Yf35u4j40IpcfbAwB8X/vacf3jf3xRX/ziK/qrv3pOo9H00aL0uYyf9Ui/9Evndfx4Rf/qX53V/n5LsdjEp0yMYUoJao+3apGr2EdcW78/noU8GAymGhkp1PiuMP6sO7APLDKxk3iCqsreQnmGOaUI/yCvux6cwmwBbnigUNWnTp0yifrRRx/V9evXlUwmdfPmTQv6dPtysgVAEQmN90QKJknNz89PHZ0HMOGUFTyiSCJcEwni1q1bun79+tTcNOR7ABtVHxudwBUMjk8JCgQCxlrASuJPSafTtvAA5ARAmi3YeGxEko8H+wBpmpVYfJj7l5aWTIaXZMCGpMuCZ/wR1TDjKGB0SA6wBDC/PA88rsePHx/7hm8DYWmc1ElAyWRS2SeeV+3tcwoeHahNoXH5LXUqO8o++XH13j2nbrdrczqz2awVFqPRyJoJmG23trZmgR/wQNWMCZzNigx69a19NT53Vg/c/67ee3nNgEa9Xtdbb72lYrFoZ8BTiPC7jz/8rsqDZ1S9cWTjTWDzYLVIiPj//JF8sVhMqVTq9piS8WlHsVjMRmC1220b7+JtE81m07xhy8vLlkBg8QGgsDkUSjT10EQHw0lFL02Sm/fqIlOhciDDwQiznvCmMtILAOW70O+UzAEN+EBJXswa7Xa7Nt4FBhimAruDJNv/jUbDvicJwzMufC6sGPIcdgEYJ0lTxZ2/V5KmpkeMwdB4PNxzz13SvfduKRwe2rofDgO6cSOnn/1sVdeuzdkehQmXZB464iBNPIzearVaU2NhYIn4TrBdzDP0RQKqFRYQDnIg7mCDADzBrFFMAO580xbr1xd942LiSB/72Hf0wANF7e/P6I03HtLOTk4HB131+3s6c6aqJ564occfv6KLF8/qZz970uRpmDL+m2Ib9otYz7Xz8zQv4V0HYCMDU3jDOgPyiYFYgPge9Dv4RrpKpWIxluIiGo2qWq0amKVo8qfVoZCwN8mDPC/iPfmH0/uYgkIjLPEBNh2vZDg8GSHIMydGMQMV0sGPWgKMovDhr0Rmh52jIMPHyXrl5/hc9jTXy75HGYHB457wh0Y9mqOxe2G9495Jsr4QinjiB9NP+JyZmRnt7e2Z+kgBiUIajx/Td7+7rk9/+lv6zd/8ni5duk/vvHNSh4c9KxA7nYYee2xDTz+9rbm5ff3VXz2ira0lKya4h+AKQCn4IpVKKRaL2dr0s5gpeGkYhfCRZD0B+EchIohHXB/rnz0AAYgCS7ymEEBRoi8n5PLyf+h114NTzMEY46H8oZsBR7yQhmAGaaLBm8XP422jyvTVse9YZhER8GjmwKcEuGMTA3CQwxgVw+ZkpA/VPMmfUSzIecjtPiDV63XV63XNzMzYqT0kb/7AzpI0vN/06OjIxlb5pAHL5JuCqCKReLlHSAiAUQA6bJwkkxuwAJAEYA8AErAKkkw6p+knHA4rdPv9vGk9FApJM3OKzC2qvXPdKmfuV2vzfc3d/4StjX6/b4AdawEMHyCFQEUy5e+lyeEO3Fsv+/b7ff30rXv0C09+Q0tnflsbL40tGzCczWbT/HOss16vpzMfmVE6dF7ff+f3lM0eWpKnQKJwwLeVSqXs+0gytoe5pdxz5Dk/Wg2Q7eUcvkc8HrdGI0l2ljxJb3Z2Vtvb2ybVEyx9gwjXwn97ZaJQKNgeWVtbmyrCAoGAydkUc+Vy2dhJmhIl2bNiHcIW8nf4gmESsEfgNfSjYxjCj7/XN7oA6CiAsEbg7UW+Zo95FoLYAaNFoxCFjW9uCgTGZ5+PbQIxffazF/TEExXVajP6/vfv1Y0bOXU6Ec3OhnT69IEefPCyfuM33tCNG4v65jefU78/Y2sGZgVmi/sJqIS5wooDu4RvGGC7vLxs45MoKAEsNH4RF/1hCsQWfgfJXNKU7y6VSml9fd0YXS/Njxmfqr7whfNaXq7pq199VFtbpxUKMRO3o2BwUTdvzuvChQ/rySdv6cMffkPSvr797ccUj49Bj2eQARye7SPeUWj6+buoSzxb1jL5gsKGtYQPn6ZNToTKZrMWz5k80G63tbu7a6oZp/R4v306nVY2mzXbFkUIqgbMFwCRWZgAY5g9Yhsgj+IJBZDv5dctAA0POLGWa6jVamo0GjbmjlgP2MIq4BuPAHuLi4sG9Iiz5FX2BmwguQ+vKMUjLLbf81wDqgde4FgsZvOuISYgpSiKyG++gRErEZ9FESfJGFTiUakU11e+8mk9+eQlPfLIZT3xxCVtb8+p04lpZkbKZhsKh/va3T2hV155Tjs7M0okJnNwIZ+8B5uCQ5KdOEYBwIlYFA5YIHzOYL8T13yRBSD1Hmt/D+jn4dkRR4mhFCClUsksKR/kddeDU6oBGCyYGxb6e++9Z92whUJB7733nm7evGnmbt+FLMkqfhLYwcHBVFCFEfWSmz/7mQak3d1dW9AAFjYYHsFwOKzl5WUzhQPOPJAFWKfTaWM4aD6CrQSQs5iQT5CRkXYAP35sB6AIBgsZjoSZSExOwQF4cjIMAJJgQgDw0hEgtFKp2AgfSVPdfQQx7jFBBeZ0NBrZvNPDw0OTVRPRMWAdaZwcGI0VSt4+FaxasmdLNdzbrys8O6daY0+jQd+uA5aCZFSpVNTtdlUqlWx6gT+Zg+8NQ8l1ey/QcDjUS392TU88+qh++RN/o/36C7r6WsnY/q2tLWMGYBgfem5Jn/7IX6vUf17vn+sbWwCA5d7TXMJ6IZhRbWP8pyGJ/cDxkXiIpIk1BsmKahx2otvt2h5izwDUee4wCr7ZBIkTfxVFET40SbZOMPNjieHvs9msSa87OzsmX3G/kbgkWSD15n38d/i5Dw4OzKcHO8nnzM/Pq1arWSMjCZ9nfKcnEW84YA9AwHcvl8uW0Pl+xCvuC2sTmwRgcFzUzeozn/mhjh+v6q//+hHdunW/ms3W7QanvuLxsFqtY/rZz3Kam7us3/zN9/XlL7+sb37zc4pGx7JstVq1gyzY+/4kH8Dgnc07HrTA/uE39xYXQCoxZXl52QoYDnRgWgiFkSQDccRf1sfs7Kzy+bwODg5sHUciEX3iE68pl6vqr/7qBd24Mat4XIpGQwYsWbdHR0P94AcrunbtXv2Df3BNlcqsLl9+3AocRgrh/YQRl2QzjfnOvCgkAVA8XxhBYgw+aIAKz5xiHOALc+UbYbPZrNmliHesX6xRSKuobBzVzV7ABsEUBphQwJck2/coQh6Aez/w3NycxQ8IA3yQ/plTeDBthXgEAGadozYEAgGzYMHG8fnEVRQK9hgyNwUC+454RyGIF9oX3igigC7uHdMQsDZx7cvLy1Z08fOwh/yhmYoJKKgP7InBYKBSqalG4xG9/PKDuvfea1pfP1Ak0tXBQUibm6d048aDOjhggkLb8iZFABYr8jmgkhxEjOAZABCJd4BHr3IA2mHH2QPYGmmiJbYT6zOZjBVmYC5JVoxQsFEwAKJ/3uuuB6ewn9LkJJ2jo/F5sciPV65ckTSR0vB8UFkg0UkySZ6K09PqBwcHSiQSWl5eNmBHQCGJMVoCloEg1e12VSgUTC7loeLr2t/fV7Va1bFjx2zhQ5P77kGkJbpUAXFUeZ7CZxE1Gg0bB4NkBz2P9wmvGGCJow5ZlLAqVO1U8AQ0GqhY+EgvACA2B+CFAOmTPM+BBrDl5WUDo8jJjNYaB/1xMAgoYBW2JA0CYzAUDgYsyJAYo6GxjBGKxnV00DAWBRkWFpxKkSQA4CSgSjK5GxmKICBNPKqJmTn9+R/N67f/YKjf/fJLuvTRz+nSubjqW4fGgM7NzWnt/rTOPlXVg9m/UmP4mG6c/0U981RS9Xpd7777rjUQACZIXBRVngEGAAL6PEjAG8RIG0AIDU08U8B1KBRSNpvV6uqq7RGCNCwuBVqtVjPJjEKIQBqJRKzLlXXg/ZitVsu6twEuDK2HucUWIE3sPNLYGwhr6cerkagY5wbwADDSkIaP3Ad+ZDSKVABqvz85JhF2jTWNLxwmhUHo7DcKP9gZRsMw+sqfOR8KhfT00+/o5MmK/s2/eUil0nFFIgNjokicMONbWyv6t/92Ub/3e6/rhRd+qkuXftVUD9hBSVNJHWCOx5dYAmMDk8RhAlgh2H/s7WQyqb29PXtPina8bt4DF4uNh9qz9mjig9EOBAIqFAq2Psbnme/p7NkNff/7Z1Uu5yQd2nxqmEnWNQn+rbeWdOLEnp566rp+9KOc0umx/5rnzOfW63Wb9SrJwBb7h/XDPoEhZ9QeQAKQQ+HoGShAVb8/PoFpbm7OvMfYq2CqkVPx/1erVQNgNOpEo1E1Gg2Vy2W7BzBjo9Foih0rl8s6PDycOr2Pn2EONAobhS1yLcUk3wWmETCMBxiGNpFITPmnKZC9xUSSkRwwt773ApIFsM/eIreTB8lD5CSKcPK8L6YonHjGFNGoYYA/iBCY7sFgPP4KFZM1TLFO3iX2kNNhkccF4EAHB/doZ2dZ/X7fpuFks0GFQpPDKtjPTO4ACALaucesJz+dwO85GHFYXiaGEK9gxMl5vJaXl7W6uqpKpaJKpWJFEL0JxGSeAwUe8cKfWPi/yfq3X2weNgXyJNS/H43Ag4N5wXsWDAaN0WPjQK+zCK9fv65WqzU1nB/JmU3v2UY8M0gpyLfI31TZVNO1Ws1GzQAMuAYWkh8lgYTPpu50OsY4wXxR+WDQT6VSJqHADrTbbc3Pz1sHMAkIkMXstFwup0gkot3dXUsIPtFieyBwAZRhDWA3kDXx6MICwxgg7y0tLSmZTOrixYva3d01/xKm+X6/r9n5MXOaTCbVvi099Ho9VW/e0DFJwfCYzaZKjMViGgbHG+dwv6HFuXF3aLlctkKESp1gmslkrJqk8iSYBQIBFYtF+31JxhLz39FoVGEl9ed/dEYf//KKHsx+Uw//8pGK/ed02FpQKBTU3ExFmeBXNQjM6Urtczq48Zx+9x/8jjUz/eEf/qFu3LhhDAKfX61WLdmxLsPhyaxZvgu2Fd81DgvDsZ+ArEajYTIWDE4ul1M2mzVmk4KJewBDI40BF+PBkMxZTxR5gKZut2vHP1IcsIdghrkm9jZsOx3SjKGBdQsGg7YGSTTECQBasVhUq9XS0tKS3SsSM0woDDlBHTaBeBKPx3X//ffr5MmT2tzc1OXLl42l8D5fjlLkdCqAJ8DdTzVgH42/V1hnz17RT35yTNeupRUOj8ED1wxgKRaLptBcvx7Qd75zn37xF9/TT3/6vtrtBbsnFCgkOhSLWGx8utHOzo6B6lQqZePwAGsATdYAzTqwYfjHPQMEQMVWQVwkFnNPmSPKgQKlUknh8Hj2Z7lc1ic+cUO9XlA/+cmiwuFxgwzWCAoWf0AJcf7110/o2Wdf15kzJb3/fswkYX6OWMncW5hy1hrSMIB0b2/P1j9xk0JrZmbGvP7I+iR01iDr26t7gCBJds9pMCPJ+yZZijvmNPM+njGrVqs2/o0CAhLGT/cAtPG9sbn40V3sI2xnkDKtVssmmNB8zPrFWoaMzx4D9KDE0dQpjRUURn3B4PGcUPSIX9LkpC+undxKfGbPst4pHrHO0aA8HA61srJiM29LpdLUepImB5PQY0Du5tkQc8nlkuyoaxrB2G+oM5VKxYoDXwRjnwOEcw3ENdYIzxXbHusesoA1FwgETNmBaQ2Hw1NTKg4PD5XP5/XYY4/p4sWL5k+GWaWnAAaeeE2hhB0B0ox78HOx2wf6qf+IXzQulEol8yVyOgTVL8GYRhfYBgAP1QcMBwCVIOS7i+nW5KHgM+12u6pWq4pEIspkMpLGFRqsH3JVJBKxxh7vw6E6g/kBdNKpSMMPGwU/J8AAaYmASLXpjf0sfKQWNjIJp1wua3t7264nkUioVqtpf39fOzs7Nmg7EomYKZwZas1mU+vr68rlclY50mwGMybJWAKSJoGHQLS8vKxnn31WDz/8sIEL5CuSP7JMpDveBAeHB2Zsr1arqh/19aykQGLMQCOvJpNJBRPz6jf3Fb7dUMhGZeNubW0ZAzEajTQ3N2fMCKwLgQ4mleeEvxWLAQBVkurVQ/3xf3ekk6e/qEeeH+r42lXl5ovSKKCjwYJeu/VbuvCDgWYiSf3Wbz2lXC6nUCik9fV1fexjH9P169dNovP+Zph8zszmGvlsmhV4UQkTQLyviQBLsQUAHQ6HKpfLtkdgTFjv7CmKDsA8o45ovMpkMgaUuHbWKpI8+9Jfh/f0AVrwncZiMWUyGZOsuWYKKAoNiivYbmmcEBklQwEnyXxTx48ft4RMMovFYjaK6rnnntMTTzyhl156SZcvX7b3ANT6o3K53yQR2B7fQJfNZk1CPnHiqiKRni5cOKVYLGJgnaJ7fn7eJHYKkXa7rddfT+tTnwrp1KlL+tnPHjfgKsnYGEAkyghshy9uYPY40pZnwH1gf0jSwsKCWRqIHUxhoBhFngfQwABzohkAldFxzNqNxWL68IereuONJfV6UQ0GHUvUAGTPbMEKjlm7mDY2UnryybLOn0/bd8RjSxMN65J1wXv5BI+thjjB6X6AK/y7AEhkUdQf3hvQ22q1NDs7a2sZoMZ9hGxgTiVxHzWM62YdU1wDJiA1eE7lctn8xgAs1qG3RgCMIpHxqLhCoWAqI/eDfQsYDoVCdkITbLM0GQvGUPg7T6Ty18g9A+hIsjyNwsQ98A17KHbYblC4WDsANjz0MMpMEUA1ZO1QZAPkIZDY27Ozs7Z3YSvBBB6wkd/94QD9ft/2LWAc/AHow79Nzid3E8vBJqxjQDvkGPcGRZNRgVzbaDSynyHODgbjI5ffeecdU698oxSxl3XO2vX9F8TqWCxmxwn/vNddD07x47DxONWpXC7biR5eUiO4wypBy/vGBElTZ7czJgljsCTzzbGQAH1+AcESNZtN85ayKAGiGJFZRFQgJA7YCz9qhA55Ki++C0nad6Di3+SEHd8VTnACqNKJjJyHrMEGrVarOjg40OLi4pQchZ2BTl2qQKShdrttc2Ul2UaJx+MqFAra2dmZYjS4V4PBQCdPntTbb79tJ5ogsVMhSjIflH12d1+d/Zrm7jmjqqvsDg8PdWz1pFo7N0wKg7kNhcZH0OZyOUnTnaEkXT/uCyYCNo/OTrpEASgUPrOzs1pZWVEum9PWW0d670fjWYKVSkXlclmp1LaWlpa0mItZA5o0qXzT6bStGxgVbCEwSKyfZrOpra0tG+LNNQBuGcBMQub+AOBJPExuoMgDYAFaGJdEsAME4+WiaGF8SafTsa5efGwoCV4iRs6t1Wq2hmOxmDERAAvYGdYaycz7GgFmjUbDQJyfhIFXimvAdsN3ICEjTZJker2eLl68qHA4rO3tbbtmkgl/sJPQ3Qzj4tkF35xCorn//pu6cSOrUimgRCJqwH9lZUUvvviijh07pkajoe9///u6cuWKze6MRKJ65501nTlzS+fOPWL3Fa8eLCjgzjPL7EGeG3GPhA0oRt4EKGFh4h7CWDF5gX1LU440ZpS5Z95XKMni6NhKFNbiYleVyqJ5omGBOZyC+ca8N0XO+PzyOZ06VbV46D35SPFYH/y0FDrtiSl8H+w0NH2hLjB9ggkNgDykflgvGGY6xwFOwWBQhUJhqsjEPsOhE4PBwAgNacy0Ah74TN+YQ+wnVtPEx/Nn73BMLHO5abhlfdAvwf+DLfZecTy97HUUAfaW787n+olj2G0ojrwnl3vNnuE9Wc8AZGIvYxUpAn3HOb/P3ie20JjG+5ETiE28B/GQe42NC5UUnMGLAgWvLsUoDWusi36/b70tWJ0Ay6xRb19BJWLPEf/81BByLMy3n+BAgxmWhkAgoI2NDVNe+b7kGq/08rvYKPr9vqlCqBhgpJ/3uuvBaSgUsoYCNjAgDLDm58Wx4Kl0UqmUsYqAHd+NCauUz+etS853sbKIObGBQAXTEQqFrImFYO+PK2QIM4mbz2+327bZKpWKqtWq0um0gsGgsabIUZcuXTKP287Ojh0ewDgQRvxwcg1ggn/CNJPgSCr1el25XM7YAoCs30QANZKqbyaBdWYR4+0CfFFt+VOsms2mCoWCnVhBcKIxh+CbSqUUuZ3MFhYWFLktT3e74/FAB++8pvSTn1Bj9fik+3ftPs0sr2vru39hgQeGiPl5jNEABJPwOHISOYx1gAkcFptAs7W1ZYwHo16Qi7wvVJKNO2Fdvf322zp58qSdlPLyyy9bYwVrxhc0SF9I6RQKHKjgpx5UKhVjcujCZS3SAU8zCGuQpF6pVKaYW4z0gEzPNJCAe73eFHvAZ3EK0vLy8lRXPCAfRoBECiOBLxR24uDgwI6hPTw8NAZlb2/PjqslcXmGBpYJ8AVgX1lZ0dramhW9yGE8Z7y6h4eHOnfunC5fvmz3IB6P2zr1KgVNJQAg2DNJVgj2ej3t7OxYMkgmO3rvvQUriPAyrq6u6oknnrB/Pzo60s2bN02BkKRCYUZPPNFVNBqxe0lyBlgDOFA37mzoGQ6HtlaRTvkeKysrNt0Aawef4WVGYgxFMACFpImHcX19fYqt9F7pXq+lQECKRGYNdHr/K7I7LBJ7hJOpOp2RIpGR8vn8lEeQe+49ex508t8kbyZsAIS8rYuClH0I6PNsO3ue4lCSgWDue7fbtQIfIAdA5Bn5KS1YI7inxBNvHfOee0YOYk0AWPnGGYoWvjcSLkUdzbrEx35/POeSMXaoi4AcCstQaHxaWKPRsPmcFIkw6xRpNHqyVrH3lMtlKx5jsdhUAxnd9iifFK7+vkuyPMU/AacoCJKsBwLGnO8KEGekGj+HNE9jVa/Xs9mv7B08vYFAwJ4pDLb3ahKTGJVHPKRohEiggCiVSkZkQNL0+32trKyYl50Y2ev1tLS0NDUeC4KD5+IPO6AIAQdRWKOyLi4uWgymKICE+CCvux6cRiIRm2PoPU+5XM462Un+yEcsMi9zASTZXHjGAJu9Xs+OBCwWi7YI8NAcO3bMFiBBmoVHtzWb2Zu7AbLetyHJKjy8Pjdv3rRTRAjIMzMzuueee7S1tTXFniaTSTUaDaVSKQ0GA0sgSKfeD4ofjIAJQ4YcQ/UPgASs0GxGc42XRqiCfUFApStpqisZUMO9vHnzpg4PD5XNZg3o4RFks85/+EUtzy0oODuWDzKPfESZ9Xs0Gkk73/9LJaNhtX72bS0++qzWf++faP+1lxSZmdXc05/R4dZ1Xf/Ov9daPmf+LAIpY2YIdIAO2GYv8QNeCMRIhAQ45EaeP8GMe9FoNFQsFo0tk2QG/XfeeUebm5vWDcwxtXwWvkW8o1THBNhoNKrjx48bI4EpnoofYIe8SlFHMZDJZCwBdTodraysKBgMGhhlcLMkA2BU2dyzxcVFzc3NmQJB8UbXMUwUgY/gx59cLmfMO814viP04ODARkYx/gxgXKvVrND0644ii/ULO+7ZBzqFSVg0inmfNCAVORY/N81F3CPYFkA/oBT7EWuBhOylzXA4oFAoqlwuZ8Uy3nTsPd1uVxsbGzbfF+YiHK4qGJSq1bKOjjpWsODF4znDvPEcAT8+4Xu/MEwLnmNmQ8IOIv16r+poNDmCEdBK9y9FO1InbNbs7KxZBwKBqHq9oNJp6eBg0dbO4uKiybNM2pibm9NgMLD4NV6HQx0dRSz+sX9QtwCnFOTsUZ41MQ8CpNUan24EECRu+1iJv7DVaml3d9fGR8HQEitrtZo9B7y5FGQwlVgOKHZg/WZmZmzyBvYiDq2gKdXLznjSaXgEHLIO/SmB0uSgCRg7r3Yxzo9GOIpfGGxANusBP7E0mZnLfgLUwAhCLDEdBRYRJY+RivzccDg+fRCvI0WQ95zz/3hmxBUURhpgyWn+GbI3KGzIcaxlYjFjHrGMMIuUAxEoWNhv0sSugE2CZ85noBBQlJGz2X+sTVjLlZWVqZGM3lvOM6TQBuN4fzj5ZVwcj8k+7zUl9xUKBethSCQS5jkmlqKA/LzXXQ9OvcFZkjFbeESgoUm0MIpImnik8P5QHcKAkFAZvUGyYRYilRr+Oi9fSOPgtbS0ZAtCGjOEJD/ocyQYAiYbgwAujYM7VWSn07GTdQi6LEqofbowYS2RRAnqS0tLxuwitSLt8TMwEQBN7gd+FYBDu91WrVabam6iSjw4OLCmKwIsR8hy39gUjUZDtVpN165ds0oMVhPgkvnoLymaWrZ7PHf2afv3nVe/pU7nUP1mUxf/6f9Jp371Hyv9qV/TqN9X49LPdOXP/geFNAbQWBhgEvv9vp1TTtMClTcmfp4PlbIkYxXp4uWoVoohEk84HNb+/r7K5bKdigJztbW1ZTaBQCCgnZ0d696UJmOZWCskYKR6L2mvra1ZJU4VS+NQPB43mZBgBIOF3EZwptK/M1izbwjAsDqSLKnzuyRi2AUSdCaTUTablSQDXFwTe5bxPQBegjB7xe+JcDhs63l7e9uSNfeIAiGRSJh/G1DlYwksB9+XveW9ZwB9EoFPapIM1OB99QrDwsKCscWsfbqaAWrjJBDXwsL4nnKiWjqd1nvvvae//uu/1tNPP62NjQ2dO3duaprE2J/d1NFRSLXansLhmAEeP4O1UqmoUChYUQ7I4r0Am+FweMpbyDphL3KfPHsKg4Ufk1hC3EKOh6kECHnwjx9Rkq5fT+nEiWt688371W4f2fOCfMBGgA8OIJ1IhHT//SW9885JNRqNKd/o8vLyFBsFiKlUKgaAkV9Rnfju7C2KulKpZJ307HssAthi8GWzRhqNhhWfNDxhAWHfEhNpKAWkMonFF3YUuXwX9k8+nzdvoy/iwuGwFYCFQsFiCPkP2xJ7kmLYg0fvUQfUU6zMzc1ZYcXehlXnPgJOvWeSIoKTvGCIe72e0um05U4P1sPh8FQMh13m/mBr8MooPx8KhWzsFrGAZ+sbeok55AJvl8ESA0ZgbaPydbtda/YD8KNEdLtdzc/PK51OW8HNGguHwzYFhVxIcb6zs/N3vLT46g8ODtRoNKaOT+cUMe4XBY1XM8AjgH5fkINdeHbgBN4LW4v37v+8110PTjHQwwp4TwwVJLIFVRYgCc/h7OysMpmMdUDyUGGmfADgdyWZR83LHIAQhpcDcPC5Svo7Y50I7JiwkcOlyfBvAgK/y/vDRFHJhEIhO7ub7yfJGlGQ/AFKSM6Y8SXZSB4/hw/ZkKpTkoEIzOeMefKeSIKIl688A+BlP4IdnwHwqVQqdl2xWEzX/+n/wZ49cxxXV1c1HA5V39lRqVQyRv3S//B/teuLxWIKdts2GsdXwLBdpVLJZHr8mBQWjM4gQeCDJFH4UUe+cvcSoCRjgQGtFFNUyshaVOI8d85zZowOjEUsFjOfFvfJM5v8PX4wCgiKjXK5bMfIUoljBfFdmIBQGk5gLvFGIcXSpMPzxZ/GPiK5Uwh4mwgBsdMZHyrhzwfn97yXDSUCC4X3hdMoSOJmv7K2kRT9s4Eh4dl2Oh3bI1gVCMwANpoYJZla4TtviT/1en2qm5x1VygUjJmioWV7e10PPPCe9vfzOjw8NPak1Wrphz/8oX7605+q0+moXC5boRcKhdRo1PTQQzu6di1rcSWTyRgwlWTeWA4emZmZUT6fN2Y2EomYV5/1zLNnbeAf5bsB1HnWfr8QK+nGliZHyXpmG8kdRpkYcOHCPfq1X3td4fBVFYtRY7pRivzcXB9XT5/eUDTa09WrD6jVqlsTJ9exvLxsn8d1AlLYZzSA8r1YIzB5o9HILAXIvaxTFD1i4eLioo1fY13jKYQ1RsVibRF3vY8TooVr4NohN3zRyN5ttVrWUEfM9ioXHtRYLKZ8Pq9arWbPm+8OACVuUTCz17mvXC97EJuUH1/HHve+ct4L8Oj3pPfB7u3tTSlb3AtiEevIT2RgvwKC+Sx+nuumzwL2GnDr4zlFsm/W5N4xCorYzX3gO6MA0TBFAx9rjHtHXkJR8cQFyh2HV1BQnD17VnNzc/rpT3+qQqFg9gLsGuxV1iOFeiKRsDVTqVSm2HAANiRFNBq1xmgUOOISRSLF+c973fXg9ODgwKSParVqyQO2AnaO4EHHLpU/P/Piiy9qfX1d3/72t1UoFGyoP6NBCBxUd96zGA6HreGCxHN4eKhodHwKTLfbNdlEknXSSbJES4D39gISH+f/siGTyaRJOl6ywG8JkGZjAk6ojJlNBzPE4iURMYcQ1hWmE4Ygk8mY9Eu1Rfcoi5r3ROrmXvqETlDwidrPKgQUeIBHkKDTFcachFuv11Wr1ZRMJu0aCcAAH9gOBs8TBGDC8W8COGhk4Q8JWpKBLxhkSca4YxGBASJgPvDUR7X84q9p/r6HFU4k1WtUtPuT7+j1f/Pfq31bLoPVAVjxuQRXgAxVPkGTahr2mwADa0NXMUPRCTYwfLCH3nOFrYMKXZLJg5IsaVKF8++NRsMUBqRbEgkgfzQaWWDk/TH6wxigbHgJH7kJKZxrohuZZIlsSMCEEUYuQ9on2bCOkFhZpxQOJGKYTwCw97V7AIedIR6PG1MMMKaIoCGFPR2NRvXOO6f0yCNv60MfquvNN9eM6WP97uzsTHXrAvAffrirpaW2vvnNR5RMjtcozwTAgcTI/kee4//BpALIYRd9vDg8PDRPOiwV+xipE9aZPQ9oI0liHcKiAFPGnmaG585OQo3Gu3rxxfd15cq92ts7Ml8h94R9CJsZjbb1yCPntb29pnY7pUxm7GUtFAoG1iiWYLko0Lm20WhkLB0sKseTcj+4v+FweGq/ed8jPw8Y9WCYwpz7MjMzY9NOeK6SzN4FUARUU1ByD4kbFG10paNIIIETt2HkAoHJDFcALddIkQj4IwZ4OxH/zf28c6/BPLLeAfXEHEA2MRhgjZWEWMe1e5sPzDOTLshZrGOfy8lNfjYrvwuoBLCi9EgysE/BxzXCfHuChXzrmyNR1ujl4AhZmFXsRPi6uZ/kaaR5b39gzwFWL168aFMWJJldgT1BYQB4x9+N4uEZT9Yr8Yy40+/37VQv9pwk+16A3Q/yuuvBKQsU8zXNEDxgPI14oCRNGbZZ8MgUPDCA0mAwnnWKh5WFSLVPEEOKgIXEZ7SwsGBgwFfcLAgYUjYdG5aRK8g0LFD8rLCBlUrFvJDMnuP8ZgIw32swGNiZyn4EELIdiSQej9tpTlTxsBP4xTqdzpRxn5/hPVKplLrdrkm2yIZ4pKgUi8WiAU02FhUpniAqS+4tsgIFA/eDa8Ko7bthx0dBjsEo80GR3iSZ3IXPi8rZG/S5vjubFCTZemHNeEYB0BgMBhVdXNJ9//l/rV6rqa3vfkWBfkfJE2d0zxd+T/HVkzr3//0vDAzAfnNvCf4EdO67DxCsSYLzYDCYYsg8IAGgsDaQ/X13qT9kQZqMI5qbm5tqwiAAcj8kTSV6kiEVO8+G4fg+IWAZAfRGIhEdO3ZM0WhUlUrFzPv4zA8PD7W0tGQNAJJsP0oysItHOhQKmaWCggOgiMzMGodpgAUmmZGo/LQHQApxB9BLMuB9WHMoAgA+X1xcvbqn99/P6pOf3FAw+Kza7ck8VxKijwNjBedIH//4uyoW53T1akzSmN3G2wxjz3dHUsSrB/NMocNapmBkbBrrm4IYTzueNJJwo9Gw2DwajXTq1Cm7foAE7+eZV9gzYlU0GtV3v/uUvvjFl/U7v3NN//yfp20Nw1wBLMb79EC/9EvnFYn09cMfPmEgLJ/PK51Oa2tra6qhiGcSiUTsmtgfAHbAogdfeHl5/vQV+HFPrC9UFUAo+459gJ2EQpP1whQCzxhSqPZ644NH2GeAf5quRqORNU8xTJ785/3HxGJUwN3dXdsD3hrmTwoCtJNriG80qrFGISS8v5WGTWIEIByAxPXx89J4vBvyPJ9JLCPHAdJoIqIRyntGAVVcD+QJ0nSn01GpVJpat1w/hUA2mzXcgbWE709hT+zh2XmvKpgDS1C73TYfM3Gd3ErhxV70diKvbEr/f/b+PEru+zrvhJ/aq3rvWnpvbARBggS474tEiaJE7ZIV2bTkjO1kYk8SJ+PJZHHmtWPHY48nGR+PYyXHGdux40WSLcuSLMkWRZHaSHAFQZAgQexEA+i19u6uqq79/aPwuX0Lylj0OT4n7+HrOoeHJNBd9avf7/u997nP89z73R4RJ20TBtzneDzeVyyRq/CiY7+6shhFFebaeDah0PY0Cq+mkjPfzOstD04JplRJLEpYDpinjY0NLS8v91UTBIJGo6GvfvWrCgaDljCQEPBg+K5aAkOz2dTq6qpViFSGyAJIWZ7hwThPx2qr1bKmHCh4vgPD3NmobPqxy2dyJxIJJZNJS5x4WwmsVGQsNoIlJnd8JGxUqnQ2OF5aJGzGUTH+iKYWviebhUYLklQ2m7VJBdVq7xzyZDKpubk5Y6YAR2wINjED2JFAfOCGXaXpqN1u21GjBAOqWMAqARD/0tramjFrgA+OhfWSNhV6oVAwCRa2B2DkPU9bW1vWCLNz507z6o7f8naFEkN66f/6aS29/rKkHityQAFN3fkuze3Zq1C7aTJas9m0qr5er2tiYqLPKwuogSmBMV1ZWZHUGzfDuiHgsUZgU7yMRhIkWbNHKpWKNTIwG5Dn5JlKAL+3NCBbSrLqHYWBa0OyqtVqtrYAHHib8UJxnTCqMMl4n/P5vBVyBG6aqPCw0nzmWW2AW6fTm1zR6XSMQYVFJm6w3rEXUEDBgpHoGKEGe8YIIaknhdGhD9DGp9hut3Xo0G36+Me/o3vv/aIeffQdyueDJvGRqLhPg4Ntvfvdz2pkpKo/+ZP7FItFbD8yoxaQND4+bk1RgDPfaMFAc0nGmFUqFVMbuF8+5qIO8VzxDrJmAIdST8Fh7VEA8XvEY5p2eKbHj4ck3aoPfvBF/cIvbOno0ZhWViZVq4XcGmno9tsv6oYbzqvT6eiLX7xH3e6EYjHZNcHEs58gBWDRSPxeUvVMUyaTsQIin88bW+/zDskaFpX4zeehkPF3FHw8C+RRYju/S/GPdYxnQYGKR5RCIhgMmpWHsVjYBABKV7Ji/rAG33RF/IzH49/T/AVRwLoglsDsI0kDxNhzg4OD2r17t4LB7aZPvLh87yvz5PT0tAFN1iVxA2DG2kM9xSPN3qUg8vPOuY++aQjyAWaaXAmYl2SeZyx5TP1gD2Nj8ywqex0GFgDpD2cgvuL5ZCLJzMyMFWUUaMRU8hXx2pMb3o5A3ke5IJew57lX3HfPoPLc8d6CS2Kx7RP0KM6+3+stD06p/gBFVC8wggQ3RoSw2UZHRzU9PW0SeqlU0srKikneY2Nj1smOhIk3dWVlxQKIN0QPDQ3ZQmOgdDQa1ezsrNLptFZWVmxTAV5hJgk4vuuUQInJulAo2AIgIAMyqXByuZxisZh27Nih0dFRzc/P25gdD6x5EcwYgRKNRrWysmKD3f1GJBgi21HVUSVKsmoSEAcbI8lOmgoEAnYyEPIR352AQsVPNc6pRTAH3ptKpzWMmK/mCP4wYyRAJDo/kxGgQaet92vyAnjArDFpAYDFxufwAthW5J5IoncPt0o5C7yRSESNcl7dTlutRl2hUNCSt/f8sQb5/l7i4toA2gQk1jDr1PutFhcX7WhPf5+YZenlTS81+VPG+F1Ahgeh/D7XCqDJ5XLWMQ/4o5jA7xgIBKww6XQ6dnxwKBSyI34BHOwXztHG7sHzY38ggRELKGjwSbF3AbAATcZ8cawvx7MCNHl/An+73bYDCljHdGbDQsAA4YtDueiNT2IGc1Jf//pDete7vqGPfvSrev31nXrmmQnlckN2r5PJlm6//Q3ddNOiAoGuPve525TNDimRCNrhIHweczopHPDGe78b35FrY9/GYjEbzcW0AdhVpnXwZ7AujJuiGKIxh+Yw1AjWB/eeuIT1BLvOmTOT+vSn79Ydd5zUQw+dUrt9VrlcUo1GULFYU5lMQZ1OUKdO7dBjj02q3R7S7t0DZmng1J/R0VErpPBOrq6uqlgsWhzmerg3fjYvDSQUE76QY4oK6hyFDGuJ+856B3RS8AIMYfKCwaABTciSWq2mqakpY8O9NcNbT9jDEBW1Ws0KWuI0RAe5Bp8ks6axgACAiQeANPzBNDyxBlifTC3h3jHzlqOJZ2dn+zrp8YWjiFHwtVotA8h4mSFROA7cF+HEJ5i8TqdjEwzwZ3s/LzEI4gJswedi/+F9AMAUGaxZ1INAIGBD/r06QRFMriiVSmYH8M3E5AZiA4CUnABhAQvLfYeVJ98Tf1gTAE3sWzxfQCrPFgujtC3xE+sobLGVoCRjOSwWi98Xt0n/fwBOMXpDY7PpqRg4iosGB+TafD5vzSZsNN/pT0ICnAC4CE6MzSARwqryUH03MA+UjcJi8n7CQqFgMgndmHjXqIhzuZyxXFSzVFssVD6bjchGwHfEJiMYp9NpO5pSkt0/AOOVhvdGo2FmfhIHrCNdrb4JxldYLHLkplqtZl3pO3fuNBmIZ4lECAPc7XaVyWQ0NjZm9whml//mumEv2ThU0PiXYDEI4lSFfhOm02mTjZFxAE5IgKFQyKpgwDTrADmGgwuGhobUuHRK0vt19Sf/mV7/0/9HsVZdu267X1P3f0AL3/i8GtWKBi57EHmO9XpdmUxGu3btssoYYAqTODc3Z/cKUJRMJk2ClmTDomF3vByNJEYwwzeKzC1t2wUAO/gFPeOCApBKpexMcoI3jJS07b+FWeC7ANpo/gIEvvDCC1b5w1L6IAmA7Xa7llwKhYJWV1dtj7C/COz4wAHXACMvA/KMWRf4Ijn+j5jhmXuSDPLl5OSk0um0gTtYjEgkYrOYeZVKJUusvXU/pC9+8SHdcMMpXXvtWd1441kViwOq18MKBhtKp7dUr4d0+PC4nn56TltbcUUidSuSfNc4zAqsOuwMz5iTa0iMAAw87pAAKB2dTsdsRRQ0koyRgzH37B9xl0QGUKO4RB5Ens5mswaqewl/WocO7dCrr7a0d+8pjY9vKBJpaX09rhMnpnX06JTa7fhlFjzRx8pK6iv8AQT1el1vvPGG8vm8MYGSrBHVy8dXeuxg+1AkAA/EZOIy6x6lAbsFewF1CuALaAeo4Bv3Ejj3DqUMxq7RaBjLz2ld7GcsE6xxYhvXSn4B2BEvuS4KfG8hIp9yv5gGAvDjEBHIGOII392TM9K2aknc6HQ6BkDps4AN9uP7KISxMnkwSz4hb0FG4Itn/2PxgwnEBuSlcyx34+PjSqVSNvEA+R+LGrEfH308HlexWFQ4HFYymVQ8Hjegjp1K6hVEeIGJU94G0+12TdFgX/DnxDkKJPKhVxuJZ+Rb8gX4hKKJuEgu5F6xviuViv0/zWAUcm/m9ZYHpzMzM8YmUVly8wBOsCRUdnTu+XFOVBRU0nhDYaXY4F5u9UkbNokN5RPa6uqqJTCqElhVPElUVgQxkjyyGSwFCRlAIcmCFSMpkCM4J903nMA0SbL3gpHaHly9Pf0ANkfabjqi8QkvF/eXxA24gwGA/fMyA+wkwBkjezQaVTqdtkARi8XsemE8kZ5hC9gk3Avm2vJv2AmSL+uDIOrlE9bDyMiIUqmUstmsdWnDIFE0RCIRA494YylIGOdEEwpBqnHqqGpf/q+ae88jeuDWt9k6XvvWF5T/xmft5BzGnyFJ0QTmvT7FYlGlUkmZTMbWZyAQsEBPoPBKAhUyNgB8uN6rCdAimPtnCnvO2iAZbG5uKh6Pa3Jy0p4jIEeSMRCw8Xwea5K1RKMTLCYSGAkU1pL35Hvz+yQtgjGANZ1OW7Mhkt/g4KABMBIrnuhwOGyqi58xi1SKzcTPuxwdHTUJl2kJ3EeeHd5M/uFZIxWzVkmiPbAW1Ysv3qS//MuMrrlmVfv2SbFYW+VyXS+8MKiXXhpXqVS//J3L1sFLE5svlikAPFvD8+W+kMgBVRSSMNEkasA56k0mk7HjTokHyLiw94A8X2BRTJJg8SlyrTSe8Xs9kDikY8dusmvBh9xjA4ctjnm/H55KYrNvNpmdnbVimufP96Zwp6EUgIiHG1BHzAK4AExpzGQ/wmIi0QNMKIZarZatV0k2KB9WG+aZ+A+4h4HlVDbiPmuw0+lYnKIQ4D3GxsbMjsVoQYpqCBzWKM1FrAeeE15PlBZAji9O2u22FW88N+8VhWll0Pvw8HBfzMKy4H3SAG/uLfHR/04gEFAmkzEW2k+x8QUhwJZ1wHcEzGFv8r0jjOGi4GbtUASjVNAgDbuOVcw3e7FmYrHeCEr//EqlkrLZrJrNprG5AE/UG3AIih7v5+2B5GawUr1eNwshvRcUL8R64iMEA3GTqR7sK571m3m95cEp8gPJDMZBkg2cZ7HBHiJT4GmiupJ6D85L5wA9SXZKCP4PHubY2JgtnFAoZNI1HkYAJyOMOp2OFhcXLZjADAA8kIPwc1LN7927V2trazZ+AwDDoiOg4NskyHL9LLCpqSkzdXPfCAwELQYdw0wxgosq1LMxgAWfjAA5fo4iDRyAAZ4BARqWCuBCRUYlCYjn6ES8MrAVgG28NNx7AuXm5qaq1arOnz9vp9wQLGg4gqXGqjA42DuZBjmKAwGuueYaS7AeLMGetttte96cVgQw6RTXtH7mmNZfe07VUl7Tt9yvzAMfUaBe0eaRb2lra0uXLl3SxsaGksmkFTSNRsPmlRIMuH/1et3uCx3U7AUKDJ4NbCdmfUAI4JoiCX8dHkG/PzzzjJ2A/0Y6DIVC9sxhXQimJDcYAJ4fA/C3traUyWRMPsXLy3nVUn8DGPuXyR3NZu9kmWRy+0x1fKuSjOFA8QAQV6tVS94URgBSGlKYaRiLxcxTSgLzTV2lUul7ZqBiM6D7mtgDO+ItJbxYV4nEsM6ejatYTJrc2ZNgO0qnO+bx5J74QzDYA3wfOsZJwKOjo1Yk0ggzOjqqyclJe46wZFwTEy5gY4eHh+258n15thTQ7XbbGnOQlQE4jEgDSDHlIZPJWJNPNBq1Itk3tAEYkUsBG9Fo1Bh8bF0UkLCDFMucqAfAKpfLfcDCN7RSfAEo8Q96IMva4vMAZsw/9vaokZERA/asEYp6rgVQ0u127ThYCh7UGtYwoK1YLPZ1kMOeAty4Z4w+CwQCmp6etrnL3rfp8yHECtfE/ee5w8IhscNk+gYo1DhkYCYJ4Odmj3LgQjab7fPWE8P47gA8pGnWK0UEYA8bCjOmsZ35ngsaSGdnZ603ge8OlqhWqzYrlmLYr3X2oJ/3K8lYcUZB4lemqI5Ge3NJb775Zk1OThrYzGaz+s53vqOVlRWLGbD5AFRyAEQZ480AxJBdMPVcC/eQ2MFIO5QVil32trdB+HFyvpj7fq+3PDgtFosmNyM5rq6u9sn4yCM00/jxQ1JvU+D9isViuvnmmzU4OKhjx45peXm5r2GHh0tFxOdubW31HYNGh3yz2bQZqmxUqj42Lw+TwApDS1AgWBEkYTkwmDPkGcnFSx40ZxGw8J/CkHCd3Etpu/Penz8PMyLJ5FBYAn+8qR95AZDkmhk+jLwuycAzXkEAk5eDJRnYofoHbAIOYemQkdj8vssSSwPSN4mQGXze48lIEe4HbAcBFeABewSojUR6Q5A5zYugRRNB9OqbtfuRf6qjv/QPFG312PyzJ4/oqmBQqXd+XJuvPaumOzBibW3NkgeJCLl9x44dFszw2eIzg11BigUk+CRF8REIBDQ3N6eBgQEbIO6BZzwe1L59m4rFKlpfL6tej6tU2qNgsBcw/ef750UipSjCTwUQBSywrgG8eGsnJiZULpdVKBTMQkMSZf9RBBGsAWz1el3JZNIawrLZrFZWViwgV6tV6/qt1+s26oq9R4MBz5/GDiRWDobAN0sBCEDBZ+j9ekw44FQj7EiSzIJBAY3U2Gq1rACD5a/VarZmfTMOM3eZ2gHzQTJBngUAIbMTc3jeU1NTBs5HRkaMkWJNwQgBsGG78fzSmMl3455QBBGjiC3EJDyAvhmLZ4Rsjt0DUBcMbk/XYIYowAB5m65ovIwk8pF9N2nkutsViA+q1WqqtbmuyvHn1Fg6ZwDIS73kEgpZJH+e9/j4uMVI4hXfnecJWwYr6qXZdrutQqFg5EQo1JsFTDe4t0h59QFJtlQqWR7hs1nDrHPUFf93rVZLi4uL5l1lbjQxLxqNWmMtOYl1R271MQYm1fvB+TP2MfcEBdI3KfPn3nLFc/NjmvxEAVjEaLQ3KhElBYYSFYF7AFvrm8wguVCYpP5ue+43SqG0PdObJlpP1JDjIRkownxc93I8p1gODg5q165d2rNnj2ZnZ40AYmLQd7/7XV28eNH2LSA9kUgok8moWu2dYoZ1BuAOAeTtNuRr4iaEjm9MZs+iGJK/+S4ex/j9+/1eb3lwSnc9wMIfsVWtVjU+Pq50Om2VgQ8wLO5gMNh3ak42m7UkxQb2TRb4U3kwW1tbNsi6VquZfMTmpprjgQKCkTdI7P5IxY2NDY2OjlpXOEkcMCzJWDMWKPQ6bB/AiEBEsgTYEayl7VOr2u22HR8YDoeVSqXsNJlOp6NkMmkVFcmHBiEWrqQ+vxDBAGCKdIAxm4CALIp8Gg6HzaOGF25ubs7AQbvd1szMjCRZJYicT2LC1I6sR/BCHiMoTkxMqN1u9xUwPGMkDuQqKlyCLoCHez0wMGCjQehSJpGnH/iwGqsXNBjoqCnZxl878qTGb3lAhW5U5VzOmhjwugIkWFteuoIlnJ2dNV8yQBG/8+joqDUvFYtFLSws2LVXq1WVSiVrnuIeRKN53XNPTtdff0GJRKNv39XrJ3X8+KwOHUqrXB43kOYbPiRpenpa5XLZjtit17e7m/GTwphJ25Yb9gXNK7AWgCmYLxg/ihtpu3jybEEsFrNRb7CosHDlctm8zATYcDhskhXFEsCUxAcjvr6+bkUaFgfWI3sawAEzijpBh+/o6KidXFev1210DiCI/YWPDcYF3yYFMgmLIoZ7zjoCTPA92PvS9sxlpEaa+WgWw7PLmvXrjEKDa5Jk7CySvbcq4LNEoaFgJr4yIBxWDosVXkCUmytBGfKqj4ves1qpVpW68z2af/AHFMvMqJFf0VZhVaF2R8O7rtXU2z6o2vJ5VY98U8Uj31G9XrfZsxSzEAwUB77hEzYeTyhSKAoCBSwMP4UaLBiABdBEYwsxcWZmxtQDCg2KZF/w+N4G9hL3xTdQEvMpQDi9jO+Acgcp4EGtB++RyPaJZxR5ft6t34/eF1+pVGxwPawc/QV8N+4PRRbPlaNCyemw1YBH9gjFG8pHIBCwohdm8L8FgFn7rL2pqSnbiz4nALohl8jxfA7gkQLtyn4BngGFPN8ZEg0cQsFDU3YoFLIja/Hn0xDlrRvcb4oIcjG4g3jKbHWf87AAMEqKogIlDEYbUo6G5DfzesuD03q9N1x/YmJC+/bt086dO3XkyBEdO3bMFjedfXThw5JRmbOwqKYWFxeVy+VsUdLNDaijigDs+AcOOwLII0ng46E6Ghsb0/T0tG0w321IwiFBUOmzoPA7+pOb2BjefyvJvCSwPl7ipNmH4E/FSHDa2trS8vKyVVsETL4HXkXkKJItUxBg7eiURUanYxjJE+aJ5Mp3JjgC/rgv3hvGc5G2B+KTbAky3mqAZ44A4at+EhsVNVU/iQ2AD1ORTqcNVHGtVJp+6Dym82g0qsjQmLqNmv0Oz3R9s+frrVRrVvHDMKXTaUnb59NTSEkygMraYU9IslE0FC74q7znzzM7yeS2XHzjjSV94AOvqNUK6fXXd+rs2Wu1tBRUoVDUjh0x3XLLqvbtO6Ubb1zQoUO3amVlnyTZeB0CGC98jyRsiigKr1arZRI8jQbMJ52bm+srzqjUPdtHUPaqBb5SgNH8/HyfCsE95D7SOOllOz4HFYG1icqAxyudTts8YzxkeFIB1uwBrpcxNARzEgSqAdcNKOXFXoeN5/3xx/L/gAVsKZKsSAP4wWSTjJrNppaWllSv1y0WIOEODw/bGemMlKMhCqaFubU8U6RfzmJn7TEzFS82o9hgzmDRiEN+RjUAi/vG2icJY2Hxikq5XFY4FtdVP/K/auKWt6lw9Cktf/m3VXnjdeXz+d49CIeVvO42zT7wYaXe//c0uPNaBb/8Oybb+gMVeAaMAUSJ4LkBJgHwPCfAEH9fqVR04cIF+10UEgAlFhruDfYKX/DzXpwA5YElsYD4BfPNOhgYGLCGLibUoAx6wCT1ihgsa6wvLHMAdkl9TY400pGHK5WKHZQDOcOzZI8UCgWL6/RNYDkZHx+3YoC8AEiGLIENZE94ax77mwINBZI54R54J5NJ87uzTqPRqO1ZroM8w/vx+YBpVNBisWg5CCIkFouZXxr7XCAQ0NmzZ60RmMasbDarxcVFra2tGfEyMTFhSp2fLAOLzZQT9hvPzu8nPNKoAORc1mCxWDSVyBeF3n6HH5tc82Zeb3lwOj09rQMHDuh973ufrrrqKkWjUe3du1fr6+u2yH3lQUU3NDRkMlQikbCzZxkuDLPouy7Z6Pz5wMBA33D9UChkncJ+BiILIRKJmJ+O94V29914BIFQKGRVJF5MGB3AcalU0vLyslKplMbHxzU9PW2AUeo/wQiTPl4lEhMVF0EYlqfV6jVVYc6Ox+N9jCABCR8t5ynPzs6aSRxWCZmY4yX9RonFeiNGcrmcksmkbQpke+45VRkJik0GKEdGwd8UjUat492fJIa05LtgO52OeUoB6YAMmAYCFE05AB+qeJoauN+RSMTkFdZQp5xVZP4adYfGVbx0yZLSNXc8qE67rXZ+WePJ8b6ZhzCCNGlhf/A+Ty8vwVADgKTthhHko3g8rpWVFQsmNNx1u13t27esD3/4pE6dmtNjj92gUGjwsoetolAookIhpueeu17PPrtPt976vO6//0U9/XRQJ05ca2uI/UAxR7MdRQ5r+sqmNEBQMBi0ZjIa27y3CzYdFpbAzJQKToMD5COrcywtzIpnA0kuKC40pLFHaULAM+vZSIoYfNbeh8yzYeYxak6327Xn22q1tLKyYjEDloV4BbsFiCBxI3eTvJGMYfFgvFBgpG1VgwadQCCgqakpW6+eHURZAvh7VpbiSZLFPWl79iOfQRHE86fBEluRL+z8c/ZWFWRc7yWkX4C4CHNLccQc3EajoVA4rKt/5H9V8sZ7dPb3/09tnnjRlCfAUafT0frJl9S6eFLJ296p6Q//AyUrm8p+9jcMfMKa84KZhiCgGAEA+gYkkjyEB8B0Y2PDvJVerYPR4755TyH3FmAGIEDRwqcIGANIAGiJScROPzGC5w84xcrmgQvkAwROvb49TgiVgt9njUoy7zBkCOuDdQrw955rOvQB/r6Zx49v4zMAwawTf92BQMDICpg+XpAKsJqJRMJUMHy+MJX4gPm+fkICbC3XSEEOIcQ+xA/KGk8kEvqhH/ohTU5O6otf/KKOHz+us2fPmpWDfYOEj3WN/6cAIA+iSsAI+2ZIVEOuEZID5hSWm9xN3vf3h6ZJT3AAzt/M6y0PTqPRqK677jpde+21Fih37NihnTt32pw/NsnGxoY1jExPT9tGkHonUBA4aIDgTOt2u20MIvIh3Z4kLlgigoRn26jOqKJghBhNBfAlCSAJUeFls1nrmpR6bCjsIfIODB2yi290CgaD5h3yXq14PG4gjYTtG4rwXdKxC2tE9cSRbPF4vA8M4K8iuU5PT2t6elrS9jB8n3TwUyE1wmZK22dw08XumU42G+w1XkUP5gmaBDtYK74rFSDVLveQ5gjm3rZaLduwMzMzFvAAh4zQ8k1ZJCGkzmg0quLTf6mJR/brqp/835X49p+rUswpc+M9mrjpHp1/4osaDPbeM5/PGwBgPQ0NDWlqasquBQAEk44k32z2Ti2BERocHLTj8UiUdPIuLCzYc+o1ITX18Y+f1tmzO/X447epWq1oaytrLB3FCPf2W986oGAworvvfkHHjrXUaEza7ERG5fBcabCSZCOhWJPlclnFYtGYA5g3Eh5rn6JxaGjIkoEk++4kPHyuJCn2BXI0YAOFw8vhnt31HjKvWiDzSjJmD2ke1sH7qym4fFMFxQV2GECk3yPsYWwZeOwBVMQYQAf+O5InyRJ7xNramiVnGD8SEkkGthbWGIBcKpVs9ijXMDk5aaAVxo1TvFAj8OuiXhGTkR0ppIaHh5VOp81msrm5qbGxMUv23EOSH88GFYQkTqEN4JSk9E33KXPbA7r4x/+3AounrDGHmAyJQFNp4bHPa6vV1p6P/yNFn/xLbbz+kjHp0rZXHjWn0WjY6UhYjXxMx1JG8yVydDKZNNafBl2eJWCNAhKAQ/xlzdOIxv70zWOsjUajYaBvcXHR7G+1Ws0Yc2JFPp/vK0QoKGmghTXlWfBzNMeRY3hPSA5pe8IGJALXRUyDTfT+ZnIrBSQACxDm7QfcA/YVxAfrmuKU2M9IuFwu1weqeAY8H2I6ytjw8LDlTHIXz4r7wb1HoeRah4aGrGnVE1XxeFxXX321FQLZbNZyWSAQ+J65ujCykCtMPiB30sDGf3Ot6+vrRnRAVgFWsZD5n+feST2VAlsb8QGVF7X5b8Hp5ReVM0FI2g7mBEQ6bQFdMIjcRDqxK5WKsRK8d7lcNrM/J2HAYFBhMC8VICjJzs1l8+NdIxkjNRGwqQBhTgCGNKdQ2eK/gYnKZDJqtVrKZrOqVqsqFovGDobDYVvQfGc2MkEW9hTwxLGeVJlIizAfzDwEFMCCkZArlYoKhYJJ+Sxk5ECM9dgRSDqwZ7DLjUZD6XTawCsjoQhMeLQGBwcNXPuO1na7bWwmXcdbW1s2bgbQAgOAhWJqasqCqg9iPngDbEhq+KpgM33TBWwvnabD+bzKhf9NEw9+XDMPfEjhgWE1CmtafvQz2jz0FYXDYRttQkBgzTBiB4YGOQUJk+5QnocHpCMjI3Z/SHawI8hMjUZDt91WVKsV0re+daui0Zji8batf0kWiJAqE4mEDh++VXv2LOu22y7oy1/ennnpPVl4wtiPMHOsSxgY1r8km/BA9S71WDkKJU4dY58hGUvbPmgSGoUVDL5nNCmmvCUANpyki80E1oPkhw0FcOQ7nGGUstmssa3MgAXsI/dxpKhvxEG1gEn2kiH3pFAoqFQqKZVK2bpAXSHB8H3xiflCFitDu92254JdydteADYwuiRNCmx/+AWAnCK7Xq9bHGSdeusObB++SbyysMODg4PW0AJ7yXtjHWCdsS5pQKGQnX3Hh7Vx7rgKRw9Z7Ae4z8zMKJlManl5WcePH9fq6qpqtZqyT39Nsw98RLvf/XFtnH3NPpMeA5pHKAIBDEipAwMDVlCgjlF88b05jMR7A9krxWLR/JJDQ0OmJOBp5s95H8gXadvaA3PoGVzvMfUxDHAFUCMnYOEgX8C8+d8j7nF/aGKMx+PmV4boodBmz0FAwJ5jifLEBZ/d6XSs34BB/nymB8A+nmxubvY1gREP/JxOYhBedv4bxtnbNYgZxFvioAf5AH+wgCTzywM2WbcwmFtbW/r0pz+tTqejixcv2u+i5DIJA1ALaK/Vaub7ZF2z11FUkOwZg4Vq422A/CxAnwLBN0ZCrhHHIfjwSRML3szrLQ9OR0ZGNDExYYtsa2tLzz77rE6cOGGSnL+B3qtD5yuVDUkeqW3Hjh22IOhIJ+GyQNbW1mxcBcBgc3PTqk8SDoDTS/0EAnxaeFj8YHEPLiSaDNa1e3dWo6NSOBzT9HRMZ85MK5+vmfTl578NDvaOVAVk+SYLgAqVLqdZUMGSpNgUV9oWAOHcNxhnTPEEEzYqbDTAA6DM73PkJ6wUrI203WGO78oXDTCi+LnYSEic0WhUhUKhD1Tyvoz0oKmHAoWmFq6DALy8vGzyHkCYgkaSMeV4Tmmy29zcVCaTUbrRUKD4G7b+WKcjQ0PacFIrRvTc5QYpmDEv3/D7eIrxPcK+AVAZo8Iz5VkwYSEWi2nXrmnddttJvfLKjDY3WxoZ6QGvZDJpRQiqw/Lysk2yCAaDOnp0h+6//5T+9E/XtLYWNGaM9cKzAhgAJFl/JE5YT88E+0q+Wq0asILNBKzyMwRTvitsJQwBz5TkSLEk9QpbmsoAlyQemplQRVA3KLAY8+UHa/trZz0BMLHC+NjDniSxAiT8XEEKPgAItgYSJ+/v7yGsYywWs2fOy3cNe/+7j3c+BgBCSfQ+pvJCWvXsIaDUjzJDiiU2ERexMuBBHB8fNynT+1m5jzxD2FLAaaVS0dDMLg3tOaClz/9HtVotLS8va3x8XNdee60++tGPat++fQYqn3jiCTvKeiCR0PqRbyr9rh/W5M496lQ3zAbkG7zGLh+awZpibXtZ2T9z4glTN7DfeK8nxQAEBawiz5n3p1hGKfKFF4U66o3/GRQQfObEMG+9Yo1wf1krECkAVNYjDUYUOaxlVJJ4PK5sNmtxF1DYaDQMZGKbSiQSKhQKdk8B1bz3+Pi4/Q7MOWsbQMc9Zp0y8owCkuZYiBriFIw1BSB+bIoRrBXcC+6Pf17cd/Io947GP74HDDgxbHV11dYwOYA4wdqj2PFFJkUfMZXCBVDO33tVdH19XUNDQ0qlUjaBhsILKxkqC2QG+xPlLJ1OmxeViQeeKPyrXm95cIoJ/MyZMzp//rw2Nja0sLCgtbU1STJmjS5CUD80Nn4bNhsNViwgvJ2SjBIHiAJQeGi+gYHACLjkgZGM2eAkOUkGSH1FRiXUY/fO653vPKF9+1YVCnVVr4cVCEjRaEt33RXW8eOz+u53U6rVJhWJRMzrSsDwQJDvKsmaFfhzwDm0v++4Z6MgByD/sQm9HA8b2mw2dfHiRQUCvTFNJHg/wB+LAfeCRAiQP3/+vCT1gUbkVe77+Pi4BSU6uQEPjJQhua+trWltbc2CEOAdEAo74Btu+NlIJGKBcWNjQ2+88YYCgYD52/zMTCwfBAk6nxmrRbIgGcBUkSyQDSmSeD7IWyQdwAVH8GYyGVunkmz+Ld+H9c6+mJyc1FVXFRWPN/TCCxM2Bgyg7yt1Lz8TtN5441q9/e2ndNttWzp+PNDXyEaQJ8H55hACOYGRAoDpFclk0gAq64FkhGe03W7bkYRXBm3m9bVVV2S4pUCwpcpmXWqHjH3CjiHJjkDGPgCoAriFw70JFtJ2Iw7MEusQHypJdXp62pIgTYyw3qVSyZJzMBg0ORywTVMnDCgFBcnAWxJI7LAk/Bz7EXCPjM4zYL3Sre27dkulkr0HsjYja4rFoiU89giAA2DOekHFoeEHBpB7yRG/k5OT9lmwNuxDijNvjaBQBaySKPvk8bl96rSaqpx4UZLsPr33ve/VwYMH7fslk0ndddddOnTokDWqbr72nDLv+REN7z2otRe+ZSwv4BrPcjwet/mYrDuuZ3R01AAhnmSAX7PZtCa6cLh3CqBnFHl2eMdpmsKqAeCkeAFIoQiRjyg2AMp43WHlie3cV4AijDSAEVDM2kC69rOWYR5zuZwx7B7ssU94b/LUzMyMjQtjnBT+TuxA5B2axFCU2AOsDQo7L8djE/JMLscKc7/q9brlCNhErAUwo3jN2SeQEEyF4LtyH/BnBoPbM6IhkcACxCA8whR9nEYFOEVJgvxgVCOeZX+UuMcRPsfAWtdqNSMyYHDJ4zRTtlotu0dYJMhf4CJiDev5b8Hp5dfi4qKeeeYZDQ4O6sSJE7ZoRkdHzUfK+CPYVRgvvDNIK8hGsCu+Y49RO3hKSIwwH34uGwvZB24v0eG37Ha7FtAZiRKNRq0jsdvtqlgsqlqt6LbbXtMdd7yubDauJ564Wq+/vkO1Wi8QpdPS9de/oWuuOa3rr7+gb33rNl28mDZJAlsA78mmgZEg8eFf9Z2yXnInCMIiwV7BtjabTSWTJd155+saGyspFuuo0QhpeXlQ3/nOqAqFIQvgrVbLjogFtLB5YA6o4Fut3hw+Cg0PeiuVii5dumTPFIaB4MDMOz+smWcFO0H1DSsJSGw0GvZ5/CxNDTSxYNWAwSV5E3w8AzU/P2+2CLpvkVFGR0ft55BFaJQguFGpS9vH9mJ3qNfrxpIyhcInIN4P5pFDFQBnPVWhJElaXY1oZmbEEhCNhZOTPT8pVTayzvT0tCKRmOr1qNLp7VOQYIoAsjAbkgycA8bxfQGys9msJiYmLPFzTCA+RlgknivJHtvH2tqawuGgbnzbsG6+9aIykWcU0OWZjwpqrXWfDh+e1fOPLioaiVpAhVlAPqZIQmGBzcazCICIxWLKZrN946dqtZrNH4Yd8bYd35TlwYBPQEh1Ppb47m/PQnEdoVDI1AtYIDyYFHOsK0l98Qj/JBYlLBmSDFwSL/E6ogjRQAEIQkkimeMTr9fr1lAIuMAvjuwNsKD5k+cLsEH54Ttz8hhqE0VRMBhUZHBI7dqmAt2OqVlMeAGY8kJFgMUMVjfU7XRU7waUzWZtSgnPi4NZwuGwzdKdn5+3tUGTnbdiIINL6ot1FNa+yCUm0PwHmcKzAlgGAr0TkGBBAcLsQfZVOBy2KR6QET4W+qZO7i97DHYP8E2DLIUojXlYXCiqkdwhklhjADeO/PVec6knaZMXAU9cD/5Gcg89FjxDPod8wntiwSPPw/BiEcL+56V9fp8mY9+UR2zO5/Mql8uamJgwFYjC37P+3odKTuZnuccUINFoVEtLS7bu8eUy8Qa1AAwTj8fNZuMn8yDR0ycBURMMBi0fkD8hEbz1g73gWVjsVOALijY81W/m9ZYHp+VyWUeOHLHB0e12b8AtSZ85hAzjZpESlDxjg2+HAeoY3mkugPXkz9hIBB+aIqhUfMXGv9n03W5XCwsLarVamp2dVSaTsWCNpFUqlVStVnXXXSd0662v69Ch/friFxNqtzsKhXqNOnNzc+p2Yzp8eFCPPprWe997Qg899IKeeCKsanWmb0A4mwBWjmqR/wfwcCIEwYJkKm2P78D3BesyP1/UQw8taG6uqI2NqC5eTCsQGFA43NB1163ottsWdPFiWo8/vkfHj2/PUCOJhUIh25RIH7BNVJcEBQAjfia8gfj48LrCYLFhY7GYnbUOuJFk/l9kfY45JejjuQX4eFO+B0+AC+6RJGOxSAqwlawPvh+JArZc6gccgBCau7yBXZIxm5OTkyoUCsrlctrc3FQ6nbYpBSQuwDGJlj/rdnsgZHJyyoIYATqZTCqTySiZTGpxcVGlUsmKDIqfTkdqtZo2LYEkS0NeIpEwdhu7AveXggNZyBdHsAqePWKPbW1tmcQH01av15Wc6+oTnzypQb2o9cBBvbz0oyrlw2o3Wxoer+nana/o/Xd9V2+/a6/+5E9vUPG5ohUpoVBIs7OzfQwcRQZrZXx8XBMTEwbcuLc0DPH8AXkARJIqwDOVStmzJJnkcjnl83lrpMMnD2vqkw2zHQE3eKkpNmGLsI5IMqaKmbkUEAAu3yzYbPZOcYINJWniVwNIejmR32dvEUthSZkGgiJUr9f7GDz2Kt+DBI5cTvEHKOIzSPx8X5KpOm0FQhFbT7B/2EzIBT6moywEQmEFgkE1LwNeQCYzfWG1UTEAIsRWCjXuuZ/kADjzLDFrDfZQkuUP3pfvzxpBnSMvIfVL6gMbAGUsGhSEkUhv7io5ipjiQbW0fWgNqhckkLfXTE1N2T1kLBWsPL0H3u+JCsPaREkhX0Ee4JkF2LHmIYcA8R6QEX+9P7lWq5mNjn3HvqbhFLWLfdbt9o50pViCefRqEuvON18B6GBfvbeVZ09XP9+Zn4dphfwgDnJfiP2sZWn7qGa8vWtra5afsCHWajUD4OAd9iAMOzEEGyREA+OqIIy4T6xl32j6Zl5veXDabPZOmLh06ZIlNCoMqhOM8XR/EtgJxsgPsAlUW41GQ8vLyzYiiY1NUGVhUV2wAbyvB4YhGo32ne3uZVwWsf8HMLx377puvfVVvfTS7Tp8eFbxeNbkLTYK7xUMBnX48JTGx1/SAw88p3z+Q8rlEuZ3W1tbM1CaTqcNgAAW8PLwgiUikFWrVRv9w31aX1/Xvn2L+qEfOqfV1WH92Z8d1OnTE4rHhyzgSU1NTZ3SzTef1N/9uy/qS1+6UYcPtw2YkLxgehjjQ8AOBAIGBABZVG10iHovEtIKz4SkB8shyXxasOUwesjCAB/uC5/H5qSavnLGHQCC78aoIwI4syjxmhEQGPXUbrdtLAdJcmZmxhgm1jQBlYCEVQXPo7TtawPUoQjQNETgw+MbDqckndb4eEOnT/d82Ph5AfgE0nQ6bTJzLpdTJjOoeLyhzc2gsWOsy6WlJW1sbCiTyVgRglet0WhYs9j09LT5N0kygJ5arWbdp7BOsDflclmLi4v2fPbeNKIPvedRbQVm9cSL/1jLx2taX9+w9+p2u3olcbOmr7lNb7vvWf0PP/gt/Uni3Tr1/JIVaABK2AASCh3LV47eYV16Dy8BnkIPJsv7t2C7fKMEzUHInrDOyId8NkwYvlD8YUj8FHvei4u3G+aEaRtzc3MKBoN2tKYkux5vIeE4XRobsRewtikOvCeahAnDSDL03nRkbD/Ozt9zgCoFA6CQpI5PH3ad/47FYqrmVjQxMKR2YljdywxysVjU448/rkgkor179yoUCimbzeob3/iGNZcMDg6qPTbVe8breZtwQczm+xG/OamKggzWmMKJPyO+A5QBwt6riU+R2Et8yeVyxvjy+ZL6rGXDw8OmTBBXIGaYzgKQl2TNpMQECkQKEpQ8/I7S9ojC0dHRvoYu2EpJdugFMRJQiergu72J04BFvjuyNXHKeynxUcbjcTvqOBqNmv0AiZ/ins8vFApKpVIGzlhvvkDguVL0MAeUQprYSnHuvaW8ny84IZt4VuQGpld4vzfqYi6XUyLRO0IVtpJGb3Izz5kDBsgnNGC2223DLkzA4J4xHYL8KMnysG/4o78EnEDsYB3yvFFQUOq+3+stD04ZHBwIBPoSN5KX70pntMTw8LCWlpYsOUvSysqKeX94WM1m084YJhh4xg221MsxVFU8QDwsVPmSDDwPDAxYwmZxdDod5fN5YyYOHDilcjmjU6duUTCYNUAM8MMTFovFDHg/99zdmptb0I4dL+u11+YtENEtnMlkjIXA7kDwk9Qn76fTadVqNRthQ5Cgy3fv3pIeeeScTp6c1he+cLU2N7c0Oztq5u9eQktpaWm/jh9P6QMfOKqPfOSotrZuV7G4fVhBrVbThQsXNDExocnJSfMMAR79IG48vAQJggwMAwGYBNloNEyKZdg3gUuSnewFO4xkQtXO7w4PD9uQ+YGBARv5AQPj5yrSdby8vKzZ2Vkxk5ZRPgQWgiGgZGVlxYI8RQAgBTDhvXtUzch4nlnGZgC4ImlSsfPsCawXL2ZUr4e0Y8drOnNml+0NvFlUzswF5RjCZrOp/fsvKhCQzp+fUSKhPqaRopHrxCscDAaNfaURjaSysrKiaLR33nm5XDYwxHPg1B0C4cWLF3vFSSaqD7zn26pqt/7wt65STMXvmSjBqKJCIablMzfq4z/2mv7OB5/Ub6/cqVphW9Zst9vGhACWuFdjY2Pm0ePPPTNCzMnlcqZeIF2jnFSrVWWzWbNq0NSGJYXE5WUywBl+Vg/cADEbGxvKZrN2kAHHmnqwC7Ch+YH9wJqmWMPqQvwjxlLE0XTI71C08nxJ/t1u17xq3EtesI0UhIDWSqVie4e9HYlEbBLI5OSkJVfGBpLkuU+xWEz1s6+oXato9JZ36NJf/IGxyWfOnNHnPvc5TUxMKBwOa3Fx0RpZ+ZnUHe9SvbCqrYWTiseilqwplLAR8J0hHDxTlsvlrCDk5/E9wswTdwFPfpYqNoNaraZSqaRAIKDJyUmNjIyYXQwgHAj07AeceOZBNKCDWIDVhM/HMsIIIzyUeOsB7PhEIQm415ubm1pZWTHLBuwgxbIk887T2AXDSFMqcYKYwX0DyOHR9koB4JHr8Owk7wcbyD0DI1DQAz4hh7gW9hNYAlxAwUY89E1VPGeKNIiN4eFhI674jhTiXItXd9mv3HtsERAyMPfET9/AyLVhpfHzZSk8otGoUqlUX7HIfmRGKjGIfOILaO8f532JLW/m9ZYHp3T2jo2NmWxK9ekXGwllYGDAQBwsyvz8vMrlsi1CHoYkSwAEFBIzQWhkZMSGBGM29lIeFQ/BHPBEIiDohEIhq7Dxyk5NBTQ9vaBnnrlTCwsXrAGBQeywZpcuXZLU8+iMjIwoHA7rtdfmdODABT322IwGBsbsSFIvFcE4wi77bjsvt2LkpskDlmhrq6aPfeykFhbG9NWvHlA0GtLIyPa5vAQPqstQKKFnnnmXBga+qocfPqEvfGG3ms2WPatut6szZ84YO8DnA8jwDCMJESBgqQhOFCoY9EnggDcCLCZvJA9vvIfZA5iQrCQZw0OgKZVK5iVLJBKamJgwgMXG9U0GBJ9SqWRzHLlfvgmLoot7wzrCsgKQ4/txvwALgBwq7kqlYuNM8BQBsEgSr7wypZtuWtSrr96iZrPn0STIwegCcLebFFq6/vozOn06o3p9ROPjIWsGJEgyB29jY0M7duyQJBuNw3sRZAFKsJZ+ZuXIyIiSyaQxA91u1+735uam7v9AVOHApv7od/doq1zXQHLQ1jxj1wjEBOM/+/R+/eiP/IXufl9U3/nstu2FIpPntbW1ZUw47A1HD8IgUAx5aQ/2nWtHOpNkiRZPGuABvzFJmPjDoROwyTBzyJCDg4Mmg9OIw9rgO3E/AdU0XpFspG1w4D2jxA3kXNYe7wewpVgPh3vHAvM9YbokGZsHOwMIgf1lb62urmp8fNwmaACopB5owzuIwiNtz7xljzRrVeVeeEKpW96u9l9+2r4zOeDChQsmfxPbO52OWqGokjfep/Nf/QNFwiHLCcQbSX3P2Xdgs1eJseQS2DFGqK2srFhcQv4lLhH3roxHwWDQ1h35Ba878i8FM01/qVTKlAiuB1DC73h5GIsG/mYsHTDUnDrEGmGkVTabtWYmwIy07QMlnsGOQsbweT4WYFNAWQJ4b2zkdcstee3Z01E43FS1KlUqE7p0aa+azY7Z0arVqsbGxjQ0NGTPm1iey+X6CnokdMA28QYG1PdeSNuN1sTDTCZjioqfIJBKpfpyBx5P9hI2FcC9P7yARizYUsg1rBDsU5RC8AwFNOsBAoDCl/uLJ5bZvul02o7+xofKfiDHcGgFz6pWq2l5ednyarPZNHb9+73+xsFpu93WL/zCL+iP/uiPtLKyopmZGf3Yj/2YfvZnf9a8Kd1uVz//8z+v3/7t31apVNK9996r3/zN39TVV19t71MoFPRP/sk/0Ve+8hUFg0F97GMf03/4D//hTc/I4gVghMKORCI205GNwKLCp0jnL9fLZ2KW39raPmGJio2ZlyxwSbYoG43G9xwb5xsWSAj+yEDem4XPooElHBoa0o4dC+p0Ajp6NKVQKGDNFiQDFvTGxoYlIIDGkSNTuuWWc9q/v6kLFwJW9fpKkYRDUIzFYnaMW6FQULfbtcaBsbExzczMWKUei8U0NVVSKlXXY4/dqlqtYYkRxgJgCsvTSyZtPffctfrwhw9perqoS5dGjUkh4RNA8J82m017RiQoNlooFDLWhGYK5r16QztsSL1eVzKZVCqVUj6fVz6ftyNekahoVGo2m5YkAVqASII0wYhNmUgkNDc3Z4zrzMyMZmZmbN3AQhEYG426IpFoXyc4wXh9fd0CD2wrwZSuf/zJsFPhcLhvnBZGeYABPisAOf4hAuaRI/O69dZF3Xvvqzpy5G4D/AQjLBAekN1116ImJqp6/PHrDGDy/ZHUCPIwCjReANpprslms5YI8XzBtPL8SWRSD+AjOwaDXV0984wWKu/Q2vm8sZt0sj788MOamprSoUOH9NJLL9l80W49povrd+u62Wd1KHqLErG4daZjKxkbG7OADtilGQ02SJL5MflegJahoaE+advLsbCPJGyeDSDCN/pUKhVrEvKNCOyb1dVV8yVK6gMfxCVmofL3yM3EJWR61jrrnJgBC4sNyrPHyH/BYNDiLr5Ymj2Q/2Bh+N4UkgBjin3PllNIe68f74G9ijWGPCtJl771JaXueJd2fuJ/0en/8stqNRu2ByEIfONQYmhEOz/xz9VubCl/+AkFLl+jvz7yCV5jgCqKDjmAZ0Wi530GBwetIZV1xMtPSfBNTngNve+S/QnL5e1DvsmGHMPPc11YtoLB3nxwGFc8qBA23ibiz3IHGJUun7jIc/cWB4bZM4YL1QYbEvEf9pheAtjTXl7N6d3vXtQdd+Q1NNRWoZBQvR5WLNZSMnleW1sv6dSpq3Ts2LVaWtrQysqKxWDfUIQXmJzPGqF4YL8wTYJ+AJh7ClBfpJCLKJhQJRgr55ugPOtI3GacHPkEZpkjg716BkEhbc+CJhZQ3GPT4O/Izbw/FiHUUmI2fnm+N/lH2h69h0WCnAaR5b/7m3n9jYPTf/fv/p1+8zd/U7//+7+v66+/XocPH9aP//iPa3R0VP/0n/5TSdK///f/Xr/xG7+h3//939fu3bv1cz/3c3rPe96j48eP2xf95Cc/qeXlZX3jG99Qs9nUj//4j+snfuIn9JnPfOavdT1jY2N9TADzDVmMMFUsfkl2ugndeXgdW62WVldXzaOFmZgNTxIJh8P2EJChCJh+OLykPhDMfwN0kMf8aR6wd73O3i1VKlHValIyOW4JgAag6elpFQoFqwphU8PhsMrl3ucnk0GdO9eyQeBUg7lczkb1+AMEkEmz2awxY5lMxpgIglo4HNb+/aeUz4+p2dyn+fnezyJ5wZYRhACLwWBQi4sRvf3tg9q79zWdOnWTefZgZQiiVHWdTkczMzPmr4FpAaSMjIxocXGxb9wSCRHmkMqOZEvAp7GCZI0tBAmEKpZK0vthSUDpdNrWFc/C++gAD91uV2NjA5qauqCbbrqg6ektxWJt1eshZbOjev31q3Xy5ITq9Y7ZMEg+BB/+wXNHwsMPVqlUzPIBmPEjS5CgCKYUJdsNe5M6fDioO+54WpJ04sQD6nRkgcs3kbTbLb397ct68MHzevbZfVpenlI43DIpnMAoyQAbHdnSNtDk/vvEgOcWMCfJOlNhRYrFojXNDQ4O6prbQ4prWS8+l9HERML22HXXXadHHnlEe/bsUTgc1sGDB/XYY4/pm9/8piWaZ78zrEc+uKAb3vE+nXtuw2S60dFRC+AkJFgiAAPNIR70w3hyJCWFFhMOYLMpeNib3W5X6XRaoVBIFy9eNBBCwYYXDPBWKpUMRFO0lMtllctl85exd/1xphMTE1YEER9hhAFfFKlbW1t9BwdQ6PqjDDlQxDMz3A++H4B7c3PTkh73EXZakrFno6Ojtrdgnz0oqFQqBrza7d4pfhQyJFnWeq1a1sn/8sva/5O/oGt+8he0+IX/R4Haet/nAqY0nNTkJ/65opPzOvNbv6DmRtkUJEbv0NgDEMSuwveB1fYFIcQEKhBgAhsQ5AYFJvcN0EM8glVkTbCPaJZkT/Hsw+GwASOsZ9xLABdrNJVKmSXBvzdeQ0nGOnqPM88M+XlsbMyKUUgX37Dk2X8+Q5Jdv59m0OslKOmRR15VLNbW4cMTeu21PSoWBy1vDQ6WdccdKzp48Kz27DmvP/zDAyoUtuMio/8k2cxwCntAH3HJs6wQUsQnD2rJpRSG5H3GVRJDeDbEXE6S496gzkCAwXwyshHrD2sFWwtFHc/FE0IUoJAU3GN8x9gTwEu++Y1mKb4nFg3wwPDwcB9JsGPHDoXDYfNNA9i/3+tvHJw+/fTT+vCHP6z3v//9kqRdu3bps5/9rJ5//nlJvYTz67/+6/rZn/1ZffjDH5Yk/cEf/IEmJyf1pS99SY888ohef/11Pfroo3rhhRd02223SZI+9alP6X3ve59+9Vd/1Y5/ezMvPDEsEJgzH3RIzF6OxIeJb4pNylgIDwgAk0NDQxoYGDBfId2dSCpsTO/p8UEKvxJgjJ/jepGZtmXpRl/gAeTwfXlPToMhYbHQJanT6apQKJhkyHfBt4JMBmtAgqHrkqHAV3pSe00xa3r55T2KRKIKh7tWTcXjcc3Pz+uee+7Riy++qFdffdX8ewTeixd3aseOhcvX2DG2A4nIy2xIR57RKRaL1qXKvFQSsk/8HIlJQuO+w0pNTU1ZNUoHOZsX6wCSj7R9ahjDi6kafbHDQQJIOgyn3rfvpG6++UUlEk2dPj2mJ5+ckTSgaLSlmZmLeuih53TXXSE9+uhOHT6c7psQ4JtgYF1gj3xwx4PECC0GT8NCsZbw0TLRgIQai8X0+uv7tLm5oQceOKb5+Ys6fnyvzpy5Wt1u8HI1Ld18c1YHD57T5GRNzz13jV588YC63S1jlEnm2B5gUkiyNP2Q3EiGJBDkYta199/ioyPArq2taX5+XhMzEXUU0+bF3n6HyX7nO9+pffv29fnX7rzzTp0+fVoXLlzo+ezOh9VVUOOZlq29YDBoBa2fSwirge91bGysD1hTvHKd7Etp+4Qr1i0nu/kmQ99owfcEEOLPJKaxHwAzFAE8e07qAfgQD0m0sDBXNmVks1k7+QhmWpIV0iR2Ehzxl3iG9YdCKp1Oq1gsanFx0eZzwvT7aRsoFkx78A2KgCHYPR9HAXow9uvr6+YjJL5svfGaLvzB/6m5R35a+//Vf1L5+GEtH/qaWut5jUzENTAxq7Hb3qmhvTeoUcrr0u//H6ovnTPvO/IroGNra0urq6vqdDrKZDJ9jWGMDQPAALq8NAyRQCHM75MPYN6Jgb7Jxo/tgQFDceh2u/Y77DPuHSx8t9u1Ye7Ejenpac3MzPQBJbya2Iqi0ahmZmaM7SyVSnZfYrHeSC8IDywXW1tbJvcPDQ1ZHPJjhwDx+DS9vSWZbOiTnzyqzc2Ifuu3blS93pvBPTWVsPxRrw/qiSeG9fTTs/rhHz6mH/uxY/q937tNFy+2+5hnXr7RFSYTFtKrg5xWiFUGJZb7Jm03o/Fz+KDxbPoJCew99gdqAHGDucVMvKDQgP3d3Nw0/z/PMZlMWi8KtgCugXtLniBGSDLG2zffedKCvQTTjCqMJxnih30eiUS0vr5uhyd8v9ffODi955579Fu/9Vs6deqU9u3bp5dffllPPfWUfu3Xfk2S9MYbb2hlZUXvete77HdGR0d155136plnntEjjzyiZ555RmNjYwZMJeld73qXgsGgnnvuOX30ox/9ns/1Jn1pe6wFHr+trS0tLi6qXC6bDBSJ9I7CZONSvUsyRo4E4s2+U1NT9uCQ+mE46H7mWmBnh4aGDPgRTJHIqaioGmEMYCqj0ajW1tbsPbcBhjQ01NTwcKiv05rEvbq6auc505nOmePJZG8BFgodtdsd22xUSmwwRkUBGmgWIikQmJCH2DQ9RrCh9XXZYmQW7OjoqPbv369bbrlFi4uLeuGFFwwsAdoCgTXFYi0b3uz9WQRzxmvBOsFoe68aG47EhIk/EAgon8+btIxkD6DASxUIBCxY+IHHGOCZCQiYXVtbs2AMOObaebasD+5Tp9PR/fef1t13n9Err8zq0KGd2tgYtWAXDAb1+ONJhUKLes97svr4x88pnQ7q619P2bGBXuoFKHFGM74f2CiSEGyIb2ShUxdWBoYTQACb8dprV+vYsZYeeKCgO+44prvuOqZ6PXa5saihQEB6440Zffvbc8rl5i/7m2SsBwHZd96y5gjCeKFYY4B8PFsAQFgLBkpjffEnqoXDYUWiXbUDCTXrW9q47P/CmwozIPWCdDabVS6Xs2A+ODikjuK6jCFVKpUMLNJQQMCGQWA9Y6/hPvIZAJFcLmfrjfXiWX8ADAcPAI7HxsaMiYBxpnmwd82D2r17twFLOv6JNSRCikr2Aj51WHNGA6GaXLhwwYrSXbt2aceOHfYs2TP8/fj4uIFnGuQAAmtra2o0GtbViz0HiwKgkueD/aPT6WhyctKAFT5bSXafiN+sZ3/ARm82dNVYXKTMUCikxsVTOv2rP6XhA/codffD2v+Tv9CXZ2oXT+v0H/6qcke+q4HY9lByEjo9B5zRPjg4aBIpigyNaLBNyKgQHBTLABLWircq+QY89rEHe57FAtBAWkAyYCXzHmDfNzA6OqpqtWryNSoBqgTkBUoIRQaKGADJT5vwRXMoFLJZzMQVrpOcCbDB5hMIBJROpxWJRGzu9wc/+Io6nagef/w9isXaCoW2R30RcyFuIpGUnnlmrx588Ev62MfO6A//8DazL6AO8CzJfZBLgEJpe1wda4f53h44cv0U2Oy1crncR055sEf+Qm31DdYQa35uLo3RgGbWC2SPt1TwfciH4B6eO9fr470/rZG1yvrCc0qRS0xiXcPKQkbQl/LfjTn9mZ/5Ga2vr+vaa681CeOXf/mX9clPflJSr+tdkp30wWtyctL+bmVlxYzydqHh3ixFfubK16/8yq/o3/7bf/s9f86iI+CHQr0xSUiudHsvLS1Zle3lXS+Z8Q8eOCpaaVtqgu1kMwEUqXoBovhUWFycA5zNZg2MSbIAwqInQFWrVb3+ekoPPXRKN9ywpldf3aNSqWQBHAYmm83ahidg1+t13XnnkiqVqDY2diuTWTemEUmBCorrACDAMngJhGQHqGGDtVphxePbjJdnGY8ePapGo6GTJ09qY2PDupa3WaYtNZshe3aSDFixuPHNFYtFxwRvV6EkdZKsl71ITLwHCYBqkEkCyMcUFXh68RCz0X3DQiaTMRmxWq3a/9Oggw+NBLR//1ndffcZ/cVfzOrYsQOXA/P2KWMUHrnciL74xZQ6nZLe8Y7TyucDeu65HgMBE7Nr1y4VCgWTbAKBgIFl7hvAnX2FL5D7QNCCPWGNcxpTINAbSbK0NK0vfWlSTz11UHv2LGt0tAdy1te7KhSuVbfbG0e2c2dv/NjCwoJ5pGDE6vW6FQn4JemAhb0AwPtEzUxMCiUkV6ZGJBIJ7dy5U2NjY1paWuqxBqWuwlPr6kZClsgbjYYeffRRXXPNNdqzZ481hLzwwgtaWFjQ5uZmz5ebCCqkqtrtuIaGhrS0tKRms9k34ospFsjgzAtkL3EfYRCJAyQ5ilKeN2oAUyBgX2DCvAIA8CDmANJgccvlsjVAea/v9PS0otGodVKzz9rtdt98YRIozZ0wxrw3SdA3UXg2KR6P2wQSnhWgzdsHotGo7T/2s7dNsY/8yTaSbF8T5ySZwgK4xrrALFkAu7dW9fZ6XesvfVtbrz2tgYlZKTag9XJZlUJWg+qx8cMDCStM/P1GmfLjpmCpOZqZAhmfbKVS6TtKkv3lG5go3jqdjhUlxWJRsVisj7XFGkLu8p7odrutpaUlYwNRXnh/wD6eQdh2Cj+KWFhw7id+cAAScYUcEQ6HVSgU1Gw2NTk52WfjGhsbM/sZDbkwup4Qwu6ARQZwl0xuaHZ2VY8/fpfq9YS63Q2L15AyPr6HQiGVy9LRo7fqvvse186dHa2s9N6PGd5+9Bwgq1wu2z5IpVJGfKCSlsvlPnCKJYIcXi6XTXFDTSEX8n1ZkyizAHdJJteDLWhQjkQimpmZsfdmOtDk5KQ1uRKfYK4Byqxbz6RSzHmbh2d6/f3wMYVrZp2BOVjf/D9g/M28/sbB6ec+9zl9+tOf1mc+8xldf/31Onr0qH76p39aMzMz+tEf/dG/6Y+z17/+1/9a/+yf/TP7/97g93lVq1WtrKwY0xcIBCwpImXDJpKIqC6pDFKplMm40ONLS0smcyYSCZVKJaXTacXjcTsmlfPKpe25mf6oUqhuqklYVIImD5aTcEh2yMzFYkQnT6Z1/fVndObMfrMEENx9dzDm8d7pJB3dfPOqnn56Qvl8r1GMCQEEVT+fE6mHe8b94Wfo5qvVapqamrLEurExop071/XSS9tMtNRLAOfOndPZs2eNtex0Orb5q9WqUqlllcuDVhwg11G58T5UeXQs8owBk3hcYQao5gASJINCoWCD9iUZG0Ondz6fN8mp0WhodXXVGgAoREj6zIIkGUkygA0gAcQnEiE9+OARHTkyoa9/PamrrtruzAdcejZxZmZGx44FlUxu6qGHLuiZZ67t88Umk0lNTk6adL+6umqyFAkFyY9mA0CfZyhmZmaMLYaBIpF5+asnnY9qYeGAsYw95iihcLjHMsAqAzjZWzwrWCTukT8FBuaBwgA5j4kaABH2hPeGIQHOzs4qEAjozLGa7rm2o2vuCqr85Yj5xRYWFvS7v/u7evjhhzU2NqZXX31VZ86cMVYsHA5r1029Nbe6MKBaLWtyJswv68s3wzUaDWUyGQOsSJwUTzC83N+BgQErYLgnrHPuKxMpBgcHjfXiAAL/3vl83pIErP3U1JQVaN5Hxn3zMh+gH/8p65ACEWAEoAGkSdunKCHr8hyIgVhPxsbG7BQ4rkOSfW9sVFiMaNhkxBaqFAnWN54SG1hXPA/WC8UZDT2+6Y9kXK/XFcgu9WL45qaKly6pcfkwFoAHTH4wGLTDQVBgAKHEPc9YNhoNK7AoLCgwaZIlzqF4+ERP/0GxWNTk5KSBeV8Ucb8hTmKxWF9c476wD/nOXJ8kO0mpXq8biCZvUSgxxQWwS+MTY9FKpZI1ENPBTwENeOTa/QiuRCKhQqFgoB+1ilxTr9d1772XVKlE9fLLI+p2SxY7GIFGvsT+w2ccPz6uW25J6JprTuj06b227mFRKfza7bapU6w3wHksFrMxhVgSUPpYf7woEvkcprf4fSzJCDiAIyohBQTAHHsd6ibPiGJsZmZG7XZvmgWxwU/n8GwxBQ52jUKh0HcaJYUzGIr7iYwP0w0rTCwDiwC0yTH/3eac/ot/8S/0Mz/zM3rkkUckSQcPHtTCwoJ+5Vd+RT/6oz+qqane0OLV1VVNT0/b762uruqmm26S1PP5ra2t9b0v3jx+/8oXVeJf9ecEZMZz8OLBgO59Fc6cMsZA4J2hAsDUT4BnwbLx8OF4Xx1Ajw1HwIcap/qmWsNH5NnbeDyu2dlZvfpqS/v3P62DB4/q2Wf39bEMjL6CGZudndXU1KTuuONxhcNdPfnkmIrFZZPGCaKS+sAAG4sgAWD1UngulzOZbm5uTgMDAzp16mrddddzGhk5oOXltt0rrg2GCO8YDFIqVdHMzKoee+xO2wAUAZx+AhDI5XJ9Er8kk7eRV2ABGM9C8ILJxW4BWEGiwUMMICdRIn0RhFhLnoml0UvqMbuwN3SmSj0QdtVV5zUw0NDx4zcqnW4ZEIfV96f2UHEGgyEdOjSvv//3l3XbbU1dvDhkv5fL5ezaa7XekZr+eDwKDO4fgITnAlgn4BDQSfoMf85kMhofH7fDIPAyxuO907AACOvrPVYeSYs5ifl83o7aw05CMeUtOlfKmPV63VgHgjdsG+NkmEYAuwjQ2szGlWvepIPXvK5jiTlLuGtrazp16pQ1QnoZnEJi/77jyuteLb3Wi0uoK/jUYUBgfpkOwvcCILRaLWsghMXkuEA/iQTwwwxMGDDv+0J+JZmTsGiyIynBbtEwAXPr2ULPrlBY4QGfn5+3NcugffycHqDDyDFRolgsGiNKPKWhChDEd2W9wTQCyEnOAFP88Jw8B4gn3rIGAaM0iNKQBUHAPqYhECmU58QQciw7/mhKfL+VSqWveRCQRwOp90+HQqG+ZlgKZuw3FB2tVlORyOuanc0qHK4rGEyo0cjo1KkJK9iIX3w3AC+fAwjGX0+M9gUO65OimnvoixRfnLG3AIbIvYA/1jGgHymX/UTRz57js5DyIVY82Ic1hs3FI8x3CIVC2r17VWfP7lA4PGA+WGK2Jw/IqbB/0eiwTp2a065dF7SyMmSkk7dgkU+4fnK534esWe6ZLx7JEbDPfEfWeLFYVCaTsfjA746NjZlET95nbRML2XOSzPfpZ5pCWMCqcy8bjYZZTwDhFDrgn1QqZQUi9giYfEl2b1FEwAIUAPwO1kVmwzOZ4L8bc4rZ3b9A/pK0e/duTU1N6YknnjAwur6+rueee07/8B/+Q0nS3XffrVKppBdffFG33nqrJOmb3/ymOp2O7rzzzr/W9cB2IqPAKAKUACXQ50jvSL8Efe+ZITBQpbHJYQhoEKBq5+EhI+K7k7ZPHKLz1Q/P530JZCT7eLx3XnlPWg3qqafyuu++Y+p0Wnrhhf12utP09LTi8biWlpYud9+Hdc8939bOnW/oj/5or5aW2mo21y0gEKD9nEwCj6/2fBBjUXuPyerq6mWmbkq33x7Wbbct6MknD0hSn6Gb6g2fJ1MC7r57SbVaXGtr16jZrJg8iQcP7xrjMNjoUi/4ra6uGjiVtkdyAbwAcTCIdAfjmQ2FQpqYmDBPMElfkiUzfEw8Y88ocn7ywMCAATB8XSQBAMG+fSe0sJBSqTSi8fH+k2WYuTsyMqJ8Pm9gvFfMDOnSpVHdfXdW5fLBvtl4/rtTnOFZ42hRvGEUBhRIfD8/akSSeRsZ2M4kCYAFYB+JnXvNvtnY2DAvHnuGYoOADatKEyPJCykZgFapVIwd4gQ0mGWAGj8PMwer/dLRnXro9j/XNfdfr2NPbAMMWF3fAAGrOX9gS+OhY3rm3D/W5uaa2W5IEF4Cp4GAWOOnEZAYYBFgF5DqACuoEux/gDlNGVgdGIdHYc3nsVeRgn0i7XQ6VhiMjo7acHLsOUj3FFb43/huNPbg8Sau+3EysLbEMBIdyRO5l5m6AwMDpkrMzs7amigWi7a+AFSSzDvqi0HfH0BxTmwFpHAtAHb2CbEIGxoMGLNjKRYnJydtjXlvKwUJMyeRsVnz+NK5L1ic2K89cFzXrl2ndfPNF5TJbGprK6Strahisa4SiZd0ww1RvfLKrF58cYeq1SHLSYyhoziSto9EpiAF4AeDvdGGhUJBm5ub5jHkvhQKBbs3FIzELIA+zCbrnf/31jcsatgDJFmRRoFGrGatU7zCuCKXw9QCxIm1yNixWEObmwmLGbDFECvEt3a7bcUSqlm5HNPAQMuKRN/MRi7i5VUe9hJxIBKJ2H7xR2Hz4r3BBBSQWFRQaEOh3hzYwcvsvG8qQrFjZCBkAvma/bW+vm49Bz5ugGXI9exD3yzLdXHfaOblfrDOlpaW1Gg07LRI9ihAmGdKzCDudDod872+mdffODj94Ac/qF/+5V/Wjh07dP311+ull17Sr/3ar+nv/b2/Z1/kp3/6p/VLv/RLuvrqq22U1MzMjD7ykY9Ikvbv36+HH35Y/+Af/AP95//8n9VsNvVTP/VTeuSRR/5anfqS+kzGgCeo5VQqpXq9rvPnz1t1QkIFsIRCIRsP4o3vvAc+MKpBKilYEEAsiZUF7RsX8N1B0/P+LFDPDNBYEIlEbEzUc8/tVTQa1x13vKzrrruoEyf26eTJ3QoGex7BaDSnBx4o6q67/lKxWEtf/eotOnEiobGx3uKdmZmx8RYwEs1mU8lkso/6pxqCPYW9knqgE58LFWizGdaLL16tu+46rnI5o4sXr7XEycgYCgSCwr335nXrrct69tnbFQhEFQ7XDVwSfEjKkUhEO3bsMPa02Wyab8kbuAFfVJAzMzNm0/BWA76rr06ptH3VTBckM25JmrDudBRLPRUgk8nYXNJ6va6zZ88aqEqnN/XCC3vsXvpj5pB96OYHBGHQX1qa1nXXLRh7goGeAJ1Opw1sIcuQHHxSppoF5MBM+CYU2Gjvl45EIgbEARRYJzD9ExClbeWC9Y/nrlQq9QU2AjV7he9AVzlAgj+DvYzFegdpeEYbVpyEsfByV8sH79aDN39O3fYjeu4vKgaoWQvEi0qlohvuG9XbbvmSVjoP6pUnciZ70UGOisH+ITmzl2DwUEp8Bz1+MHyEfuwdo2bGx8dVq9XswAaSNXuIwgMg79UN7lW73TZPqQfuMIaSzG8HsB4fH9fi4qIKhYKWl5etMGXUFewwexIZ1suL2ApIZLCcAOdkMmnJjwICtYeRbHwXvi+yJt+N2CPJkh+xG6aIZAtoA0iSjIlt5AeKE4ovwDkxyPcX4G0EWFN4Qygw7oc4wj7jvXp5pKuHH35aExM5nT6d0Ve/ulOnTg1qYKB3lvv4eEVXXfWabrppQQcPLuorX7lLb7yRMECKzA7jx3eCxfSe/d683+2JEr6Ri3jpLTw0qvqiIhwOK5fLGTjCtoOSlk6n7Rn1pncM9BWofHdsSxTigDdkZljlZrOpQqGgYrGojY0NzczM2FrsdAJqtxsWu9jHKCIoK4AlYkOvaO6q0+mxw8ViUaOjo0omkwbwUIRQKVjTxCW85IyD8+w76wylihzH94HVxjLGaC1PAnGoDsUZ8ZH7yvsNDAyoXC7bfkS1I1/5z4IY4PdZ95AIxDRJlhdgpFn7FKf+PjQa2+O0fFOYb9jkPnhb2F+J3d7UT/01Xp/61Kf0cz/3c/pH/+gfaW1tTTMzM/rJn/xJ/Zt/82/sZ/7lv/yXqlQq+omf+AmVSiXdd999evTRR636lqRPf/rT+qmf+ik9+OCDCgZ7Q/h/4zd+4699PcPDw6rVasrlclYl+K7aQCCg+fl5q45JnH7Eg7TtX/M+EsAkcj3WA36P98A/CM0Oq0RCJ3nSJIAHlWoTSQJZWeqNnCGxRaMxnThxi8rlvbrqqmO6+eajuu22I2q3gwoEugoGu6rVQjpyZELHju3W5ua4Eol6n4TCWCgYURhKEj+AgKCPd4mkyP2QZOxCo9HQc89drZGRqu6777s6fDino0f3anV1eyTT2NjYZUmiqQceuKBbbz2vY8f26bXX9knassDL/UUaAbSQANLptD1bv2l9suRZ+MqOTUMQ8icD0fAWCoWMgWNjcy0EUpqhOGWpBzzTOnjwoHbt2qWTJ0/q/PnzJrchcUYibYVCPemDDufJyUnNzMxofHzc5HnWrJd+W62IIpGWBWTkGL4b6w82Fd8Sfwf7TPWP5YB1GYlELAkQfP2f+wTrAxjrCSYEZgLpz3dvExwZXUVQA5RIstFC9XrdBk7zPGE+kYupykmIMA3ct0AgqMf+dLfe90hbD936B9pz9Xv14lPDWr/Uf62j02194KGIrk59VbnO3frcb42qdplN9gDAJxpAtLStwFDUAkppMsTjjU+YAfy+iVLaZgQ90N/Y2OgDcVwTfjf2oi841tfXtbCw0CfVwij6xqpisShmbhJzuNccWsCeIoYC0ng/ivvR0VElEgmbZMD9wi7BPgTA1mo1nT171opIBtAD+gFNkoypkmTsK00e3W7XmHWYZooVCnviAPYTmnQAFuvr6xanh4aGNPvuH9KuD/24qkvndeZT/8LYIgoaiAnWD0BFku0bbDrEVEmKx7t6xzu+roGBDX3603cql5u4bG3abtRaXY3ozJmrdPjwNXr44UP6yEcO6QtfeLtWVob7rGbch1QqZQdWsCcpnuix6L3vqvn1I5GIzYwlrwHSKFLpLcA3PDo6qomJib6TBSWZZYQ4zT0grwGesK5tbm5qcnLSgCprA8aNwgClotXqneBUKpVUrSY0MVGxkUswxt1u12bwEh9zuVwfa5nJVFStJvoawMh5XnFgagh7EyWYQpG9SXHearVsBjrXTxHB/YFAQYllT46NjVlTEz0UNBmyxiAoyHfE4UAgYP0lEAbex8v+wA7DZAwsG9gmyOF+dBnrRNpmwdkfq6urtp+KxaI1JcbjcesNYE9xj9/M628cnA4PD+vXf/3X9eu//uv/rz8TCAT0i7/4i/rFX/zF/9efSSaTf+2B+/+tF2CFRiMYUub4BYPB7xlY7P1yAGYSD4uWICjJDOZ0MyIJMjII2h5ZArBJkMTHlcvltLKyYnIlVSmVmR9vRJWM6TsUCmlpaVgXL96p8fF7lE6fU7e7ro2NiprNIS0uzuqNN5bVblc1PBwyozPSAR4kgh1GcKphaHk2dqFQsI3BwpR6DQI0DAA8vvvdO7S+HtXtt7+uG288oSNHxnTixJDicSmVaiidPqcDB3KSAnr++Rv0+us3q91uGCOBMZtGDDxKNHBRYcNWRSIRTU5O2rw8qm5+juADMwm4INH6BIzERXEB2PMMFhsaxpAmgT179ugTn/iERkdHNTo6qkuXLhkzADvbakU0NKS+6p5/V6tV5fN5C9hIVLCoiURbjcb26SQkbi/nAgiZMACDhQ+PJEnQpXObE8CQoLlXsCR8JjIxrB1+u9XVVTvRhQTh/aQUG9xXjP28fzqd7psqwBrn93K5nHWITk5OGqvsGXGKp2CwN5eTtT02NqbP/OaUHvg7D2v/7NO6+n05lXSLKo2MOu22hmJrGg++okZgQqdKP6RvfHpLjeqWJaFarWaNZRQngDx/EhxsH4CfZh48mzSHEPwLhYKtQewiXorGn4s3luTnGcpwOGygH7ae4g6mJJ1OG0sGA04BAzsZCoU0OTmpZDJpXcIoJ91u18bp5fN5awgtFoum9gAmAZR+ZjKxFZUGIC31LF548BjZBgs1NzdnjZ2AFRKw93ZSaPF8YC1bre2xZMM7otp/dU3xWEedTlCbG0l984tbKiyWLabjxUvO7tSOh39Yncb2eeUw6+122zqUAQ3lctm8yhQtyWTSLCq1Wk3pdG9O8a23vqTh4YK+/OUHde5cXYOD7b6mG+JJ774N6pvffI/e//5v6H3ve16f+cx7tbVV7wNSeD35vjSuMfnBy9bI+uQ1Yh7x3I+lo3DzXe/YgpCjYd/wgvOicAHMUwBQ1PPc+BmsO4A9SQbkgsGgNV4Gg0EdOzal++8/pURiv5rN7TFUHogBLEOhkO2hgYG2rrrqgo4cucE87L4LPxKJWGOX/17BYNAOq4CpJc9g9aGooICjMPCj8ViT1WrVbF/ELl/8ohDwd+AG78sFY4TDYS0tLVlOR82g+Pd+aUlWANAvwIu1QEwnRxCHwE3YBsgPzPWVet50ilzu39zcnOGCN/P6Gwen/7/2omqi6YmNgPeEGwWj42UywBrggM3FAgPgkqCYKSf1N+UQpP37SduDhQFfdOwDQAEifqMj5Xm5gsUIeCuXoyoUdpjva2hoSPF4TMPDmyYbYxPAW7tjxw7rWPeyIjIlm7TZ7I3PIUgB4PBdsWEACj0JaUCvvnq7Xn11r3bvPqFbbrmkO+8sSLogSSoWE3ryyX06eXKPgsExRaOyAMGmpcM+mUwaa0ti8A0JmK6RsDg1CEbOJxGSoPfW8mw4oQMvIEycpL7uQywQfl4cARZ7B/4tCh9Jxtrn80lNTS3om9+ctSTE90VW8yzG/Pz85aBe0fz8olZXhw3wIaWRYPxhEF5OgTVFBkeGo9uSAAuDTLFBYARUjI+Pm7WFwdQEUmmb9fPMYiKR0ODgoDEL3t7CfQSwURD6pi0PkviePEO6nAE/JA7uN4xHPp9XKBTSV38vrOen3qUD98e0a9eCEuGcuuGAaq2UXjn3o3r9yS2p3VKgI/s8pDEYmPHxcWUyGUs2nk0jMON9xQICaPcs9sbGhhXDMMWwK6wb9hu/T8IlkVAUYRng+Unqmy3J3GemTiwvLxur5Vm+TCZjkjb+TworClM/sghA0Wq1rAGL5yrJ9iBFPNdJ0cCeYq2i1MDYjo2NGTCgqEQp8Kqbf1EcBYNBBYJBXX1/QgeueVUpPau2BtTQuAJqKzqa0y3/JKSlxoM6+vyMVk9u2fqdft//oOrFMwoEgwolhrS+vm5TCCjcWe/sL8biXXfddQoEAjp//rwpX6FQ6DKAbWnXrpN67bVrtb4+qUhkuU+il2QgG0YvEEjolVfeoXe+88909dUlnTgxYiQJ4JdjKIlnxBzuN/uGWEHDkf9M75Fk6szm5qb1OjQaDVuDMHN4TWH6sTbAIEPKoFixZ31sQBKGCEFKxxtNIcc6evTRgO67T7rxxks6dep2s+0xCaHZbNrEEhi/wcFBHThwXIGAdPr0Xg0Nhez+QU6gdvDnjUbDnivNdEzKCAQCZotAFSJWYAVE0aAYR+ViTxC7iXfEBuI35Az7ExUJSyBxATLJFxI8Z+IRxScYw08UoYkyGo1accI94BliXcS2REM1hR9MPnEyEomY558enzfzesuDUwz9JA8AGQCLQNlut21Qu5fGALYY24PBoPL5vHnmWNAAPipOnwRgJCYmJhSNRm2WqfdhkEho0iGpsSGRQSXZovB+HoAZo7OmpqasEvSz7/CF+ioZNplJA9L2sPR2u20mbaoxKnt+Fw8ZAc4fUUay6rFyGS0spPTSS3klEtLISEQbG23Val0NDg5ZhY8lAMDHM6ISxdNFJ75nvpH4kXRDoZAN/0XqI7j5US0EdCQRmJitrS0D+NI2gw7TzHcjANPpXCwWdfbsWR05ckQTExP6zne+Y01bPskfO7ZHDz98SKHQG2o00rY+PUtdqVT6CoJUKqWZmYLS6bIefXRn32bnviMtplIpA/QURjxnZJyhoaE+/2OtVrP1BRNGoQVw5LO81wuAAHD1I1IkWZKks5Q9xX2jyYB9gIxGsOt2t4/yjcfjmpqasmBPsPV2GZ4Jz45iA6A1MDCgykZNT39lU49Xg2o2B5xktmpHf05PT1t3MvvPe9RQHrjWQCCgZDKpoaEh+6xEImEHUCSTSUUiEeVyOdv3MNckKJgQkhGMDkmLJj3Pxki9wwFYf1tbWyaj5vN5+3yaMgH1MGesSZIsRVI43DuCEOaX545/LRAIKJPJaHR01EDP5OSkIpGIHa/KM2YPB4NBK3aQEAG4EAoMeyfWUsgAsIg14+PjVlzRNMY8TuvubtX1A/+oq52x31GucYP+8vDDOvdSVCPDvckS4XhT++7Y0FXTz+p99z2mZ6d/WE9/sazM9bdp9MBdOvar/1Q7f+AnFbwcnyg+ScoAKoAWceiGG25QtVrVpUuXJMmacwuFgvbtu6BwuKkjR2ZUrVas0BgeHtbk5KQSid5AeE5b4jPOnYvppptSuvbaE3r55RtNBUI5IYdAdLCumI9JTovH4zY6ECkcWxmjrCj0ia2+NwG7CGufXMD+gLnz/maKSVhDyBsmAnhGFwICWxW/Rwzv+SmDeumlKd1xx0ktL0+oUNhWl2CvvQ+0pwgUdNttx3T8+LwWFysWQ2At+XyKymAwqEuXLplVDEWDfeMV1Cv3lWdbWd/Ys/i5cDhs4I34igri4zqHIoAHKBJjsZhKpZJdP6CW5w024d7ToAWuSafT2tjYsCZY9iuMMuoLexgLG/kEXIPFDxJQ2j51qtVqaXl52Vj9N/N6y4PTxcVF81ewoElMVDc8TDo18Y9I2xIpfwZ9z+al4vAjO2BJkBMvXbpkbASdpgCU0dFRA4G+u7Ver9vf+VOaYNMApbBSjHNCLiG5w8jAPg0ODhrTw5m6NCPgSyHp8Dt8942NDXW7XfMm8XcM3WbBwsyZf2901CwEvYARViAQ09ZWRLXautrtjlVmGLkBJgQCWFuAJXPYuF6YNu4lyZoAQBJB1mA6QiAQ0M6dO+05ct8jkYhJKQQLZEKKEBgGQBPgkbm5q6ur+qM/+iPFYjEDIiQB1teFC7Pa3EzoPe9Z1de+ttuSm/8+yId4OQcH47rpphdVLA7o+PGEIpGQJXgktlgsplQqZc/QA1CeOWwM7BX+I5gD5vaWSiWtra2ZLEwAl2SsC6Z9AIIvYqjMSYokCaRfrpv7hBcTORjQ6xkgniWsd7vdthNpkBph2AnifsYlo72Y1yepb+8wsow1NDc319dBjszI/Fg/hQAvpQfrpVLJDpigECKpwXLw3+wD7gn/8D25J9wPpHHYboAjLBLsDYy4JEuKqCIoSjBCsPG1Ws1ONGLdw5QXi0UDAFwbnmz2J/uX/Y0vlSYUEjzXxNGjoVBIKysrJq3CyhBD2Is0ijEujdgBg7+5uana1pY+8dNhzcce0xMvflBf++ySpKzGx8cVj/WY2E6lo8OPxvVi8O16+w+s6Z6r/lD1hz+h1k0/rvWXvqNucVXBQECBy9eI95m95Fk+FJPh4WFdunRJy8vLVnwxhWF4eFjXXpvTpUsTWljYUjDYUDKZtMbSt73tbTpw4IBWV1f17W9/W8eOHTNmvl5v6MSJ3br77sNqNvepWu3akZE0fsGEAzDIdawvnjMxjKKgXC5fnuyyPaKLkYaAVobKeyWI/cqUAkkGhIktWEYSiYRNX8AOQzFBow57n+Kl0WjYGfLEUADdl788r3R6Ux/60FP6i784qJMnJ6yI8pN2ut2O9u3L6uGHjyiXG9e3v31QW1sVa5AjPlBsAOgSiYQdY83+o/mP4hzQybpj3BZ7mpxDEQjLzss3JzGNhFhGURYIBOyAAJRWlCjmrfIsWI9I7h58A9zxmrPX8a2z14gNWOXGx8cViUTMYxwOh41V53tTcEBW0asRi8XMHvRmX295cIoMTmVdrVZNPqvX65qbm7ORQcgnft4oXZvMdwM0nTlzRpubm5qfn9fU1JQ6nY51B46NjWltbc2ktW63aywqvlMCg7Q9Ew4gJPVmY9IxD7sq9cDl7OysAQ0/X5KFNTY2ZtKLT94wggQW3yTA/WCDwKIQpPw8QMb+FAoFC8QEICpKKlVJfUDTy+2eVUVeQiZst9smbyJPEzBCoe1JBgy8Z9NjiSD5wxRJ2930vmoHtDDg2jMUHpz4ipf7RRMQQIzvTwNBrVbTmTNnTMIimHpPVLcb1JNP3qD3vvc5ra+/okOHbjBmgKQN0OxVt0U99NBrmp1d0uc/f6O63YA1WPjRWvhVAUkUT3gRYT4A1wARmodgVTGy+7VAZz1yKSCMdeYbB/i9SqWilZUVA7B4UAGHvpqGPaJgkmTrA0ZgbW1NnU7HvHyw23jOPPjG581epEscIC/JOu6lHrPNGB0O8MCrRiCnMZD1B0PEcHHfMc2+I9mtra2ZxxPm2s9ZhAWGMfXeWanXqMf1xONxkw0BCzw//F8ePF26dMnmS/sjnlnj7BtkdQAr8Q/A68FYu922QymQ7th7FJLELrz4eGg9K1wul21igR9FA0vKPsfWIPWmYRCXuW5AGqeF3fsD09qV+KweP/whvfpUj9UGxKVSKY2MjFiXf6VS0Zd/N64P//0Hte/OlM4MpLX8mV+VJLU7HYWd3YgEj0WBdc6zWF1d1ebmpvlG2SsAxXi8odXVXpHHiK5AIKBUKqWbbrpJMzMzmpqa0sWLF/Xaa6/ZPpWkcjmuQEAKBiuqVtU3ZJ54h9cZBQbZn0KR64C9p2DBStLtdm1GMfsTJRKAxT7zjWewZsjH3heNXE4MoOhhEof39fPs8UZzChOAl9+PRCL64z++ST/4g6f00Y8eVS43qNde26vz5ye1tVXR7GxAN9ywrptvXlAyua7l5Z369rffplotp/X1dYvnkDwUnqg13qrENbJvk8mkqVSsQX6XnEfsIW5QwHkPLlgFNQ+7GGoetkGmJ6AqMJ3D98TwXdgXFKieWfcFH+sXKwQnuXnPLHEEgs9PfkBdbDabZvHzShY5nHgCiP5+r7c8OJV6ia1QKGh8fNw6SOPxuBYXF61L2HswWIA0ERBs8GEie1E5EFCZQYnsQ7CDOSoUCsb2JZNJbW1tmZEcU7R/ra6uWmcdEr4Hm54dhBFBymEx4snsdSdmbPH6hUdgJRh4yp/XxsaGMcJUWwAZ2BOCBhsZlg6wSuXozfbI7qFQyIIZwZIOUipyAhLfBXCLl88DgCuBDaCbpAv7k8lkbMMjW/kzwNnwWCmQRKhEOTIW4MALoMeGpMhg3eBFjUajWl2N6Rvf2NBDDx1XMlnVCy/s04ULQ30dmcPDQ5qby+muu07o6qvLeuyxAzpzZkLd7nqfPwsZjsKItb2+vq5UKmXJFIsKzw2GgjWOnIgshlwFy8DzBdD4phPuO0AcpQGFQZI1XdFQRrNGNBq14I2PiwDqvb8Ud/gQl5aW+pKw1JOl8FEBJim8AMZIVjTesa9olKQIAugDxtgz1WpVq6urFpRpDICNZN15vzogAKkVQM2LRI4agbLDsyP+lEola1rg2WcyGcViMWOpSDKsUSR1CgiYL+wcHCtJPCTWDA31vJYXL17U6Oiopqam7CQunjv7008uQXpn7i8Fom/GQu1gJBpzmkluyMawxRRvrVZv7iqKDskToINP+7aDJ5Rt3aELr4xqdLR3NnsqldLc3JxuvvlmZTIZvfHGG3ryySe1sLCgSCSqR78woxv/1c9rYOlPVSvmrOjqXLY5eV8tnw2rxMiu8fFxk1vJC9z7XrzqKhQKmo8RMF+pVLS4uNjnS/THy2YyGQ0MYDGpaWsrYMkfmxlEix835a0uHgTS3Ei/QavVshFJrAEKBp4z10sx5Q9xAahRXPtRizCArH9+nlxL0c7+qde354vu2rXLGMjBwUFNTEwYe9lsNvX449M6cSKvvXtf1f33v6K3v307n3Y6AS0szOnFF+9RLjevVqttyiVNo+FwuK9Bk+/umVHus++Kh03F3uSleeIE+x9FrlwuW8xh5JIv0CmwPTEFqcSIQNakV4T53F6fSdxwCzGUiQ0QCvSpYEEg73kswCERkDbEcfI86xobGM+E/gAKHQoXvs/3e73lwSnJDMkEH1IkEtHevXttkbF4uIn8vz8tAvYwEolofn7ekg4sCGDHN0HhWwN4djodGziNDE8HOiZ0OpBzuZwajYY15+A/9d8NMABj4LubpV6VdOWpWgRxEnU8Hle5XLbmGz9QHNaUSg+bw8TEhCVHghameBItIBnp03dqA0b5LPzASBQEWUAp99o3rVGlEhy4Vhjk9fV1LS8vW6VOIgfgcg/Z3IBtZF2fnD0rmMvlVKvVlMlkFIlEVCwW7ShGNiwgL5VK2Yamq5MiyE8ZePXVvcpmO3rPe87rkUee0srKoBYWJtRohDU4KO3Zk9XYWEm53IA+85nr9PrrI4pGe58FQMOnxBqhGEN2IcnxHL18SwClMAO8sQYIzNFo1GQ9gp6ft8m98OsEiVna9n/CWgN2GWVEUCZIevYdMMp3IyHg71tdXbVRYzwHwDrMDnKc91fiS/TXREHKaS0LCwvG1rFOvYzOAHP2Fv5cgDtMIiAGac2zogR5krM/Px22FIsCABxwAChEEmTKB3NyYdPwoFLQshcAHBsbG3b2PMUa7DC+N7qpiambm5t2TZ1OR5OTkxZTuDZvyfCNh/wdxR0JmOc/OTlpcVjaPmSCQgmAD7NOwYQac8Pbd2tMf6Lja/+zdu3qfb+dO3fqzjvv1IEDB0zV2L17t2ZnZ/X5z39ea2trSrztY1K7rgPBn9OJoXcb8GpfZpGj0ajy+bw2NzeNcUJF8QUdaxDpnGfb2zcRJZMV80jzHRYXF/X5z39eJ06c0OjoqF566aU+m0fPz/yqWq2gQqFR6/DnM4ktFEcACYoMYi7ju+hlYD4s43/wkRIPmSHMSCbAM+odew5mjr0MYPKzXjnogFjIM/fea2IPxAvPgKI+HA6bEond4fTpQb3yyg1KJKrauVOSqqrXQyoWh5XLScPDUQ0NVSwGetuD97ejchHTAcgAa2mbrQbIensQa5B7wPMYGRlRLpczpQGLEJ9H3ia30BwHI+6ZVvykWOFQTMi/FGhcK7GeggW2lYLb+4nJA4wRBERjDeKZXamwUnRCehDTmPFNH8ebeb3lwan3T4TD4b6B+LAjsEJ+gw0ODqpYLGptbc38RcgzMzMzfSNRkKu9BL6+vq5CoSBJJl0xewzGBRk2FApZIK/X6zbzLZFIXK6SBwwoEAioUPB9kUDwwVGhAqx98wTAArmg0WjYGcaANZgKaXu4cjKZ7BtePT4+rmw2axUhDUjIvoHA9oxYkiGLlmdANc1hBkiuABQCJAufTZrNZu2zYFw84GLjST0w7o8Bjcd7R2wiI3q5GJ8QwYKmMjYtz8s3jRC8YIUJegArAnIikeg7VpXghfR+4cJO/af/NKWpqUu655689u5dVizWUaMRVrGY1osv3qPDh9va2NjU8HBv1BhsHWuZAJBKpUwlgCFdWloyLyCAHnmSogwGBABHw0O329XKyoo1l7Xb7T7mI51OGxvMPDzuR61WM8mH+4ufyjMfPGvWDsw7DA37k7UuSWtrawYKmMPIc49Go5YYwuGwgtG4Uvd9QCO792to5z6FB4b16n/5P1R99RljIlOplMbf+2NK3/7O74kl1ZULeuM//kuNj4/b806n0yZdI481m01ls1kbp0XBMzY2puXlZVMESEqSjIWnQGVtnz9/3rzHrE/fMMQ+Z22TXLfHKnU1NxdWtdpWuVxXtRpUOBy15+e9mXSY0xjHqTSoENPT0wZq2GuAnsHBQVvzFPa+2MF7yndlLqn3cJPoWZP83ODgoMmcFHMkXWJoPB6/PKmkbEXF9PS0br5LagbGtXJi0NjMu+++W7fccksfWx2NRnXdddfpnnvu0aOHXtDYre/UxkufVWAmpNmbJ7R4YkyRWFyBUFgj0zs0FAtra71koBJwgoQJEMUGRCMi97rb7erUqVl96EMvK5lc1/p6WKurq8YYZ7NZvfHGG5qcnDT1hDXRbre0d+8pnT07p9HRZN9YIu6lt1WRg2DSvKcbsBOLxYwV9BI3QGViYsJi//j4uAE634zF+xIjI5GIFYM05bHmOFgE6xwD9qVesX3ljE5sUazbdrvdxyYzIhC/o5TSuXNtVSqRy8VMyQo/Yg/sID55CBnWLuoBB09wahLMMAoSBdb6+rpWV1dNTSOPU+zRTAXQJX7y3773A6uLV98oOngvcq6fFMJ1co14WXkmNNlB7vA8KZjZp3wWxSReeoAxeU6SKTChUMjiMqAciwDg/Eqv7V/1esuDU8AnYMIPVmcchiTznsViMWUyGXvYyNb+/WA5qDgJKND/gEA6iqk86F4GoMBGkXj9Gc4clUeHHwsc4Odnw8Hs4f8kaVC5IJMCsPBWUsXQAQhbiczOYpX6z5Sm0x0mGVkSDx4LF1YDH54kAyAsfmQuz5ABSmG9wuGwBVM2NCwb0jfz4pDgJRnwhcH052nH49vn1gOIkH7puOeIPMAH18C943parZYWFxfNsO/lmdHR0b4j9DzwgrngWfb8skFls7v01a9eZU1YgI94PKqBgaC63X7T+9ramoLBoB1B6Yc0UxX3BlZXLRmgACC5IZMj+wIwPLPCvWMCgCTzrmLQhzkCvJVKJZPVASKATM6N5x/fXAOTBqvK7xQKBS0tLRkIaLVaxuDDIgLKWV+s4cFkRjve9yOqF9ZUXTqvkb0He0nhsq8cFrTTaavdrOvcZ3+jjzFXc8v8oYAg1j/JknUnbR/Vu76+bgCbAnN4eFiZTEanT582lqpUKhnLxvrkxBoKB+5RKpVSs9nU2tqacrmcRkZGbLh6p9PRyEhBd9xxRtdcs2AMuyStrw/o8OEZfetbcW1ujhsjTZE6MDCg6elpm+4AMGD6gk9QxCqSWSaTseIGqRJrB6Np8DATH7FieM9rLpezdYgXlITOumBSB1YjYjgWAsDyQLygre6E8vmSJJlPjmfkX6FQb8LK6PScAsGgErd+Ui/ok4pMS7vevf1zd/zSHyr71Fe18MXfNvuWV4hYB4ADYi9FQ7vdG4F3/vywqtUTOnjwrL7xjbj54MPhsMncrDNiarlc1tzckkZHN/X1r99shTaAjxwGUMXbDbAH5EFI4FtkvBuxAiUOywHvyV5mPwaDQWPcPJDBW0qMQPIl5lCwYkVhXbPu2BMQASgxxHqpp57Mzs7aMeJ8d2IPuQB/JI16vu8AdYbGI3Ibn8ehLMjuyPgQChRTgHB6I/Dwe8Kr2+1avPTKHEwk9hzIAq6PfQ8YBrzSgOyVPfI7Sp6fycyBHZz4RjFAzvBjE3ke5FDkeXIX/n4a1wqFghUV5B7YWt6HZ/m3o6Quv6gQaLxBSoClxNC9sbGhpaUlJRIJkxhJENxUzjen+43N1+12Ta4ZGRmxmY/eK3ZlAwgLwPtQmMPmfRqAQGl71mJvzmXVmKpcLmdM3/r6um0kRiqxeAOBQJ9ZmyYVFuLo6KjS6bQBUUkGNrgWKm08noAOwCKLnuqTCnNiYkIrKytaW1uTJGNJ/EgnGEA2NMB0Y2PD7g8Ln2srl8s2YB1AS7DEAwfbhwRHch0ZGbGTttj8ftRKp9PRpUuXbCYk5u9yuWwVKtUiDI5vYIExA5hSfUqyTnICPPeP6pq1S2DCGA+4CQaDlpS4XljjfD5v1TsJnQqZc+oBTsyQRLbBazYzM6OlpSVjSQEgNA+Mj4+br5UiJRAIGAuKfQIwzNrw14rkPTU1ZUUYe5LnyL5Dwm00Gn0nZ1EgxGIx5fN5STJJnoQBWG5tlnTon39MsW5L41ddr5G9BxWPxVW8DM7pfo1Go1Kno8prz/YF8WQyqfjlAfoUdNhifLMY1h7fpcyzZ1LA2tqa7Y9KpWLFMVMXYAJZSzAq+F+73a5JtLD7vXu8oXe/+6j27buozc2oXnllr86dG1Q2u66hIenWW6u6//5zetvbuvqLv5jV0aNBJZM9WZo1jicdRWBiYkLj4+OmFKFySL3DErADLC0tWfygwGRPSbImUdYTIAAgxGEOAIwrLTsUxhRtFAc05xHXASbxeFxdhRRQp68B8OzZs7rxxhv7PPVSj9E9ceKECudOaOszv6b4aFhvu/ObeuXs21Veimn43g8qEIlr8cu/q/yFM/ZMrvQW+oZSYiW+TtYAUx9efvkq3Xnn63r11SEtLEwbsAFMUOBtW0lqet/7TmhxcUSLi2MaHAyY1UXanlFKDGk2mzYHU5JSqZQx4t6PfmWRQnyampoyxQvgA/hj7/G9KHCj0ajW1tasUKFxlqkKdN/7ezI9PW3XQK4hH2KRGRsbMwsHigF+SMAxJ4Cx3zKZjDGb2Lqk7RPV8I16YOk9oN7eBKhmz3vrGyTDnj17FIvFdOnSJSM8sFsQv4jtviEayw5gExLHjyrrdrs2UlCSNT4T3/k99gv3qd1uK5VKGfhm3dNU6ZuuOFACoo3YI6kvP+FRBbj73AcwpZGWvwMov1n29C0PTsvlcp/PgQfjfaWRSMRYNy+LA4xIzGzwZnP7FKWJiQlJ28wrZmOAHJsGBoDf39zcNDlh7PIRntFoVKOjozp//rzy+XxfRx2AVVKfpEK1xRSCdrttQEmSfReuC58cVXY6nTbTM6CCjcOix6eC1whbAp4T73dlw8EYrKys2BgjJEfPqADQqKjwtqZSKQN+yHgY9AuFgqrVqiYnJ22zA1rxX3L+ua/w8FTh86XZCoaBa/cjgLineOp4BhQxoVDIGuGi0ajNe1xdXbX5tlSmgGHeB4DjrQ6wuwAv7B38OUkFdheW1q9lmFiqWhrfkB7r9bqNw2EvEDTq9boWFxetwQ9Wgu8Ny8VzgaFBIuP9uG8kNvYfjRc0NczPz1s17mcuMs0BiXx8fNzUBOwASG58RxqgSNAEaL5bt9tVu7Ku+mWwKkldde367F6Geu8dTyQUim8fvtDpdLS8vGzAmH3JPkLa5HPz+bytbe4fBSNzIL0lgyIRBs0nYp7vysqKJVSeM4lSaugDH3hSs7MbeuKJW/XyyxOq1ZqXG/5oAt2pcHin7r9/QR/+8CVNTQ3o+edTxlryzOj0Xl9f1+TkpCV39ghgjOKXQogEipxHEc454bDwqFF8R1gib0OhMKJgoWAHnFLkAHKmpqassYV4Xa3GFB9cUatbV6jdYy3Pnz+vEydO6LrrrjMGtdVq6fz58zp69KgKy4tqLJzTVXeOKL315yq9FlNldUhDtz6oQCCojROHtX5ZyfKNael0Wul0WhMTE31KFHYp1gdrdGhoSK+8cr0mJ4v62Mde0Ve/2tJrr01KilpB7Jtipqbqev/7jykUCuhrX7tLw8M9i4ef2U3THDkqFuvNnIXdhbFjViZxAYaOtd7zcNaNDKH4h8Vk2D+WM2wWkCv/LZ8+ljE/zs7/Ls2q7F3ynLcp+G5xGrXwUELOQCqxxmDyUbxQYnzxRMOTb4AmL4AZWMf0OuCX596QD/kH2wrXCKHF3oac4n7g98b2w7Pge4AFKNxQS6PRqDHs7DnIGMZ1tVotK3a5dooarAgwn9xjvMHkPq964YXnmWGX4N/kLv5h76PIvpnXWx6cUnXkcjlJMsmPygQ2DNYTYDY6OqpyuaylpSVVq1WrvpBtfZcvoA9qHs8OFUI0GtXKyorR4VfOVGUh49OAlUJKpupgphigjuABuPAMMXI/IC0Wi2l6etp8H0wMgJ1gQVKR0l2NzwbpUpJV9nQKInFTmfJ9qPa5Lx4wYURHAgoGg+YlhKnxzVmFQsG6uwlcXt6BkcJDyt9R4cGkeFaDezc9Pa10Om2bGeYBlg4WnW5cAAOBm2scGRmxexqNRnXp0iWrukdGRmwcClIHAB9gC7AG2AD8fHKAhafBAnkdRhQwRnKSZLYC3+0JC0BwBGACmiVZ0QGbzf3tdrs25B1g0mr1jpJlgDgAmj1IUqZ7HRlxfHzcPHisAwq3RCJhNhU805IMIIXDvTmdNKZkMhljgtnXfjoCQdHbLjY2NvpGrkUiETVbLQUiUe37335HwWhcreqGikef0sWv/Fe1ajVrvCL54CkEWLP3U6mUFVawIgBK/OIeqMzNzVmiWltb08rKihqNhkl0ADbABV5bisK7735Gs7Pr+tzn7tClS2NqtXrqgz+utNfsFdK3vrVf9fqgHnjgpIrFQT3//FjfWuVn0+m0NcIRE0hUxAKKObywMEU8d/xvJHNfiPpGSb4j4BY2n98FPLRaveNrmUwA28Y+lGSF2PHnI7rufZu6+cGELh4ZMS/r1772NTUaDV111VXa2trSK6+8oueee07Ly8umRH3oYEmb3V1aeK2mkZEeU6vLAJlZxuw3AAwkAw2mHMPrwR4ApBdbQ3r00Tv14IMv6iMfeVX33POGjh3bo+PH06pW19XpSDMzqzp48Jx27VpRqTSkP/iDW1Qud5VKte0YYoAWza8wh+QzGGap3w84NDRk8YCYWK/XLb9AJMBgs//wLwLOvM8Yzz3AbmBgwMAMMZdrxDbAC3IClQyGmQKT2OabciiUPDkSi/VGqjHKyxeOFECwqEtLS2q325qamrJrx7/N5AjUS4pwcgNgjTWOdQUG1ze6oSL5U/FQBcPhsKkCxEZiMoUZihJNlQBQPh8SIxaLaXl52XJxvd4bIQdwRWUhTlLg5PN5i++sHWww3uaH2sxeLJfLlsuxEIJbWH+1Wm9eciwWMzvQ93u95cEpkipSPSDT3+yNjQ1rDMDAD8AAnDSbTTsjncCHpOy9F97oj6RTr9dNguVn8aB6Yzq/n0wmlc1mrQoEbBLkkMa8r3Bra8uAMlUKm5AKx4NZOnEJQuVyuW+4tL9/VPDpdFrNZtM2FJ405HQCh5clJJkfb2xszBIKFTwDxPlzfE7StvTiDfNML4ClAYTBvsCqUozAtkoyRo57CQiDVWbD4pOkE9x7ZMfGxoxRXV5e1szMjDWRkPh80w4bFQaBjnq+G9IgQYVr9QwGQAtmkvuHZ4/kCMj0oOxKIIA6QMHAGefcB9gWfI1IXzSTIKMhoRNUYToDgYB2796tZDKpxcVFAzQELpqGWP8wfwRAvg/NJBSN1WrVLCjIUYz3AsiSrGD4AMLcKwoC76UGBMXjcfOc1ks5LX/zC6pcPKNWu63kdbdr8p73Kj61Uyd/8/9jzwf/MzI46yUej1uXvJ9ksLGxocXFRStgKHQpFgEB7G0ao3hPBqXDZHDiSs82kdM115zXM8/coVrtKjUay5Jk3x+QD9Brt9t6+eVrNTVV0K23Htezz95hvjNmxpKY6OrP5/PWGYwvHyZG2j49hn2PvQfLB/saVcArUKxrrB1cO2uaGMb7AugpjIhFAONqtXdscetSWPnOPbp654vKHn9Y1ep2Y+PnP/95YxWXlpZsvFyj0dD4/Jhmoo/qpfMfUjTaa9Yqf+FTNmFFkn03WC6ey9LSksVowAvgz3vxfXx/7LHb9Oqrc7ruutN6xzuO6cEH+/PY2tqoDh26S+fO7VKhsKZ6vff9WD98liSz13g/N8/cW5i8h5k1xv4ZGRkxIgC1BQBMnMYaRrHFswL84MelOEMqJibz/owCQwGRZHm01eqdLNTpdEzdpAjkvlKUoPyxz7kvMMLlclnr6+umdOHhhK3FckGO57Abz0Z673Q+n7f9Sq701h1iOHFudXVVoVDIptHAMHLPaDrDzwrGIAfQu4E9AntfqVQyoOwbEiFaiKexWG8OM9+DI57xlFNoghF4zqib7Ffuq+8X4WfBGIlEwkgRinAsfn/brX/55WVNbhzsJKcwwDrC6PDgOF0JYAo9TuKAUaLipDqSZBILCWzHjh2Kx+N64403bBP7xUXzw+DgoMkKNIPgBeK68vm8gVgA4fDwsP0s3fWYwUm8kmwzkRyRHvl/Fh/UPacaAbyQOwhaUo8tSCaTBjB9goFlJkBSLABSAIoY5rmP2WzWzmqmGGi32yYNcA2+kvUMNcc/sqFoSsDs749ypDKmIkUyh3VFmgfg8eI7sjaocCkESKC+Q5fnWq/XTRZjnigJJRQKaW5uTgsLC6pUKpb81tbW+mQSP8eUZ07Ak2Rgj+TAGpLU54Hm3+Pj45qenu4l4nLZbBAEfd/8Mzo6al5bQClrfWlpydaqt38QmAjsAGAM97DoXhKTZFYFADxBGCma7w5Qo4kBLybsFgmxB757DEsinlDncsID7C/+5R/aHg2FQqqfOqJWaU2z7/0RDV93pyInD2toaMj2ElKnJAvim5ub5qHEy0pylmSWGb+OfGMHDRowQagomUzG1hGsUKVS0TvfeUZbW2G98sq0gsGOnRgDmPfxT5IBkVde2acf/MFD2rEjr5WV2b7YRmL0XeYkbxhQ9gr+avaiB9QUwxQyeBAp/CjgfNGB7QOAIm2Pw4Et8/sf9Yf4ToJutVp65ZV9eudNv6cdd1ynr/3ephVDS0tLunDhgj0L9t/g6LD+7v+4qrYG9fozcYVC2zGGBEvih62i6GHuKSyyv34AJECnWu0d44tN5MSJQb366gHNz8c1Pb2ucLim9fWGLl7sqNHYqXQ6Y5KwVzx8YysNTsRWWGVUNewCyN7EEwBIJBIxjz5A3P85L2K/tF1Ao7IRB8kdMIH0JnC/2W/+vSgayb0oORTf5B8Alrd6eE8+RESr1bKJGbwvf+7XHfkYXygMYqlU0urqal9HOqwmoIsYzLQNn5chNchdvAd73zdMeWbUx0QUAw+EAaHcO/zb8Xjcmr5Qaclt5AHiJ4qnZ9nBQ54Jpf+C/YRqiDpC/0Wj0bA5yZlMxg43yuVyZrnw+fP7vd7y4NQPgmcEhtRLePhQkslkX9NQPp/X4uKiJWxM3FTGJMT9+/er2WxapdzpdKxZodvtKpfLGXvGhkW6omMOFgmTOA1CJGLkjXw+b4wB10RlCvOIdwhGhkSP9xH/C0lkZWXFpgDArLDY8CMxzDsYDJocNTY2ZlYD/K2XLl3S2NiYeXSpSqVewMGIT/IoFos2KgtAJsnM1MgqjAoaHR21sSqMC4IB5P3b7bbOnTtnDCHyGtXp2NiYdTlLsk5TPxuRIADQ8cZvAO/g4KB1Jg8MDBg7gOUCH45vvuJUHEACz4Mz2JEKYeo5IQwGhk0+NDRk0jXeOpqSJiYmTPpdW1tTPp/Xjh07bISVZ/SxLvj5qKxNn2Ci0ah27Nhhaw8pDJmQxjwSbqVS0erqqnkiKb4oQPC4+bOcfbMQRQOBHRCCLQVvNQwibC7FoG+WIBCz/gGm3oM+Nj6m7OWAzzg1PGu+8Nn82mc1854fVvK6W7W+eEJjY2PK5/P2O+xV1srKyoqq1ardh3g8rsnJSZVKJQPt3oLA84Zhm5iYMFYLVolkwJpizcRiUd1666pOndql9fWGNjcLxsBMTEzowQcf1O7du3XixAm9/PLLdl59z0c+rWx2WHfemdef//lsX1PmlVMGYrGYARRAEDESixLMLOzY2tqaarWaqR6sq5GREQ0PD2ttbc0UI/b19PS0qUvMeC6VSnaUaTTaO3FndXXVGCqKJoAnoDgQCOjwY5tKT/6Abpj+Y+nHP6Y//50NbVVqBtw8gEuk4vo7f/eSkoGX9LXvfFS51c0+3z2ngZE3iPmobjt27FAqldLCwoJ5/PCfAlhZ5+QfihsYyuXlsHK5UQWD47bfkskhU+GYCkBjptlRLhfSV3p2UYhgafHxEj9gvymoyRmeHUNZYn0SC/h9f4gFP4OsT/5jrXtvPJYlilZvLaD4wAPt/erkGEgHQDdxgHxK8x6gFsXMNxwBxABzxA/8uxSNeFs5vQ5FAOC7urpq7DR2OQAfTUmAfqYecF2sd8Aq9wpGmJzS7XbtORDjGOkI4UE8JZcAQD0I91N6sNRwL5nsQLHo9wlrmSIC/OKJC2aT8/cwqPQoeGX2r3q95cEpNwl2EADBQ/LSBAtPkmZmZqxT3rNhBLF4PK5bbrlFpVLJzmhfXV21DRCPx63yRAqNRCLWPUhHIPI7bKEk878wGgrmE/YOGwLVFWNk2EAEPILh1taWMpmMAQUqOHwvlUpFxWJRExMTisVimp+ftw1DxyWMjyRrLup2u33zVvP5vJ18QRMIjAIBHoYTe0Wn01GxWLRRRPwc8xx5TgRSAgiSIewLm9KPUyoWi+ZTBahPT09bJzRdhnh3kCwBtoVCwRhpPge2gyRN45NnFvk3iROPIM0RvACogGySOs1q2C6QtPHqACbb7bY11uAtSqfT9p1gzvk5xmoBPGD+CWIkBIAbTAjJFB8dgBp5jXWztLRk/ly+dyKR0NrampaWlrS1tWUMCkEOiwIJFgmK00zGxsaMoWKUDeAM/xYBHtCCHxo2DAWDoNhoNFQp9/yr7VbbEhpMCYWOJGvm6zQbalU3FRnseYIZ4VQuly2eUFDBcNbrdWNNAWXxeNyAMioHTBgWG9htEhOACCmYQgLg1u3WlEg0tLQ0arGOPXTVVVfpve99r4aGhjQ7O6tz586ZvNi751HlcmmlUmVbr7A73HffjIl9g2fgG9Gy2axqtZrFu3g8biwrFgxvbSLu8r4ALWm7M5jYyD8w/l6RQTZlDwSDvUkWsEq1Wk1/9p+zqv7dD+iuvX+mq/7VlE5n79eLT0VVXKkrFAlpz4ExHbh5UbPRL6ujmL7+1Md09Kms7S8keQo3D4Ibjd5M6NnZWX3iE5/Q6OioPv/5z1vnNAU/7L5n6SBE2P+wgAAzgBx2JZg5Gs78CVWceY7Cx4EbgEzAFfGUzmykfp4D7BjKBaAIQObtP8jyrVbL+jm8Bxe2jXyA75U4Q06l+IE4QWLGioK1CjDEdZPDySsUEDQuwfySy1jbfuY2/4aJBKB6HzpxtdlsGlgjvsGCMoIRII/VDAWGPoGVlZW+HMqhFb73w3u8+XPuK8QPqoYH/RQeXBN7mgIOEN/tdq2Ao6gbHBzU+Pi4Afdms2nKK/GQ/2YvsMZoEiM3ce8h0zw4/VtZ//KLahtWCJASDvcG2TM8u9lsanJy0oy+JHGkSKhw2CSCQS6X6+tM40F40zbSLskHEHJlwwieQyofL12lUilNTU1ZUh8YGOhrxAD4QN0zS5Fgz0YjMLHQd+/erWKxaJ34nU5H2WzWWEOM/8gZXC/GagIrp6Tgl4PtgoWCWUGKJElVKhWToaimSTIEKjYW96Hb7erMmTN27rMkraysWEUHyKWCBQAsLCxoY2NDU1NTxmKTCAg2BFp8SxjfCSCLi4sG+LEn4LHB99Ptds0W4m0LNLLBZiCJeqmaLlq8bDTrEIDw+AaDQWWzWUtSPGMqavy90vZZyQRcQDb3lOYBmP56vW7MPMDbe8KQsbyH1XtTSRB4dEOhkB3T6zvrYd4Bh/i5OIudhIKsVCqVzPtMAoPlq1Qq5sFjP5HUCOjc71AopOBgL9hiX6CgIvHAhJnvKhZXeGBY9XLBWM5ms6mZmRk7ipjn1+12bS3AEOPLROpnTZKAiSskT99MCcPh5WGARi/u9ArwXG5Dm5sDbuxQwoptSbb3fPNLL/YFFY12LdH60/BSqZStcdYuTPjMzIwGBwftZzieuVar2XHRsD9e9kcZ4AARL3OiFuBP9XYPvjuFSKfTsQJd2j4NjM9EtsQ+9aXfyeq1Gx/WA++Trk1/TQc+stmXK2qa0Ytn3qHjzwxqo1S32E48Ib5TqPI9Op2O5ubmNDExoT179hi7S0xBofHzI3nesFXBYNCOFMbWQOxg7QOUiMH0SeDTZPi/78Cn6CL+Aw4pkokBKH5Y3CiAUEW8ukSsGRwcNL8oRSH7dnNz08A0rKzvtQC8AYJo9uQ7Sz1gixoB08f7Uaxls9k+24wkA0aMRsKr7QEu5EyzuX3cLfkRGwtri5P2fI8C35Mij3XJOvc9LTRqefaYdcHv+yZd7j9FDDmS/c8ah82nYIRM4L6i6G1ubtq8dZQlVA5iAfGS+8daYBoK3xcQT78M1iEID+4D9xobH7gDoP1mXm95cAri952DgB8CInItJyX4ao9FDxMF87qysqJnnnnGxvmwMUiO3psCk0TlgjcmmUxaZcKCBVThZ8GOAIBBbqdJgbmqBBUS5Pr6urLZrJ3Di3wPowerlEwmbZA1XjASL+wsSZTmA/w0bGZk8263q4mJCQMNHtBT+UUiERsT5b1abBqAHR33odD3nttMYGR+H34WpGu8htL2cYnpdNqY0vX1dWMDqZQ5vYjB+zC6bEYSSTTam1HYaDTMv4ocD1tDYuFZVqtVY8IpAgjK+HdguwFH/ruSKGDmYOA4TYvnKcmSBO8DIxoOhw2o0C1KEuWZMgcP1pHgwzQL9kMo1Jt5WC6X+2Ryz17B3gESUqmUtra2tLq6amwjYEySXQesCP5Y3+kM8IEdoDGPood1wZ7HEoHsBoNBYpB6SXZjY8NYiB279yg+MKhwt20gu9vtKvPAxxQIBrX68jNWaPj4wPXCvnY6HY2Ojtq9Yb/QvDU0NGTrGlDvD2jAp4X/j0CP/AuL3GPee8lyaKjHkPO5lUpFZ86c0Z/8yZ9o9+7dOnr0qIrFoiUz5PZIpKJ6PdLHxFNwU1D4uZI0w83Pz+vOO+9UJBLRyZMnrVhDTaC4R/HhGWAHaDQaZu1B+uPeMZmB2OLjmCS7JpIyRYS31iDpUiS3221dOFHVny4kFAjfob03RpUYkqSg1vMdnX5pS8PDUSUSYTUam0YioGZANBBTWOMoPPl8Xo899pgSiYSWl5dNyQoGgyapwjD5pM0Jd0xJIBbAHnsPKyATJhPfKaygtK241Ot1Y1MpgihsAGVcO8CH/EhOhBzBSwhbCqsG4IYFhFjheTIrk30HMQLQo0j3ViqKQkAboJgCyatv3pNJHJHUp0j5F6QPShbgMBgMGkAnbrFmyI/46skF/iho1iPFhO9H4d5T5LEHIAW4v+l02uyA2IR8DCcfANi5j6x7QDFrivcNBAJGCsA0YzPiGaFq+n4JLBflctlshoVCwQpjJk4AdGmGZh1wb5PJpBWm/P2beb3lwens7KyNPoHlw7xM1UngYKQCDwiGiw2FrLpz504FAgGtrKxoY2PDAB7VCeZ/gtHGxoZSqZQlQoDZzMyMyuWyCoVtj5j3tvqExOKWegA4l8splUppenrazOMe8EkyQNztdpXNZo1hiMW2j5hcWVmxDQswRXKngoP5BVDR4Q3AAEgixVNxkkC5z8iX3G+qNm9W9yC7XC73Tmy5XLU2m007ro7kx0bCsA+QhD2kqWtiYkKzs7MGbFqt3slCzF+UelLi0NCQpqamlM/nLTjTNcnPcX34f6ik8Xz5EzQAL+Fw7xxohlMDFGE9AMxYFmAbvKUAAAfjBTBFEuUaABe+0ochJcF4X+H6+rrNSgRgAky8T5j/p1kG+YegDqMBwIUVzWQyVoDRaMA1T05OWhCnk5SRaXwn1izAjQYNLBcwqmtra1aEwtijigASZt/xEUUGhhUb6zH9qRvulgYuz4t8/jENjKe075/8Xyofe1rFhdNqNpqauvkejV9/h3LHntPWmZftJB0kQS+V4b9inwKYYQn37t1rDQokPMAHzRD1el2lUqmvQYoCBd8dXrhe0ZrWykpKN99c0re+NaByuWzrttVqaXV1Vc8++2xf/NtuDKtrz56sXn75agOsly5dsmTiPedcSzKZtNjE0PGFhQVJsiTX7XZVKBRULpc1MzNjawAwSVJNp9PG0sPa0lWN+gMgZJ+dO3fOirxMJqPJyUkD5BQZkqw5hBfFKTH90NeKxpC32xzB2ptJvbKyomQyaf0ISN28B8ykZ7EqlYpefvllszDw3JBzYdp4oXARPwEEgFJIAg8Ape1mOob7k9skmQXEjzGCxSLG8V3w8nu7GEUJ33lra0sbGxu6cOGCFZoQJRSqKD0QGvF43Ap9r2gR81nbeK6xvLFPkdUBbpzWB4vIPSRvwbhyzxlFR5wj95DfKHB57kxN4Lqk3pQX4lCxWOybbuNjLOQFvlriuyeTALvkC1RLvhs2DM94+7npFOk8G3IQuRPwz89QdGAfkmQWEzytsKzkUEAwrDWYCVsNeRbSjtGFAHeKSby63CevfF5ZRH2/11senCaTSWM3AST+BpO4JenixYvKZrMGSmFtCCAwB1DeVIjemEy1TWKiemFxxmIxm8eI/HXp0iVNTk72jZKg2QJqneDnO/A8YwujEgqFtGPHDpOzOBWILkQ/Vqjb7drGm5yc1OTkZN/RglTDSJBUfV6iRmYGbHnWDECBvLK4uGgJFUkOzyFgDM8eVSpJdnh42BpN8N1xjb6KJmgQmGBi8CDxvJHs2JBsIqT+gYHe2cgbGxs6d+6cKpWKyeSAWHyySJ0wSlTcfC9YNsz9BCXYMhrAkMsBFaOjo32nooyPj1tDje8e9eCa74YlYWpqyoIWLAYJjAIA1oYEQ6DK5/MGAnkeJIFOp2PTJbhHNLetrq4qFotpamrKEiNWBIIfaxNPI2tqZWXFAi2AhUTt9x1ghOtCmmJP8B40PhKkp9/xA4olJyw+zNz5Ts3c+U5J0osvP6laqajy64c1uOeAxm66X4FgSLW1RZ35s9/S+vOPaegyM+sbDSiu8JfTlcx8ZMAGiWxgYMAaGJBOYSgkWRPS6uqqsSjsMzzorVbLCrT19XW99NIOvfe9L2nv3t06fXp7qoYkixc0Ec7MzBhYuvbaJUUiHb388ryazabGxsZsqDwJF5aMPY/kXq1WdejQIQ0MDGhpacnkQj+/2dt7YMU3NjY0NDRkxaiXKxllA5CGVWs0Gjp37pzOnz9va58JIdwPYqyXQFlHiUSib3Ykn8eebbVaVuCjbjE6kHF3nc72IQxzc3MWO2CNarWaHSXsvYD4kXkGsEfEPpI7tgsSuZ86Uq/XzQPPeqDJRdqeSUyswQ4xNjZm/mPsMdh1AJbszUajYU2XHoDh6ece4a2EtUWpIEcSY4j7FHHEa/yzPk7zAjiybmGQeeXzeUWjUWtGk2SEzpUjDQFz3mMKyILVI84BEAGNfDZkAUCeQsmzf9glKOgAxABCSfZvYhExA3sFhIcky5k0pbGWyMt8P3pkiDEULAzeHxwcVDabNSUtHo9bnmTNBwIBs5NQbLXbbSuyWb+STF2mYQ6wS870fQPkvlKpZAUSeR3M8v1eb3lw6v2P+ExKpZJyuZwKhYLN7mQU0NDQkAqFghKJhPkoYTdhEamEGQPCwHyqQeh7/DiMP/JJeGNjw+YG0tCEDME4nHA4bIuGTQV1Trft6uqqMVEkF+j6jY2NPkO0Z6M4FYKmDZoVkNY8owDtT5CBNYFFJWmRyAjOBFaYrImJCRs7AQPGJu50OgZW+DySCpKil5FIhIy94Z4Dfqj4pZ5RvVqt6vTp08pkMnbfYrGYdu/ebV4c2DWam5ApYZnxszIov1QqWYMPXbKAJljsQCBgABkgJfUCOZufNUfSRNKiKuWkJqwcvmMWCZBrJZjPz8/3AXmkFtgXAN3ExIQ2NzeN7WCgPRUzhnYAMEBHUp/xH88zrO7o6Kiuuuoq1et1KwyQzgh+MCV4kn0zDABQku0jgjLsiR/pw1guAqlv9MDD2Ww29fL//vfNzgFYhOXFNvDyf/63fZU+3y0ej6tcrpoXnPfkHzxc2WxWrVbLmHzYrWazabJ5sVi0yRHsX9QH9g3THbgPADA8cciL4+PjWllJq1Z7TQ8/fFGFwj4FAiFLdj4ZkOh7a31dN974ms6cmVAwOKmpqZh52FizSJIU4nhzAWMvv/yyAU68ZCR2pEASupdLSZQUaX4dw8RJveSdy+W0tLRkQH3Xrl12OMDk5KRCoZDtP4pY2FH8kjQLQlAATFjjrD/iGAmbn52fn9fS0pIBINZXu9029YL4R3xgjfreAUm2B1CaAPJ0UaMeUcjz/Gg4wgJFfvAKF8DKAz9iEBaBVqtlMZjJGgAxZv1KssKw3e4dhe3nIbPnuW8okOQo750nDvJ8Wd8wiFiB2CM8G543FgH85oDNYrFohA0gFEYRyxKfCUPI50ACUYhQgPFzxGhyVCKRsCkbkBnYzogjvLx/mu+GJYu4Th7g81gnzOfFZlcqlUxRZdQiz5Y8CwGFgkQ8oSgeHBw0dcETZjxfnh+TeCqViqkHYCc/io41DvvufeCse+IOCixeYW/N+X6vtzw43draMlkUz2MkEtZoMqpdwWENJMJauZjT5mbXgAXswPDwsMrlsp2QwmbE89dsNm3+IEGFpgxJlripLpHOefE5+AdZ/FS0GI15r57sNNbH2iDRwEJWKhWrLglu+K84pYEqC+9RLpezMVE+QFIN8VlUbcvLyyaVI2sDHElMGNKp5giwMIkEUkAAlTsBksqazlTYTBY6IIuEQyXHvQesY1NARiSQzM7O9hnjO52OAV8vd9DUw3sR+AkCzCGlyxGfEMmbNUKTDKy1JAObbGISnR/4jJeS6jiTyfTJk0g7rJlcLqexsTENDQ1penrazjMngSGBjY6OGmDGbtJsbs/zZX2QqGjMwW+USqW0sbGhtbU1Y31h3dl3NL51u92+uYFeagL0cH9Z26gFAGskUN4bNovrp/kPBQOQeGUTCWyc3+M8V0l9pySxfjmi2NsgKPIoZvCRYp/xUh9rD4mPkUCwKYVCwXx03p7hwYtnQmEGkQ57xWdCTz99j975zm/rox+N6tFHr1W9vh0nSKIwlq1WTh//+BEFg0196UvTmpnpMZHMqKXhkftPIUGyBQyGw2Fls1nzXsMAsXdgt7jPgB/WNM+SopzPtQMR6nVduHBBhUJBoVBvPFsymdTAwIDS6bSNl2M/1Go1mwV75RQEvgtNRzxnki8xhCkpsKXcZ5QUz46HQiGTfHlurGsYfp65L5QikYiBFAgK2KpOp2Mzjufn5zU6Omp7GFsHP+vjPzEGlgyQwrpmZBdgJ5FImEUEUE7+Iv56BQ7fOJ9JzPQNvwB6cgfTGogH5BHIIoA2e9d36PN+3t+IJQzVEdmdgpi4TVEIMMVqJMmKiGazN56JU6DYa7DU5F3iPXnEj48DCOO7pMeAXAho9uPu8P+zp/Ft4nHHmgJYJ05z7VgZyD+oYswbZ9zW1NSU0um07WeukfmjAEsaxgCgkD54mnlBGPFd2J9gJvAEc3t94c06QB14M6+3PDiFPex2u2p3y7rpgbau2XlEA4GLfT9Xau3XqVP7dfz5aN8cURYp/y+pz4tK4KMq4v9Dod4xaDQH0K0GU8DAZDakJGs+IsGRzJhhSSJkkZH8AIdI437h0XyARAsgQ8ImgCPhp9NpY279CROwOlRq4XDYAqr3PyWTSY2PjyuXy/X58Gh+8B2JvnkBXyfeWjybLHDYU//dkWwJZrCG3hxO8eCfF8eoITE1Gg3zwhB4SZLeI8b4r1qtprm5OU1NTdlEBr4TEjxdnpLsfrJOfODn/ngWlOSCxAj75KtQgiMJlp9logMJbGJiQo1GQ/l8XoFAwE5+gZWgCQfw5wsggA9FEsGJQo1qme9JIuC/sRGwTlEbYDgLhYKtUX5GkhVUFBaMJkJqxbMIG8bnUUjBUCNhXTkVg3FqyLwwHN4zx3oALABmuSdetkNmJsADlr2/CgbON/R5755v+sOTyh7gmUejvUMmYLYB/oDhhYV5PfXUPbr33mc0MbGhJ5+c1Llzc5KiJhFGo1s6cOCcrrvudQWDHf3pn96hUChpnl+eWSqVsjhG4UMCJa4GAgGbAc3apBBhLUsyNo9GT6ZzAHy4x3j1KQA3NjYsfmYyGc3MzBgYYC2yF/g8GD0Y59jMbu285QEldu1XZDyj1ua6yueO6/gf/yfVc8s2ezIcDmt0/irNfODHNLr3gLrtlvLHntPq1/5QwWDAmEnWEXEJFhkQK8liAQUene4UhEz28NNCfMMIMT2dTtsakGRsPwVtvV43NptrIQ6yjmBM+R2+AwUyOYXc4BndpaUlA3pYgZDpidk8BwooSIZms6nl5eU+8MToRNY0/7DHKQYZdeaPLmadczAIvQvY3hgxB9Pn1aJ6vW4jDz3RQj8E+cBbNLrdbt+9p5gkjzEzG1DG9+e/IXqInzRLUij7gmlkZMT2Bp8F8ZBOp43R5TTKHTt2WFFDsQzeYDoNRQgkE+oV9xnfPL0U5Go+1xNyFH3sUbAOTCiWQcgN4iKNjeQwiig/TvGver3lwSkL9erbOnrbLX+pgFpabr9Hz5z8iIpZKRQOaXpnUFfvPKo7rvuCbtg/qb/46r1qbG7PZaMTT9o+DnV9fd0GAwN+NzY2TJ4l0VKVAFCQPpHM8AaywKgyqUxgSJA5sCD4xUTVznBtmLDx8XGTvQmONBxQ9Xa7XRsgPzExocnJSQtczAKFwUwmk0bpJ5NJC5YkMYIr1SGsM9V4OBw2L20gENCOHTss2cMCSNseIkCtH8HkAdrW1pYWFxf7AAlsijdxw7ri14KtZdg7dgUq6vX1dZNWAMMAVZoiqtWqeU6z2ay63e1xWoAuwIbUS9CLi4uStufTSdtJIhLZPlkEScZ7nig8YJDwDxK4fTMFf0ZgBfzSSBQIBKww4p5S0FC8EGxh53kP3o+Ewr4olUp23UiyXoqn+KHYAdiy/j3A8COreM7cN3xu2GtIxIDzaDRqRY6fyUfxgwIhyewb3m4DCzYyMmJsMhIYshrFEvI9wIIDMbAZ+IkR/DnXTNFJEsNrCVMDI4FPmQILxoiiEDBdq9W0ubmp5eUBnTlzUA88sKAf/MGT2tx8Q9lsSs1mWPF4QzMzTykQkE6dmtFTT+1Tu51ROFy35k6KEvYia411yh5hbTJqCPZMkjE9PFPAKfejWq1akuR+oFqwxqvVqs6fP9+XkLGJ+JFoAAwKadQD9l/6/g9pcOc1Kr7ytMrnT6sbH9T8gz+g+37p9/X6f/gXqq9d6hEE4xnt+8e/omZtU+f//PcUGxrW1Ns/ouH5q3Thd35ekcvgCIaSZE2cIk7DmMHU2XVcZrB8rAHcoRhQcNGQChBnfXa7XRu871lNCAMOA6C4Ic5R6LC3AM1I7Pw574VneGVlxQo2rpN1XalUrMGTuc/EZnzLACcAIesfOwVkDMQPz5U9gZpEocr6I+Z4fyoxliITvy7sP7ESQBiNRjU8PGzgicILII3Fh8ZNxqWRpyXZPaPARp31vnf2EbEPAot9BatOrPHXSuEfjUa1tLRkRZov/FEpsE6gfHBdkmzv4V0mLpM3wSFgCexf/jkwQYTvzHOiQAD8cm+9RU2SkT2spzfzesuD03A4rINvC+mua/9Yy62H9PU/n9Pq6UU1Gq9K6vl4cscHdKSV1uSBn9ZDb/+OPvzBr+vxb31EF05vV4hUQJ1Ox5qqYL4IQCRmLxPBeNHJjcySTCat0QS5k4oMsFooFIzFgcKn+qFRBgaUBcXiT6VSFjAw7iNX0YyRTqfNCwTTA7so9RITgJSuebrl6QYkOcMYEbQBvQBTqlJ8NFJvwU5NTfWZvfEw+Y5XkhpyNkwAMq33zpL0acbi+mZnZ61Sx4pAUxYBm+qeIsFLF7BmVLEkl6WlJevEZp1MTk6q0+nYyKZLly6ZBAh7CXvIxiewIWux3hhij+wJOGN+qLTdiED1yrMgsUmyooUiibUkye47PmHvbW61mkokwrqcGyyxwAR4EAd7RNFD1U7DFdIhgJs1RgLCh7iysmIeq8HBQS0vL9u1wTQRRNl/kiz58J50kM7MzBiQ6XQ6mp6eNoCxuLho0uHQ0JAmJyftekhWFDk8K5IM9491QTc5DUN0IcOM8Tw8owjr4D2wJAsAICw5DDeMLgwFf1Yul7WxsaETJ+JaXb1Lk5NbuummS0qlaorF6qrXI3rhhet18uQebW1xrOa2JNhut43V841m7ENANeucBj5iEyxSPp83NQjPM2CbcWUUGEj4gANYxnw+bx35fhQNDHWr1bJRUfj1AHD8eaPR0PoXflexzbyi4ZDJlPmXvqs7fv6/aOd7P6Fzn/41VSoVzdz3QQWjMV38zX+t7MLZXgy6cFrX/E+/qMT+u1R99ZCxirDM7Xbbzjhnv/NcsTzwzL2EDWBExqXIkLaP76TQ93/PewJOIAQ2NzetUKIQg8XHAoUNyhf6gDhis6Q+uZ2fpUBvNpvK5/MWA1CAKPhQ4LgHFGTYG9izxFXWO/eEZ0ge5fsTw1lvFJX0bgwMDFh3fSgUsiN9iTdX+uIhKFjjsO+sP8gA4jOsM6fXMU8cexIMKzkMDz+F9ZX3nhdMMLY1fNQUXpLMpkEBwP0ipuC/9cwueR/fLddIM7X3FgPSfWMyaivF/JVFiz+0hWko+JhRcYnF7XbbsA6f87ey/uVXendQd177OS0236c/+Y8hqbNmTTbeL1bf2tJr33pZK6ev1Y/8jwG94x1f1++fvc/mu/E7LAwSEPIT8hzVgzdZU+HgWQVYIo0R/KkmqdgkGR3Oi2PGWCAMYmcIOXMV8Yb666KKBZDS5MG81Xq9rmw2a0ZqBbu67r6Idu1ZVzy2qK6y2qgO6/Wjw6otNm0DcMwZ/jPvxSLBAhik7RFXyE4Ywb0cTxAj8cBYMsOUpOX9ZnwWTDBJAgbOyw0EUk6QojEOrxTPhaqTpgqkG2+G935bJCQAO1IeQZSgSPDlXsF++6COrOWHPk9PT9v353vAogPSGYqP3YAEAcsDMPB+JtZpq9XS1ta6rrsup5tuWtDERFGhUEftdkCFwqAOH57WiRM7lM1G7EhZZCIkK96LpA0Ljf8WzyeBjGdOlzpriIYTGAjuuWdzAX80RvAdlpeX+4459YwpzwQQlEj0jkecmZnR5uamFhcX+/zLSP+sDWRpuqyxZniQBjBA0urd1y1bO5L6xiWhNrCXAeDd7vbcQ5IXL+ICwGJgYMDi2fj4uCqVpr773XF7b0BAL9HHDbDDPlJY82+ADp3MMHuBQMD2FCw7R8R69j0cDtse9fHPg91AIGDHHh87dswmBZDoZ2ZmNDU1ZfNeaTwlEfLeNKn6xqput6vu2gWNTExYYVqr1dQsrKq+dkmR1LSpQ7fdeK9yrzyj1vq2j7H1yrPaubaokYN3Kfvs17/n/sCiAUAphkqlUl/HNgU7/k6kbUZtIc3jA/WMM9+XghHfOsqAj2fEQQocCgf+jvXsm9yk7eKf4hmmm3xCcxx9DDxjSI+xsTENDw/bs4M1Rt1gn6L0wc5ThANWsRxwDShCMI00cQFYh4a2j3SFNCCWAqiwnMHskUsArNhtfBMXeSsa7R2fy74kt3PvuC5PlPBvACosN+sRRpO8I8kwgT/yGR8/dgYmFBCXyEMot7lcTgMDA8pkMmaVI75TNEqy+Mh+xB7kPbrsS8gPijoArC8CWU/cD+IIBAk5AdWY+PNmXm95cHrD7WuqB6b0lf86qKC2lLgsGXOyCdUZ7GdpOauvfOV2feL9r+jWdwZU+8qEBV/GD3F8I0GEBcJDYvFtbm4qlUqZJMsEANggghxnMHujNoHdL2qCIMGGSpxETkJgszMrjg0OQ0EVSJVMZQ5gD8e6uvfDTe1OPqloN6sNXat6e1SBbkOZ0Wd17duLygfu19FjN+rUk2t9cjFMkLcDcD2RSES7du0yphRGsNvtGhPtG1GolgE2MHNsDlgG5DJ+X5JV+mx2SX2VN5I394ImGu/pJeH6Tsput6tMJmP3nE5Xrss3zAQCAU1NTdnpZAAkn0QBk8PDwxZsJNlz5/kiqwEavKcNPyG/F432TpcCsHMtJAcYPZ+8kF927Ditt7/9mIaGWlpYSOnQoYNqtWIaGgorlbqod7/7jB588Kyef/5qnThxq1lQpqamJMnmXZKQvCWChhOCMKyfL1Yw1LMeYN+Hh4etUMSTCDPFz+OfojqHzWL9EYRp8KGJQ9oGoLVazcZrMY6FROCLzbW1NZMIKR6k7Y56kil+0ImJCW1tbdnhGlI/GIBVYsanH14PY8t7SbL9gZRKYul2u7ZeSUj8HmCO6SPcG36PcTjENQo6ZEbWMCoD+4e95weCsyf4nr45CtBOrILJA2gRI+PxuPbv329JHxYK+ZGDKfL5fJ/thwIGtSEUCpnlwkYbDY5oc/ENdbtdDU/OKDaa1MbCKZs3yn3dXDipkWtvNR88sQ5AxJ4CQPD9UQh8gwtAxTc+wcRzX7H1AIIpcpgrib8bH6ifZEEh7m1SxAUICoo9Cv+pqSmzWxFXaUZstbYnTsDUejaOkYjcX4B0o9EwJpO9ef78eZVKJVNAWBv44rE7eL8uTUOoIbCb3F9p+9AAijjUR2ItBAXNT1wrxAoKJ7YB4gffA+WJa/PNzeytSqVicY5rR64fGxuz2Etu4UVcpJDnvVBBsUN5ewDKBUqntyl4Qoi9zzVCtFCoYx/0cZbClnFcrB3iIfeV64L5BrQ2m02zVGFNabfbNv0HFthbMf6q11senM7En9LZtb+j0GU5HH/UjTfeqPvvv1+hUEjnzp3ToUOHbLjz4qsLWn3vu3TNrpf03c5BhcMRGz/DaAyCC4ujUChofX1ds7OzfUEY3w+LkCRNsGNhdDodzc/PS5ItRC+ZsGD98HXffEJi9Y01LA5JVt3RRQcrh0+Q65ucG9a7P/S8BgNv6Pz6gzr85Ihyb/QC8crKigYGp3T7uwZ1YP/reueB/6TM7P+k5/+sxx7RXARYIhgTcJCdCcQE2KGhIWvU4XoJylw3IJIuWipdfp7AsLW1ZUHYz+HrdrvGOvK7nE/O4Px2u22zFwEuMIJsfoI6CUlSn2kfuRXgubi4aEGZggGgQ/cnXZZXeo0pWGBZfSclSYJ7QQFDJUygQ7aD5UVGokGPezEwMKAbbjite+99SSdPzuob35hRuTyqdDp9ecRUWEeOzKteX9K99y7rvvtOamoqoBdeuN9Y22AwqFwuZ00y3B/WBIO8vSUBwENFXywW+xrRYEKi0ah5hPkHcMZeg0nBZkHTE4UFyQHWhb0Fm0Ox433KgGiKQn6Gl2f6AR2Mq4OVJvEhlQ0PD9vRtDAQgLRQqDdtIJPJ2PfzTULYg1gXzJ+E1SHJeQUgGo327Xfv7Y3H45qamjIA4EFWpVJRoVCw9U8hhac9HA6bgtNqtWwOJDYjGCD87qx/QDL3nTXA4SaM2AIk+kNFWMt4cFn7gUBvzFAkErFYzP69ctLGzD3vUXQsrfLXP6NMJqNQphd3O5WyxSezBW2WFB0eVSAcMRmc/ZLJZOy5jY2NGZkAgAaYUryQC1jvMIUALI5/5DQsCjCAOfePmIe3mb9j5J0/EtjHSG8tAFj4rm8KR6xNgFDiSTAYNHsXxQtxq1KpGJMPC8z0hbW1NbMe+eZOSBGKL6xE4XDYnjOEAf9NXqPAhKGGrfXFPXHX+ziDwaAphYA0FAEAMuwg1gOO6EylUtq7d682NjZ06tQpYz+5Hhhl9i1rhRjoFTcPLonF2BHS6XTfVB6+O8+QQovZvSiFkGLgB1QjCnKeDYSK99ST/1Ci2Jv8/sjIiBWrkUhvagy2HA434DnTX8B1sw/IYcT27/d6y4NTqa2zL44rFquYlHjw4EF97GMfM6AzPz+vsbExfepTn7KK48Uju/SB2x7VxM5rlbvYC4qzs7MGbkZGRpROp7W2tiZJ5uP0Zuh6vW5jnfzoCiQH33Diq1q8NFRjBBcqZBK9pL65oH6GJQubAOOvAcZKkgXaeDyuoZGoHvrQs4oFi/riN/6O1k7V1GxW7LPj8bjara4OP97U4cev0kM/OKEbZn5T7Y/8zzry53ljJJFNYUYYFE2iwhZBheorKd/9x4YksfiZjx54ecaa+071732BhULBGGQGePvDA3yV7ME1DMbw8LANqWbSgWdbfRAgeBJwSEQEvVqtZt2ZzKyly95PbyDohEK9uan+uFzWzdDQkDEjAGvfFERiYd0hJyH9tdttzc2d1733vqQXXtijp566XpubFQ0MxC3w5HK5yzLmgB57bLfy+WG95z0vqVSK6OjRG6wJhAQLUKaI8mw1Jn7AE8+U5EYS5+cYks31sh5ITjBQ3HuCLJIc4JQZo/V63YpI/OOrq6v2/FAa8C/znoAIXn4UGKOtAPwUGSMjIyoWi32Fx/j4uNLptIFY5FmeF6oO0yFgzfEcehCJNDk8PKwdO3bYqWgwzFwnIC4Wi1mHOp3fkqzjme+ay+X+v+z9eZCs6ZXehz25VGZWVlXuWy1373u70fsKNPatMSAwwxkOxOaMZkgOt6AiJDMk2WHZskOOUDBkSw5LsmlRlE2ZtIbLwOBgMDMYDDRYG2gA3QAavd1ebvfdl1pyz6zKyso9/Ufe38mTF+Kg9e+lMqKjb/etyvzy+973nOc8z3POa0U2bB5eNJ6tVzhI7NhTKMyZFwpYozDA/9ZqtQw4YIkgZnFMI7GMfQAjTSc68z9LpZJ5jdmbTA+JRCIzEmA1rRNf+HfUuXZBh+d/NFuHw9n6C2resMd1RkK3Z4ymsxoczmR81CiKfA42+PjHP654PK7z58/rjTfe0O7urqkb3lPJ/kfyBAQxe5kTuPg7FBU+MxqNmjeRfc7P8t6MVoJNJa6h6FHsLS0tqVKpWI8DNg3WKDGFvUEzG3GW/gH2BxYepGTWLtI/8QwfLrEKDzeghueIqgZ7iJWC+8l+o0DgWviHgpG8h82I38OK4eV3ryCQVzc3N3X//ffrmWeeUb1eNxWIzybGkoM5NZK+BnIc/nv2iT/+k+KTfQlr7CfVoHayBml+WltbWzgpEnCMuoQCx8+Hw2FjWSEo+D2KR3or7iROIEeYykEsJndDJjFRAJuZJHuf9/K668HpQEW1yofGaq2srOijH/2oAVNptmlPnDhh1cHKyor2t0PSk9LW6ZS2L7WtmiLxMB4KIIH8ByO2vLysarVqwIHAjIzI7/mueVgVz0wQjFgIbJjt7W07W51qk+oLCQlGgX/YCJKsAgXcxuNxffBzB1oN3tD/50uf1vVXL2l9fV2j0bxbGM8kAeO7fxDW8m99TI/k/ju9EPmCbt26ZUwMs9C4v3gzYX64F7DDhUJB4XDY5CkYNrxkyJ7YKAi4eFvYeGwWADDglSALOAkEAtZAwgQCAh7BxLPdFBW8H4CG4CfJPE9UwyQDAJ4kA8O9Xk8bGxt2JCWVKqfSEJi8twgJ1Tc/UeRw3wAFvCf3jzXEWBEq/JmZvqcPfOC8Ll7M6jvfOat+v2Pyph/BFQgEzNf63HMxraxs6QMfeEvvvPOABoN5Vyj3G6sMgIsEw2ELXDeSuzRrAGA9p9NpVSoV1et17e/v21iV/f19M+uzn2hkSKfTKhaLxir7GX6MjPE+Nm8ZuXHjhu0JqnxYv42NDSuAYClhgOl0h4WCfYC95zkABmKx+ekvPHeaWIgN2Ii4F56xxNPMXiYpVSoVA4wAFYAPjL4097HDnrJfmORRLpc1GAxULBatWQaARcMdzxBgiT+SySb8HPufYpIiBiCDeoAPulqtKhSazTOl8ZG4SsGKSoG1hqZNxgzBFHs2PBwOq3TyjE7/O39fo15XN/7lf6VsJjM7CGV4+7CCcMTWLM8zEJ7t7VplT6N+z+4f912aFf7ZbFZPPvmkrf2rV68aG4q9CRsN34Eiyk+wgCWF8cOrB1PmR0GRk2CEiQG+oREQ432p5ELiul/TFMHEevYYNgEKGOIvns+1tTVjvAHIFKa8N/HsTqYRQMOUARhqCs6joyObbcvzgfUEXPNcKBCJK/4wCcgFiA7iJQQRtqzDw0NTLlA4KRoAeryfLwJpZJRkoK7Vai3YvoiF9BWgDPCMvSWFnNRqtSy2oDyQbyDTAPpcC/mCtY/tgTzpPcesYeLgeDy2qSUUDKirkB8cFsD+mkwm1vyI79XHHvAR5MV7ed314HSisJ2ixHn28Xj858YZUDXm8/nZwgnOglI4Mm+MCYdn71WpVFQqlZTNZq2S5wQJFh1VDoEO2YnTHAisJGaqoUQiYe/DmI2NjQ2rQggwJAB+n1Oo8DTu7u6aP8n7nggGMJeNRkPlclmpVFwncy/o2uHndOGFy7YZMpmMDT4m2SHhJpNJPffHU/3O35A+8ssxlS+tGAvmu9eh+QFU3C+AA6fieEmJjetPLCHZ011OAOU+ANBHo1kXdLFYtE3B7FgCM6NOSGZItoB9rBYkA99Y46ci0MnPKU+sFd/tSXPS0dGRJSaCVDKZVL1et4507h1MAmwqHdQEUwL4/v6+gXLWtZ8CgQWEpjXGpMDITKdTZbM3lMkc6LnnPqZMJmtDpgEdBFYPInu9nv7szxL64Ae3dfLkOzp//pwBnFwup3w+v9ANjL+L785hEO12245bhTnF6uGvv9vtqlqtWqc9yZtgjo/x4ODA1tPVq1e1v79vTVuSLNHA6Hi5+U7PGyCH7ldYVooUGB3+bm9vT9ls1qR2mFqGh/smMN8kiTVImhVbuVzOZEaAIbYdpPxYbDancTQaGahkDixFBOAM6dHLvCRVOo9ZI/w9flhAAOtMkl0r6xOP3XA4tDFQsDPECVh/Yh6KCvYPz8T4JE6jJowWexCQy/3hmok5NDgCGCbhiM79zf+jwvFVvf5f/W80bVUV2tqaFZ7D2boLxFdt7zIgP7iS0PBwX73DjsVe4lYul7O9OB6Ptb29raWlJT3//PO6cuWKOp3OgvdPmp8IRPGXzWYNILJu+F4U3YAb2M5ut6tyuaylpSVrpGEtMqkAVhbFAol9Y2ND5XLZOq9hUYlhHrjyjImpkszL7mcH+1PU+v2++b3ZT5KsOGYdNptNiw/+4BK86jQKEqcBjNls1opHQDQsLffKN3iyzr0lxzfu0ICGtI+3F3sNBdZwONTFixc1nU5NBifveJuUP1AEdRKvMhjCW5MAepxKyd4GoGJX8jauVqu1oI5QuBKLuCcUquALcrc/+RK/LIUTTDHWLIgk4sPBwYG2t7fVbDZVr9eVTCZvN18eWq7AqkQORyHimu60Rv3rXnc9OF1SU61WXePxTCZqtVq6dOmSVUbSLGC8+OKLBi7G47GSW7PNfbA/H1cDIPEzDCuVig4ODrS5uWnMazweV7vdttOLaJjC24OZGJlwMpnNCQO84UdiQ0taaOrAnI68Rhc0kkqv17Oj/Qje+/v7tsipYKhEg8GgHvrokiJq6NUf53X2bNA2diqV0gc/+EE9/vjjGo1GevPNN/Xaa69ZEmo3x7q1/wGdzT2nZO5xDbuH9rs+4LB5GCvhK77xeKxyuWy/A/OIDwqpBAAO80k1CNNA5Q54xMuH/4gqHxbY32ekYfw1BBKqPrqFpflQcTxXGxsbFiDoEIe5Yb4gBvmDgwMVi0UFAgHV63WVy2XV63W1Wi0VCgVFIhHdunVrwfQPYwGTjGeZShd5l7UBgwgIBYzV63UD00dHR9rd3dV4PNaHPvSu6vU17e0VNJn0bb0uLy8rn8+rUCjYjF3uAV3Ob7yR0X33XdRrr91jQYfzwQF1MISTyWxwdjwetykNMIvNZtNsBwAKkh0eZYI4AZf1733GvjGHBMaaB3BJWihGYrGYza8EQCNDUaRRGJJwYJUBqqFQyCwZeKlJcnhGKVp5L4olAnq9XteZM2esYAqFQtZlzGdKsuP/YDF4TgA0JHzviQY88p1glyigYMYLhYL54olPvF82m7V7hecapggQA6BmL8P88gxZvwBn3/ABG818SuIi3eoUDQDVQqHwc88T7yNscCwW0yQQ1Jm/+X9QJLuu8hf/S40bewbMJpOJJt22hp224lv3mBoBEIhtnFZ3+6o1kAD+6LCWZsXU22+/rVu3btkECOIO6x8whupDnGq32wYEGW/Hd6CACYVCC2oKhQp/ByhhjfDcvXUDeZnnjy8WCwHFGKogzDdFaaPRWOjebzab5pvk+cF8AqwBsfg4iUcAN+Il8ju/y72LRGZzPmmGpPhijQPsiAfEEk8qwNLhJSYu+2kc3vuMH5PRTLCOR0dHevvtt7Wzs2O2EphOmNBwOGwn56GMkJ9ZJ5AX3BPyIvuIYtk3sVJ4kwMBuNxDPyWFwo7cCtvJuvAWK29BIydyn3gxGqvX65kywvpEvWD6CvFbku1BFBoKZLDAe3n9GwBOD/TkJxN6+Xuzm7S7u6tvfOMbikajOnfunOr1uq5du6Yf//jH5uNMp9N64MmOxlrRzsWQTp48adU+JmCST7lcNrYD2ZwqggUIGyrJKjQk/GKxaNKW94jALlG9UIXUajUdHh4uSChQ7KVS6ecM5F7GlGSJAnATDs8GXJ8+09BB8BG1rhyYr2U0GmljY0O/9Eu/ZCzsxsaGIpGIXnjhBd28eVOHh4e6+GZBJz74fZ185Fe0/dq2BoP5HDU6PQFqbCo2BH7LW7duLXTEYlkASAEgkckA+zDIsA+RSMSOGUQOoaJGgqfRioRHIqA6RQLNZDLWzcp9JhkAVAqFgo23QuYbjUYLTQWAKJ4BTQwE5mg0qlOnTmlzc9MSIMmTYocEhgyE/El1z/r01T/eITqUq9WqOp2OHSUKOMlmD7W3t67hcGTAkm7xj3zkI/rIRz6iV199VX/2Z39mhQL+x6tXG3rooSsaDgcqlUoGnFutlvnxAM48o1arZVYDaW4xAQzBetTrdQMdWGUoAihmfJcy9waAgWeOIsPLVJwNjURHYwX7BZaSPQNLCyAA4AGEYcr5/5JULBYNgBLI+/2+TZDY3d011tADOOwi3GdvX6BIJcEBSDc2NozxbzQadq9Z/8iW2CZInoyfQuoLBoPGvLNmkefYR1yvvz8UICRqGCzWOfMTW62W6vW62SHwTxIXvRWAWIZc79lyf09hLnn+FBOrq6sKL0V0/N/+DxU/dlY7X/y/q3fjXYXDYTvRjtOQjt75mXIPf1ib5+5XqHfbu3/iPkXzG2r++H+0k8jwilMoLy0tqdVq6caNGyZdexAKS8c9w87Q6/UMsLG+BoOB7T8Y/MlkomQyqWw2q8FgoL29PXverG0AIPI1IMNbBTjZjmYd/h9jxLAIwAIysiqVSqnf71uzFXHFK4ZcK0ANGwGFHKwha8ITF9irlpeXLX9S7PFz2WxWyWTS/LLI/RAQkDZI7cRrvjNNUOxNfhcFgXVEHEFKxw/uQSu2AIChV9DwWXpPJQoqn+2/Ozk9EokY8IcJ9ZYIrIR4fdl3sN+sI+xf4/HYTpHb2toy+Z85sLDcPBfWMR5lCmrYaPYxBSl525/OR/ymUCFG0ROBcsaafC+vux6c7gcf1oc+0tTOOyfV6/Xs3FmYKn+ShwGA5ahOpL+pm51PatidKhid2mIEaAAE8EcFg0E1Gg0LGF4eIahKs0DOIiGJMJoKCwDX0Wq1rPuOTTCdTq3RQ5qbv7EE7O3tmQeIKrTT6RirQRDijO2Dg4NZd2joUL1JxgIPpvhHH33UTp+QZP49ksl4PNbOjX3pg9JEXWssYoNQfXtpam1tzYI4yYEF7YOylyr8SSOAGuQ7pAkSAIEeUAN47fV6Vr0jm8J0cWACwWB1dVWZTMZYVE62wpRPwMY475MBm9+b8WGdaF6jgqRAoSDAT8V3YVQMfwcTC9Pgj0GksKGZjveg0uU0LQL65ubm7WA80tHR1JhDpEqY5Ww2q1OnTimTyRiTx3tPJlEFg9LyctDWlGcFJVnDGKDo8HB2VB9yO0CBwA3AgbXDv8ZIKdhgmmLutDHgI4WB5D28BxvpjNOfSLY0SR0eHlqDDawSPlBOXsMmMZ1OVSwWbdYwIJOEBUMDk8j/58x0is90Om3dsxxpyH1Awut2u7aHvGcVVtg3FU2nU2NgAIit28f5Au4ohEjqMFEAC0kGdprNprHD7Bs6+X0S5Vn4fQfIpbgDYOK5BNTA+lCY0YDh1R7YLz5fkgHZO0fulT7315R64P06fPcVTZaiit33lNTrKXh4qLVsVtOrr8+K3he/rtX73697/u5/qvqPvq5gJKr0hz6v3t511X78LbsfxD5YPmR6Jhl4eRRFB48tgA/ghjoCkPbPF4sDjCtWMGI7IIPYD5uGbFqtVlWr1ZTP5xd8z+QM8gdgXpLdU2IRe4VnTNyhyZLvyRrFrw2J4FndO+eu0hCWTqfNQjUajaxpinzDdBOAMnkC3z8sMcUShXitVrOjx/13Ia7xzPCfUhCQlzht0V836gh2oDs9nax/4jekDPEdOwKMOTEaKxafxxrxSio/F4/HTf3DzkHcJ84ALiWpXC7bdUH2cC+wlzCybjKZ2F5j/3jwD/nCOsKzDOEE6UNuZWJGPB432wiNZO/lddeD07evP6pP3fe7euD9p/T2SzPfxHA41N7entrttvnq8DgNh0M9/fmuotM9vf6TvAKBngV8gAPginmWnBpRq9WUTCbNJ+U3Nn6ucHg2DBtPEwDPM18s2lqtZiyPNNsEyWTSBltTQUmzYH7+/HmT41jkvgOPTevlt0KhcLvpIKxgYOa9Azwj57ABpFmweP31140ZDIVC6g9mkkSvO7SqEZBO0OJkFdgB2FWqR+QamiYkLTRwUAmzeTg9S5pV88ViUdlsVtevX9fVq1eVSqVUKBQUDAZtvhrJksY2ZBgAAvILoJGgzuBwDOU8CwzzgUDAGB4aQpDg8fkAWA4ODszbzHXRnIcNYTAYWPL310MADAaDOn36tMkzq6urNmYMUzpSMfcOgIrNIpVKOV9WVOHwzK+JL4y1+53vfMcCCgGTESqzwiymySQgKWrgZTCYnVKCQlCpVMzSgWQOC4nNBUmR4gK2QZqP2oFZYO3zcySker2uQCCw4BOWZjJ4s9m0rm7YXYI5AZ9gCkCGiWBvIkWzJmApAJrJZNLmIwJCYaBRRUiQDF73+51kgLR6pw8ehgQ2xts6YEDoxCfxsO+bzaYBa0A7cYMiOpVKGSOdTCZt/Xkwzwt7AicDUdD4ImA8Hiufz6vZbFr3OGoSPkJiH/YLQDaeTA+o2Hskaz+7kzVLgh8Mbh/GUTouSVo595hWzj32c/nhx//Br6jf7yvb7yv6pf9aKx/9dWU/9aymk5EOL76mna/9rga9I0vE7DnWlmfJDg8PF3zk3C/2nzRjuwCKxWLR4sNgMDCmD/aee08RBrlAbObeAHYpjFlngDfkdTybNMtw/zOZjLHaePRZOxwmA/tG/EFapyhmnQMevQWI78OelWT+Z6wFEBTsGy+t+5FW5BNyRbvdtv0LgIbMoeAEGHW7XdXrdUWj81mr/OPJJdYR5APStieyKKQAfd6GRn7hWVAox2IxOyGRPY9SgF+eooOYwz5HPqeQDwZnkxq8fQa7n/et0iw2HA7thEi/xyiyeW6sCQq9Oz3xkG2+eGAfEFf4fQqUWGx20I8fCfdeXnc9OL30wlQP3PdZfez9X9NR91NqbidtNhhBHHmh2z3Ux389qPsLf6h39v+69i72LCD6JI8Hi3FSqVRKOzs7lsBIfEghgEyqJhYh1RdADhCKrA2rBMMIkGO0g58nysJl5JU0WwTI5H4sEWCVQwHC4bC6R1UVEq9ov1dQ8+JFW1QvvPCCCoWCTpw4oVarpZ/85Cd69dVX7WjBeDyusw+PNVVQ0/6yDVTudrvK5XILjVz4bfCE+gRK8mUTHB4e6tq1azbEHpnfgziAHECs1WoteDHxFeERhp0gkGGGB2D6Qwp4//X1dQtCVIVU8YBPKkEYPeQh7BoADUl2wgojcPAbwehThftmFtbHYDDQzZs3lcvlrAjyA6DH47ENoqfwgoFZWVlRoVCwjvpsNqvpdDZwu1pN6fTpssLhcyZ/SzNWZXt724AV7LU0C6bxeFzHjt1UrZbRYDAr+NgXyFI05iAXIv2kUinrcg+FQjbEH7YPNgcGkWRzdHRkR0eura1pfX3d2CGUkb29PWsq4v/BzgGIvewEICaZwIBJMjYcQHj8+HENBgNdu3bNmCqSIwwE18raxDMGACYBwQbDhpMYGS5P0cb6QxoEnEcis1NjADYUQIPBYIHFJcmR9Ek4MDjEGd8FPxqNrAGJe10sFq3JC885RRqA3neFS4tTQXhOWBH8sY6sd5QW1huFlz+YAJLAs7bsLcAxz/mn//nfs5m2vumt2WwqHo8bExoOh9V55ceqffNrNtkhFotpdHuNIA8zTsurEhSB/iQ6coZnSWF/kdoBoNgmAJ4UakdHR0qn06aqed/ewcGBKpWKqVLxeFyZTMbej+fhWS5faKG8eEkalYHc4UkMmhcbjYYxYXw3foe4CwvOgRYcB0q/AfscRXEymfwcW0/eA/iiNMHqoUBBNvAeAEvWHpYocgHNj5AEkBPEY8DW+vq6FYyeQaUfgoNTWq2WyuWyNXhWq1UDncVi0dYiDaYQIbwP951GKmKHL/goxiAgvKqIGkFBAMPLeiRvSHN7EvcA4ov/B6AmzsLW85zYi6hVFOE0YY7HY/P/+7jp+wbIZ+/lddeD00l/oO/98b36xK9Jn/vE17XTeVoXz5/Q9GZSrVb7NvsS1v0fkO6976ayS6/o8tFf08Xv55XJ9Oy0Du+VYZwOchf+EbrWJBlgRAJrNpsWHDHuS7LBx4VCwSrtdrttrEQymdTu7q4ajYZJzNevX1csFlOr1VqonjKZjHXiwWyRFGFoWMxIY5ze0P5uUOf+SlmPPpPWG99oWMW9u7urf/Ev/oXy+bwmk4kqlYqq1apjomJ67MF3VZl+Up2dplVlBDQqYuRTSRacORkL3xueQN9ARdMH9geCBccuwhh5o/mxY8cWAp8fm0OyRD7C5xoOh+3caBhGpEg2Id8J9gEfJbIGzDvGcwLE6uqqNfwAFmimIXDBpoXD4YWZuawzBmsDrrk+wBoBRZJJ8zx7Oi0JrtxnOj5feKGgv/23r+nEiV3dvDn3THJt0eisG71ardqpMLMRPkc6fbqmr33tIWsmpDPbS9KwZIxWY8oFDA+JGxaKDk9kPpIErC1D9kOhkGq1miUpEiWBnDm2J0+eXJjty89SrLH2kIN5TjCSMIdIjCQTRj1JsmJXmh+ewfrzxQvgD0DkmVUP7DzLDxPkASwetNXVVdVqNZXLZXu2sDSwpiRA7yUHmOAzvH79urHm+MuwtgB4KaJgLCno+DP3j30OGEBZIAbAoLGfAHm1Ws3mQ8Ko+6YNGqOi0agBepg+Ei/rAmaLgfF8NvIpMZ1JCozjouiSZE1HxHzWI8UA9xaVg1FteLt9s45neClKUaTYjwBeVAs+H5YW1n0ymR+FSrGHFxJVgqIFkgG/PGsoHA5rc3NTw+HQ1g77nVxG4xrsIS/WAzHOF6PtdnuhyTQej6tery94GImlKCLkJs+8ca2eaADAoshwL2FvKUhQHvb3980mAavNXgOcMZauUChYMUcu8c1F7B+eVzAYXOjsPzo6sokzFLcUqDC2gD9iwN7eniRZvmLdYrepVCp2kMjS0pK9B3mHwoX9x2xiPhPrDvun0WhYoQDIZy0kk0n7XhSufF+KS1+4AFp9cYjqCVagQOLeMV6T9/lFr7senNbrs+Hw3/zSaT35K/+BjiW/pk988Ec6enpTR6OsApoovrSnqGpqBZ/WDy//PV39YVfZbMi8KNIc7FFxzmdE9nXt2jV7iFT+LF58OlSKkmx8CouKaofkCttD4mIDs9GwIUDVe4NxKBSyY0FhdNLptLLZrHmbCADIA9PpVM1yTNX+A3r0vtd14bnTxshOJhNdvnzZpGqYF5LBmYfCSoYu6kcvf1TdbmXhPGU8cYCL4XCoXC5nyQoWbjCYzd4sl8smdcMSADQwVuOZ5btRKftxSn4mZL/f187OzgIgZeMQKEkIXoaFaSBQkLToNicAEKBSqZQ1D/Dcpfm8uTvHOXGsHXPwgsGgMap4iY6OjlQsFo21YH0hTWENIbkAmrAk+ISBFEnA8bNTL10K6tatNX3sYzf1la+cXvByAQpY//PmjpCeeeamer2Ibtw4o0hkPouQ4M5zJOEBSFkTNAkigyHZU0TROU8zHoz0YDCw5qh6vW7zPWHTCPSwmenNdV+jAAEAAElEQVR0WvV63dYQkiISGMGWgeKSDGz4oxwrlYomk4lOnjypY8eO2X0E8O3s7Cw03ME84msjdnAvQ6GQARPfuQ9I9142/p61xP5jCgUMBV3+2CoAGABmwBaMGsUk399blnyzBWsBQMbRzzyv4XBobL33glIwoZjwPiQ3QBFNOCRGwDeFViQSseHnTFCgAQz2lvWCl5wmG+915VkBflB/YOzj8bg6nY4dtsF3xLdHMvdrnQILcOTVF9YizLz3TVMcwH7yHABqFA5ezUDiXVpasoYU7EYAH+Ij+5s9QP6hIE+lUibn87281M5nst5Yg4Dq1dVVKwB4Jowiwz9Nj4X3f/uu9XQ6bdfMRBSsJtwLmGqAPvccNhMFkWdMwydrjBiPekIOo0ChcZP9NplMtLOzM/Msl0rGxFJQSTOWvlwu29HXPBeKH1RSCA6KWphcJH6KePIVpAxxhXjBGvNgkPUApkAZA8ju7OyYxYncgQoAwwkxQPGOogHWobhhjVKo+DXbbDZNzSLPYVdbWVmxUZTj8djywHt53fXglE1RTGdUe3lZb7d+Vel7Azp+4pai4UNNJgHVjh7VxTdyar57qF6vaYEDEMOmlebdd3ikyuWyer2ezTdk4eFPQVpkMcBmwB5RHfKZPHwqIII9i5pAwQbFDO1PWRmNZkOfWRD4hSTZvExGHjGipNfr6fVX3qdPP/37+vRfu0/f+Kdj6wilCiNIIM+tZKb6pWde1H7gIb31/bp19zJSAgtDNBo1fxWbFR8lUrsksx8gCdCwhgyDJ5JNsbGxYUmDRExApFpuNBoqlUra2toymZ1jVkkoJM1wOGxMN0ENlpwgQcIBULfbbfP48H6hUMg68WFUkXez2aw1NBweHpoMiC+s1+upUCgolUoZ8+mD/HA4NJBEkiXhSrMiimobxogXPwPg4feCwaCef/4hPfvsi3rmmZ/oK1+5X5lM0Riu0WikbDar48eP32bH+vrQh97Wgw/u6Pvf/5B6vYmxjyR0giSFFO8DSyLJniNAE1YAQACLSVAGeBDc+AyCLMwS6wlpGr8ZzDmJFQBFw46X5D1r7yVnPpO9CNjH7+U7eWEF+YdnCSimeGPWayKRsJPHiDFYHGhQoHCS5ueA0wnvmVr2A4UJ9wx2CLWHBE63sG9agcnjHsHWwLDguaZ4pMijCKIwobOXBIznjntMocAagbnlHrAOaaijcONasWsAOIidAIJcLmfglvvoJ2VQkPrigP+PegEZ4NcZsjwMHTGM3yVhe28y7D/AmYY21j5xnU74drutarVqUxaIIwz1Zy9x7Z4Nw7aEP5e8BAtPYQOgpJ+CNRyJzI/qrtVqVrxBGgAWsWaxxkajkb2vj6WwleQsvOwcjgHjzHvwTAFvFA+wxZLMJsI65T5if2Ot+wkA7AdAFvsYvIAqyd4g7pD/2VfessIEHNYvcQPFKB6fHXcbi8VULpfNZ51Op21tUxAmEgmtra0pn89brwRrxE/fwCpGPiH/ejsD1i+KIFhvikbuNZ34AHuuB+sROMAryMRTcA3eW9aDVxn4DhBT7+V114NTTnWQbpvXhwNdeb6pH36pakzkqVMZ9XoVYyZ8JUyl52lub2ImwWOE3t/ft4dJgIHdCQQC5p303g8AKkmNBID84H2TGJUJDEicHA8nydgj/IdcK9WoND9hhAU3nU61czGh85u/roeO/a6W/s6zuvTTFfVbRyYd0IFeKOSVPpnUBx79I00DYX3nGx9TJnlgUg8AbTAY2MZBLmSBErTYTCRIwD+VPn9PlyTzHEm6JHgmElBZErQICoVCYWG8FYGdypFg7mUkGCyeNwkgHp+NbqLBBvM3QC8cDltjDGODaMTjnsBIwdwwAolqm3vmwRvBFYCL3UDSAlPGfxM8CGqwElTbALfZWo/pm9+UPvOZF/XX/tpLOn/+ETWb5ywoz64pqFKprnPnXtHm5lX95CeP6cKFE+p0ygvFD8wkzBtghiKHhj4SQSQSsRmwMI8UXrCavtEB0Agg5t6gJEiy/YUUhkSPv47Ck/21urqqUqlkbJU/7551RsF18+ZNa8JiXaytrWlra0vD4dAO3SC5Iq/BXBJDKLhoiAGMwdoDvAENFHa+GRHwz+EElUrFwJ9njUh0PEskcdYPoJe/g9knrpGUAMt+H/kxZxQGPAMmgwASYGHxSTNeBp8+Pj3GpXFPfAFCLCeJSrLr87Iw8REgDPgGwFDow6TxnLANoGzx3QBIPBPWBlYk4iqNQQAfrpEYzh6l4OE0QOIiIJZnhwwOgMbDj2qUy+XUbDYtbhLD2H8UssvLy6ZONJtNywfsLeRX7ifX4BurGI2IpajVapmCyHdCbSAfcN+9xSgSiaharVqcJd9SKCLdE1N4fktLS9asV6/XVa1WNZlMbGIHz4n7zj1iXwLOmc6ChxkVh/WXSCRMraQgYP+xrym6KfZZxxR32JnIGRRZqH5+XwcCAbOLYRe8c62TE/zsbNamZ1TJe16B4rkSM5LJpMrlsql13urCc+TP9Xrd1gQ5kudLcbm6umozkpHuYYD9rNNQKGSkwC963fXglESDP4cHRkVSLBZVKBTUaDRUq9UW/I74ygAvN2/etCYM/CPpdFqZTMb8FjBDgD+8nceOHTPZBhAsyTr+WWi+ehqNRqrVarahJVkAxceCZ5WKkw3a7Xat+xi2gd8noflKm0B44cV1Tca/oYdOflnHPxrR9uCzir5VVGOvq6VIQFunJrrv5LeV0Jtq60F95UsPK9zvGUDnOuh0JIlh+N7d3VUoFFKxWDSvJWAdoAdzDFtD0qISPHXqlKrVqm7cuGHsCV40PLc0eBw7dkzBYFA3btywhE1w5/lQZMBwUdFzSgmJ1AMj2F2CKkEfSwN/x5w5vJaFQkGlUmnBq4Rkxu9XKhWTNOcd9fNB/twfn1AIJiSS4XCodDptkjajv2DzYV2RzZaWlnTz5gn943/c0i//8nV9/vM/VKfzqq5f31C/H1YoNNKxY3VlMg2122v69rc/rP39J5TNTsx76D24GPphtigcuIescZ4fwIWEMRgM7ISvcrlsw88pCAAfPLM7RyYB8GB8UAy8Hw4QCWjwdgbPpALyGF/DwQ8ARNYuaz4QmI9dIXlxzjbFK4dusJ/j8biNBcNzLslktl6vZ+wmwFean3uPzUiaMcq1Wk2lUsl8pkhrxAz2VTgctqbIyWRifudoNGrSZbFYNIDF90XKg01migBziWu12oKFhM8iPiAxAnBharg279ujwKbAYn3BVuLtJ+6wrlh/7ONkMmlKCafu0YlN8euZYkAuFhWaXgDBXA9g1E/ZODo6Mtnbf0+KTwo2ADz7RZKBomw2a35pmH/f3AJI4s9YGVZWVqxYxlYC6UFjDuvzTp8nNgTW0ez0wDnxAWAFsGFjYP/T1Mq+kmRHffMdAWClUskKZ8CMB0gwphRAfE+eKQdy8CwhkpiGADBdWVkxTy5g3TcvMtlhZWXF1hRzkDlQgfVFrsCiRa7xdg58q16mZ31TEGLpCQbnp1tRqPO7MKRHR0d23dFo1NhwOu/ZDxA/sKTsSwC192SjEEIY8F2Gw+GCn5uT/iDBaM4jH3kmFcWM4qfX61lPy/r6ujWAU9T/otddD05rtZpVcvho8OuxmfzJQfhcGo2G+SMJLixANh1sqr/hbEJp9qA59g/fjSTrekSa4r14yL4Tb21tTel02hqsvDGcChTKHODBAGE+G9BCcKxWq8Zo8t2QDSKRiF7+blQ/nnxWT31Get/xF3T8kT3pkdn9nCqgyujDev6nv6G3f3SoULCjcHjuX5RkG4aqjCAA+PAeKpIzi5pGMYILDGihULB7AIhj81MgIA+y2QgCAGe6tuv1+gIrxaamAqXw6HQ6ajab6na7NnkBUEOXbiqVMrAJyJJkgYPPgIFA8oLtZmg6n0njDUww9zUSiSifz1tBATgjcNMwRTKnaAE8+IaM6XRqjUTcd4qCq1cT+of/8AGdONHTxz/eUrFY1tLSQMNhWI3Gmp5//iO6cGFFoVBY+fy+VfQkaF6wUgDJWq1mhdf+/r51Yq+urtoxnCRp/pu14scYwfTwPev1us3Po/Dzdod4PG4nKuE5497xrMbj8cIMZAoaKn4KAFho7ruXAvFcAvgBWeyB6XQ+eYHrYz1TiKIIYCUBZAM08MF61goJG7YHNgYGioIOtoPrRoZEZYG1QmYGVFKskVRZ9xT9ME6cboYEiiKD54339AyQV1qIedIc0OPtl2RKEcWIH0+GegLABiRQWPBM2H+TyWzsGD5Xnj9J14MXihAATCKRsHvTbrdthFiz2TR2z7PuFE13xoLxeDbQHeCCfYlc4uVrYikTQiTZ2mPUH0Us9hLAITG10+no1VdfNdsU94S9S2HFHgDssa5CoZCtDT96jMYt1jj3EbvJdDq1GMeLfYha1u/3F6a/0LSEQgXgI5bDTkNEwMyzhrmP3rPJd2GNrK+vKxCYHQDgnwsMNAXscDg0Ty69DPw9eY2iH3mfdQYZBkBmbVH4QTTQlIWcD/CWZNY3ADu9GlhZsCb4Pg4YXnzU7CXvbQfEco3kTF8Msp9hqwGfsVjMxuBhb2CsF3sbTIFyBhHkJ778otddD06hykl6LBQ6vemu5KEQHGAfeNjpdFqnTp2yqtd70vg9jMS+Yt/f37ffPXbsmFWYVPvLy8t25B3VCJuKa2WTw9ZR3cOs+cYSqHYqptFoZMPO+V0CBhuMipMqu9/va3f3QFf/0UCZzCM688AnFFsL6uhwpOrOkdrVoXq9sjVT7e/v26y6VCplHfqARzpX8TX5Ga+wfMjaVFfYEAiUsMWDwUBvv/22sY6BQEDr6+v2mQRm7gXTFDyYoIKMRqPGAK2srGhjY8OqV4JMtVq1jQZYoMmIihb21Qc/vh/VsiQDXTs7O3afuEZmwTFb1a8fggHBEXkNgE6VS0IhKRL0CGA0m/HeJFmKGnxx/X5f29ur+qM/KtrxhozDmk4HCgSGC+yMZ29haUjANAZ5+wHBk0kAeBMJzDQJAPrwqFGswEQDGAKBgEqlkiUbOnO9BafVahnApABkIoZvDup0OgbUARmxWMwYdKQzGHJOP6lUKrp165b5RLmPJAPAZqlUsu/AiBvvkaUo4mcmk4klJxI0gBn1h2IYQOS979w7koj3wyKxAdy8LYKiJ5VKKZPJ2Jzm3d1d7e3tiUY19hffAWYMZoZiAFnY+82wQXW7XfPe8cwAs/w8iof3ZgISaAQDhNO1TMMM8R/gAgj1XkXWmgem3Afi5Hg8NvYaK5Ek+xzWC/d/MpkYaOVAD1QSACnXzv2DjSSuYvXhWvju2Ho4iY11iE+S3HSnJx+mFKaXEUrEE28pYK0RQ9jXHAxCAeA9wYBdinFiLyDRA+6DgwMD9sz09ZYvTvojHrP3aOz1Vg2um+/AXuU+49Nlz0nzI2/9/gMUM5WEfAkLGQgErLMdCZ/1Ql6BcKHgRtEAKPrT8Sjk8GbyfGBQ77RmoCpgpSA+8pzBEyiS4JRIZHbsrB8pSWzDc8r+o8mXIgFSj1wDHup2u6a6SbKB/kz4qFQqplhRADLy77287npwSnXMZmBOJMGFxU2lShXK4mMzIbXhF6S6INAjlQJ0fSMH88GuX79uLBlJi4akg4MDNZtN3bx5U5lMRsViceF6fMAPBoNqtVoGnvGgSbNqJ5lMajgc2lgLn9TYfNI8GVJJeYljbopf1mE9ruHBrKo+OpxVcDRgAUpgagBJ3HtkEsAgQRcjPcCKphXOJsZ8TycoP8sMSDyNPBvmR/LCBwabSie7T1p+aDSMZr/fNwk2Ho/rnnvusaq1UCgon8+rWq3aRAQ8jTBCsFt08pLwCEz1et1kJljYyWR2GEIul1OlUrGEIM2lrUqlYnMN/agQihlACAoArCBJyjeswPxXq1UbQwWrSmLDI0bR4v14sOH4JL1fTpIxEBjlAXKwX5zAxKicSCSiUqmkdDqtwWCwMMya94e19N+71+uZBw4fl/chS3MZTpIFV+Rc7q8HQ1yDlxaZBsHIGoAhgToajapUKhn4omgBSPkCCRWFwhigBCskyRIPzwBmBPsExQ/FyJ2JxzdIwchzv6X5YR7MuiVR4bNstVqKx+Pa2tqyYu3o6MimU1AMwLoAWLhG/9xhMr2H0HthAbnMY2adrqzMDkGgAIKhQ0pEEgUoeQsGcQ3mHRDilS4f23lGfnQYawcQxn2E/cbzyc95ljkWi2lzc1ODwUBXrlwxZYYCw3t/eQ9pPpeaPUQsgLlEXRuNRuYd5/rJA7BhodCsKZNxfVirYNMozGHuKZLD4bDNCMZ3imKIVYZmUJhsrplnx/4kBgFeeE4AIhpmiWGAPgoCWDcvA1PUwtLRN8G+4HkQO7xiQBHN/aeYgIhg2gL7nD3G9QKO+XveE4mdvOjtYRBdAE5A6GQysbm0gNf9/X07yMc3U1IYcf+4JtYlVhyePf0H/Dxrl1zAtbNXyZv4f+nN2N/fNx++V0Z94zNYgtznPemouMQV36PzXl53NTiNxFdU+sxvKJDbUmzztJZWErr4z/5LjS7+zE7LGA6HSj3xSWWe+ISiuQ0Fossad1rq3XhHvee+ouJazNguZnuysTEWSzI5BNmdxcgohW63qwsXLqjf75vfElM6IA9P0MbGhjVEEVRhy0qlkjKZjFVW29vbZkrvdDrGIGEjICC2Wi2rYJCHCfbe7yTJKkKACvQ8YI9r8U1LMIxsHoAZixGpbTQa6datW5ZIT548qePHj+vixYvGZjBIPRSaDWdHrvSzL5HnfXVIxU8AZvOTBNg0/ne8qVySgVlYI1j28Xh+6gXAn3sGGwngwWaxurqqw8ND7e7uWoEAS7S0NBvYvLe3Zx2RJFTAHKCC78R7k4z8MYYEBv5MIIrH4yYTU1TFYrGFU5pghghC0nxmHQz78vKyMWgkez9iiu+AV4/7ylric2G3YW3y+bypFtwjkil2DK6TxiECIR5NikMmFaRSKZOcCcokuuFwaON5OMqP0TrFYtGYTcaBAVx9p3IoFLIpFCQBZuVSRLFeKF7T6bQ1w/jjgCmYfAMKDZGtVstk7U6nY4EfGZVrAeRxWAKglOSxv7+/IHUy1olYBngG5FL4MS4KyY7vVSqVlM1mTe0A+HgWfGlpyWRKDmCggCWRI0kTzyQtAF2ui/gBGCLu0vSCTYaiiuRcr9c1mUxsxi+x0BdUnkUEgLDXqtXqQkMJ3fWNRsP2PBNMsAegMGBr8Q2WPHvAUK/XWyi+2TsU6NVq1WIyoA9fvgf67DVUpk6ns7APvMfRM5DI4qw9fKjsdd+1jg8cYAQbJ82bbLjHxEUKWeIgTL73knJcN01PPAvALZaI4XBo0xZ4Rh5U7ezc0mOP9fXQQ/uKRI4kBdXtxvTOO5u6dSutbrdv+9NbE8h/MIHENOIfbDeFE/ePohoGmwZN1DyKsk6nY2OeUEVQMsLhsDY2NpTL5bS9vW2MJQoi9izv8WWd8Nzo84DBnkwmBkgpfvEwk+8hkWC8PdvNe0EicY9gPsEUAMxMJmOkAPmPPE2+YQIAxZQnkf68110NTuPpnBIf+hWN2nUd7d3Q0pkHTV4ADE4mE8VP3adwr6Ph699XdfuGgmsZFT74WW397YfV/Jf/hZYlYxI46g25lUAMo8OGZzMXCgVjYWFpkbP8HERplqhOnTqllZUVSyokV98AgS+TTQ3gWl1d1dramnUlIqN7r52kBdaIQOI7+bn+tbU1+454c2jO4L1hGgiSSArVatUkPuwImNrxu8FWM3alXC4rFoupUqlY4whVN4wwgSoSiViCDAaD5j3zcgUB2QNXz6JxPTAKHN14dHSkra0tYx8IaIA1GB1JCyAXmViSXQsMGz5fGGKqXsDQ5cuX1ev1DKz5jmpGslDZAnj8kHXmFvrngKzGeqexBaBDwIQBgBUE6FQqFauWJVn1y89nMhnz5bZaLW1sbBhjlsvljNH3kxlgV/D2kqQAUgRS2FMkMCRZ1i+VuyQrFAFqsDk8cyRffH97e3tmHWANcH0AZ4ozmFiYMVhr9iMJlYYLXnwWIJpnw3sw6ohCgdFnACz+YW/T7IUV4/Dw0EbTwPrCtqAEEJMmk4ny+bypHXiaAdiweuwPvNDNZtOKGGlWhOVyOVt3JGRJBrqwReBH9MyetyR5tQFGhVhYq9VsmPpwOLTjlL0tib21vLysZrOpSqWycKwz+xy1AamRZ04e8M2vHggAyGDbYSqx3fDM2Fubm5umaPF8sNMA4AEEnkVnT9VqNXuWACCuBa8fuQPJFRmaogO1BvAC8wvo5iQj7mer1bLrgFRhT8EqTqdT6ygH1CKpw2L6/eGLDDy73HfWAPuLvUfBy31j38bjcSNZAKS8H0rleNzXRz6yo7/5N28qkThSvZ5QqxXVZDLSyZNVPfbYDdVqa/rJT07o8uVVW7esET9cnubAnZ0d2xvkIQAXcZbvjzpIzKUJGUUUCxJNdz5X0dTM3FuKNmIcVjbiO0UEnlRsXmAOemWYiY31jRxPbE4kEjaTm33NfSE2+TzJ1Awat2FFsWxhl5hOp/YdsaKheAFq7yTC/rzXXQ1OD6q7Ovq9/7PWU2t6Y7ehtTMPKpVOSbc9gvH47Mi3wxf+WCuplJrNpnYvXZoFoHdf0dm/918oet9TWr113qpmKhD8pd7vFQqFFk4PIuCzsFlEbLATJ04ok8nY5oBp9OASQAsDcePGDUtA/X7fWDgqIKQBDNUEi4ODA6XTaWNNGV/ChiCA4qHZ2tqyRIYJGpC3sbGhUChkzUIEYCosKjjkNdgRfo5NEgjMuql3d3d18+ZNsxwgeTAL9uDgwFhCqm66CK9evWrVIicxESyQ2PA8YrOg6icIAhgBrJ7B8wPkCfQEcH8oQq1WMwYO3x/seS6Xs1O1/DxFmCDWCbIjSQgAi+eKROpZYGkWlGDPMcrjW/QVLPIOax82CDkQ4AD7hcSGpIs9geTJsyBZ8fuTycTGvcAmsT4kWXCCfYXlo2BZXl7W9va2ut2uBW5p7rmjKNrd3bV1BvBrNpsLACgUCimXy1mw5/8hV66trdkRhgAAigLAMiDTg1YsKgR2b1HwDVQUhnQ74yNDloa9g41BAub5wnoDoCOR2dgtGGkaSCj+/EBsmFpiD4w07wO4wc7C2sYrC0AtFArGOrF/sOZgsyEe4V0jWVUqFbsGn8C41yQ22CnuCWv1TjnWF1vtdtsUBtYmncUwY364umeTANa+MYQ4iW8aixKFEbEU8AejWywWzVaDGgcp4L2erEtAGjEFlp/vxRGXAGQkfQAoCglrgP1NEQGAZh3HYjEjDYiNxBwYZ+9Jh42u1+vWjBsIBEzd4b39GmWPQCZQwLMnyFl4ivFcEwdRMwCoMONeDfBTXGb9DAM9++x53XtvV+++e1J/8ifHdOlSyNSmYFB66qmwHn/8hj7/+Tf0k59U9cd/fFqRSMxAKexnOBw2NpNnRYMZa5tiyVtqiAPT6dROgWQPoc7EYjFrCKVhMZ1Oq9Fo6NatW0omkwbQiY0Myie28e9EImFr0lsQseMMBgNTNMm9kFbsHWxQvska8oW4kc/nJc28+lgx+I7sJ8+Ah0IhW3fkUK4bVp7iDtb/F73uanA6Hgw07R5IqTXFb/s6qByazaZ1DwM28eNNp1NNDmbgbhqO6MaNGzZmiuRMt783qLMQy+WyMXJU5LBYvjkCjyDGct/hJ8maoWAnkOepwNkUJD6qe+9lgjGi2x35iuACm3e0nFb0vqe0fPJ9imWLmvaPNKneVOVb/z8FyrcUiURULpfVaDS0tbU1CyrBkJ74T/7fWt04qQtf/G9065v/ypIBEk6z2bRFiw/Qy5G+u1KaMdQkUhpcSJwkNGnOpGazWataaRrijG3YSwInz4GgePPmTQ0GAx07dsyYCJ5Ft9tVoVCw5DudTlWtVlWv1y14URkz6gtW23eEY+uQpIsXLxpAZSwN0ibBjkTvG8u81M28VDx8d/pDSewkTooOP2sOMCrJur5Z08hEFD4wsciQFEschRcOh+0UFRKHnw3opSiancbjsXK5nLLZrI0dIplhvmcMFskSdpU9CCvYbrft/vrmIJpFABkcSsEIJ/yWgBWYTPxugEdJlrxRCEiyPAfWFV5lkncsFjNJa39/38A4yRbgwLOhAPVrDPAbDodtZnO5XDZpnmuiEPPAWJKpQ/1+345AzufzSiaTqlQqKpfLFmtIwpLs0AzAJvsV+Z7vB1MJW0KRwPcm4e7u7pp/ku8OCAec8D1JnhSOMJ2sLwpcScbqHD9+3IpZQCdNdsTWcDhsTDyxlkJFmns+fawnTgN++a4wgTQ/EVfxcxPTUHuwUJD8vXTMd+JFgeLjSCAQMMsPa4w9yfPl7+LxuBUSHFqCDcrL5MjnPDOUJpqGICbIEclk0sAoqmC/31elUjHLAHuFYk6SWRUAoNw7ikwPjFiLMIWA02g0at95VlyF9Gu/9qaOHz/Sv/yXD6teP3l7jR5YrGy1Wnr11ZSuXn1Ujz5a1DPPvKpud6LvfOc+69+gSZX8Sh73/m5iKGqRXxOQM96GwH6HVOBeUnBR4EKYYEGRZCMEYUkpJPjdwWBgxe5wOLQ8QuMYOZBijO9GXiMeeJDJPuV5wUzDjJJvWZu+6PYMLXHPK1BgLCyCxMr38rqrwakkXb9+XZcuXVJ864wykg47hxreTgYwlPhDkoV1FY6fUioc0+rTn5cklV9/UcPbHihYLgzK0twLhATebrdVLpet0ifgcl40FTgjR0ji0N+wj4lEQolEwqRcxk4R1EnYPPx0Om0VIEkRVqTT6Wh9fd08jwBluv5isZiWP/IrCpdOqfby91Wt3FQslVXuQ5/T+t/4T3Tlv/tP1KnesqAJQDz12b+i5UxR0twGAGuCX0ySsVH4OblG5sgyVovvzOZsNBrWrSzNhgHDwAKwUqmU2u22SdCpVMr8oCSg1dVVm1eHFYLkx8gbABWM6s2bNxWPx3X27FkNBgNVKhWbhUhwluZzFfEmch9gbmATkPthOiiCAAAEaRIFs1a915TmNgoivGskFt8pzz3kGQCy6bTGNwfjD5NE8KOY4bNJbjReMDv1+PHjVqhRhABCmWSA11OaD4CPxebnngM+YL1I8p5B5nQZCg2ABLMkW62WsR7YKNiDjG1ZWVkxOZu9TKEH2PXyOI0LMBM0M/qkyvgdWF9JJqPS5MV4KK4VcOIZPS9r+9FRgBruBf5WuvwB2/hvGZDOmCjuuU+I2EcAPY1Gw+4zoAIvLCwIcQlmEbDIPWP6AUoF3b0kIpI+BSrA1k+zoLDlvYPBoNbX1+37eJaUZI09izXE+mJfEyvYA4AeWFiAKzI6bDQedxrM8N7yeRSRAIbxeKx6vW52Bu8Dh9Dwk1RokpFk1iaGmUNQULBKMg88scp38LOG2u22eU3xrTMBhLwTDAYXOq85bnN1dVdnz15UKtVXODxWpyO9++6qXn+9aACamZWoD4B3vhcgmTjq/YkUiVg/sKaxt/kZ8hHPEBBNrmU9njhxQefO1fUHf/C06vWixUnmDQM0pRngu3z5nKQj/dIvvaOdnXOKRGZ+d6RzvhPMpD9EBYaf92MvegBO8QhAJJZBGGCBYA2zvyGPPFnkLRQebwCAIR7YR4Bgrh02FxDJOgOEEsdgraUZ2+6nCFSrVbs2MAqFB+/F94Yo4xr39vZMtfDEHAokCsIvet314PTKlSvq9XraWk7rHt0eIjyaD6v1/qMz/+t/oODS7EEODtp651/8P3R46bzNFmQDsrmZheqlEAJ/r9czkIrcz5gkPHrT6ey0HNgvSdZ1Ho3OzkzHG0czAdIK4zQ4T5dEQoe+JO3s7Jhpv1wuW+Km4QdjdrPZVOg7f6DDm5fU686k9Y6kgzd/rDP/q/+rMh/5Fd380v9zcRTKUkz3fPY3tffdP9Dm535by7FZ8PSdiUw4AEgQlAG5fO9cLmdB2TdQTSaThekIME4wo8Vi0fxWsGmAOxg7ad6xzkYF+BEMaYBhwzPZASBHs1s4POtk7fV6NpSYDUcSJlhIcxm6Xq+r2WyaBAvIQPbxAIWkRsVNYhuNRgYoYQpJrF7+Rq72VhBJFojS6bT5aAEG2FP8iBjAJgUUMxOHw+HtkVJTY/cAKbA4eGK5br7XZDIfWA7QjUZnXbp4vPAhAnoAE7BL/X7fkgDXQNMH43p8YwGVP/eJ746/jEKGGOCZQu4x/983IjDyhWsMBoPGdHiZF7YZDy0y9crKiiV63hvpk+Mcac6A9WDd8jyZoer9nYAF1p9PQCR3msto4mHNsz+wuITDYXv+qDeAJsC17yRG2QiFQqpUKlasYDkB0ODNhOlmxB/rhXUHWGf9IEmzDjwz77uTYX+ZocmLY0OJfR5kc+95Dnj+mWbBZ8IsevBCPKDpNBwOWyMhzC9g18cogASAjHtODAQQSDKrDsCInyee4zOmyMCWwt7xDUnEzNXVVR0/fktPPvmOisW6Op24arWU+v2QlpeP9LnPXdJnPnNV7757Qs8/f9bWcjqdNgUwGAxqa2tLjUbD7g82Hdhr3+8Ae8Z6BDAdHh6qUChoZWV26AaNpxRyEA0Uk08+eUtXruRUqZxQJDJvzsJmRD6hwJSkt946p6efvqX3v39Xr732mJrNpqrVqt0zih2+G8+cmOhta8QB5GtisW+OZd8QTykE2AfYFCjMiQNeVZBkBT9svs8FgELiEWsZPCDNjx5G+vf+b5hslM1AIKDNzU2LlYBqSBGUDklmLUGm5/7wnVBi2Jc8S78n/7zXXQ9O5wFq9qAjkYgGoflRh/hagsGgrvyT/0wjSfHiMaUe/aiC0Zh1ja+vrxsIRDIhkDMAnrNoAXHIAiSnbDarYrGoQCBgmwaZmQRP5cUCpFpjvNRkMj/FBeaHhEwS4LORk/AsIafRpDEcDk3ai9+Wm+nKDwaD6uzd1OHONS1l143tQhq799l/T4ParvrvvCR97rctgQJ4SVI0APT7faVSKWMxfSdsLBYzBhgpHpAA88nmZJETVDiHnqDHCB2qVyo9uqnxvfpZeSQo/EWe6dzd3dXh4aEBAJLy1taWJVO8dCQdqmPfDBAOh21un/emAiKp2pF/AD6DwXwOL8ddAlojkYidbublMmwjnIbkgeHp06d16dIlTadTY+UINpVKZQGc4RWCCaGqhs2m4CCQA6wBejS7wPIRIH3jGqZ5gjt7gQ5YAiRNYSR6EgisC9Yc2CbWFcUNfsRsNqtMJrPgr+L7sk7ZxzCmNAFyjTwjZHnk7na7bQxXPp9XODwbFo//TJoXCexd5FpYSdYPyYN9jh2D5BCLxZTL5WxtEy9IBgB+75P2RzJ6AA9YYc3CzuJtg30cj2eTPigYWIOMK0okEgbC/XgfPmM6ndo8U9YxgABQw71KpVLmifPXyDPgdCDiFaAWe0kqlVIqlbITsWBLJS1YCNgb0rzRjiSbSqV09erVBQYVFhFgilpErMOj6Ytk+g4gNmCgAGbEH0nWkALAJCZSUMDQsffws2I7gPGGDWQqDODPe5bvv/91feYzV3TzZl5/+qcf0s7OcQ0GYwPCKytdffjDTT3yyFUdP17Vd7/7OY3HeWPDsJTgR4YMQO6leQfwhLRLZ7ykhZnYFDiDwWBhGkO73bb1J0lnzgy1vt7WF7/4sHk8Kfi2trb0xBNPaHl5Wa+88opeffVVU+yi0ajOnz+lD3zgLT3//E0dHs5sPqgI2KModvP5vFqtlhqNhjqdjuXfO8fcUawC1pj3Sb8BNjFJZo2gCOe5Q8SwNnj+xATuH0UVxAoWApqgyJf0WUBYeBWTubbSfDYyE4XIM/TjAJpRaz34lmSNwcRB1ENOrSTOJhIJW4/ewvLnve56cAqA9H4KNtfS0pIBvVQqpf1Lr2s0Gqnz7qu68cK39MG//z+oUd5T5+0XFoZiT6ezUzOQd6ie8bKRdPD7+Dl1yBSc7kIyo9oh+AJWWLCwOzQj4Iti81OhdbtdbW9vG5hApsX3Refwnd3InHRC0gCYhFYSat+8bAGu3++rdP/jyj/1aW3/D/+ZLXJYjPF4bGwDlSLHu+3v7yuZTGplZUWVSmXBt5vP5y1oAhAwpBMIfKAj0cIYSDIGlQQDIKEC7ff7VixQCUoyvxzJWpJtcoCqr2IJnHiRYDpgZXyHPawGsiCbtd1umz+IwAlwkGTjYABdkux7srYIFCQpGEukIcAa+4DASpDjRSAkaAKuke2q1apV95j3pXmnOlaRWq22YHGA5el0OmbZ8N/ddyXDoPvmAxIGRRygHXM9ewgQSSMPAZiAD3gjcPJ+PBf2z3Q6ta52kgdqCEw+dgE6eZvNporFovmfeU4wZOzVtbU1Y+No+OAekNj4zsjKjK/C49btdk2NwBaxv79vUy5I8nTKknjYYzxrvi9sDgUwyR8Gxz9D2A/WGMessq9gIWHcUY3o4kcaBLDwjGiC9NcJy0ZSZR/R9Ii3j2fCemYMFnuJ78DJTjDyfBb/jXoEM0ecZ1/zglXb29tTu922SSlcRzgctj0Au0kMA4R4LyV+dRrtAHjI7dJc9WGdsrZQ/bBQUISQ3/A4c68AzUjv73vfJX3mM1f0ox+d0euvPyEpoNFoaHlm9t45Xbz4gCqVx/SJT/ypPv3pP9Pzz/+mut3Jgh+bYhBCArYbsEQDHOOiyI/EJQgTippCoWBxi3uErWAwGKhY3NVgENabb64qEGgaa5jP5/Xss8/qxIkTkmajsmq1mra3tw30vv56Th/+8ET5fEWtVt7WPaxwIBCwghhAyEEkxDwAKYUmMZ3vxDNiHVCk0OgGKULhDpjHtkSBtrq6as2crFXiBMUae5j4CJjkz8RzCDJyPp9FcUbPBnkNlRPL0tLSko0XYw1hd/C5DjUU+4gk88NKUi6X09raml555ZV/DWKbv+56cAq4GA5nQWY4ms85JNACCtPptJrN5oxxG3d0cOOizn7m13Xz5nkNBgNdvXrV2EckdB5gLBbT8ePHF0BhNps10OK9NYA4ZABADqACkERFDrhstVpWRRKQ7+yiJjDBfLCRJFmXIwEEoCvNO6c5Rk6SSk9/RvFcSW996R+Z3zIajer0X/l3dfDmizq4+rZCiazWNa/4GeAPK4ccyKbCVwPQjUajdmQcgbxardomXV1dNUaY++e9Y6PRyBrQPBgiMC8tLRmwjkZnZ91TVADovF8K/93a2po6nY5NOIC5IqjQ2EOCBfSORiObkTnzK00ViXS1sjJWKLRigIVrI7EMh7OTbZCz/Sgdn0xZXyRZfEUY5GFI6fakiqdRYzQa2akdgDO//gjU5XLZZDoKKwIkz1aaV84ezMLew2DD8sBSe2DM98UisLe3p+FwuABe+TeHTiAZkgRDoZD5iP3IEpodAeReKqMo8FL52tqaecvokpdkzBQMHF5nCjhv76B4pWGJDl5YdnyYFKOsIZIKCTKZTJpcjRxPggHQ4e32igYSIHGP+4Btg3WMv5RnAfADOOKhRV3KZrMG0v30Dn5+NJrNguZ74lulOMAqw3rB0nLn7E0SJaCx1+vp+PHjxi7DvGF7YP3g/6XwoMgl5rGWub/sPRJ4p9NRp9Ox2cgk03Q6besDECnJmhe5d3jZ/cB64jFEAB5sLCmsTfYVTVLEZ4ANe9LbPGBsJZktAoBHLwX+41AoZOrSrIEwoE9/+i29+eYZvfrqY4pGIybBc4/xjDJ+7vnn/6I+/enf16lT39fu7hMLnkuYNxQpLA1YrbBA+ckB3BNimTSXhQHdMHaw/svLy7ebARs6PFzSZCL1+12z9LBvKG4SiYSdQEXsm0zSt/f/dKH3gPiE+hMOh82HirJFceWbjSimKQyIl5AR7EHeh3wDOULzGRiB+zCZzCaeMOYQ4gCSzTdRUhQQk7m3EAazfRjWuXPXlE53FQ6PNRgsaXs7rWvXsppOtXCUMXiD9UYDMTEPWxcxbDKZ2P0Hd7DH+G8/V5UY8Itedz04xe/IK6DZ6JZjx46p3++rXC4veARJsJFIRJHluILhJTOi00WcTCY1GAzsfHJYOqpgb1z25mY2ItWOJGMX+ftoNKp6vW5z79gQAAiS+/LysvL5vLEgLEzkrmg0aptBkgVnwBEsTbVaNfkAsJPL5bS2eVLrv/Xvq33pDXVe/5EdvZp58lNaLp3Q2//8/6ab168rsT7ROUn9wfyoRq6bZMH3hZ303eXh8Py4NCQ/qlOSLGej01ACeIYRPzg4sIHhVLF8BoF2Op1aoCChw6rAHCLNAvB84wtBnuRMcpVkjC8BuNc70vr6TX3wgxWdPLmn25er0Siky5eP69VXT6rRKBhbDZiGiWEUULvdVrFYNJaUz4fNowiia9s3G2FBYKoBAIA1Js08ybChBM1AIGCzKrEHeJkJFgDAnMvlDEwCdmCTAVwE9tFoZM8QgA/j5JtICIgEOMZMwbL4ruk7GwDYK/zjGzQkWTEIKwpjxmEaXorifnrfWzqdtnviPXA0gCFdsvZpUqD4AUBLUrlcVr1eVz6fN08vSREmlzUM+8D7AWBomgoEAiYrA2ZYJ1gIYOb5OdY/4BrARDxD5QCwkIzxMfvmBth273/zjGwwGDTbARIhrB8KEMWr/954+X0zKgcawCxTaOOlB+x55pOub69ykSxRAvCWc48BXsFg0IpC1rdvZITk8COdAGa+Yx35m7FOsE1Yn8gNgCrWMwAIoMpnw+6j/ACyaQDDygVYAECdOfOOplPprbc+qGh07pNnrjQFOBaGWaxd0zvv3Kv77ntbP/vZYxoMRra+icGAE19o+CH2WKxYt7BzqIk8+8FgYAUu+ZUiaAbAxwqF5nYQirN2u6133nlHjz/+uEKhkLa3t3Xr1i1TWGbExkzpCwRmMTCbzS58T/YujYIon75RycvpSPyQBLDl4AAKDphQ7DNLS0vKZrOaTCY2MQMWnj3FuqMIJ5fzZ/9Z3DfkdnJRPN7WI4+c1/3331Q4PNbBQVTDYUjx+EhPPdVXu72ql18+phdeyGs6Ddv+JTajPgGSUbjIv8QErHyQBygA7FXWBOvyvbzuenBKcp6uzBIC5n02YPvgQJnCujSZj/GJRCJKnblfy+sn1HnjRUnz2Y2RSMQWtD81Bk8MjA7BFVM/lRELn6oWmUuSdVMjpw0G84HfSCc0kHS7s5NKOOYUVoNNjbxD4Kb5hA3DPDI+y0vUsVROhWf/fU36XV38//7nSiUTKpVKOugNdOLf/vdU+8FXNWzXjQnjRaXrj18jicPiAk69ry6RSGhvb88kWoAlACQYDFo1TmUMywoTjecX2dk3mKVSKZNcYY786COSYDgcVj6fN7ZbkrFdVIkEDvyP3pMTCoVUKh3oU5/6gdLpQ+3trenFF59Ur5fQeDzU2lpdDzxwXffee1U3bqT17W9/ROVyz1gSGM92u202Df7OgysYEqRfkhHPjyqaoIY0X61WDRzxeQTYUGg2HoqgwnsxWgrpiWdG5e6DLfIjwIwjeUlgAAiYLYIUwKrT6VhVzs9zv/HaUShS8PCefD5rnYINAMt+BACR0Lh+PIb4ROmcBpR6XyLAh0TMGgBcSjLQgr/Vs24UWAxBB8zASNMsBbAkwQWDQWushLWkWPL7zw+IB9ggs5EwYDM9E723t2fFOmOr2BvEOb5ftVo1Zoi/AxTDxtfrdVN+aNQkxkqy4tM38S0vLyubzapSqVhM8gCv1+upXq8v+ORQj1gnyPmwYRTWXBuFG9L88vKyWWAAoSgjrCvAGyw6YJ+9wvqFCCmXyzYiLZfLmZ+cwpkYCOPKekEKZl2RY/BOc2wy1icYOVgq/pvrRJ6WZsV9Op3QE098RxcubGhvb144BgIBnTx5Uh/5yEe0tbWlK1eu6Pvf/76Ojo5UrVbV7Xb15pun9OCD53Xs2Lt67bVjCofDZp1CzYNgYN3hO/Z9BAA8WFT2s/eGw4qjnpHTZiREXqurZR0/vqzhcDathR6GL3/5y3r77beVSCR07do1W2/E0lSqeTsvxKzAl+aHQvCiGEd1Q2mhaOY9UcFoEms0GiaRk1/ITcQkWOBUKrVQhEqyIns6nc0IJq9Q6GEziMViKpVK6vVmBzjAlntLTDZ7U5/5zPc1Hgf11lv36dVXj+nixfZtG11O99030qlT5/Wxj13Q2bO39JWvPGkFEH0S9EYQC6TFA0aI5dgHwVW+lwFQT3z0ZOGf97rrwenKY59QcnlVy5mCJCnz0NNKrh+TwiF1vvVlDSbSvf/RP1TrtR+ps3NV0+FAa1unlXzykxofdVX+zpel4dAqh3q9rp2dHetGZ2PTiEOzU7/ft2RK0obNYTOyEa9evSpJ5jtCyiVwM/OSDlUSAb5E2Dc/VHoymWhnZ8ck/tXVVWP62Fwk/3g8Pq+MYnGVfvM/VDAW1+X/1/9J405Lw8lE29vb2vwLv61gaEmVl57TanFT4WRW4cRMBhsqpMnympY1liZjkxmleUKHLaARgEAFcIZdg51iU88r5vmMNDYRG7LVaqnVai2wAJPJxGY70rkJYCEoSDIZEusBzxQACAC4E8jjT4LJTqVu6i/+xdfVaKzpH/yD+1SpZLS5uWUzNlutqW7cGCsef00f/ehL+kt/6Zv60pc+rE4nZomWLmaSHjMU/f2igezmzZsG9vk7vE0840gkonq9rkqlop2dHa2urmp9fd0AKqO5AJMEZZIWgE6aS7/9fl/VatV8fPgNkbM8c8NYmN3dXQP4FCzBYFD1et2kbnzJ+IkBwqPRyIIz+wuWhWRBEmw0Gmq1WjZWCaAO4wQ7lslkrKr3vmzGPgHISEgUkb4ZhKRCAwz3y68j1iqsNwApFpud0MX1wX4CWvh9wAWnzAAo8eDhn2Y/YKXhJBt8qdKciYlGo3ZMoS9m+X0KaO+xp+jBk808VhpFJNk6II6xNmHkYWVg3vFTE58oJAAp3BeuDykdlgtrA6qBZ52Dwdl0AxpRs9msjZNjTcIM8awpjLFWwRrBIlHEwLoyo5ZCAi8lYJtkTH5grXlLUjwe17333qtEIqFXX33V/JkUzSgNfqybP5gBexlD0yk0WXcoBdihUqmeEomu3n33AStuUBI+8IEP6Mknn7QifTgc6rvf/a7lrFYrqr29tNbXy3rjjZNWKJCf+G/PfmNxAqhwtKxXNVgn3kIEW8p3Jl4Eg0FVKvdpPL6gJ57Y08svF4y5xHf8wgsvLFh/eI9QKKRTp15XtRrXCy+0lErNClyeBfEJZhdVhmIXi4Zfx8Qq1hPElzT3cHugtrKyYr5mf69Yu5At5E9yEHiBPbyxsaGzZ89qd3fXGmXJrTNb3Z4++9nntLub0XPPfVLj8WzNr6/Hb3/XJVWrOV27tqYf/OCqnn32Zf3lv/xT/fEff1pHR7M4wIES3B/2Ff5WvifKER5UngVFHt+JGADI/UWvux6cFj/+lxTLFu2/Ew+83/6cev1Hikcjqv74m0qefViphz+o4FJEw/2Gaj/7nirf/bKCRwe2yVdXV1WtVnXz5k3ruvODkWe+1Zbuu++KgsGuVlbWFAwWtbNzVt3urDpvtVpWaeRyOS0tzeZHIq1S7Uvz0S8cE0mV5tlEfHgkX98gZGOinN8F6YgFl8vlLKiOptLWX/3fKZJd19V/8vd1cOuKyRy1Wk3rsVWFV9b04H/03/zcfT7x+d/Wic//tnb+yX+qYeWmJNkpMmwqGAe8nPiKJGljY0OZTEY3btyQJBUKBRvAT+JnoxAM2MySbAPg4SShctIUXlQCCHIN9xEf1MrKivL5/MKJYNwDkhPeVLyrsVhMW1thfeELb2h7e1V/8icf0u5uQ5FI2EANYLnZbOnKlaTeffcJ/a2/9ap+7dde1H/73z5kJzIhX1FM+IHLvBcAgDUDaEmn09YViXw6mUysc5qkywk6kgw4SLJGJkCuHwLO9we0AlQZacM9ZW37kTJYACaTiXkZaZzDYgKLurW1pVgspkajYdMXksmkBb1KpaLr168bcM3lcmZvYS3BgEoyMAbwKhQKlpRpMCKRkRSR57e3txfkN3y+uVzOJFrPHrNW6Hb1DYfD4dD8ovhy8SACbtgjsJkkSB9/YBLZC6zRQqGgUqmkpaUlOyDBjx7i+0nz8Vg8U2TlpaUla0qjQYT3x1IB0IKVJ7Ey2xfWR5KBc2IUBTdeTCwlgFve1/sYAbmwTcQ5pELWCNMLeA8829ixuJeoEMQHgG06nTZPO3HXF/AoPcRT9h12DkAozWH4kikyiVM+BgNwHn74Yd1///1aXl7WN7/5TQPfSOwUWUjnnELom/ooamDQ/NGkfP4sf2zfjs3zY0sPDw+1vr6u06dPL+wb7if5aLYWlrS01Dd2E3IAtcSPamNNo2xhReC9YBgp+PwsVgo1Cl7i1CyOLOvy5TO655639eKLJ22/MH85nZ75SskTPJdYbF/nzlX0R3+0qX5/LoWzN7w1in2TSqVsbBjxn/vBZ2DtaTablkPIVwDdVCpljUlY1bDu8X7EWt/ExJ8lGdAOh8NqNBr66U9/amsA8mq2Rib61KdeVLWa0B//8dOKxZYUiYTMB0zxQwF8cLCu3//99+u3futFPfbYS3r++ccM3xCbQqGQWZ9QXbFuYSH0UyoA9b6v539Op770bwA4/eO/84z6/b7OnTun48ePm/SH3BuLLOnGV/6xeR7ZbGtra0osL2t6W2q9cuWKpNmDYfNIDLYd68yZG3rkkataX69qMAjr6CiiYLCplZV39eijP9S1a6f08sunNRzONg4SKgFKkoErEh0eE6QC7AJeSuN3WdhUm8Vi0aRdkjrsB2DDz1o77B7pzN/43yt+/Jxe+q//t4rUbiwswOXlZd341pfVvfiqAgFpOBxpMhlrJVPQiWf/XVVe/Kb6V84rPuwqnkwuWB7ooPYdh5IsIEkysJFMJlUul83DAoBHAgJs+CMBkeCWl5fNIM7pQMj/+MFoHiJxwRKNx2PrVpRkoBoJe3t72+437zUajUyue9/73tV0GtAXv3i/ptOh2QiQLlk729vbt6XOTf3RH4X11//6D/Tkk4d65ZWYgSUCICxjKBSyYI49JJVK2ZiSer1ubC73kgY2AvB0OrW1RcOTH1iNP4zkeuegZgzvgAUqYhqQYCC4f6xnL10eHByYBEcwY6QZflZYZnyINMUgSzOaiaYgGt0I5ARIgBJgD7mJZwqbDItJ4Get+UYlvFz5fN72ILIlLAjMDwwfaxPgR6LkGkg63qYAG0YXLwkZIMl7emaFApSTsrrdrh2QcKdHlcTAKU8UIsjNJEq6or06AWj3s0dJVsQQScYwplIpraysmB0B1hhmdzgcanNzU9ls1kAfjAtA+OjoyLqbKWSRkvE5+u5hP0kBHzvd+7Cz7Ak/A5J4xAgh+g64X+wPLDDELprP8BTDrLEPAI7EWu43cRG2mNgHgQCgAvxPp1Pr9EbeDwQCNiuYGMXno0zBKKJu7O7uKhqt3I5LbR0czFlsaTZKrlgs2l65fPmy2VW4l8HgSP3+rKklFotZnCMHEeuYMMH9pNny4OBAqVRqQSnjz3h0KYLwprN3VlZWlEwm1e/39frr53TmzCV9+tMv6k/+5AlNJtOF2agoXcTP5eWJfu3XXlK3G9X16+e0tjYyawYMtVfSyAEALZj4XC6naDSqnZ0di9X+xdrhexEPKMQGg4F2dnYWrCn+XmBfQ20h13hmFuDLmDT2ON78++5rKZHo6qtffVLd7khSzxhqfMGhUMjy6azZeEM/+9lJPfHEdb3xxtzqwPrnufK9iJHgIO4Vz4lcgbWR9/E9OL/oddeD00qlshCI8GES4DnNBokLaYDf8TQ0VSwBcBbUe/rkJ1/RqVOXtLNT1Ne//gG9/XZG8XjiNrjr6ezZSzp37oK+8IXLev75p3Xt2jnzwPCQedB46EKhkGq1mnlZvLmdUTcsYCQy/HoEG/yTgB6GrgNUkHSPjo5U+OxvKXn/U6q+8kOlCutK3HOvMSy9Xk+73/iypvvnNalv28kPk8lEo8Lm7D4199S79KrGtwMiA6kjkYg1XRCESQhIBGxKvh+Aj2YJqi+mH+C3BRRR2ZG0eD/fNUuQ5DOOjo5048YNhcOz6QuFQsE2DywqMg/ePyRIrBW87/Ky9MADN/XaaycUi+UNfOABRBYn4E4mszE1jUZWV69m9OSTt/T225vmyR2NRpYcAdkeWBDIkG9J/kiCzEFstVoL4A3Ay3oBKBFguG9UzM1m07y1AERYgUAgYHuLBgGSIGu5UChYMcJzg2UBwPAsSCTsQd4P6RWpnbnDKysrOnv2rE1VgA2GlWNvABhJ2HQ6w5RwjCo+xMFgoEQiseBPrdVq5o2mwPJJHZAO4KaYQCJEkoRhINkB9iQtMLP8NywpDTQkCAANxRQ/w5qnQzqfz1ujEQm4VCqpUChod3fXnhUKB75iij1JVrTzXFAm7pQZ/Qgb5E58mPgJuW6kbeYt1ut1a1hivXivOr56vJisX2IGSRHmGwDKs2JiBfGV78Y6ZX/zuXw/CgjWw97ennkHKf5ZZ6zdO5nSZDJp9gXeE2YYdeFb3/qW3nrrLV27ds3AIMwuDDO9Al4Gx8KEhO7nCeOH9+rJDFRsaTR6Q6VSU9evJ1QsFg3U/MEf/IF2d3eVyWR0/fp1vfnmm6b2zXzIayoWOzp/vmjPmJjqrT3EXUanMV4PAM7EAu4R64z4QYMo+4nvxPqZFS1JPf/8p/Txj39bX/jCS/rRjz6g0WjF1jsTAhKJhHK5lj7zmZ9qZaWnP/3TX9J4PFUweGiYAJsGCkiz2bTxTEtLS1akEh+8YodMDyCGEPFxlbjBeqxWqxoOh9rY2FChUDCVg31KfKWBiliNXQuywfvFvYXlqadeUqWS03B4SqnUbI/7STc8N96D671w4ayefvqK7rvvli5dSljs9T5UP6kDoBqNRhcKYhQa1gQ5kNj/vzRE3X7BGpAckeEAGTQyedmAZg3OeG+1Wnb6DCBhVgkP9bGP/VDHj2/r+ec/oStXTt5e6H0LGKNRWK+8cq9efvmMPvShH+sTn3hBL764ptdey5hET5CiCvdzGcvl8s+dHU4DlPe64kmjaxzmjKqd6luSVegE5PF4rMSJc5Kk/GMfVv6xD//cfTz/1X9pSZc5n5FIRMHlWXLVVFZdswibzaZ1j0ajUWNBqaKRwujir1arJhUDhJAqpNlBBO12W7VaTa1Wywz4VLPB4Ows60ajYYnXj1BB/sCkzj1mLAsgD+kceZPPBgQDElgvZ87sKBIZ6vLl+63Ldjqd2nMkePEM8OoFAgFduHCvPve5F7SyUtV4fEybm5vGFBBUPEjzXenIMwQGSQYuS6WSotGo/X98qZwbDdsK8ybNZ2BS6XO+PQmYfTQez8+B952pgBSKOT4b/xhyLFKj7x7n/nCgAA0drKdarbYw4HpjY8MaiEgiAD2Y1Xw+b8XX0dGRyuWylpaWtL6+bnYJwAoAniS/vLysjY0NAwg7OzuqVqva2toyiQ6LBwz0YDDQrVu37H6T0CTZqWb8P6Q8Cj3WGQkIgAEQYy1QEHGfSYCS7J6y//wYMlinaDRqNhZJVvhS5NCMhwTLe/D3MHEkOL4nFif+m3uD1Mz3wicKCGGtU7zCQgJoKRxg4f0we0AO3vTJZGIef/ZpKBQydpomLq6DteNHhOG9p7BgTfCZANJ8Pm9SNsWKND97nL3li2XAK/EBYFCtVvXOO+8oEAhYYSzJWFfuDQqE92vyc3hHpfkZ8ew/38BXKh3XpUub+tjHanr11XtMOaLxp1ar2UgxQDwF04kTN7Wy0tf16/drdXXF9qdveGEutb8Ocu+dXmruOQUEcYg41mq1bIwfQLter5ul5p130hqNPqOPf/y7evbZP9Tly3m99dZxVSoBTSZDFYsDPfnkq9rcbGh/f1Vf+9pn1WgkNBhUDHB5NY/81uv1FqxUxKfU7SPBWdcUhV5lgZ3EWrC0tKRSqWTrdjqdmpeTtS7Jmp8pvljXsOGwqMQzTi/MZrNm65oB7ICOHSvrxRc/qPF4bDE6Ho8rl8vp/e9/v06dOqW33npL7777rvb29ly/zKq2t4va2rqhCxfO2e/FYjFrbvSnZUJiENcB1QB3P1WFfUG8eS+vux6c3n///dY4RDLCZ4iXcGNjY4Fmn5muKxYUYVGpWKjw77nnsu6996a+/e2P6OrVTY3HPat42NhsYEn6wz88o+m0ryef/JbeeutzlmBWV1eNdeBzIpGISqWSarWayWiwkMwFXV1dtQaPXC63cKwlMw9JJOFwWBsbG1pdXVU2m7UEDitz/Z/8fZPGYUdarZbK5bKOjo7svgAsJpOJTS249n/52ybJYIxG1oLppfHDV9mARYAImxsQ6OVdWAcCCB1//X7fuvMJYLCOMJSM1cGmwKZLJBJqtVoWFAFh0twygVEd5sJ309Ixm0we6OBgWfv7cYXDUws4KysrymQy+uhHP6pkMqkf/ehHJgXyrCuVmd/unnuWtb0970rlZCpAFM/TdzBT1XpZlekCfD6yG4GRIAJTBeChgJFkUi7FGdIh9zQcDmtzc1OJRMKAMQDPN6LBcvLa2NgwyZi9x+iuUqmkVCqlVqul7e1tZbNZu8d4hUOhkPlqAWL8g9zNd0C2qlQqJoshQ9Mg5FlnWBESfSQSsQMruFdYSfzswUAgYGqKB5kAERo88PBi52FmLj43ACnNeewjimgKKqYfoGrwc8zjJEmtrKwsFLU0fxGLkJlZ21gk+BwYEpibyWRi83GxFcGIc7/5LvhuvfzPnob9InH678894BpgB2GhYUdRQTgmlntAYQloY0/jvQVkTqdTNZtNA8N4HtkrqDpYB1j/eJZ5vviu/bG/xCDiX61Ws/WDrYbCgHvX6XSUTCbtGSJtMx2Gosz7E7lG8gwTJoilk8lEhUJBp0+f1tHRkS5fnh2k0u12deHCvbrvvlt68smxdneXzA4znU6t2Zd4O7dATPXgg+9oezunw8O8lpaGtr5hC1n/KAWSDJASY7FHeNaf58RBLIxo9EUE+QLVE0Xo6tW0rl37Za2vv6WnntrRr/7qzxby/61bBX3rWx/VpUsFHR0NNRjULc/5Dnk84ZAmMM1YGrLZ7MLvAFK9dxv1xc+rRmEJhUIG+PHyAuphk3u9np1GxbxtmElp3gAoyfa675+Ysdgz4HdwMLdEsJZOnDihhx9+WCdPntT29radUokdbBYDVpRKNUyV4POkmUUNf3Wr1TJQ2263bewcex/FBb8sTVMUZ+/lddeD0xMnTphJno1WrVa1u7uro6MjHT9+XGtra0qlUianECQ9fS/Nz72fVUVTPfLIZd24salbt+5RKjVLPJIsoFNR05UfCAT14x9/QPfd91Xdd98V7e5uWvVI4vSMGYCUxByNRrW5uWkBCEnLd0BLMpYQjxYMAxIE1XkoFLLvhHSOzwnvSKFQsCSyurqqtbU1W3yAHZiKUqlkmxbT9MmTM8N6vV43AEqg57tRQR4eHi5MHaAiRDric9iUgUDAxkfhk/IScb/fV71etw0OiCNgML0AFpXvDqOMlMgmhrH0XrzZfQ1rPA7Z545GI7VaLeVyOZ08edI2qWcUsGkEArPnHo8HjT3nWRJY8N5RxdKs0ev17Nly6hKNGnifADwwbFSyJAWAFQ13rK1CoWBsMUkdQE2w5fOwYHjpiqTP5xGQADY0oTAWyXuvkYF4Rjwz5EH+nuvhWSFRs4fwllKMYPKHjYhEItY5HY1GVS6XDUSVy2WzACD9k6jy+bwlkuXlZR0eHqrZbJq/iu9BvGFMEadPVSoVS7SAFklmMfHD1guFgk6cOKGbN2/anmbPUOxhg+HnpRlTy8EVw+FQjUbDgC6FBDImo746nY5ZDQCNqDqoDOx7P3mEQhJ5EQBBUVgqlRaUCZhJ9gJFAevK++parZatY16MQ8MCQ8wlhqFwMfmCz+DzJNmahYGlIJG08J6AFthyLCyAr/39ffNf4g/kfvNMWduAfYAXDBqxQJIpO1wH/xD7mNkJo03hT1EKM5nNZvWFL3xBjz/+uA4ODvT7v//7+tnPfqZaraZyOapbtwp65pmf6fd+L6LBoKRisahOp6NyubzQBDoDWSF94hMXtL7e1D/9p/dpb29vIVayh+nWvjOHcg+IYRT40rzJh/xEMcEMYZQ1cgXFCawmc2nfffes3nzzhFZWuorHhwoEwppOk5pMUrfz2dBmBWMXAEjxeRS5GxsbCwcF4DlmTi+gkvi0trZm1pd+v2+zVVFUms2mXSuFsPe5UsiikkEO4S2GnSZ2EgvZr2CIWeyZrd1+/8gALPmsUqnolVdeUbvdVrlctoY/9vUsL041mQQsjpJzUCGIPbCp/AxFE4qDZ/XJC+xpirNf9LrrwSkLkofPzSFZkJhhoJjryOkRUNDYAwC6+fy+stmGnnvuKQviVNB3Nv7AtM7m/W3o1q336aGHLuv557fMywfDQuIggBO8er2eCoXCwnw0f66yHyIMuxGLzUYUsSjw4rEoGeRPUqUqYmEiycBuwVh5ZgCPjzQf+UHlDaAjSRFwSPorKyva2dmxLkfAcTqdNnApyapxSZb4eCZcB/L5ysqKdnd3TTKUZB5F33FPxee7aNlEmNhhmehcxVLA+C5+djKJKRodamkpbN6/er0uaTbo/s/+7M8WpFg8XjMQfnD7uS2brIc8Ki0ycDQN1Go1DYdD62AOBoN2sg2NZNxnWC8+EzBB8CDI4ifiGcJQ49n0szo9QwnI5Bg7ZEzWHkewbm9vq9/vm7QMGIEFpHsVwI2XmMROQUOAJMDD8HhJDaACQ89aarfbFswpogB3qB1U//V63RhS2FtYyUajsdAAwx5gSoD3cfl5kzR3AfC8FwyA5vdhKBSyQeCwm8lk0rykNCp6/ydqiu/iBjwCqL3cCkiU5ifqDAazA0bYl7CTBwcH2tjYsOuDBSOWUKiS+AGJ2E947sy/RYZHdqdAoqGE+xUOh+26SZKoQzxfVCUKFNYm7OZ4PBsTBqhMJBJmGYA5RLXx8dp7PvnOFEUUMbwfB0UQh6PRqNmKaGoFfNDcJkmlUskKcO43rC3r4OjoyBQz1jP3m4KLz4Phfeyxx2yKAuPjGo2GYrFlPffcJ/S5z/2P+s3f/JG+/vUHdXgYVa/XN1ker3WptKRnnrmmRx7Z1Q9/+IS2t5Pqdg/MOkKhCItPfEkkEkqlUmo2m3ZtxHeKa5pmiXHED1hkChoY6eFwaMey4qHH+oANpNMJ6ehIFuMCgflxuQB5gC5xkUKX4hflDeBF3gBwo6ABsnu9noFcpr2wx8lZXp0hhvL8UT+xxvBsfWMX94eYTXNfqVQyRXC29qcajQJaXq4oHC4pkUio1+upUqkYK/v666+bxI4ayp5dWamp1YoYmUH8I155TMPv0MTqeyPI1/SGAPB9A+Ivet314JQROoADwFUqlTLJSJp7r2huQKagcUGSBeDl5WXdc89F9XpxNRqntboatiRJkwmNTlQlJJDhcKgLF07oL/yFN3TuXED7++kFLxTjPQAcADukPmaawjTStczcxmq1usBQcg9IWCRYggpSLEZ9pHRJC35WKitJFrwIoshwtVpNJ0+etJmUkowN5B4kErOB/plMxkYJETzwy3H9XOtwODvak05G5EWCBwkWdgOv6nA4NFbcV7jT6Wxe7fb2tprNpl0Xz53A6RleAgSsEixqKBTS3l5WTz31ljY2mrp1K2UM6tLSfEg+CRAAkUql1Ol0dOLERY3HQe3vlxSNzmfiIY/7z6NDk6rcyz0URyTg4XBohnrYLJI6gZsqF28TLCqBxXdWjkYjYwr97EfWBUfb8QwBDBRHjUbDnh37ZDqdHZnbarXMh8vnUaB4Ngug4KVhbDP+HnmvHt4/gDJAjzXmlQMkV5q8iAuVSsWsNt1u147L9UUZIJ04gBQMUMXnyT3AX4ZHmHWWTCbNLtNsNlWr1dRoNAzEDQYDVatVO9ceVgq/LTGB5MF+xVtPEmZN++/Oc2MNra6uGsDHQ+eZd2R07ikFMYwj8Q81AECNDUSaNyXBClGU07SJPx62hWLMNyERV1l/3W53QX3geyLb0+DDpAXi6Wg0MgAIM4XHmWsAZBGzAE/sRWIjShwxmHsGOPXWDa7RM8o+1mDnARxh6aA4BvBQJLKWUK/q9bqt2Xw+bzHuD//wU/rkJ7+nf+vfekXN5gW98sqmwuElSRGl0wHdc88NPfhgU+NxUN/5zge0s/Ogjh8fm4ecApQcCgNN4YnXFuCIhYx7RR6CQYTpzmazFtdhYfv9vlqtlvmDKboA+YApb9PxHntken6W95ZkaiLEQCw2Oy61Wq1ajGENs94gDyiGfdGSyWRMIaGoJCbjZfU+YXIJxBZKG3GFa8V6QQHlFQ5pBoJbrY5eey2tRx/d1sWLT2plZXVB7ajValY8sH5ZV8lkTZub+/rWt84oGAyaZ9/HKXIMSi/fnT0YCoW0vr5uRB97kviCjfLVV1/912I2Xnc9OPUd+AAwSZbMRqORPSg2fCaTMWaSRY7EIDFct62jo1UlEvPRUDRerKysKJfLWUUFGzudzs6L7nRm15BKBTQez8dO+NEXgOL19XW7Npg3WBw2XSaTMaYLoIFs0Gq11Gg0jJ2BTSBxUQ15UAgtz8xKSQtDzWGPCaTJZNK6Dr3065uKYAVI3CReSdalCWOHl5NrCoVC5qMsFot2tjZMJj5i31CAPMtoKbq7P/CBD+jatWt64YUX7HcIOLCosCYEHoze/lSper1u4L3bXdHHPraqBx+8rGr1QxZw4/G4Sf8Ae2aZziTlFT3wwCVdvFjS7m7f7B2TycQ67QFYBIdgMKjNzU0LXo1Gw9aKTwo+WHPdVLB4thjjBdjDZ0n3JQUCQZrRIwRrfEVI+N6Dxs80Gg2bFJHP540x5n6jTHjJk+THZAnYA9YuDTAkLrxYHCML24ttgwKEmaokmmw2a2sMNt1/HtYM2ExAL4yZT3g8j0AgsKBQMO4H36nvXGaKBeCQ58gZ7Y1Gw2wJJHoYCFhCSeYp88wF34lGilniahm75vc+64V9BhDAmyfJTjki/sCuck/wwAMkAL/ea8rz43OXl6X19Z7W1vYkxTUYrEqKmveVgwn8vExAKdfLffNWA/+CBfMMK0AUjyRxiWsGRPI9mJDhj4aG6QQwYHEhRgM+sASx74gnxA/PKBELJdlM01QqZeQEBTRAVprP8ZVkFp+lpSVtb2/ri1/8oo4fP669vT07sIP4O/vMsH7v9x7Xxsa+nnjilj72sSv61KfmTHq9Hte3v31O7757UisrRa2sRKzBrdVqmUJCHCHeUXzUajVroEUtwwvO2mR2L9fGfaXwG4/HdugAYJZ9xUhA7iv9ECh9+XzevNR4mJHMeb7eD95sNk0tkLRQQMB0ZjIZKy64ZrzREDE0dOLp55lik+A5I/Oj6hEH+Z54X7GVEKu49xSFFE7EjG98I67/+D9uqFC4qnb7fXb9wWDQ5HzUFEi5YDCoD3zggg4OYjo4eEirq7L9TO7l+iE1yAE8M3AH9hY8q8RC/nznHv3Xve56cEojBB4aggs3kgqNoeec+MOCInHcCWrH45mPBXmAGWtsHliCcDhsw5gHg8FsfmqCE3diBsiWl5d1cHBggRe2Y2lpNhib4ItvDPaHjnjM7nh2SNowE7yvJGPlqtWqyRieNSEQMDw+EAjY90FG4j4A2vDXUB1z/2BY8cINBgNdunTJ5pbOKrakJQbAQygUUj6fN1nh2LFjFlhJKIAAZsfhE/SdxPgBkQ7xbVFMeLM63aa8ByyiT7oULX6w/v7+vn7845I+/ekrSqXOanc3bPcD2ZPvjvx4eHioBx/cVjbb1b/6VyfU6cwsGgx9xl+InAKw4F7BaCcSCTWbTdXrdZsowYxS7iOAiqaEdDq9kBCZQ+gbUpAh19bWzPdXKBSMqQRse6ADI01x4Wc74oUFDLEuCMaAu36/r+3tbWuKYuIB18ooK4I1dgMKSPYoI5sGg9lhFzSW4Bn1cjcS/53eMjrxYbMBMcxnBTDDUDO+Z7a3lxaaflAnYNIoiogLh4eH2tnZsQ51rp29NitqZ3ajY8dmR0c2m02bhOGZN7y2MIQ0c1AoeXZXkhVSJD4KaYo2EiAqyc7Ojl0zLDPyJgoJydaDb1jeQqGte++9rkceqWppaS7x9XoRvfPOSb3zzjnVarPCgn1AXPH+YkApjDrrEMXDM0oUxKw17Bl4+7FgZLNZi0uoLvi+g8GgzV3FRsOYKG9B4sQeFAgUH9Q61gxjmrgvwWDQpqwAcgAPq6ur4rhhGFmAN+CMPDKdTlUul9XpdHTx4kUbQwRgJm7PntdA+/ub+t73juknP5GWl3uSBmo2h2o0AorFZjYygBgEgCQrViRZDL1z+gYKCIUXe4VY6jvxkcnx7aOsNBoNu5dYuAA8AKxer2fFC7EfRYkccnh4qFarpXQ6bfNiWRe+mAN8sd7wdmLzw6bA+vJqY7PZtHhFQUUPBXYx1FWfIwHL2F4gFTjogPXh/c4UZ6gb7P1Ll5Z07dqKnnnmdX31qxuKxY5Z4QmmYOoBe/Ps2T3df/9VPf/8/RoOJ9YzQ77k+2FpI1ZCUmFnYw9C9EF8sOZRNt7L664Hp95s7hs28ERxI+v1ugVu3x3LYkcimhuxY0okDhWPh3XrVsWobh4IARU2NBqNmqdrfX02bmY6TdniY9FBox8cHKhSqVhXqme+6DKHDcb8PxgMtLm5aUAEZqdUKikQCKhWq6ndbpuUj7cVSY7N4sE4963T6ahSqSxYAmA3SEp0VkqzgNxoNGxME6C61WqZDItsD8ggecAQcJoUm997/zDvY8PgZJs75Rfv1alUKvrGN76hGzduGJtHcCdRU+3W63Vtbm4agMAa0e12TV4CKIVCIb399j167LGmPvvZ51StPqJWK2yMAow11Wa329XDDx/qk598WW+8saVKpahMZsZk+5N9Njc3jYnw4AbJr1AoqFAoWMGwtDQ/jtSPh+K70SlOcoHRAfQCKiKRiJ3Qhek9n88rl8upXq/bsXswsMjFFBfIRpIWPMkEZMbEFItFa1Ka7YepJTH8WY1GwxLQeDy26y2VSkrePuyBJEJ3LL5Hfh5fFc09VPrIudx3ihPuG/Ipax3bD3uHfXXntTN9o16vLwB/XviwAYCp1Ox88EqlYuPgKBQA/3T3s1ZhZgBqvjmRZI90DYtNHPOKwdLSkjY2NrS0tKSdnR3z/RFn8DwCFig8AQSAU4q06XSqTCZj8SeVSrnibl8f/vALeuCBitrtqF577QE1myfVaPS0tNTXmTNVnTt3SY888q5+9rNT+trXjisWi5t8DTPO1BF8uniT/aEArGfWLwQBcSoUCpm/mX3Mc6XIJQ/QgAlDnU6nDUjS7CLNTyQizlPgIWVTsAA8+LM0P5aU68cGBugMhULWL8H+xKbCtU0m85F5AAK8qsR4mmi5XtbLLK4sazhcM+9vKDS1Lux2u33brzqfj8n9v1PiTt0+zpQ1gPpFjOBQBUnGvvLM8vm8MpmMncRYr9cX2GrfDMYz83nL++29GonNYTwemz8exY39SWHtGw0pDNm/AEdsYsQ8YiDFNP51ciWMOvueJiNf9HA/pblFgjjkpXXAISSHB480nD333AP6whe+rV/5lW/oO9/5pPb3i8aYSnMQnUyu6UMfauvTnz6vV19N6RvfSCoYbJr6hKVkMpmoWCyaPWNlZeV/0t8OwQCAh/zi/kDsvJfXXQ9OkQhg2KDfYcyQpahi2fAMiYbtkmQgJRgM6p13NvXEE+eVyZzXO++sWmcfC5CkwXF3VIXdblebm6+oXk/o2rWgDg+bVhl7in0wGJg8gXxMlYcPdTqdGvgLBAIql8tWEUlSvV434z/duc1mU5VKZUF+J6lJWpApAV7YEcrlstLptP0/goxvNEDS9bIrUhpVk5cveQaVSkXNZtMqa88wIh0BhLBBwPLVajUdP37cmhKokvG+drtd+84wqf60EUnmZYLh5V5UKhXbTAAX5GbY9xnDmtG3vvUpPfPMn+mv//Wf6rXXzun114/p6GjJNm+v11Mms6+/8Bd29cQTO7p2bUs/+MEHtLY2n3lHUgI8IO3g+fPH1XJ8KmsZ0E9gIZFw72A/ABw8ZyweMDHIbdwX7rUfTYY8z1rgumKxmNbX183r6n1X3lAPU87nHR0dqVqtGpPKuqDY8QEOlpLJESRLkjLXBAvjfaY0DkSjs6NtSc4UPNzLdDpt1xqNRheYAWQ97iHAg+YJEinv5X3DyIRcO2wHLH2v19PVq1dt72xsbKjZbFrQZ6LAyZMnTS6F9acoZkJFOp02toJr982K/r4yTgnAytgq33CJdM1aPDw8VKFQUDabNQkXDyTMFUxes1nRb/zGKzp+/EC/93undPPmWcXjazaXtN1u6/r1pH74w7N6+OEr+tCHzisY7Oi5557W6uqseZKJHyRY2C3vEYZB80kdz14ymTTvrZfGKfpJwoAFz0ZlMhkbXcUBAL6xy9sGAPXtdnvBpwpQAjji10R2Ho/HKpVKCgaD2tvbs+If1hALDA2DWK88I8qc4PX19YVmPX/QTDKZtDiAhQN1gO/AnqHogu2ksRV7kl/rsVjM7guMP7kMho4ii8KYHMKeePzxx/X444/r5Zdf1u7uruURCjGmGXir2GQyMYnfq0X4snkxLQOVstlsWm+H3/PcT2JMNBo1AgmChPUNg8gUBVhmcAWkCnufxl1ihyS7Xg90OYoVtc/jENYsvRQcqEGRn8/nNRyu6Etf+qh+9Vd/qF//9T/VjRs5vfTSlo6OYppMgkqngzp3rqGnn76gbLanl14q6ctf3tLSUtg8t8QOSQv7hlxC4y7EgW+0plgmVuNVpbHxvbzuenAKwr9TpiN4EaQzmYwF+KOjI+Xz+Z87SQU2YTgcqtkM6tatos6efVPnz39K09tD6EnKLDICi8T4ko5OndrRd7/7oCaTqSVL5obRrZjP57W5uWkbMBQKWSVIooEp8iDSy2dU3L6bkVl63Bsvr1ANAn5hFKjG6J6VZEPO6cYOBoPGXo7HY6tGkWa73a6q1arq9bry+bw1ZcBGEpyRCkmIVNtU/CRLKt5cLmdsZjab1fr6un0WzxyJtFqtWsVM4IGRoRInUMIuHx4eqlqtKhQKGctHEMC3Cfg+OAjrn/2zp/Sxj13QY4+9q6eeuqCbN4va319WIDBRJtPRxkZdnU5Ezz9/Vi+9dFbTac9kVpKhbzJJJBI6fvy4sVd4ipHlkGHxhcJesx4AbjSXTCazMVFUxRQn3HuM+YBc2AMKFIIq945nQ9LA351IJGymK38PgAYowMQBHGGcsMoAyqS56sE9r1arOjo6MraPrmTsA1wnDA9sID9D89HR0ZENnieQ4p8cj2cd3kjqFIO+0aNYLNo+8cf2jcdjGz/FP97LRjHqj8SkGQPbBOtKklkG8HgBKJFovYw+HA4NuPL7yPN7e3sLrBN2HV8cwd56P7o0j2+wU+PxWMePH7dmvFlSHC7IudzDT33qTZ04caB/9I9Oa2cnp1RqBlwAxfOGtrBeeeWsdneHevbZC+r1runy5fcbuOMfkiUzQVFivKcaUEOXvW+EowACbEEMwETyfgAiCohYLGYxi/uBtQmVgudH8c3+Ym3CKOOHJH4Cnrw6xJxjGLiZLSxhMRJrB42GjUbDuqeRhTudjur1uvb397W5uWmd8DxzQJoHP4AyfNrsDWIBzD3PDgXwzr4GgBYsO1YfpG32I8+32Wzq8uXLunDhgsbjsY4dO2a+Za6Bma/EH2xo/X5fjUbD7D2QUOwRQDVNoKPRaMFnzJqgAPLElm9ihGTxvnjWJCAxHA6rVqstxHRmFJM72ON4mul14f5Q1Euyewi5xtqkOCOeLO6lVf3u735Y587t6oknbukLX3h1ARuNx0FdunRM3/rWcV24ENTq6pIRERR05BTiAuw+DWx35hqff7ASgjFQMSA+ftHrrgennl73c+BgBmmk8FV1IBDQzs6OPWg8l8hibIi3335Qn/nMt/X001f0xhuPWKBHNkulUlbZlctlTad9/c7vnNfRUVhXrpxRIDA09gTQFIvFTP5lHhuV6HQ6NV+p99EQ+JgxRzCkaSKZTC6YrwuFwoJ/hu8NwOh0OlblSTJmzQNdwBMn9/hDDHj5k2f8QQLIC/i7JC1YAjCIe08NwQNwQKUOq0UxwIgqNjcsD+9NsvJNNwQ5pDHYW6pWGFq6X0nOfqTT3E6Q1fnzn9brrx/o7NlrOnVqV+vrbU0m0mCwqh/84FG98UZK+/td9fvzI0EBarAjBFXAGZ2eW1tblgDxpyFHkahhD2B9WO8Ap3a7bZ29MJf8f6wRACUkVWRmLy2xF7xtA/kMsMwzgo3j+cIasJeQgGBbCHCwcRQ4o9HIfNHFYtEAgbemYOWg6OD++cHmrAHYVF8EJhIJC8wwy4AWiipsPqgEyMw023DPKCJg3xOJhLEvWH04QYkuX74DjCIMViaTMWmzWq0aWwgbx88gvXGccTS6OGO1Wq1KkjV14CUl8bBPAWzsT5KUZ+UpAAHIADuUmpn3+FDvf39df/RHBd28mVY8PmPhYMq5BtbL0tKSrl5dVqmU1eOPX9Dbbz+gUGgeeymUDg8PderUKeVyuQUvIH59QCDJ0zerwPxLMs8c990zcwC24XBonmCAHuuOJg8YeZgu7vud7Dz70hfPsKrEXM64J2YRo1C58KoiPwNWi8Wi9SSEQiG12217rnyXfn8+HYDcQVyjKYjmSA/qKdxQKwAfvV7PAC57m8IGcoH9w573eRWVazgc6qWXXtKPf/xjUw0hkpCXKbhQNShGKCZ4nnw2g+PJ/4AtCCuafL2dDtsPsQ0llPzvp/fAsvq1Qm6kkQgwxj7lngH0WV/EaAAtTDZrgKI3EJjNloXFJy7NfcR9K2SkVV24sKWLF0+oVOprbW1fy8sBDQYRHRyUNBqt3VYbKkYiBIOzU8v29vYMTDLejS58TxrwuTDFgOtms6lkMmnFFffvvb7uenBKJ9tkMj/hxBuokeoBiHQXssFIlMPh0Gh/TMXl8klduPC0Hn/8RcViAX3veydUq80YPDp8540p+/qt37qozc2OvvnNzyuRKNmIj1wup/X1dTNoM0RdkiUBKmA2A0mIShFJpdls2uYgOSGhYASPxWLa3Ny0s9OR+wGweJh80wRVOI1lgCdmU0pStVpVJpMxfw5gSJJ9r2azaQOwV1dXbV6b75SmgQBgsLa2Zn5JWAwak2AMYBR4jjx7ngFBwDeJ+UavYDBokkM2mzWABkAlQCNFMbIF5mV/f9/u7Qw8TvXyyyf09tv3LXyeJPX7vdszbxMWPMPhsHWAUwmTMGCyaHigWYvCAzAGEwHwI8EChKS5bYP7QxJljTEZgL8HOPB7FBYEfwAx70/S6/dnp6rAhtLoRHHopWfvg/RsB/IwiQPw6z1+vuGQTltAJhIiJ7DQOAD7gJeMgqTVaml/f3/hmGLsOAAQvjugwM+fhF3wDQwoGAAq/GbeXgELSeEJEAFMsR4Bft77jpRIUeKLTD9BYTyeD/mGOWdPYHmCvcY7RtJD7oaN4+fpTueeUgjR0Q8oefTRbY3HAZ0/f8zWkCSb45nNZq0BkwJ6NBrpBz/o6aMfrSuTOa+33tqwAtZ7bFkHfh4kEjTKAGzZYDCwCQ2ASZ6Fn5wA80wMhrkjvnoLmG/C8/cbpovP5h6hKLTb7QVGDy810xw8gIPtZU+Qz3iu+BP9vGjICUD02tqaCoWCjXYjNrP28SfjscSORqFODCR2eAaRBlMKEp4RFivYe/6bQgbbhQetKDd3NvkARnkP9kcul5M0P1yBMVQAQ4C6t8rxXdnf/1PFCAAvm80qHA5rb2/PpG6AKpYIiggsPJlMZuEEKeIHawn7D+QIDdoAcO6F9yRzbRRZkkxW9yw2nwH5AmkwU7RiajYTtlbD4YFWV+cHWfhGLkk2uo57yel89Fww+5hrkObNhzwfcjGqI9ap9/K668FpOp1WrVYzEzFMHVIAQR5vBRuCgMECg7FhsyO5/ehH96jbHenxx1/S8eNv6Ac/SOnatbOaTksKhQLKZBo6ffoNnTp1XcPhkr797V/W4eFxHRy07BQXnygkLcx4Qz6CQZHmlTTJfX19XZ1Ox4689KA6Go1acmu1Wiah0MUMCMW2IM0WKSN0SDIEeSphrpOqv16v2++TgAF3a2tr1swwGAwsQNLERSBjBBeJz7MzgKFbt25Z9zWsWTAYVDKZtHsJwOF68cNI82MHCbStVsvuJXIyIOrEiRMGBmGbAGEAe8AuUh7rBHl2b29P/X7fhmMztxG7BBIocxUBPiRJQCyghEAPA4dEDoseCs1GodHUgOwDK8cIFgAaoJR17Wdmsi48uOd5si5gDvE3HhwcGHgmwcOilEolM+LznJACmVELyPNjSkhm/t71ej2TqLkXvBdFD3sY2wv3F4kQEIvnFf8jDBdsLLI9RS3Bl2vO5XKW8HO5nLF2BHqKJ4AF7A17ggQN6GOfAKphjrzHFUaJP/N8SHC+6IhGZ2PXwuGZn4w93+12tbOzY750gCH3AM+99x4C8ohZw+HQAB9rgukR/N5v//aO3nlnU9FoVgcHc28y0ymY60qhMxqNbh8OktWNG1U9/nhFFy5saX9/39Yx4GAymdhn3WkhubNxB0aVZEsMAzjAtBMjfBEkyUA6DZuwiTxjYgNMYK/X0/b2tuLxuBEj+OA5q5z95sERHd3YkWB5iW++MOA+kKMohgC+FBS+kYjihrjIPSBesH8BMRQpgCxyKZ3YKH4erFN4IYUTi1G6sCP5aRiwtJIMjBLH2fuodt4awzojDpMv2PeMXopEIqZ8cF8o2FhX3W7Xmna4LgAhTamSbE1xDTSp4TMnVqIEUPyx7tmn3u5DQeB96NiRALF4W1E2/T3nhEVfkBLfUKB8k2O1WrXCS5IVINPpVPl8XpFIxEAoc3LD4bCNegMnYbcjH4OzKFImk4k2Nzd1+vRp/fSnP/05L/C/7nXXg1OoeQI+QZmRF8vLs1OSqAIwoSPvkEBhRAh60ixYVatVNRpFvfXWp/TII9f0yU9eVzRaXriGdntFL730qN5667gCgaRSqfkIHGm2KPf29szDyTWSAGnUGY1G2tvbkzRnJWFGCTZI2pjUSdCM5FhZmZ33XqlULCGyyQhGAE7uHfIeXXgERczlgDvmvHqJxfuYGA3l5RPfxcr3Qt7AiwXrHYlErEMfKdmfgMVGBkT4xh+SAAkW4JBIJKxK9YyVNE9WAG0SdL/fV6VSUSaTsWHbMNkELSQ/ADgeV+wkBFJk4KWlJZt8UKvVbMwXzCMVKNfgmxak+YglWCvuI0mNBEUjA8kUoAe4jcfjdnwfz5PJBDDkdNMHAvPh7IBqmHAAjCSVy2WbaQsAAhw3m80FuYsmPhI3gBUAicQPIPDWDJ6zT54E0lwut1C9U/x5GwqngAEAmHiAvM+9YDwU4BUvL/eEOOEnTDDtwDeneUsLrCdd5NKcvYGRxSfKfkU1YL3y33gWATGwO6gRyM7e4kLCAFTTQU2SJ+Zh+QGYAvBLpZKx7kwJmRVsYaVSfb32WnaB7ZNk43zY46gXnEQ1Go1UraZ19mzZZuSyVvguNG5R6JM8+W7sRVhJ7j82IUAd6wcgAOjhvgFgaVRi/jT3gEKN2CTJChZvZyIWnDp1yopQmFaeJbnKA1fvzWTPIfPSvOUbUJhrOxqNbNoLcafVatnaJsbA3iN9A4yYZZtMJpXL5ex6/TPDP8ta8kqRb/L08jt5oFwuK5vN2j0nHsFCetLIA07293Q6tedPPMQjyvPGKkOxBvgnZzKCz3f0U3BDftB4TAHpD83hnrAOvJ+VOD8ajayng7w0GAy0t7dnExj4XVQa7wMm15LruS+AXs/SMsGAn4XR596y7vhMngXYB7sR0314n3K5vDDxhGsDK3B/sSMQt5eXl3X27FltbW0ZWfNeXv9GgFNYBiRf0HytVjPz+Hg8toqXZOODCfIMVQ0vOju73ZCazUf1yitPKpm8odXVqQKBJe3vR1SrlRSJRHV42NZ43DZASZIH8AAYmI958+ZNA0EYqVlcgGuCymQyMZCNTAFApJEJMBiLxezkGb4/i4rFyagqFiKmf++z8l4cRhr5cRwELO+TQbKVZN8dkEiVSjIkkPAskOmoBmleA/Dg8wEYIMNyDfhjAE4ETZpbqBwZQ8NnYC+AUTw8PLRRRjwTghherWq1amANCRjpJZvNajwe691337UuWvxdgFvGbsDwsxZ5T6pdgBZeMOb4AfDx78JeYtyHpWYN8n6wU9wrmsIYQM46GY9n46VKpZKBG4IkZ8cjCfoOfO4hjAkAiMIA1g4wTpAdj8e6dOmSAU2uQZpZXziG1zMXzC32Xd7j8Xjhu8Dyk1iZzwo4vtNyQCMEMysJwl5yZ49iNyAZswaYPsH3g6Epl8vWiMjzohHPj06iqKCI3d3dNaUD9o5nSgGATQSbEXve71MAKNfE/QC4cb/Zf8Q/LAMA25WVFTttZ3V1WbPzukN23eyTYrFo6xRlA2aZfTEcBhQMjozhIxHCRlUqFSvyOAoX+RMfuWdwiN3Ma8T7xxrFz0kB5VUL5PRut6ubN2+aWoOkjqWCvYgHk+IZ0IP32TeSoOKwnpG2YUJhNAE12E2q1arZFSAIxuOxjYGDFWSdZrNZs9jE43F7BgBcP7vZF/iMPfI5k0kDTCi4k2TAMsUzA/x5Zpq4SbyBFWQ9kudQpogHrIFwOGxNsH7iBveNYgNgTCyBaccuBWnAc4bdB4zy7FDHer2e2u221tbWFmR1f9gGzwJSjAH+TDDxcZ281O12zZ6GukYM6ff7Nm2hVqvZ3mGWNooR9x8PMQWyn5qzublp9ge/N7hXkDReweJ+ZrNZwyxgAGIYk48o6HO5nKLRqK5cuWLzkYkdv+h114NTHjoblIRN9Q/LtLa2ZiNwkDUajYZqtZotEkAfLCYSJrLorIqPKxJJmo9qf39fkcjEKpp2u629vT17cDQi5HI5xeNx8yIlEgml02k7HaPf79tMPRY54InAwsJaXV2187/xzyJv3FmZAryo/P1GgVFkMY3HY9uMsDm1Ws1Oj6HZYGlpNjsRtolZf7BVNHXQFe3ZKBI5nf9U/wTxfD5vZvadnR17XgAb5AROVqG6BljgTfT+SQIszygYDKpSqViiBxDArMDMkVQBYv6z/EECJAYvGxIEGSOD3xM51Ut6FBlU7gRHvHewjjBKXCdBR5J5g5F3vLGd9QV4o8GHBDoYDLS7u2sMsg96BG7AHmzx0tLSAgiEzUDFAEQEAovn3APoGGLOe1KcIN9TXGAnQEoiOXKP6aL2vl4AFICUdUqyJWFIMuaHtUpwhQ0D/FD8khTwe/uB1SRQCjUYU1+c0rAoyQAsTAQFLZ7YXq9naoEkOy0MOwBNeqx39jf7mX2FNWBnZ0fhcFibm5t2uAOMN8AWtYAGPfxjzFyG2aWRqtcLq98PKRY7stPEWJee3cK6ALhjJM/a2kC93pIxu0iigAzsShSngcB8fBEsFc+G71osFq1xaHt726w9zFb2jWSSzL+/t7dnXezsXUkL9zAcDhtzRdMWUwS8AgCQBTgsLy+rWCwudGSzLzy7CojzvQSoV6xn1i6AkeIUZjsYDGpra8u87ZPJxO5vLpcz1dCPkQPIE0Mo2gDOXBdrisINO0swGLT7ga0IBo3mGWKnL35Qu1jbvH86nTYrQSgUMjsJPSOSTA2lKGQfERu5/8QaPgew12637V4S3/114QlPp9OWLylWAL+otChvFN2eVeZZ4j8HLKfTaZsx60G0X8v+AA3yD5Ye38CI5YZCGnWGotkTMeQVFKnW7eOyWU8UHl5989fE73G/mUBBIfleX3c9OCVQQ5V7FpDgxsYIhUKq1+saDGbD7ElKeGsAcisrs6POkD7xFElzc34gEDBAjCeF5Oe9pnQGk3TD4bD5GfGnEMCoFPHB0RjEoHqACF5UEggdhgQMjkVkQbKpkCSRB0jSAIDt7W2TfvEy8n0AsQRiAgAgjKQIkwkYBpACCjqdjh2V6u8XAJigDxsME9Lvzw5SYFwHiZMgSBIl+OTzeWOBCQ6ca14ulw0YsNGQy0hYrVbLpigQDDxLzxnW0+ls5Ab3OxwOL4x9gqXY3d21wO8bI5gbiF81HA6bb451vb6+vgD8AQAw3VhIGFMymcyHstPVTmIfj8e6devWgmUhHo+bbYFnjwWmdfuYS+4ByVKaN8H5Lk4YCa4nkUioUCgYUGZP+I5bAmqxWLRCge8nyVgMgi7yJ4AQUEYTHe8J0KEIQH7jM4LBoE28YK9QFLImWHs+gRADKKxIevjdSHieEYWl84djYLfY39+3mZj7+/vGRkiye3anTYT7L82PHex0OsrlclaQkeyQk7FUEHeIbYzI8TNa/RgdWLZYLGan2RFno9Gorl/P6X3v29H29sessBkOZ0fvEqdQQEh+MzAx1OnTO7p69axOnjxpFhDW3Z0Mt6QF+w4qDJ3QMItLS/MjcLkWrzIkEgkNBoOF5jxfvMGSelsEecF7mmH6YJFQUAAuxH2KNRhTmkY9QyjJ4qAk7ezsGIBgLBr7hTUnyfaCNCt2bt26pcFgoFKpZM+Ywh52FMsDgDuTySiZTKpery+ME0ylUtb8w5odjUbGMJMHWHt4ir1EDzgmr3gvPt+BYpyYwPoHWHr7DPEG3zGxGksVbC4N0QyS93sHlQF8AAiE6QaswySiqvoGuPF4bNN6kPT5MwUDTD3rlwKbtcbn8QzxgzcaDbN6AG7ZyzQdUwDAUnvFKJfLGZ7hc4hFKK8AcQoq4iL5lFxHXMSbThzwRaEnYVgX7+V114NT5qvBOpKcSaA069RqNWtagaVpNBra3d1VKpUyuZ9uct/EwUMjoUCFI7UjU/HyXdUwfwA8Aitetlgsptbtc9ZXV1e1tbVlm4aN0G63DehI83PtJS3IM8gxfkwFzA/+GhYhC953u7NRkKiWl5d15syZnzOj0+zhuzGpDPGpsLEYXwSTx8bEGpDJZBaYs8FgdmqQJGNiCEb4vXhvghyJiE0myQYF++NqV1ZWlE6n7X5SCXovKYEMJprubl4kRAIwTABezlBodi47xQfePGQZ/hufIoUQazeZTFoxhfTLGqeq7nQ6ymazSqVS5mEF9OErluZnq8PM4hft9XqmBKRSKWP//OidUqlkTRSwnrBlWAG415zERjMU8ivPk3VJlzCNA1wb0isFC/ebdckoM4L8neNQYIEBnyR4QDUAlL1AwQMA8z8H8KIpZmlpSZVKRZVKxRIVIAQACVDhvXznMIwOn+2nCBDsR6ORKpWKrYF2u61MJmPrpVar2V7lM2G8vf+S/8/1URjSaNjpdBSPx22ckPfhE5NIdsRMgBtzYWHG8JdHIhG98869Onfu+1pbu65OJ2drkOkYgAIYRe7tmTO7Wl4e6PLl+y3REuO8r8+z3CRGf9IW9xuJ1scEijKKJwpO9jJFXyKRMAaO/cOIHVQhLAtexuY5UNSQxDlu2McVCigmbxB3er2ePetCoWAAgcYurwJEo1EjMthjHjQBRmFhAd8oVf5IXO/txB5D0UERylxi9uj+/r6pRow7YxoAcZccyPeD/SceRaPRhXuMtQ6bBkCTdcnzO3XqlOV8WEAa03iOkuygAhQXik1priZ465ifTsMkHZhwVEf2Oe/DekPyXlpaMgaS9wsGgyoWi3Y/IR1Go5HNCQbYUSiQdyEIaHAFCBMPYb0hE9i/3BOKCXKft+v5Ih8FgoLHH9NOEUPe8Y204B0/KtNbmd7L664Hp3iIrl69apIZUiLVKgwRnZTIEyR2AChAtlqtGvtCx+x4PDYpmOaRSqViC4IHz2xJpDw2VqlUsgQIRY/3E9nLj6dCpqaC8p2+VGMkaRhR5AW8h/3+fM4bCZjNhfQP6ASU+gYmAg6Ljf8eDoeq1Wp2PwHeBN5isWgn5Hi5AUAPAGUsB8UFZ54PBoOFoy9hFSORiDW44MXi/mN/QAaCBYKpJHjze8iK/v6SzABMwWBwIUAixXNELAl0MpmYFcN7AWGsaCKACaEwAlQw49P7GQFR/D+8ogSjXq9ngYFnxfcl4AH4CE4w93hRed6sU+aqSjKJngQN+wMDQ2Hlx2utrq7aQQwwPKlUyhqNfIMHzTLISn6t8f4w0gAR7jWAj3mNXh1gfXIPAHCwhRRIKC0wHrVabcEnhix3pyTvu3gHg4FJhvl83p4V3jDfPMf6AeAR4LEuUJCwp9m/sVhMpVLJxjIhC5I88IgBRLGyUNxI81mRxAb80sQS2ECa6vh+fi1TXPqmRArjdntVH/nIih5++EXdvPkpS6TEHJ4pwGb2XhXdc8+PtL29rlu3AppMbhorQ4zC/+iLADyJvpEGZpCClMkbkkyGX1paMt800rZvWiWm+ukZ0rxZjtmprCn/2aPRyAoI2LNoNGrzWRuNhsVHimrWAUAPtgufPc1JNDmSr3zXdLFYNDsYFpN4PH67ibeh0WhkFg6UA8CRB1/EcEAveQ8wyR4lNmDVwHrEqLN6va7r16+bBQwgCECUZHkPiR/LEYwnP0dsBDxDUoRCIVt3MHT4wbHZeUmbPQPzivWGtX3n0HxUHx/3vaRNLPfNnoFAwAC6V3GDwaBN0iF+eXaWgo3ihvxM7McGwzOmuKXQZd3zuQB8CCiKPa4R1pkDd3iW4B+UZVSDlZUVFYtFZbNZi8F4ib1aBdCH5fXTMv68110PTj2whLEELOIPAzRi+Ia5C4fDKhaLNlIJWW9ra0u1Ws0CKRUZSYD3JCHQme7ZLewEyWTSGFgkWAI+lVq/31ehULDkxwblNCWkOZhJn2Ax9nc6s7PoCQR4n+r1up2yBKtKJUgw5B8qY38sIoyzHzYN8zIYDFQoFJROp7W9vW0STCqVssBKVcVInUKhYEAEJoxkCNOyurqqjY0NCyY0vhDcPXMMK8X9CIfDlqQAaoCzvb09a5DifgKGqTJJBDSKlEole274imCTYNgZNQTAZBMzRw7/pjQfVYXHDH9cp9Mx/xQgt9vt2jnffsoChQvBDAYbrx9DkUlansn0LADvR4UsyRhoKnAYPoAq3yWVStm6BijxM3hD8QpXKhUDBuxXigzPnEqyAow/+85V9kuv1zPPN3ueZEXBhdxLImS9kRQBbKy3cDhsvltYDdZvLpezM7VZT7Ao3M96vS5JZhEiQUjzrnwCN2CZe+d9jLwfgR5WhYYlvNPsBxQLnv/R0ZElaBprPPDnaEwKmXw+vyBBw2oBBIl1XCMA2F9fIBDQt771pP7SX3pen/zk9/Snf/qkaNj193p+rGZHn/3sT7W0NNB3v/uIzThm8gTj5vD80ZzmkyHyMbEPIIWUCoOO0uKVCAATe569wdqHEUOlABCXy2UDNew97FzeQ836Zs0TzwEw2ERQEbC5+H0gyebZAsz29/etqMfGBSsHYCUuYO/gXqEIefnds8LECYoiwBSxgQLqzi5wgCV50ltWyF0wm4AWnhuAH1LArytpftwyf+cPMKGIYo+Sz7wFz8cEpHoOWQCY+oZSCKxoNGrHYY/HY5s2AFCHUUaC5/8To1BPII0A3ljomKbgLYUASU9IUYyTq/gzPnv2qO+dwAPtCwt+x+8dchgxDKzh88LS0pJOnDih3/md39GFCxf0pS99SaFQyCYM1ev1hXjFXqA4+EWvux6cwi6sr68v+DwItL7TE0aFzY1hn4VO4gOg0EFIEPZdawQ05BcYGCoUaebZocqPRqOWnDET82c/dB3/JNVuq9Wy03wIpPV6fcE7GgwGtbq6qkqlonq9rq2tLZ04cUJ7e3sm1bBJYfRgC6mAYHOkuZyKwZ6k5sH1+vq6MQ3T6dQAFY0WdC1vbm4ujLEBUABoGo2GMRFU7TS3ABYBfjA9KysrVmk2Go2FJMqLYEFSXVtbs5Nf+M4kLg/WSUr4NUn8gUDAvMTJZHKhEgYoEYCQB0mEBCEqbKYzAC6QUTxrd2eDSzweVzabXZjSgBcZNgaZijWBRO29qZjdSTIkHGaWYrL3TVTYZPBwkshp7PLBCHBIQmbN4/ODVaKJj70EIPZdsY1GwzyEJBHYzEAgYOdtU+mTjEggyHocXwpQYD/wu5LMhuEZI66fgE7BIslk91qttnDufCQSUa1Wsz0BCPf+Z98QwfPmnvH3FJOhUMgSJT47rjEYDNpMSZqMotGoGo1tpdN7Wl4eKxw+VK22pMEgYmscxgm2JRaLWbMJYJCE6YsHYgiADUZ0Y2NDJ07crytXzuj06d/VX/2r39NLLx3Tu++etLUxO0RjpIcfvqGHHrqsYDCgb37zGQ0GGQUCe+ZjJDYiuROv2dMwQ378WbPZNC8q+7bb7RrDBPAjvuGf9sCEhkIULNZXNBpVvV63XgXGn8GMwbJ6lp31S28BfRHHjh1Tt9s1KwrMGcDNewABpChG0oyIQbImBmJ16vdnJ3LBoMK2AwhppIP19O/B3zPmy78AdewF5iWTN4lR5GF+lpjJCEPOumePENexkTBDmfGJePZ9zgJ4MYGAPIbc3ev1jBjxqhIgjb3LHiIu8z6Hh4dm+QKo9XqzExUpILxiQYymMKBHhLzCPmWNkdeYFgOxAtPqJ23gg8W2w3vdWcROJhNVKhUj4LAXADKZcMD+RRVlD5HvfQ8G95SxlxcvXtStW7essdmz2RRqAGr22nt53fXglOBPEvez7tiEeF8k2Tw3ggOBBTDV789G5XD6BkCFhE7ghKVAxsNDJ2mhksNnRSWysbFhHfosXO8lxCTOAiA5Ly8v2yBtNilBG/CbTqetSi0UCsbO4R3DBE6VC4OIr9FL/mw+WEukCKQgwA0Gbwbnw9jBonrWkSBKsUAVD8sF8IMxQ+72chLPaTqdn8jDCCtk1H5/NpIDmYPEB9vJ/fSeP+9hAmARgD0jwv3znj+AGN/7+PHjBookLRz9idGe+4xszX0FqEiyzn6KEpgjvjNsCDITiXhvb89AIN9vf3/fnicAiBeJemVlxRoISPoAdkAjicUXA4y7Yt3ncjljW/EMYpjH1wjjFgwGzQrDi8AeDocXRnBRHBI0J5OJ7aVUKmVgin0Nu+YH7VMw8OwB4hQR3Cvuj48p0+lsbirfl9/zRRH3xXcqh8OzU5IorFhfBHuuj2eMdYRiD/YZWdGz2qyNGcsx1T33vKXjxy8oGh0txMnLl7N65ZXj2tkJG+PEWBrkVNQGfJ1ezkylUsb6EmsBcA899JB+4zd+Q+FwWF/5Slqh0Bf1zDMX9alPXValkla/H1QsNlKx2NRkEtSFC5t6+eX71eutaTzuWYHX7XYNjLHPPaOIF/jWrVsWdyiiV1ZW7BCSVqtlHeewvhQsJHUvFTODVJr7kH1zC4AEEEKMIq5T0PkchMcawItdyvv9iIne++89vli5AA8Uy+QYwCW+Yd4HNQorDYADENhoNKzAwKrE9bCu/UlJ3jdNvPHD2VF5pPlMTNaHB5asXe4jzatM/8APSZzKZDILxYiPk9Fo1IpF8iCydTQatTF9Xm4mZkizYqnb7apWq9nJUBSWw+FQhULBciT7mBgHQPOeY1S/wWBgMZt4RTwnV/OMiDcooTDa5DewC2DUk0pcG8UQSinPgAKcuMs10F8DOB4MBgtNur4JClvaN7/5TdVqNSM37uzVgLzwntn38rrrwakkAzJUQt4/hVGYhJLL5ezhAHwI9rAp+/v7ZvwHkOIBovlje3vbFgueRnyuSOKM5kDio5IJhUJmG8hms+at43188qb69wsNKwAyM8wbDCGBaWlpyQaD+8QHvQ/AReLAk8dGIAAzt4/NiFfWM1Xez5pIJFQqlYylo0PQA0aYS5g5CgRAO8yI9/FxzQRpOt7z+bx5ZQBlyWTSgCPjhfCTeuaVZgUSvAcaFB3S/MQxwC6Fz+HhoSqVikKhkDUEESS4Hq4VMEDyQvKqVCoGBDyYOzo6Wui6rdVqBpa5N9Kc0SD5wPLTuIbJnTXMfSdxpdNpA0zeIkBihy3j2gArMDkw+TReIKvBzsAueqDrkwXFGfcpGAya+kDwxtdM0gaIY+Hg33hnYY0pJigU8RbCbMIi+u9Ogcjn8fxhMKT5sHqenY81vCf2Ht/tjS1oOBxqb29PlUpFhUJBxWLRno0/wYYCFlCDrEYsmTVkjvTEEz/TY4+9o6OjmN5446yq1ffp8DCkweBAGxst3XffO/rLf/kV7e5e1Te+8XFJs2dEfIPR8vvSe235f6wJgCPxh30zmZzSCy98Ss89V9aDD95UOn2gaHSi/f2YLl8+pnfeOaHBIHob8MgaLNPptEmLxDK8jKhfrMtgMGiFNtInDBGxlgY/fITsN98gg4wK2IJdwgJEfPG+PAAksYpChtxDjMTWIsmKzrfffnthoD4xlefqmT3AHtcjzVUg1DpGvwGiT58+bXsHSxS+aApyz2gOh0NjW8kx/EOcoiAiZrNnvY0Kfzf3gT4GPoNnB+sM+GEqC8QEBAd5gucIIx0MBlUoFOzZsj4hSygsvQWAQpX343tRYLDPIpH5/E72Ic+CfETB4tUpFCEPMD2ryntirWJf8ayJG+yzOwkdfOJ+XimKLsoBSpRvSIK44MUx3FjEYDchzyiaUf8gjG7cuGEYi4Y1isTJZGLkivete+Ljz3vd9eDU+zkAAmwmHiYbAe/I4eGhzfeDiTk6OtK1a9fM80YA5IHyD95JEhsLlyTqJQ82C9UeG3g6naper+vw8PDnBtdL8yM42ZwEt3K5bH5GQDLgjcYXAvTh4aHS6bTNi0NaCYVCNrKIpElQoVuaitT7C7lG/C0AKLo56QCFGfT+GDryCd7Ixzw3QOJ0OrUxGSRoae7Vwp/E9ZLs2YSMWyF5wELiK240GnZyCklxfX3dqnKCL79LVc7akmYJol6vq9FoGGvACT2RSMS8wwAumCaCNJucz0BGJbBx7yg+SECdTsfOjYbJ97YKiivvufPfBwaD7xCLxWw9eBl+Op1accVnAJiYfOAlepKBNG8eYa2wDiVZ5zJsHwEcGYsADbPRbDaNMaOApOCs1WoL0hsMCSN6vLnfF0CwNCdOnNCxY8cMPMLi0CwCO+Hfn7VAQh6PZ6NbqtWqqRbsS/YuxQQNhKwBnhVjmfCQsq/C4bB5nbG08DvZbNZsIzNLRkDvf/9PdP/9l/Taa0/r7bfv12Awe87ValX9/lg3b6b10ksfVqlU0a/+6iv61V/9lr72tc/p6GhuRYGh8bMxAWI05PHsfGd0u93W+fPn9c//+T+3on0GvAe6dSunpaV1FYtFaxCbToeKxUILQNMDHdYjzAzFNkqVbwBDKoZZBFQAFAHxADLv56RogwkajUZ2tni/31e5XDbrFPsVCZyjmAGUgEkPvKrVqjUtFQqFhTmQeB9hxAB4NIQBSIgR7DXUHpjKZrNpQBS2yis8NAIzbJ2457vdUQYBwTxjco8nDCAasJOQsyALwuGwkRbcr2AwaMULCgkFIKCxUChYzvSyPzK7NJ9HTFzjZD5sduxN4hCxA0sE5AwsoSerWJuBQEDFYtH2N81EzIBlRGAmk/m5ghoyBOsZ8Zp1BS5hEo00L1q458Q6iiAIEewzqL+9Xk+7u7tW3KAswZjyfsRflNV4PG5Kk8c02WxWm5ubisVi2tnZsRnqXJPP/dPpfHQilg1p0SoBafKLXnc9OIX1AnQwSzAQCGh3d9dO0vAsJIxhODzr0IbJkmSyM1UOiTcSiViVgG8rk8nYiRvlctlOamE0g28kgOnBD4VfyEvb0gw4wEox+JoFsbOzI0kqFov2fo1GwxYgAAxZH1BClRcIBOyaAdgEQQZvw0JxLXhfkC+Y7UiwpHEECZkjRwG2AEheJBE2PqDee0/xCjcaDZ05c0YbGxvmyUkkEtrd3bWgCZNAYIUBCIfD9rzp+kfahu3m5wGWvABkVNadTkfVatWOGgU0FAoF1et1k3BgZpnvyH2dTufHw/L3NIcQ5D0AwltEccR9SSQSxlKsra3p5MmTltz5GRItTCpsnme1+TOfPxgMlM/njTm/sxEBi4aX6niWJCLej5fveI1Go8rn86pUKnbvqbIpfJrNptrttmKxmL0/kjvJCiBFMqerGXP+9va2jcfi9wEq+M9oMKMBTZIVopwBTwIE9MJ2wSyQNAG/q6urBmpI6gA6JEg8q7AWMHFYIPAwelBMIuN7rK+vW1MSgP7Mmbf0wAOX9J3vPKlW6ymFwxN1u/va29tbaNKZFd8J/ff//SP6u3/3dX30o9/VV7/6CVMiYLMZy0Vhg/ceEoDi1De3VKtVfe9737Pk5RtEKHJQWNifgCTfeOb3KR5ez1Rj7cBWQvMabJYfwUbiBgAR64k5ABs/Hod1mUgkdOzYMTvph6IfxgiPNooEBT6ECMoTzYuwVDSfkeyRRP0zAJwCRrzvH7aae4unlb3Y6XSssOS9YJalud2M+M3eJJdQ2JEbGd/Gumd9spe4N96SQNFAHANocY98sQ4zSO7ws1D9iDXPErIXsSxQMHDd7XbbZlRDPJHDWRMU2tiYKOgZ7SfJnplv/vLWL/Ibz4W8iuoKYUPOAfDC1PMMAYjRaNTUUvYJfTCspUAgYJY+TnhE3Q0Gg8Y8E4NQzmiqxPcuyZ7xysqKFbzk+uFwaPENsBuJRBaaQlnb8Xh8oR+FnPNeXnc9OGUsCk0jJCIWAz4V5BxYVIIwG4jziSVZQhuPZ91vmUzGWA6/QfH+Ie9KMqbS+0ppcIE1pdLBwByLxXTy5Elb1FwnEtdgMDDDvpcMSHJsEpIHoAwgjRQKU+BZCFistbU17ezsLLBp+Ee4d5FIxOQCQDc/izyFVOwpfyprghpdmgR6krg08wJlMhk7xSWRSFjXO/4o2CZpPlP22rVrarfbyufzxoSn02mTfmDNeE9kPJ5HJpOx+8Jmx+8Ic4U3cGtry0AfgSMSiaharVqjCPIUDDc+R5IY7CbsEUGAxAEzAxPB+vKSnh+qfnh4aMmKqQ+AaAoQpCf/IlHwD+uDRg7AtJcdqaJ5pjA8/hnDrvg5uuxD2F8Kr8PDQ9XrdVWrVZVKJfN3cq8IdgQ/9jXrF9Y3Go1qc3NTkUhEOzs7tsYpRIgPgFkSEPsSIIE0X61WjelkLwPWkQ3xx6VSqdtM5ay4bbfbC1YYEjMTJ2Ca2M9MUoCtY//CELM2iEkzYDTQgw++qbff3tBLL+UlXTKJz69lEvIsSeb0ve89oc9//gVtbByo0cgb+KdQZB0BkhjOjiWGAgOmH2tMtVq178Z+Yf8hi8Jm8rs0hgHUKpWKJKlQKNg+RZ7mH4ArjDXXDaPqmzlYP/wOsRMpF7KCZ0tz1fLyslKplLHaqDasDexZgG5JNiEBS5QkS+bh8HywOzI+a5a1wBoEdLG2aRKCUAB0wALiB5fm/mH2Mwy0V2z8uMM7wTrxBtm20+nY+pdk7Ju3vBGH+T6wkuxRjl7l2bHnp9Opxdjd3V3L4exv4gJrieKR4sz3eRAjYUBhn/m8paUlm5vNtVII8TsUvXwe/mWa1rDscZ/5h+8J855IJOwQCQpP5pjjISd/3Rk3pfkILN6Xoo1cdXR0ZKxlLpczIM51UdiQo1GSsGbx3bHNgIkgoyBUuBZyAXaLarVqDDp7kxjGPnovr7senLZaLZVKJZunyHm4VFuAw2w2azMbAUdra2va2NgwbyRBjY0bCoUsCCCTsAGoUEgU3gflkxcPGTkGfxULEAYEOpwOS66biioSiWhzc3OhIqY7lY0TDoet+qNbkWrLs5dU0z5YMxfPAxB8LyxAPleSAWM+H7YRCVOSsUawkLAk3W5XlUpF+XzeZm7S2UwlBhiYTCa6ceOGJRS8SVTWBDyYFzYcsitsAgGB4C9JZ86c0WQy0dWrV23jwuoAjgKBgHUvE+gI6jCWABJYdJhyvIIEUy9bMgAd+REmlVOOAMhIRUgxADyaqTiSEt8VbCf+1XQ6bd3jnU7H5tMCmvHU8busC9hzOmx5hjwHZDuCmz+eEIbr6OhogcVcXl5Wq9XSjRs3TMojORCYOUKyUCgomUxqZ2fHhtYjZZPAWNustUwmo0KhoFqtZg0fyJk8D29FYG2Px2MbQg6zjv8SQOVHRUmzJE3TIQCG0UHSjKXiFDEKB+IGLARSHx5w9hbecs+KUywDYvv9vtbXbyqV6uqrX33YGDbiEF7iSCRirFo8Hlcul1OrtaFO53U99NAVPf98cYFZ9vYkgC3MCQAJQLO8vLwgX1KEwkhFo1EbPg/bBdMFUKJJqNls2lrY2NgwlQKbFfuTptBWq2WxhITNuiSmwvJzahiFBY1mFKg0lnDEtPerAhyxjQDkKbJJ9iRxH8e9xQBZmXtNEcp9AGQzKgorAuwfgI+9Dts3HA61u7trY7hoYgIoe1sXUjeNLL4PgfWFFYs5w3farvjOEBAAIcAhHkhftFJEsqa5f/4++HtXq9UWSCZvJeOe4FWn2MVmBpjDvodSEQ6HbY42n8VzZqQX3w/FR5IpnewH/kEpo2Akf0IEEZ9YmzwD8IDHJ7wn+YY1wZrl2WMLguHkfpDzKHh8QeSntdAEyZqGAS0UCmaFgKGW5p5jiirUNN9Hw7rBl/0/53XXg9MTJ04Yc7G3t2cBlXNrWVgsJmTCUqmkra0tjUYj3bp1S9vb21bdMsQZ1pHEgQxBgGOMCzIKyRBPUDqdNkYOUOsHKftZh9vb29rb27NAHArNxjVJ8/OHkdwB2FwXYJcOThYOi31vb89OOgLQ+WHfNFsRpOLx+MI4JI4B5N6yIL0M7Su3ZrOpYrFozDCgB39MtVq16hwmgsSN3Ep1ixTMqT+wGJ7lA+Bh+k8kEur1ZkcgXr9+3Z4DHdOwQiQubBF+hBXJFsBAB3A+nzd/FP5eNiWJEZDmR2YhmfEikUoywAuwgckjMcAASTLg5yWjbrerbDZr/l8CEZU818lzQ7qCIeV593o9Y/YoECRZ4PTnaPN9AS6FQsF8m7D32FNIbvyZzlYSMEF0c3PTGikYceSlKYKvP63Isx4k6nq9bg1r3B8/DmY8XmysYq/QmMGoOa4fhm00Gtmxr4ycAYSzDmAsObkGzx2sriQDQDR0EUuITTCNJF7v3+WeS9KDD+5ob29V29sJrawsm682HA7r9OnT2tzc1HA4tD2EDN7v93Xhwj169NE39NOffkRHRxNjetjfDAenMCOp4gX3M52JKTROehsQ97VarZq64tUnkjGNFjBq/hjN0Whk43ESiYQ19gF2UJoikYh9fwo0YjJ7i7iFRQl2l4YR1qgkezY8M4As0jJsPPeF/S9JpVJJkux7hUIhs1x55ct38XuSgvjHGiEu8LPEAuR1CBUsEuQKPPneRwiLRgz0hSPvTZMLzwIWL5/PG3uIGsLeowgC1Esy4oeYAJvo2WYYU+xcrBFAF0weMYz3hyWWZAUf8YrnQE4HkHsChvXBXmTt84LtBwyjAHHfsJqQZ8lzkkwBwTftr4H7DGvu/df829vT/MgnxnVhp2EuuffJsq68lZBnT2xizCWsLvuH8ZWoGtgUwTX4l30/CHGDwt43Yv15r7senCIXsOjwm0iyKhBwRWCmM75cLmswGJi/wh/VBkBh42N452GQZAmGNI/k83ljUvB0ICkBAmEx8JMMBgPreObBZrNZSXMGk2oaOcDLx1TKNJewKZBAka4YmguYoNr0m55ARvJBzuO7wZbgg/Ldp1R1/vg0wAysJU0nyWRS6+vrJtNwT/DUMPR5Mpno+PHjikbn40FgoAn0HjTRkEKQ5BhOWE2qT1huGlG8TO0lXk4z8tK77wTnd2CMPGvJM0Nm9017eHNpMiAwsmZ4xgwkL5fLC4cHwNxkMhlLsJcvX7ZACVBot9sG4rBqML6I7wKzQFHDn5ljiq8ZFpF1QnOHZzJgTiVZxe39WbwHHm5YXCRKBjwDKLwqkMwk9NRnUyptdRRdGms0SanRSukHf9pRr3pgTBCM7WAwMLDMXFlJtkbYTyTkjY0Nm1kbDodVKBTMVwtjhgzpu5Jhfrwvm/WDFOhZHhrclpaWbMB8s9k0AJdOp806I2mBLeEZLS8vK5OZqNFIKhyeN2KR1E+ePKlnn31W0WhUr7/+ur7+9a9bE+Z4PNbeXlzh8FjdbkXl8oxZTCaTyufzC4CY9SbNDhqgCGbqCdfLvoYxhWkHCLXbbbt3vIef9EER0O/3zYqF3C7J7gWSLyw+9x2mlDUDqPQnH2EjAgTTFIXdwhePxAiAJPI0MyO5TppLyTcUKslk0uIxBVI02tX73ndd2WxP4fBYR0dB1WpFvfvuujHzeIQBY7wXsZaige8ci8VUKBQs/8HmAQaJYfjzKZa875cDbPxzZE+wXviegGg+x+9rpjqQK4nRfl1gaSMu8XftdttiKaoDPnPirGfdYe+woxB/yNesFb4HRaNvxmJdZbNZY9dRNCkmsPV5Jp71yVg+cp+3ifE8YC5RSVCcWO/T6fyo3UQiYcSHJFtjAHieOSwnGIMTC7k3jEOjaPfWIggtbAisJ2I+a5b8wx5lHTF2DYWG9ySPoJS8l9ddD04x7eKpvH79uiUOQAsbkePGlpeXDcyxWQeDgfb29mwTkzAnk4kxjtvb25ZoYFG8YZzFQEMW3br43nxgpBKHAUOOKBQKkmZB4a233jKQh0QIwKHZoVgsSpL9f0kmuXQ6HfuOMLjdbte67Am8bEzOy/YDy5Fr8/m8eXSj0aiy2ax9B7479wVWAZAOQxYMzsZYAKwAZiRfqjMSk2dBON8c5g/Au7S0pEajoWAwaBUeCSkcDmtzc9OKE+/HQ+IiSDFVgaSL9wrpmoBINQ0IpFrne8LOeZZyNJqdPJLNZhUKhRZkK4IcnbreEE8wx6LBWgToI7/RCMALdoQgTYCmmOG9CFQ0dlDQsF8kWWKIxWJWZHkJmu+J/YXpBayT5eVlbW9vW7JnfqJP7nwOANXPjRyNRjp5tqSnPz/UqfRzikzrOpie1mAUVzjc18n1a3rs74S1M/yszv9sUxdfvGxyMX49rnU8HqvVapnn3H9OMBg0dgMA7+cDSrKGAxoMAoH5gRusLRpEaEpAQSFp8zwI7njrWAs8M1hdGF/iQr/fN993KDTReBywGZjIraFQSBsbGyoWi1paWtKjjz6qn/3sZ7px44apJuPxbN0fHDR0cNAzqRPJD5DP/qNA7/f7C82bgAZkQmwWd4KbZDJpzwRLCuwRLKFn7ilsARgoRiRjvPEkX4DEnYCea/eNGsSpUChkxTRrHAuOZ6opmri/weCsoW5nZ8eOv85kMkaO8JxZA8vLO/roRy/oxIkbmk4D2t/PaTgMKJXq6f77L+qpp6J69dUNXbz4uJaWshZnAEQUJP4kLMYG+qIcwMgoNwA435OC2K+hg4MDVSoVnTlzRseOHbP77cE+xawkG/9EDIRd5n7ncjk70MHbs3iWsJTs993dXcvXftIJlh9Y/+PHj6tUKlkzorfwsX6wWKXTaSMjOMEJogYChAkFvMjFfCd8x34iByofew3PMzGQnOX3L9I8PlRUEg8y9/b2FhQr1DGIMsYwptNpK9wZD8Zz970MFABYDCE+KLohoyBhyAHkfeyNFCGw4hSRfj1Fo7NDKprNppEg/4vn9PYLXyTJ9NixY8Zu+tEbANPZXMDxQmMILAn+DuRmAiQJyXtBaHChMYZOXMze+MxKpZKy2axt9kgkYp5MWCoqJjZEs9nUtWvXrBFneXlZBwcHthjwykjzYw7xbeHJ4/oAY9D4BNZms2k+XBY88hryIJU7zB/SED5TJIZWq7VwCgVVZzabNX8aCQKpYjqdam9vT4FAwJgBNgiMBQEREMD9gknDmoAMgeeODUQHdiwWU7lcNjYCPxuy0MrKiqrVqlqtln02m219fV2pVMpmmcIcUvkCWknaVLd+KgEMI013SClU/rB6jUbD1lcoNBtMjgSGP8mzpZJsVi+WDiwfrCsYDT43FotZhztACBsJAZGEyHnz+LBZ74ASSQbS8WuhFEgzv6pvNkJmJDHhL+bzSJp8h/F4rERJevY3X1REDV1tflzPf1269nbr9iSIvBLJTX3oc0t6+NyL+qWnv6No4m/pxT94w+4HQViaMab1et2eFSNimBLA/sLSsbe3p2g0amoI7yfNG08YyUWcCAZnjXTIx8iVNEmibODjJl4AOGCzAF7ECZhM1s4MKEa1tta3+8YhHJJ048YNA5ckFoD4bG/Nfu7gQAsND5IW9iH2GNi4GWM7s8iEw2HVajVL2hRNrC2KtWQyafEW9YgiluKHjm1/9C7eUORQ1rq3URwcHCzEalQF9r+XTn3RjarBM/Needgr8gdxn3hDTAKY8HzJNRSWo9FIpdJl/fIvv6zDw7h++tPHtLPzsKRVbW9vazAY6NixgN73vnf1+OOX9b731fTDH/6qBoMls3XAFlLU+9jnGVz8zjxfgBH7CGbLe05RvWi45b29GsnnD4fzM9xhV731gBhIjPYTQrBCoLJQjGUyGWs6RBrOZDIW4/FI8r0oaMglMPwUoBAgni2l2B0MBtYQzHP0sZi1D4NO0ZPJZBYOOaDgjUajymQyli/Yt+xZ4vr/n70/j5L8vq47wRt7ZERkxpIRkVvtKBT2jViKWLiAIAiSgCSKNClSkiXLbcltWXbL6tP2yGMfj2W33PL4zEiyu0XTPZIpm5QomTtIggABAhL2nQAKVah9yS3WjMg9Mrb5I+rz4kWxLcLnyGem0Y5zcAiisjJ+y/f73n333ve+xEzwACw+f6dSqdg+hd31TZN49lHi/IERkBN+fyDp88HPCphkf1xqi6EQgbzzHmRIIwoB1jrX4bEMOeHtfN7x4JTGCu89mZyctIBP8qNyojqhMsYjybwzZvLxwglYUO0kfKokgAD/ENCCwaD2799v30+F2+/3reGFQOzZVTbM5OSkxsfHja1hrAzsKYCA058I9LBsgGFkc1iHeDxuXa0EcCh7mjz4Dqp3Alyj0TDDOACWwEB1TEKAWcBnxPXALGL+BxBwVCX3iHQpyWwCPEPeHaBKkrGsMLB48+bn5yXJpCoSJxU4FoJIJGKNNzDpbHgYNapKqmRJNm/QJzNvxcAHxFqiYGBj+7VJwcDzI8gEg0FNTU1pbm7OpC+CGaZ/P9Zpbm7OvGsAdiRY2FOADgUI1Xo4HDYZEHaA4oT5wLDBPtFJsoDOvXPfyEcUDviZkdQJ2L1ez07ZSqfTmt49oU//1EvqKapvf++ntTK/rXqlMgLom42+vvGHm3ps/Ar9wt9d0/uv/py2N/+G3vjecfMpksRh6kgojLPxRx3CQnCdKysrajQa5ivmnQCUSDLEIgApf9Zut63JC2aHUTB42gdAO2nsnreV+FFQJIlh89huHT78kvbte5dqtWGxEQgEdOzYMX3lK1/RlVdeqTfffFMnTpwwdr1er2vfvhM6eTKhtbWOqUEAIklWKAPOvDwJGGSNAAoBMszh9etBGiQtCnfiKGDPe1fZU7lczlQxmDriGB+a/fL5/MhYJdaaJJNi/fxqadQzyeziTCajVCpl0z1gpLrdwUQCAA/ghDhMgcW7C4VCOnCgqfvue1nnz8/qwQdvVLcbUi4nJRI9U5HOno2o0XiXjh69Uvfd96juuuvr+upX77EpLjw3Yl4gEDAFhiJnc3PTZiBfOt4HYE28hVlMJpNmqyJuUAhjfQOQ4V9nL/kmOU4ykwZF7vz8vDKZjPn7KfTYE6xP1Ldut2sHAXg7gTQoEhgj2Ol0VCqVDPAmk0lNTEyYEkSDHO8CVc5bEWAayQ0AVN4dFg9YVZ6FV0Vp3Ot0OqpUKpqamjIVkrXkc7T3b186kYWCj7xPgU4eRbmEVSbXQTigoKKG0vyIZ5mYyoc8w3dIsvhDnsd+xPXz4XqJ86hvYA9YZOLC2/m848EprBCBqFarWXUxPj5uPrFWa3As6blz57Rr1y5Jw2MXJdmikmQd4aVSyRI83YgspmazqXq9rkKhYMZtfHnSsNL0QAcGxJ+PjLS3uLhooyYAunQYc00AEq6bBQQjRtOIbwhaX1+3AcEkmd27d1uw3tjYUL1et4YINnyhUDAwAqNHR3KxWLTBwtVqVZ1OxwINVW2hUDBGDzDFdXiPTKPRsCYKgJQkY1Sp9jOZjI252drastNX/Age3rUfFs3zoat9z5496vV6ZvIncOMDJdlks1nzH1LZ86w6ncEYDiTKzc1NkwQBFfw78+MkjVTJsDe8TwJbPB63ObH4DqmkYXuZ20sg9owYIB62gCJtampK+/bts4ICBrZerxvLBVPvZRkYGtYrP0cxRdKkOEBixMKSTCZN5k8mk5qamlIymbSGFxh39jGsY7vd1oc/WVMwsKNvP/QRbZaHjVie5SSBdLtdfenfpfSzf2tbd9/2LS0feZ8Wz50dkaUoDFgvkmyMGqwGhRR7QJIBWqwyntkhwXirBOAf8A2IIGEQvPERUsDAulGgEkcoNv3/hsNhvf76rG655VXdeOOinnnmcgPD0kB+ffLJJ3X06FHz7XEP6XRDBw+u6UtfOqTp6WnzrAM2feFA8oZNAUDTDU4DBJYNgMCQoU1as5Qkm2cMW5nP542FxUsKYwoIu3R6CV44ijMPDNmP7AMIg2Qy+UMWDH6fL5pRPrj/dDpt4/AYb5dIJJROp5VOp+1kq/X19RFWPhDo6v3vf0rLy0U98sjt2thYVSDQMd99s9kcGeNUq8X04IPv08c//qje854jeuaZ99m9s+ZZpwAu8hJFJI12hUJhpGjyc0h9QxCxKhqNWr8F75y8xe+mMQagSC5jH7EnkIKJ4YAhro3ny+ST/fv3W94GcDMpgektzC5lH1E4eeBJ4ySjCPneRqNh88chGfDx8gy8TQkfKEoPzcs0NaJSYnHBDkaexv/q50yz11l3HuTR3EQMZW8A/Gi85JqYmAPB4qeV8F68XxnrAAUZMQQwDxGEZYv3j3cde5j/3fw5+YsCif3k7RJ/0ecdD06pqJHBIpGIqtWqLQbYKHw4JBffBAIjAADznY6JRMIG7AMk+d6dnR2dO3fOPIWwWFQWSJSc+01SZIwJrAAvlE3N7Eo2Bd4aFiwVK5UwszeRgb0JXpJ5SgE/JAgqKLpWkdzYbGxQmpUAVEjaviojiSEZACD4DkA9TQgY3iuVirGbBCdAHRIEQ+sZF8QzJpEzXcFXu9gtkCCQ5aPRqMnrnEEPkMRLlU6nraORJIB0C+CDsSdIYsznWFqSHlIiLAisBB5UggOJASaRZM5/r1QqI41l2AUutTEg5yExVioVe/6pVMqaOpByxsfHrQMXSQvASxLFM8nJKIACOsyRgRnhBgvMaK+JiQkr1mAB8XNjs4B54/jVdr+uueQzeq30c2rMb5rMGA6HdejQIQPa1WrVmM+NjQ09/OAuffonH9YVd31Mm82GnarG8yDp4RXGU83a5fl6lhemkkAMe0awBuiQmGBMiEczMzM2bokGKKZE+KZGgAr7z3fHkpQpiCSp0Yjr5Ml9uu66t3TixJxKpZixQ+12WwsLCzZIHeAViQT0kY+c0uZmXK3WbTp0qKhebzBODR8iciGJCVkQIAoQYR/6hj+YUj+zmecOk+olUAoYnj3MKOtEksUh4i6qAEUqrByNil5uBpRhOSH2o1h4Rg0ViaIfpovYhEqAdErTHfcI2xiPxzUzc0qJxJb+43+8QaVSzfaFJ0MoBAFdlUpfr712hW6++XW9+OJtCoWypsLQwAI453ckk4MT+Hjn3iID8GJyBUodoAcwxJGg5LZkMmmTMySNKH4UMfguIT389An+HaCFVc17j9l72KZoTqQ3g/iJXQHFivfPu4OYwp6BvcSrTpAr5HuKGOI+HmueIfkS608ymVS9Xrc9z5ol3sJysgZRf2iiA5B7QHcpWCVu4IOXBkCXnhJifr/fN6Auyf5OODwcleUb+Xhu7BXih+8BgZwBYDcaDbNT+CYpSAdyBCAbJdWD4rfzeceDU1A8iRopSJI1XhDYYWxKpZJV35IMOPpOUS/rIg/u3bvXwAxzOVkoMGT8nkhkcM55MBi0yp8B1MgCmKM7neGsMSo+Ejn/AAypsnzHaywWG6H28X9QqdJtyJxXb36emJjQnj17DNCQnJB38c1wj3hXfVckrAqjtvCChcNhC+B010ajUe3atcsSAYEdgOC7/mF/K5WKstmsbX6qTQoI3yFOc08ymbT/Xi6XjQ2HAfTNHnzv2NjYiJ8NNpxk6cfg+BNGAOSwAyQsAiTWDTyhDDUnCPAhydNhjjQeCAyO1QN482xohMKbBINI8wosD346EhUgibWF9YN1L8n8RbCerCXkLZhkiiBYBgIr8wMlKZPJaGZmxgAkDTGSbP3C+gH07v3EhPqBqF54eEfrF+0z2WxW+/fv12c+8xmT+06cOKFvfetbOn78uObn51X7QVUffuAyHbrsNb2icQvOgUDACqJisWhF2sLCgoFiAi9zCWGfGKDd6XTseF3eLcDPM7QkT9YxoAa5jTnENI2g8LAv6UDHBwhrQhwD9G1vb+uJJw5paqqs++9/XJ///NXa2ChYYtne3la1WrV9ubFR1yc+8ZZ2767rS1+6WdvbXdtTWAxIMqFQyJqiAESwTfhliYWc8sXa8wwiAIdmE2+PgC1FweFd8fxg9ShKACD8Xf98We80OOGr92eaAzpgVAES/C6SN759lCreJSAaewB2GhKy9+3ecMPrmp/P6cwZSRpOtSB+cNqbZ8s3Nzf14osF3XxzX/n8Czpx4l22/7FhAcj8nk+lUsrn86pWqxZXQqGQstmsxVnyAXtzY2PDYkAwGDRgDWiHZffNaX5+NyoLR8jCsALS1tfXNTU1ZfEEBaff748Mf+f502zL1Jt0Oj0C8mAgIUok2Z70B52g9pE/ed6AQpQM7tVbPqanp42kwbpALGTNsh6R1tnbFHHeXoLCRJ7y5IkvVMAx2FU86OY9sHew2bBueJaoxb5oBgzznUwD2dnZMR+9twqxztrtwcErKHIQD+R47IMUquAQbCH+vv6iz38VcLqwsKB/8A/+gb7zne9oc3NTBw8e1B/8wR/olltukTSobv/JP/kn+nf/7t+p0Wjozjvv1O/93u/p8ssvt99Rr9f1d/7O39E3v/lNBYNBfeITn9Dv/M7vjCTrt/MhuMIeBYNBzc3NjZjfAQ6SjJGicuXvMZoBzwXn6NJ9R7D33aPMO6Mqhh0g6OzatUu9Xk/z8/MjDTNbW1t27CXNV4lEwo4kkwb+tURiTHv3rujgwSPatauiWKytXi+s1dWEjhzZozfe2KVeL2lyve9KBeRhqvejV2C9CJJ+YPG5c+cMSANY+PsEAeSoXq83MhKrWCyOeGxJOFSoHPFGtyBDf5FL8MyQKEhEkiywemmIRgeqdN6x79Klk5AxNkj8BAekSFgXWEG6QRlE3e/3zVCOwZ0mLdaGJEtOFAvYS0jcMLKhUEilUsm6KWE2CX7nz583awHBkVM8/Iw5mDZJI9/BsZi891arpfPnz1tSAUgDwPz4HpIsR/vC3pDgCJ7IpdVqVaurq+p2uzbxAdsFa5IDLBi/xr7r9YYD1GG54vG49s6cVLn7Pm1U16zYuOyyy/TAAw9o//79xmzdcMMN2tzc1FtvvXVR5mzp5dd36f3velyZmf9esVhMy8vL6nYHZ2JjG/AzDHmnXu7FOgFDhGLgp0wkk0nl83nzq/Eu/XPiHZB4US34fgCWb9yDecCig+WF3821DuTDvr72tTt0//1P6m/+zVf1xhuzeu21/drcHBxwMYhzfd1224KuvPItJZPb+trXbtL585MKh4fXTBHb7XbttC6OgsbnvbKyYuwuMQ7WBY8khVkul7NYwKgcEjV7jFjJ2vEFJQwzUwR8sU0iZ9wd8QMmyyd+Ckfvf6QgRZkhPjFdhH3GvgcY83cojrFywEpx/8FgR/v2NfT44++yAtN7nQFBJ06c0MmTJ83rO7j/pM6fn9b+/VW98ELD2FIvq0qyIhE2n3vh+2DWyIEUu/gZAWg0hnlvMSwdoBZCBLAFIYTSBDED05hKpYxdhpzx4AVLBLI7SpmPo/SDsGY8yJJkiie9H+wzT3RwShixk+fA+/febr6LKR7kSHI7uYF1yB7G/gEz7Askn6c8fsB/yhoDG2BDoxjjXcAIA5YByVwP+y+Xy9n9sSYA2sRX5pXzrgGlvFcsbSidKysrxq6y/vn/qBsAZN4B+elHff7SwenKyoruvPNO3X333frOd76jQqGgEydOmGwuSf/yX/5L/e7v/q4+//nPa//+/frH//gf67777tObb75pVcXP/MzPaGlpSY888oja7bZ+4Rd+Qb/0S7+kL37xi/9F18MLx2BPJetnfgKwSIJIFAAFWIlerzcyQoGNsG/fPnU6HZPpCa4wbEhyyMlUIt5bSkME7BNeNU7wwNyMzLh795ruv/8t5XKrqtWSeuqpggKBnFKpiJLJBd1++xt697uP6JVX9ur5528woIXfi2QBGxoKDc+H9mO0qLiQGPGS+mHTdFBKMonESxtIKQQgkrevtnk+SL80Vq2urtqpKJz7TjKheQ3GBIDguzLxKWKdgCGBufWyyMLCwkjDB9MG/OaHzYEppTGCRE0g4dmSNLa2tqy5ynt0LmXTARdUxVSqzNmFxQdcU0RxGpQPbpubmzaQHHsHyQYGORodzLTd2NjQ/Py8JW+YX5IBiRkpjjXiWVOkP9YNzRVjY2PmIQUMhEIhFQoFOzABWwT7kXUvDRskYHz6/b4iwTXVd9LqdIbzS3u9ns1B5RMKhWz8F4XtxlpYQbWVzCQV2N604xopHCRZAYRNBMUCVQNgQvBGuSDhEJyXlpZs3dMwSOKhECTZUwCSpAG7l112me655x5tbW3p0Ucf1YkTJ6wohk3F9uAbLQAYvV5aX/rSHTp8+Lyuvfac3vWueTUa42q34woGO0qnmwoEpDNn9urxx69Vo5HW2Njw1JlLh+pHo1EryigeSUi+sQuQSuGKMtBoNGyEUSAQMC85iQv2hliAekKSJFHz7CloAWPIiL65BOkeeRMZFnWEvMB6o0D2DCZAZkAMJMzTSREGs4T1g+Y5wBlESSw2UJRarZQBQdZQODyYqzk1NaVSqWTrAmvNgClLa2Ji2zzKFMM0yLG+AOFLS0sWn8l1MG10iXPq1tjYmIEugAeFAAW69/0DvnhnqVTKVA/iFfEDZm1sbEyLi4t24hqSPdYI34hEnCXuAIZ5tv7fvTIKE721taVGo2EHe/D7+floNKqZmRljzbFvQayQwwF7kBxc38BuUdGePXts/6GE+ryHeunXGCws+wzQDPtIDPFrl3zNWuS90lQFGQE2YR/RIAZZxLq/tNkpHB5M2FheXrb7yWazI6dAgU0owrhO/p28CLhn7aKY/v9M1v+t3/ot7d69W3/wB39g/w1TszRgTX/7t39b/+gf/SP9xE/8hCTpD//wDzU1NaWvfe1r+vSnP62jR4/qoYce0gsvvGBs67/+1/9aH/3oR/Wv/tW/0uzs7A99rweLkix4k8yRW0hQPCR8OT5ReNkcWpuflYadaYxQAbDBUHlgCvNCgG+1hqch4flh4VFtw9j68RAA2mAwqJtuauunfuollctpffObH1C1OqdWa8e+6+jRqJLJOd1xR1Xvf/8ZZTJr+vrX36VgMDpSuSGrUSFxQAFsB4wZgYNKjCoSnxIVKtKMNBxRIQ27SWncgVWlOYFmGYI0XZjBYNAOQpBkssXm5qYxL7wXkgsbGd8UAM6DQN8UAUPIeyVAEnRJUjAvBE4AFR2cBAEaxvy8Q4747PV6Nuic9VIsFhWLxVQul7W5uWlFAQUDwRcGRhqw+7OzsyOm/1arZUO4aW7xQI8xYrt377bpDrx7klUikbCTtkhMyPG8U9Y3z8RLS8i5kmyItpcCAemY6fldXBsMAgO9ec4kFU5O2d7eVq8fVkDDoI09o9FoaNeuXSNNHUtLS9aUl81mlZ0cSMcbq+vauAimYbn8+ozFBjNmYV74HuIIAR7WplqtGouGNQQvOoHad3Tz9/mHIhXPGclr0Nl9QIFAQG+88YYuXLhg4MrPRkXCTSQSFjNoopSk11+/WS++eKVmZk5r9+6GxseD6nRCOnJkVufPX6mNDY6RXDewKcmYICRb7Dh+1Mzy8rIk2Xg4WB5YpVhsMHGD/QYbiqed2Mo+g9WFMaXBhAKApM1sY1/UA3TZN7wr1ih/F38wf4e4Wy6XjaGlKEWdoAjmWmFofawAxENwsD/oCdjaal/8XT0rfImrzWZTR48e1eLiojqdzshEhGGM3VG/H7K4y597fzMWIwCvVzJgLgGLFDfsVYAZDDR7ieKT2A9gZB4qBRWxq1Ao2AxwFD+aViuViu1tvJeokoBNbGzBYFDlctnkfCwyHERDT4FnTfkZvKmemU6lUsrl6ioWjyke7ygYjKpeD+jo0Wn1ejGLTX7UJOuW9wBx4NUx/hcyiWKFvzM5OWkeU2IVnlvyDX5hbyFilBUKTCgUGvEHk7vx6IIZ2IeoO6wLSBbWHBYcYo4kA7kQTFwb65riE1YbVph//NSMTqdjBZLHST/q85cOTr/xjW/ovvvu0yc/+Uk98cQTmpub0y//8i/rF3/xFyVJZ86c0fLysj74wQ/a30mn0zp8+LCeeeYZffrTn9YzzzyjTCZjwFSSPvjBDyoYDOq5557TT/7kT/7Q9/6Lf/Ev9E//6T/9of/ORgLkpFIpCwZra2vGLGEWRgJmQ1erVW1vb1vQh1WlWxowwp/x8mlMguWDqQMUISnAuHG0o5e2OE3Be21yuYY++ckjWlyc1SOP3KF8flaXXZZVuVweOdIvGJzUsWOXaWNjlz760Wf03ve+qoceunqkm5HgBZhDZqaK5+dgTWjaILmOjY1penpaExMTJjfOzs4aiIU9ZIwRVTcNWZ7xwfNLow2NQ14WBJj6uYx4DRuNhmq12ogflZ9hg1NRUvkNmYieFSZTU1MjI55IfB7YArTxVPr1Ajikyieg9vt9Ay8cVxeNDs9QByBKo8wNkqo0BHJMbNje3raRScFgUMVi0cBYtVq1e9y1a5d5FH3QhqXd2dmxuZGMDCPA+mNqe72eNWNRTCDZDDqKa1aJE4TwEOIR5FlxDRMTE7aufLMKcx7poi2Xy/bcS6WS1rZSyozPS4Hdxo60Wi198Ytf1C/90i9pdnZWW1tbeu211/TCCy8oGAyaelOcqWonkNe546e00VxRJpMZYex5r9wvTAOMDHsXhgSwg/ccDze+Lgpcb08Y7NHgSNG0szOYtYjqgNKxsrKihx9+WP1+X+fPn1e327WiEKabWEHM8e8REDgAZy0dOZLXsWMDxQDQnUi0FAy27RrY58RP7B6eOQOUBwIBO0WHA0RgutkXqFeAHawjMHJergQEMIbIjwJEOg4GgzadYn193cAyRSIsD8mW/Q3byNxqWGtk90wmo06no+XlZZuRGgoNT7lhL1P0UiBzbQAH/LnkG8bJDQqFpNrtsLLZura2ova7KeyQy0nyFHcQB7ncira3B2oVMQ+7Dx/eN/IyhXM4HLYRV8QjRtBRhAHSfUxi/QNkyKEU34PnntLGRlnh8IZSqWlbJ3x8HIUQgIBhuD6ABqsAeQlWHUtHJBKx3hCKZ8/aQXJADA3Iobguv/ycrrvutAqFknZ2wtrejisY7OuKKzZ1+HBA588f1NGjV2tpKWn5z59dT+yiGGBmOvscZhXWF4KE/UP3PHmNewd7kEPIufzZ8vKy4QtYTuwCFFnkPlRGCAEUBt4HEwZgXyGFWGf0t7Amea5YMSgiWGfEOYoyimIIOOJ7OBw2a9/b+fylg9PTp0/r937v9/Rrv/Zr+of/8B/qhRde0N/9u39X0WhUP//zP28VNnIqn6mpKfuz5eVlO/HELvTipuJnLv38+q//un7t137N/v/q6qp2795tQYpB2myMZDKppaUlbW5uanp62kYMsUGpcJixxglMVJx+Vh9+xVKpZH7MVqularWqfD5vTUbIqFQzdGMjlwJEAahsVljUWCym97xnMLD54YcPq98PW+XGKTuAA5oyyuUDeuSRmj784bf09NNz2tyMGEvHQiERS8NZgwBUfn8ikbB5eSxsmgM4YQkKH3AOE4U/heqNCn96etqSAxUkskOlUjGvDxYIWFlJFoQImAQKgiVVHxuMqk2SeXgBYCQBwByMFKOM8MLS/U0zCKw77Ai+O0AnDJwke4YcSgAzsLi4aOwGI11IELDXsEesDZiMzc1NO+ULPxcHIdBRm8/nLWHy3GE5/ExeWJnt7W2T1KnoeQ8AZvYXzTkkEYA0kk+lUhEnIDFShz0gyRIcQIQZgjwbGEqsGHx3q9XSnz8e16cfeEaZy6/RK9991Z7HxsaG/s2/+Tfat2+fNjY2dPLkSZOtwuGwAsG29k8+rXPrH1Sw1/ihLu2dnR0Dw4uLi5JkBSj7He8ijSLcCzELcMF9AmqZhMBzY1wQxSiFDu8b4FmpVPTss88qFouZbSKXy9n7ikQiI2wzIAXQzDgwwAFg1YNymh/wU7OGAGPYV/L5vLG0sD340LLZ7Mj8YiaI8KxYy7wLGjQZ5YftAVaKvUPsmJ6eNksOe8rPxEV6Jd5jJ+BnPbvj7SqwtaFQaIQN9usN1g2WiPvHe1goFGzP8t7ZvxQevOt2u61Tpw7oqqtO63vfm1E4PFQfkHd5fxRr7LFDh/oqFFb0+OO3WowlHvm5o6hJsdjgkAhiIapRNBq1MW0AWxRDmtgAG1wT+4h4yaQa6YwOH17WLbesKBoFIL+uc+cKOn36eh0/nrOpHr6wId7znfgnsRVBBqAEEYNYn74QkmQsIDY0sMIg3nb1wQ8+qyuuWND8/JS+9a3Deu21lFKp9MV7aevqq8/qwIE3tHfvCX3nO9fpwoUrR+Ij75axdiingD0AJ9ZA4hHjFLF3oM7Re8G0ENhWr5KBNciDvtnS++B5d+RePjCgMKVYPjhFikKDmezeh+r9y55EAnBDwhBPALLc27DwTYwca4o696M+f+ngtNfr6ZZbbtFv/uZvSpJuuukmvfHGG/rsZz+rn//5n//L/jr7AIAu/fjmnGq1ahsgGo1aByCLHJaM+4CNpEKnumfj4j2k4gEUMiIJYMOfe08QG4mOc98ByMYH8EG3J5Ob2r9/SY8/fr22tvpKpcLmUfOeS6RAKshXX53VXXed0u23V/Tii4ctSeAVxfN1qZ8RBhLGkiYFzvMlEVLdwYQCzHzyhQXqdDrG0FI5AoAIKpJGZDzkON/VzibrdAbDo2lEiMVi1rBAEAFUYWhn9A7AmI0Gk+plb55JrVZTo9FQtVpVsVg0uYpNiNxF4cE78XYAKmgqcbqYYZV5d8j+yGgwckyEGBsbs9FXdDlTGQ8kqwFzt3v37pFJCbBNsMwAFZg8bA5+UgIJzTNMJED2CaAORp1gyH/zHZu8M6wB+LEw21Oh8z5gvtmzMKCvPb2pn7w/p8N3NfTEn67aGgwGgzp9+rTOnz9vPjKsE+FwWLuubyiiFR3/wZympoYjh5hPS7MOY7GY74tUhroB88ffAdx7DxlJguKDJOybCJHFIpGI9uzZo0AgoKWlJUmjTBBrhN/J/wJiV1ZWVK1WR6YF8F4lmd+L4gk7Bx76SCSiWq2mWq2msbExOx2OAeLJZFLlctkKJ+IdH9980W4Ppj+MjY0ZACaGEHfwNlJQ8/tIshQEsJbScO4jkjPNeexznhl+eEAwa5t1SpMMxaj3swLsSbTED94tACWbzdo+h4UEfGHd4GAUkjrvv9fr6Y03DurKK4/r0KFlHT06MxKLYA35PdIAzGWzWd1xx8taXR3TyZM5Aw0oQryrra0tszIgR0OCwLaxPvANs78AMb7RB4LC2wQGebOkD3zgEe3du6TV1YheeeWAqtUJ9XoBpdNtXXHFed1996O69dakvvGN61UuJ2z2K/Efmxnv3h9bSz70RxhzHZ45p/HKEyHEqME76OnjH39Ll11W11e/eqPOnds7wjYO5nBKL798hZ54oqi77npe99//mr73vQm9+WbeDoUA+LHnyUcUMgBZejdYjzRHUrxQ4PrmIF8cAMApCiAXmE4BK8/65jspoig4mSbE72at+phHUy02Lm8TYj+jUOIZ73QGBx5sbGxYHCSeE/d4VjCyFFAbGxtmx/hRn790cDozM6Orr7565L9dddVV+vKXvyxJmp6eliSVSiXNzMzYz5RKJd144432M+VyeeR3AEL4+2/3w6k+SHp0/QUCAc3OztpiaTQayuVyOnDggFU6SLOwODxkGkUIiDQpAY7w+TGCxpuOSUTIvyR+7pEgyv+XBgA7m81qz55X1emE9PzzE0omZRtaGprPqeih3QcBZkJvvLFHN954Xq+/LkWj4yMVJl4y35kHkMSgzdioRCKhc+fO2XcwhoaRUv40JD++ycsR0nAuG4wFzxdfDBuaa6R6Rhb3fkySLZsMoMPz9f5j5CM2D/4ZQDl+JwAIP9e4eCY2QY+xUsxl5f0nEgnrZsaQPzk5aWwb1wsryzPhXRII1tbWRhivSGQ4a3F8fNz8u4B0LB1IJjQBMIOUd0lxNjY2ZgwU38tQeQI9sj9NLB5UsjdIipJGBuYDVhhxBbvL/iCpYHNhMgMsBAUg1TZNZsOZvkm9ejyt2674sv7K3/sb+va/fcFAcK1Ws+cCKN/c3FRmrqcbD35Lpe4HVXqrbsUUTTJcBwAUZs6fNsO69fYNmF7WBuuRDvqdnR37/YxoIZEB0JAhSdT4OrEVsJ5IvPx9mGWAPbGF30FiZ115L7jvNueDfckfCwkI9A1XrBuYVcaCwRAhcbKPkT794RaoKI1GY2ScUa1WGzlIg+ftfe6wnChKqAEQFJ75JBb6IouCjT1KIU+Rz/OF1aWoRAlgTcLcYivhPugg5/9zH8TranVcp08X9ZGPHFe9nlW12hyZNcnMUHJOKpXS1Vef0+WXn9UTT9ykYHB0biiNQEioFJd8L/vfq16+eAe8sNY5rIZ84MfADSxWZd1zz7eVTG7ry1++Wm+8kVMslnTrIaULF27R+PiSDh9+UZ/61HP67nffo+Xl4exW4ov3fJMDiYkUKHw3MYzYByiDjeTd0Z8QiUR0443zuvrqqv7oj67UwsKM0ukx2+uMkxxOAWjp29++RqlUVHff/YxOnPiAkTmQBX5kIEUxRBKjFgGzFBU0hnqvPyDX7z1sa3iYKTAggfCANhqNH4rF2Gqk4exZ32iHD5vYHgqFbM4xRQmHLcCoojQAdGHjieGwpL7jH3VHGtpwKI453e3tfP7Swemdd96pt956a+S/HT9+XHv37pU0aI6anp7Wo48+amB0dXVVzz33nP7W3/pbkqTbb79djUZDL730km6++WZJ0mOPPaZer6fDhw//F10Ppu14PK5isWijXXiwMJ3r6+sjCQg2NZvNqtlsam1tTVNTUzbCiMTACBwCuJfWSUR4MFhEgBSqI8ALJ4ysrKwYy0SCHlD6NZVKk8pkZi0IIC/v379fBw4c0Pnz53XkyBHzO0mDTr6lpTm9+92nlU531GhETVYDAE1MTNiighkgcZJo/RGmbFgWKmCdpOAbE2AKCdrIMpOTk7aJ6YhF6ge0sDmxR+CNxJOFNJhKpayxxt9HNDo4/5jkAWOJTO+ZrEajoeXlZQWDQV1xxRXW1MK7ZSP6ChpphdNKkIXpduf5BAIBqzYBx8g/fHj3dNFy5CCMarvd1unTp0d+L4yet1Ewr5VAz3eT9Ah6rCvWLAyXH0WF7WFyctKSCu+GtUVgl2TeUBgtnlcgMBiYXS6XDQABfKThIQ0kQxqteFaNRsOuCzbt6W+HNVW4VR+88veV+Qe/oIc+f0GttXXzd6fT6YvsV1f7b4no8NVf0lZ/Tg9+oaht1znLvVJQel+1NGy2JJEBBDudjj1PWGXYFFj/nZ0dO/kLGw9ADXkcFo99RHLGa76+vm6s58B3njPAgKeSgoC/R3LxzStjY2MWNyQZyKNbemZmxqwVqET8L3YS1iFSHt8FY7tnzx6lUoOz4QHkqB8kXLz+rCWeAwAEnx8sDmtFkoEW9l6v17N9zL7k91arVfV6Pc3OzlrcBbzARnlmv90enjVPsQAYx+bVbDYNiORyOfP5wlSiyvhDTnyTj1cxHn/8Tv3ETzyqn/7p5/Qnf3K5TpwYFHk8IwryaFS6/vojuuuuo3r99b164YUZ7ewsm8TspWbuB/ZRkhWHFCOoGJ7xp5gjDlFwbWxsKJfLWRwYgPYd3X33Y0okWvrjP75T5XJcuVzCGGIm2wxUgHF95St36MMfflof/OCT+sM/fLcqleE8zkQiYUwaSgdWpNXVVcsbnj2noCAHUSByfdzvIF709e53L+n06WmdO7dbExMJK7hZP96ylMvlJEkvvDCpAwe+rBtuWNT3vlewZ8s/sMzk6WazaQwurGUsFjOSo9UazBGleavT6Rip4w9LYTqGNCj2iX9gDiYcsFbZn8QyegrABt4+wP4FpBKDKNqYFkTu8MAU1ZTvhTRh72BrJDZgJaGIZC+w5t7O5y8dnP69v/f3dMcdd+g3f/M39alPfUrPP/+8Pve5z+lzn/ucpMFG+dVf/VX983/+z3X55ZfbKKnZ2Vl97GMfkzRgWj/84Q/rF3/xF/XZz35W7XZbv/Irv6JPf/rT/4ed+n/Rx8s2LFo2qPe3+bOGqSxgMQhqsK8wcnhXASIzMzMmn+CR89Ku947QSQ0wJeCyOAn2VMaDxdvR9nbE2FwATjqd1uzsrGZnZ21eG4EQr5M0GOmxvV1XrxcfqeYB6chQVDmwFdwLJnsM6ABSfJIwd2wkP0YD3w6bCICUzWatW5/mK0ATACGbzSqVSg2alcYn1J85qFg6p0AwpPTOlnrzx9VsNmxjep9nJBKxph0AEkCD506Ak2SnaC0uLtrJWGxWGEyuC0/b2NiYMfLNZtNGgeCT5tnCUOPdg9UC9FHkECg49YrAjM9zYWFB+XxexWLRGFcAFd9L4MJrSqBChieBeQUAc36z2bR7CgaDqrjz6pmdSqBjYD5sISwUAMtL9bB07B1/bzxbvILM9eT6AIXcF2vuwS/O6t5PxnTr9P+u6399Vm9V3qfXXwwr2I1rPB3X7L41Xb7rOY33j6reO6zv/Ker1d3aNktJNBrV6uqq8vm8jb0B6OTzeWMoYNEAWTxTCjcKT0k2m9OPdGG+I7GDxBaPx22aA7+Pn6vX69bE5ouRS5kx7gVlAUALQ+/ZF07/8h5VvhsLDqwmAIZ3BuD2wJQxcFwPkjkMUT6fN38grBLSLt5C4oA/wAO2/9KmGoAe4IvGNBh2gDSFBr8zGAxqcnJypIj2wGRsbEy5XM58olNTUyNgJJFIaGpqSvV6XSdOnBjptKY4IemiYBGL+f28Bxjxra2o/uRP7tRHPvK0/tpfe1OlUlKvvrpX8/MZFYshhcObuuaaC7rhhgUlEjt6/vnL9NRTVysSCSkeHzNPKvGaPUZRRAMP1h0/So89yExlOvh5Higgnmxhf6dSb2p6uqIvf/lOra5mFAoN7psCggKN9dbv9/XNb96kn//5x3XTTW/pyJE5A25+pqr3P46NjRnDRv8ALCpgiEIfyxmjjfBp7+zs6Npr+yoU1vTcczebwsOavzSW0QQ26DcI6/z5y3TDDef05pvXanOzZfnWW4y4Xw8q+TO+B9bSKxDEBRhRwCAfVB/iADFAklnKaHzC9870BmIQdjq81hTs2DXwuksyFanT6dj1s8Z7vZ6pbOQbrD+SLHehILMWWGtcm7dvvJ3PXzo4vfXWW/XVr35Vv/7rv67f+I3f0P79+/Xbv/3b+pmf+Rn7mb//9/++NjY29Eu/9EtqNBq666679NBDD5lPQ5K+8IUv6Fd+5Vd0zz33KBgcDOH/3d/93f/i60EaCQYHo038EWwwE+Vy2f6cwMlCgykg4CJTIRVRkbJxSQKXBgZJI5Lw7OysBRM8kgR+gq8Hq81mU1ddFVQ02jJ5Fcaq1WrplVde0fHjx62KxD81bOAaLMJOJ2ZsoSRbMDBoACKan6ikkAiRsPxixjdK0PcAn38nMGazWe3s7KhUKhkQge4nYUUig/OfCTo7Ozua3H9I4+//uCYO3KBQPKHuzrb6vZ7C8YT6nY5WXntaC49/TVo4ZQwUidhbFPDY+ROcJNkGpvrHChAMBo0d84O0kfonJiaUz+cVCARULpe1srKiZDKpQqFgARTQ2uv1DOCQvKampkaYo2w2a1JMJpNROp1WtVo13+nExITJbawR7BWsBbo9B+97OByZdUrl6+WvbDZrkxb8IQwka36Pt4zQNbu9vW3rBk8yI7b4/bDLHkgj3zL6CabYNwPC8jBXlWfI+g8GI3rsKzN6a/+ndO1tFV0z+XVdf9+m7f++girt3KXX3nqvzrzaVrvdsd9NUoGN4Bp3796tfn8wXQFZyvtOAWfEi1AoZAC80+moXC5bUQY74llrikeSx+zsrGq1mur1ujVe4gn2EzxokOJdwID4wxkA7ST5tbU1TU9P2xGUWE/Y494fR0LxMilrikYuQAAyXiqVMl9uLDY80IACc3Fx0WIMMjrJmniBLEgTCcwdMYYYhBwKGwOg5pngcQW0s/e8n5WY5kGJ90ETG+myl4ZgxvthAXI0ygG2yC1eYePepQEriVWD9f4f/sO7dPnlazp8eEn33vumPB7f3g7r5ZeL+sEP9qpSiSse72hsLDLS/BYMBm3P8rz4c7yz7MFer2dxkeIWthevIxYuiBVIGxSwG288q8XFlE6dGtfYWNDWCpI3B5fU63Ur8JPJvF5/fb9uu+2YYrG8JiYK5nfc2trS8vKyrQv8oEyWoQmLGBmNRpXP563QIEejGiBtBwIBXXbZotbWxnTmTFaRSMhycKfTUT6fH/l+8iXMaKVys/bvP65icUMLC2Pm7yVu8Fx45l6qx1rD+/ETJCh4PCAmx1MIQdSsr6+PjEXjgAI88hRlrHH2P6oZbCdkECc7safI+95/S6xFPWYNeDWFtQRQJz6hZmKn9PHeg/W38/mvckLUAw88oAceeOA/++eBQEC/8Ru/od/4jd/4z/5MLpf7Lx64/3/0wRfFgsrn80Ztk/B5OZJMVvXShjRsrGKj4/NJJBI6c+aMyc1+9iQSMd9DlTsxMWE+KzYLFR8NGZf6jyqVii5ciOqOOxYUi7XVbscsQcA40VjlExiLZXb2gra3Y4rHd2lnZ8t+xp+IRUDiXmAcJVk3PEwIc+vYjJ4lI0mura2Z3MVwbq4XRpuZsCRzAj/MyPb2tiauvV17//t/pn5rU5Wnvq2FP3tQnWZVlUpFhbnduvy+Typ543t13a/9v7Tw0BdVffwrJq90u11Vq1Ub8QGIInDz/71ERJEAoPbBgkKHk2KwT1DpTk1NGUu+s7Oj+fl5JRIJY55isZj27dtn4BnWh2KIa/AdyAQ52Mt4PG5HnJLw8Qdx3TQTdTqDgfGczOTHxXCGPIFkfHx8xMuEdIxExniqfn946gvXiSWGPeflWp6h74z2a4ifI6nQ8IKvFnBaKpVGuqkpsHq9nlZKKX3/q3PqB+7TrsvGlC0ktdOSzr61qtrytvL5jkKhsNbW1m2sC8Eak346ndbdd9+tD33oQ1pdXdWXv/xl8zsDYmAR8TZLQ6kK0EMRgNeSxgfYVIq5er2umZkZY3CYWECBB4NLYxLxiefkR/DAfDE2CDBBcuDaACAASKxEeOEBK36EEh5w2DeKIxIvrDPAguLdNyoR67rdrgFETv/B/kQSphGR30t88000rBf2g2/mgXiQNJIMAdiMxOJD7CUWTU5OanV1deTEN2+1QWnj3V86bYG9umvXLpuwAKONJ5R/BqxxTs3mlJ544hqFQk1Fo3UlEiFtbQV1+nRHzWZL6fSEEonhGCjWBrYQLBCoc/x/D/IpbnjPvNsLFy5oZmZG2WzWLDmM1JJkx1AO4veaDhwo6xvfuFy9Xt8sBVilIEwYL0VcGBsb06lTV+jd7z6m97xnWxcuDI8R53l6uZdniCffT2IA0HkvMnmcvYNcPj4+r/X1MQWDIbNH0ViUTqd10003WRPWxsaGqUC9Xk/nzm3rttukWKylQCAxYpUJhUIjc72z2az1XXgCg30Jg8j9kiM4dY0ZznjKKZhQOfgzFK1isWjxgucBCKabnsZWQCxxCXUOGwH5mOIDBZLCcXx8fGSEI+uIKT+sR94beZe9wV7luRITftTnvwo4/f+nDwCEhTw9PW1dgYyygA2BNVheXjYfpJee6IJmA1OFElgJcpKMZSEYIYuzqDkmDIofhpTKEADsx+688cYe3XXXaR06dEYvvLBHkgwcEOiozKgqB6xQR1dccUanTl0pKaJAYHukqSObzdqGg0EmMAOa2HT1en2ko5rg65skkNah+An6hULBphfAGLPYMeh72S4UCql4y/t1+V/7v6n20uOa/8pnFez3lIpGpUxmwGCtr2r+e/9JsScf1PjhD2vuwz+jQCikxp99zfytSN2ACJIFbBkbEGad/05goDpnQ0qyYLGxsaHjx48rlUppZmbG1lqr1bJOeoA9TWszMzOKRCI6efKkrT3AHIwlBZVvVqMhC4ADoAZEcE2+gEKy881y/jAEmG8aYDimlMKIZOarYBJVpVKx9yXJgLIHBwDIZrNp65hkUygUbC2FQiHzyna7XZO6mU8LqKVY6vV6JmMxJm7gJ4ypfK6nM282TeIMBFrWnETSwz/IWKdoNKrJyUndcccddsDD/v37deTIkZHGMXzgsJUoM8lkUrlcTqurqzZJAeaR2awkRZg9QB/KBd3W7XbbbCh8H8CeKQJLS0s2DgqmB+90p9NRtVq1JijWYjAYtAMJKBaYWsH+loZgG8sQiZxil/g4OTk54r8LBAIj6gLyLp5GScYEobT4SQ3sU2Ia34flB/aI2AMYBjB4kMrJY5JUq9V+iIkFwHtWyZMUxEJYLgAGz9gXkfF4XJVKRUtLS8YgE+/Zt4BW/JiwfRxCAvM0KPimtbISuOjLjyiZ3DYJmWfmmW/WmAd7rHeeCWseAqXX61ksBwQR8yWZTxIFEPYrl9tWICDNz+dstNru3buVyWRszCAxDAaa99huJ1Svp7RnT1DlcswaFXk/NMCxfihsyQWbm5sql8sGsABGxE3iHQXt4ECImEKhLWtwQ8WiZ+Tll1+2HD4zM2Ok1WAtbl58nn2TrNmX5DUKJFQ43xxEHqMooQguFApGkHg/abvd1szMjKLRqKlwADrui8JsenpakcjgGHWaMPHn0qjqr401jCeXdSRppOufdwoAhXjifokXvCf8+JBsNMGy1igeyBm8q7fzeceDU+97CAQCJldDexOECVT8OwPgL6XAvWkchoGEgBcTObpcLlv16DsMObITdorgzPfQRHT69Gml02nzmNTrYZ07t0fXX39CJ05cprW1nlXy4XDYxi3BtsGc3HvvumKxto4fv9KaB6amppTJZEYOE2BDAbLb7baxWwBmFjCVF8kRQOQBJs8BUIVHJR6PG5NK4CPRYL6Ox+PK77lM2Z/5NVVeeExn/ui31bw4H5Tz5Dl2E7Zo68VHdG5nR3t//BfUXjil/tIpS/C8RxhML33yITEBathgrAvPPBEQMpmMHdTg/XK8BxiXfr+vqakp8xGTJABmgUDAWAc67GGfsYIwbJ4xPwAyvNQAAX8sHqw1Y0JSqZQ1em1vb6tarRqTwrMnMCH30SFNNz8Gd56NByLek8n1IREBGhh1RNcpKgHJA3DqlQtYHaRuAL/vNAUsrq2t2dGPvgGS6n9yctIYTgooGhqWlpY0PT2t1dVVzc/P2zsBSOJFxbYBqGu32+Yrxs+FHI7HGVk9mUxaEUBc8nNl19fXNT8/r2h0MNuT5ybJ2GzWKd552FkK1Z2dHc3MzFiM41qJEUw9IJ7x/ADagAL8lIBFZMdut2uHL7AW+DNkUy/Bs8YpcACdKCjes4kvb3NzU8vLy5qcHNctt6yrWKwpFGppfb2tUimqV18tjnhkKWZ4FthLsBPBdhJfAf14Z2luArgQiwG8AFaeDfugXC5bPGeMDyMC6ebmOUqytQ+R4NlAQPeQqYyNyOvYIWC4uQ6un6KTa+W9SEObA+sGdow1t7KyYg1jABkYcPJXLDbYL8HgmLLZgerE3gboIg3DvLIGBwAmorGxwMia9kw4ABOfK2uMNUVO8dYT1jAxDKZ3YMmKas+eNa2trajfD1mxBnPPwSHT09NGZPBOstnB9ZVKba2ubtu9QOzw/ykAAJiQTrDlqKFcr/dKe9zAO+NnvGzPvu/3+2b5ob8DrLK2tjZyxDXxl9wMKcHvI/7RNI5SGAgEbPb6+Pi4KXzkPGKs98iCOSDxAoGAkTO8G0mGld7O5x0PTgegbniOMoN5OePce5IIPHyYA0pwYEA1L3xra8tOjAE0bW9vq1wu2ygOfH25XM6qbpgJZC0/LoNFJsmCNQsqFArpqacu1yc/uaB7731Cf/qnN2p1ddvGSzC7DKCQSqX0kY/E9J73vKRjx67TykpcrdbaSIXkJVOGkcOkxGIxW2gES+RkuvZotGEMBmNdCAAAGAbYw/6w6Xw3YL1et8TY7XY1feVt6nc7WvrG/0ehi4wuTAXVIKwHgKjyxNc0eeNdGr/5Azr5+88YM0py9ayVAj3deHdc115zTslwSaFAS+3+uMobV+gHz06ofrZjHmBYRT6Ay927d2tqamqEgaK6JjjwnCWpWq2qWq2O+KiSyaQdgYvMwilZ0nAUDsULlTaAwnf9b29vW3ADTCwtLRno9N3WNJ8BbuiQ9oPpCZBIZwQZv09IEEh5VNQw5fPz8wZcAoGA+QK73a6mpqZsPbJPfAIm4cBI1et1Y0r5edhXwDQHEXS7XZVKJbs+9h/vD58YxUer1dJDDz2kSqWi06dP6/XXX7cGQJ4377bdbltDAuOReFdI5B58AG6Q12HhKPR4Jp1OxxhdChYff/jzZrNp0iuJ3AMg4of3eBKLsKXg0ZRkgIipE15x2NnZsSkC8Xhcu3fvNmBE8vWg1U8wACAx0g2AGgqFNDc3Z/uAtenVgEwmoLvuWtBNNy0rkWir2cxqayus8fEtXX/9hu6995yOHZvWiy9erkYjY8wj4AwATJMHEycArrwXWFuYRj85oVqtanx83Aoq1hnxp1qt2nNi3/FsiH2ZTMbyDadvAWZnZ2ctRnhCBP8zYJKiGkBMPwNKHEUu3luaCbFvwMKhXLB/ePZIy9wHYJ9/JF08OQpFZEebm4N/Z5pNOBy2otAf70vT3GD9tdRqRSym9Hq9kfuEZWw2m9q1a5cymYxZb/r9vvL5vO0VCj/2NXvY59nTp/fplluO6vLLl3Tq1F5rEPRFBoVkuVy2NSNJV199SqXShBYWgubTxvqG9M4zBfzBrsJkAvBisZidRsl1AoRplsJylcvlLL8SU3xDH+w7agv+c+ImOZLY4tlZMAzECsUNXnQwE2uDdUzcIN+whoifxET2P2MnaQLkNDKvqv2ozzsenDLrkcTPy/edf/j/8FbwcgBXkiz4E1jp8mUURiaTsVNU6FKdm5uzWY40DfimEgCdb1CSZAFbks36JGBWq9If/uEV+rmfO6af/uln9NBD01peHnojJV0Emk3de++Crr/+hM6dO6Rnn73eTnIaGxszIEklSjIBSOGLw+RO8wudsARxSSbnSLJNQrLp9Xomd+JZ5HxkEiYSMkxVKpVScnxCyevv0tabz2kiEddat30xYWV0xRVX2HG2Tz75pE6ePGnD6ldWVlR55iHt++Tf1uSeA2ounjdmZTgyo6X3/WRENx16RjFVVe8f1tnaTep1w0qMtTQ7/qIO3LOslf7N+v7j1+vCaxsGjJHfeRZUsIAGPGAEkXw+b8VMpVLRysqKBRUCBvI9QYBmDOZFegYbyYbRNoxUGRsbswSIZzidTttgdRIPZ5ajBABgYZt4P9gaWq3BDL9Op2OzTgFfHuxLQ5DKOgyHB6eA0fzhiy7kJc9QMSSdxM10DLpVCeYeJFYqFUs2sCLYaCQZ6wULDTMDIIBRZd4vA/xhqQmmfC/gR5JJnQRmCg3/7EhGvhGCog/gQHyhuPTvF0WFAgQ7EMoHY4tYKzBdrBMYWtjlmZmZkRE9vENmN3OPACFJds+APoARzCf3ARghflK879u3T9Vq1eRT5GPUGO+xwys3Oyt94ANPKhrd0iuvzOjkyavUbA7Gvw3k5ZBuuaWiq68+qSuueFrf+c5hVSrjtsdpbiRGhcNhszbQ+CL98GEGxNrNzU3Nz89bwUYxh4IC0IflxULB32VfdLtdOw6UdQo4JkZSgGE1Y4oI1wPA5x3ikeRZYofB+oFtAoDCewY4wfJns1mz4dBECfACXLGPYNs2Nora2QnpsssW9dRTSbtHCmqAD8/DF0zx+LJyuQ09+WTMCCOYepQcbBCSLEdg3dnZ2TH5HBYP0Ivvl71HTKtWo5qfz+vd7y6pXL5G4fDwDHt+DsYPa8cA6Je1b9+yvv3tqzQ+PmHPA2aU54lyQJEWjUZVq9WMtOE9sbYBd1y/X/ceoHrCiryXy+WM8OLvsR/oZdnZ2dHS0pKxn+Pj49Zki6+0VquZ4pXNZm0fEpNhcFHg6MPwfRmoSBR3FDC9Xs+uiecZi8XMHkfx9XY+73hwShNMMpnUxsaG+f2olgOBgMmrNH5Q6eIZ2t7eNhMypnrPOmICprrN5XLGhqXTaa2vr2tpackWBfQ+M1K9cRx5xlfybFYko9XVsP70Twv64Adf08/93Ek1Gud05EhesVhRsVhA6fSydu9eVqsV0bPPXqs337xRUsCkZhYdjR2cGIJEgzxFMGUuIw1A+XzeEhJJDV8uC7VQKFjXNSBNkskJLN5isahEIqF6vW7SUCgUUvHaWxVOpbX6yhP2fPP5vPL5vH7sx35M1113nYLBoA4dOqRvfOMbeuSRR8zTt/zc97T3439TE9ccVqtetgQ1ABV9/cQvtHQw9z2da/2EXntuRidfWtTW1uZFz19Kq2s36sp3h/XeO47rxz/wn/Ro+jN64/uLxkgwcosORO9bo+LkU6vV7KheL2NSEABc1tbWzNvDpqZpBpmRNYXEMkgWg3PgL7vsMk1PTxvL5oeSZzIZY8DC4bBVtYOTUYYz6JCe6/W6FV6SRoJSu902AICFgG5RgiMV/Orqqp0JjSTnZUCYURh4EnqnMxz2D2MBAwP47XaHR9oC5kn2hUPXae8DP6fk3isVjES1VVnU0pPf1sL3v2qBnoQNMCCgTk9PG0jmWkhesDuwb5VKZcQDzDPhuYdCIVMysGqwZpArSWKSbB2hwqDqwJzj/eQf5LV8Pm/eb/xpFN7SQDblaGU6lPHuEouQc1EIiEsUIf5UKPyJxDtpOOidxEsSj0ajRg7MzMyo3+8by0xhQIMfCXp8vK177nlc3W5QX/jC+3Tu3I4ikY6i0Q0nL+Z04sTNqlTu1PXXf0333/+svvnNuM6fH554JUmVSmUktjabTQORSNqXeiMBSANpNztiofFe1EgkYtMVKpWKVldXjQ1m0gPJmIKB58OzQv5nX/rRdRxEg3oDiMGKBGFAsci10yjJZA4KavYuvwsfJcrQ7OysMdsohDTjQOCsr0tvvDGtm25a1Pe/P2ej9ACRzCj16xCAdsstr2l9ParXX88qFusauGEPebsYflROJUNdo5nTK5B+0gAgE9Wx2+3q5Zcv04//+HO64YZjeuutmyyWYMGh2ZD1sL3d0I/92Kva2oprfv4KRaMRW6+AbsAjo/RWV1eNiYSgQtXxnmnPVJODAYKoKhSD0ejoiDDAtGfTPbGF6gqJ4ItwihVYVoot9jNrjL8Dw4o6if3gUksCdiFGS2ETJFYTM/BD/7eGKPchELMoYCygnBmr0WoNznaGgkdGgFHat2+fBTgWHcOJ19fXrVuRwAO9je8CdiKTydjGofu6VqvZgiPYk3wILIAMqvTNzai+9rV7FI/P69prT+nKKxtKJOrq9cJaX0/q8cdv1enTexUMJtTv9xQIyJpQSBwkeuwNVOt4HGFrW63BCBYGCLOR6vW6gsGgWRaQXGm6YSMB8AFneH4ZeOxHES0tLQ18dJnBnzUXzioWChorNzs7qwMHDhiQSafTuuaaa/T888+bb6bZbKq9Wlc7EDY/I/d3+/2rOpj7nl6r/Ype/uaaxsZkYJ2gGFBIrz2xrfOvX6lP/Y0J3XPzl7Te+JQqx1dHwDgdkmxg3hOAYm5uzpIkm5VDH5hli0RCoIYloOiBeUmlUhaUYemYzQhzB+NIIINRAJQCBmHwvBrgR99w0kij0RiRf6ShnxrvYrFYVCgU0oULF0YasmiYIgnTKAZDClgGXHL8YyaTMTYnnU5b044fdwMT0e8PDgfwzGh41yFd97P/k7aXzqr+5NfV2lhXP5FRIj9tdhKSJ/utVquNMF+SLLnDoOKrlIaeZFiFTqejmZkZm40JA40fFJYNVgZWG8aYe+IeAcYwnvg42beSbP2EQiFTIgBTMCHEDD+uDY8s4IzkRQHqkz3JmjXlvWqsJdYOQEmSgTwsVRx/yclKgBGSHkUCIO5DH3pVUltf/OLtWlkZ+qnHx8c1PT2t+fl5LS0tXQQoeX3jG+/Sxz72lD7wgaf1R390vwKBsH2/t6PA/iCb1mq1kdOrkMVhrlAZvDcYdg6Gm2fkva4UT+wX9oUHtTDbeNWR6P33VatVe0e8O3IXDKK3AmEFkWSsPyf4wWxShNFcCNDtdDo2zskf7sBzwXrT6/X0wguzete7FnT77RWdODFtYB5fpGfPxsfHLzb4rejaaxf1xhuHlE5PWiHEfTERxbOB3nPuiRLAVigUMiWK9UgsRNmSpKNHOyoULtedd76hcLijV165ZmRKDN7kgcrX18c//rTy+XV95zv3KRZL26lG5EMIGD+Ng3gI0QV7TnHHPqdIoTD1QJpCkfcM0Ibt9Cou7CkgmbXD3vZECTNP2afkEJ4T6w9CwHfYX1pMsYdQdymIIKt45pAjNB7yHW/Xbyr9XwCcUlEhKU9OTioWi1mVCjvAaSEkEf6dcRaSrIpJJAanJK2trWlxcVHNZtMAGiySNEgg586dsw5WKij8RV4WQLJj1AmBnwRK8F9ZWdG5c+ckDSrnRiOvxx6b0He+0xoZ7zNYrCGTdgErnL+dyWSMRaHao8mB02iQFlutwekWzCIFZAIIkB9glT1rAzu7vLxslgDvayXRIYd5n6EkbWxuqhMcGq5JnnR2ttttnTlzRu12ewTMKBDQxkVpji7iUGxDV818Rye3fl4nnwjY+uCsZzYiGy4Wi+k7X0rqEz9b0Z3vP6vvXpgzuRlZnmoXGRQ5kY/vZicpk4wZsg5rCPtAt60kO6SBpifuGQCBd4xTa3zTHt8LCPCSF+BDkiVNipB2u20NAtwvfjDvJSaJwlj4c7FDoZA1H1IUDmwpAx+tl4ApjtbW1qwxCNWAxMMxkZVKRevr62bex+/caDS0sdPRVZ/4Za0ee0kn//3/omQiYeOnpqamzAfKXGNOdKLzHDDirwvAwX6VZIcn4BtlT8MK8NxgJvjvvDMPUAKBgPkWeZf+ZDCSD2uERIGNh1gFYJaGzYuARLy53k+HJ5qZsYDs+fl5ra2tmU0EsINUDoCgwOD38q58PMDT6U91y2QyisfjZvPA44wlJRxe1RVXlPT97x9Sq5VWtzss7vFTplIplUolLS8vq9UaTCJ4+OHL9Nf/+gu6/PIVnT07Y3YPijcv89OQRrMTNqWdnR2trKyoXC4rGo3a++MDAOU5wzACymDzsQyQZ5jgQMEF+yrJQCDFoC9SyAk0VfGcAQYw3qyB1dVVZbNZTU9P21grWHoAUSKRsOIS1otYXa1WDdCwx8mfFIO9Xk/Ly0n94AeX6d57j0vK6PXXCxavYD4BWAOWu6b7739JGxsJvfjiAbM98Yy8DYipKeRKlEZII19kExOJRVwzFgfUjWg0qpdfvl7h8JgOH35N11xzVq++OqfnnptQvb6jWCykqal13Xzzoq66qqytrbC++MVbtLmZkrQ14u2EUWTd8300jHI/qGsw4hSt5AxYV/YroI3cA1NMcQVIheXH48u+BKwT41gnvAdfSHk7mbfhwVb7ng6IE994SBzxTbwAVeIgRbC3mwCgyWM/6vOOB6csBhY9w8FLpZLJYXRs8oDxQfrEBSsIMICBZfGzkEhovhEHHw6BhEDjjyWkGuOovXq9PtIEAriF7keep/MWoMdsURod5ufnVavVND09bawrciDdw8xWpMrmd+JPbbcHx5timmaTwgQhZcKyAWo3NzdVKpXU7/etqQDPDZIfcxP9iVrBYFC9zYH0l57bq7XzJxWJRKy7+8EHH9T999+vsbExvfXWW3rxxRetskwmk+oHw4qkMtpcqRojHo/H9e57NtUPRPXn3wxqs7JkCTmdTmt6elqzs7NaWFgYqXLr9bpePXKd7rjmO+qN/6wq5ysjlSlDq/EC8oxWVlZUq9VG5g/C+HGPMPAwsDDwqVTKWGUSIfI9YAkABWDC08rvhb3kWrGwUNWPj49rdnZ2pAhqNBrGIO7bt8/8qwArgjBewnQ6bQWKJDsVqFgs2vey/s+dO2fgnMDu7TRIZQQ9SQZa2b8zMzOanJy0ucFIWoDy5PW3KzKe0dmv/4G2NjcVjESliyCpVCoZO4+sFgwGNT09PTJRgcQIEMFzDQtAoUDAJ1lKMhDBaDUkTySvUqlkzSHEFpIsbEQymbRZoalUyk6bIoFTZGO78SfCYashSdTrdZXLZWvaROIFCPf7fWPpuR+YTu+x88mJJOu9yjAw/H1Gl3lw4WVLSRYbi8WiJdhMJqOrrjqpXi+gCxeuUSoVN+VmdXVVtVrN9ke3O+ywz2QyWlvLaXn5uA4ePKJjx7J2jzBXrC0YIopS75+WZA11kmykGAkbKRl2EeDmpXgAXqFQsL0OGygNGwl5RsRzbC9Yp/iZRqNhI6o4nx31AZ+6n5LBfXg/JgUOFgBkW3IIZAAALxweHLTCPiVu4ZMcGxvTs88WFIt1dN99z2tqalbPPTer5eWUFXWDe13X5Zcf0/vet6xOJ65HHvmgOp2Q+v3hfG88lvjImY2LTYpYJw3n1LZaLVMI6J0gp3i/OcQHnfLHj9+mc+dmdejQMd1221nddddoY069ntDDD+/Xc89l1O/HNDXVt1gNm8i94Z/2k1jYy8Q53jV+UOI0+ZacDk7Z3t42FQ+7HTmTNUxulWRTUFACWAMU8vRCsD5QNbEfkWMobGBqyUmop34PDVTbwTpFkZaGp0VSRFOEsZ64R/bz2/m848Hp5OSkLRgqARYxD5wKGM8L5mwWj2e7er3B8HCqVQKer2xpjgGg+WPCJBlr4kdiwIQQCJCfYBTa7baWl5fND+b9XfwsVY2Xi06fPq1Wq2WJgGNWYfva7baKxaIkmTwBGPWeXJ4BwYfqn4WHrMG9SMOzgQnemUzGpEwkXRhHPF389/biKXU3mpq89YPaKV0YCeavvPKKlpaWFIvFVKlUtLCwYFX65uamcrd9UIFwRCuvPW3ybLu9rSv2vKz51n1aLzVtBtz4+Lje//736z3veY8Zxh9//HE99dRT5vV5+fGuDl8T1013retPf6eiYrFoTREUK2xiSQbGkYJh+gDo+JRIFoD8ra0tmxUKew7wwlKCn5FASCDHi8ZpVdIA2OIDotsaQCJpxFfEeyTo93qDsVSLi4u6cOGCcrmc9u/fb+ud3w/AhInsdrt2zOny8rKBK34e9oxztBlNgnGedYifFZYNACMN2SYqc76jcNl1am+uqxWK6db/xx8oXpxTt7WlC3/2Lb35hd8Z8RbSvEHSgDXjZ3gvNIpIw4HmyKQwF9vb28pms6Y68CxXV1cNDMNyIXfhj+a5AXzxkgGEYAy3tze0udlQpzPwg3M8I+vEMzPeg8YRkHiWAXrcD/5f4g7NcEwq8fMzeR4UXKx1D7Lw83qfmbeF8L0UCpyCw/s8eHBFZ85Mq9WKKBDoWdxhDBoKUjKZ1NLSkvUDRKNRHT++V3fd9ZrW1lYN4JGI8dGzZ8fGxuwoR0b78d48qPZrbGNjw1hz4j/xkp8DdK+trRnw4/eybgFQvFtfMBBjJdkpQJJMxePPsfTgOwSMYEWRZJIq74s95g/EAHjR4AtwYj1yrdwLSmKv19OTT96pCxeiOnz4nG68cVFLS1lVqxPq9YJKJDa1f//ABvbWWzN64YVbtbk5LE58TqUR0DdfedYWJZB3wx7xjakUZdhFKHYghCjmFxYCOnXqSj388H7NzFQVj3cUjY6p2YzqxImwkslxTU4O5sDCzPrcjcLnJ9J0Oh3LHeRMmo1gSFl3kqy45rkzOQJcAVHBu8Iu6Cc1eG8w75eYRMxhPfFuiU3MGUUd5L8xhorYggLiVTueC+udvcvEH2InTW5cJ+O9sLO8nc87HpwigY2Pj+vChQuDJFYomEzA+JtQKGSjHjA04/9CkqazmJMkmLe5tLRkQIygxwtJpVJG9/NyPHvZarVsZiJsRCgUsoH/BDfYOUnG9FIpIWcz0J3vAMgQyDCdA1RIZFSFLEZmoXLdVFyS7NhPzzbBaiLhra6u2vdhkA+HwyoUChZ0COwAEGRAktjO9pZqzz+q3Lvv0/J3v2DJHGDOyTYkTBJ5MBjU1J0fVfPoi4q2txQaHx/YHeIbiqukhYXdikbLxvxOTU3pzjvvNFN8Op3W+973Pi0sLOj8+fOSpH69r8rWNZrJ14xN8U1QsKUkCipVGphqtZqtGS9ZbW1taXFx0QoN2B3YKNYf8iCBmmTE/XY6HRtL5tkT3jHsF4UMbEQoNJyrC+uDT5EZgK+88ooFoEOHDo3YAbwnlmYigAP+RPyXDOqenJzUe97zHtVqNR0/fnxkwgEDyZHpYFF4DpywxD+w9uydRHGXAsGQbv7V39Ly099R6/xxBWcOaP99n1Iym9fxf/+/mMcVJQXVAlZxZWXFni0MGGO9Bl3iOQPoMDecXsSe89cMQPD2HfarNAB3HILhPVkDkN/R4cNLuuyyY0qnARgBlUqTevHFOb32WtZYMNaMJCuoeZ/R6HAGI+CA72Y98i79KWSLi4sjbBmSHQwoEjtMEX5vpmbAHHuPL8wlhSzAEGYvHm+rVEob4FhdXbU/59pgyyVZN/0gcacUDErJZEArK31jfHzjFs8JxpQCmbiEbA/7jxUsm80ayOB3QAL44fzEeKYT0GeAR9HPkCXmQmowOJ/voEObZlHeFzYIrGUAFPY69+D9vAy796AToAMp4O0aMLT4polNWBgGz3tHzz67W88/P6drr13TDTeUND29plBI2toK66mnrtDp04e0szN28RoGVg4KDOI/4Ic8Q95C0qb5BiDt8x/3XKvVjDzCYkIcBJhCxgyUk5iWlvaYgjDoNxkzQojCjIYsgB3x3rOogcDg6Gri7fb2tu1v1jsYw/to8fBiiWs0GiPPgFP9iPusC++5ZY3wPIiJPr+yl1BvLwWeFImMpKSxCjWHnAEhAivsG7XII+RFaWjx8PdOT8Xb+bzjwSkAb2trcHwgc+aKxaIFWzbh5OSk+XWWlpZ09uxZo9b5XXT+I7+Mj4/beAfPtECVw7LQEEJVFwwG7Qxin5QYLM4YGgYaA85SqZSy2azJb+1229hhup5ZjFgS8OJcOgoFtsd77CRZ4PUGbUnG7nH9BGSABBsdOQUGBcDmu8JDoZCq1ardp2eSCNBrrz6h/F0PaOrH/juVvvZvB4zqRaaKQI6HBlvG1N0f1/iey3Xm9/+5baLx8XHFU4OA0G4FDQD3+3277kvXDL8buanTHVMqtK2JiVkb4QPYhD1cX1+3xiL/uxKJhCVYvndsbMzkf0nm/eXeV1ZWbCRIoVAwOQtwytojaGFy97IpLCmAHtYjnU5rcXHR5DGSsGd4ABMENIIhYIZ1AmBkb5AYYOszmYwlnomJCR08eFB33323er2eHnvsMb3yyit2tj3JPhKJmNyOdwn5F3AUDAatGYIxQOGxhMLxMZ179Cs68cXfuTg251HFxhKafe8DeuOP/lc1y/MKh8OanJxUs9lUuVy250iwl2TMhWc4aAYDUADcAGueIcY24DutYYsajYYxs4Ay1sWAcYzonnuO68Ybz6jfD+jo0RmdOjWnbjeiiYm+rr66ph/7sR/onnti+u53r9Ybb2TtYAbWCAUBCQowxH6neAZ4ci+9Xs+aMXm3voESCRi5lOcIyIA18hYAYptn12lYIh4T+/r9kGKxoR+PRj9vq5AGDA7AGD98tzv4O6FQXNls0kCMNPQzUjh69YL1TKFULBbt4BPALYwo8iisE7GEdcI7pCiBxfJNbVibvOTKu8HmBBMKoIUZBMxgKSI/4DEGNHivIM9a0ojvEXsYzC/j1ABQEAySLPZiHWMP0nB39mxGy8uXW9wAKA6K1bGRCS3sDfZXPD44YYv7YF8wvaRUKhlQYh35JjbeL2olZA7Xzs+z/yCB+HsUK1hpiP/BYFAzMzPW/Hapl//SotLvZeIBzz4QCFifAnEBawVA3M+mRWUDwMLQepIBkol7hCUnb/NsvL9YkhUhFKPkb5ReijRwAmuf++LZs85pxOU+ms2mWWMmJyfN9kOhjFr1oz7veHDKi4C9IvEjY2GIZ0QJrMra2prJQPhJqE6kwaLmGL/x8XEDnyRsEiyyru8ohHn01T8bhwHEJDASL55MqmY2DL4gP6OSgwAG3Yc5A+cEWUm2eNrttsll1WrVvockTRMYGxN/pCQLBGxSwHC5XNbW1pYFMmk4SJ6AN+jgHM7JQ8IBtIXDYe2s1rXwn/5X7fqp/0HBQEDzX/msQupbZyk/G4vFlM5klH/PT2j6vs+o8eQ3FCyftYS8urqqTu+ilBBsa3Fx0XyXnAq0b98+BYMD4HrhwgXNz8+rXq+bvzIa6ajTj4+MzPKyE1JUpVKx6lsajJIqlUoKhUI2agk/K8AaMAGI4f1xjYAh5CyuE5aVRgpOUaLhjQoYQAUr7ycT8MxhR2DNOp3BPNMbbrjBwAdgBrDN7+VDsKOChmGoVCq2Dnbt2mUNP6whgvD6+roSiYRmZwcFAOuVBMuUA4Ime8aSb3eQgMsvfN8aAaLRqJo/eFKz731Au248rPpLW8bIwTQzpQPlxM9gBFTOzMyo2WxaJzHPDnUAHyCJpN/vm5KRy+UsWQDw2UO+03WQAAP65Cff1L59i3rmmSt0/PiVajaHDXoXLnT01lthzc7u6KabXtHHPvaKJiZu0oULu209sT4SiYSpFSQQigCaYpCK/Tn2JO9erzfC0KPIwJRGIhE7SYZZxb6jHN8+Y5ZIrEwD8d58mvHW18dULA7GqjEdJJvNmjriO+ORSgEyudyStrbCWltrmbzNgQaADgpWimaIh2FhMCiEkIORRFkj0sAOAwNHoqYo9GAJthFwCpkAc8woIdY4QJjfwVQT4izFDwAAoI5KgZJD3gOosvdyuZzlQGno+wVwMLaND2RKt9u1ayHHkZfIZ9wL6tH4RcWK4gz1JpvNjgzPJxdms1mTfokNEC00fEJ8QOCwJmHrotGoeZEBeH5Nw1CjPAWDQTtUBuDonznAkSKdApUCg/jAmoEAIy7T+Mi6gJjCPhEOh01ZZEwk9jjYWvaZb1xD6aD/AKsSo7FogGO/EftZQ76HgOdP/OFd4XXlGrydDCzkpzrQRMnaY2/DykJ4/Zd07L/jwSkjLlh8eHsw87Oxg8Gg1tbWdP78efPBEVRIJlTf+AB9cqZypdIvFovq9Xo294uxL3gnqcxhJVgAvV7POrgzmYwlFnx4kkwOZh4rsm69XreKncVDMMG7ggQGC0XAQaqGTcOX5L0/jKIgqeNhgoEGWNHZSCU3OTlpQZxmFHxWAKZ4PG5H6BHYAoGAesde1Pk//m3t/tTfUfLg9So/812tPfFNA1fJXF5T7/6QZt77Y4pNTqv2/S+r9fL3zE8JK9TaimlHWe3aXbEA1W63NT8/r69+9au69957NTMzo1qtpkceeUQLCwv2PFKpmLKxN3V69QPa2KjbUZudTsckKgJYvV639wwrw3gkZGRpeNReo9FQv9+3CQSMd8HuMT4+bv7LRCJhA9dpOKFJTBoEwEajYZIigRngCzuTSCR04MCBkS5cz1x3u92R+8JDi1kembZSqVg1zO/etWuXSUUANEkmo5fLZX33u99Vv9/XqVOntLCwYAUegAHpFskWZp+1RlFH4IcRaK/WpZm96q4PTk+CTdhu1iRJY+mcecNIhBRCMCuoKJeeS03RSdKBMaUY4PlQiMCE8Lu8j9X7tAnWKCjvfe8b2rdvUd/+9u0qly+7+Cxbtl6Q0VZXc3r00ffqllue0t13v6IHH0zowoUZ+06kM5g2lBXiFjYQ9j1D2YmNnU5H+XzeOsNZP+Pj4/YdvrHSn3rmWSQY0ImJCU1MTFjBBWGAD5m1cvTobt1337OanGwqFJq2wntnZ8eYTk8UUOxNTMR17bUX9IMfTFsc4s9Iorwz3+TF+5SGTBiKFntWkt0HQDEQCNg8a9ZBvV4fObLRWzr8aD0YNfYXitbGxoZWVlZGwDfd+pxE1uv1LDbyTigYvJTPNXK6Ui6Xs6Y4PJ6oQ+QtngmFNoAOOb1cLlu8hn3nEABUPgCyf26oY+QD9oD3i/KOfA9HtVpVOp02QMu1dLtdm+UJ6OI+AoHASF4GVCUSCStIOVGLEV14/wOBgObn522KA3GIe/JMJ5iAA0pgt71qiP9ekq0z/27I23jRsfOx5ldXVxUMBlUoFOzZ+Ikw+XzewGSr1bI8A3uN9UbSiKrmWXM81zwncjKxDxDL/aKk4YuFzAJEkx/wgROrAdZ+6smP+rzjwSkLd3JyUul02oYwYyJmgRHIWLzVatWCBBKlB3iAMBInwRpZBMM8C6ZUKpl3rd1ua8+ePdb4gGcR/xqVGZI6AYvuaA8A8WLhOVpYWFAoFFKhULBB2YzoAaiyMfmHoAqjQSDH+A2zhmdweXnZFrSXerhHkhrAiBEmVOk7Ozsm/xEI2Bz4blKplPlAm68/o6U3X9Xs+35cs+95QLs+9FPqtnekXleh2Jh6nbZWfvCUSl/7t2ovnbFkwxgmAsOp8rt1cOoRzR74SVXnS+ZhffLJJ3Xs2DGl02mtrq5a9Yw8dNW7txXVip5+LGbdlrAJOzs7xk6TCNPptMnwVP9YPfBE0XyHlALQJ2Ah3XmW0zMKkixwACSp2gHf29vb2rdvn8mRBH08rCsrK9atDUijc54gyvfzfnq9ntlYYEqwPsDyso9gcwER0iBZvfHGG7ZmAK+AJxgkgjyJfXp62gqgUChko4h4JolEQjvL56QrbtLU/oPaPLNjLFE0PTgAQtsbJjWSxPluvNTIs8zAhIWUZBYCJL58Pm/eUvYiRR/vBEsFgMlbUABczWZT09PTyuW6uvbak3r66Ws1P79b2WzSpEuY6ktnWz7xxA2amKjr1luP6Pz5aWM2GAyOx5YiWJJmZmYMKErDmanr6+s2dJ5/eE/EF598Lx2sDejyhQZ7b3JyUjMzMyqVShabASQU/IFAQOfOBbS5+QNdc81bevnlDxig6fcH8xrn5+eVyWTMGwfZcPXVi0ok/j0jlwABAABJREFU2nruuSnzPcOSeh8290yRVqlUrJCIx+PWV0Cx4H2BvhnI+yKZ/QgrDTMH4FxdXVWxWLQ10u/3Rxqw/P7iVMFyuTzSLwGYgN1NpVKSBspMtzscdeRnJMP6YV0CYPNnNPgBmhizWKvVrLBnPSFfA0QorFAzAFsUc97CRjFIkww+XvInEyz8nHD6PiByJicnR3oZiBuQD71ez3IMwBSPZK/Xs4NFvM+ZKRbkIZ4bihzEEPYD79H1jDZHb0ciw5GUgHfwAM2qeJ055AcrBe8FDz1xiEKfd1mv17W0tKSpqSljMsklEEZYKoi7eIix6vn8gSIwMTFhhSV5GtaVuCUND9HxBSCKLsoQQJSi3ucUirK3hd3e1k/9n/hDleVfHBQ6hmcCCQ+VF8gi4aHTLEGl4jvrqeAAdkhCExMT1i1KU1MgEDDmhqH4AFy8oAQOwBvyOYGCWWqlUkmFQkHScFBxKBQyr1I4PBziKw09kFRUvhlGGsiuJBoYOcBpMBg0ScIbpkngnDzk/bawLgQJ/FTI4RMTE3ayDcPmCdywdtFoVNXFC3rxc/+zxv/k9zR32/s1ObdHCgTV397Q5qnXtVYt2ZiZWq1mHZSwvhsbG3rm4Yiu/NmGbr43oD/74zEDn1TUCwsLBiaSyeSg4W1iTDdc+4aqeo/qJ5smY+D/RW4luaRSKc3MzNhsR0a64IkCeOInIxGyrphcAOtKNzJAB/mN0VkwtFwPDBQgiEMjaHBhXBVVsx8hQqf2zs6OHUnLCBvWOe8TqZsChUTLviGRjY2NqVgsGjCGneAePcPKnwPomSHZ6/VMsoIh4X+9MhK4cFTSx1Q4fK8unDtm8tfU7fep3+1oZ/6ExQBiA3sZNod9OzMzY/uOZ4VMSNd2Lpez9U7i3717t42VIy4wAQFGh6RE8kTmvf76c+p0wjp9+hq7b/aN9656i02n09NTT83pr/7VY0qnS6rX8+ad86fFYCsA5DDjeXl5WZVKxZ4LzBCS7PLysoEZmECGerNHYWIBilgBSLTEVNhnxpNls1mzTlEshEIxvfXW9brppufUaBzQqVN7R4AuBR1M/Pb2tjKZFb33va/pzTcntbWVVz6fMzBKEcXzBIDAPqFg0XTDPiSGz8/Pm3QLoMByxdrnveDjJTfAzGMdYY4u8dI3gFKseKbNs7/ETpQ3b9Px/3iPqW+cYc0DFMfHx20NEPN4d8QyQD3xgFgHSwjIYx0TFymUsY5RLECu8KxgzmFqybV8DzNZaSpjqoX33vIc/bglP0t2e3tb9Xp9pHseVpwYQJ5h3YZCIWWzg3FkpVLJSB2UUF+8SzISiHhJPAWwc88bGxuanJwc+W/YpHzR6pu9AKAA+Gg0ao2OTHbxHl+KPH4HCjFrBTtBLpdTq9VULNZXMhmSNFxPXD8/P9ybQ9UB9dh70clrfCdrl/dC4fHfuvXdB4ned0lSKUhDJoqxJrCEsKYsSChtRnjw4qTh6Q4wOX70AlUFEoivhGOxmObn520AP8Zpurzb7bampqZsI/DikVJhfJAmqKC73a6q1ar5bHxHKguGQdswef7kIwIjR4ZKsiHrwWBQxWLRZmYy39IzZ1TsJFfkLdgf3+FOEPQgB8YCpoWKPDuRUmTphHprS8Zw8t743fwugDhgOl4t6PTKvbpm8vOqvP8X9OK35o0F9R4d5tIGQ9JHP13SeOicvv7kXYrFGgY4KBD4DkAZc08940bA5tkjHfoqE+8ifw+5eHl5WdPT0zY5gcqVJARrRzUKyIPZ8yd54M9FuqWYkmRyMUEOSYl9sbm5afYSirbp6WmlUimVy2VTBDDkE2wZEeMThj+GEGaGxilkHyRIrqdSqSiRSJh/k6YtpM6dnR1tzJ9S/LUnlbr+Ls30+to+d0zxfVcpc93tqjzxNYV2Ni82SbWN6Ubi453ANHhvZafTsaKWd7iwsGDA28t7sE0Ab6wwKBEkILynnDi2vr6myy8/obNnDykezykQaFlxCliYmpoaOZOdPV+p9NVsntEVV5zQn/95xvYocQc2L5fLWTHEyVdcA+8gFouNjDBibVBMsVdJmDSJsS/wwPHhd3NYCQUaAMQXsNJA/j9y5Brl86u67bZH1Ou9S9XqrFmNvKxeLBa0Z8+y3ve+57WyEtO3v329sV4oYN6qgleUpOktXf4oaby4sMbR6GC+JHuT+4MhQ6nxDDDsIh8Kr0wmY8UWf9cP3K/VamZfwQbCtVIEE2NpbiuVSqa0EQfILdhu2Mv+IAhiPMycj8VcAzkQYCTJFCIAHs+VcUjj4+MjBQjX4HMPP493l/0M+CQ+0SjFTHKYuF5vONLRd9CXy2XLfxSX7N18Pm/P3jc4oYLx8aB/amrKgDgSNXiB34Etq9VqmYeUeyVXo37AsBJ7wA2sUd6zB5z48VFjSqWS2T18ocY9S8OjkP30hoHVoKNrrtnQNdcc0d69i7pYU6jfl06fzuvIkYM6diytSGQ4SxkACgNMgceMXywMxDzW2qUHw1yac37U5x0PTmEcqUSg9fHP8IJ5cFDZsVjMZvwhZ01PT2tycnLEf8SIH38Kh5dDaY7Cb8gmJWCwcfCeIBvQPIOhGPqczlU2MIBvcnLSvLLMHKtWqxobG9P09LSZoZHYfZCPRqPWHegrZzwomNwBnXw/f84YIDY0z8BLviRjNjNsbK1WM18SvhuCdTweV7VaHZmdBhBnXI00nOfIRILZ2VlJw3lybPhOp6Nvfj6qv/JLt+rua35f+cJP6o0np7RRGyarAUvR1d5rInr/B49rMvK6HjvyMzrx9JKx5zBPgFmuHYmMM9cZLxYIDOfE0XSAnOSTCt4swCyJi5Nf0um0GeolmW3AvxPYMUAXzCpJlcTsu3a9L67RaJjEzzvnWlAYPFAguYyPj9vReI1Gw5qB/DgTghrrwI/gYd2QMGGFmVUIwGLvIesTxGGAN778WeXKC8rc9H5NXH2bOs2qKt/9gtZfetR8eQA0mDh8rgTVQCBgDBaSNvcN48npXsyvZRQQ75nEBysES8v/stdh9CYn40oktrS2dsDmpWI34hmT1Ci0AVbxeEIXLmQ1Pb1jlgfWFrYdmB8SK/fKxA78pzCheG4nJyd14cIFbWxs2ClbTD2h8YQ1hypEXPSxBPCO7In3vVKpWPFLsZtMJvXoozfrllu6uv32l3T99Ud09OgBnTkzp52dkLa26pqZOa7bby8pm23q1KkJ/cmfXKtQKG4x3E8IIfbAsgHGJJkyw/rjKEueEwA6EomYlMxUBGIe7DpEBPuKd0RswJolyYAT+5mkn0gkrHBF/cEuxp6v1WpKp9P2vd5Dj4JCwUWMYh2idsFwQSoAkCiYeVadTmfk5D3yArES1QmmdmdnR+fPn1cwGDSLBDI78YLn2u/3zUdMAcdzI+eylwKBwIi6wr1wvxRM3tO4urqqubk5awqk2YiCibWBH5UiA7DqfasAR0gt5GmaC1FLaASCiSZuAs6Igeyb1dVVlUolTU5O2n7G7kLBgC0MPyf5nLiMsgNATCaTtjfJV4P4X9dnPvOCcrl11WpZPfLI1VpZGbv4TNZ0ww0L+vEff1Z33BHVH//xtWo0ZqyZCQKE/hmmqND4y3671FqALZBcRbH1trDb2/qp/xN/vIka9rNWq6lWq9ki4GfwSFYqFTOSIynE43HraF1fXzf2b2dnOEKGfw+Hw5qbm1M2m9X8/LwWFxfNf8QiJxHDwPlB1gQtfCNsAJI/AQEgvbKyYhQ/IIOFzKaA2sdnQzVIRcSGDQYHc16R/akoGTVC4CDwwiIMGaBBxzXd4sg1yFwETM9AZrNZraysGDCSZOCG+6rX6xb8peGJSTQJISn47ki6hLn+wXXE9Z8+l9e9n7lX10w9qGs/3tNy5wNaXs6qsxNQfCyuvVMnlQ4e02Zgn7717Gf06sPnrRnNvyOewc7OjrHH3lTuuzwB6shF/Kz3O1Jw4Iv2zDaStrcKkBxheGAVOTJ0a2tLy8vLKhQKBpK9J1WSSZXeygKAZP1RECGLAeSRmj2optL3Urk0CPgUWb47lCQIe9VsNkfuCwYImYj1gxLBvgC8BoNBHf/y/671z//2yBg3rDwkBNhOLCTdbldLS0vGlnB8K75rVAWaBQjKeE7Za6gy+Jc9+0lS47kAlCUpEulejCFBew8kqEqlomq1qkAgYIcssG4ajcbFJDqmsbEdU4cAgYBq4h/vHuVEGo548r4wWHLAnpd4a7WavRtfdOHHnJiYUC6Xs9jF+mENUwhLQ0aRop/v7/WkJ5+8Sa+8Mqfrrz+r668/rltuedPieq8nnTkzp8ceu0ZvvhlTvy/1eu0R/x4FCESBJLMjUPCw17CAkAdgT6empqyhk6OfYWHZt7t27TI7EvEHUCINx1jB9FHI0XACyKDBkYJQkgFVCl0YOfYP7Lm3EwCeTVG4uEdguGnoBGT4YfF++DsFJARJOBw2wMm6Jx5iN6BnAoWROOElXfIbAHbwPnv2M4BRX2xns1mVSiXrl0Bp4r3ha8zlciMNovx3lE7AdTKZVKPRsGYz3hns+cbGxkXbzABIUTTDUkIgYBnAckAsoRGYeda8H1jnUGjQvFqpVGyt+Nnr3W7XbFNcM0UTP0s+oGcBksaDYIDwzMym/spfeVobG3F95SsfUKk0qdXVNetb6HbH9b3vjWnfvm198pMX9Iu/+Jq+/e2ClpYCxrZTCJH3IPUgE4gnkDUUwF6Rg+h6O593PDilambBEJinp6ctgEsa8XxCh2OwpmvPd9dSBfrxMV5+gSGZmJgwcAkTi2zabDZNavNG8q2tLS0tLUmSS14RC7aAGKpXkjwSGywZSYJETGIAuPB7Lm1qwT/ju/sBAwQRrAl+7inPRpKBRhg85AsCKwwpshQe1YMHD0qSKpXKD3luAXMAWo6W5P2NjY0pn8/bM4PVRnYiCEcicT38xU09nfmobrsvostmX9LUrnmFtK1OYEK1zk168bW7dOypVdUqF2zEFk0iwWDw4tibdVsTkmyMF4GMap4kRVHju8wJLvj8eHbMjyPwUSStrKzY9QD6YTKQttbX1y3pkth8EsDc76UYZH88dHhdYYJgx2HgpSH7RiMdUhXsl2dCAoGApqamrDmhWq3afgFUAhpojMtkMqY8AOhgCTqdQTc5578D1miwYD2yX2BNJRkDxsgUzP34TRuNhhYWFszrC6PIOCNJVnyxd/DA8edMXMD3hX1D0ghzgxSeTg/efTi8bfdBxyvxhftGog8EAna08dhYR+121J4jvm4SIgUhHbQAYOYlp9Np22feNlEulw3AU/RybRyeQdHt74/pG4BVTo6CUQIgUfzyvTSQUMiWy0k99th1eu656zUx0ZC0rgEenlG/n73IFjasMbFer6tWq5kfmPjB/foubFhSCmjfPwALicUqHA5boeI7tGdmZmw2KUCTGIvnlndCwkaVIEnD3lGMMPgdIMJ4IHIAgGNnZ8diNiwgPRYwpDS9UOxRoMKAIc/zzFlfHCCCVM8MY/KXb9Rk//lCg9+DusE+ZX+sr6+b75XCh8KTwo4JIHg/UdzYD0zkWFhYMNaZZkYmL/B8maXKWsO6h6Ljxyx6CwWNSfQv+HwJiCW3cBwohcSljP3q6qrZTrgubB7pdFqTk5OmvBET8X1yLV5FYv8AHFEDiEU08eVyET3wwBPa3BzXww/fp9XVnvr93ggxx95ot+f03e9eqwceeEL33feEPv/595g9hXXD8yS3ELP5B8sKqgPxU9KI9eBHfd7x4LRcLtsmwrNCgIS9hNliYDnyG12ReOMWFxclycAgG5ukgReG5hV8l8Vi0WQwfFDMTCQ5Iv2ysKgQAdMwZa1WS+l02uSFM2fOqFwuSxoORfcVOzKSB9b8HBsPOcR7UUmaVJuwq4BnLyNEIhGbQ+c9t2xi340Oa0blz0lEksy8nkqlVLzyRsWuuk2pA9comi2qs7mmncXTqj/+ZaX6wwHH9/7+n/1n3/3aide08S//B0s8XFuvd/EUkVZAz38rpGd7t0i6RZ1uV+sXRzVJq9q+KKkzLodihXcBm0dimZ2dtXfEKCcCFDKL9+BEo1Ht3r1bu3btMllofHzc2FIqY34PQZzAAFsMYAN40M0syZrlkFypsLFO0ERGoMErxvXNzs7aUaQUIgBUvNy5XM7m4tIoJWkk4ZDYvUeJ9QYoIACzH5k36oNZJDI8Gxqbx9ramiVeClBYyZ2dHWv06vV6VmxxH7CBXLs/rrBUKqnZbNrPYU/xyQc1gfWAXMfsY4A9Hj6KSklWXA2Y74QajbTy+be0tjZujBHgOBwOj1wLBeKuXbvU7W5obm5Zb711uaRhoQ3Q8yc50bzk1y3vBH83HkuAHHFyYWHBTkgDNOdyOeXzeWs8AiQweYTrpHDp9XoGVLkXf8KRB7TBYNA6vNfWuur1pg0UDNZ82wADShDrCbbQe73xNHe7XSuuk8mkHaaBvQWQw7tm7xITg8GgWcWw0DD+DzsDAMh7zwH2xA0vgXI+OsqBB8w8J0AjQBIVgHzkATDrIBaL2XMgLgOG8KPDbFEoUnDQ0FitVlUul0eGp1N0YiEgtvHu2u22rT+AEjEfMAMTzNxjYhvvBjBGrgOwU2Qhp5MzUSqYCAAIpAhmzxEXIHs4xIGfZ44qv1eS8vm8ut2uFbbEG/+OKRBYO4D9Xq9n5ADXD+mF5YD4xP4hBvK7YYB5X0jmjKokZ8CWe8B/6NAJxePb+vrXP6Rmc9hsxdQBSXbNg8K0oKee+qjuv/8/6tprT6tS2WOsKWAW8MxzBmNBPvHcOSAIVp74+HY+73hwyoOIRCJ2WkG1WrVhtCww5rjV6/WRIfkwhXS5sVi8TAW4g01g4fBBboDxoqLZ2dmxRig2Jy8dcEEVxYbhO8fGxjQ1NTUi8Y6Pjxs7ReAj8Uqyhi2SNxIF34vpmwXnZ5bBasD+skgvlXTx9BKEuLZarWZBcW5uzgDr5uam0um0pqenjRXY2NjQ5G0fUnLvlWq+8azqpe8oMpFV7vCHtPsXf0PlL/yWNi6envT65/7ZABTHYgpevI/0gau06wMf19aZIwbOCeZ8AOFeForHYgpdZALwv2HnQIZk81Gc+BFKeJVhgbBPwNT7ihvZFqm70+moVqspGo3aBAHAqm9mQKYkqNMc1ekMZq6GQqGReZUAIpKYl9QAJlTOvrGK9cfkg2KxaCe1TE5OSpIBbQ96CXIUQ94DCJCj6PESEWueJMv6xDxPEwNspJfUYGSCwaCxtigbvCvYZWRbmrU2NzctcYyPj6tYLFpzDlMuxsbGVCgURt4D9wdQ8uwhntR+v2/PCgDtm8Y8aFleLunFF2d1993HFItdpUhkyr4Lxsh7vz27NT19VrFYWydPXmXsCXYG/g7Pgr3JGoKh5P2wPpaWlmyc0NTUlMUz9gvvnbVC0xwMO/ePNxsyYGVlxRpvYObD4bBJsTR/UiiwFvBt8l3I0Ow7gKOX1ZkJjKRLYoQJokmP4gVPolcZeF4wdr7wp2gnT8DM08gK20lxBZCjAAdQeZKDa4SZJY6gvAESKI4YA0ZsY14yqgr3Fw4PDo0BhLHnuR/ICQosFCnipPd7ApzYqxxAUy6Xbb8Rd/EcUgABpPkzYq9nrTnQASaOPMK6Y3QSvQqw/iiHMHsAQZQUgB/xyIN/JHniN5MM+B7sIl6Jo+BjX6GAcRw5z3DgKZ9UJpMxuxreUFQhACf5FisTax0vKzmSOEbMJAfx+ykYpa4OHjyiU6f2aGmpo3BYBiQhnNjHsO6DRruoTpzYq5tuWtDLL1+lra22gWgOSKlWq5ZfiFEUNZ7IutRy8d+69S9+2NjS8ASbTCajSqWiZrNp3p9er6e5uTlLfKFQyB4i1SwyGzYBAmcoNBie2+kMz6QlKW9vb2tsbEzpdFq7du0yJodNi7e11RoMXSd4InnTmEDDAT8DE4aZnK7GmZkZ2+R+EdJ0QAAEjPhZatVqdYRdiMUGc/dgLzqdjvlCkTRhggh2yMTSsMM+HB6cNX3u3Dnt3btXU1NTSqfTxmrDVOB129jYUPXJB7X0lf9NrYuJPJFIqPna07rsV/6loje8X6svPzsw1L/0uBUQ4fCgwzVxw7vV7/W0c+Jl7dq1a6TBgWQCqJb0Q00FAIBUKqVcLmfVP8mAoCrJAq00HDDMc+BDQCZojo2NmQRUKpUs6XQ6HZMlA4GANU0RKCmSkKBZz8wa9D5BgjuS0KCru2JdnjQbIaEBrGDBq9WqyZbez1Sv121QNAUTrB6+V5KJfzZMtvAd/6wbAjxgl3mEJNVGo6Hl5WVjtbA51Go1ra2t2UlskUhEuVzOWCECNXIkSY2irdvtWnMXhVOxWFS9Xtfi4qJ9X6FQGJltKMnGygEqeHasf5Lt9va2Go2GvQdJ9u7C4bCx8cFgUEeP7tb73ndct99+Us8/XzAGBOkbv2m5XDawmE5HdOWVP9DZs1MqlYLqdrcsVrFPYZd8Ambtk8xhhn3jBurP5OSkgRiulYIEUMvzxNZBMydeVPYKMYP/D/NEfMnn8/YdzWbT2HTPTlMsk8CJISRJCjEa1QBdJHmuGWYRZhJvrrdGeb8365JmGBg4kjagBtDmyQEAG5YKrgf5mPjJf6PLvd1u2yxcvOTYb1hPABasI54s4P1ubGxYvmMSTaVSGSEsut3uSLEKy9rr9UwmZ/B6vz84OXFsbMxsDoA9igrWm29S6vf7NgoJkM1YLjzUfswcygN5NZ1OW87yHm5IFqwm+JyxNmFn8ICUv4+6R85D7cHmQr4gDqL4AHqZJECeIYf4xiCUNNYHa4hcQfFJXEin03YoA3PV8ehyD3xQarAy1et12zdzc8saH1/X97737pFGPQgsYgQFG9eaTCb15puHdPXVp7Vr16KOHcsZEYA6ACEAAQNA5x78Ow+FQjZH1886/os+73hwKsle2MbGhnlDdnYGs9uQovGf4Z2Beeh0OuaPQ36WZAGek5nooPMDh2GfYD8k2XxEkvHk5KSxp0j+VD34SajcqQyR3Tm20jcYUaV3u13zs0iyzUny5/QNgvqlTQKtVkv79u0zthnGzkt0LEyq/Hh8cOIGlSNSB0AF7xnXwHgWkjVNBq1WS+PzJ43tQEpstTa0Vbqg+NRuS3xsNuTcbl+auOaw1k8f0UZlaYQpxPuLDOElQRItPj1kfGwINJPBUnobBMmJ7sW1tTVVKhUrDvy8wlBocEBCoVCwAdq8MwZPA0wBV3RMAgAI+EhjgKuNjQ0tLy8bs81cXEnWKIfEDOtXr9eN0WUCAqZ63iHFmy9mpCHIglXiHmgCI2EAWGAY/D3jmeX98Yz4ndgBWJ+w3QA21hiME4mZ+ZUAITze9Xrdfgf3A4tIwch18IzZx15ixfLDngE0IMHB5CDRAqiIF/wO/h4zfl9++RYdPvycNjeTOnr0RrXbHXsXNBvi4QoGW7rjjkeVSGzqa1+7wQ4OoYBiviqJkGtjUgbJl87taDRq0ikxji5q4hB/nxiDZ5rGCrx8+JNhZiVZcuR/fRcwxdPCwoI1e+zs7FgXM0UB9wJI6PV6pmBwch72B6YB1Ot1S4yNRsOAb7fb1dTUlOLxuLGogDRigi+SAA/dbtfkYRQW2D6uzzN7fGiCwS+OB56B794uxVrifVAswLQSdwG9+F2z2az9PRrcULzILd6KViqVjCmmeKaRDYbQT4rg2ngX5JRKpaJsNmsTLYgR2IO8ZQwVyhcYNOVhr+DvAZJROLwlAHsacQo/L2BJku1h4jnsLz+HhcCfGoe/FJkebylrkOkW2JTIQ4BpgCFWBwrQYbPfsGOdeII1y+df1iMkA30j/kAS8o7/PTyzwdrYVL8v9ftXamysYvYxiAHeIz05xMqBRWdCnU5QicSq4vFZsxdls1nbCxRWxEf2D/ud5lD2Evng7Xze8eA0EAhobm7OgAcgCgkcxgygBUs6NTVlTBkLC4ZpZmbGGFiOq2SxdbvdESm03+9b9YPsCFPAZgJEwkaQAEiykqwhxy8i/v74+LgKhYKdBkWwpirCG+K9IvwMoEUajsaCRS2Xy9YEgtwVCATsrHTviwM88O+epaJRSZKxDcj6kiwY4OEChLP5vZ8sOpFVqzxvwZpuS35X/obbFU6kVHnx+2bMBox48CLJgKBnLkgsAA6qRQAQ/8CGTk1N2XOEXcWnx7oAQNLFiM+O9dntdlUul9VoNKx4oqHEN90QMJF3tra2VKlUDMQDTqQhGMWiwPUTNH0Q5tl7eYh7werh/xvsDoEbQMr6YE/Mzs5qbGzMGhGmpqbsfmCeUAHwTcViMbOmsA4Anoxyg7kJBAbj2Uqlko27kWReZj4UEqwRJF+eC75c/gwpDSmKSRUEZH+amp+PibxMsJdkXcuwFYACOoaRMfGhP/lkQd3u5brjjh+oWGzotdeuULudVrfbs+9JJCK6/PIF3Xjjmxof39ITT3xI0eisdu8e3He5XLbnRnNOIpFQtVo17zeMHwmT9wvzE41GVSgUzPLjfXA0SMEU4v8OBAIqFou2FzybAqCFIfLxS5KxTKxdfHrEF2Rz1qAfN0dTi2+QZK9xP6xRAHs2m7Xjdzlwg/gJw8s90piTSCQsbgOiAoGAFc/S8Ex7LDfEFph7L8vCsDGLGSuUjxOrq6tW6AHmsGW1220Dh4CjeDxup0RxjcQ1PNAoe1NTU3b4ClY2ZPNOp2Oj67yflHhNIYOdjHXExBpiDEATFYDcBllDnuB3etsUz8kUsYsqDZMB6vX6SJHJswZEN5tNi7PMTebkNCRtilDvVQaIUngQF6anp0cao2ExAWnEeL7fNy8DNiUZWKVgJF55FYJ4yrPF5gWTzl6h6cjnXoD6wBYQVK8XVrs9PNkQRr/T6VjRzL4BM/A8Op2QksmwNXazl3zOwCYFgbK9vW0qDLiGYsnP4v1Rn3c8OIUl4KQmNhAsoD8FCUM6Z5Pv27fPjM2SbMwDXZYE0GKxaAGABA0DBcBlYQIG2EytVsu64PnvfDzg8R2gMFtIKkgxSGh+VAPeG1gXGF0WGlWSNNiA+/fvt0oHwE0QZcFS3SFTTE9PW3CSRhPD7OysVZb4o9rt9g81+7CZpEElV6vVlMlkbLD1uXPndOADP6HIRE4rT3zVJgnwTkmGk+96n3rtHS0++z0Fu+2Rgb80Ypj0MDmjufs+o9TeQwolJ9TbaalVXlD1yW+o9PKTti4IWjwPfif3QkGxsrKi1dVVaw7iKNlLz1Tn9CUCGU1QHvz1+3077AG/HT4lQCTVPvJSp9MxQMjfoVDgvXQ6w9mEBAwvS5OQvVxJUeQbAFg7ND1QVW9ubmp5eVnJZFL5fN7eNfcEg86pU8Z4XwT9rGOKnXa7rXK5rGAwqKmpKe3fv9/G1XQ6HWNS8K561sBLen6UF0kVVos1zfQOAD6/j0COPAwAgZmi+Q8Gm9/ppV6eTS6Xs9/LPcCIE9i//e2iyuWw3v/+c/rxHz+najWjSqWoXi+qQGBde/cuKpnc0fnzef35n79PKytZxeMBFQoFU3hgYz2jxzXjH2cdAgxYn/jQYPxhRNkHfq8j89GhDSjxczP94G4SM4wsTVQUe0jBgEoSIIkeYMjvJ7HzHCWZZcgfUEKMwMe4vb1tUujA87ts8Y1RT/wZqhbghz3i/cCQEABmEjMKAP5gvINYg7xHmPyDFcWDF8AA0n4oFDLvKnEB8O4BF4Ca4qher1sBxTgmWEj2J/eJd5t46fsiAMaA4lZrMAAfwoJr9tMieLfsy83NzRHJn2eNJ5Z79jYFfgYml7zBmvDXyT6ENfZAMhAYni5HUzRMpe8NoBhhHbEvwAN8N35ivz9QQsnzPp4yig6lkD3pfaasC0kjjdnsGQqTcrmsXC5nhRe/Y7CmogqFOqpW5+0IVfIthB3PmXcKe76x0VQ0OpgCAqHk1QXicLFYNBKNeAmAJtZRdASDQcuPP+rzjgen+NxYyCRnAor3QfFz+OtmZ2c1OzurcDhsHjNkMhZGu902yR0fGNIumwJZLxKJ2NikQqFgVQenzDA+ioqVhQygDAQGYzoG3b1rVl1yn1SVyHqSNDc3Z9Usi4pgjl0BYOFlKOQE/p2zxvn/voJFUqY69CxNoVAwuQpWrVKp2L34sVaSDOD3ej3NzMwoFovp7NmzCmaK2v/JX9bmube0+NRD6nUHSQQ2vNVqKZocV+rQTVp76xWNhYOKp9IWYCkkYK9brZaiM3mF4gmtvvrn2qyVtd3paubWu7X3r/4DJSentfrK4yMnTjFahq5YWDSGa6dSKZN7fDVKYCWBMAHBN5RR2VerVWMRCeQkai//wSgxYUKScrmcySipVMrWGjIO/msv6cMM4EOlykc6Q0rEBwXQJLF4cI4iQACvVqvGQLCvCLo0GJRKJWWzWZPhNzY2zPPEz0pDZo3RJAyGB/z5ZqVarWbFKICE8VecmkWDlSRjz1qtljErvBff+EIiIlEBZC9lyfi9+C6xIyAr84wASt7DiHpy5MicTp7cryuuWNP115/X9HRVkUhXW1shHTs2oxdemFWnM3txrwxjFyy3f1YkRxpHKArW1taMTcNmxB704JlYhweR9Qw44wQzWCdiB+8eQAko8s0uXq6emJjQxMSENQQydod14JtpAGGVSsWScb/fN+aWk52YUY0Ssby8rGBweJgJawdg6y0fMJLtdltLS0sGLD0oYW/BSHHKFsAGoA+DRnFGr4K3sCDB8zt7vZ7y+bw1klFAYAPjaOLZ2dmRwtV39FPo8Yx5J5ADWLHW19etkJyamrLmSn9sJgUAVjiAKAUKzW7ELN41sj3v/dJ8Q57Bo42/lHXkFT7+DgUxXe4U/xAj8XjcQNOFCxdG/Lc0gvoZxLCPFFbYnFAfKDAp2KQh6+sLcdY9OIB7Jw94BQ9VgQKbQpJZ5qgFPH/Wvm9o6/f7I5MGfPEQi8VULhclSVddVdbWVsHWM+sF4Ehu92TB1VevKBjs6+zZlJF4sOsoMJ7MYB0ASlmnxKBms2kNxG/n844HpwRYEolP0gAG/E3JZNJkPKQJKmMahdgAyERIYz6gwkCwwQAAsCwAQ5o7qGxZiGxCmEk6r7lGFjFnF1P54BPCJ+cDOY0CSFnIWPwuKk/8PQAJZFgCyNjYmA0XBtDgXyFZkIiZBUkyJHl5L5U0BCoEe0kjQ6AVT+nOX/1/qr25rtc/+0/U3Vg3cJxMDs5sbjQail1xs4KRqNbfeGbEIoHfiGKEZNk8+pLKrz5twCgcDuvCm0/r4N/+LaUPf0jlZx4aYUooZGAZeK8Eblhv7guwwrulqKGggMGGrcCfx8lXWDtoDuAdE8BKpZKNjpmYmFCxWDT5ENaGQCQNQBh/nyDKqA8PjKLRqK1T3oWXsAiW/lop3CSpWCyqUCgYG4oMyfv1DA3AB8YRfyr7D0AeCg0aFL0/m8KTs87xDfLnyLEUU/hbpeEsQwIrzWeVSsU8kMj6fDeBmX88i8XPkHwAerBheH1Jvn4GMcARQOxn6Z47V1SjcbklRRhrSZqaGjKCxDDkRw/omIRRrVaNwYEN5Xmw5yleaZhjCgn3MmRk2sa0t9tta3KAlYKNI/Hx3wFpSLIwjSgMAB4ftzxQRq6ORqMjM0pRUliLeBvx5zLTlD+n2ORZ+2kW29vbdpoa+4EiEEaVo1+RXWHliW1cl288o8HLjxqShsVAv983q40ki88w4DBXFIasZ8/iA9QBCRTiA6/quqamIspkEopGJ7S4GNfWVtt8lwsLCyOFCkUve534Hg6HNTMzY0U/81np1uY5Aahgbyn0KEiIWxQg7FMsMjB7/DusMgWCb1wiVzEtgr4SPP4wm9giUCMBu37OMWsUcE9soZmHGEPsBhNwHT4G8OxRxdinEEM+fxCzySGdTsdiDD/jFbR6va6FhQVj7Vn3MMyDNZjR/PyMrrnmpF5+uWBqLgc1cI3sZUbzhUIhvetd5zQ/n9P582F1OpvmVw4GgzaejufAnHKUTsArTK9vOCPm/KjPOx6cIq+QBNfX161CJyiR3GjkQFr0o0+QtUkEvV7PjsdkMVKxszH9kHb+PJVK2QBkZEsGDFOZAvxIAv1+34z0XuLH7E1Qp7qfm5uTJAvKyM08D6pEHyT8WAvAIiwZ9wc1n8/njR0i8GCdyGQyI0GGWYcAKwIbjAryApuQDnD8K6tbLV39y/9M0eSEjvzu/6RIp6X4xWTHdyDLTL/7XnU217X88p+rdXFkSzQ6nNnI6KH19XULQDA9uVxuwDCsr2t7paz47H4tLy/b9TSbTY2Pj1ulSaD1UiYgEKY6GBzMQ9y3b5+i0ajNyUXu4p0TLEnEVMG+cQYgQ0ADAPtuaLyevpsTkMLaLRQKxtbRaARLxD2RXJEWc7mcMVJ+nBXeUEb68Lv8ftjY2ND4+LhNIMCaQrIjqHvQiiSNfQWmhffVaDRsHcNg812sK4orP39VGkqH3lLC0HPeJRMxkI79udp8t5fKPesQDoeVz+eNPYhEIga4pdFOfd7LpfJ5rzcYYbS8vGzHi+7s7GhpaUmxWMzG9NBYSFLjXQOWASdM9mCfIL0R6+r1ut0/p7VxL+xRvpPvoohlrdGERAwBUFKYSDJFhBmoGxsbSqVStiaxLPmGF3zhgBEYUdYbti3vHecZ8UwajYbFIZgbz2IR04nlsNueZEAZgLECOAMYaG6q1+sjEqaXrpn+QHOI99i2220DDjC5XjnA1+oVCPIMJ09RYPJeBw14NR04MK9PfOK8Dh5cHcmNGxtRvfLKrE6fvkYbGxErvmhKowm00xmdQrO9va1yuWwnFsLkcWKiP1iBQnZ9fd0KP3KpZ/uIG6g+qDDLy8vGJsMydrtdUxq8coj/3dtkgsFBNz3gn7Xo42+r1TLmmOKCGeSQPL1eT9VqVY1Gw/acj7/ENA4X8NeE9YkijxnmvHfiJpYGil9yON/PM2XveyVuZ2dHy8vLNq2ENbi2tqbnnpvWJz7xit71rg0dOZIbscUAYuv1utLptPL5vDY3N7VvX0m7dtX0ve/dbmvSN8KRP31uh4ABO0my2OkLTRTFH/V5x4NTOuPpdEPCyOVyJn8wygHGKBwOa8+ePRYcWEwwbvgyTpw4YQ1S+OVgBHnJkkZYCAKIb1bAAkBA4cVzPd7Hw6IMhULmdaUCAoQTbPEBERRJ0LBf+BZZpFR7jMRIJBIqFosmC2KghqkE7MNC4Lvlw4aemJgwCwDX4I3wBHjehTTYhMFIVJf99V/VWHGXTnzun2insjjiL2TBLy0taSxX0KGD16nxyhPqdzs2roSig+pYklXWNIqEYmMKx+IKjSWV3HeNUgdv0NqR56xRDfYPa0goFLJGFgIcUhHJGk/ZzMyM7rrrLvX7fT311FM6f/78CFDhdyGvtdtt82MuLi4aa+plV/y8eIixoTB3bs+ePcpkMmo0Gtre3h7pNvbyOc1xrAdpOEqq0WgYGMd/yr8z7iWdTmt2dtZGOnFfgA8KGgz9MAxIhYxxAlywV7C04GOUBgHRnxFPIqGApNhDqp2YmLA9SbKmEOA5EA+8/YKGQ9gJZnbCSlGU4WEDLNAIiZedREURiAoTiURUKBSsqGNiCDEDRmN5edmYtkwmYwmFvYK/DnWhVCoZ0wNLg5QNgCf5U4Rw/bwv/KA8O6/G+I553hUMNYWGn8OKvM374x16/yRJGOYUFtgnTt4fg90Bk57lQqqORgdD9YlpfPh5P1EBZspbtLhf/sGfXK1WrUiShl3IgFbicS6Xs5gIWwR7hMKBNQYADFhlhB5FgCTzoXtWjUHmkkaaLPl5mLdBLK7pM595TFNTmzp/fkJf/epVqlQyarX6ise3dMMNNd166wXdccdZPfzw5Xr++cGoQ4pPQGMsFjOVzo8RBJiUy2UrxFBYeKYASOxOWCOY2kLs8Swtexz1kHVPMYF9iZ9jqg2xB3CP1x4FCQWs2+1qfn5+ZE/5PEgcYyLM+vq6zUaXZEoHLCXgi2KJd8B7gQhj7bFHuDbyO2oEuAAbGcUfMcc35/qmZ99wxB6NRqMqlS7T6dNVvec9f6719ds1Pz9j34kfHPY9EonossvW9NGPvqxz52Z1/vx+FYtd228w66wT33+DzQd7ytbWlp1ONj4+biqdn3r0F33e8eCUwcCeUkZi8QnIj/vJZrPas2ePZmZmtLCwoLfeesvob14Gx/7Nzc1pz549OnHihHVas2hpwCGxxeODY+gYxivJGAxkdw/UqGq4Jja0D9YkBEk2SiQcHh4xCYXPgiUQbG4OaHp//i8VJ7/Xs6nhcNiGyq+trZlnj456aXgSRzgcNgkRhgMPjG8yaTabxs4xEoNkvtNua/dP/rJS+67UsX/7T7V++k17Z7FYzDqJSTwT196uQDCo2kuPW5BkwwKm19fXlclkjEnl/rIf+lllb71HktTv9bTx1ktqPf01s1wAgPA3UXX3er2RgwxIlATNYDCoSqWil19+Wf1+X/Pz86pUKsaoEJCptAmQAKLNzU0Vi0ULSjCxsVjMGFWeOUOeAaTe/oGHaGtrS+fPn7ciCvDoJWECerFYtHXh70caFjdeJp+cnNSZM2esOEPmYV3s3r3b9p40ZIJYW7Ce3sZAkQXYp7BkH3g/HJW6ZztgZX3jEoWNVwkAjYDK5eVlk2+xa8CW8Mzm5+clyTp4aWag2PRNJbFYTIuLi+r1BsO42S+8G/YowJgihecAMKSwAIgnk0mTKvmdvsENlge2hcSGZxCbCtYkfgcMKHsXxtwnXeRiz/z7Lm7AG0mUk58A8jCXrC066LkWCidUIz+6DZCCXQBGzxf2xAWYMc/Uwa7hhSMusiYgK1hDPFdkS6RhACX7hELdF8G+GZaiARKCfe59271ez4o2GCrWPx5QcgYMYiAQsDXBYRFrayf1oQ89pk4noN/93au1vj5nR5B2u2s6e7ai5eVJPfXUVfrAB87pwx8+rnQ6ogcfzBgJEwqF7HS8QqFgihrrkMIakOotaZOTk/b+WVv8vPcv8z38Pqw7xWLRRipGIhGLS0xl4GfxyLN/+/2+/SyqKYUhsQclEQBIfwCKJf5SQK1vHsSXSuGAwsdeBthigSI+UnR7JpnCiL/LNaK0QihxPzD3fv10Oh2bpEGhb6TLxd+xvr6uhx56lz7wgXXdf/+TeumlKR09eoXW1+cUDoc1OTl5sRmxruuue1lXX31KFy5M6uGHD6vV2rZYxjXy3ogT2C8oKmF5uQ9UVQDz2/2848EpRt6DBw9qbGxM8/PzOn/+vJrN5ogxnUWNLEL1jLeQapJk7U3KAEFkFlgKhh0PgmdA+65JKpUdLMZGNawXHj+tndaOpqenzVCMlEbQxzuHr4okycxKmDwAB1Xt9vb2SOco8hobTJJZCGBc8Lnh15qcnLRzm31HIbIaG5/qEWYUlg6Azsgc2DrYj+3tbZVKJQt2dHMGg0HNfPTnNHHVLdo4/opys7uULk5rYm1NrZ2WJsYnlCifMl9ip9PR9LvvVatRVe3oy5q46DWjKiTZ8zzpnofxXX/pe1p941lNTM8pccUtCgSD2moN3jGnvXBkLInGNzUB/n33NYPSV1dXdfLkSWsM49mtra2ZnCoNNvLKyooVOGxwfhawxqgwSRYY/UB9TjmD6WB9U1Uzf3Vzc3DmdrFYtNm1gG8aKy5toggGg6rVamo0GsZq8jxgDDzD4u0xBFrun9E1fqQYBWKhUFA0GrUkgmyGpMe/SzJ2yq9BJFWGsCMv8vv9yB0YGX6efUIR5seQeZkVQE1jDQARsEo3eDKZVKVSMTaYJA5jLQ1YB9hKCmDeF+oJ10ZCpNmLfQmY5pnCXGCjIZ5gGaB48eebIztiXfD+NWIaCZbnjkUEFoXGPg8aSagAEbycNIzAygNCkcixI7B+aD4hnhBrKUT9tXovHewS9wbQLhaL1tjGO+N50rDK9ZHkafghWRMDsCbBHNGjQAwGIAFeATHEUYqQer0+MsuU/OMPjOHP+HiGerB+o/rIR55UpxPQ1752j1ZW1hSPh+z5hMNhU316vYj+7M+uVa83pttv/4HK5dv06qvj9pwpEJHRySWQE4B7njfgEaDIvqFDvdVqqVKpjDwbnhnFGXsJ1tX7vCk2UAz8PqVnhAZFrpniR5IBTb4DoAlBMDU1pd27d+v48eO2NiAx/Il/hULB7BQcrsB7hS30ljtsBWAGz4h7koE8BfOL9Y+iHTUoFArZHGti9BBrhEeOpx3sg6S+/vVbdOutJ3XLLfO67bY/0/JyVqurKQUCQaXTmyoWK9rcjOmFFw7pySf3KRYLGDGTz+c1NTVl+wfQTcFB7oawAcNAOkFM+ebVH/V5x4PTqakpC1I8IKqK1dVVG/dA0qSrbGNjQ4uLiyOSD0wGZv5ut2vHiyIJ0FyB5DKW6umqO1e0f/oZjWlheGEHpMOHL9Ob527Ri49sm4xEFyFVajgcVqFQMJBIcltdXbWjFUl6hULBvHt4hiSZ9Iu0gSeOWY8wQtIQzO/du9eaawBS/AyJ1nt3V1ZWTO7A9gC4QNInuHnjNwAzHo9rcnLS2KzY9N7BtR+6SclDN/3Qe239+39kEk7xsquU3n+lak99S/GLgZpACbMBU8pcPt8Ms3nhtLa3t7Xw8o6i3/uqrvxb/0z5T/xtvfn//h/NqzY3N2cBHcYKPxwsNH41ACcsIqN9SPZIKpyGUywW7V3AikxOTtrYoVKppHK5bCcEEaTp0iTwwqQgn9PNTre4nwkpyaRh1gDvG3YOP68HThQ03rOMPQNJmKAEawRr4FkU1nOtVjP23jMxPEf2FY0ASNwABhhrwBQJje/zZ40T5P2BAHQuh0IhG349NTU4OpQEAqsMIy3JEhVMOtfGiBjsMeydbrergwcPWuFLIqEYxh4AqEEt4Wd9Exjv2Et8rGWYaNY3BQRsB/40DyIpPCQZgw3o8KN9arWavU9ftJLgKeLxyAKYer3hpAzv8/cNQ8iEnv3h5/r9wYESzKP1BXi1Wh05NYdCG/vIzs5gkD8+d9YU+wUgS0MfoIaCDBDsvYfM7aWowGqETEyMZJ2yrylomF5C7Ia5i8ViBtiRWonlKBdMleCdAgaYrLGysqI9exaVzzf1+79/s5aXt+33sRdg8+mH2Nzc1COPzKhYXNBtt53W+fPvtbVD8cH+Y2wUBRIxRhqyyyhn+MIBurx/iBu8wQBb8h3TDngGnrQh1/lCDmC4s7OjXbt2KZPJqNlsqlarGTgibhCjKJA5jAIPKFY42F2+H7UKgAX5wR5m3/Hc+LAO2H/sY9/ngVzOe2XdUBzx7AGnxDBPaKEqgF/6/b7FMciVfr+vo0fTevXVK3XgwJKuvbaiVGr74r4f0/e/f5dOnpzR9nZXUmvEFuH9wfh5URpQ8Tiy2Df8UcByX+ylt/N5x4NTAlapVLINAQuBvM3iZPOQsACISCqwSpLMzA8IbLfbBuAI3LuvXtMdN35dUl9L7Q/p9IlPqVHqqNtuK13s6NCVp3Tzni/rxr8xrkee/7jOvTj05MCUFQoFq1ZJFPhkYI+QAkiM3m8iDTv/ANHSUO4/ffq0Wq2WsStUmiRLkitMLc8KkIFUC7vlG8BgO9h0NBfVajWTsBOJhIFML0Ge+Ow/tu+giSwQCOjChQsKh8Pat2+f3Ud3raY3/u8/ZUELiYOq1wMM37jDqWFcM0lw7cjzmvmJv6FuMqNW67SkIdiA/SSxsB6wHDSbTZXLZSUSCWWzWTu9RRqeKoacmsvlbLPDcsEYhUKDk2kmJyeVSqWsISufzxvDJI1KsBy7yYEN0vBcZ5grPKXRaFQzMzOWTPA3wkwiGXkfI80FBNNGo6FarWZFUyKR0IEDByyxwyqurq5qZWVFwWDQOmfpnsaIDxvgPYFIgQRC5urRSY3ZPhaLKZfLWZLmDHEKSBgS7B69Xs8KO9+1CnuIJA04oaDwzUs0LgHUpeEoHFghGq84g9t7a72HFYDl54vC+nqZv9/v2+xf/ywAYcFg0I5J9P46mjqxBnE97BNYZ/aOJFNoGDdD0wSqCMU+CVbSSKL3Ui+gE9kPtp8JCQB21jx+PjydMOswv6xLihDfIIfky3ryjSseDCPJA7Zg1yjEGHfH3my325qamjKGFT85zxBWG9BAwQGDxrMCSBNDaKAiV/nDSlAhisXBOKDl5WVTBYjTABLiY7fb1dVXn9DS0oQWFiY0Pp4w9j4SiWhyctKIGVQsQPoLL+zSxz72qmZnt7S5OWMnxvnRa6xT2Dk+Xl1g0gqKH4RFpVLR5uamWdu4F/KA3xPeD8+eiUSGpzaiKALykcaJq17l8B5jCnhyG0WNj32oABzygjcdYsLHFoCk97czUpB9mU6nrVDmKNpEIqE9e/aMTFfhcAuKRX4P6xaPKXlve3vbRgWyV7cvNgKjosLKouqxP44dm9LCwkEDjuS/wf5qGeimGIAJpUBBRYAQgCAgt8EEQ/yxp+n/eTuf/0uAU5A/EgLBmwqchhY2POCS6h5qHV8PFWM+n7cRE95P0ev1tO+6Vd1145dV6n9I3/pSUWvLq4pG5+3nTry6phcfjmv3wc/o3h8/pg/f+h/0aOQX9OYTpZHGKNgRSSoUCrZJtra27IUvLS2ZXxWmK5fLqVwuG9uTy+Wsa5GqlETo2TxkP7yW8XhcMzMzBpBhStiU0WhUs7Oz2tzc1NLSkgUc2B1ADqCfRc3v4Z1Eo1E7eYekBFDFN0zFi6SAr4dnAntAsw7MCoGT/w4LhoSGfy6dTg/YyvigspvIFSyx0LwCWwKQQErmvQIcJJnH61JWC5ACIKDD0XucfINUKBSyAGwHCFy8J1hQmHASHWOQ8BTR5BQMBm2GIfYG3jPPmwoXhsMXGcio7XbbQKA3w+fzeWUyGZXLZTWbTWNrAAlIQnTiUvwASmn4CAQCxrjC6i4vLxtjCohijh5rYWVlxY5klWT+PUkjg9VhugG93v+G93Rtbc0a/7BHcD/5fN7G+9BcyYgYPytwfHxcc3NzNrnDe8oBI4AQ7omEiAcXfx3snpfJSZwUByQjrpX3RWOUn1XMaXgwhjSseL8uEjsJCE8zh3pcysCyD6rVqhXrNCVyvCUABJsUxSoMDAma98F1xuNxO5GN7/F+RYo0wDbrmU+32zULFqOF2L8kdpg4GD7kWBI+8Rgv+9TUlBVaWB4APzQPUhzy9yloer3eiNUJwEOHN9aNer2uSCRi7DXD1gHUntUbH+9q795lPfrojSoWp5TNZm3sYT6f16FDhxSPx7WwsKDl5WVTP8LhsF54Iap77onowIGTev75tMnO3Dv2h1QqZWe/U8DhvcePzD7H9tZut23iDEUMcRzfLHsWkOO9mBRb0vBwmsnJScsDkUjEfKSA2G53MBYNiZs1Q14gXrKX+LNL7QMQQ8QiGExilT8wAUYURQellpyLgoBnnIYur9ACBr2ETs6F1PGqCaoV65s9THHMe+TaiMNY0zw54vtIiPPgHcY2Ej+8orCysmI9Nig8xFjwAJNA6A/4UZ93PDiNRqMaHx9XOp1WrVbTqVOnjPXCJF8sFo1h83Ph1tbWbLYXTFy5XNbKyor5KliAyLOrq6sKxMq648ZHtdS7X1/9XEr9zmA+HUeU+Qpro97TF/63GX36b/Z1901/rOWzn9DG8mBYMPLP0tKSjYjAME7TASwCGx1Q7SssABGjf2D3gsGgcrmcbUQWOLNIGTlFdQdbx6aG2WRBkySZMVetVjU5OWkbj0VLsKBSZMPwPNnYkoxlWFlZUa1WsyQJy8vGGwbn8RHmhq5x74Ph90/O7lGrdcJmzkYiEY0lU0pdd4d67ZZ6jZIBPJqbYGABtYCoZDJpzS67d++WJEsuNFYhUSLfAcLX19ctacFQ++kAbGZAD8CBIAhzDjPNZArYGp5Hp9MxthY/LpIRjVg8X7rlmd3o5X/2SbFY1Pb2tmq1mjUbYBvxhwMApvDQETRJOPgjE4nECPDhPcFyABaWl5cN7FBU8rwBH9JwbBTrw18H9+EZUaQ9kgLybbFYNObn0uLIs5p4xUiy09PTttbxyPFeAU8AbVgWngsdup6h4jngFUWi9vORSeAUNDA6qCp47YkPrVbLrEQUE8jq3BOMJ743BuVzPcRT7Ahra2tWaMKS+TE6NBR5VpqDSNijqFGsY+7Ds3L4hCXZdBKupVKpmI8dtnxlZUXLy8vmKfXNNN4GAMAhduIBr9fr1sHNmDOYuFarZXNIUT9WVla0sbGh2dlZRaNRXbhwQe122+w6MHCAFLzf7KNgMKhqtWpKB0wWsQAbAblssFYaCgSkajVtAKparWpnZ0eZTEb33nuvDhw4oGeffVaPPfaYTp06pbW1NU1NTV1c4wmNjY02DI+Pj6tararZbNpepdCDpfbgigYhmrNgXenpQGWkaEGVopCRZOQH74M4CFD0ahx7m0KJ+EXB6Nl+7AVYcMgTkiyXo9ZIw5F9gHJ+D3EE1c/PlL7UWuRBNx5v1jGFFKwsf883nHESIc2xvAP2HHuU3MR101ODtz4UCtmhFDDAfD+xgSbTYrGoTCZjjcCM4CRm+IKC933pEb7eYlOtVkd6et7O5x0PTqmc1tfXrTOyUCgon8+PjHKhevIMAwGsVqvZ+fWSbAFw0lK3O5iNiPxy0wcW1Qnm9N0/mlajdlaSDARHo1Fb4PgytzZbeuhPDuhn/+qbuvWerr7/H/sjG0SSzp49a56e7e1tm9/INUSjUfOLkpTxelKB0qmNl4nqZmNjQ9VqVfF4fGTOKIuMREn1CKvB5m42mwZGeI6AAoIF0u76+rr2799vgFQaHhHqPXL4M+nYpBqE4aGKByATZHq9np0xj7wG04mPGJlpzyf/jmbCUc28+qxivR2NF2aUv+X9ihXmtPStz6u1MahSYUBpqPMAF+Y2EomoVqvZnL5Op6NGo2HsAu9bkgUEgiofZlLS8AF7zXP0fkwmFiBLk7R47zD8/F3PMBHIAHI+yPmixKsJgF9AdqfTMZCENUMaju3x9hTPGiFBAaSmp6dHhqXTsAYTAusMU4IXEXAEEyFphG0BJNFghUeMAA4IQOqHYfANGKlUSlNTU3bfAGnfPIYsuLKyomazaXvw0tFivqOdd8k+BHgBImArKfq63a4lckY3kaTx2sJMAf6Yv8gJZjxTwBbeNK6dv4cNgvhDcqWoIEZIstFH2Wx2xBeHisP7YG37IhbmnGdJssaWgGIxMTFh75/nxn2y/rzUy/dRsBMbKCLwu8GQoVDwjigOaHySBoke/56kkSLw3Llzmpubs3tlsoFn+wAtsF8wg4FAQLlczp4PHmcIAfYKTL5v+MPvS5EVi8Uujr5rXfx9A3IA5p0pLnTT0xgVi8VMBRj4HMOKRDTyDvr9wXHS5Az/flEfeHaw3SiNfnwgEjJAFtsc8QAlkpi3sbGhSqViyh+xDKDqm31ZD7HY8GjYTqdjkz1oNqKJCQDLWiSmowZQ7JG7fcMrBRWKCP+kUqkRAEes5udRX/iHeAv4Zp/xDImfFD6sU0abcQIWigaHFDBi0B9NC3vp+yHICZ1Ox2I4xadvngPI4uEFA/m8zGmNvmAhF3hGl6O6387nHQ9Om82mVbzxeFx79uxRIpEw7xUvnk0MhQ5bQdNUtVo1WtuboPFYMdpBgU3tm3xWxxsf12a9YQksEAhobm5O9913n7rdro4ePWogg+8637xD+7OP6NmJj2hna9u8nPv379fKyootGGRFmBi6eX1AwfPIIiEIIz/BpkkDrxjzTGFikN8ZC4JfjWQqydgIgABVZKlUUiKRsHFPVK8scm8IpzrkevCjAWiQ3kul0oj3hhMx9uzZo+npaW1tbalSqZgHkuRMwxuJguQxPj6uhWce0cydH9EVD/y0ouMZ9Vrb2l48rYVv/aFOPP4tSTIQ4kcqra2tKZvNmh/UV9FUo156QQoiGHBNkiwZAiR4bhsbGzp37pz5gRk/RhUOC0nCQgbmu7kmAjzX7plZwAY2F4ILnkTY7mq1KklWECWTSdsXNLKRFChA6FjFg0aRRHIG3GOTQAbFx5lOp7W0tGRsM4mUJglJdsoKjBr7DJDA9/G/BGJJdh14sPChwnTH43HrQF1dXbVxKP1+30AdUy22t7fNygFYZ7IFzII0PAmG302CZ5QXyREPJ0l8fHzcjqicn583Sw97mhhE4Yq/jcZHbBLEBgoOaTjuBW8Y3wlY4wPrhPpBsqUAxovN80VqxOcPm8qzgf3EprC6umqnDoXDYVsTAF7AOoU4cdoXpSR/lAneOcfohsNh7dq1y1hZPLZ4vKXhAQb4YWFI5+bmNDMzYz5FYhE2AD6w1KxVwAnnmuONZS0yHQL/YCgUUj6ft0KWJlHisiR7BhTz+FxjsZhqtfbF57+jbjdisUAaFBMPPvjgCPuKZzYSiVw8MKOtRiNjwNx7B7lvD5yxKBHjsEaQD1CVAGgoW8RLQCaxxPuueUfEKv/OyeF8NzEVhps974tzVCoAZK1WM8WEeyHmAf6xXF3aREfshSmliZV3QtyC6YScACT6gyzIpRT88XjcGp5hW8kdkkxh8oVLqVQyrAGJBWiVZPN1WWcA2YmJiZE5sMVi0Xoc8BuTu5lywPVQ/BMHUUTARf5dhEIhi4esvx/1eceD0+npafNOIKXCFlAV+o3GRuWkI5Iw1Pr+/futusEbBmO6srKiK29rKaQt/eCZtEKhtubm5uz3/dzP/ZyuvPJKBQIB3XrrrXr00Uf11FNP2SZ88c+S+uSPLWrvLWM6+3Rbu3btkqQR5gzfoB94y0gVfg7/D2wGfqxMJqNMJmNVDGAXBgLvHUAd1gTTOd9HE8XS0pI1ljBWh6rJN1t42p/kj8+NijWVSpksi6zIHEC8PSQyQBLBn+pNkrE9SC+wln7sFyBm9fVnVHv5zwwsSLIN5DtDkQJzuZymp6e1sLBgPmXYbyrRarVqXmCAKiwlYNDbR2DXPCMCK5zJZEYKJxhmqngCqf/wfTB1BHqCLEwajSdME+D6c7mcMpmMarWaFQ0UCUhnBEDvJUY6X1xcHPFDdbtdO9OdxM7egU0HSLCGCcqMOPKd/jCRVOi882QyaeOs2O8UWX7tIF0ho/G9MNk+8eD7I5hybQASAjueSGl4ChLXRyHngQTMDzI5AJLikuuXZJ417sH72bgPPNzeK8e1ANxJbL5TlqTrj/jE80gchJUDxNHQApvlQS1srPeiMXoOAOZtOFwLjBqgAI8s90NC55pJ8rBe0nDKgKQR/7QfAwhYBeRQrBIzOQWJ9e290q1Wy8ALQAnFoVwuG6gHhIRCoZFmMv4MWZnn3Gw2NTMzo3Q6beCU2E3xgkez2WyqUqmYOkNMwwox8KqG1GwmddVVi/rBD/YbqOl2B0fGsrdmZmbsudHglMmsqFhc1YsvXmEsfr/fVzqdtkINVhJVxQ9az2QyI0CH94pdhb0Fiy3JGD6IFsAMMXjXrl2WR7CWwbjiU2aiTKs1OKqXw1NorPJTINhTgCfWDbEcjy+KBHkNtpuChAYzABmKAf0ArEMsD4BqCrLV1VVjXIlpxDpJtl+92hYMBkfGvXF/qDxMzOB9Ly0tmQWR+MN6pminZ6bX61mc9n5viiKaNIm5nlCgAALkw9RSfLGf6BngGn7U5x0PTovFomZmZqxRgURNMmJR4MFDniDIwqxS2dBgI8lA1ebmplWK8cSWOsGcmheaBrIGHZRX69ChQ/Zy0+m0rrzySr3++uvD88LPDF5aNietXvRtksBJFL7SBjBRoQEqSqWSBcnMxfPt/cgVggpzOPFlttttA7B4QjmyzQMaNjEMG8/Dd2zi/8JzJsmAKAmHhhMAC88RsIZnDZnBJxbYBzYn4IBTKCSZNEeSabfbBkK3tgYnu9CMgs3AD7lG3iuXy0qn0yoWi9q1a5cFKIqblZUVC+IkKZ4B14EUTvJhBBdyH4mbzY5kwnnx+NlIsiQ4KnwCEO+d37u4uGhFgzQIdtlsdkSiB4gDEDDdsxdo4ACwAqJgQEhMvoOc9yLJrB0ecO3s7JhXFiYQFpK9StVOIxDAGp+jZ3eQbnmHFKG8axoL8Ifx73hbGSPFpAKetfeEwiIXi0UlEgnzybIHYcm4b295QJ7HJ4tE6H3TrDkAozRkapjPCEPmm0uwAgCK/D5kvVFgUAxh3cCmgBUIUMEeJCbS9MPvh+2XZEkSFQVFBOXFKyV84vHBkbwUa3jpYWOy2aztCfYzhRnvDwDDPzDG3rrC+qMA4j0HAgGLBf5kJfYT8uiuXbvM+wuRMTY2ZtaCcDhsgB2QwZpmbzABgLWIP16S5SQ88dJw+gp7mn0GMUAh5j9DO0lKx44d0s03/0Dj43vMpsE4M7yryPSAt2g0qptvntf6ekxnzswpGu390D2jItTrdVNCtre3R7zqqGUoIDQDAWCxGuFpBRSFQoNpI5VKxYpBxrWRW7x/k+eE557CjWeIz5GjiAHa3lrDhwKK2IqSgF8SgIfayn7wVgEm2TBtAYKGnhdiFyoXwJTmLX4XuQo7GqqOt6sAAgHnNFrlcjmtrq6av9Ozv1jbsCt4fBAKhayfQxoeUcyHZiZvjfQMKe+RNebfmc9t3przdj7veHCK9EfiZzH72YuANYJWuVy2iq7dbo8EN88SeEZMusi6tbbUV1j9bleRsbgtQtgC/yHgI82uru6or4CCwQGbgBwO6AkEAmay51pyuZyxh1RmNKsgTWG+B+Bub2/bWA9pIG8gwRQKBQM3dDI3m03z37EpvKeHShmpQpKxSixKmJR4PG5VMuwhzR2Y7jGMA0SxJjCqx7MbBD8AHIlRklV+AC82Op4jgj7ntSOB04nrGQAaXfbs2aNIJGKVczwe12WXXWZsAJ4sGt6wA5DUAUysK/6/N7mzmRklhU2B+8f6QFGA1ArbhY+SIoDnQtUN8GK9YB0AnC0sLNggfC/TSrLJBCRmWN1kMmldwVwDCRXJUBqa5Rmg7QMz0jnNZrA6e/bssQMElpeXLbjNzc3Zz7JmYST6/b4BQe+1wyrjmxEANjRx+OKTPcu9ptNpY2sA8kjXMBC8a+4dKxDrmgRL4QRLhu+Qd+WtG7wHfLjcFwAX0A3DDCvomyuwnRBTYHDZE0tLS4rFYpqbm7PrB4Csr68biCOecC2+CYN9jQ2IZw4Y8Z37NFoxOQOQxDuVZBYmig9YMwpSCgQ/M9IDfcAuikksFlO5XLZ3732L7AdiTLFYHJF8iWPYmQB+3hpBUymFKUUcShG2FK51enraGnconmFVJZlKAgExOTlp10IMDgQCKhaLZhl65pmMbr5ZeuCBC3rkkeIIi0w8hLEDOKVSC7rhhmW9/PJBJRITisW6pmTwfDgBi/unWCNOA8jxNeNfh5n0FgFUM9aHJ4L4HYB8mvgAy+QYJG1yazabVbvdtuOU2bdesUDaBg943yxqB0QJ+RebhscIFOzgAHIyudzbCVgTFASw0pJs8gI2IYA9MYQ9xvOEXPNFGSy2b7gkRrAmyWO+MS0ajdq+I/aQH7BBXNpETFxEnvdNemtra9YACvlEfqCpj1j3dj7veHBKpQbtjI9IkiUL37RB8tqzZ48KhYKOHj1q7AU+w3a7rTNnzqhSqWhiYkJ79+61l7G5EVW4V1c/FtbCwoKxRUeOHNGxY8d08OBB9Xo9LSws6JlnnrH5ku12W4FQUwH1tb4uW8hsGEAaVTOSBMF+YWHBEqbvwoZ1RW6k4YvgOjs7a8BhdnZ25HQWRoyQxJipJskYApJVMpm0M3NJkn5mXDqdthmN/D4M7NgQYBk4mhVA7ZuJAHEwNF56JJmQiEi44+PjmpiYsOrPS6BIj0xo8NclDRsVtrcHQ6yXlpYsEfE+UqmUsd/YIOr1uqanpxUKhVSpVMwE7lkWABJ2hk6nY6DQjy7Cl7W1tWXvjXULiKBRJhwOjzTNALp9IwE+K/5/s9kcOdfdewq97UIael1hIQj+tVrN5uFyuADVOkwffkvPyvKeSBisKQ+8mGtKUggEAsrn8zZlg7mv/E72DLYA9n673R7xtAFGUDi8HIu8x/NCmeC5wpqzJ2DrYPgBKEhkeL4ANExBmJ+fNwWj1WrZOmEtEsgBmzwHCit8uzD+jUbDfrc/CzwWi9kxhbAr7DmuF5DlPZ4AIwbBe68jyWdzc1OZTEaFQsHsH8QOGCiO4+UZUWQgA+NNxl9IglxZWdHExIQ1RkImNJtNO0kpHh8MAG82m5qdndXY2Jiq1arFUO8zZ+pJqVTS6uqqCoWCscMw3TDtTEvZ2tpStVrVxMSEeWlhgLC5EAOxjfR6w4MH2u3hCT+hUMjsO7B4AAfyAOB8e3vbGs54j9hWer3BmfbVatUY6LW1NQOL3//+rbr33ufU68X1+OPXGSvGuiQ+d7td5XIVfeYzp7S8PKZnnz2gfD5ibC9eRjynY2NjWllZ0fz8vBX/KAH8bl8QVqtViwXcH134gB2eLSwjsZGYjOrBSYrVatVAPkUZ//BsfTMXliavXDUaDVORKJQBmvw7LKBX5oj7xBmIj+npaSt6aeLjPj2D7+0nKE6ARK8QQADh041EIpbfuW/WI9cLS8o1YTuArMGWI8meTaVSMfIDJZI9jgUBsI7Nq9vtjjDf3i7AtXM9gFvWj7//H/V5x4NTf343lDxsoGd+GOAN3b9nzx6lUikbH9Ptdu34OBYnC4GNmUgkdP5oRHdd29YN74/q0T/ctsqsXq/rwQcf1E033aRGo6EjR46oVqtZ1dfpdHTHh8fUVVwLx4bzFJHGSTQkJ0AbQc6PJgmHw8YYU9mQBLzJmyNKJycnDYR55oXqHlaKhgZ+J9UtPk+eMSyf70iGnSFhwybAcsFkUO1xH5JGNgAgJBgMmiwSiUQ0NTVljQR+vmMsFrMB8PhpYByQiEnCACUCNwwT8icBB+BKdYkUTCCayEZ1+0cSmpurKhLaUbsT0Uo9oecfaSsUGrc1hocTdoamEsBUMBhUvV63861hFQDKqVTK3hfsHwEDcCPJkhvyFc06yKlU9TAlrBM8wn40F2uQPRMKhWy8GoXY5uamCoWCCoWCJiYmLJChAPT7feVyOSteOFmE7wmHw9YIQmIg0NHkBws8OTlpo7pYh/1+32buIXeyhlmPXAd7mAkdeOJIFFwDcppvwOJ9N5tNO8WN9QTQBVz6KQUkdGbPIne3Wi1jxng2sESFQsGOQ2YPssYBi97uQozCv4yKwboFSADMGTVELID5xkbAs/CFPs8UOwPrmXiHxQM2mA8NUD75c09Inygg+M5RBqShUgCrTKFEYSjJYgcWGYo4adDYx37Go82aQzqm+GWNAKx53uz7Xq9ns3RJwqwNimiIDd9IQmG4sbExMrKN2AQ4p0iHXUNmBuxKMjCP0tPtdvXKKznFYrforrte0uxsXa+9dpmOH9+lRmPb1JmZmTXddNN5vetddS0tJfXVr96qTmc4QYL1jXJF7sMCh9yPZ5v4CbtIQUiXNmuW/cvfYUoJzT+sPe4F8M479Kdw8b5hYZHSadJhn8N8bm9vG/FCHgyHh42RyN7kXqbDkJOwH7FWYVNhdj0jz3qECIF8CYVCZq9jTQD++B6uh0kmMMww8sj+HFZB7CPWeRsI+5h3BoBnPVFYY5PxpBgxAhskewim21vXiGk0+V7qnwec+wbCv+jzjgenJFpPn8OMUMmRtKG7/bBu2DkWGeBqbW3NQBqAIhQKqVHpqNS6VdceeEXPT+xRr9uxxXnq1CmTPjnNZ2NjQzMzM8rl0rru8me03P+IotuDk6HW1tasQ44OSPxYyBCAKDpp8b4SuEjesFvt9mBeWj6fN5ZobGxMZ8+etQG5ACPYIlhTkgnnzMPQwnakUiljZ6ThudFsymRycFIJQ+apuNlIMNurq6t2aABsEEUCjA2BQJL556jyut3BPFqAMsAC756v8iWNdJITVNbX1zU1NWXBDkkEQzeBIBAYjDh673vfq+rGWeX3Pqu9E08poB2tBa5Wu5dQOtTUvv8ve/8dLOt5nfeCT+fevWOnnfdJOAgH8SCQBMAAEASYwGCR0rUiNRqNg0bW6Fr2XI1q7Bq7HKRyzfjadSVXSR5d6taVFUhKTCBFCgQJgiBApIODfHLYuXPv3qF35/mjz2/16kOXANe1549T7ioUgHP27v76+953rWc9z7PWO/V9Hf97US1X79OL35/UqVc3zZCOL4dOehqV8NaR0AAgHPdJxQ+4IBkio29ubkqSzeolEOEnRoKig5P13mq1DCTwXb2Hke50753jedN0yDqkYYh1Ksn8itzrtbU1Szz4hAENJAGCNSdBAaQlmQweiURULBaHCjkCMAGT/UxFT2EEAOGzkSwZsN/p9E8N4kQUz87AFGEpwKrCewESKW5arZZJx6w/2GEmd8Dc8kxIpjBg3Bt+Fjbf++inp6ctuTMyjr2A7w1/q5c1a7Xa0J7wrBJrAUBMTGCaBv5y7w2lGRNvO2sRnyJ7kQKm1+sZAIE99cO7YX/8hIuxsTGzGBFDSOCsFZi4TCajbDZrfmLe1xciNIdgNWBkFcPnmZyB5MwzQc71EjdrmzXHegNUU3wCdFCXuHdYKAC9rVZLmUzG7hv3A4BEDHjjjXGVSmO6887T+uAHX9J73/uKyuUxdTohJRL7SqV2tbUV0w9/eESvv36zIpG4IpF+kZTP5+1ew2gD9Fg/NH76pjFAs3++fGdUB+ZKU+BIA//o+Pi4FWbMWM1mszYKy5MOvCf7PZHoj2vEfka+oEkIBtdPLvHHhMOSe38nhdPU1JTtY7ADJA4FIXEGyxPPudFo2Ig0fK1MrcACE4vFbM1iHyLe+yYm/OQ8exQVrgvlgvsLWGZd87mlUsnWK8oqeAglC9xCkxozzSmoiBWSrKBDyfT7qdlsWs7yEwre7nXNg1NYRc5m3tjYsMqfxAoD1u12beh6qVQygJbNZtVoNOxoSAYjexYEr0gwGNSpN4/qgTv/VA/+zL26/GzEmhloGKBaIkAFg0Hd+cGqRgLreu3kYbXbg3Nr8TICwNggMEUkJLwpGLLxqTBkn6YMvi8Vl/fkwLIA4v1GZaHu7+/b/FeqYBKjl2NgH5FrJNmmxYPHgob18/Pl8CGRONrtwTxGAj6yDHLO2tqaSQ50WM7OzloxAcAhALTbbW1sbBizAWtCZUelisme78GcOQJAIpHQbffPqJr/TXV7Yb1V/JSeeqypMy+fVyTS1vz8QR2962Fdf1dJh1Pf0qc//bI6gftVWokbA5pKpQycIs/DLGQymaEuTKprGAtpcMoK9z8QCAz5vmDOfLckEs7MzMyQf4mmkWKxaPIkr06nYw0AJBMYM0mamZlRsVjU2bNnFQqFDAChEPgAznWMjIzYWC483P5gAtYHcilgA9lxZGREmUxG6XTapFiSHfMRuQ7WFN2udFRjh/CMgSRTGDhAw8/UJa54xgVPcL1eN9CJalEul60TmKKDBIV1xRfQ0uAsa9hCnpvveOXQAppCKCRherF/ALC4TgpE7rMk+37YEWj4A2wRk/g5ik4vnwIcuJ9TU1MWSwD63GfWPN3/AFfuMWAPfz42D2nQlU+BQIFBzOC7AQCJzzDj2WzWPoP4goVBkjXGeiYsn8/b/sRqwwlnsJ4QIoz/Yu6y98YS+2KxmPn/AbH4Zin6ac6FbQVI8DMAHyxBNB+Fw2FduDCm06dvVyJxUMeP5zU11VQ0KhWLE3r66aw2Nw+p0WgPxRNYNuII18MJiQsLC1ak+OZQ1iDFbaFQMPDm7UKAMcA2Cp+X8H2znSeS6KGQNASssMWg0gDgWP+sFfY6jcK9Xs9O4Or1+mPiUBMo+ijepH4BQk8K92Z7e1uFQsFyAvmX+9br9awxOBwenJrI90EFBIOQ+8k55GBiOAA/lUrZ6D688DCcFBRYWrg2VAKYZIgjfh6m3scHiiOauz3Yxx5AIdrtdg3fwKISN+kRoYB9u9c1D06Rh9g4LE6qukgkomw2O1SZ+y43FgZGbPwUs7OzqlarxqoCeDudjl59uq4DRx7RHTN/oMB9f1+vfKtjFU2/8almDzGRGNHtH6jo2NxXdWr3F/XWk+eVuSLtJZNJ61Sv1Woma0qy8RVUs8hJUPjSoFt4bW1NuVzONrbfCN7vBdgaHx83KRXWCxYAGQeQjX+H+0ZihKWjMmaIP8Z4hitzBKSvEr1pGwAxNzenRCJho6YIjARVqkQk9pmZGTsNg/tFMiDQIEUDAJCBkD+wD2Bx8PcApjEYDKo7UlE19/Pa0xF94X87qq18n+WcnZ1VKpXqe1AvlfSjiz09HfuQPvszp/TZT/1Af/nVh3Xm1ZwFEza7pCHWqtvtmjeXYAMrxPB31jlGf4Z7++fX6/W0ubk59FwAlgRjfG0wGFI/KCaTSZscAUiCIQcQEKiLxaKxg8jCKBdIaoBsTssBWHn7AJ8FAOQa6ZxPJBLa2trS2tqadZLC6FI0EFC5Zt/hTQLz8pv3Z+Ll8/5XmBBJ1sC1urqqbrdrvkvAaD6fN9AcDAaVzWYViUTM7zg1NWXqAPIhqgBeb9aBP02H50bTGKAH/zSNTwBd1lGn07GOeO/LJkkzQQKQQszEN81aQWKkaYs4C4vK/QewY00hJmDN4B5Kss/CesPYGdhuJkywH2EiJQ0VOXhRicmADb4bo8FYGxTBWClQgnK5nBWsFOUUD8ioMP2NRsMaKLFT8AxZ2/wc00QAa1hxAN/YmmiU4x4BhhqNhs2bJk/BuhLDUFn4Xn0f4Li+//0+cPLPLZlMKBhsWfFOLsFGATBjXfoYyV7hqFBiLA26VxehMMfeL93r9ewYUt/IRHMoSh4Tc+ilIEfwTCisYWoBzFifiEfkPFQj3xTFs4e19bI0JAW5gokeeOApKFOp1FA8Qa3w8129skj+3NraMhXL8orzxLOnUDBgISnY6ZPgMAWav5h/nsvlVKlUrChjyhDPm+fV7XZ/bHoABBCxFNYeqwc4CZIL5RWlDSYeJpwxZm/3uubBKaxCs9lULpfT5cuXDdSxgatXzs8GQGG8Bqw1Gg2rbkkEyWTSTP7IjrAd4XBYT3wxrUd++iEdn/ldzf/8fXrl1SN68+ldC8DVraJue19Ex246pWTwpM7Wf17PfFGKX6loaArxrC5+G3yULGTmlKZSKZvTCQVfKpVsaLg0kMAZxs9mpxL2viFJBo6oIvkcGBNAN9+dBUm1OD09bR5fEh8B30tAXLM0OOJQkrERfhYgLDBNPAQLKkKKBLoXkaJIKPimgsGgjh49Kkk2NYGOWEkGGgl+VJB+Tt/IyIje99AJNXoZ/en/elgblzdNakwmk1ZhIr/kLuT0h783r7//D3b0yKOndeKZhNbX1w1IIwXTcIFHGmAEmPZWEhInflQCmwdxjDKBBQoEAnZ4QzQatXtI5U5gq1arWl1dtc9gxiLPyDNWSDjtdv/kJuan+s5skgbAD4l+a2tLxWLRGM50Om2gBnDlWRnvQfVeRIZ5sw4JusiM29vblihGR0fNwkGDEDOLkexhr9rt9tDRnxRPFFoAW9Yk18w+Y2/gWet7HhsaGZGCwYB2d/tFB6ewILNz3xlTxHPHIgHo9LMeJdmfwdSwj4kDABzGnFHssAZgWWFQaWrD1sD+IKGhxMCW0qkMUPOJivsJk+1PgeM7SbL1wXoECEgyqZQYQWxircOOcr0ARRg6inv8gsQ+QGG327XZl6VSya6XdQADLskYV+4J/w1I5jn4xhGAF354ilNAM0Wo96X7xh4AELEKEgXJlHgN44ui4u0kvCh+vQw8MjJiMzC94sYsbJgwQB8e/kAgYIdZcD8pIlh7vmEmkUhobm7OpGliBECUXOF7K/gzYhRefYoA1vz29ramp6eHRqLxzCBlfEzHMsQ95HPZ59hWut2uHbrBnmQcFqoO7C3Mqbd08F3xVvNMUEF5dmAJ8nEymdT09LQVEeQD1i5r1K81PgtChp/nmXE/6vW6SqWSxSgsW1cz29jOaHBjXwNMWS88Qz6XeA2ueSevax6cSoNGEEzjLGQ2PAmRn83n80a3Mxy+1WpZxc9G54EgnbIYWKiP/1lGx973s7rlxjf0yJ3/SQ/cldF+b0bqdTUS2FBEVVUC9+vZi7+uCz/c0+hISI0rsydh6EhQeNII1Dxg2BeqQd+FvLy8bD6XpaUlC9BsCrwo+BYBcXhbAZ10uu7u9o//9GxxIpFQJpMxFgFgyqbY3t42CwILFsbaB3KAI8EZCYTxUvhfeXaSjKXgO2MQh4kiQQFIAekHDhww6e7qLkMCKoB8b2/POju93C71A0f2aFRJvawnTvy01Bw04tBJiec1kUjYSUvd3bZeePP9+uCx/6+O3PKgLr45OCyBKpbgByPvGWv8VNLgyE42PqxHs9kfrg8bC7vCiB9YcYCVJLOPAAJHR0eNkUSqYf35fwB6fjyNl8kByrwAK7CksF0ka44BBDy1220b1wQ4Yb1mMhk7+3tvb88YLIoanidgj6kB3Dv8tjRkABJYs5OTkybJcRgHwJ7kmk6nbVoB+8l7wWDR+nujq8XFoq6//g0dPLimcLi//vf3wzp9elEvv3xAly8HDQBgzfCNCDCzkmy/IrXz/JDhORHn6uQOA1StVu2+5fP5IUaSsTWAF99URXFBfOLvYbJQGtjr+AQB8+12fzIFQMzLmwCMZDKpVCpl4AiigL2NlQn7CFI2hTkMKeAE25Y/ihkwSmwE7KAmEYsAFwA7/JZ47DzoBtjRee9nk/q16EEXowph52DlsEH55lfAAr7gRqPfvFgsFu2/KW5RCbGxEDsB7B5QEV9hdInL3BsYRNYA/k32Nuy6JPOHs2Y808hkElhz2HxAoZ8WgcTMXiPv4TGH9ccuQbynsOLZck3EU+IdMd0rVsRL5HXvK/cTGbxPm2uDOCAGw+L6eMle8RI/v8O1euXRe71RegB+/7kRap4hhuBg3bBmKRoh4Pz+orGMGIDKw1ogx0uyvgfYdKbJ8CwhP8i15XLZ/v/tXtc8OIUlRMZKpVLmI/NjDQCrtVpNhULB6HAaR/b3++fZT0xMWCIiUfiGCh746Oiotre39eYPdvTmD27R7PV36LrbdpQYaanb66neuF0XT02reKamTCasZHLKwEGhULCh+dgQfLdvu93W9PS0LWgYyUKhYEPXGa4LjZ+6MtQf2Q8/HP5P3oPmI89QcB4ukg3MQ6fTsXFJMHN4WDitgsHh0qBzVpJtSphnqkBkEKT5mZmZoaqPzUvTj/eQpVIpJZNJa1gAXPK7AAukPpIcCTKXyymbzWp2dtbYRL6Xb5SDNUsmk7r7/rL2A3N65ps5RcL99bCwsKAbb7xR9957r1lGnnnmGV2+fFmBQH8s0/KJrvZvWdBDnwjofz8XtSAGqEImZ/xWq9XS2tqaer1+pzv3DZkSCcqD9ZmZmaERU4BH5DqM8QBuvFkEMJiadDptQQq7yfT09NB9hr2kmYtnDngFKAFI6Vjmv7HR4FHyjTdeniMpw4gyszgWixlTC1CA0ZucnLSCi/fB28t9n52dNSBLU5NvhKRBhULVH0FJ0sWysr6+PrR3iT3T03v68IefUyZTU7E4qqefvl7dbkbhcECJRFE337ysO+64pHPnpvSVr9xqMhgeUWw7yJlIiMQu79klVkgaYrkkDTVpeeCMEkMSB2gj8QJi/FrFloA1BC8woAH2j88lQbNnWXeANc8I8zsABKRIlAuketYXf8czo0j0/noYXWI+AJJiCrsJ68Tfd2IWhQNAstsdHJ0K20cjK8w2DCJTDLBjZTIZ+97MO/VsFYPsUSWYlCHJvPbkB5ha1BcY3avn8QKq8HGzhmE7+d7sBwpjCkXiCO8VDoctDgBcvaLDZ/EcfaFUrVaHjiiWBhN2uE/eX01eorjFNgRz63sHQqGQ5XivlkLQ0CeRTqeNJWTPsAaxjWEdAwsAmLFbANgAuVgrJFkvB/sOUoc4T9Ht/dLeOsTa48AYSXbvWV98R/z0YBNvf+N3YHp90yHrhmfN96FIBEwDZGGmfdHA/gmHw5qZmRmySUmy58wzfLvXNQ9O2XwkewIlshbHb+Lp8MxXMBi0BipJBj4J/JyQRGXP5vOMIZum9KO2zrwUcaxrWcnkYBQGjBPGdgItsjsVMB4Zqg/8Y4A7fDMAED8wHxbEJxAALkZoJKxkMmmJyDf+wCCxeGmW8J15sVjMvHedTt9vy8YmqIVCIavm+e7IVPwd93t6etrYQgJdNBq1qprrZ84mo4382BdkSu4F7ABVryQbaUTC7nQ6BrRhkXheBJ7ZsVe1Un63piZD5sEZGxvTAw88oPvuu8+CaDqd1vLysoHl+vauLlfv1YHUM0om3zUkWwKg8Yf6AoI5jTs7O9rc7FsIFhYWNDIyovn5eXW7XZ05c8aeA0UNwRVGj+SIXwyvmyRj5mAeJSmfzxto9MytJEu82CmwHsBY0TCCdMiapMqHKQFI02hFEKMRBIsGf4YXkrFA/nAKkgMsAY0PgAde+PR8Q9rOzo79Gd8JDzZGfxoH6URnXUoyH7A0AEALC9v6zGeeU60W15/+6bt07tyYEolRC+yt1rxefPFWHTq0ove//6R++Zdf1te/nlK1OvDE8h1DoZCmp6etoYfGTJI03xHQTAHNM2VtY4tgfeCnZL3CENMU4kde8TwA8XT+oqDgQ2dtAfpDoZB1ygNCWFN8R4Aza4liQ5I1N8LKesUK5pPfgU3CO03BTqzms1i/FGn+Z1jz5Ac/2o335zmz3ygaKQoAlQAzutEBtF41wRfs1TyKnmq1OuSjRvXg72kMjEQi1oDLPaR4AXR6ywo2Mgo47xX30jeKGL7EeDxuMTwS6Y/zY5+wrjxjy/dlXfB9AffkAGlwElIwGBwawN9qtYbsK4BnLyGThyl2vcee+4x9wNuuYNIplLxSxZr2fnWKAn6eNSHJPps8Ho/Hh/YrUjsWGgpifo/CgPhEXPFMKYSDH18H4eK/F9cPa+uvFYWIF/uf5mbuuS8c2asQAd6PigLgVUAKl6tZ6rd7XfPgFDMyQbrd7o9GuHDhgjEoBHKABC8SS7fb71jO5/NWnU1PT9s4JVgYZIxerz/clsrRBzfvZwIorK2taWZmxoArlbo/Q9hXI+1220ApwIsxEhjm6YgkYDLkF3kGAzwyOd6aVCplFSHBDqYVgMtCDQQCNnKEawAosmgB7gRamFgfjFjMJDekQA9O8egQHAG+dOgDsprNpgFjGKF0Om3AdGVlxa4RVgHAiAke9pHNxjqgWOA+djodhXtV7WxH1O22LUiGw2EdOHDAAnEwGNT8/LwWFhZs1FEsFtPOzqgiE/1GAxoPCATYRRhZw70hYAMQCIYkmr29PQNrBE9vwQDQY3Mh+HjGCvDo/agw8KOjo3YYAOAN4M56APDD5BL0CeiwjgBYmpza7bYlIho7COTI0DQewDKVy2XzsAGYGP9EscUA+c3NTQPRgEs6TWHK2K/MLQWYIq15xoLgLMmsC/Pz88pkMjb+qJ8Uqvpbf+uCyuVxffnL96rViioabdj6jUQiV0awBbS5eUxf+UpWn/70E/rIR76vz3/+Ho2MjJsSgXVAGjRk4ftFwSH4w9YsLy8PndtOscnPTk9PmxcdSRywi8VBGpwO5htbmNrgT4MCDHKdNFhMTExYomKvtNtt6+r1sYC9y33n2SNP8kJmHh8fN/Z2f39fi4uLFl+5LgAS8id+bgoi8oCfnrC3t6d8Pq92u23jcMgrFG8w26FQf6j65OSkMacUVp3O4FAS9qm3i9HsCJNIg2sqldLY2NgQuwihAEjA0sU9J+4vLCyYssQ1A0Q8UYPdAB8oFhvvfa9UKgaM2WsAKiR71hYxk/jK38Hm4TGNx+Oam5uz70KsQqVkLcBu1ut1bW5umu2DdURBRh7z94Ji37/IX8lkcgiM0wDE9bI+KUL98aMMv0cKR6onj2GlkWQKDSon1g4+A4sQDaG+IKSQJJeUSiWz8RHLyAPEMNYbKqmX/1nfWAWJ+exHCkhiCrlla2vLCq1gMGhWPvAMzxnQ7K11eMu5VxQRb/e65sEplRnJnWqEmXswXSxIqkQeKEAAwEQlEggErNK8evFTfXs5XpJtJmn4OEQ22+7urjG5AFNkahYCoMN7gmBO8JeFQiHzCSJlEcgkmSQRDg8fDUpCgP0AtAB8pAHjwCLe29sz9sL7MgkSvqLjHuIRo3qG4YEZYmPt7OwYkOG6Od2LwMImJbmSVCkSkCap6KkgvRxCYESyohmOE4HY7HRxwtI2Gg31FFUg0DZ2AMB06dIlLSwsWLBaXl5WoVCwBNOv6EfUVdQCNwkD2whgAcDru1alQdctEjnBkOAGK0InP0EOlpYzmHlvCpROp2PB3ndswpawDihGCE4wWTA3+/v7Q4DGs1AEZoo/7xXk2vHPUcn75hwPdvkHDx/D0dmHAJt2u63FxUVj1/CCUVRubW3ZnpEGzXi+Uxb2n+8MMCYZx+NxkwlJYLfc8rSCwa6+8IXb1emE1Ou1bY3WajVrFsQO1Gpl9OSTD+sTn3hMx44VtLqatGcEwPP7eWtra8j3RVwDiKCm8Nywa8CeLC0t6d5771W73dYPf/hDrays2P3n2QEqQ6GQFaT+zHieCx5oLAbIqhRRMH6zs7MGqElWeNt9wQTLw6xeGEk/6gpf6MhI//QimN+xsTGtrq5K0hCo9c+U/ycO8TPer04BOz4+rtnZWbXbbfOvY1UBCDSbTSsYfMKmAZPCCAaLz/PzqhcWFuy9AETYpVAb9vf3jVHj+3DdHiAx7YWZ2thoYBNhXtmX3CumMsCA489G+uUFYwaopUiguSsU6jdRET+J9ahVxGLugfceQxi1Wi07FQpmj3sF+GduZyKRMILHYwC+Awwwe4niiyKY2ErMIaZ45QBbG30hdPQT37yCyP4Jh8N2eAKMNLjENwvhrwdHsM+98uUtOaOjo9bA5NVfcjrAFdBIkYTygApG/EqlUlZ8wrhPTEwMdeCTZ1h/eIjJG1icyCXEIl9Ev5PXNQ9OASuYt5EOOcMbBqXVapkEMTExYdITD7hSqVjzBSONSAoENYIVgZqf29vbs27saDRqgJMFh/zJfEnGOsEcYohn1EwikRiS3LrdrnU6s9HZSCR1uuoBIXw23aJ04eFzkwYSGiwA4JNqmooLALe7u2v+VEATgBq/H4Gao9RoHCJoEyD5bgAyWBNALr4zWDaYU2nQJEJHLyyE1E+oU1NT6nQGw5xJdIA8AAoVeaPRsPfDw8if1TWn1GRBW1s9CwKlUklf/epXFY/Htbi4qFarpaeeesoYGHxx2WRH+71pAz3MDCWQ4I0GTHY6HRs7AiCSZEUQEyNgznwh1O12rTAj0QHM/Vw7WOnZ2dmhzmVpMGINqwfgFBaR5w+YCYfDVmHTLENhg7yI7MUoFNiZdrtto4N8MJYGwCGRSOjGG2+0Yor7T1CExYHFJJHAWsBSU2TCBqIseOmPfUFghin2UjrPw4OdcLije+8t65lnJlSp9DQxIZPZRkZGzBIgDWYJ92eRjmplJaPjxy/rjTdm1Ov1zGpAwYY3m/mTMOHIzbVaTRMTE1pYWDCGi/iGxMc0Cg+AkPOYTkKhh12D2IIS5C1CXnaGcUI+RIEJBAI26N/Lr9FoRFNTZUUie+p0uup09pTPxxUK9Z87BSvFCfcMxYFCJBDoj96i+YniGnBD7CN28n28t5Z4BpiARWaEHAAOHzvvReJHvQHg8/vxeNx89OVy2ebXAhyz2azS6bR9DuOtYMYAGMQESSY3U/zX63VrjsKahPRPoYIvmpiOd501xjqCJWXtsK9QkaRBweN7A/gzYr9XpSjE/Lpg7/imL7yONGUSz8k75AtUNeIRDX70EnjvJ+QCBQbglr1ObIBRZZ+RF2ik4/Mgc4jNAEY/TYW1BbFD7ubPIYhQ8wCtkCKcEgXW8L5wrpH3QIUhf6FIVatVk+rZn3hY/dxRrIBMo/D2Dr5rs9nU+vq6/TnPG9KJXMb6kmTFOpjjnbyueXAq9W8MZ8gTeJB2kPmRo2ZnZ20zA2ypovBdkqAIcgRYzyIx4gmA5xlFwFapVFI+nx+SDxlET1DxfhokfK4J0AGzAMPrZ795qQNrg++cpLkiFAoZ4EZ29+wUwSiRSBigpLKSZBsjHo8PNYkAPgBQVGkwyiRA/p5EACvChqCq5rvTWECDUTweV6FQULVatSYDrA8EYDYu/sarGW3sGHiqaLaBsYXRA7T1ej2d27hLx2f/VOPJe1QoFDQ3N2eA6I//+I9tdNDKyoqNK6rX65o/ktVc9Fs6sfy31Ot1h1iidDpt4zhI8hMTE3ZMJHYOTvqC1WD4NmuNooGAjz8aIAHYKpVKxvLgcYbRZ7qFJG1ublrSj0QiJucDtAB33BtJxvKx30gYFFPYTaiqefZe1iXwAQAIyqy30dFR8+fiJcePxR5G6uc5U6DS0euPX2XG4tV+bdYRARYmBFZ1ZGRkqAFjZGRES0uXlUi0deLEkt0jrpOZf41Gw47opBiORCJ69dVDevTRF5XN7ml/f9zuB/uA5AVYx8rDezBWDMYNaRbfOMVjrVZTLpczDyFNgIxS4lnzO5HI8OEDPCMYEiZc4J9njZC4ac5CaoxE6rrppgs6fnxZqVR9KHbn8+N6/vk5nT/fVqMRNFYUAE3xzD7mhC0AD93VKGGA7GAwaOQCL8CoZ/qJqZ5NB0yjslAcAVIARKgxgDGeVzab1W233abXXntN586ds2INxpD3AfzAvMFu+XFGrF/YLbz6xPx8Pm/7gGe5s7NjM7rJQ3xXTuiCBeVkL5Qmik5JNnoI6Z1Cq1wuW5HrfePSwIsJIOQf7wEGhFNs8DMwxpyqByBvNptGTngmmnWAjO6VQgo49hMNUti/KFglDU1LwO4F0ENBkjSk6JCXkc4hFChSfA8I1jdIC0kGoll7fl5rMBjU+vq65QXuLxiEPEsR4+OrJLsP3s+NKoEigBWLwonPgpwC81CcYlP0DXrkcxRO1jn46e1e1zw4ZY4hD82fkOI9p4lEQgcPHhyS/b2EihS4vr5uiZbfRd7yhv52u20b/MjP/I9K3fPBH7u2pSv/fvO3/572t/O2aJBika5hu9j8eJBYSCRVqmO/QfGaIZ9gwIa5hG3xM/2KxaKi0f68T3xWe3t7NgqJzUiwY9QSPk+qtMnJSWUyGZPs/XSB6elpmykHC4utgmJBGmw6NjabAtmCAEzVSzOVNJgByfFrgBQvGTKvzXsHd3d3rfKGRSOA+XWRTCZ16kdx3fETYX38p9P6o3+7pq2tLU1PT1sDDnId40fwYj746Zh6CuvFx9saGxvIgDxL2HSCMhI8zxk1gPsTDvdPPWHkGDIizx42k+kU2Cparf5RiDBkBNb19XWT40iKVPckARgI79Wanp4eYqoAh17Sw6sGywRbR7EBW+onJTDGjURN4qa4LJVKKhQKdnBFMBi03+UakB8J2BR/7AOACHIkjCnFAKCDgoWkBztIAtne3rZ7OTpa0s7OiLrdOXu2FH/XXXedPvWpT2lvb09f+9rXtLy8bAljb29Pm5v9xHPkSERnz0Z0+fJlOyyEIhHAWygUzLcGyPUzMwH1Y2Njxo5sbW3ZfacohdmiIKeIJKnv7u5aYxHsGsUhEz2IfSR/kh3AJJFIWNNnMnlaDz/8jILBrs6fX9Q3vpFSpRLVxMS4Mpl9HTt2Xh//+BnV65f0pS/doXJ5zpQB7APcE1hBGBykZsb+UJRwXaFQyECNb+rwoAh7COCFNbi1tWX+P6a4eJBMrOW6pqamLIHDslUqFbM+YPOg+CSHYNPy9iNUB0Ai6hqsFjE2Ho+bGoeiMTY2Zuwofl+AIAXV1taW1tfXlc1mDfyQIz1Q993g7Hl/Khf3kzyBdA2oBnBzz3xzGuoC64XjtlFDYOwKhYIkGVnCXkchhMmjeCI3Ak7xcHe7XTvJjP/Hr8seAlDjD2YP8A/5Dw8rNi+eLUQOMZUcJcnytGdKJycnDVzD8rK3WMvgDlQ9ilVALnmOfYGC6HtfAKbcb0gGFAVAuldP+R36PYjZTHaBtfV2SeIAOejtXtc8OCUQnDlzRpJsAXFyDxvOV92gfJhKPBwbGxsqFosaGRkxdhWmxrNWVH5URb1nv6Xtc68OjS6p7+/rzr/z/1Szkle4uWeMLMCOzddut42Z4rxnkuPm5qaZ8qluYYeYDzo5OTk0g40N6eci4lWdmZlRIpGwipiKLZFIaHNz0xrLkGd3d3ft/G9faVFR9Xr9bnCk7Xq9bjIboJCNQ+MKhQFMRLVaNbYFMJ5Opy144FPsJ7qBDxXvDYwj4ANpigYu5GLkJRgdRoZRjY6NjRnwyuVympiY0F133SVJulz/tG5d/JLu//Aj2jyXMCmPcSHM1iSB3PLeKd0y/Rc6v/UxtetB7Yf3VSgUhsbRIOtLfamLZ+07WFmDeGAlGftNsIW1wSuIT8pLddPT0/a+sIKbm5tXuswXFI1Gtby8bMCQ00xGR0dtRiHADuaV5+I7RNlTrNlOp3/aCAWM9zXCcFIIYC1hHZME1tfXrckMFeNqoIscC/MoDY6i5d7A5uGZgrXHS+yDMT4wbBD7+/tKp9NWOJFw+qBwT81m0IoePhugAQsNkCFG9AtdhpfvqFYbseKGBILkCCtKUuf+YF/xCgHTOFBnsI0APImFJHGYKRoTSWbsGWw1eOqIsQsLC8rn81bgwIojdVcqFR09uqEHH/yBLl2a07PP3q+trYAV443GmFZWurp0aVbj43U98shz+tmffUmf//zNOneuMnSCFzEMZUDqJ9JqtTp07CvfhzWGtAzDFI/Hlc/nVa1Wlc1mrYjlO2JDgYDwPj4sJeQUGDhyCfFgb29Py8vLyuVyKpfL1nHPHGGal2BaYeWRh2GvaWJi32FXgxRg/aMAbG9vm0cdgMv7YOMCgAE4L126ZF5f1qwfQYQ1DiWMdUe+wR+LL5e/R1pmLeHZTaVSdk9h8byFA0WQ7+k70HkPrCpXN6yhlNXrdWUyGWsIHBsbM8sA5BL3DlbaN9KRiyAuKNSJ+RQHxDkwAMwjhBiWNdZHo9E/wINGKgC1txhAKKBAXB3H6RvxnuSZmRnDQRQ5eFfBK35MIMUDn8+95z5SdHDtvvCAoKAIBRBzaAp2Edb4272ueXDqh0VTkeKxCgaDNn6HWajBYNAAJ12+JI1kMnmlq7ZnEisdyVD92AGkPlCoVquqvPysdcU2m/2zeWOLRxWOj6j8xo+USCRsM9INTgXX6/WUy+UsyfiGKBKoNADhkUhEc3NzQ1JLs9kf6g7QpBIMh8PKZrMWFGE7AEmhUEhra2tqtVr28zBwgFMofxp38G0Fg0FjXanooPXZjPh9AoGAyR5Sv9rjaE6/+ZGk/akxGMGTyaRJuTwL5JvDhw8bU0RiB6RJMjDHvQRYtVotO+0HIFwul63pIZ1Oq9Vq6ev/a0s/8/fv1U989Lt68a1P6a3nYtrba9j3obKNx6M6/lBEH7j9yyp1363vfiGuVmvfvgNJBnktHo8bYCiVSjbhwI8nAcBikaB7mpOMCNZIv3z/6elpSzokXbxrgMrZ2dkhORPrBieE8F4w1hMTE5aQrwY8jUZDxWJxiPGDqUEO8mCSdQibxz+8WLPcL4I1AKFarZrcSVKiuYrGAQAOJ2kVCgVrHqTSp0uV9YWdhHXqPajIY3NzczbOrFptKhptqFIpq93u2DOuVqs6f/68vvSlL6ler2t5eVmlUkmpVMr27sREHzS0WlErerFqeFA4MjKixcVFe3ZYB0g4zLT11p1EIqGZmZkh3x/MHye7AS4oOGOxwSxdQBEMMo0WsGgACb+2Yaj7jOyGPvCBH+jSpQP6+tfvULu9b1YT1tmAeQzrW996WB/96JP6+Z8/rX/7b2/T7m7c4gcefT6HpjWAmJfq2eOAGeRnP2kDDzveTRQfDwSYQ829xp/XaDTMWsFaKJVKtkaIoTRNwnjx76mpKSs2SfT49emZYJ3iFWVNU2Qyrq1QKFghSXFFEcwLZtj3EVDQEueJIdhN+K6wktx/9gJFIPeK96xWq9az4V9Ix+l0ekimptjCLoN6xd/jkQXAeUadXERhxnxzinjiHsQIeQZJGsuIb1hibUPGcD9Y49jeuDZP2vA9IW34PMAwjChFP1NQeCYUg/ScePaVHMP7+bFd7FvuC55dWGZyMg1fqHP8Gxnf73nuK5MAfP8B696vA5q7aTRnD77d65oHpyxoJAV8HND5jPEIhUJW+ZOIk8mkdnZ2tL6+rng8br41aeAPiUQituF2d3e1tLRkDTNbW1vK5/M6f/68sRVIMkc/1PcaNs+eGDr9yZ90QUDxzUbIRGxSkoJvGMJuIMkqTRKMr7JKpZKB17W1NWNaYW2pjqgGAeEwuFTHBHppIPWz+WHaYDcJ/mxKvjdBFsAFoIJFk/pJk9NlJNmzpMOVxL26umqJHJaLYoOE5rudfdMcSYCkR1OOD17T0/0mpueee64P+Hb29B9+J6a/8z99SO859kXdfmxer5+/XWdO7irYi2tipqeb7orp6PxzGtGa1lof0Xf+fFad1p5JRSQYGugAFTxv1i/MHImQgoQgikTJmqdrkkKCQEenLgw/nlNYBxr4tre3rUiAyeZe8fy9MR+QBstNECVYUjQQfPP5vPnMsFP4Dn9Oi6rX+yen5XK5IXaPah87zMbGxtD8TJrEstmsxQT2YjKZ1B133KG1tTW9+eablqjx5FHcIZ0jaTPDEWtMOBy2wg4/JOt/czOpsbE1zc5WtLd3yBJVJNIflfbmm28aQwOwR9q/995NdbsB1WozCgS6ZjUA3OMF574ivZOQeG5InK1WywoqHy/4OwB8p9Mx0AlbTEMGzDVxhITsPaX4WGGZ8KShIoyPj+u9772sRiOsxx67Vbu7/USILYV1A/iHEfvBDx7SZz7zBX3oQw0980zMilX2NH52/qFpidherVaHRj0RRyAsKEIkWUFNccr6n5yc1NramgEXQD95AMauWq1qYmLC4jFrlrjVarVMkcOTDdnAGoEFRjb1ByFgm8Hr7AsvrhdvMPGUIpyGIZ4lzxtfIpYGfo/vR1c/+cR7GVl3jKGSBrYqYpCPT0wQIXfxnQAuVzNxdITDutEYiM8ZcO8ZWvY61gjyy/b2tik33W7XLE0QS6wL3p/rZx4pk36kwWl3vCCOvLcS8AarTOzyXnzvfaYQ5n08W0q+8MUp9wTliz4MmFW+D5+JmpFMJo1tpVckGo1qenrafMjkX5hj1jbxiu8DAUafBgCfOMJ/U8C+k9c1D04BelQwbCQ2aaVSUTKZNBYnEAgol8sZmJqcnNTMzIwxHu12244MLRQK1jhAUC8WiyoUCraYMpmMNjY27Hi2kZERhSJRZe9+QPXlM2qUchq9cqYvshQbmISI7AkrRJKCkQPIAm6QDwFWdFF6LxgnaZBgi8WiyuWylpaWrIlBki12wIyXR7g/kUjEmkMATNFo1BoGSCBsBD/aiGoPxoDvheTiuycBFfjhpqenTfrhvTmak+kHAFICESAOOcPLD0tLSzp48KDNwwSAIJFjZ6CKLZfLSqVSymQy2tra0p/++55ueeDXdOsdy7rrum/rXdcNvDUdxbXefESvvviozjy3qWw2bB7fPqsaN1ADY0cwAzyTnPz3894tghpAIxKJmIxL0xMsJewyhUq32zWJHa/n9va2CoWCtre3h4q4Uqmker1unuRqtWrjr5gvStCXZBMc8DZSoDGJAUYIYCvJ/K3IoYwY4r0BSh4cIEVxrwKBgHWyc7gGHijA4dramp2qBuj3cyths3x3bafTsaMei8XikF2APUUzXrU6oVIppkce2dNLLy1aUchapBjhnkh9P3ClUtaRI6/r7NlpXbw4OG0GcEXSRnEAMJDMeKYUM9gP2AvYB5A0Yb458ILr4lkActrt9pD3GmAMO8mfJ5NJK1QBMnQ7t9s1HTu2otdeu1Hx+IT29spDxQhNYsVi0Z7J1taWcrm6jh7N6JZbzuub35xUq9UxXzEkhJeTSdJ8Z/KAn8vLDGme+/T0tBVCKC8UXzCrkmx6A3IniheAgc+hwMFfyn1iXxAHiZXb29uKx+OanZ21wx5o0JE0VLBTjAAuiJUAMuxP/MM68f56TkpsNpt27d6DT4FL/KegBHDTiOVHYQGyiZPsVZQVciv3zo/RwwfvLVesC9Yqzxf/NDlQ6gN/Gou91QaWF9AEa0iR6r3x7BupT+5ks1lT+8hDMLYUI9KgcQoQRpHId4FVBAjCXsIWQyBwaAnWH+I5+xT7kh8ViS+aYoqYCKBkvVN4UIRfTYhBgGBFg0nm3iUSCfN2g6cgUog/+G9RXwHQnjh5J69rHpySiIvFonZ3d60CoMEInwkbniCG0TgajSqTyVhQgS2gSu90+nP7qHhJ5vF43EAl3kCY2+TNdyo8OqHCd79kyRk/EMkVMMwC7HQ6On/+vLrdrqanp8032+v1tLGxYUGHzsxgMKjFxUXz41CtsHGnpqZULpe1sbFhgRamgRfXQsXsZQ6YZwIg8io+wlarpY2NDfP94CPq9XrWVYyRH8YKsASQ73T6na08D56hN88DYgqFgjFFbGy6k6kod3d3tbq6qkAgYF6/cDhs3lLYQL43AQyA5NlTgg7ye6VSUbVS0cXn41p+aUTRqZ/WaLarkURQ3XZYy2+VtF3YUSi0bIDSy6UwbYAGgj1FBN8XhofkMTExcQXMVKzhgusDCLEu8OCSBCUZy8W9JFghxyDb93r9GXixWMwKIBgI9hj7iIKKpM+eSiQSQ1U3LA/MBd3jrFMKAUAFLCjJnzWCr9p3iAJEaRDAFsGehK0/deqUcrnckK8rGBycnERDAkzS2tqaarWabrzxRivAAC2wMfl83g4jGBsb06uvHtL7339WFy5UVKtlLNlIsvu5tbVlRXKv19Mdd1Q1M7Onr3/9oPkFiTGA9ZGREZ0+fdpkemRD37gBqCTxeDmeGMff+6Tsm0dITtiL+HlJSqfTWlxcVCAQMM8wzZwkK0gAwMmhQ+uKRNq6dOlW+12ua3Z2Vo8++qharZaeffZZXb582UBKqVTSyy8v6e67c7rhhj29/vrggAhsJs1m02wwgD72MuwvKg9rlXWKNIyfn+Yhni2EQTqd1tTUlDFNNBoSz6SBzQpPJ/uSZwToRKEiYReLRTWbTc3Pzw/59yAc8MOz/7lvSP+RSMSUFq+oAGp8sxiAB+Z5a2vLYqCfakGcBDzBmFGYUBSw1ySZJYrvTKxjDQDWYZx9cy75mX3ONZLPsfF41YmiHoKDKTTePw0whh2loYjrpbGWvUbc3djYsIIN4Ly3tzckmfM+3p/L2oBtzuVyBka5NkAes3vx5rMXI5H+CXS1Ws3ycjTaP9aagpo+FO6PNJhA4/3lAHvyG/fGj4LiuZMP+K5MYADHAD7Z47D7kqxXRRoo1/z+f8nrmgenyHuMjmHgPg+eTUflDCD1N5jkwxgOkjmL03ctI1uxqRnFQwCt1WpK3fl+ddst1U+/aAGEAMrGoQGGIIDXBZYNfw6Ln+CAjIK3gyDlR2XRUVcqlbS9va3FxUXNzMzYRmcMC5+PtwUQSZVZq9VUKpWsW5eAAgDC81ipVGzjw2wSnPE/scDHx8eVy+XMxL+7u6u5uTkDPwSUra0tZbNZO9EK6wCAFv8aSYfvQWLlWrEg8J7IPzAlzMLlmbOpkcpzuZzJIwDrZDKp6npZrzx72awSACgCOJ4sGEEYKZIJ7EA+n7fnB/jzjUPeJkFSArzgT/KVK0xyLpczVpHk2e12resbyXJiYsJ+l2dPkPESHoGNRM7ve7YlnU6bLUaS7Q0vz7HmkLZhVZgiEYlEdPjwYbOL0HTjPzefzw8FUe43/jj2Pp/H3xPIuRb2LQVRPN4/ghCrAww3DB172fueg8Ggnn9+RrfeuqlHHnlCf/VXD6vRGLPkF4n0x8D56SELC5v67GfP6o03prW/f0wHDw6ADckC9pTxQax/b0cg+TGL04/BQWlg/jOgkpjl4yCyKR3DMCDT09Oam5vTQw89pFarpR/96EfWmEMBBXNDMdRXN9qq1yPa3o5rf79i8WZkZET33HOPjh49KqmfaNfX142d6TeyzEt6UQsLUS0vT9g8UPyprPfZ2VmNjY3ZuvFNIOxx5i3D3sGc8XmwpMQdfoa9jooDq+SBCuoMjJQH/t6nzdqnkWVkZESrq6va3e2fRDgzM2P2Hu4fn0vzJMQEKo8HVuQEADCx3MchP6mDXMYeoV8Daxm5hpgRj8c1PT2tRqPftEku4wVL55vI+PxOp6PZ2VklEgkDzCg/jUbDrHIc9MKc7F6vZ0oIoBYgK2moCAsGg+bj5rhn9kU6nTbSgusE1CYSCYsDxGQ63FH2iBGQROVy2awU5B2an7AG0GOB2gmjDTGEBxTGmELbe5uxGLIGGQlJ0YVKyR7mnsM8E1+J2yir3MN2u21MKPERUO3jAfiC+a6MqaP48Pa4bDZrzxwg/3avax6ccrMZ64DXhkWAnEVTRK/XG+puR97Z2trS6OionQSCvEiQQWrlQS4uLprsR7dgrVZTfGxcE8fu0c7ZV1Svls1IDcXuQS5UPFXJwsKCBTrf2EPjFiOBvFSDyRpGM51OW3AFaHFMJYwagR6vD/4V3ykMUwMjgT+Izj1ADywlnkDAJV49D1Jh0aanp23gtj/pyo8/IQgy/WBzc1ONRr8jEC+a75IkMXMtvtMan5m3gMAAAGIYSoycxtoqFAoGesvlsllCCEgENGQY7j0NSwR/7rlnEyTZaS7cV34/EonYTEqeD54qbwlhzJcfC4LMDUsIA7i9vW3HBNZqNSsuaCoiQOLD4gx5QD7AB3sJMh/eaaZCUBCSRGA6AA6SbCQU7DHPAGaRoMx8XxK+tylIgyOIKZ4AlPydlzpZ1zBTeNDp7PUWGdYY65IETrKcnZ01xWF/f1+PPfY+feYzz+gTn/iWXnjhOp08Oa9QKGXJpz8VoaRjx17Tu951WadOjekP/zCr+fmGJifj1qDi45ZvPOTMd7zJMHg0WcICsvbD4bCtLRIlrA/2H4Zzk1A8aAHojY+Pa2FhQeVy2cBBo9HQysqKgTbAkcRZ6GF1uyEDvBQEWC2QHmnSQ6Hp70m89KEhVWFjY0NSn1mcmZnRAw88oLvvvluf//znzZeNdUCSxYOJiQkbTURM93Yacge+1XC4P5Vgd3fX8gR+Re4hAIjP8ewU92NnZ8dOEqODmnjPf0uDMVFIqcQJAByxAEsMdihv7fD2K0+0kLs84AUg8t0oIHu9nqlEMJGADJ6hl6GJrTxbfwoVkj73zjetEQ9pEGbSCu/BvYGsoHD0UjIeboBpOp1Ws9lUoVCwEU2e9aO5GdUIQEbuACSTp70SRI5gFjbvz37xTKrP5eAE7AwUQjDHvD/vzR4FQGInooCkUZVYXqlUFIn0p4FIGmLo6TPBXkRBIskUUCx6FEz4sVlzHDlMvpZkTDoNV55g8Mwu8fftXtc8OCWZEPSYOZdMJpXP5/ujnq4EAs6u57QZ75WUZMwaN7/T6ejy5cs2Dw4AQFdkLpezzsq9vf4pOIvv+5iC0bh233jOQARdkSS5WCym6667zsaNSDJgBqDzTSfeH8Qmp8LDb0gAALTQvS3JjiMELLHBAUp8JqwxfzY7O2vfAeApDYYREwB9kxXAvlqtWjXMwQMkq0gkYnMQkZHwVMEGskl4HlwjzRlUjlIfhCDDMAOThAN7RWIgicEk0iggSZVKxRqw/PdEZiIxYRkhMMC+AlD9qBPuE8Ot0+m0yTV8Z98QEAqFlMlktLS0pFarf6wfydffd4Ai9xhJCvkfgMK9I9Ai3/sTvLBewJRS1SMXwURQuROA8MEGAoGh5g/2JR5Z5t7h+cbnVSwWTTKdmJjQgQMHLOEReFOplC5evKitra2hBM+6YT6xt0WQ2GBf8vm8yuWysXfRaNQah2BhfQLnIAf+3zNygBkPfPsMj/S1rz2sd7/7Jd1332ndd99pLS8vqNWaUq/X0dhYWQsLm9rfj+j735/Xd76zKKllbBT3F0Zta2tLxWLRPOgUhyMjI0qn07ZHWHcoMDwvmj/YJ6wvgJQk844TR5Bf2+22isWiJaLHH39ce3t71qzGBACmBcCuSYDChOLxpjY3VyRFdODAAVNfXnnlFfN2P/nkk/aerNNWqz/Xcnu7ZwWwP5WPNVYoFHT27FmT9WF88CrSpOcLQ/YgxbBvBgOgAx6wXUky9YPPwHPpf5b9RYwl3rGGULZYlxQf3W7XABr3gbVG3Gd9+j0KIYIlanNz02Ir7C/WD9QRCkNAPLkJmZvmWj7LNxcDQojleK65zz4XA8iQviF9PLvs7UesLXzrrDH2BACbNU1e4z5IA6mZ/EecIt5sb28P5SnYeBhSFElyLzHfn/BGLFtfXzcfMvHXN6N6ppfcRixFxk+lUuZdZR2yzyFlJNlzRkWh4ABzUMhCLsB84yFmDCD9JKwDr/Rhh/HyP9+DPELupmmU3E/hiGrNz76T1zUPTpG7aNghMVPR4PWkM7FarapWq9mYFUAt3Y7MuIRKZ1OwYWEvi8WiWq3+gHNOKZmYmFD6rgfUa+6rceE1q/hICvggCehSn6GhSqK6pwLCuIxfidEO+AVJtH6hwL7s7OzY0ZKbm5tDoBw5F4CL7Ad4AOhiviYJEjBJLnt7e1b9eYkEmYFZe5IsAOBznJqaMj8Tc9uQXklAjHmJxWJaWFgwMMo8UTqJYYWZBYv8jHdyenpayWRShULBZB2YJRiLqakpzczMWPOL93hJAxYBWZ17s7CwoFQqZSwPTDUBwTMksJ88Z58YSW5U1JlMxp4PCTEcDtvzAwSTcAlsJB3vJ/QvmmYAWF4WZPYjawUwjLTKeiXo87mwJZIssDOujQqdoMiECGbtIbmlUikdOHBA9XrdZlESJL3l4epizR/ywOlGNPwhawKCFxYW7PnCQrGmAQnb29vKZDI2gg3AEAwG7chjOl29FaLv8wzr8cfv1FNPHdNNN13Q0aN5JZNVSUHt7Y3oiSfu0quvZrS93VQ222+SqF45UpmEwb6g2CqVSrbPYJ5Cof555kiIeKd59js7O9bMgwKCfM4apAggMTUaDWty4sAIqd+8dfr0abXbbS0vL6vb7Vpig0nxw+cl6dSpcT30UFc33ZTTyZOZoROMNjc39YUvfMG8s8Ro1s7NNy+r3Q5qfT0radDhTEJGFTtx4oROnDhhxRSNoLCzFHqw5bD4FGQclADwhVWkUQxpFGaN+wUYmJqaMmbKM80UdoAz+gE4mprnjMLHVAsKC1QYr9KhbsDeAVxarZYB7Y2NDZPH+R0UF/a476NA4gagETM8OUOukWT33jdfUaABKClmiBvIw4A77j99CZFIREeOJHT99cu6+eZzGhvrqtcLaHc3rsuXj+qNNxbNM0z+Q4lj39JgBLDyah0eY5/bYFHJazCOXPfExIRyuZz1isDeSrJmMEA19w1gGIlEbJwlxRjrhnUBk8x6Yzg+L4A3zD5xyjdCsqa9lYKcxLOjCKVYAiNxP1qtlrHtkB00BjabTVM6wuGwzROGBIDEw6bH94A9p2B4u9c1D069xMAGAuywCEnGhUJBKysrajQamp+ftwHnVJv848fb4C/1HYZsAo56ZJHuK6jQwvXqXHhF3VbDWMiJiQmrcrPZrGKxmJaXlyXJKigCNfKCJOuwTCaT1syBpM9ii0QiNt8U7+fVY5NIGgQlgCmLmmYpL0tx+hNNElTDOzs7yufzQw1YgE3PtpGsSBoEb2wTksxrRVVHUAWswfzQAUlA8E1vbDCqy2q1OpSoPfjyp8UAbCSZhMf6IcDF549o4vj7NHr4FsXTszq6s6XN11/U5a//kWJXmtni8RFN3fmAkrffp+jMAYUTY2pVi8o9/4SWv/7HGon1wSHVJhIOXiWSgWdZw+GwTRRIJBI6evSoFSRU9n6ECJMVCFBYTPb39zUzM2PBirUqaYgtxd8LwEZeD4VCZtTnyFaAHAmAoMmz8cwpf86RiwTleDw+NPGCiht2jC5/DovAfgAQQtZLJBL2/JlWwAurAQwI7DEsFqAmm80aYOY7kcCJHax1GjTwuwGEJBmT2Qd6AT311IK++90ZTU5O2jzg/gzdsiVbrpMRSyQsLDGoFvjeaMiEscK7xt7G28a+BDzgmeUzvGdUkkmH7C3kQxIhcrj3rPOie1eSxZRqdUIXLkzp/vvzOn16ScvLy1ZsjY2NaW9vTzs7O2btYJ01Gnu68cbTOn/+gFqthHq9wel5vmmSaQGsN+/bCwQCBi4ABFKftcc+gsIkaSg/AAwoGiE6AEMoQ0wj6fubG7rttpLGxyvq9epqtcLa3JzUW29NqdORrVnv18bGw74nDrD/AAEURdxfGl3Zc2NjYzZVIhQK2ffmGadSKcuNFCDI38xGpbDjHz8miliI2kTPRrPZtOOe2WfcSz+phaLBr3eahsPhmj784dd18OCaGo2wTp+e1f7+hHq9jrLZuu6++4TuuuuEXn55To89tqRodMxsZEzFYQ14Jc03/VDAodBxXjw2DwoAYg94odvtmieV/cgJVhQYkowIYo9yjzwBQK7yxQCxkOKJ2ATQBG/w3CFCPJ7x3ljyJSDUT0shpwKgITcobL36CCvt/ct8J0A8+QXbAIoOZAns8Dt5XfPgdHR01IaGY2z30pU0eLhsrkwmo06nY4O0YRhHRkZ08OBBYw0BCwAkBi5TDRJU+d3Zdz2sQCik1rmXbTHhnWOWGFQ8INd3OPrGC0AxcyEBhlTZJBBYLAIQbACnawAekbOwJ3D2OfcNJiwej9sGYzIBI2lgbQhgeG2Qw6m8sAyQyPECk2T8XDqYZJgNvH5ILJLMMysNGuAkDQUD3ncwzqZtDQW5XM7WRa/Xs9N2kKN5njwTAsfUfR/X+JGbtf7cE2rklhVIjOvAhz6rpfd8UGuf/xcK1IoKx0e09FO/qvrKWZWff1z71ZLGDx/T0sd/Xokjt+q1f/d/t2BNwInH+0dB4tPk86lmSSR4mDi5imAFW8AwdcbcIIMB8vb3920f8F5cS6/X0+bmpjH1VOXITH7eLx5a2GdAL8AX7yb3mP1D0iTwelsARZMvYlqtlnnIYFU5iQdvNYEVVoFDOACs/BzMjD/hhqThh1/TbIZNgn3IddLUgg+Qa6bIgummECRZ8X54BTudwcEBU1NT1nSVSCS0tLSk+fl58xDzvlxfMpk0NhNQAaBnpiFqAAUN0iVrnjFSJGomgpDcaPQiJgHYAXHRaH8+It5P2ER8egBW5sCeOHFAP/mTr+r48aKefXbUrD4kukQioeuvv14bGxtmv7rttjc0MbGrv/7rd1vsZj1xmApFnCcf/EEa7HvYO4CHl60l2cDzcrlsIBlPIwoFz84fN8r6ise3deutJ3XTTZcUj7e0uzuuZjOgcLihd7+7oQceiOmFF2b1gx+k1WikbewRypQk259X23XY5wDWQKB/8lc4HLa9DhC7eopALpezZ4bKwDMmTgKuYMuwAwDqYOtiscFx0N4yEAwGbSQdvkTWAwx/MBi0NYsSRcGVybT0oQ99Q8FgV0899W699dacpL6SiIowNnZchw69ofe+96Kmp3f02GPvsziGWkk/AgCT/AKowjLnAbRnhSVZw7Fn18mFALt4PG4FHAw49w9QBgAEzHNoDYoPRSL7ixhDYRKLxSx+wtYCJLEs0BAZCASGmpkgsWDamc4DgQFWoXFsdHTUbD6ShqYZEW9hyBlZhpef3MheDgYHR5XTfEaPx9u9rnlwSnUA2GBDeF9Qp9MxQILMQSCWZADTz5yE8STRNBoNra6uWvDA29Lt9meKRqNRTd3xPnV2a8q98qwNk2eRkPi8rCDJQFW73dbly5fNt8iCZawE/01yQ+5gMyDZEUABwXx/EpgHStw7FmOtVrNzf5GeWdhI8CQtgj2NLiRfNg+sBg0vmUzGQDLMBT4gCgGYOTaYH4cDc8N3w1vKBsEzxIb2nZLIdTyznZ0dZbNZ88Oy4SQZQG40Gqp98z+plVtWrzM4y7z40vd17z//vFLv+6TaP/iSmu2O1v7oX6l46mUreJrNpu742X+gg5/8RWVve48CuYt2PRRQyWTSTqOi4vTrBJDeZxkGbC5JGRma7+cnFVAQUGBgcyFZY/pn9BRJ2wMRSTYSB38VUxJWV1eNufZ+LAI+sjmFjDfXw7b6blHkJt/FSuAlacICIe0tLCzYwGxYcwZ3e2+oH4VDRy5NJtx37B1IkVwXTC/gcm9vzxoIZ2dn1Wr1T58hGfIzvqEO7zTgDQUAdYRkRREAWOdYX9Y00h9HQAI6KESISSQgEhiePfYzSpM0OCiA/UxTA55oWHL+DikR/zn3mHs1Ojqq+fl5tVotnT/f0xtvVPToo6+r17tDFy70T8/DrnH48GEdO3ZMZ86cUS6X0803n9HDDy/rRz+6Tvl8Rs1mH0hRiMzNzZn3nX9YcxRgrD88lrB4MIJcIwoV6wbWmc8D4FJc82xQAVKpvD72sTUFg9Irr8zrzJmbND5+ozqdjnK5nBKJNd1996oeeGBFt92W0x/8wXWqVkOm6s3OzppCQvGAzYVGyVgspqWlJY2NjVljIt+Pa+bPsHDR0IISBHkAQGGtsC9Ye8RYihXuIdYQSUaQ4Lv1h0Sw5nzPBHGFdTRo6gnogx/8lrrdoP76rx9VuRxWu72vdnugdvbz4bhee+0Ora5m9VM/9YI++tHn9Rd/cbcSiVHzve7u7hp7h9XLxzCYW5hrwDnKEz/HtZNHIE580Qq5Q+zE+oatjXsGiPP+Uc9OUiwDBlEv2IOSbCKGZ3+JXahanvX0qq+f3oLliXhQKBQsv1PkoySQUyB/KAAB554I6na71kSFzcfbWjwx+De9rnlw6k8jkgadhZ4FJEjTkYZHkQdFxyLAFtYPjw2B38+apMKoVCo2APjC7/9Tq656vZ5JjlTFSAwwH/g4GKmELEaQQF6E7UBipYLGhwTzyHfPZDLmVw2FQvZzAHY2mPdU4pHxCadcLtuGZiyH96h6jyWJGgsA80tJ9H72X7fbNX8KVTksEJsdecFX4vw/z4r5bBMTEzYmRpL9HMCPyhCfEskJlomO/v39weD7YDCo2OYljbvjHEOhkHaLG9pevaBYalbbV4Z5768sGzNn3trTJ6RP/qLG5g9qN3fRgj5Am0YkqS+xcw0EDZ80tre3jclExgwGg1pbW7Pnj/yH/O+LFYAhf8dMUHzPJEmYNp6X1A98jO2BraNzHFaeBIBs7N+LYAXIpkOfPwdw0rVN5zH3ACBEMu10OrZGR0dHtbGxYVaVmZkZA5zsOdhzfJLIqny2PwXKs/IUCigR+FHZ+xTEJDaYpvn5eWNf8XTCluG36/V6Nttwd3dXlUrF/NkEekCZ78D2DSUADWnQTeybIokv6+vrarVaNnyf98PWUq1WrSkQ1p4RaCRjWG8/cJ1mDj+NY2Jiwr53PD6ikycfUjz+lD796ZM6e3Zd3/vehLa20spmFzU+Pq6zZ09pevqU3v/+Uzp0qKynn57XCy/crImJ2JB3k5gyNTWlvb09m9wB0wiYhMENBoMmeWOhIf4zpgdmf2Zmxoo5njP+b0A8vrper6fDh4P6tV+7qHJ5TE888ZAqld6V/FM2MFcup/XYY2N69dVjevTRp/T3/t5Z/fmfz6hW6zeaNRoNe86+8QiFAvDpmUCuCfAJmcC+LxaL5vNm7QJwYOHYX1cPSWcdU9hCwFAEeHsUaxJyBYDF86KpdmRkxEYB0lAVDod1ww2va2RkV1/60kdUqwUUi4UNrAGmYBg7nY7W1qb0ta/drp/6qZd13XUlra7GhxpvsdewB4iVNBQ3m03LD8Qc2OeJiQmbSUrRBTFCLmbdEy8pdjy5RFyn/4VmTQo63wfAMycmoBrBzkJIeLCKZ577T57lZ2DDKRi4F9hDiB/YFPHSYodA2eTn+V5YvIjZ3rI3OTlp7DV2Ap4H9+TtXtc8OL3at1Mul4fmvfmqhuYov4GZY0hDDyCOQF2r1WzoPrKP79alUqEjkIdNc0Eul7PqgqqOIdZSH0xvbW2ZNwcZD7YpEAjYzEXGPrTbbV26dMk8SjCJkobkeWkgvTPUG0aSjeBlHoAgkuDm5qZ5Rtvttubn5y3gMaCdwNLr9ZROp01ewNsDeGHxMjmAkVeShqp62JtCoaBOp2OyLUkKFpAjXKenpw1083OAb+wPFCIAF1hUBrbzzACs+M06nf4BDIBYglo8mVEjvypJdm+mp6etCzcWi2lyZr7/9/XdoaYrqvLR0VEtLS2ZL7LRaFgw39zcNKANewj4oUjo9Xpmy4AJoZsTVcAb+Kl8/bxBb2UY+P4G3i3YacAkQY6GwK2tLWUyGS0uLloS8L5aADbPFHA3PT1tgI7EQGc6p7XB0lOR8/LDwykqYdj998FCg0zG9cG28/lM0jhw4IAikYidOsZncT9hggH5jDHzcSOVSplX3TNtsVjMgjkHbyCtUQD6SRSTk5OanZ216+TvASo8O9aFP0gCPyP+PE4vwotG4od539nZsaak8fFx8yp7oAmL7+MEwN8/C1gj9kWj0dV3v3uvVlYyOnbslP7u381ra2tZe3tnFQo9qdHRbY2ONrW6mtQXv3iLLlxYUiw2OO3Jxw46tQEam5ubBqyxK3GPPPMOm8MapMGMNU7xAIvqZVnYVgnvaEJ/9++e1+7uqL75zQeVSKSVyUjLy8v2nsT7vlye0p/8yT363Od+pA996E19+cu32jXCyPEMAY9YPdhzjP5DvYP1Y7+jUCE1+3gOK4Y1gL+niWp7e9ueFz/jFRgO4gCs8tzZF4AoaeA9prjDZwrw7XQ6qtd3dN11b+ncuQMql0c0Pt5XRFAkyKnkLvJXPn9EhcJFvetd69revtmAHrYXLFGQRABknj9d6sQDmF3sYth1tre37SAS4ghxhZwCOQBA94ANOxtWE34XxQhmHAsTeYhn41UK2FdG6VEIUgxzv3leAHM8rvyMV2NoCmP2L88K5YOiGE83lkauHWKJ+IWyABjnvv33E6KuvKDAJyYmjG7H/4gZHKYKSZqAGo/HjbXI5/NWHTL/j4DMRg4Gg3b0GCwSjS6wc71ez/ySBBSYGj/KiQoaeQwJjwUSDvdH4DAOx3t2CKzFYnGoAQwZi2omEolYggOI4blBtmBjI0Hw/9gVAH5Sv4KDYQX0+Jl2BHY2tQcKBFDAZigUMlCODxZ2kADb6XTsKE0qN+7D5uamQqGQnakOk4wEQbFCEGVzw8LBkgCEfGcpDDFme4BNKBTSwQc+oXgyq/Nf/kMFrgwnpqMXdrDb7Wry3o+qvbejjRM/kJoNW48w6QSaarWqcrls/jHGihB02fydTsfmEDIx4ciRIxYgYUgkGViVBo0yeJUJHFwD65Yk0h+m3NZYclTxWFTFzYp5rgEA+F15RjB2KAAUSLAvsK+1Wm3Iv4cVA1YC9s0zkjR4dDod+3zfyUwx5FlgCiwYJjyjTHMoFotWKIZC/c5rWFUSFmNifLKFiWs0GkMNLmNjY9bYhDxMwYWET+JFHuW+pdNpe/9oNGpgAf8W9iBAhiSLbx5McK8oLog7kuwUKUA1z4gim0RDcQ3Ly3th+wB0SbLiE1UHpgZ1B/Abi8XUaBzQK6/MK5vN65576gqF+u99+nRCZ88uql5fuLI+e2YjofDifZLJpI4fP66PfvSjqtfr+su//EtLmsQaCj8aBJE6ScqoGuwz77Um6fLsKfCIByMjI5qbK2pmZltf+cp7Vat1FAzuW1MfgI74iozc6YzrmWeO6OGHzyqdvlXdbn88ESQDOQVgwbVAhHibSTAYtDFwePxgd2EJR0dHtbi4qHi8f3gDnlbYRt8IidUEmxtFSiaTsYYXpFuaEyUZuUEMAbTixyTuA5hgnefmLml0dE8nTx6y5j+OSeXeE1Moask/Z8/erPvue0axWFWt1qgB5EBgMCkEyxKAnvfi4BHIDUbcwV4Sq1AB/OlT5Aw/W9R7mykAaBaCySdOwXBKMsKDNUJOarVaNk8bBYrjbpmAw3fBroeFB6zCHGIKbnIG94ecEo/HjXAi7mO9on+AvgziNLGa+EVPAddI4zfEV7VafUfY7ZoHp3Rg+645fEVIzUi5BC3AmK8EWZCABhY4bOCFCxdsREQ0GrWmBbxrjJYKhULG5nHiDZ3zfKYkO6PaS0djY2NDndckO4LQxsaGer2enU/tExLJDSYJRpbkguGbapJBvUjfVJgkLTYkwBHgLQ38MTQfEYi84TsWi9m1AWZhdKanp1UqlQzw0PCBOZ/NwGQCqksCOp5FEgugAkDOHEjAEDK31GcTmFtL9QiYIAH7DthAIKDV1VXt7e3p4G136+Bn/762L76p2itPa252xoIPI8o2Nzd1w0/8nzV+/R268IXfVX2rYsmI64BdnJyc1MLCgiTZM2QwtSQDIzCW+Xze1hTAjIYN/KfI19g6SLr4Tw8ePKhsNmvVMmt9d3dXh46ndO8HalpIPKlwr9+81FVUG/v36/VXM6pd3jX2gSYn3xVOgGakEz5aAjbFIIGUghK5iY5Y2F2euSQ7AAEGkn0F+w4YgGUjuHoGwPvPCbqAPj+SioDt2XwYZO8jZz0Fg0FrBALQIBvie6Mpj6QqyVgw//O+mYlrJjGRRAHmxCtpcFRnuVxWsVi0cWS5XM4UEwrCra0tTU1NWSMoXvj9/X0bHE/h5g+AYK8BUiKRiNl3KCBgcfkd4lw6nVavd4s6nbt0+vQ5LS8vq1wuXynMd21vA/KYS8vxyRMTE/rgBz+oW265RZ1ORysrKzZCiEJjZ2dHhULBpnVQSJPUAV8UuLDOyJzcYwp0wC2//4EPXFShENdzz7UUDFaMdaVQTKfTymQyWltbGwLLFy4cVbd7XjfffEnf+96iDfkHGFE0ARYAj4VCwSwWEB6oCcRLinfWFmB8bGxsiM0EjHI/8vm8ERCexBgdHbXcRzz069Xvd+x0/nlT3OBZZB9JUiZT1fZ2VGfP9pRINKzwnpiY0KFDh3Ts2DFVKhW9+uqryufzQ89VmtT990upVFV7e+MGDL0cH4/HLWdCGEGgoF7545HpT8BaRtGSSCR08OBBSbL8SdGAr5SZxN7DDlgGe0AuYBNjhKMkm75DXgLIAprxTdfrdfN3kk+9Egfji6om9dWBra0ta2jj/SECsLd5r/7+/r4dR06uAsgTW30zni9+YWohj2h8fbvXNQ9O2eA0QQFEYRQBSrBpbE5+x/yFscGoGuQu/HWtVsuYOpiTarU6BNwI0Gxo2B0YPa4NBiyTyVjFLA0GlFNJ0gRCJzTSIYOzkai9bJXJZAxwIb9Sze/u7mpjY8PYHipzjOVUqQBjzNhUWL5rlEDGfE+CCMGeIOUlNgI1iRc2iXFABIlOp3Ol6WBwzjuMAMyvlyyQtZEqfWc0LAnsmSS7LwS3XC5n82cJ/viE+PmpqSmNZWZ109/7Z+ru72n1z/69EiODxrD9/X2Vy+W+zeCeD+rwp35J1RNPqvbS9yyp+M5oJDwCFP5KwIgH9qxLGsb82gYYA3Ky2azm5uY0Ojqq9fV1k6CwLhDI8AxR0I1mo/rp/+uKMsFvaT8wpzOFD6tcjCsYiGhscl9H5l7SR979pLbfdYO+8Oc3qlgsWcLBgwjDiPSNb4tqfmNjw6RnTmwDWJdKJesIhbGRZP7wbrdrc4grlYox3XwX1oUkiwN4DAmg+Bej0agOHDhgTSasFWZEAopYV96XBZsKEIOhhimiEYGkCFiXZOwOewO2ArBHEyRrG3CEauAlSNga7jVrnGuan5+3NcN7oqjgi4PV9hIq66Lb7Ro4YA3x96xhPKsUSRQAJEreB7AOYDl16pRKpdIVJm3OEhuxgdiCTQY/MIU4YBSAiXUFP6H3xBEbUZuI70jOEAV0mVPwALx4NhyIcMstNf3gBwvqdqV4PGqFSyqV0uc+9znNz8/rwoUL+pM/+ROtrKzY9TYaHZ06ldGRI5v6q7/K2Jok3ntFhXtAs6Rn0srlss1jpjgElMHukp/29vZUKBTM2wrAIn5gXfGFGHEJlS+VSmllZcXsTjC7vtlYkq0hlCqUHPb31NTUlb0QUrvdj2d+jwPu7r77bl2+fFlvvfWWAWaK4XqdE/CqqlbHLQaQu2D02u2+r5fihP3J+1Hw4w/muwPAYdRRQHyM830A0uBkNU67Ag+Ew2GbakLsJwb4whPvKTGFBjLIGc+ag1so4ljLFNTEeRhyGjexmbG/pP5YQxpJuW5PHrGXvO0kHo8bOx8Oh+00NQoCJgShXr6T1zUPTv0xX2xMGKF2u21yLCAMCp4AwbGVADKCH80JNBrA9kkyxgd/HCCDeZHIq1RSdNryMKlOqKJojKFSlgZJlp/rdDpKJpN2eg3+TeYSski8FIQJGu8QI4JIetKgI9tLkQB5Rvp4u4Q0mG0K2Af8IVf6IbxI6FwDzABsBAGi/1zyeuSRU1pYKCoeb6vbjWhra0QvvTSjUmnG7hPScCaT0czMjMk5SJOwUd4/iswPKOQeASy9Z40Thex+xEZ009//5wrGEjr3+/9UjWrRJCCY4ZGREfVmDuuG/8s/VeWNF7T8xd+zRiSAAbM7SbqwZFhB/NgmbBOsFxJYJBKx9QVjCrAGmNx11116/vnn1Wq1bE4t0pkkS+CtVksj6ZB+4ieeUlANPfnKz+qVJ3cVDgXVbu/Zs3oqdLsO3PEuffD9J/S5n35KX0h8UOdPbpn8yfxV/6IYIdB6kz8FkjSYD8q9oGvZn2UPS4m9hSM7AbskAA+mZmdnjYGlmx2wgbeX5FepVIZYINgLkizyY6MxOFyAcTQUxxSwFGfEEK4tmUzad6ZpYG5uzrx9JHxfYLG+mG/p9yvxi3XFdXpgGAwGdfjwYQPqsVjMpF72NUmSvQrIpuhi/fa70BN2wAHHPfsmRNYYBS37FXabZ8z3Y83ifYTJIZZ70mB7e1vf+MY3DNCfPn3ani8JHQ8ygJGkjnKBHB0IBCzRjo+P23UigeIFBGj1rS9dxeNd7e2NmbeYYvb48ePmWT569Khuvvlmra+vm+WhL7WOaHFx2+beckY5J8AREyEn2COpVMqICGlQ3DCiiXXKc8DCsr6+bjGS4g2Wl31CUekLHmI8zwSWTtKQegCr7qcewKCWy2VjgylQ+tceUzTatvdC0m40Gjp//rz+/M//XKVSyRq9AEv9xuGtKzGvbXGEuAE4ZX6ul/Dj8bhZHXimECeMSfQD86enp61wh0Xn57kvAD3sPUycwdrGoTw0GuH7Xl1dVavVMnWCPc4+9HYh/p97ShGD2khsIAezRihQZ2dnlU6nrWmJdeGLZEAnigeAOBaLKZPJWHzz4JefoyBlX6Nw+dj+dq9rHpzCDkAl86DYLMggHLdGQPRNI97UjFzPJpakbDarTCZjo57m5+etSh0fH7eOXxY+i4NOReRDSbZpOZsbZoBq1/tJx8fHdeDAAbs+QFA8Hle5XLaEOT09rVgsZk0lLCSSBBUl98R7Da9maDzIh8IHxCUSCS0uLppPClDPgkTy5P09/T83N2eLlkCKXymb3dP73ve05uc3Va/HdOnSora3QxoZCSqVyuuzn31Nu7vndPr0XTpx4qBVjiRyig02Lx48AAdeUDY+QQefF0EZyQpWLpPJqBcI6tiv/AslZhb13O/839TJXTY5zHv+wrMHNfvT/1h7axd0/n//N4qHByz71YchkPT8BAlAJ8CTgE+B02w2jd1ut9tKJpOWHPCiYZGYnp62ofrYGrheJjjU63UpLH3yJ56Xeh19/vP3KL+yYRYLiof+Hgjr8smG/re3jukX/m5cP/npZ/T768fV2egYUIIBYD9OTk6qUqmYbxA2ASUAADQ+Pm7SEwmULlf8whScfJafuYp0D6vjQQqSm2fw2QckV/ZeJNI/zIL75Jv+COCsXe9FZ517Bh1VAqDDOoHlgyXBBuCPA2SvkXy9b/pqQIrky3f3TUzeqsK1BINB87BzyhiJifcnYXtmx3f2YmvC506CovgjbmKxIRly73xDHQQAexZWieKRIpPC7MKFCyoWi5qYmFChULDY6tk/2GRpcPSjb3YCXLEe8PRRgDNBheKIZ5FO973t0WjI/OAUBZcuXVKhUFAmk1GpVDL/Hv7b/nOUpJBZjugox8rBveEZe4WLpkGY0nq9bn5Q1DFiGHERiwSEgQeDFGPEdoAG+4sYk8vl7J7CzlNY12o1K4J4Lyap+HzCeugz0FMaHa3r0CFpe/uwaKBrNpvK5/N28AhAJxQKGfs3M3PxSlxM2zonJ2IDgQQiBrFWydXsi263a6oRa5/PRNmhUMZy5O+jJPu+k5OTNuaOyTsoYRRqECdeCeUec+9Y56xF7h0xjZhBDuN70GDJuuj1espms1ZwefsWqg6KE8UJxQZWCB+HM5mMxTXuGUUBmAZ21vc5vJPXNQ9OYUQrlYoZ/6n02KjSwIwMiCH445X0VSiMJayKJAMYzWbT2Ac2IKAIoEswJ0ggTe7v72tlZcUSFVIlLB8Jc2ZmxioUZHxJRqcj0dCIwmlDyLbIQARBmENJQ+OOqOJpVgKUw+ax6KSB94bEtrCwYN8BNgsWKZ1O2+idSqUytNC5XzRPLS5u6ZOffEY7O1F97Wu3a339qILBQUfr7u6uFhebOn78nO6664eKxfL60pfmFQgEhxq6uA8ATgY1F4tF7e/vG+NFomOdMPZEknkRSUxbtW3d/T/+jtI33q7n/t//WKXTr5gflXsZiUQUSs5o+id/Xe2tovJf/PcKdNrqhYJDUgeAxfsEpYF0TWFBpyZB3w/EpnEHb1o4HFYqlTLWY2RkRBsbG3r22WftzHbkdZIyYKRUKumuj41rvPeW/vLbP616dc8q7aNHj1qVzIlEMIo/+M4BffSRP9IDnwrpa38YNnCOgkBXL0WSJGNAfNONl6Oozik6ALQAFGRwGObJybaOHn1DicSG4vGuotFJ1WppnTy5oNHRRSuKKDDwiMKcSYPDHNh/XroOhUJWcFLskriJGfi3KpWKSqWSHUmJhMk+KRQKBvxgK3Z2dgwY8xyRQUkm/hhN1gB+YqxGXC+NhEjD2HjwU7NWYVN5XhSoMMjeM3f1fFXWHckX76xvyPHXgpJE7MRbyTOen5/X3t6etra2jOGikQ2CwB/NSyzO5/MmPbJ2GKOHXzCZTFrixg6DAoWlCMZLkoFc4gNjtFBZ+rEzrr29mObmmlpZCdsz3t/f12uvvaa9vT3ddNNNWl1d1blz58wrD1ibnq6rXh8xhm51ddWKB9a/L/CwbcDq4VP1Koj3z1L8+n6A0dFRY+a5j976wHohbqMc+ZzJn9PAw33yVirfkETO4PoBipJ0+vS03vOemI4dO6vvfjdmxRc+SppqAEAUDs1mU+9+94YuXkyr2cxqf3/PCAIkc2lwQhUFE/Iyzc4U0ZAVPEO+H4CN/IjqMT4+bnENwopjTol53Auut1qtmkLqJyAQZ7AbkOfIOexX1i4xmwIMbEIMo+kTgo456GAPXjQ5g2EgxQDF9JnE43Ej48iTNLpxCApea3ABsZXGKP7u7V7XPDj1nj0CONIyTESj0T9D18+Wg1nZ3t7W9PS0Vf54+djYnpXd3d1VsViUJBukLMkSoB9TQxIul8vmKSGpjIyMqFQq2fFnkUjEmFR8MQQxqn+As9/ssH5sEhgewK7vambMD4ZlAgdzHNk4MALe/4isODIyomKxOPSzdGfi8Uwmk0Mme64JiwW+mFarpYmJmj75yWdUKIzpj/7oBjUaYU1M1BWJDI4W7PV6Wl+Pa3X1Zp0/H9XHP35KxWJLTzyxZM+ZzlGCajAYNECOpAtgQi7hCDsCcrFYVK1WM0Afj8e19Olf1tw9D2jzpacUjCe0+L6PWYUYi8WUf/4JheIJzfztf6jQyKjyT31Vmr9ekzNHNDY2pslmU1trl7S7cdEYUQDH6OioMpmMDhw4YE1QAGMkHEAnnmLfyEGSBzxhX1lZWdEbb7xhAYwihOADm9tqtXTDwRdUaL1HO7kRLS6mLGHff//9Onr0qMbGxlQoFPTyyy/rzJkzWl1dVX65okvbH9Sx+af1V7E7LdET1JnHS8MbCYcCYn5+Xtvb2yqVSlYoLSwsDF0brA/NRCSNVGpH7373Czp0aFWdTlCXLo1pfz+iSKSuo0df0bFjL2l1dUknTx7XykrMLC7eSkCzFPMeSWjNZtMKx4WFBVvDdMZKMuYFIEXyhPFjX5L88SQCDkginuXn+FjWO1KuZ1GnpqbM0oO3mf1FIx1AETsPTXXEJuIX4NyDmWg0agwmDEoqlTL2FO+jb8xCPufPkOpRpPb39w2gA66Jp3wm4778xA7sEjCe+OwajYbZqtgPnU7HYgrvjy8QYALAwMNPsvcK0cAb2jBm3hdMsGanTy/p2LHLOnfuAbVaAYvvkUhEFy9eVKFQsDhNARYOh5XNdnToUE7f/e6dpt5VKhV1Oh1ls1kDiRQWqFnSwHZGwba+vq5wOKyFhQVNTU1pbW1tyLPrfemMUPJKmm/U8xYwiAAaZHnG3stJkYCMzvpDHiZXwsTCMpJTyuWaTp5c0F13XdZf/VVS+/tjJm97lpjGI1jHdHpFS0vb+va332deYth5xi4CLiFMYAm9jcTbq+LxuAF8PMkQNIx64ruTSyE+UAXYR4VCwU5lokmKIhvW0iujFICsV08iEP9gsD1jjUWBe49CRRHVarWs0IIIodDhWUHCAUwDgYAd8gNoJV7u7+9bQzkEGPgDIE7zNXEfv/c7eV3z4JTExWk/BECYEQIgzBEPTuo3IV133XUaHR016h0pE/TvZROqb8AwLCMLmYBKcMDvBMs5Ojpqp+zUarUfW8RsIAAuVRuAmQ56AggbMpPJDDG3gFGAG8m3VCppfX3dOqPxC1Kh4/8juDJNYG5uzoZ4UzmXSiUDQH72INeF2Zqux9XVVeXzec3Pzxtb+P73n1WrFdN3vvNBRaN7mppK2AZl5A4+3HA4rAsXgpqYOKz3v/+SfvCDKZXLg/lwPCPuO4FIkrHjkuyUC5gwBqojkdKd2G63NXHwBknS7N0f0OzdH/ixtffq1/6TJucPKDzZ75Kc/9jP/9jP1F55Wuf++P9jiaJWq5kPbH9/3yTBtbU1C9A0y1EkMaOV+0+iwUdMMAF4SAM5B5bDV+GhUEhH3zWryd5f6Huv/azdj2w2qwceeEDHjx+35J5KpTQ3N6ft7W1duHBB29vbeumHSR39SEm3vz+u13/QTywwbCTlUCikUqlk8rK3heD3pDjAK0WQrVQqOnTokDEw9Xpd1123q4ce+q7296P64Q/v0Pnz12lrq20NhfF4T7fdltN73rOij33sr/TNb75bxWLCCkpsJ6wHijgCOMCQoAvjBWBDwgWQAfDZ471ez/yCNHcx9oXiTZLJp7OzsyYrAhSwJNC0hOQbj/cPE2EiiG8QoqD1YBAQTMyA5QL4+K574hrsGVI0bFK32zXPGw2VmUxmaIQeMdXbCCj6uH7uFwkM8oDkCciGIEA5ogj2o3pgG/2kEpI8LA7PlAHnPlZzH+jObjQGQ/G9AuWZzE6nozNnbtSdd57Tddct6/XXF4zZ595BSMBcUnDdfvvLajYjOn/+kAG20dFRY+EpSiEDIDd8DmCdzs7OWkwHuEejUWvi5dnHYjHbi9Lg7HQIDWI/RRMxlO+PSkGRxDoAvJMzkXrx61JooTChfNDL8cor1+m22zb0S790Rp///M3a35cd7QooZC/U63VlMtv6yZ98XSsrSa2tHVAsFrRiTJIRH8Q/r47hn+VeET/Z13x3CBzilgdu/Bz3kRMGvUWLnMW9gmWkOQhw7FlhSB7vefUD/7mGubm5oeIaCwFEBbGXqTkUHFwbz5PvDjZizXobCfGxXq9reXlZ7Xbb8g9xBnzEMyBv4B33heHbva55cOplEQAWG54HTZAlMMAaMFuMQMDJIZwugdznAx6dsLAaMJ8svHa7bbQ6Hi0CFbK29774885hKmjM4DOg27vd/sw/pDDfYbqzs6ONjY0rEtL0kLRB4gBUwzLy5wRrxmnAasA0RCL90TLIRwAKzi6GrYCJKhQKKhQK9nf4sDinudPpaGqqo8OHV/WjH92p/f2wbRSaplj4gGg29Xe/m9W7331Z7353Xj/84VEbkQQzToCi65pqEObSz5zsdrvWyME4DRq4arWayr/za1pYWLD7ThFRq9XsPPCNc6cU+Jf/JwsYnLTBWB48yJJMUgXMt9v9E8YuXLigdrs/ixaGN5lMKpvNDg3B9kmk0WjYTDreC+8e7DTylO+wZBJCaqYfXM+8uKv6nmwN33jjjT8WXOjcpdK//EpOzY9mlZntDFXTlUrFGhS9pCjJigWa8gB0/LlPpFh1AB2zs7t66KEnVSym9fTTH1GzGVYkIiUSewa4e72ATpxY0BtvLOgzn3lNjz76nLrdB/Xmm/2mQyR85GwSA0G7bzFZVLlctoQFw4d9ZHZ21lQPAjlJkSZAGij4O9gK2CgS9d7entleKC5ZZyQR1oDUPzOducZ8H/Yx4Bkwz7g29trm5qbFEIpgEi7sI/4/GGWKVJQPgKa3+rDOfaL0w8eJLQDn7e1tFYtFA/6Mz/NqAPI1RXM6nVY0GjUQiQRKY6cHFV5i9rNOUR28usSwe9YqxT37ZGVlRZ1Ox2aG9u9xRJcvL+nmm7+ns2cfUbk8sAfR1ARZgvyazS7r3ntX9OKLR1Sp1NXr7ZlMDDgFLEiyJkiY4IWFBU1PT5vVJ5VKWQ5hzWH94Dkh9QJS2Gc0z+I53draMmAEyMIXTUznfWD8UfVgWrG9kf/oA2DPQwyw3srlkL75zQ/ok598Un/n77yiJ564Tru7iwqFojY9p58Dt3Tzzev62MdWtLWV0B//8Y2KRmsaGRk0Ina7XbMczc7Omr8VOxUAivVBQecleg/iAZe+oGf/YluDWOKecBgHMcxb8FBWfH8GwBjLBzG6UqlYDwmKWTKZtEMKyuWy5RNiPMUFVhqYXQg1cgBrBxaZpicwEaSJt5GAifgMJh9Eo1EjrcgTKJUoNN5q8Te9rnlwyglPBDzm85HkOYUFJs4bwCUZEISxjMVitoGR0uggpgKfnJxUPp+3JAWNDZgFSJBgWQjMIaMDzzdR0SUPwxcKhezYN1gKWItcLmfBYH9/f6iyYRwIAYYABahE3mWTwfRS+XK9+GSuu+46dbtdra6uqlAoGCMCYxII9E+cAKTAHMRiMQtko6OjWlhYUDg86Kp/z3vOqNsN6o03FoxVQ55hhp+XoJhlFwgE9eab83rPe3J6/vkbFAwmLCkRPOm25VSspaUlM4Lv7e1Z5zPMKveKzUUA8NIuwAF2OZ1Oa2lpaWhYPhW1r8hJen7sDr5D2EYYFhIS3p5Go2GMKsm93W4rm82a7AOrimzD90EahYWGoYdd66n/2eqGNTGRsOf/n3v5JiWAQlsJRSId9XqDZhQKRBgWAidrjgRHhy1FAH5LPG08B4Lngw+eUK2W0GOP3afx8ZgCgcHYJAIzCbjX6+lb37pXn/3sD/Xggy/q7Nn77O/8tbC2kOP9mDLvSw2FQrZHeW6+YOA6GGLu2RnfLMUJdUin1WrVJj1Q4FKUUWCR4GArkNZpiGANM80DgCbJnjPyP4mLBBQOhw2IIw3CFFGYAwJ47pyaR1HsfayARIApI3kgC2AZM5mMPXt+rtFoWDwrFov23Un+KD+AaPabbyLjeQCAmS0N01QqlcxLCplB3GJeLgCO58p3AXQ1Gg197WvH9D/8DyU9+uhf6y/+4g41GjdYMeUtP4GAtLBwVg899IJWVrL63vcOaWdnW8lk0nzygGtiB58r9QHn3NycUqmUMcvey0ihSgyjCKQIAmSxLnjmXv2ChJiamjLywsdFOtPr9boVp0jTKHGsXXIYoI7iAEVqamrK4k+lEtOXvvSQHnnkBf3UT72u3d0LOn16SZVKRL1eR1NTNd1226YikY5On57VN75xTPv7HcXjg/F+zWbT5iVns1lj4L3nutfr2f2mEIDp9qAMkOUb8LwPnHtQqVQMpEmDA04A3zRgUQgFAoNjvwF54BI/PaHX69mEGHInSgH3kqIf6wS5nxmojByTZIRXtVpVvV4faupCsWKPedWRPOHzEPEPBZf14fFFIBCw4p779k5e1zw47XQG5wUfOHBA3W5XhULBwCfgEcDIDZ2cnNTc3Jwdg0lHLJuZBEVQ5e+2t7ct+cNUISf7bmGG3G9ubpqflA3sO/Co5ph9in9Dkvm6SBSeDaBSq1arajb7My4XFhZsHhmVEBUWQPjqa0a+4boYqr23t6dMJqOHH35YxWJR5XJZhUJhqAuTsTKwvkgE+FjoqoStxSoQDAaVTBaUy80oEkkqENgykELlhkF8d3dXyWRyyDd34cKsjh9fVTLZ0+pqw7pz2SRUiyRxgAeJnXsoycCbl7y9B49uzGg0arPd8FgCXnO53BCz46+Xzc69hm2CXRgZGdH09LTZTwA2dH6yVnxSbTQaSqVSWlxctDVKkIXtgAVaWFgw1oDzxjudjup7/QCSmAgr1OtXyrlcTrlczgZZ89re3tZbb701CNrqKaKaGo2BvBYO9+fBMoqFYfAkJmRkEqAk8xf6BsZsNqt0Om3Fz9RUQTMzJf3FXxxXtbqvvb3ckEzLMw8EAkomk6Z6PPfcrfrkJ7+npaWySqWloVFh0qC7nDVBYQFoAQzMzMyYNQfgAOj2Uj4MNj5bgBezUWFYADKdTsdmm+IPxFvomSsAAmAP1YLPYng+zD/F+eTkpCVmTsGTZA2MgGoSL3IqRQRgBhY3EAjYmB4KUXxueHBhfkjAKDyAF2wKPtnRhMj8ZM+I4ntjb8GEAYR98w6NJSR3noMH3b7JhKYuQBlxG8ac64AVA4TUal393u9dr1/6pXP63Ode1MbGBb311g3a3JxTIpFSr1fTwsIZ3XTTaU1MVHTx4kE9/fT7lUp1FAhUhpoHaTqhaZN1zNqYm5uzuDE5OWlMJcwaKg5WH8ZiUUD6gpcXAIx75S03gCtYa5QO1gtqHp/tj/qUZDGbRko+g6YhlLc+wBrTt771cWWzW7ruujd0ww2XNDLSVLcb0M5ORC+8sKTTp69Xu53W6GhXo6ODWcVY9rx3Ek8oEw0kWf8G6xdGkQKQ9ezjZj839RUL8gg9J+AAGiz5fgBMmpG97Wd/f9+eCYwjsYbfA+Bls1mz5fB3YA0sdBQ2nU7HpjGQ2yHoyMd+ZBu5mTh4NWiXZOvSN40BaCOR/jQTvLyoxKzbdDptXlji+du9rnlwOj09rUAgoLW1NZv5SLVNpQz9j0yHX4mqHk9aMBi06oXZodx8b44ncDLQ149AISjAlvIQCToweDAhJAeYFd/ABVCRBiwSiQ6m0CcbXkj0sLU0PLHg+C7eZ4QcRwXFqTJbW1taW1uzoAK4QJJjw9JoRELle8L4UqUmEokrHqqu2u0xq6bxDgIK2aR8LsGtPy9VV65heFROp9NRKpWyRjNvZ6BiXlxcHGoEIbB1u10LzpIsaCAFklC5f1TvABCeB8WS902RKL18DUOdyWQMjOdyOSu08P8ROIrFojUM8NmwS6wVfpYkwlgoAgrX1G63tXY2qt7NQd1yf1gv/fWuNbQ99thjdp+4r08++aRWV1fNZnDgzoQivYouvNUxnxTPCU8ca5P1DRBotVoqFovG/DBM2/s86Qbd2trSbbddUK0W1/nz0/ZMKEC63a51VXt/cTgc1ubmrCqVcb3rXRv6zncO2/3h+SG186JwoLhDxiOx+XWEqkDXfqvVMvYCVorijbUQDAYNvBFTkKhh43kfroXCmUkh+Lz9AQMkNoA281/9+DIPwrAxwVwSL4gvMMRcH+CENedZY9jMZDJpa/pqqZp4ASgAVExNTdl7AzynpqasGZF7TaIFSKAUUBwQV/h+MEljY2PWREXzi98vFEIwooHAYB41jU6jo6MWk7nHfSCT0h/8wc269daa7ruvoIce+tFQTup2A1pbO6IXX3yfVlZSGhlJKBrtmT+S7ufx8XFbL+Qf70nklCdAOEwlAIx9ArvN86TAhv311gpkeph9LEB8R/6OGO+LZnIGqhLHAPNMUTIggdj/FCq8KMj6RExYKyt3KRC4Wzs72yoW+43CoVBIBw/GFIu1hlQt1hWFHnsUAkaSnTTnp+QUi0VrNGw2m0aeoMjx8+ztmZkZUxYhdWZmZuz3YWjb7fbQiErAKz5rlE3WKsUb7w3o9L5iiDQUjFarZcd+8324JhQ65HpAba1WG5q6QQ6FqCP/8FmQZLyvt3ZBVrHWIAYA2DRFUSy909c1D06pCgCoAEeM4rFY/zQKgA6Lm2SKhIa8B4iDMkeuS6VSlrTYiDRw0F1NxUPF1ev1zE/G8ZL4RVgIeEgTiYRVVEgIJBwfIAjYBFrM99wH/JWeQTh48KCxAtVq1Y43hI3j+2KATyaTajabunjxotbW1ixwRyIRkwBhTxm67Dtf6ejEowkoZtZp/3sEFQ4zQzBtVSXyOZ5RJgL4KQhTU30g0u3GNT09GB2GZ41CAfYLBojZn5IMrNFNzUgpAgoJWpKBRMA7RQbyBcPokRHr9bouXrw4xFTGYv1B4vh0YRGmpqZMOoJ5gB3AeC7Jvgt+OwoXWGm8Sd6riS9VGng+CXp7ewnlux/Q0QMv6isrWUl9ZujVV19VrVbT0tKS0um0Njc3df78eVMjut2uHnl0TTu9wzr/clM7O31/G8HZS5TcdwoQfJpbW1u2rmFPJycnrcChwGs0GlpaKun06RmFQlGzn+DNzWQyuv/++/XGG2/o5ZdfVrVa1ebmplqtlubm5nThwkEdO3bWEj8Mc6lUUiQS0cGDB40d4O8JuHNzc3bPAWQwhdh3pMH4GhKhpKFRK6gUkUjEOrsnJibMW4nHmY7YWKx/DCGMJwDQNxqiKLAGuO+wx7CErGPu9e7urk328FMI6GRHaeBkH6wiNFCmUilr+gRoeraWbnruCQkV0EsC63Q6Wl9fNxKAmEsSBJxTbHLaUSjUP0ABaZVnRtGFp5tCABk3FArZmBsKSGROABs2IgAHChOsMGszHO53I9frdZ0+Pa2NjaOamtrTzExDsVhPjUZYpdKk2u3JK78/mODAPiYHYEmg1wDFhOkIly9f1s7OjllXyF2++Ybvjq+RQpgXsrpv0Eun00qn09aUA2sISGUdS4MGPu8/BBgSn2BHWTPkHwokGEDWF/eUwh4iJBQK2xxe4ohn91HAAOfIzpJMaaJbn3vNOoBAYI/AojLTFLYTuxX5kR4UGH/WGfkN8E/XP+Cd40MpkFibA//ynu1h8gF7A8DIHuD/mUFM3iEP8d1QNbgvnsTCjkhs8M1R3W5bhw9v6tZbz2t2tqxotK12O6StrQm99tpBXbhwRK1WbMjCgTI7OjqqZDI51OPAd3q71zUPTtfX1zUxMaFMJiNJRrUjd42PjxtbhXTDkWo0ZXDSEw+dILm2tmYdsWyYzc1NSf3B/IAAqlJJQ4PckW5gbr0UBeMYDoct4JIE8aYQGAhkNFDA5OGjmpqaMlN+NBo1vxUbhREXXCdAkEDTbDa1urpqsqKX1FdWVpRMJo3hIziweQConuYHLI2Ojtr3Jkkjb5RKY7r11stqNGqqVrtWlZE8YBZ4LlR/9Xpdhw9XVK+HdepUTtHoqCUbNh6blGKDYApDwaak05G/Y1P50VqARfx6sAJ+xm2z2bRO2enpaVsHHIEJK3a1P2lra8vOXGfCQigUsoqZxA2rAfgnIVAtwyZSwACGYRIw/xcKBQPVrVZLJ04s6WP3PKk7Hzqs13/QtDX9xhtv6MyZM6Y6+MR2471zmg1/T8+f+4TGxrrq9QYSOaNMSOLcB5JWNBq1TnbWCZMuCKoeJPYtHm3t7UUNZNGZPjMzo3vvvVf33HOP2u22Ll26ZE17BP9qVYrFmtYsB9vj5Uc+F1+vTwiAgmq1OtThC3gDhAHSvIRGQqKpcH9/34AjjCfgFxuPNCiaKP5ghTOZjCVRAAUFNWCT5OnBKQUxoJ8Ek0wmbQB5u922xEnypaAHTPEzxKVMJmNyNMeR4mfz4+MY0+ObPSgcs9msgXy+O3Ik6xbWmhgHQKGg8AAJ8AYr6O1XsPSBQGBo1BEAgxE8HG4hyaR91rNXm2DY0um0Op0pnTy5ccWeldDoaFTJZNxYX+a7AoJhs9kj/jx74gsSv9/DWD044GV7e9u8y+QtfJjENuIPbCT7iH1NLKfo5vM98dJqtcznLsmOVmWtUAQ1Gg0VCgVNTExYBz6FNEP7ifMUeRAuxEaKDtYRTCVxnXtBrmedIZ+jABILKVB4juRy7iv3gmfF+66srGh+ft6UP4oLYh3XSJzFKkhfAWsYuwEFiT/cgTzlveXI6FgSKFjwmVJ4wGwygcL7R4mf5E6siPSlACxjsZiWltZ0333PaXx8T7nclF544bDq9bCSyRHNzOT14IMv673vfV0vvXSjTp68Sbu7vaGc7kky8Ivf03/T65oHp8iCo6OjZj5G2qKD3Z/Y4seW0DELaKMiZ6NJg6CAf2NyctKC6NzcnAV3/ECpVErz8/NqNpvGWkmyahSGo1wuq1wu9zunr3gakdqQpujiq1arWlxc1NLSkgEVEg6n2lSrVZ07d04LCwtKp9NDI3SofGFl+d5IXTR9Ia3DWnoPIGcgNxoNC/6AIip2GF5sAUgIAJN6vW7B9NSp63T33Wc0O3tKb765ZL5XSeZtIYgD2PuBva477ljXyZOzymT6YzZWVlbsLGESEPcV8IA3F/bKN3TBYtN4gTeRoMSGh6WAcWd+oyQDToVCwSQtJEGSDs+MitM3kyCvwaKFw/0B+3RoUmABVgBXACzuVTKZNBYLOQyWAoYfZu/lx3O67bYH9akHv6+gHtXam/3vUy6Xbc2QzHZ3d3Xg1pQ+/P7HVOvcqCe/vKNwoB+EADwwEXi4qdT9KCNAt5cJGZKeyWTU6/WUy+WctBxSJCILvuFw2EDoa6+9pkajoUuXLpm9AIm578XbU6sV1IULFzQxMaFsNmvFWiwWMzsCjPTExIQd5HB1gwzPmlNhGK/EtXgLCkwi6wjpjsIUtQNLAmoByov3jSPzMUmj2WyaPIlKwFryw+S9Zwy5F1lQkq0X781k/3uA1273u/g7nY4x1rwHcYq4Njo6ap3ifE+sLYyQ4j542RXSgL1GnMaLikVJ0hBYw4/Nn1HISxoqZtmfsHmsfw+QeOYcTMI9I8nz/nguKbbJHYBBlBp8iqgq7AffMOebudiXAEb890tLS/b9APcAOoA5o52wwrDnuNZWa1/z86uanNxVJNKVtK58flY7OzKAPj4+bsUlY+worolTUt/+wjxX9ih2FNZROBy2Qo+1wH1mPcZi/YMYuIfYVCi2/PrhXnp1ks8C2AKUiPGARwA194TB/X70EvsW6wBqQK1W08GDBxUIBLS5uWkkCfsYxrTT6diIRw6EAPRTLKM+cv0oJPR+0HQNLgF0E6u4h34fUFQRv8jBrFcm7sCuUsRSqNx227oeeuglbWzM69vfvk9nzgQt3mezWcXjd6rb3dCtt76l++9/XZOTe3r++fdKkgFc1jDKLLHxnbyueXCKsR7QgWeQc+bxQBD4rpaReOjI8UgDsJWwEEgPR44cMdM8gZj3B9T6aga/U6fTUalUUi6XM4AKG8a1+JEUVDY89FqtZj5aFj6sLP8PSIFRI3gXi0Vtbm6aREfCk2QVG4GT4LC5uWlSgCQ7ajCRSKhQKJgkCRikiYhrwN9GhzFWB9jdtbWYVlfndOutp3T27JKdz46sSgMA1T9A5uabL2t0tK0TJxavnBbUv7719XVj444cOSKp718dHR21rkUvgbChSTQUGQBV5rpiBscYjyw7NTWlfD6vXC5ngQbwiHWA+wKAh33CPkC3LB4hnhlBj+/sfx/miMRA80MoFDJ5BQDdarXMHkLyBUhR/PzJ78X0i792hz754Fd06paP6KlvBdTJda6w2332b+5IRg//XEJ3LH1D9d6cvv3VuxUOlJRO948S9GeD4wWEBedoUgA16x55iPWCJw0PFYzE1taI5uaqQ55Q2Lfz589reXnZZFzvuw6FQjpwoP/7FDiwKagA7H3kPvYjxayN3boyAo1kQ4PX1taWisWirXHsCDSK4KkEeOCNA7jiPSRmweIjW3KNjJnB00uSItHDpqDGsJ4bjYbm5+cNjMH2E1MAazwz5ubCWOItRIKE/YThgj1BskU9oDjx4IGT6mB7YRDZXyQ6nh3f0as0DFcHVKZSKWu+q9VqNqPY2zH6TXVTBqphpgAXAD+AswdHFAXep0xcuxqkIGEzoQCwjQzLvaAgIKahSPAcKdApUsLhsJ1Vz9D5Xq9nJ8p5GTcUGj5AYGKip9tvP6Obbjqr8fG6Op2AWq2A4vGupDd16VJKL7+8pOXlhDHL8Xhca2trpqqRc3wvAY26KE14XvEXo6Th6wYMAkLJrZAbfA/UK5qHyY3YxPx9hcgB6KNyEOd9scx6nZiYsBFrNCXyLDxBQC6HweT3/Xg5wC8MqCSbNcuzi0ajFtf8gRKsc9YEAJ/4QoFNgcXMcPILf0fM4JrYN8zQhmkFVxBbOp2Orr++poceekWvv76oF154nxqNtkZGBsXP4HCjhJ5++rg2NxP62MdeVzA4ozfeuMtyFjFPkq0Hbwv5m17XPDjFwyLJJHsqLJg0giAVJjIBFQmjFpAUYNGCwaAtCnyNLABkVB4mLCZWATYlyRa2YHJy0oz3fsAzyQd2kWYW/KmY9KXBLEUqJ5I9DV008UxMTGh7e1uFQsHGIC0tLdnRgSRkEibvWywWbVN6EAujRiXo/6ECZEzTzs6OVldXrRIDIBLwGo2GXnjhFn3qU9/VBz7wjP7yL29UKjVtSZXgzSzPbrer664r66GH3tIrryyoWh3T6GjDPLWJREKXLl2y6hgg52U5LwfxnQiAgGzmH7bbbbNG0MGJR5RDBKampgz0STIwSRDi3vgOU5IwMhLPHymGipnCAqYFsMK6IoHyXXgugAsq6b29vSHGDJaN39nd3dX//P/q6md//WM6Nvu0jv1CVfnWu7S1m1a7ParJ8V3NxR5XTyFd3vqAvv/VlILdQWCOx+NKp9OqVComX/H+SNDsK7o5+T6shQMHDhgLSTHC/jp5cl4f+9hrGhmpqNOZ+bGB8b5BEeDV93oHdeONOT333F2amZmxPYCHDADl2RNAvWflKIDwq+ID5bnF43GzCsDOwgaxT7AAwNpy7ZJMyuO4XTqdY7GYMTnsQ/YgjNj29ra2traUTCaNsQDQeR8do+ZIhFh5uOfMiNzZ2TFlg+9NkuVZAkDwyPEsYbkkWcGH/WBsbMw8xVwDBYVvMJRkDLHfe1i2kIf5/oCEyclJ6yYmhrK3pqamhtgc5HNOIOJedbtdKyrL5bLtIywAjUZ/MopXWSjOYcu45zCh7HHYY2wTgG1JtkYoVNnvxKKr9xFsdavVGlJuiHGAoKWlfX360z9SLNbShQtH9O1vH9KFCyG1Wm2FQl3dcMOm3v3udf3ET7yic+fyevrpB9Rs9oEmdgtsNjD7AEYagzwzT0yi2Yw1y/QV7gWMuTQAVpLsuF4YYNY2XmcYXAA7h5r4qTpedeTQC9Yvv+8n4cA8++LBN4fV63U7eIJniO8WtpnT7sj7qASRSMTiHdfHPcMKQ4ymgMKGgGpHPKlUKqpUKgawu92ukXJ+BBnxgrhE3sSSyL2KRCJ66KELWlub0re+dUyx2KBo9b9HUdloNHT69HWanm7qjjue10svLRmuwRPPM0e5eSevax6c7uzsmKHfV8QgeiooZIqRkRGl0+mhTmhpsHioQmFRCL7eUynJql5AxczMjI1nABTV63WVy2XlcjmTzDiGbGxsTAsLCyqXy1pfX7cFibeGkU4AKn8sG4APz5EHzGxOfg8T9fT0tEl1fp4pDMrIyIimpqasaQr/CDIN8iegjU0Mi8XGxWZBZcumSCT6pwPxbBqNht56K6Bw+C59/OMv6Wd+Zl+vvvoeLS+PGEtDcggEdnXLLZf00EOXdfbspL7ylUOKx8MGPNlIS0tLCofDdoTfyMiInX1+dWMOCZcDArA/4LFD8vWVsg/YMC7pdFqlUsmCnp+TCCNFUMeTh1SJlBWNRrW01D+OdW1tzQ6HILAA8peWlqwLk2CMHJVIJIxpBgSThBl6j9+OxhXzp0bi+sL/UtZk+l696yNjuvmGy5qbuiCpq0Z7TC9d+pSe+eae8mtbmpgIWoDE1wegpqGOBpZYLGYd2EhlFIoUj+wZ5G/fXBGJRHTyZFIPPhjWnXde1AsvTBuoZY2R8FmnAJ1jx86q0wnqrbcODFkx8PTSiY3sx7xfxnpRvLIWYFO4foodv8bxX8MAYf2AFQek0VToi49UKjU0OJ/4A3jOZDLW8AU765MpdhS8gz4pwiBS0BDLfCGEusF3lPrAmX0M2KDBj2KWWOQbMiiiaHzh+3AfAVJMZiCewCLzM/4UJJLewsKCMZYU2Pj8JNkosfHxcc3OzlrBjM+vUCgY+GAteXUD2ZN7BIDgfgLQ+T32EQDX+4f5M2I368+rWhTR4+Pj5sfnGRHXOD3Kz8Zl3fI5gLB+7FvXT/zEKVWrY/rqV9+neHzhCuhsGvDY3Ezr29++S5nMGX3sYy/qwQe/q298437t77dt9BE2AeIXuZPimn3IHE461bF+wWbCoPKiYPZkDdYcQBm5W9JQgxdsN9fEs/TWA2ZrVyqVoQKe3g9iBGCPpl7YQvpAeE7YogDbfDf2N/tvZmbGcmGz2VQul7NCPRwOW3wEo1DoEUcAwOxjcokv1pnqgwLIe5Pz2dcUo+w52O5+M1xB8/M1ffWr79HIyJjtr3w+L2kwMUcaHl310kvX6fjxc7rxxot68cXDOnjwoClaKL3Ywt7J65oHp2fOnLEzyqkkkNKpjBnx1G63NTMzY4xCtVq1AcQsYlgepJRUKmUJE1aPoM5mwF8ZjUYtgFBJxGIxY/LoZKeSRGaEzWDCQLFYNFB5tXeKE5So/JiTCVsDgxMMBm3WHDPI8Fb585qRgthszOhkUXoA6v2kgLloNDo0jLlcLttiBcTs7e0pmUwOnZzFdz95ckKt1v165JGT+uQnv6H19QmdPDmlej2m2dmUZmbKOnToggKBnt544zp95zvXKx7vGXBHXgWQSTL7BqwzQI3xYSQXGIuJif4pQjxTLymRNCWZxEXHsj/Kzt8/Eh/3h9FJdKd3u10tLCwY0+Wll8XFxSF5E8YFWZRuUt9gAXigmED+I7AS8Kanp4e8kBQbjFMpbpb0+H/a0ivT8xoZuU6NRv8QgN3d0+ZnAqQA9PujvbbNg40XkqAKeMFLhUKBZwoflGcbuH8E4eefP6gHHzyv3d2D2tjos1uwdrlczsAYxczBg+u6555Tev31m9XrjSoYbJiP0Ev/jGCRZEkftYJGRwAY6we2hpmEHEmMQkMHtG9A8Z5v7C1emvfJCuDLPeA6WD+zs7PGvvspHoFAwKwo3PNKpTLUPEUBDEBi7RM78O5ns1lrbuH6iRfsC34f6xNAWpI1cuBrByATQwCuFBR09PP5rA+eV6lUMlvIwsKCdXnzLJH5aVybnJxUNpvVzMyMXbefIY1XmwIExhW/sVcwOKggEAiYjYr1tr29bVYCZO9Op6Pp6emhSQmATkA9oJpCgP1Ig5pnp68uJNrtttbW1tTr9cz+RAzoN43t6zOfeUrlckR/8AdHFY1KqVTdZH/iJIVUpXJMjz0W1qc//axuvfU1ff/7Byz27+/v2xpCEg8Gg9YoDGPN/qV49zOIIX1Yo3wn7G14VZHtmWTRbvdBMusb6wx7EN8+8RlSpNfrWe8JgMkzuUxliUQimpmZ0Qc/+EFdd911OnHihH70ox9pdXXV4iW9JMRafg+1FZWF6TYQBrC7vjhBTfWj4MghWBN4xr1ezywGWCHm5+e1trYmSUP2P/YFzcOoQChI3D8AcDQa1a23XtT29qiKxSOamOjHdQAl+4Hn55n9QCCulZXDuuGGU3r66TnDGQB01FNfOP1Nr2senB44cMBkfbxRdNkR2JD+SQ7Q0AQ07/vE41EqlYwxK5fL2tvbs2BHhc9C63a7Vm23Wv15hAxoJ8lMTU1pdnZ2yEcF04XHA2kvFoupUqloZ2dHqVTKmi9ICJKskQkJF5nS+7dgSqnC+BwATrPZtC5MkhGbi+YU7uPW1padmuUlPu9tAUwRTAA0pVLJZBaYBSwPoVBIGxtz+spXjiqdPq/Dh1/Vhz60olisp243oN3dcb3++l06e/aoms1RTUzULSB5gA9rMzY2pmw2a5MCYBX8qVHe08YGhO3yzKr3dvqqmrXEPS4Wi5IGTCSzGglirB+ui+aqsbExu0aYonQ6bcZ+OnphfziWluYuvD5e/uO6KYYIXul02rr1YSkx5jcaDQPorA+CEqNdkGJZDyQw5FOCH6AcQLO7u6uNjQ1bM3zvSCSizc1NC+isFYK5Py7v5MlbND3d0IMPPqPXXmvrrbdu0t5ey9hwRq8lEmHdccd5PfTQaZ0/P62XXjpuoIdRSexzgBJrgP2L3Lyzs6NyuWwdwKwxfOaseYpX5hpWKhVjgxqNhp2SRiGJ7QFPH55P73n3zAmSqfeu+nWJfC7J/MpYAgB4vjGJ5wKTRUGAdQnAure3p0qlMtQ8xnOXBqeQeZXkalaVtYgVwjOE3GdvkQCsQSgADgAdiUTCJpaUSiVTDSjCeCaw9YASpP3z58+bbxaAKA0G+FMQEX/9FAf/zFnHdKAjRQNCuA8QGsQbaTCHNxqN2t7P5/OqVqtD9wegCqPLWiNXwfzxvXndfPOustmG/vAP79LExJxoACZWwa6xBkOhkMrlw3rttXXdddeKTp48plhsxABpt9s1NYZCmfegqCW/QgKg6jGOkWYr1jTqH+t1amrKDnSBbWXqB/EF0oAYR2FCXCLeceob4J1Cn2dH3IvH43rXu96lBx54wMDkmTNnbPyStwnw+ew71FNsKTS39T9zT0ePntWBA+uKRhvqdoNqNMb0xhsLOnt21p5lOp0eapICTPp9zL4l/mMPYv3xTCk8YJK9IsJxwbDc0WhU6XRN1eoRpdPTpmL2ej0dOXJEhw8fVjAYNDXQA+WRkRGtrs7p0KHzqtXK2t7eViqVsiKTwvq/N0RdeTHDU5IFw06nM9SsNDIyYo0b+/v7lugBabCseCIDgcFZvdLg3GDko5mZGQsmbEg2JZIEUhLBu9frH6UGKERq5kECAFmkLHr+juCeSCRMgmBeG2wmDQ0kIS918t94tMbHxy0Qw+AEAgGVSiWTbgjEDO2mm7NWqw354UiuHBPrR2tR+RHQpAEwJRA3Gg2VSi0tL8f1wx/eeiXZtDU1lVE2O22jXTqd/u8jkdMEx7V7WRJAjPxMlUvAIcjg0QJgUW1TiRPUAB/Ly8vGksIqI1tyP0h2HArhPaasTZI9n89nA5oonkhqeJG5pxQ9yEgEPQ5GgGHg92HrvAVkfHxcyWTSmutgOEkKgBwkZt/EQLJgf/EPEhLJyo9sYS8QlGnk4rn4Kh9g0E9CAT3++N2q1+O6667ndNNNJ/TGG0u6fHlW0WhI+/s7et/7yrrnntNKJFp67rlZfetb12tqatcCt2/QAWj45gd/vOLOzo5KpZIBDNYKrBPyHJ4/1kOr1TKZOhQKGatLwUP8AaBTaEqy783RycxF5j57fxwFdLvdHhqIzXcEaMJU+eRObGB9sZ9gHCloGEROUsaDv7+/b7/L3sJnSOGDfQMA3O12LTb7omV3d9fmTPoZmsRUCjO6tTudjvlipUHHMvtzZmbGni0sdK/XPxry0qVLunDhgs1aRWZlIgfXSZEEg466wXPDGgNokTQEsj3QADjyHCkKfHOfj1uoI4D306dPm/LGfgoGg1a4MSGAubOVSkV33/2KcrlJFQoZTU4mjEmLxWK6/vrrbb4p1h6anJ56akrHj1/S0aM5ra0dNcBCHAPYei+0Z8lgTzkmF0KAwoF7BbPPvUAa938nybrgUSfI5cQi7GH+OU5MTJg/fHt725g9788FXJPnvWUFBY5CERAdCATMD8s9YI8Rd+Pxht7znme1tHRRvZ50+fKCNjYmFQ4HNTtb10c+8oLe//6o3nrrZp06dbfC4QkDfVxbIBCw47fxTVOA8Azx8DYaDcvTfm/wO+122zAG94f9FYm01e3GhvYYpAtFQqvVshFoFMR9z3cfa8XjPdVqgxMfPVD+7w1RV17e8AuwgGJnMVJBkTwl2ZiOUqlkv8/7AdyoDr2hvtvtam5uzrxrUPIkfn/sHZUzUg3jfei29DYDOuGvnotG85b3RSFNF4tFBYNBG1+Vy+Wsw5pFQ+VKJcVmhjWD/UokEpqenjbpn2YIAvb8/Lyxvpubm6pWqzbmiIRPk0cqlTL5Ox6Pa35+3pIclS0+QMAMwJUB6P3jUosKhwfHFQJ0fBcm94WNCUCHMSNRsNl5pki1sFHce5I3zwQWCL/vhQsXlEwmbUg78i3PvNfrGbNOAmHmX7VaVfXK2dh0wLI2qZJ9kwCNLDT6IUPikQW0ewma+0KQ4hmzhqi62SfYCmC66K5HWpQGjKwk22cw0AA2/pv1RNcwXjSKFe+9hcWg2Y+mRXyedLPjD33ppXfp1KmbdOjQ6zp+fEV33XXBrrFej+ittw7o1VcPqViMa3RUJsGxRgEioVDIGhA2NzdVr9c1OzurkZER5XI5Y6K5f9JghNHU1JQ1aHgmnftPA433zAFOa7WacrmcJiYmrKN/bW1NlUpF2WzWZhYj7VHk+NmegE9UIppXut2uisXi0Gf7ZlAKBmwefmRNNBq1QoXCkcQNKAYYcz+87Id9ATBCLGB+cyAQGBrvs7OzY15GvP/dbtdYegAPLBBgHzaa/YlHXhrM8oW9bLVa2tjYkCQrVInxXAcAn8Y+TrTjnsLIs5cBjcQVPJ6wxrB+nsXq9Qajl1CjOHiF2EVRBCPn2XXiHc+CxhfPplNojY+Htbi4pieeuFUTE5MGssLhsI4cOaKf+7mfUyaT0fr6up544gldvHhRu7u7Wl9fV6MR1urqpK6/fk2vv562a+b5A1Y8o8fEDwAUoIRnQkz3QBEvP8+x2+0ql8tJGpBLWCd49j5Gco+I/b5JyPuVAbqwiIBNP4XlhRde0NTUlA4cOGDFKICXWNVoNIbmATPyjgauPlO4pY997AmFw029+OJdOnXqkJrNqFnPNjbS6nQu6sCBE7rrrpNKpSp64on71GgMGG/ULHI+oB2GmXzuPaDcX2I3OYXYTY7wubJ/D4NqtbZs/zebTeuF2djYMNab6+K71+t1LS1hpQkrGh309LAmuLZ38rrmwSlsD5UsCN/LnnT+0R3P5qDDjqRPEMCPw8+xIfHHvfnmm5bcJZmUjbzuTfyYo71RGG8ilTijavyiYuMCKEgyXhYtFAoqlUoqlUpDvhaM3CTKSCRizFg+n7fxS7B+JFq+rySTMDFHcz9h2kjgWBpgoHZ2dqxjmfPeqdy8wdwbwykEkEbYpHRNI+HxrLnHACuM44BLvFDeqwuAALz6jln/vAhIVPcUE7wAmwSwqakp81jCfACGCLQkKubL4nOu1+vW/c/zZ3wJsiFsDIlAGhwd65kdkj2jb0jgXnLZ2dkxUMlzI0nAWnp2h7WNvOzvF/cIIELl7IMjPkp84Pw9RRwVebFYVKVSsfFvMNYANMCPJBWLYZ05c0BPPLGoZLKn6elRNZthbW2FFLgyd3VqKma2Gf7tx/B4dhYZHSkSRsl/d1gu2B+Ycu/5RB3xwZkiAUAxOzurvb09zc/PW8MFzBWeQ74rXjzYDxJTpzOY0AELGY/HzXML4GE9wfjgB/Nr2vtM2Xf41ACInnEBmAEwSEY8L0nWsMTzp1hmbTEhgBE72JJmZmZMRWFoOHvee/WQKAESMNrEMd/8kc/n1el0zGLFXoKNwx/vvy8xij2EpxoCAtYflQwfKIeXYIvBB8v7EmP9Mdp4RlEk2B+lUmmooMCTTh7Y2toy/yP9Dn3gVFMgINVq47ZWaVK64447tLCwoGAwqMXFRaXTab3wwgtDxXWlEtfExOAoZiY2hEIhG0XI9bOGJiYmrBlL0tBZ9MRLSA4scD5vU/DQTANpwTXAsqMqsJfIXfhLKYLJuYwZY41TgPh8Va/X9aUvfUnj4+NKpVLWP8D1UYj1ej3Luc1mUxsbGxafQqG6HnnkCUk9ff3rH1WpxPHXg7Fi0WhUq6ujunz5Tl28mNTHP/6C7r8/qMcfv0OSLFdBRHnLBnG71+sZYCWHeaWLOInFBG87FjjiZ99mk9Li4ori8bAikXFtbW3ZniZm8f2IOVzboUObKpUmFAxGNTaWsCZO4hej4d7J65oHp4AeaXC6CpuGhAOj5yUSkhZBBHDLBgRAkoCRpzHJEyiplvGpIUGwUbrdriYnJ026IqjiF+NnGfrrEwlePECBNJB3Cer7+/tmUCdwIz20221rriIIImFiaWA+JEkQo7sHtqOj/fPZaQ7wviW6B2Fy8Z/xLHzFT7UHA+wlH2RS79VKpVLGxiCD+k5XTs0IhUI2YQB5h/ehy/TAgQPqdDrK5/NWvHS7XTtgAGmfIMt9I7D5TlyCrLdGAM64xwAYPMq7u7tDg9Zp1uK9eN506RM8Ab6c3oTH0MtAvklFklkEAAkwn4CgSCQihaNKvu8TOnj4mOIL1ymcGNObn/8dbf7ocWWz2f5Ip1hMM/d9WFO33qvY7EEF4wnt5Na0/qPHVf7hN9Ss71mnOgPYARUAdFgvkjigHdDK80wkEkqlUibzek8lKgTD2PFgzc7OKplMXvE01iwIAzb5/vw/SgprkucaDAa1sbFh10+Byr0jsWH38D4//o0siNVnfHxc8/Pz5h0HZEmDgo49RAMiCQW2jtnDDPqngAIs40mWNNQ5TEyEwaKRLxwOmyROkxHFDew8ndUkZw9kvR2GYhwfaL1eN4Yb+Z/nDmDk/3kfAPbY2JiBUpqwODWJ3yeO4r/30zHwJQJmecb8P/YhCj+uheZFCjiOUeYZxeNx8/pxDbDKPHtsNMQ37jt7gmIZvyjFhGdf2c8UxzBa2AeIwwAG2GZiAgUUL4oFvPNjY2MqFosG8ra2tnThwgVrIPZ7BEIEoENe5DAA/PUoib75Bibaq1OQGdKA7eR+QS5QPFBkkw8oSiAKmJVKXMXqAEgjV3APAHIwszQm03CFwri/v6/V1VXbD75AI296YItfORaL6cYb39To6K6+/vVPqVqNKxAYHLJA3CX+dzodnT8/p+9//7geeuhlvfjirNbXJ4yI8feNtUXc81Yamjch0IinFCT87tzcnBXPrOFQKKQ337xeN9xwWun0Ga2tHTFrwdXWN1j5QR7d0+HDa/rGNw4bTkCRJNePjIzYM3hb7PaOfur/wOt3fud39Fu/9Vv69V//df27f/fvJPX9J//oH/0j/dmf/ZkajYY+8pGP6D/8h/+gmZkZ+73l5WX9yq/8ir73ve9pbGxMv/iLv6jf/u3ftmD7Tl90iXtvV6vVstNMOp3OUIcrUmilUrHOeVioyclJ5XI5nT17Vmtra3Y6BIGaZg0YVEkGjmAN8YF5rw/dmoy3Qvr33YZURgz8n5iYGArgvoOSBcdCwOdF8iWpwabEYjEVCgWb4cmYKhYl94/Zpp4lY+HhEQMYMG5nfHzcmEsWK4GapACDFQ73xzyFw+Ghs62pFGkmAyR7zyLPElYJOwOAl2fZarW0trZm54DzeTx/TuVYW1szv9rs7Kzq9brZLkgQ/nOLxaJ1g2ezWQObBAIYFQJiu902+ZcZkjSXcF9IBpubm7YepH4BAiPAPSf4APp5ebkGeVCSBXiCGHMBSQij2VnNf/in1d4qqV1cU/jAjRacrMEhPqKFz/yK6itn1Xj9Ge1VCmpNzujGz/4d1e64T6/8z//YKnh/xK808Jh6BYD7wBG8yG8HDhwwGwB7ivuIXxkGgRdBk4RIhY+nlcTuG2wIoLFYzOZpsjcB0/w9nnP2OfsAFpE/J4DTUMb7UORQBBGbYElg7K5ubOnbWQq2rmhQwlriVaHx8XFLngBrkhmMEa9Op2MMG1MTWONM9ZBkSZ/7Cxj3k0pYb0zfIBZh6yDeADJ5BnQd82wpoCkQsNZI0qFDh6zIubogp6gHVAN42EPEsLm5OVt7/AwMEr/rn2sqlbJDB7xn149W4p5QXCUSCYvjy8vLBmqZeT0+Pm5FPTmKwhXg7ZsJYV5hUWHjIQnYP5Isn0AItFr76nalWKyocnnC1Il2u60XXnhB9XpdN9xwg86ePavTp08PFVj9YmhX1WrU9hPP2SsA5DNJFm94vt5+5teMv8d8bwgYYiwvmvHwxAP+aSyD2GCteqbZ+/0rlYqpZhyQAlPLs+c7onbxuwBRSCnWKN9J0hU7wYjuuGNZb765qHJ5RIGALH/AdqOOeNLitdeWdPfdb+m22y5qY+P4kKrhlTf+jdWNPMye4h5IMlxALiJubmxsDFm8ms2mLl6MaH09pZtuOqE335xQs9kbasDkPqJEYFl6//tX1G4HdfJk1vIUHnTfbEYx8Hav/6bg9IUXXtDv//7v6/bbbx/683/4D/+hvvGNb+iLX/yiJicn9Q/+wT/QZz7zGf3whz+U1A+Ujz76qGZnZ/XMM89oY2NDn/vc5xSJRPSv//W//i+6BgIOshSViiRb0LAvNDpMT09rYWHB5noB/pCAYrGY1tfXbSNSxcGisJi8j5OKORwOm32ATcnvZ7NZGwXFqSUMp89ms6rValpfX7cRLFRe3uflfV9IWlNTUyZ7+U3nmTYkM0kmF5NMgsGgDf2HTaQaQ/r13aLFYnGo0cpXT0gugNhGo3+8ZCDQn0NKlyLrgO9BIiXwd7tdm7TA4HkSBpuBzTo2NmaVdS6XM3DFs9nb29PKyooFPqwU3D/8vzxP/L8wIJ1Of0buwsKCBUTWHYHH20B893C1WrUND9NKgA0EAioUCmq1WpZUWY8knkwmo0gkYjK6JHtvbB34qqnOaZSDjQUMAZICgYA6u1ta+V9+Q93dmsYP3qD4gf9J42PjGp2ft2Dc7vZ0+nf/H2quX7AGwlwup8BeTXMf/mld//6PKPzsE5b8CZTI+AAdGCTmm1J8YdvwrDPMASylNDhxBMBLE4I/BAO2nX2YTCZt5iX7AmYExoggDEtLowds+NTUlIrFoq2jTCZj1gMaziSZnQPACfMB0MXHGQr1jwXE0kHMIvmTYACH3AdGGOHr49nyLIltrKv9/f2huciAOeIiiYo1g/UIkADQ4NlQFBPzGJ/DGeKAI5pnAHM09lEQwfR6rzHPj+Nct7a2rEBlDWFX4R6SeAFLnrUDePC8YNDYkyRhmFSeEUkfy025XDbvOCCV/2adsbdjsZgVtH4KBoAMkA3r5xsKUem4L3jyvQed9cK6wNsMkMGb2e3GdPFiVvfeW9Zrrx0eUq22t7f13HPP6cSJE9rb29Pm5qZGRkbs+2Yy21pY2NLTT99kTX2wte12f/STj/moIigM2Iq4H77ZhxxG8U6xibWO+EjRTRc8+5wY4OViFMBut6uVlRUDYMSBsbExm+TgPaSMYwsEAsaCImuTq72i4gEb6ibf+/rr8xodbejcuVus8GbdxmIx2+vkLbzevV5PJ04s6n3vO68f/KBlPRfsb9/kBDPM//sCF+UyFovZaLR8Pm/5EBWLe4mVsFar6VvfOqTPfe5lPfzwC3rqqfcqFhszkonvQcEUjUb17ndf1j33LOvZZ+9WNnvIChsKEn6OQuKdvP6bgdOdnR393M/9nP7jf/yP+pf/8l/an29tbekP//AP9Sd/8id66KGHJEmf//zndezYMf3oRz/Svffeq7/+67/Wm2++qe985zuamZnR8ePH9S/+xb/Qb/7mb+qf/bN/NtTF+nYvz0YS0Plz6HkM+QSgbDZrDwpaHyYMnwgjZEg6ACkCMewXCQ5QSwMRixugRSDAD0J1DzMCy5VOp818zuB8glMwGLSqiSSUSCQsYQaDQZMsYDeR+vC4wZTCWhFICNAkJBgR2CuObOT95+bmzELAOB9m3XlpXpKBbz8En+/P/afTn8QWi8WUz+ftviCxk7yv7uql4UiSpqen7bQXngFBFqaCxM1ne08TUhrAFIBAcmU0FMELWwGMANfHNU1OTiqTyfxYkUARwD3d2tqyn11fX1ez2dT09LSZ5VlTrEUavXjGFBqAFxIpiQOwHYlEFNyvq9emWWxgfvdyabvdUPXc68b0IyfWz7wsffinlT58g5rLp2zaBacX0bADkKB4Yn95TybgjMS8ublpjV3eu5rP5+37SzIrA+AJWVmSjUGSZJ3N3A9iAd5tJCv2QjQaNSkT9qLRaCiTyej222/Xhz/8YY2MjOill17SM888YwCZhhskWD8jFWaUpO4ZTT4XAAaApJgFfHlgSLFxNUvNz1EsAHpZp9wXpHTGmgFU4/G4fQ+ADfYk/z742hlpVr1yJLE0mDrCM242m6bkeC8sa9d7dmGuWetYcigwKUxhZIPBoDGD+KspNgAUgIWxsTGTjLEsAZCwJfgB/Vg5sNmQY4hZJHxYfgpJQCVNmYAT1BTvZeWeYvMCtAKIAHF8T/YlMjAxCgKh2Wzq5ZcP6Cd/8iUdPFjX9nbaciDrJRgMDvleAcvHjy9rdzeuXO56hcOD8+ZhRSkUKLywJXkQCUjh2aNI8r347oyWwr5A7wF2LS+jY5/zJAgxH2BMLsYyJ8meL3EGoEcOxS7D/eU5s3YoHvzcY04Xo9AdHV1WuRxXoTCmSGSgmEQi/XFmx44ds+fiT7RqNBpaXj6gSOScFhdbqtVCFsuYNsC1s5eJR+wD7ENYD9gblUrF+jSwwfi+BAqOS5dG9ed/foP+9t8+o8nJ7+m11+5UuXxEzWbLiIw+MZTTnXee0U03Xdbrr9+mt946Jqll95V/A1axMLyT138zcPqrv/qrevTRR/Xwww8PgdOXXnpJrVZLDz/8sP3ZTTfdpAMHDujZZ5/Vvffeq2effVa33XbbkMz/kY98RL/yK7+iN954Q3feeeePfR5Jghc+UqpjAAgbBT8lMhNNTzz85eVlY3W63a69B8mKIIn3yXtMATr+iFMqZqr3vb3+2eQwDngDkdmrV87hHRsb0+zsrLa3t+0EGYLZ1fIPAVcasMKwH4AhP56DzUCQ4+eRMfGIkVgIVHSsIw0jUeG7pNon2cKebGxsWFUJm1QulzUzM2PHF1LJssmRjbg25FiYWC+n8f+ShoA2SRng4xM0/lMqOmRoPz8ROYXAxVoCrAAGkObxosHQAQoJQgQFrgHGjnsMoKSiBxQyCgWLBIGEAE8ygEGCCYZVRW723lMYM+QXZEgSAf5ASSpXyjp/+rTGxsbsyEieTy6XM0Y0MtEH/tvFnCVz39HKs0Nm5doA/zCEsEEUSPhHYR8Bd/v7+5boYGKublLDngHjVSgU7KADCgmSGgO9AYWsGY6llWRrmokYyWRSDz74oI4dO2YA+a233lK5XLbEVa/XlclkDJCQPAG5KB//ubjmWTI80MQ71BqSK2wiAId4AHOHtLezs2PHOcP4s7cp5AH0rHfuCSwyygQ2HEAS+yga7Z+qhQL2vHoAAQAASURBVN2Ea0skEmahATBStHPtSKyAd/Z4KpXS1NSUKSGwxSMj/ROKKEqxMVFscw+IddiipEHBEg6HzQMMUG42m2YDg6UHYNH8yfedmJiwJikaVVKplPUKcP98wePZML/vfQMLjGQwGLT7RqymQM7n86ayUAxipYJ4uXx5RuXyqB599C194xsHVK/3vwfzePm+xIj9/X3Nza3r6NFTevHFmxUOxw3ksSZoqK3Vasrn88Z2spbpCaDgJ+cCcChEvO+cdeRJB/I5jWae3AD4eUWBvgnYWhpMKRJ5/oBi4gZSPRYV8ioNq1dblIgRFHKsqUikpb298I81KMKa3nHHHcrlcrp06ZKBTwrMsbHUldjVtskNFENjY2PWdAXZw30lhqIOANjJpeQ74iLFkiRj+olPb76Z1le/+j49+OCreuSRx7W1Na6LF+dVr4cVCDS0uFjW4mJZu7sjevbZ+3T27E2Kx8MKBIKWc1grPlcSH9/u9d8EnP7Zn/2ZTpw4oRdeeOHH/m5zc1PRaP/ccf+amZnR5uam/YwHpvw9f/efe/32b/+2/vk//+c/9ud4p3hYbBAkZlgj/H5UviQ5Kmk8nswmhBrf3t5WPp8f6saORCJDMgZyKoAEyZDRTNgOqHBpAJBkoBfZyRvm6aBDmsVbhsTN+/G98XLSOIFPC+8cYG1ra+vK+JCGMcQseB9wAODe/E7yJvhyDCebjkY0ZHOSI9IVAJjB3Ph6SGwEL38sbaVSscq3Xq8bQMTkjbeKoIE/ls9C3l5dXVWhUDCPL0AN6wNyEBuaZI1/FxYSywLAr9fr2fxbTithvBVMhySThWCJdnd37T6xRv13xIfr7xN2C9aeP82DKrrT6Qw1AQIwOaULmQ/2muAVCoaMNSRI4yX0R8Cm3vsJdff3VH3zJZO7ONEMJpkEQXHlkx37kEH3FFQkKYBpLBYbYvsADrATkkwKA/RGo1HNzc0NecwAM6wHJizQaMAJa4lEwsYc8cKGUyqVLDZ0u/3xN+Vy2YKyl1spelh7jDnDI0rjBsUCYH5xcdHYED81AAbUTziAkfHACeYeryIFH98DtpgClLgCS0VXMsUusRT2k1hGvMHj6xO/t1H5a+dFkejjHXHBy8EUTDDgftyaB/g0cdFYA4uKZA5R4QsxWCnIjLm5OVO1PGhGigdUsfd3d3dVLBYNrDAtBVvAxsaGCoWCKUG8iOG8H6wmhQDfk0bIZDJpnks/Z5d72+v17PjqbDZrQP3JJz+kT3ziW/r4x7+rb37zfu3uxg28wpJTxB49mtenPvWWlpez+va30wqHqzbODPDG/qWgA+Cwzim4YX8BaKxrckez2RxqKKRoZf2xPrm/NEoxAxd7HOC30WjY3vLeZYpinq/3mgKoYCk9yEZJxWbCXuQ+7+/vW5N0P38FNTIiI2H4TiMj/eNQv/Od76hWq1l/A/Grv5YB3j1TlIgVSOtI8N7Oxv0HtLZa/ZFp3npCkyV4ZGtrS81m04pe8nw4HNbFi+NaWXlAS0tbuv32izpyZE2RSFOtVkjV6rgee+weVSq3KJnMKB7fs1zPHvZTkhiTh//+7V7/1cHpysqKfv3Xf12PP/64Bb7/f7x+67d+S7/xG79h/1+r1bS0tKSNjQ2rkhqNhs3TQ57DUN9sNm3eJ6woFSRon/cBaFEt0QTFA8G3QjVIAO77froW3KmK+VxOxOGkHkZ7rK+vWzBIpVI2AxFWDNAHM8V1SrINyXWzeXZ3dw1AE8wIzt73xHglmCnuDcEY4IQdwTMg+PdgQbFKMFcNxo7gQdMBgIqu5GKxaN+HUz6YfMDzwRuKZMB1EkB4Nslk0jpESZawTTMzM0okEqpUKmq1WkPyP947vHE8W1imer1uidNfI3NyacDgu3kWHxkIpgsgBYsHW+5P0vG2BRhGPMCsN9/9zTOBtSVQAjyRQ72cBaM+mumHidGxUR08eNAsAKxpkk2v11PyvZ/Q6HW3aus7f6rOfv9ZkBg4MQS/J5My2FtSvxibmJgYGuQdjfaP/UWyAoSjSrAfYRUI3vgkKS4YGcX3Z43QVAJLC/OFP5ziCGAK+8u65ySvL3/5y1pbW1M6ndbJkyft2QNKJA3NloSRwc8aCAS0sbFh1z4zM2NyujTwW3N9JBoSOkU3xUoqlTJAyt6luOG6sDyUSiWTgv1eA+jznbEWEVO8FQFQx3flKGT8uexLaXAGPcARa9Lq6qoladhqrBc8z2g0agPdYU1hvvP5vPnWOagAEMV9JFFK0tzcnOUMQFA+nx9i51CPIDmwF6AwYHHiKE9JFttRzGjeoREHImBqakqlUsmKI1+AT01NDYG2dDpt+8ZbWHjm5BIKAfYCsYT9vbOT1re//RF96EPf0c/93Dd16tSCXn31kNbXJxWLxRWNBnTPPRXddNMZLSxUdOHCgn7wgw8oFCoYWwl7SzEMMMaeREwl9lNUYhmBLIFhm52dVbs9mG5AriKeE18odLE6+NmfFFjkf9Yt7CnFFFYOSVYYtdttOy3JjxrEKwr7xzXjk5dkcRLSintRqYxqampFU1MdbWwM7CHE7VwuZ1Mw8FTDhE9MXFKvJzUaGU1MBIaKSlhtVFtiNUQChAqFGUUSqhs539vmuL/E9UwmY3/W60mbm1mVSvMWB1Bb+rggauws+529RI70I9fYI2/3+q8OTl966SXl83nddddd9medTkdPPfWUfvd3f1ff/va3zYfk2dNcLqfZ2VlJ0uzsrJ5//vmh9yWY8DNXv6garn7RMU61RzCDMUKyp9OXTdVfXJUhtocbzSByGFC62dmUW1tbCoVCtnEymYz29/cViURsOC8AmURPoiKIkLBSqZRWV1dNttjf3zf6nWoK7w1sHwkJlhK/D/eHa/ZNOT54Ix1hpm42m7bQAds+yfOCxT148KBdk/9zqkw+k0YjGGgqVgIDXf2AQRIZVX0gELD5tAR1niseTxoJYFuQZgnuXBcVHdfU6XRsOD4yEwkdiYgxQHhw+GyGhafT6SH2mA1LooMNRtLBc9pu98+NZjYibI+f20hiBFxwv2EvJRkAwnMMsytpiJGAKSEwrq+v2wljfRN8Hyz0uj3ba41Gw8z1Jr3fdI8mH/nbqrz4XeWf/obJqrAXyL90XZMYpqamhvzZ+NJQO3ynKayXJGMGYeoYycNeYQD6+Pi4+cZhcWDBsVUgrbKffDzh3uEL57PL5bKBkHq9rsuXL1sBRMGF/A/TSAHi5eF4PK7FxUVtb2/r/PnzJgPSSEkjAgUV65BniF2FQgUGC6ne7wvPugCUAT/ENdYTiY7T82hQocuXqSQUFiQ7kmSpVLJjl1FI2GeTk5PK5/MGzFjnWGJYNyQ6rE7sEd+tTLzGIoJq0Gj0T8kh6XvbC88BFY9C2u9BvPWA++3tbRuVhLcXAMt955qJ3eQTrseP2eK44Y2NjSFrhZf1ifkUr+QP9hHxiVgpyYotvJl8V4BBf+9O6rHH/pYOH35Tx46d0623LqvTCajdDioW67/PpUtpffnLx1Wt3qIrb21WNgpM4iV7i7jF+t7b21OhULB4Pjo6qrm5OS0sLNjoKYolLGLEap4FJAkTZ3q9/ijIZDJpBWY4HDZvPuqlJGtqYu/xHYj/kAPYoyRZzIaF9D5XP5EAVRTAjuKJHe/cuUP64AfP6Nix88rlDlqRxPUx0xcSZmpq6kqRt6dbbz2nS5dmVKlENTIyUA/Yr1gLsCUR75kiwHViBaGYIqZS5FerVfsz4gOKG7EXnER88WoIe75Wq5n3H+UQDCTJcAPFwTt5/VcHpx/60If02muvDf3ZL/3SL+mmm27Sb/7mb2ppaUmRSERPPPGEPvvZz0qSTp8+reXlZd13332SpPvuu0//6l/9K+XzeU1PT0uSHn/8cU1MTOjmm2/+L7oeEgEJj43Pg4QBIchSMXDEHhImAIfAQsBAouXheRnhwIED9rBp9qE6CYX6xxdShVFNEPA4k5nk4DeBl4M9MKZSp7LC24nk4j1FhUJB0WhUs7OzQzIvIAHGFiM/TQeAQNheGrBgJlutlo1IQjIhYUHz+4YESZZU+DNAFvcrm81axXa17EWzAdKVtzQQtHjueHYAn96uwLPudrvW/cwwcH/qD+uJv8frJg3GhJBMkVkvXrxowYAGMjrCkYcoNggUyKS+YgfU0nhE85c/hg/2GibOF0/IrIwMm52dteeN/xUgTONK//71E01tu6by5uZQdz1NZiOHb9HMh39B26dO6Myf/Dsl4vEhW0ChULDjeanyYTRZlxymIMnWNnM9AeUwUFczNrAeHGRB8QfAozBlBjGeRebEEjCR9WmMi8fj9jPcT5qSSMDsb6RMPNewNpJs3/GMCPg0t5Ac8f75RhAYMkA3TKn3JMMQ7u3tWZKj6QbmiHUK4CFZwpDCFgLe+BwUA//cvT98cXFRsVjMpGySGOoCo+KQG7e3t41BRK4FKMzOzmp+ft6eqfdiAvwl2TNIpVJmv8GOAhgHBFCMYsHgXnQ6HWt+I54Eg/0RdBRWSJw0d8GW48WlSAY08TxoDGNtk9R5H5jWcDisUqlksir7D0DLvgcYIwtDJPj7h+wdi8XMkyhp6FnjX+wDhah2dm7X+voDmp5eVru9qnq9qk4nrlJpTmfPNq6sye7QGse7jPrgZ7ny4jlIg0H75NhEIqF7771XR48e1crKir75zW/q8uXLtvaQz7mfAHKIC2ItgMc3I3nFE3BF3sbWxBQJYiuvbrdrU2nIoeQhrz6y7+gFgYQZHx+3HDA6OqpMJqOVlcu67baLeuWV67W3N7CmgD96vZ7m5+eHpr8sLhY1PV3VF794l/0ZzxbmlkM7WH/YBmBxORwByR+bFBiCvIiHndOj8LLDtpPnKJ4ousipKIfsJYppsAuEB/fSFwFv9/qvDk7Hx8d16623Dv3Z6Oio0um0/fkv//Iv6zd+4zdsqPav/dqv6b777tO9994rSfrwhz+sm2++Wb/wC7+gf/Nv/o02Nzf1T/7JP9Gv/uqv/mfZ0b/plUqlzBcKWwDq39nZsYoaMAozQlXLiBJpsMnwtRAICMAwrIAP750i8JPAADGARy9V0JHOqCQ6lflvSZawfXczlbQkYyFJToDKVqulfD6vSqViXXwYpwFbVL4sNKpLkhGMEwABjw/vQ1IBJHnbANcRDAY1Pz+vWq1mctjk5KTS6bRV+l4aIzHDsE5PT5u3BzBAoxnXw+/7RM69wUNKQMTnV6vVrCpHIsfrA+Pvkz3SHBsUPytNGFS5kswGQUNOt9vVwsKCdbMTuK62g+AJpVItFov27Hm+PG+ukap/f3/ffI6w6xQBMNAEGZ4ZzJ/EnNR+Qmg1Wyad4d1MJBIKTR/QwZ//x6pdOq1Xf++fKtDtqNNq2QB2Km1AqiTzk8GY4JsDnCPN7u3taWZmxryFFCwwcYBZ2GwYUMACgI37iK0B+wYyPYDgau8ZjW6SbM4ta5Lrh7WFsfesMKoACZf1BAPM/3urgj9m0Bd5nlFmrWHd4LSXWCxmSQIg45k1Citp4F8EmLInACA0UfC8UJMoBJjiAavEoRj8HSCXZ48/EIvG2NiYxZ3FxUWLbRS5PEtYb5q5KCC9uuIbuihY+Hv+jEKFIpRETfyWZGP+yAfEYd8wyCgl9g9qBSDZy66jo6MWo1hjPA/frMN6Re4GVMNOE+Nhna8mWbx3kjiGlAsjjtUBZY59HAyGVavdpNXVMa2uriqVSl1R7nYMwMDGQ+j8/9j78xjJ8/PME3vizsjIyMiMKyOzMrOquqvv++4im01qKImHRIoiNbpGM9xZaw3MGvBgbGANGFgYWMBeeGF4ZhfQrm2sxhivBquD5JAURVEtHs0m2Wz2UX0fVV1XVuUVZ0ZEZsZ9+I/ozxtvlGbVbRjYBQoTQKO7q/KI+P6+3/d93ud53vfLZ242mwauV1ZWrBkLexKNjMQUZP21tTWbFby6umpD/0ulkk1P4IU6QyynMOK8c15ZO2xzXgHBCueVNM4h6gK5D+IF9hbyBpBYrVatOTmbzSoajVoOz2azZmPo9/t6//2Htb5+UV/4wkv63veeViAwLUYp0PG/HhwcaH19qM985gXt7+dULJ5UJDK0vMu6ez/yvy9H8x45m+Q4YgYgk7NNEYfiSlFBLuMMQ7ZwRiE0IpGINjY29NZbb5kKyV4hXoVCk0staKT9KK//RW6I+pf/8l8qGAzqK1/5irrd6RB+XqFQSN/5znf0z/7ZP9PZs2eVSCT01a9+Vf/Ff/Ff/P/8u/CwkYBgOf3oDgAlHtQbFx7Gif/nDmEaQQCceA0lGcCiwgQMII2dOHHCNgTBEk8OXkkafQgOVMw3Gt9h8wDFnpmBwaBaBviyFoAeqlQYQm6jwp85GAys65RNDVOMr48kxYH3VgNYTpga7xkFbNL8A3iem5tcKRmPT2a0kuRhCkajkQVD5kJ6/yOHmdE2AGmSDs+AMR6Avkhkcp81bAz7AnYHxvJGa4j33cH8AXb8Fat+LEg0Gp1hIJeWlgw0eLYgmUwqm82qVCoZy8IkAOZ1Mr6LwcrImTBJWD5gkCUZmEHqgRVa+2CeKSyQJC0kF2xdCJj52+7Wyu//Z+rXK3rnv/vPFQuHFInMmUTHXN5cLmdeRdYbaYpEQsIlENKQgK9zd3fXusk5f3ggU6mUjYOjssfHh1IByIdt45xKsvXwDY8Ef34GPl7OHp5OAEqv17NxLJxZSQYaY7GYAS06a/m8c3NzVrDAEnL3PPvYNxvhGecWIz9DudFoGHNOgx/nolAo/B15jtFJ+PYoEmAnscIAUAG8fkYt4I3zQBJE4cHT75vWKO4BTL7pjcQKsCNx0jjHvkHNoFhJJpMWe/nM3jdIYYqCAyhHuYDBAlzBFlL8xWKTu9rX1ta0t7dnQNTbZJrN5t8piL33c3Fx0fIMLywlEB+AEJQAzm8ikTBGl2fe7XZt3q5XpMhXAG7AMTEAoLe3t2dgh3PHnmCd2ROw+NzC5e0VnFM8kN7XzRmXJo2fb7zxho6Pj7W1taWdnR1JMrtNLBazeL+0tKSVlRUDWMFgUKlUyrySPp4SwwD8eJ35PsgZ1t773DlLXo0j3hPXWVv2xt7enpY+uOKcwoAik2fXas3pb//2aX32s8/qC1/4oV588TGVyzm1Wm2z00xY/I5OndrXpz/9jo6P5/VXf3VW0eicpIl1iatvYYe5jME3GRLrmZZAgcifk0dGo5Epd+RHb28EjMbjcVNfAO7EM54HOfXy5cuGm7B9sTckGTFILv4or/9ZwOmzzz478/9zc3P6oz/6I/3RH/3R/+T3nDx5Ut/97nf///7dMGH4L72vE2mU232orprNpq5fv26VPoEW+QffyOHhoVUty8vLxlZAZRMgYWn9wHpJxpDNz09uFjo8PLRZe5LsLu9kMqkTJ07YeKJSqaRut2v3TcMeIEFR8ZEcSR6BQMAaChiZxffCcDJ+iGRIkpqbm7PKGAmFCowD7A35niUEYFLlM/yYEVv4OPl7ABKAmuqtXq/bvFjWDpM3IJnDgXzKofWNKwToWq02I6WTgGHmCO4ATCryfD5vMhWWCZo/PPuO8Z+fR7ICHAMgSKYc5kwmY4lKmt7mRMDM5/M2+5Z1wy8EQPHd8+xLgitXVbLPANQkYoJQ4qFPKTK/oNjSpNpdeegpLa1tSmNp77lvKxoOa+W3/4WCcwmVfvA1pe99whJRIBBQr1ZUcH9fuVzOWA1JxqxgOWi1WsZCMPR6f39f+XzezhHnjqQH8JBk60gSwQJCYwAFCWuZTqdnPIaSzMzfbDZVKBRskke7Pb2HmyIUiSyRSJgHkWeA35wije5vFBKsDAcHB8asAWoBvXiDYZqQwFdXV63hBO+wZ43wR6ZSKeu+hjXnNiKKcO4ax8LA2YM5wV+LTxEgyGejYcV7dvFEd7uTOYqceQ9ySYwUs5lMxqxFfC8KAYmPfwBZ/X7fPLAUPFgPUqmUgRfOEIU4RSZniQKz2+1aoeD9mTQyBQIBAzisT71eN2UG8N/vT26wGw6H9lkpOomnnGlyEXvHx2zIAOKgl/mRsCEgONtYOdjnFHje0sY0Fe/PB8zj54dp5r3QlIU3kdiKh5yzCODwrCmWENYNG9xgMLmRijnAxB7UBNSJwWBgcZP4BevpgT1rxvuH+V9YWFAmk7HeEQgD2GhYV/ye7C8KA2IPxQx/zlnz/QbE+8FgYJ8JkqZcjujw8OP63Ode0ec//11VKimdP39Sh4cxhUJjFQodnTlzUfF4R1eurOoHP3hcx8cBzc2NZwgX9hD7hlyFtYFeB54xIJY4CbClIRqyhzWH9WS/Yk3gWftmS56N7yvpdDpGQviCxfcY0DvyUV7/izCn/3O+qObpVsVz469y3P/ARzc3N2eJkIeAvLa0tKSlD+5RJmh4zxneDgI51QsSHQAJIIBEyHgaNj4Gd2wCgLRWq2VyMeZvQDPy/Hg8GWeFxOc9UCSJRqNhVTNsEUmK5INxHcYC6Re5CTkf2QhZgiYk5DI8OCQ2/F3YDwASBF9J9nNJCDDBeJsI0ICweDxuiRqGnKru8PBw5trIdDptPp16vW4D8PEfSjK5BjaaRghftSKJdTod2zcEdaQkzxhR0bN2JEsYNmbPwSDBwHiGDEYLBodnywtwRjMJwHRzc9N8qjB//MNaMT4MBpVEsPTkZxVdztvvWLznCemeJyRJR2/9fMLGLE4kw80v/NO/c/YOzv1Y8++/aRU8Pi8CFrN88/m8BT4Cvvcs8qww2fuxNd5LzV7iHDKDE3ZuMBgYAPYgiGDb7Xa1uLhowFWaFNLZbNaeL1fJ+r0Kq+SZKdgbaeqXRNLEf41FheIQiRCgzH6q1+taXFzU6dOnlcvldO3aNQOQFMyAFJjEo6MjO8eMQYLpYN/xXtj7FE1+Pb1s7pv6ON8Uq37WM2wka+YBDP41wBTrRjHpgXKj0Zgp9NnnPj4wUg4WnrOIikMMQaqk+GX/Y+vyPQHELYpBfHkUP8QqCtR2u20juFhrng0sHTGe883+lWSMrgeBxDdiGnsaUOUBXzgcnolDACZAB/YO/P/eGkKslmS+RhhsL+NTfLNOxHTACaSBvyyB50YBgI80HA6buuNlYD4TNrhoNGrMvzS9Kpr4ybMByBKzOQcAKAAul1Z4K1QgELBCwsvQSPm+aQ4rCAV/pVKx2IBViEKFfQFZsrU10n/9Xz+i06ereuyxPT355JsKhSYxvNOJ6MKFU3r33dt1fJxWKBRQPN6faWQC4B0cHFhvDJ8DsEcBw3uEaIOEIFaSg2580SAFGAbgogqwl7PZrBFCNGeDMdibFD0w/LD17PWP8rrpwSksHc0nLAyJDhM0gQymkE0cCoWseoZJWVlZsQ3MwYAVhUmFYcDnQbIiKDabTQOw+LgYFwKbR2XPQRkOh1pdXTV6nICXyWQkTel2351OcuHwUtUFAgEtLS0pm82a32tra8saiYLBoI1lyefzBiy8V8p3KZIQOKCNRsPYSg4rg+TxFw6HQ/OOIU8dHR2pVCqZtIeXLZvNmhxMUxGJWJJZHiadqJNrZ0kA+MMIPkhDVHeAGhIZL+QUEtry8rKxUn7wOUmHqQyAQCRK/p5gzN6jQGDsFM+JooUqn71FsuT5EghJXoAFgpP3scFuY4ngcw6HQ2Nq6RyFkb78r/6F3bwE48Pv5udc/j//Uy0vL1uTFoAGIA+zT2JsNps2N5RChuDJs4GZJqAhXRPopKmhH4tCKDSZnTsajazjFxaLvYWlB7tEJpOxACvJ/KicGR+U8SDiVy8UCjbii2kX4XBYa2trJusdHByYr5hYQWIl0XKeKEC9d5TGIaTkdDqtTCaj3d3dGZ9ntVo1T6YHI7D8sVjM1gJfJ2eA61u50tZL9AAML1d6lp51JNYAApaWlrS+vi5J2t7etiTvPxtqAM8cPzr7yzefYYHAEoKcC2Bk37EniAmwr+wt4p9XZgAfqCIAL+Ib4JVn5iVcvOP8jGQyaV5p4h8gxatlsKHkHD8RBYaYHOAVMHINDLxn0Vg/inL2JlI/wFOajlmiUQ0FBnDI2aSgJGfC7ENS8NwhSCh+WA/WmWutu92uMXbEEPyR3nJHDOQ9w26yXyieiZcUK/y5H5nUbDatBwJJu16vG3vOXvYSNUU775HzTMHhZw+n02mL3b7QZNg/ignreOVKVlev5hQOh7SysigprPE4YmsfiUxHRfH+mMoDMOdyAT+7OxQK2UQdPN8ULhRBnGNiNDGmUqmYBSwej5vCIskIGOKvt4RRqPmCoNPp2HpTpAHSJdl+/Civmx6cQscjJeFXo4ovlUqG8gFYsE8sNlULDwNQc2PVSZClqoOB4VAAbkejkckYfvYi72l1dVWFQkHj8ViNRsM8IIziITHhM2K+JyAVVsH7m/hssCzLy8taXFzUJz/5ST399NPq9/v61re+pRdeeMEqfhI9swYrlYrJ8iQnkgiSmg96bFgM85JmRuBw8DncBAkCcCAQsM55pBlAGZ4jWGDeI1U+IBCwyO/xnYTpdNoOHYCS587PCYcns1eZu4kPkQCAJ47h0P1+XysrK8YWkhT5by/ZkTxhPQl4ACACCUAX0IAsP2ElxnriiaZuvfWSEomWwuGxBoO4Ll/O6LnnJne/E8TYN3jweCbZbNauq+TGI8AUv9d74QKBgMnaWD8AxsfHx3ZFHgGQrm/8ib7hxTc0EIglWccp3tJ8Pm/ABMYchsd7sknSyFD4svhaGCEKIRIH0hUACA8iZ4EzyAB/P1cWmZBkipLA7yCAMykARiOVStl7KRaLdj2m7z6HRapWq3r11Ve1urpqPlnO+tzcnLHPJFE/Lq9cLqvRaBh4Bxx0Oh2bGOLHarFfKbJp5kG1APz5KQrET5jZVCplDD1FNMwocYhi1T8P7o6fm5tTLpcz3ykMIuoRzCzPi5gWDoetyQ0GJ5fLaWdnx4oumGtADaCNz0wBg9QOUyzJCiH6A8bjsZ0ZABnJv9VqqVgs2ii51dVVcdMcYApGFwCK/YUigskWfjoMBRTAlmRPfGSdiKdHR0czc4WZacskGPYJoIdinQIWywLsNCCHveKblIPBoNnAsFxIMh83N7TBgJNXsYjwudhvgGXiSKfTsZ4PX8QMBgM7W9g3IIFg1tmDnBv8tTCGAChAJuuCpxWcQOGBguUnyJDbGbzPeSO2gxFCobDC4UWz1/HeyAuetefZwviztyAhKGTYnxRb9E6AGXyRKMkKplqtZsATKxrxDTaWZ8J+Yu+GQiFTDrAeYJfj88LAY0cBUH/Y66YHp8goJBgqiXa7PRN0Ca5UrVRS3A7FqAYApO+69MNzeWFg5rATsNbX180/BzPa6/W0ublpo22Oj4/N64P3A1mNgLm6uqput6tr165pf39foVDIJgx0Oh0tLS3ZOCJGliCzkTgCgYBOnz5tDSQnT57Uz372M/tcNOf4xgno+/jmuh65/0ArC28rEryq8Tisdj+jC+9tqP5205I7mxGWFoYAMEEnu+9GhinlMwNG2eRzc3PWRMTB41kjvxPomD8IaPEMjAcgvGAQAVAwKrAGFCWAVd5z/YPbnQBsVKM0frCnAGoAI9/li0QDcPD+ONYR8LywENfDD7+h++57X7FYX9vbq9ra2tRoFFIy2dVdd13Wgw/2tbW1oueee1jN5nTkFYUA8mSlUrGgDqPMfmW8DcynL3QYyUIjgySzKwDCkUTxOC4uLtrzpGPUN4PA2hCAAWicF9gikgvJjGfJM6fZBSDIs/PgaHd3d6aKBygAAmBvsV6Ew2FjQMrlshVVPFf82iQbADzJMhQKmWwrTQA4vk7sDExgAERvbGwoFotpe3tb+/v7to9YEyZ63HnnnapUKnrvvffMiwkzwg0ww+HkooqjoyNbAxo8tre3zaO3srJi75dzx9exB/l8JHL89Xj3h8OhisWims2mFfWsA+cGgMPPQSbHg8zzwMPWaDRmiib8tTB/+ITZHxSjxAyeMSCaMWyweZxNQDkj8JDMvQ8S9YpGkcFgYL5hvh9bgrdFYZno9ydTUyiSOQussy8wbgRVMLvsc/abJLPGhEIhU/gAJljJKGLw+mOjgXWHAPAkCnHTy8Tku06nY9Mq/HuhKK5UKkZkwPri/+ecwpDCmnowROMQOQLg5ieW+KIenzGsHzYTVCjvxUfdGAwG1gxcKpXUaDRM1SP/sacgCYbDoc06p6ggl1Csetmdfc/XUCxIsn4H4glFAN/L72R/UlBxbbA0bcJlv5BjvVcbpcY320KcYD/jZj7OlffQ+pwHtmLN8fqirEIGgBvwPP/7LAX/vtdND06RkZA1aU5h8/BA6EwHECLbwIZxcPlZ/FykAw6Ml0FoagAE8B44wB544An116PRccgGoKInISBhsOEIMAAyWEw2LO+Z3ylJ7733ns6cOaPhcKhLly7Z5sLHNBgMDHwEAgHNbazqY7+yo8Lov1Rw3Fb58C4dDhYViQy1HH9Rv3T31/Tovffo3DuP6v2fTtYxk8mYZ/fSpUu6evWqut2u1tbWzLjPmu7u7ioUCumWW25RNpu1UV7+gBEISVQchkAgYONsaAjx139KmqnOqTr5fmni/+KWGgzcSEfYMCQZY8fhh82iwYfGNlhxaWoy53O02227Ro5nw/cSjKiKYcQmP6ejj33seW1sbOmNN27Ta6+dVKORsHmDE0blPt1yy5Yee+wdfeUrP9LXv/6k2u2CmeSxoITDYe3v75ucTlXLmmQyGXv2FFnRaNSa8bB7IMEDXDwzWqvVrKiCOfcd+ul0WhsbG2q329ZxD5uJjCjJWAqSFGCZAsPfesZzwlYCk0PBASvDc8HDiweu3Z7c2x4Oh42V7Pf7plIg7/FCTQDMcr4BzIBNCivsDCRVv25YMfDdUSgNh0OzmsCg1Wo1dbtdXblyxX4n3s9wOGzngD8HnMMy85lhyQAGgG0/AomE6ZmtarVqQ87z+byCwaByuZwBPhIwgIS1JS7yD5+H+EYsDAQCdnU1UyKIfTwTACSsDvvG3xgUi8Xs+mDPYqGwUNSTrGF/AYP0C9DsxUxl9hbD5ofDoVZWVmZG6FGgkHPILYBcnq1np8kpsKCAd4AfA+j5vIABziw9BL4Rpd/vGysG2IYFAwBCFgBqeX+AVmIcbDK/gwKQAgXpW9JM3gLck9s4ozDUgE3USVhwYhJxhXwMqKJY4AzC6vk4w795T568wGsK0cGf3TjtARWQzwnwpSHQF9QUG6w3hABWHT5fOBw2W43/7OSIwWCgQqFghQRFpSQrZGjmZs1Za26So6mY8wIOAdDCAsOKQ8r4GEHsImZ63z6WItaQPYedjn3kwe6HvW56cArKx39BRxu3x1DxAHiQi+iUp7ONYEQQRIYNh8N2MDlkHAAe7NLSko6Pj62C5OYgP+cOrxPSFAkA6Qi2BAYBWXB9fV3pdNrGgSDttFotA6scVIK/bwB5+eWXTbq9cOGCJUjkGu+xWrx7U589++eKDPZ1cftjevWnC5KybqrBqk7ccZ+eeKqiT975b5TL/qa+/d8fa23thCWs8Xhsw9hPnDhhkhEJHPaOoELAJTDDJPAcMeR7f2k+nzf2mPdPsAT0IalKsoQnTWR7KuhAIGDrBcjC+B8MBu0GGAoS2LVAIGCzCAH6gGdpytCR/ADg2BgGg4GNFQKgUMVGIhE9/vhPtLGxpR/+8JN6773MBxcFTG8RmTSXDHXu3Ipee21Ov//7r+o3fuPn+tf/+lEdH09H0fD+ABcAT/4sk8konU6bUsDXw/Lhk9zf31c8HrfRXL7yZxoGw5thiBmVhT0Cn+nu7q52dnYM9GD859l5ZgumCqkZ0MKzo5jkHKIewLr5EWckId53vV7X8fGx1tbW7D0DGjudjlZWVpRKpQywwIri95NkTDBsDT5WGDrfdFAoFGzmLz+P+BAMTpqX6h9cK4vMhieO5wBLzRmG5VpYWDBQhqWF+APjyItnRZMewAprBLEHBg42lIsqGo2GTYoADMEIk5wAK6gM/DdNYBTQAEOKyfn5eWtKpSihOIVVJZ7yvD3wwnvN3mMP++dBp7+//U+a3lMvya6VlaYSML8PAA17RfGJwuBZP4oiRp1JMpDAvFz20o1SOkCcXIEnmpni8/PzdsWrL6JRszg3qAS+oc3nLqZReBDDP5AcXAl+cHBgRRvPAObaWy8AXZIsF/FsAG3sbR+fAH14YWlo81Yn4qtX3fi8fC4YXogbchMNmoPBwOI8+QFQLE3HzgFEee6S7DlT0MGIkovq9boVwHh/iR3EDIoRmFiKXdQ/FBq85qgvFJVgAFRKcoK3UAFeOd8QL6xVLpcztYWzyL5jbBv9NcSaeDyuXC5nOCOXy1mPCIQEz+WjvG56cMroFAZTe0YI+ZdBxTA3VEybm5t2owdJgcOGpDgeT254kGRspB/7w0FDeuTg0h29urqq9fV1a56hkvV+Vg4wwRfQhFF5YWHBugk5eLAjgGt8t15Sn5+fV61W0wsvvCBJ5j3js5EER6ORUmdO6TMf+5rUbeq7f/UZabymeHxsI7A4yJde7+qdF5P63Fd/Ww+d+HN1/9Fv6eXvTefwzc/Pa319Xf1+3+S/arVqM12xHJA8Q6GQNRAAOPxhODo6MlmanyfJmBiAoK/a2RcHBwc6PDycue2FgmM0GlnC5TC2Wi0dHBwY6wQLdXBwMHMN479v1AjBBRaSpEkgARzyObFoADgJFPl8U3fffVlvvPFpbW2tajCY3leMMkCgmuyhrL73vV/S7/zOM/rEJ7b10ksnbC3qH1whGwgErCmOZgf8k76hBKBDsUeRACNH0vX2Fj4/hY4kC9qAtUajoQsXLmhjY8OA2dzcnA4PD23/+pucWHs6/VEGmBxBQQALDZDxwAGmU5KdKfysvF/fWFCtVm14PIkUbzlnDqmNhjdAMxMySFgkHmRDSbaWNLTx+2DeOQ+AX3+pB/5j5u9KEx8Znk0+J88VwEUXNN+DauPjHWPgvKUDlo84efr0aWNVsD1RUK+srCiXy834xbFJUNQCrFgfZFmSMwUGZ4pYgr2GRhg//YIYDatIEYGEvru7a5MDeG/44rxPk7jCPiEW+dmrnm3jvQIuvXrDuefncrZDoZD5MGnaRblBukaCxvbCuaVbHODvfa/I1yhvnEsYOxq1AHf0ChADfSFH8xLKB8QBDTBMXxiPx6YO8XPIpeQwpH5iPoUyTC3PC6BLXuOcEE99bwLnw3v7ISZQ/yCi8FYTx1EciPGsH3sIHzRSeDweN8sMLCoNYbCTPk555YTcze/2FigYUwgXPK+sN7EG3EEcoagDX0QiEQOCsKc8Pz9eChWJeEVB4n3OnEMPbokheIFRaIgxnGWsKpwLMAqzez/sddODU9gmPEwwIMgKBEyqe/4MBobZonwP7Ao3IdGs4ed/UsVBa8P+8cJLCBtLAuW90FyCiZ3fTcVB0G02m3a9JkGFTjsvXdNsgE0ByQnw7MejIOHg98ET9slPxBTtX9ef/eknFAouKZ9fsGQXDM6OjtjdPdJPvzFQ6g9/Tw9u/JneiH9Rzeb0JhxejUbDgh2BLhqdXgDgGQaCOM0nfhwWzATsCQeDZ0/QIKHASJD4AQ7ZbNaetyT783Q6bWCJu6C5QpNRJXhdqYopQqhwR6OR0um0SdYEb8AzSYXxR76jl6A/Go10yy1v6vg4rp2dB5XNTkAmTJVnl72VpV4P6d13b9V9913UT35yYP46AM3m5ubMPgEse4CGREuA533Pz8/r5MmTxtzBghPgCd6AcSYpwDpwNgDB7Du69Hl+nF9+LwG9WCwaC7q2tmb7CLsBo4aQrDyDDZAlAfju3Ha7bWsPm8K0AUnGunigCgvK7wCoVSoV8zdiMwBo46ElAfHMAWx8HawIn4Fz6r3k3ptMUT4cDq3g5udJsveObYDvA1xxTvhzgAD7l/MIIMSW5GVHnh8gg89L7EExADjB5LAXSLCwQDS5AaZ9EQXjxHuDseI9ekADKODrmFIA28vvx0qEqkG86Pf71gzmfafEUrycFDzVatVAIkCIwsx/foow1om+ANYdoM1+w3rhLRwof7CHvF9+HyDWP6der6dsNmssN888HA5brohEIjP2K/7hfUGqMFWCWO1nYlNEUtQQo+jf4GcCwjgb3grAevG1EAQoajDj2ErIA37fs989A8yehJWFyVxfX7eYR06CbUSqHw6HxlRLU1+zb0rs9SYzt7PZrBVoPAsuLvDFI7mHy2ggCmAwB4OB4Qditm8AxvLh/dOcbwg21oQCmufM13M5wsbGhiQZq0qM9vmXv8eWxfMnRlEkE5s/yuumB6cHBwczc8x81zMVL4GYzQ0TgSwOK0jCYuNwcGg46PV6NicRpoHKUZL9m4SNnLa3t2dVH+wso0CoCJGyvFyA54pk5D0eSC0wkUgBpVLJKjr8lrC2mUzGzMvdbnc60ml1VZuhb+jd9+9Vo55QMjkJbPfee68efvhhk2rq9bqeffZZPffcc2o0GvrpX2W0+Q/n9cgv9fSL7y1Y4wRSEVKvNDXXwxjT+e2bVDj8PAOsB0jPMGbZbNaa3mBffCUMe8IzCwSmcwl5UajwM0goHC4kP6SwTCZj1TGjM5D5q9XqjOTO+0Dy9eDGAxXWhIaZXu9Ad9xxXa+8cruq1frMBAF/J3mxWDSmFQn25ZcLeuihd3XPPUVduHDbjB+O/cIawQAPBgNdu3bNAhHJF/kTwO79q1TJ7XbbQB0AisYx5DGeK2eUREuAxZtNwqOII3GQoAjGSL/pdFrFYtHYb84dIBeZG1UEUIJMD0tCwl1bG+mJJ95XPn9ZkUhbo1FArda8zp8/qUuXzkiazi4F3JGU+fwAPmS58Xiscrk8c/Uj4AtZkc/LOCNYKUAS8YkEzXoAOIvFoq0zjFu5XDZmHpau/sG1xePx2ApG9qK/i73X65mFw09quHLlirFqMCmS7BYbRuvAluIPBsCyNplMRsPh0BqJOEPEPQo2mB4SI/YYmEwSPAwqMRwQx/QOzwAyncPbqZLJpPr9voFo4iZJHg80RYg0HSZPvOCiET9WjRjPOtApDuAHQORyOVMOJJlywY1ogUBA1WrViAevqsGSIRkTwyQZycF7BNiyDsQ+QBJ2AopT1gXQyeUsgEQKD1Q9iifiCzFkeXnZGn/Z3zzDubk5Uxz42cQRcjM+Zop5wBPSeiKRMCsDZA3fX6vVzOLC+8Lvy+QclA8af3zhhicT0mBvb8+mFAAkfaOnVz1pVvSzcYk7sOesP4U7hb5XLphhDLgdjUZ2XqWpH9WDfpoaOQu+MRbSBEsg8QvijkLe+5cpligaeX/4VlElId8oQj7K66YHpwRRFhTvDJtVmpp9qQK9NCzJfGY7Ozvq9Xo6ceKEotGoNjY2LMgCbkmEtVpN5XLZgIv/GphCQCVMAF4TDo9/4FS5HFTPRlCJ0kDEvbr4QxgdwVgVZKtarWb+Mj4voI1Nu7y8rKd/97Qio5q23jmp06c3FYlEdMstt+gzn/mMBUlJKhQKWl1dVaPR0Msvv6zy1p62u5/VbSd+rBcDn1YwODlw+HkAxtgSQqGQscrMJiW4+25Ont9wOOkIJtAhL9PYgJxDUkeOg3XloJDM/ZgoqmX8pEx34L8rlcpM1UxA9tYB2HfYsmg0ajdZYStBcgNc3MgmIgV2Oh2l04eKRkc6f35ZrVbTOkcXFxd199136/Of/7wCgYCeeeYZvffeewbsJKlYPFSxuKBC4VDnz4+NCYQVhi3CWyrJgB9jiG4cucbnJ9nC6vlnwFByWKhIJKJ6vW7MA5YOgqL3W3mPNJ44xkkBnjz7t7e3p1wuZyzIeDw2/zLPFqaTn4k8hVSHRDgcDrW01NOXvvS8Tp+uqN2O6urVUzo+jms47CmTOdTHP/6mzp59WxcunNHPf/6Aer3pHFBYJYoXZuQuLi7OXPrATUYkHpQIgAmfn5jBXvDebIA568da45vEbkAyPTw8tGQKyMBjyrkHLFEoYCHy7JdPTDDnxFPOUzw+uVtd0swoPZI63m084uxDPruX+wEkftqIB6Xz8/MGcgCOJFfsJgB+zhksD/lgeXnZrErsf5QJVKlEIqFcLjdzSQCFIgCDvEEi9p5SaXppBh5ers6EheZ8hcNhZTIZu1yFZ/X444/r+PhYr7zyij1X9hI5hBxAZzk2DkAwdhH2Iecf1ms4nMxApvHRM2/EwmQyaYUs8RnFL5vNWuPk9va2FZGM/GP/+CkdMKbNZlPFYlFL7mYzSTMFH4UQzw8QTT6ErUbp6vV6VoCkUimznwACeR/9fl+ZTMZ+Hs+BWOqv+GX9/H7n2cFQczbYl3g1YVUpJpLJpLGNviEJBZMYy8+H1PD5h/GHPBfeAxI8En+r1bK1zeVyOjw81O7u7gxQZ14081PZx6wRuQIiDhAcCARsCgZ2BSx75M+P8rrpwWksNhmRA0vCDFPfWECw9UwqgDaZTBqYWVpaUqFQ0IkTJ2z4sve4YMZHYkamhn1Ddkqn0+ZVBJxR/THXdHd31w4kTCoVlCQDta1Wy8APTI/3sJDgAea++xd6nkCGhD8ajZTL5ZRMJrW9va2V5Stq9m9TILBuzQAPPfTQDDCVZJvy6aefVrFYVK1W06XLOZ26s6zDo/PS+KQBUZ4J3ydNEhLjiRjYfXBwoKOjI+veJ8DyvchDvhOa8TWJRGLGJ8T1nN5TB6sRCAQs6KTTaZVKJVsjEhzWCoJqsVg0CR/ARHJAbkde5fnC0i4vLxvwBZAhpeF5pdo1329qUhGHw0tW9SIxhcNhk9PYDwBb1mAwiCkWG9pa+OfvPVEkycFgYNU9IIDABhvsvU0UZtVq1c4SLDF/n0gkbMQSiYiATpAm6MPccMaQfVdXV63wQtIdDoe2zrxPmIVcLqdSqWTzPin+pOmd5r4RZH5+XoVCT1/96usaj8P6+tdv1zvv5FUobJqfcNLEcUYPP7yrJ598X6lUTd/85uMajRYMQDI+CyYSIAfIlmTD/Flvkj7/cM0pEiEdufV6XSsrKwauYQwDgYA19AFQAeUAuKWlJe3t7Vnhx37r9XomPaPuUGxwEwyKBUmKfQsg8r7aeDxul4bAvPkxTHSL89+wOpwp/p+4CQhln5IYaTwirhGHURwmZ2byGRn4nk6njcnh2VMssner1arFAMAleYSB+5xfr66wzgAu4jagEBAP25nL5cznD9uNcoS1jBhDQQ2QCIfDpgRgMYKRhNUFIMEKY7eg039a/KZn5t1S8KAWAQaJdZ6JRn3k/yGFisWiyc9Yujj3+GwBUdjTGEEGSGNvcT79M4asYZ4u3nTiJt8HW4jsDyD1Cg3sup9Ww3uG0PGXQHBGmZ7hJx3Akg4Gk1GOrAEFEnmEOD2JJ/OmqPAco9Go2QmwRnH2bixesZTxOSiEPTPtJz4kEgk9+uijevDBB3X16lX98Ic/1N7enpFzKCGSbI+jkGFZIzZzDvD+wz5zfigQ/0NDlHtBtRNwuB2C+7Xx+ABUqOoBrBxQScrlcspms8bCeg8IND0b3t/yQaAn0UuTpEgnMj4WKiMqFapbqH7+ni5lD1ZjsZh1GFORIb0iQSHbUAXRVOF9rQR7APXR0ZEiwZAG40mzxsHBgfL5vDFiN75gd1dWVibrN/xgHlsqov2d4xlvEMGToEoBABChoUKSMV4cAIIrgWkwGJjfj+5AmBOuhkRuo7prNpvmxaFBzDd+NJtNCyqSrLDxzT98LYkDq8Lc3JzNrAXE+65wWBv8WgAxPF5IWkhIEzvKZI2Hw2M1m0EDVtLkJp7vfOc7WlhY0Pb2tgVv9ufkd4/UaEz9XVgOSAS5XM4YHXxf7EuSLAB7PB4bCAZE0GxI4pGm0hJMP2ew0WjYjNpYLGa+XZp4vGwIa+iH7GNfIRFx/gAysAckLRgtEgTJS5IBbgZWBwJ1/cqvvK1uN6Y///PHVSz2bYoG8uFEtkvprbcKqlY39LnPPatf+ZWX9P3vf0KDwVRCBJBK00YUwNz8/LydSWwxjJmBLcPP7jtnvW0nl8tZAwlghjjRbrftNqlsNmuJHMkbEEFBxHnGO4ZFgniAIpPL5cwCQXMScYYCgXO5vLxsjG65XLbfzXNggodn8ZCOsRsR34hVgDuAK+ePgnJ9fX3GmsXeAQhRvPOeARWwtKwD7B4ggSKV/TMej2fWlTUhiQcCAWuqxe9KnCXm3ChZM2CeZ02c6vV6tv5HR0d65ZVXJE0BBP8G5CDnQkbweYijsKAUO/g7penAd2JgvV63+EVeAmxI0xFPN3avc8MZI4ei0ag9b97P/v6+ksmkMaycUyYO+NFIACV/MYxv1MIC4AsC1hxFjs9PnibXwOjFYjGz/pFzadri8/FsA4HAjEUDXIAyQzGAMkKxCOGyuLhoBSbj7fr9ySQDrD832ry8RQgyiUZISBNiNAAZgoW1YE8vLCzo7rvv1v3336+1tTWdP3/eZrwSKwGjkqwPgGdCkyEqBPhHkp1l9iXx2n/Nh71uenAKKKOqhTGZm5vcmU1i9d41mCBAJyAtmUzq+vXr1niDwZmKe3V11TYtG5wHwfBhgiYTAgaDadc01Q8+TEA1mywajVqgkDQjpdFVSIcyjBXMCmZ7DhPVODIMh2kiZ04AIsOwR+OeQsGBSQfBYFBXrlzR+vq6sQ68Op2O3n77bR0cHEy+P7IkSTpqtNVqRYzJJdB6YI8MymcKh8PmGcTneHR0pN3dXQPU2Wx2pqnJBzH8c9lsVtls1rpdkUXotqxWq5akYYMI+L7iZK8QfHhOBC5YFWRK7k5HHoFZYo/xfVTCNHvRyELAmbKpAw2HQa2vl3Tp0gQcVqtVCyDnzp0zZhKWEaklkwkpna7rrbdWzUDvkyWscDgcNtBOcYMchdQH2PQdnARggBCTDbAFIO1S0ZNw8VQDZmGYOS8MWaf44FxRyUsyJgSPI4UZFyPQyEbwBnjDPAFi2Rd33fWm5uYG+va3f1m9XkC5XNh8dnTrSzJgXSwG9aMfPalf/dWfaWurpb29FUuONCl6dhK2jv8GvPJ5yuWy+v2+Tp48acCIGYp4YT3ARnorl8vK5XKSNFMwwaSy1nxu75FlbQaDgXVS8yIekuQpcCm8kUklGTNLEY60zDxWuq9J1vl83uwEeFgBnSRdYhgACZmVBIylg+IGkIcHD4VJmoxvazabunr1qsnzvvmPGMfnJpkimePTRY2ACQIgUVRjF4AVh1HFThMOh62vgM/sPbgAFb4HHzSxgYa5G9U9Yjjri6WEdaMREnANgOJMe2CHLSadTqvVaqlWq5nChNzNM2M8F3mL/IRFgP0lyew4+GEp1L3vltiH8khxBgANh8P2jEOhkM1SlmRAEXKB+O0b0vL5oFZWmhqPj9VuS5XKvI6PB1YkQyB4PzujsiSZXcJPFaHXgEIDlhpbhSQrBCgQiJ+SrGGXK8wZQYciyNgs7GOcM7BDIpFQoVCwxiiUW6wjeGwhVTqdjl566aWZWEQhTEMe+xCMxKUFnBXIMd9YiCpEEYhiy/OhOPmw100PTgOBgLGlVMo05YzHY6vYuMbPB3CqAdjAeDz+dwIXHaFsfgbAe78UFUM2m7UNSODlfmhm1rGpAD5UfDArbHg2DPMhK5XKjFRJAPXyQjQa1fr6uiUM2GKSw+7urubm5rS5uWkyRjgcVquTUDb6fbXbDTuEP/7xj5VOp3XfffdZUu10Ojp37pxef/11m9O5erKrkUKScorHp53SNGYhy8I20gHrBzXDYA8GA2uMKRaLM80CBEoOFhUrw6+5OpJAAMihKWEwmAw69t46kjCeRGQwZGj8ojQM8d75HFSfrDeFCAws7DeH3U9dwGMEeGDfXrp0Qg88cFU/+UnO9jiMsCQDfYzRAlQ+8cSORqOAzp8/pXh8zgIGYIdRKBjqkZ9hJnwHOQlK0oz38UZfGw0JDJgmIRMMB4OBVlZWbHoCiQZQhQ3D+1BhbUmA3oMMu0eRAiteq9XsxhPYKtaHtc9ms+p0Orp+/bJuvfW8Lly4VbVaSOHwdHwWQId1ZmrGeDzWhQsrevzxRd155wWVSmvqdDrKZDJm3YA5ANgCDPzYHcAb5wnm1fv5AO/coDYajWzEFb+D9aeAwvOO18t7S2FJfOMYPxdWicZOmrBI2h5A0lgHG8z3eclfmk5PYX95/yl7CYaUz42SBRDEf4oFg8QP+Lh27Zqxav7zYQkAHDC1gkIL9g2LCfmA80iy9rNfQ6GQXRhALKXhFnb6+PjYJHN/3rEYUWAwyoufMxgMZiaQ0OBFnIEFA9CRZ3g//ox4jzMWL+RY7EAoahTiNGoxExqww5ozRzefz5uH2zfh4EklNhCnvEWEn8u5jcViNp0AFYB8yf6ieOHZ+g53fg8WMOxBk30/0MrKju6664I2N68rGJwFSVeuZPTqq5tqt3O2BgBCCBDvMcb+wNgxGGvOh88TAHgsF8TAg4MDK17JYeyLG5lvzi57EpKBswm5gjcWoMheovNfkpFHzWZTly5dUiKRULlcVq83mdwgyRSOZrM50w8BSQFhxj5vNBra2dmZ8dDCtLJOKKQf5XXTg1NkbgKor8yvX78uaTq+BnmKIfF4ODHBAywJFDA8VLrVatU6pTFQD4dDXb161WQcpAVffZOEkXBIADC2gBtkB0ADSRPWhMoN312z2ZyRt9hIyWRSpVLJ/iyXyxkQRV4j8B8dHenNX2R1+hOHWrm9qHdfmM5h/NrXvqbDw0MVCgWNRiO9/vrrOnfunA0LH0bjOpn4jooHjyiTuUXxeMtAIwEajylBGQaDpO8HTQO2aSiiQx82wG98xnHBDpdKJZNACJYUKCRyOpklGSBMJpO2D1h7mpCy2ayxWr6CpBmGvcXPJOmSvGHeGo2GsTAw9VTggJNSqfQB+5TSf/KfXNddd9V0dHRShULBrCkwN7wIToFASw89dE3vv7+h4+OgWq267U8fvPB30kiF3AWwQRoCDGADoCkBRrRSqZhUSuL3hnk8auwFCkDkZMCLbxgBOMFcAAzwdYbDYbuqU5KdI1h4Pz8XfxnsI8mgVCppbe2i4vGezp07YV8Hc0WhSALhc+Anf/PN0/r4x99UJPKIarWaea/wPcLae+9zMDgZXr6/v692u614PG7NcoBI7+siHmCJQd6LRCLWxIEfGIkd0OH3I4mQc8aexffti4zhcGid9oBOmHf2MAUdbDrAlLhFcxafg+fCLFfsBul02pIuYIxOZs/+8HMAxUxJgVWEzYW1lGQqQDwe1+nTp21WMvseuxQxFfWAQqZSqejw8NBuUqPxy9/1DgtIzDo+PrYZ2zBisKGAb0gJmmtRIVhH1p+vo7Bg3QHyy8vLxhqiFABUALMUROQa3ifPA2UEQMqzpnGW88J7gAXzTTjk10KhYP5SPOIwzKhPWHXoEGePs69ZD08SYW3zs3ixL3HG2cc0ZgYCPT311Pd16tQ11WqLev75h/Xmm0nt7x8qGOzowQelxx7b0Ze//Kp2dpb17W8/odEoPGOtoyhYX1+3s+mZVN4zMRi2EfnbN5VBHMBY+vGP/DwY28PDQ9vfqJwwuhBMNJ+SJ7Ec8m8IE2bS0txaLpfNwuPjJX0R6+vrunDhgsrlsq0FrDJ9GNgeUEewHrAvWA/eP+fxw143PThtNBomWQL6kPXS6fTMpup0Osrn81pdXbUA7z1aDCmmkYlggr8UI/NwONTq6qo2NzetwYnEzAYoFAoWWKi8/IOs1Wr2kL1E3+/3tb29bSyoH+shyaos5BwaOBg3sbu7a/MgYYc5UHQ6A1rpbiw/X9bZp57Wrade0Rs/fcIYhZ2dHX33u981zx6mf4qAjX+wrsTg/61nn/+M2RGomBlZ5atAmCESHbdLIPnDUCI3IR1TPOBf5f9vlBLqH9xr7g3wgMHBYGDAiGdx+vRpu/ISHxBDr5HhSFIA1WQyaZ+JZ0JQYg8AugHPNyYzX5mSvAAbe3tZvfNOSl/60rv6m7/ZVL9/q3kCaWrDJzYpfob6x//4vKLRgV599S67WYvihe5OKm9AHpU/P5Nr9gCbzEWE1fKNFHy/JFMCsG6QVABqWB3wNu7v78/YVij+AN4kJzyXkqxYGw6H5nGkcge4Mc7Ie4RZWxiqa9eu6eTJfR0czGtvL6y5uekgfc41SRhJnKQYCoV0/XpEweDrkrZ0dDQJ2MjGMF7sR2w4gUBA29vbdi0p7DAePRIAvwdpFQaGBkx85pwR34jAz4S9wEvGWYQR8ZYkfhaJlKYOOtCRcCnS8XmjCFBso/j4opyGELq6IRAowuv1urrdrrEuMGSAKpg/Chw+O88b5ooCjz1DvIb9k6ZXZ8IsFovFGVKC+AtAAfxh5QKsY4Ehj5BT8JXz/v0cSsAJ1hViIt9Loc6z559MJiNpWqj5HgHAHe8XywuqAQCDcUs0WnmLjzQBVnhopUmxzkQC2ElsVlwIg2WL2HojqYCcT1zzINvHXYoS71H0fR4w37Ci7GGKfM4AcWQ47OrXfu2nWlur6Xvfe1LvvZeXFPiAKIio3R7o3LmUrl27Q5ubB/rVX31e//AfPq8/+ZPH1elopreEeA4w7fcn0xhg9CnAOD9YjSA6IL2IZxS+xDs8msRISBLsSKhv4XDYYiZ7gefPn/FME4mEWTv29/dVLpftzPiLBGDB2YOoUTDIvBd+lr9qmuJsfn5eq6urRuQAsr19zDPBf9/rpgenBCxuAsJoTNXKyw8Fr9VqxhwMBpNB37AKNE+xqWDhqMhTqdSMJyscDuvEiRMWMKmy2QiDwWT2IL5BP0OQg0gVg+8IgHNwcGB+LAKF9xoRgJHJh8OhSqWSyVt+tiuJsVarmaSBtDMajfTD76/ot3/lZ/r079yuF/5y0w5mvz+5bxwvaig0mUO4dvZufXzzv1K5eZuuvJ9QOByyqgpmjGqMA05gREKAxQWwxWKTcVkAWSo4GpHoXhwMBuZpRZKPRKYjrPg6giOAjAAOK0ZARGrCjwtYhWHBZ8f7H41GZrfgcJKo8E4BprgidzAYaH9/30AeV91K06sD2Rf/9t/eoj/8w/P63Oee0auvPqZO57QODwfm8SyXy1pcTOqBB0b65CfPK5M51re+9aQajaRisaknzN+1jATOPiR5kWCwR8BEsPadTmemkc9X/pwxihdfOAEssFVQTSOhSdOqm98LmAd4eS8bgZOkyM/i5xFke72eMfveY8j7i8fH6nSCZlFgmoMHeCRZ77mbFE+9D/ZvXfF43iwMFFsw7Jx/bA65XM5YLBgq9glA2jeAccaRlj2LRaFMIdZuT2Yzr6+vm8LCPkylUsZ8ESuYuwnDCmtFEQM7t7+/b/uTWAErSCLCaypNWHbAG4mPs0dSAzwT5xj1I8k8re1227yRnrUikQLy8DSShBnKzvmCBQassd7EhY2NDQNMxHHiMTmAn8M/TIKgkQuGmLPb7/e1s7NjwBdygr2VzWa1uLionZ0dWxM+F+sFEMAz74EivxuvdrvdVrFYtLxEjwWfBxnax1yUNW6ggvlHVpdkOQnQyHrAYjOpBpaQPZFIJAygecBKjMQ3CzMOMKavgUYxgKvPY3w9IC0QCFhB/eST57W+XtG3vvWUdnZyarUOrUkW0oJ9trOT1Q9/+EX98i9/S5///Fv6xjcesNzN793Z2bFihDUBQHqViffFWpNrYZHZ13xerFaAa18gQuwQF7k+uVarmfXAK06oOigH3sbG1AHOj/eOekafqQmlUkmlUknhcFi5XE4HBwczzD0YizMGGCZHkFMgG/6D5/SDF4wNC8OBxEQNM7O8vGzem8PDQ5VKJRt3g58LMOJ9Rsw8rdfrNtft4sWLJkUhOSM3etM8lR7yE2CPgAZjmEwmzXczHk+uS8VGgHzINZK+2aZYLM50+MEgc2gDgYD9TA4BnkmkE7xLr//wujZP/67Onvm3+sSXf1nvvvExNa81bTMjewzm5nX/L+X0yMr/VZ1uXN/5i7s1Hk+BAgHFM09YLmAiCMZUzSTTwWBgd1UXi0WTAanOI5GITp48OWF7y2W7OpFECSNCEMBYHo/HDVwir8MqIENns1kD7TA3eB0BR9gRYHqQZyuVigVkTOwwTYeHh9bEwp8h38EAwmIyt6/ZjOtP/uQh/c7v7OnRR3+hhx56WefPb2hvL6F2u697723oyScvKpM5VrWa1L/7d5/S8fGaQqG+JUOsLlS4fMb5+XlVq9WZKp2mHpI5UieMN3uZgMf7J1FKk7E8e3t79vkJxgRt2DpvfaGDnp9HFzggnHFh2WzWWFj2MSw6TDfsHGwkhRlgFrtHIDCvubm2FUU0xrFf+Iywap1OxwDfiRMkj8lNUARtwBo2HF8osQY0nQDwAJtIpJ4tASj4Dn0AmzQFD7A9ACXPiHivJU1TFA8kQTybKBGtVkvlctm8ZKwr74tn0G63bfQdPjtAEKwXkyyk6f30NMeMx2NTbngvPs6wZ/ylBb7ZyLO2vpmUryWGA34opHiuJFf2EwUGz8XbsWgsIb5Eo1HzYFKUILtL09FlPI9+v6/Lly/bJQWsCcw4AAE5nPzhnx1D23kfwWBAhUJJS0tFjUZHGo1q6nTyCgY3bc8CxinkYM9Go5GdRW8xI/9JMgBLUUKTGPuH50CTDs8chQLABHiisOUsMrwd8AfQgpVHhZictbCx08QeQPPESx/Rvfde0auv3qFr19IKBKaD+NmXFIcQBvv70vPP369Pfeplra09oEZj3safSdMudYgu/9lRm8hvxJp+v2+X2qA2SLKzRMFQq9WM8KC/w99N75upfO4htlEAFotFU5r4WoiWpaUlG8Xo2V7why9UDw4O7JlB3C0uLs5cNuFtChA/vC9iPQUb+fOjvG56cArblUgkDPTwkBgs7pMCNPxwODT2C8YjHA7boGjmnEYiEfNy4OkkKFEdc7gBQhzGWq1mdD8J3vtFaH5A5vHBFr8rchaBAsoekCnJJC48KjANa2trxjKywRcXF00KlWRyTbvd1it/3dLw01/V2bu/rk8++ANVHvwH2i49qOPWCc3NR7WYrmsj9i3Fh3+q/fod+t437tZ4vKBUarLNCIQcbgoFvLl486imYUuDwaBKpZIZyNPptLHBNFL54A3zzXpJMu9Xt9tVLpfT0tKSVldX7bIDL/9RpRJEYT4YD3VwcGBjwDjYFDkknW63q+vXrxu49EmTiQoMox4Oh1agwD6cOHHC7Bre7B4MBg2M/fjHJ/XTn96u+++/pjvu2NLdd7cUDI7V6YS1u7umN9/8FV26lFAsNqfFxTm7jYhEDxCUpt2WnU7HRhrx3nnBYMDwU7ixX9lboVBImUzG2F8SLw2GPpgzW5ZZv5JmbkaCAaPipsEEBs97UJFac7mcqtWqzVHkz2Fefcc3gZVO+GvXQjp7tqXl5ZbG43nbDxQsvGfAylQ6HOrWW+sajQLq9VYUjYZsXxE/SKwUp/hG5+bmrIBGAsYzBxMCS4evD8A6Ho/tZi2SxY2WI4o3mBsmXAwGA7MUEd9SqUWtru7o7ruvKJ8fKBweajCIaXt7WS+8kFOtlpnxpXmAEQqFrEADBCeTSa2urs5YKRqNhk0DoGhdWlqSJAPeKDkkMuIyiVzSDNBiD6D84LUFhMLSwn7R5MH6szfo9qfwh6lDzsT7R1z1n58Xa04eIW4sLCxodXXVlBmKY9h41AqAkidUKJwp3rGHwexPYktP999/WY89tqtc7lj9fki9XkSRyEDR6Ns6Pn5JFy7cocPDWw3sAGDwFLO/IUc48/RnoESRsyQZ0OUMIs379cabD6gDYKGkeeUGAIOfkUbH+fl588L7piveA8oVtotUKqXHH99TODzUO++cmWk+Qzr3XlsaPycFw2mdPfu6Hnjgus6de9TOLhYtbGDsK9hRiB0sGsPhcKYbnhzIWaETn5gwGo0MkzA2DeYRoEcM8bG82Wza85RkDdV8XhQQ1hdc4XsjmJFKnPVd+75Y4eyz1uxhPOA0RbJPKSz8e/4or5senAJoaO6p1Wo6efKklpaWrOqHWYNhwCNFRU9wYfM1m00lk0kDGxwiLACwkXt7e/Z3jI0CZJKwOOD8HtgHP4OvUqkYeyhNZVkAsCRjxAie3oNC0wObBmZgfX3dAgr+UuRwNjeNV3Nzc9re3tbbz7W18+aXtXlfXffc8Y4eyn/f1nqoqHbKj+nnP7hF77zVUzo9Vj4ft8NGNUuVxUGNRqM265QKFfDNCC+SM+y1l9d9tYxkiscMlvjg4MCKE8ANUnW5XLZpCkj41WrVZDnGbnl5+ODgYKZhA48WviyM7NK0o52muuFwqFwuZ4GW9fdsAdIMQRsvMF4qWNSDg5F+/OOwzp//mEajoTqdlnq94YxPjgQOOJFk+ymTyRhIpfnIzyak+oVtRq7ijPBMsGwA1rLZrHq9nq5cuaJoNKoTJ07YOBQKNGQoJHpkPXxMFHp8fzqd1ng8thm7sVjMEri/oWd/f9+YK/YFlhPsAcjslUrFzko8Htdbb0X1xS9u68EHt/X88/eZf9JbXwB/nKuJfBzVY4/t6urVVR0ezqnTObSGGsAIiRTGnIQA24gcmkql7MYgWEFYeNaYzmGsFB4se6sMSQFvJbIhv5sY2ev1dPvtW3rkkbeVSh2qWExoby8tKaaFhaHuvfeaHn30ki5dyuillx5Xq5W1BiS+3/sNGWtHIY3SxOQEuoKRmikukdYp9GkYOzo6mmk8YtSOv9AA5hOgjn+uXC7buhPTifsUkxQ58Xhc5XJZe3t7tlclWcEPm2pK0QfgFB8vsQj2V5KpPZxfSQbMUCEAPMTFwWDSBOl9oOw15H5sIJP33dbnP/+iMpkDbW+f0ve/f5e2t7OqVicF+W23jXT//Vd1332v6tZb39Vf/uVTGo+n/khiAPlAmk6kCQQCdn4BS9jLsGL46RGcEZhuGEA+H0UGz4mRjDR7+ZmdMHb8TOInz5Kzw/MPBqfTNdrttm6//bq2tgqqVoPq9ztmZ8nn80qn08rlcqrVaqZwTK1ei7pw4ZTOnLmiN988a3ETtQJADjuM7Y6fg9JQLBYtR9OgyLMMBCaThLxnnoZm7EaQMzxvYpWkmWtrKWY8yGZPQQBgCWLvS7IeBN9nQr5AUfHxHbsTZ5wmQmk6wQQQyojMUChkRR9x/6O8bnpw6u+4prO33+9rb29P1Wp1pjsduYLKl05yvHnMVaPBCGmOAd2dTsdYHyoNSTZKB1aj0WjYiJDhcDJ7tdFoWLXJP37kDjIvyUaSmatJmkiHCwsLJvHD2AWD0wHAhULBNhaVOjfRsFE5KCT0mW7rTlwvPiP9zZ8VtLl5pxYXAwoEomq3Y+r1Atra2vpAiogZ04w3dWtry+4D9jKbn/dJ0I1EIjPTD5Au/DiU4+Nj7e3tWWAKBoMGwqmUCQi+ocF31u7v7yuTydhNJT5RAh4PDg4s+PhOepgifLELCwvm77t+/bpVqXRSU7mSxHxHOle4SjK2AGYb9pSxIwQdgAey2+HhsSVVOmUlGVtPVewZP2l6OQVFAs1fgCMkKhL0/v6+jUSJx+OqVCp2Leny8rJV0OwpWB6C58rKigVgDxy91cD7YSXZ/ocVCwaD5gvlbHW7XQvYnF1ksV6vZ4AYhgB2bGNjw57zW2+d0MMP7+j559cVDOatKASMA2ph25eWlnTXXXXl80f6yU/uVbvdNjvE4eGhXcLg2R0SLUXYzs6OnVlAZrValSQbt0aSwi4EO4mCAiglqfsJAwAoYgbrDcB69NG39Oijb+vKlXU988yDunZtUVLAGLt+/15tbFzUJz5xTb/5mz/QD3/4q9rfT1sS5JkxJshbZvBVU2x5pghm+0aJH+Igm80qnU6bvIkqwX4CjHiVA4aRZOgTK6CRgpf9hRxJ7CMWoZp4WwDeRhpxJBlI8rff8CwpuHmPkgzIUrwwP5LzA0vlbSecdSTfqZLR0Wc/+31FIh39+Me/q1brxAeguWHgens7qFLpIf30p7foi198Xl/84rP6b//be3RwELeYRyd3LpczJYECW5pt4qPBlWkhPEu6wvmn1WqZXc5PcoDowYOMbYgzCpEDA03hTvHCvuY8Q87gh4cxnJ9v6+23F0wxYNJKKpXSI488oocfflgvvfSS5SHi5SQWLCoe76jX6840pZGPYTrxehPP+d3kNfohiIXsR+ITcQTswN/BptNQCQPNdB1y+432Qyxb5DpvPYHA8kUZKuVgMLAz6gtdZmcTh2OxmM1Mhx3G4w55BIHmmzdh5D/q66YHpxhz6TakCiAh+uYjkjlVDNKP9zmRYACkvd5kHmM6nbYr5WCjOEgcTIInQcV34vK+FhcXLfliYPZDnn0zAJ3enhGTprMfCcCwGoBRAj0sk79pieoXBgKfEB5QwNgEDI0UCqXVbgc/6AKeyKewPAQggj6DkvGpwCbVajUDcMgWSFt42zKZjK1BOp2eGW3BZ+bZ+WYRmCY6/ElGVJIkIthQaTo+B1aKwgImAMZzMBjYiCIAKkZ5Eg/P/eDgwBIxviRYH5h1AgrJfnl52Zjm+fl5m74gTa8ABLTz3EjykqyhjYodH+doNDJw6D2R3gvEnqPpD5mHwAxbAcPOe5KmshqJloSBvxJGjaKQM+U9WQRP2FZJxkBih/BXSQLOaG7hM3OG+XtYB1/I8L455y+8sKm77trTH/zBO/rTP53TBzWmSaiAaM5IPn+gX/u113Tt2or2909oNGoZMyJN71OnSIO1ZMIEn5WCIBKZzIKsVqszxebx8bHtrVqtpnK5bMkOEMFzBBz7ZjavEHGue72ennhiV48+elWvvvqI3njjXnU6XQ0G9RlLiiS9995JvftuWn/wB+/oU5/6G/3bf/ukjo8nc0mxTgFW2bew24BySfa1SKPENRgbEi3PCDYJ1ndhYcHWD0+kX2sG7ftJHjBteD695xgyIRSaDoWHKQV80FRLroAxoxjAy0whSUFAY45n+mgKAoggnzIrm8IYphjJWJK9F3LUcDjUxz/+oubmjvSNb/wDVat9zc+XzApAnCGmNBoB/cmfPKKvfvVF/d7vXdK/+TePGmAGeMMG+25z8hqkBew7Z4eihBveIIMGg4FZoPze4/kig/OZePE+IBIoaCkqKZp579hTAGTEnUBgpPF4ei10JBIxu8XVq1d1+vRpO/eAacZ6FQpDBYNjBYOy4gUbCHnNz+ol9pTLZVt/fPySrBhCTveKJs8SuwfPzBNPAFQ/Ek+a2qw8KUV/BWeDM0XsAyNQtOHn92dvaWnJziD2O2w5vV7PGHOwFHkQi1A+n7dJFH7ONTH4w143PThFGsK/BlvGw/RGY+Q+pF4eHBIDzIw0leFhPQjC8/Pzxm7VajWbC0YF78dh4BWjyxSgSsCiYQrAsrS0NMPkwvQirXU6HQMpAGJYLzo7SW6wEL5JCdmAKj8ej2tnZ0fXrl1TPB43QIOUDfgGFGUymZkKkfFVvF9kgrW1NcXjcQMOxWJxBmABZLljm8Pou8n5PIA2DjxjlLjlCnaMxg4YEEBwoVCwuY68n7m5OQPyeBKladNAIpEwtgCGgMTX6XTs73jvMOUUOFSosH8EZQI3XbuDwaQDP5VKzcyrpPCYjJbaU7vdNrafAMe+IygDfkiqMG8UQIy54Rkg58ECAAqxUvDC3rC6uqqVlRUDYMicq6urtn6VSsWumEROYr1hMwEZAFRJ1jBEAwnsofdzsS6+o1qSNeuwt1kjzozfX+zjg4OWvva1R/W7v/uy/sk/eVE//vHtunQpb00/8/PzKhQKiseHuv32K3ryybdUqy3pmWc+pkBgOjVgNJpMbcATPhwOrQnKe6lbrZby+bz5ZIk7flQUgK/b7VrzI2sGk8S5hS0BuNGc4Rm46b3uc/rc567ptddO6/nnT2t+fgKSuGVGkvkFJz6/kL797Sf1+7//Yz311Hv6678+a3OVKaikCdDB/865YA1QAWic4ipF1Al8wYBazphveAHg0LDB/lxfX5/x9XsJk34DWGt89qw5gJlm1nQ6bSPreHkmDx81zPWEYe7bs6f45fdiySH20PQGcwsIazabBp5hcLGCcN5gFmOxtjY3L+m11x7VpUt9tdt7Btz9FASsSZNzk9VPfnKffuM3XtJdd4VUqcxZPsKSQMxgAgwFaTw+mcPrlQmKCiRbejmuX79uOYKeDkl2drFgeS+mNJ0cAEhGofRsHGvC+YjH49bkw9pPGiPnVCiEtLWVmFEaaFLd3d215wTbT6Pn3NyhOp2wWq2uxuNJXCcP0jsAg8j0BBr9otHojC+e9wkxRoxC7fSqHHGP4oZcC3Ps4xtTGWBs+T7sDxA2gFl+P+pWp9OxoguFMZ1OG1HB3mRd8YezZmAIcgh9Bt1uV/l83oo2sA8F9kd53fTgFB8JAcdXtPw35upms6lUKmWVBIma7l+AB9UorIckkwQIUHRsIsMzUoXAzL/ZEIAbvDKdTsdurSI5ExipGmnCIZCQ1AByUPGNRsPAKF3WjFUhkFLdAQBZDxgY/t5XjTRUNJtNu13Jb0QSPgAMTyeSFfIL1S5SmSQ71J4VHg6HdiexbyAKBoMWZLAeAEqi0ehMYsQ64Q8I6wBTCuNEwKSS5Fo738S1s7NjM1hzuZwajYb5bNbW1qxjm+eLpxIvL95YPGbINiR6Px6kWCya7WQ4nIwF297eljRl5wBfnn3FH0cC9r5VEgwB34+XYeyJb1LxgRMp0PsMeZaARt8wRmEHqKdhEB8ot6Wxv/GMEtwB1PF43Bq22Aew/JwPguri4qKpHP1+35oY2M++IPQ2iHZ7WX/7tyf0xBM/0le+8pqOjuK6fv1O1ethDQYdLS3VdeeduwoGR7pw4aRefPGs+v2hgsGADbgGiMGokDA5c8QP1q5arVphAdCUZDe7bG5u2nn2gJwboJA3sQjRFU8iJaaxn0OhkD72sUMFg9Jbbz2sfn8yv9QzjbDrTLRASn/rrbI+9rFX9POf9yUtSZKND2JSAQAZLyPeWZ750tKS8vn8jPdzOByqXC4bcCQxs8cAmrBbrDPFvSQD3pwvpGisIgABGnEoGBkJFw6HValUbH29vYozQnybn5+3UXqASfYjgBUgwTNCnsfyIMkKR188kXdgaiEcACOSdPbsvsbjgM6fv0WBQNVUDi6MoVgABGNf298/paOjt3XPPRf17LOPWYHIz6d4k2Szg0ulkj1LCmreK2Bakq2N99OSkzjjFBmHh4cGLpHpAVJ+wgOfHyaXSwKIb9xqhI0K8Lq1taaHHrqot94K6PAwaLFrMJiM7sOqx+xYcMHiYlL33benixfzdlkLjDp5iyKo3Z7MD0VpIAcDzCC3arWaqtWqFdk8V5ojia+j0aQhttFoWO/DwsKCFat+LSkoAOZYPgCn5E/sMcQH1gjWGHWVHN/tTmYqk7+xOXrV78bnz7NnHZm3y3vAJgLm+bDXTQ9OkazZrL7hBAaK/+chw6hwOAAUw+Gkgx85DtkNWh6giGwHCwhY40DyQDnMSNI09BAgqKig0KmYOECwe4uLi8rlcpbM6Lqr1WoaDCa3/SD7DYdDq/rxb3I3M3S8P1AAZi9TSrKmFMAAgYYmJmm2mQopFJkGiRoZz4+nQGrns8Ga4ZcrFovq9/v2HI6Pj7W1taXl5WUVCgWr/KnUeS8cIgAAYBE5js88Ho+VzWZN5odNwYc1Pz+vfD6veDw+07kNg3N0dGTyNWNe8IkiP/lLAnwzzHRcVNMsEoBb9qMku/ABfyh7NhqNmhfUj1vxTTIkZm7R4spTfL54q+gKB2CQfEmwicTkbnKSGOz+/Py8TUzAUsH5y+fzM52c3ivpmwN5Vr6Dl6of6Yj15GrIYrGo/f19A5/4yAj8ACekKoBXv9+3CRAAyEnD4C3a3n5C77zzitbXX9GpU+8pGu1qOAzo8DCql166TefOFdRsRrS42DNgAnPj9xwFkZfamNO6vLys0WhkMYN9zUUDAJmVlRWT+/wNOdK0WQYACPhmzSi6xuOxybMHBzXdc88lXbt2SsfHEbVaTXsvnAVUgHw+r/X1dbMcXLt2ux5//DXddddlvfDCFMhS1DGFhNgG64OnmNvcKFQoCP3MR9/Qx17pdrsmFcIIEw/Z/8j0gFv2YbPZtPUgtuG/Jhbze+fm5mYANvE4mUwqnU7r+PjYRuagbHmLBsWFb8IiD2A1o2gj5sMESrIZuTs7OwZoWFfyzHA41J13lnT58ppKpVmmORQKmSqEZaJWqymTyRjQu3jxVt1553m98MInDPDgJz0+PjblynuWKdg5f36CBzGuUqmYSpZMJo3gWFpa0srKihXjzLQlHvhrnfkHgMfz9PYUmrHIm3Tzk9cCgYDOnVvTo4+eV6HwpiqVW2dsUDwT3+dBP8Pttx9oaaml55//JZ08mZvpi/AkBawjaimsMM8JmRxVD+seo6RglCGAYJP9jFvYxhtzMZ+f9cE+xTmj2IVswjIA0ZFIJHTPPfdoaWlJe3t72t7eVq/XsyKW58Z6UWxAPqA0QIJBfkEY8Zw5bxBjfrLF3/e66cEpzI9nCWGCkOXxoCDhcBgJNDCi4/HYaHwCDRIZvwvQC9hh80G/M+KIzUQwBxySiEnMDOXmvXsbwtLSkgU6JBtP4WNAzuVy9juTyaTd9EKzGEmFRIEXBYmm0mjq9Bf/I63c/bDmN84oFF/Q4Bv/nZqv/cRAN9Vw/tFP6Z6nfl3R3JrGo5F6pW0dvfS3Grz1C5v1mslktLGxYaAP5mhlZUWlUknNZtMYBV8teqAOg41nmIMtyRoyYEkl2efh8NNIgx2ASjidThujiPQD81av1200DrKW91ECJLyPmeHFsMp4lHjeMFUwa0iOTDbwCQHwKMlYxXQ6bV6/cDhs7zUQCFjg9D9DmgL1RqOhdDptQBzZy0s52AlYc34+4J8pGKwPBQ6dpFgIUCtuBDAETViEpaUlK3y4ghF5iDmj2ECwMozHY+3v7+vy5ctWjMIQA3ooivCGAcoB8F5Jwdry5JNPamFhQd//fkAvvbSgF18c29niuuBJo0HLzg3NO74xCBDqmz0AXXiVY7GYCoWCrUetVtPR0ZE1DwLU2CvStAgloXJuM5mM0um0JUo6aokNAI54fKB0+livv75uXjvvn4O5o+kSZWAypH9exeIJnTjRtDMHyON9x2IxA1kUnOxTYicNIZzR+fl5m5FKAyCMI0yPB/k8V+/lB3ACqCj+KMKwBySTSeveBsz7wg1Az/PAS01RDtOKD9J7EgHGsGL48Xx/AewZ+yWRSOjkyZM2HB7vIYWUn3NKHItGO9rdnYzVgwhA7aOwp4j1s5Ulqdmc19xcT9JQzeahFYewrpwL2EJv66L5lyLax1q8vrDknCmYfUlmlwIQ+wk1xAcAHc2drD0NmOw7mEUsFeTCiZoZ0aVLa3rggdd14UJajcacqTjkZT/zd5LPOjp79nVVKmkdH28ql5v4MWnu5Yx43yYWKeI7di7+nrjB50YV47l0u12zAfCZUD+uXbtmn4f4AchDdfD9F3hd+TxgHs5XoVAwef7pp59WPp/XK6+8otFopL29PftcmUzG3htFgiRr/E0kEqpWq6a8QfZQSLCHsPaw12kU/7DXTQ9OCWawPaVSaaZpCY8clQhMI9IcVTEMWKVSsUO8sLCgVCpljB+VkTS9M5r7hSuVig4ODoxFYtREPB43LxmyFQxVIBCwTkcqPRI6c83w4/A1zPMcDofa3d3VqVOnZrx6VPrD4dBuysEnCiie+OmmG33ztjt15kv/sQaNqrrFa5o/dbfGo7FteA5n6rFf1toX/mMdXXhV1R/8ubqDkdKPfEr5f/i/VST2/1Lg3HMWoJF9kLhCoZB2d3ftIFChcXhhPkiiVJatVsv8MwTtg4MDY4g5ILC4vgltb29Ph4eHmp+fN6CDVAxYgvWCbaCC7Ha71k1PIh8Oh7YWyJIw5AQzKmcYEtgHmkIikYhKpZJ9ZgoYZG2qUJIQf8d+oQrHE8TPx25C1T0YDIx9oFMUYAn4ocomEZKI+Vx8Jm/OJ+nyjGG8vJcNCZ7giSwHCMN2AiDh2fF+SZBI+/iL6URFGfASNY09x8fHtn6eLfPMmjQZtXX16lUFAgFTICjEYGClKcvrfaxMFEA+9qO8AEd4vQE+c3NzOnPmjPnA/JxO1oliE2YQyxJzJwE+qDp0NOMRJHnixQyFJt7hnZ2mSqWeASL2ayaT0enTp+3GqEqlokqlomq1+sE85JgWFlrma0VCZwYra7K6umrMrpe5UYso6tjDxEAv6eNVx0+3u7trhQVxgGdO0qYZCpbZN5J4FYpYyppyicZwOJzp4MYzx+/zMj8AgBE6/HwaxGjqIsYAtGgOw6eH5MoZ86QCOQIgPmmY0sx78F5rP+oKGZ7YOPkMR/YcYNzwvLMuMP/EH1hcvNpeqockoDjhLPPcKUKRhwH+fC4mV/i5wAB51EtiCH5zni8NzxTvXFZxdHSkb37zpP7wD6v6zd/8qb7znafUaAysQOVSEIilxcWhvvjFV5RIdPWXf/lJjccytQVvslchUAewWvh8QyylyY3YQwzH485oJoqoUChkXvW5uTlls1k7CxRB7C3Wh//H302x22q17JZHihVvfXv//fe1tbWlYrFo5/Ty5cvq9/tKpVJmM+EzQsoAiMEN7APfwIdS6rEYFsqP8rrpwakkYxdIDnToMg4DOYWDj9ziR+cws5BkBRsQj8fNH0JgJKgQgIrFora3t9Xtdq1qudHk7xOcpBmGhEAH44Ck5NlVuqapsAh2NATBzvD+vMTOz4WN6vV6euedd6ZTAuLzuvh/+9+oc1BRILOme/53/1LhSNhAAeA3c/ZzOtq6oFf/1f9hGti/9q/16//995W8/+PqX3nTPIoHBwf2TKRJ0OQGIT8kvNvtzvh5kP8JmhjQmVvL3NNut6tSqWS3f/D5ONAcYKpUL7vv7e1pNBrZXE0YRmYKclvP4uKitre3Z7ysfG4YGUCQb5DAv4wnbjAY2BxU2CQavpBY/KGGjSGAww4SzABYPG/YDZI/aw5gpSCAwfCyEvIdc0693C5NJ0OgLrB/PcPF19XrdfMLx2Ixk4wZzcVzA+wQdDknBO5MJqN2e3I1I2xMLBbTxsaGAQw+18rKis0gZC385IEbp2lQ+TebTf3gBz+wz8fnZa094CDxoAwgwXo5FKbWA6dIJDJjCyF5YXNhIgFxKxyeXgIyHk9ZXJIS+4vfg7+QdWTvkIhxvYTDfXU6MvmXQp79QoJqtVo2jm9S5PTU603iIZ+B/cEe5j3BUtEERBKDJQfE4av3ndewbVyiQdxCXvfPnM9IMQGrs7y8rFQqZcoVEjjSbKPRMMBEpzgMOp5TgBZJfrJ2YZuGwOxrfjZrxufgv2liRQVjdBRWmHK5bEwTMYt1g4njfHe7ca2uDrW8vGz+c3y8THRAEcI3D2iKx2tqtaKam0solYqZ2uGlb0ba3UiQwNL6ZkbYUQgVrrkEMPrucD+/mT3dbDZVLBYN3LL2TCBJpVIW72hoJidDBrDu2EYWFxd1cDDUX/zFWf32b7+i3/7t7+u9907otdc2VamETBldWKjr0Ucv6MyZixqNwvrRj35N+/sBhcM1A8nkFrymFEd+T2KjoBjnHAAa6YDnjLIPaB5m/2IpY/qEV1y8Oop9iUKP84clw5MkTAvAc9tsNvXGG29YTMtms9bHQi5AhYIxJo+h+hDPuAoZzyyfBYsaMZfP81FeNz04ZWN7KZxKnYeHL4bKjGYnfGp408rl8kyVSgVUKpWMqeCGJUnWiY4vk+qDxAkLGo/HtbGxYQ+RB8/3IOfg9/LeVJKsv+IMmRdLAbYGkhhsJB4pH2SkSQPQ/v6+Se2jQV+9g4npP7ty0j4blR4SWSgW19HelgFGOl7Hva4C46ElJFhpWAKSAImKtWWaAkGOzQ/r5GUDZFMkVBhPZDHWHPmerlMCGV4l5p5Go1G7f5kORJ9ACQQ+aJDEYrGYDWrO5/PW3DYej1WtVm1YMu8FYIbU65s8ADckKPw8sIDsbQIPwI+ZkwAePHPsgcXFReXzeZXLZbN3UIUDiplgQHLnPMFqSjIA432N+Gapso+OjhSLxZTJZGau/IMBYiYqSR3mGoDKUH1sDDDdsJIAPJIuhSUgkKDKeSDZUOBhAZBk+4i9BRtGISHJWCOsJzDTeCbx+Eoyf1YsFrOB1jwn7EHpdFrLy8s6ODiwSRP8HoAcBQQshb+FCHsCZ8RbWBiPg9TKLN0JEGup3X5Vp04d6pVX8sZcw+jw+/md7P0JeO0qlyvq4sW8fT4YIl8EEis8GOO99Xq9v3O9ItMb+L0Uj/jf+Fo8fzRCkQxhtA8ODqyBh3hIMyHFG89qbm7OzkAqldLKyoqpT2tra+YjZ9A8vQvsDeK7tzDAnAOoYS8Zs8fZJQ4C0rrd7kye4SIBQJ339SUSCW1t3arHH39F0eiRPXf2CYUdap2XgI+P63rkkYouXTpl56Xf7xtrDDDEr02zzOrqqj0fnjOAl2eGWuHnLRPHeG8APeIaOQklKJFIzPjE8YZ676v34EMMeYY4Gp1c5JDJZLS8vKwf/vCUzpx5Q7fc8o7uu29Lh4dzGgxiikaHSiSO1O3G9OabJ3Xu3Gn1+0EdHR3OjMzj/YIlANTYobxyRd8F451oLsI+Qv5g2oxnr8kfMLPeCoJK52MC9huKSkguWGFiNr0DvsmPix4ouP1tmBQQ5GfWnsKJwhgCBgKMIgzCxTcgBgKBGTb173vd9OCUYOG7OXmQsEMAPl+Bs8AEO1hMfmYgMLk1g1mKhULB2C5AEqCAg49pGnbE3xqCxYBmCQag816Rkn0nLUB6d3fXAiKNUsjPBI9qtWr+UxLM2tqaarWaSYOArnA4rDNnzhgIRPqdBLZJA0az2dSFCxcs6c7Nzam3/b7Sdz+mO379D7T/6k8UikR1xxf+sYKxuGov/I2BnGQyaQzl0tKSksmkUqmUMpnMjCwFW0gyAQj5xiY8ebB9AA48TPxDgIVlw6tJ4gAwwJrBoo9GIy0tLdk6UalLMjCCl47DS2WYTqdNWiHpMrsUVhKGGEANc0X3KKCMQOD9ypLMlrCysqJ2u63t7W1reqCwIbBwXzhy5MHBgWq1ms1C7fV62t/ft2TGSC1YE5h0EjLMBMnZX6NJUuLcoDzkcjnt7+/bZARpOtybAA/QpalmNBoZ+wBYwXYxGAzMXkHnLswPni1GiSF1+QYEadpM5FmpG6UyGG6kUs4MfwawwcOGvQHLAEmDvUYjA+9b0sykCwoVADGMsy+M/Htnv/JskZkplDljAIvJWY7q/fdv1YMPXtQLL9ytXi9g+wrriyRr9uGMxWIxnThxRQsLbb399mklEtMRNzA1xEeUpkgkonw+byy1t7zwbwpLLAHEaD4vCoX3t2LfwR6FmsVoKtj8UqlkydkXE7CF3sazvLysTCZjhST2KvYN59xfOkDBCwvq2WH2FOeI+OI7uolX7C1AGYUUz4I9xBnb27tfo9Gr2tx8U++8k1OhULCv4/t4NgCHXq+nxx/vaGGhr0uX7rGYiRqEhE3Rzb7DH8z+QcYnj1HYep8v4JP9jBLh4x8d+KxPNpudKW58cx3kDeoj75OvZe/DWpLz8fHv7JzUCy/cqtOn95RMFhWPjxSNLqrRWNLOzhlVq4eqVCoaDifxPpvNmvLCZS3eBw2RRaN0tVq1fcjwecAsvmX2vjRhubFCgDPABz6vYD0BtDPtBtWSeEVhPBqNbB9ilaAQpIkSFQF1DizCz+WZ8d++twUmGRUPjIPqzKU27EPOAtd/f5TXTQ9Ok8mkydzeF+hntx0dHc00GvEisSKVEizz+bw1LCBdpdNpk5K9vIQxGQmA4C7JGipIuNK0QhsMBgaIRqORGcABYoBfAiwbEMCN3D8cDg2c0oWM/MuBQM6m+kwkEnYAkfJgBQi0VImLi4s2Rqr8N3+idDimO/7RP9cd/+ifT9agdajr/5//UoP9q1YhHh4eql6vmwzK7wLoELgODw9tcD8MIxU0SZyRUMhwMNf4vmCoAQmSTCImIcCW8X4oBPwsWCpALAkMR2eECckU03c0GtXR0ZF2dnbsa9lL3t+Fb5LEWK1WjV2GYaaBjxdyMIGa8Wcw6QBmQBrgip8FY3d4eGjX7a6trdlaeFkaVon9Mzc3Zw0kHmgxWYFKHmDkmQwCKaANRgX/rm8qAQhTNPHcJFmi9Zc2EBQ5494XBotNkB0MBuZTA/jjkcLmAsDy/lkvMweDQa2srKjf79vZ9J7YSqViRSfvz1tgaGAhgHMWU6mUsSbey8Uzhf3n3Pf7ffMt8plRdACVxBuYaGTDubk5vf32rbrvvnf1xBNV/exneQNbyHQkYYqECcMy0oMPvq+9vbT29hKam4tYV7FXNUhuh4eHBu6IJ8jGrDOj9qTpSCpJ5iXFBhGLxewqVIDXjWebteLMYcsaDif+V2RKrFjRaNTG3PEzkTW3trbMD02hJ8nsAnhBeV7kFs8+UuAg7Q+HQyWTSWtK9Y2Zc3NzyuVyNvlkZWXF1C6KRmIjbNo775zU2bNX9N57SY3HMVOdYM/YfxRgy8tdPfXUG9raymtvL6p4PDTTR+H3O+oJzTywoZHIZDQQz50b4wCyjGii6MA6Rm7Dv8ge87O1eQ54pFFA+Np4PG7giFxEXuQMMnObmEF+ncSPoPb3b9OFCysf+EwXLS+nUlPyhedL7Ieh98oIk1K8j554TrEIiJdk9gdiDQokuYGZ2zDlNNSiqAEg2euoaNj4KEIBqBQz6XR6Bqjz58QecgQxF9zB3gQLYbGhSAG/8Nl8AYHXlZxIzuPrP+x104NTghU3FJD8kcmpAqn6YPD29/ftgXtTMCCKjcNGw9c5GAxMPgoEAjOGYQ4cdD5VqjSVZqk4Ll68aFd98l5JPnwugCZVOA0gfoyJlzM5PPgz8XxysEmKMATSBKBT7SwsLGh9ZdN+P6CUJB/sDzU4KOrglWdVf/clzSUWlfn4r2ntt/+53v5v/jN19vaM1cAnCwgB5PsGGyq7XC5n7xFwBRj1wY5GKg49rAO+NJiNcDiscrmsSqUyM9wdlpLDRVBgBidJExBLhb64uKhyuWzeLC9lUDAwGYK14zPib6P6BViwrwDiBG32FZIylbQkY7g9mINlhIEnALJe+GjxNML8AjLW19et4odhwtNEdQ/Q4L0iNZNYfAMKgZh9ClCns5+kg5cK9tAPnYexhjFmD8Le0AgDOIDxi0aj9vth6ADjFDD4R7nel6IWyQwrDkCDhEtC8p+dqQ3eG0wikGRyKKCfbnOYVxpmSLQ+sHPDG95mijWY2EwmYxYHEilFLPLpeDzWwUFcly7doSeeeEW12tN6++2ETR0gXmENmHgcO3r66XPK58v67neftr0KSGMAOePjSKbMZ/VsIgUSrDB7mHPNcwI4eknUPxf/XAGVABliLWeaooD3gLcRQMkYKTrGkblZQ/YT6hSyt7didbuTOaOrq6tGaHjrQaFQUKFQMCmVPYUacXx8rN3dXWNjAZj+fbAfw+Gw3njjY1pZaeqrX31Lf/u3KVUqJ43RkqZjnkKhkFZXW/rc536myWUK92g4nF7eMBqNrODzUywo0NinEALsIyaYeIKH/eC9oIAfCCKmbqTTaWPZKajY68TvQCBg50CSMYkAWUAQKgZrRRz3+QKfKbYO1oainGKHM4ealMvlTM5nrigFJuCbEVHEKXIYKgw5nNiOokMxxUU77FdPkPEsuGoc4oH9S/GG5YfnVK1WDSz77ntsXgcHB1aAsFYU8YHAdFwk0xT8xAJAKgwstqFut2vWGElmL6DP56O8bnpw6k270OEcEpo0kMKoej0TwYskC7sFoB2NRiqVSjazjVFEHORmszkzLB+/zcLCgsmQgBYCer1eN98m4AFmjIfMwWTIO80e0ehkiDsjQ8rlsgKBgNbX1+3gUhXOzc2ZXBcIBLSysmJMB/I3fi06t7NudibrC6DKfOk/1Xg01O7/+H+fDG3udFR/+xe67V/8K638yu/q+p/+K6u2IpGIbr/99hkmiKqUzzIaTa7ZJKBwwLxVAkYAPxMgDwAMsGHGH4ELiR5GyDcr4cWVpsmSKpqAiUSCZ3Nvb0/VatXGZMECA0oJ/lT9yFEEo2q1anuT9SDpUwzh+2LtJSmbzdrnRkqkmoWJpNuaAs0b6LGQdDqTObQbGxsKBKZTAgAfFCz4Yf1nwQvm/ZySXFf4xKaAJcVLnjCvJBdJH4CmA2OiWq2WarWajVphwgZBHiaM/TBl+AK2dxKJybW3SMawv54VAGzyHGDVUqmUKpWKMQ5M1wCgcGkC+4Xv48yTqAaDgTWmeKm60+lY/AHsEitYU34u4B21B+8jMcwzw/jYJJkKQIIE0He7XT333ENKJNr67Gef08LCnXrnndNmr4HlntgkGnrssdd12237+s537tS5cwElEn0rTpeWluzSg1KppHq9bqqHNDv+jP1JEsbz7u0KAAwKK+IXsZIEDTtMbGQmNEUdZAR7qdlsmjyLf5j9xjrBPi4vL8+cG58//GxLCj9e+Hz9bTuwVZwBlB5eSNzFYtG6vGkg9bYT1CVyTCAQ0F//9S/pU5/6kb7whR+rXF7RO+9MbjUbjYYKBvvK57d1110XtLGxp3I5qa997VGNRiklEvMmy5ITOQfsq3A4bMQLE0M8S0i3PrkW5p0CmPWcjC+LG6tKIUGBNfHCHluhxaQJwJAk88IT74lrxD2AKt5K/955PhBNHtiST4jv9HtA6uANxcfP3iIHSrPNhhBbiUTCLv6gsODMcn4BwX6WOSQWhae35HhrEQoC13xTGGNR9D5knhn7Buzg9yfqEErxysqKFhcXrWeCYoMigfzAZwTAQozx+1B7JVls+bDXTQ9O/Uw86PVgMGhSPVK2HycB+8ChYKMCHACHbDj8pFQiJDxkdap/ZuMBNPb392fYCUmWrMLhsE6fPm0gmTmUvvsWLxcbGu9Nu91WPp9Xu902Y/jq6qqBL76P4I+HiYYJqis2oySTFiORCbszH5/XtQ+YtEwmoyNFtHbrfdr+xv/D3g9z2Y6vvqf07ferlpjeoe3ZLjrX8aYgA1AkkLQAQiQybmqRpgGCooHnQnVPYuKw4nuCEQCUeoN+s9k09ouf4cEIdotisWgBjICBaVzSjLdSmvoE/dgYPLHtdtusAsViUfV63WRFGHz8jvjBWGt/KQPzV/lakgCSsk/+AADAPwwOY8pisZiNQmMv8Iwl2XOgsAAQe6sFkw8oJGgmkKYsCMz3wsKCTbcAyANGkLtIUKHQZOoGI94ymYwxEtz4BiMDmwCYicfjBtxh3yZ+s6HtT+IE9gd8gNIEuC0vL5sCQNMOnxs7AcmcYou9yr4jKZBcAdvD4dCSAt5Z2GhG5cDSDQYDK0rx8JEUPGPTarWsg5vxPqPRSP/u3z2is2elT3ziHZ09e15XrpzRzs6SWq2hFhel227b1erqrjqdmL773cd07lzC1hNGU5oybRQF/Dcgij1ALGZfEwcABhSLzLrkOlXkfexBFO0oI1h6GNtHTEDpoTkScIDqwB7x0iO+Zz8Tmt6EcDhsn58E7KV9gBDxDDDGucUPS1zgZwM8FxcXtbGxoXq9rv39fS0sLJhlCSaR+EOs+/rXH9Pddx/o/vuv6JOf/Ik++UlpNAooGJysQ6WS1rPPPqrXX8+q2exqcXFsDLS349A8I03VF4qURCJh1hNJxq5RbBAXACk8c79WqEX45FHJiJf8PM4lgJRzwzry+wFovAeKHQCsJz7IFexDijlyBj8bpcjbCYif/X7fbG6wotgyOPvkMMgFzh9Nh54Q42f6ngNuKuOZkEOwfzWbTVsfzhZxiQLcKzLsEdaAOHpwcGC4hPNHvMIigKUBAoS4yzPAR0tDHc2KxEJA+8LCgs3d/Sivmx6cEoy8tJRKpVSv11Wr1SzhYE5nEyJ50o0vTfxgBAc2HeNxYOD8vDqSA4CCTdLtdrW7u2udyZJmAKEkazLyHi0/txNAQrCg6oNhZFP6yh1Axubm9+XzeXW7XWumAXzV63Vtb2+rVqtpfX3dJGVJOjqeJsmjoyM1x5NgdXh0pOEHQQYZZhwIKvDBwaciljQzBJ0h1HgRs9msEonEjAxMEOKAeDM2oJNAQWCSZEwi7Cddk3TRA8Bh0rzXxjc0sMbeVsDXkYwCgeldyATbfD5vty3hgfUDnXlOeIyRGxOJhLEoBEI65QFX/X7f5BNYnn5/MlkCDygFEwmUSpq1RoKBOQqFQjp58qS+8pWvKJ1O6/r16/qLv/iLGQ8uCoCfd+jVAUl24wusIs+GZOCvbyWwA9ZhaPDNsW48Uz+DESDNrEESJ3uEpELVzxn2jSVIc57NAUTR3MFgcWnq34QRoHii6APIk7yQEX3S9n5JCg+KoUajYSPrSFwwWQR71hSfLUwpgMNL63wtCs9wOLSJJROAf6Rvf/sWvfzynfr4xw90+vQ7uuOO8xZHS6Wcnn/+l3T16kkdHXW1uHhsxRz+Q/7BTxgOh+0mNQpnvxacQ+ICAMEXTMiVnA3+TpJ5GwHiNMCR1DnX4fDkYgL2OmzneDy28+/PdaVSMXYTEMB4pIsXL874/WFCef++IYW9Wq/XjWECjPhihMKZQpLGVoAxe5I4x14rFouq1WpWwC8uLurChYIuX17XwkJNq6uHymbndXw8UrE4p8PD1Q/sB5Ozg22FCxb4vNiTsJ1RYFEU0sSK6sGZxj5DwQObTownt/FssA9Vq1XLsblcbqaIIVYB/MllxHMf3yF+vFUPtp2CGKsE+5BY5dUo9ikxHLvR1atX/86tR8QUfp40UbNQVCdWilVT8Divfs9wjsj1i4uL1mkvyfpBksmkgW3WnHjiiyZ8+xRXrBExBOURP7FvgiQHoNqgEkPo8LWAX4A7E0Ygjvh9nmVlHvN/uL7UvbjjlYCO/AfzRJKam5tTvV5XuVy27juYFjrTkFk8eIxEIlpfX1cgENDOzs7MrDh+D4ACpofq4vj4WAsLC9rc3LTGAMzweFuCwaDJyBjSpckBzeVyFihoWhkMBrp06ZL57/i8fq4pVRdSH5UayZjmmkwmY6C2Wq0qk16VJA0H0zvBW62WOuVdjUdDrX/sM7r63osGfhr9kRKn71Ll3Ve1s7Nj4BTWBA8TiQggRuBAci+XyxoOhzYCQ5IFcVgX2A8CIlVgKBQypkSSBR6AFQAJGZrEDnuG1EiV7RseAEQwlYuLi2o2m9aQdXx8bN3kFC/D4dCSOuuB5xKABFMC4w/jgN/IV8Begid4MDoItuzGIEGjE3uj0+moUqlofn5eq6ur+sxnPqM777xTwWBQmUxGly9fVrlctsTqjf+sAfI9zS8kCs4M3lSeLZU1VgHkKmaqsne5wQsgEAwGbZ0JdtHo9AYpgBEzc0kKrVbL/FckHYoVOpEzmYwFcC9zAk5ggFAVSOgw6XwmGGxYG/ZQpVJRLpdTPB434MP5gp27fv26yuWygRP2D3sO1QV/MJcjEK/wZpOYvV+d72HEEn+H124wmNO7796uV199QN3ukZaX5xUIJNRudz94nxOgS/Ln2RwcHBiDwnOm0USSxRRkQ84LZ4K/5wzDIFMQAKZgsokT+OHp5vZAExAiybz/FCkkcfZcPp83AAF4IHbwvnzxQtL3NiA+N4U0a8p7gYGEWYXVlmSAl8+dSCRm5FbiF3GZz7i2tmYsOvGg1+vp/fe7unAhomRy7oMYE9TcXMN8mYCK+fn5GfsT7D8gmVgEKJamU0r29/d17do1DQYDFQoFm6/KeSOOczYAdMRl4jixCVDJOlDA+ThFzPTyNzkMmw9+V4pSftbh4aHddoZtCmY4FosZiMbuRL6G9KB5inNPDiYmsPYUIgA25G2KCh/v+D5iG/mbAqzRaKhSqcw0ZWMbqNVqOjg40Obmpu01ADO+bKYOEa9gadlHTLDwPlMAOzEaxZI/8yoyZ4SfQWyEEYcA4fP43PVhr5senM7Pz5uM6QMylQHD09nAkizwHB8fq1KpKBKZXGcHQ8VBpeN7YWHBHioPxc+Jk2R+D0ARmxtK3ktMsK88eDpFE4mEDcEmAXIgSZx0/frbc9bX140dwxpA5yzNIzBWBwcHdnc9w5vj8bgWHvqUBsGwIouT4dOZ+59UIreqeDyu0l//j4rpQLWXf6TM47+szf/o/6j9l3+sZDavzcd/RaFoTHvf/wsLOjBDrCMMB4AKhlmaspU7OzsGPJFDksmkVWi1Ws38bny/999w8AELyM+wBktLS+arRd4BXHkgBqDnWZOQ2Ft+VqtnCmu1mv1sqnefkJjHys0qJIDV1VULEL5zGQYGBkyaDCnnuj8AIswr7BSAheRGJQ6DxnosLi7aecAniKePJgg+K0k+FArZ5QqSzC9NcPIBn4o8Ho+rUChYJ6pv+mNN/TmIx+O6fv26KpWKxuOxNeUhrcIYIOkXCgXVajVrhPTeUIAsLA3F1vr6uvklK5WKecewRPhRdHwe5HWaIkj8kmw8Ecwc+1yajrrz4B2FJ5vN2u+CoQEIEfRhChOJhFkapOntXkjac3NzZhfpdqfDtSUZmECCvnbtmoGSZnOkeHww41cjRgE+er2eAWtiHv5gGrdIxEtLS+anpxkOcOyTHUCIIhEGHGAJsOV90dDHHqGh1Xv/aXr0zCm/n/3JurDWgFfiUCgUMr8yzBf7H+Z2fn5ep0+fNtAjTS9mYI/zWVGv8KfHYpOrJ7GFENNh7KQJM0cTzPr6utLptN38hPLngTC2IfY5FirAMbGRRs7xeKzl5WUDYsjTppp9wORVKpWZ24coMog57DdJFoOIn4B/inb2Dc8eEOYZOD4flilAHhY8/M0Un8R539wEoKUgYW/BkpJ/eI+cTd8UBIbgzylqh8OhTaEhLvO7wAd8Xn/VrCTDIMQFCK4bvakUhfSbUFxms1mzDO3s7BipQeyFQIBNpfBOJpPWiyHJ1gLbAu+RvQpxBmbAy8pe9yQD+xw7ClN6/Hzav+9104NTJBVAYygUMl8PwY6ZovjPAoGA3bYRCARsTBTSHnIG7ArVED4VPKMM3oVml/R3GjXw4ZTLZUt8BF1kKy8Z+AoPMOlHP0gy+p9KCzDjB/gTCABa4/FYJ06csBErBHKkwtzTX1RkKWfrmnv4afvvg1d/rLlQQHt/+cfqla5r4f6ndOtv/qEUCOj42vu6/Mf/F3W33zcwg68RxpQqG1kdpth/Lv8P60jgIWgj5TPBgHlrWCdYw36/bwCXIfWpVMqkYV/hw1QCmAjg3mTO4fT+t1BoerUbBQ3eIQ4wlS5MEnuNyh7PUyqVsv2GFAvYabfbJnmSVP0MUb6fCQ1cPwl7w1xOJDES97lz5+w2s2KxqEuXLhnjmc/ntbGxodFoZHfMs9e63cmtRn4UGdW7lySp4kejkc2q9cw/AYxEyNryj7d20NGMvFUsFnX9+nUdHx9re3vbFAiACcqHb5rhXHLmKETpmqeYRXXgd49GIyuOOJPIwLBByWRSuVxOw+FQ+/v75ukFrMDoAcyxn7Bfed/IodgC8B5S6DAJgGYoGiSi0cktRMzcxcLBmQPg8vnZpwBPLz/CuvIcWUNYPQplPw6LZMdepyDAzoFHmjhMgc16eODmCxxJ2tzc1IkTJ8zmxHoStySZfQfASyHGz2QIPbGS4nE4HJqXGWUpEAhYcQ+ojUajVnwyAo7fXa/XjSHnAhhPIvA5pGnDlDRlmr1CAgDn86O0eeuT98kCMilMAfbeagIzDOMtyYpTvJWAO5jUSqVi+31tbc281z62HhwcGINPLrpxnBLFzeLiop15Ch1IHc/U8W9sHjCZ7GFiGfGGZ8v6sb9ZGywReM8539jnKOLYH4yQI46RSylGKSJardZM8xVnh/PMZ8XKxRnxqgzSOqCPogNs4Kd7EI8AyL6ZGv89TZeoaah3/BlYCMKOs403nHhCjvHvF/LFkxnsY3Ij+5cpNh/lddOD093dXQt++EQxfMOOEeQ9Pe1lREkmvwJSeLCejqeRZjQamazrjciAFjY3DBOAh9ERVOh0zvM+r169qnQ6beA3mUza1ZqwqyQKXmxWqvNGo2F+OLw0bEhGaFE19Xo9SwxX/5v/vQVHgFa5XLYGIQzQjZe+r8vf+zOr1iVpbjxW+INRUMgYHLhWq2UjJrzsi32Bbk1k0EuXLikYDGp1ddUS1Y1SD58PgMQBrNfrtr6AG884METdSxb8bqroVqula9euKRqNqlAomNzunz9JkAQI+KBAwZy/tLRkcsrKyook2aD63d1dVatVY+IIBBRDJFgCJ0ECBpMAxz4lAQDChsPhzJzefr9vwHc8Huv111+3a0/39vZ0+fJl22urq6saDAYql8vmlzo+PrYmD34PRRQvgFc0GrULF8rlss1q9SwHZwJZGluJ9zfdOBrJzzqElSkWi2Zj4OfDEvE8ec6cHQpVkhxeZ+S5SCSiQqGgUGjS1La9vW1AgP23sbFhnk8PZGErKW74+fV6feYSCc8YwzriqyNpkHB6vZ6q1apdmEADHaoB7AefCQDHWQYYE9e4oYv1wqtGQcScUT4TagaFJfvAx0vPhvGe2beceXyESOG+mcZf/cq+Ip7SNEIjGSwmPtOdnR278Y4mVeK9ZxsBjUxdgcnyY5XYx3Nzk3mk5XLZ1CisRBRQvtGGPMA6UZhWq1VjkwAXsJuc03Q6bbfUwTDyfvHHrq5O7FbYDHgPqDk8Y3IWVhZAIEUDfx+JRIzpBphRHPM1eOdZF0kz3e3I1eQ5P+oI2Zn4xFr5M+ZtD4BJ9hOEBDEfwMTn4Lx4lQBg5r36FP38bophzikA1DdkVqvVGWsdKgyxl1nlgED2D8CXPe0LbPIX8RMCwv8d60vxyW17nFF//TEFJ4CSeICdkPNOAUuxSfFOQSzJ4jDvgeeIZYtCmT0OgKX4gOEmL/JzPux104PTYrFoAQ+qX5LJv55xjEQiBhABkYyO8iN1vKGXip0mDjYGjCCgk0Hpw+FQhULBPDCeDqdKCwQCKhQKFox53zBDJCmk+fPnz5vMxe/b3Ny0QwM4Zyi8JKuWMpmM/ffu7q4lAT8+hc83Ho9Vr9dtrEUkErG/k2R0P9IUzSKwYQTNUGgyfoTPD2vnJVN+N12c/hYS5Az+wd/KYYSZQgpcWVkxpkHSDOAMBCbjoGCJlpaWlM/njV1Hyg8Gg+bHwp/qAz3sFQeQ6hAPVKPRMG/p7u6uUqnUjJcLoOIlGAJmu9020MDP3tvbs2dOlUrS73Q6xvQgbQIwvNQDgMMOgIwMu/3KK6/YM/NrdunSJQtoftSOJJMACYDBYNAkRdjh4+NjGztE0KNBAvmMcWcw47xv1gqgJE3sIOVyWY1Gw4CrJDuvrCOFSTqdNkuOb4ID8A0GA3su4/HY3iuXFszNzWl9fV3z8/N2SQT77cYET/MhKgtBe25ucmsZRQ1AlGIJ9o2E6sEx75X1KJfLKhaLtt84q/jW/UQHmBf2Nb53/GUwdsRG4pQ0HZXD5AY+A3YUrEMe6AA++V4YNmnKsPBeOTPsW5SE0WhkV5Hy2bwdg3WkWYfpGRQZFHbEa18AI292Op0ZzySWHwppP1UEwoCpAagQ+JhpfgQoMqeU5wiIwYvK8/TNohTvxHOeF+sXCk3G/PAs8VYTO/gaABsFGmCKooT3S24ClFE0U4RQnPNsafqRZIUwcjYFIHEUJYWCA1sG1jQ/G5heBGk6OJ8YACPbaDS0sLBgucsDfdhQ2FTO1Y0eVSYPwLLzPrDwbG5u2l5DRqcIx9/p5XGYyltvvVXJZFLb29t2Dba/fjUQCJj1ieIMbzT+WKxeNF9SeOIPZe9ji4Gd3draUjgcNtIBMLqysmJFE02snE2KYf6OZ5RMJmdyJpiD0ZisB8+83+8rm81azCSfAaRRiVFUPsrrpgenSAncce5n4C0vL1twAGgR+KhMJdnAXRox6GTHi0oHMONr5ubmzKReLpclyRIB9D8+xU6no729PWsgoCKjWvLetnw+b7L7cDhUNptVNpvV1atXValUDCghZ1CxEKQikYixKouLi5YwkeR8M0IkMplJxzxOOveoWL3c0Gw2jT2lss9kMjbSAv8s6wQogq0j6MFU0GSD3wfA1u/3jbECtPnRLYA4hvbX63UVi0Xt7+/bPFASCu8fJopKF88mSYxEyXoikUvTQcuAG4I/jCbdmngZYc/r9bpdewcrWi6XZ0brwDAA+ih8tra2bO+WSiVlMhlls1nrTJVkbF00GjWZCQlZmtxqgj8OGZX3TBHBmlNwwI5RDPmKnOCfSCSUzWbt2dFMx3tg3ZgN6y99oJjzMncmkzFGmGfj2TdYG8Z+8R7odAWoMVcR9cA3HPC8sIP0+30D9LD27AMaF9n/MByMKKIg8F5eih4kYIpc5ESeL41ZMMt4ymDQAEwURoBXzlE2mzV2nCZDQL23vnDOsSfBRjPzEwsEnmAG4MMq+X3E++dn+2YQ1pYYB+gCkFHAAxCxNxHDWHeYK5Ipz4qimOc3Pz9v+5d9xnsJhSbTJ/i5JHQKbP6fohjw6ln2TmdyfSVgBllTmk6hCAaDtkdZY68Ksd5eyoZtos8A1phYS/FdKBQsBvgxWYAA9gEqkVd/arWacrmcTXWZdOxP5HK8ybw/QBsFA+oLoJL9EwwGLbYzumtvb8+a02699dYZSxOAC5DOecMzKcniHjnZe37JNTCCmUzGbBKoFfV63WIs+ZDzFAqFLDdT2AL4UbL4TBSXMPf4W2GNl5aWtLS0ZGtE4X377bfrK1/5inK5nC5fvqxvfOMb2tramrEC4FGmaGcaA3vGKz+wkahFfjwTgBorAnEfEO73OGfdPz+IHfYueYyv43lQwNP8y9f7mM/YQGwpFDaotvS1UHwSCz7sddOD07W1NQ2HQxsqL8nkLTYFSZEDDkClymIwebFYNHYA2Q2/G8OdAaFI68g98XjcbhmSZIBvMBhYMvTdeHSO+yaEUqlkwAFgkMlkFI/HTR6FbW00GiqXywaOSKbejOzBZb/ftxEWSAfMI0P+pPELDxpNPCRVz+4RtPAzIg2wYaVpwwtgZumD6+8Yf9Pv9w2swjjxtXgyCWzcWJRKpWZA/NLSkq5du6bRaGSdrXR/AiyQpJFPSSY0BSETefDsmzZgWyTNNKUgHVMFk1zD4bDJZCR+PF+etSOwYE8g8eHfAThS2EhTK4FPuiQkEq733lWrVVWrVXsPWCS48leajm2B3aLRATlUmnriYFi5iYv/BxgCGilIFhYWTNIHRAJOSSY0ZhwdHZlkBnCGreaawcPDQ+XzeZMjSdg8J2+vIGmy5tlsdibQ4jv3zUsoAvz+cDislZUVYxhgN5nJCTvP7yfZkfg4SzBb+FLr9brq9bpN4/CyOPGK+MPfUeh4pcj7JpEz6eqPx+MGTimeAJ7b29tWHJG0/JWdNOXwezudjtl8sNAMh0NjjUjusIfsH4rgSCRibNJoNLIxQxSNMG/9fl/ValWVSkXJZFKbm5sGYvA3YzWgID48PDTAgdR7dHSk5eVlUzaIY8QUP38YMMce4FphWErfbEO8pNjzhTnFCWeNn5fL5WaaXGDkYahg6jjrvqBkbSnSSfzEG9YbppjzPxgMlEqlrDfCT1CIRCLWn+CbXAAwgDGAPEV+oVCYiX0elPnJA+VyeaaxiMIPAIOKxrhDft7S0pLFFfzwMIHsTdQY1gZrHAArnU5raWnJcho2jnw+bzfnUaBTiLBXeZaAMGxy8XhcZ86c0dmzZ3Xy5EmFQiHddddduvPOO3X9+nVjE4fDofUHEAv4fRAkqJ3kHZ6fJ2iIdRADEC5gCdRI8gFxipjhwSjrQMEAQ07BIsliDgoQzY7kUM5euVzW0gc3rnnSDxWSvfcfPKcfvKhEvc/H37pEAvb+PZhKkvmtt95qBmXG+3j6na9Lp9P2IPkazPV+hALglwPsGZZIJGKyENS9H2UBSMPfSHDEL8nvp2KUZMmSjT8cDg0wsJH6/f7MCBDvMaHRi4QPoxsMBm0tORiwmPjoAALe54V0CXjjdhZuEeJFRcuMNw6gr4i9VyYUCllhgHSG7EdlXKlU7LACXAA4rEWvN7mylaRAdUvCouMWQMH8SQzzdPKyp2DeJdm4KRgUfEZI1MhbBCcSDsEkmUyafLW4uGgJ3wNP2JbxeHLlHlYVEgEAl4AHw8uz82wr/yD7NptNC/SehQJU0q2Mx4nfg7zH9Af2C14prB3e5oEUTHHAvd1+fNHR0ZEKhYI1RLHvJBmIZC8hi6EOEGCxLgAsAVi8Dxg47y/D3wkIQg7EGgDQIrnf6ANGsuW8w+QwOgl2GOYUW04wGDSvM+8rmUxaIwnPvVKpWIPO6uqq3frW7XatAY1kDpsD8CEuwGLhPT8+Ptby8rKpEDCVHpixbt4nh/zHe4Q18rYNlKfhcGiXCZB4WT+/72APfaMJSRvWlbg0Pz9vqgZ2DpK7Z0gpkGH4UJQodCXZfvbjiIilgBZfNGABAPwRh4jTvDfvz0aFoaHFe2EpUIhtAAAYZBhHGiE9uGHsIRYEz9TDpPnxRuxR/LPtdtsK5JWVFYtfsVhMKysrGo1GBhp9NzqMMgwoEjr7k6/x4B0LEmtKpzg/39toYDuz2awVxMx+5e8jkYipRUziQEHtdrs6ODiwAo3zQMEgyfI+AJVGN+Kz75fgGXoWknXmvIXDk0YlxqNxTihi6AUgVrAHut2u0um0FawUvzRdUazw+ZmKAbgkl/nmUnIZex/AzNr7fUkukaYTGChQALhMdpGms+HxzpO7P8rrpgen0Nietqaarn9wz2sikVA+n7ckSkImUOPFwisJTY4fiMSM4ZkKR5J1drKBSTqwZGwWvJWwLY1Gw6YHUC2eOnXKpHaYJb9RfIcjSZ5D3+/3zQMDICQgLS8v27V/fk4kQQ/QC3NIRes76gGsrBdfCwOwtrZmB5xnQlCAMeb3w2Ld2Ek9GAzsdiISmR8fgnGfwBIOh2du8vB+L++hZSIC/kQCIbYDQDKXE/CsaLogCONP5nu9od93KfqOc5I6nwMWAlaS235gO2HpmekJqGB4PvIyiQbw4hkw/s0eYiYnIABmCAmVwgpADwMMc8bP5KpZ9nmn0zE2BUbKMyXsFQ8OYTfxKlPxU5iRtDwoIfCz37vd7oz/lATF9AYPBrARABTZB4AzWAyKiF6vZ538MAwwlgB8ihd85qw1iR8wSXG0sLBgcjrSJDN8YbL8fpyMeGoaw4SPFuaaz0FBCGD1PmZYOT4b3thgcNLQxPW/xCrWnp8hyd4fRQ3Ai7jG72KtANcUJf75UqTzc5lVSfMRRR0/298Bzy14/vYuYjIkAEwSZ409AgjjWaAckPQBZhQPvV5P5XLZvJ8AbO8ZR0nxHlHvX/fKkzRhBSEGiJH8Tvb43t6eBoPJ+CPfRDQajSxnJBIJKwLYr5AMfC1FE++hVCppNBppdXXVgC9EhPe+Ew8A08QXP6oPkM+awgQnEgnt7u7OAFCKO+IHCpIniPg8jEBERuc9wK6S2yGBKNKJRbDyjL8iFvri2/siPXsaDAaVz+dninQPeIkVzWZTP/rRj8yPfvHiRe3t7Wk4nIycxJbCPvQFFGs3Ho8tt9K4iAUvHA5reXnZZH1/iQhFKj5QYqA0HYvJ/pNkvQp8Zt8wSpyAwYYgoOOfPM17Zo2Wlpa0t7dnCjW4BEsOBJok63v5sNdND05rtZqxpwTAZDJpIzYAjZJmRsJQ5UC9p9NpA2m9Xm+G7cA/h6RPtQMgItBgaiboStORIf6WKoIkFQ3vEdCId9VX/Z52900TvBduYyKIUjnDuvnKvV6va3l52WR8782EZYzFYnZYpOlAfGh7z6KRkD2TCeCn+qRJDF8OCRHPC0EY9oz1hd0BDPpGJpKjb3bxs11JnKlUSouLi8ZkA+6RRGEH2BNUuPjQYJABIIAw1htvEdYPgBIAzvvxOPCwkuwD9ioyeaFQsCTE37EeJMxkMmkdvrCCyEeA6VQqpVtuucW8vDBBwWBQe3t7ZjkBzPsgxh7EggBrQfMICRh/ZD6/oNOnL2l+vq1QSMpmpatXC+r1osYEAqzYj3wufodvjOt2J3dOA57ZH1zpiDUBRimbzSqXy5k0zDMmIF+4cMF+Bsw15xJlgeSATExSZd/io+RrSLTsTZI8lhnPDOMT5D158AHY4OsohOfm5kxOZ+1QZpA4kak5y7A22Ag8gCTZ8CxJXvjIvT8QOR/7BRIe+wT2kJgGoyPJQBIWn/X1dZ04ccKYVeRYil7ftBGJRLS2tqZqtWqgA8AIKCY+Y83CUsJn7fV6KpVKBvYkmfpxfHxsU1Hw71Ls+vGB3sIhya7p9Y0iHpzCZgHG+VwUpbD+gPhAIGDNnHj+SPbEUICmV6LwsPoXlhnv94vFYjMNrTwTgAgjnQBLy8vLZjNhLShefCyEGKFA40yy53imFFfEcHI0RRV2Cwoazg35FOCMdQAGns/G3geUEXez2azFFc4FsU+SFeDEUv7NMwG8MqZqNJpMk3jnnXdUKpXMhoR1gfzMXryx6OJ53mglYo9h7cJ/yz6g6CXnEbvJbYBwmgIpfiimmEoAtiiVSlYcgD3YU4BfWHh+BzdhQsL53gfOHPEEGxPr/GGvmx6cIt+QSBuNhlXT0rTxiORF4wuBB6r6xIkTOjo60v7+vnXPeYM9VRUeLj/SgqBKww6MazabtWAAiCS4+2Yruher1aokWWVDBc3n8PNUAT2ZTMaCRygUMr8gYEDSzGgpLAFUtF56rtfrxtBxAGFOAQ00r3CzFSxqqVQyY3c6nTbGUpKBUjYtYIJg4qtAgA+VrGeD+F7YIw/yCN61Ws3ANweWq1LxusbjceXzeVWrVfvdXurHZ8OoJ4C3nyZAsIN1oJt/b2/PwCJABmYHYAdjwbMjkOKno1EilUrZ9bGwFUitpVJphs0hIcAweEnPXylHAAFUEYjwplLYIXfi9QWs8nz4vZPr8Xb16KPv67bbrigaHajbDWs0CigW6+upp6StrRN65ZV1bW8XDOAxIBsA7htmAL7YbACK+Lk8A0VxyB4lYZGYAfbIpjD+NDwywQAvKjItyYsClpFVNK2gaszPzxuDC9sB2PQMBWyrH38mDbWycl233XZZyWRbodBYvV5UV65kdfHiGYVCKSvSGo2GCoWCnefBYGCJBdbd34gECO33+3aFJx5E5kUSS7xP1Bdg8/OTO+c9MEQ2Z2wTewpQzF6hWOd50dzH18OQ8mwBlL5hD7ZakgFtClu848Vi0dh7AC5sJF+PNQOAA7Dk3HPm2RsAS8gGcgssFnGQ9+XXwPcFUExwbgCJ/Kx2u22ximuoiWmMYiJHUVCzZ+mep/jh3MN0k9eImbCLHlyguOGPp9iBdWT81cHBgYF6vo/nwOUpFGWAJogNlEv2IvuP4gaLE1YgPPXB4HTcFWCYc9zvT+azQoSsrKwYOQOhBADm2cH+k2cgWsh5ADj2JCPEmIaDpWd7e0snTlzX2bMlZbNVPfZYW/1+SPV6Spcu3a133slLWrDmSa+wkWe5LZDn44kFPjPnuV6vWy4HjBJDyJ/kbAp5nw94NhTd5FFfdHj7D7jDT5kgLvJ8IUn4XUw7Ai8w9uzDXjc9OEWKJQkQgPEKUnWwIZHzGL/C4P1SqaT9/X1jCmCTvJfSBzZ+lx8xRIXIwSaQUZEuLi7akG5+LklwZ2dHpVLJpCs2qAd48Xh8JllygOfn57WxsWGJZDSazoQkAcEq+C5aAjObmGqdoN7pdHTrrbcqFotpa2tLV69etU0J08aBZtPTWUkDFowPjCEgElBHU4U0SRTLy8vWteylQkB8KpXStWvXVKvVLJHwezmQ+HUAYb4Rh1lxXuLgFg1YGYqLdntynSiJmj+DRUa65GIGhszjwyEhIh9TJNAVKsnkOvzR3nYB6CcR8N6DwcksylqtZgoBEihFEM+YRHX16lWT4FhPql3kJ2l60QFFiJfy8Evh3a1Wq8pk3tSXv3xevV5U587dovfeu1XdbuqD+7u7evjhAz322I5+67d+oZdeOqVf/OJh86wuLS3ZmC/OG2eJfcK+YL+S7GFROCcwckdHRzbGi33HGBjePzcAkeCxHwA8YURgAXj2ksxnSDxBhi+Xy/acADS+2QXZflJQBHX33Rd1zz1vKpk80v7+gur1rAKBqKLRQ509+67Onn1XV66c0nPP3TPj2aNQw7LBGYTZpqBjf7PfYGJJdJwFaTryiQY04hKKALHMsyLERIAX3wObjGePRMpaE4skmV3H35hHAkZxATgS0z27jwWEpiusOYyDGgwGlmiJg54MoPFImjTWUqz7kTs8Q9YXNQgwn0gkLLF7j673yNPkyTlj73CG8Ev65O8bUymKYailaYHPHuc5UnzC2HLtq7cRkCuXlpbMbhAOT2ZCUwyFw2GzD3m1wHvGpamFidgD6PNFGs9Rkj1nikbIHAoRCnnIC4A3Cg7Ai3/IN0jRFEAUagBlzioxH8BGjmItUQCw0vDcgsGgNja2dPbsy1pYaKlazatS+SUdHPR1eFjW+npZH/vYc3r44ahefPEuvffeXQoGQ7a3URji8bipXZwlilxIARTFg4MDUw+wUHDWeZ40p8Kkc+Z5/qwF9iX2LOtJzPf70he3nGvYf4gDrHDsP6x7YLGP8rrpwSmmYElKp9N21dnS0pJ55waDgTGe3quCDAZrBgMqaUZiAeB4SV/SzBgcJEKS7I0MmWerODiwBZ7NZdORZDqdjnUxwqjh6WHzIHtIsgSJVINk74Eewc8PO69UKspkMspkMup0OjYGZG5uTqurqzaMF5ofCYDkATtEBcvXAKYmDFvE5HcCATc0IUdQxZNcms2mgRRkzkgkYgnCs5g8T98whV8UkIevdW5uzvydSEM8G7xEBDB+JjeJUY0T2KnikUl4UYAgf/I8g8GgVlZWjB0BSFM4SZPEub+/P+Mj9SwJBQSDrpE/YUgkmScuGAxaMQMQxCpBMMQXyXslsOGl4vlSDITDYZ05s6svfOFdvf56Rs8886DG47BisYiiUUYPhXXx4l2q15/SqVOv6tFHX1AiMa+f/OR+K/JgJ/Bhso/paqbY8DIz0hfBmSYvZDwCJuvP58XqIE3ZO0kzcjIeZoo+JHhAE0ADIIZnGCaz0+no+vXrMwUAjNDEAhPTww//VHfe+Z4uXTqtb33rfr377ljLy2k7X+vrD+rhh0u655639JWv7OvP/uwxDQZxs4wgQQIY2H8wmTDMsKWccyRS3+jCxA0AKp65UqlkdhbOFqCFBIbPGGXK+/tYE+RXaVJAsM9gOpE2g8GgPVPOCWeJnwErBgDyFgeKPCaTkDBhlkiekUhES0tLNtHFS/N4IgFarAvAxdussDXRyOL7EkajkTFNqHoAkeFwctkEI4+I57Bs5BYUAGb2ci5R1wD22LYSiYQBUVQCijdvB2BNYYn5b84D4A1bGGAkkZhctczIs0AgYFdoY4Wi3wJSxts/UNto2qEgBKR7n6ck87uyr1g7zinvF8sH9jDf6MjnAvA3Gg0rzlFdKApgkFHT8ECPx5Pmwdtue0+PP/4zXbt2Qs888wkdHa3ZLO+jo7Ref/0urawMdMcdr+npp19XInGkv/3bWzUcThS0ZrNpRAJMLO+fdYC8wQLS6XTsogkIA2IX8Z+zxXqQW8m7PBP2Jc14FHfYjwC/MMiQHdgZKRbAJfib+XryJEXZR3nd9OAUxokxRFTJHA5u6cGDhsxAAPQSEsGHILe9vW2jg9jAPkBJ0wrNj5RJJpM6ODjQ9va2PcxSqaSrV69Kmo6uabfb2t/ftw2Ty+UMoFLdwmjc+H0wmL7LkGoUf6QkO8iwgIANTNb9/qQ7mfuSkevw+ZXLZUu0qVTKbt1AKodd9rK9r969ZCJpRj5A1mZmKN2nsIx4cRKJhDVWARSQXwjCfC7kMsCvH1NEQiWJJJNJ5fN57e/vz3xOuqkZj8O4GSpoBiDDzBD88/m8BQ4AJMwRY05gu6hsYTW4/AAwAwuTTqdtXamcGXPEiCYYRWaNUjhI0+YQAoifhYpkRVIMh6cDnilSaBKhqYz3Eg7X9fnPv6YXX0zoj/84pfX1oVKpBQuENGBN3m9H7757l0ajgJ544ufa3c3p4sWC+bJQMWgQpLIn2CUSCfPwwpx6/5q/lpY7wPFDLSwklMvvK7sa0Fh9NWpd7Wx1Va9Pm8A8S0VDnrcu8NzZ1zCPfK+/fhPwBkBBWkSWfPjhV3Xnne/phz98WBcu3PbB2a5ZkpCkXm9eb7xxty5f3tRnP/t9/d7vvarvfOez2t09tn3gzz1NmoFAYMbH7v2BNG5QcMOqkSSPjo60uLio5eVlDYeT2+r29/ftdwDKYbS95xtGhcIL2w3xCJAKkPFeZp/wsFZ4ME2MkSYgysds9oYkuzwBIOmLSopPPgfrRH7Ad0xRBgigmPWsJwCeiQWsAU0h+I6Pjo5MXcKKxPxL5Hxi+ng8nb7AZ/A2HfJOt9u1AmV9fd2eA88TAMp6lUole8YQBeQ3P5+VMXWeqeTZMIKPc0lzl1fdUPCwElEs0UyF4gSr5xskyVs8Tz4DMQsfOEoIf04ciMfjyuVyZjepVCpm6bqxAMWj3mg01Gq17AIIiAjfwU9ei8ViuvXWkh5//Gd6//179OqrT6nRaCocnhYBfF+vl9T+/iMqleb11FOvqlIJ6pVXTtm6UoyBNygw6SXhnCQSCcM0XJfL3qeQ9woG/0//h798AgWP/+ccE6tYJ3o1sNn4hlT2A+AZhRUvOjlFmpCFudz0GvS/73XTg1Nv2Gf+IQEGw70kk4BIElSHvV7PZu4hg0qToFEul1Wv14359AzI0tKSBe58Pm/yAuwZYGw0GtlYoHw+b7cQRaNRA3uwRvF4XAsLC3ZwYYk4sBxwNh8yJH4gKjSqagAmh4MAjUwG8+LlYkAIDJYHgIPBQLlcTplMxi4roHLrdDra3d3VwsKC8vm8sZW8V2bM8Wx8dyjJDVBDQFtdXTVfC5+DYInUBiPMYQMcSVKlUlG73Z65OjMSiZhnb3Fx0Xw6yFn9/uQe6Wazad2HFDyAYy5TgK30pnokRbpGPSsHoAJQZjIZY2NJ7uydpaUlZbPZGVbBB29JFkRgpal8AVeAdWRDPof3sXHzEt/farVsT3p2DpaMQHn33Vc1Gkl//ucnlEwm7P3CNJHwYT+Ojo7085/ndepUXg88cEmNxn1mt8DmAatJIpWmLMFoNLLb4JBl8X5eunTJCitYEulQDz810G23/EDzoUn36FgBBTTWaBzS1dKdeu2FrBq1TQM53t/IfqGxA/kRDzGKCUCAMxiLxexqzP39fR0fH6tcLiuZTOrEibEefPAt/fSnd+qNNzaUSsXszI/HY2PqmdRQq4X0V3/1tL7ylWd0zz1vqFy+c4ZhZA9w7SMqCQ2B4/HkSkjWOJfLqd1uq1wuq9/vK5/PG9OOTQUgEo/HbVg/8RLrBICQdfn3WUUYS4c0SlLmmRGbAAfEGORMQHAqlTIwQlENoEE5otEV9SMSidilLBTJrBdgGRBIHORckGiZu0nsAajy34AXmoKQQgGmxMvRaGT+Q2wZTCqBXIDR6nQ6M7Nn/ZpTkALsm82m8vm8gVv6LfDYYyVBRWEtOHPMq/SNT9g42OfEHUl2WQMeURQ0QDPPA/aZnMPPQOEhl1IwefaN9ST/UQik0+kZxQaQhdJBLwd7knFuKJCAs1arZbEfSwqgi71LgQyYGwz6uvPO51Qun9T161/S4mJf4XDECDAsXXTsB4NBnT9/j5aXj/SpT13R+fO3ajicNjuz52DLacxrNBpmkQGzsGcgmMiV5GSKewpgrGDsJdafdWHvkD+xQaBSYtvx/RWQPpAN4Av2LOoAKjIx8KO8bnpwiozMkF2CDyBgPJ7cib24uKhyuWweNIAO0gSSIowNkh3GfSR1AhhUPE0rbK7xeKzd3V3r+iRhLC8vW9UJte+DAofJ/7tWq5nt4EZPliQ7xKPRyBIJjR5cqcfPAwzjBYURo4ryHYCATmQZruQMBoM6ffq0ya2sIUGGRg+Ygng8rvX1dZNAu93JBQcwdTBcS0tLNlcPdoz3QEKam5vT7u6uAWeCB4CTZOeB/cHBgcl6AEg8algECIYwCjQmwWSR7AkIdPqSkD1bDHAExHnvH+DpxsTOQYdZSqfTZjHh95FwAXB4ogio3k8HQ1qtVpVIJOwWJ2+2R5KB7efKOmwQVN94rJkvSFAPh6V77rms117LajyeV6GwYmzD6uqqde8fHBxoa2vL5NNWq6WXXlrTr//6a8rl2mq1ItZARrHD1ZSY6gEefo9JMslzNBpZwwZrv5Q71G/9/i8UDTZUivyGXrn6kIpbER01jxVJSPc91tKtJ76jL//Gj3Vx7wn95HtnbG8gWbGesPwkW0bwIPsD5HwC4X1wRnjeDz64o3Y7opdfPm3JkT2ez+fVbDbtcgzmFx4fZ3Tx4h26444L+qu/yms8nngOSS40f8AYUtgB9Ek43tdIAqxUKqZK4OXjPHtrx/LysjHqgDMYFG7hYz1IUP1+376fcW00kVE4ARyQgT04wePG2Zw2kWnma3mvnFW8pzB3jO5ZXFy0c8wzJXfgf+52p+Of2GOeaGi32yoWi8ZG8zM5m74hCVmfhhHeP4kbJQrfJ4wu75ERfa1WyzzS/X7f5ifzXmFBUdfC4bBZxLA/EC+kCdOWzWZVKBQ0Go1sDZaWlszCAWCHseQzAnABZKwNKhBSMww1fkhiOkUBMQgfJmoh59tb0ygQfZ8A+Qs1zYMzPyaP3AAQjEQiM/0m2MZgf/0+Q1VZXS1qebmh73//KSOWYIghkvDMdrtdU7/eeOMe3XXXRT32WEPnz98+wzzSK0GeuOWWW+wCIM4vVg3iCzGePhevFvIz2RfgG54nvwsLEMUoZwzVmdFdxBTi8vLyslKplO0V8jZxjZzGc6e34sNeNz049R2zAEZPizMzDx8WL7xFSOBUlHRMIoUTaAg6gCIqCK7R3N7etoOGtEP1jeTBgSVoSZOACnMJ2GOTwjzwHrrdrvmKSMbVatWmBPCeA4GAJRSYSz6XB0WwjtJ05A0yD4EGGW11ddXADF42GIdSqaRwOGyzTpGkYBPT6bQk2eH2/kq6v/1cUzpH+/2+yuWyVez4U2mCoUrmd2F38I0OyGmwpHwfAYiOXIImA6RhswEqHHK8chQrvjKVZLI9+xC/FVUujAuFBNUySRrWxYMkgksoFDIgRqIDnLI2+Xze2AQvx/IZeG4w7QBakgF7kqZAQKM07epOpXaUTHZ17tyKBTdAwqOPPqrHH39c0WhU77//vr75zW/q0qVLtg5vvZXWr/5qVIXCeV2/fqckGQtJkvXjeSj4eF+MZ4GJ4SxS1Rc2xvq1X3tW7dCt+svn/tcqvfG+wsE3jP3br9f11ncbiqbP6Ev/6Zf0wOp/pfFnOvrBt+/QwkLShtnTqMN5Z8rG8vKyNdzBVPAc+F5J1gg1GAw+kOeiuueea7pw4YwymVW7jCEUCmltbU2PPfaYIpGIdnd39e677+rixYvmWX/rrdO6++63dMst1/TCC5Mb0lhzGD32EeeJ4pJk6e0mvrHB+/kYpQc4pDsfIHLHHXeY3QSPIwUhjAy+N24E8kzNcDicudUOIETi9M2B3W5Xly9fljRRb/jM7ENiDk2S3ovIucICBPj0+wwgUywWzbd6I3iAOfIMHEU3IBJQxDpIMg80gALVDvDJz+X9UPQx2s9PxOB8QC6wv5guQEMhBQOXmcDK1Wo1O9+SrC9iIkP3jKXnM9MQBwglbjGXExYbGwNkEA1JxCtyI1Y01AaYaYoh4jQD9MnbWBBoNOXiBuIgJAqfi7zKc5OmNyTip8TywNWkh4eHVnTCdOMDZk1vu+09VasLOn9+TlLRfi4NY7lcznzABwcHmpub+2DywrK2tzd0553vq1x+0sCfb3qDEOG91Wo1y/fI8XwtdiKKDfYj5wqZHWzD+SP2YxugoMWWEY1GTSGoVCq6fPmy2W/S6bQV4Fg5JFmcg/jC5gbRduOYs/+p100PTu+880574AxdhgVl8ahueFBsWGa0IYFg6sYL6jcrD1KSyS149PC0Li0tzTQqSZo57AQoZAiAEe/RBzu65Ai6yLtIrzceROQ22AqqRD4PhxJZPBabdJn7+9thI7xHC9aL+ZD4ddjQVG+SLFGw1oFAwCpUEkS1WjWpRpIFHK68y+VyxtIB1An6SEuwmJ1Ox0Buv9833xzAkwSOZI3cibEeCc4HTUAwvj6CH8GBIB4MToY3Hx8fq1Kp2Jiy7e1tA/DI7DBL3u+MvQA2KZlMGjggMcFYBAIB89kB/rmRaXV11QA56+2lbz81gARGUAMwspf8CBZmBcJA8DWSlEyOPvjZOS0vR21vBgIBra2tGbg8deqUyYaedW63ExqNDiwR4Ymjyc1bPXyCTiaTllhgxmFTMpmM2u0j/cZXXlU3dFL/zz+6Vdff+bbC4cn1o6urq8YqZbNZHR019dwfv6fxP/3P9fDa/0m1T6zpjefDBpDZUwASZkIyCeD4+NiAv/dQ0oBAgqXQO3kyoLm5vhqNB6whZzic3Jb06U9/Wp/+9Ket0e/rX/+63R3e7/d19epAe3vzWl9vKBhctuTCueD3Ms2DxEcMZI4nNhuUEoor1przyN+x9/CpLi4uzkw4gCGmWQbVIRKJ2GgkxiFRyFLke6WJ2IclCsaQZMjXAdYrlYrZKxhx5Ru9iLcAGdYAYE3ckmSMITHy5MmTBlS8tYP/Rg6HYECJkqRyuWyxuVAoWAEAEKU4hJCAyPD9ARSk5A+aFdlfhULBimv/vrDw4Olnv6JMAeiYHgBYIeZTVBOrAM08e18MQZCQeyQZOMK6AMjy0wC8V5jCkv3jASk5AfUR4gVGsd/vW/8EL2xWAMVWq6VCoWCj4tgfFLW8Ty9Dgwd8cZDNHmpnp6Ber2/PNpFI6MSJE/r0pz+t2267Te+//77+9E//1J4ZzO/e3gmtr7+gg4OapMBM85L3IUMMUeSgJFBQo5p6mwTfg1cbttSfCXpf8HITi/0YTNYCtRECjdjQarXMWsI55BZAlCEae0ejkXX5f5TXTQ9OMc/v7OxYomeh2CzclkTXL6AEyZZD65lVZMOVlRVrspCmt9XA1JLcYVDx/HjDMuwLcySphqhGstmszbrz3rNJIp/eRkWAxcuWz+clTccora+vq1AoKJfLKZVK6eLFi+Y9wc9J0oJZI5GwEQGv8/PzNsAamRHJEaM5BwWmjuqaz05DDWAKD5GXHjxgB1AzYoWEgfyJLI2Ez3Mj8OGbAQjv7u6q05ncYsRoLfZFIBAwZoBiBf8yVTXMIe8VwM6zYe/hUyJgw7yzV/AFIYew1tKsV5EkjbRDkODGKkZewXzg54zFYsrlcgZYarXajNQFWzsej1UqlWbsKyQYGBWCIhYWxp5hu5gUCxNbSTA4OX/cZU0yJHACSFkXAuKkg3baEIM9gueK3QWwIckYLAA4gbfdbtt1m3efDWo+sK2//NkXVb/+mhnzSQacW/bhaDTSle9XdeK3vqR77zqnV3/ypO0FX9zBSLDfSRLsFTyFFLkoCyTRiadrElcajZH29vbs8pBUKqU77rjD9gje0EKhoGQyafuj04kqlQprY2PDwCn2Cb5mZWXFLEYUInQ9s/6AQGLc7u6upAkIoouc30Ec5Xth2gE4sMneN8zn9wmKfYY9pN/v6/r167bvfTNprVYz+VCSNTTSDzA3N6dsNmukAkCKcwPYLpVKxvgCbPEIEr+QiJHeeR7M3IXdRcmgCAT04jmnsYh4Eo/HbcIKzOWNxQ0/l+9BpcFaxd6i2Oac8ywkmT8esAL72OtNbzkDOANcsbuRixhrh4KCjQppXJqA5kwmo2q1qmKxqNFoOloPwgeiBGae+M/ZxxoDSULjnlcs/dmCxR6PxzaFwtttiI8UItJErWCeNJ7dSqUiado4jbUMHy/NjDDOsM7EzGh0qNFozuIzsZHb1QBkFGjk1ol1aqxgcKxWq6HxOGLvg3Xwqlqr1bI5ysRj7/mlmAGn+KZZ5nMXCgWl02kD7RSTrItfK1QUmGumXHDFOFNQUELIaRSYfg9SwEia6R34sNdND06R62GaGIuUSCS0vr5ubASMEleFAtJ4sARZ/IwbGxu2gTjgGPm5eq9SqdgBQRoi6UuyRgtkK34PmwL2zYMXmhiq1aqOjo504sQJpdNplctl8yIdHBzY7wCwwnKRgBqNhjE/vosdUMrvooLjz72UHwwGDazi1WW+KB4nkrlvFoAZ9J5bZAgOr29ikqYAm+kHDLanWalSqdiBkmSfE6sFwZVETCCbm5vTysqKJJnxm8AkyZpX2BP4SZGKvb+NK3GZBPDWW2+ZZxD2FfDsD2ilUrFn4SVi7iiGAeE9Hx8f25xHAl0wOJ1DicyJl48GOH/3OkE2Go2aB5CmPxhKCi/mgAJI2KONRsOa/AhqEwAySVqLi8c6OJg2TyQSCb300ksm97799tsmQREgFxfnND9/rHZ7yl4Ui0X7b/xlvPx/wyCz12iWIWE/9tie6oFH9O5zVwzE0Bzzuc99TrlcTuVyWc8995yuXbs2OcOlkt5864x++a5v6o4HntT7b87eaY0cx++AuaEoqtVqarVaWlhYMLYIpYCCa7KvJzfTlcs7KhZjth7Hx8f6+c9/rng8bjJsrVazBkm8sPPzIXW7CzMzhWEWsZAAhkmYMF74elOp1IwVhWdGUQwzREGAZ5MzB8Ah9hwfH+v69evmMYPxgakCKLFeSL0kQrynsVjMAB77HPafuZX7+/tqt9va3Ny0mIrnEZsBxVOv15sZ1u6VLKRRP8ua8wWJsby8rFgsZhYS9gBrTCFGMbWzszOjRgCaYaI8O0h8835j1ohCnCKFc8OeRzFqt9um2qByED9QBOfn581GxbmCGIG9ZD/z4nf1+33LXZ5B9/5qSTNFro/jXmGkSPczi7nCl7Xylin2Lg2YgDFPYgDK2MMUvExV4bliffP7hPfIZ8F6Awj0k0smZzmqSKRvuIA8sLe3pxdeeEFvvvmmdnZ2rPEQXDEpMnoaDgPa3i5qMBhaLqMJjjPCM+B3QAxQHCD7U4QRx9kzfG7sjeQ6JvDwWTgD3urHuT86OjKCDPXFW04gcygG2d8oKrC3/NyP8rrpwSkHhRspGMlBNQZYgGUhSA+HQ2ORvCwJYPAL3G63bWPhc6zX63ZoAAJUHFDx+G24N3l+ft4qWg4NkhtgBpCITYHPB2AkqMJGEjwIgoxvwhcFExYOh1UqlQzMEMhgqrrdrh0SDjMjlmKxmLLZrCVF1gAZgTX0UiMMGtUzDABfS9Bko5P0hsOhSX7eg0XFlkwmzS8bjUatsYFq13cdYyoHPCFHwRCTuAiwJHSqd4CvJAvYAK9QKGRgkbuZvfEe1pTg5y0BvumCYE8zDKwFe+Tw8NBmbwKSMpmM7WH2DXsGCwiFFp+l3+9bR/329rYNRIcR4PNwRkjA2WzWiif+rNs9raOjN/XEE2U988wJ6+judiezDN9//30bswLbjQR08uRlRaN9Xbt2yvxZKAh8DaALwMwzwPIA0woQD4VCSmXnlIu+rJe2/ldaWGgaS3bmzBn9wR/8ge6//37zZ+VyOf3xH/+xzX599XsXdPbe23Xq7rIuvLFi+4sEwHg1gDDsEj+PaQkUPjRmwjBN2My2RqOA1tcPVK2etufU6/X00ksv6dKlS9rY2NDBwYGKxeIMiAqFOkqn67p2bd0AGCybfz9IcEjP7DvWlTiHJI1Ey/vA9nDlyhVjoGiMQ5VAqvb7DXBAIcpelWRJmFggyeITRT6An2SLfYN4CmAYDAZ/x5dHEUFRBTPmC2rsXex33whKkbu+vq5arWbADpYN8oECHObLezw98AEAMLYIlp7CipmlFAasjWcv+bl+zTwwXFxc1ObmpjGDKHucdwAqBEMoFLJ5thTSPAffqEWsQt4nR9CbACtKbCKX0lADcYMdaX9/35QswCn5EubP+6EBqahWKEIw56gV169ft/2fTqftylXyP7GK90ssRylF2qd48r5TfhfXMtfrGZ04saNW65SSyUVjjHd3d40wgqlOJBLGivd6PW1u7qlaXVYisWDyOpYl4iVFAoCTgoI8DHj1lj+AN8UN+RpMAEPK9AaYZ56dz2mcC6wjqAdYdwDLvicFhY0GK2xsMKueUPj7Xjc9ON3Z2TEmKxgM2sNFZm80GtrY2FA6nVaxWDS/BSDiRvqcRA0bSpDDnO07Jakk1tfXlclkLBAymBvWjY1FgqAKxX+IvEWleOLECZPJdnd3jZqHidnc3DQGFVlakiVM3gcVMoBsd3dX4/FYq6urNs6Ez0nFyygTAhYjiKRJouFGrsFgoHK5bAe0UCgYI+irWz4fwRyWg6YgfFgk/htnAHqTPJUrlSkA33uXSD7ey0aQhqUBhHPQWT8OI6CC/4Zxhi2jQCDgtlotk0MODw/VbDYtKRH4pg0RQT38cF3jcUmxWFCdTkTvv5/U9evHxtoQsFiLbrdrlgwmPlAc8LxgLnwnP8wZiQCmBS8iCRPWldFbVOGM8qF4Yr/PzSX03nu368EHX9d4fFqt1oSNYch1p9NRsVhUuVxWKpWyZobBoK9bbnlTW1srKpdjmpsbm6eMgNbv902KY+YoUiyAgtl/gOFOp6PcmTVJ0u7l6RibeDyuW265RXfccYetTygU0unTp+1axlQqpUizqaP+CcVjU+8UxaofLQRQIqE1m02bAIIyA7NJBzyJoduN6+LFFT300DW98sq6JX4/m/CVV14x+RnQ0m639dBDVxUMjvTii8vq9SaFpB9DJE3lQgCjVz8kmTrih45TlLIPjo+PLRH6btzRaGR2EopO1tLPTKZzOBgMqlwuW3wCrAMeAELEXXywvB+85cQlABTMLcmSpiP+3nujafqkuOW5EOcBCZ5FpOC70ZoSi8W0srJiyZ7iieI0lUppbW3NPPx+3A6MHiAMUEovgJ/O4kEVeQaWC0neN3WSw1qtlorFolKplI3Bi0Qif2feJGCIIor44BsQvedxd3fXng2ebZ4zII39S/6BGCJXcp44zxAiNA0j+XtGnzPnrU54QFF+er2eWZHwAnubB/ua/yfeB4NBszIA1DkLvV7Pni375PXXT+pLX7qo06er2t2dTp1BQSP/8L2szdzcgTY39/Tss4/Z2nGjH/iCMYYw8+Px2G67AmAS9yGZWC8UG84hxSG5l5zg8yWEBIoj+5JC3nvRUSzIB+QzCiosfOT5SCSitbU1DQYDy98f9rrpwSk+N4IuCYyESxcZwITxJxi4kaQAIj4AMhYhGAwam0oVSMUPqCKBIysTMDlEyNnQ7lQ7Ozs7JrlP/XgjA6sAJ4KdJJMs+bNyuWzJik46WFM2IiAZ0OYlilgsNnMb0v7+vt2xzrgeNmIulzN5i40M08TaICMjTQJM+TnMyIMFgJmBzSHgdrtdC2i+QxN2BrmLkR50P7PWMBp4g7gUIRgM2uEj6REsqSZplEAqJVDgB/VFDAc0m80auJBk3zuZ79fT3Xe/qTNnLioW66nbjWg4DCoW6+nTnx7rvfcSevHFVe3uppVMLhlLzvup1+sznjDAOOy7l3qGw6FZPSRZosP/BZvFmK0b9zzsLD93NBoZSGakzWuvrer++9/Q5z73hv70T++WFDKw7uVaWIjFxUXdffebKhQO9D/8D/eqUqkYeIcFIwCTpOkG5r/xTQOCaJpptVrqDydno9tqqdebgKl8Pm+Nd/4F+IOZDYfDGo/GCoSCdnaR5XmOsBTD4VD7+/v2s7Ds4ElcXl62+cidTke5XM6YqnPnNvS7v/uS1tf3tbWVN/sG54LnV6lUTIqNxQK69973denSqgKBnKLRsbFhFFmwSr5wRr0BDMAcUfTAwniwylll/A9FAaPwKOS571uSNV/AnlHIoxpw7vGptlqtmatkOfM8/1AoZB547D1YDySpUChoPB5rZ2fHvN6cY++fhMFhIDvvizWGJCAP+O5p1ga/3XA4NEUNvyP7lkJqc3PTwD2/2zORvvhHugaIenKEXEPM4plCIhAHAQxYeyiaYLaJYcj7+O2J4xQUrVbLigH8rzxfwCFKGecbNs0XspxZ3p+3xKCg0PREUyPrDgmB1Q0iiBv8AMnMUfaqBfY3Ju+wjuQT/7XEZUAZdjByB8wjRNdoNNLVqwnt7yd09uwlff3rBYujkBW+R4D8HImE9cAD76rbjejy5VOKREI2bQIiBp8q1ik/0QLgT3M1ih/PgRhLgUXu5evARb5QZh+BWch/YB5IIiwz+LRpDuS5EO/4Hd66SIHBmfyw100PTvGZ4mukavOeCe6EJ1jCCHFwqb6pxAjCVAdI0xxmNieHn83EjEDmuy0sLNhwXmQID+CQSpBJqGwbjYZVKXgiCWAcnlgsZsP/Cb6pVMp+R7vdtuTLZ+D6NDYV1R5SzJUrV2YSB8CPBgE2JwE4FArZNbEEHzyOJH9sC6xXNBpVsTgZyQG45bajQCBgCYcRVQRkvEckZYIJrDLzQUkMgDpkpFRqct/79evXLZhSaZIIAa6sNVc4AlK8r7VWqxkAw6PKBAb8qhziRx8d6bOffUHDYVCvvnpC29sPqV6PfwCi+zp16pruuOM9/ZN/clFvvdXSuXP/QO121DqS8cxWKhVrkmCP+sIJsMJoGO+ZpRiAweUaSRg+mgJoDOCSCT+gnP0+8R+F9Vd/9ah+4zde1O/93nl97Wu3a35+0sWJhxV2PhaL6rbbXtInPnFFP/hBQbu76wqHA/YM2DOtVksrKyv2PmFLYd5gfwEy/f5kkHwmk9GwO/FBLmeHKs/FDbhfv35db775pu69914DLefOnTNPIkBjPrSvg/a67QX2JsGfvX94eKharWbJhukVABlue2m1WqpUKuYPH41GeuutiK5cSenLX35X3/xmQcfHiyaPkSAkmYer1Wrqt35rS6lUR88//8iMRYX3QnFM0vDNIdzLLcl83rCZy8vL1sXN/mbMmDRJ4HQ6E2fZz97LHI/Hlc1mbV18AUWygwGUZJc4sHeJldzrDvtFowwzkrGadDodmxcMe0o89k1+JONcLmf7hd/p5wvfaJ/hvQOQJBmQ9Pew+ws0Wq3JFZrInLCuADtiFkqc9xYCMigWUb2wLPlCjcII8IxSxGcql8s6OjrSwsLCzHB/2FlIBd81L00tY0yPobhgVBIAxSs6FB2SzEbhZ7V67y3rCSnBrFjsCKyPZ+FhwGH0AZPJZFJnzpyxr8OKhK0NSxh5lYKS/YTigtIAVgCMs858rvF4rB/96C79zu+8os985k0988z9JpVzJlirSZ6a0wMPvK077rik5557TJ3OpCEKogS/LWcYKw6MbCAQUKFQMOsZuRDwjvIIAwtbjc+amNrv980eBkkBKC+VSqpUKjo6OrLmaZ4577NYLKpWq1nTHLGTBlkICJ8fIT3wpH/Y66YHp3R09/uTmaCxWMxugSDwUaUBMofDyfVveCswZ+MRRf4GeDILjoSN8Zfq24898eOcCC4MW67Vavae/TBnAhZAE6aKGYUwGHwOGFDoeIIlYIMKDDmfbu9cLjfDZhDgCOqAaFiDWq1m9gM8fjABNKR4ah9zNDKPNL3BiyCF9xZGhyBJRQmgAgxUKhVLTBQWkmaCKRVbIBCwYAQ7xs8kMO3u7qpYLCoajVpnM5U7gZfJBJLM3O+HkONZQg4jgAwGA2Oi2X+nT9f1+c+/pJ2dVX33u4+oVmtreTms8bhn1ebFi6f0wgsLuuWWLf3u717VwsLz+tGPPm5d6AzS53NLU28bMioWFaRc1tr7twgq3ofEM5MmLNjJkycNYKMcDAYDu8iCajwajer8+SV985uP6gtfOKd/8S8qunTpNm1tPaBr10JqNOpaWpIefHBL99xzWYuLR/rrv17Rq6/eq2Ry1tMnyUC+n5pB0gIEdTod7e/vW9KjAIvH4zosHqseelwP3LetrTfuNXDRbrf1zDPP6M0339SpU6fU7/f18ssv22ccjUZauzWoxcB7+sWls1pcbJnMCIiHkUMhYd/6SQycaxI9LCrJkwLpuec+rV//9R/oy19+Vj/5ySN6880l9XpTbx9FQj5/rCefvKbNzZr++q8fU6mUkjSwM80+gO3Ek408zh4g+XtvObEJ0IOsL02Z4MXFRYt3nDPOANIlHcQkVcArjVwUuF6aZ8+SCOkLYJQdYIv3SaKj4KaIoRlDml4ziocStco3gWDP8jEE6wIMKzcFUuhRnPlpJIAX1oH9CmDEWgCRgMXIK3usCTGNJiFv0QAQo4IRe32e8HO6iQnELUALgJvPQo7i6ykevPUHTy/xhrVmHwGcifndbteKNM+awezW63Ulk0nlcjmFQiGbzbq8vKzl5WV73liMUFKQizc3N83GFQqFbEweoN43KwK8sTd4Sxh7WZJdSw7jCeD21oNyufzBe7lPzz4b1qc+9Qslkx394he3q1RK2jqzhonEnh5++AXddtuWXn31AZ0/f5ukqZfe+2uxO1C4wq6jcqBq+JGA/jlBIvmiFJKN9UNdY641+5Pv83uf9YE0wzqEl5leC1RgLkzgQgW81/4a5g973fTg1PtVAIMANbx/qVTKJG+8PtevX/87lScLDDjB/wnA4fsJrDAqGORJSARsNiXem2azacwBzB7yD3ISni+CMJua5I2sivwiyWSwUqmkRqNhflOCKfI5gJqDzP3pDLTe2NgwCp91CwYnV5oy26xSqWh3d9c6vWFiYQVgLZBjaaqRNMPa4R2kGoP9BazAXP9/2fvzIMnv87wTfPLOyqrKrLyzjr5wdOMiLuKGeFOkRB20JI9kesaSxp5dW0NpRpZmw2GHHeEjZK0dG+vZiJUd3rVCnrVEyTpIHaREkQRBkBQAAiBIAd1A4+qzqvLOrKqsqqy894/sz5tvNmUBnrXCsT3KCAQJdHXW7/h+3/d5n+d536+XFQiUgD+qZRhMvzHZqICHg4MD81fBLi8vL2t3d9cakRg6DACBhWFkizRljfCF4gODNQsGg8rn81aZZ7ML+vjHn1S9vqZvfONjikQOtbAgY2lJwBQ7W1un9Ud/lNH3f/8LuvvuDZ0/f3rOA0W3cyQSMVaXAopnhjVEms1NJInASPln1Ov1bDYgiYf1ifcWII4ERAIOh8O6fHlVn/70D+quuy7ollte0x13vKrxWJpMAgqFJhqNgrp69Rb98R+v6cKFuNbWinb/sLkEUTxgWDsoUrg2ig2sL1hjsBtcqDyu+/P/Shsn7tHB3qJ502hG2NraMukyFospm81qf39f939XTUfBdb36tT0tLyyaHDscDm1UFvIi6wggRmPK9d5x9iXH2fLv0WhGn/vcR/Too0/qu7/7GT3ySFTf/vaaKpUl9fsTFYsR3XlnWaurVR0exvQf/sOdeu21oJaWKvY+KCjZd6HQVDYklhGnAE7cq1caAJokJo40JRb5+ZuSjOUhrvGBMSQGk3wBN4AKCl/iA1I/DSSwXwAu7xeFyaL5ioMB6KhnikmlUhEHAGBhwJ7grUUULsPh0EAKzxUmTZrap7CzYAUDbMJqUVBwT5AY0WjUCjn2Df99Z2fHyBJkbe+pZy2NRiOzncH0Uox4dhamEesC3m+aUAGhPgfxflgTFFVcUzg8PcqzVqtZsULjUSaTUafT0dbWlnlMyU8oGxQJrAUa7ry/PxAImFRfLpfN2oaiyf2m02l1u11jMgHZsLOw1TRIsea5Z09aECvZo6yxTqdjuZm1ysirXq+nc+fWdHDwXXrssW/pR37ka2q3UyqXT+joKKJQqK9icVulUlP7+3E99dTDOn/+lBYWpl7ldrttM3C5LggnTzLQcwHz7E+SAsxjg+H6ef7Eedh+CJejoyPzp+7u7tr8bvAORBJ9OIxHo7hEbcEiSFFeKpXmcBBKBtf3Tj43PDjlofZ6PW1ubqpYLBrARAIjkYxGIzOUEwgJLAQdupOpqmFpkDaplGAKAIpUDABBAiCSAtUGHZOJREK1Ws38ICwWgBeGdQIsv9cb+EngyFKAEGwOkmzMDdU4/jJAB0EtHo9bZXd9sxHd2L5C535gj+j4xfdJNQrgK5fLJp2wsZAeKpWK8vm8jTVqtVpaWVkxgzVzVsfjsTUjwRx0u12rLgH3gUDANh5MA1JtJpNRKpUy2Q9mwoNP5Lp2u23vDEANa+a9wFTBk8nE/u7+/r7OnLmqaHSgr3zlQe3vz+Z9AqwIfHjRYrGYtrdXdPFiVTff/JL+9E+Pm12EipmGNN5FsVg0aRKgQgWL1QKJiPfLwRIAUN/MUi6XDQyQwLzHd3d310AtILZSCerg4G49/fRp5XKXlE6PFY+H1evFVK8f19FRTJubmzo8PLDE4n1q+/v7NgCbmZ2AHAAB8wgB4CRkPIDD4VCvfn2gu36kqIff96L++NMP2t6iUQGPLZaHyWSik7f3dHz5y3ql8QlNBh2Fl2eTGPBnX7582ZIEyYX9mc1mDcA0m01rACIh4/fLZDKKx+PXCrigfuu37lMu19Fjj9X18MOXFY0OLaZtb+f11a++T1evnrw2FaRicnwqlVKxWLR34Wc1w5CzrmAQOcaQfY+sDmDzySQcDluxxzoA4G1ublp8IqmjWPh5pPwdYgoxzDeqsGbx63kJExaY66JIh+EnTjL5xNt0UJuYYuAZSpocuTeUBNhFzxoB/FlrjF8jnqBoeR8pjGYwGFQymbQCmbjB/eDB5PdFo1Gtra3NsX88r1wup+XlZQMdFJ4UzjBc3u/MvfFME4mETfigt4B1iiLH9fP+uWd8msRsGGRAKPGDTnUUGWl2oMPBwYEBNACPNJ2RTEFHPG40Glbo0EvAVB0aPSFCOp2OHa95eHioVqs11+hDbGGdoxQOBgNjc2Hf8UoOBgOz6fAdWAWuXCnqlVce15kzXd1zz2WdOHFRoVBf/X5QjUZCv/3bd6tev1WhUFSBwOxUJgoY9iMTDiiasIaQc1GQ2CPYj7Am0reBBQncQaGGSgDoJz+l02ljOvk+1iP/y3Pm5/AO4xWHlGGWO9iEXCDpLz2nfKgSqd6pHAnky8vLajabtokIplQVbGwCFYsZEOI7Z6VZteablbzpW5Kd4kQlSLMNyZ7ZgUgYeFGi0ajy+bwFDF4ykhWyHFIj4JTjNtloMCjI1JijQ6GQdZMvLy/P+cGGw6Gxo7ClsMeBQMAq+FwuZyws/hOqPHwpfAdBmmdFcIlEIqrX61YQAG6RgPi5UqmkhYUFVatVs0EQCPv9vtbX163LkYrTj9UhKbKBAB0+CDGeimdG9QiQgZ2BGcWawUlYJGme86xJal+33faarl49pt3dmCqVLTFInO51ggMd9kwxeOWV0/r+739Cudy2jo6y5tdNp9P2O3n/gE/YZ1gD7psiAoaeosp3rkoz+wLriD3EeySRAtqQlpeWlmzPSNLh4bquXNEcgKOw8EkcUClNA6tvvkHKn85FnQISPInS7AQW3nE0Gp0yPOWyvnLn/0kfOv1/0/u/b6JP/4cTikbTKpfLZg+hUD08PNSZewd632NfUSv4Xn3rS4sKhQ7nbEI0GzYaDXtn0jRR00AGWw8DRdInuSPBwSSxDxYWFrS3F9ULL5zRiy8+roWFsfr9Q43HCR0eDq/tgaAlVe6ZmACrx5qD7SK++bFBsCscpXx0dGQTJvb29lSpVJTL5VQoFOwZ0wSYyWQ0HA7VaDS0t7dnRS+sIO92MBjYfZIcWUvMNgX4wNIBMmDFse8QE4jrsK3YaQBTFHbENvzZBwcH1tQDk+Ob/FARfPPicDi0Gdk0CNL4ls/njeEFsCDVs5aTyaTq9frcGme6AywoDV40sCAr8w/Whnq9bgwwQ9V9ExZqjjSzSJCruEZYN/oLjo6OrIjyjZzBYNDuEUuI994S5/w0BX6H9/bj3yV20/0O29doNOYarVB/2B/YkSB7GN/GwTbkFNYCax3rD6w3eZ64Q4yDHQUwlstl5fN5a5qk8KT4Ir+x71g3BwcHevPNZV29+m7b53i7p818s2a84XBoHmE/Fo88w37BfrC0tKTV1VWzIuKV5nrAHQBelEq+k1wMg07slqY+9kKhoMlkegADzxkrGM2BWKVYXz4m87uxFlGsebsfeeydfG54cIopmeALa8UCSKenx/3BPkmaO1N3YWFBhULBFi9jGggGbEjGK7BAvE8E9gwQefXqVWPlAIEEI0lzMqb3IAF8GaDvqxIkJKQWGhqQwQFUsA7IYn6ECpuJqggwzew32DkWNyyHNzjzZ96wPhqN1Gq1NBgMzMvHz/AskQmRDPz3UME3m031+30Vi0ULtshtgAP8TwS+48eP22xbNg3PhPcZi8WUyWTM6gHjiy3Dd7UTEMLhsE6cOKFms6m9vT2trq5qMplY8uLdkSwACTDZyeS+crk9PfPMnSZd9/t9ZTIZra+v66abblI+n9fZs2d19uxZ81WORiNdvZrRzs6Cbr55S83mhgEAGHkSAAwA/82z6nyXH8BPMYS0i1doOBzOsWXeNsKeooDi8ATWE93oMHtcV7PZtCTHWBkYWGbqwa7BIkmzwd0efAPsWIeeaeHdASa/+v95UuOf+Fl9+PS/0f/wd67o9Ut36tkvxxUILF0rTnZ17KZt3f9IXcWlV1QLflSf/fXjmlwr8Mbj2ZGSyJx4JklePH/AKgxiMpnU/v6+ms2mJQuSAvIZRUkoFFK73bYEenQUUiAQVzwe1WjUm5uJuLGxYUAU5pYGCX4GGc9PG8BneHBwYEWiVzdIoDC8rGHPjkqywgZ1AzCAjxyZF0CFFQcLFMmV5Mx69GP1iEk8M2IChRXXzfgmQB+d38RKCireDbYiEjnxkYLLN12x1pvNpjFEPAe+E+DNnoHBYz1QgPLsfKMb6xiGDJbPW5dgqWCt2XsAMhohAWIw5Xt7eyaFw9TycxQcKGd4SikOiYGojhQYXqHhfnhWrAH+u7dQeQaOZwzQJEYwOB5yCcsVCh/qD5YQbEXYkvxeRF3jefOMydHcy2g0su+kyIFJ5rnxAdiz3rh3GHuKDFhQH5dQ8HzjMbGKyQCsJ56xn7jBhCCIBf4/62Z1ddV+PxYfmgYhnLBEYd1DPaTHgP0iaU6dw1LC3HFUEWx63lLAuyZ3kRNZu2/3ueHBKbI7A9thMVdWVrS/v6/t7W0z5uMp9dIiUm+z2bTRLrB0ftwIVToeKMAltDv+VhbjwsKCSZTIkfwcR9ix0L1MSaWE7xU2k+BNVyCJCn8PYATGQpqye8xfJfhx7B8JFYYLNgVZGoBAggiFQia71ut1ZbNZ2zQ0aZH82OQ8dwAvIz8kWcctGwtQAsiSpFqtZj44EpiXNJg7CmsCmyLJ/E28w2azaaCg1WrZUOrV1VWrvmFR+HfG4UiyjevlHypT5A4CyHQywnQDX7x4pIWFkR0vihT8sY99TCdOnNDi4qI2NzdVLpedz7Wv/f0lxeOzLmwYPYL+4uKiyuWy2u22sTp4Q7lGZgPW63VVKhUrBHiv4/HYmkAI8l6KxGdNUMI8z31zfjoAGS8uyZQGPmQ1f8qOJOs+BUgR2CjUCI7ch5c2Ya9IXgCLvb09feWXn1TrY/9nPfq+PZ255bd0100tDSbLGk2iigQ6CgX62o08pm+3/pFe/nxTR826pNkJLfw+7tnP9sUSgAxHkUZy8IwbiYs/h8FkmgMHW9DUSEL2HnfmiyLtUjAPBtOjBvl+il/8rRSbyH0UDOxlYk4iMT2mGH8ia53k6jvIeR9IxsRIVAbWKeOCfAOIJAMvgDqeCcCC/UmC39/fn/PdS7NEyjNlzwEiiRe+8ZOTsaYTEA7tfvDEc90UeQDqfD5vQIN3zbP0jUnNZnOuYEehIUZBoMB4ARaZZgDA4/rj8bgVM6hXFCHESPILwBwVC78t74rvJi6ura3ZbE2KBZjYTqdjHlDukQ/2KVQmhrQDUtPptHn4ifcoYsQH3vHi4qLNGQb8QAJ5RZKRV4FAwMAjDcTkAcgXCm5pBsIXFhYMZLH2UCQZ6QgZRY6mEJVkrCN5MRAIWBHo2W+KHtY7MSoSmc7+5P3j86bgJs7xHhjXxd9FNfBFC42VxEwYaooR7oM4QbHBuicnsnewz4ApyKOsU2yQxGtwCkUdrDRxATvfO/n8HwKc8qCazaYdt8hi8gsdEMWLlWSdho1Gw8ahMPICyYEFCMiTZgyiX+wACLqaffMCfx8vYCAQ0ObmpklqnAiys7Nj80HxuuBDATgwH61Wq9n9I2/RBBIMBo01JulKMplkNiw4bgEdEIH/lW7t3d1dM6WXy2WzQwAIYNgASYz3Isl4aYlTrZCevXGeBMlzp7FjbW3NgDveMIADTB7Jezweq1Kp2DsETHHqjiQ71zsej2tjY0O5XM4SHGw4yXtlZcXWElaNXC5nz6PZbFpAW15e1urq6rUgPl1foVDQLB8URkjAPEsabtjgU/AthUKzM54lGYAhqfo5srBIqVTKTi+jIGFtkvin1zW9N1gMgheAQ5IFdpgvxspgvSABkWABdqPRyBIp65Hipt/v6+rVq7YPKWoAZZwMJM1OMAGIUjBIs3O7faMJftl8Pq+D17b0+XNDxY//D7rru2JKLe0rEBjoqBvRhTfiuvgnF5Rd3poWA9d82vgUSR6JRGKO5UUOxd+LB92/I9Yi1wUTxKEZsNcEeew9MBCSbKYn0h3/y8d7ftmLKDXsNxhzP9uULncKBJo/stms7R+SnWcXkVkplGB4UCpgJ2Hhg8GgJXH2FfOlmf+aTCY1Go3sYBQ/QxP1gj3DGkFxglEnRqK4MCaI3w+QJRb5SQqw+PjvfIPQ9bmDZ0G+IHmzFmFMJ5OJWQA4FRCwiC2IqQnj8Vg333yzTp06pZ2dHb3yyitqNpsajaYzVQESAElyGO+f75gWeiPlcstqNmX2KAAmhRbWNtYz106hiD3KW4X8VBpUKApTSBjAJEU/7B7sNuoJ8ZF7QkmB/KEIgaUntmO9mEwm1uAHCcEcc2IbI/cgk3inFPPJZNIKNH4vDY7Y1U6ePKleb3qkMs8OhYDnk0gkzB7n+zB4PqxfTjpjb/kZ6DxHijcUCdabn4jAqW8UEORr8AR+/GKxaAQajC/7h2IDPMM+R0VkrBfecfILwN9b2AaDgeUOQOzR0ZHJ/3/pOb32Aa23222bKYgfjQDpm3y8+T+bzWowGNhAcAJCIpFQKpXS6uqqgsGg/TlSOcmEkRgbGxtKp9MaDKaD5+mOQ9KgWkRaYrMh62EuRlLEL7iysmInNAFwpflTgGDs/BgPNglSN/dNogd8wc7MPHBT1jmfz9sQf0nmGwLc48cBrNNVCUMRjU7PfmdDLCwsmPG/WCwagwrrQ2CUZEwnwZdRJXgU+TmYBZhEGDo2Ch43Kk02Ep5PmL9kMmm/3/vTkISQemnu4PnB7DB2DIZ5Y2PjGkifgtNjx4J6443ZWdGx2PQc8c9//vNzTHwsNhuCvbiYUCp1qCtXCpJkoIiql9E+JGxkaJq4eL74wvB4wbT47mF8UbxrOvnD4bDtD0AB1T4gl8MfmOpAgMrlchY0YRS5D4o3lAyYVs+aUcigVgCQkE5Jhrw/Ek0sFtPa2tqcvNh74zV99fzI1n6j0dDR0dGUXTt50qwyvAOYIdgALDuAPt/tj13DF61eDg8Gg9YkBVPD70GuZT2xNlnLkqyRkUTLu+G50FFNEUixQuKjEcKvX9ZFtzs9AQjWmWv3Eibf6weHA6yRTiXZgHpfPFHooojwXbxjABRNTaxVrhF/KT/Pz2Bvgu1hveCzpPin4EGmhPWcHgc7625HAaKZBtAuyUZIMasalckz/LBVgAE6vCm6vRLGvN5MJqNcLqebb75Zd9xxh7a2tnT+/Pm5ggu20Df28Ayn621LH/zgoR54oKmlJXyzQW1tFXX+/Bltbq5qPJ7ugXK5rP39feVyOYsNABXAOb8byZb8VCgUlEgktLa2ZveDWkiupNmHZkkULWJTKBQyoANbXq1Wregh92FBgFAhl0my+M675s9RCmnE8r50wBcNsMVi0Yp58p40aya65ZZb9OM//uPq9/v6zd/8TZ07d86Oh2U/cX94RZvNph344ZVL3wxVrVatUOAZUiBR5KESoM6Q6wDQTOTxpw+yh5jEQTGHwsgz4nACimz2EcRSJpOx4tA3iLG+fSxBGWD9e3sf/Tu8g7f73PDglIdJZQXNXK1WjUnyXWmY5/m7HEkH1e1lh42NDTuKNBaLWXchEjCJgEUJk0DA9zL+wcGBrly5YnJzOBxWLpczD0kqlbLTojqdjqrV6lxXN37S4XBoiwCGhI0A21sul22gejabNTYOoAdg9dIuABhGmYH2XkbEuwnoo1IOBoM2XJhmg1KpZF5ExlFwTRjosWIQAD3QJogy35KgBTiQZBUolSysM1MNAGHYOJB37rzzTjWbTZMqqWiXlpZMGh4MpuOjOOiAqpVuf1goRnt5j9e0WBqoXs/o3ns31Wjcpk6nY6eBUAgAtGHgGL5+++37Wlw80Pb2GQOHJDv8XgTwcDhsjAqgPhKJ2Mk1NDQArggk3C/rDT8se4m1QEJBYiKh8/coDilEeO74mL0tg4RFB69np2DE8IzD/nu2mWfF2ofVRVIuFApaWFhQs9lUq9Uy0E7Az2QyWllZscaMdrutlZWVOanNFxF+4kc8HlcymbT3SzDH14snl2dEMwnj39jrACYALCw6lgtJc+CU3+FHzRGLKMS3trYkzY57pRua93hwcGDACtkNKR7pE/DGARMAB2IbbCGyM8oQ0zo8o0U8ymazBqZ4R94TORwObTqKNBuLQ9MhY558IUZy9qoAz4QPUqTPDQBKQMHq6qpdJ95iWHsfBwEOsHz4X/HXwr76LvKdnR1bm4CY4XBoIJ8i56233pIkvfrqqyaTUzygZqAWzQq4ob7ne76l22/fUr8f0sWLt6haTenoaKREoqc77tjWRz/6Fe3uLurJJx9WuTyxZ49KEgwGtb29bU1Y17O7xBhAGQXReDy2/eB9xcjDw+F0NjYTWniXFAs8K6YI8M5QIVAuWOfYE/gZ1CvPiEJ+hMNh87mj+BB/RqORHSvLOub3U0CR52kE5f7z+bz1IBCDd3Z2bM3i+WU9EqP9eDDili9aI5GIFSvdbtcKZJ4RGIP1Drjl3rDysAZhVL0tiAKP3ELRTa5C6QBY8s7Y76xxGnVp2uJ9ooJyvcQtlLe3+9zw4BS/DANrAVIkOio8ghMvgqC5v7+vUqlk1R0VKlQ+SYnKudvt2hnk+CapUPBn5XI560yVZBQ63wXLyGbD4+cHRxMs/GgPZCo2A8EykUhYQwpVN+wG90JgYTxJNBpVs9k0KYoq0lfGjI9YXFzUlStXrHsU3x1gju/h+wneJD0CvSTbvDCXeI0IJrA33n/Ez9ApTDLknXLKl2eOGCA+HA5Vr9ft7yFBcx3S7OhaTq4CSMHa4X2iiYyO53g8bgxRJpNRq9XS+fPn7b5fe+02Pf740yoWR+p2w3ZC13g81vb2tlWxKysrymazFpzvvPMltVpZVSppHRzsmFTGdQHm8VjTyBC9Jk9T2ZIU8YPC6rRaLWMi8MICwGGPGo2G/T3WnvcjEXgBGv45MSkDjzOB2AMVulep6GmY4fspLABt/A5ACgUea8V308IsZjIZa84DLIzHY5P/sOvAIrD2vJ/KG/yJDXg9uR7+LBAI2JzF4XBorIuXOROJhAFvadb5L81UIMDvaDQ7EYgB5r3e7OAC78+TZPsA9QIPOPvN+y2ZtcgzIOYsLi6qUqnYuoZlgalhf08mE3unPC8Ukl6vp1arZV5JpHqGmrMHKZB5t6g729vbCofDNuMSiRcbiTQFK/gc8S6z1r0lwIMb2MK1tTXdfvvtunjxot566y0D+X4dwirCSHu/KLERTy8AYTKZNnVix+KZ4bvk/rBwHB0d6dVXX52zjGA7oCeBU/KmxdtIH/nIU8rnd/Tkk3fp+eczSqVKRhb0+329+OJNWlvr6PHHX9b3f/9XJD2o4TBnxTQFP/HRq1EUfL6xCxDivfyokYBXrx7gebxe+idnUDDC/HubEcQHz5VcyH6iCPEsYLfbtSkUNJmhSIXD07GAqH5+ogn/nSKz1+vp8uXL+qVf+qU5awnAGZsYewTPNzkJkA6bKMlmhvLnAPRcLmdrFf8oz4L75Lv4OZqk2U8QDJ4xBZyy5xcXF7W8vGyTgiAMsAHE43HLOzT1gSm45nq9bvGEIoZ7I/6xl7EF/CVzeu1z4cIFOyqRyhP6Gc/U1taWksmkdZUSlFn4sJIkIvx7W1tbxhhhnCYo+TEnBDY2jB9q3O/31Wg0tLKyoptuumnOZM7vHI/Hunz5slWH+KlgY/wcThYHYA4JzMu1hULBNm6r1TLZnYqpWCzaBkB29N+NxMMpKABREioyqpdmYVAlGTjyHYUkR9+IBTgEYHIOPRUh1STsiSTr5I1EIub39E04BFtY1VgsZuwhciANG71ez0YMwXwvLy9b4UDS5Prx/RI8efasI64D8La5eVq93rf10ENPaHv7u5TL5cw+srW1NQfgCQh33rmpkyfLeuqpR3V4OA2OvAPPBsOC+2eMxSEUCs0NXUc+4h+aVXiOHB8JUIatZVIBMjSMARMLSFSsWSp13jNJ23t5W62WhsOhAWVJcw1x0uzMZq6DPeYbjAjcMHWwqTDuJFkANHuJICtNwR1S5Gg0MiBE7FhZWTEf5t7entlaYEtg9mCQYQJpZoC9jsfjFhMAlvwe2GMGszOZgi5wnjP3i8IAWAsEAuZXg50h8fBclpaWFAgEzNMI8GN9sM8AejxjD86wBTCzElDPd9OxSwzxPt1gcHo4Bc+cQpm9y9rw7GaxWDSZHnkTUI1th/3PGmFPspaxlJDcuZfxeKzz588bswbLPRxOZzpThAMCGObOhACIBt6LtwABnv1EEK6FRk7iMgCCtYllzE/3gLVfWlrUe9/7JeXzu/rsZz+oWi0raWZlo8A5ODjU9nZSn/rUffrYx57Xxz72vNrtR1Wt5izekSMgY66fZSrNTs+CVeT+vC9RkilbkBrcO2vRKzYUpvw+gCzd656B5BkQB3jmxArYWtYg30U+obmUuIQywDWRX/l5bAkHBwdWjLCOsWLBHPJeYR8988v9ExfxrYZCIQOlKFXpdNqeM0eWolrgUaWQ4R1TNFDI8Oy9nO7zGetzZ2fH9oC3UnDt7Dv+HmDTF/rXqxj8fXzC7GHvj//zPjc8OIW1ggFYX19XLBYzZsq/KBqhqATW19e1vb1t4A6GtdPp6M0335wzzgOgeFEwm4AwGDUGHiNbN5tNVatVOxaNoIzE4Dcgi47K3UtLJKtaraZer6eNjQ2TpZkJCfjAIE7lQ0JjA4/HYzvxhAUG6AHAAWJ4Jtls1mT6Wq1mzxbgSyLz5/RyVBzn2lerVWusSafT9gyRhb2sAAsDe0yFSxMVVSBBazwe23zAUqlk8gsNUYBhAjDXjM8wHo9bAoVJoXomYcAGELCGw6EBA8Zeecl1MBjqiSc+qI9+9I/0gz/4J/ryl9+nUChsVo7Lly8bIMnlsrrzzjf0rne9qFdeuUmXL59RIDCw03I8+Ge9wjaxTnguJHW8UczErFarBlaYAsG7RyqC0VhaWtLu7q4BJDrxI5GIVef4oKjiCezeRgLDS3d3tVo1IE2ikaZgDV8ThRQMDYGY4E5CYl8gpQJSvPfLN++QrIgb3G8oFLLjOmlSYj+y9vyxh3wnLNhwOLQmGgZoszYlGWvD+yM5wMxw35lMxmLL5cuXbV/DtK+srJjqwUgamv6QI2G5kYPxWVIUeyk6nU5raWlJ9XrdQCrJMp/P2zMizuHxZI0AYqWZLzoSmY7ck2S+Pt/URIzxqhBNUbCPKAmA0uXlZaXTaStg/GQOAB8xEzUM4JBMJrW9va3hcKjV1VXz321vb88VNYBA9gIxiYIX4IqndXV11U7SIv7ji8cbCRAihnorDOwagIa1vLKyYiAK21AikVA+39T6+kV9/vMP6cqVRUlHcz519vpsLnBPn/rULfr5n39V733vFX32s++2GEHjEUAZkAyhAbFCYQczSTMkLBwsMkCUAgHwRRxlvTKCiT8D+LAfJdm7hWUE9HmvMzF7MpnYvqSwgdgJBoNWuKK+UNRi9eLPIBf29vZsxBVKHJMlUMooLr1fk7wdj8dtPdJER+5l7wFWvaUKomh/f197e3s2sg1POV38jNPysQeLUqFQsLXNc4Wo4fvZJ7x3cAfyvAf8qK8wxTRIswf5PtauJLsmipS3+9zw4BQfRb1eN68nlRBNMaFQSJubm7b4eEGFQkEnTpzQSy+9ZIZkaXpyRaPRMJ8QCycWmx4DmMvlLBABLgFNgFUWIN5SFgobA1DV7/e1vb1t1SgyKV20LBSSKxJRvV63v1MqlQwgIXmwkTCes7AJujT+ACBosmJDeVYEDyDfDcvnJTvfbY4NAZDrfZMAKCwNvCvACD8HU7W7u6tSqWQSoiRrMCAoUqmHw2Gtrq7q5ptvVq1WU6PRMMsBI3n4vbBQeGgIWn7osfd6Ap5gguhQDgaDdgKYH+GCt+/ixZj+6I8+qI985Kv6q3/1t3Xx4k26cOEuBYM5dbuH6naruvPO1/T4419XOr2vV165TS+88JBCobCkgQVkGCkA+9HRkQ1NZ4xMo9FQLBazOXgEnUhkdjiABwsUKjCWnU7Higs8TTQG+UYEAr1nMPEbsc4pxAB7sEBU2K1WyxhMAALrBjmR94CMxrVIUzDk1wD7l0avcDis2LHTWv/xv/9nxo2X/+9/V+PGloEAZLHDw0Pt7OyYTxwJMp1O66abbtLx48e1u7ury5cv2zDr8XhsRQQMHCOdSCCSjEUulUo23xJJGiBF4QxbF4vFDNwCDCkqDg8P7QjSVCple4YkTRJvNpuq1+tmB+G6YKTxlgIcKBroogaQSLIim/dPcqWY42hE3jvg6/o5z3iHYWwkme+N9U1xEQgEVCgUrOEvHA5rd3fXLCDe8gNwIjbxDCALJJmilUgkrLjk2aKMcN0U9CRq5Hm8yagYFIq7u7u2ZumyRj4tl8sWc4kT7DVGp/miGK9rt9vVffe9oJ2dBT37bEzB4K7tx1gsZkUQhRYAKZ0u6pVXRnr00W8rl3u3RqM1KyIB3BRWgBMKBMAeCgvqB/8fgEuugxxirVN0r62t2boH9LO32a+sQYAqSgU2KHIOYBhbAl57gC17guvxrC95muJmb2/P9g4NnOwdsAMxnbXBh+e0tLRkBSQFJrI28RZii/hGAQl4hQ3e2dmxSRb0Q/C7uEbeLwV8KBSy0xu5ZxQTvMGsUywyTA7BesjzymazNkscC440LaSxMVWrVVtbvuiCFQd4ewb+z/vc8OAUqRQASXUPmOJkIzYGFVWv19NLL72kjY0NSwDRaFSpVEorKyu6fPmyMX148AhimP0lGSNLMwE0OgEOeQfJ5ujoyDpUmQZAMKVKJzDTeIMkwca66aabdHAwPQUlFArpxIkT1pkI2yDJPE5+RiYSA6CE+8NXRPIj+eNHC4en3ds0BAA86dql2oxGo9rY2DC/zc7Oji5fvixJBogY64R8y4bgZwiaBC3P+BJkkEy8ZxBQA2tIFy2biw8FAO/TBxEkWD5eYgOoIvXR5YyMAftAsMSL9frrMdVqH9Ltt1/Q3Xdf0enTb0iSRiPOnw/o9deL+tKX7lG7fVwrK4tWHSODARapUmE5YL/5c0kGMlg7dAj7qQ94sb2sSmLiOcI+wXr5cTiY7pGzr/f3ci1IeIz5oTgBvML8UyT5xOg9iRRE3vfHxAdYIM+cIgVK0s5zX9DexfMGBA4PD9WtbWt0OG2CYI2RCLGs+Hmw2WxWH/jAB3Tffffp4OBAzz//vJ555hlVq1V7ftwr8QI7Busa8MNz5N7Yk7BgrHGAE0dyHh4eqlarGcuay+VUr9fVbret+YjEyfumEIWxO3XqlLFWrI/l5WXzrbMPvIICECKhsmdhqADJPDvvMWe+MAoXe5014O0yXD/gDOl8f3/fTl/yHlksUawLTsrD4gVAxivLs4HhhvUCfLO3PdMpyWwLxHLyDeuQ4hBQji2Jwgk7B2qLL8B80Q94p0gifoRCR7rllqv60pc2FAjMVAyKZGwJrHliRCQS0SuvHNPDD7+k2267pDffLBngYm8xtgmvOHsEcAQ7BnnhnwlMHbHET0UB2MKskrv4TtSx64E16wjLEc8UgobChBxE0cvv42RDJpGQ6yUZq9zv942ZTCQSVszCPnuyBGDJMdGsD3oAsGNAZBDDUNKwFXDPxFE8tuz93d1dA/vNZtNAO4CXvcKYStYO2IG8x7unT4Hnxn2DL7x/lf6EVCpl38P7Zm3wHnk/kARMPyDfI/G/k88ND04ZQUNAg70oFArfQTGTfDB5b29v20thIcGgYFwGuDBLEZaBgETyoCEE+t+zJ/jrSBY0YNG1TQUcCASsqxtLAdeMrQCWgI79fr9vw4wBFOPxtCOyVCrNnafcbrdt9ikyMdfZbDYlyYbS93o9bW9vWzMGFaH30uKj84wm0lgikTDGAq8byZagSzNaMpk0qwCesGBwNiLDV77Ij75BCH8g98lpNxQaHDoAeOZ5U1VT0PjxVpxE4psNSIb4rni3/ruxa0iyADLtpFzSeHy/Llx4RKVSWeFwS+NxT9KSyuWSKpVpkE6lgpa4JJmszLXCMhHsqMZhovy7hfVgnSC7wVzxLEhEPDvm1Eqy5ABA5dpILiRpToChKKCLmn/4fpqT/JB036TmGQPutdvt2uxHgr4ka7QiOQHuuKZAcaqEDLcvqP78l1WtVs2eIsn2AlI8z5siDLCOZHv69GkdO3ZMknTs2DEFg0F9+ctfNksBoK9ararZbNrsREAMyQ2LA800yL+8M7zk/sAP9mQoFLIkAiDu9/smcwIeSJiA73A4rM3NTV28eFGlUslYOsbHwU4DkLzXlfdLrKXZbTwe2+lXWAMA3cRMQBpeuUQiYaCXmMx6JnF7eZMCgfsCnHKPKBkoWzSgcY67ZwQBMr7DGsADcISpBKTTLyDJ5sgiObMHAWPj8eyIWF80+dmxrBH2MomeQsZfF4zYysqBwuGxNjdzBgA5aGDl2rHGpVJJb7zxhur1uhYWFux9Tmd4p7Wy0rFmpMlkYu+B4sUDJ0Ar8XpnZ8dODfLsnS/imXbDc0GBYbqDVzLxdgPGYJth4bDHUYB6ppF/yL3kfP7dF9Re0gc8h8Nhu0esc5BaeMz5Dq7fqwk02/liGiIFzzNFCeQLzVD8PewG7JfrewdWrh0gBHAlP1HoYJ/BxoEFg5zDM2T6RKvVMpsjE43Ia94Kgocb1pgRXJVKxXARzL5XfvlZ/uwvwem1z8LCgh1fibyVyWQUj8fVbrctCMJQAkACgcB3nGSAXIy0y4L0Cxt2YDye71Atl8sWEKlQxuOxjh8/bsmeBYrncG9vT+Vy2QK6H2UBowRrSEXM4huNRnPXn8/nrVkB2QhGNxaLqV6vW3Lc2dkxSwABEWkJmRvQLckaCsrlsg4PD00SIIHRSFOpVMyTBUACRFOBHx0dKZVKWbUIa8bzBIx7gMXG4DuoVpGIqQJpyPCyH9UhgZmB5QR3gDZBCv8pVTkgAi8f6+Hw8NA2M0ZzPIQckVooFLSxsTHHcO7vd3XpUk6TSdaNgBpbQsCfyXOAbYDlRMoEuAEyWq2WzRwk8TFPlKTsPYOetaGoQLbHkO+LPtggEhsB2HuW/eQC2Cp8SLVazRqV+D1+DVEEwsSR+AGHvvBqNpvWiEcCYcQbzwm2QZJG45EC0bgS16RW1iTMfq/XUyaTMQacddFqtTSZTFQoFOYkcWlqabnrrrv09NNP23PF3sHzp4jkPcPk+OuEFceDzfrh2eIb9cwxIIB3AAjzhTND/73vPhAI2JgjJhnwZwBsmi6YbcmaZwi/73gGJAJE/VgZronfy88D2GBwPPPPWsb7jU8cnxtrl+KD5xIITA80IRaxvliTgAT2IZ5Xr1rxfJG7sRzxvgAvh4eHdjIRAAXA4RUrGgkpgNi7/F4UKPoYfCMZxAiF8Hh8eG3VxU1tgMWFrcM+AgsMqznd/2EFAtOeBdhIQBMsOMURa+LEiRO69957deHCBe3v75tHnxiAhYH1S0yXZEUXCgSWANhJX3AQpwBcFGfE38FgYCyoz+X8PDEK1hOQTNGBzxMrArY6CB8KE/a0txTxO8m9gEnWl2/cBICSo/zsZ7zDFAHgBmIr10He9aQUpAJFOz0ksVjMvsf3fqBiUEhOJtOpChxYQMFIvgJwXh9j2Zew1jDcXkmiSZp7wBrEXnq7zw0PTnmIiURCpVJJGxsbc75CaXb0JAmZRUOQAHxhxpdkrAFUdTabnRsYDcABPNJlHo1O5/7R9UmyBQiwsfb29qzqo3GJP4cx8BQ7c+/8uA8WLowHpxYxUoONS5VIwlhZWbHRNDCm0ozFQD4nCB0dHRldj5znZS+up1QqGUvA7MjrTecAT5pQYCc4iACQDpNMELl69aoVHwQHfwoO7CBsAUO1SbTSTIIYjUZzR7gBGrg3fHWcEsIaYRYnQJUZfgR6gg+Akr8rTUEFDDLzLAl6eA15b97IzvvD20gQ8M0B3nvFmiIZwFYALgG/AANkZypoKnQqctY19+ntKgBCro2iCN8UrJW3AwAMKQQJ2l4+rNVqBjzYZ4A11jpJGjYBtQFgyD+SlPu+v6niD39Sk9FIu2+9rPoXfl2D6hWTqLgWP5fVN8MtLS3p4sWLOnfunIrFonmU/RnbkuznV1ZWLLbAPBJT8E8ze5LmMiRyAAxTJGD++/2+UqmUWq2W6vW6zRqFzYJFIqn72b4A2mKxqL29PZMGpfkJHcjgJN5SqWTrljXO2l9YWLBCjnXH+wKwjEajuQ5oYgl7bjicHgAxHo8t5lFMerBHkx2xmxhHU+dwOLQiANaHQgO7i2/EgmGjSQd1DaBCIUeCr9frlkM8oKbwx+/Ln/H3YYtZp5x2BDvdbrctfhHTWPfEl2lMnDJRuVxc29tDAx94kZvNpoLB6YEPKHoUEdN331O1GjMfKLmB/Ag7Bzgaj8fK5XK65ZZbtLm5afGBHAB4IffwfsgX7HU8lNjSuE+8oYAhigOunZgJ6eFH4AE62besYXIK6xSSCRsDcZV3xL1yzb7YglyhsKL4xVMNscEe9nYQ1i8Yg3wN4QRWyGQyhlGIAzCwxFsKQ3Iq+RbSCgWFgowiw5NvzWbTps2QJ+mfgKiD2CEOcr28X/6MvYYqeuuttyqbzeqtt96ykzWJ0+/kc8OD0/39fQOFkuwEEJJLq9UySd7PeuMlUHEhXZJcqfBZXAS0QCCgXC6nZrNpoGBjY8MkaBgRronqFCmEDc553ZlMRtvb29re3rYFjIcEryDBO5vNqlar6fDw0L6jVqvNyfJIqoBapHIWMOyg3yRU6IzkAjT58U2cgCVNCwJ8MYeHh2o0GlpfX7eBzjBIHBXHM0ROI4nj3fLJFDAEMGV2I1KoZ1MxeyMvcC00Z5FASewwHCRgGHICL5vaS8PXNypQQbI+fHMZAZ8gwpnbi4uLBgwnk4kFTrrSkbqv77D0gNl3rnOd3Af3QKDzni86wwH+/C7AvSQLhhQ7I82gAAEAAElEQVRwgE0AKVU1gZ3f4Yfjs1YpTEggyPZeAuP5EthhTAE07APAFokHzxUAjHUVCASMIcF6srS0pHAwoPZLT6t97nn19tqK5dd1/KM/puTf/me68G//kXau/ontAwCD92nyLmDdP//5z2symTbXHR0d6Rvf+IatNZrrYFK4XyR3ihqACkCBSQowdRRCfA8WCs/QY9HBd0rMkDTHrrN+sC1Q8OIn9yDRsz4AXt4TxaWkuaZC4iOsHTItkiTXyl4GtNGV7pN2oVCwGMnapXjw3dcUI7BbgAKAJM+WNQ7w8E04JFfkVBo+Y7HYHAPM9zYaDUvuAALWB0CZ4p+iDR8j5AXSOO+KHEMMbLVac8f2Mjd0ygIW1OtFddNNFV26dKvtSQAQzzgQCNj8UvzEa2tRFYs7+sY3jputhWKY4o09SCPXcDjU1atX9bnPfc5AE+oKsjU5Ip/PWzHs503zzr2nutfrGcFDvMcqB/nC+uMZULARA/g7vFNAG8Ux3f7sPXKl971ef3wvTHc8Pj3KO5fLGQFDrMHuJM38tyiT5CXyzWAwsPyYTqetKELqRx2BYEAZwNeJVxQwyal2HpOwj+hPAbewn3hGnU7HFF3IGeJ8OBy2OdQUXOQv2GpGubGWybeFQkE/9EM/pLW1NX35y1/WF7/4RYvPWMLe7nPDg1PfIdZqtVSpVKw6jMWmxxn6BeHZKihuggCjcTAIE8RGo5HK5bL53fh+NsbOzo5JupKMYmfBJhIJG8szHRs0HYkDMzcej635iaQGPU7HPnNOmVvKvVAdwigtLCzo8uXLKpfL5hkhsbPZ9vf3ValULPBz39LstCJA2WQysVMimJWGvEeiIhmQ1JLJpLa2tnThwgVJ0xlua2trCgaDqtfrGo9n3c1bW1vGPBGgAfoERdgzAuDy8rIBARhp7329Xjqm0U2aslu7u7v2fmBOSqWSBSqCBUUL/05CovokABN88dTB8Pgu1VwuZ1IY/uRwOKxisWiJBTmLUSzD4XT8Db/He9P4b0h1BHckRA+EKNIY+MwpOAB0xqpgqwAAwFL7RHw9s4RvmW5Xuk+vZ7PZE8Ph0GZ0eqYaGRbARIGHpUXSnO2Azv1kMmnJtl6vq9frGVOwd+EVbf3pN+y+yi8/q+oLX9FD//iXlf3gf6NzX3/CihasO4BRScb4cHjG0dGRnnrqKWMGqtWqHYoBkCFhwhRRgJD8q9WqnYDk9ybPjtmpWDLwoLGOALswgTwn7CpMWEAe9CNtEomE1tfXjdkmbiLXAjQByRQfJJ1AIGAxC6ZZmnmJscaw/nzhIc2zmDC9WH9oJGICAnHEr0XAGDImFiKeIWO+KCpgvYiVEAuA6MlkYv0B3APAi5jmCzsax7z0CTtI8c+94B8ESPJMvILi4xcFCTlkMpmY1SOVSqlavV9nznxLX//6rUokluamSRD3+AD+EomE7rjjsobDoF54IaPx2NuL9q0IpmChCB8Oh9rc3LR47Pctp/0BVmF6sQP4wwtQYrhvPKS+gZG1iid35dpZ9DxXWENiAt+NFY58Rq70jCqFOYQG+Rvwy7PAJoVUjX+d3x2LTefu8vv5B6YV0EbOJvbxLsgNPGvGdQGGWYf46uv1ulaunW7Z70+PMafRlHeEegSYpFCDmfdNZORq1j3+UJ4TzdDYBFBy8IoDnAHSEHlMoqC/gLzOfn+7zw0PTnkYJAF8N5jFmalIUOMF8v8bjcacR8KzcjQsebmEjc+iRsJvNBrG4hYKBWUyGWNvYZNIYEgxMBveG8niYOZgLBazagxgQwKGGaXa5f4Z64ORnM1BIk4kEnacG93/yB6NRmOuKYP/PxgMDIQDRAkoGxsbc5IyTBn/Df/a7u6uHZEJU8X/FotF81Ih0WazWZtduL29bXITTJSXWSQZc0B17D1P3AMNZyQHAgUbFbYHCZvETUMLSRLWBe8rg/69f5JZkQQKEh1yIGuId0Sh4hsAvEzmJw4gowG88JrCeMLqApRJ8nh0uRakSkk2E1aaDXLGC4icw1rChsDYEfaX73z3hy/wLBlFAkDO5XJKp9N23CiJlrVPcwLMLoCGiRIARQBkq9WygqnT6djUABjYYXVT7ZefVebux5RMrWhpaSZzIm0i1SJLM+g8EonYqByOGOa5MOJLkjENJFqSeigUskNAKA44QYjh1rA73BdsHgmxWq3aMHrum+704XCodDptY4xoRuGd8fPEGxIX3k7eK4PZYYQoDiTZekBSRlJFbidZoSZQpPF3YWjL5bIVpX6PMreReODn18LswGph7WCdUjTx7jiGmJiKnMse94wwxSvXSYPlaDRt5AR4oNJIsnfA5BT2EO+L4p7r8KcRSTNbD3YlgJbfz4CBcvkBHT/+rB544LLeeCM/x16Ts3i+k8m0ubNYDOu2217XK69sKJHIKRIZmMKAxYAcitqI5Yn4iiWHWMUzoYBif2PrACjRvU1BSSFKnmJNsJ+9OoWK4POHl6NRilAoKMqDwaCpQUyfoCGKZ09xy1piH3oGnjUIg+hlagpG8iUFGEU8a4OiiMkB7Dua/Y4dOza3LinquUbIB3ANawbVg/1M4eqLKN7l0dGRrRHyMqQT+YODQiBIeHepVMriOO+p1+uZZanRaOj3f//3bRSnB8m+Cf3P+9zw4JTkQHMASYsXzMOiMiVYUsWzSXmhVPYAFxILdDZjTzhVhQ0NyNzd3bWZhTQasMFY6M1m09gVL8eS3JD72USMxyDYA0jxvLKwkF4lKZPJqFAozLFS6XTaGqekWaNTo9GwLmSSpE+WbNZ+v29HZcbj8bkTJGAims2mtra2tLu7q9XVVSUSCZ04ccJOI0FGYLIB0h6sBgEJMMf73NzctEDp52OyBqiQuS/AjDQ7gahWq9m4L5gRvh+W8/Dw0Dqcl5aWrCMVRpSNzc/CuvDn+PEAqCTyWq1m10FR0+v1dOHCBfNVESA9iwVQpxsbxgrmK5/PW6Bm+DiS0OHhoTF4rGH+HqwekiONG4B01oD3VPtKHQA2Hk8PP9jb21OhULBAjpwGM390dGT+V8/KR6NRM+vv7u7aAQHsW0A27xdgC6slyYo1Gi14PwR3n8hisZhGnR0FI1GtHT+hcW82G5g5yHyPJGOKSKgoCSRRbAt+5Aqn8ORyOXU6HWNXuRZJdu0wolh5YB8oJGhg8v/AckmyLnoauyTNya8UBaxRGCfYKRguaZoUmT5BAoRF5DrpwuZ3klwpgoiPfj1SFMN6oTAAXnh2JHpYI2KrBysoLszX5Lnu7++rVqvZCXLEZj/Vg/siBwBQU6mUgVPfG8B+xbKB3O+HkScSCWPVmCKCGkeBi20DkATgZD1SfBHzPDkAgSLldPbsHXrwwW+r11vWuXNrtjZYjzTFTSYT5fMR/dAPPScprPPn361sNmr7gZP4UE1Wrs0G981j1xe43sNKHgOsw7bzflkTkuy+yIGAUda/n39LfCcG0zFPXOf3sH/88ZwwhgBulArPKpKnsdphAQJsHx0dqVwu2/sBhEJC8H3+xDCK6JWVFVNXKKghp3zvBMqYt29BShCHWAeAVj8hAEmeQhrsQ8wOhUKGZ/ykDvIlOIc4j8+UYprCTJIpGCh9EDPYFp599lmdPXt2zpeKBeqdfG54cIqcQhCga5AqhMQHCyPJEiPSP8APQMGL87IwFXQ2m52bxcbCk6ZVDP/u2Tckd+SPbrdrYAMQDWWOhEbFiYeDxM2Hs5dh3GCMfbVNtRQMBq1iA0zF43Gtra3NjXbhBC2eFcER5g3mjACA5CRJu7u7Vi0DbLEwkLBhU6juaBhBticRwTY1m02l02n7ed4nQIrE6dlTKk1ObsEDRVMaQZZ7pCLHfsE1djodlUolmynoQRkVKcmJip4KmuBAsBkMBqpWq3buOpue/8+mDodnY1aQhwlwAETYCd47x016qYwkzRpqt9sG7FgfdHuur68bU+PBC0wjZ9MDUiWZpEqwpagDhLAepekUCT//kKDL3mWkCvspHJ6eh02yYy2TtGH2uR58wYlEwsCvn/7AGC5JdvpSNFPQqN9TcDRUJBZTpVKxte6TKc+TZ8skDO95488AXYFAYO5Ur+3tbVuz/Iy/XgAUsQDwRAF5eHioS5cumYSK9YCiCksAR4p6vy+WI5QOz9TA9tNAFolE1Gq1tLm5OWexIC7xQXXwHdWAOUAWLAt7loRL0UAC8ywayU2azRUlZgJCvV1AmoFwCi0YTLyyXCMFPMVWoVCwpDyZzM6I59rwVPd6PYs1+B6xIxBDAEEAblhZYmQkErHn7C0JxA7+PjmCZwari7XhwoUL2t6+XdFoT+95z9cUjRb0rW+d1GRyUtFoVPV6/dreSejMmTd1553fUjg80TPP/LCCwZTC4Y55FGnyC4fDarfbtob5B1XHxybOY19cXDQLGp593hFNsDQgUYiR0xjjNh6PDURTdEwmE9VqNUky9YXvJR75/YYqRpEGSeJjB0Uj/SY8V+Trer1uwJMCjr0MI8+epNGZfU8cxBvt+0m4RhoP2UfkulAoZOSIZ0fBEd53Twzys76xMS0sLOi2227TYDBQuVy2+Octbuwt4jpTPrAG+MIVTy0YiDxBEYI3nz/DpphMJud8uhQQb4vd3tFP/f/xB+aH6vrYsWNz8gkBhXEYJFCYD6oopC2SPZuTJM7LJeBJs7OISQ7pdFqZTMZ8N74jGtZqMpmYJEoCIkDD9nDu8ng8tuMjFxcXtbGxoXq9btfA78e2cHBwYAyqJNus4fB0tBJjS9gMJCsM+dzf8ePH506/QPreuXaUGhsR1gFj+ObmpgFmgPTe3p56vZ6y2excByQJPhgMGksMUPG+RoLJxsaGarWabQDAJ+8Z3xByJcEKOYVkQNKLRqMmTcIcwTgytJ+ESUDCe0nTg/dosV58MxJ/TsKKRKbHHna7XQNE6XR6rkseyY21DfhANgU8S7LAS/IlWdZqNZsWARjkncdiMesCTqVSZj2gegdI8P9ZR5KM5cEnxjtbXV01MMz+gRmr1+tmnUEK9I1GBO3hcGgeU/YsyYuk0Gg01G637Xx11qcfAcO629/fVyC+aIWAgbZUQak7HlTz7HPqdPZsooBPevV6Xbu7uwbYc7mcrSPYUc+yAtq5P9gMz2jTADkYDMzawlqh8OEeWq3WnHcsGJx2YjMqbGlpaW6GMCCe9UEhiUrhi1IYNs/msHbxRHs7Cz83HE67xCuViq2FXG46d5PRSsViUY1GQ61Wy8AATZIATPYq65xnR9EqyYou3iuj2XjXfoQeezKTyWh1ddX2K/GBk/RgYnl/FP4oHs1m05ou8TG3223LKzSrMD3BK3MAGEAPCh7FMWsetg1SgwIb0EDheL1HlVg9Go30xBP3a3MzrIceuqiHH35O1epl1esrOjjoK5Ho6fTpuqLRgS5dWtVzzz2iUCitYHBmAyL+wnITe7CtES/wqqNyUATA8LP/aRRCCfI+/FgspmazaXEOywKxHXVxd3fXFCem1mSzWSN4iFvkXPYsxUw4HLYJKIxcwkaDZQFSBcUSgEXxMhwODZjzHGBVwQa+bwNGGQaeWA0oxzqDNQjAhuLJOmEdoIhCBLD36D+gWGGPXI+B9vb2rPmbIh7MArFBDgFUg22y2axZujyzDRimEGatYxliX6CEsmbJy2/3+T8EOMWrg2eSY7gAZO12W8vLy0qlUnOGdbrgvHePDnPYpkQiodXVVaVSKTMOexYLZpaqmUUOdU+l6cEYgQ62j85EQFA4HJ7r2CSAAjJgVkhQfnyUJAN7JMbxeGzdooFAQMViUcVi0YDB4uKi2u22dnd3zUSOlMpi9IAoGJwfwYXNgUoWYEgRQOXd7/etwiIQ811Xr141KRhwSnMYAJWGBxIGp3+x2QFgPDeqeiRAigcSMn+GHE9BgB+JYftcvzRlbg8PD61KHQwG5hcjmCPfkugnk4lKpdJcg4Sv0P3aATBjOaDqR8738hLFi6++GVPE2saDCBPuvWY0Nngw2OvNTg7CNoLlgIaj5eVlZbNZSzYEVN9QUygUzKfM2qejm7VMUegbA2B7sTRIMw+nb0hE6qLBBEYCABgKhXTiv/tfFBiP1L36uiLNmlInblXq3R/QZNhX+8nfnnumsKrD4dD2AM+BJFgoFOyYVCwb7GWeF8yCtxUw1J8ExZ6AOZRmKg3JmyYDkiNrh0RGYiMRsoZ7vZ75xfyMRxIOig3vQ5LtWZpwAMgAAzyXdBh7XzTgn8QMCPLWFt4hzDhJ0zcjUXBj9YnFYnaqFZ5fii9vI+I9JRIJ5fN5A1b+UIFjx44pn8+rXC7byBueNV5lkiuMKpYSrDR4PCXZ4Sz4+diPfPCfM8khEpmO7/O+copW34AI6wZIAVBDMuBh/NrXVvXEE0ndc8++HnywodXVbQWDI/V6EZ07d7PeeOM27e8vXZPZd4wwgenkGXHvsGyoB/h1JZmHn/Xsm8YgM2h4pAgnt8E6X7lyxfYSxYEvMPj9TFDwpAtyMnFwd3fXDrfgu3xzG0oAeRHpm3VIocb7RhnDErGwsGDNWDD8vCt8nBRqrEc8zh6geuKEdeonQZBjiHueUY7FYqa08B54vjxzGPfLly+bKuDZV36Pt7QQK3i+KHx8uA7iDv8LxuK7ye/YO7rdro2+o0fnnXxueHDKCyXQBQIBA4sEASrkQCBgzEs+nzdZmY3CAqHzmA0Go8FLJYgRXHwzE4mE5Iqsw4aBGQXIAYQJpHw/YAdG8PDwUOfPnzc5PxwOmwdke3tbkUjEzj3u9/uqVCpz3jEYC0DWwcGBqtWqpJn/je+FQcETBlDr9Xo6duyY+Vhp7uJ+AEDIIDQ00SDF7/bMIoOAASu9Xk+NRkOFQsECNdUjGxlWh7FX+OAA0zSN+Yoa4MVsRp8YkCeRsQaDgdrt9pxd4PDwUEtLSyqVSgbksSCw+QG3BEXvR8UywfGTBAHWFlUnbJy3mVDJ4y3z/kuYeOQv3gN/j6A7HA5tMgHVO6AGYEOi4u8BfgGRgUDADPT+umBbkFsp4ABBANeDgwMLmEjcSIEULAR37CLNZtOa8KQpM8I6915hgq8vojrnX1D63vco/ej3KhdPaHTQUf/NP1X9K59WZ+ui+cNQWrAqwHLyPJEwS6WSsSv4qpgZi+RJEQhD6r1i/X7f1o0fV+RlSP4Xlv/PYtK81E4hc70lg05fLwOShL1MT/FJ3KFgyuVyto5JUhRVo9GsiQ/2CLALu+LP6WbNUbR3Oh1j4arVqoEmfgfHOuIBRDny/srxeGxFJ3EQyxRgAOaYvbGwsGAMP8VCv9+3QxaGw6EVbHj0vY2AohmgQ5FK/oHN8+BNkj0D9hHd3wxMJx54HyKTMlDl2CecgNXv9/Xmm7u6cuUm5fN5Y8339/eVzca0uBg1edfP56awOTo6mjvhiTxAjoMJJQ5RiIfDYXsHWEm8AsO4M/LoZDIxQghrA++NdyLJADnTdXiPxHz+F7DvLQOwjL6ZCs+1H32FP5v3xiQcVNVEImH5nhMLveWI4oFrAyAS29gvEGV+bwFkeVeoAUwbwprC/sSO44sxCA0/UeN69Yymaf4u463YX/jkKaD5Pm9bI+bAQvNnPGOURmIyOIPv9I27f97nhgenJBiACCZ+ApgkO92FRYlswOLFwF6tVhUMBnXy5Emtr6/biz84OLCBu7zwaDRq1QrD72E0qZi9bQBZWZL5FJH+AYHI7Eh0/Dlyk/do+ROQfFMP0gieTTpfAWmSbGNwxj0TD/jf/f19C5qAILyElUrFglQ8Hp87eYnrJsm2220bx4WVgS5n34xEUCYh0vWOHIbvhU57pivAliAXAsxJdpLM6wQjCaj2njdkG5gtWLFeb3oUJcFZkjHXjKfhmTOOi1NT8EICkmGpJZkcQqAlQPuh3MHgrCMdhovrgh0AkAMaqOhheCgMCOYUbN4niMWAwARDDTCFUfZyHEkVUJROp9Vut1Uul435JlmSVMPhsI4fP27FA8waXfXSNCEyco11DSiGAZBkjBUgwstdjUbDfv7gxSe1/80v2/3CorDnRqORNcOQMIgpS0tLNlOVZIfnlD3OumRvs//x6eLZAiDQrEiwZ5/QqEFioxD275m/C5il6AGQowzBynpG2bN2JBmeAcmZxE+CxVdIQePjK0UJhRFFHmqTV6jYV973BtD2CgAADhDAzyDvInuyhwC7NPhFIhErbHkWWIxgP5EovUrCdXOPNISR+NknqDeRSMSsHDx7n9RRBTzjVKvVFAwGVSgUJM2PuiMHYRshj7CH2WuTycSOimUfIMkDBnmnsG68F2IdXdisW0kWLwGd5ChiMt35rE/YZo7YlKZMMQciEF/7/b4VdTCXnpWmuONdXA+MPBnkJ4Egh+PXholGEUBNwwrlLX54u5mFLc2IJogblE0mzGxvbxvD6C1E5D/fT+KLDEn23lAiKfQppr0vmwKVghSyAzsC9jOAKEDTH/c9GAxUqVQ0Go1UKpVMAaFAYN1MJhMblQnbXK/XLb+gGFLcUThAJElTUhBlkNxEjGbs5dt9bnhwysKnupdm4xZgmZgDSPUE0OGlIu3BoGazWWOWAIHS7Dg9Xz17/yWA2PtYAQh4EwF7tVrNEqYfN4N84SViNo/3tAAsisWi1tfX5xiIRGJ6Wha+G0n29wnqBGqYRDq7qUgJ0lRpsVhM6+vrBo4Iit7Aj9+P056YiQiwBfB1Oh3t7e0pnU4bY0ZDgQd0bJ5kMmnH8nlgTPDkuQF2er2esao7OzvGNCKr4IUcjUbK5XKSZKCcQLe8vGxzLLEDSDIweezYMfte1gLJlTEmBCnYUkAQzAFjzhhPs7OzY0wAPrBGo2GyIkGQ8UC8B5/gYftINtFo1EAKbD0+RHx5yEhUvgQc3imVNzI7vxsmBvDGSUIwj+Hw7EQkEjygHNCCooBkfL1nLR6PW/MAbDusVK83PQwiGp2efkSRwrP1a9M3GyDVsf5QW3zxgDxJvODvdzodkxFJmOwl3wTRbrdNcqMQ8+NiSDJIdLAvJDCAFYUtp1FlMhnrrga87u7uGsNCrCOmXS+Lc48eCPA8uDa/Rol9PH+sD967BoAhrqC8MDKNdRKLxWzNc2pUPp83xhNQzH70oIh78RIyIMH7aPEA4ttnLQCMiFmePWLyCrEOqxFgmCImm83OgVXeOffL3FVJ1kAiydQdmuQoEn3BTvMVpAnxxPu+fZHCHoFVZD2gfhwcHNjYNt4J8YL1AxD2qpOkuZwDS8b3MO6L308+pBkWOwSWLR8rYCATiYRZK/DSTiYTYyRZwyigFAVYNSAGsCnt7e1Z0xBj2WD1eH6pVMqsDazDhYXpcZ8UwP3+9Mhi7HPxeFz5fN6KYN4J+xxWnRwAu8n7HQ6HVgygnhCHuV7+jIKPNc+7JwagsBE/AdoU6fQ0EK+Ypd5sNo1kIJ4SU709iXeA8uTJChQPPx6M9+GtYD53vZPPDQ9OAZyAFV8xEmS89EnleXh4aAOZNzc3jQHs9XomS2N6J2gjtdCURDLFd0IC8cwUDUnes3NwcKCrV6/a5mSRUgHjMwIYeFO1N4Kz+VOplMmJbHAaIgCr7Xbb5CFOggIYIPkQoAHhjMGhYoXV4OfwBxFMkLcBRkwIaDQaBkLj8bhOnjxplTyNVnR8E1yQDuPxuDFrADMPkGm+wUMFgwJQvnTpkrEJzIPkmZF8SDB41fBY4nkFMPmqnXE3BBXeO6CDYAQAJGDzngmqsEKRyOzEFhjxK1euqFarWdCB0ZRkp9AQPEiwFDC8Cxo9Wq3W3Exa1g42FNY6wYsgCFvmbQwwoQQm7gWWAhCcSCSUyWS0sLCgVqtlB1kA1AmyPBPYh5MnTyocDhvb6D2QrDWSJwAEMMke5zokqVwuKxqNqlAomDRLHPBTGvDcoWxEo1GTAn0i5wMQ4fnHYjGdPHnS2GWeqVcQpFnjHWsPBg4/K8EfYBcIBAwEU7jl83m1Wi0b6N9sNq05haYh7g8ghGyItMfIGCw7g8FgzjuMdE98oIDg2dKFzjqACUUuJKagxDCqBiLh6Gh2ShLfSXMM1ijviweI4af13miAUSKRsANGCoWCjYNDCZCmShpFCXGIgoTijVwAS9rr9YwRB5R7WwyKCQCABJ3P5+26AUKhUMjOaee0MYAzDBjMGVIqZIvfe6xRgALX7pU38g4AkVwG4Ce2sVfYgxAAy8vLtj4A0YAigBHXNhqNbJwWKqBXGGBDYS0pDvl+FAVJ9vvZC8R5CBhGEXrFkZhDEUARQ1xCUfWzmAFuXuHhmXo/crvdtj0FA+mJH/4e9wf4lmSNlVhGWI8UmtgO/POnQIEtJdb498M+5X0EAgFriKJgABth76NA9d36xCT+nbhFozO4QZJhAJq0PGhnTRJ/3+5zw4NTEhvnC8OsUAVKssDBxscnQ1AkkSPZjMdjVSoVkwKo4mFMAF0LC9NB/8gyBJV2uz1n1j916tR3MDnHjx+3oIMfDL8OoJmFx2YkIFDRRiLToeBvvPGGsS5IKySSbDZrQGxvb8+YRElW7XkfI3IJIDqTydjv4s8BzDAFeFYkzSVQgiYAgsKBChgWgIoXFqbRaNhpGdd7HgEmvBuaMrwfyj+7lZUVayjiBBFkR1hXgiJABPDopeJIJKJ8Pm9JGk8g78XLhxQlBGGSCoD1er8hTCfMNo0srE2ujwAFuID9pKBiXcA6VioV1Wo1C1D+xB1pdmwh79U3YbHWAczRaNTWJcmO5EbljL+b78Vny5QHkjdJGImMYgRGgaRDdS/N7BRcI8EQ0Ib8hfWDpA94wT9OwgZkeJkS0AQLQAHHNQCUKLJYi9JskDxxhHUNWGNWKoURsqiXL0OhkCUjvOUAWH6ft1RQcMdiMW1tbanb7dp3AwqxnfAMYZ29x5O9B5PCeuDvMmcZ+44kA5W+eYL3BuM8mUzMU09DCDGYWEBx75lw7FC8P5J4rVazoowZ1cR7rCKxWMwsNsvLy8rn85KmbDAsLfGPgrFWq82xvOwPn3ABc9jIaFLlvTGzNB6Pz8maJHDeBcwujFs2m1WpVLLiwjfo8ix5FuxNLAA8H0AI66Hf75u8TVzBAkA+472zZgHpAGvUP3IaxRTFOs8PYMT+gNihWYYGH5htfr9n6HjmrEm8qsQTmF3ijqS5PgEKfPYHQB17FUANJTAYDFrBmEwmTcHhvohxKEdYQrD1AUIpjsEXgD7yrvfBAh5575KMmAGrkNt5F+Px2PpCkP0pWiEhKMq4Lh+LUE5Zj74whLjy9zkej+d8tPQp+OkxxDP2K+8ENZrC+518bnhwms/nTab1ciCSppftpFnnL9T+ZDJRJpMxOp/gTPLqdruWKFgcdMnz4fv9nDffxX10dKT19XUtLi6qVqsZu0OwoNogiSEvIVeRlP0YIYaVE/yp3vC2dDodo+8B7+PxWNls1jrmYUtY6Egmb7zxhlKplHmkvBQF8IRZWVxcNNYH6Qu7BFIiG9J7Tkm4fB8zC32XOc+AZzUcDq3Bhw+FCCO3qGyRUGKxmEqlklXSw+HQfock66rMZrO2PghSyO0kX66F6hEfH2uEgMA64Tu8vxm7BgEXUEVFDfNbr9cNbMAe1mo1W1MAYS9V0vnO+iVQ8n4pMqjMO52OcrmcybU+mB4dHdk694lOmp3KRpHgPYLJZNIaCrkORr355gWAAfNiAVAwWBQNsHsUZgRw1hMNG1ggkK8IyCRE7o8Ay59JMo8mewJWhefufexHR0e2P1EDKC5QNvCkekZDms1vBJADPGA8IpGINTTwLrgf2HTvg2XN9Xo9FQoFK3Z8Fy4eUBIqDBXrkzUozaR7wCIJr9Fo2Ek3TOfgwAWUAywKxCESHKw8vjk/cN6vAZhcACFFCO8JAEjMws9HnAZQYbGgGKa4LRaLtr5g2vl3pGYSto9HKA68H/IIMYC4GAhMmwVpaCNZA7go9li7FOSnTp2ytVCpVNTv9+caY8hJFFGAFJgtmEfWEeAGgBCLxaxBlJ9nDxAPUX4oNJkHiz+T/0bRQcEsTSfDwMyxF738y57CluW9mQcHB0qn03P3xTphX7E+We/kknw+PzenlO9gvQCusL9Vq1Wl02mbAoFCAnniRybi04WoIQawjgGHKHi+SZT9jR0ABpU9TDMkM9E5sIN9Qc7xwJFnReEBWcMaIYahdIB7YrGYxWJJc9OBwDnkTXKfV/B2d3dtzZIzvJrCOuPZkPdYG2/3ueHBKcfbISWwiWBTvDxG0MbDRRMDvj9YCYIVx/AFg0Hr+mMhSbKk3u1Ozy7vdDpaXV01DweVKddTKpW0tbVl1aWXlRYWFuYCPp5MFgOJhcYMmn+oxAnudK4SZGFnCcoELXw60mwRptNpnTx5Uq1Wy7pQOWVqYWFB1WrVEhXJw0tgPEc6+GGLCTJckzRjvAHoCwsLxjhz2gZgg+obdgIPKwmJJEfQBBiw0X2XO6Z5ZJrxeGxyP+/fXyfJhCDqbQWdTsdAP0WR79inW5aAjDyFRMZ1w0ZhJWm323M+S4LH5cuXlUqldOLECXvWsVjM5FHGVcHU0CCzs7Mzd851oVBQpVJRNBo1QAvQgx3wDKrvpibBwM4RlJDTCIAwmHw/oNRL8r1eT5VKxa4d+Yp9A6hvtVpWlBD8sRmgWgyHQy0vL9vorGKxaGNjiAnNZtPeAc+N940cTvMI1wjYl+ZPY4JhhWVnHQGIKIwI9IBKgNnW1pba7bYCgYCy2ax9J2uU60Ty5NnDNHKtsHoweTAp/C6K0X6/bw1r+NHG4/GcJ5T1TvGDB69Wqxk77uVWWEiv8JDwkSVpqrhy5cp3sH+hUMhOqKN4QkokHiC7YvPJZDIGIim6pBnr7G1BeNApKiVZQxQgl/hDgQNbx/OjkQeg2Gq1FIvFVDiZ1Kl3xbWcHGoyiapeXlXnC/saXFOoAA7j8dgacOh7IJcsLS3ZqENAP+8Y+xjviOcMC+ptEVx7vV63Nbe2tqa9vT1Vq1WzvnW7XdXrdQN8FN4A24WFBSN1eDYw4pwq5e0Q+ClhwNmHvlAjFvM7KTq5J3I0pE80Gp0bs0Z/AkUH8ZO/Dyuby+WsCOX0M08aEJuDwWljGu/dKy+TycQKHVhy4j85i7hwfaMovlPiP0w5awBPrb92WEYfQzhEiJyBfA7m8MwrpAkxwRNO3iaHWuGvBdade6IgpNDh2mHzvVWNdUGMgKygP+cvwem1z87Ojp1nTwXHQyKpE9zpKPQbCO8K7AaBnUVHsKCShskIh8PG7uGNYnQMbCBgEAn2jTfeUL1et2H8MIBUNsvLyzZKiEYPKlEoe+89pZGBETYwE0ghdB8y6F2azTJjIDHBgMo0GAzq9ttv/w6vEN5FSXPAlEHDjH/hdyKpXM+UeRlRkrEc0sw/vLGxoUKhoG63q52dHVWrVWOmuTfvpfLFCRu9WCwqnU6rWq1aB6Mf+8Ra8XIs/x4Ohy1Q8vFNHbB0NAnA3PJ3vVen2+3aUG/YNz+mhQKCQoHgh2fWS0xc397e3nfMskQeRjIFZPKc8cciUcXj05Ny8Pv64foAPJgCQD/M1d7engW3paUlA04A42QyOdc17kd3STK2iyHnSMc0wyD99ft9bW5uqtvtmleWNUBRGIvFzNKRzWYt4cAKADZJIIA9mGXWHWyIl6fxegPCNjY27J1TvJIsuG8YC9hJ/p0iDqYDjzIHPnBKHc8RBQJLgQckHG8KOKHA9uCFNULhg0WG/9Zut+0QA/8drM9ut2vd+iTihYUFO5KYohcgvbOzM+edZ91xnewdCn3fwCTJkqJvJIKdOTo6sqYv/zwhDphdDEM1mUxMMYpGo2b3QKU4PJwe2YnnGzsVhRUqiQfyo9FIrVZT93wgq8ceb6gU/TUFNFPPVJAevPd2nb1wv57740NFFLE+BGJiMDhrulxYmA7pv3jxooEW2DDWLH5PyA5JBh65XuIPXmLeFTGD3+VPqUKGxrMOsOe5Ekcnk4nNli6Xy1b4w7qjFLG3vd8TwAvhgH2BgzSwQPjRUqHQ7Ahx3hPyMRYS3k+r1bKimikDACMKEnI9KhnxArYPpRJAR2xiLxAPYaQ5x55njUWMUyMp7LhGSXZPFCTZbNZA4P7+vln6UB14br4wYp0juUsyoI1dD4AozewBxDfAou/dwPoGIcB1oIRB6gFGvU0LIEshznfA/vu8+ed9bnhwyqLihSAlLS0taWNjQwcHByqXy8Z0kUT4d4ABwMVXK1ROgA2qF2htJAAWKcnbgyWusVKp2AilQqFg3ippGphhdQ4ODnTp0iUDmgQVNlM4HFYul1MulzO2hHuXZNU3TDABD9aVIASD6AHu+vq6zXeD/Ts4OLCkSzMUySwcnh5/12w2bWYcSYi/DzuUy+XsOhnrBcgmIBDkGOGE143fSzc7SRup6vrExO8BRPE7Cc4EGjYXTA+VN7YEPJx+XqK3YNAIB7jheSH3kbTxJ+PJIRCQBGEwBoOBsdQ+sMZiMTO6I9PQNEIDS7fbtTFeBCOKBHyoSKEAkFwuZ2wtgZFKG58uEhP/CwPNfQA8CXCSjCWgcPBGe+6JhJHL5ezQCJ4pe6tSqVhDHr8Xjx3gYXl52U4kAhTBWpPUCeg8EwoSQCZeYrxwMBjhcFjVatX2CN8PKGg0Gtbow3GQgHhYCT6AD4o4mHPig7crcKoNhQ4xjlF4+/v7yuVyVtB4pkeaFrmlUsnWKffgGyK8V5B1RbGAnQO2ECVpbW1N6XTaCADfpOFHHMH2cYCF9ybTJLiysqJ0Om3vjf3JcwMEUfxSWHG/gFxJdkAKYJOiCGAHWGPtw8InEgldvHjRPOQUV4BkiInRaKRILKi/+X8JaD3+u+roNn3r6n+rb335UId7Y8XiAd1yX0K33XVRj5z6dd3zP57UF574qPp1WVMdIIUpBrDl3B85w0vzFPF48YmVMGMwdQAXmlK97SyRSNgpXdK0WNje3jZlhYKCtU+hy3pkvSMRwy5TXFJQra6uzvUiwPpOJpO5hkNJVvDSpIYSwz36piNyGYU5bCHe7UAgYL+Xoof8BPFBPCW/sM/wfHpAzvf7HhWv/HnWnTjJNQKOYYGJfzSoQSZQBPf7fbNW+YKW/MCUlOubnvhvAEKabgGF6XRay8vLdmgDeAWSzZ/mxzqi8B+NRmZ3xIPMumJdsgbZ5xCBq6urhqneyeeGB6csKgImA88Zy4FfiUqKZM5i5qFzqgFVO0yYJHsZJA5ApT9FCpBI9SnNDOK1Wk3RaFSrq6vGCNLxn0gk7PgwpHN8qT5QU614CYrKVZIBKbx9MDRe/uccZZp5OP2DgA348rLC8vKyMpmMsaVIoSR+LAB4A0n6+At9FyT3gnQ9Go1ULBZNUo5EIsbocK90u0qaq7YbjYaxmARW5BuCUbPZNM8PSQDPJxtWmrLv2Cq81UKSAW42IyOoAGiAdrx6XHsymTTgS9Lj2EJ/bCrNA7FYzMzngBpADGsW3xusoW/oIwhyVCTAlIDFd6fTaVv/kowhBbSx1mmygv3HC419BPYGIDAaTQevZzIZs32wBj1gpAonobbbbTu3GyALM8de8qwJPmrYBMAHUjeND/65ALyR3ABDsPskHmnW0Ae7xj8kExoMiBkkTBJ4o9HQ5uamMRm+mBkMpoPLKWQBZrA5XCuSKh3QXA/zX5HDWU/ejzaZTKxxjb2EIoGnFfbOv8NarWYFMcAEEABYgE1DasVCFAgEbCYxMRXpUpoWBFwTawsZFcYb6wikAAUIrCLFHLEOFog9gvqFXYPY6v1xPpmiYrAPmGDCFAD263g81mF3Xx//8bIK0ef1zct/R+eeOlIwGFJ1q3ItVqZ05WxIb754XOnSMX3sB7+h7/3gp/XHT/6otCPLD9wjShpTRPBLUuAQg1jD/ENjGT5x1h/AlvmmSMWTyfRkutXVVa2srFgxBfkAMAOc+PVPvINgYeoGuQiFYmdnx9hCig+AMT54X7gBZGASPeCBOPBFILkJew1MK4rScDgdBYZdAl82jKdndPluQJrv6KfgRGVhD/KzxFrAM4WbB7zsMcAZLKiP5xTy/X7f4giKAMoXuYRnSr5hTzIhAr+v9zcT+7BG9Xo9wxYQV+zVRCIxpxqHQiFj05nUQ+7nA14AkPNuALmSDJO83ee/ODj9xV/8RX3605/W+fPntbCwoMcee0z/4l/8C505c8Z+5ujoSD//8z+v3/iN31Cv19NHP/pR/et//a/NlC5JV65c0U/91E/pySef1NLSkn7iJ35Cv/iLv2gV0zv9eOkSoAnAeuWVV2zI93g8tsHayWTSkqVvjvBdrcitBAYfUEnS0PUkEiQ0TuRAnqSr33ewknAZF4WfIxQK6dixY8Z2srEPDg6M7ZpMpqexbG9vz3VqUl1hG8AmQOBBUgBMcL8sKgB6Pp/X4uKiWq2WeSUBj545JekDJmq1mvlT+F4aKuiWxbDNOwCAI+HDrGSzWWOrW62W6vW6scAEbu8jIzjxHPj9PD9kRCpUDO+ALwISnaKJRMI2PH9H0lyCg7njZ6iKYQwonJBTkfYXFhZs9BcgjefKWsQ7Rqc9RRDAjr/nOzIBEwxn9qCIKthLlwQzrp9kTiIhiMI+YI7nH+SoZrNpEm8gEDCFgOvxjBDPh/8+Ho/NP4oMy73H43E7DMMzeTTgjMdje4YkdfYk8ieMDaw47xD2ieYQ2Od4PK5MJjM3ugg2g+Ti9+X13+f/nJ/n+ZEI8Z1Fo1GLTcQH9gRrAYDGfkX5oBjF3wYbyglCJH1GfLGGYLbYN3g0/bxVrBLj8dhYZdaeP/KUZA47z1oiZuL1BYSR2CjkGQUFK+0bvLDn8L5JxKxb9j9gApDF9wFIwuGwNXJhAWBt4xOGzEin0+r3+3OTX8LhsB77wZGK0Wf01XP/vc491by2NsNzgBmpvN9f0md+/SH98Cee1vs/+FU9sfN+BQIBs20AQtlzPCtiBrYO9rWPNWtra6ZU0NS1s7NjXmjsQgBvfg4ihFFlWCf8KLGFhQVbJxwkQQc3eYqOfeIqawK2DCUxHA6bQkCu8J5u/728Z4gDYgXPh74Bin7WPrGIQkuSgVyvPlB0EzMpnlhjAE0AIATM0dGRqVV8P6CTghkwB9AnR7MX8cwS17hfijdmS5Nn2TPkcWIE94st5PqJIOl02poJm82marWaxX8KSIqEfr+vRqNhsQKFU5L9HWI+ZAsKC8QCRS0KHKoaMZqff7vPf3Fw+tRTT+mTn/ykHnzwQQ2HQ/2Df/AP9JGPfESvvPKKgbO/+3f/rj73uc/pt37rt5RKpfTTP/3T+uEf/mH9yZ/8iaRp9fF93/d9KpVKevrpp1Uul/XjP/7jikQi+uf//J//Z10PnhkMxcFg0NhKzOBU7oVCwXxyMAwwbCRlzNdUtNgEYCk9WGERkyyvHzHBZiYJYiwHKHM8Hiwj5mMSMiAWGRtWcGlpSdls1mRPP8KFf1iM6XTamDpfbaZSKQsQ3A/35+cX4nGliqWq8ydwUFlGIhE1m03zY9IAg+yyublplSjgiuvBYwUbJE1HOJGMGWkVDAZNiqLCR5YjkbEOedd0vAOOaGrwQQJPq7dQeLYOOYfKl+qQDUmBAeMNM7W4uGjgKxSanfbkfUYwrAAUghLgEDbCNwoQ4PFPeYsBARC5EEYKfyqdnRREBGcCDs+Z+6BphzVDMMIPzX9jvh9JCk+TNBtjQnDzBxHU63UDbHioCHx4Br23F9nL3/9kMrFjA5FtiQt41khc7EneA+uPe5FmHfysS980ATin8JQ01zDEeyQ2Ie/xXYlEwrysqBkAqUAgoFRqTzfd9JoWFnrXmCHprbfW1W5PbUUAD4bXU2SxT2BvADoAYqwLxOBQKKRarWYeQO6BIyQBA4A/7p1OdfzH7AXAL35qAAJgg7WJpzUYDNqxl7Bh2FNottnf37fGUL8XPGiFSazX69YsiseeuE4BS3EZCASM2ceSxMQXnlGv11MgONKZta/p8uEP6NWvdeb8ythiABbE0P196YmvPKAfeP9nlL/jw9p7Jjrn92Yvcq8wj+QRgAHsJ7GUApFCjnVOIUaBzZriefnGvEQioVtvvdWKIJg/X2ixP5DS/dSEdDptBSbXzVg+3xtBHOTfKeAoLPjdqCNcJ2OgUNaYMMKzgwnFY++blLy9AdLKF+c80+vtIn4qx8rKivmnKa6JXYB97wEOBKZHrsZiMYtjPi+i2KA+UaTQiwETCmYgH/KuIYbYO+x31E9JlhO4tr29PW1uburkyZOmElI8eCbWj8hij+7t7c0dquFHG9LXwjP37Kxnwf+reU4///nPz/37v//3/16FQkHf/OY39d73vle7u7v65V/+ZX3qU5/SBz/4QUnSr/zKr+j222/Xs88+q0ceeURf+MIX9Morr+hLX/qSisWi7r33Xv2zf/bP9Pf+3t/TP/7H//gd35wkC5KM3CAogf79g2+1WrbRkPRgvFqtlvr9vjU54D3zMhVsCkDQy9vD4dD8HQAfb7Tmf2E0vekfIFKv1w1oEKTC4bA1rSADe28Z90/ljpmZhc9xrcgCbAQ2OKwQlD/fhZ8IRpIqGMYMgE8Fl0gkbHwPSTOVStnYqsPDQ+taZeGTyOLxuLHNJCKOX0WqBBDxLuhAhkVG1ocJBSgRINn04XDYAiwzageDgckZgHsSPkCOgLezs2MAkyDNu/RSM2NoSMAwRngUc7mcMRbeo4PXiKSBz1CajT7i+0nQkUjEmDzWPUwE64CkSED3xnovibFGfVPF9RKjl9lgOjOZjBVjJH/YBapqroNgz/rC90kCgOlYXl42ewHjbDDyj0YjY5ZZvwRW9hXvheY09hcg0LOxzGIFxGIHQe2gwOQ9eGDBOuI9eRYB9YTxbiRo7pVO41QqpdXVS7rttnM6caKhXi+kg4Pp+7jjjq7e//43dfFiVs8+u6Y338zPAXSuEQDEhAVACsCFmEYiDoenBx00m01jFCkSGLvDeoCBJiZROPBOeW6sQc9O+kYo4h37KZVKzR1SATmAAsNsWp4byRr7A7Gepp9er2czZXn/qGcoGTSwwvRS8OI1HA6no4l2d3d15tGkYpO6zr5QUjR6YMVNKBTSe9/7Xt1zzz3q9Xp67bXX9O1vf1tvvPGGGo2GXnxqSR943ynddPNZffOPFkwVIk4yiQGvLGAcxpp75X8BH5z2hh0CgMh1se89wFleXjb2kWKfZ7Jy7WhbmsIofIhP7GfWs7dmcSCG/3OKReKQV1+IRTT09Xo9a9Bjji5AnPdBwUns4/mEw2GbjrG3t2en08HUes8ohbdX7XieyP2QWKx/bFkASWI91+D9noA3cihFVbVatf4GDw75HVhyfLHs/b7kSc8AE1PZl/hEsTLgZ5Y01xNDcUihxt/31kV+B/k0mUwaViHXMIkH/yzAn2vmvb2Tz1+455QjDTne8Zvf/KYGg4E+/OEP28/cdtttOn78uJ555hk98sgjeuaZZ/Sud71rTub/6Ec/qp/6qZ/SuXPndN99933H7+Gl8iERwKJRyTEGhAVNMN3e3pYkO8EFCn1vb88WKt3kvgoF/OD381I+wYOKF7bGS3EsVhYvErZvYIFux1gOSMhms9rd3VWhULBNy1GYMJtYFfCxet8VHfkYtGFtqWqRKn0Q4dkh2yBb93o969wE9JGMSIbcu2fyrpfYOASAZ1Sr1azZJZPJWICk+YwNxP0DLNjYsLMk0mAwaBUsUjKeRpgjigdM+FgjGIyONOJZWthfADUNMyRNn/AJmJVKRbFYTKurq3a9XsKEBceDC0uP7I8MJ8kCG5U4AZR1C8BkLJj3r/mRXr5IYuQNTDg/C4CBrSQwwcQiG47HYzsWUNKcbEjR4qUerokgyndgSaDII/myD5HvM5mMHaSwv7+vdrttzIBnOIbDoS5duqRkMql8Pm9B10/AoMgk8VN4sa5RTgjqKysrxrb4oE/jDqoGgJPni8XC2zb29vYUj09PSpOkxcWE7r77Wd166zdVqWT0uc/do9dfX1UsNn2usVhAp05d0e23v65PfOJlPfvsKX31q1MbFc+UeIb/8vpzsVdWVqxDvNfrGaikcYL1i81Cko1u4/mx7jmvu1AoqFgsWtHDOCzGjCEZIqnCfMPaM3YOxpqiGQaX4fsULLBoV69etbiHtQVGh/dIIx1/1ze5sC+4N/zNNDICXEejkW666ZJ2Au9W5bWOFTSRSET33HOPfuzHfsyK9LvuukuDwUBXr169luhDeuPqvbrn+B9oEPx+JRIJs6KQvJFRYfLC4bCBMRh3npsfS4S0j9wLM8oIOvIeRTVSNcACy00sFrNpNcQGChP2FR7u6xlPFADuH/BIEy7FK7EDCZmipFarSZKBSWIFRTzfh9qI0oSKiVWHNUsnPVjAN1BSbJOnh8OhsYYU2OxbgBZMcrvdNmXMe/J5B4eHh6pWq3a9FBPch2cjea+BwGyKAQUwwA+LDPmR8Vm+4MCjzBpgrwGeaX7jiGAP0rH6kSshq8gzrDWeGywqeY59AxgGyPqRgR6n/Xmfv1BwOh6P9bM/+7N6/PHHddddd0mSjRLAz8KnWCyqUqnYz3hgyp/zZ3/W5xd/8Rf1T/7JP/kzryEQCNgxYxjuAYIsRhY4D1iSJUCYOd9IQaID9LIwAGJeMmBIP8FnNBrZS8OvxVnPx44dm5Midnd37bzuSCSim2++Wevr6waajo6OjE2sVqu6cuWKwuGwNjY2DATB0HQ6HTsqVJLNeQS4AcIlWUAjMCFTYHwPBAJ2D1REAGjAmJcRYT6h9bFIMKMSYMt1wL6SnIrF4tz4JRp3CHxsPIIRYA3pUpIFBY5qIwny+wBYMH8LCwsGXKlufUcwlSoAhoDAe+dZMGmBDmB+v28cogL2jWTdbleFQsGmIcBQVatVe/8wQjAfkiw54C2kiOr1etre3p77nTDp4/HYGvgAyEibJA8Cr5/WwKgY2G9YCQoY2E3+DvYDP6nCXwdAjvfOtcOEHhwcaGtrS7FYzBrFiA++0YHCIRwO25glmAaeEQw510siCIfDNkMTXxkFHKdojcezkVj4Qq+38lBw8V598xksqT++mAY/mnkoXO+//0WdOvVNPffcQzp37rZr63XH1vl4HNcbb5zUa68d15kzZ/XBD76i8TigN998nxUyjGvi3bMnSDYAMl+8S7J95i1BJHfW2/Lyss0jZW9QZPjB5dc3bviZiTynZDJplgZik1c2UAoAGSRJAAvAjqKANcffB4hQDF5fRANyPXhaXFy0zm/UAsBCLNxRp7dh7Np4PNb6+rruv/9+k2Z53oBn+gm2Lo903/GhIgtSvxOy2IBdiaIba4MfmM54LOKpB6nEI+/1w7N/dHSk1dVVe0awpLD83W7XikkKDvIZTS00lPmYOxwO5yaJULDQRJfNZg0Et1otOw3s6OjIYgEEDetyMBjY2Ef2NA1X5FviArYNrFeMn8OSwbvH24qSAejEV01chrUmXiC9k7sBroBU9g74AjLGW9KIDxT9vCeIJG+jaLVaGgwGyuVy1oQIU826hzxCWcTeRO8FHmryMoU8QJbfy/X53MozAkMRi4bDoRVNeFjBNzxbaTaxCGKHGOpz9dt9/kLB6Sc/+UmdPXtWX//61/8if40k6e///b+vn/u5n7N/39vb07Fjx1Sr1awiYDPgIaHRZX9/3+hsAiDyDhUNQZSARzDy3lHAn0983qRdq9Us8BFEeakkWTY9oArTNAB4f39fV69etY0D2wIrEgxOhwhjdEYCp2EJkBwMBlWtVq1yxd/nQQMNIyT1YHB2jKWXSpGNaVYCrPR6PdVqNTPTwyIDFg4PD00Chy1jkyIDSjMJlmfGOCNADpuGd0Bgg9Vkw2BF8E0WSIaJRELFYtGkTDpVqT5hYYfD4XdU9bAxBMX9/X1tb28bc0MihimGHQbwsT55ppVKxSRqxrn0ej2bbMDfwfvpiwGeFzI07DyVLaoAoA8gDhhHVoQBZI2HQiEbv4TkWKvVFA6H7RS2Vqtl/kVsJkhbnU7HfMEEJxg2unqRWgH6w+HQGgDYq4uLi2o0GnOMNPtI0tz+hhFutVqWQJEW6VCG5SV4+wLFS1x+LyM1IwsTKyRZs4xncljLXoKl8CLRUwQAarErJJMXderU03r11ffp9ddvUb8/m71L7CE5d7tdvfjiKU0mA33oQ29of/8O7e+fMgC9tLRkTCOFhp8BeX0nNckPT3ar1TKZtVwuW6c/Xf+wnqurq+bnvb6Zjfms9Xrd2DbWFEWKt1vBZgKevHKF8pNIJIwJRnna2tqyAmcymZiyhbcbNkqakRCMzqMQJ+6dOXNGZ86c0cWLF3X58mUNBgOL+dNZpgFTKCiCuD/i88HBgd588805FjYSmRYrmVxGsWHMwALPiz3IPuW7adplr8HiAuKIe57JJa76ooHxQniKyVMUMnzYGzTQ4D+GZafIRp2AqECVY9+y9onBXp6HTDg8PLQxdaiha2trRmZRYAH+WKu8E34v7CHeVOK1t+KQByRZfOVZcT3EfZrNIBZ8sUXRyhoASHtlgefoC71weNoYxoQfGp98QU7jWyaTsYKENQR7SjE4Ho8tJuN3JqbyHf3+dHA+vSK+QYvvxk/P84IdJbfzs1iz8K3TW8KzI1948H1wcKB6vf52cG76vN7RT/3v+Pz0T/+0PvvZz+qrX/2qNjY27L+XSiV7QJ49rVarKpVK9jPPPffc3Pdxhiw/c/3Hm7r9Bx+Vf6FschhFugsxEiOhkIAPDg4M8HmZFImKhx4IBLS6umrJiQ3kTevj8bSzktNtCNhIkWwSL3PSsEXgIBkQKHxiw+fjPVncC8GdYNJoNEx+AfgxzPp6E7Pv0i2Xy8pms+Z9hEGWZAuRipIkTicuP4e/iQVMMoTtI6lImvu7JCECA14xmAWSAWNTCJY+iMOIeBZ3MBio0WgY67m5uWmSK9dMcwHgGMam3++bV4v3xvWFw2GVSiWrTkkgeN9g8AFCSCwLCwsqlUq2BgBai4uLNiqJtUUxAyiVNJfg6YxFmkFWSaVS1uFNoAKkeCkOvzUWE2mWJABrOzs7Foi8vMS1MUyepDQej83vDIvHOyEoch80hNHFXCgU5qRaWGGSI8kTGYz9zLXgm+Ndw0BiWYjFYubLCofDqlQqVqQFAoE5SZzr73anRyDCpsMAwZbgZ4tEIja3FWnRM17M6uXvnjlzXru7Sb300m3q9Q6swPDHYwJWAXPf/vZp3X9/WTff/LK+8IWEAWYvd/LcUqmU0um0tra2rGOdNSPJCncYP4oH5HUsDRsbG6rX69bQJs2Obcbvzz0BwLAN4BNG7vf3OBqNzEfpCw5IBGIf74Jrg/3jeWIT8JMvuK/jx48rm83q3LlzajQac/ac5eVl3X///frQhz6kp556yp5Tq9WaTtcYLWsx1lYsVrC4ube3p6efflobGxs6ffq0RqORnn76adVqNZPpl5aWVNzoa6KAEuGkhrGh2SfIF1iPiF2oBahIFETIx/5gDK/CILXSnIWPnnUGYcHhDAAnb7GhyAJ48mzwOAJcATEAGop23xiGF5Z9SM4AkOMn92PsYIYpaKTZ0dR49fkzPxeU4gWA6o+mHg6HVqzBSAPMuXZwBc+DvUOfh2dHiffcJ++MqTKxWEzlctliPszm6dOndenSJZv9Go/HVSqV5mIYp+l52xGxi7W9vLxs4JIYzFqAyNjf37dnQixDvkcF5t1BQpH3ia801QF8iYVemfE2OoA8qvJ/Nc/pZDLRz/zMz+gzn/mMvvKVr+jUqVNzf/7ud79bkUhETzzxhH7kR35EkvTaa6/pypUrevTRRyVJjz76qH7hF35BtVrNzm//4he/qGQyqTvuuOM/63qQLA4ODrSxsWFVDzQ17CTB3bNkvDw2D4ED1kGabZBms2mD6pHb+XO8o8zrG4/HxiB0Op25wcWwB97LBxhLJpPWOY7kMRwOjZEiEDDmIxqNmjTGouIdTSYTa2qgOpJmm5PkBZsEEIE9he3z3hoaGhgsn8lkDPw1m00DOwQrPGQsci/3U5EjqcNOkWAlWSULmOOMcC/hAoSQ1pA4+O9HR0dWSSPz0fCA9w6QRSBIpVImL3a7XV26dMnkfbygdFhzqhHri6ABoOEZUwXjXyIoHB0dqVqtTpNZsWgWif39fQNsSDWANNa1B3k8E0AzIJFmH2RQig+SG0yGl8lpqkFBoDkI0MWeqNfrKhQKNmMRTxtNBKlUytZFPp837yjvFx8d1wwjsrq6ah65ZrNpfmDfsMBa90Gb5jr2Fkw6tgtYO9a/NFUkONMc3xoBn+RD0xpJnb2MNAsTghSGwoCvz+8vuoanSepAN9+8pWeeuU/lcsViz/Lyso4dO6abbrpJkUhEb731lq5evapOp2Pv8ezZm/XYYy8rFrvLCgiUIJgmL9vBQgMiYbgoNvgOmGbsGh4gAwKIP4AbGFjfyEphy73iRWbNAyYozv3MR44FxjYhydhGz6h7CdITF6FQyAqhwWBgkihytI818XhcOzs7unz5sp0jD+AOh8O6dGldD53+bSVW79b+ftjmab/55pv61Kc+pZMnTyoYDOrixYsmo09jZVen1l9WY/wetSt1GzXk1x0AnbxD4Y1CxDX4U+BarZYODg7MigAzxmSXfD5vhymEQiHzSrNXYMcoRviwP3yTjB8fRe7CbkTPBEDYv28OHCFuM0oRIOYtd8QTVCByKvuNfEkxCIGA6oN6BQYgz8HYEtvoGwCIs/a96urJD4gUxv+R53kOjEmjsCA+s+dRn956663v6JkgzpAXUOvYh7lczq7B25gorFEeyVuw13t7e7p69aqCwaDlEoo7yDusU54dBYDCrFLUsBZ4F7D8gE/2NviAKQcQHG/3+S8OTj/5yU/qU5/6lH7v935Py8vL5hGFpUmlUvpbf+tv6ed+7ucMVP3Mz/yMHn30UT3yyCOSpI985CO644479Df+xt/Qv/yX/1KVSkX/8B/+Q33yk5/8M9nRP+8D24JUUCwWDVwwRwyjvvdBFotFAyQ0rMA80mELwCERIfnz8Hd2djSZTLsPASxQ/SwowDBsDwuLzcXfAbR4b2I8HrfrlWTeTSh1AARVHNUdoIzAToL5s0Ai7K5vYsFLSvKlWq9UKhb4+U4WO6wS514jqft5et7Hw6KmSgOwM7fO/4zfoIBkNlqj0VA+nzdACFgkmPtnDuiORqPa2NgwWbDXmx2PByPNO+h0OqpWq9ZgAysSDAaVSqVULBYt6FIIUNFLmqu2AV+AboIxgdWDKs+G0Ow0mUyUz+eNofTeKS/r8+c0/BHEaV6CAaKYkGSMI93RgBxJ1vzCUZZ01hOUJVmxR+BmLQCgAb6xWMzk/mAwaD7S4XBobFUymTSJCgaAcTWw4SQbz7IDknjvtVpN6XRaGxsbc80W+B8XFhbMh0XQ51663a7K5bJKpZJisZh1M7PmiSew2wR2EjyAnIKSvcVamEwmOnmyoWBwopdeKtn3M07tAx/4gB566CEFAgG9+eab+o//8T+aP3o4HOr8+eN6z3v+VOvr22o0SrZefLFCcQzrgYWh3++rWq1aYqOInUwmKpfLcz4/7DxI/jDBNJzi+SNpUQBIMn8l10Oi9IUP1gmekW8S4Vl7oOn7AIgD3BMWA9YbUxRee+01Y+vw2OK3PDw81Fe/+lX9yZ/8iQEN2C1JeuWZkO4/vax3PdzSUxdnB4n0ej29/vrr1pzlbTKHh4e69b4lpQKv6Kvn/7YODqoGkjhGlTUNsOaZwTjCXhKXAQT+lEJARCKRUK1WM6ac/wZbf3BwYH5zfie/j/Fw2HoAipK0cu3kM8D9aDQ7ppm9C8D0zYneA0kebTabtt6Ie9jMKOTYI6wV380PMMbLiYebZ0PhBXj2Nhb2KqcUknfC4bBJ3MQhH6dRg3Z2dtRqtaw5eWFhwaa5jMdj86jyXGG9Odyi3W5rfX3dcg9xnusizjcaDev+94fa8L9YFQHoAGyvFpO7sTASB8hHFPjcM8UEY9h4PvhIPQnEu+fvoXp5ZRXl5J18/ouD03/zb/6NJOn973//3H//lV/5Ff3kT/6kJOlf/at/pWAwqB/5kR9Rrzcbws8nFArps5/9rH7qp35Kjz76qBYXF/UTP/ET+qf/9J/+Z19PPB7X2tqa6vW6Wq2WEomEJTaCT6fTmZOoYYmoUCWZP40h7ARJmB6qlFarZaMv6LgDxPmEjs8Lap+gzhgKNjgJRJqdRIVng5ErVGPJZFKlUknb29va3t42f5Yf3o2XJ5vN2gJPJBLGHACASfSARdgeqtxUKmXVEom8VCrZfeRyOWWzWWPeAFyYukkWqVTKTg0ajUbWRIBsSKUGQPDjiACnyCq8NzyvgKh+v69jx47Nza5DIuN3EFBYC0gaSIs0gJXLZbNLYKPg2TBfls1OoAfUIiNyCg9d6MhbgBkCBXthPB6rUqlYgdPpdGzWLUeVsu4Yio4HkIQdCEx9cfw5Hk8KC2QrwCv3BPMxmUyPs+X5AjxZu4BnrAfcK+uUYM07Yk2srq5a4IKN9vMQU6mUVq6dc+6TO015koz9hVFh3/BO9/f3VSgU7L6i0ajS6bT51DwDT5WPh4z9w3vxxyQC9Lh+rofiaXl5Wfl8XvV6Xc1mcw484fFFsqZgRbpcWVlRMikNBhEdHs46ximAaZILBAI6efKkbr31Vg0GA7355pvX3lNeg0FIy8sy0Mh64vlwrVimGBcFuANgeKYKVYM4CVimgML20u12DbB69pp4gqUF/y7rDdDrGX7+DsAFZYA1TXFGUQK44bmSqHkvgGD2Bc+CGahYBzjQhJOTJFnfwsq10/MOOj29WXtMpwu/r82H/47e+sZ03wKKhsOhGo2GFf3j8VjF9aw+9N3f1mHglK5+e2Zr8fYSvHySzDONZQKyQZome/YGzaeAThhgGMtQKGRzNH1jGDafhYUFO37WHwASDE4nsDCOyasufu6lf88AJRh4YjZrhXuF/SW2ETsODg5MjaRgA8BzL3SqA9CZ0OGtTrxn3gcAsdPpWP7BUkWx7OcCA2gp7ii6R6ORee1he/nvAFC/BsEbkEqQddwPz8grM8QC7rdYLNq7ArdAbiDHQ8pQJGEXJL7wXRRvxBysNyiTqMawyKxpVEZ+9nog3e12DTuRm7kO79V9J5+/EFn/7T7xeFy/9Eu/pF/6pV/6T/7MiRMn9Id/+If/P18Pi5hFdXR0pFqtpk6no52dHWNi8MKkUikLnN4HA0DhJbLx/PcjzZLwx+Oxms2mRqORNjY2DEh6T5Hv5u/1emo0GhZgqPpphNre3raucXyyUP9swq2tLXvGJEGuid/lvb6RSMSuAwkFtpIKieYNkjmgkA3Pf2fhEkjx9wAmYBBIJjCTAEsSjfeCwozxe7hPSXb/yGyezYHNws8G4PAz+AgavG8CHWBSklWFvLfd3V2zU/CeYOd9FyosLPcQDoftCEgmFMBeIHmQFJvNpsnFXDvJsNfrKZPJGDvvGwsAPAQrZGtOBaIQopJG1uG0IoAHVhY+FAaeOU6lUgZQl5aW5gZyA9ABfLCjfi95yYiAjEyP/YIkgl8WiZZkRVUuyU6dgqnnHUsyCwzyFuA/m80aywvQ8lIkftJisaharWbvGzsKzXiA3Uajob29PWP1AFmsA9YwJ+zAJB0dHZnXEXAyBcQRBYNjezdYg5rNpr7+9a/rlltusUMK8MzBNg0GfQWDEx0dzfxw7HesEiRcz1bxPIkdFF+AIM+wIPXmcjlTTmDL/Pi4yWRiXnjAjO8RoEud/8ZMy7W1NYtpvV5PpVLJrDO+2YbYAbMJEyjJwAfSLhIuYAK7Av7Yra0tRaNRUxJY4+wzPOVc+97enj73qwGV/qdb9J57/jeFoz+p175WseIZ/yXrcCkT1cf/+qtaDF7RZ5/8q9pp7ViMQOIGkC8vL9voL4A9e5Ucw2xoPO+cOETjIc+SNcu7DwaD1piJJxH/KGMGKS6Jf9LMHgTI4rsoSgEkXo6nEMYylsvlLDYNBgNjMieTiREGw+HQcif7/+joyNSplZUVK7673e61Yi5pSuRwOFQ+n7f1jmWBogmQxvoLhULG7qIasR7JDRSXPP9Go2HFzu7uruU11pvvSsdqgXUKTy3FODYN7xWmWGYPUSh7wOfVRUiqfn96ihl+ce83Jl/y9xn1xXslt9NgjbqMnQ3LFAQQf06RwQQfcAJxAEabNfxOPn/hc07/a38IZnt7e8pms+b7ZBHAppFE/cgH/CZQ5cigdKX6xgA2OVXnaDRtliIA4r/sdqfDr6H6eWkkJipzgJL3UiFJwbLREUjl5n0d0uyYS0kGlgFw+NPwPgIwkYwIYngaAaIwXlS7Ozs7dg0EqlwuN8fUIAvi1yLJs0kI3v5UlFAoZEmDJO+lHdgC5HMkJaRD3iNStQ/M0gzwD4dDk/tIhgwR9h4/acosrK+vazAY2IihnZ2duZmJAHH8WgRQEhVdvFTOVOa8f0nGjOG/o1M9k8nYZgfQAxD88aSAR94lyRbGDJYD9oJnKsnsAUx0IAjxHrhGGDXeFYnKHwrAffugHg6H7d45GII16rt/sREwm9XLrgRT3hEKCOubSh5QBhsPC01BF4lEbF/4hhP2G+vUd8azRnkm7DEKP8DAwcGBDVAH0PF93obhZ7OirAAc9/fjCoVGymT62tqaPiPAzrPPPqtQKKTjx4/r1Vdf1euvv26NklNP+0Ch0FijUcoABxIuiZK9QMInJh4dHVmyhMXG/4j30/sMWS9Yb7i3UqlkazQUj2r9/rHuWOkqHOppMIyoUV3Qm8+Orejg/mFsiYuAB8AhcSQUCpm0CqioVqtzMyIlGVPomVEAnzQ9jhlGLRgM2s/5U3oCgYCdNAWrzHsNBxf0B//xTn3/X4voPbf9r7r9zPt1/vXbdfH5I2Mx184kde+jbZ1KP6GJwvrSMz+mztXZ6TveF0/MZf/RgEMnOFJuPB63e4UFhSSgIYgGYvZkJBKxvVupVMwHSxzi2fLfWec0/nIcqm9wGwwGc/ufRrdAIGD+VtY9oIjYQHFB8cbJgrDj0szSQewhHgcCARs7BjhirBnf60kEJtxACkiyBifWMdI6exwbhKQ5mx2xHvCM6sCaW15etvWM1xwCg++CMSX2YE3iWnifFF6AZlQuchx7wSsH7E/2OPHv+iIUC4oki300fjGjVZqN0gKYkqeu7+ug2ZreE3/MLqPG2Hdv97nhwSnBbW1tbW7cgySr5vHM0CW/srKiVqtlGwlJiMqWxAUou3r1qiSZfI9MyoBvAg5VFt13zIHk5JJOp2NzBqmMYZBgrnxXNJ4qKhdJdj/e4ExSpjKCBaxUKtZ1T0JkAZ88edKCFh3xsVjMPGe7u7u6cuWKVe2AZawN3kSN31OanTQB8Id1xveLdAXL5kExiQJ5tdvtzgF1qmgk9ptvvtmkU5hzgtxwODR2GJ+Zr3aRSQCGBFw6ZXmmVKnIdnwn7J4PEGx4aVatA8woSAqFgj0LThHx6w72HjYuEAjMNX2QpCmYCLQUUki2vquTYE8CwVaCTws2kiYtLwtKMqmGAo1DGLrdrsm6NARQPePDhhklgF/fdAiglWTACm8koJAmIN4T/97tdo2Bp/AEcPGM8L8RREmyTK2IRqOq1+sWhJE5YSlIbqzdZDKpWq1mDLS3VZAUWYcAusXFxbmDIJAZK5UTOjoK65ZbXtWlS6dsP7LWv/71r9saIK7wPO+7b1u9XlSbm+tWVOMzQ9IjNq6vrxvTvrKyYuw/MinHlfpmGYotQIUk67ZvNBpWYKXX03rwu7s6kfxNxcYVdbWukRYV0qHOJDf10OmMLu99SN96clnNV5tzTaCoODSepFIpbW1tGXD0zUtYLyKRiPkkWfN4OSVZ4mWvenaL2ARIpRDA70/8Qc1gjRYKBcUjSf3Or9yiu993i26/5WW958yX9dhtixoE0gpNuopMmuoHcjq7+Zi+/kdBxSeH9l3IyAAA781mz1HcsXZXrh2BC8vJvoS1I27C+HkrB/fKWuN5sIaQoPEdkkdYs8RSZlzCHEoy/zJH1sKmoqLs7u5apzvXQzxPJpM2MSWdTqtYLJqi1263LY8C0IlNEEaocti02P9+igL5HZaZIh3A7G0l9Jhw0lE4HLZrqtfrRupgoSAuUqQR+3kPrVbLxnb1+307yIMiFw81MYi1J8n8nPjovRXMTzBgjaJ8eFuANLNO+ZMN2b/Ea/AAz4JikedOzva2Md9LgM+YQh0rIDY31srbfW54cErlBI0OS0I1srOzYwme6hEWgRcqyZo9ut2uVldXTXJl/AcyI74R3/mIJEaFkc1mrXqlEqfzm0QK+IVdWllZscWOJ5Rkxu8KBoMqlUrK5XLG2PgmEEABVT+DzwE1nsn1rBGyCN6/7e1tu38aKfBSBoNBZbNZHRwcGMhiE7Cwpam/i6oUkAMQByAzhw8vC4UCcgRsCuwcVSTPhzFaMFnJZNIaxgD/k8nsuFgaCJApvb8H1oJAm81mbc0gxeOfpRuVpLmwsGAdkJjVYXqTyaRyuZyazab29va0vr6ubDarSqUyN8KJDV+r1dRoNMy/lUwm58b9IKMBfElsg8HATrWCoaFIuH58GowEIABgzDPEw0fQBhACtAiomOZJHH4dSjP/XrvdVrFYnEumJIzFxUVj9/GAAxK9PI03jQKLdUGyJohT1BCkM5mMyVXR6Oy4TS9xAer29/cNFOzt7ZlPGjCRTqfNRuHH/ACcYUb29/fnOlmZ9EDRxLs8OOjr7Nl13Xfftl5++X5FIou2p2lYRP3gWU33clC33/6cXn/9Ju3uHtnPEW+IIbCLgCwYU6xK7DuS9GAwHbfm2V2eKRYnCspQKKT1uwr6ng/+oSLjhi7UH9XZZ9+r4UHWioHF/Ej3PLarEytf1MbHF/QHkffp5We25th2GiiWlpZswoNvnKRRjHcEiPKxFWZMksnPWEaIfdhdYCkB4MQAikWAEooQQHCqci3oW08cafvsh3Xyru/TUrahifbVHwRVr4b01O9uql69PG1+SRzMxWhf9MDmw9BKMqsNheBoNDuoA6+nB6AUbexFijG+k3W2vLxsR0jjf4YZ7XQ61mOBNYgcSeGIh5xnBOD10jMgEmIBEIxq1e12LQYhBUuy4o1CkLzkSQlysDQ/LF6S+Wu5pl6vp1wuZ2op+4z87WOjZ2MhRyjYYXiR2cld7Hm82QBVGFQ/oQWrhcclrNt0Oj2nXmJpIMZBdkCAkKcplsEgxG3AI6SPnyoAAEXJIteTG4ilfD/FAuuS5weL7JVd4oBX4ci77+Rzw4NTv2E8wwJAJSDBalH1M8JDmnrT4vG4Ll++bItzOBzq4sWLWlhY0OrqqkmoyNJeQob5QpKiGmN+I8GJhEsXMoubQDIajewkJc7lpeouFAoWiJE+qaiRXo6OjmwOJkkRgAuz6WetLi0tmbyD1Mokge3tbeVyOWPgPFiMxWLGOniWF9aQRMwsRRopeIaSTIanU3RlZcWCG+M+CBbIBPx+GmHOnj1roBLJAjCN/4zASCWNnYL3Ic0Cjx83Q4DxA6uxE/BM+N2sF4I6xnsqVmwjbHDAPh6sdDqtVCqlWq32HZ4eWAo6v5GFqMC5B07cQVojiBOc+O/8/lwuZwyol+1IXswxpaiCkcMf5St1z4DyrHyDCqNgkOFh+0mKodB0mgLAlAJTkr17ZLbxeGyDt0m+JAUYFoz+fHierAEKCYAYthx+NpPJ2IghmAmSULfbNUmao2J5H3t7ezYyaDgcWtFG8wjeUsD8ZDLRa6/drnvvvaoPfegFfe1r75tjA5HQ8XFOmxyX9f73f13h8FCvv367QqHp86LJhmTCHiX5Yu1A7vbsKTFvYWHB3icMGTEHsMd/z57K6ns/+PsajmL69G9/j3ZqAUUiIQWDe7P13j7U1z6d0vPpv6Lv+6EX9PGPfUnN2kOqXjq0GAGI393dVTqd1uLiov0evx4pOAuFggFJQMdgMDBwRQOLJANN4/FUXmfs00svvaRGozHnKwbceDVnd3d3ztNP3E6nM1pdvk31rbpeeeUVVSqV6VoZTIkJmDOKAIpPAAuxhQTPPcJosYaIXblczsYPETMHg4EVt1h6eJ8oZx7YQKh4ZZAeCHJnIpGw8X4UIhSzrEliNECSZhzeG/sLEsJP8+B5okT4BjuANbGED3YT780HwPt+hclkMudBlWbHeHprCu+RAhxABdimMKBw51op9IizeL8hSohtJ0+eNI+ob6T0JAtFAt5bYqO/Fq+gYUcAOF5fWPPfKPr9+LdwOGx7HZKO2EABCLnGXqS4piClKPJ5i+/hOrAxcP3v5HPDg1MePpUm/heqEJIb1D+Sme/Al2RVEZ34gDUqTxIao3sAkoA2Nmq9XrcKlI1JVUNVCnsBKwC7yQlUnAmO4RzQBRDpdDoGGOjS49q63a6BbSobvCvQ/YAI7gMGZWVlRblcTsePHzeGCPBMgAa88tw8Y8QhByQbLyfAAl7P3rDhSKzS7DQgABWsJSwydgLYEzYiv4v3zfWRCPHZ4c0jgMKqHR4e2rPilK6lpSXrWI/H4+bj8k0ofl3BQMEQ7uzsmOxBFd7r9WztkcgAzidOnFClUrEgTZImMQL0eB8wmt7QT4CRZCwCAIujOGkUYV9Is2NRAUMkT5IafjUAC8kNiYh3TNAG2DMVYDicjSFh/WCtAKDDWtCwyLQI3x0N0OT0FWRzVBSKMdgK1hTBlMSLFzkWiymfz9ver9frFoh5pkzt8BMDYCh5Tv1+374L9g1ww3Pn/PNCoXCtcXFDX/rSw/roR5/RcPjH+uIX750DLuFw2IqeyaSj973veR07dlVf+tLj6vfzWlo6skRHNzTPlufM7+a+j46OzDdKYcJeLRaL6nQ6qlQqc4UG6xFA+D0fvyCNx/rd33i3BkcLWloK2rqE+QYA7Va6+p1P3aMf/euH+m/+2039h//nKYtbXuLHioAPGd8xcnE4HFY6nbYucGZ5cp14rMkBXkKlUTEQCFiPAsUd3csUStwzJ0phCUkkEjpx4oQefvhhZTIZU+VI3iRs3hlFDAWxt9rwjpD7IRgornl/+MtZw4AZiiIsMaxzQB/vgPUNK02sPzw8VKlUsufjvYa8Rxp7eEfeMkbjCzYPDrOBtcYLzv7H/sPepPAAAEGY0ERJbmf80+7uri5evGh7LJ1OW6Mq8Q4GsNVqGfNNvuA5YQ1DXYSQ8KMTvc+T3Oebt3hmWLy8Rx4LH01ovlkN8AvpgJoJG4nKRDHJMwfYwmDyviEJYJv5e3iayUew9NgzIMmI/6xj8iAEnD/cBNKP/gniBXmPWOj7G97uc8ODU/x4JONAYDp7b319XUtLS7r99tv19NNPWxJFRgTlA37wIOZyOZMXCXAwI7xkpF6qJ4I9njQSAqCFk1WwH9DYw4vHGxuJRNRoNMyzwWLHuwf76GfN+XtKJBK6fPmyfT+biAXsmV4AVqfT0fb2toE0wCvPErCGlEylBaieNnbMugM9eALg4rv1ki6VGM+Ubm02L94rAiZNRozN8VIkg9oDgYD5T3kvBOV+v69yuWzMAtfGe0H+i8Vi1iEbCoV08803W+FAdYj8S1NUODw99zkSmZ4ORGAIBALW2AUYhfkkOcESNhoNY1gYvwQ7h1RCw44HG3RZEizw13rPJNdOUpdmx8kCOBgjVq/X9dZbb6nf76tYLOqmm24yIEHCxheFd3Vra8vYAQI7v4Oiww9+huWkYZEOWH4HAEeaWUGYmgCzRdHJ+mHdwBJ77xQJbHd31xqKWLMAEtZ2IBCw54tfjO+j6Qhw7xudPJMBoG6327py5YpisZiBBEAO7M9kMtGVKyf16U8f6Qd/8E91881P6OWXCzp37qT6/ZzG476KxZYeeaSpO++sKBCQPv/5x/Tyy0sqFI7s+/r9vmq1mjWj8T4oUFnjgGsKO2k2VxLVAraOZEXxxPM+fu8x5fQrevrcD2t/N6hEImTqC3Om2cOXL1+ejptrjfTt179bj9/6b3XyjjvVvDobrcf30hTE5ALeB8ANHxyxAZYGC0ur1ZqblUtcQVmjD4AmS9hsrpdiGMAL0GQdLC8v66677tKDDz6oyWSiixcvGpgl/hITQqGQHXW9sLCgQqFga5r96U8B46Qr1iE+Zh97C4WCcrncnI0GYA2gBQTClNHBjqro9w7FDOuXuMpA+MXFRa2trVmhz/cBUPn7XMve3t6czQaSgb1BsekbIikSyVmMzANUYsmRpLW1NcsbxCBiOc+WmEPzl58w4AsJYhEsMHkeMgCg6K1dEARYEIjxPibgG0ZhYX0ASFkfsJrYqfjvFPHdbtcajSGhyFUAeO6dZw1pxF4EJBP7YcmLxaK9a1RgClXi5WAwmAO3xA7yBzGan4Wlv977/Od9bnhwCqslyaoaSSqXy3MzT+v1ukKh6SwxXhwynKS5wALLhCTDi0TK9Z4gmpOCwemZ99lsdo419JIAG2R1ddXYXTYYC2NlZcVO9PFeTN+kQLIkuQCaAOYkFIIswQMgWyqVVC6XjT3gOcRiMQNKxWJR2WzWQLYk89VKsqYL5DCkH0Az78R7SvGTcs/8HEZ2PIHIHQBQgg0JADM21SkApdPpqFwuKxAITJsYrjEjBCo+ADeAEgFBmh6swDGESFncC+CEQgXQRwDk9wF8AOGj0ciS/WQyUb1et9NXKJC80R92AQYSsIykxVrHF0iypqomQcAcVavVuRNYqHIpFrifSqWiF1980SwZt956qwFQ1i+FBgEexjSVSpmM5u8fozx/H9kykUhYocE65X9Zsx7wBoPTaQawBdgGGBMGAIPp5x9ApreH+KYIBv7750eSxHMIO++LEe/F63Q62traMjWFeEAjIUUps5QZTs/39ft9vfVWSb/6qxt617su6/Tp13X//eW5ONfpxPWtb92uixfvUK021OFhQ+VyWcViUQsLC3PnYmOLga3zjRok/Z2dHWPm+v2+HReLbzubzdoz4j2z5h5+376GSmnr3IqWlwPWSPjud79bDzzwgFmW2u22fud3fsckzosvjPXAmTXd//iO/vhTaWPIWa94JVkbNKsh00qzpO6BM+8ab66fHoItinWfSqWUz+dt6DqWrWazaSQDnkRiFQxlNpvVyZMn50ZQIZcjHeOj970ArCn+G55LJsSgbBDPAJObm5vmkWRdwUzxHTCkMP2+mZHGHfzTAB2+E8sKrDhKFkxzPB43lYt8lUgkrCN9cXHROrTZY+1226wjFOOQJB5UM5aQgoQcSV4dj8d2xDAxlIJDmtl9UN4A3t56BGhnz0FA8D7Y27C3qG68Uy+pA7CxQdHIxzWSR8AEFNHYGFinFIB8NzmEvZlOp7Wzs6PNzU31ej07ppt37fM6zxeAyAdljntiMgGeeQC576fBtsPawjII60vxxvoBHEMMelvGX3pOr312d3e1urpqMquXt8PhsLa3t20OG8kGbw8LPZlM2gDcVqtlMggLk4WDFExlTlXiAwpz7EgUJN9eb3qM4nA41NramvL5vAHr8+fPG/PoBzZ7yp/KhA0CSJWmm6lardppLGtrawaY2NjdbtcAniQDA/l83sC699ESaHd2dlSpVIzVPTw8tMThAZlvQoKNIGjxrBk7MhgM7F3wu3y1j8wAm53JZBSLxbS9vW1g0Ev54XBY1WrVpFcq0rW1NRt9AeDCn0XAYfNy7Cabn659DkQgiXjfDUCINYTUwyYHMO3t7dmoluuTCptdko3E8lYUJE9AGM8ZyQlfLeCCP/ceNzyZHhCHw2Elk0nrkD84ONDFixctsKRSKTtamK5imqR4VzwvOkBJeARvQA/ggOQoyRIn18q7gDH2s4WRbVk7vgmCooekgw8YGwKMCMGUQs6z7rBVeEPxn+3v76tYLH6Hl5PiiDXE+0BGpOEBWRRGPhgMant725ovKWCx1wQCx/XGG6t64YXTOnHiUKXStBt3e/tQly4tqNcbKhicna7EngL00MiZz+d15swZZTIZk0IBW+xbDwyIYzwX2Dj2FokHkLq2/G1dbT+og4OBgd1kMqn7779/bsZysVjUAw88oG9961vTZ6SAru6/T8cWn9Dh4WNzbBMxljWCskVMoZGEtRsMBufsJ9hUkKGJ9+yBeDxuNhNiKLEbqR2QwjNJnbpdhYc/rNTpexTLFBQY9PR8sK9EpalBq2oNVyvv/oCW7npUsfy6QguLGuy11L/6uuJP/a66jbL5RNnTEB3kJeJVNBq1Ql2SAWPYMmILRSxACfuZb9ilkYpGW2xNg8HACi2YZ4osrjGdTluz4/V5qdfrqVKp2PvxfmaIHOIJuQv53Y9140AT9h3xjNwEEIeY8EwncTISmR71XKvVzBpE/MjlcqaWeAsO4xsBk9Vq1aRwejRgalnveIJRe2iahXkkz9HrwHewTvE8s293d3fnpHJAIEofOQYQSZMT4A9lhLgK1vGNXexz/i7NoYlEYu44Z+xONE3S5AzG8SopAN1b5ihqmLLQ6XSMNHu7zw0PTi9fvmxSAwnTL/Kjo+kxn/hS6WzFI0kCowr38sPOzo6BG17QaDQ9OQKWCGnKM4F0oHrvmzeO4z/BG4SXjU3IplxcXLRET5KnemRBwPaQWFnkLGCqYLxPkqxrjwXJvREsMaAvLS3ZKRlHR0dzIISq0Mvpfkaqn1VHgOVafOMYnlVfLMAWA+SCwaAFByRTgD9SBqf1UGCQ+NnsNKfBFONLI9BgcSAQ8w5g8GBJvH+JYIj0h4TmPUi8M//9uVzOJggwssQzh7wX/KO+6CLoIRMh+2EhwY7C3/W+wXg8bv+0Wq25Lm9pOiqo3W4rHA7rrrvusrXJ9fG8fJcrjBFMge88TSaTqtfr9s5IKDy/8Xhs7D2+KSRUPsifrGskRdh6EgPPFwBNAdFoNDQYDGysG0HWe8vwtpFMYTRgGz1oRQJlPfPv6XTaPNV+yD9J0M/U5P0AmJEJ8Rbu7YVVLme1v79sjEYs1tXubs0KSknmawXowxbF43HdcccduuWWW1Qqlcxmw1plbVGoAXBg24mZSKowWzBuEbV1cHD73MzcTCYz14TG3s9kMspkMiaXHx1JkcTO3JoCPNDkxPrxlgxfqLEfWVulUsmeKWCaIou+gIWFBTtu2gOG1157zRIuxdRkMp1Pe+J7P6H4sVtVff5JRQ7aWiltqH73e/Tb+zElnv+Cti5enHp2V0+q365p59xzGhx2FFhKa+N9P6Djp+/T1f/XP1Ln0puKRCIqFArGKKMgcN0AAtY61w5gZL16DyPMNzHXe0G73a6pYXgHKWRQhLzUy7rAM83z8vEhFAqZBQ6Gkz6DY8eOWW6jWIDFhBQhr3jlgfhBTwS5iP2L95X7J64DwOLxuI1BIsf6AoccDbBlD2LhgFmnLyAcDtvhMjx71AQaKCHCmJggSYVCQalUylh23im/n+IUJQjbAAUaa5AiEsWFkwq9P55559gBWQuTyUS1Ws32FsCSmE2epPgmHvseD2I1rCuAFHILNYAiEYbc52SaS9/uc8OD0+vnncH+UZH4asbLrPw7CQkJhQUPKwb7SGDgJcNWIVcil9PwNJnMxiFJMhCHHAxAw2sEmOT76SbECwhQrdfrBk49A+gN79D/mKtJ/ixU5BsWH1aE6xko/Izr6+vWaOCBNl3zPngBshiETQBeWloyMEd37fLyssl6eHnZZLAAflOnUinlcjljQQC+vkEmGAxqa2vLkhNAFdCFRMGmRIL00gT/nUQAM+W7ZYfDoWq1mklegAzYBjzIvjFhOByqUCioVCrZcZQkEC9HI6UTTCkCmASQSqVULpdVq9VMCpNkz4qfoQCDYSL4AWQ8m7G4uKhcLmcsAs00FA8wGUi7PtD7UWLIVn76AgwoXbLJZNKAJHuATm2AJuc8R6NRXbp0SaPRyDqavY/Me5b9YHwSrTQ7AhI/qjTr5F5fXzdrBAANlpDkSBGFBCrN5MRoNGqn19D4xTMnUQOqKBTYq8QALBw8c6TT8XhsoJn1DFhmDxOrkE0p6ChOVlZWVCgU9NZbbxlTBgj0xS0AxTfZeHnWezgnCiug2el6HuzzzHnuvDv2iAITTRQ2pYH1BxDgUAqKCIAXKoRPjjDWJF3sDeVyWb1eT/l83pQhEqj33DIBAbtIIBCwSSjLy8uqf+0P9NbzX5fGI505c0bN18MavfCkjv/tX1A1c7MqlT+arsPf/X/PddH3ej1Nrp7Xqb/zC0rf/z41rl60TnVv4SJ3EOv29/e1vr5uhQ7xgy543/wKAYEqQpGB1xep3o9lgnnmZynkYU/z+bwBE+I9P+uJH05dw4Lhcy7EBI02KBR05nNP/X5frVZrzht7vWTv/ZnS7PhgmHSacyAHOB++WCwaK86a4J62t7ftO/b29pRMJrW+vq58Pm/sMyAQ8ElOZMpJPp836R1bIE3WxBeKK/YQBSixBW+vND0kAiCNxQxFkryCV5p8A/gnR/MOUMRY6x7zkNN5Lr7xjBGF3nawu7tr+xRwHI3OZvWyp/gH2Z8493afGx6cAngABOl02o4yJAjE43EDewR5Kk5pdroG/hmCPUnZsyEsLCRZSVYp4cUhwQEyJNnvhx2FSeF6lpeXVSgULBEmk0m7LoYJkxyQK3xnpPcYElj4+16+8fMEvXkZgIynkz8vl8tzsiiSDGydJEtKgUDAWFk2AKAcGYIA5f2pdF4uLCzYxoLpw4sFC0NFTYVJ9c382mw2a6eosDGpTvHowDAw2aBYLGpxcdE8anSHIvMEg0GbnwoTRuUZi8WMGUBqkzQ33J9ECghdWVnRAw88oPF4rO3tbQvW/AxSFpIRgYmfgbnEeiLNPG2AEhIJlTRrgPUDGOI5SNMgCRiCTaB7EwaZAAvjwV5CDpY0B7QZq+VPTYtGo9b0ByCl0gcgAj6Rib1CEIlE7JhfkivAlHfrZ9CSGLwkhZeOfUZSxf91/PhxhcNhA4F+diksL1Mo8K6xzoPBoHnb8ed6uwPFhC++eNasnXK5bBLkzs6OHXmLBOg7f4k5+NOGw6FefvllvfXWW+p2p8eOwmAh03pmiu8EDEqzAxBo5uSUtuFwqJ7yWlnZUbcru5fXXntNZ8+e1T333GOS78WLF/XUU0/ZSC5Jum+po94kZ7Ix45ASiYT29/fnRjzxzpl44G0esVjMRt2xxwCHFKE8P8A1diSmouCb93GTomtnZ0eD+nOajIZWqHa7XXW2t1WoXlU4U7K4SXyhgBwMBgocTtf3KDgb+I6E7AkSbyOgURfLEGoWeaff79u8VkAR7D3PATuP76aH6fRSME1/7DVm6PK78FN2u13VarU5wsePrqLw9/NIKfgZS+WtTF6doMmTfeMnU2D1oCihWGQdQ84AzNkbjHqCqOB6sBZQzEAoZbNZG0+GXxTFE2DOMymVSvrEJz6hW265RePxWM8//7x+7/d+z+xk3g+dSCTM0wn54tdKqVQyYod1iZLKPqPvwscFGF0UW9hOin1iniRjnInPjLHzDWAUf6h+YCBwDeuHQgjCjZxM7vG+XN73231ueHDKgsBgjWRO8wUfmCOArGcYAGOA0XK5bEkKkAOgGgymg6qpaPz4hVarpWw2q1wuZx3LbAR8Zb1ezwIniYWfAXCwUQFnLEBp1iXH5s3lclZF8nvwipL8/KlUsEccq9jpdLS/v29eJIKYJJO5PEPhN59ngqjEg8GgKpWKLl26pJMnT2pjY8PkPzrVAdpsBj+vzlfhAFM8p3Tb8/P4RJH1tra2tLW1ZVMXYIBIuDTuNJtNO3otHJ6d9MU7xi8Ls8G7QVrG0sCGpLKlKPENOPj96NhlLNlLL71kByoMBgM7dcifmYyk6830sGOMOCOYAbxYh3zHaDQy0z5NEt77BLPtLQNIqJJMvkJGgjkl0DLTEsAEgKVYvH5N4WkikabTaQNQABauA88V44380G9kdRgBGlZ4Dhj48WAibfNO2f++I5v3l0gklM/n7VnTyOFPw0LxgCnhOrx/EsmNJIHS4cE9wBYgRgFL8dtut1Wr1eb2J//AzLAWc7mcotGoGo2GFbR0QgNKiFt+fUoysOE9msSncHh2brokXSjfq7uLv6504ePaqQ8sZv7hH/6hrly5otXVVZXLZT333HM2kmo0GimeWdJ69Hf06tYHLGn6MWgwXKguMIDsS7/uSOpcO6pTIBAwv5xvmOp0OlpZWbGGUcYbwdLC+gHuYe7xr1YqFSsKQ4tJ9etbBhZQo5azBfUHA3WDUWXe+1emeefCOdsbqA+ALhqDPLvHZAt+LyCSQph5wHj7UXRgMT05wbtOJBI26snbsoLBoI4dO2YSM+yuNLNkcCw4IAY1hQLEA2fYXQgjYg65mHUE6PINPuwPCnjANvsc5YF5tsjbqHAAQMZ50VgMyXC9qsepiL5pjYLeM4rsm1AopFOnTum2226zP3/00Ue1tbWlF154wWRvTyR4e4JvIGY/UKjQXAUL7RsDUZJQGHimfGKxmDWggoc8cQRB5qfzALxRIrjWQqFgxBfWMwC2j7uJRMJIGnIsexMM9U4+Nzw4hXZHQoPlYQHgPcHjJ8n8PpLMV3V4eKhKpWJJkc1CtUVSkmZD5mGXSMhQ6oBWXiogCk8NneVIhlw3VT+bUZJ9B+wcnjxAHYufRcJ9wExR4Xg/GHMECax8Px3qBLJsNqt0Om0NPjwX5A0AM6OPqtWq9vb2TKIlgI3HY9VqNQUCARvVBYsWDodNFq3Vasa88h4IynwfZnbuh07UUCiker1uEjisl7dLIF0RTAlMHCOXTCZVKBQsWAJOAN/IM4CYfr9vUhjvDNYC9kCSscT46fb29lSpVOze8GPi7yJQIcvjx4PpBGxQIHhwT1AnGBYKBfs5TrViIgPGfSS4ZrOphYXpaTrMymPtA1J5Z95O4GcMsq+89QTAw8grWH1/QhjvjeSKL4vGP/xeoVDIZHs8c5KswKCZjndLEEZyR0L11+f9u5KsEKCBQJI1NyGVskZgJA4PD23P4RskEcDKA2hTqZT5KhkNBkNWLpd1cHCgfD5vCZd3NBqNzJ6CUkLjB8+dOIUEx9rxc31JgADDXq+nYrFo1839wVbC0rIuXvtGQu/6eFiPfDSoF79QMLB45coVu45msznXRBgMBnXndw0VmBzpW1+J2og8Yh5Mn2fzSHYoJMS+drtt1hHiOWuVtQPI8HsZRpUiiikSKF94vf06gDAg/qXve6+iKzmVv/Abc8VFOBzWyk/+YwXC06Ku39nV5U//W42vvmYxjyY6FB4KRIAxsYC1zb/z7gBzeKiZo8nP0uTGBBnyBwAIgAaTxr1SUPkCt16vm9XFKxuj0WhufCMWFq4VFs573vlZron9T1z0vkf2mp8uQiygkPQsLwUF64dinX1OrOQZYAH0xR7vAJYS4I7HFSUIOwwfFBzvx4d9j0aj30H+9Pt9ra+vWzygCRvQ7osjsASnMWLxo6A7PDy09wNg5337Rmn2PCQC76nb7c5Nm+HZQaphsSN/8jwDgYDFbml2XDC/Y3l5ee5d/nmfGx6cIjeTGCaTibLZrBYXF1Wv17W7u6tUKqV0Om1SLExbIBAwev3q1av2Mkmi/X7fOut8Rx0gAMmQYEFwZWwFFRQsBLIPCysWi2ltbU2SjJZH+obhOXnypNrttlW9sVjMuv6p9GBRSJ7MqaPSZSHhvQoGp52unEJFAg8Ggzo8PDSvKiyDNzv7TmyCM0ATkLy+HtYDD9R14sQ5xWJHGo+lTiei117bULW6rr292YkS3l9JYhwMBnbiUzgcVrPZVKVSMdDVarWUyWQsMCDt0HwBc4anEM9Wo9EwJhgpgvuDZUulUlapttttq2D5ILsNh0Nrttjf39fW1pYVSJxHDVPHugAcMbWg15sOf8YLhjmftUOHJt4vSQbYYfsB4XiBKSDwJMHKw2xIs9mgJFYCO2sIQEIlL8kAHmqCNJPa8XX7Ydy+IY7v9rYOCjj2UqlUMtaBQIhESVXPDFGkPw6V8EDRPytAA8kdnxXATZqNjWFv4ncGWJJwAQe+gYEh7Z4J4ZhJmirw8PJeSAQUuhRAgCoStb8PQBfsJdfO+8DewHB/njsFHaw1TBFJCQ+v9/Hij4WxRGVi74dCIfV2eto8+j6dzv2eug//T3rzxQO7v0ajMed1o3P77g+e0buK/5sutx/VbiugXrw119FNQxgMnTQrcFijrF0KcvaDNOvwJjaVy2WVSiWNx2PrTsaagzQKKMGbC3O5s7NjvkZYrfX1dUVzq8r/1Z/S7ptnVX32i8qkVwwUHB0d6cKv/IKi8YRihXUl3/WY4kvLql+LvQB/LDUUHqh9xKBOp2NkBvsEa4wvELE+wIyjTmAfARSyT3l3vsiWZp58YgmAjPVIcyE5AOAOMQEzi9QvTdURwBb52TeVko8BlxRb7APIG8glyAVvoSJ3UOSQ58mHMI6h0HTuqCdnKPSR+mHe2V/EKeIMVo9er6etrS2dPHlSgUBAtVpNr776qgG6WCxmMYEGZAo8QDOFH+qb91CDIcgNEDTECOIDuYT1T7M36wtgiaefOL24uKh8Pm9rgX0VjUaNtNi5dmgMBaVvbOM+uH5pSrxA6Kyvr6tYLOqb3/zmfwKtzX9ueHAqaa4TlQ42gBMbdGdnR9vb24pGozp+/PgcAKSywQdDEwoBcDwemz8R/xyMJyAH4ApLhKwCo0XFw+L3rKm3IcCgUCVzjQAfqhmSG4kAWRI5BtkE0AIVT3AfDqenIB0eHurMmTNzzSuh0LQrk2DhmztgEQDAyApTFvBQH/zgczp5cluDQVhXrtykdjui0WigTOZA73nP65pM3tDZs+v6zGdWFYksWuKVZPIdv5fnSJXPz0izOZ9IzfgGqWx5Rq+//rp2rh0HyMxbACD3dHR0pGazqWKxaGNxtre354aZY74n0NE4ARsOI4MHkffs5Vs2NjIZkgnMg6S5ip3rhCnoHHS0dlNe6VxCw76kXkzdxr41R2QyGWvukTRnbSD44MUCCJLs8Edil6AC5zknEgmr9Hd3d63IGo1GZuhnjic2B9YORZSvsr2MHAgEjAWDTQXc0lgGeMJDCFuJP4pJEb7hCeaO5E/CIFaQgIkTADNkMYoLuoGJA/idh8OhKpWKCoWC+ZRhZkh411tVvHcdxQKwgX2GtYD33ReXkqzYrdfrlhgpkHd2dpTNZueafwCqePIBq7C2rFHG6BHzKHwA1b7YffnJ41r52P26+5Z/raPRJ/Tq12fzZ1lf/X5frXZb933PMX3Po7+m/cGGfuvfRTXs7xn4xqeGNI4VgWYvGDjiIO+EZAnY9DNw8WtSwAAIUV0oZgBpKAqws36NYPEZhGJa/eGf1vjoUK//yj9XODQFYvgtJWlQq2l9fV39ylvaevUFnfof/6/aazbUeObz1lENGGIdwYqz9onlPEd8+x40AugBLDDKgN1QKGSd5yg8MIPeK89zYT/yHvCVe+YZ8N5ut+0dYB0DqLCPAJhMaAAsSbLr8YUfDD/XwP6HOV1cXLS1j/VJmk1iIB4Aotgf7FFyCEqjb3r0I5Iolonz7EGe+f7+vj7zmc/o+PHjSiQSOn/+vCmCPtZAenh/+Wg00srKihWTqBv0KgCkuX/GfZGrUVpCodCcEkLRisXCq6QAVeIZNj2YeuIi/nkwCICcdca+hsAhdvPp9/vKZrM6ffq0lpeXdfbs2f8EUpv/3PDg1HcD9nq9OX8XMjKVSL/fN3occMLpSyRVZDoSNtJDs9m0wMUi8CbmSCRizBSVvfeUUJVAf6+trRnbi+zKIsQng3+Q7yKoIbM0m03t7e3ZUGjkVRI6niVYXjaAJEuCVK4EqH6/b0nNe3ZhgGKxmI1kIcBP5fKhfuAHnlQoNNbTTz+iZ55JqN8PGrMoSfn83brrrit64IFXtbLS0qc//fBcVzZnaJOUK5WK9vb2VCqVtLy8bIPo8TMSjGCzYG8oFJC4JFk3OQGXNcA9I6kHg0HzQdJkRZBHIvIyCEkEBgrJCzmThIJv2HtpeYY0PXn2ikr78PBQG2dW9fj3hHVz7huKT7bsnYwVVnX0IT33wpqqZw8syOdyOZOjpNmc0lwuZ8luZWVF3W5X29vbFuwB4zDs6XTaWBy/DghO7BVJNieQ5ErgI0DClLMXOSI0mUxKkjUxksxgEwCknsnyJ/pg4Get8swjkYgN4MbniQeMwk+asSh+AkA4HDa5nIYyrp14QYBnTwI+8F4DehmxRILkWSOxASzwL1L0FQoFa97hXlBvYMBQeCiquXZp5hfnfe3s7Biby5gv/GGwnAB43yxFsYziwj+He119/fOP6sEPRfTo6X+nd505o9evPqwLZ1c0OApqKR3X2q1d/dh6W8nJU6r37tfv/9pJDXp76nYPbVwR7wKLEWsIrznJE2YazyXgkTXPh7jmbVXcr48VAI5wOGzr2PtQk8mkeY9D8YTW/vrPKxBd0Mv/6/+io3ZjroGy1WrZHub993pNHWxd0OqjH9HuC098RwMnbPvBwYHN6cRfSWEGGMETyDuRpiwdNgGaT4lhgBWsWxRYxAHUQX6OQs37WIlhNBgSt1DX/PiyhYWoJpOZ6gXohUjx/x9lpN1u2xok9xErpFmjGQSQJ3aIxTx7nk8gMJ3ogseesVfsG/a3JOvMh2RAdaLQ4BkvLi4abqhWq6rX6zp79qxdLz0KTBsIBoNG1tC0CYMMwCdmYkdEToc44h9yBICXosFfo1fEaPb1Nj9yPjNlyZleNSM/cT8UJNfjAAiNvb09KzggICiIYW/fyeeGB6eDwUD5fF6rq6t2Ekqz2ZzzoOzt7VlgQ+YMBALGDsJsSbIuOzYegMX7BqH8SXBsZmRUgAALyVP8MHSASNi/YHDacY7ncnV11RIX10zgY8MSWKXpRkIG9k1QNALkcjljdvCXIgH+WewNLAmgHfAHozSZTFQoFK51ldf1kY+8rOFwoj/4g49IKigeb2pnp2J/V5L29qQ//uOsXnvtAX3iE9/UD//wy/rVX71TweBs3A7Pj7OMAfieeYtGo6rVaqrVaha4crmcbSovAxWLRTUaDUtU0uwMbjZmvV63YMdBA4BLAgLAl9/BWgAUeFAK64C5X5IqlcpcsMxmszZ3k+8k+MMeBoNBfc9PlPTIzZ/RRBFt7b9Xr738XjXK+1pYjGr15EB33PKSPv7wH6v9yMN68vMPaX97Brr9HkGK9r4rzrLOZDLmIeXeObqQdYqcBnhGFUAS5nthYlhja2trJovBhvgT1LiWra0tJZNJlUolK9JIRs1m09Y8bAxqBQ0RrJu1tTWb9bqwsKByuWxFCUAUEACAoTCoVqv2jv2+wgYBI+w7hYfDoSVZWBbW7mg0smYm3gfFDnIZ15FIzIaIM/uW50PzomdzA4GAjh8/bs+dgkySebC9zMczwT5CUeAbuVB3YP+xH5GoJFlxV6vVFGwEVb6yoeN3/3e6+94rum/jV3X/xiwxTRRQ7ehhvXj2E7r4UlDdgyOTIQGnSM4APEkmZxKPYf2YyEBxzDxFijySqC8ysGtgr+Ie+T2wXoAhb10Jh8MaKaC1H/2fFc2W9Py//FlVz31zTsamsPGM3O7u7hT4xuIKRqJWtPhRaRAG+/v7arVaOjycHqUbiURUr9fnrChI8bDWJH/AGzGROIL6BEMJ+5VOp+15saY98OJ5YSeATIHkaLfb197DvpaXr+gHf7Cum26qKBodaDKRDg6i+tM/zevs2VPXcsD0+O3Tp0/r3e9+t65evapz586Z3Y49Qlwi91FENxqNuUY18jl9IhA4EDQAa3o4wuGw5VqeH3uRTv14PG4HuEAcsZ7w/BMjAHyDwcBiUjQ6Hc/nY1+73bbCkO8kpqCaEAtguinIIdi82uRzfTgcNsDLDHX2OgUP3wMxgieXvU7zN7+DP/cKBioqcZ41TyFDQUAu3d/f15tvvmkFwzv53PDglKqMh8jIJrqQWWAEQ5ou8H9IMi8nLCD/HzmbSowX7juSWciwr9KUjYGpwzeJEZnAhCmfSpAFCJ0P28jmhd6HQaKiBUDil4TG51nws5KM3aWCTyaTOjw8VL1et+QOe0ljgyTV63UDY4BNOt+j0ajuvfcVpVJH+nf/7hFNJlEVClGbfYmERKLr9/u6dCmu3/zN2/TjP35Op0+v6Y03ctZdDgMHIwZ7ScXbaDQMJDAjlMKCihOZEmCBFCzNTr66dOmSdVSPx2MbQYW/dXV11bqf6ST31gc8mPhECZgAFlghmA/eR7vd1tbWljqdjkqlkslvsBY0AywsLOgDfy2ie1d/Sxf3P65Xnz6h3sHUo7i729N4PNL5F3v6/c6qHvvuu/Xd7/8TffR72/rtvcfV3+nZesV6wTBn1v3Vq1fnvFH8fyrj0Wiks2fPzslEJH9+Rpp1cpM48ccBQpGH2FPIp2trawasWP/45AiqvDsYc2QsGotgm6RZwcHvwr/V6XRUr9dtCHgikTCvIWsG/7b3l+3s7NjRpt4DSACnWPMeLEAVCYm9DzMCC8vRmbA1xB/UGApSLCapVEqZTMY6xmGBWSvEIthZbCC+8QEw5RsyfRHqPWt8N88R5tofkcq6Go8nevWZfb31zZJiqR/SUrarhYTUO5LKF3oKjTJaXl5QIDCy90wSJw7y7NkH3tcLAEPtYFQQTChAY3Fx0d7r9TGVd+b3P/YtbxWAheQ9DoYjHftr/7OWTt6ml3/pH2lUvWwd1HxvNB5XcSWrRDgw1+i3dOK04sXjOnz1Oa2urs7FbZ4BJEK1WrVehnw+b6fnoQ7BkHsrCzEPZYBCDWsE+QPQhs+QQp9YTJNdr9ezIguWnOKc5zmVoZv6m3/zrEqljnZ3l3T+/N3a319Qv3+kpaWW7r9/U48/vqULF9b04ovfrXw+r4ceekj333+/CoWCLly4YOCG4gxQ7/eQV5xgJ7Fx+IKOd+hjG3HKs44AKOIC+7TVahnzCBtIEczzZx+Tz2GIyS94QikS8L5iDfAFKSBckhUONEmi4LXbbSMn2IsoadwXuYtr9YSYbzT0nmzANUoClhTWEgAXNZGcK8mAPzGf9xeJTKdLXLhwwdTlv+zWv/YplUpqNpvGNtBQgL+DSpuFlMlkbLHG43EVi0XFYjFdunTJNqXv3KQhgOo1nU7r2LFjCganI5PwpyL3Ie/s7u4aqKRjVpLJGDBksDCTyfRMaIaX42vFb4TkgC8GqRUPKBvIHyEH0Nvd3TUwARMmzU7QghViAQL4aAYDOOI7Q5qaSrFBPfhgRa+/vqHhsKRwOGCMHABE0lzDw5QZW1ettq2HHirr6tUNM6gzyxQwydnsnLHNs0wmk3YiFEkNpsADVOQbghEVKIb0XC5niZsmCZIxI1kkWbPZzs6OOp2OFTl0iZdKpblnCzhrNBoGPGk8IKASTGnIIVFGIhHd9+EV3bv67/VS+a/o219MK5GYjRDCR43Ha+v1hH6z9h796I9+VT/wo+f1xG/dp8ODQwNPJFOq3dFoZOPS8vm8MerpdNresx9LQ3ClSpc015FLdQ4zBKPsZwbiRx0OhyZ103XNvuS/0QXrD5ygSJOmCXltbc0KObzavCsSkAerrAk/gB62HmDnWVUS/WQyUblcNqBMYoRZB6TAIAPokKt5dt4HCYPJuqSIZn16BQOFB0tBvV5XOBw2nyvAkkQGWIe5Jj7wHJBQKaK4Pmk2SJzGE2wTjHKTpl7zWGx64IX3+PZ6PbUvHWr3T3ftniQpk5nZKILBoPL5vPma2bvEOcAGsjBSNGwmEjQxCALizJkzWllZMW8u8z0bjYaWl5ct5qNkwcrz/IhrKAZMYjn1I39bydsf1M6555RfP6bVE6eMZQ0EAtr59teUSKZ108/9PzS5fE6ti68p3m5qo3BMxUc/otHRobovfMGKKCxMxGhJVgTx751Ox45ZbjQaVjDwjmD2ACzI5jBwyLasTUAWzD7SLkTATJpfMJaW4gtAxp5bXd3XD/3QCzo4iOnXfu0etds3a2lp2dZNKHRKL730oI4ff0uPP/6SPvzh39dLL/33unDhgvn4madJEQpIpqglxtfrdbMo4a8l56FUeeYYRQBFj54D1oyfqgPA9X0ckkxVTKfTZv2AuQdIEoNXVlbm4qL3rBNrUOvYi1hGGE9Jkeevy58aRb7m90QiEVt/7AMUHAAzhTZqg1eGWP/MhkaZZG9wzcQUGruJG/R1gBkkWQEIScafv5PPDQ9OL1++bBsQYzPVjyQDn9LMM0EVitSPhMOLoxPSd7rx3SSpxcVFFYtFCx7YA1hsksyHAcjDVwlzwIsH1HJyDp4qAifVLbT8aDRSOp2e8/6RUGA0GPHBv1MlIePCJsbjcZM3gsGgATUAMnKgl4QZ4r+7u6tjxzaVTB7qW986rn5/eiqVNB3tw4bF9wVQxLP3yiun9b73fUPp9JG2tg7t90ejUfPwEITwwrKpkLHYKDBQ3pvFc4HlQq7Cg0P1u7i4aAPACfJsTAI5IA97RLPZVD6ft8TGYQNI/siigHMKDH96U7/f1+XLl+17UqmUjh07pkqlorvveEG14cP64qcGisc7tv6omimIWBPlV3f0mT+6Rz/2vU8qc/ohHbw4MXDD8+MdM4qL3wsgh5UhYHnfEewGPimmKdBUBJvs2WVYeJ9MfeHDyVDIXuFw2HxyPE/+ezabNSBJgQPQQvEANLB3vT+UAA9jCLD2NgVYEt61H+9G4k8mk3OjdTwThUrgmSzWKew1CR8WbDKZmEpBwkF1oRjgHvkZP8sS1iQcDlsnLgmXd8IxmPjyYFP39/fn9gwxlLPmx/9f9v40SPIzOe8En7gjMiPjjsizLqBwA92NBhpogn2jLx5NUryH1IjiaKWd3bXd2Rmz2bXRmmzNVmsrM42tcU02Y+LIRtQahyateDevvtliH2gc3WjcR6FQhcqqjMw4MyIy4772Q9TPw6PIIbAft0ZpBgNQlRn5/7+vv+6PP/64v7OZsbq8PzN7w+GwvQNnkpIyfpZGGipVAGeSVxJQ3zwIQQAYhwWaTBajmEgu8IeABGab3rrfAAp+lsSXCRzIFHwDprRIpjfOXJQkZR54TJkHHvtrsefk5aek6VjBqy9JpXPK7d2rXDiiUbupo2e+ocOv/57WNTZ5Fv6GtSQx42rd0Whkz4kN8L3YImfIaxL5x7OK/rpuyBbO6Xw+t9FaJOLYyGCwuKbaS+IWnfMV/dRPvaR2e12/93uPqdOZaW1taf8kp8FgUK+8sqv9/XX98i8/rXvu+Z/09a8f6/nnn1cymbSb7ZDYkRBy1iGRSPTQHdMFn8vlTP5GbCOZ5qzwHqwJ7+zBpNe0Y5OSVhpTmfwCo47/oeoCy4+v8SV6/DT77nXxMNjSAnzSF0IjFHpQaXn1KngGUO+TV9+w5PWkJK0kJl6/jx+G7OF8UkniqnB+P0kRJJivWHOu8ZP/kTm9+dVsNk2vgZ4EZ4YDZPNgy6DSu92u3nrrLQtGBJ1YLGbBj8VPJpPKZDKKRqN6++23FQgEdObMGU0mE9OYeN2QHwVBAJFk2QVOGMEx8zppusJwMH4yIoIb+jZ+fjQaGfvCwabEw/cQBCkb+eyI60Sz2azNhCS4x2Ix3XXXXUbh+4awZPJIp6cRvfjiQNFo04A+DoG5ogQxAPV4PNabb2b1iU9IGxtVdTpR073RnNButy1Z6Pf7KhQK1mCFQ+v1eiqXywbsGNMDQ4JtsEc7OzvW2Y5+0Tt+HCxBS9LKWhMIcVIEd+4598+F3ILGo2g0akwAQ+U5yDA8oVBIu/dElAm8oj977hcVjS5v+FhbW9OFCxf02GOPKRwO6+WXX9ZLL72kZrOpeDyul7/b1k9+fk/33n9Zhy8tbrDBdvgdvDNOkGQHJhjWhVI/zAEOEm2VD56SVmQtACJ+t2/qAAjgyLFxrunl7DQaDTtLAD2CO0HD7x1g1u8lzArMP2c8FAoZ+PEsa6PRUCgUMkDFfmcyGQOuMAV+skWr1dLx8bGuXbum2WxmDSr4BnRp0vLSDzRcx8fHBviYY4i0iCDEqDDsk5I39sfIL0qysEVUQhKJhCWqklYSaEAkem+CKGvEurG2nun3zX1Mw4CNomLlQQC6exJFGCY+BwCNb0bXBygGAOMHQ6HFWKxyuWz26xtVNjc37Z0BBnwe4IG4QRcz3xMMBnXjt/+ZNbtgo51OZ2U+6km7pcu/+98rnU6rWq1a0j8YDBaJ/k1dLWcY+yRhY73Zg/l8rnq9bixwOp02+7u1OuTXDH9HuZU4AbCCgc7n85agAgZLpZK9E/EO5pT/f//7X1EoNNMf//Hjms0SikSGxv5TwQAQL/T7Gf3xH39Qv/Ir39Pa2g/16qvbSqVSajQa1uRLoosshb0HcOGHSGa9z+j3+1atwKaxCeKspBUZSzAYtBhOzJRkNgppRPxAmwkQRu/LevvmM3wCsRXsQEWUv/dNir4JlFjB7FqSTKpQEEneJ5BQYsv4ASpmMPTEDggGmFLOBbjJJ3SQOlRVPUPqJ17gz7xkiATv3b5ue3DK1ZOAD0o26DsARGQMMIIAUrJ/Bs7jzCg/AGgxKAySxgUOOtpDL4jnMDFPzWcZPtuA5mcMjCSbD1ir1SwowmIw244gQzDxzAb3BbdaLR0cHBgg5HsAxxgrJZT77rtPb775ptbX1610iNaMkiPPveg2nmkwCBqgY7STp/mlJVvi9Z/R6KI8nUqFzZmyR2SS1WpVnU5He3t7dsDIumnWAphQ7vcHBXkFTTYwCZFIxMqVBCNpcVi5uhUb4lCSveJQcTA4ADS9yEHIbAEC4fCiCxzWEx0rDWuTyUTNZlMf/Nyh+oE9vfqdjgLzhaNOpVK6cOGCfvEXf9EkBA888IBSqZSeeuopY5Nffiutx+7+mtbz/zvN+xM7AzCgBGNsajRajE5CP+zBEcweEhjKd5PJYrQQwVLSyudSHlzsbcpKQjAiOFDkNZFIRM1m0+YfAlBhQ5rNpur1uhKJxdWvSF8AFJQEAWAEdkAOmjppWc0AJHjQ4JlUZsmyz9gP84mxUQLi4eGhAoGAisXiiuYLBuNWxjOXy1nSlEwmtbW1ZSVlzo1nXdEMwizx3pwFbgXz8yoBlV6TBzBCTiTJyn/Yo/dZaL4BPGfPnjWb4J1g62AAARR+RBBrGIlEVqo+nAtpmbhznur1uiVs+JRodHE3OMwemlXGz3mtPgHX3zBHWZTnIwGhmoHdIHni81kvNIY8g6SVqhR+Fl/pA7xnaZEOIOehIdM3+NG048c+4Wc4i9yGF40urq8FHHBVKmtANYpzB1MNCwugxj97idj6elgPP3yo118/r1ptrFhsOQs0FAqpUChoc3NT/X5f+/v7khYM3/HxriqVoj70oUNdubJnSeKtzwUp4TXtxDqAq9eNer/PGe92u1bx9NUi3ltaDv9Pp9MWM/CJvuKBH2S9JdnVphA+aD6Ja0yRoNkQyYsnmWiqwndRNcHevRxGkiWhYA7+IZ6QtAJO+XmIE3wIlV0YUEkGnIltYA6YT2xxfX3dfBWAHg0w47B8Mgy7+l6+bntwSoaAMeIY+IJ5kRY0fLVatb+nLACA8CVJjIQSFo1VkiyrYz4ezp6h9TRS4YyCweDKNZFk974jD9BFAMFBUGplVBGAmdIxzVOAU27+SaVSdl1oNBo18M4hBMRTlpnNZtrb29MjjzyibDZrDpcyO4Ef5g/2JBRKKh6fm14Ulg3tGiAaVgqgEI/HdeFC7uYepbSzk1spS+HkfVY+m810dHQkaclAIUIHJPlxT5Q5kSJ4VuPWjJtyTrPZXAlOPsvke9HuEFzJ8H15hyw3HA5re3vbGhxIcHhHP+eu3W4vSl7RY3UmFzWfzjXX4rCXSiV99KMf1dbW1srvPXv2rJ5//nkD7uVrxwrePVJ4faraYcuASb/f17Vr10y/5WcQ5vN5myPIugI2WT/fyEInvE8mcEgAW19CIrDD7t+qBWNGLGwDHd2AUFhmfoYzgjwBdhogARCiOYX1YpTS5uamAT0abbgYgRFSTPKgRAYbQkICe8z30HjCOCGYYM4YvgBwlclkjCklOOHP8GkwIDA13CRFpQNZBXMMvdSFbmhGVAG8ScQIToBeQFKr1bLqB13+h4eHJhuYz+fq9Afa+/QvKHfXQ1rbu6jQWlL7v/ff6eTF75jP5dmzj31Wmx/5CYUzBU16J+q9/pyaf/WH6jQb9u5+XA3vD3tD0xcNjtwmhx3s7OysaPgPDg4skaJ8CSAYjUZqNpvGrvl/A375PiQKJAuMd1pbW1uRkfBzNMRwo169XjcgREnYM6UAJmkuqab19WNtbEQ0GqUVDC6ujaTplLmW6ElZNxjEcrmss2fPKhKJWCwgaQEUUxWD/fZrjS2w3oB0qgV33XVd8fhITz1VsKQR1rJUKunHfuzHlMvl9PTTT+vo6MhAaC6X040bj+iRR76szc2xTk8zdjYB8uFw2CokSBqQgQG+2u22xQb21KYp3GSdAZVUK0ajkSUiNNwh6/LaTHwWjKGXm3B1MbE4l8tZIx1xjhjMz3EWmZZDEiVppdKAJMcnlGAY1gWcwdmdTqemlef7feMV/gzNLECdK73j8bjN+oZgwOfjX/P5vCVqkUjEbkAk5o1GIwPZvL+/Hh1C5r183fbg1JcNKSORDfvGFxwtLBCgg3IT2SglKA4zQezo6Mi6hmHI/CxMWAN0lYeHh6pUKjY+ZzQa2cgen7WRnTYaDR0fH6tSqWg8HlvGzC0qOFaYKboXEXBTwkb4zPNKy+szEZJTzifzJ2OSZAGLhhkyLw47nfsbGxs3S90pvf/9I917b0y93uImIII3DCRrHolE7G71Xq+nbHahTz06Wg6/lpb3MYfDYZ07d86MnzI4B3g6nWpra0vxeNzG97RaLRuDhPZ2NptZqZY14rCTfNABjr4W2+J9cIqAEz+9gP1BCA54uxXc4hhIFHxneiKRULVaVaVSUUAjTefrxvIRAG899ABtmlvm87km48X3TKd9WyfeFUdN6RpnBAjkyklkLTh9yoiwLt5hA5wWv3Ox/rD33nGSedNQlkgkbO/C4cXIF+yEyy6oSni5Cs8Js4Etw8RQcgJooPMmcZBkd7J7kBCLLa4C5fzQzOYvJyCoNBoNXbx4ccUp7+7uWlLm9Vi2LzelONgVTU4Aa249I5nldzHN4fDwUM1m05K3fD5vPoRzS3Dq9ZZXqZLYEWhh/bEnv8bSMtEikSoUClZpArjNwnGd+4n/VON2XcPqda2dv0+ar0oEJCn98Z/VzpM/r/bL39Ppd/9Mic0zyn7o0wrmtvTOf/tfajgcWrWKpAL5Bw06gDpYNC/LQmribRPt9nw+140bN9Rut60SNJ/PlUqlVuQNANv5fG5MIKCe+DCdTtVsNu12M/aHpAzgiv+i0gHzDxjyIDyZlC5efEvve99VZbMdO9PTaUBXruzq+efPKBg8r4sXL+qdd95Ro9EwyQQgCmA3GAzsel/Omdc/ZrNZa6JEl4vdAxQ5h4B6xq4tEsiqOp24qtWopKnpMbe3t/XEE0+YzKjb7VoCzHocHi7kRevrTTUaCbsiGrAEcET3DMAJh8MrI9nQluJv+cJmuDGQBJiYziUpgEh+H2sFeUVzMlpq5BCwnFQpYLklmZ1im56VZw2InewLZfzxeGyJC39G0y0j1rrdrlKplLa3t/XWW29pNFqM2SIRg32nP4NKJ3p6v5bEPHyGnzbg/UEgsJgqs7m5aZUwyATwCgka+wWBgH39x4aom1+wkeFw2MYx+IYOMgkcDSUwWA6yJJgCFhtHz3w3XxqjASuXyxkYJfDU63Ur6ZTLZRvSD5hBv+S1fH6ANmwbwRaHy/dyGAFd6AVh4dLptGlYDw8PdXx8rLNnz1pjFQOCcdaBQMC6Rd966y0NBgNdvXp1AZJuOkDAN8EXwHZ4eKhIJKHHH0/ooYeu6Jvf3FgBCzBoZJ10WcMMf+hD39b160W9885UsVjHyqUAcIAbI2JgwMiqYXPJNHH8lJ599kj2LcnWkj2ATSCDpAGHQFAulzWdTnXu3Dn7PMCbJDvw2I7XvTG2RJINNUcGwj77zv3ZbKbhOKb19bZGo7QBrHq9rqeeekp7e3vK5/OaTCZ67bXX9J3vfMeuvp3P5zq3vbDDSrklKWjaIM8gcSZI6hqNhq31rSV3SlYbGxvG3uCMKXVTjqWhqdFoaGNjw+akwoLhRGGEKA15dhOAmkgkTHMcDofts9BolkolY7ZIurBxnpkyOUGLzwJoTadTVSoVhUIhCz68G4wlQY1nA9iTOGJjklauj4VJpaTnS3MwYawLTHU6nTawi72SOPjmB4Ioia/XjOITASPctoQd+YoLV0QCSAhi2DTVj2QyaTOFw+GwQvOJnvvHv6JkWErs3anz/+if2jvCOK7nN7X1iZ9R7dlvqPHnv6XJZKLTSETqNJT77K8q99CHVXvhu5JkCRwMNL6Pc8ToG96/Xq/be2I7+HYmQ8BEl8tllctljUYjnT9/3iRgHqC1223l83mlUinzsTDXVBmwFwKzlxB5LeitzH6/37eEgD+7cOEdff7zLysUmunNN4v6y7+8Q5FISbFYSMnkoe699y390i/dUKt1XcPh+1SvJ+19SXqZmsBIJZ47n88buIRwYL287wNAebuRZGCGvVzYkjSdxnT27FmrcNB9vre3Z8BSkiUVALCTExjxgSVuxBS+D58DuOPP8S+U0JHbkLCwL7w/t0ShX+X7AafhcHilG569AnzBgMO8Av6RuxBzYV99bwK9CJx5fCdsqtf+4mN8xZd+FYBps9lUv9832SLAmHejoTafz9uYuWq1akwre8HeIGPhDEFsoanv9Xo2WYY9JsFH3kMTFb4RcMv3sLbYwrt93fbg9OLFi6b1IPsgYNJxixiawNVsNk3P4+eiASrJPJhNiNYpHA5baY1SO8L9Wq1mt6nkcjnL3pkhChvFQYJRwuBisZjOnTtnOlMyS8CdJCuVEjTohsXgcAjQ8AxjrlarduWaB+NeK5LJZDQYDPT973/ffgeXGSAMhxlGx1OvL25KeeGFPT366GV9+9tn1W4HTY/WarVWOgg98N7dberMmWN95StP2Bp4FgVg3ul0bC4mzp6DQXMUGjDWCi3PycmJNjc3lc/nDRT4ZjlK2Kw/zpDDy1oClMbjsTKZzMrUASQCAGSkA/wsJTYckLQA151OR41GwwA8syzX19d17Z2BfvSBP1OseFHlNw6VzWbV6XT06quv6rd+67f06KOPqtPp6Omnn7YmDBzQfQ8c6jRwl06OekrEl+NUuAkFRhIGCEfotVUwyjQTMlsWO4SBRtdIZQGGg5Ibo6XI1D0wBvCx34B+Eq9IJGLjZJi44cvFk8nESufpdNrKkThGH1j4Pcg8AL9c8zufzy3pg+HkWdlHGCiaOvh+1oSkjQY52Fq0gvF43K4b9bOYkTbA6BFgkVH0+30rncFcApBgUPFNJAKUfnkuZAWwSaw9CZUHVWiyvd4NMAcgPjk5UWQ61Ea2oOBNu4EZBERsXLhPwVBY3deftf2KRqMaXX5B+uyv6o5PfkHBw8um3eczYIfYa+87AaHMxqUKwrpQ2SDgM1GE7wEceYkJZWSSGfxsIBAwCRM6Skq6SHiQJ3W7XdXrdUUiEZvggh2yp7D173vfdX3yky/o0qUzev75x9VoyABsKpXSwUFBTz+9q7vuauuzn31e0eh/o9PTn7M1wLf4L0ASCTO+C/9GXKKxFKkUNs7nYi+TycRA0eJK5HXFYsurcGHurl27pmeffdZs6YUXXlCz2bRzuJAxLBKA0ShiGmWqLVRfiLXNZtPGQPFOJPYkBzBzXFyAJAu/jh+jt4KziL+nUknCgPyC84Imul6v29QEytiVSsX8n5fE+cZQ/DwJLPI+zgbfT3mfM0iFkf2A9eRWqlqttpIs4sclGSahuhSLxSz2LtnvhPlYJHLo1CVZbEKHDViHpEOq5p8P+RGyM8glSJt3+7rtwemFCxf07LPPGmjZ2NjQ4eGhpOUNIFDudNsFAgG7DQgQ5PVDs9nirl46HzFOGn58VsYGMqMsGo2uMEYEIjR06DAxgna7bV36COE5cDgTyrFeG+RLjLCf6PkGg4GOj49VKBR08eLFlRmOdJ1zcwrPP5/PVa1Wjdna3NxcaTySlk6QUTM0XvzgB2f0wAPX9Xf+ztP6gz/4UUUiaWO0YbIJHItGoLo+/env6+AgpzfeyGk0Ol5hHVlz3zSGQ6Fz9dYGFV/G8XpRwAgAg0yS8o4kK+lNp4t74n23IYB6OBzq6tWrFgS9wBxdLsEUECwtDj1B3ovRI5GIsXa5XE7j8djuPX/+L0/14QfW9PiTY/3OD5ZNGqFQSC+++KKuXLkiSaaBJvFKZObain5LL5Z/VenUxBInAlQ2m7WuZma1Au4o4zFAejKZaGtry9gGtJSs59paV2fPvqS7776u9fWBAoG5ut2Q3nqrpFdeuUPdbs4YMAKPJANCNCTBNvrJACSU3iHWajW7PtdrszKZjDY3N7W/v28MsQ/O0pLZ9o0IsJaU/TnzkowpoUOapMefSQCRbz7gnQAivnKA1hvQzFpSYYAtBfDCiAIsgsGgldrq9bpGo5HJS5LJpIrFogUyaXk1IkkEoIoyNfZLYo6tsg/YPSw0zWiAb8qB4VjcbJqu9Pl8rtN+X1lJiWhEw5uffXJyokA4qi1JiZ0L2t7etqkcvmkD9gWfAGiExaQhzJ9nAAKkACCNfZ7NZpbEMfYLgMQFD5R2kTSQ2KKT9xo7EnhsjEs4YLqRY9HdLEm7uw19/OPP65VX7tRTT31I+XxByeTpCuu8qEBEdOlSWr3eZ/TTP/11PfbYn+jKlY9qMlmSKJRw+WzYNJhk/px/A6QhR2BTvZSFWOkbgEOhkJrNoh54oK9Y7Jqkc+Zn+/2+XnrpJb3zzjumdeYskyDdc887ms0C6nSKlshxOQaXxYzHYyN8AI3YJXvDoPtqtWp9BsRzmo2Iqfgwkmt8HcAaaRa2g08kwYcUOj4+XpkrGovFLHnm3MGEkoCR6KJvRSYDPsFfAxTZF2yUigpnql6vm+Yen8K1q3wevgJmHpkGANKP68MewuGwVRi8FMcnqhAA3s9RAeBdfaMelR9K/O/2dduD03q9rnq9bqVgnAMBlgMjaaWMQOADrPb7faOl+YI1lGTUNoeODlFAjjdydH1eN8WBp0kkGAxqe3vbRtlgWHwm74OWlPIw+hzP7pFBkdVIMiEzh3cymVgXIYYFm0A5FgBBB/X29raCwaAxazjQVqtlv2chaSjpj//4R/TzP/+UfvmXv60XX3xcly+nbMA0JZx4fK57731LjzzyA/V6Sf3pnz6u8Xiuc+fOmR6RgIRuBeBHZsh+Uub0pXwYOJpH4vG4HSp/+CSZLi8UCqlUKq2UMbETdD8AXgA3miTAOpobz3LjvGh8g/FAf8zPehYDecdsGtGVxo/o3sLXdeahj6p9rWfMV6/X0/7+vvL5/Mo8zLW1hD7xU2XNAnG98M1FIIa1hzWFNfDNeNgWzg27wXYZcYbQfzxu6+d/fl93313WeBzSq69uqt8vajgcKxw+1sMP1/Toowc6PNzU97//aZ2crNn7Yj8kIAAQSZYokWBiMzQBMggfp0kQyWQyuvPOO9XpdEwbiS5W0opWEV0l57/f71tVwDN4NIt5UIltwjjjuGl+oDIwGo10cHBgSR/ni2BA9QOnTmDFZmOxmCULfHmG2jO6TBqRlgnc4eGhTevw+lHsFjsGBDNSDYYdSQd+CP/EzwECYa82UsXF74+ErZSczWbVO7q+8KGb59R/4XsGCgcbiyuTg+tpY76KxaLtCXbBeQHAIM1AijCdTq1rmmoMCSHAiucBjEiy84YGOZ/PWxMcbBUJFYEbsIKkhURbWmgKvV/lCw0mgDgUCunBB19Ws5nRs88+rtlsqv39fbO1dDptjCFJ9WAQ1Q9/+ON64onfUyLxit56K7syPxpfSRmZ+ACpgkzFgyUvafHJCueB+EfCEA6HdeNGVu9/f1zve987+ou/WFthtrn8hnI0TPwCdI504cLLeuedXbXbEY3Hy6oXZ4K9RjqG7ImYha0zwxttMmtPMsPeUuX0700soYwNA89neK0xf06DIOfQ/06eH5YZhpfKAr+bMj+2QLIEgUGsaDQaJkfxMrXRaGQzmwHBSMWocvjGKXwpGMUz00wQ8hrqra0tZbNZlctl81M00MEmo0OGWOGc8TuperLWnIf38nXbg9Mf/vCHkmQdnAQLmgi4OYbBwmQoMJuMSPHCbDJznA1lZjInDoQvi+FkGMEDi8Pn8v0wBVDusGjpdFq1Ws0+g4PnAzTPwSBiOsxpjMFxoqcdj8dWEtje3rbsicw3FFoOo0fjgqOmK575i6FQyGbNwSBvbW05vVBCf/qnn9fHP/49fexjf6lHH03o5Ze3NJm0FQoFlEjUde+9NxSJTHX9+gX9h//wiCaTmTKZuLa2ttRsNnX9+nUr1aGL89lmtVpdEV4XCgWl02kdHx+rXC4rHo9rd3fXMmcOEp3LlPbX19d15swZA02lUknhcFjvvPPOCoAiyybDpunF3+xFCQXnA4DwuieCAUHg8PDQ5AD+rnbm0I5GI33l34f09//ztP7B33tBf/hnn1Lz7Y6VUygr0ZS3lkzoyV/pai/2Vf3g6v9K4dlc6+tzK+eyntg08hXsEqAPE8fUBZI7mow2NgL62Z99UYXCSN/73qN67bVd1WpdO2+np6d69tmJ3ve+Ez3++It68sk/0De+8RM6OVmzRgOSAMDZcLgYHg3AY73C4bDdmFav121iBNM4mO+J4+dMDgaDlUHwJKqUnXCg6ElxvjDbf1OpDbkC6wYTTcmYIA+jytW7+BUSAbSsBArsmr9HM4ldkWD5WZBoUfFNMEPYBrfCjUYjqwz5dx2NRjYajrI1TDWJLkENlo0zj/9hf/r9vhI3nyMSjlizSDKZ1MnVN3R67U3lfvQn1Tk60PTNHyp97yO6+J/8HzSbjBUIL2ZXkhzAKgNQeW70cARjfFyj0bD/R4tJUyzJt9cNsu/BYNAGjFM1IMCzF/habJMGJxIBADKAxoMmQJUkO98LNq+rs2cP9fTTH1MkEtd0OrDRh1yVzCB+H1vK5aIajayeeKKuS5cyFh84m/g1D8yRg9CDQDKHrbPn+HFimi+PQ7hQ3n711Tv06KNv6Omnz2kyyaywqyQ1rD36xu3tS8pkjvXVr95tSYcf40h5GRvDV6MT9X0jgCz8I7ZB/EMOgz1wXol3vvTOfgLaPAsPeSUtJ48g0fEzbgGlkDysPYkM5BGVM+SErBkEAViAuAEzSSIN0INtxfeDHyKRiDGdAEb8JsQKrD/MMSAV/+XXFoBLwo5UALsgjlENxJfji1n79/J124PT4+Njy2Jgl5LJpI1NIGj58RtsMOVtAoE3fq/d8hoRHI+/5cdrjaQlW8Mh5DYTSQa+RqORqtWqDQXmsI7H4xWnSKZFuQLARKZ6dHSkZrOpCxcuGJNG9kd2DaMYCoWMPcGYMDbYPdg5MkXWC2a43W4bOPO3cizYiYD+4A8+qmKxo/vue0v333+gtbV3NJ8H1e3G9PLLF3V09Kiq1YCq1ao5A2QYxWLRfh8MJlpenOzW1pY5Gl/6B7gwMoRRJycnJzb0mSYg/juVStmsTGv2uMmY8r449cPDQzug2BZrDZABoLKeMEOAFppkNjY2VCqVrMxCF7WXlpy0+vqt37yg/+w/f0e/9BN/pMvtz+q5byU0eHtg+uBqs6qP/eyuHnngVaXmL+v5/b+rV781NclJJpMxVpSSLeslyYK1Z3Q5B9jrfD7X5uam4vGIPvOZLyudHutP/uTTGo/PKBabqFRaN8Abi8V0fNzTM8/EdenS4/rVX/2hnnzya/ra135WBwdTAwJez8Ra45xhFAhMzWbTKg/YsCQ7491uV6+//rqxnqwzI4j4PMpnlKhw0MPh0KZg0HTgmTtpybIDZgKBxUzd7e3tFZ1iJLIYh7O3t2dAg27ag4MDA2Lb29sr5xy7QlZBsstYNGQ5k8nENKheA+ztDR8DW8c+e1YQGy2Xy5Y8I13CTkjY+Bz8AwEXTSxfc82NsQYMXv3tf647/97/SXf+yv9x8T2zqRrf/QtF9y4qsXnGgBxgGz0hADQQCNgVtmgBYX2x63q9biVO9Oec2VwuZ2wV/pkqgG908V3QPhHBJ1AizWQylpyQ6Pqkk8Qepo5pKNFoVB/4wBWNxzGVy3drPF5OzOC60nPnzplUAxC5ACoTvfbaRf3ojz6nYjFsNnh0dGR+V5KB442NDSWTSetY9/p6EgA/H9OzqKXSgtWuVCqqVCo26zscDuvSpft1zz3X9au/+rK++MWMarWhsfwkPCT28/lcW1tH+tjHvqurV8/o8HBLodDQgDfECP7ZX5WLnpeqQyAQMA07oBB/jWwM+2TWqb8OlhvnJNnncfZJCIl7AEZ/UQl6ZdaRv0skEhZ/AK7hcNjG1AEMbwWcgEeSCpJ0YgOxDX+IPXJ5Au9J/4cn2zjrVGE7nY5qtZrhHSqFmUzGpGQkHyTT6F45mzyHb1oF23DVNJiJPfLV57/t67YHp3Ss+kYmP1JqMBjYYcA5Y+wcYIxJkjlGSiPc0AH4gGHgiy5DNEfoNzgEMIAECDInggDMLc01BCCYUQAqbAraKdgQmr2YYYrz4bNgkXB4zDHc2tqyoIiTaTQaqlarpoPkd/iuPDJDP74ErQ4O4fBwTdXqB/Xd7z6mZHJdgcCyo3U+7xvQkGQHeG9vzzJ+X6qCCZjNFkPCKQF2Oh2Vy2XT7uTzectgYc8IQHQiInqHGSa4cJjr9bo5AcpcvszWbreNDccZ0NlLMxeNI5RZSAyYiTkej+3CB5zDlStXFIvFTEbB6JdOp6N//d/fpc/+wkx3bX1V9/xkR53gBzSapRSYD5UKXlZ0/leqjx/TN1/8Nb3xzKlCoYn9fkAQdkpyBvtGAkDiRobvO6Bhtc6fv67t7ar+4i8+o3Y7r2h0YiXvZrNptgSIOziY6fd+74P69V//K91zz2s6Pr7P1rHZbFpW7rv+SSJ9UwusEKwiCRxD67mdSZJ1oNdqNQOyXieKI8W5opHk2QGLkgysw5r4AeWhUEibm5uW3EiyPa5Wq+r3+9re3jZNIr8rnU7bNZHVatWAM+tIQuSTS18WpnpD9QB7lmQlQRLi2Wxmw7MJaJTcqA7BlDP2CLDOvFj03ewB+kAutohGoxrTsDJbXCYBKylJwU5T5d/+f2i2nlEgsaHI4ET945ru+K/+hQa1A2PY8C0EPwI5/oQbwWD/fYWL7+Pc4nvpcCbJ4j0I0Ovr65bM8758Hsw8tsHf8W/sh8ThVlYOpg92afF5XXU6OTWbPdMs+nmhjz76qI6OjvTUU08ZWGc/rl6N6aMflTKZkebzoDHJ2DdaSyoIJOlUJjw7idYWMoc4BemytbVlWnVAxmQyUaXS1R/90Yf1cz/3Pf3iL/6Vnnnmon74w02Nx2umq134tokeeOANve99b+jwsKRvf/ujSiTmms9lIBi2DskQ9ox8g1jmZ3jT3U710TeuUvL3fQvMq+azsAckWSTknmkljt1KMtHLQQz1LLsnd6gMkRwMh0N7ZpJQLjthcgx+w48VjMUWY+2Ig16Tj/6bZ47FYhan+D6SZ2wTlps/H4/HVjXhbAO0p9OpSYBobkQ2Q5LoNc2AfN/MRRx+t6/bHpyyWOj+KB8QiNAN+lmfNAbR0Skt77uFxSQr488mk4nN/iwUCsaWwf5JyxmBlIt5LpwDB5jvl2Tie5y0lwqQ8RI8/fsCbmmyovsU/dNwuLgCkqHdNArAXqFXQ5cEGEBiQDMFa0VgQktDBzuaHbJDmEvWezhcdjSj4YHVYC1YX0mWecFAoMWi/EFZiIyYBi4/BgaHy2GiVIoTlxY6n0qlstJcRrmWbm3YoXg8rnvvvVcbGxs6PT1VrVazA8ia0c2NzAGbwqmxj7wbTB3sDEwRyQrll+lI+ovfmWsj9Sm9/2Mh7Z1tKRIeaDyO6Mbxw/qrPx9q2F7X+vqJlbz9bUc+WMJIIrAHDFCaZs4eJWEvsbj//rdUqRR040ZBnc7CpkqlkkajkU0dwGai0cW8x1otoFdf3dHdd7+s73//fiUSSXOOlM8p36J1IiDBpnCmGZdGmSqXy6lYLFqyCAsCaEqn0xY0g8GgnQXP9rM2PAv253V72C7PyfcFg0FVKhW7uQomPRaL2SQGfo6h2NPp1HTtBFie04/p4udIaAiWlPdbrZY1QlKKBYTAeGDvJLb4Pg8E4/G4JQW+UjKZTFStVo3Jp2xOgsk7LXzfcn22t7ctqeLzg8GgAr22pidNzSMRRQo7imUKOn35KZui4c+7Z5iSyaSx4PhQnxTyvIADiIdsNmtVEs/IIunBT3BTULvdtqHoAGsStfl8bj/PbXUkeXwOZ6vf75vcBJDE/OTZbKDxOGB+GkYQHThgBSabBG0x9rB5059M1Wqdmj34piWviwXcEp/oX8AGkLB4v4+GGZDD2pHodrtdtVox/dEffUqf+MRL+tjHXtUTT7ymK1d21eutazweKptt6+LFpsbjiF599V5997v3aj4fG4Dx0gOkZX6+qGeCYeA5n77aCZnAOpBQpFIpi+fEP4AoPtCDQMYqEuNYL5IafDlnQFp26nNOsU3K6J6lRjoiyZJjWH3/+7xvhlAhaaejnsQSkszrisEZnHXON4Cc30GVr9/vmwabXgTWGvYeIgWfho32ej0Vi0WLX74SA6BlD9/t67YHpwxdJzBHo1Eb+8P93l7XBTBkswg+GAeOHvbNC7IplSJ4BugmEgnt7OwYGIGJokmDUgBNVdyI40tLsCx+GLY3QEbieLZpNpvZYeSgSVrR5QGOfPYMEPOAEt0LwNNng5RcYBNhZ0qlkjk/1plgsLGxoXq9biMwGCbOmpL1c7NUtVpVu922iQeAS4Takiy487Mw1bBSgGnALu/Z7/dVLBYtCPrmNBzQdLoYt8T0BK9hJmu9FXyzliQVOEiYQYA7ToHmEwA6DP7e3p4BZ++kAXzh8GIu4JXn57r2YsEYxcU4FSkWmxg4bjabxo57piIQCJg2lqQmnU6bkwTUEwh4936/r91daW+voq9+9UM6OjpSv9+3a3YBUcwUhVXY3NxUIpHQG28E9YEP7Gt396parferUCisTM7gXAB8CApk4KwBZT7egWDjmYxgMGhdu3yWD2KhUMjAkG+SgqViDAvBGkfv14TpELlczpr0YOtoyEylUiv6dD736OjILihAt+ibwgAj3ChGEgprhx1wg1u9XlehULDh/cy3pFoCWAcAoZfmjIbDYR0dHa00ygCy8T0ERN7Tg9VQKKTB6ObtadNlBQZgyvfCtCQSa9r4/N/VbDRU76VvK3+TYSIR8iyXb/igGW1ra8uYLKRNkiw5JpGCEGBNIRDw1yQ03Oq0ublpwRptID6T98AO+f1eJuHBf6vVMoYSoLhgu+dKpbp/TRvKCLGnnnrK9pleA3xTLkeymzabpiGSJJqzArmBdIZYQQLMTGNiHremoe2FlQXMcraoCk2ncX39608oHH5A99xzWRcvVrS11dB0OtPJSVR/8Rd3q1y+X5FISoNBS6eny7GLkkzGRDMhVTq7He+mvyOpBAxOJhMdHByoXq9bPEQiwNmGGSTOEDNoTIMNh3ElvpCQSTJfw88hE+TPwA/4G/wJWMInJyQ4gUDALuChBwCmlr/nzDFRRZIl5cQg7IFzQcwgDvrSPnaERAjCDhDq7YwYBdCGpOHM8+5Ufn1Ttdd145N9Y+Df9nXbg1MCIgczFApZVo8+6+zZs8YY0XVM0AEMkhnBcEnLEo20HLGAI5zNFt29sD80hFSrVU2nU9NISkvG4/j42ITmGxsbdgsUGSvduoxm4Jmm08WIIzZ+MBhYN6HPUigf+s46AmW327XyK5/vdaiTycQac/y1isgi/Lw0giYODCYR+QMlK+ZKonvBgXBNnQ+ag8FgZV4g+mHK/Dh9xhv50UbIN2DfYNz4XZRqPHtNWYOkxWeZXgOKjpTrVyVZYwlleUZAsaZeW0mw9CxXr9fT8fGxBVnAJnbILEJAEAxTvV63rBlGn9IzzAcAk/3HgVC+wqmgP6M0DDDBWcLQLUpTC+bm0qUNxWJLNhX2lSska7WaOSnAea2WVKcT1dpaVdXqUssNE8ozEawKhYLN54VhZ++QgyBtoSue0jrnA0YGKQDvjBMGuMCU+XmJfpwW5fDT01Pt7e3ZRRKAErTR2DwJAqW2er1uumX22oM8JCI0x1G2y+VyJsuBzaYMS1czyRKAFcYYwM6+TKdTAyD4S3wEjDU2CZikWYQEp1Kp2Gdzjjce+ZQC0YQSsYXmNnbhIYU3skrH4lp//i81Ou2o8NlfVSSR0Mn+ZUWmU2U+9CnFdi7o4A/+pTqH1zVLJo0J94yRJNOPogNHjgLrBBAGHFKdACjQMMJ6S7KgSqJBwsZ6QBrgFwFmJHSwUZAMvpoFE0rQ5wxAOLz+ekzvf39byWRDx8fBlXI80jBYTBqWJpOJ8vm8PvKRq+p2Y+r3CwoEVjW5PlEDILMenAH2jDMJi+eTfp4ZIAfA43zyeTxnLpfTSy99QM8/PzE/BBBfsL5Diz/h8PJSE6p2lOF5Nn9ZiZ/YwL8BzuHwYn5yoVCwz0Ab68EX+wHY2tjY0N7enlUo8I+SjAWFJCIWkoxSLcUW+VzP6JMU0GxIUsbfZbNZnT9/3oClv3KcZ8F3EaPZF9/shxTBV4rwY+wDgD4ajVp/An8OUYF0g6Y5iAgSF6oq3FzH2YGdZUQmJBex309TeLev2x6c+g5YnIfvko9Go8rlcnZ/Np2YGB9BsFgsrjCJ5XJZrVbLGh8820fwQbuTTCatzAYwwsBxjv56UxgVnl1aduNRVgCccMEATCaOghEvN27cMCaEbno+F0fByBWySkpAtVrNGDrfTMXvQWoAs0UDCCURrvWkVInjl2S3alEW893QgFfWlOs80bEw/Jmsn0BUqVRMhwrAAsQztw6gQ2MESQp7Xy6XJcn+DlZTkpXxCcqwiuPx2HSNiUTC9K1oTwkKOA1sj/3HNr3T4B24thYGgayZ0sxstrjnHX0ggRGnjV6w0+nYgHecom+iQSqAw6ciwN6zTjgygO7imW+yY5OoMfXSsgmDn6VRDABENWA8DiscHhvopiEQCUkwGLSmNxqOuBq0VqsZ+ystEkY/IolpAqz7dDo1sA54AHBQ8o3FYjbvNB6PW1WAPUfzi2yFQANAg4HipjlkQDBYVBsYx8LMVsAPjDHVEyQpBDykD3wmIJighsbel2p5Lq6l9bpDWFXfjMJMTPwPWkz2HKBYq9V0eHhoN3KRuGQ+/GOKZotmC6VHPmb/3Xv9GcUnI82aZUUfeVKb9z6m+Xym3o3LOvzX/3edvP2y+VA/7olEDV8IAPONFh5IEkh9id0n9YD64+Nj83nsO4kKmvV6vb6iQ0TOg9wA8J5KpWy8FTGEs8Qz4G/xidPpVG+/HVevd10f+MB1lct3GPBDv4vvovxNl/fOTkb333+gS5fer0RiQ9NpYOX8QqSQmHsAja1QDaOKh4/FD8FA469vLeXiF++8805j+2n2gp3D1ql8ADh9ZYaqBj6q31/cmFer1ZTJZFQqleyiFc4VrB0VJhhGGolubWTDRpnF7QEUdoR8hBI0o9RIDlgXPpezDAijGRlSBL+Dz/JribQGbMDz41sA5L45kDmmJBnYMj6ExMrHcZ9U0NPgE6xcLidJdubxqVRDYao5O8SwUGh5iQzEAtgA0oXYEolEzK+/l6/bHpxSOuWwcn0nna5oG6Hfs9msUeI4Olg6sizuj/cjX8ggyNYJZjBZ/C4PVsii/GHlEHhtJSW77e1tM4pms2mdl3RDeuH++vr6SkctWRelYg9OATPofLzxwL7gUP3QYL5yuZwKhYIkWbMZDC7ZOeV+QBNsHRkZB1SSvZNnj/zoKrSH0WjUQGGhUDCNFKUhWB8cSqlUMkH9tWvXbDYcQRzHilMkA2632+p0OgZc2F9KfaFQyLpS6UT2DIwkK4H5yx0A4AAHWAQcKcAKhwHjz/dIyykEo9HIAiksB3aNY9jZ2TGgiGPyAceDdml5KwjP4wGdJHM60+ni+2OxiQEIWA+ycCoG6HVxdIu9nGs2i9/8jJg1DtFcg+SBoMVaUj6FAaPqACAA2KH99IwPOrl+v69MJmPsNiy1B5MwE81m08A+68Y60p3KOUILS9Lnh1sDMmE74vG48vm8sfqUlwk+sKAEKhgM9gIQRpUGtsw/G/ZCAkJCRMmU56MKw5QQznqlUjHQyz8EZZokYK2n06ne+Of/WwtM4/FyHmmxWDQwMnnh22p+/5tmJ/V6fUVC4Uf/UHKt1+tqtVr2bIAUWEaAPQABwDoajWyOLOwO9s56U+b2OkR/bpFcsN7+7PT7/ZVGF3wO/ga2iApGqVQyhpvf9+abd+r977+k1167oGazb0mM14YC2mAUH3nkZYVCEx0cfECh0LKczD4DWrxEjS545AwAHogIr/PFL83nczWbzZUmH6ptHvhRFcIuiUfsK4we70N88A1t+B+SU/aHKg8EBKCdZyXW0UxKM63X7+LH/LOEQouJGUhYGOwPU0pJ27OAJEYwiJTh8df4Mu+TaXw+PT21S0+wfWkxBQGfTTwivuCDYEM5+zwDmAKwC+bhs4gxJP6NRmOlUsSVrMQlJgDwOynPk7RAXPhrmEnGJJkfI6Hf3983adh7/brtwWmxWLSRCs1m00bheMdN8CCbpUOOrJhMxo928aWI4XBo89cAoYVCweZM4gQILr7jj2xnOl0M8ibT4hnZbFgz5vfhFIfDobEL0PbcWMKBAjAAtmGZcDCwwzBNBF8M0JclFx31cwucfgA3ABlNGDIBABXMEMAYLSIlhGq1aoeIn4M5ILCg2SGIDIdDK+EjwiYg4fxYP1/ClWSHln2ADZjNZtrf39fW1pYFcEq1BFsSBsALf0/pjmY6tK2SrLEFZhi2C3vgZp9gMGhdsx6UkOX7cjyBEebBO2zWFseNQ8WZYl8wot1u124jy2QyBpZw0DgWbBbH1uttaz6XLl5s6MqVgunPsH2C3Wg00uHhoZLJpFKp1M0pBjUlEn01m1ljbaXlhRFoQtPptDHsOEPYIMpr2CjMBp8DiE4mkxYQKM/TmAQw5RyQsPH+2O/u7q4lYtgQQAcWF7tDR81ZAzyRHMK0Au4AvjQgAUphEQlMvLvXDWJbvgrC53gWDOkAwff4+NjkRAQm1oBzju7x+PjYkjOeIxwOG6PtR7FRQcJe/DNTNZJkZwD/xWfDxJAQsh65XE79/vJ+b5hwWDmYX/aArmWYcfay2+3qypUrJp9CpuP7CPCv+KvpdKparWZnF6A6m83MJ6GNxmfClMHk8r7YKo1kg8FAzz13l86cOdDP/dyz+tKXPqVGYzn7FlvDRuPxmD70oUt66KE39OKLH1G9HtDxcdOaAYk5VDiYJIPMgyROkrGIvtObM0bDMAkVTCkJELI54lKhULArfJGL5PN5Y+i8DjcYDCqfz1vy4BtCAfMw/VxHSpUBmQcSJUkWi4ktEBecMSQv2C2XiJBQwSQTZ0h28XVIxyARsG3Ocq/XsykA+H4YdJIJEiYfVwGHJEKAdaaPkCB6Ugifg/+Bac1ms4YdGBclaYVpxT/761shuPzsYuRNnE1iC0DUTxaAdeb3QmhxRsEVNGO/l6/bHpzOZjPTYnC4Q6GQDfjF0Xm2kqAEqwAooJxNkMdhBQKLu2PZVAJENBq1QFapVKzEAPhCg8FncEjJYg8PDy0TnM1munHjhiqVigEygDZC63Q6bZ3WJycnajQaWltbs9+7ublpdHsikbCrzwg0R0dHFoi8RpNSMWwC1xRyGDl0kqyMBHju9XrK5/Pa2tqy0hGsliQD4rCylPLS6bQKhYJ6vZ6q1ao56FuH11NipxxHgGVclnd6yDtYP56f4C3J2ElA+4ULF0zOQdCJx+PWCEJSw+86OTkxVp61Q8cDgEqlUuYsOPR0OgJSpKXWCSmEMabhiPIf+YLWztyltTN3KbyW1Bv/73+uwds/XCkFPfYbf/o3nomzkk7eekm13/0Nc5Q+IcrlctrZ2VGj0TA78GV/mAzAabM51/7+lh566Kp++MMts21KgjCkBA7YlfF4rLvuek2np2t6++2iotGZXZHLWofDYWO3AMmcH0ruk8lyNAyfSxAn8MBop1IpO/Nor7kClPfxdk8CwJkH9Hp9qA/cBEbO+WQyMYkNwQ+b4G53fh4/kEgk7B34M84T/gXQRXCkjDgajSzpo6mKMwPo8uwg2lHO7CIAD3TuXFnxeF3R6FzSum7cyKjXi5k/pUoDIwk4IxFmXmO1WtVsNjMASMBjHzhbNJ5IMrAdDAYNgDCFg5muVFUAMQAomlAAUcyFJbFmLXh+zjH+AcmAP+8wRowDhO3yQRx5Dw2tVNparZZpd2nwJBnnbGHbvV5Av//7H9Iv/MJz+qmf+oquXn1I169/QK1WwkiUXu9U997b1oc+tK8zZ6p67rkH9eyzW5KOVyomxDFKx5SniTn4Fi4CoHsdX+wrEowx9PtLFYJzDqiBhT0+Pla73VahUFi5TAMCiHPJGEP0697HALKJ49gzPpN4w/oyEo6zDcCkOZF1gSFE4kHjI39H8u+bWyEyOPck0aenp9Yfge+g5wCtO+9KJYw/81d/IvmQZDEbeRGxDVDJehMPb50AQULlCSqmhpBk++TWN2xOp1NL2OfzucWuQCBgTKrHQiQdaNZ99TKRSNhnUiVC+/pevm57cHr9+nXrpkYQDcsgyW4Rgf3ypV0OBk6JA+qDEpkoTBdABYDJQSf4odFgVAxMJwYTCATMoQIww+GwXcEK64TWEBYGBwdT4icAEMwkmZFwCL2RwiJ4B0bZZ21tTY1Gw8AYonwPXCiz4iRpXOl0Opax+lFCaAFZ42g0quvXr6tSqdhtVN55ECRarZauX7+ucDisra0tA1dktnSWohtqNpvWWME+FAoF3XHHHTo6OjIAhYPY2NhQs9k0Jwh44H254QdGCABApk5CwRefSZCGfcI+AAeUkvv9vl0MgBOSllrbcXRdW5/+RY2Oa5rUDxQ+e4/i8biuNxor3feHf/gvraEGB7T70KPK/ciPqff2y9YNu7m5aSUr9ofg5pvuYIUI5ADBQCCg1167Sz/2Y9/Wffed6ujojM3hLRaL5sxgeHFYa2stnT//tp5++k7Vas0VkAzAAxySVABwWBu0n71ez27SKZfLNpwfgOyvAOZs++HTi6kDu5bY+ABNpk9pbX9/35gTmAECk28akhYjyQi07Dvf75NdLwFBK0iAZD2Q/VCZkGSJIQxWKpUykOVZN0Az0wQajcYK4zEej5VK9XX//S/o4YcriscnOj1NaDwOKJGY6OGHR3riiXW98MJZPfNMUQcHi0sNAGIkZvgj/AsJLdUrGF2+D4kUPocv2FXP9vsOYthPgAIgntmy2DzsKSP0er2eBUnKtyTfgBIAiZfIwMBTTYHtZF9oWuJ7Ad2UMgHV2BQXingJDWD7d3/3I/rIRy7rnnte1d13P69GY0vdbkyz2UDZbEuZzFC1Wl7f+tandeXKrqSuMbEkMMQE4hVMKT6NOMf7Api9vpeLVDjjADD0xzCVfuY2PoL4sbe3p2QyqcPDw5ULPLBt1owKAQQF7CE6aFjtyWRi/tfrqamaRSIRNRoNA59ePwrYhrEEUCHPQddLHOV5YPTppzg6Olq5lAJ/6H2HJPueWq1mEkCqEYA3zm48HrcbFX3zFEAPH+efS5JVDXgGYjw+AL9ERZjYzbsy1g5ZIecDSQrAczKZWIzm9zEfnDMqyUZx0V8wGo3sAhTkEzz7u33d9uCUQdPoVzY2NnR4eGgHl4ydwxCPx+3+Xm+0zC4l2yYLisVi5lgQ/NLk4js7KaEBNgjWfD9gj4PnS3AEQJx8OBy20r1nAij3c9B9CcVrbaD/4/G4bty4oWq1amVIwClaFoIt+iE/miMcDq80kPir0CgLkwg0Go2Vhi8OJ59FeQZQi96H34ODz2azBu5hP7LZrIFxNDVIMvjM4XBo44v4PhhnaSm1wIEAfDh8lIUJ+AQkSsM4FMb0AKLImMkiyVQBH15/hU5NkpVQAVaA2PX1dbVOTvXOb/wXis5GCuR3tP33/4nGk0VTVqFQMPH76LtftiSHsl30w5/QfD7TyatPS1qWh/hvAle5XLakgnOCo0KPu7u7awDv9DSrGzfe1uc+97T+8i+zevvtqAU55AGSLFGazyv69Ke/rtPThJ5//oxisWX5O5lMrkxLILDfOq7L6zkLhYK2trbMRglO/kpd33gAS7GxsaHNzU2THvhzz7rD+pBgNZtNA0+8GxUF7MYnLjBC6JL5XZyZ8+fPa2dnx3wRZ54AgF1Jy8YWngtAB5gmWQaUU8ngOQGjsLGBQECdTkep1DX9nb/zmuZz6ZVXzuvGjQ9qMMjcbCQMa3Ozorvuel2f+MQbuv/+I/3mb55Rrxe1JhYvgQBoUwXxPhBGmj0EoPpZyKwboJl3wWfyc4AN9pUGr1gsZqNukAORrDYaDZ2enq40FwJa+R7P6Pmgz76yprCR+Buaf7Ax4gJJA7Ii/A7SCfbCd80/99xjunTpozp79rIymbcVi/U1mwX01lsFvfjitgaDc8pkMhqNeit6ZvwYIBVZ1MbGxoq/pXpE+ZkEgSZbnocEEcYbsqNQKGg8XkxaQdrhdZnh8GJ8EM2iJGKAetjco6Mjm1VNJz1gl9+JHZO8QRbwd7C2fiqHbw5GUoI8xkvqeG8SWS/98tpw/h4Ci/GUzDCmwoP0hPdm8gB9EpwTiArOMMk+MR6bmM/nxkTTXA3b7it6VBF5R89SQyAhK0FK4GV7fn9ZG84D/rBSqayA/PX1dZXLZbvFjEtwSAhp9iSOs0f/sax/8wu9C5lCpVKxxcPxYYx0bXc6HZ2cnFiH/mw2s9IHjCvBDoBC4Cao0X0uyUrinuHwXZGSbEqAJMtU+DMYCUpoBKZkMrkCxgiEoVBIhULBgiCAEUZ2NlsMBW61WibYpxkBMEGHNgCp2+1adyXOh7FRvLM3OoI8Wi6MnkTg9PR0pZGFIDwajVQqlTSZLAd94xwoT3DPdDKZNCdCWYKDSkkWZqBQKKhUKtmgfLJ4L5KnJBIMBu2mKd+ZChvmnTfrTilze3vbyksESLRHgFb2F/lFoVBQKBSyxITmEM/YwdR2u10F5zMFx31FEwmdOj2q1zKyB+xlKpXSeDZX4q6H1X/nDanXMaYI5+i1sTQiDYdD+zzf4EB1ABuczWb6xjc+os997i/15JN/rnj8Dl29ep8FdJregsGxzp17VQ888Kzm85D++I8/qlZroI2NZdkTQEoiBfvB5Q9omdHR4jxJAOfzuc3YZR3QIqIDJWjBOMHKNJtNu/qSIMQ+w8ZSMvbBhgYwAD42PRwub4FB2wlDj1/ygIdkhmBIwgKrzOgznteXaKkMkPxJyzmzVHv4N2B1cb3zFf3dv3tZ5fKG/uzPHtf6+uZN1mRsyeB4nNf3vrerS5fqevLJb+gf/aO39Ru/cc4CH7+fgAazBVvOfvrRdaxZJpOxm70ODg6M9WWP2CfWVJIxm4BykgFJJqkJBoMr85fxhT4BJkkhGEsyJp0ElsobrB4JBCwbciKSTOwLhpjfQ5zxjSiwYZJsr0kwJpOQnnoqo/n8g1Z54Z/xeCld4J1YX6olnhVjXXylBzkaYBlb7/V6ViVDTuBZTthy2FRsMB6P6+joSCcnJ+ZziJnECOQ4nANpQSDRZMea8LuoOnqNLnGXs8++4u+JuySUAHZ/s53//bxTJLKYEUxDLfZG8kXygH6VGNPpdCxxbjQahhEGg4GtI7OJ0aaSgHp7icfjdvkN9h8Khcz/5/P5Fd0/OIBnJGmFwUY+BB7BXiKRyMplJ8RxNN7sKfI/YgJNs37uqST73QBnkhT8AP03NBS+16/bHpwCJPyG3dp97zWVsCfonBhtceXKFQsmOH8CWC6XUyKRsHLR8fGxlcjp6JaWM1IJTJShAajMduT3eO0TgcWX+chWu92u3ceLw0ETChjmcxCxM59RkjGMt4LEXq9nRue1WQDNUCi0clOQn/1GtzIlbYIIgQQwAVMAEEylUiqVSlYy4PDk83kLBtwaAoPqtbcEBbRTBHNGEOG4KaH7AIeDA3hT+sUBUloEdBQKBQN/2MN4PLY9hw3i79hXyonNZtOYvWAwaImHt1nfidztdlcSg3w+r+Dagv1JpVI6e/assSdk5LDk8/lcs807FEokdfj01wy4kmXzuSQMkszG+EL6ARjCOcFWnpyc6Dd/86J+6qeu6yMfeVsf/ejbqtUuq93O6PS0p2i0pbvvPlA0Otbbb5f07LMfUacTUig0tnXEPpidG4/HtbOzYwEKIASjbjpcLdjmk5MTbWxsWEdtPB630jFMMI072AmJJHbO6DcaDrB5mjKwC1hc2AX2GLtHouPlQn4tCYp+qgEABlBBAOLiEJhrfBbBhjWRZBdFAPzm87mNiQNAYafHxw391//1NTUaSX35yx9XKLS8zMBLhGCjm82ivvzlT+knfuKr+qVf6uiHP0xYckgCx3khYYvH4yZnAKgAFgEtMFb4LcAK9iXJ9J9ot0nQ+XMYW2yYBBm/40kGzxRRBYPlKhQKdh4ACFTIpOXFLvxODzSn06l2d3dXGC6Y+uFwaCVfWODxeGxNlMSdWxtN8dswhDSuelZLkiUkvvIGc8YaIHEAsLTb7ZVmtkgkYs2jNFEBfr2/9tpNyrq37juJW7vdViaTMaaPZHY0Gtnv5UxQwfRsLrbtG1J9uZiGVd4PfaqXjN3a2IjPJV5AysDC884QE8ifzp49a7GzVqvZyEQAPyAa/w87j3wQEgvAyzOyz9gleAFAy/djf+iVqYCOx2NjKZEI8n6sCRpXGFmAMT4nFltei9rtdq2Dn/1iTzinEATIbtDE4i9IzGHDwSleqva3fd324BTQVK/XrRS8tbVl5dT19XVtbGyoWq2qWq1axictO3Hn87nK5bLdVkSJAE1TpVJZEQWzqYuyy8gCFoCT35tOpy3LkpYBlyx5MBgYOKA0QcCORqM2Aw4joFmEzJIDCFih8xIWiWYNSdbAwO+WZAwGej/fkIJ0odVqrZTfcrmcBQSCFRkdwBL9ECwOTjYcDtukA+7ghmWCZeH3BgIBW2cOXaFQsFFeCOMpjzPGi/dnhit6VtaJbBemMxqN2rOgg8zn82q1WqpWq8rn8wYAeF4YU4BJNpu1W08kGQMI8CUbJkBxc5i/ehamA1tAOxnLbJqdR282vknL0hcBQ5KKH/qUZpORJldftrIMjtk3l0iyBjsvC0BiEAwGLWj5GbYLlmWsP//ze/Tss+/T+953oHvvvaEzZ65Imqnfj+rFF8/q2We39M47A0UiZaXT6ZVOVgAvDUyAPM9U+CYpKgoEAWyxWq0qlUopl8uZo8UJs4YAVsZnsQacNSoOrCcgifIj17L6dQTMArZJeACEJHNbW1tWvRiPxyZPAOiReMKMcb844Ay5ja8W0DBCYAWksWeAaz5jMBjooYd6yueH+pM/+ZTi8Ywmk4mxz2hcvZRj8R5Zvfnmg3r/+1/Ryy+PdHy8bI7Ax2FznF8Coq/mEJipyAAAqM4Aunlv2DLYSHwmUotisWh+y984REcyIILSP74DCQF7jn+lMRKwhLSF/ViyymPzr7B/h4eHJnHwvp1SOE2VBHeS6263a0mwJPOPMFk0rHDevK+dTBY3UEkypj4cDqtQKJj2nsQWQOztHTv38ijPNHM+fAKGZIMkLZPJaHt723wVbC4JHfbBhBniFj4NkONjM/NXvWYUO/f24VlF4lWxWFyRlMDEAlRhYmH6+P1Uk2jejMVievTRR/Xkk09qPp/rBz/4gb71rW+pVquZZIkvQPZ8Prd45BtzbwXG+As0poFAwKql2LP357C8gGZIEQA/1UBsjz/H57G+7AV+Ffac9/clfjSrVBBYE1hXenJg2H1S3263dXJyYqQez/VuX7c9OIXdlGQlFLLGk5MT7e7u6o477jADBej5jmCvNWJT+DcdqdVqVel0Wvl8XoeHh8aKIkzGkcBGAM4k2RxN73TZZEpKqVRKe3t7K52AlJhweoCG2WxmXfdes0lDEYaOkVGukmR0P/pUgB+OnecmOyqVStb4wPti9ItRQVm7eQsj92NYPHOxubmpSCSiSqViswEJsujXxuOxdYA2Gg3bm0ajYc4UhxMMBk2HCHPlO4YpLVJiJwgNh8t7l6fTxUxckgrKsPP53GZxUpan/CvJ7KvX661k9pQBCcC8P+UObG5zc9NYG7Jagjw3dJ2cnGiS6impZae1d/iUCEejkULxNW3c87B6l1+SRgPTZWGPvhzT7/ctSYD1IfBRJSCAAlIJJGTy0rp++MN1Xb78iIEusvcFYF+OxfLO0HcEww6Q4PjypSRjK2AESd5gVkj8aIRkD+h4xTfQCOCbInH4fDZ7QsIGWCBR5bNgzRnZxvPyXFRiCC7oeXlOzhAMlf88NIzsHetNkof0wH9hL7BFlUpF0rIU97GPHavRKKjZLGk2m9p+e81kPB63ygVg89Klu/Xggy/q/Pm3dHBQWCk7ooufTqc2qod/JBlgxucCAEg6WTekKl7SQPCENfM+jjF2SG0I9NgGzTUABAIoVRuADLECGQaEBRIlngG/wTvRsAjz70EOOsRer2eNJt1u15pbST5hvyAZOP+QFdgm3eleswrIwR/TlEKFCWaed8CWg8Gg9RIg54JtQ0+KzQIIKeXjl7y0xcc2aTl7lYSfKqVn/fG/+FiqhZxlqnnI7NhDtLTYAM8CQ3qrDUKiUIkCD0SjUSMP6B/BHyODu+eee4yISKfTBti89MhPfuHsYI8kFIAzqghU0yDRarWa6Vcht/AxzLxGu+1vSvNTUfgiIfC6Viq02Bqxulgsmt23221jwL38CX9GDPS3tlG5JWbzfdg5a/Efu/VvfgGqEMbDCkiyEvyVK1e06FZN2fcTvDAGmo4oGQAacax+Rhyi4FqtZnoU5geiFyNLzuVyBoa4thMhOVkQTnRjY0OpVEqHh4fmVKTFLDiMBy0ZV1kCcDjUyBpwzl4TBMCiPAJYIYP0nfnemQB6+X+YURy/tCppkGSHjWyR8TfMSENWAVtDWTUYDBpwisUW95HD0ALIKb1ub29rMBjo4ODAdHyUz7EHWBbAPuwMrIkkY9VgyQgc/v1hvwaDgY2jokENNoZ9oJS3vr6uGzdu2N9TumYvWq3WyvzF8XhsQ895jtlskXiNhiO7BSqfz9sYFpx85sEfUTAS1eCN75v944DQAUrLEr0vb0nS5uamJQDVatVYmFQqZedhNBpZgPeie0AyycDGxoYBX8pR7DUOjHFcTMIg2HngCivNXqD/TiaTdvaQb8Cyem2gl61QqvKgiHf3JTJAKzbH51H+JuBJMlvyCSGlZ4Av58nbBqAUSYu0nGyB/ozAQrmQ9Ukmk9YFzHoNBgNjCKlQLDTaIe3tlfXqq0+a5hJJSalU0vb2tiU3ADsqB+PxWOXyts6dO9DTT29aQpjNZrWzs2N2J8lkCDRDlEolu+6Ru9xZA545n8+rXq+rXq+b3/QadUnmL/yZ8ywSwI61hv07OTlRrVYzf0eyHIvFtLOzo8lkYtpBtK0kOCTZMOMweZQ5SdhIjgDrgEJshvgAOIcBpRRMZzggFJsnJvgJI3zh15FwkDRbgnqTVCApZK1ZA9h0zgrJCHuL3eKjsV3sEBau2WxaHKA6QcUtHA5bMibJGmpJ9nzJGd/A81KN6vV6NrCenw0GgzbdpVarrTCyvjoHmAQgYZc+TgI+pSULOhgMdOPGDe3t7Wk4HOqNN96wSgR4ARKHxluvSSYx8wkTYxwlqVqtGsZAKuhv2ZrNZmaLvEutVjPCDftDosT6+2uRmRm7trZm0hbOHAD25OTEkgcYdvYAn+7JH6qN+EySEGIYiYKXYcHIvtvXbQ9OKXkgdvZOMxQKmWGSGQI2PDiB+cFgqtWqORvf7ENnKiwUVDdNJV4zR4mx0+nYrEOkBhwQNFMAG7qEaZQC0PD8aBLJCsnuCWDdblfFYlFra2tqtVo2241DRAAAAEDjewdeqVQsMPuyu7S88tML0wGerVZLlUrFPg/ARTkSZoS1ByR41po14RYODhoHhXUHkHCQSqXSigAe8M9n8IzR6OImGsAMwYKSHQ0LvhTEvgIscdL+kOLYeU5shedBD4s9AGgAzPl83spRfDalx+DNLNw7fNhJuiOn06l2H/iwpv2ujl95xoAIzB9n4fj42Obo+uabSCSiYrGodDptMy59AJWW91BLS+bBsyc4a9YOZj4eX8y3PT4+tjXzY0yGw6Gq1appXdF1kc0jneBMU9Kn9Amoo0wNI4SeDn02gROGCeePPftkkBIY7D/AE9bPNzXkcjljsnDmksyWadog4cPBo9XEprFvOpn9TTz4NOQJMMH1et0SWs47gGyxVscKBKTDw2WJlMA1nU514cIFJZNJvfbaa6alvPPOO3X27FldunRJvd66kskT82cEPJorAfiANJqjSMYBZSRh/p7vTqezwrh76QaNHplMZqXxC3aUc8e5IBmDBfQaTBhRqjeUUAnyxWLRklGSZGweXwCzBfPJPsCek/ATsH2/AuVn2CtJK1NP8B+cFUAev4/P8U1pNLyRgKFXhMGjghONRo2ZZx43awubTEUPH+ETThIlAC2+lPUBOAFqPOjEFzJZBLkHSSDvR4zjM5FASLLzzPngvfAHPBfPzr4TYznTVOS4GY3zD+uHlOKb3/ym3nrrLU0mE+3v71vzNHvtEz+qXFQ3kREQFxl5xvNQdUGHS+wkESax5Hdx3klqwDq8E/GJPSAJYK3wMST1nBH8B0kOSY3vB+DWS67p9nGU34+9kajhd3x18d2+bntwysiORCJhs+U4FBgNgQDDgrHwh4YsAvCKo4dV8fofPgf2ajwe29zL+Xxug+s52ICyzc3NlRt9yK5gCA4ODqxUTMMCTowDjaFLy9IL5TbYABwY3eOU3dG1wVTxHIBBykMcbMomPD/g+OTkZIUhCgQCK3Nce72eXRWH826326rX61pbW1M+nzemYjabGSCVltoi1pESFEGdLuZWq2XXtdK5TWABJJPFn56eKpvNruj8cCySLNv2eiEANsy4Z8VhWvlentEzVzArw+FwRYLB74LpgQGjlAnz2G63F2xxeF1ZSb1+zxwRWlWSq3Ayo/Rd71Prh9+SZlOTawBwR6PF1ZzVatWuVvVjb3Bc7D8lfIA57+3tBmDoE0EYY2xEkjnidru9MkKGLtNarWbA3zcPwNjwjiQKOEbkAL6cSSMdyaq3XfSpnCXfMQtYxyZp9GB/+be01LJiK/xumLbZbGY6aL/nzWbTyoeU1m6VgwCcALmUzvED/E4CNI13BA0A23xOY8vCRzabdfX7i1FH2P50OrVpGSSQW1tb+vznP698Pq98Pq9XX11TJBK3KoS0AFYEdwI/cgyYTOz41s593okGCiRAJFteT80z4KNJFGq1mukcSUSOjo4M/HomsN/vm+4TcA4gQH9PFYDPPjo6MqIDm7xVu03iBtMLc+eBJkkftsje0oTnSQzvk5AtoVcG7FDV40zjD+mf4PfTmATb7udQAx4BD5w7mvF8hzY2Auii+sD3sdeS7D3ZSyoKVLKkZX8DX6wnJA/v4edXS7J54pxJ7MzP5iSGeltjlCElaN6XeNDv9y1m8Sy9Xk9Xr161NaGayRfjx3yDmCdWAOokcuiCScRDoZBJ1gCHECXEARIWyCL8YT6fN/9GP4uvAtGDgW1BRBHXeC5ivfcflOsBz/h9fjeVKPwvGlb2qN1uW0WASuB7+brtwSkHkcYBOve4WxqmE8aKAybJRlpww0sgEFC1WrVxCjgyNDEYMPrEQGDROY9xewdEYPRl3q2tLQvGiOkjkYgxsgR1SjOUOWDIYFoAdIBgAkcoFDJH0263VSwWlc/nrZzabrcNVPn7wGFScToYK9oVSiuUtn3wJPNFq1Mul+3ZueLS9JOTZbd7Pp83FioSiZiwnMCDUJ5OQX4+l8vZ3o1GI1UqFc1mM21vb68MywYkBoNBKx3CKDJ6KpPJ6Pr16xbsccjYDkDCA5N0Oq1SqWSMEc4KwOIbHWBQYGwAKrCkzNX0twjhrJdaw/GKnSeTSQvaTFFIPvJJBYIhVZ/9hqY3Aw4OLBgMqtVq6fDwUNJyqHoymTQGhyAGc4kuFXBBgMfxAIZ4N99MBntBQsfEAoIrzA6NapyDYDBozS04V5JMbHQ4HBqzT9MZzhOmHFAaiUSUz+d1fHyscrlszBmBJBqNanNz0/YAloL9oakwl8uZlgwwRonRV1VYQ5oyATyxWMymgqDT2tjYUL/f1+HhoZ3NM2fOWKMjSZi0KJlz7mG/ABlUXNDDeVC+qDpkNZkElcudqlxe3nqFFrBWq5mUgwYennHBgtd0chI3RjIUCq2Mi6nX6yZ1QBokaUXzSWI3Go1sQgFB3U9UoTGRxkoqXuj6AoGAdTGjp/PsM5WA4XBojGYmk5EklctlqxRlMpmVRiXKnEz44D1Igr1dAjyJN/g+mFlABUkbOkNJdq6xb847vp9YwPkBZJGU4HN9Ix+MF/4mFAoZSCceETvQyBIrOFeMt4Ntp2pHGRiQhz+GNWaPWQvPDpO0NZtNIzjQgqIbZ23xm9IqMUGcazab5mdJGCAD1tbW7PzABPtqCsAUJhrwzxjA+Xxu880BxVRCaTxjPquvblC5wM/xLJPJROVy2aYX0O0PMIc1JqHxTUz4LOJvt9u1a4N9uZzvQTIAgwkopSrA7+G5SSr9OvMPP++rTrfq60nA8EE+/jBf3sss3svXbQ9OySaHw6HK5bIFVFg7DpnvdOv3+8YgAThxohg0mZq0vOYLjQh6Qw9gmBkHIPJBEHaDZiaCCoeTRgCyQn4H2hgON4wPjjaVStnMOt6ZL34vgYp38SWcTqdja4JT5xBTfguFQjpz5oyGw6Fu3LhhDCtBBfbnxo0bJlEAXMzniyHRtVpNzWZT29vb2t7eXgFAw+FyZJMky979jS6wzBxysjsOuR9LBBBsNBoGLHlW1juVSukLX/iCJpOJ/vRP/1T1el2S/kZxvl9Drw+r1WoGhnCkdOxTjmL8F+yD12m2Wi1LSAAb7F80GtXOJ35akbWkBoEF25B76MNKbe0pHovr9PlvGtvc6/V0x2Of0rBV16T8thIO6PHOkUjE9Gk+AfMMCE0Y0mIaBU1CMF6wELwLgZlbRXBu/uYtz5hRTu73+9Zs0Gg0VKlUtLu7K2l1livBjy9sDukLPw/g8pIVn9wxxYFbWHxA902M2JK3E6+/AyRxSxhnBQkQTYehUEhbW1sWYEj6GE2EL+FiCYITQZJ3wZZprGPUG6CZKoAv8UmyxgQSz8uX9/TYYzUdHuYUDkdWAgdNUegir1y5oq985SsqFAp6++2v6d57y3r++Y+YD/X2in/zSVU8vhjens1mDbDSBEkThm9Co0QPgAiFQsZOVSoVmyBAcCZxxS6RSZRKJQu8yDfwvej/OFfB4OKyBHoB1tfXVa1W1el0zAfDZK2tLa6ZJDFnP2AzATHEHypIqVRKR0dHKzIRdL1MVvFVm1QqZc2r0Wh05SYuP77IJ0nSclICzTNez08ZFgkNfhRZFLpdEk3Ydkkr55bfZTKj4PJiAs4MZwEfTXXI+0+vtacyR+KGHfvyMD6J/ZBkEwj4nTTRIpfCb3gGc6G9TtiZCIcXDcJHR0d/DWAD7ryeknWiZI69EiPYe6qZnnygrI6sB9KEai3Phz2DNdCBIi3iHUl08E0AcmIt/hzpBcku68KeknxSPWRiBe/PjPLhcGj9L/hK/JGv0sBas4fY9rt93fbgFOfss3NpyS4gxOaw4zxCoZAJ+b3WEt2EL8dgMAwIh4UJh8PGXlL2ZigtzJokY0EoOYVCi0aP8XgxesZnP2S6sISMoCAbh9X0nXMAFUrINNfMZosu0Wq1amwlWar/ft+0AbAG9PHnMBTnzp1Tq9WydeAA0shDkwUOKZFYDPhfX19XoVDQ3t6eqtWqOcNGo6FWq2WHn8M1nU5Vq9WMuaPMy9r4SQToumBVAFoeXBDgx+Ox7r77bj3yyCPqdrt6/vnnbf0AvBw0Lyj3gavT6Vi2WC6Xdf36dWPS2FcYFVhD1pZDTzCZzWa2Z7FYzNifzOOfVzRXMjsvPvxR++/TV55aNgKeuVOp8/fq+HtfUv4mq0xSgBNk8DJd7JTcKNNTtqTsBMMbDoeNcQEYMXXB69P8lcFUDUqlku68804L9IB0ryeGkeOZCIRea0kFg0AB+KB6QGIAawTzgRxjZ2fHEh7f0YpD58xJy5Es2B+2trm5aQw+zQi8K+ygtCyB0dAE20MgI3DyXvfdd5/a7bYODw9VqVRMN8t++bPuNbsenBLwCCD4RIDL5csP6N57v6Td3Ru6fn3XPhMpE1ptWPROp6PxeKzHH39Kg8GaDg8vajabmE1jywSqaDSqnZ2dlS5vrwuHreQcsb90fcPyUA5m0kk+n18prRPwkcTg7/l+bEKSJdYwaLc291y/ft26pbFJ7IL9RdaBVAdCo9vt2ugm1ttPtYhGo3ajECwncQC9IeALnSUgwwNEpAj4X88GZrNZ02IC8D0T7e0ZJpfJDLwXgB0SACkEGn/8CECIZ02lUgYieff5fG5Nu+w9DY9eqsGZ53Nht+m2lxZMbi6XU7lcNnkMvsEn3L5jnb3jHVkHgCnyO85YIpHQuXPnbE+xYd9bsLGxoVqtpmq1qlAopGKxaBUzzozXxqNp9QQJcRD7A7T7yw4kWQLCvvOe+Dcv72F9vTQD1h6gy76w/0g6qAyQhEMgRKNRq7IR9wH0jOijGsH74Ec4b+yLJ1ne7eu2B6foDGnu8F3JbKDXrJBV8HcwrOgDo9GolaIpXWIMzN30TT2wmDBjfLbX9lH2QHMJaMbJwzZKsrmiZ86csZmYaGgwCA44BxcHTnlVkrFcMFzT6dRKrzg1xkRRUoCxoVPYTy8Ih5dXgQI0BoOBacDIEHEklGOQNMCOAtAJGvwZjTM4LtjRo6Mj+4x+f3HDVzKZVLFYNCDn9ZsERcqxgGocvLRgBn/wgx+Y9s+Lwnk/9pfAxT+wBrwr4ACGW5IlEzhugpQPaKVSaUXfSkd8s9nUfD7X9/+vv2a/fz6f221mPAezI+edul7+x79oTgkHIcnsZDQa2S1hsKCw/3TVc2sOLAROHEY9k8kYIPbld1gGfmcymVy5HpgGL5IrNIQ4xPX19ZUrSP3PJRIJ06pKstIyQZogz9B0kk5pOYEBBqHT6dy8xnOp/y2VSuaU0Z3y80haYPIo+wOOvK7Ksy2wUpQAeRbfwAh7x/uifYShByCiKSeRRpeWz+dtb2BbCW6+0zaRSKjVKqhSKejDH35K9fqPq9tddmbzD2X2UCh0cxrEm7rjjtf14ouPKB5fV7fbMDv2DBdMJ41P+EqCH4kcgdWvHxpmQBdJDZpOSQaEOZMeAAMMeBdKngBJzg4JDWCOUiU34k2nU/O5kBgkLjDfnFP6DJCbwELjc3g2knr/RZmYBMSvPcmLB3dU6qhkHR0d2TN7OycG4i+pLFDlgTnGjgAS3W7XxqeRdMKeIZPxpAmMJT0EnGkkEb5xFH8AQ0ec8tpqABwxxwNtYjeyB1hZLp5gX32vAWeYUV4kK5Tv8cHsJYDNT1LwciTfhATphGTG66WJYVRn8AWsI0k17DnAnR4Z4i7ry7lCJnB8fGxnHPvhGfl+8AXvwJfXMhM7mJUM40pyR0yG+Mnn8yYpgEkluQGg8hw8K8kAGt93+7rtwSlOC8c2GAysTDIcDq3Bh+/t9Xq22Lu7u8a6kTGh1YE5lZYldkAPjRU4En43n09zRi6XM+q/UCioXq8b+EBXWSot2DFKvehmz58/b/facrgIqpRF0JSgz8pkMtrY2LipN1szw6YznPI2zQpoT6WlQB12GIdE+Yo5r2RiPmMka6TJjKHonn0GFHW7XbXbbQvIOM1z585pY2NDR0dHOjw8tOBKgw2gH93jrZME0J9SnsMh+msBCWpXr17Vv/23/9Y0qjhcJBa+aQ3mlqDLZzGyjCs+KTEmEgnrnCTYDYdD05/BKjIiaTqd2uzKarWqfr9v+whDhg3HYjFrEEDjQ3aNDSYSiRUtKQwgLCX7hRNlbfk+9gQwDcACvJA9A/QJoOjUSLS63a7eeustlUolY1DYD2QwlNwBhjjIer1ua8B5xPb5ed9xHAwurqMNBAKqVComI0Aekk6njdH3a0JSBCsOg47tcEbRk0oyB8974wd8iRxGejJZNLkVi0Vjrv21uiTVJycnpsGmZE6yORqNrCROYi1ppcQH8POyF/zWbDbXd7/7GX3uc3+iH//xL+uv/uozOjpas8oEM5gXSVJM99xzTT/6o8/p2rU9vfTSfQqFBgY2vU+UtKI3BmAQRPFLBFbskvFe+J5Go2HlUsALPoG15MzB2tEfgG8FJJH8oX1kL0lIiAGAVRLIWq1mDXM0CvqkC4BKhQONMiVSQAHfT3Li2Ww0sax5Lpczph19n9dJktSNx2M7z77yEY1G7RwBgIgT2CTSHd/s5EvnAA4AHj4LttiX7gFVJAH4ShIS/DRyAl9NGQwWd8ZzjlKplPkRtKh038PwEZMhjNbX141k8dUtX5kB1CG/oxkMiclkMrFzxu8g2cLHAr5gAiFMYGUZJxgOLxqco9Go+W2mfwC4iY/EXmKmJxlo1rxVWkXDF3ELvSd7P51OValUzK75XYBlJAvsO0kXDDN2FolELJ5D0DHVgHhLwuvHZ/H9k8nEvpek0LPaf9vXbQ9OoaZZQBasUCgYbQ7jRdaI86d8RnmfQ8umwKABrthkDjnAFqdQKpXUaDQsk4QdiEQiNqesXC6bQVAKxrHAwB4fH+vg4GClO5PnlmTjmrxD4lCgUYG18AL4ZrNpGSAHn4zTN7wga/CBBvCF4dE0JMmCKswlNyCFQiFz6Kyrz8h5zlQqpUKhoIceekgvv/zyyjQAOrJh+TY2NtTtds3psWawY3wmDS840m63a4xMvV7X0dGRdU76NSYrJyuEyePZ+V1k4YjscXIcVt+Yd3p6uhL4CL7Skvkn6GObOGW0q778TtkpFosZIyPJ1hSWHXuBcaT5g7I6DhQGgK5csmX+zFcNfCkKG/ENBp5VJFFDY4rdUU7FWSNpgAnDdr0uEeBC+RKwy896ZpzgRCmeP0+lUnYeYAkJYEw1wC/AgnLeCH78XkAkzwBA4Rl5huPjYx0dHWlra8tAqwfVBBcqMvl83jTTrDc+x2sDAUwwY5TOCVzIJRal/3X9+Z9/Tp/61Nf0kz/5R7pxY1uvvHKnrl3bkDRROj3SPfdU9MQT31c2e6pLl+7Q008/ocFgrOl0YMCUZybQjsdj0ydTBSIpQGdHVzznJhwOW8WFAExvAMkLQIYkgrIlvml7e1vj8WKkmN9P3+TDc1K5QivM//umkM3NTWt03drasqoQiTw+WpLJXPw0lHQ6bd+PL+H/ARNUCTzQRK6EX8XH0QhzfHysVqtljK0vxwMcYV+p0gWDQQNDJGe1Ws1scmdnxyRP+DtszANfpB/stWd8iX8++SZBrNfrdsZHo8U87larpel0apM7SOI5n1TYqNDx2UweIAkCfMKONxoNi1sAKrTh+DkPvmGj8WnsLywoZ9F3qHO2sRWvuyTOEDtIakkcWTeSauIQ5BH76PW1NHZjS8Rnfi8JG/ZEZQj/7y9S8c2pgHl8AhgFbMD5wc/hH0nEsWvODnEPGSR76cd7vdvXbQ9Ooam9sN7rlKDT+X/GonS7XdXrdTM4QAFBMRqNGjvGZ+PEGFLuS02DwcCcMIYIewsbRykbR+vL4wBAPs/PKSXj4bAnk0ltbW2ZUwfI4aTI4LPZrCqVih0SGq9wHJRrabJA3iAtQBPjQwBSsLis6dmzZy0D5p9oNGqD2ynD8D2sGQ4OZikSiahcLtuIljvuuEOhUMhu0jg4ODCH5rU8OEEA+h133GEaGdaXJhhKEpT5eQ9JBkK9To4yC2yFn8EIaEGL5AXolM4oc2E/OCbKf17QzvPv7OwonU6vlNHC4bCxgtgHAJVZtDR0TadTAwUwR2j7APM4bUqh8/ncWFyctCRjg73zlJaNSdgUQY7mJAIkjpu9wJGORqOV25yQz8BGwUrAlPgScaPR0Pr6uvL5vMktSNpIhjiL3W5XmUxGpVLJOltxsDASVBdoPgD0MpoN+8DBY3s0rQyHQ7s3nsYDwD42BJBknA8BguH0JAYEBkYUeRkOTQfoWX0DjG+08IkYYBZbDAaD+s3f/IAeeeREjz56oM9//jsrfnQ6DeiNN0r6ylce0uFhQb3ekZ1nAhtsJ+fHV0bQGCLHYNayvzKRwAbgAKzyrlQdSKQ8ixgILCY/sC8kNvh1AOTp6ak1qZ6cnFi1wQM7QJe0vGEHhohkkrPMOsP2Ar6Gw6Hq9br29vYssUGaxWdSTWAvlhdrLM8PLCNXggJOyuWyWq2WNYxysUGz2dTR0ZHFmVwut5Is4BskGcjEbwA8kUCxjoBMnhGbIbmmKgVZQFJGlzwgm8/nc/Fz+A3sKJvNGuEgLWV37AOfyzsQh/x82MFgYGeexM9LbrBTyvYASIAcBBHnhRjBGWZdAPIwhSSDJD+cca/t5KweHx9bjwkYwtseMWMymRgIJD7CPMN8drtdk174agnvhi8GHHrZD9py/o4+E6oHYAb8myTzZ4BQb1f4d2wQDAOZ916/bntwioMk0FPC8dQ5QfFvYiLJ+rzWJBBYdDRj7Bz+XC6nVCqler1une6JRMIy/dFoZMECB4xjAAiQOR4fH6tarVrDh++gJPPy1D4MW6/Xs/IWmRHvVq/XzUlySxLBHX0mBw+Noi9BMKyYwMMaATD9KKtIJKLz589rY2PDxjFxoCjHApilpRYSIE5WCkt3+fJlVSoVu/N9PB7r8uXLqlar9j7emZLxkpxwUHBGHCoYEYBLLBazqwZ9M4QvgcFKwNR4/VkgEDB2h4ayfr9vINY3sDSbTY3HY5uGAFClBEtCIsmmTHiZQrPZ1Gg0sqscKcmXSqWVJjvfeEVZC1sCSGB7VBUoL2Oz2C/lGcqJnuHlGQiEvAfgolQq2Ygq79w9ywzLyT+exScJ29raUjqd1sHBgebzuUlVYLtw0oAxXw6dzWaq1WpWYuLn0N8RlLF/30zF2Uun08a6wMh7FsUz6ZTZOT+MBuK8EagY9t5sNg0oAGSZ7kDDH2dZkgE6zpL3BSR4sL2+GQ9NIQBta2vrZqPJSF/84gOazy8rmTxRsbih4TCscnlDw+H6zXVYJngkDoBoOqYBH+znbDazYE8jGL4nnU6bNAY7IGh6vTKAs91u2zQLkmb2hTI8a+HL2NwiR5kWJokzBwClMsK6SjK2DYkAjWk0rHGZA+wi4BMJVCgUspIx5wRb43eg5UaWRXzCPgAqrVbL5FZU2FKplN04hV2R7CAbAbzBsGUymZWmI/aOXgJkS5xfblAkfnY6HbvmmSoIMZazSyyheYamG+y1UChYFWE0Gq1UfDyziYQJ4CfJ4jrJLaQSsiY/zskDJM4SsZsKDNMiAMy+EQwMwNxegDqJDnPH0YoTr9lrfBHEDXIApGOcZRIXzi8NUABpErlWq2U2jT8ntnD+eX6eC6zhmVS//5w51hfNuN9HntlXJLDRSCRiV2gDbm8Fsf+/fN324PTMmTOm5aThAZ3RdDpVvV43A/S6IDL2TCajQqFgGRTl2V6vZ4YFSGu32xYEKDPgZACR0vKuYRw2pS4ycBokmPs3my3vzMZgANnVatUyEhwDQbjVahnAmEwmevvtt7W+vq7t7W1Ji8Bx9uxZu6XDZ1QwOThvNCqwqmR16PtgNaDwP/OZz+gDH/iAXn/9dV2/ft3K6QBTGNTDw8MVFoLh7LA9OPODgwMr/ZAJM/nAN2bhSGBkEKG3Wq2Vvec9Ge/EaJfJZGI6NZw8UgjfxcisQMo26LuY60aQAiST7ZPI9Pt9G6tE0xfOCwCMA/BNBDh33ywQj8ftOlHAAE7Ns1skQzwTzk+S2SelMph4QFKlUlG73VahULDECvDN/nE2AHQEa0ASUxsAFrwfLAeMB8AJDe7BwcHKkHDf9EBgwXmSSEiyxg6eBSDN+UNDlU6nDZRIC6acJAvWioSR/SAhYw1hZGAspEXDGdNBYAxgsn3Q9/MumctIuY45iD5IE1D5HTBqvhRL8KR648GtJBvxNRqN7LNoVlhoPbMqlxPa34/fLFNOtbmZsJ9j4gAJLQlBJpMx/0Ggxrex9jDJvrGIdecZYJ1IAD1DDyDBrzUaDfOJHrzA1LI3VFIajYaazaY1UcI2kRB5OQkgwft5P9sY4BCPxw1kwWzD3B0dHa3Ic7BX4gh7j8/Ax/gKmj8r4XDYGhXxWUiROJMAT5hkWDZ/iQR7gK1TiePdeR4ST/wH8Qo/wufyc7CY/lxAPOB3mINJ6divCYkbZ5gKBGcYPT2lbC9TYi/Zf0lm4yTL+Hh+3u8tMhz8G4kKNulJDaqcnFfWjt+DpprfB7AFhANswR34YZ9oEXu9bXa7XfOh/C6vjcf/U/1CjsX7cu0qI9P4GaqwAGtAp9fL45PBFST9SPfwwRBRsKokCdjwe/m67cEp7BTGSLkaDRqjEjich4eHK6UHOl97vZ5yuZxlnRgNoJWy0nA4tM7ZUqlk2SbMWiqVUqlUsvJMJBIxrR+lbzZUWgITjICsGf2ML73ymQQDADaOc29vzwIAZXDKjvP53EY44YxxQNKSAQHseHABWwRzmslk9OCDD6pUKunGjRtG7fubXo6PjzUcDi0Y+4AEiEXrSuDwWkXKH5TnNjc3DZhzsHyZDedBYKfkOxqNzCkTwHyjgpc5EPh80CCrJKGRFs6w0WhYiQym2XdfUvrls8h00fJQkpVkDgZGn6QJhwNLSqDv9/va3983pkCSlbGQFcBSkXxRCaCkx7tLC7kGAXZzc9OCHusfDAatFATIz2azlgACfKvVqlqt1koDIgwVwYsAx4gXn6ETHGGj+F7K/YAwn/2vra2ZdpT9y+fzOj09tSyfPYNdwcEGg0Ht7OwYC46dw7p5PSB/Px6Pjf0JBoOmQaT6wGdjL+Px2PaSgOfPASVV7Bl75fxSkmes0vHxsfr9/opmD30s8gZAHgwYLDHXiPrJGrApMDYeqMCmE6RofAAgo7HzSSfzWtHxA6xu3LixYtfsC93zXtpBMh2LxWweLGeZswiAgiCAjfPTHgDadOOTSPnKDXblfy4Wixlr6CVBaNzZE9bGSwOwEcCqbzwE3PtOf/ST+CbAOZ/JOsJswoBJsp85PDw0W/INTDwjoIM/J9bwe/idvqrmZT5eqgII5O9hSAHblIrH47HZKH+H/ImkEjkLQBF7Ojg4ML9I0iLJwBXAms9DHiYtLxWg0Y6E0ks6AGAAWSZG+KoW31OpVMxOfZzzPS4kyABZzjGgmnjDu0PKIB2kaZNeD5Jmbs3yzwQhQJzEBj1QBthubGyYdAL7IAaQ+ODjiAnYOQkN+0elmL0kKeQOAwAAhNxJREFUIeKdJK0QIe/l67YHp41Gw7JFjCGbzZqmK5PJWHMHwRgwhLaP7n3Aj7TU3OF0/dgPSoTQ7ZQeT09Ptba2pr29PWOLyCz52WazaWURmD4OMxkW0gBpWeryJSIOKyUyQASOlIMHC7e7u6sPf/jDeuWVV/T6668bIESLRfDzv59s0rPEHOL19XU988wzCofDunLlij0T2bQ/ZHT448gQ+p+enqpQKNj3J5PJFY0vB4hDjOaTg81UAEo1XncLG8J4Jhw7zSr8GYy3H9Pl1xMgIy3HctCI4Uvh7E82m7VMNJPJ6OzZsyvX0wKgCey+/AuI4Fm8c4GVpFyLY/FjxgaDgS5evChJNikCBoN94TN8KVqSBS9YBe/ICCJcOev3BxaDgMyNQSQkkqysDCChNEx2nkwmbYg6yR1/BwsPkCGowa6yp7wPrGEikbDuaxyo16gys8+zioAxmEBsCGDidWgwZEgLYrHFFcI0MTE8G18C00QQxqETKPEPw+FQR0dHxqKjUwP0eEaHhAffQeAm0QGg+sSKwEJJ2s+0xB8OBgPrqmcEnLQAQslkUt1u164CJhj5BI4gT7A+Pj62KoxvnPQ6Nm7UYa+8Hpz1uXLligEEbqLCN7J+vCMNODCrJNwAJ/znZDKxEXB+6gVJLhURwBq+EjDAexUKBbNJ1hIwTOIGacCeI8Uh6aGCM51OramWK7FhsXyDkt833gX5BWsbDodtQgTjldhPpGlUFaiihMNhu9mJ/QV8IH/Bznypn5gBIMcGkNVwdmD/IRFYC6boUO3ibJKI+WoO546b8tgzyuU8K2eGfQVgEcc8OMVWotHFrGv8H5rbdDqtTCZjzX6xWMxkCfgLejjwJ9gw59EzricnJxb/8L2SVpowWSvej/X2RAaEBXtD3OA8M6fVxzt8WqfTMbugEgchQPIhyXwh68U1wawhSQ+aan/l69/2dduDUwT4ONV8Pq96vW4sJQfOl4JggRqNxgqTh5ODLYXtJECS/QSDQbu2tN/vW9f3wcHBSifvZLK8N1laDp/G0QHcOKAM9Je0cl8wTomDgzYSo5pOp3ZtIk7GZ4uJREKPPPKIcrmcXScZi8XUaDR0cnJiDIMXeXOvPbo7JA/om1544QWVy+WVDJmgQVMBY4/o0OXd0JSi7cKpj0Yju3gARhKnLi1v9OHPOCiAUJrSCOCSDNj5Jg6aGchY0UmyZrAd2AvBnT/z2keuXIRdIwvFcfD+aMq4nhZbwCG3Wi21220bM0O2ze+kbCvJQClOFAaJ8hogk+9lvi6/azAY2F7BJGFnVAdwThsbG1baJygSgAAOnDUcJMnAdDrV0dGRlQrj8bg9O8wyYGE0GqnVapnjZ31TqZTS6bSBdvZ1Y2ND2WzWRsUgnUD+UCgUVCgUVKvVLEgzpxXgN5/PdePGDSulSlopL2JPjECDCWXklJ+tSkc2QVHSCmuM4ydg4Y98WY9g4JtAOHeh0HLWaaFQsGQXOQAlbYIkGkCCiJcwDQYDY5Y4F9IS/CM5mM1m2traMlAHmEKqlEgkbC0A1+122/wrOkJ/yxPnF7sj+WRtACywNZVKxRg1rx32jSjsHWVZwBzv7zW+/AN4oMoGCG00GmbbaIGRULCPgGrKm5lMxpqXIBmwMd7JJ3Zen4x8DPAM0+7ZSYANrBbP7JtUACOQFMxj5b198o68BkbcgxkSJ1hVSsvYqK8KcN7m87mV/WnQAQTCKOMfsSsIDGzNrw3vQ4zb2NiwhJxqFL8HqQVlZp/g3Jp4YWvIUvCv4AN/DiGuYI+RdqBNHgwG1u9AdZIzgU/mXHn/zGQTH1d4Tvov+H5AHxUh5nIDggGtJEqM3ysWi+ZbAJDgFmRpxF9wSrPZtHfFn/D3wWDQQLf3T8QBH5OJBe/l67YHpywsrBxGhY6JLjhpqU0JBoMGKBuNhhkbmQQHkIyGkmcisbj2jIPB4bx+/boSiYRpy2AdCTAARhgX9HAcUETyHDCyZEqflBgxnkwmY3IGHCEgHR0JjoaSVjqdtgYbSQaoyKQIUhxQslRAFJ2YZKFka2SkfiwFZVg/cw6WgaYyhPaUppApwMj48V787N7envr9vsrlsjkb36TCs3n9G884nU5XZoNSBuUmIYAEne0eINMsRVD1zApsNpcMIEKn4WgwGJiWc2Njw/aaPWAOqLScwRgOh1Wv1411AQxQBUDPBdCmBARDyxmAeUPr1el0bK/pBIeJpHyNjACHSWAmaNAkwmgyQGs8HjfAy7QKgCNs2c7OjpVZORPS8pYZ2HfKWb7hIJFI2JglGtBg42A719bWdO7cOQMCjUbDrinknMFcAHZhqbD/VqulCxcumK1g92h0YUw9qwzDDdgDRBOMYbP4eda/0+nYWaHyUyqV7Pd1Oh1rNATs4VMIKgSCwWAxbxTGDiaLRBXtJuefZ6NcCIgBaFMBIPCQtCFLoKpEgCeBhTHFN5EQhsNhS1j80HdsjZI6SadnApmU4mUsBEX2nfU8ODiwZGM8HtstczDnPjHhPWGNvG/0FSvfnc3eklADjDm/2Az2jBa/WCxqPp9bIg0bybhBzikSLmyAZJfzThKID+aZAF3dbndllidVJc9WYhf4SA/q+F0AJEkrem1JNhEFbSOJrweUXgMaiUR0enpq01vQDmPHfg4otgbIIyYBwPCJXlPKO/l94WIPniWVSll1Bn+DtI2fx58QewGO+DgqrB6QYfNMz/Fxmt/T6XRslCD2DrgneSKOkDD4iiLJOldy807YHHGO92Vv8Zu+8ZbnJllF0kisW1tb3KBJ7J/PFw1SJKIws9gSPo1xgUg13svXbQ9OOQx+zBBlK/6bg4ChwxpkMpmVrlLKk5S+AD44/bW1NW1sbNj4mfl8rjfffFMvvfSSEomEHnjgAUmy8huGH4lErJTJfDtKkmSZCOdhVACkzNAjyMPWcaczV0l6fR0Z0/7+vsrlsjGkZGNoE30pzXc6In/AiQNu0LXQaQlrRgkdxg72GSdPUxIz/MjcAV0EOpyFJNN34SxwJoFAwK5yRIYB80vgwyZw9twEhH4NtpNyLY1ldMD6rntYYD80GmcBkMWxIgMgSyUw47hhXwKBgA19JpulOUuSBW+aujyIiEQiNjsSZwTwBmSjW0RjyKgotHzozGAUcIBe64Y2CQDsAze2TEcpdscXP8s5hEXnnZPJpE5OTnR8fGwzYfmdlUrFyle+TBiPx5XP5yUtB04DfqvVqjFPzNVl5i02ha6QoMP7lkqlFbALS++BLAxIIBAwLSQ3qNDdzHPhg3ylhVIkgYHgwXmHQQYkE1AAKJJMw00JljOJT+P5vX4WOwYoDIdDOzvYJ+/MXpFkMl8Ytp5Eh3NBsoPkg4SC9fOMLQGaxI6h5Vx7io+kjA34YQ19EwtMG5UY9pnKj++CB8Cj08NfoXPkPSkHw4YyJcDrX0miYYPZA2yDsjDyB/YTnSjPhn9DPgMJcHh4uNJ7ANGAHAb/zDv4JhrYPlhsSr8w+VxlzO/mVi8SJ8b58ZnYL5IigC7PRiLjGeXT01ObGw7jz/pjf+wpZWniLuAYaYVvUIKY8KytJ128TpaYiS0Q8znP2C77RPMiTYnYAt/L+SMhgWiBPfVVEvyd1w3DgtLoSBzwpBTnk0sdINhYt9zNK6m5wQ/ygoQ2Eoloa2vLGE7itU+SsBv+HjvGdxBbYNFhlmFRb61cQsrgD4h/JHp+9vbf9nXbg1OMnewY7U6tVjMgCjj0bCU0Nk4Lp+9ZWAybbj1uaYEJikQidn+4H4HEffGRSMS6o9kw2FEMxZcQyIa4RcNnR770yNgi9Dbr6+uWtVF2ikajlq0lEglj4shyUqmUdnd3lU6n1Wq11Gq1zJnyzp5xgOaHmURjQvBljh2MFEAURofS3my2GPVDZzSBGEcPeOLwACIpZySTSVtTwC/Aj7Iah5vPghX3TtWXvWu1mg2IRhZCSRAwShmMrkneFXaEoOjZNbJ6EqB2u23fgy6O8SGRSMQ6v9EtUjrxulnAPmALbRh/BuPHu7O2DKr2WqpcLmdOFcAJgEPT68t92CIBhLm1pVJJ4fDixhSeC4kJAZaSFAOi/RzKra0tYwV9g4yX2cznc5tL7MEUzX0kJzDwlMFIttCdw1pSGgas8jkEOewewMkMYEqVgF4azwhmnCGCE42WfhQOd4mjKwsEAjbfE2Zfkr0HfkmSsdOUpCl3AioJwCTTJF/BYND22kskfDnYM5MEG5gcJBkkxSQ9MEWwLqxxJBKxc4T/ADQTiAlqAAzY6IODg5XkE3YN2yX5xD4AZJIsyd/d3TV/6MvcSKdgrKj6UCmgEdVXRQDp9AiQCMGMYSMkdsQOfORsNrP52ejSKet7TfpwODRtNwAcu/SaUAAHABbGFFAK0IYZBtR5TWEmk7FqoPevjCQC3KBrBux531QsFg08wv7eKk8hvq2vr1tPAax1Nps1Vo4eEc42Z/D09NSkJf5swjyzN5ubmyZr8VIKzoovN8OUz+dzG1EIOCMp5L+pLOKjkQMgSwFQkqxDEHh8QszHBny1D7kFPpV/BwKBFQaf3grK+R7Ak/BjkyTvsKUwnfh03+Pg5YJIGUkWsKXj42NrapaWV/H6xIG1Jkl7L1+3PThlKDfZLUwPAReHhi6GYNTv941xgcEDjPhynC/b0BENwMDh33333VaOgkXCgUsyp+yv3cNI0WkwckZa3hIkLW+nIZvmHWBZksmklfpgYmGKNzc3b842LGt/f98aZcioYTlxbDjk+Xxu2pTDw0ML2uhmyFQpUbbb7RXmKx6P22w+nByBgkRga2vLRnixxpRRyFb39/dN5+NZjWw2axkgGSNlFxywB3Xcqy7JgBl7LC1HwxAIyPxxDOwTDRQcUtgqdLJ8vg9gACvYOdhrMnQACXZDhzJsPSAI4TqOMRaLqVgsGgPANZg4dAAV7CJ2vbm5qWAwaHM0sZ1ms2lOEeePE8Rxe90bZXzP6ADCjo6OrFwOcANAA5BgJbx0gVtw+P04blj2bDZrAY4zhrP2QYDrb/lnfX3d2AV00AAPXx4nYGALBDCYXZ6dQERC4PdwPp/r+PjYHDz6Tzr8+XOAL+cDMA5gDwaDlsCwVgR9ghHPApBpNpumJyYYoQOF4WS8DclhJBKxKohnhgFwgAICWTgctjFGnH2AoweSMGM+uANc9vb2bO4ptgNwZ0YtgRrGWFoSEQACgCN7xjPg20iwAW/S8m57P0EEOYWftAALifwAVt5ruyVZHIA1CgQCNo8U3SGNs+zDrWuD3dJoia3AQgGCPNjz0gcYUYCfTxiCwaDOnDmjVquler1uCQflZd/AAxMHwCIGAfgAHSQXvIO/hIKeBfwGa4I+uF6v2zWoTCPhH75IaH1TMGcAIMtED19pI7Hgtjp8D5IvEk4S19lspu3tbbNlgC5JNzpTP6YOW4Ml5c8nk4lJNkgaqPwB8n2FyftG/s1zAfa89ttX+vDbGxsbK+cFO2Qtkcbl83mLlzyrZ/3xwyQp6XTaEl9iFOAVEOoBOGcGIgDc825ftz04hcLHIWA4aNH4e2mZMaEtwTngUMkKpSUQhfUZj8c6OjqyDArnRxMLGwPDQGZYq9V0enpqgBAwBoCkg5BMCOePYSAs55kLhYIFKRhQgB8AmJKcF2uTVaE/IjDg+FkLnDulVf5NYGYtKRPO5/MVyQJAiqBAKa/f79uQZgADwBh2hnX2+q/j42NrSvGNCDDElEHZd8oSOEjAOiyV13zCKNI8Uq1WDcAAWHG+lEs9O5BOpxUIBFQqlRSJRNRsNg3UAiD8esEKUKaDTSVA3ApUcQzBYNBGCMFS4AxgR2ms8I0aMMUEHoIrfw9QJjNndA7dx7D1AFD+zAdAr506PT3VxsbGyqBtRrx4QA/bSPOJn50XjUZVLpctwcQu0Z3BBMNUwd6R4KCDhdVnFiUaNp/Zc76CwcX4KfR5PCtMHoCS8jJsF4mHDzK+iYDgRhkcbTKsDAHSB2jWFvskUOGLONu+gSuZTKpSqZj8IpfLKRwO2/WX2NZsNrMqCUwcrB9B1wdTEnSCDdIKNLAkKjSOMXGjXq+rUCiYP6Ss7FkiEhRAMCAGTTp2zLpDMvDeJJ749dFoZPNQk8nkikaRZBApSCwWM20vjDTEAb+HnwUsehDHOSY5oFIAgPRX/2IHMKm1Ws0ST845zB4+hpjAXuCHTk9PrXKDvydBD4VCymazdm5gVqXlyDhJxp4xGcP7YEkmo8FmYWBJUCSpXC5rNBqZJAfpDgwiMY7PxG8DxGm6zGQylrRDLGF3VB3oAZFksQ4GlJ/LZrPKZDKm36U6wc8AtDiDvI8/X5IsiaYqCcBEIuVBHL6dPfBJD3bkgRoJTSKRMJ/tm2Z9vwyxh7/Hf8J2kwB46YOXx+A7qO7iY9gbb5O+h8Kz3hsbG9ZACjGFH0Hv6+2G8+zj67t93fbglLIGgQWnBkjAuYXDYbtFh9IirIkvDcEQwFCiuej3+3ZAcaSwrmwi2ROlHpgMggt6pW63a2UUgg2ZKE6VUjifFY1GVSgUVCwWrQTP3DW6eCkr+kHJAD50bjSktFotA60cUMZ4FItFG6BPSZAuXcpA0nK8EkAF2QTNHLw3wD8UCqler9vnEYTQwW1vb2s2mxljihZS0kqpB4YapoS1I8OlNHyrFlOSsWaAXcY30fRGhlgsFs154dg4oDDM2AbACuZSkjGeOFTPlMIAsN6Zm/ei47BwcJSC0b5NJhPr5AWAe+0brDISj+PjY9OnTiYTmyuKPtnr5UjKmBoAiEZ3iW2RzKC/omzpO8MlmcyFMrPvcoalhZ2AqWYNSKwAw91u1/aQc+Rti2TAl8qi0ajJX9APAjwAunw/FRCv8wZw8rtghlgvxsZhk0hOYHM8AEOfib4M3+J1v14DRvAi4UUfi7SGdwCUwFxcuHDBfAj7hCQJIIKv5CyzxqwBjBnsCv9NowONfr77HYaMs4X2GzANYKPxiuoWAdiXqFlDwBcMqde6TaeLcYHFYtEkElSW/OeTVOFD8LvILiRZbwLyA/YFds+XcDnHJOpMPZFkjXfb29tWMbl1agg+u1QqGUsGuYHNjEaLq0K9hhcNOfIV1n86ndpZYj85j5JszBikAQkdgPvMmTOmBcZO/ffyOwBCED0QHeFweGVEERIVACC2hs+k+iEtdfXYv2cJsSfeieQXX4IvJH4CvlutlprNpvkinoszxZk5OTmxSQSwt4yhA4Aj9QCE9Xo95fN5s0V8Fgku5wB7SyQSVsHyv5/1xDY4Z0wLAuz6Khlrzg1wJC+QYuibfQ8Bz0lpH3DsE1j8HEwxoB+/h//h93M+Ja1cFkP1iH0lBrzb120PTim3bG5uWlk3EFg0zZCp4aQ4TDg5hNwwHDh9aSn+pRTLxmSzWSu10FWPE6eUjLPkc/v9vmq1mmV5AC02FeBD9kgJBOZgc3NTkUhE999/v3K5nK5du2bACRaJMl+73daNGzesaWlvb88Mny53MslarWbNWXwPgDYWW95JjTOGfUB/SLYFqPIlId8QhmOCMeB2rHa7rb29PZ05c8YaoLyjBHTwLjjT0Whk959zWGu1mpXcKfFySAG0/D/ZJiwLHYgM8aYsCuvX6y1uh2LAczAYtOHM6XR6ZUAxJS5sg4weQNzv91Wv1+3mDhw6oAVGaGNjQw8++KC63a7eeecdDYdD08UCPigPUynodDra3d3VXXfdpf39fc1miyYvgri3Scql7D/gkfIkSZJPRAgGMAdk+tKS9SUowHxQbvJzRBm/A6hivmCn07FmQyoasLcAeLJ43/SGpMGDQwIzsgdsk72HRcFm/M/x+7lQg8CF8wb88DtpSiTIIINAxwkzSRLc7XYtGSAIAQQICpIMbAHYKb+zFsgfCI7b29tmjzTx+a7s+XxurCqJO5UZgjz6dmRJsNc8D/6RfUbrdnp6aiwko5VgtvAJ+AhYRcACpUz2IxwO2xQV7BvfzOfBfJJ0Aux4Nppei8WiLly4YL6E7+USDeRRgENkMR6k+TK+74QGePE+nEnf7EIiQ9KKrh2GlIQVHwrL1W63bc9OTk7MP+Nn0D/CdvtmHkb08dy+2QvgSBIOKAHYIn8Ih8M2r5jrqdlH7A/AAojh2fnvYDBoZxhbo/rHOSIRr1ar1jRLgs1zTKeLmx6vX7++IoGRlskFlTLmunqNKPER+z46OrIzhu17WQG4AvAFiYV/hJ3lxkjsindk32BZsS0vCYElBtQRU3kmCDX8EE1YyAbm8/nK2DifQFGZRNoznU6tsYr+BxJVkkCIB+Il4JMKkY+bPlGhqQ0/REx+L1+3PTgdjUa2kF5HCWvjO3UpSaGtAEBR+uXnfWnON1yMx2NVKhWj6gEhMIC+7CQtjBXW6ujoyIToOGpfbmLMBmU0vocxDwA2blqBWqfBx+v3KHOSPaH/AYSSqUoyNg0gAyimKQuAyQBiGsZgZyXZIab0xcgLQAlsHwCHwA0gopyAo8Z58ZxklL1ezz6XG4rotEcn45mcUqlkHZkMZUcw3u12Va/Xdccddyifz9vsSEaC+TWm0YP1xqmwDtgZjovGJgT62BXAlUSJdyPwYHsAGRzu+vq6sZ2+xAewQmeIlvbw8NAYahwUCQODo3GSNPjAwgH+KKEj9YCRW1tb0+7urk1ZIMACtnypCUkEoA5wjI3C5LCu/C5JKxMk+BkYDtgHAqSXSrA2/C7OFo1EsVjMZAWxWMxKtqzT5cuXjXFm1AqOG0kBzDdBndm60rKJKRqNWmAgsYPNpaqQTqe1u7urer1uVR1YGp/4IREByJL8bm9vaz6f69q1a7bXAAFYarTKgHFkDZRt2QcAMI0YvtmCSQsAA3wLv4uf4XNY10qlouvXryuZTK7YvC85k7wfHx/b3jPDFpmTb/LxTWOHh4eStJIoYWvVatWADwm5b/pjPyEHGPmEHeDTmfdM4oV9IT0C3IbDyzFG8XjcmqF845a0AM7Xr183IIoumGf3IBIpD+vJc/N5HmSynlRzIpGIyVrG47G2trYsucBPHh4e2v55QDGfz1fACAkJ4J/SLYkfyRVsKT6LuMu+If1gwoXXQKJLptkV0EaMQP+7tbVlI/UgjmDaOZd+PBnv4nXJ2ADrhy+8taLEnvvqDmcIG2ESBMQUawkLTUWy2Wyq3+/b/GUYf0gTgJ6XnyAn89IJL3MhQfV7kEwmV0Cyb+KDmEgkEjaKklJ8v9+3Si8TUCDKWEvWicSLM4e/4TZOzvG7fd324JQvDnUul7PMLhhcNH5wCClDc8gAsKFQSI1GwxwMAM2PVdja2lIwGDSnR7D3Tvnw8NAaD+isRsyNKJnSGKC21+tZWR7gxs9Eo1HLZBOJhK5du6ZKpWKgkBt5yLAwELRiAE+YWRw0GRIlqJOTEzUaDTsoAHwOAUCBxgI6wgFoBHxpObID/Q/MLjqjzc1NBQIBbW9vGyBDmsB7AjDpLMbpoz9laD46x9PTU+XzeQs07IkvGwKAcXaUhmgMIuDR8Z5IJLSzs2PgTZJlywBW1oYAC6AlmNL9SjAhGG5ublowIbj4Mqq0ADlXr161LBYbgd3wF0Tg5CSZFANgMRgMVsrb6OFoaJOWndkMu8fhohumOsHPeXvzI2YovXLOpGWzGU1FPtMOBAI2u7TVahmgI1OnbIwcBMdN0gNjA5MAIwA75BsafanZN6ohf4Ed4awMBoOVxiGfVBDgYXd8gjgajVSv161aAPCFyfe6T4ILMgPYOmZz0sEPO+JlBNHoYhoHVx3DQo/HY7v1B8YXQAszDMNGwIMFJbjn83lFo1FVq9UVUIhsBeCeyWTU6XTMn8Bgra+vm/6R4AawJZGFzWbSw/Xr1+3KWa4qZo9gz7zcgOAfCoVWZgXz/cVi0dbrypUr1nQEYMOeeT8uaRiNRjZ2jioHjDXAhLXEFgAwlE2lxegfb5v8fSAQsApBIBAwcErVjPcMhUIGWmjerdfrlrDEYjFLqlutljGEzIptNps6OjoybadnTLEJ/E8gELBRRQAuL9vI5/MWM0lCSUphy9F2oiknwSEpI2k4Pj62Sgfxg7Xlwg98IkQCfsrPIIVNxLfiN7jYxlfueD/WGb01DDQxmfVFN48f81VK/0xILvB7JO/4F0gAv7+TyWRlcg/VEb54P96Nd6cSBAFGzMEOE4mEETSQdZBoTKvh3HntKVrX+XxupAwyEvYQX+cbr0guvETI61rfy9dtD059KREBvh9+z2bDFDYaDRsAf/bsWW1tbVlAoaQHs+N1YzCAbBRaNFhGyu8AEAIA46cwzmw2a/POcLqFQmGl25FSl6fT6YpFq0pAwNnB4uF8MBiAC8YE24txkinCfhWLRQtsfuQLTsgbPAAQNhbdYD6ft0DO7wbo4oxgN2EK0b/CpPFsksxRVKtVYwyYkyktDm7r5n3CvuxweHi4InL3YnDvPACW0ejirmMkIaVSaeWed1gSyp29Xs+uz0UrBHDh+Snr4AQR6hNgcBjeyVAWp9wCUILBgkFEZwzrzTB4wCIsHCBAWl7xyUB82D3flCctG7iwdVgoGGxf4sKRkuTBtuAkOZOUggKBgEkVwuHFCKp+v28NUpTK0A3CHEwmE9N3b2xsGDuDTcEKYIfSct4mDBQJBckgjnk4HNp4JBgdGDX+PhKJ2GgyzjISIv4MxpMA7bVvMEb4nNFopOvXr5sOzicmMFOAfgCLJEsc2F901dgYgXswGFjy5j8TG8Tu/RQTJB6AJ8/g03VOMEezRqUgHF50l8PU+EqVv+kKfbb3TbwTVa1Op6NisWh9BIAbAANBE2A5HC5ufUMiQiJOUkgjFGCUfyiX3iodgJ1G10+Sw5XUaBV9oyn7j+/D3+J7ARbEKkr3NGNRoWCfeXdGctGM5eVnACSazpg6cHx8bIkgMYTxhoxWwy/5f1P+LpVKajQaK2PNsA98HXGPd+SscfZjsZiBQBg5EnHK5jTGAsRGo5HJqyCKSIC43IQSuNc5c9bZK+KRTxDwC0xXIWngC2JFksUJ9g2CBIKG2M/MbMgamFtGVUIglEolqyA0Gg2L1QBZj1XYd+LswcGBAT8SW+yP2AERhZ36PhYkZcjLwBesNz4ZoM2+8Xz4bl/tRDbE7GkSM4Dre/m67cEph8ZrYCqVipUTOIzRaFT1et1K9GQAZD2wLDCwOF2CIkLfwWBgYLLZbNpYlWBwMUoHR+nFxQik+TsABcZI0ESPBugDuGGQOIdcLmefiWMgcPosEmMli8TJ0TFcr9fNOcPAwoDOZjObDLC2tqbWzev5YBwoJweDi4YZ2KdcLqednZ2VETNec0M541aR9dbWlpWgAI8ANsA4vxvnJslE7cg7AFs0ryGNwDH50pjX+HndqCTTFPqRHyQm7DeOwXfKA1L8cG+SB5glnp93AVRlMhnF43EdHR2t/Azr7cXyMIXMSfVBnK55AgVsFUkAM0gBsIBxyocnJyfmACknUhamtI1UgHOD04NRIUh2Oh01m03lcjlzqGtra8b4sDcw8/P53PSPjKviOWmMAgwAyAnUkUjEgjJggS5XyrZ0dXc6HWOIOKcES86jJGNPvSYYG8HWsH+Y8lKpZDfQUTVgXWB3AIv4gOl0qlqtZgmHJPtdNHBQ6SGgYJtoaElIGRdWq9VsbQFO6GBp4CJRhpHl87AVGHYSS4C3HxUGo4S+mbE3+Ab8KecNeQ/AGakI+wN4xo+xToBbknikUZwjAjtrRAKaTCYN8PjLAJBYURYlEfPNJBAEVOImk8kKeIbhJZ547SBVLyoD+GN8CD5RWjK+AFu09tjt2tqadnZ2LJmimQpJEGcX8EQCl8/nNZvNjDkjCWctWUM0mtg2JA5JEe/WbDaNEUVuQqyjqkKp16+FvwUKn4a/QmtMad3PJodZ9vuOLIQ/o5rik0OYWNjzQCBgFQZIEM4u/pFZuCSz2CsJOPsC0QFL7pluSVadWFtbMzkCgJ+qJhUtqlaTyfI2MhhKEgbWE+kCcQ2b459Go2GkRrvdXtGvQ5TQMAqDSrKPvAx218uq/LmA0QbwkjyTVPV6PSNA3hW7vafv+v/jr/l8rs3NTRWLRVWrVSsbSDIWCofFQQ6Hw8pms0qn0wYYCaQwNZJMk8F/S1KxWDR9BmDGZ0wctmKxqOFwaLPGCH6NRsPkBxyEbrerO++8U71eT4eHh0blA7bQ+MCuxONx3XHHHQqFQiqXy1ayBbhQ7uPAUCrHOcI+oOOjREggBHT6UVzZbFaNRsM0djh+SoMwHwQNfs6XvAjO6HfJ2AG6PD8AiJtiYIJoSCJZWFtbMyDhGSA0sjDOOC0CFtIL39yB82+fnCiSymqSSKk7Heu019P85gEFXCFKz+VyBtQAxAST7e1tc4AwppSOSSxwDul02hIGGoZoJuEZQ6GQAUhJFhQp5bRaLRuWjKPGiVGSRUaBTRPY/S1YsIo0z6CTBdwD0nhPEihJNtmhVCqpVCppPp8bYyXJGrkAoNgP808ZO0QiQvLCNaQ0sNHx63WUTHygbLu2tqbNzU2ToEgL1otGmGKxaExiJBKx8+jlPCRXMHTYNjOAh8Oh6atx0jS0AbJg5huNhpXRYBbxKX4AOBIhGpYIir1eT+VyeaX5g1Ij67e5ualMJqOjoyNjOdCS8gXIhWEhaSZZJvDTnEhiy/8DRDinjI2r1WrGlgKgqCpxRrHFbrerdDptWnSY5el0auOJ+v2+jcdiHjLMHms7HA6twYuEhPVhP0i6B4OB+QIIC/wsSQSgFD9JQse8ZhJUfDrgOh6PG/ABbLBWJKMMaCexJdHK5XIGYGBVAeQkuTwXYDAUCtkMXN5vc3PTbAqtp0/evGYciYmXPGHXvgGPqhAJYTC4uIgG6RfTVdDgEvsgX3xyzb746hCgjvX2FUuvE/UTb3z5fzgc2mQRytPsGZpMYjefhb/grNKoiQ9DvgMrTKmbBJ0khn31VQ2SKMAe/qXb7a6cQc/6B4OLq9Rh9PFTo9FI2WzWfCeMMAky74ZsgOfnjAGeWU9JBnp9VZO1wu/xGZxZ7BBWHJ/sR4vxGX6N38vXbQ9OfRkSh47xUDJhZlepVDJAgVMnO4XBwdkNBgPrbMOIYBIQ01OOkGQaVDJErilNp9Oq1+vm9MPhsGnLvFaRDCYSiRglj7PyehBK+9evX19hJcPhsImjyegAfNDvZED+eehUpLuV8iZZKyVHwK4/4GRrkuz50BLCVvFZs9lsBWwyvikajVqgx4nhCMh4WV8cXiKR0Pb2tk5PT40NB0Qwc5RBzWR+lM4Aop4NTaVSGoViitz3uO566COKpLJmX6POsWpPf0WTN59Tv35kQRFh++bmpgG/+XxuiQ2Hmm5Hz+RQ7oPdo9wLKOA5+T70iX60GADNz5wbj8cWMLCx0WhkJSQaDhhrxNqMx2NLmijnU16VZE4MeyKo3fG+rHYvnigW62g2C6l7ktTVH0aUTeVspmOn0zH9HpM0pOUcYSQzGxsbyuVy1rTi9WK+M5Ryqy9hweSwvtxGNp/PraM+mUzq4ODAzguJA8kRzDMsmu8+pTTNZ/qE03fcAmAJcCSS7H8mk1GhUDAGhf3hTDF2jEBEFy7BjoAJqJnP53bzm2/y4CYyyuaUy28NojBBaIDxObwDzA5JN/uCbMWPxwLYeI0vCS7BkUQVfS7+CvaYfY7H45aIz+dzY/YzmYw2NjZUr9dNXuOvn8YmWAd+lkksnCGen4Du+xAkWUKIphl/x57T0wAI9FU32GlJ5luQ2gA+2C+qPV5KQJDHBvCdaOxJrngmadE7weg7ADjlV84LtoBUBv/kzxFrwFlCt80ZhBmDGfQTEiRZBY61KRaL5keoZALoAc7ou31c8UAfMoIvvza+DE9liTNLlzuJNueDXgyYS0krMRnfQGwFVPrEgSSVqicNaZAX9DQQq5AM4l+pWsBEVqtV8+0ktJx3ACKTEyCpeEeeCdmdb0ZKp9MrvhAGlp/z8kOfZFC5YoQhOAdyxa+Hr0KSmABa3+3rtgeng8FA1WpV6XTanDnNLWTYGAHjWmAzGFEE65ZKpVau8EID5wEvQK1Wq2l3d1eFQmGlY42si9IAZWQOCxsN64SjKpfLKyUVaTH2IZ/PWyev1+K1221jlwgOMMBoOmOx2ErX9Xg8NoYNthS2D4eMQaPrpHwEa8EaEuAY1UUpDodFloaDJnEg2JMcDAYDew+cDVoZ2AwOEOzC7u6uHR7AGo4NcAEwoVxD+QedJ8nB7u6uoh/6nEZ3Pqr5ZKL2i99W+/UfSOOhAtGYwnv3aPOjX1Do07+o2nf/XI3f/ZcrzpSDL8lKXuwT6+BZXSYeMK4oFotZBzelPewJIEgJGtkHn0PQ9RpISZbdU+6lxIR95fN500nC1OKUYetgFXxX62AwUCwe00OfiOreiy8rG3he08CaxoG8AvORovmaPnA+ocPBp3T5xfNKHCZMqwSDioP1ne+AN5Iqgi72AlAjm2cPKWHhEP0IKO88e72eNjc3tbW1pcPDw5XuaJghb0P4DpItScZKEchrtdoK0OHn0ZkTWFlzpBv8LMGR0WVnzpyx5yJIEegZrQNA9NpgKj48CwCK0jpVDX/RA4HPg8XZbGYXEXC+YbALhYLp3ZDZYKfMcryV7WJPYaVgpWlsA/BiXzCu3AAGM0xZFd9DIoqd01xKogcI8gkojGyxWLTP5GxQ+vSaa0AyeksaqCSZxtc3u0yny9upKM2jaQXMAkDxC9hTuVw2xpc1golnTQGu2LLXuAIYvK0SD2AdAZDYDDpdKj4kB/gS5DkkjbDl2DnSLC/TwF9R/pUWTB2kADaCjIizCyiDpYUBZY1IUCFH/PXf7BfAm+QJlptnJAmAGBkOhzZKj6QKttrLASGTAF2cCeaMA/ABewBSmofwy1SIwuHwSsc8unTPdFIF8Ww2tu4lL/F4XLlcbgUscwMZ2IPkBt+KffnKANphekmi0aglihAexHWSJKQBkFVeIse5eC9ftz04xWi3trYkyRgJDgRZhRdkc1DYqFwup83NTc3nc12+fFnBYNCaeshkOVQ0zQyHQ8t+qtWqwuGwzRrlHzIzuiVx/JSRyJrJ3CRZOduXXHgvSqqI8ilFojOaTCYWpAA4BDRYRN4Bx46j5qDDnHDYOYjcxIOmjqYygBKz+Gazma5du6ZisWgZJAGCA4Jz5R5nslsOE1pNQAZOGYfUbrdVqVSs3Egw4lA2m82VbA87IatuNpvLaQaPf0HjOx/W4Nkvq/f8X6rdqJmcYzQe6+p3vqqrX/zXuvvHf0XFT/+SIhsZ/eC/+ycGRpiLOJ/PjQ3EAfnhxpQHCYawFh4c0IDEF2OpUqmUafIIDIB/Oktha3wpn6Din6vX62lra8vsmSY42AQcuCTLnDudzuLZUgl94dfq2g5/Tc3543rm7X+oyuvrWk8sxsNEMgHd+XBNd+b+g7Yf/5pSxV/TK9/ZUbVatf1HisEewwTGYrGViQcAUVg8SsCtm3e7I/Fg6gUsHwESJ0lJFaaAMT+wBjCW/mYxz1zilHH6MKr8DgAoLBr+hz0nKeJcog1lpA7jZSgxE2w58+wjEp1ut2td5GjpGYROJQAAJMn21AdGSuvNZlN7e3s2Jg69MWwNsg40k0zqIMHgczi/vrxIMPVNJbFYzCo0JHCwmdgD11YyYBw9Ij6YZAoGzc9nxA9JMv0e5Ur0gDSIeEkIvoLKFM/GdAckQFR+SJrRPcNYcr55DsrCxJbJZDlajWcA1DGHuFAorEi+2HukYzs7OyvP2+v17GY7r3WE/cN/x+NxA4IAJ8YXAobQPQIukFLwjNKyUYiqRyi0HDtHIkXFwLOVJIs0ANFwi+wMIoH34gzAJgOoksmkNfrB4gHeAeq+PC0tr/vlv0lwOYvYOFUjpEWMFwRPYK/EKklW/WC9kIsAuGkKxU+TeAYCAUtWfaLJZ8G2cg7H47Ex0PQmIOnw9kgTHxpenp9E3GvWOTPSkhBAIkNi5seP4WO89G86ndpNlST0nk3/277+FwFO5/O5Dg8PLajCFmUyGevipFMR/aK0WPhSqWSBkQDv79KmDDGbzVY6NGEX+H82nSvMyFhhCjmMGCWMIgcb3RkHB0OjjIzOBxE9oMhfSUlJTFqWYn0jBAzshQsXJMlGWhB4w+GwlTGKxaKSyaRu3LhhGTAlaA4T38va4ZSCwaCuXr1qDhZghsOCzeZZYZpgchkZwh4cHx9rf3/fMrZqtWo3XNExTRnLl87QEwEQKf3RPBZ9/yekOx/W1X/3/1L7hW/b8H0CLGC51+vp8p/+trrVA53/lf9K9/zcP9Rbf/g/WoZJEER8Dyj38zZ9owLvCpODE8XR0TGOoxsOF+OtyHA9w+pBbiAQsCsEWQ8AIWsJCEI3CYvpAxPZeafTMbASjYX1M7/eUCn8PT196R/ojacmCoWm2thYrFUsFtOsO9MzfxzRN8cf0c/+g44evuN/1HDw6xo9tSiDdjodayyEYcKeCWAkbJwlmAGmIwBA+XOqBABppAowU8h2+v2+Njc3TW9J+cyPZ/JsH4woZwNmH9DJHhOQYA1hLPx91oBd2EBpkXj45iH8EyAULfBkMrGJH3TNogXFThnHBLMEUKYCFAgs7nvf2toyLbzXopHwktACFGh2YUA6gJ/mN0kG6AEPMI80SwFOObvZbHalmQ579PIckipsmn2G8YPhJzjTY8AzUG2QpK2tLesIpwGUqopviGLf2Ec/ZQNAzz6SkJAcYjfobnl+EgNAKP9g+/hKAj2sNj7V+1kYeKpa+Lz5fK6joyNdv37d7Bl/i8wIsIBczc9FRboD4AFwDAYDm5LiiZdYLGZsI409yKjYTw98/PtyZrk0wFcWfGc/552qCDp5yuz8HT6TWAvgZFKAH+PFMxEjWCca5UgKSfaIy/wctk6853zhl5G/cF75OdhTEkbsgaZVD/Z8ZQ+74z3wDSRinoQh5uG3qJoiz+B7iFGj0cjOJ+fEVzy8dNHLRwCpPmHm3Un+PVh/t6/bHpwCDmhQojsVB8/h4VaOWwMHh4GsjhmaBCQy01KppHw+bxq69fV1m93py4OwYL5ZhCYI9E+I1ck2YFdwDoBMwBEGg0NhmDxlCJ7BGzrZkS8fk8lzhSoZLBoq2CoGT6PXZU2RLJTLZSUSCWNAkURwuCWZPgn2lSzb67J8mZ+D43Wynq3wmZ3XATGfDs2PtLwfmkB1cHBgZUE6xScKKPXhz6v93Nd09L2vmlPAGdCoAKvU6/XUfOE7SuzeoZ1P/awqf/VFc1YALG6tWltbU7lcVqfTUSaT0dbWljktLn/I5/MG+ClbUUrzjQEkTrwDwQYHAqPkNal0J8Na4/T5bFi3nZ0dK/lQYsPZ9/uLW83i8bhKpZI+/DNr2or8ob772t/X9RdDSqUWWuL7779fFy9elLQYfP7mm2/q0qVL+vr/Z0Of+5WP60P3/3u98/LPqNVazmSlGU6SleNZKzRUPDNab/aS9zg+PrayGwkqQBvnjVabrnTPlCB5AZAMBgNVKhV1Oh3lcjlL5LgjHplENBrV2bNnVzScAIp4PG57yvMGg0GrOnDO8A+AS0l2HrxUg+SEhAZWHV8CePLJlCRbQxIiACL33sPep9NpqzwxEolkGAaZBIjSPkwYVRk/UodzzXn2Mg4PcLheEjlJu91WtVo1WQrrBnMKuAE0YkOUY7kmdTKZqFarGUiGWQTk4FuxC1+Wp3yNXMRfJ4kvSafTK6PdSEz4XPaVqhA+udVqmYYXPw/oYr42oPPW5AuW31fe0I4zBxXwwR5yhrENgAPMlm/cxS/7mMR0GMARe+H9K3GTZB6tN3/O+fDd3J5ZwxfDCmOrtzbssR5UGql+eBDM/GDAGGtCnMD+sRlpeZ0qVVWYSAgNL+OAAMI2qXxy0YkkS5Kp1hE/fS+MJyeogJBc+atQuUGwUChYUgY4ZW42kxT44ozu7u6unEfsAWyCb6BZcjQamS6VxAvfBPnC53MxAHvDWpO0YaeMl3q3r9senFIuIDNhkwF1ZOk0/+BEfEbERrGBnnXgQHFACVKSTDvjgwiGBNsaj8f10EMP6fDwcGV2IKVGHCDABQkAwMMfRjIzGDSALkEEbSu3OGUyGWsYQL6AQ6H5A0aHLuh6vb5SBpa0MkwfhyZphf6HwYQhYc0BS6wbawKTi1SAtea9/TWLyCwA0JTAI5GIjcvxlx4EAgEbFN5qtVStVu2zcUr5Rz+lUCKp0x/8pZWo1tfX9fDDD+vJJ580Mf3R0ZGeeuopXbp0aXFv8zNf1ebHflo7P/JZXf7yv1cgEDBJCY4Z4MA/TIDAEQC80Kiif26325bRA2AJwJTWsXnYx/VsXonS7iLRmgxVq1VMFzwejy1xoOxK4xXgH6YBhhYdMSzDxsaGdvd2dUfpD1QZfEIHL0e1thbXuXPn9Oijj+rhhx+2aRjj8Vh33XWXvvjFL+rKlSv6ztfu08989lu6+7Gerl+bmbBfWjYPcVMXUhjfeAJg5fmZWYgejRKw15IR2I+OjhSLxXT+/HlJy7ulCXQABM4tZ4K15c990Gb9+DsqIQSuW8tmBF4kA8zJhRlBbkPDniRLDHhGkhRAL8mb9xO+fHnjxg1jagqFgjGBBCAa3wBUlJQBCgQputBpMpSWWngSU+QvdBBPJhNVq1X1+4ubfCgRYs9USPBprAkVBmmpWScRoPyOrhgAxigbkkHWOp/Pmz/EXwL0vQ/y5XXsAvBPIk6yj6+RlteWer0h+wlDLC07mIk1lFupjvE9aPjYC54jl8uZDI1KCfIonxjcyjKzr8zfpFrFswOKbi31s+YAaCQF4XDYYqF/BvYVthoZF8wg38czImFhD2FwfUVhNFqMeSOJ8xedQJCMx+OVkjWkEjG42WzaGgO6SfCJtdJSMgNz2263jWRgz6mCwtgT1/nyTDD9Afhe1gpboSrEMyHjwA74bz/qkOfDD1ER9nIGACU+B/uAJONzAKL+TPnqB/4H/4i9Q5KBAYgZrCvJB+eVpOG9fN324BRGVFo6BMTvjUbDHAFXazGoHZDDF47FsxaAI+5BR/xPeb1Sqej4+Ng2lo2jDMf8vvvuu88GwsPoNptNVatVy+rY8PF4rL29PUlL3RRXLGIwlNbo7iaooAOlOQw2k3Eb/B4/F5ED4DP0UqmktbU1y4D84czn88pmswqHw9rf37eATbegZwzQFwFeYHtxirlczthkxODooMjo+SJxIFsDwCCRYL3RjcF2klGi/7EGmXse1elbL+ro8uv2+WfOnNGP//iPWzBOp9Pa3NzUZDLRjRs3FiBp2FX79eeU+uDHNfzibxvA8qNraP7J5/MGdtBEoj1kbBJdnIxD4507nY7a7baNiOFnptOp5goofudDSj78CaXu/sDKeVh760WdPP8fFNx/3RhWGCTeMxAI2Ey8drtt8xJhY/zItWAwqOK90trsLb341qcVDC70Ux/84Af1yCOPGGCWFgHy7rvv1k/+5E/q93//97W/v6/K9Ende/55fSvyoAKB5S0psOzYN4yU18pybmFCAP/RaHTlNhNJxkgCxmazmb0fyREzPglclL8pl8NwJpMtpdPvKBodKxjs6OTkVK3WmvkXgiyBjRI7cw29vhVQyOxlftZ3PfsuWsBIsVg0oOurJAAHkk9YyEgksiIvYg3Ra8KYzWYz033CILfbbdVqNfN5+DtKz2jv0Mr5DmCfrDJ43HdkkxQwIxPZznw+t3J8t9tVNpu1kuRgMDAQTaMGQBxNqV9fgjn2jY8k8UMygr8HyBJUARWAXhIlGlAok/I9AEFkKTCXPAdgan19cY98PB5fudGNBACW7vj42PwrUieAJTpsX0lhLVin0Whk0xu8Bpq4CMOPfIU1RNZDjESeFYlEjL2EGSWJwLbw74CjaDRqV3T6pAdbooII4PTnhOoD/Rzlclmx2GI6Qy6XWznj+DJ+hvjJu/JvYgMACmKKkXMwgQA5EkRiCJd00HA4HA6tWQtpiSSbGUzyj1/wzaQQDPhTAC+xE79FFYl5yZA7EEB+bi4MOmPBkJD4qT/YDVViT3CwJsQFfg4CgOlFkFpceoLteJ/P/mD77MG7fd324BRdFNQ4RnD16lVJC0aPvwe0UL7EGfmSOUCNA8rwXIDE7u6udTuTVfCVSCTM4XAoJpOJvvSlL+ntt9+27IJsE5AYDoetxIqOSlp09SKI9toZyireKABpZFVoacgGM5mMASf0doBTtEMwGLCglF7I5nZ3d5XNZu0A0t1LZsbNMZ1Ox8qJHDrKlRz8Uqlksgb0fZTLvNNCtwTgoFzTarXsWQqFgqRVUTcNAjgHypJozsKZok7f/qYk2fDwD37wg3+tJEE5FkcXCAQ0Kl9V8o4HzcnAfFK2hImAYSITJ6AdHx8rn8/bPFoY1dlsZjoimmZgB2FzIsVd7f3yf6lItqTTd95Q+Y/+B81PjxUMBBTNbWrtoSe080v/hUbNivr/0z9XuNeyNQEYkrXD2FD+wcYAb2i9tvauaRA4q86NlCKRgR577LG/Bkz9ep07d047Ozu6cuWKXnv9rJ588CvaueMRdRsJc7AkgxsbGzpz5owxEgAobAGQwi1SsPoEPPTdJJSUZ9Fz80wAEx8YOdOLprC87rvvWPff/5ZKpX1J0nQaVCg0u3mentNrr92ll17aViyWtfNOiZKESVo6foIS50ha6AfL5bJVBxj9BbhEj432lVKur+bApJIIM1KJ4Ib9MVaIEXg8Lx3UnqmGmWL+M8w1zZfRaNS0j5whf+ECTDaTCHq9noFT9oQyMbZFpQuNsC+JYq++4RJASsAFtAP26JCnOsPnSrIzRIc0ya3XP/tGESQwlKoBEjSFkCThh1lzngv9t++25ln5N3IcNLD4iF6vZ4kiGl4ScyQMNIXu7+8rmUxaAkEnOjEBYEo1xFcMqQYA9PBXEAHT6XLmrX83wGE6nVYoFDK9NIkfLKGv+GBXkCObm5vmp+kNwQ47nY79/lqtZrIMpulwCY2XefiGKM4kcYqqI1paQBvzRZEGIA3Bp6PbhBTiTAMakS7gOz1bCkDzzca8O9WYbDZrYI4klP2mkut7JbBlL9ViT6hyIn/hohXICOJoMBg0wD8YDGxvK5WKXeBB5QUAPp8vRrKBFfB9+A5+P37rP2pOb36h26BkQ1bBAccJ0nSEMVPWYMMoCU+nU9Py8AXrSCkrn8/r5OTEBqf7xglJJhpHR1ir1ewA31quxzkmk0ljYGA6ADuMHCGY8LNkN9KyZIP2DqCTy+VMN0mJeTgcamtryxhYHH86nTbQMJ1O7d55fwsK5ReYH4IVB9OP2QgEAvYZNKMAyE9PT5XL5RSJRGxuIQE0Eokom82KcVYwEjghmkYAWDgQZiMCCDwjxaHl3QKhiOaTkUkfAGqwYf6LdWadIuOhgpGogZK1tTWNx2NVKhVjo6Rl0gBQBoyjFyoWi1ZaIXumpIqdkHDM53PNc9s68+v/ROPjqg7/1T9R7dLLVsZin4evP6PpubsV+cjP6s7/9T/V1X/9f1OwVdHW1pbtB9oufyMIz4u2S5I5t3DwRINZSZFIVNlsTufPn/8bgSlfsVhMZ8+eXWgaGwtHlcyEdVKb2e8h0fDNEpFIxHRbdAoT6FqtlpWcYOHYM9+YQeIJ4PP6s06nYzP8AG6LztaYfuzHntL582XVaiU988ynVKvdq+k0qtGop7W1t3X//Zf1+OM/0AMPrOvLX/6EJpO4+QZYTa+PBOx4fSKsCaV37rDnXEvLxgRpqbfzzZVUZwiysCIkhaw/n8UtXARCgCY+ajwe221WsGKA0OFwaMPeYeABU/gsbBXQBqiARaJ6QBe8n0YhyfaAsTU0H8HgYJOU7kn+YL2ogAGMeAbOFLp730CGTcF8IhUIBAJWHoYR80CYNfXghP2HyfR2DcAlIeI8oy0FgLMuaH+9ltdf0ABLSjWMfoJEImHrB2NKwxHx5damNJIezg/25+VIyDr47G63a6VhCBaY3+FwaNIJL3MBLAJk/agvYhtSA/amVCpZlzhrjLQNeYfv7SAutNttOw8w3xACvAMAFZ0vcQvGn4SI5/MMNE1T+BESROyd3hLsjokCAEX8KuuEtIrqZbvdNrkJa0j1AKyCX+Dse/0qe4I/4vsAqIlEwmRSjKrjfTyAZ518rwrVQfwV55BGVFj4vyl+/s99/S8CnNJYQ0cvmfNkMlG5XDZHubm5aYccIMQmUzJDyCzJDArGYjabqVwuG/BEC8etSWwimQOHDyG213fRoMMmexaXAED3OlpVnA+B4vj42KYUUKbY2tqycj5ZPYwlLB0GR5BLpVJWQqH8iGOBVcTBAQIoBfomD1he2F/vyCWZYwZE12o1cyiUkmFqmakYDoctK0PTBmOCoyQYkbUhM4hGo6Z981qoaDSq+Wig9VxR/ZvPE41G9frrr+vBBx+0xiZpUSa6fv26Nb8lk0kF4uuaDno2YJ9kwcsSuIfcd8SHw2HTJdJJjp3S7ZpIJIzx6/V6NoBc8aQu/Np/o3G9rMbv/wuNTtoqFovG7LB2yWRSsUFb1d/9DaV++n+jc3/v/6xrv/l/MUfrpxkASGiwABziHAns0+lc8+Bij86ePWt7+z/3RRAuFosKF2/OyYsnNJksRzghb5lMJitZOY5+PB5rc3PTggad1gTTVCqler1umi/AEcEcPSh7CSPPucReMpmkfv7nX1CpVNdf/MVHVavdebN82FMg0L8p59nV/n5eyeR9+sIXntIXvvB1ffWrP6N2O26JLCVquu9JZDyzgpzIz370JVOaLWDWpOVAeKoJSHM4m8houPqUpI4Aif6QsiogGVaTEmUikbCGPLSk4fDi5iEYI9aYxBgGFVDo2XaCK7pa2CL2in0jweOs0UTDtbUkIPhpJqjgYykzepmPtCiBoiMkSKPhBsjgO2DQIQQoafuRVbwL7JC/IhSZUyaTWZlxS9UEIAs7TFKObIByMs1R/iIYXyIOhRZNpleuXLGEBpDEeURjy1oB8BniTzWG7wU8s2ew1+wf8h+qbfzd5uamJX/MqPXMMiV435yH7QwGA7tYZD6fq1KpmD9i3cPhsE2NwDawNRINPo8KJb6W96Ac72OqL6V75t1jCZhAKh/4NJIcKrDE8EwmYyCac+cleJA2JFFIqAC+2KckI6RgnTlTe3t72t3dVTKZ1MnJicrlsvb39w3w+oSMJAmbJQ4DOH3FAOkLcRzWGLDtCTXvs/CnJLoQgCTj7+Xrtgen3JjBdXg0wQSDQcsocIK3dhYiCQBw8eU7vdFwsonj8VjvvPOOAYFIZHmtmmdgcX6UQXDKOAIyFM/0wVBgYPw9uklf9vYZEQ1SlONhKXDs6IIAAHRG0khEsOTaNAA2WX0wGFS1WrVnQWPDM/f7fSUSCQPNBNnZbKZCoWAsK+tK+YYMzDeqUP7A8cJA+bWSZPIMSoUkFoADSh8wWZKMLYxGoxqX31b4wkNqd/7VoiQejeqVV15RIpHQJz/5SSsLv/DCC/r2t79tTiUYDCrzvifUu/aGOVSGknPTmCQTkfN+JAm33uyDI/KdpQQ3Sn8nJye662f+M4ViCXW+/G8Umk8tiG1sbGh7e9uSh06noxs3bqhROVTt3/wzPfCP/wclHvxRHT3zJbMH38mMjhqxO7pCaalt6g/XlVu/oeFocdnCCy+8oEAgoPPnzxtL589OuVzWlStXFoA5s1iP+TChQKBvAY19JIkCZHvtM8wCQckHOQJLJBKxZIzPIiEiCcJmkd0QsNLptB5//CVtbVX1pS99UgcHRY3Hy+kWvjw1nU5VrYb17/7d4/qVX/mufuRHvqLf+Z0nzAa8HIdRNjhzz85IsioJSSNg9latuw9yfC9gw2sLKRVyvgjo6LAlGWMcDC461JvNpjHYvupDoklQjcViKhZbyuWaSiTmikRSOjkp6LXXZur1FmtJU4207AEg+WIiAkk64BgZgJdk4MvwgwRv9gEwAvtGmZOb7NbX19XpdIzNgv2ELfSaddaC9ec98B+sNQCc8+KbXlg/GFc0eQzqZx+xwZOTE5sywZqFQqGV8j6395VKJasGApzRD5+cnBiwIBloNpvmE7kqmcQT/w7bTPI8Go1ULpcNzMHcAg6JnxAPkqz0DKmCr/DyNq/FplpEQsVUG2aJwvZJMnDntcF8HlUwWFvsm2rpbDYzaYtvHvIAypfIqcCw7uyjH3XXaDRW3pczkc1mjbXFB9HA5s8h2mqv6wX8AuSn06n1xhBH+F341q2tLT366KPa3d1VIpFQrVZTv7+43hdbCAaD9rs98wkwxgdBSLCevkkZHT5EBwQWF114zS97DtOMjI0pB+/l67YHp9Kya5wuZErPZEVkChgeQY5MFOPj1go2F+cBe3fu3DmdnJzo6tWrZhSj0UhHR0dWigoGF3eLw1ZQtmXQNyWVK1eumNSAw8btKDgTLwGg2ckf5GKxqEwmY+MwKFHx7AQXQBVBEWdHeVySrZ8kY3JgMQETZMII/gkw/B2HnfmxgF3fEARjwCFkffyoF4KAL4lIMh0XulnPShKwOGQAcYK6JGMoc7mcAi9/R5n7HlPqng9qfO01SYuGjtdee82YkkqlokqlYgxnPB7XILWpWHFX1//wXy3L7TczU+QNjEQaj8c6OjqyhgHP4FL+JKjw/bCBgUDAMvN6o6HSj/6Y+m88q2m3Y1n75uamnnzySd11113moK9cuaLf/d3fvcn2n6j+/W+q8Phn9NYX/402bmrTer2eySUI6gQgzgZrFgwG9cZLJd3x4YoiuXf0xhsLLfNzzz2nT37yk/rMZz5jTnQ4HGp/f1/f+MY39Pbbb6vf7+sTT7yk9vwhHVzpGqiCjaLUOJlMtL+/b6CQigLOEXAJow6jAEvT6/Xsc9vttnK5nNbW1gyoE8R9eXBRwpvo/vuv6OWX79LBQdEkLwQvr6MisZzPE/r2tx/VT/7kt3T27KkajaTZKSwObDi2y5+zTgQlAiTBjGoFfw+Lx/vCNgJSaPDC1vFTvK8kY+y9nvNWnbEHBdhzMDjVQw+Vdf/9l7S11bp5fkIKhxd2ce+9Wb300nk991xWo1HMWG1K7fH4Yh5xIrG4apgOZUrNnU7HJnD4KQg0rQJmAX5+ygLNjlwRjd+NxWIrvtg32jAvGeY6nU5b0KXEe/HiRUWjUR0dHZnf8j6XNUfSACjkd2YyGXsW9huJAM0rgCmIBmJUMBg0LSkSAJIE2GL//aPRyN4dfT8+jkoO69jr9Yxd5dITyumNRsPAFefDa/2xfSorDM5nT2BpYcBJGmHbPaOLtM2vJ36HOMeakZQQEzhTfGGzSBuItbCqntGUZMk300LQILP2nEGA1sbGhprNpq0tEwEobfPsED28L6zqfD63hIUEDdv2ciMIAypKfB+JUr/f187OjjKZjPmKa9eu6caNGzYHmZgPEPfkl79GlavPsT+eE0aZfUcKSR+FbyCnirW+vm4kFUkNRJ2XRP5tX7c9OIVJwMkRWLz2hzmInnVgwbneC6CBFhUjpbuRErEkK98wg5NZoWRWyAAIvJ7Wh0Xj8E8mE5t5Kck0m2SUGA8/w20MklbAGCAbIFSr1ey90fsw3xSNCNnO2tqaObBCoaC1tTXrvidTAkSHQiE1m01VKpWVay/RE5FdeYE/a0sZEScBk7K2tmbd1/7mj3a7rWazaUAZB762tmZD7EejkckeAFccNpw5TAAAutvtan7jstYr+yo9+fNq/f6/0HiwcNinp6d6++231Ww2bT4rgTEUjWnrs7+sQfWGeu+8ZgBAkoFJgg+sFyPD1tfXVwT0JAOUpJA3UPaHQY5Go7rzI59VNJ1X//VnzH5LpZI+/vGP64EHHlhhLe655x69733v0/Xr1xfs1XNf1+YTn1f+wcc1vf6GOTi0SiQJ3s58KTqRSOjN75X1oz/ysC7c+bJe+s5dCocXs/m+/e1va2trS2fPnlWn09GlS5d06dIl7e/vL7pON4MqBL6t777xS7ZHOGXAlm/qA9gDPFutljFa0uoQaKoStVrNtHSU60iocN4wMXQ1Y4f33XdN8fhIly7da8F9NluMKSsWi3Zf+fHxsd32JUn7+yWdnGzogx+8ru9+9w4DJJx7Eg8+i/XlXAA46Ib2wJCkkQAN2EWbhj36sqTv1KUKwzXEBHbYFrqnYfFhWwAyR0dHCoe7+oVfuKTd3bauXi3qD//wgzo+vkfx+Lpms7H29iq6667X9fGPv6CHHkrpS1/6hKTlmCFsieoBoAG74nwwSs77AcAn5yiVSikSiZitxuNxY/spRQO8ABzpdNpGyflkl3OM/QNiJJl/OD09NR0/CQTPgz6W56fBlckts9lMpVLJwAcACl8OQYCPIn7BfpPcwvChdYSFPT4+NsBDUunlYKyBb1wJhULGTsMo4ktpsMLuYcSCwaCBdmyPygZ/7tnGW8EIzDTax3w+b6QEN2lRmaAhjrVHHsf+AHj9xBfenfgCmcDP+WoFZ42KELctYaNUVgGcvCfMMqMoieUQH/gV4jUxYDgcmhwN8Iy8BBDt3w8yivPCWea96GW4fPmyAWG0x8RjX3YnKQN4QwhBsnEGkD1RfUBvi136c0LCYNNibn4PsjZGV+K7fDz6275ue3BKICNjJ0ugrJdMJs2JU8rHkbNRZF0+QJBBoIkLBAJ64403jHkkc75x44YkWUcuI4BgAmFN+B2NRsM23Zf/uTGKrkiME6PgPSgJMSQd9o1SBM4Yvdh8Prdsic/a29uzzkcP5GAaMpmMBTlAOk6KpqOzZ88ai+XlEaw93fTouzjoPqPEaQ4GA9PsUXbFMXkHTDACaCNrQAM3ny8aJfwBh0WDMWe/m82mGr/zG7r/f//PlP2pf6h3fuf/aSUMbvNqtVqm6VMorN2f+AeKbV/Q1d/6p7Y2Pqhhe9KysQUHydWQMESMC+GwA8hppID9yeVyytx5r+bTiTrXLpmE5cKFC7rnnnv+miOIRCLa2dlRNptdvEf9QPPpRNsX7/3/tnfuUXJWVdp/qrq6uquv1VV971wIEAmXEEJuhptGohFQBB1nxIhR/PBjBkYQPxV1HNZSEUZnHAVRvAw6awSizJB4Q5iYQAANIYm5EsmVpDud7q6+VVffqrq66nx/VH6nTwVUxJhumnevVQvSXV31vu85Z59nP/vZ+6g/0WbZItJjgASfz6fGxkZbXMEakHJOf+e+ebro9O/rvCVT1bXvdOugnnrqKQUCuSN8AdjJZFIKGL1l6SalfHXa/ZuxFjeksAhGCCg55Yjvg0l2mReKA9h4CMbQxOFw2SxymtKw3dhGRkYUi8Us2Jk6db8OHYqotdWotHTEsm/V1dV6xzveofPPP18jIyPauXOnnnjiCSuDyGQy2rlzuhYu3K3Vq8/UyEjYbgIuwCIFDCNLyyw2YTZlsgrMH+Z5MplUW1ubrbbnfpnr6AvRE7qFOZlMxvoEQP/xp2LREg9JSc6P9uu6636viopRrVx5sdrbI8d6sfaqpibH2DU316uv7wyVlrZr8eKf6cor1+mXv7xMxpTa58z1ZDIZHTp0yFZlSzk9KD6HgzdceQEBBs+DcampqbGFcZJsQIB/5RhPJBvueidoIFABLFORDMkAW4pul39THOS2E2RMqXVgo08mk+rt7bXMZklJiQ1OmfOAKLJ8+DiyQOxt/B1z30352kDbGOt//H6/bcuFP8Efx+NxC8hhvQBm+G/2JZdZdOVRBF3SWGEOzxh/wn0xnmjM3Uwgz0ga66XJPKBYjedBgADAhAGGyUM+4Faz8zm8H99IMIBPhpBwszou4AuHw3kyO3wjPh52u68vVwNApoNOMTwP/CLgnvoFZCTd3d12TAhoY7GYXeexWMzJ3hi7TtxAhnFiTnFtZOsoBOT9yFCQvzCnmZ+AWuYH4x6JRCxmAR8R2LjP+0/ZpAenrlCfBeRGpq42BxaEB8hk9/v91pngrEmz4Ug7OzsteGNzqa6u1vTp0200SrUeURObFYVS6FNIxzEJ6ItK+kCSvSZ0Q2xOFOhks7lm74A0nAwLlsq8bDarzs5Oy+qixyVNTRN0QGI2m1VdXZ2NitxTO9LptJqbm+UWmrj6FZ4l/RcBmuhjcfCkLxHFk8KDJaqqqlJPT4/6+vrU0NCgpqYmC7hDoZAtOoJ5c7W5tLzhOwHnbuEUTFX33h068tDXNOV9H9eUj9yuljUPa/CFTSr0yW5Eg8mUGt/4VjUsuVrFNY3a/593KXV4jyTZjQcn7rLlABm3HQfMKkUFIyMjlpFjE8ap4fhKS0vlCxRKmVH7Hrdl1fGWyWTsSR5sSmY0rdKKsAqPFVpwAhjnYKP5BBRIsse2kgre9liv6j/0Hi04/X+0P3KtWnfOUDyeUEtLi3VyVqNdX6xL3rpBZdqvXz35NwoVBeQrHjsog7QlGxbHKfr9fh09etS2nampqbERPNkOxps+mhw/DNsBK001OsWCMHH4gxyjnlV7e9huOmxQU6ZM0Zw5c1RZWSlJmjFjhjZu3Gh7Dw4MDKinp1iBQFYDA+1KJlOKRqMqLS21gQV6N/6fuUrqizkD0JZk14KrFwN4oJdGU46P8Pv9eWeAA6gArYWFhWpoaLAbD2l8/h7GDYbomms6FYmk9fOfv03xeJlKSvwW5Lr6VkBhd/dbddVV/6uLL96gX/96iU05u9kR2E0YP1e7xme7BxiQ7QgGg7YjCuMOg0ogg27ULQ5Kp9Pq7OxUeXm57RPc09NjC1x4xsf7XmNy9QDRaNRu6swVNzBHD8qmn0rl2i/BcDJfWafIFtx9gT0KNlbKBVO096NwFb8JS8v8huVyAS/BBsCO7ya7xfx31wP9P9G6uhpygmv22Ww2m3e0rguomYOAZcCMWwuB5AvygKwlTDWAlv0E5pgAASkDzC5gmr2ROUHw4rKTXD9j4UrFMPw39Rn4ZUmWOSebwXMG/LPe3RoHN7OGX0XKhx9Aasfnun3EBwYG1NHRkefnqXWBcCMDBpkEICdIM8bY4Nfn8ykWi1lNNHMezbM7f7hW1ivsuEvg8T6KQgOBgCWHXolNenBKBGRMTkzOZCFqw0lFo1EbZZE2R+NE5TkVamgMaULb2NhoBwUQ5zJxkuymz8CgF6yurlZHR4dNtUCRZzIZe9QeDg4w6bY3wZHSKgKxO303s9lsXtTIJoOTQSs0MDBgpQyk9qPRqI3c3ApBdH44ZEm2BQxOAAE6EXd3d7eSyVyfRJyfJAtua2pqbFuZRCJhWxqhiUNvQ3oL2UFvb6+qqqpsaohImnulSI3ou7Ky0jK5LiOJc0brBdBt3fKMetqOaPo7VuiMD9yqTHJIQ4dfkD+TVq2RymecrUBJmXp/v0XN/32v1H3U3h9sMzofNj5APqBiZGTEah+PT1WRRq+pqZE0dqyem1ZJdHcqEizWqJGSx/SHfr9f+/bt05w5c2zhgCSriT569GiO8S4pk78opMzwgNUucu/MIwIZmGMAE46NZ7jmgSJll1+jN0T+S01vnqLDsYt1eFdEyozKV5BW1Yy0Zs89qsbiJzXqq9QTG5er+9CIstmxllCwCYBemqiT7mbDdlPDsDI+n882Cocxpxqav+PZsT7YZGjfVV9ff6wCf4wtxA/wb3RVMNt0sCA9nWN0c8+7oGDsJBc2zaGhIbvJ8DPWMuvq+Ab8PHO6QtCGyQVNFM+4gIhN0a2uJeBgPcOMFBQU2AwFDJKrgy0uHtLMmS1av/5MtbcXKxDI+TUyIIwPpwhFIhH5fI3avHmeLrroNyov71c8XmILXwB4jAfru7CwMK+lFP7LraRmk+fEIAJlmHYXgJGaraystMEO6VaCQ7cCnWAWyRaBjFuAMzw8rFgsZosOXcaTAMAF+sxRVz6Gr4QNhYniHgAojK/bxaW1tdUGmvjzVCpl0688H/yOC9KRlrnFdYWFhTbY4mf4Q8A3fqWzs9M+F4IG5h33Ttsyd7wA/wB+xtxlhwks2LskWUKJtcdzhN0rKCiw7ZtYq+zFBGgQTxTIAlTxycwT/BvV8r29vbaDDntXKpVSVVWVqqurrXSPoBZZANfsBlKu72eOsq8B5CCaYNwBgFVVVRYfAPRgMwkaIJhYi/hEsAnjwN4ItmAM+BzGgWyqe8APhd/4FXTzVVVVdn0yd9we3WRzCVpeiU16cErK2k3FA8IqKiryTnMBSDF5AQp+v1+NjY12U0RXxCQjBcciLSrKnarS3t5um6QnEgnbNxJgxMRjU+7t7bWV9QAyly2hpyCMH2lArgPmg1YjOCLOpCY9y0QjkqMViTFjfTNTqZQFzSwCHBD3yAJwN9Da2to8jREpUjSmbMikNon6UqmU7S3JRs9ixClyn/wtz8H9HTqoQCBge6z19/fbMXJ7wrnpaYAqOlxY5uHhYfU+v1X9zfsVnXaqIgvfqtKmGfKFwjL9CR1at0qD259Wpq/LRso4VXTEjIck+/3GGHv6kstUE5nCzrupGApAYFekXJFWsn+LIm//oAaqpqrthf+1fT/RxM6cOdNG2o899ph2795tW2nVLLxYkpQ48LwtZkCDiwwDYJZOp20wEgiMHVtYX1+f06slU3rywZB6lnxW007dpZk1qzRrSX6UPOSbrt93/p36Dp+qVOegAoG4HX8CJ3R9MCmRSMRuvDg61jTsJ30d2fSPZzQAvQAGxsPNCCBlYC4mElJxcU7XGo1G7f0eOnRIP/3pT7VkyRKl02k9/fTT6ujo0ODgoHX6lZVDymR8Gh0tVjDot6lBena6RT5s/rANpBePZ/yRKrBBYm5Qit/i324vSRcUoj8bGhqyfgHmkfWGPwPcnHXWbmWzfu3Zc4pN06GDZs0jpSEDkEwmtXdvkxYsCOqss/Zr06Z51rfBbFHoxyZIoMg6poMFGSFJec+QYBlSgIIfqsDJlBCU8l8CErfQBrAIKIPEAIyhkWVtjY7mjsJFQ0kQQRAgyUqUYDtdxpQKeZgrVwuZzWZtwMiGL42dsgcoIoVNMVN1dbXNdECiMDd9Pp/tccrcc2UNzAHkYwQt7v4I0zY8PGyP14VdB4S71fPl5eU2GETOApDlUAYYSuY32StprC8vLQ0pXiNY4NQk9OiAU5eJBmgyxwgeAIXMZfwDvseVEvF+V2bCHMMfA8DdLIgkGywx15A24FcJbPD5SAtGRkbsiYI+X67XKddEFhEpFkwsa51rctsJcm/Y8PCw7ejgysvYu6kzcddFPB5XbW2t1eQylxi7jo4O9fT02MNpJNn7bmpqUmdnp16JTXpwigbRFeqy8BlUHBngsKGhwQIE0qR1dXV2YdLbkxQFk46WVHwXGwURLswd341Wpba2VpWVlert7VVra6vq6+tVX19v2QuYVE5owjG42hIiGBYBURObOCDVTS+zKZIyl6RYLKZEImGPSG1vb7fV5aTMWFzFxblTVlpaWpRIJNTQ0GCjb1qmAB4ikYiksap7HDiOjcpd0lZoSQOBgNUBs2BZNCyYwsJCW6DlPh+0dmhxYUkYf0A/gAJ2AMdKJG61up1tSv/vQ1bwDqM3ffp0FR2bD6TsaUlFiyI33UYbKoIL7ocNheIJvpcNkusCpMKE+Ed6NXhgl+ouukKx59baTejgwYP6/ve/rze/+c2qra3VoUOHtHnzZnsAxejoqMLzL9XggZ0abG+2z4ETQnDOPGeevyTb0YGjgJF+FBYWqmVbXM1bmzRS8H5NO9uv8nKfkslRdbal1bprRCWhAoVCMcugMA8BljSEhwUPh8OWZYJ5olKVYGJgYMCOGWPuVtuyHnH8gD2yH9Fo1PoHwML27ZW6+urDKijols/XZDfygYEB7dixQ93d3SotLdXBgwfV1dVlK7L7+xM6++xm7d9fr6qqaJ4OkE0vnU5bLThAE6aTe4VNYrN3g0o2XE7EQh7E8ywvL7e+ge9GKuPqXanC5tnyHFxdJRrr97znsF58cZqkMkljBY2AU+YsrBaaz6KiIh06NFPTph3Qb34z27J/aDqZ3xRfuu2O+D3+zpXkUKjZ09OjsrIym9VhM3WrwQGEgUDAyitcPStBEcCGdL373awrnr/LSgMM8GnMPZ4RPpPsEHsPewgFX9QMSGM9SZkHMFtInwBvpLDxc8gfSktLbUaJzBgSCTo6xOPxPMbTlSAhqyAowj+6L5ekgCygjsBl5Dh1zl0HpP8heCBsePaALDeVjAQBIE+AwnNAegdoYj5Kss/++Pt1pTYAQoImxoV7JePnaj959qxRyAcY9ng8bvXjrhRDkhPMVtoAkfnI/XG9+AY3G1tYWGj3WjKdBDJ0J6IuhPuFmeUZkGEkbY9u3T3xDZ8Ba0pgBDZg7ZNlw8/Qns/1S57m9JjhBF0tCNEmlDwLDa0aR/IRXeEg0cMQWbJIBgcHcwU0x1LXfn+ukTJFJzCBTBBXtA1z09bWlifeR8/CIsZBEVWS5vf7/Xl964guXRF9JpOxjaOJpInGEDwzkQFMNGNmsQKo6+rq1NDQYME12hx0Zq2trZLG9EhIEHhWAG1JeQ7B5/PZI1RJM7JIAZH8jA3q+BSoq4dkkcNE4USSybFDBYhEcbpuZwcallMwI8nOBVgI2HeAD+09jhw5omQyaZvgs6jdyJuNBAcnjWmnGFtSQdKYfhCnB3OC807tekaRd92gmrkXa+TgDttubGBgQM8++6yCwaCdu4A4TZmloqbT1Pff37TOvru7W/39/bY4hXnFXAREJxIJW+TU1tZm2Wc2ea5v95M6VhxYrOFhI5PNsUVtbW2WrWLTp8tAMplUR0eH1Vv19PTkndYCU4RGmvVK4+/Ozk4r4aG5NKlD5irOmCCNDY2+jqOjo/rd7yK64ooWXXhhj3buHMprc2SM0b59+1RUVGQdMaBo+vS4otEBbdy4WE1NTXaesREQ0NJmBzaPOcTGwdxHIuKyZ6wbWGb6dKLdA3zDkLLxufMQth5gyfx15zYMec5HJNXeHrFH/SLJIUDkHtgA3V6knZ2FOu20MUAsycpE3FS8JMv4uesGppYxADDBiMESM4eRFRDYApSLi4tt0AkohLGCVMAfkc7HhwJkYAPx527xB8GjC3DY2F1NML6ZZ8/LLWpj3kqyYBs9IdeLHhNyhaAY7TbgFwkFWmy6V8CQQljgrwna8C+AT/wAgQV+3c0yus/VDRr5HAgBfDpgmnFgfgMI2X94nvF43BIBzBWCFZdJB8iRhYKEisfjFh+4BapcGwW6+Bs3sBsaGrJSDvTLPFfqRtizwRSMDww0wZuUn9kB5KEFLysrs0ECewUYRJJt8VddXW0/r6OjI0/y4wYZzAv2K/AQfgG21c18wgyzRtmLkDowfgUFBbbVZTAYVG1trZXQMKYEKi5z+8ds0oNTIs5kMmkjWiIIHhIarrKyMpuOD4VCtqmtm4ZlIxocHFRNTY0FjET1/DwajVqg4RYxMcBEY+4AV1VV2YpTxOIU8KAtQt8EeyYp79+wj+3t7XbTgL1ko6fqFJaJTbKyslKRSMQ6KjYE0nxsgK6mhmgQ9jKRSFin5eoUWexsAK5QHf0RYAvGjAIgnhdOwNV+4axqampsRTeMQGNjoy0qkmQddTweV0tLi70G2FrSdFwnx7syPgA4HDctxQAsZWVlCoVCNgWMZqu/v98WGLlty/jOsrIy9fb2KhaLWaYwGo2qvLzcsvcc9OD21WNejI6OKr3tNyo4dY5Ou/YTOvqTu2Va91kQDPAgFZpMJlV6+rmqecdHlNj1rLp2/Fajx8aU99BtAiYeMI8WE1aGDQUGiWIjtFuwYaRDCb5cLRJV9AA2ghPmmXviCowKkTpFc2ia6IYBKAIQSMoLfNrb223PUzZb7oWgp6AgrBdeOFULFryo1tZTFItFLMB1ewUiD4rH4yoqSuvyy7eotzeswcHTVVKSu3+CuWAwaME1zwH/w9xi/bDu3BS7u5GQVSClzBwlqKHVFgE5TCJBGPo/xq66utrOWUCFy9DnnqPPFne66XDaELFJoYUj8MtZTooE09rb22uDRzSjZHtcpoq1hK8m/Qq4YyxgOjl6ER+ETm50NNfHWBoDP5yoQ/U/YENSnuyooqLCslKckEc7IbdWoKOjw/ogro9gl0Aato9rIhAggGIuAmzQS/OM3PQrRbvUSxQUFNgMGZ8PWPL7/VYaBlvI/tHV1aWRkRFb7FVZWan6+vq864FMgHiQZOcg3W3wyfhQ9gdYPv6dTCbV1dWV110GiRvZJVcOgY7Z9beZTMaOA6wioB9yiWulsIdABcLHLZRirNPptNVeUxjkFlZD2JD5gHnE94VCIQuaIQn4LvewD+Yc6wwCAZDKM2VPd+s50IJyfV1dXYrFYjY4QrIGUUBwwTrm3wS/+D7A6fGFdUipCIzcvroE5X19fTZYcv2ZNCbNoE/vK7FJD07T6VyLEpwHjtgFjWxaMF0AKHRFkmzhBzoKoiK3lQlpeiZvPB5XV1eXdaAwZERwUO84ehYOGwrtTtBiohVi4yEiIhLGIRw4cEDd3d2qqqpSVVWVbe5MJTupBVIyMFc4s9HRUdsJgPQcrAitlIqLiy3LRfU3UR+R1NDQkHUIROosANfx41QAPix4d+HCfLo6Id7T0NCgSCRi0+VoD4n6XI0VOi+aukej0ZcsWjbyrq4u+Xw+qxmFzcF5wy6zuCXZo/ZczRsBDow1II1NjIgSBxEOh+3YEwTAnhH14mBJk6RSKR188N81/f23qul9tyq+db0yW9Zp+PBem54ZHh5WsG6amhYsVWTeEg3u366O1d9VoKBAA8fmNwdBVFRU2HuluplN3q3QxAFLOUkIKSxprI0bAIONB2DAfINFlmSDvaqqKquH7Ovrs06dIIX5JeU0eBRGcA/uQRKAH1i0YDBo1wQsD4xYTU1NHlD69a9PUU1Np97xjqe0atU8tbXV2M2HsaOwZHCwRX/3d9tUVjai1asv0dBQv+LxPrumKaqAMfL7/bbYkrWPBrGqqiqvSpu54R4cQHqcueSCKkl2DAcGBmwxEJkcqskBxgA3vksaOxI1EAgoGo1qeDioQCCmWCym4uJiNTU12bQwzwwGisCKsa2sTCqZLLZzABDhVgD7/X5bYMM4UuySyWQswOe+CWJp1s+6AJwRaBAEMi9pg0R2i3+z1rh+jm7F1+Cn3IInVx9KwMqJOwDPwsJC2z8XNjObzVrQAxgiyHO7ceDTCU4SiYTC4XAeGGCdlZeXq6amxu5x+Ed8p9/vt0f+0pWFtUvRZiaTsd1LAG1utgD/SmreleUQhMMUl5WVKRKJWPaT9cI+fHzwQqYEFpGfuUAbVpE1x54KWOvq6rKFTe7+CotHIOueTAYri08lSCcQxR+hbSc4gkEHOIIVmCPcN4QN86C2tlZ9fX06evSo9SNkcAhGAY1I52CB3TVOOh8wDpHC2oWccIvASktLbQ0K5BnXCmB3NaSQIW7tx1jwXmD3NfYojl5lnkhjx5IjocE//Smb9OBUko0SAE6wRyxgtGI4E5d9I/3DC9ABXc7Cciv8YctCoZAaGxut4wuHc21p0LbCZBQWFtrrA/CycGjFQWERoJYWQzg/FhabNykBznImvdTf36/6+noZYyxw5hkBUt10D9fjygRw+DhPmOXCwkK7ubvRNsCB9OXUqVPV0dGhWCxmHbKUAxm0zUA3y30AggDHgLVwOGwZXa6RKI0Cm1QqpaNHj1oWBSdN1M69SrJOB0cKGCZthYYHYMumCfMcCARs43fmGQ4cHR/MDhocGEOuOxaL2fsniGK+EsGjryNYKSgoUElRkfb/4E6VL3ybTl32t6qa/xal2g8r1d2uAn+BTFlYZVNP10i8S62P/UiJjY/LJ41pV4+BTbILOHefz2f7unIPRNB1dXV2vHGcsP5uRTzAFeDgdjMgsOFeACGAAIBiKpWyjApjQxBHKyRACCyVJFVXV9s+p1wfbCOZFQAMGycb38DAgP7zP8/S8uUv6P3v36gjR5q0Y8cMHTnSaH1FbW1CM2fu1tSpe5RKFeqRRy5Se3uBQqGXZk1gHdngp0yZYjd3nhm+BbmCJLtZsAkAsJGsuDpqWDu3gTkZElq4ce0UG1Hc0N/fb4Ee1w1Q2b+/UfPmHdATT3RqcLDE/h3SAa6b1DLZJr9/VKefflB7907XwMCADUJhxNlQmX+wo7CNbgaKsYYMIFiiSwNgBG0xp/OUlOSOxMSPAoQBugSkLtsDw5tIJGz2paysTOFw2DLudF9w6w94vrwAB8wv5AEAaIItiA42bxfoMWfJZLDH4H8lWX9GRgXAxPN1tZyk95G9cB2s4VQqZVlmNwOTyWRs+y5Xoy2N9V3luujLzXtZ9+iLp06dagGXy066AAwGPRqN5qXbeabHA0tqElw5GPtHJBLJywJQeIjfpz5DGmszlUqlbBst5DZuEMY+wR7qZlK5LvdgEPYjfAH7M/uvJEvKuNp5fJ80duIlUqF0Om3rXSguZG67LDzXRYA+ODhoZW2sPxfPuEWYruwGZhxSraurKw/HuGwsBbb4P8bnldiEBqf33nuvvvrVr6q9vV1z5szRPffco4ULF/5ZnwFFzv/zAvQVFBTYCBpmCKcPcAOMoadxU+FMcpwHkRAsDwxcMJjryYc+taenx/ZFlGQdaH19vaLRqPbu3aujR48qkUjYVDYsKVo5Iv329nZls7mqaaI4Um1udMpEJqqk3ympCDZqmIqamhq7iQOqXADc3t5u2VeAVnV1tWVnXBG3qxMjkkWj4mpj0Y3BiqBrJe3ovj8UCtk2HVSQSrJMZ2dnpxKJhC1cGh3NtWRydVOp1NjJMIxnRUWFsv6Aai99r8pPmaXwaWcpUFKu2M++r0DL83a8SktL1d3draHhYRW8YYGKl1ylyppGVadTSrYdVufjD2j48F57QgbMicv+uilq2PhMJteeCLCKRpoNDQBNSxxJFvSVloTU8cQjGtmxXo3z36SSWfNVGCqVfD71tzVr54P3Kr57k+pqcw2hSc8wVqWlpbbynXXA5o80RpKVRISmnKbCmfNUPH2WmiK1Gh3q18DhvYr9+scaGei1m8/Q0JAii5bp9Mvfp2BVraYNJhTbsl5HHv0vFQfGNi8CIgITVzrD97p9/HCa6XSuCXc8HrfsL6wbLBFabRgEwAQggc3RPcEtx7qWafXqCzV3brfOPHOvLr/8GWUyfqXTQRUUjKqwcFSDgyXatOl0bdhQo9HRIpWUBK3Mw9XH0egcFhQ/MTg4aNkcrhO2CkaEYgsAeU1NjWVkaL0mKU8LjzwApq+oqMgGbXV1dbaQyE21EZhkMhl7ulVXV5e2bm3SokX7NHt2m3bsOM1mQrLZrC2w4XkDbnMBzB6FQiPavLnRAi830GbOFxYWWvmS62thG9H60W2DOetq25A28XPWjN/vt8Abf0XwU1paavuduhr9+vp69ff3q6enx7JLVVVVNiMCoYGvpd2gqw91v8ftDgKDx5on8IT8wCAgyPah8WVsqB2gtR7AAb0tDBp7IFk29kM+D1COdhHJF+ASCVZJSYlqa2vt2iLrgISHfYQsIsEsBAYnkYXDYevP8XOscVfLC2gHFAJ6AYbsv2QS0RbTiom5AQOLntqVGSG1gdE/vlMIUgy06W5AgO8kg4jvcrsl0PEkm811J4jH47Z+gqwSz5ZsGICQtYj/xd/Bcrpgmv2M7gjuPsN3uVIZ/B94AWwA8cWYg5eYC+AJtzgL4OvW0bA/I2tyCxxfiU1YcPrjH/9Yt956q+677z4tWrRIX//617Vs2TLt2bNHtbW1r/hzWECwazhdN1rGETLZKazAIbCxkX5ywSoLEYYVhtBN1aFLoj8qAA8KnLRaTU2Nzj//fJWWltoz2zkalSiM641EIrbQAUZrZGTE9kYlhcffAJwl5TlLUnw8F3Sp2WxWNTU1tno6EomoublZsVhM/f39eVX5LAA2ASJzovK2tjYLXv1+vw4fPmzTI0xUJjX6T9q8wJiyUGCOYFxI77rV+n19fZYlOnLkiI320XVJYw6QaA7WIBQKqbOzU0O+Qp3/zhVK9XRoqPVFVcw8N1fdewwsJ5O53q2ZTEaNV/1flZ97gTqfW6vkb36prD+govppSvnGROewV0Tv7nNzj0Q0xlgnxXtdBgBwU1lZaVMqOAqXKSoOBhXftVGx3z1t+yN2xmI6snu36urqrDwFxzswMGDbfDGvstms2tvbJSlv8zTGWGdfPPctKpn2BnX97mmNdB5RSbRW4flLFf7Hr2jnv31cw72dKi4u1vR3Xaf6Je/WwO7nNLxtvXzhGjW+6UqVNc1Q64++YsE1jAVsNCwaLEl/f7+tjI9Go6qtrbVADG0aTB46UGmsnQ/sAAAByY+bEZBknWtjY6P6+/vV29urDRsqtWHDAtXW9ujUU1OKRIJKpwsUiwV1+HCdurp6j4GdsYIINhOYDnSugCwctpsxcLW6pM0Jogg4+UzSoN3d3fYkHLcIAxBHep0CPYCh+4wIlNmwR0ZyJ9P09PRoaGhIDQ2nqbl5hhYseF7NzbVKpcaYPthtfM/Q0JAqKyt1xhlhLVvWrBdfrNHAQJUCAV8eOwp4Yh0yRoAPt1iHTBL34KaJ8ROsg1QqpXg8bscXWQma18LCQvX19dlskTtWfC/BX3FxsRoaGuy1ZTIZW3RFf2lJNmuElMytcia9y7yDDCFwcdkysg0ER/h+xozAChBPpmtoaMj6SkgBtMOwWS6ThwwLmUkwGLSZPvSG9PWmQNTtcEDrKvw034m/SKfTeXI39kl3faGPdqVQNvA9Nh/xzXw24Agyg0wS+xvMPJlJt2gWGRtrg2sgIOXvqqqqbJAHu1leXm5BJdpaghuCT3ytC9IBm+hY8WPcB6QN8wAWmaCwpaXF6owZ3/LycntEOoEQewdSs46ODg0NDamurs7uzWAT9NluUS+/Rwbmgni3cI61yT7sSjPcOUoGGIINFtcNvv6YTVhw+rWvfU3XX3+9PvzhD0uS7rvvPv3yl7/U/fffr9tuu+0l78chYUwEKvCZ7DxkIgsYRKhxWCmq82ASJeX1V8RpwEISdRFNkLrF6cJQ0WOPpro4wZ6eHvX29qq7u9tGMTjNhoaGvA1FUl6VbGNjo03TQ8ejS4VhbGpqkqQ8rRCThfcTadfU1FhWE8CKLgonQ9QdDOYaD1N1S+Ndrh0gA2NNWo8KYE77YcL39PTYDQ+dHql9t9oah0xqw40mOzs7NTKSa6Vy9tln203KLYgDsCLuhl2luKWzu0fmnz6gwGhS/uomzf5/31BfX59iLS323o0xKj1zgSrnXqI9//EldW19Jq+an36DMBwwdkT4MAOkZIgwSflTvEN6nR5z7tykmpj5BuAlAyBJ3d3dNvLmtDB0pK62jc2AFDkbF10c0IkSRIyOjuroukeU6WzRwLE04lAopJ6tT2vmx/5VjUv/Vru+90WV1TTojEuuVO/Wp9T847tt+nKwvUWN77xOI3MukL/9gIaHh223APTezDccMKw6AJTxYq2TWejs7LQbZ0tLi61ohaEgBUdVN59DIY3LSgCASH12dFRpdDTXtgWn6/fnjjJ0W62glQVEkWqH3SElz3eRkUHnHAwGrb6QDd6YsSMTDxw4YDcsWFgYQvwcPQVpX8PcZfNyU62wq2w4gCWKviTpySfn6tJLY1q27CmtWXOhenrCFqQRoHPPpaW9uuSSdRocDGj16jOVSMStntbV7bkVwzznrq4uG9C6oBNWlmAWhpDUp1s85LJb+AzaRdHSL51OW902GR8Ao5tVgczo6uqyvsgtGAUgAxjdlk5uGhfm3y06ITPgFunCCPI+3gsYJeCAWOGYa/YXsgUwdoAxsl3IwQBEzAP8kcsABgIB24mGecGchNXt6elRNBq130MhDn04eUZ0hQGok7ZmHXC6H3t4KpWyxIqbrnflOGT/GDv2EgA2ezBzCFDlalndiv7S0lI7B5DBcOwozwtfyDXQ/QPJEQw+QJ/1G4lEFAqF1N7ebll2CBmYSxf0UYTN8x4dHVU0GrWBBj7JlWngXxg/SDIYfjALezRzFzmF2xeVwBCMQwBH4Mq+S7CCTpbCag4NQZ7hyheQhfxBMxPQUqmUKSgoMKtWrcr7+Qc/+EFz5ZVXvuzf3H777UaS9/JeJ/zVeM4884V9xpz37hUv+d31D28wH/3vZ40k4/P5TGGoZNyvdyK8bli12dywarORZM5829XmC/uMmfmmy/LeU1IVNV/YZ8x7/u1H43693st7eS/v5b1O3qulpeWP4kCfMX8Kvp58O3r0qJqamvTb3/5Wixcvtj//1Kc+pfXr12vjxo0v+ZvjmdN4PK7p06erubnZpqA9mxiWSCQ0depUtbS0WEZmIltH2q+VvWV6a/mwzgqNVRqmstJ9XeU6N5RW0Ge0fTiotPGpwp/VhWVJvaF4dByv+tXbXzo+xkj3d5cpEsjq6vCQ9iQDeixRoneHBzU1OHYiS9pI3+qsUFVBRh+MDp7IW5jU9lpbP68n88ZmYps3PuNv5phsq7Gx0WaCX84mbFr/zzVSFcdbZWWlNwknqFVUVLwmxmYgKalXxwTeIfvztmOx0L5UUH6ftLRaKvJLz8X9+lWiROFS6fTSl//M14K92vHZ0S8NZKUl4VxF9JSgpITU4y/V2c7HHTiGRwezBa+JeTDR7LWyfl6P5o3NxDZvfMbXXglhOCHBKa0qOjo68n7e0dGh+vr6cboqzzzLt3ROP6/hrHTdFKkpJ5XSGaXSPYekZ3pPDjg9mpS290uHhqW+tBQqyF3LkogUDea/1xhpS0L6XZ/UnZYKfVJdkfTWaqn+pbHdn21dI9JjndKUYuncXJtONRRLTUXSb3ul8oB0Sij3vkc7Jb9yDKpnnnnmmWeeYX+YUx1HCwaDmjdvntauXWt/ls1mtXbt2rw0v2eejacFckW6CgfGgKkkBf3SzFKpNSllTwLw+k2v9MKANCMkLauWzq+Qmoel77VIsVT+e38Wkx7vlBqKpLdXSxdHpIqANJR5+c/+c2xgVFp5NMce/0295PeN/e5vGnIg+Ocx6Z7D0so26ayyHCAOTkgv5Jlnnnnm2XjZhGROJenWW2/VihUrNH/+fC1cuFBf//rXNTg4aKv3/5QVFRXp9ttvf9lUv2fja5NlbMqPrZ7SlzkquLRAykoayUrFr+wo4VdtbwxLjcVSgQMGzyqTvtOSA65XH0s2PN+fS7m/t16aVfaHP+/VjE8yIz14VEpmpRVTxp4NVhGQPjRF6h6RBjNSpFAqC0j//qIUfWU9mT07ZpNl/UxG88ZmYps3Pq8dm5AFUdg3v/lN24T/vPPO0913361FixaN92V59jqzo0npP45IV9ZKc46TKf37izmG8OZT8n++ukP6/YB026mSz6dxse+15P57/dTcf+9vyZVJfmRqLr2fNieGtRzNSg8czWlwP9AoTQn96b+RpM4R6b5m6cIq6S3Rv/w6PPPMM888mxw2YZlTSbrpppt00003jfdleObZH7SzyqTn+qSDQ9KpuVMCNZSR9g7mtJXjBUyNkQZHpZpjmtNUVmpNSfMrpXXd0qa4NGJykoS3RKWzy1/d92SN9D8d0pGk9LcNrxyYGiOt7cppXud5dQmeeeaZZ545NqHBqWeejadtiufS1P3HOkLtHZQSx/5/QWUuXX9hlbR7QHq4LZdeLyqQtvRJGSMtGUc2cOeA1J+R3nwMdPYc64D1fH+O6b3UdhaQHunI/f+rKd5a05V7LjNLcoVhO/rzf09R1OOd0qjJ6U6zRtrVnwPL76qVKr20vmeeeeaZZ4554NQzz/6AbYhLfU6r0hcGcy9Jml2eA6dlx7SUa7qkjcdA6ZRi6eq6E1P9/mrs5Srm/1qdBTpopzWUex1vfH99kbQxLu3sl3zKff+1jdIpJX/+d3rmmWeeeTa5bUJrTj3zzLM/zwZGpR8ekTLKgVAKk9DNhgPSP56S/zc/68iBxs+cll9h75lnnnnmmWfjYV4TF888myTmVsy/vzG/Yv6VdhbwzDPPPPPMs/G2SQlO7733Xp1yyikqLi7WokWL9Nxzz433JU16u/POO7VgwQKVl5ertrZWV111lfbs2ZP3nmQyqRtvvFHRaFRlZWV6z3ve85KDFpqbm3XFFVeopKREtbW1+uQnP6nR0dfmMaAn00az0o/bctrS9zWMFUJh5QGprCCnQ5Wku+66Sz6fT7fccov6M7merWbEG5/xtNbWVn3gAx9QNBpVKBTS7NmztXnzZvt7Y4z++Z//WQ0NDQqFQlq6dKn27duX9xk9PT1avny5KioqFA6H9ZGPfEQDAwMn+1YmlWUyGX3+85/XjBkzFAqFdNppp+mLX/yi3KSjNzYnz5566im9853vVGNjo3w+n1avXp33+xM1Fjt27NDFF1+s4uJiTZ06VV/5ylf+2rfmmWtmktnKlStNMBg0999/v3n++efN9ddfb8LhsOno6BjvS5vUtmzZMvODH/zA7Nq1y2zbts1cfvnlZtq0aWZgYMC+54YbbjBTp041a9euNZs3bzZvfOMbzQUXXGB/Pzo6as455xyzdOlSs3XrVvPoo4+a6upq85nPfGY8buk1Y5msMSuPGvOlfcbsHfjD73ssZswX9hnz6O9eMKeccoo599xzzS2f/qz5lwPGPNjqjc94Wk9Pj5k+fbr50Ic+ZDZu3GgOHjxoHn/8cbN//377nrvuustUVlaa1atXm+3bt5srr7zSzJgxwwwPD9v3vP3tbzdz5swxzz77rHn66afN6aefbq655prxuKVJY3fccYeJRqPmF7/4hXnxxRfNww8/bMrKysw3vvEN+x5vbE6ePfroo+Zzn/uceeSRR4wks2rVqrzfn4ix6OvrM3V1dWb58uVm165d5qGHHjKhUMh85zvfOVm3+bq3SQdOFy5caG688Ub770wmYxobG82dd945jlf1+rNYLGYkmfXr1xtjjInH46awsNA8/PDD9j2///3vjSSzYcMGY0zO6fj9ftPe3m7f8+1vf9tUVFSYVCp1cm/gNWSAzodajdmeeOkL608b828HMuaftveb+zcdMB/40j3m9uc6zJf3G7OvK+GNzzjapz/9aXPRRRf9wd9ns1lTX19vvvrVr9qfxeNxU1RUZB566CFjjDG7d+82ksymTZvse371q18Zn89nWltb/3oXP8ntiiuuMNddd13ez9797neb5cuXG2O8sRlPOx6cnqix+Na3vmWqqqry/NqnP/1pc8YZZ/yV78gzbFKl9UdGRrRlyxYtXbrU/szv92vp0qXasGHDOF7Z68/6+vokSZFIRJK0ZcsWpdPpvLGZNWuWpk2bZsdmw4YNmj17turq6ux7li1bpkQioeeff/4kXv1ry9yK+Z92vPSFlQWk57/xKantoDojp+q0q/6PsgNxrWiSmrdv8sZnHO1nP/uZ5s+fr/e+972qra3V3Llz9b3vfc/+/sUXX1R7e3ve+FRWVmrRokV54xMOhzV//nz7nqVLl8rv92vjxo0n72YmmV1wwQVau3at9u7dK0navn27nnnmGV122WWSvLGZSHaixmLDhg265JJLFAyO6aOWLVumPXv2qLe39yTdzevbJlUrqa6uLmUymbzNU5Lq6ur0wgsvjNNVvf4sm83qlltu0YUXXqhzzjlHktTe3q5gMKhwOJz33rq6OrW3t9v3vNzY8TvPXt4+OOWVvW/lypV6bt3j2vQvX1JxsfTmN79d5513nhqXfF1PeuMzrnbw4EF9+9vf1q233qrPfvaz2rRpkz72sY8pGAxqxYoV9vm+3PN3x6e2tjbv94FAQJFIxBufv8Buu+02JRIJzZo1SwUFBcpkMrrjjju0fPlySfLGZgLZiRqL9vZ2zZgx4yWfwe+qqqr+Ktfv2ZhNKnDq2cSwG2+8Ubt27dIzzzwz3pfi2TFraWnRzTffrDVr1qi4uHi8L8ez4yybzWr+/Pn68pe/LEmaO3eudu3apfvuu08rVqwY56t7fdtPfvITPfDAA3rwwQd19tlna9u2bbrlllvU2NjojY1nnv2VbFKl9aurq1VQUPCSCuOOjg7V19eP01W9vuymm27SL37xCz3xxBOaMmWM0quvr9fIyIji8Xje+92xqa+vf9mx43eevXrbsmWLYrGYzj//fAUCAQUCAa1fv1533323AoGA6urqvPEZR2toaNBZZ52V97MzzzxTzc3Nksae7x/zbfX19YrFYnm/Hx0dVU9Pjzc+f4F98pOf1G233ab3ve99mj17tq699lp9/OMf15133inJG5uJZCdqLDxfN/42qcBpMBjUvHnztHbtWvuzbDartWvXavHixeN4ZZPfjDG66aabtGrVKq1bt+4lKZF58+apsLAwb2z27Nmj5uZmOzaLFy/Wzp078xzHmjVrVFFR8ZKN27M/zy699FLt3LlT27Zts6/58+dr+fLl9v+98Rk/u/DCC1/Sem3v3r2aPn26JGnGjBmqr6/PG59EIqGNGzfmjU88HteWLVvse9atW6dsNqtFixadhLuYnDY0NCS/P3+rLCgoUDabawzsjc3EsRM1FosXL9ZTTz2ldDpt37NmzRqdccYZXkr/ZNl4V2SdaFu5cqUpKioyP/zhD83u3bvNRz/6URMOh/MqjD078fb3f//3prKy0jz55JOmra3NvoaGhux7brjhBjNt2jSzbt06s3nzZrN48WKzePFi+3taFb3tbW8z27ZtM4899pipqanxWhX9lexNb3qTufnmm+2/vfEZP3vuuedMIBAwd9xxh9m3b5954IEHTElJifnRj35k33PXXXeZcDhsfvrTn5odO3aYd73rXS/bImfu3Llm48aN5plnnjEzZ8702hX9hbZixQrT1NRkW0k98sgjprq62nzqU5+y7/HG5uRZf3+/2bp1q9m6dauRZL72ta+ZrVu3msOHDxtjTsxYxONxU1dXZ6699lqza9cus3LlSlNSUuK1kjqJNunAqTHG3HPPPWbatGkmGAyahQsXmmeffXa8L2nSm6SXff3gBz+w7xkeHjb/8A//YKqqqkxJSYm5+uqrTVtbW97nHDp0yFx22WUmFAqZ6upq84lPfMKk0+mTfDevDzsenHrjM77285//3JxzzjmmqKjIzJo1y3z3u9/N+302mzWf//znTV1dnSkqKjKXXnqp2bNnT957uru7zTXXXGPKyspMRUWF+fCHP2z6+/tP5m1MOkskEubmm28206ZNM8XFxebUU081n/vc5/LaDHljc/LsiSeeeNm9ZsWKFcaYEzcW27dvNxdddJEpKioyTU1N5q677jpZt+iZMcZnjHPMhWeeeeaZZ5555plnno2jTSrNqWeeeeaZZ5555plnr23zwKlnnnnmmWeeeeaZZxPGPHDqmWeeeeaZZ5555tmEMQ+ceuaZZ5555plnnnk2YcwDp5555plnnnnmmWeeTRjzwKlnnnnmmWeeeeaZZxPGPHDqmWeeeeaZZ5555tmEMQ+ceuaZZ5555plnnnk2YcwDp5555plnnnnmmWeeTRjzwKlnnnnmmWeeeeaZZxPGPHDqmWeeeeaZZ5555tmEsf8P2iilDdLdYqoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAKTCAYAAAAkDqG/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebSs53XeiT01z3PVqTPcAbiYCIAgCBIESZAQJ3EUSVGibMsSJVuyLTmxneWkY7uTlXSvpNNZ7U530krc7kjWFIkaLEEDRZqDOIsEOEAAcYmJAO4F7nCGmue56qvKH3V/+7x1FTXwT5a1rs+3FhaAe8+p+r732+/ez372s/frW61WK51cJ9fJdXKdXCfXyXVynVwn19+Ay/8f+wZOrpPr5Dq5Tq6T6+Q6uU6uk4vrBJyeXCfXyXVynVwn18l1cp1cf2OuE3B6cp1cJ9fJdXKdXCfXyXVy/Y25TsDpyXVynVwn18l1cp1cJ9fJ9TfmOgGnJ9fJdXKdXCfXyXVynVwn19+Y6wScnlwn18l1cp1cJ9fJdXKdXH9jrhNwenKdXCfXyXVynVwn18l1cv2NuYL/sW/g/1/XcrnU4eGhUqmUfD7ff+zbOblOrpPr5Dq5Tq6T6+T6T/parVbq9/va3d2V3//X86M3LDg9PDzU6dOn/2Pfxsl1cp1cJ9fJdXKdXCfXyeVcV69e1alTp/7av79hwWkqlZIk/eIv/qJ6vZ663a7a7bYmk4my2aym06lms5kymYxSqZSWy6Xm87n8fr8ikYji8bji8bj6/b7q9bqGw6Gi0ajC4bDOnDkjv9+vUCgkn8+nyWQiSer3+5rNZjp9+rSGw6Ha7bZGo5FCoZAWi4XC4bCm06nm87nS6bRCoZD6/b5Wq5V8Pp+SyaRCoZBms5mWy6Umk4mGw6F8Pp/i8bhOnTqls2fPajqd6tKlSxqNRhqNRppOp0okEgqFQpIkn8+nxWKhTCYjSep0OhoMBur3+8pms9ra2lKxWFSlUlGr1VKtVlMsFtPZs2eVSCQ0Ho81n88Vj8c1nU5VqVQ0n881n88VDofleZ4Wi4X9fyqV0mQyUSaTUSaT0Xg8Vr1elyQFg0EFAgElk0lJUqvV0nQ6VTabVb/ft2dLp9MaDofy+/2az+daLBbqdDqazWba3d1VJpORz+fTfD7XbDZTKBSS3+9XtVpVt9tVMLg25UQioXw+r1AoJM/z5Pf7FQ6HFYvF1G637b2FQiENBgPFYjH5/X4tl0sVCgUtFgvVajVdvHhRknT27Fklk0mlUin1ej1dvXpVxWJRiURCy+VS3W5XnU5HgUBAhUJB0WhU7XZbw+FQiUTC1nMwGCgQCKhcLisYDKrdbsvzPAUCAY1GI0UiEeVyOY1GI125ckU+n0/ZbFapVErRaFSr1Urj8Vjdblfj8Vh+v1/BYFDJZFLpdNpsplaraT6fK5vNarlcKp1OK5fLqVKpqFarKRwOKx6PK5lMKhqN6urVq/I8T5lMRovFQqlUSv6kT7/4976kp/ffp8e+EFK73ZYkFYtFveENb9AP/dAPKZ1O64UXXtDnPvc5PfbYY5rP50okEnrrh+/U++//bX3p2z+mp7/d12QyUSgUUjweVyAQ0GKxkOd5CgaDymQyGo1GWi6XikQiGg6H8jxPq9VKs9lMPp9PsVhM6XRay+VS4XBY0WhU9Xpds9nMbJR7Xy6Xms1mmkwm9h7G47G2trY0Ho/VbreVzWaVTCa1Wq0UCoVUrVa1XC5VLBbt90ajkRaLheLxuMLhsMLhsFarlSaTifx+v5rNpiaTiXZ2drRcLrVYLBQMBhWPxyVJ7XZb/X5ffr9fgUBA8Xhc5XJZs9lMzWZT1WpV0+lUqVRK5XJZyWRSPp9PR0dHarVaSqVSOnXqlCaTiabTqYrFolKplA4PDzUej5XNZrVareR5nlqtltm4z+eze0ulUtre3lYqldJ0OtXFixc1m820tbVlzxGLxZRMJrVYLCRJfr9fvV5Po9FIPp9Ps9lMkhSLxVQsFm3veJ6nwWAgn8+nQCAgz/PsnS6XS43HYwUCAY3HY81mM7vXQCBgvtXzPFWrVYXDYbPF1Wpl/sTn89n+j8fjtl/ZqzxvvV7XfD43H47/zWaz8vl8mk6najabGo1GisViikQikqRmsymfz6d8Pq9YLGZ7x+/323P1+31Vq1VFIhEVi0Xb37VaTUdHR7aPRqORxuOx+cZUKqVcLqdgMKjFYqG73pbQW177GQVWAx1N36wfPL+n1SKlUCSgwvZMN5W+pcTygrre7frcn9ylo6t9zedzSVIymVQ8Hpff71en09F8Plc0GlU0GrX7xCdOp1ONx2ONRiN1Oh2Vy2Xt7OxoOp1quVxazAsGg8pms4rFYuZXYrGYrQM/jx9Pp9MWT4k5Pp9PoVBI0+lUnufJ5/Mpk8nYui8WCwUCAfsd/j8QCFiM9TxP7XZby+XS/i4SiSgYDMrzPEnrCmgwGJTf79dgMFCn01EkEjG7DgaDCofDCgaDWq1Wms/nCgQCtvaNRkPT6dTiOZ8vSbPZTOFwWJK0WCw0Ho8NO/h8Pvn9ftuD7toEAgH5fD5Fo1ENBgOFQiF7B5LU6/UUCAR0+vRprVYrNRoNi/OJRMKeNZ/PW0zs9XpaLpfa2dlRLBaT53kKhUIbcS0UCqnb7arb7dp7Y/12d3e1t7en4XCowWBgcTccDlvsZP2we9a51+vZ9+zv79vzjsdjrVYrpdNppdNpe6/E6XQ6rdFoZPc3HA41Ho+VTCbNV4MhWCcwyic/+Umzqb/uumHBKaV8Ag7/vVqttFqtlM/nzTBDoZCGw6Gm06mSyaQ5mkAgoFAopEKhoGw2a5sNJ9rtdiVJnucpHA4rnU6r3+9rPB6bw5fWG4x/er2eUdkYT61Ws6Dt8/kMmIRCIWUyGfu+2267TT/1Uz+lUCikL37xi3r00Ud19epVAzaTycScF+ANoxuPxwZ0U6mUxuOxGTx/lkqlzIkAGLn/ZrNpmwWg3e/3FQ6HFYlEzJmNx2PlcjndfPPNGg6HajQakmSgIBKJGEgiOOJ8CXKDwcDAeLfbVSQSUSQSMYCwWq3snebzea1WKzP+1WplmwtQHolElE6n7V6j0ag9ryQDF6vVygIcjnKxWNimnM1m9rvFYlHD4dACK8B3tVrZemQyGSUSCXsun89njhbHNJ/PlUwmNZlMLICHw2EtFgutVisLgOPxWJ7nKZfLmX0HAgEtl0sLqIPBwBIF1tMFbJFIRMlkUp7nWZJWLBbV7/dVKBQ0HA41mUx0z4NbSiVm+taXOhp2wwqFQkokEjp37pz+/t//+9re3pbP59Ntt92myWSiZrOpTqejWCymo2cmCr2rrFvu9nT1uXVyNJ1OtVgsFAqFVC6XJUndblfT6VR+v9/WNplMKhAIqNPpaLlc2l6NRqPm+KVjRw3oAEAmEglFIhHFYjEFAgFLmILBoPr9vkKhkGKxmLLZrNnBfD5XtVq1hAcAgz1hd4FAQMViUdFoVMlkUv1+X5FIxH4P3yDJwCbPjd0Fg0H1ej1LWnjH2C2gEz+BzSaTSW1tbWk2m2k4HBoQB8SHw2FtbW3J8zyNRiOzKfzAcrlUKpVSu93WYrHQzs6OotGo+SSeLxKJWODlntgfrF8gEFCv19NwOFQulzP/dHh4aMF3uVwqFAppb2/PErFqtapQKKRUKmU+KZlMKplMqlAoGOjhXRLwx+Ox+ZnBYGC/BxgmyWePuOAN8D4YDJRIJCxZYL/jtyORiMWJXC6n+Xyuer1ugAHwg9/OZrMaj8eaTqfq9/sKBoPK5XIKBAJqtVpmE4lEQre9zae33f7bqswe0lc+e0YXzl9Vv39JuVxO5XJZlWcCesb3Np29/3168HWf0k/9vcf0O7/5BnUaSwMYvINwOKxSqWR7mvti75NsS9JwODSfFo/H1Ww2NZ/PFYlEDNgvl0t5nmeAndg2Go1s321tbWk4HKparSqdTisajSoWi5kdzudz80upVMruiYSOpNnzPMViMUWjUU0mE81mMw0GA0uI8Zn8zmq1UiwWM6KCWIHf472RMA0GA0vsSJLwyXt7e/a97XZbqVRK6XR6Y20BYiSkfr/fiKTRaKRoNKpAIGD7ExsCyE6nUxUKBVtXkm5AGpgiFospFAppNBrp8uXLFudLpZICgYCi0aiCwaCB4kAgoEQiYXFNku3dxWJhSdByudRwOFQgELBkfTqdqtfrabVa2WfiJ4kPk8lEk8nEACWkUSAQsPfCPpOko6MjswHuzfM8zedze5+SlMvlLBlIp9O67bbbFI1G1ev1dHh4uIHR/rrrhgWnXMPhUOFw2F5cuVw2h5JOp7VarSwbn06nZgCSLLi7GxoHvlqtNBwOLdgQfCUZQCU7IquNx+OKxWKaTqfy+Xzq9XqSZCAZ9gXnHgqFDPBOp1NNJhPb4LlczphcMj5Yv93dXdvIZLeRSMQCSbfbVTweN/aJgM7zksm6DgRHSabM95GJFwoFtdttHR4eajKZqFQqaTQayfM8YycymYyBftjCaDRqBu7z+TQcDg1E5XI5C3aBQMAYSYIXxg24jkQixiRXq1VJa9YnkUgok8kY64NzjEQixtBgK6lUSqFQSLu7u5b1AcBGo5G2t7e1s7Ojm266Se12W81mU61Wy5xHt9s1ti8WixkznM1mNZvNzNHO53MD2ul02hi5ZrNpjmy5XBqgnc/nxk5w36vVSr1ez0DOeDxWKpVSoVCw9+4yWaybJAM6mUxG6XTaAtloNFI0vgYl3fpE4VBUmUxG0WhUxWLRsnDsdWdnR6VSyZjPfq+n2SqrYHCqxcJnzjISiRj4m0wmFtxh7iqVinK5nCWNBD0SEmxQWidLkpTJZNTr9bS/v69YLKabbrrJ3tlsNlMikVA8Hjc7jMVilpTAchEQXQcN+IPx6ff7SiQSFqBgnGazmQV3wNBsNjNWcj6fKxgMKhgMajAYaDQaqdVqKRwOK5/PWxAgkLCXer2esYSRSETj8ViVSsVsrNVqbbAQfr9/AwSQ3AL8AZ/YFInnaDRSpVKRJGMKSa54XwD7Xq9n7OZoNLJ7J4EnWLEHuQ9Y03A4rEKhIM/zjP0C8GGLs9lMvV7PktXFYqHJZGLggP2EDUynU0WjUZXLZYVCIV28eFF+v98qCwAe7IkgD3hqNBpqNBoqFAqqVCqaTqdWzXr66afVbDbl9/t1+vRp81Ek/DwnSRXAnH0RCoV06rUJPXj7r+rK8F361K+nFI0slEgkrIpHchSJRDT95kStg4/qwx/8tP7Wzz6vX/7vblK7vU6AstmsrSFgZzgcaj6fb1TeSMgkma1SVYIwGY1GSiaTG7bl9/uVSCQ2qhi860AgYIwY+xjf1mq1LJZCPvDO5vO57SvP84wc2dra0mKxMBv3+XzGxPLzsOVUDtmngMrVarVRgSFJJM77fD5L1IrFouLxuP1Zr9dTtVpVuVw29pDEF1Z3MBio1+uZ/ZMkAVpdH0rcdIku9jQAnt/hPRCv8SHgBIgf93NJ0CORiAH16XRqf5ZIJNTpdNRut1Wv17W7u2vxhESbPTSfz1UoFCTJPgsQnM1mlUgkzAe5eIb3xRqWy2VlMhkNBgONx2Mtl0tFo1Hl83mLX2ClWCym++67T29/+9s1m8306KOP6ujo6FVhtxsenILeYbLIXgBJZEL8/2KxsMx7MpkYg4IRLZdLK6UOBgMDF+FwWJ1Ox9gzaU3v93o95fN5Y7wApzC1bvaPMZF9wQhSNj44ONCv/dqvKZ1O68UXX1Sr1dJ8PtdwODSHXygUNBgMzBkTiGGAKT16nqdut7vB2BJ4CoWCZrOZbSQ2CY40nU5bKZjgK61BIqXpbrdrzpzvxNFIskSAgMMzh8NhbW9vG0OFsyGDZbNVq1Xlcjn5/X7lcjnbxMlk0taE7FqSARW/369Go6FqtWqBlc3LZgIU8k6azabdezAY1NmzZ/XWt75V3/3ud1WtVrVYLCxpgbEGxMC6FotFNRoNNZtNxeNxCxSFQsFshmADECyVSlZqpVTDszWbTcv8yWBxzqvVSsViUdls1oBWMBhUt9vVcDg0ZwI7MB6PbZ3Wzn/tlG46d1rxSFnZbNYc9pUrV3TrrbcamHn55Zc3glAoFFLAN9F0KgtSlMdWq5Wq1aoGg4GBJEBWo9Ewhhn2TloHgH6/r+FwaKUlkjKYXuQ6gHLkALFYzBinvb09YyR9Pp/S6bQWizVYKBQKlmDy/ZRr3ZKgpA1gHQqFlMvlLKBgNyR27OFut6ter2fMBPuF5AIJSDgcNj+TSCTMT7ksYq/Xs+Q2mUyajcE6Ui4FfMCQwDZSSqWUG4/HtVqt1Ol0NBqNTEYiycBuMBg038SeBZjNZjOl02kDAJS9h8Ohut2uyZNisZiCwaABK4AQkiQqCZKMaWo0GrYPpePAz94OBoOaTqe2dwuFgiU13B/SGFjV0WhkUgS3CpTP59VqtTZAEuzh3t6eisWiBX0SRVdOQ/LOWsxmM732vhc10hn92W+mlM3kzC5gjEly8H2VF2v6cu4j+pEH/ifd/dbb9ejnB/YeSDLYv7CnACAAHutUKpWs9D2dTs1HttttAz/4j36/b7aBD+R9jcdje//sD6pr2DosPX9HEo40AXYRf4Dtttttuz9iMUkZrDTvhvfFZ8IEEjN2d3eVzWZ1cHCw8ZkkQS5bToUpk8lYlZDKKOAPMEfSTikbDIDfIkGF8YQIwl6IJyTJgL/5fG5/N5lM1O/3N+RLgHOSBxhx4iixluQ5GAwqkUjYsyL1icfjqtfr9mzYDvYEiQVQRi4CNuj3+1ZViMfjlvTgG9jbrCP2Alm0vb2td77zneZ/W62Wvva1r70q7HbDg1NeNo6azBeGhJJoKpUyx0Ppr9FoWEDg51wGDjYWsNluty3T5fN7vZ5pTNm4lHxwKmR/BCE2AUbCZhqPx3riiSesRFMoFKyk5OpURqORBoOBOS8AYSaTMebKdUQEeYIez3T16lUtFgvL6ghoZJAELDLZTCajQqFgjAPBoFar2T2Rkc3nc2PhAEcYvSTbXDgsHD8SjE6nY87y7NmzBlrd7j+CFnrXdrtta53L5dTpdEwb62r0cNYEALJ2mJ5KpaLHH39cly9fNjA5n8/NIXJ/LptCwsO7RZdEiRpwmslklMvlLBPH0RPUKTXCkEhroL+zs6Pt7W3TRhMsCJpu0EWXiKOifAXL3DhcSm+Uzt4d0riS1Llz57S/v69arabf+I3f0Jvf/Gbdcsst+t73vqcnnnhCjUbD7Dh/NqPocl+N2t3yvNmGM+eeQqGQPR96Vt4/z0wFo1wum/a72WxashePxy1QbW1taTqdqtPpmG1Ka9A+GAxsPUajke1Z7gW/gJOFVcIO2Q8wVcvl0qQimUxG9XrdwCbvGaDPfmd9YaTQc8K08r1cgCDAuyt3gZWkkgMgQVYEU350dKSdnR2Fw2F7NyRzgBTeCZUZd+/hMwaDgbrdrpWO3ffJ8yBHIPgS4NkvEAQEM5IjgCQgEh2k53mmR8cXe55npUVJZtuj0UgHBweKRCIqlUqm759MJrbXAbjL5VKJREI+n88kII1GQy+++KL9LDKKVCql0WikUqmk06dPW/kcmQ/gBCmU3+83FjMUCil/KqXt4J/qOy9+RAFfyFipQqGgO++8U7feeqvm87kuXLigRqOhTqejXq+nF7/lqfPmN+r+Bw71rS/EzI/C7iFz8Pv95ttZR3TcmUzG7IoSr3vP2CLVo/F4bFIaSBQqO2jFYU3xIfxDtQ9QBhFEQkYZmz1HXOz3+1YRc/cKCSMJCeASbS22SIKP38LmQqHQhlYSoEqMocRPhWw0Glkpn3I5vhUwS3WVvgJYTDTAVGEA2IA4fA52gr/NZDJGMvB8+C+314P3Nh6PVa1W7V1LsmQZlpIKGPaBfwS/RKNRS+5h2NkDJBXEL/T2VHHwCy6xxL3Qz8M9uVVMfEKz2VS5XLbf4Rle6brhwel4PFapVFI8HrdSLwEJ8TTGG4/HjTngRVMK9Pl8xtCglYtEIqpWqwbcWq2WisWiZcO5XM5AabPZNEMHBLgsHUCKMhq/SzCiUaHT6Rh7QekSh1Kr1YzyJ9OihIBhwdi6rOFsNlMulzPNDJoffo/MKZ/PK5lMWumS0g1BiOwY/RjgjPuvVCqmo2XdyfjXoMLTLbe8rLNnX1I2u1I4HNI99wT09NM5Xbp0i9LpkoEDl/mNRtelZzYRmw+dLHIGGFjKWJ7nqVaryefzaW9vzwIMbB0OEdaVjby/v69KpWLlO5rpcPrIOlarlelOXUYPUE7ZiiSF5h7AVb1eN/E6dgSoKBaLBlpwytIaZPOOCGgAAbJfNJVUBYrFoiSZXujq9+tqf+QNuud1L+tLL2R19epVC2yXLl3Syy+/bIGm0WioXq+bHvOBdy/kKabHvzKV5DNdFPpe2DMaVdARornC9miaobwOIwD7SWmasrHLhHEBygl6BHNYEbJ/bDGRSNif0xCBDRA8YRhwsN1u1/RZsJAwKZTBut2ugS0AM01GBGcABuCIPRcIL3THWybaLV9WyD+QtwxoOE7pqe8ldOF7S6sUAPhyuZz5AEA28gSS2Gq1qnq9rlQqZQ0agHLeU7vdNm0amjouwJ0b3JAAsabYE74WkDsej43Zww7ZB7DH+BxkTTTOSTK/S9JPYoftdLtdA03cN0mhKzMIBoMmJXDfmauhhOGrVqvGJuPv8FmsFX4I0Pj2B8NaKqLP/s6hcpltA0d33323PvzhD2t3d1er1UpHR0f6gz/4Az377LNmq+efv1vvuP23tH363fIm6Y1KAQ1P7vuAqEin08pms6aBJ/nAT7tNLJTZIWsWi4Wxi7lczgALVQIYRN6B3++3NYGwAEjByhGjDg8PrQQN20jVKJFIqNls2n6l2YckhbIx5BH3QZxB7gWgJMEgeaKxFtCFrr3f7+vw8NAqgNgQfpoSP8k7FUJXPkNCjQ9H3uA2GAI6Xe0mREQymTTsQNJA3MTfkCi6LDCxgDgDbqGJydXxQ5AhlyI5nEwmlmiyNvwd7K7P51OpVLJ9C4jH38Kgu/sNNpdeE5/Pp4cffljvete75HmennjiCfMPr3Td8OCUkhzAgWyC8jqZDyyEq0nKZrPGhvp8PjUaDdVqNbXbbZ09e9bKHzShkPXx0kKhkPL5vKbTqY6OjqzzFqcmrYN1p9Mx9sX9O5hMjFySif9hZ2h2yWQyKpfLVgKmUYaASYkNpwwAR7M6Go3s/6W1wyuXyxqNRqrX69ZIATNF5g34BVCRMeM4stms0um0Wq2WdbuyeZElRCJBvf3tF3T77c8pFpvq4KCgVisjvz+gZLKv97//aU2nP9APfnCLvv/9N1oQ6/ePu1oHg4GtEdktG4gpCTggNhMbHSAHU4DzQExOAw3PDLjBeRB4YL8lmTMBvOLQJRlTDVjmvgkssGEwhTh22DpKtDASBHICPGCKDJySJgGL8idlHZpJWq2WAZUXL9+sB87+O+V2X6tWvWWZeb/f16VLlyzpo8zj8/nkj/l1a+GrutR6UCF/VJGkf+O56AoNhULW8QzQQbdHl74LPAeDgZLJpOl+aaKjVOnqoUgUXKkD+wHdF8kUINkNJiSDLtPGO6KsDXPDXnSlIW45D0BGUMEu2Md8BtUBbLTX6ykQ9fS2H23rdPIb8mmm1uqt6k/PyO9fqpi7rI+885savuMmnX/uDfrqnww3dGEwmvi4RCJhvs7zPJtwUa1WrbmNZ8VHAmBIQimjt9tt6wAmyDGBgzWWZAk3gRPWSJIBYklWPo7H42q32+p2u0qlUgamkMkAaty+AJ/PZ1IOSq9IQLhfSQYaAVvSmp2GrUYXT+nV7/db9YsqBjIdgAL7me5nYgcJTTo1UM87o+UiZHYYDod133336dSpU+YL9vb29PrXv972wmw20/4FSbdLW6djOnpRxnaTKEGO4KdJQKgswYj6/X4D69gzVTtYYPZKOp3eSMxITJCdwKAxAQb5CdNOJG1oP2msoWKG7p14hrwOFhNt/XA4NFBNFUA6Tgr4DteeXF+LhAV9tquLZo+50jouZGHcJ+sHwHW75fEzrDeAFvYVEgHpFYQWdj+ZTMwX5vN5k5mg+0Qbzn6lKokcIBKJmF8B1HIfmUxmo4Ln9/tVLBbtHiHIpLXs0NVRgzlIkqlwJZNJ673gvdFfgSwKW6QJmn0Si8W0v7+vr371qwqFQtbf8WquGx6czmYzXb161dgKtzSTSqVsM7jlk3w+r1qtpk6nYxo+Nm0ul7MxJLFYTLlcTrlczsaiuPIBGBmcg1uGgLGUZOAXzWGn07ESFiUVmlfczcmIIpicbDZr3aadTsdKPDTNsNnYaG53HYEtHo8bK8LvwaqMRiP1ej1jXGjwAtgRPNymMXR3dJ3zOZR14vGgPvaxv9RNNzX0wguv0Qsv3KlWK6l6vW6M4N7eG3TTTU/pLW95UaVSTQ8//EaFwzljH1g3GDYADrrBZrNpIJyNu1wureMaSQAaM0pzgBocicu4STKmgAYw3isZNKxFq9WybBHWh+52F4zilHAgbtMIThWn4WqwVquVWq2W2TU2i6Zwf3/f9F3FYtF0gjRnuc0ndGA/+42Z7rrpDr3jnV/SZ/70XTo6GtmeouyMjWcyGfnDPv3Yz1xRYDXSd76S1nTaN30yWjNK2QBOksT5fK5arWb6aCZP4IBhcvh9RsEdHBxYNs/v8G4og7m6L0rHvV7PGBm3fC4di/8ZbUbAoTpBgORn2aMEGrfZCqDEVAc0pbPZTNVqVfP53H6evxsOh0oWffq5f3hREX9HzzV+VE/+RUSdg/41XWlEK9/tuuPBh3TfGy7pwbv+WLnCe/SHv3zM3EciEWseOTo6kud5BlApvcOkAPyxJRJO/GS/39disVA6nbZ3QXcw7BdBh25ut5Gp0+mYrg0GrFQqmW+GSafiQJDEr7C3aZ6jZAxLmEqljDUl6ZZkMhwAP4wbvh7NJ2V5Vz4B8KK5kJI8Ps0FzZ7n2Xe51aKAv6PlMmT6eZJ1t6lL0gZLTyIZW61tLZWJqR0NWvKDdANZFu8Vv0QiSzKBfAgAA7uLvwMowR7j+2q1mkqlklWQWDdX++5qIEl+3aoPvsuVnrBvqGKhnwbQLhaLjYQXTa4rHXOrIPgP9jGgkfWhVO12qOM/sTueG30pcgUAKr6G9eR7kUNQsUDGha+j74Pklfu6PmFyMUk8HjfpDokIYJvEES03pAt7dbVamZyO5wJXQDhh29iy+x34LAgXWFb+nhghHUvuiPPsh8VioWq1ql6vZxVD+nKotkUiEZMkvNJ1w4PTfr+vo6MjrVYrazBh4RHy8g8MBmC23W6b7jMQCNg4FwIqoGW5XFq53RVHA0Yp7bVaLcuUyK7G47Fl8Wxmac0Ekv1j4K4UIRAIqNFoWFZG1gIbRGZJmRomkY2FNqfb7arRaBh7wWcsFuvOf1c3iVNwM0gyXv4eLQ8bFKZ1e3tbsVhM3W7XGL+9vV39xE88o52djh5//Cd04UL2Wsl+Yln+crlUrRbSSy/doqeeSuvnfu55ffSjj+vzn3/XBvgFjLnsDWC41WqZg8MRwIDhpAjsOC5+F70TgI+LjbpYLGzUGAEA9g2m2u0AR6sMY0eQgbUGuJAtUyai4YXPYRTK0dGRKpWKZfewe+gKcdr8Lh39ZOuu48FB1Wo1LZdL/ekfP6Cf+PGv6CM/+kV98Ztv0/e+0lA8vk5KisWi7YHdO5N6/wcvKON7Wn/25ffr6ot9Y7Vhg/L5/IbjhoFzHRWaJeyXuZOnT59Wq9UyAIicoN1ua3t728BdKBSybnj2F3vI8zwLIIAuSvzZbNb02G7TEON4yuXyhm6X6otbpqbpcblcqtFoaLFY6PLly1qtVn8FXCPpwX5crXVxJ6Of/vnzCvjm+q3ff6ealzvmr/ANvpX08ndbeuorfr337/1DvWH7V/WhT7xHf/rrh9re3rZKEQ2ZbiMECR+aMu4BcDWdruev7uzsWONFIBAw20S+QBDF58E2u3o7giJsLoy3dNzpTAc95UTeDXuNyhXgEsaVrnKYRIA3YBDmxu2OJqlmzUnYmRIgySoxnudZ4gMzS7ma5g9Ku/gUSce6zFlY+UTXQBJg/tlnn9XZs2etMvDyyy/r/PnzltjPZjPlStemtyipQiFhTCla50AgYACGZ0KuhA8iYUIDKsni3XQ63QCazAEG5PLsrVZroxnGtVfWiP3KvobxhAgBjKRSKVtn3jOXK7lw19DdF8zMZa4nviORSBiglGSafbcK4bLBSMwCgYDOnDmzMekG0Mb+QYJDDOP+aOZjP7Km3DvkAnEQ38Z0gtVqZfePjVKiJzZQSSCOUDVzq3zdbteIGD6HeJ1MJi0Rp6pL4gAGwjdTzWLPgGlYQyQS/C7fTxyF5InH4zpz5oxNokin06pUKnaP+AIkOq903fDgNBgMWqYOundLgGQuyWTSxm4AKtiIjDIh8DOjLBKJaHd318qQMAY0ITDDDy0UEoPlcmnDcsmG6axfLBbKZrPqdruq1Wo2vofRDQisAWR0uaLhQ8yPIaIV2draUr1et9+D9SQowIpg5Gxgyt6uVoeub5g/SVaChb2t1+u2GXGugFv0j296k6dTpy6qWPy3Ons2r4sXv2LDspm7CSiMRqOq10t6+OGYPvGJv9S999b1/e/vmh4INtY9rhYnimC7VCqZzIIg7AZu1pFgSibsOnVXW4dkwbUZNjmOHraTwwnQeRIkCYqMzKJzFD1moVCw5+AgBRwGulPsk5IQLBl2R0meSQFoqQD/OLlSqWSlNb/fr0F1pk9/+oN674f/Uh95+8N699vP6vsX7lGvE1QqGVE0udJNe1eV9z2hiXb0H776Y7ry9NiCAJk0YBgwwxqk02ltbW2Zs2SNafiA5UaHtre3Z40Q2CXdoZLMVgDjkjYaGnjvONV2u21JDcGQfU6jFs1SADhKjjBJBDEYcJh2dIhuKQ4gxcEfaC1JUH0+nx76UU9RX1W/8bvv1NGL7Y13it4aYLJYLPTV36ko/POf0P3nPqlHTr9Dg/bAmET2JRpkt5oBSwozTLcyzCo2K60nFMAk01zB1AGAM2vFGsBe5fN5W0OkFtcHSbfhx204Q2fJnsQPlUol1et1Xbp0yVhQtNQk8QR2fKurN4Vl5fPQbdPFDFBEF+4CAGyJvYifZI9Ka6Bz8WJOt7/+ijLlO9Svr5+z1Wrp85//vC5fvqw77rhDnufpmWeesWkgsM3n7qhprpyql1fKpCLmy0ajkRKJxEbjGMwVkhj2mtuUCTNLkuZO7SABDoVCxvQjYYNRRSZCcuU2nVJOhp2GqFkulyqVSgZ0eT+8F3yrq/mGgXO1vPwM5WASBvY8RAKJN1UDlw0FDMI6ujIO3gv2BxAjzhJL3A5+fA8J/XK5tHmw/Dz4gSQsGAxulL/dRBzc4E6YASTjswD+JIKARRIQKnXumsJkM4nDrdAgiYlEIjYKkUSRPYSvYD+jT6Wigc9qtVqGd5hWQUUPzIQfwYZezXXDg1O3VJrL5TSbzazMS5ZH1sdmBMC6I5Ok4+5vOjkl2WbFAfIPzRcAYQyF4OpKBhifgTFwqhCdwO5JCrCOdInv7u4qkUioVqup2WxaAwDlbQyNLIjSAgaOGJygxDgKt/MOAHd9Y0kwGLTTkiTZLEgYFH4XfQqBezZbj6y47bZLikZfr9tv/wc6Ovq6Oa1gMKjt7W1NJhPVarUNhvbgIKIrV7Z1++3P6rvfzRsTSaB0T8jAObjZMQmHmyS4jpMOSkAmJR3YNNgyZnLCqNENi81RUkQPxCimZDKpYrGoYDBorCeOBHaFZhlJZrNIMAiOaAJjsZjK5bIFaSYc8PyAGtd+kG3QkQv4csvRgMXmfl+/9H/K6NwbP6ofevdAb771C/LruNuy4b1JX3/uE3rxO54W86WVcHFgONN6vW4JSywWU6lU0tbWljFIo9HIqgCSrIMboC3JAKDbAe5qpUgq+G4aBAjgZPyRSEQ7OzsGxNGkEdT5XXc0Ctpi9gdaZFhXdxh1OHw805Mgxzgc5CMABwJnKBTSYNzTrcXH9FLrIdVfnhgDgpaMqgiD5Qn8j/yppzt+Pq/3fiymP/01z0r5nCzFaCaYMIIQfs6dt4sOEykSOjn2dafTsWZBNwEG7MPyxONx6+QlwFK5cf0uSQCTFLBBtxGGdWSPIlFhb8HyYAOUNSUZi8d+xsb4DOZ3uoccYCd0K/Os+G6kWthsKLQ+XMItLz/22SO96w17evv75vrdf7NmkgaDgfUsPPnkk8Zqwmolk0kt/J7OZb+qZ/ffqCuXDlUqza0EjESFyS0EeZfVhzG7evWqJU+SzL/w3tHXw66vViubAXx9ExIaQypqMJcQE5AQxAy0nbwb3gOd+6yxG6NDoZB9D0AVDTGVEM9bz9hMJBIGpJFVuJIB6VhW4Gp0SXSIV5TBx+OxVUldjSoAy5VewG4ChGez9alr+ABOf3MlP5LMfiANWBeSYqqmxDEm4TBH3e3+5xnRRQOIqVrgr0iQ+Q4A9mAwsJMKU6mUyc4gdvgu1sUFlADfRCKh7e1tu28a4SBuSIrQ/6LNptLwaq4bHpyStUva6Jglw4RSB+y5DTsAN0oanOjACCe3vEHZjYyWDFdab0yyOxhEym2Anna7bUwlYJgS82Kx7vaHnSP7h3WghBIKhWxjAFAkWalTkrGW12eulEFhbgkSrjyAzJB7Yt4o+jZms1HWho1BQsCopzVzNFCp9JKm03+ll156SefPn7dTaHZ3d/WRj3xE6XRaX//613X+/Hl1Oh2736efvkU/8iOPKJM50uFh2gAQpUXKkGzivb0901eit3L1bG4W7vP5rFMZJ4aDhMFiDXDAhULBHCABG9sgsLgjk9BqkuRwUpPf77dOaqYnMFPSBbAAcoAy7AFgE5tzgzvif9cZwkiT3bpOE7Y5GAyq3x/o25+r69lH0rrplh9XOLGSz7+SNwnIm/rk96/k9wclzQzo0FTC/gOcoNFiAgH3DHtP4oW2mX9cAOtO1XCDD+VzQA4jjkjMsHnYjEKhYOuDD2BvScdjroLBoK093xUOr09lIiEhsQJIU8akWuPaAswcTh424r73pBReNfTkt3IqFpe2h4vFoh588EHde++9kqRvfetb+sY3vqGDg4M1I7YM6GLnnbqt/BUFQm9UcBE0MElyLh13VXMwyNHRkflBV9MYi8V0dHRksgieBSDPzwNEYMFJrmDNAS/4RSoQrvaOsqsrRXL9HOvG95N8xuNxY35I1EhmAdmAKyaCEPhhp/CTHPbRaDRMgwugJbnHDlw9LQk6o4zcE/P8fr8uNt+l1+Qf1s13vUcvPTO05J7pCSTIsMqhUEgf+kRCoVVLj38tqljsuJMe8EAzId3Q7GXXh9MbQFkaH8/7j0Qi5gvx7VRe3KZB3pErCSHWsVfZ0yT8JFCVSmWj3IvflGRSJWQ/2EYmk1GtVjMpGnpFABeEkQuSpeNTIKkIQTjg7+gTwF8DWkl6iAXgBYgGKl3MROXZ3YYsEhwqeCQwrhwAf4+NSDKwxvujx4OYg4xhOp0qn8/b30OgsC8Aey6JAovMXgXjsBZUEOjRAPyCD0jkWAuqFfh21gebgbDCvnl2kg5X9uAmta903fDglFIHrBoskcsakcUjHqZ8w4YgW8agYE9gUcPh9VGmZJkYHIDJfeGSjBmk3Od20cHcJRIJlctl6zRH6BwKhVSpVGyuKs/BS3cDAoaK0cOKkKUSYBBdux23NDbBggEs6bxnE6GvwyhdgXWxWNTOzo6y2ayOjo42uitvvXUmn0/61KfaSqV+T1evXtVoNNItt9yiX/iFX9BNN91kuiCfz6dvfOMblvW+/HJW87lfZ88OdHiYtkxf0oawG0AHAw74QIsEGAZIw9LBShB03TFgjMBhbXE4bFjsBmdAsw0gYblcqlKpWALADFlKYSQw7n3SAEIJFd0UkgAcqXQ8MoyLbJkgAcNCQHd1fABd7JAACrhaLpeqHtYMqJEJ+/1+AwIwQzyDy9zm83lrdiCoISFZrVbW+IIDpGucPUVJCgYaJhUWh89kHxCEAIHYOdpXym3oV0nM3MHTsD8kgYvFQt1u1xwvAInkjZIZJf1IZHNsF0klzQ28j8ViodNn/eqtblNn/3gOaCwW07lz5/Se97zHmrKSyaQuXryoSqVi7OnLzyf0mgc6Ond3TgcvzA0kuN2x2DR70O9fj05DGkRjC+8FWyTRm06nBvzQ3bvBGp9wdHSkQCBg98t8YcYYsbb4NvYtpXwqFgRAfBAMIXpPfDbACNBHQEeaw+fybJS4c7mc7Ru0qawB64XvBnww3YJ9VSwWtb29bZUlqjjxeFx/8ScLnfoHd+hv/8Rj+mzy3XrpmYGxiu4oJPbXj/3j07qn9Lv6/tGPa9YPSRrb81L9QtbBvgNEcD9Im9gPsKdo2AF27Hl8PD0PbqUODSv7q1KpWPmWhJF14TlgVbFvQDdACADpAjkkL/hAEk4ScWwc5hV5DTbY6XRULBYtUWE98SOAX2KdJEtyWQuSVPwP94l/5xmTyaRVzPguDpXAB1JmB/Rik+ADSvihUMhGlgHwiSM0jHU6Hascsq5uJYIKAv4S0AkZQ8LgHiLgVmkhq7ADEjkXGyUSCetxYDwjfo31IoFkwgfP0G63NRgM7PddxvyVrhsenDabTe3u7ppB05GM/o3S5/+v8TyUMijbwsx0Oh3b5Dg6TgXpdDpWNuMzyOphh2Bd+FkAsed5Vpq/3gnn83lls1kDJwRVfo5siOALFc9MUQAXpYhms2mZsTtaBKeAw4dppATImrhHESLgJotydYA4UjYgMoZo1NNy6dMLL+wrmezaWmYyGZt5KR2PAiM4kU1OpyElkzIWG+fAhoVl4OfJAuleLRaL4vSn0WhkhyugK3K7twFhbH4SFDR4gGYCDiUcBOwcf+l+HpsaRwpTyfO75TFsBA0nAQinQHAiA6bjkiwde+HITAIaovp8Pq9SqWQ6NQ44YL1p3mFEGKwkTszzvI0TgHZ2duT3+7W/vy9JVj7nv3GMsOFu5z72SYfqdDq1hj1XV0fwJYgw0gghPgEO/ap72AHNQJQYAUzSmjlw9VI0SrEWPK/7rpnxip2xrvgUJEMwVi6jwGf1+31FQjHNvKQ1rJAcnTlzZkPak8/n9ZrXvEYXL148ltp0rjH2Yc9mmLKn8XFUZrCRTCZjchuCGmvMfnZLozRD4R94P7Bk2Jkke9ZWq2XrTRmWhATWhkQDgMN9u+xeKpUyacT+/r7tMSpClGF5Hp4btofyJ7rufr9vE0HQjUuy98s7Asxms1kr6bIe0rHWPhxej9zpdDpqNBomV/njP7hXH//bS33kA5/Wyw+8U9/6Ykbff2zfAHcoFND9P1zWg2+vazv8u3qm/mH96b9rKRLZXA8kJwR6fD5gAFKDJA5A4Y5BA5Tg4wHi3AtgBsaSxBVQQ2UMsEMzILr14XCo7e1ti6NIvvL5vMXD6wEsMccFqVQVGFbvAjfp+GASQD5kTjqdNv28W9LG35AsIt8jgVosFqa5xV8Q37lHRnWVSiVbN0byMcd4NltPQXGfFx9EIgdBlMvljDDgnqgMMP0BYAvBhFyM8n6tVrPYAGGCj3PlHIzcI5FgPVxmF9kCwNPn89l9x2Ix1Wq1jbI95IUkS0DALS6xQHLM3nMlD6903fDgFCPEAAuFgg2WhYGB5aAhiIXESZJZYqSAMMrxbFAYsMlkolQqZR2zrqgc9gddJCOWALSSTJcVj8dtbIS0BhmtVsuE7NLxnFPKh4BBuvBgPiSZcwNYsCbu4G1YRxqHXCYAA+Sep9Optre3DVi5mSVZMMCcLBDmYbmcyu9fabVaWMNLJBLRwcGB/vIv/1JvectbDIBXq1UDCKFQ6Nqae5pMZI51sVjYO3IlDThaxhrBbNEtifNoNpumBaXEBNtJeR3NHowMJTNXv+yWNCn9N5tNNZtNOz7WTYRgzqTjTmECI84BoTuOJBxeH9cHOwFjjTNFG0WDH0A9Go3q4ODAAAPgknJkv983GyCYuyJ9mvZczVav11MulzOAwdQCghdOj30C4KAq4bJh5XLZSsrcN4ExFotZqZ8SFswbx2XSTAajtFgsTPdcr9fNhtGcYjdUOhgHFg6HbaqB+/0AysFgoGq1qmKxqMViocPDQ5sr6vf7zZ7Z/6wv7LfbkCTJGFr5Vgr45htAr9/v64UXXtCb3/xmbW1tGavtajeTyaTC0bWPmE1XdhAD3wXTgo8gWTp9+rSi0agFdNYMlgqbIonCJplvCFsVja6Hvnc6HeVyOW1vbxujBMDGT2FDh4eH5puRNlHC5r0haeH3OPGH9+AmGVRZ0MTit/G3JIOSjFCgEcQNljDskqziIh2X9Em88b/hcFj1et2aYN2S5Xg81vOPP69frpzVR372dt1S+Kpu+zstNX/8tRrNMvL7POXiB4rrO+rrNfri9z6uz/32S9cYPW9j7Sgd42fxcRALbgkXQoRDU7h/tMMwZdHoevYw86YhPzj8A59JEohPA6CwL6hOuNIO9jrsISQJfQBUrPDfJNRo64lZjDCD9STxYHA//jydTqtcLpu+kdiFT5xOpxYfXIkTMRI205UI+Hw+I0qQViA7SCaTNlaN2OPKAnkeF8ij5wRQMhMU+SDVCkmmo0VSwM+TOKKHXiwWxtxzj0hlSOyCwfVEBve4cvYj6wq4DQQChn3S6bRqtZrpaNPptDVGQiahy0cWBvkGk88+Zf4qNvxqrhsenMIYQNXDgFAuwIm7+k5Xf0fHNFox9B9uCcjVDsEO8vlkPJTDAAjortjoBON8Pm/0uiTbGBguzC+ABQNmsyNuJuDhuBBXTyYTm7HpAi86G9Ey8hyUY2hmYvOQcefz+Y2xNWR2fv/6mE8ck5vBrue2rp+vXK7pySd9VuI4ODjQJz/5ST333HPK5/N64YUX7IQWwNktt/gViSx0cLDe0DhgAhKgUJKVvl2ZBWwbzoNmDEb8wKiR2fLz6LMoUUhr/RRgk2AIW4bcAGacYE5WSnbP9wGUyabdsj2nf8GsktHjaEhMYP1w2kxrWCwWunr1qg4ODrRarXTmzBljJmALsFMAHawwgYypD+wFbIGS9s7OzkaA5DOxL0k2hgqQ5c75Y/RMqVSyUTckFi6LQweqq5l2gwUMhJuEMAeWgyRYN1gUQBOs4tHRkQFXju1EnsHvoetj7wNsAY3sYaYSYCfYKQ0fdF8PxlGdin1VS19Wq1XIWL8nn3xSnufpfe97n/3/448/bscdStK99/u0kl/7L/eVSuUMiLrB1wWbo9HIfI1bIpQ2j2CVZIkBxzhzIWchoOdyOav2uL4PX0Gyis/ChvE1JC79ft9KsUxRIRkElC8W61F3oVBIN910k8NEhuze0OG7MzEZZwd4gDF2ZRT8DCNxKMVKx5pEd7yf63tgYQnO0+lUk4sT/ep/FVQ8+1q988d3ddstdUWiYy2XIVWH9+rZ8+/WU39xJJ9vqK2tLQNTgGziFQkm8hIXsMGKBgIBIx/c+4GZo9TNvqEC5K4vfpz4cr0O1a2CwMJSnubEL9aTCgDlbjq58U8w0a4MhvgJ+KZqJMnkE8RaqmYHBwcbc1ORMbhVAUAXcZ3EBi1nOBxWqVQy+QQsNGsBs8oINOwW8LW1taVAIKBqtWpkApVPSv0wqDw779lNoNizsMdMEwEDZLNZY7jdRluqmjC3kFS8E+IFjU6MjXSlXdh6u922KUFutUiSvUfs3mXXXcmB++fY2qtlTaX/BMCp338855JMDlp6tVoZqCOYEFABM5SiMEKcFRk24y5gRVytCmCO8SmUKCRZSa3ZbBqgxDi5F3e2JoEaAOXqm2CEYWKu7wKGScN503QF4wpbSJB1DQodkztKYj6f27Gt/D5jsyTZmBLKQLBtg8FAnU5Hs9lMh4c5NZtJPfDAkZ566rQ5j1gspgsXLljQphPU2CVJ99zzkobDqPb3TysWOx7vw/q7zDebGEBB1glwA2BQ0u92u5bxsRmxD0Cmq0UC7OK4p9Op6vW66aQANDgZmCA2OwzFZDLReDw2RrRarWo4XAcrSp4AZFfDBPMdi8XU6XRsdBTOAyBNGT0eX5+shKOE2YTtzeVyKpR3FHvDuxUsn1X2lrsUTmZ05Q/+jS588Y/s8AW6u41hH4918z/510rs3qSrn/4NXf3zPzDNUSgUsi5+QARMrNsMA7sTCARMJ10oFIyFJHnE8cKgAkIJwgRoSlkEAMqdsK2ApcFgYOfOk1zhtF02gnVET9xsNg3Q9Pt9m/0KOAMgI4tAG85zIt8gUD/z7YLu+tBUP/zxor78hwO7n06no/Pnz9vIG9jBY6De1p03X9LR5K3yhiEtogtjN5CWkKSSxPBvJkP4/X7TJ7qaZ2kdgFy9JvuQdUeTyrsgSJIsIddZLtczYEOhkAEo9hcNbYAn9iCD9t2GTJq4SMR4h/g97IR3DphBsz2fz822CJYAK+QElOUhN2DzsCniiJt0U1HAlkl0bf09v778O1f0SDSqxYKqWVSBwESz2dzAmMtwsn74WdevExeoUuHr+TmOBsYXAvqo6rGvYM2wJ+QcLsvIIS0k9Nj91taWyaVIMDOZjNkMZBCVPCo2rvyN9QJ40WDK/qbETdWDZ2BqBMkts0LZf4Bdt5GR78cHEcsikYidvMg7xl8RE91OeA7FQe5B/HAboPhuN2Fn3SRZ5zzSNWwVth4WEruSZDGM/g9kE7CfrLHbOwLbizwF3+Dz+TYmEblyGBdDEAs5OGc+n5vvcpv53BnCkuwdEV8A+9f3Rfx11w0PTpkv6YI/tDWALoK9tGZ2eNkYOBkAwQ99H12vMAru3DScH0eEkaWQCQJmmEHGQH0yYIAmG5syB46h2WzaBkNziFaHAOsyFmSmkgwwEQRqtZq2trbsqD60Z7CBbuDhGSRZcKGblw5WAEWr1VIqlTLWiDIjjMB3v7uj97//gm655XYdHcUNPJNd1+t1E9VzDvl8Xte5cxf05JO3KZ1eD2RHD4ODcfVSlJxxFjCXw+FQ9XrdTlUBAEqyzN5tjFgu100qBFmen89Dqwj4BBjzZ3QD01yFYxmNRmq1Wgbi0AzhfAhCZ86c2Sgt4ixdZ0YZGhuCBYJJQBdHEgHw5z0SDMZL6Zb3/aRGjSMNrl5U/s43WHCUZAGFRC2TySjxxvcoWiiv/355rMObzWbG+rojhkqlkukacXgwTTCOrIUri3G1nu7BBTg/3gMBnZEogCtGmcEOuY0dBGIAG/ZP8xpa3FKpZPuDwAcLjJ26jTe8T0CbpL+iiwwGg+rs91Tx3q3X3nZeXwveYhWSRqOhy5cvW4AFGNGMeeeDGaX1eX3tL39CqdTxUHQ07DB9jOqhJIffo8KSTCYtWFKac3W26O+RkkQiERvt49o5742SPcCG9cZnuQGL/bZcLq3jHOAEmSAdj00iMeI+3X1IkshgefxnNBq15JgKwbGGfWqaOun4yF32HCADlp7mWJL6Xq9noMP20TWWmMTHLZfyLqlKBQIBIykgQTiJDaDEuqLTbTQaxiT2ej17byRVAJDxeGwgB+ACg0byhU3QV8EzseeRuUQiESsP4zeoLlB9Ij7AlqEHR+KF73AlJ2510k2AXfkLP0+Fh30OIUBCDvmAr6LhCf/u9/tt77hAkj0NqcDaujITKqY8r3uSFqPUqHCFw2E7jY7fcXWX2HehULDq3+HhoZ2Mh30zDYIKJP6FqicNsa4/AfADBvlewDFrwbuAoQfgQugg3WA9qaggG2DNudyKQrFYVK1WU6VSMRvGn7ya64YHpwjle72estmsBULp+GQHGBToc8ZHMOoHJwt4uvvuu/X6179eBwcHeuSRR2xj40BxRGwiuqIRT7MZaRxxu5JhOWEKXUBMuZX/DwaDZvQ4YYAYzK8kc1YEIpwA60CQSCaTxgTz5zDGlD/dRguyKjI8kgDKkbPZbGNcD06GEtWLL96st771QH/n7zyp3/7tN2kwiBhAhoGBuV2P5grp/e9/VNOpX48/fkqedywYJ0B1Oh1LFNDOUcakXAHIIfh6nmdHTxLgyPSRhPBvSfZuCW6weGStlLeZGdhsNlWtVjdsDjCAw2BmHLorvht7IqgQfNGLuewY90DAuZ7hgjWmA/f06dNaLpd66aWXLFHxPE/d/kDd/+3HtRz1Vb7zPuXvfIMFGvc8Zt5xemtHhR/6mBrf/LS23vO3NZlOTK9GslCv142loiyPrVPBQGMLaAVc+Hw+KxsiByDRARSgwaKaAPvE38FK5XI5+x7P8zZkPzwPgYEJE6y/C1JcpsgNkv1+32QXJLw4d5I+kl3+G+1yKpXSU9+7Qz98/1/o7/4v9/S535lpsQhaAKFUDbvo8/lUvjmmdz7wKbWX9+ngab9CoaDplOPxuPkkSQbQ3KSYsuN8Prdh9u54KxJcnp1ObZLRwWBgY8HcNXC/0+0exqdR7ne7q7kXknTYJsqEHN/M/QCGfT6fNadQmu50Omq1WsaI5vP5jWoKFRbANiVhWK5QKGQTFgClJFysD3sRkIp8guQKCRBaTErFnU7H7D4ej5utYmPXd0ojHXBHAGKvkqxfgotEgHtA+0sJnJgDEGcdAEXEDp6bZ4Yp8/l81nwJoGMgO+PXIGGwf8ZboQ3Hx8M88tmwzMlkUrVabaO6R78DVT/iCfuX+Adj6LKvbmWFxI4qhDvmjDg+mUysSRZSiwYs3jVAjfjjJjA0jjJVhyojkgGSCZqfkMBAopFck1xgm0ikVqvVxvgngDRyFUmWlJHIAzrBB51OR/V63eIMVV4SejAIsb5YLBpD3Gg07B1jqyQ9rmTOxSJugvZqrhsenBJsMC42J+ATNjCXy1nghcLmpWHQyWRSb33rW/WJT3xirREbDIzdo6zkHkNKaQytKdoPsgeMCPbWBbOj0cg60ZlhKclYpFQqpVqtZqc0NRoN1Wo1a7ihoz6bzarValkpDd0ppwEBCuhERU5AmRwwTBnX7d7HuUL3A8ArlYpCoZCNSep2uxu6FzSVgUBSf/7n79aHP/wl/ezPfluf+9xdqtWOM2aCdyDg19ZWTe997zNKJEb6/d+/X6tVTvP51OQDCPfb7bZlyTwXp3jBoPFszKT1+/0WONFZZTIZC5xsJrfLE3BLkKcBIJfLbejcWq2WAZHlcmmHC8DMw6qTwXc6HbXbbQM0BEgANmCDjvBgMGgNQW4DAuy42xiGPhf75B1i59LxWKpRq26aI0larpb2XJTkgsGg6vW6Ch/6+5o2DtX8y69p6z1/2+4PRs1tLACgTadT014jZSDJgo1rNBrGsgIGOJkHlopyNQkoUxvcstp0OrVmt9ns+BQdmAGYAxq/ALWU72HcaRBA953NZv/K+JrhcKh0Om3JBqNg3HEvOH5KlAAun8+no2cG+lb+5/XguV/Rx/7+G/WFPy1vAHD2XyDg021vWurB+/5Ec+X0x5+8XdPJRP1Z3wIXySP/RmYD0HRnMvLuYXywTe4Ltp59EwgEdPXqVVWrVXunME6AuL29PSWTSVUqFWtScZ+DII8MBtBGskhJEtkSQI19wexnbAHQi6/iIiBSxmQv4rPZj66vpwGEUjJs1Xg81pUrV+wwCdh5Ekf0k27sgNQg4aI0C6OO73TZ0n6/b8kD+5/5q4AXnplGPnwOyRKsPfYLgKE8zzuGhHFL4p7nWcWLuENcZGIAtsR+YT0AUqy72/8AsOY7sDVsnO55fEGv17PRTcvlUvV63RIAmMt1g+1yg10mQed9uNVD/n8wGFiVk7VyGX7eEf5KklW8Vqv1IRz0FxBDeF6eiT2E3+VnJVkljnI4zcwk4i7hgJ24Eh0SQWyHyhOSkm63a34+GAyaVKXT6RiIpiRPjwOJAsw0tuxOzkDmwj2TjEEYkNgwTQDJEM9xPdv61103PDglu6UEz8IC0q6fHynJHDAZNuUIsneyPjLIvb09OxoUUARYwXkCbHDKlGRdQTkvn5JXo9FQKpWyEqO0dhI47na7bS+dcjOsEaAWhwpghW2q1+tW2vI8T88++6ym0+P5gKzBbLY+ApPnIfNDI0mTB1msq4eSZOwSjBVMBMxVvR7VH/zBO/TBD35bf/fv/qXq9ad1/vxpjUZZzecLZTJj3XvvoUqlnprNhD75yTer18srGvUZqADcEQgouRFg0GLCmh4dHUlaZ/Tb29v2uzBBZJ9kvZSZ2IQ4MVd3BtOKU0TXQyCSZI4L50lZBwE77B6JEQ4GG4Gdltajp9DO4bDpVD86OjLWGiam2Wwao8XRkzh4HCtsM3+3WCw0nqy/jyAM00GHb/GO16n4pvfo8Lf+rwpH1kwJTRTIHwAPlGAJjnz3cDg0PSX3QcCtVqs6ffq0NS7QROPqdXHWJBusJfuJIACA5R25pUuCHzbE70hrRg8WFRDK/qJJgmAGW4GPcJvwSqWSyTgAmTQMsu+m06m+99m+hg/9vN75+j/R3/vJ7+pofJ++92REk8FK4ehCO2eku84+oZgOVPfeoj/8jR1defGSPO94pJe799j7rBXyEbSHPCN7F3smAAI8AXU0VSL3cZs78Sk0Y8CEo/kEgFDqdOUPrG8stj4gYblc6ujoyDTs7kg7QB4BkWoDIAlwCmtKoo32GeDDO6KcDbgjiea9wGa6XcnoF2F7JZl8wm1URJ/ollhdPSP2C3MHkHPBCEQCYINqCD4ZO5NkvpimznK5vDGInb2Nv4KBhunk96k0zGYz641gYgYgFNaMSSyMaURrCDNMdYR7dQfXuxULV0KHP3MbSklI2O+ARWI9o6hYC3dMHXI83i32znsgEWCqClUN158QQ0mEAOLXy+foCXHHr+Hz5/O5VUFhq102GWYeogyAC3EAyITh5fvZ+8R/9pbbJR8IBEwqx3GjXOAVdy4pDD/xjHeBHyQ2ceAQ30NSw5gt9gcx7tVc/0mAU/RS7rnq3W5Xk8l6EG+73TanRIkCA4TphPV58skndcstt2h3d1cvvviiKpWKOT2CHUEX9k+SKpWKjRMqFAry+dYd24eHh5LW576jGeSkjPH4+LhEyvZsZDI6tJwwQpSjAMmUdDBsd9QQkgdYNjYtYnwMkWdhhAyBw2U8JpOJdnZ2tLW1ZZoxAJV0rHN1NWEM9B0OI/rVX71fhcKhHnywrne964ICAUro0tWrp/Rnf/Y6PfdcQquVlE5HbCMB+LhfSaYrJEAAIHD0LtPJRsVJ4pQAgS4Ygm1wy6vMHESfDGjHYaxWKzuBpVQq2drjGAAUABhKlLBHgEWYPpwi9krTnDvgfnt7W9FoVMlk0thEwAcOGZ0ZzoLgzlgzNEU++ez9EYwp3y2XS939s/+ZBs9+R72XnpUXXTuk6LXOVNhgEoVweH3oAEP63QY+Ajf7jKrAcrlUrVbbYBcZS4KmGPALg89nEiDchhIAGeAGYEJAgB2C6QKIEei5JzcZYnwaz+D3rydVNBoNS+yY8gEDQYWE3wE0IdP5/hcnuvTEB3TPu2J6zc3f04fe+kXzaZ5iujJ6l775lbfqpccbikbHNvTb7RaHOWJeLn6HAIvUg72JHpw9AbOLn3G1ugAI9MswO/gZWJ1Wq2WghffialnZQ4FAwCoB2BsyksViYU0/jNcbDoc2nYFJDEwVgA3HRiAZSEooofv9fguisJFIvwAjLnBGAgDjy+/BfrPP3KYY9pm0BgbhaEynPvz3lLvvHQrGExrsv6zLn/5NrY4uWkxg3B4NmySx2I2rHcYe8W2AVMDg3t6eCoWCGo2GxTaSjFwuZwDT7SKn1CzJEgz8q3tcNd8FWGRfYTdumZ04eL1+FFDO58Hk4a9Joiij478l2T0if0CuhX+BbcfWL1y4YFMqAKXYLT6Cqh33BjAEkAFw8UuLxcIIFxIHt7yOjI7PpSGZzySBoZeDOC8dHwyB76JZjXXmOdPp9EZFkqSD/cY4Mt41dlAqlaySQCMwoB7b4j1y/7xPEg1JFgMjkYix74lEQrPZTPV63WI+75nY+krXDQ9OMXA0EQAZSVYeZ8YZZXUWttPpGNCha/rKlSv65V/+ZQuQgAOCIl3IrlaL4OBmpjg3xq/A8kCLYxBoUMheKH9Kx8xIJBLZuA+CtKvTAZBwfy5wYpYa343xwUwgeaD0AtMTDof14osvarlcqlgsqlgsKplM2gw6MkWCLrIBStGMcNne3lYkklK1WtY3v/laff3rU0kDxWJRRSIFLRbrdSwUfDbnlazVHSfEPdPYATBzhfg8G9o6yoY4NjYO5dBcLmcTG2A9WRdXKwZwY3ad53nGUHJ/AEtKUbDjrnCdDe/qCnGM3W5XnU7HgDFaORx8t9s1+04mkyoWi1oulxuzIplpSyZOKQ6gikbJJhMErp2fPhrb55AFn/qhDyu6fVbP/85/r8rRkQLp9UlDnre0kTckNZygxnsDkPK9jHFCc4v9EDAZfeLKMNhvgDDXbgns2CbDwXnH7BUcLs0O/AzledaeUTAu0ANAIflx9ZXYJQ671WpZZYLAyD8E/kajocPDQ5tU4HmeHv2joL4bOq1M+XWKZ0OajuZqHXXVa7bl989MWsB6IdUgyAAUsU1YLNhBAHcymbSycKfTsbVkDQAEkjZALb6OAO1q4vF97BOAHokVewlmlabQRCJhkxBI+giAJE8E/MFgoHa7rel0asclw4QhU+D+8RGwxdgfPpmyOdp6mDMAAwCQ2bBu8xckRqPRsN9nXYgDw+FQZ//uP1f+3rep+ejnNGtVlHn9D+nuf/J/0cVf+S81v/iMVWPw6zwPdg5zSKIKm8t6ooV3QQ5TRQC9JKKQGtfbCUkyo87QnDJGDsAdCAQ21h5wzO9TaWm1WlYBAqgQ77BT2EOmjtDIR4JAmZnkBjBGcoD98f38P+VqEhuej1hG9Q3gj1zKlW2wNwaDge134gr+w03+wRzETNYB34d/j0QiViECE7j+nqZA1mdra8sIMN4/rG6hULDvBlSy99jz3W7XZBzpdHpDgtbr9cx2kclxsQcTiYRVYrA7Egf2D9jDrWy46w6QfjXXDQ9O6TB1GQAcFJkJBo0joPkDlomSFMYP8OGlA0wp50LV07VOeRntDSVEQCndeO122xwrjRWIpXHQlJiOjo40mazPki6Xy8YUAIQwJO4RlgLWBPq+Wq0ql8sZkLl69ap19KGNC4fXJ1pR7pzP52o0GubQPM+zkib6M1cfR5ciWSgNR2SiLqhGiO73R+TzxZRIxOR5U3tn8/ncZtIB+Chn1Gq1a6dPRQ280HWLE0Wb42aSdP4CKEgCKE/DApNNwwIwesQds0JwZVi5tD7RJ5fLWWkSwXmr1TLQAqtGs1O9Xle1WrVnpCPV1WnRgMW6S7Iu5XK5bEGM0iRaIjRT3W53Y+4gZX63C9p3LXhMp1Mbb+V5nrKlsu76yX+iwy8/rEmrtm46Ch2fqkUGj16XhgsYLMpQkmwfUDputVo2/1A6HsEEKPb5fDYAH2AK2wGbACggAKH9pLyGjIC1hdHme2nYAiy4OmN8Cd8LC8d8VdhwtwJDUwSfh98BULgVHphFTrxKpVLqHDU1bIQ2upcBkDDoNGeRbFBaJSDs7+8bkJ3NZqaZg0F278dlikm4KHOTpPFuKfch3XF9Av5iPB5b6W8ymRgj6BIHlDQhBw4PD+07eV7W/XqQRHLDfuHPV6uV+U+XVXJZHD7LnWwAECWQwtjxPrn4XQApIBXduhsTcrfcrcIb3qGjz/22ut/+vMLhsC5/7dN63X/+b7X1vp9S+9/85+Z38Sc8E3uDxMut+LgTKij/Mxy90Whs+En8v81gveafKT/DnrlTTWj4hTHm3jhD/XoNKyRENps1DT19FDQKQY5AVrjyCdhCqpH4IiQxJK+RSMSqWDCPVDGxM+m4KY8qCwmzK11DakWVh0SP0UucSgaJwcmC7GVAG0w2+9nVIrtVM3wf+OJ6eRHAHJALw0sChdSF/YsdE8PQhcdiMVs/gLEbl/F/XOAHqsX4V94blUgwD/ZANXo8Xh9SgR/A10gyacbW1tarwm43PDhFP9loNGwUDNk0QdHn85kuELBECYsmCUmmvyQ7GY/HG2XF2WxmI4HQawGO3c54l3aHBSBLldYv0dVuwUZIMoqf52Kj02nbarUkycovnU5H+/v7Biw5ahHHSyBDT0tABii6Z79TKvL7/aY5vPXWW+04V0AhMzRx8mjLCFZMDZhOp5ZdEizIaGFFeIdsGPSsbHzp+Mx2xPpsGBoaVquVbdJw+PgkJHfGKYEdZ+8Kt8nQacRB1gADh2Mm2MJO0ljG/QJ6ADrNZtOC587OjmXXZPY8u1uipOuYLBiHyfB+QJpbqpJkQct1xjhk3tvBwYF9JyAye+33U+mUlYEGg4FOvfdvyRcM6uWvfUaJeFr5XEnL6LUjNsNRVYdTBWcdefOZsVbS2pnR4ADYI3N3AwzsIbMvV6uVtre3jRFttVpWpqbkxbsAmFKORWvKiUDIKXDYL7/8sumis9msVTkodaLLRqcFa41mLp1Oq9ls2lF92AuBN5PJmGTC1X6RyJAkUlJ1tZ/1el2j0UilUknhcNga8NzSKhplxmJdP3uQ2a4Eep4NEEggZs1c9s0tjdOk6do6LD6fQ1LH79LcAXCBQaSrO5vNGngJBoPa3t62hicSXXw2rKvLiiOXkLTRcIO/lWS68NVqZQ2TLhjhIuEDoOEjOXHLLVdDEITDYdOTAvIAgrDY0hoobd3/Dq08T5VvflaTftckI5mv/Knu+rv/VJmd09Lo2E5h8d39T/mc52X/o0GFTcO3k6CR+GKzLstOLKFqBDDEzwM4kX4gi6Ia545mpAEWZh77ZaJDpVLZAGNUL/G1yNoA+VQq3ESRxjEkb/we1SCAO5/JewGwAbyI6+4zQcSwFtyHm2SR4IIb2Fs0RPHuYGVpdIKRdGUDxCs04bDDgFPuEbkM8dQ9VCAUCtkeIka7I/oAvEj0UqmUjakDcCIpcGMzk0/4DBJJpouQBNGrQaLAJARGFSKVI06elPWvXfV63brZWXgyQUAkrNVyudT+/v5GeZ1NT2kawImzxOg4yhTtJwbplnX5M9fJwHj5fD4DdZSECGBsKElmTOij+Az3OFQ0dGTGOCcYX8oVgHS0YWRaaCYZiUSZodVq2XcAXnD8rmYX5wl7RNMEjBCNY64hs9n4LgL5Sy+9ZECxVCpZsKNEhNNAQE9AAXR5nmfH8SFM55i+8XhsTUOwejCT/CxAndKkK//A2RUKBRWLRTv3nnfJs/d6PcvUV6uVGo2GzckjgHQ6HRueP5/PNzrtkQKsVisbmC4dlyIlGdtBR7TneXY6C0GbdwD7w+fQlBUMro+LRTM8nU4VKJ2WJE3Gx/MJfT6fIrkthRJp/dC//r2/sufOfPCndOaDP6WL/+ZfaXjwkjknGDY+w826Pc/bOKo3HA4rm80aKAOsSNqYh0pwxfbc4I30ptFoqFgsmu6RwEHwhykhEWWKB3sZu8A+AVsEM2kd4DKZjDFTAO6trS0L9i7DBHvPWgC2ABaAC/zQaDRSu91Ws9m05JUGIaokgHqXyaR8inSCIAEjB2uK7nA8HqtYLJqOGvBGZQWmlgBF0gcoiMfjlmQhjZDWiRpyH0mWNDEeitnHvHvu2y3jsn/Y+/P53CpSJHmuXAMmlskLbklV0kYljCTE1WNzAhfkA3IN/D5VCiohTAeB8aOKQ3UjunOTJo1D+b25SYqm06lmRy9LkhKnblHrqW+bzwd8ATq2trY2JrsA1mBEuX/8ByAKWRPrSlIBEIdIwY+yRq4MArviWQBnyBsY/cQ7gK3Fz/BMSC8kGTDDD5B0YD8k6BzbiUbYnc7gng7oMursGfaS2zTFmlGBIqaw56lwQtCg0eT3YMb5DJhI4gU2go0R813/5PpwfCIA0Z3+gYyNObAkduw9GFVJlngsl0s1m017bmwcmQ7YhWYvCDkqarCyfC/7i71Bdcidq+vGTvwWCQrV6HQ6rdFoZEn8K103PDiFhfI8T8Vi0TYHDCPIH8YCo8Y5cNIMGxmtIh2wOHD0gIALDJ3SpjuHD/YTo6nVapJkpQ30jpFIxBq3OBVme3vbtEMwXPv7+1Y2PHv2rHVsu00jZGtu1rqzs2Olp/39fSsrhEIhA0N0UrvlQgABZUy0SAC+6XRqG5bSPQGGrJCASIaIE8XhwMjQbcjmhv2B2XYzWrc8ASBn86KdQjsDEHPH6wBecCBuRzIbrtvtqtFoGKMJY+c6MtbKBUzouciGAcA4R8Aho8nQs0nHJ+js7u4aWCkWi1Zyw45xHmTvMAYADM/zVK1WTbAOc+ZqoN2S33A4VLa/DhDtTtsY6GAwqN7jX9bg+cevvauoJpOx5v6wTn/8H6v35Dc0vvCkvF7Tyt6ZTGbjOFYcPA0art0gL4CBIAHDPtxTTnCCBDDsJJfLqVAoqN1uG/tCYIMN4fPR/yLtodMcBpHfh1ElYXPLu/gC/o4ZibDoMCL8g6yk2WyaDpzz6RkhBxig+ZAJI0wxCAQC1ki5Wq1sKgXBFW05II1mJ0r6JIAuQ8oUEQItY+xg3V0NHAwZtkvDWygU0v7+/kYXe6fTUbVatT3oNmKheeUAAJoFOd7X1bthCxxpCtAuFArGuLl6REgBV0eL7RGArfnPd3ykJL6EhkRkXgA9WF72D8AA30EiPp/PVSwW18Axnde4Vduw3WQyqbj/Wok0kd5owCUeQUwAIgCXG41WTj8D98/as06SrLKH3QQCAR0cHFhvgjuxg7WFSWYWNyAKv0uVgwQB+Rn70m2Ai8fjNjweG2C2NvdM7AO0BYNBS2yIna7EgngCccD+RYpF1Qj/xr6l4Rj/OJ1Ozee7+xh7AU+g22Qv89nuXF4qZrxL/KlblQKYw666ILhWq5kvd4EtzwIAZz1cTMEcZzTJ0rprnnjIRBr3iF8qtewh9hl9A0w9oIrkNpPxdyT9kAYkqIHAuknXBcqv5rrhwal7YhDlGV4gLAXG7ArO0UcQVDAGwCkvBkNm4DpOjHIKRgJo5fPo/k4kEjo8PLTPg+3w+/02gBzKv1KpGNu3XC51eHhohpJKpdRut3VwcGCAkDIkjpgyf7VaNZCHI6GDkD+XZOybe0Y2zIs7GsYtxeIgCGo0RbiBn4uB+5KMdSD4A87Y0AR/SqVu6XM8HhurQRnO/d1QKGTZMYED9oGNDtilvANTBwvtliZw2gRfHGO9XjcnH41GjTnhRBmCHKwYo0DQp9FcQsYLwwDrCGAZj8cmMgewwejl83kD9ABhQBVNJgANmg/QpZFQxWIx3fLBn1QwllRqa0eSdPrN79b4zDlFwmENnviqJp2qRocvaxo4nhM69IV0+uP/WKOjyxr+4HGtrq0x9kKA5ExowBsBhmDH3wNIKZe5dglIQvTPnpFkAZZ9zIxBlwUjYJKcUIolAWEf4Dt4z24pkUY6t9LiMnSBQMA6egnGyC3QZxHYorvn9LqP/SMV775fseKOlpOBhpdf0NGf/56m9UNdvHjRSorbD7xHd3/855U5fU5+SfPGoRrf+DMd/MXnJR0zfMiCYALxCySJMFaUBtHEsscAWgyoB8C5gZKOXGQ9BHhmlnLPbvmXfURlAf8Ii8phIKwtAdxl+6nuRCILPfDAge6667wSiYUkn0ajsA4ObtfFizdpPg+az5W08VmAEg4u6fV6lmRS/YDZpuqGhAb5EtpymEtK0PgWGOFEIqFwNK7VYC1nIEGIx+OaXqsIeFr7FpIVgDBgm/FDVDCwJ2wTewckLZdLK3/zd7CeJM7YMwAYP43vwfbdihlr6Ta2oQPHTrBr/g7ghH/F/7KX+ByYP8AOe5nGQp4T/0eyAXsoyfyEqz/mvvh87F7SxrgmGo4nk4lpspECUU4HeB4eHpo2OZ1O25g9noXkq9frGUsZCq0nd/AeAa0+33oWNGCc985akYDw7pElueAYW8BesHF8QSqVMj0wvRSr1coSVfYpezSXy2kymdjoO/wFHf6U7mHqr5cJhsPhjckx2D3v55WuGx6cImrGOKGxpXWpqlwub+gl6IYDsNbrdWPNyLxdlo7MiE5DNjbGwfw3Mg0Micwzm81qe3tbkgwEk6mhnaLkQlBjHA1NPmfOnFEymdT+/r4NaS8UChuCcAyPbH08HqtSqVjDDOCUkjrz6hh/JMm0ibBVOAQYG7pCE4n10a7u+Cs2CQY8n88t2AEabr75ZmOtSRZcjRFAodlsmhPnWDwyNYALZQqelYYM1xnAMMIE48gAyOiDaKbJZDLmpGDFWRtkAxyP6Hbz9/t9Y6vpNqZZA4anVquZLAFmBZCO42i328aIwrzSSTufz23eKfdFoMdJAkoIFMhamMMIMF4ul9p5148pVtyxfZS66wGl7npAknT46J8reg2g08jX6/U0Da6d9mg8svfI+4Xpovsbu2k0GmZXBBEaDHw+nxqNhpX3/X7/xmB85CIwv+xTV0pCsGBvsmcBIDSasCfRpaNvRh9L8IK5BKQRnAiQ2BV7D9kMswNpLHGZneVyqVve+7eUv+Ne1R//urzGkdLbu0q94d26/Z/+t/r+f//PNRo9pcFgoNf9xD/QO/+z/0b73/2qnvrtX1K+tKWdB9+v05/4l5otlmqef0R+v99G3HGAASVeN9HmFCV8BsEMu0C/SJKKho/PA+ggP0IPy54oFAqWaJCAsd7oO0ksSGjRhDO0nzVjTjGl1Z2dnH7kR/b1pjddUiCw1KVLZVUq8WuJ6FBvetMjesMbvqsLF16jRx+9U8tlyfSbkkzGw36gEdFtCAEY+3w+A6T4doAV1RNkHFQqVquV7VvWdeXN5Q+FrepGUj1brJsOh72u2b6r+WOvutpeiAV8Bc8BwAJwUW4m+aJpi++B1aIJFx/AXoF1J27iJ/FvLvmBXpSEHzYQphGJBxU59JMkmjDYSCrwnyQ4oVBI5XLZYkqr1bIkSJIRGiQUyN08zzNGn2SBk84AeG7HvCtHYN/zPSRWroYbe+I9oHsG3GIPs9nMpC6APRJ3iCFkEdfriSElaEyiiYzJAkyGgakH+1C1dQ9w4P9dqSMVZpowIS9I0IhpbswMBoOGlbLZrNmN62tIhMBLECWv5rrhwSnlLVhRSZa1U04ii2V+HMALQAHtDRPq6jgpa5DJSLJMhD8fDAa2iQED0+nUspmtrS0rZeI80U6hZYpGozp9+rSV4BhmDVO3XK5H5qATxZmhp5SOWaatrS3N53Pr5sUxhUIhFYtFO/sZSh7n5I5NguXyPM90MYDFVqul3d1d6xjl2DMcaafTsRIZnfyJREKZTMbW4sKFC5Yh09HIpoExjsfj1invNi/hmNxSKrIH6djhkgBIsrL79va26dgot5CRus4bjRAZKOV49F8kIS6jOhqNlEwmjRGnWYaZdW75jvujTMVga2yW8idaMJgNtySJvhanCAMtHbNFbrexKxd56r/+BdOx8p4oI+bzeTuiE6C3DiBDPfJPP2Cie+yEe6FUL8lYSRh4uk3ZVwQ/t7EDhpLkDPaHIEhCQpJBWVU6nnfslnLZI7BdLuAleLhD+93AB2giGWLN0UfzzgaDgRqNxsYzubMg2fMvffb39K3/+79UNpVSPp+Xl07r6je/oHv+5f9LhR/6US2/8WUFg0Hd+7f+oeo/OK8v/xf/SKVSSSqXtXzxcd38v/l/auvNP6z2U9/SeDy2YzOl42Y4kjfuj/FcMIPo0QhqPJd7ZC1VHNacz3Ib91ymigQWwEsXNxUXSfb7AFUCMD9DwkXCUypF9bGPvaRCYaDHHjunp546q+n0mPmJxWIqFj3deecF3XXX00qlDvTv//3r5fP5zZeRsGKHVC5IJJlRS7DlfXG/PKNb+XEbgUhEC4WCvfNxq6ZQpqBqtWpystlsppvuuG9to72WgUK+Y7FY2H5jxBnsH53rvG/XnwGwATsAcfYS94Ruf2tryw70ILkAbBAPXLaT6hDlaUZFsR9gAIlXMIvENJ4NCRwECpKt6XQ9ngo/jjyGBKLX61mVE59HGR5fgVQA28MOiQ+APUnauWVb970lpGgkKJ8vqck0pEvPxtS5vDBiAB/KeqZSKetfuHr1qlVhSVpcAoKkH2IHgE+VAm36eDy2k52oprJ/mdLAviFBcWehSrL4QhKNDVMNYI9fPy0IUMy+7/f72traMibVZdd5D5BzgHneJz4YmQd/5za/vdJ1w4NTRvUg1CcThs08OjpSp9NZBwTPM42p2wjFgmP0roibTU4XLE6PzkgXwAJw6VTFyfCZGL7neQZW6IiDzSTIkhGyAdiAsDiANI6IpOwCUJzP5xudt3wHXZcwSGhLl8ullcvRJcJ6STI9S6vVssMFaEhxGRGAJBklG4mmCPRIh4eHBqbdJgwAczabteNZYctILvhMScZkU650S4k0CQF62dyRyHqmHEPB3awPJ+hqhxCX93o9FQoFO/GJDYlWmU3JO3c7RNEbA5potKPBjTKJdHwKF3MhsR3YEfe4WBrO6OYnYXDfGfIA1j4Wi9n75ZAI7JV7dIcrh0Ihm8HHBVML0AAEuE02gALsAWkH4B4wxT0iOaCBCC00IHs8HtvaAyipCPAdlKixW4CmmxTCHjLSi0ZG3gulK1gtWDa3GQctFuvEcHxALmwFwWF49JKi15IwWMNms6lzh5eUPXOraeKjqaz6raq2t7e1s7Nj0zdWs6m8+dQAPsFROj4lh9Iu4BBGk/E4BExJdn8A6UhkPZPRnX2J9jcQCFiAw2/iM5BRuFpWgpe0TuTPnj2rm2++2SoAtVpN3/3ud41t53PX73Khj370G8pkRnr44YfUbhc3GqmOu7zT+va3X6urV/f03vd+SR/60GP61V+9WZ7n2XB2bBH/Q5B1gTPgHLkMCRVlVhIQ9jj3S8wheer1ekq99APd/MGf1MRbybtWZVqtVoqdukWSNDp8eaMBjLXCr7vVFCos6O5JmtgLsVhsg9UiEaPCwH9z/5KMNUSyROMLvsUlMZiLzc/AhLJnYcWpICyXS5M2uew98Q0CgvfHqCNsEXkPYHg+n5tmGvLI1VlTmWOEH5U4ZHL4x7NvKOjNb6vrVOSTkjzNVNJKAYXU1n3bQ7X0gJ55/rV69FOe7YflcmnjzSB/SNTcKT8AN5hkmi1Za/wPVRjIBfTRjF4DkDLrdzKZGKjmM6kqsU5bW1tmQ27lFL+8WCysPE/zNP4dG+n1ehtztWkWc/sq4vG4kW34T5I4/NxisTCCzX32V7pueHAKaGMjSMedzXS1wWxSBgF8kH1QGuGFwK4CfDglRdKGOBujImCSQZAxLxYLEz5TfqNbUZJlRJQxcVKUa1OplDGHPA86JYIW2R1ZE0JuV9siHY/cms+PZ166YOLUqVO69957lUwm9YMf/MAatfL5vJVMcKxkpNls1kob+/v7ajabpjPlZymlrFbruZvuiTLBYNCaOHgXBHkmDsAY3Hfffdra2tI3vvENeZ6nU6dOGdAjGYCFRBTOWBNO7Wo2m/ZcMOFu5u6ezgEDI8nAFCCXi/ulAQ9wBOhGvkF3qnSskeb9SLKh/olEwgalw7QjpSAA0egkyUq2ZLxIHwCUVAC2trbsvcAikj0TmFiPYDBoiVMwGLTObgIVbC1NaCQEfr/f5tBubW3ZXErYf/ZUu91WLpdTJpMxB4xNwlZgNzhTjlikcQmwAsuExIYGC7phAYfFYtGSxkajYbYWja4PiEilUsaeuZpd2BveGw0B+AgYI7TAbgMPQA3QSaKKlIdELJLJa1Y/MJnN4OLTKt33kO75+D/Q6MXvSamMMg99WP5oTJPzf2HBn8SA9XDL9ZTdKMNS1iTpxkcGg0FLvBnvJq01epQJKRUDtPCx7BdK3rw/GjLRGyeTSd1xxx267777jGG6ePGirly5YutAmTQQCOjuu/e1u9vSr/zKPapUpGz2WD96PeBalzHT+sIX3qqPfOQbuvvujq5ezRmYBpRjY9Pp1MbfcKzx5cuXTYseDAaPkwRHD0tJmD0GcMPPoVPsPPWo/B/+hO76yE/r4Mt/tLabdEa7b/+Q+pd+oMBkoPE1jS97izmzSC8AuyQaJEwQIpJsWDzTQEhm8emSLG5gh5S7Sb7Y+9gDsiESLRJffGogENDR0ZElbYB4fhc/SgJAUgNZwPuTZPFE0saII/Z0JpOxeEnVjqYjqh4wpJIsISfJZPTXmz6a15vO/IYmq21979IH9OyjMU2G10gizXXmdRO97p6LeuiOX9epf/I+/c4vSYFVwJJtaT0NqF6vm01QPWA/UGpnj/Nv3hXjnAB8sOPEDRJrv9+/0YQdDAZVrVY3eg5YdwgrfA0sPXiFObrYjztekLiF5plmNyQW8Xhc1WpVzWZTpVJJOzs7Ojo6Ur1et3sAS1AVJZGi8dwlMf7nrhsenJJxEhQzmYxtdMY2wHjQdQpTQxnS1SXx94ALGAcyTcAGL4WSNRrB+Xyucrls5V5eGFkNLJar9SAjDQaPO8wZ8I8DYHg430WT1s0332yg0y0/opWLRtfHujIo2tXNEFSDwaDuuusu/czP/IxisZi+8IUvWOMVoIzgmnVOrHE1WARxsr/RaGQTEwDUgD8cTjC4PvkCwCsdDwnGEaVSKe3s7Ohtb3ubCoWCLly4YABitVqpWq0auEPeQAkE5mMymdiYHleLRUJDgGXTASLI7t2RGgRK1heWfrVaGZAEiPv9fksYmMaATo3PcE8oK5VKms3Ww9lpkIDZYcYgawwTDAOOU8COFouFBQhGi1D+x8YZX0KTEPsBucXW1paxI5yogkbW1SjBNrP2HKdHCVSS3ReMCmVUEkMYTd4hchicOJ3gMCTcJxk/Qn4qJgA0bNXtoMZJEwRIOElaXZ0ye45TUwDQOGrAN8GM9WCfAeAogdJQtVgsdNM7P6JIrqTal//QSmtHn/lNhVIZ7X7k5yT9nCRpNRnK/7Xf1aJyyWQMLhgBQOBPpGOWDOBPIouGEraJxFeSjVQjqSYxp+mDwEQzBTIoghFlRLchi6Yr1oYA6jblEHzD4ZDuueei9vf31GiUFY0G7V3wbmETa7WaVc1arYDuuSept7+9qd/7vZtNjmSs9bUkjyQZW3OrMLyTxWKhYrFoAMutWCDrYa+5trxcLjU9fFnt7z+qcz/2D5UqbWvWrKr0wHsUzpdV+8yvmW+BkWI/8+fsFVeL6Jbx8YmAZv5Mkt0/Y7WQZdCwWK1WTS7jlvsp6buD1wFIvEM+GxuDPMGXA5JpNKXhywUtxCjWmMSBcW74Y1fzStyEOCIp4X1he8ihANN+v1/3fiCjN5/5f+ty/736/O9mNJstlUiEFAr5r9n4Ss8+Ip3/2hm97t236J2v+5R+9n/9Ln3y/3E8To1EgbVerVZ2T1RuWBdGsbFGYBLuCywCPnDZbSqo7N1IZN3ATGyA+UTDS1wHfOJbiaH4ffa253kGRJFTELewO2wHm2af0CwMk81zA5LBB+77O5lzeu3i5YD63ZJ4OLyeH8mIG/RilDXpRINJw/lSxgVwYDS8CEmWwVFS9fv96nQ68vnWXXkEaNhJPoeg4HaYUm4HYMHCSTIWCCaRZoxGo6FcLmebxRWeE7Dcxg8MG2eGARFYyb5xnLFYTOVy2UrVaJvG47GdroPxk3UHAgGVy2V7LnSVfAfGf33DWj6fV6vV0qVLl1StVhWNRm0DjUYjNZtNPfbYY0qn09YFTdMQgAJHT6BzxeIkBC47RvMW7MGVK1eMmXSlHDw7gR19K87R7ejGMQF2KbPj2CSpUqlYtkx5CnBL41mj0bCZrwRSHCEAi2wdsAbT6GbxkjbGvfD7/CwBEJZfkpXm0CK5wAunxNrwvPV63Zq5YNzcMh72z6iZ6XS6obsCQPFzkqw5xU220Fiyd0Oh4/miJHmUoWAKqVa4DS84URg7JnS4miwmAPDu8AHD4dDkHpI21sbtWkXDRrMW34kmPZjf1ht/8f+g5vPndfUv/oMC/rVO2ptNNDi8rEmzpslLTymSSKn49g8r8NYf0+j8EyaNcRsBCeYw461Wy/YrwR9ml0qJO/kA0EgizBHF+FC+A9/DuqORQ48II8b6sJ6tVkvPP/+8Tp8+LZ/Pp0qlYseSIlEplUo6dWqgXK6hb33rIdubJEDpdFrvete7NBgMdP78eUtssP1HHinqp3/6kkqlsQaDmMl5KClTnXGnuwBMSTyRNWHbnU7H/DwJD4wfvp39D3A8ePh/1GrQVu6+H1IgltSstq/KH/wPGl9+3vwzo7TwS1QspOMDMlw5F3uFhAygx/tkBjbvFRtnv8M0un5COk6kKCPTDFYqlTZsC1ac2MfF/keKwN6E6XSbn9BAkpQMBgN1u12rEOJzmThTq9UM4PK9i8V6Frdb+cLfsh/7/b7KtxT1pjO/rqujH9a3P3tO0ehUgcB8ozJHh3owGNSFb/uUTP6MHjj363rbx/6OnvrKwj4TbOHz+cw3EXdqtZqNaHLL/DQy1et1e7/0M2QyGauSIO9jOstisbAOehIMfDO+CjkYNsMorG63a7OUSTzoOxkOh+p0OpbUMPfcrfxJx9MAIIuocuJLsXlImnw+r06ns3GEMfb4aq4bHpzC4OTzeWUyGR0cHKjVaimfzxu7RJmHOYIENMS7aFPR2rBRKOPCkjDqA5aJkjOddnT7ueJoV2gMW+iOCYJ5hbkpFAp6+eWXdXR0ZB1yGChGAhhyyyFkuJQd0X0BTtBt0hjkMi/j8ViXLl3Sww8/rGKxqG9+85vGGrjMGWW4+XyunZ0dG2WDYB+GgkDF/7vrLB1n+TRI/eiP/qg6nY4efvhhc5RoD5l5+KUvfcl0X2yo4XC4ccoUAJs156x5n+/4RBpKHPV63crfbqCDXcARAuIB1+j7YAkA824jFRu1VCoZM827QiNF8OB9wXRSGkNewCgmnhOHRmkJpo/TsJB18I4Bbeg5eV6kBYBDmFrKgS7oIuum7ETGXygUjP2tVqumj6JZhEQAtgvdFawEzVxcdNZSxqfRDHBHlQTWCaYOEAZbP5msT+ei9Nzr9XRwcGDnTSMp8fv9BupIMnnXsP/otq3z+tr9wjq45ch6vW4ngcFYcDQhzSFbW1sqnblZp3/u/6jldKSXfutfq5DPWUn8zM/8C3mLhZ74H/6ljZ0bvPCEzv2z/047H/hpxbxfs4oOndOS7F1ywh0jhiRtyDbQFAIiU6nUBlsNA80eZf/DgmHbSDIIZgBT/AGlagaKX7x40ZJpSsysD8dBx+OHWiz8uny5rERibNMzYrGYPvjBD+qhhx7SarU+qIKjftH+Pv98SdIlnT490oULZXtWpl24NoK/lNYJMokKSQlMplslwT8D8AB2rAkVtsV0oiuf+nX5P/2bGgwG1pwCawtg5shZ9zQe4gwNlH6/3xpJeX/4b/6NhAlGUzquHNGYms/nLd6w9/lZ/h9SxdUUAjbw1dIafDIuj1F5xGEAolsl4Ln5c2KAe7Y7zWY0cboxlrI/bCbJYygUMlYfOwQEf+Q9Oa0U0pf+MK/FrK9MJqPTp0/r3LlzuuOOOxSPx/XCCy/omWeesdL5y4+Fde6mt+neO5/TM1+7w0AeLDD3T1wnxnMkLrpQ/CcVml6vZ5VD7BVcgh6/0WiYn4jH4/buYbJZZ4gT/An6VBpWaQLDTpnLjs0Td0jUqACDU0gOiG2j0Ui1Ws3ul5MXiT3ENgAz/hCbeKXrhgenbkchmwNQIslYShyMJMtK2dzM4JvP5zo6OrKfwwFQ3gZYkBG1Wi3bHABgz1ufWNRsNlUoFHTmzBkDjhgNWTClDZxIuVy2spLb9RgMBq08SNbC3/MMw+FQtVrNGqNcB4umBUc2nU61t7dnbA9l3a9//etWWnW75DFOVxeFnhFQsr29beARgTSZHAkCAQGmGH3L5cuXDWzzbijfkI2iZePIy8FgoMPDQyvXMhnB7eZ3tVWwB8yr5c8JKnRTkq2zBjhjkhXAEF35dHQzeqTb7Wo0Wh/nd8cdd+jcuXN2uhgAk3cIKwMTXCqVDOzOZuujcpFq4NiwdWzHZeTQd7mjtyKRiMrlsiRZtg64QEvFhTQEMALQxbm5gJM1Jfijw4MZIIgDPtgfdOrWajUDAwQbkjSCMKUslxnPZDIbrCrrwYEDyCeq1ap6vZ7ZJckl9st+ADyQPCC5gXl09aVu8xD6L/Yya4ecg4RVkunco9GogrGEdn/mXykQT+qlX/kvVErGrALjxdLK3PlGXfi9X9rQri2GfU2uvqjY6dvUvZY44OvYn4w5491gZzCH+B7AnN/v1/b2trLZrOlfYbxJ0lyWHfuhnI+ulO8joWI/wNZ4nmcsLKQAiRes62QyUa1W02hU12wW1HIpY3MATa95zWssMdre3rY1QC++WMTkeT55Xk+Hh4fW6QzrB3jCpvDDsH6M3gHQchwme47Eyq0w0bToVuRoeEmn0zYdg6oZzaasG/bMkHpsmntEkkNiACBcLBbW9BYIBIxkAHyTdAHs0aei2+52u1ZxcwEo75l4BKgERLtaS5JoEhpkLySOJMbYyWQysVghrWdgA1AbjYYkGauHHpfEi+/mNDDYYRqm0OkHg0GF4xHdWvi6rvYeUq8zUzi83iO33Xab3vOe96hcLsvv9+vOO+/UPffco0996lPa39/XdDrVy5derzed+x+1e8c9eurRow0dJ6CNdXbBIfiChLTRaBgTT8yFgUZal8/nTR6CBMdtSGZSAXsbUI90xyXEiM+QNpTmWScScVeHzz7l5/FVyJhcORIAFqyF1MydRYtNuInPK103PDgli4PRogzpLiSBGs0dDAkZKM6bsjwAi8Xn5XQ6HQNAvV7PnLHr5OhYR5dDBuaWXgjKDE8muELxE6AxLIzPBeCuJpNyj1taoWzBufQ0fhFwyVAJSrBNlEb5ee4XgEkmRnYHQKA0AzPNiTfIAtwgTkZIxvfpT39aq9VKL730ktrttjlcmnAo0yLCvnLliq05sxbdz5RkTCZBDkYXVgm2iDKP24kMeOS4SndYM6Oe2OQEYcAcAYVA8/zzz1tTBSVnABpi9WAwaDIB7KnX66lerxsApFsVO4NtIVslSLijaCqVipLJpAFHGgYoybAGlGqxxcViYc4RvTHrhH4XO5VkzDxghnmiBCbsD+B/eHioarWq6XRqjEy5XP4rHfVu6Y5GH+4XZkZaSwDceaUkQZT0w+Gw9vb2bIh2t9s1PSuJCInX9UkSpSzKndyXy3bzzgGu7F3ACkluPJXW9t/55wrlt/Xyr/9XmjeOFLwG9DzPU/zM3jWfljSGmc/2h0Ja+fwme6E6ACuD77se4DAQnCQEACLJ/CPrBnvjNgJOJhNjcGFcXM2ddDwqClkK+4jEHt03o9Zclg/bWN9fW6HQ0t41QCwSiejixYs2eug73/mOMY6A41DIp0BgpcUiYM9GoyTfReXILVHyDG4SDhCl0Y950QBSNzlivxAnSBxJOPF7NJwhJ5KOZWYk3iSVAFi3CY8KADHBbTLETqkk8NnEGMgJvjsQCJjGlN+TZJU8iAO3rEyFEvaOvUhyDEhB80liRbe/G2epnABuAWPcN/HCbUJCmuQekgEwJclPp9M6fW9KkdUX9cwT75bfv6487e7u6h3veIc1wUnr6sitt96q+++/3047e/E7K917S0G3v26oZ77tNzbQPWAFwIxdMXILW8eeSARJumkOpRJYq9XsvRI3sC0kelTwWGuSAOyHpB6/z7pTWcGHIbFArwzAh1nFrrFpbMb1g27iyv6nERAATwy4Xv7x1103PDgFWBwcHFh3LCXtYDC4IeSH/WAhycTYjGgn6MhmExPcAYPZa2fek/3ywgjSABucIACCqQEAELQjlA4Ah4vFwlhC5vPB9KBtxPDdsg7CaTRnlKhgjBgdwZ9ls1kba0Nm5jaFuGdwS8djMQD6OCqCFvdI01gulzN9C05rOBxudC8Gg0Ht7+/b9wMCYUVYV5oiYEW5FxwIG8Pt5sYWcIyUmAnGkjY0m4yKkbShJUIWwPsE5POzvEO3I9/v9xtbyt+hOyLAw35QDgWY45TRFQE2peMRTrCm0jEjCkOTy+WsNEZCRGmeCgHvi8CGBATHiG1xOIJb2g4Gg3bvMOSUnWgGQzZBtz2ldNaed8K6uw0yBEmen4DEPQCAEf2764Mdsa74BwBvsVg0xw3I5KLMxoQPt7QmyZyz2wAGM0eQoLRWKBSUy+VMjymfX2d+8p8rsneLnv93/2f1nz9vo70A2u0fPKWzy6Uyr3tQ9W993oDPxB9WeO9WDV5+bqOBEt8SiURsGD42lM/nbV1DoZBVY5AjUXlBikHi6CbxLmPP0YeNRsPkLAATt1ubw07K5fLG+ClJZjtuMxt7we/3azwuKhR6TtvbPdXrOQMfh4eH+uxnP6uXXnpJjUZDL7zwgrH5vIvbbutfex9lFYsZ+zsAVjKZ1NbWlj2TdMxoY5ck7Njs6173OkUiET322GMb/tG1UYgMV9PJ3oUJ5HNJnAForAH+/erVq1ahA1xSCWDyAeCSdYM9JAHmvqR1Vzx7h71IGZj3xXvBB+GTqbwRGyihsx+l9WB6khFkJVSH0F6TcPNMNNexzhAgAHp+F7BEMo6PxxdBIvD3JPCp7Po9tSsLY7rD4bDF4+uxw87OjgHL5XKpqbYViRzHQzcuuXYC+7harexAGrdbnaOKIbiIaZI2Ri65GlFiC1UNpHfYGyQEfRSu/h1bJkYAKolF+CrkXejssSP2IvGERjOeGVJje3vbGn/BLW6C5/YovNJ1w4NT6Hx0ajQVAa5gUF2HQXbLi2UjAGQAsJFIxGZ6Smt2hwAdiURUKBQsGLnlMDI9SZYx7+7uyufzWamLjAzjI4jhzAgaZDaAOUAWz1yr1awERLBNp9MWvLPZrPb29lSv1401BJzjLGBNZrOZSqWS4vG4Ll++rHa7LebHwnjQ7eeyNwB/jJROXzYSIBPK//pGE7rYuW+kDgAtNDAEAxwfAZWAx+YHlLAesK90ycMIUtqgvAvIcTuNCTCwo2SN0vFJOovFQru7uxtDx1kPGG6aiKLR6IZcYGtryxgiAiXJgetUXACMLcBko4VdrVb2fYBPHK8km7WKdghGEVDF51GFgI1A+nH58mVJa50ezhPNJSX9UChk74698trXvlaFQmHjTOhTp06ZPRGcsQm3yYemREDkcDhUq9Wy5IVEjWSTBNNNqphZiG7YPb0GcAGbd31pCkaZxI71bLVaxqa5DXCsJUCfI2Xv/bl/odw9b1H9e4/IF00oftebFc3lFEskVBiP1fvqn6lTPVT9O1/U1lvfr3P/8L9U+/uPyguEtPPQh+UPhvXSZ37LmHHAPeVnGs7oEC6VSlZtceUMru4bX+iW71ymDbtrtVoGmlxA4CaCrv6dBAsQKm2O4KMyQhkdlvjJJ0N68MGwzp17Ss3mO600Pp1O7RAM/K2r8Z9Op7r33ktqNtM6OsorGg0ZuIpEIjYPFBYau3T3vysNg6CACYPxdG0d2yIpQX6DTAj5CQkBx0SzFtK6ae76oemsPe9qOp2abpcyOEAUSRC67Pl8rmazaYAXRhsbYP14L7CXyNr8/uMxXRw4wKg4fBKxy23+I46whu5oQHeKBXGS2cxcsMSU73meQGDddESSynry3gFyVNHWusv12obCQa2uSZwga6jScAHAeHdrf7vUauWz5AFw775bwCYzQgHogEOXWUS+RyLOQRhU8vAvxAziHwQYtoqkCkBM0omNIgsgQSB2wZKyR931KhQKxtiDOUgSIMnoPSEBJ/bj/yaTiWnGkXPAxL/SdcODUwBMJpOxsgXGT0B3G6MAJ5T83BMOGKYsSaVSyShwNBaUN1zxtwvceLm8LNhNGDkcgnuWPU03lNHRULm6tclkov39fSursGFw8tcL5Mn8AQGvfe1r9cgjj0g6HulDSQidXKVSsUyI2WwHBwcmbs/lcnaEmgsuydYRSFMukGTMojsblN9nw1D+AowwnYCmFGnt/GgO42fJinHQ3AMOBR2fy6yRKUqyd45jwNmQncKU0+2IM3aZCEmWhOCAyFphSWCXsT2SFbSdlMBx0KyDOyQcpoDmAJwJ30VjWbvdtmZAmvd4Dy74gj0ZDoem/UKLiHaVjln2jyQD7oAzGAAANc6JhhqO4iVhZH3RA8NqxGIxSyhJICjBXs+Iep5nGlIcNfZPFo/TxHG7elc0wSQuBKFoNGrv2i11uWVZmAQXZGGjgCQkEOFw2BrclsulkqdvXfuV+96m0n1v2/BhWUnPf+FhxeNxHf7Zr2pe31fuje/S7gd/RtJK/csv6Du/9L9X78Xv2+fj09DsMiqqWq1a4xcMaLVa3dBvsyewe0AFUzdyuZyBhUqlYokDwVI6nm3JO6RMnM/n7aATfjYYDJpEYDKZWDUCXwbz0+129bWvpfShDx3q2WdH2t6+R1tbW3rhhRdUqVSsCYp1J7BHow3demtV3/72/UokkvadnucZIHG13ewB9jl2Mp/PzTf3+309//zzpr2XjienuKcJMqfVXVs0rDBQAFtskoqEO04KsgOWFVvFPwGiXIYT4E5jKrEDQI1shwqam3SjEeW/aWQk1uHfXXBGksq+pILEGgLsKQmn02nl83nzLSRz2WzW5G/YH1ptqj6UoJkMQ1xB5rBarWyvknCOx2P5rySk10vJLU+Xj9bfcfXqVX35y1/WRz/6UeVyOfveVqulp59+2uKNL+JXTAcaDV8jv38NfJn2g0yGikqr1VK73bbSPlpk7Jv5566fAqy7TbkkhjwHVSziEfbORSWAfcceBDO4shQqIuw38Ads7WKxsO90J/ZQRUOWgeyAeAkQ5jNIPJG2nTCn1y4Cb7fb1eHh4Vp3cvq0aZLc0jOZDvMkCfRkjmRGlIoJtnTf4kjIpN0GK7StZCeSLIPkZWPQlHx3dnaUy+WMFcBZY8RQ5K6Gh5c/nU51eHhoehjKg7BmrVZLOzvrs9NdkTPdvNPp8bnW4XDYTlWhRBiPx3X27FnL8GBJyMRwOIAwl9UjOAO4cXZ8NgEJ4EOgpRMQSQDMLFkigcLVTpFFws7CiPKuad7intxyE6Ni3LIMGS8ZKOxcNpu18hFB0S3v1+t1AwWulpc5p9gnf0Yg4/xoAKV7ihe6Oc/zrKkJR1AsFpXL5cx+WZdTp04Zo+92orul10Bgfd422tFCoWAlNtYwEokYGwbAdBMAd62QUzSbTdNWSbJACPAkaWHeLSCVAIUEh+a05XI9NofTUBgH5ZYDmdJBMON5g8GgNQzGYjEbvk8CRaClGYPnxU7b7baV3d3ExvM80xKiCaNBBTaXZHSxWKhQKCidTuvwt/8bXXHAMlMJgsGgzeuEPRs88VVNvv8Ns9P9/X1VKhULQOxTQJUrYwL0UN6FWQOIIxNCJxgOh20/oXEkIW02m6ZHpkkRQCwdj56BYXfZP+lY8gBYAsjwOVtbW8rn86pUKvZ+nnkmqHe/+2m9//1f0wsvvMYC79HRkWmMafhcA7WBPvaxp9TrpfT007sbNsY9AJRhiQDiVCrwHfgkgjK6b5oMSUSRFGGzkkz2gD4ZW6EplGQRkDMajaxqwdrAngFk8GGJRMKqL3Rle55nSUSxWLSEgNhC9QH/DusbCoUsuWWNACsQFgAU7o014TMogeMLXJ3rYrFQvV63Khe2NpmsD45BIkWsJabSBEo1hgQUhhW/RCwA7EvH4wM9z1PtxamGukWvu+9I3/rcurm43W7rS1/6klqtlt73vvdpa2tLBwcHeuSRR/Tiiy9aYnX/+zIKrnp67rthOzra7QXodrt2EhJxiWcB4JMswzYTV4jRVJZ8Pp/5Ld4HsQuSgv9nrw8GAztylNjokll8Dlp6yC4SE9aSuEAcp/pCFYiG0Ha7bbgBv8WIKw6WIRnj3TNx4dVcNzw4JWu6cuWK9vf3tbOzY2OOEGPPZjMbCM+RgM1m08AGY38Wi4U5weFwaN2WGAraUjR38/ncDKHdbqtararb7Wp3d9ecAlkfzgxnS0CRjkXlMDIAC5pRQqGQzpw5Yw4V4I3BIwcgSAA8e72ezp8/r36/b41Q4XDY2FrOWyZzwsDr9bpliJSKKVHSHDGZTHTlyhVJ0unTp23zwPJJsgANk+VuAsA/yQUB3R2mTOYO24CuyPM8O3easjNgr9vtWuMRw6FdkMJ7lGQZLyU8WDtKvpFIRLu7u6aBorzLRmfzUyp0ATzNBjh5Zk0SYMlEXeAOU0CJFpDLc+J4cC7MgkVT6bJq6HS5SMRIfghONBTgXAAZSBJo9KGjmDIlVQFJZrOAGsYKwRqiSXW7X3m/1687YFiSlWJZaxf8cs+AURI67JnyNlUBgiX6cUDCbDazpID5noBp3ht7FY0ze49kD+DOusIwEpjZCwBBgh3JlqtPRGZEEujaKn6C9Qf8AK5CoZD29vYUCASMjQe84htoHCMgo1OdTqcqFosWiNhf2CnlbxpA+D7Ke4zuo3xLguN5ns18BbyuG5hCFnRhnNdgMa0/+7OUPv7xR3T33f+TLl/+qIbDnK05DSahkF+FwkU99NAT8vlW+vSn363ZLLhxb8ir+A4qWgRPpotgy/ik+XyuarW6oTGHGGD9Pc8zZosDI1wdLrGCUjbsJWAVUAID1Wq1zM4o31MZAhjhE1x9PZpwfDhyMLfhC8ApaaPphp8hwafZEclYMBhUpVJRq9UyIAMIZk/zbPgaANBisVCj0TC7A9iT4CK76Ha7xvq7ZA++gHcDI0s1EcLGZXjxW89evl9vPPtHShYfNEnHaDTSE088oaOjI21vb+vq1auqVqumg06lU7rj7OOqTR/Q1QsDm99Jgo3d82wwhkgnCoWCQqGQAVhiWb1e12QyUalUMqKMyiuVC/yBuxfwPdKxjATwjn/Ep0NsUb2DuYYZJ1Fym7VJHCUZkIZQcassVFdd2QVVZirQAGjs+IQ5vXYFg0FjxnZ3d21EEqCQsiAiYBpdeAkAFxg7ytwucOT3aToIhULa2dmxTlMcIJkDFD2bhRIPINcdDs2GB0TBJJK5oGV0y/joQHDYlCpcp4wetd1u68KFC2aI7XZ7Q8MHw+I2J3CO/NbWlmmJCN5uMwNglwwc9gFQgqwCpgrGxb3nWq220YyDxgpGkLIDDA2AFqYY4FwoFCy7R2BPFgeDAADGOcIc4ST4OUrHNJSwIZkWIMmaUbAp9M6dTsdmbHIvbtmbjQ3LQYcu/0ZzzFq6AnbuGUAE6ELKAkDAibjdlUgSAEnoo/luStiU+bAN1igajZo9wKbzOe78UyYMsGewRaZkEMTck85YB/YQWmeCJ0wlYD2VSlmzXjgctnmoOF5JGyUrRlmlUilj8gH7aKxh4mkSpBTrasYo+8KkYzMcQwmjhZaNCQeUZPl/WEtXs0l5kOedTCam/8J2YYaZLkDQnc1mxiaSqPHu3ASExJBkBoCA7psEicQGO3Cb4FKplCUwMECuzAK/6Wrw8D2M3JGOJwH0+307UIPyea9X0B//8bv1/vd/R3ff/f/R6dMpPffcTep21z41l7us1772ilKpkQ4P8/rqVx9SpxPSarXcSK5gMdlzfL/P5zM5BIeHuIwPjGg8HlexWLR3IsmkXzs7O6brdRsyCeYwfFRJAGWMNoOVo7y+XC5VKpWMoMCvkPCRGLnaS/T3NAyNx2MjVtg7JNMkO4Ap3im+DJ24a0OAXsA4jDCsGSf9Aa6IKSSAsHL4V8AsCTTj7Igjru7ebRoCkLNvYHRd7T1+JRAI6LE/n+r1v5DSP/pfjfTL/23GEj78Fo3HrHs8HtcDH1sqs/qePvOdj6vXq9mawRa7E3OYnwzb7MZz9jQ4gc9w9bqz2UyNRkOxWMwmwkAE4YdJlNgn9CwQ38EKrJ0ruQLzAFRdSQRMOGsoHU9HQRIA800yCMNN3MQXMRaLqikTgk669a9dbpkyk8mYxogGEUAo/z2ZTKyhAr0oBhiNRq3sR7nPHeDMUGFKE2TGsF0wMwBUTj9h3tt0OrU5gQBbSSaoJ7vGUbvz6wB8jAPivpEhUPYsFAqSjrsLQ6GQms2mBWS3aQEH5mq4YCkBRTDNkixwoW0tlUrGdBJsKdnhRF2nQ2kUx4Xjd5tQKHXUajWdOnXK3hulg8PDww1QAXPE5gJQ4khopEKfA3PBxsSxMHTY1eKRuc/nc9MPsUaANBq5JBm7HAwGDWgBdplDS3c64Iv7A0yk02ndd999Wq1WevLJJzUajTb0jpwbPZvN7Lvc+X+DwUDNZnPDprGFZDJpDA1OpFgsWgbOc/P/ZPI4G/Rj2DtVAwa+u9ozt0mP9QeMuvYsyZy6q9UF4NFIEI1GLbAvl0tLPHHG2JALiND2uR3M/L77XDC/xWJR6XRag8HAEjIahGB8sdNAYH3WOMyTdDymiVIsYIh1bLfbxii6jZPuDFwCByCKvSzJ5BftdntD4kLCRlkPdpHfk9aj1GBx8D0w9hwhzB5g/Uk8AcKsIf4BFr/Vatm7BoQDAgBDboLmBmsSP/bMsYxgV7/zOw8pnz/Sm950qDe+8RkFg+vvn838eu65bT3++N3q9/euAZ81K0RwR4oE4Of7SSBgsdvttvnzVCqlcrlspWCSVLdfgKSOhJrP4/PdmZf4VUAD75N96UorSMTRUjLtAp25exIa7wJ2jNIto7xgpalgML6IhJqktVgsbgBCEjwXaJOkuawfSU8gEFCz2bRkhrF7kAburFt0ucRHwFg2m7V47cptAIfcM/6AxBBJFTbOVBR8yae/9F597D2f0i/8i3v1739zR+P2wogsJs2Ew2EFIyE99LeXujXxW3r68Ed14fGFNYehIeV0JSRe0WjUJHFUZKlCEDPwF4VCwf4OXMDfYU9uck4ix8U6sgchMNxZ3dc3c7Kn2Hv4Jnwb9+dKjKikYHNMcoCQ4v3Qs+JqTfk+GG632e1/7rrhwSmd3HSzwbKQlcMAUKIC9EkycEQghSJ3s1S34cLv9yufzxvgwjGx8Uulkons0RISnAG7lLZgQdFzUXZmFhqlT36GjQozAECCmWQAN3pF2AGAOSXMYDBoY2ZcHRLPRCmXwIUwmuxNOi7duCxbo9EwBsvzPDsdCVDPfeTzedvwbjMGa073Iw6bjcCzSdpw3Dgung0HBctNmY1yECwAToFynSR7L4B95BVkjSQYJA/oRHGokrS1tSW/32/labJKnlGSBUAYNZwlWeiZM2csKMJ+uNMEcDJkrgBdhpqTwRL83EZA9gWCeRgw2Df0dq6+DjBHuYnPI5sniJFc+Hw+A8gEUMpGuVzONHwkJshECOSAfdaOEperg3PnSAL8fL7jkTcEXbea4I5PISGggQFwxn+TTCWTSUviXCYDm5Nk/oQkk71LpzFMA8AQ1pZEeTwe22gukhm3ASYajW6wce6Rg24CAFiE1WDtCFokHSSVo9HIDiuAFaPDF1Yok8lYwsthEjwzMptgMGgTHtAndzodey60lAQy2GDuE9a40WiYn1prmT1dvZpRrbalcPhNikal6XSmxSKgYHDN0iUSUWtywzZcSQl+gj0ajUbt1C8aHUn2er2eYrGYMXu8A89bN3t6nmc6XHwlfoV3zgguac22nT592nwSwI6kiLUBLMDwIV3i86/XdTJ6DIYLPTyJLH4yHA4rl8vZhJBAIKBGo6HxeGzfwaEDAG50rc1mcwMsUrlzqweuDp1mNxJWwCqJKv6Z5ie0khxdTaLvEkrEGhqPAHUcl4x+mqQGgOT3+/XS94Z6ePEB/dgHvq7/xT84r4Ppe/TM+aJe/H5LWgVVPJfVnW/s6Fz+y4osK3ryyo/pe19OKhabW6JODMV2IUlohMPOSGLYX8Ts0WikcrlszacQA6wxcjG+o9VqGV4JBoPWJEayAJlFVRWSAXIGv0dVhPWmguASKWAWYgcxbz6fW9WXRMhtfnQJGMgG6ZjkoXH81Vw3PDglcPZ6PdPguSWGTqdjw/N9vvUxpZwZP5vNVKlU7Ox0SRaUAAWAIgTmME21Ws3+DC0gxkoGBXubz+cNVK5WK9ucOGlJRr/D8rglwsFgYGVw2F/KLIPBQEdHR5YpuafxSFKr1VI8Hrf5ZNJx0KeZBdCGg2QjViqVjQ5mV4gN0wMzB5uFAwHQ8fmwJe53MHOVZwLgUV5ifTnDd7Va2axFSq80YCFGp4zkls+REZC58p6r1aqBFNh3V9vnisqRb0iyk8LI/mGsI5GIBQFXQO/Oi5NkzolJE9gJLN/DDz9sAdqVc5CEHDeDHDMvgD20WwAZEgpAaLPZNHslIMMGEqjQYQLKAD04PTRelMEBxtg0jhCW1c3S+R7YNrR6rlMnYUM/x7vlaFKqBDhQkpxAIGCD/9FVUfYGFJNcuLpTWHEYIM4Wl44b52AtOO0onU5bIoIvIZlFM+xKMbCpZDKpQqFgmjx0g8Vi0WwWYIKuGC0YI81o7IOBIiiy/5CYAEolWWMH749E5uDgwIAETYiATcAH7BasLX6Xsi2An/1IQksS43aAw1hJMgYYhppkAFmDW2pcLoOaTgMaDj31em3TemazWdNd8kyw9Ow7RtQB4F3wxIg/kgRkUyTeBHmfz2f+UDrWg+LrSVDQqwcC6zFz1WpVW1tbpsdFTgAIYy1Go+OB5iQKrVbLkjfICXoO3KoZLDnPBHPtyoWQxXBf2DOgFzkRR1q2Wi1jJWGhAfYkLiRnuVzOEkTuF9BFEiDJYnK321W73dapU6es6kJShhwJZpp7hhVPp9MbTbaw+LPZzObAQkod/SCk322+X/c8NNOdpx/TBx74rD7wwDF2WCipK+236dnH3qv6Vd+1z/MMeEkyUgu5Bgm1K/PI5/MqFouqVCoblUkkR1Q56H2BhXWrH8QlYqbbg8L8ZVeKSNKLFhU/DsEiHUtrAJkk/8R9tPvYtFs1pcfAJbkgMajW8E5dSQKNZK/muuHBqbQuN8KcAmiCwaB1+QJcI5GIKpWKOZLDw0MbnUI5kZFJOEgAI110BALpePg6zAIsIYZLYKI0IclGB0myz8b5uLMD8/m8CoWRbrvtvM6e7SuZ9Gm1Cms4zOqZZ27S00/HTH/Y6/VUKBQMBDPvjo5Tt1RNhgOIpJyAfmU+n9scTLJ2nBigD9aANUBz6J6cxHgiAgEgka5ZnDUXGfrR0ZEJvCVZhs0Ehk6nY0xIJpPZyNRgLXiHCMNdKYbbrQ9bwJrTAQoYgHHlolzKBoW5dTtKacLC0QKeGI5OWYvsFPCLXGM0Gung4EA+n0+5XM6a65CidK6dHw0jlM1mrYQNgEG87zJgJGyAGpgcWAmeiQYa7NcNGNgHIJPgiINiDSkRMeOTpJGA43mbnbew1wAvynW8AxhF2HtK7jRZuUegcgQsTj6dTiudTpsmmXvjwAJKu1QPKHdTnaCsT3nT51sfpwnYvb6xAV0yUgt8BbpVmEy3FBwMBo2RI0kjkFM2BHADQtCRuskZ9sd64qvcUp+ra0aSQeAjcAWDQUvMJW10iNPBnkgktL29bVUQpAzsH3TMAEfWG3kJzCaVoqOjI2vWwt+gn4ZcoDnPrWIwCxUCgeTe1afDkAO2SLLcBBQJA0wRoIj7hDVjgsd4PLb1iUbXxwFXKhVL5kiMAH/sGbdSB2CWZI1RJHHEFsb4uISD2wDJARf4CN4lutTrdc1IVgATNPGg84Zt4+dhZgHrrD/xkmqXW2EjJpCUYuf4KD4DdhbSxZ0OQgwHqCPx4V3gK/FJvLPJZKJKpWKfMWgH9a0/C+ix4Ft1+/1phSIjLVczDfvS5acWCvjXzXXD4cDeuStRYT9yP5BOJJwwncgBK5WKJRj5fN7mh/O5EEP45X6/r0ajYRIATnQD5PP+8O3sD/wh60rCQkXPlaWRWAAqaaxyx45x37yLQCBgz0TSwkmN5XLZ1gafz/pj66/muuHBKQ1GOBlXA5ZMJlUuly2TxumR+axW60H9gByCA80wlDUODg4sa+CYNRwZQZ+NAeOB46PbmrPEQ6GQdclL0pUrVzY0Iutgd6S3ve172t090nAY1HPP5RQM5pVOR1QsVvT+939F998f0SOP3Kp2+4wxF5lMRul02tgNSebcXB0MQAFQQQZGUJZk7IEk26CAhkhk3cVORuw2/kjHej+ClJvB8Xc00AC2YCPJuikRU2KmfM67JdMGYHN/aF45pxgnBohHa7xYLGxKAywQTTsAFYJdt9tVMpnU2bNnzQEjNodZ5wx5GJ1QKGT6Z97tcDi0Qfjz+dy6rgEjsIlowWKxmLE30vGcxUajYWVMmB2cFmXDXC6nQqFgWlcAIeUx5A2AA95hJpNRLpezwEGgpFHQ7ZSFPSXgUbaEySRBgXkCsEajUftdv99v0gY6dGGFADU0fJEsATh5DzCmPBuOezgcGngnSXEBhyQLzvgS7hdmwgXgMLi8e4AaoAc9HGV3wAZMNwkJ9yodNxvRTU4ChH85OjqStGYqkeP0ej3zQ1QeIpGI7SVG9hC8ePd8jluKpkOfdwzABXC6cxSZXUkyBiBHkoOfxQfmcjljXwGprDlVFALleLwelp7L5azED3iGaeKd3HrrrVos1iOLXMkQ5W73BCskMTCPrjyCBG21WqlcLttRyAAC5D+w6dvb2wqHwzYO0NVX4+Ng0SAoJFkg57lJSJnC4fo6Yg+afVePCxh2wTtglwNbiCXupBeX1adiRhIL4GXP8jzL5fGBDNePOoKtQ9PtNvDQwEWswz+5s6epQGIzJMTuPGzeXzQaNZ0kbCMyFFhiGEnAJZ/ZarWUyWSuSYLCqrwQ0HgcVL+/7hNZ91QUrHoJKcIauBNBIGdcfTnvhNhD1YF54OFwWLu7u9YUhf0BHPHx+ApwhSRjhnmnnKzoynmI5TCmJPwkqMhs8C8QMq6OF8aZ2EnS485T553DqgPMuReqG25y/GquGx6cgtwBR2R5OGyyBlhDsgFYDMAT5UMWltNrXMfPhmbTMj7C1Xe4GSLaNQIUrA+s0Gq1sszX5/PpxRdf1E039fSRj3xLg0FUn/3s6/X889taLoMW0CORsJLJq7rppu/oox99RsXiTI8+eruJ6Bk5wngOV9NICZZNQZCCpaG8ALNKua3b7RoARgNHcAdkkZWR3dIxOp/PN4AIm4J7hKVhY29tbVkpEEkEWinpuDwpySQMHM3Y6/XsvbXbbWOu+Py9vb2NTQq7AosBE8H99no9A+AwITBRBBTYDxw0gAp2V5JlnuhG6/W6ZZrJZNKaCDqdjvb29qy0GYlEdMstt6hYLOrq1atqNBqmR2LeHowW6+SukTvCh3IlTBngjdOeLl26pFBoPbIMJpxMndIW5TSmAgBY2VtusHQZlcFgYM6VwMt+pdxIKQiggj0B4mDvuCcSGcAWWm8AOp8PcwkDQ3IFWGJkEn5jMpkYQEfa41YW2LcAUthcAilJIOCCkXboz8PhsDWWMZWCwOCy+TA3VF/wK9IxCCZAwORRhsPPkDQQKGFg0MNxwcoBhK4/3Y7KE4muq8WWZIBUkn0XzTFIDEikkCxVq1UFAgEbPeOOeaOSMBqNdOrUKatsudpISAieH5aoVCopEAhYMksFjBF4SEpgFqvVqmKxmDWusJ+R6HB0KOCzVCrZ97knuxUKBZ05c2aj0ZGmGXwZFYtwOLzhW0hAsXW3hEvVAlsDxAHe+B3KsOw9Zm+SMEiypi98HnNfJZlkC6IF0IzNAeqJXVQuSLrRY8NA884BYdiwSzzAeLrNfzB9MIfsNdf3SscJP8mz25hbLpctzrm6Zsr9xDG+j+Y/GEfWBPAN8HbBs9/vt+kKnuep0WiYvh3ZEyxkuVy2kW3cd6FQsD3LnqaqgsyBOAMopYrl4hViB/6IyQskIm71knhHsuxOHyLuuSCaeApWwm+4h9WAe4jvri94peuGB6foCsvl8kYDEygeDRxZxWKxsKYJysDui2VzkVlLMuE1WS3laxw9jgLGBqN0S1dordyBvNPp1CYGrPUnl/UjP/Kc6vW8PvOZt6jZHCsQkKLRoLG6hUJBs9m2nn32AbVaL+sd73hBjcZcX/tazoy/XC5vnOYBiwcQBEBgpABJ1gGAi7jebayiGQfGJBAIWMmO3w0Gg6arA4QCXngODB8ZAmtB5zANX4z9AtC5WjOyW8p7vK/RaH00Ip3G/A73TuBAV4e+KxwO2zw6Zj/SIDGdTrW/v28AdjqdqtFoWGYJMHRZKun4KFVYcf6hbMfPr1Yr3Xzzzdra2jIHfPPNN+unf/qnVSqVdP78eX3xi1+0d0cihBNJJBK25qxBu93WwcGBDU2GbcEBAQoBVLxnGnjQvFGGokxJJk3plyZBkg7YMBgWt0xIEyLn1xOk4/G4MdqwtsywBTQhq3Gbw/x+/wZockGLmzgCkheLhba3tw2QMfszlUqZlgtJgMugIRcBfGB3jH6joxkH7zLxsBNuuVmS7Q+YW/c8+na7bWwggcjVD9JsAtCT1g020WhU7XbbSp7YGECWd0Nwgknhz0jIAXcEGoIcrBSTBur1+gaIgl2EWYQRd5u9AEeAFpjVUqlkoJmTebApABDPAtB2S90cJOICUthbfKHb7Dqfzw0Ezudza8zxPM/kPyQHk8l6zi4SBIK83+9XsVi0pBx/Cih1G1K5D9YDkImcCB/iMpyu5pREDjaaKgYAkekIrBUJCs1cwWDQjhhmP1C2J/65+wKWvlqtWo8DlSI+h0kTJM3oGxnL2Gq1TIuJNAIfX6lU7BQsYg8kDH0QPCdyPWzDZflJTpHXYXd8XqPRsGSf/R0Kha7F0pnFM1cuha1i93w3IA3Cx62OIs3jCFn3FCXuB3kRk1JoHKVXAmaZd42um94E9j6xm9hBVYokjsSF5A38w3Mhw3Nle9wjPh4sw99TYT06OrI1xPdBFLj+/pWuGx6cSscnRMCUEExxFmSPlGgYvivpr+gKyZ4ZAUW5gzmCAA2AGVkTTCLOFHoeQwwEAta5xxgTaHuM4EMfOtBwGNZ/+A9v1WIRUr9fs03OLM/pdKpabT2H7dvfPqdYbKAPfOCKvvWtpFqtY20L7BKOZrVaaX9/X6PRyE6OIgt3j+hEIO33+02ITXkPHStZLoFksViP3yADxulLxyNC3E0NY8vpK2z0ra0t+1zWl+9zg5g77osALa2z/2QyqcuXL1spP5fLmQ6RTQw7DEgDfABoAK2ceQ1YZC0AKN1u17Rwi8XCRO0wyDQ4kbG7DU6MeXGdJeuDswY80oxFRksZBgBDGdl9BkrkOBeyfxrseM8wkvw5AYbkC1bBbbqJRCLGSuEE0a6yVtcDPU5BYu1DoZDpBsfjsa3HarUy5jIej9vpaVQ9ADTsUZpsANeSzLH2ej0DDkgXAM28AxhgVwPHngeYSDKdJ/eH7g5mg3ItQUM6Lk2iO5dk74W9xfsLBoM6d+6cZrOZLl26ZCU5fIrbtEjyB0hnv7EvKKnyvimfwhK5LIpb6aF0SlkY38SeHI/HNq6PoOd2+cNs0ghCwxdrAgsWj8dtXFO5XLY1hl2DKQJcA2p4h7CrrA9+HWaO9b5y5YqdrBYIBKw5D3KCIA/QZT1cQAFzzH0B/F2gRGMqJ5jBwsHAuaw7QIs1oWrGGC8SXc6DJ56Uy2UDE+6xptjTcrm0A0OwUyol+DhkGDC52B+aTpIfl8xxq2FUCGgeBpBQSaQk7DbuIMmiXO6eaIgvwU4BoLxDGqwkWSWKyqUroyNpwT+SYECs4P/cJMUFdlxIimDIA4GAdcUTB9zJCSTrrgSQWIvfJda7h0Fgx+l0Wtls1jTvgHISQnwrcSUUCqlYLG5IF2DfXWmUW6HimdnH+BPiGbIC4gexlN4I5GKsD0QGcR4WnL2NNvXVXDc8OF0sFqbVoUlBOj6BB8PC8VHOoBQpyVhAmEJXW0pmFAwGjcZn5APMKaUmXjolPBy+y85SMseA+bt4vKc77mjpM5+5Q43GyF46gRBtXafTMaZpOp3qu9+9Q29845He8Y6Jvva1deZI00cgENgo417fhMGYHzpFuZdgMKjd3V3bOBh+tVq1DDUSiVhZAnADW4Cuxg1KLgNC4KR8hO6V8gSlUkajABbQ/LmMDO+Of2BT6LguFosmy0CrCRgIhULa3d21jYs2EUYQEIajB+DxHrEdWFeE4jgfdMywBi4Tx+gg5pKibeRnh8Ohnn/+ef3Gb/yGMpmMarWa6W+73a5lq4B1t0QE0M1mswYoGSkDow7QpmGO/ULA57NI1gjUBBYALGwEGjv+DvvH8TEZQ5Jpl9wEin3Mn7P2nBcPA9npdEwCQNMYCYw7SoWTwnhH+AW0neg3Z7OZjo6ODOjS2ANj2263LbCNRiOrgLjlt0QioXQ6rYODAwPg2KUrPUACQ9ApFApWToaFA1iwb6Xj+aa8EwIfTTnYMt2/6DDxfXw22kfumykLvGfenwtg2Kvout2GShJIglw6nbZyLcHRnVoACJQ2ASXzd2m4gJmmAobuW5KxgAxUh7EjCXJP93KrYzC5+LdCoWDsMLpm/B/+gX0AcGWPcsAGLC6ghqkWbrIrHfcnuNUI5FRuUhoMBq2cTuJHUgPzx4EtMPTYcyAQ0JkzZ5TL5VSpVDYAgqtbJQYCRt0qTiy2PjKVCgTArlwum/90EwZJRjag4Ue+Vq/XVa/XNZvNzMd7nqf9/X31+32VSiWrnLiMJ74AgEaMxrZms5lqtZrNC3fL9IvFQv7iKe098CPK3fkGJUo7Wk1HmuxfVOWLv6/25Qu2XxNnbtfWW9+n+OnbFN05K38gqEf/2QfNnklSSTxdkMa4NOwpEAjYCD0qPMQxkj2aj0hESNoA0PhCRrKxJ11Mg77XPWQBwCgdy0OIjXy/KwvgO8FBnufZnru+qgAQJ24z4pJ1X61W1heBXwMrvJrrhgenbGZG9sCiuJoVHB00Oc03AEvKLrxkxM8sssuYMioEgyXLZHwMmjnE/Pw/GQ1O3W2cmc/nuvvupzSbBXX+fFGeNzf9C06NzQ2AO9ahJfXyy6f1lrdU9dxzd6rX65uAPR6PGxicz+fmJACNjGMC9OGUAKCx2Pr4tUqlYs7I1Y2ir5TWAIBjPNk0bBLmBrqBtNVqWTmSLlzpeOYqwA6nANhBixaJRKwUIsnYudlsZswbHfK8d/SnBG5K3W5JCYYEVk9az3DlEAPsi/fearVsrihMA++ZMjJAy9XdkWnTaMKQZQK+tGbrrly5YnpWABOlKLe0yM/zs9gt+js6pJG5sM4w1oDSaDRqZd5YbH0mPXuJvYb9EShJFmCx3fWUZFIO3hF6YBwi7CaBAH0vAZlgQfB2nbsL/mazma0R68uoKgJhtVq1Mjv3BXiBBUP/iG6XYAP7i53B8LCOJCT4DQDK9Vo12K5Op7NxylCr1TIQRvLgnsxGB7Ak238kQwBc2F40lQQLGE5mnFIerFQqtg+3t7c35EDo9QHW7CXm6y4W67mc3B+NF9IxC0rpE9sGWJO00LwJEHB9dywWs9OwXH0l7CPsGZ8lyVh22HL89nS6Pp4V/wS77SbLDN4nZpAobG1tmY0xbotEC8Dv8/lsBiY+kTIofgCdu/v+KF1LMnaYRMydusEszF6vp3A4bIAGAC7Jzj2HgYUYYOID+ln2MMkOshxIFWZZAqCJDSQXkBpulcCtbqHx5J2R3MDAklxTHXBtAtsFkGG3kgxU4xeQW/DOBoOBdj/0fsXP3KGj735ZzW5dmfKuUm98j27+xf9ai3/7v9O0tq9YLKbsfW9T4U0/rGntqmbNqqJbewbgXA28q/fme7A1F6BDIIEDXAkUzYHYEKAWkInenXiJJIc1ZbQln4vvg+VEy4z2E/YfsiGRSCiTyWyQZBBG7GWIF5LIRqNhEgRXjkfiQALnxh9iDzbxStcND04JbhzXCQiFMXLZNlePhsOiHAl4wqmxGd2mFmltkDfffLNtKLR3MH3oR90yI/P7KIvAWpIBe56nnZ2Ojo72lM1uaz6fW5MPpe9oNGpNWTwDjUoHB2d1661XtFweD42WjlksZjOiE4IdbLVaFjwIfrCZBGeCFCMkKJ3NZjMrnzARAc0dpS9YG+mYnWZTsRE7nY41QpB5wVLANKKVcoGXG7wJ0IFAwEpmLhOEU5hMJtrZ2bHNvlgsTMIAm4RuBhthLXGG2BZShHg8vjE+jIyeIIvDcJMlggtrjKYV3S3sAdk7jQPYUyAQsCApHZ8GBqNHOR82l+YinhdGC7CCHKLRaFiXNEEB4AR4hCkm0LIHkMbQlEAZi8DmNiXSIDWbzaypEFbR1dTC8gG4cLjZbNYAIho3gCmOEZYBvTWsByzoZDIxOQ6yDzqTAdgAA5j966cKkDwCPrlXNzEj0WUOrCvloPzs6nOpPAAuaNJif8FowHgA6LgfSWZfgJlKpWKNXujpYXj8fr+azaYFZJgTgA9sGvfsll45ehFdHrpfxnOxb9j/PDvgEA1xpVKxMUXsP1d3BzNOckTCwv4iqeTf9B641StJBgJhpZEzMR+TfQIo4D3yfikF47dIkFl3EioSfBi2w8NDeZ5nA/kp71MhWq1WlhiQFFOOhZkDhFI1k2T3u7OzY5UPl4mDwYVldku7bpVgd3fX2GeeBb8DA4eNsLZUwrBTEiNADHuDZJ/3BOkCi0eVAtuibwJNpBs78F1o/iFB+P1Go6H2H/262hefUTy61rdPolHVH/+6bv1n/zeV3/Xjuvz7v7Rel6cfUffF7yrok3z3f1Da2jOiAHsBWHIQBzr+YrG4kZC5yQxJMsAdH8gzYJP4SVdWQwJOozBVK2QlvAveA/sbCQP/LcmkQyTr/B7EEvaF72DcH/pbV+dMHIVRRb5AdYE/c+Vjr+a64cHpYDDQ1atXlclktLW1ZUYLG8ULkGTGkkwmVSwWdeXKFQOMksygAEVke7xkggnUON8DYwa9TVBytVPJZNKCBE4DlmQNLmZaLI6731z2i0yoWq1apk32tdY7rp1VLLbUdBo3oIAOEi0d98Tz0eHN3FXG7pChsvFxEjR9hEIha5iSZFk+4JISIIBzfW/HY3RWq5WdzywdA3+0rePx2CYFuCwnDpBnp9mKQM+MVBpcYK4pVUky5w1Qg3VBPwhjC4Aj+0ebjIN3gxLBiN/hM0lC0N4BdhnRga0BzABTfD9OnCaLK1eumDNhtiOfyTt1AzGZM7pVwDBBHeaGk3C4T0AZ2l+AA0kRp3wBQGBiSUYAKThwSea8aFJDgkEiNJlMrHN0sVjYzEgCKM8BuCdJcvctZXqXaYPFqlarunjxoqbTqUqlkgE+9jY2SyLBzEiAGoyOJGO5JZnel3fA2mLbkmzNx+OxJTFMaYCJAszyfgHqrHEul9s4AQpQw1itWq1mlRAXBLIHYRFd5oOSX6FQ2KgyEAhd7TJ+qtfrKZfLmYyAqoELpK9vHCV5cn0re5h1dEc9LZdL25sEV56HUjx7VZI1uOHDVqv1iLpWq2XVCcrMBH0CLQcBSNpI4tx3t7+/byPCPM+zdweI5BAH158QK4gRs9l63BFjhtBSukkTAB85DkCh1+vp4sWLGzKxUqmkTCZjzJckAxK8c1dnjJQHgoZYgB+jNE2iSYLIu4O84WdJVKniQBy4bOlyubRmTWwHnS0+D+IAogEdPYCZhEI67tAncWDdiLGj0UitF84beELKosaRZvUDRbdOWfyL9Dta+jNa+P2KBY8HyuPn8MXSsUwOuwHYkWQhMwGAwmzy7olx+DYSKSpH4/HYNL7sI9YCJh6mmT0AQQHZQ/8F2IR3wbNQbcLeSMwikYjK5bJJJtyfc+MQ/o/9SnJDggWJByn1aq4bHpySrZLloI2gDAWqh2UgMwXokVEw35KXQzlN0oZ+jwyUz2eIPk6JF0NAgq5HuxYKhay0Qpff+md8CgTmpo1iZiEOn5KL220NkPT51hvA708oHPZbxzksFMAI8AJrC9XPBgOoU47EwMnE6/W6PSvCdNYTh0Zm6Do5nKqbjQMe0dCWSiWl02k7AICgy1r4fD4bF0TTDkEQQIIDAUS7oI/3gPMkAOJsyPZ5FkAf4ISL0nImkzFdMnMUASZsVj6P4MRaw3rzLIlEwjqVYVT29vbMOaJFZV4pzBL27ZZ0kafQTOE2u5CYoVPi2avVqiUB2CVlfOyYz4KFRBtF4gVji8MFsOHkCWzBYNA0bLwnbAo74xjRTCaj3d1dLZdLYyUIfPP53Ga0wvjxcwBS3snh4aEuXrxoZU2yfhqrCOY4d/cUI56Bdw+Tir/AFt17pOmL++RsboBPMLgeeQdI5tQY5APYI+AM0Mu9EGABCeh2sdfhcGhVke3tbdOHY0+Mx8IumYuLn+HPARww3+4JfOwXnpX367I1BDP8MawUSTzMDHIJl1EmOUVeMhwObUg5tkeiQ2KJrRPkfT6fEQD4MoAx7BCsfDgctkZRgjqsMbbiMmKlUsk07DTosOfxpRAk7Xbb7AQZAIkOoKNer1svw6lTp+x8d/YESWu327UKGFrdl156yeIKlS+SY9euXd0kPoUklv4MwAjvBn9Ogsw7535g2IiJrB/+HqBDLMRWAJAAIFhpaZ38MW1luVzaRBvYSWQMmUzGCBaSTfYdwJQKSDCZkdeqmP6Z2Difz+WfTRWRjATCX7FuxET2BUm03398OAoMK3EbvwmY5DMhD1ypDP6FZIB1B0f0+33t7u7az+fzeQO9VAFIjnjPJLO8C8AvAJdn4ffx2SQONPhJx/0HpVLJKiX8fiQSMZCMpAYbe6XrhgenAJ3FYmHlExqgmAWIMWEEOAjKBwT11WqlCxcuKBaLWXmWrIjfIyhKsjIlpRYMB1YBYOZ566M6yazQvGEwkUhErVZSN91UUaGQtVKMtGbowuGwbVBYRbfRoVDY13gcVT5/WoVC0EouMF/lctmAA8/ggr/5fG5d0bFYzIC0dNwoIR0zJ57nbWhoMGa3K5/Sci6Xs5EagCJkCqHQ8XF0bHr0K61Wy5wWjmmxWNgUBII9ToNgCPhdLNZjVLa2toxtYRxPs9k0Fo6ATrkJmQfsFOwk4BZn4s4NpSPWnY9KIhKJRFSv17VYLLS7u2tMBRkzdokzoiRCMgEYwsFQwuG/GX9TKBSMzUFb65Zb0D4mk0mTMsCeopF251LCJDJtgO5NEhn2DYCGwIIUgWQNphs7AXhQJprNZqrX6xsDoIPBoGlFYU+QtOzs7Fg59fqmF4CneyoLZWFKwexTHCyB02Vk0CmiaWMtAFkwTpR33WNfJVmCOpvNDAgSOPf29uxnGOBPFz5AAQ0g8hBG/tA05EqHYFpJLOn+7vV6tp8Aia5kwU3c6PyvVqvWzIQPQZvK77jVCxJUtJI8B2AB2ZJLCmQyGWMJ/X6/arWaKpWKSqWSfS52xM8xdsnzPDt1LBqNKhgKyReJS+GwlitPvmtBl3tNpVJqNBo2nxqmB7uAhGCAvauNxLe63ecAekBPoVCwP+cdw9q7ABWtOtUf194kGYAjuLv3cL3kikoCo6PoJsdekEXgC119PveKDwNgXl/KRkrAffr9frNj105JmjhUhlMF6dFw5S34NFf+BovMWtAvAMhl/V3W0gCl32/TUvh9QFatVjMt52KxUOGN71QwnVf1S39g8Qf7n0wmil/7PpfQIjlDL0xzrpsEuk1mEFms42QysUTMJWWwJ3w0cRA/xVq5mlE3NhC/IU8gZ0gySXpccon37zY/gikYc8nBHYeHh3bSG3bvVk44jAg/wPxgdwoF2OWVrhsenDLygUDpnijj96+P9eLkFRo4GHHBxnU1R6VSSZIs66Ajlg5YDNSlvclS3U5uNpabrcNYUrpAJ5jP57W/f59e+9o/Vrn8snq9LdXrdSvpnTlzxkrEMEw41kwmrDvvvKIXXrhLPt/x0YBuxysAKBI5Pr4OwMVGY2O7w8o5EQhnQeaLw6BERDZKuRoW0/M8W/Nms2kZPeCl1Wppb29P4XDYjilcLtdz3ZrNpq5evbpxNBy/CwMJ80FA5X5isZi2trYMfMBWAQjJ+vL5vDGsMHWANcbCMGOSLlRYUcCAmyy4zW+ANJ9vfZwcCQmMBUw+DXZ058IOwwAC0GOxmPb29uzduMwxbC7NPTgPmlko0/K+sV/YYwLaarXaCDr/X/b+PMrR8zrvRR9MBaAGzEDN3c1uzvM8k6YoWbNkDYmj4yGO5VgZZCW+vit2fGzHsZZvYsc+tmVfx85xBkkeFMvWYGuwZlKiKEoiRVJsjs1mjzUBKKBQBaCqMN8/0L+NjZZjUWvlrntP52AtLqm7q4AP3/e+ez/7eZ69X74DoJ1GO1gO9gizRyWNDZOnSCSZEZwBIEwPWFtbs72En4xEyH2ATWR9SCOGxlt5YHcJyMhMvV7PzvKGgaKYkEZmfkA7a4r9XSqVbDTZ/Pz8GGsKOPY+aaw3zWbTPOewnFzv5uamMcE0uHnWFm8hiZs1gh0C0MlakGR7kz3L9XP/YTV8oxDPlaN5OV2MgpAB4sxypMghtmGFoRmG9UijKOwhjBVMImwN67RQKFh8Or8bnjXa6XQUXTysA/e/TTNX36ZgeHivBv2+dp5/XNVvfk6lbz+ivd3hQQFLS0u2ZmH/AN6wtcQ/2DLsQlwbxQHrm5F2FDqwXYAG4kSr1VI2m7WT5Yg9/Mz+/r4xo4y5gq0FXOPfBqhwr0qlkoGbubk588xTrAOgAWk0NrF+2D/sMd4LQAJIohgFFJMXsJed31CKyoWszr+fD1oBSOwVTyKxPsmR9E1wzQAwpgEAzllTxJi9vT3FZ5d08O3/RPWTz2n1q3+jQj5nagYxqtMeHdMLsUH+5lmyX4h3fB5FmmcpQ6GQVldX1ev1zM/OPoNp5nAbpqXA5AK4Gf5Psbe1tTV2balUyoga8hWWJ8i6jY0N28/EdP89GWeHn7fb7Wp9fV2hUMiaACWZDYECgTGb/vn50/L+b1n/3AvQ46tCXjTSbG9va21tTf1+3x46gTqdTiscDmt7e1sTExM24Jfq30tbBE0qIqoYaTS/kMqLQOG7ehlfUi6X7Yx4WI5uN6tyOa9LL31S6+tvUbebtveBVm+1WiqXywaqZmZmdMUVTysc7urppw9rZ2foUWGxk+T8oOKZmRmrgmG9WPQwWrAPPsl4PyMsKMwn98izPVSmvDdMCX4wGr5gWJBJYKNTqZR1EdOwBHCUNOaTYs4gyZqqzkukBJZIJKL5+fkx+QFbB6ye9wZxD/v9vrHABGx+l8/ilBDYpiGrnbVB4Eg7gCiKFwJqpVKx4sNLxeFw2O4XQ6qr1eqYp5dnk0gkDKggvQLCYMdpLKGA8+/Dd/YNhST1cHh0mpf3SFHoYAnwDTkrKyvfwUCTFAGk7BWfYLk3jNCiUYDCDxsCHjaaNgaD0ZHEvDf3EhadZijYVN/UBbjjnnimnDVMooddSCaTxp7ye8hd+XzegAWMCdIbrBjFCYCPzwOE0rgpydQg9hbFDnEP6RCAkEqlbGoHag1d0hRPMMvEyq2tLZtkQVHMe05PTxswJq70ej3zd8PEeabcj57ivYhRsK7YXbj/AHMSX7PZVCyd11Xvfq8Sh6/U/ua6Nh/8mHY3zqjX7SqaLih7y/266B/975ovreqJ3/9FNVdO2FxIPpNpD6xXzzpS/MLyssa5r8RhkrUkY/yz2awVAYlEQrlcTru7uzYpw8vIkowJZS/xZ4pPfIvcJwA9nj9Jdu3IreSKSqUy1tjJmoXdpphkDTNnExaPv4dpZs/TBOuVgFAoZP5w9h1NURQ9xBHsNKg6FPF8V9QIchikDgUgihENQ3wfYo4vECYnJzWdn9Ol//zfqbvb1IkP/gfFohOWP7a3t81GkXWx3D9fCniwBGQCnmfiGR5x4mEwGNTS0pLFMd7bN8TSoyKN/NY8f5hiv++IReFw2I65xvYAy879wM/KOtre3rZig9jDs2WPVatVs02g0sKAQuCxFrk3WAlQacANEHzf7XXBg1PYJUlWwXhvZbfbte5ewANyNMEHRiKRSGhxcdE8R6VSyRoJkPhgl2gC8HI2RnOo+Gg0qkqlYqZ1Hwxhtvr9vsnozz57m+6551O68sov6BvfuF35fN6YJ6obv0GXl9d0yy2P6+jRg3rppbpCoV0DL1wnINSDdhLK7u6unVDhvSkciQbDl8lk1Gw2bQwPFTxSFFVhrVYziQcpnc+Dxe52u2NHtpKMAIecckNAhaED+MBqEFS9/AezzSxQaTTvlm5pSSZHMOuPZpVqtWqdr96HiLwN2IHBA3ARGGg4oqsTxgzgjiQG0CGAsBYBsVSk3ANpOM4K/xIAn/Xm53nCdhHkvDex0WhofX3dmBZmNrLGCGbcN1gShpbzWQRjkvpgMBhrjCFoSzIPtyTzh/l/43NInki2gFfuVSAQGGNuCOB4zQma7F18tKxzmrq8Z43GIBhwmpU8CwNDhIRGQvENPn7MigcwgF1pdPQk350kBaPBs+T9AHeoPNhGWDckd++/IzkTn1gPgGauhb2Jv67f79s6npubM/YLEAxbBWhAFuf9UY3wXgMyAB3YnZBi/X2JxWLG0sIeI4OyHvf39xVO5nTjv/5/S5Ke/v1f0M4LTyhxrtAAbFW//hlNLl+ihTf/hG7517+v5/7gF6TNVVtrsJETExMWH9Lp9FiMZN97axSqG+w8z4vnBEtKEcIagdEmdjPSKZfL2bOkOMcaBCNPTKYYo2ACBEGOZLNZzc7OGhPLPfM+f9a6JNtDgB0AEEwcDGatVjPJls+myIN5hT3jPWKxmB3pjCLDM+azsBLhNSYnsn9Zq4Bg35iJ/cLvH/YiTVlYtOKJlC76x7+scHxaz/7ez2mi11L73Lqi3wJVJnAuL+LzBR+wx2E5+T4UMqx9ScaAZrNZK/jJ7T7GYxcBq8DCM/GFZw/IBjBT3HFoRbfbtfnYgGKuA6/2/Py8FbadTseUEe4dqiE5en9/f6zIJL+Sk71aTC5kPB/2O6ySL+d1wYNTKn68Q/F43LrTAR5UKZ4lmZ+ftwROMm82myqVSkomk5Z48ZuxqZBwq9WqDQTHhA5jxs/H43GrJIvFopnGAV1UXQDXEycy6vVu1Cte8S3NzHR09Oit2tycsqahcDh87njAlg4fPqqbb35KKytL+uxnL1WrtWdeV5+cCHD4VQioyEh8vgeVbB4kPaQLPEJsPioqwFuz2Rybneo7faXRwGaYLuQy2C0WuwfABCaqVoAW71Uul42BIQgQBEk8vD/d6HxnCgTYK+9X9v5k5HoYBGkIYBKJhKTRue80t3DuPawDoAYfrpcE2cjMBqSqRXoiiPCdsFoQ4L0XlWshsOfzeWUyGW1vbxsTF4vFVKlU7H77ua28B13HnHYCIPVMMpUzgZICJRwOjx3bx8grPL8UbrAwyPTJZNIYFWR5QBgMEwPYAZP+mmCbWZ8wG74w457x8gAAAMG6xsPK//esqDQ6+Q25m45vfK37+/va2Ngw5hLA4i0msKSzs7OmriA38/0ikdGRoDB6fB+KHVhw2Dm82RQnABcSL6wohRbrnX3Puqfog9mDpfFd/IBm3yzW6/WMuab45x4Wi0Xt7e0Z8KEA4/75SRbEiEEorNt+5jcUGPR14v/8ZQ12qkqfY5DPZ47Wjj6qrVPHdPVP/b905T99r878n7+kZnndkjOgAnsO6wHWncILkoFnBmjkvgBaJVnzDSoc6xO2Ox6P2zWyX1kPrCcAOQUt3dMwfRwqQoxiz1LgNBoNI19ardbY8HYanogrFOoUcoAt1CWIDewhgFHiFvudhhiUK3olfH8HIBgWlEIUhpF13mq1bF3ih6SwhHSg0KEgwI7hm41isZjCEzEt/PC/0kR2Xit//GtKqq29c3GK9UqvQDqd1sQ5Nprv0uuNxkPybGDv8VgTLyjK+HzfKIkaRrFA7Oc9Wd/eZgUxg/0CMorCg2eOJYD7CjDnWv0R7NjK2LdYzLLZrCmL2COwnNAHANiGIPO5kaLcs71c68t5XfDgdHl52TaPv3H4KnjISKOwR16+BCySZJD5JdlGiUQiY8eUQtlPTU0Zw4pk2Gq1LOExngPKmw0Pw0QVjizx4ouXqNWa0L33fktveMNfaH19Ts88k9XubljJZFTz88d1+PAJBQIDPffc5XrggcvUaFTGZCqSLr5TAAAJpNfraXV1Vc1m02ZcEry4j0g8ME2zs7MmXdFNyXxZ2ByCPlQ/rEChUDAZyEvtBKXZ2VkLenjC2LAkLY5MBCgiO+HD3dzctPeB8WCTkjQ5Ho4OW0mWTDqdjp0aBEuH1wf/IGN0KGSQl2CP6dacmprS7OyseYbobu/1enZkJkAVtrjf71unJ/eNQMS193rDc4273a7ZGZjJOxgMDLyRJEm+2BBgfpibB4uJt4okRZc+TA+sMPeBNUMQ4tnBtpdKJbPGcI+RC+lAJuHDTGMrISFgmfENTMhfJELsJd7/xbglQA+sH0wYCQ5A7OV5SVYYeX8u7CJ7BEsJvwPopcGA9QnjBDCH/QZgsjYkWYJFSWB9sW+IGzAf3JuFhYWxa4e9Zk1SyMHow7CSjGDtJNka5LNgZbm3KDLerrS9vW3JCS9vr9ezY0OJwRsbG7Z3w+GwHcsMMwqQplnTW1qWv+9Nis8u65nf/BfaLa6ayoXKQ6EPGOx1Wlr78/fp0Ht+Q+nbXq3dT33Q4h9MFAAAP/eJEydMlaHo9keBsl8lmWcwEomMsX/YMrjn5BCaf4jJvB+gEVaO9UA+IN5RxFAc8xw8w4V0y/f00xB8syaFLUCb5yrJlANJVpTxu8wjpgEHLybERTQa1cbGhrrd4YhCchzPEp8mhTYWLEAyMbrRaNi9ZTICiqVXmuiSX1xcVL/ft98LRyKa/3vvVnTxsDb+4vfUWn3J1qmfaMD9jkajGpzL6eVy2Tz/nU7Hnl+32zVbBYCYuOGtWtxLX4RQ7EG2QFaQBz37y54wL+w5bOBVI/ZPPB43EmJvb2/Mh8+1EZ+x60HI8LOAa4oKQDf7g8KHOEAR5kkJrD/EVM/2frfXBQ9OAVtsYsaySBoL5gAAmAZGM8G6+WYgkj2BAEkM7xDA1w/ZZ4OSHPwDoikGUEH1AlUPOCDJvvBCQY89drtuvLGpG288rfvvf1bB4DCJNRpTevrp63Xy5BXa3OyrUllTOBw2bxuyk2dnq9WqeaEAkATKVqul5eXlMWkdYz7ytyRLlLAcBEU2OguWoItHiJls3o+D8R2gxwIHPBAUfUVHhUjgpZKliYZkSrOT9/UAtufm5uwYuW63q5MnT5q8ApsBE0NwIpBTsa+srNhaYU4l7Bxyke/SJYFJMpuFJJsKQFGEZQHfLfcExg4vGcGc+xoMBm0geC6XG5PeCOae7fJ+JNQAwCP7hSYNaTTqBhDgfcxI+yQ5npMf7zQ3N2cKBvcZAAQoAVwxJujs2bNjzLykMd8e/mm8zXznmZkZzc3NWVFDMw4+cUahNRoNxWIxO6Bgf3/fGDvvaWPfY6fw43VQCjjgIp/PK5fL2RgnaTQDFVsBNgAsGbAinolEmscjBjtM7ELuw45AMiGZISsTYwAyJmGeY6F8vOEFaMKz3O127ZQYQCTNXL6AI3mFQiFj3XmmAHQ+BzA9PT1t7A/rgj3tvbCTk5NafMVbVHvuMW2+9JwxUOy1a665RocPH9apU6f03HPPmdcy2NlX/cmHNHPdPYp88S8sPwCqyQGsBc+i86xgtgCRFLG9Xs/AJgw7a9/P2KVQ4TP96CTiP+wrcYH5uqwzQBux1s8r9nOyibvsXYo7wDPFGBL85OSkHaUKUOW5E3u8hYCGR/atJJt+Qh4F0DKOLJ1O2wQR1hpAHmYWbzt+aJ4vRR2FIfcJjy+FBPGSZ3XZ//YexS+5Xo0XHtdut6+JS28aPs9LhrF177lvDt8vldPklbcP98OBSyRJ6bvfNMQN2xW1j37N9rtX67w6QGHDsyeOUKwRv4lzxEiOrGYP8X7YG5jVLcnIl2g0as+bNceR1ABuCB3uIXsZgicUCtnECJRESDEYYWI8RAuyvZ/4ANkmaQx8o1z5mPJ3vS54cIpkTQUHAEDOZSYcwI2qG2mbn2cxQWETkDCj44WjeYZgEIlENDs7azIpgIOABBMVCAxn7vF5yEJU3CxMgNnMTFqnThV07NiiEokZzc+nVavtqlKpnVsAw+tdWFgwUIXEiBzA5oHRjcWGx20GAgEdOXLEui6RTiSZ1A/AA/DAygDeK5WK1tbWbBg0rAfeEwJcq9XS+vq6pNFYLMAvQANWEV8Oz8rLtrDfMH0UD4AmKkiCLIFNGo1qwTcpSQNJyUsXdNcrO5pPPK+I6uqprL1eQcdPXaXyx+tqtbYM4JNkYAewDHhvLeticnLS2GOYW8D29va2BQDuD+b8UCikbDZrkjegGg8qz2lqasrm0Plnt7W1ZaNzYFC8LxX2giJqe3vbkhPNcYBSgjJB10uJJBWSFOsWVsYDYKp/2JJOZzjs3ydmACR7gGKGos/7L7HGBINBY6HpHg2FhueLz8/P6+TJk3r66adNikMSh8EF0JPssZ/Mzs4amOr1etra2rK9zvpDuuv3+wZEGcQOIwMTgSVic3NT6XTamEtsFufHJNaJJCsmSOR4wGF8PTgFsAHu2BMkVnzkXBdg24+4kTTmXaMAoAgrl8t2bdhY+LMv4v1gd4CqB+LMMqYZk2NjsUS1Wi2TVZOHLlN84SK9+JE/srXJ/Nv7779ft912m6anp3XVVVcZSKtWq8PJAV/4qK6//bWaueIWtV983NYQa35iYkKlUkmbm5vWtEMOYCQO3ktYUda4Zw4hGBqNhhWqnU7HCANAvS/QYc3oEej1esasA0r5PhQIxFDYSHIRzZqxWEy5XM7WLqwXqg8eQ/IasWV9fd0KBNY5axJQD2vLtALiu5/ywSxwvz/IrRR9THvgOaAcsMa9l588wX7Bn0yzGhMBiLuNRkPxhYskSdOX3ajpy278Drzw7C99ZQh8D2SVf+XfH/u3A2/8sWEcfeFJ1Z96WJOTk8Y4EqspxPgusIlYl8jvxAzyxObmphXEEBfEC9QiciPYAcsHYJPc58e2EV+IwxBr5FoKB9atV38AmfSAYHcLBoMWf6PRqE1ywHcNkw25RvHM72KH+W6vCx6c0iwA4+A7lUOh4UiEQCCgYrGoUqlkYIcuSpI7gZ1gCkAlecDaEIyz2axdA/4uGjP4jw5kmB3ADd3L+DKpuOnWZlYqAWx6eka93oQ6nYYlfTyPBKqNjQ3zEgES8ftIo/mZLFhevd7weD06+WFxt7a2bNYrwQxfDRsPQCgNNwbBGI8o9wFg1ev1zMPCtXQ6w5Ov2Gj4Ygl+gDs2DsmYGYtUldKwkxlPJuwun+dHnCzfcFi33fW0cr0Pq6eY1ipXq9lMKxjqaS57XHcd/Bvd+P84pKOrr9VDH1rT/t6udXYauD0XCPb29uxYwp2dHVt/yMKABBKPfw6AfUA5rA0+ZxIPCRPgQGVOIQLIgi0kUSAFehAB2BgMBuaHyuVyYhIEwXFmZkbR/KIuvffNaiukoAaKDTrqnX5G6nVszZNUYAVZe9ls1thFWCFsMzCJFJUwWisrKyYbei8ZSazdbtv3oWJnLZFor776at1222169NFHderUKVu7dJ5OTU1ZIGa8E/YSQDvFAWCU4IudAEAF04snHFkWsMX3wMYAqz8zM2P3SpIBZ04hQu7sdEZH1voDO+iCp6nEH07B2CesOoAH702mUYZng++arltenPEOqAKoMx6H3/Xjz3yjhW8Co8BCfkYNYB2RUCEWkD7jheFc2JUnvqbpaMTW+sUXX6x77rnH1sHs7KzuuOMOlUolVatVlUolSSV16luKZAraPldc4jlFkiThU5TXajWLnXiQJRkQJX9wT/C9ZzIZY6p8XwMNRozoIWZ7OwlecGKsb6jhPSne6YDnurBGcPAKBSVxgnizu7ur1dVVU9BQSwBPqCh+L8TjcVvHAFTWoZ844VlV73/ne3Y6nbHmSUARoI+c5A/2gN0DdOO/x1pATNze3h5rTHr0196jVCqlnZ0d1Wo1zc7OmiqCL1mSKs89rs6/e6flyMFgONqN4o74iUQPRgCk0kQIVojFYt+BRYhJsOyoi/hViTfgFYpn8rJXbinAmU3MWmSf0bjN+sSqQYwkltJV7+V37j+KH6qpLxK4B4BS/MmoNRRdKCUv53XBg1PfLETyY5OyOVkQBOS9vT3l83k7E56HBhMBrU0TCw+ejm42FRuRBFkul21DEnD5zzMCGMsBmfV6XZVKxeZWemDJcFy8hXg7wuGwgZd6va6NjQ2TRwCO29vbxtqS7AgQJNP5+fkxxpeFBWjw3l3YnmAwqEKhoMXFRWNUecHgsvFgIbiGcrls1WYkEjH2xB8PSPD14IUKGhmE9ySYUmUDxk+fPm3eKDZSOBzW0s2L+v7bPqB+d6Anj79Rjz4gvfjiqrrdug4cOKDp6YPKzF2mm++t6tb5P1Tmn/0DfeGPJy2pNBoNnTlzxoLQzs6O1tbWLJjSNCeNuufxCFHpI0HzPZHiSqWSMby+4cc3L0SjUbOIkMhoJAgEAtYIQfc7DLhvTuMZb29vm9owPT2t2dnZ4RicG+5W5rbXKHHJteq1W+o0tqVgSNFESoNuR1tPPqT9r3xC8XOMDIGS/2ASYN3ppMWPRVEIYMaTxosChPWOV4pgSNCku5XvzD186aWX9OSTTxpbADsgDRnObDZrxQQBH4aKtQxoQd0gcGNPgB3EzxoMBm0d0nTEuC8/sovnyzORRolpfn7e4gafQ0cvyS4ajZ4DXrKk6uV5GCv2DvIvw9r9M0JC9r/H9+X7INWi9OD95n1g+Mrlst1nEigJEnaMKRp4Nn1TFgARJpH3nZwZAp/J6IRmZwu2vwEo/kVc8f7gQK+r0ER8jNkhzntgigcQNgslwE/k8AwzqgOFFeN3+A47Ozva2NiwveZlVnyXrA3uB0wo+QT1CFsOIMAfWAGorlQq5j2ksMemACAfDIajExuNhorFot1D/MEAC1hXnjceT6YPYFHA0kFBwzVRDGOrKhQKViRKMoaRI3Onp6dtHjn3HtWIiSrkcJ6Rb6YClM3MzNhhB7C6sLh+nfseCcghAB2nLwFEAdGS7L2wa8D0I5t7oA1eAMxBUvBZ2EkozrjnrKlgMKhcLmcqFKwycYBiidyIwoTSxzVzTTRUem8oANUzrqxvYhVKEMw0JAH3kzhEPoYgeTmvCx6cplIpJZNJ1Wo1Gx/DqI5ms6n19XVj4K699lqdOnVKGxsb2trass1Op/TCwoIttFwuJ0nGEvoh5GyKiYkJ844AagkMVLSrq6tGoyPzcTTl9va2SV8wgUjYvtIslUrGkrDgabSq1+s2noXh4HjtvCEaryCbq16v22gq5hZWq1XroCcgMeKEAE0gIPhwnfV63WZHYhVYXl422ZAGgWg0aoEYYMmxhMjQksb8fhjPp6entby8rO3tbZ05c8Y2IKzq+vq6NQpNTU2ZpWByclJ7e3u64s6r9erbPqxWZ1of/dOrtNsYNmhwVCLS6qlj0vFnE7rt1a/UfTf8uXr/24+r/sJNuu6663Ts2DF985vf1Nramt1bWFGSHaOXtre31Wg0LAkD2pDUPDPIjDlOlwqFQsbwxeNxzc7OWuCZmZlRvV43bxyeW4AbiWNra8sKBawNeM8ogPAkzczMaG5hQYd+8D2avOp27bz0jJ79z7+qxnOPaSI8DHaRREa5275fudtfrfQN36djH/wNrT34SWu8IriRiACMsD5ITdxvD+Zo/tra2rIC0Dd/4LVcXFw0wMbAd9jOra0tfelLX9JDDz1k753P5022BAjgP/efy5xS2HsYDAAkLGculzO2zBe1nOoEoOB7sfex1QBSaAjhxDVvl6BZDNm31+sZ4+v3F6yVL8KRIilavRwciUSsuGPeLRYUmF0STas1PM2JY3X39/fNfsTzhclG4mZt8+ykoX+xUqnY/sWPCcj13nvf4AZwi4WGhUpmflHqj47qPX78uFZWVnTw4EFj0L72ta/p5MmT2t3dHY2ki00p1G/bfee6kazxTEoyvzJ/h9TNd+a45UAgYJ3x09PTxpR7hrrf79vgeGI6p6LBUHo/eSKRsCOciWuw5Izhgun2ExLwJlLU+KZN9qI/bRCGC5Wx3+9bUYp3HLDE2iXf8Xc8V2xr2CW8BQolxcvLgCNG2UHWSDLwy9olDrL3eH4U7uQiDwYBW+vr68by+j4Qrwx4Xy9rAiKJa2OPQyR4FQsyhH3hCyP+18cA1BIUWfYpqiAFMrnLxx7WHyQVhANFvGcqiT0UOP5Zsa7Yn3iXvc8bxh71g/dmffP75Bv+jRgB2H85rwsenNLIUigUrNsNmQlKmv/loebzeQNYgDhGKABcGbgujY5Ro+LwXjgWCwwlm8T7pzgOrFQqmVeOBQTYoLphUbHI2MD4avA3EgAAfrAztVrNOhORtP2wfyr3QCBgXjIqdhYfiaJWq0mSVXIEVYIAoJWFvrCwYAGJIIZULMmGU0uyhghYNYA0Xp7d3V1rWkPyGgwGOnPmjLE8ABKfhKmSc7mcMVdU8ve+uiz1W/r0R+7W/q7U63WUSqW0vLxsviyktpmZGT3/jaDmlt6sy/IfVPu2j+r264cG+ieeeMJ8vqy5Tqejubk5WwNsUJ5nJBJRqVQyBoQjR3O5nEqlkk6cOGGFwc7Ojm666SZdfPHFOnXqlCVkGhBgzElYsESe+Ugmk8rlcmai577ncrkxvxNd1BMTE8q/+V2KX3aT1j7y+3rpi39llTkArteo6cyn/0RrX/gLXfzDP6PLfvzn1dptKrD2oiYnJ7W+vm7yG8fb9vvD4feeiWFdAAY3NzfV7XbNqwx4hWXAJ+qZcZQLAAH74NixY+p2u1peXjawhAUHBYAEAkPD7/uTqPhZCh8KOGILLA/NNX6sD4CP5EQyCIVCpvTAPITD4bGJGUi80mhUlGdEKL4BDLBufA9+plQqqVwuK5lM6sCBA5qZmbGjVknGqVRqzPstjc7RRr6kEQeGShoyZKwZClpflOOVrdVqymQyVtgCtEms+Pf4M4wSsS0cDqu9cUqDXk/zN9+nyjc+Z3FxY2NDH//4x3XzzTcrGAzq6NGjevbZZ8120Wq1FFm6RMHYpOonnx9jkohhACuvhBEH+v2+TX7Ad43q4RlLrhupF2YWggEGs1KpGHnBCYGwksQ9rokChy5r1qDPR9x/rtPbifgZ8hbPmLhMAesBGeCFYpUjV7e3t+1aGBHnVS2/FjyBQeHIvpJk/QVcF2uNz6Apxxe5jFAiBqB0cA8ohijMer2eNdoNBgMtLi5art7b27M+E9hzilBJJp33+33bK+xhGErYYkYmAqjJjVwviicAzu9rSdaY65tu+Q4eyPKC6aW4QdqHGaeAR93h/jDKjrjANXOvK5WKzSkFyNNjw55lX9DsRyz3IJznSgH3cl4XPDjd2toy6WV6eto6mgnoVHA80FgsZhIfiQhaXBoxJFQz0WhUBw8eVCqVMs8V0jOADHkEUIp85GUnKnAWh1+ssG7IJe326LxxwDfVIoP5CaJUNshOq6ur9nNUOyQWro3rJ/jCogK8aSRjMfr5piR1qkkYssnJSfPc4BMiEfpmCKo9WD9pdMQiScnLWltbW8ay4KGDKcNuQVMSlbY0Gt0BUD909SU6EP+Ujp68T/u7MYVCQx/j/Py8lpeXzXu7u7tro5DC4bAe/nRcl/xYTJX2p/TEEyk999xzY/YIki2+H4ohxm3RWe3XH1K6b1iAUZSGhceJEycsEHhrCKwrx7oCzgGRvC8F19zcnCTZgP9Op2NMFve03+8rd8srlb7hHq38+fu0ffQR82mSiABHXM/JD/22FrpdXfWuX9LK7/+sEtFRsvEsEd3svnmgUqlofX1dCwsLY4067XZbCwsLBnQYYE0g9PeCsWAE0kQiYfNRV1dXrTOf2ADY9OwArB3gg8YlGEbWM0wHz5n1i1xKIQxYBTDAGFPMMY1CkrHp/C8Jk+9JAUGxgecLFgZwAGhgSgDXxUQMb+mgUxjLBdfFPqZBimvc2NgwT2symbR7whg55rMC4LDQdLtdK8BoABwMBsZooWTBWuG9DwQCY7NFG42GAnt7qr/wLSVuvl9bj37Brn9yclJra2v6+Mc/btI6HmriceGu16uxelKnvvll23ewfzD9Ozs7FitYa/QabG9v21gkYgv3ampqeB45wBrWm3WQSCTGOp6l0VQX5H5yDeQFjBV7COUBEAIZ4Vlpf1IYuYD7ig2IOIunFwUHkM61+/wDWKU4ymQyNjOZ4e+QK74oZr3DOkujc+a5Nk5jlEa9A/RO8L34fOIj+5h4xToYNgeHzd85GAzH9jGwH+sex4L65iredzAYWByl2ZQJJZLGYgbPjGkOFBXYm3xxQfFD7OeZ0t9CcTY9Pa35+XmVy2Wb9YxlJpFIaHNzU6VSydYPcRtCC/bTT6uBlALgS7IY0uv1DGAzlxurjycJUHwAynx/vPCeRccKgUr5cl4XPDit1+t2puvm5qb29/c1NzdnbNP+/r7q9bpSqZQxbSR3EoKfSYgsTDUK84NvsVarWcJdWFgwBgrpGZDFaAw2KAZ5pFdPuyNvU6lQjTKgN5/PG/PL78KeUT0jhUqyQOs9PIAFpDh8P3wvfEgA30AgYDIXmzkYDFpTyOzsrLHNngliwwCkkHCk4SlHFBMzMzPGqiBpeB8SCSaZTCqbzZo1Ae9MIBAwRgwGEe8nIJFOy3g8rle8JaXAoKsnvjyh7jkAEI1GdejQIb3xjW80H9Hzzz+vD3/4wzp79qzW19e1u7ur49U7dSj71/rAH3fV3m+bj4+CAo+zNBq14i0HFABsZiRdEiDnJpPsuOeMRfPMLJ+DV4umE1gQnj1HGLJGSAYEL5g86Zz39Ib7VH/hcdWf+YaBoHQ6rUQiodnZWU1PT9ukh06no26no6f+y6/plb/3CUWvuFWVRz9vhUosFjO5kTPpk8mkdcVjfWDdhkIhzc7OmkQOo8/hAQTZSqVihR9JhgKKYsePS+Ne8gxg1bhfgG+O5ASwoBJw70nqniUnycN4UKjw7Dj0A4DpT9SCNQLYeaadJMw4Ky95++KuVqsZs4mtKBAIqFYbTvNIpVKWvElOFEf4t4kN+HZ9cqPZzzNieIPxn2HF4bQi33QBowhDCkkAUAI07+7uamNjw+JWOp22YoU9uvOtB7T0oz+nyStuVfeBvzbWHasQoAaAkEwmNXPoMmWuuUPP/envaGNjwzywFPdYaQACFD5+nJGfzlEoFBSPxw2ceQ+lJPOFAvyIowA24jhrcm1tTe122w6QAeywLvh870HmvVC9YrGYMWWwXhS8TOaAWRwMBnYWPUX9xMSE7UvWcjweV6FQsDXZ7XbtgALfwMV6Jt6yV8hdyNaAcG/zYY3BusHa8Vn+XhJDAdCoD8RGiiTPDHI/JicnTX0jZ2Wz2THJmrgAYQOD6ws1ALTfh5lMxiZ++HvPnmOWNEwv10cs4RmhojLjmuKS2MGagDDiuxA3aPL1MYvP4t7GYjHz55OD2KeSzGuP9YbvDnjGX81RwPV63RQbrGEUqBzw8nJeFzw4xWBPMISl84FwMBjYIuVmIr0gm0iyJENVRacdYIPgzDBrHr73W+G9RErjWvCNsjH8/Dzk56mpKa2urpokn81mbWQQ78/mAQiz4anOOcpubW3NKj868Pg8Ly3ze3T5hsPD86cXFhasqQrwjGTnGwb29/eNDQmHwxaUYPaQGGCXqMi8PEPgAXzzM5OTkwZkYQYAg1SH3H9muVIJIzHgIcynzmqre7UCg5RisZCxn1dffbWWlpZMyk8mkzpx4oQ2NzcNhD7ycF6XvWlD23tndfqFLavUYQYlGdjL5/Mmvxw6dMjAIz5C7CTeo7y9vW2DupFcqJC5pz6AM+h8b2905CZBi/cngPlRUxQi7BcS0sT8RYrNH9LKpz5o3yWTySiXy+kVr3iFrrvuOkWjUT311FN68MEHdfbsWVWrVYV7bW0/9bByt79Gta9/xlgpn1zxoxHcWQN0t545c8aYKBr1ODYP4Mn7kXCQDfGVwaQAuvP5/Ng4Ft+wxDUBLOr1uvlReW4kLk53Y917KdAnfYAUL0A9jAkJhu/LOCCGxnPIB+/Js2evSaNmHxIRP9fv97W6ujrmsyY5MxuW7+D9lexfEpr3rg8GA/v/+BQ98Pbd/bCxfA8SPcwZsQkWD5aTGZs07uFnhdEJh8Nmzdg/9ax2nnpYC2/9J6qVN3Tiq58zyRKFAKUqFAqpPZXR8g//K9VOPKOXPv9R+96ecQKAeuABIPNFZLVatSIIxpVYvLW1ZU2seILx33Kynm/Cgmwg9/ipCbHY6EhmJsmQ5L3itbOzo2w2a9YnLDQALdY7pAn2D0kGIAAhfl+gUpGHkJ15rhAH5BByI+sb/7aXmGmMA2QCTGu12phFhrwryfy1gCoKVKRv1iLAEeaQe8xzQzkl//FzdPeTawB4Xk2FXfSj8bxqRMGaSqXMEoKfmgKJYo5445sJyTVgk93dXVN6UFuJ2dgEPJaAmQRDoOKCR1irXm1kSgbvzT2mSIFVRiWguQxGlGfIHuBewdD7ZwUR8t1eFzw4Bemz0aDZ2UQwCjQT+ZMS2JQrKyuamZnRoUOHbIOzEX1yWllZsWqXihepo1gsmoEaQLS+vq719XXrriPQkyi4bhY91PzU1JQKhYJtZDYmMgLATpIlE++PikQiWlxctGaGYrGoRqNhUqE3ME9MTJi/JhqNqlAoWACAXYJJhpHCr8JmJGDDfCGHccKKvy4YV4AzHYA8F0Z/nTx5Us1mU7lcbsiEzMxYUeF9L967Q0ImEFEp7u3tKRIqqdsd+gZrtZpqtZpJtZ7FBlTm83k7j3tnexj0ZpIRW1cw7+Vy2eQ4wG0oFDKvpyRj2mjAw45x0UUXWSMCwXIwGKhQKFhSJwATYM4/uQaPEEVLtVo1mwpABebWN6qQUGKxmObuerXa2xWtP/Gwps4x86lUSm9605t077332u983/d9n3mnzTLz3DeVuekVyl9ytbZPvWAMIkldGp1FjWTt5+BFo9GxrnZkQgPO5/YpBSBJgP+Qv2A1KVCWlpa0vb2t9fV1uyaeJ+CbxOGZTyRzpmcAtgeDgR1/SyMSjWeADpIH0xOYVHD69GlLWv1+3xopsJzAlFCAkRCk0ZnaABkUEz5XGkmjkkw2BNAzv5Zk5JM4TA2xamNjQ+Fw2LqEJRlgpNgBeAPwAX4AKNQOz+b4k2dgzTxLQ5zl5zlW8gd+4AeUz+f1kY98RBt//Z8Vik3qqn/6Xs1cdqPWHvwr7e/vWGzt9XoKzaRVuPO1Wn7V39Puxlk98b6fV7/TGruPjK1j9JL3A3vZlUId8mJvb08nT5403z9/j1LA84Cl9mtUGh9YD5gAEPj+Au+FxqKAnA/wx3oEiPI9DigofJ94PG7Ai2dG/qMI6/WG0xZgZGFWAYhItTs7O7ZeUTPYz+Q9X9zxfVFwiHve2sL9BoRJstyWy+VsJigKCjHAF3GM+QsGg5qbmzOVZ3Nz05hI9sT5zWYUTlw/a5RYDRMsjZqjuX6uC4wAMPdssP8zQBwCBwsCqm29Xtf+/r4xpMRJSAlsI+xtClbiJ0oFhA3FNTYF/LHMmeV/Aft8fiaTMXxDbuK9yOesQwpVCn/IpJfz+l8CnCJ1IEX5I8jYpFRSBHG/MWkI4IGzYKWhERnZZWZmxk6+ART5E0A6neH5yoVCwWQ/L3ew0UmSjFO56KKLtLq6qpdeesmOnmQgOj4vKnSABguG6yVIQfdLMhkI1scvcqS5xcVFk5wAQ71eT2fPntX29rbq9boymYwOHDhgAZLNDMNAwIvH48rlcsYMAGSpDr2UicxDkEcuhG1C/uDvU6mUlpaWbGwWoARvzYEDBwxwhUIh2+xcR6cb1kRw32Q5pJXHH39cV111lbFM1WpVTz/9tJm6k8mkMrnhZqtVGtZpjKdwaWnJAqBvTGJNEbDxjnmfJ4wJyY1AQgOO9wwzcgvWHMaaI1sl2bMnWSDj8X5UzpxSBiMSjE1pv1qWzrFsfD9vI5CG0uXBgwfH5nbuV4vDtRaOWhECa0IBQYJi7TH6DcYBZh4rBp2009PT5sFi/1QqFW1tbVlSY94oIJe97ZsIYfgZpyONxp/wXEhu/AzfIZ/PS5J5irEb1OvD0WMeCFKkEVtarZbZbWANkfuR02lYQP5nTi/jwmBgKCSQzJHo8W/6mMYzo4htNptKp9MmRcbjcWOl8frRSY3lBE8vYAcWEF8v9xFQwT2E7fd+bNaxj5V0y/P+AC9YwZmZGW1sbCiZTKrf72ursqnqH/yyFr//72v+rjfo4Kveruap59TeXB/ey0RG2atuVr/dUukbn9ezH/p9bVfKdg2sN99A460hrDkkXfZsMpm0JE78w1cOUUAsxGpBQwvFDZ/NPYTJ5LSetbU1G2tG7INkmZqaMv8/fnvYPdYaki3FiO/8piChWYYCEKmcwgwAilfZgyDAF5YHACprlvvhZymj2tRqNYtlfBb3Cr+vny6yt7dn9574fb4fmGYtSXZYCeQHSgOzRT0DyTPg3oXDYcuF2OUajYYVm+c3fTE9pdVqmdTNaVh8Lgdk7Ozs2Kg2vNmdTsdIGY48Jz/5xkSeF7GUOACJAntJ7uBZstaZeQ0Lz1r38cErIZOTkwZcIXeI7x50+8KZQoL7JckYf99k9ne9LnhwSkCFZYHJk2TAjM5B/B0kSvxjVMJ4w2BN2+32mB/My2yAAxod8DPhOQXo4mubmBjOUSMZA1AmJiYsEZEMI5GIMZZU93hnfWctnyHJPocxIr7j0DfUUOGw4PBuspFh6SQZEILVZFPTGR0IBLSwsGCdizRhAbIAct7PUywW7bmQRLFK7OzsqFQqaX5+3jYV3cCwbyQ2PDqlUsnA9dbWlskaXs4OhUKqbsV12eyTGoQOmLQcDod19OhRffjDH9bNN9+ser2ub3zjG3r66aftOvv9vq6+Ka6e4trbDurgwSUDHjAgVNg0UpBEYPt8cpqcnLRnjMwLoK5UKiqVSia54QVEFaDoYOwKoMCPlKFRzg8QJ3kwUw+5Dd9ru93WdDAw5ptlDfLZ/L0PlMlkUv1zv1OrVtU/JzNxDTQ+YLZnWobvcu92u8rn88Y0I7kh2fqCyEtNBFoP7D3rijpBTPB7JhAIWOcu945nCvClqYPrLRQKtvdht3Z3d5XL5Ww0m2dIYH5JygA0kgAyKMAa0M6+8gDh/BNa8HvSZLm9vW2sJ8+KJEcM4z3T6bRCoZABGGxRXCvyMqqDbx6SZLI1hQcFhzRqjKAjnthBQmedA9C4nzA//vmtr69rdXVVX/3qV03dmpqaUuDzH1b14U9p8rIblbvpPsXmDigWCKhZ3dTJv/gDNZ/5ujZWztg8ZSahEOexU6AUeTav3+8rmUza/SLmEYtCoZBNRWEvsUdgflE8WG9YUbAN8PyIFwAMinf2JX5y4tTS0pKxmhT5rGdAA2CVZ84zDAbHp7hw7ZIMWHjfK2wlIMV7Mr0NgKKcWAX4JmYAiCqViilLfD/uYyAQsHFk5F0IjkqlYh5RchixzHt6E4mEESsU8OFweOwAEPYf/xE7aKRiJBuzhcED0qhhV5IdA0yhBwCkWCH/xeNxs3xBWmC1AHx6/yle6O3tbeXzeVMEmETDM8V7T/EOW4q6Cl4gxhDvvSWP+0bBjwrKvfU5nsIeZYScSqymX4JDVSCkXs7rggenyGnSyPDPApRGfh1JxlhQCREwqJaRLFnwkmxTS8OATzcxJ8NQNeVyOWUymTE51ZvQl5eXzbtaq9XGfHhsisXFxTHKHKaFf2cgcSwWM/AEUPONSNwPNgAJgeqfREq1hndqd3dX2WzWQBQyCkwXzQokJ9hfRtvARCB/InMTJGEiGo2Gec4kWbUsScVi0QA8DDbJjoMGANbtdtuOhYNVItHD8kjDTfS1z4R01T+s6Zr7InroL0fDi5vNph555BE9/vjjJgPDbExOTmoyldTls1/RyfKtmprMGGDyiYxnxRrisxkpBAhgrSG3RaNRbW5uWsDGOI83C4YZ4CXJfGTS6NhQAizVM0xOOp0e8xTzmQQT1me0tqlYbl6pTEadc4x6rVbT17/+dSUSCS0tLUkaVvtf+tKXdPbsWdVqtaF8nTsoSdrdKqt9LtET5JCFaCZCyiKhemafgAmoo/EOHy33gXvA72B1IA4AFvBjAhiZfQnz1+/3bToChZw0lO4YfePlUOIFSTmdTpv8DbsAcAcMEeS93QDvNZ5CGBsSk2+GgKXy/jSePwkPxot7gVzs14Bncvw4olAoZKPe+I6JRMIYX0ayUdQmk0mLT6VSaYxtxR6ELMg1ESsofGGavZWGeJRMJq2YhlmGeUatisfj0qCvnaOPaPuprxnrwzxj5GgsAsQ/Tv/hsAlAGAAQxov3ANyT+H2DEuux1+uN+RY5mKFYLBqggZTwKhpFBbGXZhqetT8ABkKC74Js7o9KxjJA3MJ6gafQkwGwu6hwAGs/ps1bUoi1/Kwkk42LxaIdPuBBC+sC8I3yI41OU+ReYRWDRaQ50dsbYrGYHTEryUCefxaAaFQ2AP/k5KTNnWa2L8QQ6ppvEERJAPzy//2YScAoFi+AbCAQsBnjKAa+YRaWm0JUkhXskmzvs299IcvvTUwMZ0EDwD2z6yV2cgekBs+PfeVjErEXKwM/68koYg8xEaafa/aq4f/drX/uBXOCrMBstu3tbQOdNCfA6sBg0m3H2fAwj1QpbFaSDYAN3xYP0j/QXq9nwRkLAGdq0wjgq+xarWbG5n5/OD8xGAxqcXHRAjwzKjOZzFgnMqAbhgCDNo0WVLbeaA0oIPDw3TheL51OW5CgKmu3hzPWsDWwKQm6MIT8TDqdtmROUIYtwF6A3MqGAChwzjyBiOJibW1Ne3t7dkQqlghAOwGYe4HkBqDZXGmr3L1D11z8uD7bLqjV3LNh7PV63U4o8Q1M3W5X971tUbH+x/XNB681tgfm0HdhInVJMkYV0ErSk2SjeJCPecbIMXTGc1+9fEoCgaHl32CwWDvINgC2ra0tNRoNlctlY1ToTo/H4yo9+oAufetPaPrym3X24c9a49/TTz9tBxswPWJlZcWakPb29rR4+/erVTyjQa1k4G0wGNjBABSA+Xxec3NzZqkgoQN0JNmQee4NCTKTySgQCNjRklg6fPIF1AJGAX+s5UAgoPn5eZMmvf1gc3PTij72JskbNhMmmmIglUpZA4xnKX2jFGuFAotEyn7hWmAzSBSwxewhAIpvbCJp4T1mvfO+/LsvFlijsB3sTwpO7hueYw5+2NzctLhH4U884fuR+LAwsOf5M40urAf2BetaklkWSIDEZGIGewjQgkIhyRIprE02mzU1xo8UpKmsXq+rVqtZEuaFaoS6RSyQRqObUJ/4bnxfGCbiCswbCheKwd7engEXgK9n7LgfnqSgy95fj2epWq2WNUJ66Z5r4+8B7nScs75gUIkLKDOsUV4AVZ6/Vy04hpfPohj3Fg/uB/sTaxPxAA8pz71YLBqr2mq1lMlkDOzB2HKf+V/GwXnA7fdbrzc+yxgssLW1Zc8AkgPATx7BG+4BKDY9H4vOb5SCWCJWE19gwOkNiEQiZukjttNo1G63zdLABBs84eAA2E5vTfEd/IDKeDxutkDAaa1W08LCgu1pplP4JjQwFkUZexQrzv7+vk3f+G6vCx6cEiCQ00kU5493CAQCYw0NmH/z+bwFSpJJv99XsVhUvV43+QEZEZP15OSknSgFKzUxMWGjc6gmDh48aLQ8CS6ZTBoIJDjWajUbW5JOp5XP5+27+FEQdGnSlMFmwRuEZw0mB4kYhgNmrlAoWNcw4ACwiReP4wapEmGDvIEf2h/5muPjqFCpgPk5H9AZtk7QqtfrY4COn61Wqwa4JVklTLXYbrftgAGf3Pg8gtYjX17Sm175qH7i5w7qd36xqUqlYp2uBCsamnZ2dnTlqy/Xbcvv15mtm1Q6O6FsdljEIBfhrQXMIFNjw+j1etaBzyYGcJC42egEAd4Hsz/AYmdnR5VKxYC3PyCBxLiysmKeZywCgArk8HK5rLm5ObumYTHW0tYL39bUDfdp7S/+m2ZnZ617u9fr2SgeCgcCf3J+WTOX36y1T/wXdTodM9FvbGxoc3PTpjgA4ng/FANkoc3NTVszFCMAVBIR91iSyc9IjHhFPTvXbDatWQ2m0XvxPCMC688eBUizB1jbFBAkeB9vuAZpdFoPjDEyJOCIIoHRYfhh2RcAR+Rhb89gH+OrR4GgiEXZwTOGMsPnAyoAyqgXMKreC4vXD6Z4f39/OKXhnAWA9wHUwzRtbW3ZfWcqhm8+JCbBNlHIUTBzvfgWiQeACYgHDzxocJJkPmVpJHuzn2j+QT4GOPIZ3AMUNlQG2E5UDb67t1JQTMLiUQiiSsGqA0iJb4BNABnscalUMnaw2+3aPpRkIBj5FRtAtzsadI9/lPXiLQ4whqgusNwUruQ9fN/MD8/n80a8eFUA3zJ50ANBiiKYY17eqgSRApsM4ON32Zs0JJFr6EkgZmYyGfOek6MoxkKhYaMq3ezSqFsemw9rBgaePQuzz5rAYgDT6mV31gcWDkn2nIhpADv2tF833q40GAxMaZ2ZmbHxjqxrCkYwBvdienraSBvP9NNsTU7AAoeSwD4E9FNQcV/8YUDgKz6TBikUy+/2uuDBqffBADJ4aDs7O+ZFyeVyBk4JilS6BBcPZsLhsN1omBASNvISoBA2p9UaDvGenJy0DnPel+qU4cyATN9ByHxUpDqkBoJMvV5XsVi0apOgScBkuDMLmO5KKm8qVIbq49Hp9XqanZ21zdTr9czU70EBYIpZpL3eqFs/m82aXIBNgBml0Wh0zJLgq26eBYGfU61grAhus7OzVoUDqulCjsVi2tjYMElnd3fXNjrBsNfr6fGvbCiRfoPuu/ET+te/fo8+96Uj2nxmUxPnghAsQOrAsl7/I8u6ee4D2to7oP/2vojy+Ql7NvgASQDSKFExUFySBSOCHCwgQQGPlx9/Jo2So/f44GUk2FC5UsVjgWCQNGuCgD0YDFSpVAzsMlqNQHL2C3+ha9/9q7rkjT+iFz/5J8Z4I1uRHHd3h+enB8IRFd7yT9Tbravy2IMGwLgnnkHDV4VXdGFhwdYzEyNg7CRZgegbcmBVAW6ASYAZzXDhcNgYHFgM/Hh4P2mA8SfJwZICWpHGKAw5NQdZmoTJPvb7i0KJSQPYb/g+FG4wwwR1GC5fDKLmAOiIF/i6YaoDgYBmZ2dVKBS0tbWlUqlkfnakw93d4excihL2IWsPkIG3ks+BlQf4EHM5vINjilGniFfe94iqIo18v/gc+/2+nZ7mk6wvPmD08FvDhLE3fOMPhQ7MKbNQsZXAXPmpETBCAEQKDd9Ei5zMXvezL9lLvrnTd68DVvE0w2DzPhTEoVDIuqXn5ubGTiLjGrxqRs7ANw0BwpoGNPEZvoAChHBvfJzxljCkYrzkxDYAPXGMuARAhWUnfnhQL43Go3FPvc8X4Mq8XgoH8tre3p7S6bT9PMQKxTDFYrlc1vLysp2Q1uv1bN4s6wPJHJuRNGIyseHRf+EbKtkDNEfNzc2NyeTsSw+eYcAjkYipSJ4g4TMqlYrFKjykPDdevC+NhcQvmrUpQihKUBaIX37/Ea9QWiB8KKjIs+12W2tra7YvQqHQ2Exljxe+2+uCB6dehhkMhif+0KlGZcMGohpA9gIgRKNRk3QBCHhF6CSkYoAdwPyMTwi5DeZLkgVDAmoul1M2mzWgQmIFFHr6HcnKN5MgOSLhI73DOLJQkFSR7QGcLH4PqpDhJVkgB1xQbXtZBzYEkM299wyKNPSO+oCCrxK5EYYRdpd7wCZiwSPnUMl65hFwQoNPKpVSoVCwewWzIskCcOnFOT0UeIduu/4z+pFXPqitV9+lU8Xrtbe/rIkJKZUq6mD0EwoPanqpeJM++v6EIpGQ+TNhYby05BsqCLaxWMyCKHaJcDhsQ6ZJ2LAk2WzW7hdAHXADA8u4JEZ5ERQBKlTh7AVfhMCIAPqQNAH4iVPPqPjgx3T9O39W0ckpff2//Zb29/Z0+vRpLSws2PedmZlRLJnR5f/0vYovXaxjf/hL6u7v2r6QZDaFpaUl25+wld1u1xjJVqul+fl5m3yAfxgQQ4AlUVIAsmdYW1T72C4oNDKZjJrNpu1L3yDHmkAtoUBgtjBAi8+FMUGVgZlgPiTNGxS7xACsADA+NF2SgPGdhkIhS5KePWy3hycfwSoTq3y8oCgLBoM20q5cLlvBiQcXHyMnKRHDPHvF/FmaovgOAC5sBOwx4hM+OUljHd8UbHxfYoj3w1FoE0sA3JxKRcwmfp+vTsBoEfMAmHjeGR9HPMU6wfcjj7DvWDOwx77QZf9DYMAsArBY677ggQGHPcNvSfc8tgPiAQCC6RT8Tr/ft7XA/WWNAPx80w0jDQE3AGniEsUeAI/nxP3lmSMzA1r4nEwmYzYFvhMAhUIRUO3tXP1+34A98zfxY8IW8/29LY3PZi9JspxDPECd8Ucg48XEmkdcxBrGXiDWsk7JWRy7nUwm7dAL2FLURfYvsQQvMcwmz4x4gfcXEE0e43uxvilmKXqPHz9uxbo0AvqsUWIaxSL3PhIZHWWKCgBpQHOxn9RBjOVZgiNQqADLxGPuJcXfy3n9LwFO/aIlCNI9Jo2OJF1cXLQKgQTiWQLv18MDQ0DCByrJJAzkVE/z01FbLpctACCved/h+Z21kmzDeG8V3aSAOhgYpCv/nQkugGwAE0AUPx6BtNfrmTRJgEOehR0GdLDw8I9RjRUKBbu/sGPcd5g8NgcVLfcKKQHGwXcPwopsbW1pa2tLOzs7On36tKLRqM0BpZBoNpuamZlRPp8fk2M8G8R9jcfjOnW0pYc/c52uuX2g2+8s64bc74/W0yCpF8/eoMcenNTpk/vnvEOj6QwAAbo7YeAKhYJ6vZ7W19clyWwMPvnyDPf29gyoSbLuz1gsZmctIyETqPEGIa2w9qlofQEGAOx2uwZEOFKWdUCCpfCKx+M6/Vf/Vep1dcU73q2Dr3ybXvrsh1V9/MuKRgKaiE9q9sobtHDvm5W5/m71u22t/9lvqrtxakwuJ8mxt/yZ8RQegGM6a6URAEJiCodHc33Zc4AZ9hbPGjAnyQI9yZiZsKxjgAMeWgAOwZpr5FhQWCNGDhHYGQ3TbDa1vr6u/f19zc7O2tpHtmu329aUxL3n/QAhExMTdk8Ap8iYrAXfJezlNoANDA0AhxfJAzuCNJLnwuGwNYh1u10r/rBEwJSQMEnegAXYSz6fhAmrRAygYYRnHg6HTd1hOgpAj8IOxobCChaQMWatqYyu/IF3Kn3JNQoEguoWT2n903+s2vFnxqRNih2Og/ZsEY13AFysBAAP1gn7DgC4sLBggIqDIAAixCQveRJb8Z7zXvj+yDX8DnETAFgsFrW6umpFuSTz3rMu+M7cez8TEyYPQMvPAPj4d3IfzxcGDxsF65Q1CXHDs2MvsR+93xEWlWfsvcuwrJVKRbVazZ6DV1LoyCf+szfxdlLw8axoPOPob2Itx256sA4RUCqVjG0FxGH1YuYqo9mw5LTbbduH/X7fjqwGM6AceJaeeAgGIQ4Qv7AasW9isZhN9IH84dnCynNvUMx4Zr4BkhwSDo9GaHGN4CAKHooc7AAUbfTREAcp2tgb/P3LeV3w4JRADkAkAMBgsPgIoMgR/F273R6r1gj8VP+5XM5uPosMcMhG9Q/S+7uQZDAxI/vDavGz4XBYhULBjgejKxQJg6RJwE2lUqrVaioWi+YnwkPiASjgc39/35gJD1bYFAClYDCopaUlY+xgePG/7e7uam5uTslkUrVaTblczuR/Fi7Bzfsm9/ZGJzixGX3yonKlaSKRSCgajdrhAQATSWOz1wgC+PAkWVVHpdlsNpXJZIx1rFQqQ+k+ldPKCwH97gNdNRrXKp+fVDQ6rYmJhKLRmMn2jPqRRnMkARY0FjBv1TPdBEeeCYdAwOqwqb0/i2QHSIf1kDQGEJBLAVKRSGRsMgFeL59out3h2C2KFq7L21Hi8bhqD/2Vyk8+rJkbX6Erf/CfKPQj/3Jsv7WrJa1/4cPa/OYXtFNaH/NVwZ5NTg4PeeBek8RgT5mIkE6nzTOJZYNnSEKAEZBkagNqBGwwCQtmkn3ou6gbjYYBIawm+Lm4v7BFnhWggYnT1HzhCIvH+DaSFd442AoYYF+sMRaL9Q/j2+t1dcUVbd1ww5qmprYVjUqdzoROn57RN785q0plYKCw1WqZhEqRSjL1A8VJzl5NYI1QFFHoMvGg2+2a7x35E5XDe+ZIRMQbWEdGVgGOSbpYjOjoJVZyTwGFvhMZ0oBiNpRb0o0/+z61tso69ck/ViweV/6O12rxx/53nfm3/1ghtew7AQqJn4BSkjaSJoUOgJA9TcOkVwAoBPEy878kf6R2vjuFOUCYAjedTo/ZLRqNhhVrFGbsmXK5rEQiYWDWHzXLM2W/09gGMIWhl2SAjedwPsBeXl62KSM04gBeyY18FkUwz5m/Iyaz57xFhVxVq9XMvgAAAoB6OwusIbGVnC/J9jfAiCYrpkbwnNgbNGnRUU+sgAhAPcXjzXojz7NOIU8gkyBciK3eK+oLdPbY7OzsmM2B5wTryrXB8LJP0um0rVviFbEOb7a3mlBMw5B74Ep8iMfjpjYTF8g/7EfUS36GIhSs5W0EgN+X87rgwSmbjGTAQgwEAjbPjiYdz3jUajVls1mj2vEyAgL8+xAot7a2TGpCvoVVZFFwWgUVOL5AkiFDpXmAeNmoWvF2IZsj20PJs3EApfjXWJj4jjjPHBDDEYkEHkbuTE1NWTXmT1cCjJL4T506pbNnzyoYDOriiy829lKSJQJYFgAPkgQbdX9/X4VCwUA+4JKzqjc3Ny25cyIUnslQaDjZgM5EgIkfR0WSgEGiIqdJxntqkS+HiXugSqWjWGxP6XRM4XDEDPAkRooMOiS559hDqtXq2L1jswJeO52OTp8+rWw2q1wup3K5bKwfv0cig+WiYKL48QZ6WB/WKWOsaD6DJaTi9uCJ/eL9UPy50Wiovr6u1aOPqfiZP1H+qpsVik9rf7ep8pkT6m+cUnQiYoHa3ydYLqpvuvUZ/C6NBsO3Wi1j6BnVBovHWkKeYm8AzLPZrCkESKN8PuCARsHV1VWtrq7atXoGqd/v24QL2FMKVopTLDT4YnlOfp4yHdae9ZBkA7cBKVhrZmZmDADRDDUYDLS09JJe/eo1zc3ta2trWmfOzGhiIqF4vK1bbjmrO+88reefT+vLX75cjcZo/A2Mhy9ikUkZCQVApMuXa2S/ANA8CKcJanNz02IglhKALk1TJHhkTlQWfJbRaFRzc3Pqdrsql8u2x32XMwkUAMj+AdTCDOXe+KPqtfb19fe+S729oW+y9M0v6Jqf/0Nd9oP/VC994NfNviBpjDGXZISC9xjzLHlOsJF4QRlJRCFIPqAYpJiHASUvwKixRvwYP+xXFMKAHk+qkCt84Y4dR5LF/1Zr1CGPR5nCbmpqyqbCwBAzIswDTxhVVAbsBLlczvya3l/oGXJsEewjnik5qFqtKhAIWKHEf7CszDOlyWt/f1+VSsXuXTQaHWMvYSZp3mK9oOAQ68jn5DiKCbz+MzMz5gXNZDKWb4kh6XRapVJJKysryuVyxsZTaAL6UWlo8iR3kiNpVCZWEo9ZP+wXrsnv5W63O+YlPr/fgF4C1gpqXSgUGotXW1tbBlg5GMCDc+xRNKfxHxNf2J+tVstiKJiBHhFy8Mt5XfDgFBaSB8qCYSQDn1QjUwABAABJREFUw5aRC6SRn4MqCY+KND7nkGYIaTT7zUtoLHwaGghMJDjO7fYmf7wZBCACOBuYcTnIPwQ4hrEDqAjcdCbi2yuXy5JkwJUgyniN2dlZSzosft94wnGPksy3FI1GtbS0ZPJop9Ox6pvqlODhWUxkEqpKAIb3u1BcMCO2Xq9ra2vLigWGy9Pc5b0tVNjZbNaO30PqAcQT6Aimksw3F4/Hlc1mValUlM/nLanTmJDP5w1YcE8Jqt43K8m8nzC2FBgEHoI3gTOTyYxVzrAY0WjUgi0sBb4qEimSPdIPaxSARhL2TYL8WyaTManN7yGM/6urq0qlUjpw4IBmZmZUP/5tUwnK5fJwPNu5AkOSsbDe64RthbWPnMcsQ2/ZgFVgD0gyyYn7SOc88iusA5U7gJhTsFi/JEK+79zc3JjFQ5KxvBRS3ufrGzEmJiaUzWYtGTDOjXFLFAXsDdhGfJmwr6wr5EWY2VtuOa677z6hZ56Z0Ze+dKVWVgpqtdpaWFhQr9dTo3FER46c0l13ndWP/dij+sAHrtCpU6MTXUhE3t/tG8FQT4hPnlU6e/asTVbg95FwYV480EBJgY1CguaIY2w/FPDsS+4jzAsWF5pL8cSzH7hG1jKF5SWXXa+tZx5VIhbRTnv4jOqldW0fe0q5a+/QCwoofm6dweTAQOKnBzTSSDo5Oan5+XmLb+122/yLxN9MJqNKpWKjcrhfgFfvq0RFCAaHZ9IDNmHao9Goja/b2dkZ89iTY7C2ALLYaz6esFZRG3hevCjQmYhAgcf6p0lXGgKsSqVioIPRhVgjuDewzLw3XmDWIYzpzs6OqRSoGtxz7Dc8F2b00sfBJAVApbfJ0MhFTsYmhp2HVzKZHJvJTeFDzKAYJgcFAgED/+wN1A9iO7kDZbTRaFiuhZlkagHgHZ/pYDAwgoZ1DYl1vpWI3IYaDDlRq9WMROOYVk5MRNEgj0GsgFFQjVGQUDa5DnJBKBQy1TccDlth5ZUS8hReae9F901bf9frggen0N1eVmYj+xOhAJBUpiRDPF40qLAYAIgwZJ1Ox0YweDmB5iDAJ0c/4kvxYIfNCRgIBoPGZECdRyIRZbNZm8VXrVatC5D5rVRrVPhUSXwnFhWbY25ubmx+I3IAQIYOfIIXQRZPE2zJkSNHxhoZ+A4EBTqD/YiSvb09ra+vG4gGHG1ubtpQfUBgIBDQ4uKiBYVoNKp8Pm9szvz8vCTZdcI0SrIxRjDjVIJUyCQP5LBQKKTFxUWl02ljNmF3SaB814mJCQsuBChmlS4vLyscDo+xfTCV+PF4Hvl83nyxMCtUyB5Yk8QImB58EGAAtjAcdCnTXEaRgNdPkgHj3d1da+ZhrioMJ4kN8MXnkGR4TjCyrDuAGWxSMpm0hgmeJ6w38hXysZ89ynt6MANowaZCMCewDwYDZTJbmp8/q1CopZ2djjY3p7W9PZxrOjc3Z4AZuRYGlSQlyYo5Pmdzc1PFYtEKSApF1j7WBFgaijcCtwcXABROmvLFxjXXnNbddz+rhx8+rC9/+bDC4ZFnmmaFdruv55+/WOvrl+otb/mm/tE/ekHvf/9N6vcnbI2xp9mXMG48Q4A6zBFxDVbHF4TEQ/z3xBOAhzQ6r943ZRA7WJswq3yPRCJhzVuQAEi23A+IA0Ae3lQUkWA4IvW6dogIQLnX3lcwMqHJ+UOa2K2alQpQw/1h/+BzpAjyljBeHL0JyOC6KTSJKZKMJW61WmPD3mEUsT54Ft03rQB4OB8eJn9iYsKaaokJFNMU5awpYgmqCmxeKBQyCwwgAitSMBg0IM6AeBgyiitvZYDMAIDxfgBAnhVyvQcrMP1Yr3xjE0oC7B05BGbTT3rxkzJQG9nfxAdyA/aqXC5nsj+kgrfhYI/h+lAXksmkFTEUJDCFgGcAPtjD29rq9fqYdYmCB3UJJpX9SNMRMRFSC3uG743BEhePx7WwsGD3iMlEEGMU7+QVvhv2G59LseJxXeQvchH9PIB0SKZ+v29Y5uW8LnhwSmNRs9m0igr/BYERGp5gihwrjTxPvnsTWRKAwaBdFgMeSN6bocuBQMA6XSVpfn7eQC4b1i8yAr/3DMEcsLmloU+UnyU4AmRisdiYOZsNDWjh57hmpI9yuazd3eHxi3zfnZ0dTU1NjY22wJs4PT1tzJMH7H4IOAtZGnnakBE4l1iSVVr4MqkWvX8TALeysmJeF9gFEgvXQsLxSdIDdVgtZFfvk4E139jYsCYCigH//UhydF0CpBis7GVfGCy66b1xfGNjw2QTggyVLswE/jXfGMbf0XzAOubeSzLWJBQKWQNDvV43Nh0/IUkS+QWWJpfLWRHR7XYNiBD8ksmkyUPsIRh+gqr3a0ajUaVSKZXLZQOtfE+qf4o8v9YAvH6QNP5Ikunw3wZaWjqum29+UoVC+dweCikUGrLm5XJKTz99WC+8sGxgB5bJJxAmbZB0GZ/EXuG78qwBfVtbW+Z95WfwoQ3Zzob5GymKeGYwc4NBUz/0Q0/rm98s6JFHLlc2mzDQRocssvSQoZU+/em79Pf+3hf1+tev6otfvNj2HAkNBmhubk6NRsOmCRSLRQMbJK1ebzR9goIPRgswRpzxTB02JsiARqMxNi6O9Q7rRCwDZHHfUYN45gDHzc3NMdsUwDIUCmmveFYzF12u4zt1i6lTMwklD185jN/pvHY3V2xdI/WSdAHr8XjcQBD7eXd319howBPAmfhIXoF4gBRhRByFJkUgTB37kikujALb3t42YoIiaGpqyt6Xa4dB5bNoLoIdJJ6xfikmWMcULniTvcSNbcn7EomH3gfP9eFhR47HF8t6gS2VRsdgEy8DgYBKpdLYsHjyFcy2txoQ03yzF2w91wcAZ7/hzaRJmM8g1kAmcW9okPJK2WAwsKk/xAXIDBRMchqNadFo1Eb3eWBXKBQ0OTlp/l5vi/G9MLCrKHtYF9iffsxkJDI8SIGig+eCHYV1QDxmH8PM8v2wgHC9vDf3g+ILhRryyXuZPbOKCv1dsdvL+qn/C7+oylnMkizJzM3N2aBeH7Sh8UkoJEkvVZI8kK6mpqasmYlOOKpXLw2QpH3zgDdwwyZwnKDvsCNJkMSQ4GAaAQJIngzUhW1gk1Gx+woMsEaDEyNQdnZ27FjC86Ve5E/AHkwoLGy73bZDCQCBXHskErHu9nQ6rYWFBQPJkgwEArrwciFHwp5sbGxYowAyDgnGy7kejCIve5bnfPO7JNUau0rc9hrlDl6qQwcv18R0Qi984DcUW3/B5AskGVgvSbaBkY2wb8zNzZnfB8/U5uamEomEMabMjqPS3t8fDs/3jV7z8/Mm39NNe/79R14jqfC7BCZkS9ivfD5vQDmTyZiESdEDO+SDmmdrer2eDh8+bGDDNyeReKTRyCh/z/EcI9dJI5YNywDeL8A9v+/lSiwmQ0ayqPvvf1Bzc2WVSst66qm/rxMn8mq3B4pGQ5qYeFqXXfac7rvvcV1zzQm9//2Xqd+P2TWxHwEvWIAYP8SeJiHwYu3DqAHkKCi95aRer4/5lmFmvBR6/fUbCof7+upXj6hSqarfH4x1ybZaLeXzeWPBhwx0R48+epFe8Yqn1e8XVSpN2KgpbAmAWpIhDTeAFNQW7jP7mULQz8pFfaIIIbbhZfOTKACpFCY8f29fkmSAJxgMWrOkl5dZU9wHOvWnpqbUfPIrmn3jj+viH/5pVR/+lKKxmDL3vFmRxNACFJ+e0ZZjfpjQ0u12LabDJmHBQLbFgoHEyj6kECZ+c6/W1tYMgOLxljR2yhvrGHKgUqkoFotZHGPofDqdtnFkKCXValWzs7MGeAFrkiwuQZjwOxQNsHuMT8IbSG4BYACUeA9AIJ7uYDBoTXbkS4oYP5ubuEpx708iw1+PwoACAogFBJJ/fSMQjJ5XXgDvEAMUFzw31hv3B2aQ++KBpc8l5EHsR9ghuAaKKZ+vmIPc7/etSZjv7b8je943d7Vao3m+5HGsHd4bz57itD4YX+wj3kLAmiWuRyIRY8aJ8xRDTNCgB4PCOJfLGTONzYECwn8P8i0kGDjm5bwueHCKnMj5wuvr69aRCPsJ84XXiiDPqCTfwAN4o8plgXP8IxuMRhDYptOnT0uSGc7Z7Hhp6HqkGQEgy6gOggg+HvxybGJJZs73VSWeJzpAw+GwDeqnAochAKyQLJitOTU1pWQyaV2EJDe6Q2E4zp8lSeIC9FJpM84GHxpyc61W09mzZ8dM+9JoVAgdrn7mbCgUMqM61SugnfsGUJdGrCmdurDInFcNC9fpdNQLxXT1639EzfKaaiefV+GaWy0QcE9ppqJKbbVaOnPmjCKRiObn57W3t6czZ86o3+9b4AAYAi78xACaKqTRkH6+L+Ci3W5bow5VPuCUsVuSTDom6cCI07CHaZ8CiOYCX9DhGULmwU8WWzisgze/QjMXX6NYdlbdZl3d4mntfv3Typ4DjwBXwKxnVmA4WKdzc3MGMLE/EJBh6vFFef8UIBy2augJL+pNb/qiZmb29KlPvU75/H3KZrO6/PKOKSil0pV68MFlPfHEpl7zmi/rJ37iaX30o/erXg/ahACSaCwWUz6fH5sdyloMBodHeRJnuG4mLZB0fcMdyRB/bKPRGLMUMc+13+/pxhvP6tSpJfX7GcVizbH7BhiH1QEYzczM6MUXD+mee57TVVed0AMPXCRpKNHBCuJFA0BgIaJQZe/CfPZ6PUvqXKsk8+jyniQl2DJJYz5IilLACs8DIIiEiN0GMAXjSmzle6NekHynpqYUPvVt1R7+pPK3vVaF275fkrS/dkK1Rz6tzD1vVqtZt3UDO859Jd5wHcQxro/8QLEFsMAPTpL2AArbE/cGkoSueZpZiMPEXPIDn0NcAJQCqFCJvPInjRq7+E6ws55oANjzc94r6gsHVMKpqSnLgXwnlApyJgUeIEeS/QxA1rOLvnOeec/sI5/LUqmUcrmc3RO+C8DekwvEPSwsxFysCrDMzWZTGxsbBvQoJv0BOXwX1huxiLgDEEfhY20CUr0ixfVxDZApxFVsbRSx7FdkcYgnlCUICd/TADCGrPLPjJwCYwsWwhKG0ugnTJDfYMvJH6hlKML+Oim4mEZCzEL+fzmvCx6cMiaGKoFFC7oHpEiyygLplK5QfIKSxrwX3q/EImAB+uYZ36FGBYf/kqP8pNGMNYAMC9HLaixuJCjvB2UT42vF+8KLAIdf7vDhw7aIvWmdTYD5m8RCcKLbNhaL6dJLL1W329Xp06dVqVTsPvj5egSwVCpl104yJTAic6TTafP4eEaXAoCNSFInIMEgTk0NzxWGYUM6R4bEaxkIBFQoFAzs8rxhlyORiHb3W3ru3/2kahurGqTnVbjm1jETPqxoPB5XoVAwaRdQh1yEXHP69GnlcjnzWnI0LvecBEeTGr+fTqfNp0PygSlm7AksEgwdctDOzo5dI4BOGp4vjb/ID6PmfjBXE0BCsxly4NKrf1CTBy5T8bEHtL9+Rom5BWVufbXiP/Rzan/w3yl87j189z1jpGi4Yz2jPrAfAdUUbvF4fOxUJS+n8uywibTbbd1zz5NKpXb18Y/fr1ZrXvPzQ9/oJZdcolQqpc3NTR0/flzPP/+8Tp0K6dOf/n696U2f0Stf+S392Z9dZfsI0z/BlHUKC8J6Yp3iSfaFJPI26x0WhYKEzwEAUPiEQiHNzs4ok9nRY49dbl5pOuNhSYgzxCyASb8f05kzec3NbWli4jKLPfgvAd2sZWQ7inYSD88O6wCFPEPCYZ5oXMtms7a/YZ+IWYPBwA7C4GewUPhGvfPBXzQatTVOQUvDJUCIZ0Mx1//SX6j6tU8pNntArca2Ssee1oE3/SNJUn3ttILBoBWTfBb7FzYol8uZ5BwMBk0enp2dNbID5QH7llc4sHd4ogAShO/J+mBv46EmH+ELhPRApm82m1ZQc6oU7Bbvx75g/FIul7NjXPmOEA1MTMB2QhxgjCKMu1knzhENqDDSaAwh34FrhBEm99GUjOIC2AIowcoSu5Gw6YaneGFvQkIAUikGAZKSrKAhzzGRBrAEKON3UQoohnkPCmaYwHq9bhaT6elpY/e557CY7XbbGv0AaeQ/lCFYacgn9oUkY+8nJibsyHNAODnQF5p8xmAw0MrKisrl8pgNirxOHmOvst78vFfsHzwj4jeSP4UbRbpnsAHaxEisAi/ndcGDU8al4AU6cOCALWqSG5VYIpGwocYrKys6cOCAgSUCUblcVjqdtgfE77G4fMNHJBIxeRPfKYGUDUgigmXxHYo+OAFeACB0xvKiQoUyh9mlMi8Wi9rc3LQg5mdL0hnvR7VQbZKMG42GyYcwJ+FwWKurq+afg82BwWKjkYi5ZtgHNrhnglKplEqlkgFiEirJG4bAM2wzMzMm8yNdwTTSnADoAxRhxfCVPnI0FXCzvqOp/nCeXjcxrKSjsaj2zwWGmZkZAyrI3Ehy3W7X/KN4fmCgqWL5j2CPRIW0RNVNQIbtxvNGZQzAIaEwPonkw7pj/SCv8IwIxDRsAEBpgqIJhmaBcDisyBc/ov21k6puDtWCbDarlYc/q+t+/j8qesMr1H72ibHxUF5uJIGwlngugE8fNEkmACbf2IOMyXoasgZNHTlySt/+9i0KBI5oaSmnSy+9VDfeeKNmZ2cVCoV04MABXXnllbr88sv1oQ99SGfOtPTUU3fqttse0JEjN6laTZtvG88UA6tbrZbW1tYkyfYSe5V96IvLWq1m35H1gad2fn5e/X5fJ06cMKkOZicej2tpKSVJ2tkZjBVPiUTCCiiKIO4XBduwMJHy+X2TlVl3/Dv3lj0EcwIDiR3Gs4c0BkqjE+44rADrBR3mrGl+nnXFGvcFqvfSMyWj2WyOHQLA7wQCw2kelUrFGtnC4dFoIkBguNtVq37UYub0kavVrm2qt1UcaxJj7VAslMtlK/a4F5KsaOYe+rWJxA9QYrID441gp7DcoIxJMsaRvek7zg8cOGB7lT0Ps4qXF/a5UCiMWXx4HwDwgQMH9NrXvlbxeFyf//znderUKQNwxLDzeyOI5YPBwBpdAD+AVtY3BQSqDvudPEf+AbjTLMzawAaGPQIQDxDzDZ++cGbEEWuA3+desJdnZ2clDcc2Ufxns1mlUilrAGWNA6qy2ayNKNzY2LCYwzqQZDnJA2ZILdQWLDtebmfOKdfom8uwzIAvuPf5fN5sfxRx7GXWFGoDHmX2HUUzDCpgmNxLUQGGYWoA3zUSiVhMQE2DqWWvUCBCShCfYLHJOS/ndcGD02q1qq2tLcVisTG/DgGFhdXtDkd4JJNJY0wAAwQUbixSEIsTIMqLB+g7M6ls8BTS7ENXM8GA69zf3zefmB/azYJkdiPy/vz8vJ0lTJXKwmJxMkh9aWlpbGYpIAb5OJfL2WdJI8M64AFA2+/3bSF7TxaBJZfLaXl52bolu93uWDMW0gLBhdmOvlM7FAqpUqmMdZnTdESwkUYSj5fRSRx4i8vlsm0eSSZZw1wT9AnOPkBPhoYJqt1qW4ECuBoMBtrc3NRLL72kcDisw4cPWwMATAYd2lSOMJVUxr7aJNhwzwaDgcmgzKMlwBB4Wdf851li1h/NSgABgAKMADM7qaLxI2F0JxhJUmf9pCKhoIGXvb099ZtN7W2cUXx22UAO7AG+ZS8T7e3tmbfQB1Lm2bLXsHWEw2ErEmGQYRth1K644nlJQfV6r9attx7RDTfcoCNHjhjAkEYHMVx55ZW677779IlPfEIrKzO64YZHdNVVL+nrX7/BgDCWBIbvc39breHRqplMxo4n9ECK9UTglmRxo9frmbRJww7MFAXMsDCJnPu90QQDSbZu2Ls0uVDEVqvVc5aDtrrd8Jhtw/sbt7e37aQnimeA6NAeUbe9QaFEcYQFBCYGgEdC39raMpnc7+VEImHPDtACk+yZKlgjkjtqB8wuxRQFPM0z3HOaIlln2Rvu0cyhy3XiI/9JAUmxc8+XdU6RgTpEYkXmxj4E+OG7sRfxTzK2DdkdAsOzqb77GmUpm80aQTExMZyCgZcadhMp1yt53AtAii8APRs4OTmpK664Qvfdd5+63a6++tWvmk0GoMhnY4ViPQPkiMGw5gAarBV8J1jMRCJhsY7nAfiSZGoOBYLvxEdFk4YsJKAUdhDCol6vW3c9a5x7Q4HIv/nPpWjgXuVyOSNJyMOBQMDmU6MSwOySX2ESKTDI77CMdPBPTk4ay8h3Ia96DypWIfycxGIkeJ+XWVMUm6xNvN/Ey16vp1wuZ6CS4p6ijjXPd1pfXzdMwvszA5X1l06nlc/nJQ2ZYGKgH23WbreNoed7Q6K9nNcFD04JmDs7O7aIMCkjqXtJAdmYDkhflQPOYNuQO2HrkFNJUDCOkoy1wavCouGB5XI5k0dYPPg1kDwBVlSZyL+DwUD5fN5YX+wFKysrYwZ22FA+A2BG4guHh7NUCcq+Cy8SiWhjY8PANh4kqlQkHDp+AfwERwIv0hPylCS7n61WSysrKwbAuddzc3OSZMlYGoK5yclJC0AwXMiQgGSCDQEa8zrgB/YCBhKGBjAEExLptG1Nce2euQZ4eOkI4Ik/F+YS3xnBEemS62VsDwwqTAVAmQREw9Xe3p75MgG3NMjxvH0THeuaa4Xh4+8oAvg+zDTc3t62s7y9b4igHwwGFU1k1C6vWhDFEw1z6+X3SqViw7cXFhaMFWKNEzgJuEj8FH3SaMbr1NSUZmdndejQKTUaN+rIket1/fXX68CBA2PPyb8ikYiuu+46PfbYY1pfX9fp05fp0KEX9Y1v3GiD5GF0KWal0WxI7/1mFE0oNBwNgwWFU2kGg4F11cLeswZJHBTDrM9eL6b9/aiWl7e0ujp8Jj6ReWDIsx/J5QMdPNjQqVM5iwcUW8Q07iMzR4kRrD1GyzCODmUHbyg2EYqQ/f3hQH7mG8Ig+U5hWOVarWYgh71LIsNTPTU1ZSwTnyPJ9j02h0qlYrGi3W4rNH9YB976btVf/LZCnZYS+WXN3fla1Z57TMWHPmF7Thodi+v9hOQNZFTYoVAoZAmbRg8Aum8mY7bw5uamNY0CuomtAEcYOT6Lvef3H/4+JGgKOMChVxvYz9xXbxU7ceKEHnzwQe3s7OjZZ59VqVQyXzXyNHuT74MVx6st3COYb19E43tn//tmIphJr5wArPxkAG/T4sU+hChKJpOWTweDgc35lqRyuWxKFdcLAKePxJNBEAV4KYPBoGEBinkApi9KyDOpVMru+fb2tuEF7BzYBdkT3ibEC1KJe44VjnXH8/W+e/Ik+4NrwrbT6XSsIS+fz5sa0Ww2DfxKstwEwGb0JveW5sdcLqdSqWT3kX2NdYR95ZuuK5XKWOM09+7lvC54cMqsSmaJQTczpoOEhy8QiYmznb2xGg8mGwRGi5sN2CF5MJYIzxRMId6kYrFosp8HzRsbGxb8kKm8vwP/JTQ5jS2DwUBra2vGUOBbgQ2EQcNnSELzJnICJ/IAIJsgw+YYDAbGwOIbouOPapERVtLoCDYqt3A4bN5COrR3dnZULBYtYbL52PzcZyRSJGz+nk7p2dlZM4HT6coQf74XlTDVuJfr2LSDwcBGcYTOneYTjUbt2EzWDmOvCCbne4AJgMVi0RI7UhWf6cfVkOS491gDYLMI8jw7APnExOj0Eu47Xh+q7EOHDhlAnJiYUK1WMxsA1+WHzXsfH80M+KmQa5BpEtfepUgyq80HP2KgCYWAtUTS5LuRTE+cOGFeaSw4gGaO04PJgVEF1CSTSR0+fFjz8/MKh+tqNvMqFHJWYPxdL5jK4VGqGcXj+xoM+pqZSdq1dbtdK968FQNfnR9Yvr+/b81k7MNQKGT2HQAso3JSqZQWFxfHRtEB6Pb22nr66WVdffUpffWrl6ndDnxHIw4Fn1dRJOmyy2pKp1v6zGeOWONitzsc7wMI7Ha7diwySQugS0yEBYF57vf7mp+fN1sLjDwnDPnuc7q02XtbW1sqFotj1gKvKtAsRdE8Pz8/xkSz3thDyK3EzlgspnK5rH6zralbXq25+96qcGxS+5UNnf7E+7X51U8qEgqp1R2dQMRJX91u12woFNOsVwpP9gdFCYCJNUbxAIgmeXPqnzR+GAeJnfvoffKAQUn2DHzfAhIxap73rVPY7e3taXt7W/Pz8xoMBtrY2NB//+//Xa1WSy+99NJYIxTAlLhHUeILKr4/a8QX2zQIUgShng3X8Z6BbsAUrDX/Ro5hPaBOII9LGuv8R4GQZKqR99CjePI7qA2AZphRfo/THaPR6JgViryE5YNnCphHxeM+MkqJPOI9nqwR7q0vuiUZEcH9Z73jAaU4pA8BxY71yCg7YpP3k9frdZsUwPsCZMmdNEhOT0+beuu96Lw3RaaP/ZAizIRGBeF7o8iQ81/O64IHpwx/39zcNFkThpMjS/GGNBoNq9p54HgTqVYANow2YfHwEEm8HEMJKIR14lQQQCejqwjomLUJLgC6drttCcZ7OgmeVLws7Hg8rgMHDmh1dVXr6+vGdAA2qMxIuEjcBEiCC0AVXwoeUWl0di6ygzRiJBhCT4AFgJMUeA9Gq5BsuccAWJhsNm0oFDJ5aXV1Vf1+354jYNE3SSDDIJ/s7u6ap9VvMpgTPH8UB7znID46Mx1AwvV6YCvJPH58dywAJG4aYLCG4HtGliVIZTIZk064xwRPjPRYInxnZTweN4bAJy5kG/xikizQIf/DqlHwSDJpFJ8kDBWsRCqVUjS/oCM/9C+0e/oFVR790lhRQiXNd2Rd5fN5e67FYtH2LHYDChLWAwCKgAijAGMRiUQ0P99Xvd5Qu72iQqFge/R/9EJC8yw6awDGBcWBiQCwQBxAgQWAk6EkjfmcSda9Xs/Gw3GSFEUD7BE2B/bTl7+c1E03dXXRRc/rsceWx7qFmTns1/2wmEvq/vuf0fp6QidPRjUz0xj7PjyXxcVFGyHE+mDtktBJXigtoVBIF198sV772tcqn8/r9OnTeuSRR+woaL4nDBoxAFsKDBdKFUmU7+TnO1KE+1FUg8FA1WrVkrFnv2jyGzQa+vqv/Qslk0lls1nbJ7BAMEXEcZ4XMV8aNqeiHLEneZF0g8Gg7T0flyA9PFvM/vSAlniPpYLCv9frmc+cCQiw24xHymazpqb4udbeM8wUGFixQGB4wpPvNGfdUmyzp3zzZL/fHzuyk59htBrPEcC4urqqdnt4ehmxmWKEop3CjtzJuibmk9u4d/1+f4xQ4fdQTXzRBmFCDsrlcvZssfGl02n7d/Kst9ARiykK2Av0gxDbIQWwd7EPAcDYVSCFiCHkjFarZSBSknm6UQ64F6wV4jNEFtfEz2HJoPBIpVJKJpMW82lMZs2TE/yEFOwdk5OTBlBRvmB1GYGHzxWrIX023mIiDcEveen/a+D0K1/5in7jN35D3/rWt7S+vq6Pfexjestb3mL/PhgM9Mu//Mv6oz/6I9VqNd111136gz/4A11yySX2M9VqVe95z3v0iU98QsFgUG9/+9v1vve9b2w461NPPaV3v/vdevTRR5XP5/We97xHP/uzP/u9Xq5Ji9DvtVrNqtVsNmvyC0GFBc9w9VKpZOwoCYwmAB4KG4ZFCcACGMzNzRmTSsCgeYGqmQ3ivWETExPWOZ1Op81r4xdVKpWy5IQZ23eYArRZLABoLAr7+/tjzCOBgwqUQEDCRLojiOC1SiQSNpwZvyz3jYBG8IQ1lMZlKJ6DPwYRhs03WgGQOHlrb2/PKlisFMgpNI5QgVNdA/ZIzNJozBTXA0CVpGBwCE6jsaiNhiGxErhgFTjB6/xxU96nxFoIBoMmoQCOEomEMW74z9bX19VsNu3fCFIED8z1BF8CAIDZWzuY1sD7M76F/wBesJ6sK9YohQD7IZrK6tCP/bz6+3ta+4vfVb/XU+0ciITRYg1i7pdGMi5AptPpmARNUiZJEDDZYyQsfJqwrxdfPKFAoKgnn3xS6+vruuOOO3TTTTeNBUofqzgicshIVLS7G1a1uqVer2+FK8mI2IEkhhyM75H7xXcloEuyWAFI4js0m01jUSmQOSEpFoup0Qjq8cfn9JrXnNTubl5Hj0bGfLAUiNPT00qn0woEpLvvfkoHDlT0sY/dYk0WxDTvd+XvAAYwH9icJBl7RRGB7/niiy82G8ZDDz1kUqFnTimQiFnsQ5gbgC9F8+bmpl0DkzT29vbscAUYWgpZwAosNXsIlodCHJDAWmFPsC+IM4Awvjd7CAuJV9GQ3mECmXrCmvQs42Q6qqtuj2pqpqtuN6T69qSee6Sl7cpwlFI2mzWGHj8k946xZlhBvI0HNp/4QU4CTBcKBTuYhFxIkUURkkqlrKGX+MzeIE/gYcYChxpI7oM9lYaFuVfrJI1NDgGIcU9hSTnBj2unuYp9T85ABcICQwxEmeCeo2ASy7CLYFUZxvSgFXTs58Fg2Pg1Pz9vn0MjEZ+FMuIVNG+JgYDhGfJdu92uNV9TFJJrWNOAVfYp64nvRH73eY73xo7B/mI0GXtHGvcoY61grwMeef7ENK9YYo3kGZLbiI+lUklbW1uanZ1VoVAw6yQAmH6Bl/P6nsFps9nUddddp3e+851629ve9h3//h/+w3/Q7/7u7+oDH/iALrroIv3SL/2SXvOa1+jZZ5+1m/DDP/zDWl9f1+c//3l1Oh39+I//uN71rnfpz/7szyQNafRXv/rVetWrXqU//MM/1NGjR/XOd75TqVRK73rXu76n64WNSKVSwwqjt68b75lRYbajeGxD7XZEJ48ldPTLNfOp8LNsEm8cBlhQUQHkaK6CWmcDEzR91y8VJMEPGwCMAiOGqJBYFDALAOVhMhomQSprEkunM5yzCHvE4oR2J+FWq1UDBlTc3tSOtEfwBKiwiaiEuUdUrclk0magcY0kJsA3jAcAAEaQACjJEg/BESmBSo1n4A31AEr8LwBOPH4LCwuWTJHCOJnLg1iqx2HQOveeE8OGD8bseGnrfEsAzAyylZd2AbNLS0t2JjcBhnWLxYTiiuTn7xnjyAB6JHKuAeARCg3nBKbTaQPNmP1hJwGsgBjkqU6nY5U63eDIZJOpjA786M8pFJvS8f/0S6qtnFYgELDZnSQWngdgk1FV7CMAGyNednZ27Pc98+K7c32DFeNpXnxxXtdd97wefPCk6vW6tra2FA6HdeONN45V7DDYTz75pM6ePatKZUOvec0JPfvsnMWgiYkJO31N0lgBydrznecwtBRzqA6AVzx5FFNIuewvWAukQSZtPPDAdSoUntLb3vZNpdOX6itfmVY4PGPAZFSo7uv7v/9RXXzxKX3967eqUrlY6XTDEjRrCxDG6B9YTFhuihy6p2mU290dnmh07NgxHT16VJdccomOHz9u9wp2FgsAe5w11m63bc4uzCB2BtgnwEWxWLT7whomSQ8GA/Nu8tynp6ctmcNK+XXoiy48hX6uMTYprEG7u8Oje2G5SdIUfzQrse/opu50Osrn8xoMBlq4ckrX3rymxdjHFdKeejo3SWVxV3ddGdepnbv1xU9MqHhiNAoqmUwqlUqZmgLI8QyeJ1EoTgDOsGaAIppjWJ8U9CiI3ktNwwu5jJhcKpWMyAAkU9h6sAMZApD0sRFAiJIACFxYWJAkKyz8hA8/pqjX6xnh4tUnD2ixOx06dMjyIUVROBweU3t6vZ7Nx56cnDTCxX9PcqyPyRBL+HxhFaPRqBFIgDAO4oEBJc+AM1CRUDy5Pp4D+QQwBz6AFWW9MRmD2CSN/MDkI96DWI9CHAwGjfiB+WSPMRHA95jwzMmPMP2QKKwN7iEqG4UrPTgv5/U9g9PXve51et3rXve3/ttgMNDv/M7v6Bd/8Rf1Az/wA5KkD37wg5qdndXHP/5xveMd79Bzzz2nz3zmM3r00Ud18803S5J+7/d+T69//ev1m7/5m1pYWNCf/umfqt1u67/+1/+qiYkJXXXVVXryySf1W7/1W98zOKVqD6ala+/a0BsnP6fwYFstzaunuCKxHV1yU1l333xQLxXv1rNfiat7rqGMIERly83H5wSb6H2CjAxho7TbbZ0+fdoal0hAJKFoNGqMIZIN8j3eJKQw3yHJ/abSJYh7xswP0k0kEua7lWSbemNj4zv8ODTiSDKfLcEXAEMiAsgApBlpxHWwaTxTIskCDSAYQAwzRRJHOiLohUKjIwaRzkjSBBE2zM7OztjIHYAqiYlGBiRVpD6AGcVFPB5X9JwUsre3p55jZwDnPD++C2wYgZnqnOe1tbWlXC5nzQN0bmOtAJDBbnW7w9m4BPZisWgsPVKRn/lJgdRsNq04g9EnGPKsAUYctYn8BOME8G42myad5nI59QNBXfnP/60msnN6/j/+ohpnjhvAZj3ATpIYYR9gsjxzDHD1zFQgELARbnNzc+r1eqpUKmNNabCt4XBYzzxzkW666VkdOvSCjh0bAvvPfvazkqSrr77aGMNnn31WjzzyiF566SUVi0Xl809rcrKlJ588aFYNigCeM6wZzBsNZ6xJulJhyUm23ndF0QhLj4edtcsJNoCm4XMK6JOfvEP33vu47r//ed1zT1jHjh1SsZhXuVzX5GRH11//jA4cWFe7HdFXvnKvXnzxgAKBgclsrFOSP2dr+852fGye3SCxE+va7bbW19f1qU99SsvLy1pbW7PxabB2nkEkcQcCAevoZu3R8Mn57+zvcDhssxCHPuKwyuXy2AxHEjJefNhFGiRpKGq1hp3uWJJY84BgkubW1pZ5oPG4VyoV5fN5+y7EfiR8il9/lCfvfdtbJnVN/r+oFZjXM2uv1+MPhtSuD4vqqdyEbrq/p4vzX9FP/vCGHnzqtXrwI40xXy/WEsgM2DXuJ3EXuR4yBFsIPvFqtWoxLJVK2RSBfD5vOYx51KxrD8Z8NzlFvo/3rFUamRhDyLqGjfPNZagxxGYALwRDNBodGzHFWvAniuFJZ1Qguater6tarVr3PQUheZQpJtwv1iLfg9xdqVTGBtkzFlAaTc4AYJKTfWzg2cH8SiMZnfuIikjxColAjON0JoCvb3yjIGCyCXYV8j7rhOdQr9dtHQB4Kcq8t9c3r3rFhXhHnwOEENYb1gsM8GAwULlcHptQQzwnHn631/9Uz+nJkye1sbGhV73qVfZ3yWRSt912mx555BG94x3v0COPPKJUKmXAVJJe9apXKRgM6hvf+Ibe+ta36pFHHtG999475hV7zWteo1//9V/X1taWjZjwL4IHL5jC/f19XX7vku674UPSoKeXSnfpsQdjGuwPQWe73dL0wr6uuO60rir8hQ6+/WJ97pO3q73ZN/mfDcZoCB4ggIYHTLCl4vDSI8ASwEnVTjKTZHKrJOtQ39nZMX+RHz0FAPQyDOBXGh292O12rVvOy74svHB4NAdOkgUOFidNHcjsfG+qawKYr7TZbLAVVLnYD7zHThptWt900G63tbGxMdbhyfeFseU7e58kjW0EaQBuKpXS+vq6+dcINLwHYGJlZUUTExNaWFjQ9PS0cne+Tr1gRBPJoTc2ffWt2s8W1JpJqPnEA9o9JxkRYJGnJNmRlwASzOjValU7OzvGNuB59vcAQMp9RKKjUYxZkpOTk1paWjK5iYBNlzjPmiqbQM66o2ianp6241fx+e3v72t1dVWTk5NaXFyUNOpu3qk3dMU/+beaPHCpVj70W6oce8oSO8f3kmxarZay2axV6CS3bDZr657mCwol2GAAC6wzbDzrtd8fjjNDvtzfj+rYsQXdfvsLKhYPqNFI69ixY+bFWlhY0JkzZ/TEE09ofX1dxWJRExPbevWrT+rUqZzOng0oFNqyxIX/lZEu7AkUFV6APLyg+CZ9AQmD0Gq1TJYjrgAACO6szXa7bc/1C1+4Xk89dZ0uv/y4Lr/8JV1zzXH7/GIxqc9//nodO7aoQCCuZrMy1qjJfvGNbgzaZ9/CklIoZrNZZTIZk+woplut4azXZrNpR9iiqNAoFQwGtb6+bvGIxEgjE0drDgYDe3b4IQEn6XRauVzOmoTwwwOeuU80qWA5ARDA6jG/GgtPv9+3KRw+hhB7IpGIAZnt7W3zZFerVbsP+GiJZUi74XBYt/5AXNfm/7OOVd+oz30oonAobKOu2u229s7u6bFPZvVY8Pt199t29IprP6ZA4PV67qtDz6CfUIBEzvMDVFSrVcViMc3Oztq9J56QH33fAP0UDLxnZvXm5qZZ0FiXsJw8LxQ7mFuYVuwkWKtoPgKkoXZBcMD8SaPxhLVazebhYtsBKKHmYLXo9Xr2fRmbSJ6VRoSLt4Sxj/h71ArWDkCcopn9DdGAtY6ihFzD2mIPSbJYTw7kO4MXyEfeVkB8wB4COIUQYi9CjEGKYAdiHVBsefsTxSI9Hj6mkaNQGylGPSMOq1uv1w38o+LSIFatVq2ghTFH2SQucvAIDKy31fxdr/+p4HRjY0OSxuZP8mf+bWNjw5KgXUR4OADZ/8xFF130He/Bv/1t4PTf//t/r1/5lV/5jr+fuyqj+294v3Y6h/XZj1yjveaQiZmeZgD8vrpnIloPvkonJ67Vzdf9qV77pof05x+4QaFB3DyreCw9K8iC3t3dtdlsGLcJBMg0ADgqLQzbXkrr9XpaXl7W9ddfr3vvvVebm5v60pe+ZDIsCxwwBSBjk9KdubS0ZCZoOuhhL5EXqKoBEN40T4ctYIGRLr7axZpAYCSJz83N2aZjQ01OTiqRSKharWp/f99OSKJCYzFTBHgLQKFQUDgctnvpmT+ASTQaVaFQsH9D7ioUCpqZmVGz2TQWsFQqKRgManl5WYPBwDxs3E+OjwMgT9/8Kk2kR+s1fe2d0rV3SpL2n39UjdWz5vUiIOzu7urIkSMWzFgbSMTIxK3WcHTWwsKCNc1RHHDvuD94amm+ANj5o23z+bw6nY6xAhRFVOV41VhzhULBijgYa64PppeKm2cxOTmparWqi3/wnyt//V3a/PbX1OwOlLr+HkUmJpRMJJTs9VT65hfV7XYtmMLoUtARjGHikFsJjiQ37hUFoJemkUGZykDifOKJezU//zd64xu/pC984ZV64YWeAaiZmRmbzdvtdpVM1vWGNzwsKaivfvUeTU2NxkfBCLHPYCBJyhR/PtCTKOhe9g0+dCTD0MC0UjABgmEAJdkcRVSOUimo55/PKpE4pHC4q263oZ2dvoLB6Lk1OGq65NlihUHGhfVA8iWRSKMT8FA0iBlMOZFGM3m9XYAChzjJs2YPwIwi61IwMt+Twsk3eXp1yp+GxZ5HhsRygjLCGkcmJb5yH0j+AGdiImxdJBIxZjQUGs43Jc4CJAByXB8A8qKbCrom/591fOtN+vyHohr0+4pNjRflks4RI2195v11ff8/fLO+75pPavPM21VdHSXvWCxmBS42J39P/TNln0CmeFADIOr3h6de8T2RXiEiyGdYUVgn7ENYMz8xg1iPXIzSQhyr1WoqFotWaHIf/Tgh4ib7uVar2f4ml3K/C4WC5VkKLcAUljdsK3hd+R74Q/FBp1Ip27PkAsgcYitgytuTyJmQJV6GZ21JMpIAUE88J9d5xZDivNfrWcykUPJKJt8di1M+n7d+GphSlBvsc8Qo2F3+DhUC5thb+lBuYZkB2xAry8vLFmfI1RQtAGAKXYoWnj+x7bu9Lphu/Z//+Z/Xz/zMz9ifuYGvuPMB7fYW9eVP3q5QIKhEImim80QiYSdoHDp0SCdO9PXlr71d99/5x3rlW6t68KOL2t7eVq1Ws9l1DP9NnTsPnioMH+iRI0fU7/f14osvqlQqWdWN5EBAk4bBxzNlg8FA119/vd75zncqnU6r0xnOc/v0pz+tlZUVVatVG/nhq2gWCUGISoekub29bR4uQI73ZlJ1wfwtLCwomUzaqRXcT7y4jHCCffHgjiqdQEVgY+PAvOEJkkYd/ninKAJoevKeG0z1VNtsQjqf+S4ABO5TJDI83aJcLpuswXfxcrNnfnZ3d/Xke3/CWLJEIjFmteCecS38ORKJWPc4TWUMMSao8l3oDl1eXpYkraysaHp62tg3WB4vnZGYpJFigNfUdxjX63WVy2W7r8jPgAAaz7CsYIegcYmk0263debMGRsNNjU1pdSh4ZGYuevuVO66O79jPxa/8QX1ej2TvpvNpnm16HCmOcUHVewRNNp5+dAPS4el9YUdXcTNZlCf+9xrdf/9n9eb3vQpXX55QY8+Oq9icfpcst9RPr+h669/SQcOnNLOzrQeeujNymQWFQhs2QxOEg3JgGY2aTSU3ncZAzDxwAFKAVV+nxQKBfNnTk9PW6METRTsS99E5AEHiaXfl6anE3Z4CPfWT23A/8eeZY0C0AD1nl1CbsfDjjzO2gkGg6rVagYqAAoU0vhB+TuaI/l31j2MI/tTGhYiHMvL/Uc6ZMQV8UKSJU6S78TEhEnz9XrdCnSum//FT85z5lkh16JWAUhpMsH/yb4BzHS7XV1/67r2taCHPp5QKDRUYwCXXHuz2dTa2pr29oZHPX7w/9jXL713Tjfds61PfmDafIIUBtLIMwiIz+Vy9rywMtBMl0gkbN40YItuegoh2DRpNAKRBjcPbLhv0mg8EMCKosUXI54x5f0B8/je+S5+DQBoKM4Av3NzcwaksABgEfHNutgYBoPR6Vk8M54hoAtm15+YBrNP0eTtLhTENEB66X5ra0ubm5tGyjBzF3sLkxgAuPSskHunp6dtbXM95HPWJrL+zs6OKpXKmCIbj8etQZfxicR/QKiksfUP2GePshfI5fiWiQPsXSYJsKZYpzxj8jlsMOu7WCxajwjx++W8/qeCU6ToYrGo+fl5+/tisajrr7/efqZUKo39Hl2J/P7c3NzYaBnew3/G+S+knfNfk/0T+urD79BmeVhJXXrppbrmmmt0zTXXaGZmRrVaTdVqVWfPnh1WNbWojlXeqMszf6lw9G3q9YLmx8N/g68OSQQpjsRN0wimeRY/QIsZpJLMF4WkxwgJmIZEIqHZ2VlbMIA9Ah5Bha5/5ohtbW2ZzARLRUVLVVOv160RSJJdNwGKMREkGEzqMJQEjfM9myTgbDarzc1NO/aNDYwUAMBHig+FQmOmcO/JYzMEAgFlMhkLiDRQ4YWkixXPDj4ZgMORI0fM+wY70Gg0dOjQIbv+QCBgEnq5XLbviixHIqQBAYDC8wyFQlpfX7fNXiwW7QADrg/gTQI9ceKEJQFJYwPdvZ+s1WpZYQUYYWIDVTXzNrluwBXsBfecIErwZYZqNps1n6DvlKbYSqfTqn3093TmnH0F0IXfmBPGSEYTExM6fvy4rV3YdPbAwsKCNcbA+PG9YAYApwAJwBosDGwGjRWNRlKf/OSrdcklJ3Tppc/pR37kSfV6T6nTmVA43FY43NfW1rQeeuhKHTt2RMlkQqlUaKzQoyidmppStVo1yZS94ddqJpOxwAtzTwHDPoL9o8DlujmCEtkNn104HLZOaeZNMhUDwDpUgaYt8dF8wZ7HH9doNGz/S7JCjnspySweMCCwJOxbGgE5spd4xhpCcgewVqtVU5UYGdfvD09O4zAHEnAulxsb/UXClGTWEO47hxawBgDMxExeqDmcMIf3EUCDl3N3d9cKb9Yz7CANJ3glOfjC7y3p3KldyQktRT+mJ0+9Su326LpmZmZ09dVX67bbblMikdCZM2f00EMP6fTp03b9xzfv1RXZv1YgfL+aO/v2nlgcKMTJO3Nzc7a+ms2mFbBcrzQCtNwLJoQgaWPP8j5S4ghTV/r9vvVcAIwAj+RuYinxG8DH+iZH8Xy4L96PTiHG+qEZmfegWGe9EMO5B75Blmd4/gxybGZekcFbj3LoD6SgqMf2hm+efge+LzmWPdHtDqenMGaO2BsMBo3IYrQi4JzCgP/FygN+wN7SaDTseF32KfGXe0Y8gRyhEAU0EkMpbLDjwHL6qTEUIZBK3jML6+xZdxq2iHFe8YW0ogj9bq//qeD0oosu0tzcnL74xS8aGN3Z2dE3vvEN/bN/9s8kSXfccYdqtZq+9a1v6aabbpIkfelLX1K/39dtt91mP/MLv/ALY2MMPv/5z+uyyy77WyX9v+vV6B/WyWf66vWGJvA777xTt956qwHZVCqlAwcOKJlM6umnn9b29ra+/vmBrvgHPV1xx54e++zw52q1mnmReFDRaNTkb0BrqVRSuVxWq9Uaq2T4vGQyqbm5Oa2trWllZcUCApv+mWee0bFjx3TxxRer0Wjo6NGjw8HS/eFQan/2ORvHd+VxHZOTk8pms25Mzkia5DrYHIymQKLC6wNgJjByrCvjd/CvMvYIkMv3JUGRNJE1YOkASIBobz/IZrMmWwF0qOKYreeZK4INEg9sNAARGZUNRqVPM5E0OoqQCg+wweYCzIXDYavSkTTxGUkyKU2SgQ+kJK6f42ZhhqLR4RQA2F6aK3y1TZcxUqpn4b2/ifUpyU49QZImefNMCIa+2xrA3O12TcpnjSIF8znYDvDd0U3P/qjX65ZMIpGIzaiUZCwG47Fg2n3jAckZCwfSLMkRUMfv4n8aFl1xnTp1rY4ePaRCoaTZ2YampwOq1Vp67rk91esXa3JyNLoKbzR2Bu4tibPZbJqxH1sJygIMJ9YaP2KFhiHWFWfNsy79CCq6qNkrsHaAQz93ORAYngRWrVa1sLCgpaUl64gnicBKU2BKsgITSwHX6GV/VBQaiWhM5NAJ32WP5I/cnkqljCnn8/y4nY2NDZXLZRWLRZs5vLe3Z81HFILsfw6vkIYFFJ7xdrtt8xZpqpJGzaDEL0AGVh3ioycSJFlBh5eeYhWVgc+H1aPxC/vQRXcOFNK+vv65nsKSNSHddttteutb32rvccUVVyibzerDH/6wKQRPfW1aV79pVxffID31lYiBYwpw32S3v7+vUqlk0i5AmyIBFpXnSaMKigTAkUIFqdfbOPh8AD7d3axTCpRebziZhWLNN/pRPNA4xmQFvgt/BtjBtAGuIGeQlYlzxCu+G2uN+M3zAhBT2EAC8Xk0LHp7gmdYUZtmZ2et4ANs+s/xzKpXCBlx5Ys44tr5s6K9tYb74OMcflL2LjaoSCRiBTKKHXnJM9DEJ2I1eRObA5YEvpsvHLkXvtiamJgw6wTfiVmr+I9RcJkwwbrz3/Xven3P4LTRaOj48ZER/+TJk3ryySeVyWR04MAB/fRP/7R+9Vd/VZdccomNklpYWLBZqFdccYVe+9rX6id/8if1h3/4h+p0Ovqpn/opveMd77CxEj/0Qz+kX/mVX9FP/MRP6Od+7uf09NNP633ve59++7d/+3u9XBW3blYiMfR93n333brlllu+g2FFVr3xxhu1sbGh4pmiyv17dHDxtL6yuzQ23omNTLAjUXuvDowmPpRwOGwbCJaPbllkWDbO6uqqPvCBD+jQoUNqNpt68cUXzeeGhwOQQxXMZ/sOTCpgvCskb0zfMFpI2oAnNig+UKo9qk7vC5RkbBeLz3dA+lO4CI74VkminI0M+yPJAOLExMTYaTuAQpIi1wbgJHBSgdJMQoDwrK8PbuFw2E618t3EwWDQjN+wlJIMaEsyRg92ZXp6WmtraybR5HK5MU/P5OSk0um0sRGSbJahZ35IAFyHlwar1arZQLz872VLgCZBhoTBM+t0OiqVStYcQbML561jAUGGbLVamp2dVTweHzvFh+kNPFN8ytIwka+srIy9V7fbtcSJzMhaI4kx45IxQFgUarWaARj2bblctuICaZ31BiseDAZVLBbUbB42cNhu7ykeH0mRu7u72tnZsSKRtUUiYE/jxZ2YGM5mZTQMtgSSMAwErARgCs+pZ6tIBkjbPHuKEJ4x3i3WPqOGuG90npNU/fQNGKPd3V2z9tDFy7xEmqO89cYfkQsrR5LzszXp9Od7wdrgN+dedDodZbNZFQoFVSoV83nPz8/b/gQoc994D9hsVCGKBGIGrDmf5bujWTOBQECrq6uan5/XzMyMAUusRCR8nhHgFdBK4yt7ThoxnFPTTXU1qcnI8HAJmPIjR46MsUWsE/KFJG2v76qnmCZnRvYqikQUF/aOz1vEKxg/QAvfn2eCjQkAT+8Ekwr8yUHYUqLRqIF/P71kY2NDtVrNQJc/BpeZycQoiARiGsCEKSIUWFgeiImw45LMpkGfBj5T1DAIHopIinH6O2KxmLa2tlSpVCSNZqvCWJJ7IUIAqMRP4jKfNTMzY88B4E4OrFar1nwnyXywxA4m+mALYW3xHSSZzxNSiaYsGpkmJiZMKaTgYW9EIhFrZKxWq/asq9WqqRIAXnKfH0XlmwYB2F79AVcQYyDKIIMgBlBt6CtA+YaEeDmv7xmcPvbYY3rFK15hf8bn+WM/9mN6//vfr5/92Z9Vs9nUu971LtVqNd199936zGc+Yzdekv70T/9UP/VTP6VXvvKVCgaHQ/h/93d/1/49mUzqc5/7nN797nfrpptuUi6X07/5N//mex4jJUmN7QktLi7qoosu0g033PC3Sv/S6EERoJqtlHITZ4yZPHDggAKBgEqlks31A+DAJCK/UtFSUUWjUfOZ4Dfa3Nw0Dx+Lk+D87W9/W6dOnbJqhOBK8PVNSPl83gYfk+ioVDjRAzDBv7GofDMWgYvRHMzDgxn0IyU46ccfM0lQQWb3MhKVMEANdgTvLKCX84y5Vt8AVqvVxuaqAqTweyErwMThyQLgESA8ACXwUDmTbNiQHG2InIfnhmoTaSYSiSifz4/JNzBweHTC4bCBQH/6DECj2+1qY2ND29vbyufzY1ITo5KQqUgUWEe4dsDpYDAwMN5oNMwHRSAhOAJMJicndccdd2hhYUGPPvqosbIEJfzJACi8VeFw2I6YrFQq2tra0tTUlC666CL1+32dOnXKJGnsDlTPBC/Ya555MBg0vyDfh5mPMLA0NPGiUEyn0+avw4eM1EYXK88LFo2kCOvHLFd+lnvN7wPOYB1h2WBJWM8UOCSlvw3cedkMVhHpfn5+3rpxaVQA7EkyCQ+ATOc1Y3fY4zAqkgwg0SW/u7trwIAiwT9nwBmNNHgVaZYAJBDXiH949kjw58uxrVZLc3Nz1kWfy+XGGo1gtVg3+DwnJiaMUUNC7HQ6xjSReAGv7HkACKxhrzdsFI3H49Y8xfdGOeD5YvGAleN+Y63iPg8tR8P1CIPEuewcCwlg6ff7Onv2rNlXOp2OppOpc3koZNIrnnT2jvcUS7LnQHGBjAowBuCS8/w9oTkVppJCzFtayClYxbj+WCxmIAl2kwkpfo+hFKAQoI6Rh7AE8EywwvhjtrkX+B95scc9i01swl7E/gN4YtdgHbPfOdyGeAowo/hHdaSg8woZ97VWq6lSqRhQO7/HgmLXz1AFc2DfIh8EAsNB+8zXBQdgJwNTAALZq6hU/X7frhsGEyKMvNzr9cyqiPLJQS7I9OxnYgAncfFdmOjChCHyHt8rmUzaSVxY8cgpL+f1PYPT++67z6rVv+0VCAT03ve+V+9973v/hz+TyWRs4P7/6HXttdfqoYce+l4v7zte9eaO9ra2lEgkVKlUtLCwMObt49VqtfTMM88YKxIIdNQfBE1KmZyc1Pz8vPb3923GJECAAEmljJSAF4RGkHZ7OB6JRAyoY8SSNBqO32q1dPDgQeVyOZvdBrs3Nzdn4AeJihFGAIdKpWJgiUYa2DTOUydp4/lFQpWGcxBfeukl61aVNGYnwBbAhiOxsaFhSSSZFQJGFKbZn0ZBw1m5XLZr8MwyQ+/5LBhT/KGwUp45mZ2d/Q6wQjCgapc01vUK6G+1WlpfX9fU1JQOHz5sADAejxsYwYQPQ0pgT6fTdgQtvmYaLpCQe72evVc+n1c+n7f3JHAjD8OI7ezsaH5+3pgAQC8gmYBKcgKQIj9itYBN8QzzysqKSahIoiRqgna5XDbQ2mw2zc5CEux2uyqXy1Z0kZgocOg8l2TsFGufYgpvMfIliS4UCtk68kUGjM3s7KxSqZRJVJLGpChUBOT4TqdjbDb3nWRLMpVGxQPsMOAJSwoFjCSznRQKBQOrFEwkDRhdaTQ3EAkfRpl9SKJn3+Ax4/oBiq1Wyxr9uNesV641m81qMBhofX3d1gwgFNnbjwsqFApWwHS7XXumNIhSYHCfYIGZ3Qt7xvNCdQIcSKMJEYBg2EvWZTqdtvXDaDWsIqx9vjOAhwLbN/XAoFYqw/FaDB/H6sAeQWHyUyqy2az9fDKZtNiMH5u9Va/XtddMK5zd1SBUV6k0GnL++OOP6/LLL9eRI0cUDAa1trZm5AN7NLOcUEj76uxHFY0OxvIHEngsFlMul5M0fnALCh1NdVh1YAa9bM8Uid3dXdvP3DPsMeRAaeRDxh+PjYdn6PNjuz0c7s/kDEYgEo9R/pDT/XHcxOh8Pm/rDEWJfO3jiV/r5CIafDqdjrHb53u2UXGYNIPaArni86SX+8nz3uOOcoGixzrCI8/1cZ9QVyCrYLo9C+nZVPY/bDP32se+brerubk5Uz+R22neApizNxgTyAQe1jO5igIA8Mxnc3/IvWANnhPeZMA1YJsCxDPB/z9piPr/x1cyu6tT3y4qFovpmWeeUS6X08LCwpg/kkqWAcX9fl/J+Ib2dhMm5QAwACLMwPNyGh4nScYESjKJA/8fDxKfjZejSaZIaYyZgEng2NV4PK5yuaz19XVjBmCn+b1wOGxVMV2GDLD3wESSLVgYQxIbkhKge3Jy0o5tg0Hyhmx+jmS/v78/1tnONbDIaSLDj8hmAMxTsXmbAUP5qczj8bgxd4AcEjDFAWwZgIhr43uQ+Kg4CUSepea5AICpzknyvV7Phuv7wdXeTgALTJLGQM+oIb4jgN0fVQpwoDCB/WK2oC+YPFD33fq8YDxgK1944QUdPXrUvISclEYBBdsNeCMA8/vI3AAl1hb3H/aL4A1A4975Rg6ADBI4R3P69YQCsLe3Z02E+EKxiQBKAKXr6+tjSY3GBYI9g82JDTAIrB3WP4wNFgLAEyAWpr3ZbBprlslkbE3BJuL7ZFA1Mj4jx7wUyDqkAKTY8XIabB/KBl49ki3FF6PVWE+sFQCHV2EAan62KHsEJhPp3RcfsCQUTDDMAAGaN2EgAencGwo3mk4YSE7Rc76XjfXhpwdwAIL3XfoCHFaJfc/PE/NooiImYp9i7XIPibfHHu3ppoNx3f2GqB74y6j5Vl988UX9+Z//uQqFgtrtttbW1tTtdm3f9vt9XXNHXT1NavW5uObnh/eQHoH19XUDXChlqDusAVhYCi6+z+TkpP08xSlqAOsJNq9ardq8Y1hOJiZ4MMRzkWQ9BD6+0MBDIx4qCJNCsCRJo6Y17yXHOsRUGcA0BADrmWfIoSrsQ3IDOZGYBfvoG33Z6zTD8V4oiBQ4rAkIBkAzbCPWA2k47hIFj0LRW0x84QhYlGQqh5feiVNMFqLAgu2kYPDgF8zBHqWAASgyzQDwDUkDEPbKD2DTWwJDoZAVk8RTYjk5AXvY7u6uCoWC/Z4ku0/f7XXBg9NLFp7S2cxb1O/39fzzz6vT6ej+++/X/Py8BY+VlRU98cQTCgaH3bjhuaAyg7/Ug8+9WRMTdZNQT5w4oVKpZOxIuVxWuVw2Cr9SqdgG5O9YaJlMxnxZnOQDTU4QYOMjV+GVpFOyUCjYvDAqaUAAndx0QTOihgAG0EDiphEIHx/MHTPp2KSwBDBmAMXNzU3t7e0ZUG40GmOgy7OSJFTkKe/H7XQ6Y1Lk1NSUyuWyGo2GMdHMvvPgH1DC/YGRLhQKFpjZQCRmGmuQMWlM6fWGw52RWGHZAB6AK4oAghoVYLfb1dmzZ1Wr1YwhANDzewAuxuR4ewneXM9wdLtdA1yePUBKQhb2ZniCCPIOFTVVL2weMpUkYxNWVlbM28x390wxhQegr9VqaXV11STcWCym5eVlO4aVdcazJWB1u12T6wC8i4uLlkw6nY4x7wRqQAXSMI0mkowR5DkCzD076ZsTAIBYSNhvFJmhUMjsI6VSSUeOHNH8/Ly2t7dNvsrn82YL8E1MnuWDkfVNB6wb/F1MACDRAo729/ftTGp8dwAIEo6X9wAGsEB8FveAfcYepJiYmZkxCRTACJAE9AJyeS5+FAzJkaIiFBoO0ucZ8Ewo1Le2tgwYwebSaOWTMbERNpcGu1AoZA04xGTuH/IpxS0WEu4P95wCHsDE/oTdJWbgh2btwAhKI6+n9yp2Oh2F18Naa71Kly49qk/tXqFmc0QS9Ho9Pf/887Y3fNd8PygdTn9JZ2r3aHtrX8Fg26RzwBNMqFc1iI2SbN95e1q/3zc21RfUFAnT09NaXFy0iSP+XpKb8E8DTAeDgfVfwI555h1lDKDjGVbiNkQGxQWzr1HDmO3KGq1Wq9ZUmkgkrNmJph/GZCFfUzQxTUeSMad4LL1n1LOj+E193wH3Bq9lpVKxvUHMoNind4NnjKIA+eF7RChQ+ExsGTDNsPt06hPHUVlYy5ubm+Ztj0Qi5sul6Y9cQ3EHA4vaQDz2PlisLj53c3/AH0zwAXBTXHgPMAUcccWvhe/2uuDBaUwlXXtPXMe/NbCKptPp6PDhwwYqTp8+bQ0R9Xpdr3mL1FZGxx6LmDxKYxONA8wppArm3/CAUJUAjtiQ6XTaTtEhwHgpLhwOGxNEcsLXETyvQYeNTXUnDeVvPELRaNTORUby4BpyuZzJI7A2LCA/ssl77Lwn0zOcLGQ8TalUypjCRCJhC5efBVjgP6tUKmo0GiYdEghCoZCBH8/Yksy4fgBhNDrseOez9/b2VCqVzBPqmRifDPHLeUsFDC2Jm2fkPaI8w16vZ8crUgTgZyRIwURJw8qReX+Af2a3sr4Ye0PSoUsZoIPkTRc4gAAQye/DVEsj8z6NabBDJECSFmDPnxYD48R3I2gj8VI0sV8AeQTkiYnRrNdgMGgs0mAwsCpfkikG+KBhPQEoyNsUTlw3zUwTExN2uABVPewj64tTadgjrAs8vwxgJznBwrGGATMUoUiEJEWvgDDyh1FO+FthHdbX143twL7AMyNJkMQpSAFc7E2YslarZb+HRHv+0bGwojBeHlgiSwYCAVMiaPgjGQL2aRTiGcAsUjx49ptCFyDgwR1Kx97ennknmSdMo1iv11OhULDpB9xjJEIAkJ+7ieVgd3fXmG9iF7Ipe977E/FwAvSI2yRg2HMIBfYWxcC3H1vWG+78pH7gnVfpz/9jyJgr7B+Aj/39/XPd71G97h/2NdHf0KNfvsMmRnAvKdQkGYPMvcWDTLHLEHfIDxhIiv5Op2NTVoil2KSwvnjLFc+KtcF0GQgH4l8+n7cT4GDaKCrwDPvGYW+d4rMBu6h2vj8CK4MHi1gU8IHznv6Al3g8bj0C5FcKN/YB1hV+nv4K1qZndimoKXKx1xHjYWfT6bRmZmbsfXxDFEUU3zuXyykaHR5hPjk5aXuS6/TFMuCcPUExgfecuJ/P560ogWmmZ4OcSdMdfnDWXafTMV/1+Y1TfBdJZttLJpNjM6nBNKgTPGfyHvv05bwueHC6HbpdF81/SM2L/rlazw8lx/39fZ05c0ZbW1vWsBKNDrvJr33tkg5F/0DPr79Brdb4ebOcFLK/v2/sHuOlCKSY+Pkz88oYhH/o0CEDH9LoaDUSn5fLqdgWFxet+iEIehmdv0fWRLpgQQJ8AAOe7mcTplIpO80Kj473AlLdMRoKDy4gGgaVo818FzcbCTaKxhXvVaRzGAn00KFDJpECCqXRYQBTU1OW5Hk27fbotCGeCYEIYExg9fIOVSABDjADuwGLtLm5qd3dXQMDvmFtbm7OgBfSOGANAMv4JipwqmFAGIE9GBw2BcFYMJ6IAoCE1Gg0jBHAOkIAxBZBJ28gELC1iFWCoM/MQNh6WGcqb5qKOp2Ojh8/biCc4Mz3YG/w/STZ85dkniRkMs5FJ6Eya5KCwE8i4N5gccCnSPCVZL5O/pc9yD4BWMIsSDKfIcUeBSaJkdFJ2G+QQz2I5ahLgC7ebJrZWFcUEdPT00qlUnayFR5NScbg9Xo9JRIJa0gol8vmu6VQBMh6yd8fFQyzgxzPtVNUwKZyfQAP1gGg3DdCAfiJHcyB9RMwiEcAPnyLnuXtdDo2+xf2Gpa21WrZmfDcCyRV/p016Rsh+X78vS9oSKrYpIi9fEfsGzRSAlRgUhOJhLLZ7Jgsi4UCX2+73dbTXzmp2QM/rFuW/kQ//C9fp8/8aUQ617vg7Ry1Wk3BSEiv+/GBDk9+VF974a0688K+scwAAxQ55kZyH4kZnU7HRhdimcFDSGHDs/UAB7BEvKvX68pkMmONThSIKCe8D95pnjtWBXIfn4X3F4bTy9rce6YwUKT7f8MuRhyg+RVWlc/yzVgUx5KsmCZGQKKwtyi8mTCAMhEIBOwQAz9twFt2iBOsBfKL92lCLnEQBA2uWHJgmSXZdaOa+UH9XC9yOmQCJAx/pmjxhBr5jRjMGkAx4Fn5eIpFQtLYxA5v62CqCnPSWX8QEtx7ALEky5k8n+/2uuDB6dOPfp/u+b6irrr6j5Qu/LROPrVjwIGqIxaLKRAK6fa3zeuW5T9SuX27vvXFjEKhpiVnGnPwdsBY0rhAYoaJhLlCEvZdvHTiUSGRxCSZ94oFipTqm4t2dnbMPzc/P28+LirUZrNpCxLGMRwOmyyJBYDrQ2bAr8UA+L+tuYIkj7zC5vBd+/hwvEQiDWfFUtUDAFmoXvJniPve3p42NjbG/DHhcNgSK0mZa6dxTBomITpxSVrtdtuCtZ8Py9in2dlZY90AH/iCAfpIyrBnAKyFhQXt7OxYE4g0klNJGJ5tpjLGw8r9Qj5BhmYYezweNyaXYEQXKElKGslUBB4kNj6D4Ds7O2vFAcAKhgyfKgEX9oyfA5yEw2HNzs4acwwjDbvqp0gEg0GbIIANg2dHoeIPkEAuJQnzPfx9h83gc5HKNzY2lM/nzac1GAzsu8NGRKNRLS4uWoEBS8V7eXO/ny0ME0sBgtfSFySAdQ4M2d7eHjvxyLNFHtCybv3sVPYH95FEiYxHEUOTI9I11xAOh83mks/nJQ09cTCK+MxJSsiCPBs/b5I4EAgM51cC2HkGvV7PmoDYA5FIxFQFDncAENNkBKNInGC6x98GjLGCoHbQlMb6Btjgl+Usee9npokGFo5nyl7ge+JBxE8OK0xBwL2luW5vb0+rq6v6y9/b0sT/8526tvB+HfyX8zpT/T59+6EJbZwe5p70wpRufdVAVy1/U9FBUY8ce7uOPhhROj01No3Ez/zk7znqGBKDopSigHwEmIAd5v4B0lhTHNrA+8OWco+5b+12W5lMxogNWD8AzflSLveIHOMLVm9BIg/x+fRVsOdZE350IkU6a9CPyEJ1IAYB6ijEUEuQ0WH/YbdpIKMpjMkv7Cf+HkWPdQwAZhILzYUUjdLooCBP1lQqw+OG5+bmxuwzTFrBHiWNTo/zUvrs7KwxxdimKLy55+wRci6D9z1jTXzFjuGJLPY4+ILPpkjm3wCkm5ubBnD5TD6fQ2hezuuCB6cvPPmiBoO36q77PqeLcv9K6VfeoTOrt2h3s6CpbkLp6K6uvSOkS+Yf1lT/mE7W7tKXPrKkfn/U5RaJRGxUhB+jAUAiwMHYULFTVdJJz2ZDaoH1wzvCQo1EIlYtA0RgAL2cid+LQACVD+hNJBLK5/OanZ21hcI1kGBgsXg/5td5SWVzc9MCDewjPlRM1l6S9HYF/++AZDa1BzMTExM2QglJpFaraWVlxU6SYhOWSiXl83kDJLxglvDy4PUhOEsj0znyBmxnKpXS7OysHZcHEwQDTVJG8uCQAE7B4Zmm02mbZ0uBAeMDwOeazm80IQgAZJm64MEwQMpX7sVi0Zg6ng1yHAwXcinV9fT0tI1N2d7etmDtpV8SOUnEy76AYoABRRi+OHzFsPI+IeLdo3mGWaowsiRBGDSScb/fVzKZtD3jQakk83vBLsHa4s2jW5V1vbS0pF5vODuRtQyjTqMCMhz3HFsQbBKMJomAIouE7CU5EqR/BvPz8wqHw7aOYIa9ssF7Ukzjvwac4aNF6sS76n2YgFZADf5r/J3R6PBAkWAwaDMUd3d3DZgD1gHpeDK5Xth7JDs8fP1+304Z8/48z6CxNgBZFFMUy3R1AwIk2XzOVCo1ZoNgz9I0KcmUBBI9rBENJjBazCemSY35qjSp+eZV7i9NVaxf5PjPf7Co1Tv+sa69ZV1H0h/TpW/eU09DtSykPfU0qRNbd+rrD9yq4kv7SiajViwQNwFEdFrD5JNzWEfcV/zq5zflMmEBIoS1DUiAGfbjnbyKw75DRaBJiefPIRoUw3gRiTnE4a2tLZOCiU+SzBoDU5nP59VqtbSysqJarTY2VxaLBmsHRpc4ghcczzPrjnwGQwsrzjOEHMA/DqMOUAf8+rjKOmdfk5+azaaq1arlCGmoGlE0ghMoQiFfYGDJz35aCXuY7wQbyTOCmaao9E1bqVTKngF5A/KD98F+wfOCwaXIBNR7hYfPxubC92dSEAoOVhruoZ/V+3e9Lnhw2uv1tPbSpj6zea+uue81ms89pGsXfldaGP1MX2GtNe7UX3/hkB59sKQDB0Yz9JAEARXT09Pmr5FkZnKaa6giqBioEAGnbG4SHUwL0hAsDw+y3+9rY2ND7XZbc3NzthmQcDKZjE0LoBkGIAXr5AEYAQwWplwuWzc08j0bjfelYxDpk6BEAAAs0DzAe7GgYTy8N4zvBJsjjUZV4WnrdDo2967X6xmAmpyctISNGZ7NAZDh3HYCAMFZkgFBPEoE5l6vZw1DSEoEeB/0SaIAHwAeCYT3BoQDDHimSHQES74fYMGDiVwuZ/6wWq2mmZkZZTIZY/K9rO67mWE+kPX5OxoopHGJp1KpKB6PW0BlBiLMB0kKtgsg532pAH+YfjxXAFeYGPyLMMJU/f4ovUAgYDYPAiRnS+PZLZVKY40J+/v7JqPD+JNIANuexQC80V1Mhd9qtbS2tmYNGTAVsIIUGaz9YDBoI3BIMJJMKvNjy0jkrFufhAjkyOF+kDhrn7XBPcfHy94BqFAcAMxghJhkkE6nx1hkmn5gd1BwSELeLwiI4nQpP5WBgrpQKNhaA5ACLCWZhArIw35Bw1Q6nTYgzhrnXvhCnyIJ4IIChcKA7YW96AtyFASSPcUIewn2iHvXbDa1vr5u9xlVBpYfCxVr9emH+9p4Iaerb/olXXZLWI3GqrZ3tlWr9PToFypqbnc0NRUwGw0sJUUgQEAazaYlrlIw4zuFnQfg0e8AQ+eVLH6PawdgEHuY3sA9Yv/B5vIsPEDhfyns/YQOSRYb2ZPkGMAbsYhcw3OF2aOZuFQq2XcEAPd6PYvvFMLEIPYdWIDvQg6kXwElhu9OgRmPx83vz75izRJrKSqxpxEz8bvy2RRlsL0UIvwdawiVlRzOPaWxmXgJtiiVSgYkKa4gbxgpRS4BI3DPWcvsdfABBR5HFmPDwpNN/PZEFdZEmosp6CnkUVdR+b7b64IHpyz41l5bZ76VUvSSf6aXWq9VL1TUILCvveZAm6eDamwNR1wsLERsoXU6HZOW6DRFSpRkM/18QwdNPiR9ZFEWMaDFe3EIbh6UIv17aS8ajVr3pCTNz88bSGZBEZS99AGjCuCUZHI2lbj/M6wd7EOv19PGxoZisZhJs8wBlEbyEPdNkpnMWbjcLy/5eT8gHlIYIeR52ByCKp3tyJIwrSR030HtfXE8EzYNABSwRyVZrVbtPsIwwZ5mMhkLwtxTwDfeY54Zz5piBJYT2Y1ChOROQPQAF0CJxIN8hrwI8AKQeTACc4V3k/VGwMBL5712FEupVErr6+sqFotjXj5kLoABnwM4AUgQPEkOgHAAbyAwGttEYeG9ox4QU4i0Wi1LjjTV0QQAMIPhwRuOhYaiiX0Fw0qSZK8CRmlQQBLmGplXzO9RtNB0RPKDSR4MBtZBDACDeYP1bLfbZrdhHeB/7/V63yGFU1TCaGLj4No2NzdVr9dtn7GXYaIpbiWNedX8+DlY+unpaSUSCfPk7ezsGKghUZMUYQ4BCFgX+D3WLsCCtQEwYz3A+AAUAD6sZda/b1TEbgHYoSET1pnnFA6H7X1g3AC0sOmZTEaNRsNic7lcthxAXKX5jPsxPz9vf6YgpNkwkUiokJzXnZe8QUePHtXXv/yxYZNmYEqp1Kh7nfvD4Qo8WyRnYhbNT0iuXBdACm85TaMwkhTM3jJBIUSB4oEX8abX6xnYpRhA4TnfvkRBSqMU6gZ7giKMNUefBN/Nz6llDiqNdowD9PnV2wPYH95vS0HklZzzcy22Aa7JF6+QKr7QYZ+i0LD+8vm82X2IfbVazfJzt9s1/yZ50ttK+L12uz1mL+L+8mLPQr54fNBuD6eusK6Ztc2+4z6TD73nFMsHBBpFM2seexTfGaDpR5SxB1kb3HM/Yk6SWZO+2+uCB6cEIn+qTL1eV7m8baN/YO9g3GgqoGEENpPNQwJhgyHzI/3AqBEsCBKbm5sG5HgvpFM2Pc0VSPwwGfhEWWAsTtgOuv5YGLCl2BJgAgjkVNmZTMYqI+REPH1eQsKH5gN9Npu1yhwwCWCIRCLWbU6S4ex4STbyill/3GPM2QQuGBbuZyKRsOAHoGNYPUcinj171hK7ly798awkYpo/YEY84AbIwxYEAgGTN/leNCNkMpmxkTjei0MS54WnttUaHgk6GAxs3ub5gRpZmI5MZB7YcQ/qfMPE1taWrUNkdIa4U71SCCSTSWNvYaRbrZay2ayy2ezYOd0AVT9dAIWB54rHEWb9fBmNxM+c1XA4bN5pihCAlf//JPBWqzXmcUWW9WNZeL6A11qtZs07vV5PxWLRfNlI7f6YxVwup+3tbWsMZGLG+Yk3GAza0aoUFCQC1A1pOO6FgwtIdCQ9ki1BnnmWrBmaQWBl+fm1tTVjbTmIgnWABE9DFcpMoVCwRixiBL5J9iH3gwQOI02h4H+W/RoIBJROp1UoFCTJWDROayKWwbZIsiSOp5LYRbHFZAYKRE5IIsGyFikwiI8UbjCsMM3Ijr7ZhPjN2oHhoVmFosh7JnmmPjcQ5wF5FGy7u7t65pln1G4PD2AplUpqt9s2rYOjI2l+AwgCQmCeAHEUhRTCEBXEAZhtFAXeE4sEz5bv7j2a2Nd4XljQYNFCodGZ9XgjpVEPQywWs+KIQgBiBkAGocA+55lgWQsEAsY2wtDi41xcXFQ4HFaxWLTcyTNPnTuOmzjBfaHA5ztCxJCPfPMU+RmQ5uMwHmZJVhyTAyCsWNvT09NGxNRqNfOaU4TzDIgdPhbSh4GaQfw8n1AAgAP+UHPIcV6d3d7etoICNdUXtcHg8Ph2n2uxN62srNifuecU6JIM1MJkb29vjx3lzftwL2kmfjmvCx6cIvMyoJ1j2UjY0OYAOG4qDBIShTfxep8JCZpmIahxTl/iYZKs+VwWMlU4icT7WVgMgBCSe78/7I6XZJVgJpOxU11gSnw3IX+msvYd/HQd82eCVr/fN68tAW1zc9MkRhIm0jXVO+wCnkzfQQlo49mwgXyzCwsfLyzXhn3AWyFKpZJJ48jd3H+sGWxm/EQA9Gg0OtYVD8NDdcuakGQSniQLgLDmrBuCGAEKRg7QRbBGTsbbBJMKaDtfJkHip3Jnw+/s7Jgnr1qtGtNL0Pa+P5IXyQGQiCzGc6Bw4f6wDmmO4t82NjbGbBQkEEALzAVB2EugTBtgH/A8KThisZg1g3FfeK4EZ2l0HCOBFlaGhAJLxlgpmqS4nzBVjUZD6XTapk1wuAb7C1CYy+W0sbFhDVO9Xs8a1rwfm2HoFBP9fl+bm5vmz/OjqvBfeTsFn0dsYn3C7BI3/LxEgDDgLhQKmX0EEMAzBvTTpAD7yfByP7uZmBQIBKzLG6aYWAVD7Rs/kSWJB+wngCzJ2nshKcQBsTDM/vt4xjOVShnz6uVn9jdxaWtry0AP1we4IkFDYlQqFUvinq0FRPd6w/nBgF6AMTHax3rvPzx16pQikeHcX9aIB2QeXLOWiUf41xnbNhxBFTPShXyBggNrTEEBMEQ6J24Dfsg9ACxPFuDfJP/59ZTNZo2Y8HuQ6SAAa+wwvCdxFeBEDEI5IO57UEOO9ECWAoj4xp6HjSZ+YLcBfDEhAD8rzVa+gYv1DBvbbDatUKK48Yrd+vq65ufnlUqlzCLkx0iyxvHEkkPw1YfDYZsMwH3jmXmPOMopeYJ4wEz0XC5n48HI935KAEVIJpOxHERs8HYub/chvlAc8axhxQGjKFgozjDVxBm/L1/O64IHpxh0AXV0V8M0elaRxEEyQyacmJiwChIZGvmPhB4KDUfFIOvAQPkuXYAEAQ2vyszMjOr1uknlAONaraadnR0L0ARhFgbJhnl2ABQfTGBBI5GIzQokwTN8HKAVjUYtOLfbbZ06dcoSxdzcnAURuhJJIAzJP3XqlHZ3dzU7O2vgnftCtYRcxAkgMEmBQMAYHH5XkjGaVPSAeZg6wKxnsZeWliz5nV+5SSPWFpbRWyLYhDAQFBckXKpnwB7MM9dVrVbNp0TSBrz4qpHxJzAyyD7dbneMjcWf6P14gDC+CzIQ65bA4n1LBDykFlhCAjJBtNVqmXJAcKKw4R4DoNgjnmHb2NgwYA3o5d+9NwsJnOfEtAWKNhI8Adz7GmFJGE0Cu+yH6WOLYR1REBHQ2YNI9Hiz2B/I5IAe9hug1fuxWZc0enjGlHu+sLBgAIxpGjxLlBvWHEkbwEBRRoMXgJlpBMjQfHfWGsDSF4YAtcnJ4RD8YrFoycTbkQBm/rtIMmaSdez9YwBl30BD8iJJ8h8sFkwlDSMALZ5Lp9OxWcWsR/YdCbder1uMI75KsnXt7SI8e/a+903yLFnbvhGRTm0YQtaOJFubFJqsZ4DSxsaG4vG4nRIGyKY4J49AXDB+rl6v23P0BbpnBdnnnknzYI1n5gtSgI9n7wHg5DqUGp6hLwLxjQJaYFmx/ZA/AoGACoWCWYaYr+wBG3uAec7kPz5Tkn0n4gMNaplMxu4102MAndg7KOK8RE7zD0UBqp80KpYhGzxTyL2nIdI3geHPpwnZe7QhOMAiXA/vzaQS8iNqJ+sUCweYgT3CmqO4QqljnCP2GkYl+vmiFJv8fz6bXMn+IBdCBnn7Ccon00ooPKempmziAnuQghRf7st5XfDgdHV1VfV63QAEgQDgJMnA6fnzvaj4eXjeCA4jhcQPACF44jujso1Ghx3D3vu2ubmpRqOh5eVlA5EwPCTXRqOh1dVVScMgAztKRc9oqbNnz6rT6Whpack2HtcN4PCNDAQrPD68uA66kPP5vAqFgkkXLDICoySTmPgs2BAv0UkyCwBJhKSOXOEZL6QfgDYz1HhmdO9jAeA/ro0ghu+IAxY8kJ2dnbWNxjUDYKkmYfFYN8h8JHOYAiQV2D0+C/CJb5JEQUUO8ySNmnRg6r0dAMltf3/figxGFRHIYWu9dErAh8n38h8JGXsI34fq3ScmmDsCzNzcnCXrYDBo6x6QylqCbaAZiiALg0GwI8Fzr2D2uB/ce4I9zUQ8J1hn/L68AGyAEpIzkiXJFcYY9o3Pk4YFAGyQZ0MBat43BmjGCoNnG+8o55kD+ogd7EViEH4vOvEpfmCxpdE51/jt6vW6sTPeesR3xUfKPee+8J3xnYfDYTs5CraZ4g1fGWAJ9t4zdqxxgAyAvlar2bUCiL230e87aejH5DQefK/8L+sDjyZKDp8J20Y8YE1yTDNMPWDIy7vpdNpi9sTEhBWaAF3Yd/YGxc1UMq3ZV/2gInOHFFs4rPDUjI7/yW9p54G/MsCWSCSUu+xaZW++X8nDV2pq8SIFQmF97T2vs2eDrYYmJWIigFCSrUWUFeIz4AYgQqzyrDZFCJ9H4x6kA+CKZ+0bKsmPfAbPFvYPwOpjDbYN7jkMM7Y5GPhqtWrflT3q9yLNuNjiwuGweYS9FYJCk31FjAyFQmOFOlNhaPIhr1N4UehPT0/bz8Diz83NKZVKjR0kg1WGQgkQzn1h/Bk5hvvo1yEFCGsNZp9GPPYGAJLnyCgqLH6333677rjjDnW7XT3yyCN6+OGH1e12x3ziHnCScyORiNmAWHtYiSiCyOeFQsHuYbvdtr1CnOKVTCbt3voG1+/2umDB6UYnqDf8m9/TVa98o2KZWXV369pfOa7SFz6sndWTtskO/oN/oYuuv+c7fr9T2dDZP/x5GzeC/8xLkPgDPf3OAkH+gsGk263ValllDGD1Xb4Yj2OxmJ0Iw6lHHgggu7KBYWBg2nq9nlWjMF2Mp6Irmkrb+1lo9OFEJc/WeQ+Mb4qBPVtaWrKmKyp/gAabjuQ0PT09ZqSneQQAQRBA/vBgmu+NxOGLDWwZvd5w9mYulzMWDguCJEuMJCUSH8+K+4osxP1nHdAowwan+CFAAaapMJk6AOD21Tn3l0Ycgi0sFPeBYOmDCyDZy/C+gYcgybNlbNNgMGzooRnMV+QUNwR7ZDxYPWkEpPE8k2xCoZBKpZIBdQIsxQw2GRIpYDYQCIydnMUxulgzYPvOD6p8d54Z+5Hrxt7h/XOAWe4Zs4BhdwGEFKCcykaiYXwTa4m9wPtiMyF54PGE5QIAsm55H2R6kid7y/8OhRWfC3tMY4P3gvE+FKasRQAWzApNht5X588Wh6mVZIllZ2dHtVrNpFNYLvzM3W7XvMwAh16vZ+pOLpez/ba9vW17Bl8j39knTR/3+CyeZ6FQMJDTbDbHDsmAEWetAdj29vbMQ8l99T79yclJZTIZFYtFk3r5XPYdBXMoFFIwPqX0PT+g/UpRjdWXlLr0+iGLdeONqtfrdvhD7rIbNX/361U/c1z7mxuKzy4Zk8n7M8aKmIsk79ccIAD1LRKJmBcb1h95nXgPaKfww6qBjQRAD9Dn/geDQTvCNRQancSEVY71hsRMjMAGwLqBUaRRTRoV0OQOYp0k83FTtLJGKAopptvt4QEskEHpdNqeKc8agEyPCPGHYpPvheQNmOPIaUD6zMyMlpaWVCgU1Gw2dfLkSXse3h7FnkqlUmMkAwU2z4n9EQ6HbRLKYDA6WAbWGHAN7iCGLC0t6dJLLzXFJ5fL6frrrzf/9x133KFjx46ZEksxTQHs/f34XZH4iWGsBwprFDsafIlJfB8At7daSRrzA3+31wULTr+1G9WVr3m79o8/oerXPq3g5Ixm73mTjrz713TyP/2i2uUhGxkISINuR7sPftg2WjweVzQw9AsVi0XboDwgPDSMj/J+L4AHpnxpuCCr1aolKEANPkmqQbywBH6YUhgOZiEO/zytQGC4WOjGjEajY/IT8xm9fO27qPHNkexhH0gQJCY2HRJevV439gBJBq8gY1uazaZ55MLh4QEAAEl/oAFyAMEUJoITYkj8BC4C7rCprWzNYdFoVHNzcza+iOSWzWaVTqdtw8CwxmKxMdnWN0vwnWEkAGaSLCBRnOzu7iqXy+nWW2/V1NSUHnjggTFfLaCJwAJjipcnGo1qfn5+rBiZm5szUIavJxgMmsEcBqperyuVSo0VTeVy2VgMkvTk5KSd2MV3RJoF6NL05VlTwNT6+roxjN4wj6cKWSmbzVpAJ9Gy1kmEdPT3+30bxA9oZX8N9+VogDTgkqKGnyGpIuUh+3KCC8eU4nuk89d7upn3ylgkEilADQaGaQ54vWEo/atQKCgajZoPGXDHmuTa2KcoOvgZPbOIvO4LMiwiJBj2BEUZ7D7JHc+n9+OSRHd3d21vEg+YsTwxMTE2RxjgiC+XcXUkUgpzGB8AIvuAxEszGgwZBRCd5P53AaYU79g+Wq3hWeMADPYY7Fq5XNbExITZBABM2GX6/b4OHjw4VjTRYY4lg0RKfJdGhQNH0XLPSMLBYFB71bIe+bkf1NpLxzR35Q26673/bQh6zsU6WPf2c1/XNx/4qBrbNV3xoz+jxdklk/jZ7/40HeIW82IHg4GtY8gH1gtFPDI/vlcv2eJlhqX0bDUgDcWJ/IAygKrDe6NIYTthkgsHcMDmQ7AAZNnDML/hcNjmYBN/WT/kFr+GkY/9tBuvUgFe+X4zMzPa3t62mANA5lmjEhw+fFgzMzM2pg5QS9MarCmN04BMisr9/X2VSiWLnf1+33zF7IVud3gi1+7urgqFgilegHWft6UhoKOJ1jdX8RxyuZwuu+wyNRoNHT9+3HDL4uLimC3JF44QWLCjkAaxWMzyDLkrGh2dOIda40E1hBLxBmwA6UBxhCXif3lwesNkWz9630H9/be/fUg9t1o6fewJHf6pX1Phvrfq5J/9thqNhuZ7fQ36fe0//6h2Gw2p3VYsnbZOPJgXbujU1JQFbhIvlRnSIOfkplIp7ezsqFQqWeMUfkkvQRFoPIUOEwqYCAZ7Onz4tK6//ozy+S1FIh11OiFtbSX00ENpHTu2rHA4b4sMQOnlMgIbVRfMIz4VEj+LlQUGE0QwIPDjJ2MRSrL3l0ZNXyx4EitTEqje8Ot5UzaVGEmKRpzp6WnNzMyMeeQAeIuLizp9+vTYTFM8RZVKxQoDPybI+465ZgzcBC+SnJc0CXB4mw4fPqypqSk99dRTWl9ft4q5WCwaU8VnAW5pfGLTMvyczn+SrSRjUHyzCHI8chxrlKYMAjPAiyYdjj7F2wpz6puY+Dw+h3UBy0GQ9ZYEPhffHkwNMjFBGqM8jBn+PtgZ/I54vKnQ8b8CSgCnU1NTqtVqlhDxMrNGAX9c6+7u8NAEhuATTCuVijUoec8XMyS5n9h78Av6n/fNQnjTaFgzhu1cwoU9KpVKNnaG39vb27PDFfyJLv4zvY+LAhE2nKQqyWw5AAlAhDQ6r5xihGSDdxXADwhgT7GXAoGAnVIE2MNXefLkSZXLZft7mGyaOACUACMStmcypaHsi+qDOuRnaHK/iGutVssSLawy63BnZ8cUFRhBiubJyUnNzc3pkksu0ebmps6cOaPV1VUruDyDhTpGt/XU1JQCGqi6emYsD1UqFZWfecbY2mGcbyuTTCg1Mz3GKCGDe7sP943JI+QHfJWeEIEB802cAAz2CnvVH7Tim66IaQBYgClyMTYJTsQClDG/l/jPgSoAbcbhSbICGzIDEoLiBDsdf09zF7HFK1vEPVjH6elpI4J4D8BvKpWy0VqAbUAv029WVlZsTbTbbTvUpVgs2lpeW1uz597pdAyEck3kFuIc+4XYw/Xjl6e4Rr2hmOf9KIrYD6wj4sfu7q4ef/xxhcNhmw7wN3/zN9rY2FAqldILL7ygM2fO2HHB7H3WMIATAA2jjOpLzoUE8+QA9kLyGu9LfoR4Itb8f9j782BJz+u8E3xyvzcz75KZN5e71YJ9KRQWEgCxEiQIUjJpi7JJjaxlrHBYE91hj8PT7Ylxu5doT8zI0z3T3Z6J8Uw7tLTblmVrJJkemaQIcIHEvQBiKVQBKBRqv1vumXfJmzf3+SPrd/JkqUfEv13RGYEAUHVv5pff977nPOd5nnNecsJHed224HQlMtDgZuUEizBslNSvFRVZWjFANRqNFJAUCoc1M7egxdC4q7N58xxyOmthFNhMBAISBgGBkSmAQsAljCKVJOAKMzZyBuCPyrnZbOquu67rqafeVDzeUbGY15tvnlKj0dX8fFTr6xX91b96Rd3uht55p60f/KBg74cnloqJRIl/jmRFkmPxkMyh+mFQkX24D76hi40LA0sQoYqu1+sW3AmyyWTSGGL8e96nCfvqK2YCDtUkflDGWrHxMXwzmoXvNTMzo3w+rytXrli1SnDlXtEYBwCjMqZj0wO8RCKhSqWiM2fO2Fy+WCw2dZwlz5YxH3xnJBGSM9fPfFGeS7VaNTCzsrKifD6v/f19a7SgIxcWh8HJ/kAGAjcsfbPZVLFYNLmK98AjeXh4aA0ZfswJYI+17RkQGDTkKoAS7wXw8KARzyLSF8yvZ9VgJPGvEVApgug+pRmNP0+lUvazFDL4CemE7vV6qtfrqtfrdmwtv0sy5HOlsT+d57e0tGSstW8YY33iy7wVhAFAYJ0pcGmKQA6LxWLG4ABSecGSelaJJAjYoIjDo8kkB0kGTNgnsCMwd7DZMC6tVkvFYlGxWMwYdMbIxONx1Wo1KwpgrGCWvFyI13hmZsZsGxS5g8Fg6qAQACWF7/z8vK0Fvh+EABJlKpUyMoDuZ+wLhUJBqVTKCg0aVCiIpHERuLOzY8UM4B8GifuJfO2l4khkPOs4kUhocW1dkizG0yxLM5fvfmb/SGOLA/5GCjxiIHI5ewPGl0IS5pT8BFsKcw3wIa7gb2W/E+ewnTFiD88q/kv+HxDNnj46OlK9XtfBwYGpWBTMgEGeK4U48YOYwZ6RZP0KOzs7Ru54yxxrxxeUgHksFLcqbkzgQcnjfWB8vSeeozaxih0cHBj4S6fTxgzTqwDookhiT5NHfJMXHniImlAopEqlYs+WteH98TRpsu55fhBgrJWjoyN98MEHunz5sgHtarVq8ZfPI1/zwn/OdWBjIBYAqNvttr0HMYI1BrFwdHRkShDxkVGSvonyL3rdtuCUFwmQwB2YTaq7c93o7tFoKEUimv+b/2cFozEN2gc6fP91Jff/WMs3JREM/gTVZrNp3eNUGnTX8jDr9bpKpZIymYyxEgBOqi0CPACFAAuQHQ6HeuKJG3r66bd09epxnTlzn3Z2YhZcM5mM3nrrTkWjNT377JYef/w19ftrevXV+5TJZGxTExAAMoBkADoAFWYVwznDwWHhCCYEZJIumwn5m+Ahyf4fJhMwC4BrNBrWUIT/lMRQKpU0GAysqYauX0A1wDGXy6nX62ljY0PBYFArKysWtPGULSwsTAWsxcVFq3ylidxJ8wpzLkmsXDcyGaAAVvfixYuanR2ftEQQBTj7cTE8bz85gMTGvYUBXFpamjoXnCYy72ciIAGOkE/x+pHoSFoUFwRJLxtT3QNCvTcKBsIztkhWJDw/T3h9fV3D4VCVSsUKI8ZC+eHQrHcKs2g0agASQEAxRNVOkwwsKg1LfC9vFYHRg9VFJub7wjACyuhQxivN3lxeXla/3zffuLdD8GxI7t1u1/YbrBMNTYBDYgn7p1AoaGlpyYqeYDCodDptcyO5/9glpMkYOcABkit7EYDsCwqagbC9SLKETpFIYeT9zX4MEcdL+lFEgFyKPYoVLE/9ft88ydwn72mjMEOu5X1hyyEFsJxgL8BaAtjCx09soDiDHcvn8+YdJ/5QOFDwAaoB2UxZIT6xB1G8aGShQccDlXQ6raNCwaRVwATfK96fzD+WZIwdRRusL3uVe4Taw/32RT0Ah//3vlGIBgo4gCCSLNK797t7AIInnHsOcRMOh1UsFrW5uTnl8cTfyvUuLCwok8koEAhYHoW1lKZtUMQa9gmKxe7uro0o7Pf7U2AWry6jtogzxHiKZmIODcAwvMRAmHmOte52u9rY2DAFj4Kt0+mYEuAPl6DwBdBBXrGO2YPsVSZvQAgwiUDqa25OarX2JIWNkfS51dvE+K7s42KxaLmKvgesP+wPlBRUQ3Iu/lgsXKwdJH3GgEEAhkIha+QmlsP0sze9r/2nvW57cEpTSKfT0fzpZxSZT6v2tX9pCWh0uK/q9/69mlfe13AkLd73mPJPfVax/LqO/uV/peHNxEASxiPj57Nx9CLJMRqNmkTIAx6NRtre3jYGUpKNJkK+J6Hhu1lfv6qnn35L7757Wj/60SlVqzU1myUlEgmlUikDG7u7Yb388v3a3AzppZfe197ejDY3Cxbk+UwC1MHBgR3PCItDJUUwY6GxkNgAXhr1SQs5E3mAxESHNoDHM8geYFFdItFR6VJdwsh5KwSBbXd318aF+ZFXkmyTSBOZC2aIAMHzPDo6sg5SwDTFDYHt6OhI165d0/z8vAqFggXTdrttHiUq8k6nY0wWfiVOnFlcXNTBwYExCMvLy8YsAcgIlExD4LkQ9GhKIPD7xE5B4k+E8U1nBFbM7xQp2ARomMK6AntFoeFZVvyH+/v7xqDRLOWlKMAin4vyQKAkKCLVAZphcShcvH+YxCzJji5EWmatch2wfHg3YQTq9boxft7LhTcOhpPnwufARLLGsX3g4WOPINeTBGGraZjjZ/yIFcA5hRwzPVEDkMxIqLc2Q5EQAGUAE/bi4uKi6vW6JSqsHRQM7EViHveZsVfVatXO0AaMRiKRqW5jPsfHYZIVxSWFHGwkhS3e7Gq1asmTRkeAnWfjJNl3ZI4na75Sqdj3gbmlyx/AyPdm3dH8MxqNtLy8rEwmY++F7I2H1sdZmPSRJg2VnFh248YN62GwhpKb+4NCGBaOHOELAC+pEseI6/i4icM0dPlGJNa3bxiUJuP9uG/4K2EmaQqFKSbecT/92i8UCnaqH4UNa0uasKGMscLr6xsu/Wgins9wONTOzo4xuDTb8Rl8L6x4WAyQ1RmP1ev1bEoL99JPMmHdSDKrwPLyso1KhGVNJBLa3Nw09hhlCpsLiitqYb1et9m5AEymg5ADJ5M0pLvv3tCjj97Q+nrDYsLRUUTvv39CFy7co05nyQAfDD+2Ik6II5/D1rM/yb0+z1C00XhJXMFC4gtW4k+tVjNfuKSpkXHgK9hl1gDA/aO8bntwijSSOn637v7rf1dHm5cU3nhX2Wx2zB6986pq1ap51m587+s6fVBX/qVf1GD1XtU/HDNimMrpViSQ9no980wiy+FVQZpm7ifd68z9JKgCptgwYxm4p8cff0vXr6/qxz9+yAAgzRZe+kd2PHv2DmWzh3rhhev6/d//uPlIYQwBeyQh5kUOBgOlUiljXzhxCZ8V1ZivkorFoiSZH46NEI/HdXBwoMXFReuY5D1IgrDOLPRMJmNNJzBrMN0wJEdHR1pbWzOwtLKyIklWoQP4BoOBNjc3jQHGs0rAhiGhQmRUFEkACwZ2BGkMevCyec8jcikBB2CNrMh9pbGFhMIm5c+Ojo6MAVlcXFQulzOm1Xs0+V3f0MZnkoCDwaAuXrw45XnmWnjWMEMEJzx8SFbYD0Kh8ZGOdNfDNPsmNQoq3hs/MgkQAIk9BAuFJJOjSRqoBXxHmomkyYgh9gkMjt/nnLJFoeibn7hO1mOj0bBrZTLFzs6OMVx0sEuy5huANk1UrANYKj6P74dNgMIWqQ5GmsAOIIMdgiUeDAbK5/MWU5CFffMR6gWAh3hHoqYw5VkHg8EpnzN7A/ABqCYeJhIJra2tTXkhy+Wy6vW6AX6SEyCBOENxw7r3BR7ARpqcJY/9BZYXFh12HPCNyuQndfDeyIr5fN5iEXMeKcoAkzS3eU8gMR1rBQ2UPBs6lQG+FPOANkDg6CZTxvv4EU7z8/OTkUY3v1Oz2dTKyooV294uhtrC1AH2lWcMYTB9nPFxCe8/69B7qmmQA2xLmiIHWF9MsqCgx8LAz3M/E4mEjRkDePJsuMf4YLluvhMxH3ba+1BhB2FHAfDe0uJZY0mmDpCfiC3su36/b373w8NDaxhGlqdAIh6yFsm9NFmihqEQEedYI4B+2FyKGuIM1pCHH+7o059+XclkV5ubWX3jGw+o3Y4pGg0qn2/o1KnrevTRD3Xp0jH9yZ+ckjRjyps/FYzG7lwuN+W9hVggdhFHeN6zs7PK5/NGeFA8c0+wfLCOWEte+kdhRKUkvvDs/xdwevMVi8XUCUT00K//Fxp12zr61u8qfdOLRkKcnZ21k4/m5uY0eO+HGr34C0rf/5jaF163bjoodEnGlpK4qB4BfgTCZrOpQqFgyZruat6LoBcKTc49LhQKKhQ2tbBwoG996+OSxubk5eVlSTI2UZIxDJ1OR4uLizp37kE9/PB1ra9/qM3Nh9XpdAxQnzx50gzeBOlMJmPMD5Iy70e1ycBwRiGNRiMDnjCQNBMg3RIwYJ1gxACnzHIFcDAcHJYGhkOSJUUCKtUwUiRyDhIEcvBoNO76x1AOy8V3QZbu9/t2TCdAFVYaMISUQ8Ll2vz4EzxCSB6dTscKhO3t7alRUPifCoWCKpWKms2mUqmUSV6wE8iVBCC8aBQTJByYNwoMPosE3uv1TH4iqEsyyYxAQ9FEEIM9Inlz1C33am1tTYlEwhrdeK90Om2A1/u7CVI07hH0YSsZKk/wI5DlcjljPJGIOcrWT0fg92E/2K8cuoF02el0tL29bcUin4/S4Z8rSVSaFGjsCwADEiz3DcbSryemY1D0kExhJGAa2OMeyLHWYVv4O9/E5oE9RYFvHESeZo8yDosCU5oAByQ8QBJMP2yWP/UnGAwaow2bhcfM78tut2ueYs+aesWA9/fNYcjmqVTKpNOdnR2zu8D8AzR49h4Y0ThCkQ8QA9BxDTRSAT6q1erUz3D/AMioERQVxPHozaJqb3/sB+S+UiSYzH9z3cZiMZ06dUpra2v67ne/a2MIQ6GQqtWqFT0zMzOq1WomzeNF5e8p7lnreLm9X5N4CrsJUwt7ShMc8izFpreX+IY4gCZxhYKQPUA+9FYJz5ZyP7wqBxiPRqPmEed7MS98Z2dnqqEMb7a3Ivj7xPfjZwCOAHiOYZUmB7VgPcBrDmsPQ4/Xlu8GFmAv4ZVlMga9FR4kbm1taTAY6LnnenrhhR/q+vWc/sW/OK6Dg4wptaFQSBcvruonP3lY9957Q88+e1Zf/vKB/uW/fNhOh/L3HjsZa5f9h88bRYpiplwuG2GCXW13d9f8tthjeO4e4Eqyhk9Umnq9PtXEi43CN9H+tNdtD06jyXnd+ev/pSLxpD787/9z9Ws7dqYugZDqGtQfCUjD9oHC8bkpnyjsFixqIBDQysqKAUTve6L6pwMP8Mi4DI5nxLPiN2wwGNT993+oSmVexWJGyWTYFsydd94paSKr1+t1Y/vGknJAly9ndffdF/TOO+vm15PGhudsNmtzW72FADYHgIIsSKW8tLRkiY+AQ8VdqVQs8BLw2KRsDrozWcAkDKQ0ABiyGiwgG8n7WD27ha/Rn+YCoIT5QJ5FxmNMFgEZi4S//7wHbB/FBewTrBQePICWJGsaKJVKKhaL5osChCDfUbFKkyNCGWNC0KBZiGfEOcneZ3prEIFBpnkLH5tPIoAuZDf+H6BFkbCxsaFut2uFUTqdNkDFGgaosZ9IgIAtkoxnHvBDMRoFkEpQReonqcFARSIRAwV4omFLAN/lctksNQRjmE0YYORB7Bz+tB6SFnvZ+zG9rMoeAQyxz2u1moFCZF5JBh7Z84BCvj8SqQeveBTZUyQqADWNi4CIw8PxcZJ4zCSZLanf72tjY8MACA18MLIkJ1h1mgzZP8i6eBl5736/PwVEuCb2CGCXObMoHYBKJHP8ylg+fDc4sYfClEHnHnxSBEUiETvQ5FYPrWcc2WOAik6nY4PFKS5hawE5w+HQjocmWXvWnFe7PU7MjXpDxWLR4iEnGVUqFQPL7KtHH31Ud999t86fP2+FBzHHrx86zgFVXGe327UTv3j2FPSSjElFNuc5JhIJW498Bxj5RqNhgI59NBhMhsZT5OCv5ppQN/w9OTo6slGJTMqA3abwb7VaKpfLNnINRYA4RyMcRQC5AQ8zzwPSg5jEnqWoxzPMPUGto4EJ0M1cXthHYiwFJzmPQjCZTJrPnvfgWmmGZj1xzwaDgU6cONQnP3lBV6+e1De+8YhqtYYCgY4xssSbw8OR3nxzWVtbM/qFXzijL33pA/3rf/3glP+Y5048Yv+BFSguvALIPeDkMvaTV3TJEzCssKUAeJQb/LjcS+KAj7kf5XVbg9NwNKY7f+0faja3qku/+Y9UunjeKkCAEcDT+54OewMtxZMaHh1YAmLxI4Fy/jrSADIT0jagbnV11fwnbCIeMJIVXh9J1kmfSu1qY+O45ubmzTw+GIznnuKR2djY0Pb2tvb29myxjEe4pPXCCzXbNPl83jZho9EwMOhlBh+4CETIF5FIxDyFt560RPIZDMZdkzSUUJnOzs5qdXXVpBESLWCDF7I794HZiv6INQIxCQcZqdfrWYIDyEiy+4oXlEDV7XaVz+ctOZM4CSCAJyRvPEMEde8Jo1jxHdskbthEP48VPxYNIHRRspbq9brJehQC0WjUOtgTiYT92Wg0Mu8hhxrAUgMYlpeX7b7Tbe3lPWQoSZYkqPBhi5DzQqGQSqWSJSWYJtgm7yPjKEZADuyfbwSgOAJIIA95NsOzLlg0SAQUH/5nvazMOLh8Pm/MXiAQsFmY+Xxe2WxWm5ub2tvbs+5cvhuJ17OqgHhG25AEAGRYFTqdju0DWH4aD2HEfANXt9s19QCmA+aDeAKTxf3kffGrswZZn6wLbCn4ZgHBAGgGa1MIEh95D7xlvEg+gUDArEx8NgmNvYziwH6fnZ21Qw0AhEjuyIBLS0s6ODjQtWvXDADQbFir1Wy0DZ74Tmd8sAmyKrHadzTv7++b2oQ3kFgtyQoMnh0/j7yMH5EJGDzb/f19S7bNZtOKV5j2mZkZHTt2TOFw2GYNEx8ikYhirjHyrbfe0sWLF+2IS2I+7PitMjz3kfXEeoD5xU9N0R2Pxw0Q+7XCfqHJkedAAU8sZNwf8QRCB+CNj1GaHNZAwUt+8cwkz5UcCxMfCARMPdnf3zfPrgdcFPLsa/8ZxHyePWudOEIs4++JKfwZXeo0X/F3kCbkIby5vtDi8/h7gB1qCzGV/ICf/AtfeF+7uwv6sz97QlLfLAG+J4O40Gq1dO5cTzMzd+tLX3pf99//kDY3o0ZwQHiQZwOBgBVkxFwYUtYXsRE12DdpkVN5D09E8VkcoOKZbK6HF9Ysn/f/otdtC06HI+nL//ffV/zY3dr81/+tGh+es855ZK5AOKJRKKLB4MCCc7fbVeKJzykQCKr14VljYDAzE6hIED6ww/51OuPxITxAKgg6p5FEMflTZeHzGEsHfUWj402ysbGhvb298YiSm7PaAIHHjh2zkUJ03fZ6YUUiQ83ORhUITJKgNG4OSSaT1o2OB4rgD0gCuACWYS2QFiORiA24555S7WLMJ2hSbcKE1mo1Y1gJ8FD+JB0PQrlfXgLEU4qkT8UKaJ6dnVU2mzVATiKlmveWCgAaviACIN4kz3BUq1XFYjHzh0myAfCAR3xIvvliMBhodXVVy8vLarVaNhvST5IYDAZTZzR72YgECIPOvUTKBHA2m03t7u6ajHJwcGCd+wRdPweXwI8kS6IYjcZd1LB7yDXIb/iZGAcmyZLu3NycnfDE5AqSpjRhgHjeAMJGo2ENB4Ae/Gbb29vGlGJ9kDRV/cOMZzIZhUIhbW1taXd31wC7NDl9B7DrR0+RfGB3fcMGawq5T5KpAviXuS+AbIoPft9PaggGgwZW8YBSGFD4+mYj3/SDpwxwkE6np3xsFC5+jiOduRQudB2zrmCZWWMkc5Ih1h/YUaQ91gvABemVQkSanAGODYUYw8/A/MPcMVdVmhR/7HNGTvF9abADFHBPYDWlyYlnqALr6+u2XohL/p71+30bFk/cZI1IsuYS74leWVnRcDhU9um/pNmFRQUSYx/u+idelO59YFw0feuP1N5rqh2M6tjP/vK42Wj1DklS4cUv62A0Ur1RsaaVYrFoREE+nzc2yzdLsu95hpwKRMwGSHubFXsE0gTAywlysG0AwOFwaMfv+hFbxBniiiR7JhTsgNtWq6VqtapGo2FD7Jm6AGMOCPcHEoRCkxFLAH9iE4U5+dmP52o0GtYclkwmbWwf+durfABocgD9D4BVScaME3NZy4Bw8hV2D6+IUpSwDn3sWVpaUjp9pGPHivrTP31cvZ5MNYKcQX1l1i/587XX4nrppRndd99FNZvPWTGIUuZ7HlC7wBoUCeQv2HEKAGIN6x6lAhKE3E2hAPZA4fA9JkwvYV3y3z/tdduC0+8dxHT/Z35Ou++9LkVnVfjES9a4dHh4qMrr31FkMav1X/9H2n3nhzosbSgQCGj+nkeUvOdRHVx8WwcX3rRExFBhGl54yBizSWjMSzs4OLCAyTGiJAD8G97MD5sKMOx2w+r1dlUqlawKPDo60sbGhoEj3p/FggQdDLbV7Qa1u3vw5xpH+v2+eZEA2bCOm5ubJvNKMn9Vp9OxsVSx2HjGYC6X05133mnHt8HawUogDcIQzs/Pm38RcMF3BWCQnIPBoFZXV7W/v69SqaRSqSRp7Dvkmkjokch4xiXgkVev11OxWLRgLMk+G8+uZ5wBqWtra1MMM7ISYJfkSNAFxBIweH9kN/+MaFwCiFAkIU0SKGEiYDqYITs3N2ey3uHhoSUXSTbWBYsBjQb4ifh7vELpdNqaSHzTAM8jFotZkGMOJoEIKRvWgT/zvlUYW8BDIBAw3yjsoN8XkkyuhDUGvDBqhoCPf3B3d9fM+zBb3juIP0rS1H/je2u329ZFyv6JRqNaWVkxvxiFDEmIvcYMXmnCmAFAmccJyOJecrIaQB/VwTcsUGgAlJDfAAnEDyRUvgf7lu545HBvZSDxwnb74fPYTbBn4CtHRmffzc7OTh1PSfHJeKmlpaWpRi2KVvYs+wlvJDYB79WjIYs5kTDZzJbkBSjlZyhEWAdeeg4Gg8rlcvb8/PgyErq3ZlFo8PuSpiRWVDBUAEBV9vm/rPDCkl1j/N7H7L+D3/+G4v2u5o7dqfUv/s2peJV8+guSpO7mhwr86GVjR4nZNNgCaOLxuEn4gC+e1ezsrO0l8goFPwWjV/AoRBjHhgwLmIeZJ29xf1kDAB0AMCynn91LM6Jv/qQHAOXNW1a4zlgsZpNYAMGw8X4iAc1X7POFhQWbPIIyhtXFe359cQJ47XbHc1CPjo6MlGK0EsWity+hHMH4eiWAHEBxRHznUIVWq6Unn7yqTiess2czCoW6xgRnMhk9++yzeuaZZ9Tv9/Wtb31Lr732mkn4zWZTr7+e1yc/eV1vvvm0RqMZY/Z90QIwZU14csdbPrgXrVbLii8AKLkKJRU21jeWMp7ON0CzjyjkiN8f5XXbgtNKfyztLjzwuBYeeHzq7xYkja6+o93Dtg4uvq34Hae08MhzUjCofqOs4su/p9oPvqb4zHjEgjfxArb29/eVy+W0vLxsQZ3mH5IovikSMBUV40VgEKg0qBb39va0vZ1QNntFN27END+/aJvAb0BYBZhbJK577qlpaytun8c1UznTlQ2gQH4mkTJjzfvuCCZ+gY1GIxvkDpCCmaXrn5NYaECCRfED9mOx8dGjBwcHqtVqNiYEI7okA7IAbQIVLFC/Pz7FA6Dgm00IRiQVQIn38kiTOXlIRDMzM/Y5bFz8TgAzmqs2NzfNj+bHaDDHFb8Vcij3lMQNg9FqtYxd8kZ1mAZsBsyATaVS1vwEm873gRlAvkJ6hg0AkMHehsNhG3nC0Xewx9xH9gEJApkKbyRgNZkcn35DsxfgAS8aSRBglUwmlclkVKvVDJiw5r0nnM+g0sdTSjMDwA9JjcY7wDiDwgE2rDXWMOCQ66AQYR3QDIavmPehGQzgiJ8Z+xCsE7EDEIWKgQ8WQABY9UzD7u6ugWSv4OB5pJhgn3NtHAwC08v9Y80vLi6aMkLhQIKCJYKBgeHnvSk2sBDMzs6qXC5PnaSEdYqCAxsH9gKSNzOCYWgBpaxVGFH2H55sxtVIk1NvYLG4p4uLi1pZWbERUSRpxlNhcZJk3mxiJvvZAxPWEmoakw12/tk/nLIGUPgA6Ofn5zX88B01/pMvm++T2Mizkian8sCicSQl6xuPL4AhkUjYeB9UHRQjrBNYdJCxiYcUMAB/vJAADfaTn4bAvcUy5YEo1886BZBxsiKEDaOHvBUiHo+btQn7mgdKKAoUjRSlxDyK23Q6bYoG+/j48eNmJSmXyzahAAArTcYh4bOGbKpWqwoEAubnZ22EQiE7hhwbBTGD9w2Hw1PqEmwzNpVEoqFSKaVIJGlxdWFhQSdOnNDnP/95U7ei0aiNo2RvbG5mFIlcVyy2p/39kDHl0mR8GAd5oAoQg1FBsXhACgBqIZtYWzRI81z4PdYAn8e+p2CioAA0Q4b8tNdtC06/lBpL37/6q79qx/n52YnD4fgUieLv/GMDHARuqrJQKG4VJxIcQRXvJ5Unkn21WlWr1bLZpQRtwEyhUFAkErFEQsAj2NFIcPbscf3iL27r1Kme3n57fHrNiRMnlMlkLOjhQSJA93o9LS/3dMcdu/rKVx6wn1tZWbHAhEzvK2mqVsBVPD4+R5vrJwDwD6wZwJQqCfkAFpKKGEAIa0Kw8d17gAyGWAMCYrHJDDbO/u50Ogak8WbB/NDcRHCRJue0h0IhS4wwlcViUfF43M7bhsnhHwI3xUU0GtX6+rp2dnas0OBF1Xl0dKRcLmcsJMUDzAOdsAsLC8rlcuaFJUDDpJL8bq1uR6ORNToBxrvdrsrlsoEFPyA6l8vZM4Sx96OEYDVYC96zBMNAgILdgwkjGMF6D4eTU23wM8GuwB7yfPmufnRYJBKxAoV14gsI7iPfpdfr2XqEuSUYwnRhjwDgeu8dRRL+asA66gGJiGLSWz4AXisrKyqXy7p69artD2wtS0vjeYS1Ws0SI1I6njv2CgEckIBvC4mOYkjSlC/cN9sxQUCSJQN8bf49/bMFrLBfFhcX7TuyP/m3b3zzsQswQ3HtizmSlDQZiYUtgGZOAKG35cCc8RxgbHh2WF6I1yRM9j8AApaK/YNnFtYXrzexAqDKPFpYS5qDOCTCPy8sXvhgARkAXgAq65b1TNMZ3lDWAr4/ChSUmt3dXbsPgAn/fb33FKsO8Zk9Ru8ARS1AgrWxtLRk1qO9vT0ratrttjUI+eM5KcTYX6gzxLBGo2G9FR74e/DGzGDW1czMjM0F5h6wbslf3i9Lsx3PwVs/YFdp6vO2Jk5Ro0mYOBYOh41YkSaHV0gyiwtxjZnevsnKN1P2+32b6gM5wc+OQXFH3W7Y1jJ5F9KKdenHMaGsDQZjoBcO963YgnzZ29szrzByOzGVe3Z4eGij9GimpLELtUaSrSPAK9afcDhs+544iqKAxcfniGg0amr0T3vdtuCUF+AICYcFhqwGeIR59H4S3wxCRTYYDMwTAyuaz+dtEfpZcSxoqlYChyQDPSQUzM5s1itXEqpU5vTii0XduPGAMVQAUZIVvtExWB3qU586r3Y7po2NkwqHmyYDUp1jRyBxsKHx/t24ccP8jFSrBCOSOhut1+sZC0ZQ940TwWDQmkxYkATDSCSicrmscrlsG8PPHQT4BYNBGw/Df+PpBIDC9nh5gY3AJkNyAcwRcGko4MjP69ev2/ipo6Pxmdk8b5IKTF69XlehULACwY+/QdL1UhseJT+1ACAPOOU5Ac4kWYLg9A3+23eYcoRdt9tVOp22xEhS5x6SPHxhQ2BlePXi4qLuvPNObWxsmHzu2RdmfOLxo0DJZDLWje2/M0nQn0QG+IP9pgGCYEghsLCwYIkyEAiY981X6DTAYavx7IqXAlmDPmHzPAGOMCVMKGC/AISR24gJyOJIdYxJAuj5Zo10Om1FLOsOSwhASpr418LhyQgciiDGwuHNprAol8tTRZA0nhRCoeBVBO/j5B6wvmGZYCe5rxRVMKLZbFa7u7s2yYN1StwD6JPEWC98N9hG9gtFAEmX7ws4IX6TeClEAOwkZoAjRSixptVq6fLlyxYDsfT4gesoRRSV2CkKhYJ9P3+sKPYW/KvcI54/uYD5u8i6zJGGkQyFQhZHpUkxTYJPp9NKpVI2Qgo2HY8gYJST7eLx+E1GLmGyNHkCoCbJ7EfkNJ4B9whghr0AMM6awt+M3YSRWviwvRROkcEaIw7h8+Qf1gRACIKD6+CzWdP0CZALvA0N9cwfYQ2IIq5QpPlij1gIAUChhFWLQot432g07H0p+gFsi4uLFmvZa4BDVKHDQymTmZyaRuFRLBZ1/vx5Pfroo+r1evrxj3+sYrFoBd0YDDJdIWaFFj0QEDUw2j6GUEQTP/ASE+/80dN+TjZrlO/sDwUh3nklh6IYwgMf9Ud53fbglGAGs8Zmwr9DsMGDSPD2cgOVGouG3/fmbBIioA85jwQ9puA3zXND44f3XGLCl6TRSHrllbv0i7/4tn7u5z7UV75yp3nIpMk584PB4KZBP6yHH35Dp0+X9cd//KAODroGuubn5w0oeaaVDUswRdrD7M6mRYbwLAEMI38HCCaZAFAIeFD/gCUS+nA4tI1M8MEbBpjjfT2LSLD3jAn+KD/3VJIlGWwJPFsY1MFgYP4tqj8kG2mysUgsvJCuAIHRaNRYPBheKmukGsDp/Py8UqmUNjY2bN3AJhDAAJMAFWbHMRaIQEqVTbIZDofG4MAiSDKAiiRHIkAWpygJBAIG0AlY3l6AHMRnAWQODw9VrVYtcbHepMkpLDBCXn7Ga4tfkwRDYsFzR7KBuaPwBCgCfPG8weTSbBEMBi1J443m3vjgCkhk77NfUTxYh6xlrjWbzU51rCPnAa5yuZwikYh2d3dtTdEo4pkHAAQSmk/GfrSbPzKVYhd/K4oOTKOXGil6uGcwmYBUnisnYQGiUGsYxwMTyD0ulUomfaIWsSe5fiR47iHvy/vA8BObOBKXtSjJpHqKLO6lb8Ti+2azWfNVc/2wc5yX7ucxSpqaXIDnlGdDIQkxARtI3oBRJx/4GcDSpImOPQ8LRp6AAIHFwsbCvsSOgXKUyWSMdGEtA1a5NkYE4f33jUMALa/6AFB4Jnw2xQNxiXWORYpZ0njief40CXPteK9pCAawUrT5wpn85MmNlZUVUyDY80tLS5bTisWisZcUG76Qg0Xl2bJXITHYF3xup9OxHg0UBmIHDLhnfFm/9FwwaonDKmCwyTPb24s6ffqqotF97e4OLReUSiV97Wtf040bN3RwcKD333/fpHUKvKeeKqrViml/P6Fw+MDyJddDXJUmRAAFC6CbqRTsa0gOYjPj9iBqKLh8U66PubHY5PS/paUlIx9QrbhnP+1124NTKutcLmenVmDWhkEDYFINsMj8/DYCDqALLwYMIJulWq1qdXVVS0tLUz4L33iAjMLpO3wurG6hUFA0GlWxOKOvfOVQP//zF7W4eKT33/+YLl6MqF5vGPjt93sqFOr62Mc+1LFj1/Xtb9+tq1fvVjo9XiCwRBxpBqCCxe10OjbehUHXVLYkc6RC/3MEcpgQErA0qfwZX8QpN3wuBQHeIJg4ABJSBswOgRCAjHQyMzNjEqS3IMzNzanTGU9MwLBN0gMo8iwIpEg+JG/8X3wnkiSFC6CN5gCALRsTIM7oKE6Nwufou5SxhTADkHvrmz9IApLsc5EwYZRhtmFjScreGA9LTYWP9Aa4htEiKeIxRA7lrHfYFhIO0milUlE6nTZPE/fKS4w0thSLRZPZaLrByE+A5Z7RAMjoHvYwvjeaDYvFohUnfoIB+x15lb3LOgJsImnVajVb5wAejnf17BF7i2cdjUZVKpVs1A5+Xjr0V1dXpwrdQGA82gqLAHskFJp0KfP5rG28rhTd7EsKRpIbI7NgTdmvJCXYcAAK6xiZHJ+hbxgjgQF2WJMkHt+cheJAcYrUCHCCEGAdcw9gyldXV634IpmzNmCObh2AD9DvdrtWDAKAAbOoFIAGgAvrgznY2BZI8jBuR0dHZmmCgQZ4IGkTW/Dc8dl8BuuNPgLuGfcAkIpdolqt2v4g2fvinQZQikL2HdM7WCcAIxQXGnV4H2IYVjYYTvoUvCroG4YoSvxBJsRPz15CQDBRg1gPgGRP0iyEouCBIbYgYhagiHt/cHCgSqUyVZBBvEAYULSnUil7b4gK7gUTB/hcvLJYk6rVqgaDgRYXF/+cHxamn+siBkYikalh/6urq9raWtZgcE0PPXRDX/taxtSpYDCojY0NU41oOOJ9E4mAHnpoR2+8cUKDgdTvj+M4BT2eZpQU9jWKHRYb1gaWEwpjDjgh1vrmWz/dCA8pmALf/MLCgvL5vKrVqh0kwT3+KK/bHpxGo1E7lQmJHqCJH4gHwDxAGINisaitrS31ej3dcccdBnoALDxENmMsFtPx48ctULLoaQ6SZKd8jEYjW2gksnw+b5YCPClvv72kbjeuz372kj73uW/q4x+P6/33FxQIzGlmZqTl5W2trLS0t5fQd7/7SZ0/n7LvTZXPJpdkFdBgMB7gXyqVVCgUlM/nzbTOJsfkTBCmeoTJIRFI42aN3d1d6xjHO0qywjgO24vPiE5ingkyID9PsJMmfjA2K4CMQOKHHFPJAYY9s0jFC6im6OAgA+4fjB7FC4AM6RfJB4ADkwWjDqvsvYMHBwcql8smtdDgAGhFKuVkF88wwyCzhmHAuacELZLd8vKyjecByPH3sKY0td0aNFg7gHn2iWebkdR3d3eNAfQynCST/BnPQnCmOOGa8UXC+PKs2WusM8b/+AYnGh9SqZQl1VarZdIkIHB2dtaSIlIUxQk/S2MSIAHALsniB4wZwJ6OaYL8ysqKNerNzs4aoNre3jbAzxr3zYD4uWq1mh0NSSFG0J+dnbU9UCwWVSgUlEql7GQmGEF8rhSkgB3m9TLpIZVKWVEBO00x41mhVmt8DDOnXPF8KB5gimKxmMUXf/QhQJXh816Z4d+SrFiTJgwTMYXGLUaTSZOTcCj2KLh9Qw97MZ1OW+Ma7KtfS14uhZEDSHa74wH33B9mkeJBxSbimWnWpAd7rHdyAUAM5hu1AcWP9Y81jXvHmuL62EO8N7Ym2C6APOoLjHgkMp6zy3MMBAJWsHB9sF6oTwBgbDOpVMr2HPeAGMDzSyaT9t0SicTUqYveOkOcH41GWlxctHvH9cZiMZVKJTuumfGF/A7FEqwx6wT22xMJzWZT29vbf24KBAQWVotGo6HNzc2paTvYDmggRt73BA2K1tLSkrLZrMVOPmthYcEOWPngg3U9/XRR588fVyCwZLPJS6WSGo2GsfbxeNzy5VNPfaBweKBz504oHA5YsYi1CZxB4Ugs4h+vJnc6HWtchVnHcw1mYVIHsRTFkVxCPwm5E2UaHEEeAHf9tNdtD06DwaAlL6QFFhAVMd7JQqGgQGDcNUry9Ce84CNihBGsimcZvFGYzVAul61aCgQCU2dv+8SJZ84zGZL04YcRXb36hO6+u6NHH72uhx7aVSTSVLcbVKWS0L/5N3drf/9+BQJB9XpNkzZhx6gY/dGlWA4A7aVSyT6XU4BYqLAfgLHZ2VnV63VtbW1ZVzQBBjAiTQIEQ7yRSKXJOcqAMkZj8Kx6vZ4df+hlRjYUEhMg0YMlDOA+6QGoYDPm5ua0tLRkjAMvgjSgVppYKLiveB89C8GGuxWIAlxh7pkXhyexWq3aYHF8r9VqVaVSyZ4Z7CvfGyYOoNnv91Wv19W8eVQuciVAwQN8EiGeO2RqP1SdYIW0RSXPbN5EIqHt7e0pZt6PmxoMBrp27ZpJe3fccYcFLFgEjvPjBSCAaeH+8DuSjBEjuGM/kcaNJSRPfE4kSKwVPFeYKfZ/o9GwebSMn/F+Zp4t84CRaGGuCMzEFiwTACXWpy+CZ2dnzZdJgUbsAITSHOb3njQ5D7t588hbmEEYSn84BcUVUzQA65KsqKEYnpubmxrwTxFEAcaeoED14JJrhJVmn/P9ALoUjMPhUCsrK4pEIqpUKtbtTsyADZNkVhAa6kjy2DY8Y+U9t0iIAHvfwOSb6SiYGG0GgBiNRqpUKjYFA/YQ+4O3mvhmNZods9msAVUIC+4Z68r/m+9MMUBxSvMtKgCztVkLJH26xZG42T88b9YccYqYjTqIL98rPEj67EMsSUxkIBcCprm3KFm8YN8B/cTCXq9nYxrr9boVVgA/b9vyBAsKCAUexQX7jFgQDAaNCe/1emb3wrbBqUmAa/I6+9mTE7C2qJBI3OwJn3OJLz5m1et164OIRCJaWVmxfXzmzH06caKsX/qls3rllc/Y+oM4YY1zDx955JqeeuqSvvvdu9XrLarfP7JTH7ELAGi9h509xTMjD6NSeeUSSx/sMbYcsA171quoMK6sPZQhikOewUd53fbg1I/mIagDfgiE3W7XzOoY6aVxUFxZWTHAxEbtdruWFPBBYR4nqUuygB6NRq0ZIhQKWWcgAAk6nUAHS8d7lkolxeNxVSrr+rM/O25Vuu+SS6Vidi1UML6SRUKPRCI2b5TB2QcHB3aUZCwWs02DQRwvIQGK7lIqJlg9Xx17qRiDPixXJBIxtgEpgCTDBiE5+iYjAgX3imuHTeNZUp0Vi0U7Vg0fEY1G6XTaCg0CO2vAe6b4HCRl79tD0mIEFn4ubzTnHxgO3ymey+W0tLRkJxSR0OLxuLa2toxRhznlOpDZfMMMFT3Jn2kM3BNkagIo8hbrAsABO4ukh0SeSCSs65lgBNBhrNjc3JyxeiRx1jDPF0kICY/nhezN76EcwAYxUSMajU41b0iyIov5p+xTnmMqlTI2CJaDJMaECO4TgMYfIkGR6TvlKX6Q2NkDfvwORSHSLoeA0DyCsgBTwygm2LtIZHxaEmyjNPEsci0w/SQg7itxgO/lC2eSOyCO+wsQRa7FnjI3N6fl5WUD6yRdQAaFT7/ft5NiYE14hgBDkqYkA2QwcQATkj8AEsWKz0Ct4nkxkYEJEiRRiiyKt1ub7njvsUSasPtKQcme49mwjykSfTMVgJlTiwCQsGms32q1aqPJuI9YogKBgN0bYhogEa+yb05CBSAm4jGnOZFcwhqmFwKbANfu/c+SrEDBQ88zxGbA7/BcYMmxS3F/KWB4JrBqHujAmAIusdLRfEjhTPzgPfC3sr5RJ2mMw7ZBfqIo8JNgvCIEuUTMR32CzPCqIqoKRTRWglQqNXXsp2+QQuUiXnJvJ/7Ref27f/eUfu7nvq+f//lXdPHiYzp/fsWKvTE5MdDyckMvvXRR99yzqTfeuEPvvPOQ3Qf2PmsXLELcJWZGIhFls1mzI/H8KJCxnxCTeVbem837s5axinEAQ7fbtdxLQUMR5EeO/UWv2x6cAnYYFM3sNxYt1RbJmvmRuVzOqlpo6ebN8+EZ5dHv91WtVjU7O2uSLsCI4EgVks/nrTojQVHFAjYxvFPNMG8ReQYQgJToKzgaM/g3DIA0kTRoCADoSZPh7SQ0vrM/ipS/Z3HihQuFQvZ9ONWG32HxErQIlnR+EwBI7EhVqVRK+XxezWZT5XLZpDS8r0xGgMXDdkAwkcZS8vb2tn1fGGk8VrAcSKbZbNaOusRnxAZqtVqWuAnQWAgA84FAQIVCYSqoMXeRxLuzs6PDw0NjgRcWFrSwsDDVMS1NDklgnBfPBCaBAMczQg7P5XImZdNkwe+SbGF5AVLhcNjYHwIK18C9BHB5byxgS5IFYd80FomMj7ulmMHXxPgXkjreS4K4VwxQOWCMkeJJsHwPrgP2guSCZYVxTshsJO9oNKparWYWnlKpZAAbgAJAlmQSnZ8EAdjBQtNsNu042kKhYM0ADOXnBK5Go2E/h4Xj1mTN/gR441OHicBfjUycTqcN5OKbRwmCrYHNJGFSnDMFgt/zjRT8PcwQ+7tYLNqMXZoJsU8RC3yjHusSQA+r4xtqiAdMPGBvcSoeoD8ej1ucpsgkCRNLASOoOnwWewG2G7CB753f9Y1zgBQ+h7VEDqApD/sCNgMANPI/exLGUpLFb4AVPwOrjcR6eHhos6iZnMK9o4mHYhPiArBKHIE1RgFEVdvb27Ou6+FwPNkFzzkglH0N8KIIIcZD/BDbsRJIsnxFY52fx4v6QAHIRA++B+yhHz8EkwlIGo+q2tILL2xpdbWteFzqdILa2YnpjTdWdXAwZ8x1o9FQOBy2vYmKSmFOUej/zZojbsHK+tFl3l7FnvFNblirKCJQ7Li/Y398Ql/5ymf0wgvv6ZFHfqBTp4K6eDGlbjeuWCykbLauXG5Xe3sJfetbj+i117KKxbq2zim6ORQgFovZbFOPWXyjF8oBahB4gThPIcJkAdY4sd/nPGIxpBzPFbuTtwN8lNdtD06ROGZmZqzS834eLxkg/wEU/cMk+KTT6Snpna5VwCSMBg8Cxo2gf3h4aIPXJxsrOlWNws6yoAkO9XrdNj3vh/xJBYv3Ct9no9EwQzzeWDYcwA4vJZ47Zn9SucKwwgY1Gg0tLS1pdXVVpVLJAgXVIfeOIILsCAvGwiX5wf7B/JAIAYDpdNq8m3Qmk0QI4Dw/fHpsUCwJbBBJxnrBbMXjcS0vL2t3d9eCJeCVQJrP5+33/ZxAgiqAvNFo6L333lMikdAdd9xhhQrAks/2I0ZowoFBgB30DKI08dHCkC8uLlqQYT3BluJV5XcYEu2bSxg7A9MJwMOP6ZsJfEKh2id5w2T6bmrkfj9Si++QTCb14IMP6sknn1S5XNaf/MmfWHNUvV63fULRhccRjxzeUtgP9iiNMlwrbBpJnX3CrEYKgoWFBaVSKduzo9F49A4/48ceUazRGINvFs8ge5NkDcuPJWV3d9ckVFQG1jvAmXuFxMj+4B/vG4aVoRBgDbbbbeXzeRt87vccbBpqAQxos9k04AS7i+cWwAozD+PJ88SfFolEjHVnJqoki7Hem8Zoqnq9roWFBbvffnIAMr7fu7xoOmEtItFS6AIA2WuMV+I0KwoAGD7WE2CIBiJJJov6WMVUBOIQMqdvQgUAEtvm5ubMq5/P522cXzKZtHvAWvZzctlX/n6i6PF8OZoZMFoqlWzv+cKUxi4ANmAyFovZ2sFfLk18o51Ox0A8a9FbjZgkga2NgtTPGEeRIt6srKzY/cTaRVz1zTwUbACbQCBwcw7pVT355NtaW6up1Yrp0qVFbW+PFIsNdc89u3riiYq2tq7ozJmHVCyuTHnyKdiwucViMWPSUUC87xo1hT0KaKNwxmpA0czvUPByv9jb+NsBzmNwPtJ3v/tpzczs6847P1A+v61wuKbRKKJ6PaZvf/u0arW7NBpJodChHY3KUakogZBN7HP87+Rw/M+MD6Sggii6lWgjbpALiCe8j1cYs9nsVF+Hn+RDDP4or9senBJYOYvay1IEQKqkdrtt4A9Gyy8+gieyARsRGQeWzDdQSDIQTFKTZAyHZ98ODg7sCNF2u20bgdmX3jcD24YEjhRIkkIa8dQ+QR95E/DAey8tLU2d1x2Px9VqtVSpVCTJ7h3BPB6Pa3193RgZACNsSTQa1dramgFgzy6QkDHdIykhzRWLRWveIJhSLFQqlSlZDCaBDeLvAcmD62cqAv4hOl3j8biBIe4Jm533pRKGLcM2IckAOGCBZEBiYJwXCZ7gTdconjJYCOQZZD66XFOplHX209zBfUM6AxyRUCiSpDGLUSgUphhnghLsgJeGCbT9fl/lctk8YN4egxIAsOT78Z38wO9kMqlCoaCXXnpJy8vLOnnypK5cuaLr168by4i9AoAJA0MSobDgOfB9/c9wP/z0Aip+ADxjhgjaFKWeFUkkEjalATCOjMXzQc7ythZpDGgymYwFaQI034eERGOONDmdiGRPUwj3mvFw0WhUly9ftlgFsPR+d2wJqEN+RJVnqbFieHnZd/HjZYtGo2Y14bvCJDPPmD1Zr9dtsD0yM3uWeEFTl+9upnDi+XqPJmsOew7F487Ojvr9vhX6JEcSJOAPaZHpFsjsMNiHh4f2HTzoRm7nGik8KOZ4hjTBzczMGFvPPYbBZi0SGwCMsMmwlsFgUJVKxRQi9sLMzIx2d3dVq9WsCZOJAXidAbhzc3PGdFOsck2sP+IgrCaxjlhLIxdKCCQEbGC32zUwQ0MjjC6qGOsfgM/9YK3guWWNkh8hbGD38H1KutkJflnPPPOq6vV5vfLKU3r33ZTa7Z7zlwd0//1NfeIT1/XFL/5Qr776cV26dKftM89w+pf3vfOZvpGXNUnswbYA00yBSD5EKfNsOf+AA7hf3ONOJ6rLl5/V+fNtXb9+3WIFRAj3juIYLAPzjh0BwEjuJScAxH2ugNUkthFHPHGGP5f1Q2Mj5EgwGFQ+n7c8APtM3KUx8qO8bntwigRDUGGRsPBgMkH8dLtFIhHz/ZHUvDeG5A2rSbCBqWNjMw+MsQosMLyf+KVoUkEm9x2TeJ7Y6ARlD1IBcYAVEjiMFt/V+2690ZpFzKLCPkB35/Hjx+1e4mUDdEsyyXdvb8+SOZ4opDFAARIf0ijMBwt8Z2dHly9fNgBBBQeQ5DpIJnRbcjwogAwmgs0TDI5n4PGsJNmfs+F9g0W/31ehUDB2g8CBh3gwGA8/x9sEc8F7EfxgnzyTRMMMzwVpt9lsWkWPjEji9eAJ8AVjXK1WbS0CggBN8/Pz9iwI+gyah5mCMeJZIKl51gZTeyQSsXmmyNTd7vg8athr1ivFF+9PkiQBIk1TXTPlAYBC0eZHyTQaDW1tbRkAmwykjlthhI+b5hSYbUkGTFiXBMtisWiSH8+SpAiz6ZljwA6FJ8UB9wy2sV6vq1qtWnMmRSd+Qm9J8c2FKA2AQPY4xQG/SyHGd+R3/LOExSFh4gMlYXI93jtPfPPNNx4k0hTJn+Md3t/fNxbSy6L5fN68aRRgHBdLQQkD5ZvdiGd4cH2Xui+M6VLGVoB06kGZ32MQBTDEvuAn0bJWKPp4hjTjYFeCjUfVoeD219jtdm3sF/u22WyaTAzIpkO6XC6bvYqpG76xj1xF0YH0yhB2z3hWKhUr4AeDgRqNhn0/JHP2I2QFzZTEFCT8o6Mjra2t2c9C7NDQyf0Mh8MG3ABjKIt048O+SxOLWafTsTFG+MH5GQiGXK6sZ575ljY2VvWd7zylanVPzWbdntGYHJnV5uZx/d7v5fSZz7yjT33qdbXbUV2+PPGOkr9ogmy320Y+wQxi6RgMBjYSCV+79+uSRyEPmP3KMHxYTeINsYJeDD+GzXs/OW2QuA4hEgqN54gSf2l2rVQqloOI2/45U2CgEPD9KII4HZK9ju/Ufz/6L1ChwRKDwWAqh5G/KeyIjR/ldduD00wmYxsMKQFvD4uPREXSoDOTZAuQwfNJ8qMip7uWAAE7IckWAOMgSFgsDt7bj/ohwGIu9pU7FTibhUYvJBUWKZuK5EVgwd9C0oC1GQ6HKpfLVglRgVFhYWbms0hkJCXPdDBMeWFhwTree72e3XvALUGTP2OjIo3gRSS4cX/wHCLdc1146cLhsJaXl401JmBxH6vVqj0PmHJ8lH5UVSaTUSqVsrUDkAQI9ft9axTB/E3AA9h5ttZbIkhOi4uLSqfTBr4JinTa+zO5eSYwchQpu7u7KpVKkjQl75Ns6Qo/OjoyTy0ACBCXTCZtfAkgjGrdr1fek0odYEEiBjCHQuOxQb1ezyYVkFSr1aq+853v6FOf+pRarZauX79uzxVAzTOvVCq2ntLptK0BGD8COBYGGhu43xRQXu5HNQGYMjNS0pSSQWBm7BJ2Ce+vLZVKU9fD2sBfDADDB8i4NU5v4v1gy9gbBHve14+/oRhmluzu7q41JtAVTEzJZDI2BQNmT5IdzejtSDDxdIhjc8HzfXh4aN5Z4gDyaL8/HtZNUZ3JZKwJFMsAMXY4HJpvlhmh7K9b1axUKmX2AxJ2KBSy0VmALbyk/X5ftVrNGFgUDGR/pGb8x1huYCb5rlwLcjenwkmywo5iiHvoO+GxGPgJAgBy9hXfgyRPnPCNn4ARPKLeG0yhSZFFwQv4If4AeGB1vY+bnIjXVJrMBkctbDabqtVqllMhLQaDgfUfcPACSgTKHU2U+KEplLgPnkEl90rS9va2rXMUyIkdbaAnnvixqtVFffvbT0mKWDymcMIqJY1B4Msvn9LiYl/PPvuGvv/9hxSNzmhlZcXG1WEP8SCMZmpyLs+b/IRql81mzZvPOD2+C6yh91RznRAP0sS2wOeTz9fW1oyxhGHFPsQYKj5jf3/fiBLuI+sdkob7gfRP/Gd/MUcaxQ9mHasXqoVvSKS4wjpD7s5kMlpdXdVoNLIT7IiDH+V124NTBjGzwJFV8aFS1eDH9B35vsuPnyORA3gBgd5TwsLA38nmJ7hjYGexwib5UyySyaSBjt3dXZvBhyeGBCvJwDF+EMCoJGuiADzgDyQJe4kRYAfYA0xIsnNyuXcAdAbh09EPawqrhA8OX64fyA8zzOw+P78wm80aExEOh43BIFgToCkICOpU54D27migj720oIfvv6hE8LpCo0P1Nadq+w795LWCyh+EFA6FjdXsdDrmTQPkMWuOYDc3N6dGo6GjoyM7WpBECduJRwd2hOtmxiSsEl2ngPRAIDCV6Lh/uVzOnjnJFu8ecjhVKw0PPH/kvmvXrqnT6ahQKNgA/VKppFAopFwuZ0kbFrrf7xuLiOzpB7sj+/A8AFM0fyDr4YMjOfd6PX3/+9/XhQsXNBqNtLOzY4GzVqtZgAUYh8Nh5XI5Sw7RaFR33XWXms2misWirSMAKc057C9mB6OWwDQfHh4qn89bclpcXLQmPNY4J7uwpkj+rL1qtaper2cAFs808cOzyIxM8p4378Xy7KWXsEkQ1WrVwC0d1VgwWO88E7zIFF0c0co68c0aeGaxjtzqYwesY/ugiPQKBc0pxEB+B+a4XC6r3x8PuMePOhiM54DCGkmThsBIJKJ8Pm+yMnHI+165j3xP3+hJoUwh0e12pyRuinbAnmeliPmzs7PWOFOpVKxoIMb4WAtTSBGOpYoCGRAMIw4wh0nk+XPtxEGUOopw7zGH7EAVjEajBgY4l97Hd5SrwWBgJ4wxqsw3K3mGFQWO+8JaAzSydlnzfi3DqobDYbMhkRtoLIak4L5KE5ac6RvcM/Ls+vqBstmmvvrVZzUahTUcDmz/+diLAjkmW6J6/fVT+sVf/DPde29Tb701Hu/H++7v79v1ouxQFADuAI6sPwpKLHIwtqiwPB/YbvaWt6nQiIR9gYY3inRwC+s/HA6b0kVu9youDDOxmKIMcor384dp8Kwhpng/5obzDMkBzPbl58jTAFppchoVCpuPc+zRn/a67cGpP5oLkERA993PfvPD0iGTYWgm+PEQJRnNn0wmjbEoFArmA2u1WpZYmaWHtYBkIY0Zr8XFRatQWq2WzbQj8NF1S7LCqExw6vUm5+rCJnmwTICAKaCyB8jgH4Jl8QxONBq1Yess8Pn5eWNHCAq3JkDOfQcwMYwYbyCjPWA1SIaMmsLGAPMCk8FihwGHLab5JBgM6tRnw3p4/WuKjcqq9R/TxeoTOjwcKR4f6EThor74/HfV+uSdOvPm8/rwtRljJggkNAr5TQULQfXvmwxgIr2cSjDCt8sEBu6fP0IUjywnnCBT8mxJ8HiGuE8wF4eH4xOS8Lxh42DcFmCRBCfJ5GlsBLCDFA0+SdBcx3njBDfksEgkYt5C1huAkOLHV9jIf8jAtVptigFG3iTxwgT1+5PTpHheMFP8PaoGHeswI8Ph0BhHEhG+VIoDaTI/st1u69q1a1MJgCaVQCCgfD6vDz/8UL1ezw6yYJwMLC3MGkwIlh4KPII1oI81RPKHXWGt8exRUkiEtVrNjp3ltLpSqWRrhHXi2Ra6wGkU9cyOL6BgoGdnZ20dSDIGEMXHTwGgaKSZsd1ua3Nz0+IT8jsFD93ixD5UDVhQ1hKyPmvYd9RTIPjCjXUHG8t+unUONOsE0D4ajaybHcaa5kLANCwn4Iy4CctK7AYA+AZHmCueB2uX+Iul69ZGU54564zGK/oEIFf29vZMrWL/oEQRV7hPKHjsHaY1MM6PuMHn0zgZi8WMRWXvsC6Jh9wXijp+HxDZ7XbtFDc8t952xe8A0u+77wPt7SV09WpW0pH5sUejkU30wEOP/1OS9vZWVK0u6YUXmtrYOGVsP15n9gOxAaaeIhXyhFzNvYZ9xe9MLCFvoAaAQbg/FKOw1uQW9nyr1dLm5qaWlpZMOUskEtrZ2VGxWDQLgiQrHmOxmGq1mhVY2CnY3/j/h8OhFX+sU+/hB1PAsGO74feZ1kC/DfmdgvTw8FA7OzuGd3hf4txHed324LRarVr3InIMHi4STCQSsfl0PBT8HDx8jkzk/5H8tra2tL+/b0eRzs/P2yZaXV2VJAOpyBf4WGOx8QifGzdumA0gEhmfQnHjxg3t7OzYgqTKhp2IRCIGnGAO+E4EdPxnvd54fismeiof2MxwODzVweyrHBqEYKAkWdCGHYBpIvh4mY7AT3UKECMZ8D4kOeaicZ3h8HimJ0c8MiqLgM1mjsfjWl1dvclKdvX4F1u6O/6vdLnxSZ159RltXGyrXt9Rt9u9yQae1vGHH9cnnrqkTz36L7SY+Zs6/6d9S5qAOuRs/o0PC8lHmpzH7hl6qnhGl9AhzPojeMFowTIz0grWFhBCcOG7wvYlk0mtrq4qEolY4QUDAENO5/vc3JxNQADIIysyMo1gDLPqpSeKGZhsioVqtWp+QVi/UChkIJVmAdYRAGhlZcV+nkDNaCeeAwWWr+Dp6vcAioRCYOS4RwrBWCxm7ODS0pLW1tbseXi2DEYKvzCMAr5X4gUsF+Btb29Pe3t7BsQA4YAiChFf/AJKB4PJDGXuMfsYbyP7hVmpWAAAUjBZ2EDwAR4cHFjBAFADyMOY5XI5O+qQpCiNk2o6nbY1TrHoGwrZ84AykhmfDcuEh1iSTTyAVaIA5r6zr0jggN1Go2GdzQBpYgXXy56RNNUgIsk6p0nWxCVGsvlmHPY/kzmwxQCU4vG4yZOMqmOofK/Xs58DHHJoB/fSe375zow63NvbMyDsWX/YfQo3CmDWZL/fV7PZtL1PscUz4Tsjw9LsxZ7H38i6BXRBFECaeEYfAgfGDmVvf3/fOrm9BYF74Jvy+GzURd6Pwt4reUdHR8pmy7p6dVVzc5MTBFkXxLVAIPDnmtkGg4GuX1/XqVPnbQya7wkhb1Jo8ByJKcRegBn2LIocDrkgLjF9A+xBIY6y41lzJHXvl0epABPQYxEOh6cm2HAfYdsHg4Hl9lQqZb0BxBviayQSMd86Xmn2JV5zPxubGM/6KpVKZllhSgUEnKQpLMVzJrZ9lNdtD07xusDuzc3NWVd9IBCYYg15iAA7aTJwm6RMYEFuRhYgUSOdsCjZaDSmEEhZHDC42ANKpZJ2dnZ048YNSbJNRGIh+JDMPSPCJuSYv2KxaJ2rNFRwVB/G+4l5PGpgheYVuurxu8RiMRt5RLMSAUHSVFcx3lG6MblXpVLJfHgEPVif0WikTCZjQdUzW9gS8IbBQiAPUSEOBgM99DPS3fF/pTMffl6v/lFfyWRw6kQiJKCrb+3r8pvL+mv/wef0yLH/QfUHfkWXfjI0UMzn89/Idd7H42URvjNFDR4g2AnYd88SIY1GIuMRPMVi0QoG2ETuEQkQ9pJnBWDnuyH74B2Nx+PWbXsrK8ccRGRimvKQm2DN6ARnwDpgiYATi8XMelAuly3IUVjhd2QcGmsL5oJ77JkMgBqFD5461pckKxwIvnw3msgGg4E1TEWj4yN39/f3DSwgkTLKCvsOlpVOp2PPEwAmyYrLSqVi90SSFYLeVwfzT7EGYPUzHgE7u7u7tj58oxCTNlAkPHtarVYtGcMSAUQAkBTCpVJpakQSEjOJkZgQDAanWE/iGs+Dewt49VM/sHLwAhgw15eEdevPYHVibbJnuT5mgfpJJLywF7Bnut2usVh4gbESYPWiAPcNT+w7CgAScbc7PpZ4aWnJ5FcKcXIIIKbRaCiVSlkjC3K5pCmfL+wlRYtXSSgivC2q0Whobm5Ox44dUzQa1cbGhjGbkBXko52dHcVi4+O0AdaANrq0IU0o9L0H9FZgRhz0cRFliDjEzwLskZK9rYGiDb+itzlQcGI5AczC8rOPw+GudndHFoO89YX4xmcQS/m5o6OootGeIpGw7TPAEsWQL/JgNLGF5HK5KTWIotJP3AAEcr2sX2RyYgVkGHGM78DUBH9CFXGH+8v3IgZgX6B/BjaWPhlyps/TeNVZo+ASRq/xHROJhBVxHi8cHR1Z4xr7hP3EGgZrAX5h2z/K67YHp4DAfr9vcgxyJc0bbEwWMR3koHxvrGdcCQEf5ongBwuGl65eryubzWp9fd0kq0AgYFJbNBrV+vq6mjfPtWWhSTJ5lY5PAihVnSQD2cgn3jfrm2tOnDhhINInwUKhoNnZWeVyOfP3SLLgyz2E8SORskDxi8I8eHCAj5cAxvgXgIuXlWDvMIXz3iRcGNj5+XmtrKwomUzakavYAQaDgYZR6f7MH+vD6mf0yr9pT4FLADEeNyrOr/7zpP5X/5tH9PjHXtONdx7T7Oz4+zHrErkYPyFJwPtvKUgA88Fg0FgvgID38VIgSJMOVEZNhUIh+2wvVcKgkKSQ41qtloFbbB4EFipgfm5mZsZM9jA0AD7ADwHQy5TRaFQrKyt2z3iurdb4uDp/NKZvQuH709UfCoW0tramhYUFO84PyduPLKILH4821gHAOPcbzy7HjgJWSZ7cZzxohUJBkqb8UwRgWCgv8/vnRhEEi8R7x2IxYyC4Rhicfr+vy5cvT3U18/vcR+RFmtskTRUkrANYGmaKYhGA2WOd420GBAHQ+P54TAG+MNqMefEFNMVfv9835p4kxNoPhUIGigGIADusMl4JgXHkZ2jOkmTfEaAGMAA4S2MlCnWKdcopZ7A9rKf9/X3rCqfgotEL5pnkCzBCaYBRopDs9SbHX3Kvi8WisWDES5JvPB5XoVCw2Z3s84WFBS0tLZndx3tlsY/QbEMjHnFzZmZGy8vLWltbs8I1EBjqjju2tb5eViRypF5vpEYjogsXjqvXmwBTr6IxdYDr9QoJx9/CbkLwEJeJ1x64UtBwKhi5gn3FPuPZQaYA+skfeH1Zh+122yZdUAj1eiHFYiNrlKQ5DuKGz6SYkiYnOIZCPXW7IZVKZfMfS5Njdtnf5DyaYykW+MzDw0OLrZ75hTSSZHFnOByaDYkCmvflvgA4GTlI7wm5JxaL2XHbtVptqtktFJoe70ghjawPA7+4uGgnCw4GAyOEuGf+M1FVINAo7MFLy8vLNpmBe0yxSCFNMQMIZ/+DMX7a67YHp94rRnCABQBkwnqlUills1mVSiU1m02NRiPlcrmpKjEcDqtcLpu0yZ8BeFOp1FTX+e7uro1LgU1ptVo2M5LFBVjt9/taW1vT+vq6sQcEL6SHYrFogdsnfpgGKH0SVy6Xs6ALwEWK8N2JAF9AFvICCRhZB38hG29mZsY8dNxr2Bk+D0aaJM4JJoBnaXIqCmwd3hkSCdI3AREGhSaTubk5PfhSSKFRS9/+/0YUDPZMQi4UCvrsZz+rBx54QJubmzpz5ozOnz8/9nd1B3r7/MP61KnfVuGuj2v7Yss2JsnB+9aGw6H5j2CP8dzgfUUy9A1uyIfcS+6HJAPmMEsAWyQn76+EHcUDxmk9JHTWpDTxkO3s7KjX62l9fd3kOJIRzw9/M4dEIPECBAgqg8HA/NEcuQlghA3G5w3YBVyl02ktLS3Z2gVM1mq1qSY9giTjabrdrjY2NlSr1Ww9wdR5eX9packauwB9xAHuHeARVqLTGZ9g5rv4Ae2wpgBrEidTHfhsvgcSKtflGz1IXtx7v0bwspGMGF9GUmTt8cwkTXUY83kcoYiv1ycwWKCtrS1LeCQxgKi/pwAEpEOOvKQYA8yTXAFwFBlIk4DyW2VcAJ6f1EFhS3zBa8kzBXh2Oh1jrP3+63bHw+39KVOxWMwAIvuL5+ULR+wKkoy9o3GO54cS5vMHDB7g3Y9CI/kDPknONERRiFGMSjJrGMDN90R0Oh1tbGzcZMb39Oyz13T69DXNzR2p2ZxXqxVTIDDQ3XdX9Pzz13X1alY/+MG6dnfvkCSLu6urq1pYWFC1Wp06+5y17Zu3uEf0LxCLAB/kieFwMv4rlUppfn5+Kt/6og9VglFE9C/AwNI7wBrCptDtdlWrzWh1ddzfwV4JBAI2UYI9ROHCFIF+v69sdke12owBQYpyfp7Cwxe9EAQwnoPBwHzn5FAKCHACKhnS/sLCgvm9fQMg+QV7FyoURRzsL3GGGIKt0LOV0qSJkf3B3qSI5DsHAgFjp2lugphDzQMj8FmAcSxE8/PzSqVSZgOCGWbqCx5Xnzcg/T7K67YHp3g1GecijX2o1WpVsVhMy8vLxrTgDet0OnYWPJQ3HiCqMnyHeFDxiFHp1+t1k3QBjDwUQBVspDSRJwFgfg4mtgSqFIIWQY6OS8AOo2ykyew6AN3S0pIxCsiqyE5Q/cgLgKhqtWqBFGYIJmBubk6pVEo3btwwT6sPCN5Mz+JECmCWJAGNxEaiYaMvLy+btDMYDKw5ATbRmL9uV/esvq1i60n1WrOKxcYgbW1tTb/2a7+mBx98UJFIRMeOHdO9996r3/7t39aZM2dUqVRU+0pdn3jomB54dFPnfjRpYgC8HBwcWKMCMg7AEOaZKpzvyqbnXHt8uKyJZDJpY6R8YvPep16vZx33npFinQC0pPGEAzyxPG8KCS9PEqi9LCZNPEKwQ0jx7XZby8vLkmS+0Ewmo5mZGWPd+N68F0whCQ5pGNBMEcTeItnBuLNmIpHxOdAcHCDJAIuXmviuzHSVZH5bALRn4kiogHkABD47/G+wJt1u12RhP9LMS9kASRII35tChL9nXWFR8ZMFvFWCGcMwUDScARywcyDfA5g8owiTjSWIF/HMS7ZcO8ASEMizpTkRgA0TggLDyUckR+Ive9eDdJ4FsQ9wxzV6yRK5mZjki3qf1CkMUEmwMrD3jo6OzJvuCxzvJ/SMOY0snukGYHm5mn+jEvD8Wb/sZ+RVSRazvC8WcErM7nQ6xhrC7hNzisWL+it/5YyWl/f1zjt5nT17QrVa2tZPIhHR3Xdv6qGHLumXf/lNfe97A7377r22brgersWDqk6nY6eqeeaa+Ea8ocD0FjhiGNeKBY11Qb5kf/d6PVNcwuGwqtWq2cF4ptgwAICvvZbVX//rF5XLtXR4mJ+KicQHScYSTmT4mk6e3NGf/Mk9ll8o3seS/6QJCILFFzKFQkFra2smZx8cHFiTqt+LFEX8Lt38FP+RSETr6+sGSrG9cBoT95MxX8Qc9sve3p4WFhbMakZOYn2CMYix5EiODvf+evZxIBAwmwd7mvsP8wpghshgPeOZ9oSW/xyuG+uOL7D/otdtD045wQmQARuTSCTs/HXkAubbAQSpmA4ODoxFXV5etqqLAMpDR5LkIRP4vb+LPyOQYQcol8vK5XJmPcCf4b067XZb29vbCoVCdroN7Iwk65pDkmZSAOwGVQtmeipFmjl8xyIyH6yNn3mIN9DPLSTo4OfEp5tOp606BXwQtH0FNT8/r1arZUUBUnYsFjPJjq7Zvb09k4Co2gaDgY76QyWH7+n8jZ+3IDk3N6fPfvazBkwlmUT05JNP6vz587p27ZpGBwfaPjitbOKSFhYeNom2UqmYjAOgC4XGo5dmZmaMRUee8d2xBF9kJ4ImRnWaIqTJbEHG3Uiy8TWw0qPR5OQurg/DOs8J9rvTGR81ODc3Z6PMfAMZviA8b77DlMYRghv+Su9P7PXGMwwpknwTBf/tR6gAKNrttsrl8tQc4G63a0xsp9PR1taW3ScadZAQAXuwNox6YjoBP8P+ymazFpwB3OxV/oxr6Ha7FtQBUtgBkJT39/dVq9W0urqqxZtni6OG4JFFLuV3iDvegoL8WSgUzBaENQFgAFD0UrIH7b5xEWDuxz2tr68bowITh7QryWITsizPEfaK5IgfmWfCkdC8N+AynU6bvFqr1cwHSiOFZ39qtZoVbyTBfr9vMYeGO+IIIIkJFsQ0AL33OzabTbOEwEb7k2lInJAHgHsaWCmyYD0hI2CDvGzLvmCKijSRw3l2sLLeUwuj7RlV/ptn4v3EgJOxwtXXl750Run0oX7zN0+pWFy8GWN69oyHw6HOn1/V1at36/nn39Xzz59VIJBQILBu94y9kkwmzfLEOuV5+LzJgSRbW1u2X/z1YzvgHlAscD0oNqgjMKSojYHA+EhSiizuORI79//ixZxaret66KH39Id/2NXy8rIBbqbdoDRS4IxGIz3++AX1eiFtbt5nCg+EFNfs+wdgg+Px8alsn/nMZ/Tcc8+p0Wjod37nd3Tjxg01Gg2bqXoro+7ta6wJvivFrFeP+Hxivy8m9/b21G63zc4FkOZFbpVkeahUKmlxcdHUSno3aI5FcaCIY91RfGOl4e9Zs3zeYDAepYdiTO8I14C9CFALcOV+/7TXbQ9OYWGoQAAoiURCKysrUx5OqjPkARjC0Wjc/EPCJpgSkPCBsCEARoVCwYADoE6aMDokErxMXAu+Fi8HsfD9SQ+cLJHJZOyYxHa7bdKnNA7EfB8WNOfowj76UVlUQCSoZDKpEydOGBMQDI4HzqdSKWt2YdPBCtAFiFUgEBjPhsXjiAzMv3d3dy0QkLhg3fz3ZHMQuBuNhrEUgUBAs+k5BTTSUTtgvh08qtx7/yL4MQey0w0rnDickmm4XhIa4224LoICNo5SqWSSNs8Abw7/DdjlGeOP454gs5P8CGJsbqpyPIqAY5hw5trF43ErvOi+Z014f50kk/S4L1wHCRpphyofKwmFiF9rMHsoC3TMz8zMqFKpmHeJwEiyQt5G/oJhg0nhGcIyIJmxb2lUgX2ngAQwwwiyz1jrAGkKj5mZGSvqfDCGYeS74q3zDTwkHUbRUaDAMrBuYfJocGMcFL40VAhJdmb73NycedUoQrn3gAoKAaRlWF9kObywsCXSZBwUMiKMKAkKFpT4AKvCNdDshWriD+kAnHS7XYtb3D8PkomZxIt4PG42Ig8UYDpnZmZ07Ngxsy+MRiM7Lcd7b/kexPxisWiqGWwXLDgSKvYc7DHNZlONRmOKQeJ4UphT7gX7E7uSZ9ZpOqPoKpVKJuEiuxI/8S7ynt6X+MQTV1Uo7Ov3fu9JVSozisdjNvOSwkcCIAx07tyzisUGevrpH+vKlawCgcmkCOICXl0PmDkAodvtmiIBmGTYPMoLMZE9zLghrEHYBXi+Pq4A2nnOxEcsIYA7uu9TqZTefPO0nnvudW1txfXuu/MWYwBcKKGA4GPHLuhjH7usH/zgPh0dBW0SC0ojhybABrdaLRsNNxwOtbS0pHvvvdfsU7FYTDs7O/Y9+TPWCHGFfwBo4BBYVhh+ci6/x2ShZDJpQI91wXrje/JnMK/EjKOjI924ccP2IPYHH9shG1D0KFpQlLwNjbXt7Wuwz5yIRU4Fj/D7xG3i0kd53fbglHOB8UhRkdF5V6vVVC6XJck2aDKZ1Pr6um7cuGEd7gR9DxRYmICKQCAw9aA5cs77BGmqAPiw6BgIzMw3fDYEdRgaKiEYBUm2gEnAw+FQmUxG8/PzqlQqqlQqlqAIyBsbG9aYc/z4cZOfu92uDZiXZE0GNIXRcAUjQiMXjQ14VmB6YPBSqZSuX79uM2JJttI4UZXLZWNfkTt8Vz6AmwDih/7SuR4chjVSQDOzMi9aq9XS22+/rXvvvdcYSWnMkp89e9Zk32g0qtnYUL3hrEql0pTcC2vBOvIBlMIDoEjA8P4smkpIHgAbpD3sGnjiSIzLy8vGDrXb41PGqtWqHYEZiURUKBTsfhBsvERGcPBGf3yKrE8YDQolmE+CoWfnYcPxE508eVKJRELVatWqa5g1xrSQ7Ai8eLDwGHIdsC34rLEnwLxIk85v1AoY61sBO4FVmh5uzgtw5GVX2A+um/uJsgBwHo1GBhL9feL7IWXv7e2pWCxanMDzDggBhNKpfPz4cdtbvvPc70fWNe/JmDyubzgc/jnvJvsmmUwagD48PDS7CbGHaRQAHYAE70MRQALi3iKNAlyJXdw/Eic/iyIFa0qxhIRPbMSbDoOEFElBQGK+9dQkmo1IhDDb3qsej8enZpHiDwyFQnYccrlcnjqcA1uX3y9+L98K0jxwQNJl7/EdYNG8lEqxw/0A5I0LxKEeeOCy3ntvXeVyWtFo35jFfD5vuYWCjO/4zjtPaW3tgu688wO98cZ91qQE0GGNwGySd1AdyaXIyNJkcDzMoQf8XtGCoQSoE/f4jigqqHfeQw3YxA9NIfvOO8eVTO7p85//QPn8QG+99YD29xPGmmM3SqdDOnXqAz3++AW9994Jvf32g2q3D6xw4f1YF6xjD864p6+//rpGo5E2NzengCDWNOIIgB2vdjQatf3PvFQmloAb6N0gzkIYESvS6bR5kSmYKWgogiSZEodH1q8zij6eFTNL2X9zc3M2xQQF0NvYeB7YFTz5hOWJP4MV59kCVGnw/iiv2x6c+kqNTUInMKwmwBX/YKFQUKFQsAaOdDqtbrdrpnVodczcJDnYHmh6P5MQf5wkC6T45WBgqRIlGeCguxFQxDgfkjKNKiQlAgW+RqoU6HxGU/mOZjwsVM2wg953509WYcOSgLjHMIkAhFgsZv4UkgjSMNUpSYEkz+Jmw5EwhsOhSVzINb7ZJBQKaXDU1kHgXq2u7ajVSliH7g9/+EMlk0k9//zzisfjajQaeuWVV3Tp0qUJ2IxGlU+eU2X3uAUUNjENSVhEYAIYzwSQSafTxojCoCHXAtp8UxknmLTbbataSWqsU0AaP4/lA7BJEOX5E5S8lA84kGRrHRBL8C+Xy9Z8RJU/MzMzxSjxDGGvkSIJVsiXXAvPlLExvB+eRdYNn0eiQqJjjUgykAvIYC0h+cKasj8B/dwf2DsSqx/9xH4AiAOQAEOAPpKCJJtVzHPzTCHNb4A9ZDKvgpAM0um0WYj29vYsiHM9zLSEzWTwOgCG+0IM4p7wXADt+LxhTyj6sPqQgGiq5PeR/3wRQXzyI+S4fuwZgGMUCGKvJIu97L1EImEjzJgkMBgM7AhUvOk+cQcCAVMpYFk5jYaESjwDDML6hUKhKZsGbBfrF+uRB7OsW2K0byg9PJzMy2Q0EQUicRwVyjeYEVP4Pt57uL+/bwoX+zoWi2l9/bqSySO99da6xQueOXOkvbUD33KpFNaHH67r9Onr+tGPTmg4lBX4kmyfS7L9Sw7j/5nyAgPK9UciEbMG+PsCYAuFQkYS0TNB0UDh6K0LPm8R3z1TSC5++eXjarWievLJ9/TYYxu6fv24rl3LKxBIqtWqanV1R6dOjZv4Xn/9fr355mmFwwFT8iKRiI37815pGgTJacSS/f19vf766wbaUdIgQYj7PFv+H8Y3FoupUChYLGWN+jhHvEBJYYQawNfHQn4XhQ1cgp2NOOBVHf9nvBfvA+AEuHI9Ho/4KR9MvkF9xAcLIPbMP/eW400/yuu2B6ej0UiVSkW5XM7YpPvuu0/Hjx/XxsbGlCzc74+PqaNLF5M+m5GKMJvNan5+XrVaTTdu3LAA4eUnKjJJFmyg7WGf8vm8gWN8qhyHyQJEMisUCsaedTodLS8vTzWleFvB7OysSbuY0zOZjBYXF60iXV1dNS9eo9HQ9va2DdIlmfN3SJL4xmAvSPQkBv6Oe4mPhS5fkgAbl1OL6CKmOuOZbG5uqtMZz5mkS5D5j5K0uLioYrFo9ySRSOj81Uf0iRN/oMKxv6J6cXLSyTe/+U2dPXtWc3Nz2tnZ0c7Ojo1IGQwGOv2ZguLDb+n9t5/W0tKB3QuCJz46ABo2hlBoPB6l6Y4o9Uwjfh8SFs8VQAtzx/2uVqtmxpdk7AnFCyAQiZQASSMUwZUASNL1XaFcI4UJSdcHPNY+s/BQDrgegDIS9cLCggqFgrHvyLzI1AAyrCAEKN6TQyBgML0/eXZ21o4J9T5YkiOJhnuLX45O5Lm5OeXzedubg8F4jEo0GjWZDl+0JGPHpMmxj1h68JWSdNjPgCeSGowfzDzNODCFMIoUXzRf4K1jsDh+X+RaP7OVUW2AYE58Ye354o3kwlg2rof3ZmpAPp9Xt9vV9va2gblms2lypLcLkRhRLiiG/F6GQaE4wO+9u7urSqWifD5v0xpYy565n5mZDDX3474AkhSrFFW8FxYilBoKTIo3VCb2N8+VwwOIS9ls1uIhz5WCHGkbZYnEy/tzn/w4ON8oxdGoAFC+lySbJ8178UxXV3dUrSa1t5dTMhmdAsAwbXRkY9siZly4sK7777+mQqGrUmnWCgisWR7Ie2829wUrT7/ft258TucC0NEoE41G7dQ/urwpIrBowbqy7iETyAH46r08DitPz8O77z6oK1fu0733Xtd9913QyZPXLPc3mzP6xjeW9cEHJ5XJ3Kl4PGSfDXDyxT+xj2sFaBFTmRvtTw30CoP3ffr3I94wSQSGlIY4FEO8vQBcb7eBdaToIV4xZYiDdcgVAHzsAd5+5kkDv687nY5u3Lhh8Qwyodfr2clzKAjEDvLGwcGBnWblC1ga2uidwHP+UV63PTiFpVldXbWTZbrdrjY3N61aqlQqVnHwMPAZEVRoWoDVIFAWi0Xt7+9bY0MoFLKk4n0ybHqAHkkGfwcNMkjAJH0WEjJBr9dTqVSyBUTTC4AEABOJRFStVq1TeX193ZotYC5I5CyahYUFpdNpS3psiE6nY/4ojmDzUg8J1jPUvD8nI0WjUbVaLTUaDeXz+alObvyaXmJgM+Hd8kwSgJONzn0KBoN693tBPX5yVs9/oasf/nHOAGC329UHH3xggQiJLhwOKxSN6LlPXNbu4F69+1pTwWDI2A1vqwBEMKkB/6j3nEmy78LIpF6vZ80zfBcSNiAF74/vGJUmI0JIYHR7+mo+n88rl8sZw8X3IknBXAFqWes+gSLDA9oAUiR5QACFgQc6jJ5h/7AGCa7I9dIY+C0tLdmYNZ90JBlgpkjEq0rQh0nDP0nwxjKDBA9wBRzRDAY4hOEJhUI2WJ11z9qjqY37BdOM5EVyZ09sbW0pGo0ayEbKw9pDMoaZR77k3pOgh8OhdfGTBOli5h7DRsFa0LQAMIBNA4iylkmwyPyx2Pj4SX+aDZ8HsN3c3FQiMT56GOY9EAgol8vp6OjICgyKkEgkYgU9TKT3GHLyEjNE8duR8PAEc9zyaDQyIMT+9TYMgDJqB93RxOher2fnjrNPGXGDJCtN5jnDLhFHvaeb7+QTLADMe2hhk4+OjuxoYAoZ34iCnYVJB1i8iA2AffZvLNZTszkBbfiGee7JZNLiG8UPMyaPjuI3r6+rfj9iQME/dywL9EGgugBM2KsoIYB2vged76xr2H4KD4pKmHzek70JC5tIJKxXAqAG8wobN2l8jOgnPzmmn/zkmCKRkeJx6ehIqlb3dePGhhYW+kqlhlbAMk4Ovz5NT8RJ4gWfQ3GAbYR4RPwMBoMGwACbAGh8ll6xkmTKVi6Xs5jpVTHWKfGeOIRiwbPmPmC98Q2GrFH2IAQZwLvT6Uw1tfH8sCQChFGqKP54/pBvu7u71kyOYsu94frYRxBmHwm7faSf+p/xq9vtWmXtK/iNjQ17oPl8fir5wyRQ0fH/MAMEikAgYN2BPAAodeQeJARYFgAWQJMmI7ytmJ/D4bDJrCxyb9I/OjrS1atXlUqltLy8bNfWbDYN9BH8fOPCxsaGJUDAYDAYVCaTsYTHooU5gOGEAWDBsclJ8CQZGljw1DAGh39gJAmOvhqEaYKRAbxQ4flxRdxT5MxgMKhW/VDntv+yHl3+12p95lf01ish61TGF5NOp61gSC7M6Qt/q6904Fv6/W98Wnt7+5aEASEeIA8GA2WzWe3v71uRgCQD483vAyLxzAGUYBNJqvgYJVngCIZCGoSiiszEFLwpW8/OztrxoySseDxuFTOJHTbdN1EB8oLBoN2HW71RXo7xx4gyk9AP8x4OhwYWaIKhQ5kgztqDnZNk80FbrZbq9br29/ctafFqtVrGzJLA0um0JShYZYoGmlq8TYFOcWTOhYUFY4ZXVlZsIHW73TZ2AWbSy5Oh0HgyBsCOYsHPJEUpoSCkIc6fpuV9WLD/3COeG52/3AsKFdg+/8z5p9Vq2WgvijnWOjYZwLgfFu/9t5KsQIIxZW/DhBGrJJkU7eVm9gBJDLmdewvADIfDJhnil/WyJaCddYjUjEQNgxqJRGxiyeHhoRXYyKLBYNBOOgNkeWaU9+d+wTj6SSbkAi99c3gFipY0BhqcCBUIBGxvE5tYxzQnwuzz97BzkkxS5b5iMQFoDwYBhUKyJlLm2gIiWMcUU7DQY7WHUUSH6nYjFocqlYo9s1qtZnmRvYw1Q5KdXc/3Jo5gXWPNcm2pVMrIB555IpGw50VDKH5177OEjeQff+oeQInnQzHU7wfV6TDSaByLiSWVSsVYdAov7/eFFCC+EGd9MyvMPs/XxxyeI9eLNYm1hueT9yf/EktZy+AG3psijKIDGxU/T0HlWW/ihye2vKIZi8WsuIdlZ81BsoFryMXcLwgV4hI4i+8pTc9d9Ye0wJh/lNdtD06RA/FpsuGuXr2qWq2mtbU1G5Lvu0Vv9XIS6FkENEQw5gjamkBEAJ2fn9fi4qIkmWRBBSRN5g3SSOWPD2TjEBCDwaDuuOMOLS4uWmc4vphQaDzIv1KpWDIEyA4G42HC5XLZ5DO8nvjeqBphdpC8PftEgwLVMewam5KzhmFV+B0WLhUw35kAgZeQDQ9gmJubM1kNaYExR3hg8aN5z8/L/+Oh5v/OX9XDK7+rub/2M/rhtxa1d+3I2L9EIqH+oK+1h+f1sY+9q6XA9/XqW39J753ZNfaRypJKWtJU4PeAmYAGyCYhUIT4IeMkPtgrSXbP0um0Fu56SIuPv6jEfR9XIHRz/mG/r8a5H6nywz/R4Op7Ojw8NPaIRgaCGaNxOp2Odd3zMwDmpaUlu05YyoWFBWUyGfMRwSxRsOAznZ2dtbPkGS/GMwOI+uZDRjb5wdMMh2efEcQJvjQmeh8l947vhCxL0QUIhM0BLC4sLKjT6ahSqWh3d9eAhh/GDtvEoH3iBB5QnyAB99xjz1QtLi7a3+3u7hrLCyuE3xjw5OVagDzMxNbWlh2nShzyc0Ul2aEcADoSEb5cWFYa9uiAhlUmOQIMAe/EDeLP+vq6Wq2WisWier2e7rjjDo1G4w5qPKqwuTTGUaR7kIWPneQH4wpI4aQo3wBGIc4hEsj3koyJhWGDvcRuw/ch7hLbiX3sOVgzkjUFHtcryQ7d8HM6AUWsYYoFihjuKfGTdULx5Jk5b4Nhv1FseNl1dzemu+6qa25uRt3uyPY01837AKD4s/He2L4Zb8d7nbwBWKeYCAQCRthwj31zJKAR1hOQHwqFtLW1pXA4bNY3rwJxTcjAePLZW3xHABSgnPjKc49Go8pms8rlcopEIiqVSsZyh0IhG8GXTqeN0QRgY1eKRCJaXl62pjEKik6no2KxaIUUgI77WK/XzcdLr8itxBHjB33coqiXZIQVhA/7gVyAQkJ8nJubM4IKlZTce6udjHvtwTH3moKB50heptikEIEUoscG+2CpVJqahsH3nZmZUTabtT1JnvQTWPiHwvejvG57cIohu1arWSLgZrJoSJQECZpSmLnmmzSQSuiYZoQFgQ2WiOqEB8H7QX+TvBnvg9nYN2ogrZBEs9msdb4jaUOpI7mTDBYWFiy5kiBv3Lhhm99LOfjaCDp4aJGO8arQPY+sReU0NzdnoJxFDkgAePvgDriTJvPQ+H+OEpQmfh4AMgAWPyHMHu+Dn2t2dlbf+dcxHXzhV/TAytf0Kz/fUGX4tIq1E9IopuhMX8sL72h+dE6HWtc3fvBzevNP9xWPxw18I0fDYuG/5R5Fo1FlMhk1Gg0Vi0VbV8jdvvMRuZOgSyOcP6Ahms7pgf/wNzS7eod6taKq3/lDtSvbah+1lcivKfvES0r/7d/Q4eZlXf4X/7VGG1eM/SaQ8CyDwaB1dvqgBcAkwRO0S6WSJSIqe5iO3d1da/bg5A/fDMj6BdDB1rOfCGA0PfmGHX+fKXZYG94P6kcQcR8BxOwRpCsvOQKc8RAiJeMhhamDnWAkDImWvd/tTuawwiQw4WNmZsbmLNbrdfN+Ae4omtjD/f54GDbrtV6vm5zNfaHpjkTu1znPGpBF4UkyYP9ns1n7u8Fg3FyEfOilZT8OC58ZRSmNlYyw4hki6Xm5EraGhM7+wDYA804SBnQRR4g/sGjtdvvPdf5Ho1ED9XjQOVDEr2vULtYjgI21BFij8ODzOYXKy5IkdYAJsdwXMNwnf8ISYAUgkclk7B6zL1CamEjhmXbuD7IuwOvq1bv13HM39Mgju/rww+M6PDxUtVqdGg/Es4W1I9Y88URJ165lFYutTvnAl5aWbG81m00Dm9hW2N+wt5HIeK4lxR65ERDO7+DDLZVKFt+JgfggvS2FWMAz5JrIN7DaxBf2POwm65vvBbtHIZ/NZk0N4356DyzsovfrSrL1gTTO8a8zMzMWb5kzDBMMEEcp5d+sKxQSipS9vT0rWskZ1WpVmUzGfp8JAZAL1WrVCl/yJE1R7F+ANzEsnU4bCwvTzUE6+/v7tt9RSQeDgcrlskKhkJ3Ux95nX7KWmDzgLToUfuwlCuKP8rrtwena2poBKmksBeMZPXbsmCF/SdbwBABaW1tTNBqdanzwzQRe1jbm66YMj8xFUwmLgA1I8sVEjifuVkM1VRUMEAGh2WyaTMXsQqomPsfLYoAqroXZqJ4hQRpByqNaRU7kZ5H98QkiyW9tbRkg8M0RVPfcY8AKgQSbxMzMjPnY8P7R6Tccjsdj4cft9/va2dmxa2PCArLdaCS9/UpY52Nf1KnnIjq++hPdm/uGQqNDDZRU/eguff/1n9f2hZj6/ZExPzMzM9Y5DLOBVNJsNi0AkgBhawlgXsKiECkWi9YMxL3gecTjcc3k13T/3/7HGnWPtPkv/yvtX3pH+ze9kzD0ha//nlYefUZrX/x13f93/2td/s3/UoN60Spj2NdGo2E+ZII8XdTdbtcarpg0gG/RV/7IvwRpwAdsOoyR98wCSFhz7KV6vW6NeCQxpDkSEQ17VNm7u7vWYMP+4voI1AArKnnWebfb1dramrGKfD+SIokLewQJhsB6dHRkx28CrmDPKQYAH9iF/CQBL4sBDAB1sEOAErzL/X7fJOVMJqNWq2UWIe8fpQmrUqlY8xKyMbYgADDeW7rsURhguL13Dj843dCw49w3inMv7eEjRlVgPdianpkxOZ9ihsKfZ4METIzAow+DDQCFtWPPAcCQM1mvxCfYPz9Rwk+coPhFVfDMHO9BrMfagR+VzwRor6ysTB1GAnDFCgSwZd14uxN5gwM9ABjRaNRYK9btpMlkVTs7yzp9+oreeGNRoVDYCl4KHnydxJrRaKSVlV0tLzf0yivPGxNPHMIPi/0om80qFotNHYbB3mUNsG+9dx2mjzhfrVZVLpetuEUm7vUm83IhE7hOVEkAjAdfrDPiQqVSMYZVGhfmTD9hbZNb/Ki9VqtlTb1+fBUsoSTLY7CVWJvIkdFo1O4zmIE87gkXQCJFFVYBDyiJY8vLy9YngL2NdQ6YpvimoQoQTmxj7VEYAcopgGCP/fxg4iEqJ/5z8lm5XNbS0pIKhYJZcfzEAIo21Bv+nPFfxALAvycb/qLXbQ9O8Sn2+32l02lraNnd3VUqldDddze1sNDWaHSkVku6cmVOOztzU3KGHyAPUCRYENDpwIZ96vfHs//YQCQpFjZsqyRrriFoeDocgIZtgIHcSAcEQyR1b9pn0xKAadDxlUwgELATaWCO6PaHceC7k8QAmix4aQyIi8WieeCKxaIxU5i/sQzQgEYDFt8BAAOjLU2Yb0lTgBhpjvf1cwypCHneb74y0JnevdrbW7ZNMy4E9hUIjMd7+ZFAVOfz8/NTnZxHR+MTfWi8KZVK9mw53QgQSpWJ8R/gA6PH+JleIKSP/8f/SKP2gTb+x9/QYaNqsjrMYq/XU71WU+/Mq2pevaD7//Zv6OTf+E904zf/C432m+ZjZU3yWbCF3W7XzoqGySOIzcyMD4vwY0Co3gnohUJBMzMz5hfFBnOrbARz5RN8pVKZ2o/4RH2V7Ysd37SCVBuPx1Uqlcy/zD0BLLJeuCbANvcAZpCEBGgB+AJ2vM8VT/Xs7KzJWXgb8Vria4RpgvmArYCFpsFPmkxfIKHj+yORAOgbjYbJyigdJBIsEKPRuKhaWlrSY489pscff1y9Xk9vvfWW3njjDStaGa9ULpetiJJkDCSsNcoA8QKGhYIZOZb/h3H299DPKq5Wq6YyxOPxqfmzTD/g+VPQshdZWxQBAACAEsCXhMx35D15PjwPGquIj1gbWKvse8+6+eOC/fhBQBR/BmBlv+JZBnzW63VVKhWzqwCSYCLZM4BR4hcvAAN75r33TuvFF1/W889f1Ne+tqxYbNIQh/LDbO6xn/dAn/vcWdXr87pyJadgcEKAwCoSZ7m/xF6KffIEcjcMXjwet/wAwIS5Ix6iOADIIT/4zrDy5CMvT1OkwqBDDjDhxRcSXDt2MeIYJAEFAGqB9/kDePEoU1DCqBJLWBsUSvw3JBS5mD+XJt5P2GHIBHKWL9C4T7FYzL67HzUoSeVyeaphGfKAeApQ9b5/r9BKk34NsIq3AjLykpiTSqUsDg+HQ924cUPSxBrFsx8Oh3byXSQSsf/OZDKmenC/P8rrtgenkqbkxGg0qkIhqPvuu6zTp7c0M9NRpzOjXi+gWKyjZ54Zqlhc1BtvrOvatZCh/EajYYwAFTCym5fM6Lql25PFwQLw1D0sRqvVUiKRsFlz/DkLErmJznkWMAkT2ZuEQsCWJscW8mcnTpwwzygJhSYhL9tIMiMziRWjNhvCN8hQuVNJk/zZxMgybFqqLbpwfVLzm5V/I6vDdDPKJJPJGHvMpuQ8eJIzQQmLA/MpG42GTW8IBoNaW1szplianNGMjygQCFhnN6OPSC54ZKmmGV1Ur9ctKAHmkaU7nY6WnnxJ0YW0dn7zP1NMAx3cTJQMsu/3+wbm8aKd/6f/qT7+j/65EqefUecHX7N7wro7Ojqyhg2YFAqtVCpliYPucJqtJBnLBQhKJBJaXl5WIBBQrVabAgkUMqwN1hmJV5pMGcBjyNqHdUTmIalRaUsyRso3WZFwYSmPHz9uJ4UhN6MwwHZEIhEbndZut1UsFqdGKcEO4yHmPbA7AC79mCQOnKhUKlPTF9rttvnNAUs8z0AgoHK5rMFgYHsZIEvxA2sEo4pi4ps2AAGHh4ean5/X3XffrS9+8YvKZrOWrM+dO2esKoAT4M57E8+8vYln2Ww2TYrH8gDrB2CFTYQ1hm3h2VOMJ5NJ1Wo1szkBupEDSVo0gwCaWS+wfLBGNOLV63V7NrCAPgn6uNtut3X16lUFg+NRVsvLyxYf+SyeF3uC98HXK40LPzr/+QeWD5COP54Z2cijgGXYZSwj3tt+K4CmKxv29+joSBcvLigWe0jPPXdOodCRzpw5rXR6Vf1+X5ubm1Pgdn39UF/4wtsKhUb6xjc+rXB4whL695TGbCfxIRaLaWVlxVg84pZf74APaXKqFWuUooWpNRQ00ngEIGvv6OjImrJQwLhfqH94uyEiKBo5IpdctLe3p3w+b/Ok+X40o3G/8XEDWP1aReZHXeVzaVxCddrd3TVlCc8135MCxOdDGEXAPmCSnLW2tmZyPXGe+OkPraC45X3Jp9jraOpEdudzsAZReKKygFvYkxQ3FBQ0jANMKfzJLdFo1A6JoLCIRCI22hDm1zPNH/V124NT/F/Q9LlcSZ/+9Hc0Gg311lt5Xbt2WoPB8k1Q2dbp023de+8Fff7z53Tp0pa+/e1nNRzO2HGnR0dHunbtmjGbSJpschYiIBP5tNUanxtPxyaNEV5+90eV4XGC8aVK5zMBGL1ez86jz+Vylhj94vVdgXweiQt/Il4UZpLCHJTLZS0sLEiSHbPId8ObhrznxxnBGnh5jkQJ20wS9rIOTCNByW8IkhUbP5VKTY28CIfDNoILVto3JuGjItHxe4DHxcVF8wMyDgQ2l+smkeAJo6ok6XDvYTIZzQUThzwzGAx01Olo7YWfU+Pt76vbqEyx0HfffbdOnz6tubk5/eAHP9CFCxcMRM2HpfYHP1H2qZ9V88ffkPqTU1Zge/AFsXY8y+yTKesATx+BXpKBTU4SajQaBqQAILwn94ngJ00qb9asb36AiSfpw95QdbOuSKK9Xk87OztT7DDSKUoG4IdnQ4Lq9/smmSNdch1YeIbDySEPyF0UhyQypG3PcFSrVd24cUOFQsEADc10floHTOBgMFCpVLKmDt9xyyEZFLSsOZq5SIAoCXSjI1PzQp6DASGZLCwsmJJD4YxX2YPYdrttlgAABt8Hto34UiqVpphIACuJlD3oPe4wlNhliJ0UBzQF8Yz4PrxXq9VSuVy2BjjPpMMK+1hH/PJeU4bJsyexYRG3uD8eAFCMSzJgFovFDLh7xpmGTfz8JH0a3ugXwO4FMAVUoNjxvhAGFI7f+c6S6vW79PnPX9bHP/6nunr1Tn3wwdpNS9SB1tdr+sQnKjp2bE+12pz++T8/rb29lmZnh+Y9JE/hs/TFA0oge5Z4yRpPJpNTpx3xfJl2QXNYOBy2BlYsMp7dTKfT9jwAiJAbKBl4MIPBoE0RgYHn/iQSCeuBoCgl7rCfUENZF8Rp9iV5wFu2AGU+3pA/vDTOMajETva7926ipFGIcOoTzXl8b9hVDgXCOkAB6dVXYhnFMXsNSR422tvo/Jg0vL/EGt90CbPNM2F/plIp23+8tyRTgNhn/nnyD3Hto7xue3DqO/6Wlqp66aVvqtHI6+WXn9H589e1uDjQ7Ox4ePLy8ppGoyW98sqqotFz+vKXz+tzn/u+vva15zU3l5ryajC+Byrcd90Bakj4oVDIGJJms2kSDJIeTQjeoIzhGU8lyQDAEA6HtbKyopmZGW1sbNhYHhI+CYvkC/VOwgAs+FEtLHpANgCEze4HGAcCAbMB4PFixuDOzo5u3LihwWBgR+ohmcAgsKgJeAQRgsyt1gPuKRXe4eGhfa43pfd6PfN0UWEjPwA88BnxezC7tVrNGq0ImrB+fhwNrBO+ID9vDvmHdeDZOA+iB4OBCg9/QsnCut777X+scLOh+fnxGdFra2v6W3/rb2ltbU2S9OSTT+rf//t/r7ffflvlcnmc1N8/o8SDTyl+8kENL71jyZPkQrBjDVKxYmnB9wcQITABMH1TGuwYa0GaNAl4GRyGH0DoPXPsEyRYAB97CJYD9ob9U61Wzc/IXvBAl87/RCJhwAlAA/OLRxtbCQlJkgXgZrNpIDiZTCqXyxm7Va1W/9woOElmlWHWLwwB35sExc/7bm2Y65mZmSmbBMcc+ykUsHusYRpYaFbc3t7Wt7/9bT333HNqNpv6/ve/b4oPzZO+cYFnwl7kc2iApKADgPCMSLKsaZrxKM6wUgyHQwPZjP1hHA7/IK0iCbNHSJbS5BCBQqFgwJw10Ww2zWvqbS2w6MQoLCm+4ODUOlg11hUFCJ3SrO9ms2mFCX8GSASs8nx90sd3SS+BZxkBQFw7BTgxJxgMWqFMnInFJif3SNJ3v7ugH/3oTr3wwqGefXZD9957cSr3Xbw4rz/8w9Pa3j6harWhSGRg4BcbF13qSOasFdhzD/KJI4lEYmr0EMegegsIPllAOLmYeEQMIL4QGwGF5BqIGG9xYg1zTTTxkIeZmuPXEXmX78n+4hnQPIyaAtijAEHBYD9TMPH/sI++h4N+knq9bvvDAz8fCyGCiE2ohBBr3rdJ3iQe82fEadQgLBu+8RZVgiKf+8jvU1hi+yKv0KTpmxcBobwHU4hQF4itEEvkc3LJT3vd9uAUT1q7va8vfelPtbub0auvfk6hUFjHj2sKdGDWX1hYULN5Sl//+qL+yl/5rh544E1dvPi0BoOBBTX8h1QBo9HIFj9z45CeCWicvkATRrc7nkfok3G73dbS0pKxoEhXdOiyMQByMLFIhVSxSNuc8MN56OVy2ZIAMiUyOxsScMbGgwmgwgREsfmojmA9UqmUtre3Va/XbaFTrfljY7EuEGyQJ+iQ9xVxs9m0RIZv8dYKDEDa6XTMakFXpaSpxhk6EDnWLRgMqlQqSZKdplUul409AnSSZGGUWGOAUa6bIIvfEbBPdR6LxTR77E4NB33VL541ILO2tqann35aq6urxi4sLi7q+eef19WrV81DunX2jOZ/vq/QYtbAIA0JMCG+ESUYDNqUCa5TkgUsvMR812azaWsHBoikwXrjnuA3olHt4ODA2M9UKmUBzDfjwHIQqJB0KdpWV1ftkAESVDabtekPVPA8W8ahoRLgOcQacHh4aHtoYWHBig7PWABccrmcAREKDv8CgNOd7QtI7EMkRu4n6595y7Vazdgi5C5fdDHBgOfPPslmswa4SV7joxxf1tmzZ3V0dKRKpWKNdMQVGii8x5R1TIFBfIPFI75wShRd4f4gDvzV3CfADAoF/myOR6YxjOtGFsSuFIvFpmY30qzD/WGOMyDCe0AZj9VoNAyQNpvNKRaIIp0ijg5wX/iw72hWkWQ5AlDvGU6a6HZ2dmzeqY+JAEBJBgD4XOISMcjP+/SgDfAFYAMgD4dpvfbaMW1s5LSw0FQs1lWvJ21v91Sp6KY1YGBqB9cFq88eRqmAocT3jk0FIEgxT0EPw0kM8kwmYJ+4wfqjKCJXMn80nU4bUQPL6XsoeA/2GLGE5wWTD6ADLHGCnmdkUTdQizxQhYGn6QfmFDAGcCYXALyQ9QH5HJyxu7trp0Nh0ajVamo2m8pms1pdXbVpNuQ279PlmftZ68R6CCtGmPEZ7CF//5gmwlxtcgbvTfEgTY62pcjic3q9nlkI/DQH38EfCoVMEQVToAazxj7K67YHp0gtDz20p2TyUK+99lfV6Uj7+w1Jk8HoSM/1et2CZq22qh//OKvHHtvSD36wo3B4xqormiug85G96DSdm5uzCpEAzilSHFtXq9Us6MLYwPISrGEZqHh8dRkKhbS7u2vHxPE5sDLb29tWQRLkvHQ7HE7m9rFQAU/YEQCyBKTNzU31+32bdECSgfHa2NiwxUzigyHCVO2Dr2dq+a6AfLx9VMQ8S0Zf4McBbAUCAaVyea397C9r/o77lTx2j0KzSW3/2/9ee2e/Z53PGOTTJ+/Vnb/29zW7fo+Gg75W3n1Nl//on2nU70wdtea9kIlEQrVaTdLE2O2ZRQA4QY5ZfwAXWPNaraaVYFjDXtcmFOzt7VkjDAFXkhUtjA3b328qFmsr2n5X0ci+6vWKAoGwjTIBCAIS+cxyuaxgMKjV1VVj12lgo0vUT0BgjSFPcWIaFhCSF7NoOZQA0AaDBtDAx4j32E9lGA6HZsWAwQOwYgPA/+WbrvC8+kSGnwoAhYUEfzZSGYVDv9+3BObZI5oPAU0e9MO8wxwSa/hc1kMwGNTm5qYBS4omng+NeyRwEg1rKZVKKZPJmG2DpkTsCcShdruta9euTXmPAbGlUskkbJJzJpOxU3hgzgGhvlkHEAJTEw6Hlc/n1e/3DSjiN6To5D4AzvDRIutSrIVCIZsYQjKj+bRer6tararT6VhBDZMFOCRJY0sBLDcaDe3u7qpQKKjT6VjiJ06wJ1gXnuViv2E3gbXz9wLARiwF+J04ccLWj5ejKVD4HdaGb9oCJPBMKNSJy1jAUJ8kKZ/P230+OGirWh0pmUzdtOrsqtdrWNFLDgCcS7JxQuwTAKMvqLAgkAdobPNFKTHYAxL2A/cQZQtQyf8DkiXZc0ftarVapkzBQq+srNgJc+wT2GfPTqLcsO54njCGKJn+FD1i1t7enrGxFPsUvYB3/mGPdzodK4o42Q3/N/EDpY6cV61WTVHzCh7vwTG8FFKQXCgKAExe4AOYYkA4exSrHLkUoodDbzxrTSMwsZHCD2xCUyOWAIo4rkGSrXfmD7N3AcA/7XXbg1Mo5wce+FDb21ldvjzU4WHdzklfW1vT8vKyVlZWVC6Xtbm5aZKRJJ09e1zPPlvW3Xfv6Nq1O6yaGQ6HlshZKDw4/9/BYNDOpz958qRmZmbsaNRarTa1WHn4xWJRpVLJGncILHTAEfDogmdDw3ryuXhPCJK+q997VNgcJDXYNU7VATSEw5NZfNgRSPZU5P7nYXF9hzaJBT8V35lTbpAXYbTYSCQMJJZIJKLt7e0pD084HFYiuaD1n/1lHdVLam1e0fzdp9U+aqtWq5mxu9frKTS3qMf/D/8Pqd9V47v/VgMFlXnmC3p47Q6983/7e6rVatYJTcMHlTMbDAYkEokYU0W1jezHqTK8fAKIaKjwTFyR2IwFuoODA/3whz/UAw88YCfOtFotvfrqq9rfv6LTp8/p4Yc3lUx2pOYj0sPSSyfDev31nC5evEeBQMKM7dJkXE40GrWZedhJYNa41yRwJFZJ5kHi+THTkyDJs8G7hicLxowxMouLi1pYWNDOzo4VPXSXplIpY1opFLEVLC8v2/GOjUbD5i0C2PEHA4hI5OyFXm983C9NkXT1SpOuV3yAkgxEo1D4jn+UhkwmM8W4cb2e1fPBHlDNLEZYF7yO3DOsLqgYkoyxYe2wJ5i1iPxL8pHGTCsD8n3TEb8vye4DwNb7b7Ha4IMHzK2srBiQiEQiVsAS6yjc+R6sq3g8rmw2a4wqwIAilIQsySwg8/PztgaIY5LsnvpTtCjmYN04Ac6ztQBM1jOMNUepUlQGg0EDwwsLC8pms1MNX5KsaAOIw/bCosPqY8mAhfKWjlKpZESCt0wwoYKYTyNkrVazn4NpXF9ft+cGoGU90bm/tLRk9wqwBquGOiDJbDUUpsRwCAUANawzzS48eybMcO+Zu4viwngiACrPgkKl0RiTRVwfBACMP/HYz1v1TCJAXpL1LTBSEZBNEUTs8gwuf08Oo2jFlob9KRQKWXM0DWPYHyhygsHxhAhUAqaYwLqSFyErKHiYNkPsAb+wJ0KhkPmbKR5QDShEJdm0D9YLedMrbOADCDTiA2QM+Yt4gWpAzJBkfm+ICoocrDH8nSfZhsOh/f5Pe9324HQ8ViOqlZWSvve9py2I5/N5xWIxnTp1Sl/60peUyWR09uxZvfzyy9asMV4AKyoW03r88SPt72fsgQFSmIkICPT+Lpg3EhObhGDT7XZNqjw8PLRzr1OplAFKkhnsANUrXh2qMio85Fa8mFwTgRfwSjUFbU+ApbrhBStMsC8UCmZHYDN5T2Y0GlW1Wp3a5DCxPoH66hmmBoBB4sV3CygAQBNYBoOBVZjVanUMUKMxvf8bv6698o4S63fp1H/8T9Tr9sybGI+PT5Va+tn/tYLRGZ37b/8j6XA8yDt+9ow+9vf/O2Wf/Ix2vvc1Wz8kcgI+YAaAJ01mvEmT6hy2i7VBULH7feNDSdLSw0+ree5HarfbarVaeuedd/Rbv/VbevHFF5VOp3XmzI/U7/+/9Iu/+K76/aA++OC4trtPaflnfl3nfusf6s78FT37bEmf+tS2zp+/T9/5zj3mgSbw06lPs8lwOD7XGXP7/v6+JWOmR+AFRJKkoGCdkVi73a5J+oAU5CvYT5gDkgBJizVEUPNNDRSBxeJ4nitHcpKckJdhgwaDgV0DDC+TDgDUMPLsEy9l4aemQEMG9E1wFBswbbDUgAtJto9IoMwZxS/OtIFEIjHVBQtj4oM5yRRgBPvpmTz2wdgD3lKh0JR0qF7vQOXyuMjwnbqSpiwyqDt4xXw3/urqqhYXF439JMESVwDmPBuAB4wks4f9SC32Dkwqz57nAZgiRnjgRkxCNWq321pdXbVnQkMknwFzQ2EAYPdNSKwFBsv7sXTYvHwBB6CjW5xYB0uGVQow4K1F/B0MOGy+9/ERR5FO/6c6trlm1g/AmDnGFEULCwvK5/PWfAoQAtT730cmZj8BMAC9yLaj0XgeKMAUsIEE7f21MGzkGWISMZzGO6WJUCAAAQAASURBVPIE+x9GFn8w34U4gAUPBhVgydHIzAy9lR0GICPhk+fxRSLhs1eYKiPJ+kxYf3xv4j42IpQebw8A8PG8I5HxiXIARe4bjYzeVgDRAJgl3xNjmFKC2uOtWuQq9hHX1u+PZyEPBoOpRkYKNb4rjD/rDuwDi0zsJJ6gqrK3UKNhTinCP8rrtgen47OAxxvl8HDO2AGo6jvuuMMk6tOnT+vKlStKJpO6du2aBf1Wa07JZN8WJEARCY1FghRMkpqfn586Og9gwikreESRRLgmEsT169d15cqVqblpyPcANqo+NjqBKxgcd+EHAgFjLWAl8acwPgqGiQoLXx+eIUm2EUk+bG42Fb/P5pZk5v6lpSWT4SUZsCHpsuAZf0Q1zDgKnhnJAZYA5pfngcf12LFj42PrbgJhaZzUSUDJZFLZR59T/fwZBY/21abQ+OBtdarbyn7sk+q9f0bdbtfmdGazWSssRqORNRMw2251ddUCP+CBqhkTOJsVGXRv45KaF89q7rFPqXnuRwY0Go2G3n77bZVKJS0uLujOO/9Ip05d0GuvPag33zyhYHBOq7/693X9RlAX3wxrY/ZhnT8f18c+tqFHHvmJYrFD/Zt/c1IzM5MxT5FIZOpIvlhsfKLY4eGhnXYUi8VsBFa73bbxLt420Wq1zBuWy+UsgcDiA0BhcyiUaOqhiQ6Gk4pemiQ379VFpkLlQIaDEWY94U1lpBcAyneh3yqZAxrwgZK8mDXa7XZtvAsMMEwFdgdJtv+bzaZ9TxKGZ1z4XFgx5DnsAjBOkqaKO3+vJE1NjxiDob5yubKeeeZd3XnnpkKhiWw2GknXruX0k5+s6dKlOUUiUQMVWCLw0BEHaeJh9Nbh4eHUWBhYIr4TbBfzDH2RgK8XCwgHORB3sEEAnmDWKCYAd75pi/Xriz6ed61WM/8v+w4JGiBFIU2ShRzgmunG5nngYfTNIvw8zUt41wHYyMAU3rDOgHxiIBYgvgfHbfpGumq1ajGW4mJsO6sZmAV4+9PquAfsTYoynhfxnvzD6X1MQaERlvgAm45XMhyejBDkmUOAMAMV0sGPWgKMovDhr0Rmh52jIMPHyXrl5/hc9jTXy75HGYHB457wD416CwsLKpVKZvfCeueBIX0hFPHED6af8Dmzs7Pa3d019ZECEoU0l8uZ1Ys80Ww2bQSUjwG5XM6KLdQsVBnAPd/Nn37HSZGsTT+LmYKXhlEIH0nWE4B/FCKCeMT1sf7ZAygsKLDEawoBFCX6ckIuL/9Fr9senI5Hy4wr7oODfRWLk/FEsHPeA4E0BDM4/vuBVQD8PN42qkxfHfuOZRYRAY9mDnxKgDs2MQAHOYxRMWxORvpQzZP8GcWCnIfc7gNSo9FQo9HQ7OysndpD8uYf2FmShvebHh0d2dgqnzRgmXxTEFUkEi/3CAkBMApAh42TZHIDFgCSAOwBQAJWQZJJ5zT9hMNhhW6+nzeth0IhaXZOkblFtbevWOXM/TrcuKS5ex61tdHv9w2wYy2A4QOkEKhIpvy5JHuW3Fsv+/b7fV36xu/r43/3NzTIHtfBjRvq9XrGcLZaLR079j2dOHFBf/zHD+nDD4+r1+tp6dRdWrjnEV39V/+NMe+BQFhnzz6o7e2R/tJfekOf/nREZ88+olarpVQqZd9HkrE9zC3lniPPMY5JkoFsL+fwPWZmZqzRSJKdJU/SSyQS2traMqmeYOkbRLgW/t8rE8Vi0fbI6urqVBEWCARMzqaYq1Qqxk7SlCjJnhXrELaQPyNZwCTgLUYK9qNjGMKPv9c3ugDoKICwRuDtRb5mj3kWgtgBo0WjEADLNzcFAuOzz8dsYEyf+9w7evTRqur1Wb366l26cqWgo6OIksmQ7rrrQPff/4G+/OU3df36gr7+9afV788aMIRZgdnifgIqYa6w4sAu4RsG2OZyORufREEJYKHxi7joD1MgtvA7yJeSpnx3qVRKa2trxuh6aR7ABGhgPXuWmljFGoA0YB1Lk2NJAa4ke9g+3oNC08/fRV3i2bKWuQ4KG9YSPnyaNjkRKpvNWjxn8kC73dbOzo4Ba07p8X77dDqtbDZrti2IAlQNmC8AIrMwAcYwe8Q2QB7FEwog38uvWwAaHnBiLddQr9cNgPF+HmxhFfCNR4C9xcVFA3rEWfIqewM2kNyHV5TiERbb73muAdUDL3AsFrN51xATrVZryrZEfvMNjFiJ+CyKOEnGoLI2feMgFgD2+NzcnMV0LGx4RT3TTzxH6aTgkGQnjlEAoCRQOGCBIL9hAUBt9SoGxfGtHmt/D+bn56cmsBBHiaEUIOVy2SwpH+V124PTcSKa1WgkZTKHWlzMWWALBoO6cOGCdcMWi0VduHBB165dM3P3uGmoqXI5btUNkkcikdD+/v5UUIUR9ZKbP/uZBqSdnR1b0AAWNhgewXA4rFwuZ6ZwwJkHsgDrdDptDAfNR7CVeHBYTMgnyMhIOzCofmwH4BsGCxmOzRSPT07BAXhyMgwAkmBCAPDSESC0Wq3aCB9JU919BDHuMUEF5nQ0GtkmPjg4MFk1Hh0D1pHGyYHRWKHkeO5hu1Y2OZrE1ttrKJyYU725q9Ggb9cBS0Eyqlar6na7KpfLNr3An8zB94ah5Lq9F2g4HOryD17R+vNf0H1/6z/TXv3vae/Ke+ZjLZWu6xd+4V19//sFvfFGSuHwoTL3Pqy7/sY/UOvSOXUunTW2gKHQZ88OlEzm9eST1/Tee6dsvRDMqLYx/tOQxH7g+Eg8RJKsMkayohqHneh2u7aH2DMAdZ47jIJvNkHixF9FUYQPTZKtEwI0lhj+PJvNmvS6vb1t8hX3G4lLkgVSb97Hf4efe39/33x6sJN8zvz8vOr1ujUykvB5xrd6EvGGA/YABHz3SqViCZ3vB3vBfWFtYpMADI6LuoReeum7OnGipq9+9SFdv36PWq3Dmw1OPR0chNRur+rNN7NKJC7ql37pkv7aX/uevv71n1E0mtdwOB6fxkEW7H1/kg9g8NbmHQ9aYP/wm3uLCyCVmJLL5ayA4UAHpoVQGEkyEDccDs2P2O2OB+QXCgXt7+/bOvaSI2wvxTLAknWLfxHrEc1oFDiMFML7CbMlyWYa8515UUgCoHi+MILEGHzQABWeOcU4wBfmyjfCZrNZu2biHesXaxTSKiobR3WzF7BBMIUBJhTwJcn2PYqQB+DeDzw3N2fxA8IAH6R/5hQeTFshHgGAWeeoDYFAwCxYsHF8PnEVhYI9hsxNgcC+I95RCOKF9oU3igigi3vHNASsTVx7Lpezooufhz3kH5qpmICC+sCe4J4QY8jf7D+arsjbXnmjCMBiRT4HVJKDiBE8AwAi8Q7w6FUOQDvFHnuA42xpoiW2E+szmYwVZmAuSVaMULBRMACif9rrtgen44cR1rVry3rwwWu6dOkBHR2NpQrkx4sXx/PhAE14Psbei5IKhQO98cZpOxWGMSaAFWj1/f19xeNx5XI5W1AEFJIYoyVgGQhS3W5XxWLR5FIeKr6uvb091Wo1ra+v28KHJvfdg0hLdKkC4qjyPIXPIoJ18N2O0PN4n/CKIaNw1CGLElaFqp0KnoBGAxULH+kFAMTmALwQIH2SRyqlASyXyxkYRU5mtNY46I+DQUABq7AlaRAYg6FwMGBBhsQYDY2DRSg6o6P9prEoyLCw4FSKJAEAJwFVksndyFAEAWniUZ1LJnT99/4bJf/D/5M+8Q//qbZf/Yo67/1I7WpR9923rVisr4sXT+nkQw8qct+TWv30X1WvdF0L57+p1SceV6PR0Pvvv28NBP1+Xz/8YUHPPVfSiROX9MYbK/bnMMAAQECfBwl4gxhpAwihoYlnCrgOhULKZrNaWVkx0EmQbjQaxozt7++rXq+bZEYhRCDFg8X9JSlTgB0eHlr3NsCFofUwt9gCJBnAl8beQFhLP16NRMU4N4AHgJGGNHzkPvAjo1GkAlD7/ckxibBrrGl84TApDEJnv1H4wc4wGobRV/7M+VAopMcff0933FHV7/7uAyqXjykSGRgTReKEGd/dLeh3f3dRv/Zrb+iTnzyjd9/9BVM9YAclTSV1gDkeX2IJjA1MEocJYIVg/7G3k8mkdnd37T0p2vG6eQ9cLBab8uLRxAejHQgEVCwWbX0w2o8YC7iFSICZZF3fytIDsLAe8Zz53EajYbNe+R1iDveZGbjc7+FwaKP2ABKAnHA4PDWWj3sFyKlUKpqbmzPvMfYqmGrkVPz/tVrNABiNOtFoVM1mU5VKxe4BzNhoNJpixyqVig4ODqZO7+NnfHc5Pk3WB1NYvP8ZphEwjAcYhjYej0/5pymQvcVEkpEcMLe+9wKSBbDP3kIFIA+Sh8hJFOHkeV9MUTjxjCmiUcMAfxAhAMfBYDz+ChWTNUyxTt4l9pDTYZG5T/hy+/2+TcMJBoMWQwCTgUDAJncABAHt3GPWk59O4PccjDgsLxND+CwYcXIer1wup5WVFVWrVVWrVSuC6E0gJvMcKPCIF/7Ewv9F1r/5YvO8/vqyfuEX3tTCwpZ2dyfUvx+NwIODeWm1WvrYx86p2YxpY2NlSpaGXmcRXrlyRYeHh1PD+ZGc2fSebcQzg5TC+BPkb6psKqd6vW5dpwADroGF5EdJIOGzqTudjjFOMF9UPhj0U6mUSSiwA+12W/Pz89YBTAIiwDM7LZ/PKxKJaGdnxxKCT7TYHtiQAGVYA9gNZE08urDAMAbIe0tLS0omkzp37px2dnbMv4Rpvt/vKzE/Zk6TyaTaN6WHXq+n2rWrWpcUDEdvzrRtGis9DI43zsFeU4tz4+7QSqVihQiVOsE0k8lYNUnlSTALBAIqlUr2+5KMJeb/o9GokrGorvz2/1Hzz/2cVp/7gkKf+bKaH7ylpyO/olLnSa3+yn+n2ZMPaHjUVvkHX9eJvav6lV/6RWtm+q3f+i1dvXrVGIReL6Tr11d06tQNfe1rQWPRSSy+aQ+5fnd3d6prHBaGYz8BWc1m02QsGJx8Pq9sNmvMJgUT9wCGRhoDLsaDIZmznijyAE3jZsa07UekPN6TOYMMeqdgpECD8QV4wyCzBkk0xAkAWqlU0uHhoc0mZJ+xr1mPgPvRaHIGPfFkZmZG99xzj06ePKmNjQ198MEHxlJ4ny9HKXI6FcAT4O6nGrCPxt8rrAceuKgf/3hdly9nFA6PwQPXDGAplUqm0Fy7Jn3zm3fpC194X6+99qEODxftnlCgkOhQLGKx8elG29vbBqpTqZSNwwOsATRZAzTrwIbhH/cMEAAVWwVxkVjMPWWOKAcKlMtlhcPj2Z9YOTz72Gq1zBpBweIPKCHOw37CKiIJ83PESubewtCy1pCGAaTjMW/7pkoBAilS8Poj65PQWYOsb3JKOBw2ECTJ7jkNZiR576OluGNOM+/jGbNarWbj3ygg8Fr66R6ANr43Nhc/uot9hO0MUubw8NAmmNB8zPrFWoaMzx4D9KDE0dQpjRUURn3B4PGcUPSIX9LkpC+undxKfGbPst4pHrHO0aA8HA61vLxsM2/L5fLUepImB5PQY0Du5tkQc8nlkuyoaxrB2G+oM9Vq1YoDXwSjCADCuQbiGmuE54ptj3UPWcCaw0pAzuJ6/ZSKg4MDFQoFPfzwwzp37pz5k2FW6SmAgSdeUyhhR4A04x78VOz2kX7qf8YvGhfOnBnqhRfi+vSnf6Kvf/1n1W5HrPolGNPoAttw7Nh1PfJISS+/fIcCgbAikfAUQCUI+e5iujV5KPhMu92uarWaIpGIMpmMpHGFBuuHXBWJRKyxx/twqM5gfgCddCrS8MNGwc8JMEBaIiBSbXpjPwsfqYWNTMKpVCra2tqy64nH46rX69rb29P29raNbolEImYKZ4Zaq9XS2tqa8vm8VY6cyQszJslYApImgYdAlMvl9NRTT+nUqVMGLpCvSP7IMpHueBPsH+ybybxWq6lx1NdTkgLxMQONvJpMJhWMz6vf2lP4ZkMhG5WNu7m5aQzEaDTS3NycMSOwLgQ6mFSeE/5WLAYAVEna322q9P/5f6v92suaP/UJzdzzmJIzVV0f/Yy6ra4a/+431Tz7A83NxvT4L/2S8vm8QqGQ1tbW9Oyzz+rKlSsm0Y3XUEH3318xJp8zs7lGPptmBV5UwgQQ72siwFJsAUCHw6EqlYoVVTAmrHf2FEUHYJ7OaRqvMpmMASVUCNYqkrw0YeU800MxBGjBdxqLxZTJZEwy45opoCg0KK5gu6VxQmSUDAWcJPNNHTt2zBIyySwWi9koqqefflqPPvqovvnNb+qDDz6w9wDU+qNyud8kEdge30CXzWadF/mSotGuzp07qVgsamCdont+ft4kdgqRdrutN99M6cUXw7rzznf12muPGXCVZGwMIBJlBLbDFzcwexxpyzPgPrA/JGlhYcEsDcQOpjBQjCLPA2hggDnRDIDK6Dhm7VJcwRBRpFLcxuPxKWYLVtB3UgMw+Y54bLEJsC5ZF7yXT/DYaogTnO4HuMK/C4BEFkX98R3ZMKSJRMLWMkCN+wjZwJxK4j5qGNfNOqa4BkxAavCcKpWK+Y396CPvuWUdwKjv7e2pWCyaysj9YN8ChkOhkJ3QBNssTcaCMRT+1hOp/DVyzwA6kixPwz5yD3zDHoodthsULtYOgA3vMYwyUwRQDVk7FNkAeQgk9nYikbC9C1vJGvOAjfzuDwfo9/u2bwHjFBCAPvzb5HxyN7EcbMI6BrRDjnFvWO+MVvMWGH6GODsYjI9cfvfdd0298o1SxF7WOWvX918Qq/HRfpTXbQ9O8eOEw1H98R8/oV/5lR/pC1/4tv7tv/24dnZ2rVmETTAO7jEdO3ZRzz77ti5cKOjNN+/Q/PykMUHS1NntjEnCGCzJfHO+O5dKlAUES9RqtcxbyqIEiGJEZhFRgZA4YC/8qBFkKiovGDKStO9Axb/JCTskcOQQgj3XQ4VOlyfSJP61/f19LS4uTslR2Bno1KUKRBpqt9s2V1aSbZSZmRkVi0Vtb29PMRrcq8FgoJMnT+r8+fN2ogkSOxWipKmO3ZmZGSW6e+rs1TV34l7VXGV3cHCg9ZWTOty+alIYzG0oND6CNp/PS5ruDCXp+nFfMBGwecFg0IoYKmsqZsDq8vKy8vm8jrYv6ODiT6Qv7erG976mb3/1VWOrYovz1oAmTSrfdDpt62b8/UMKh4e2fgAhgNPNzU0b4s01AG4ZwExC5v4A4Ek8TG6gyANgAVoYl0SwAwTj5aJoYXxJp9Oxrl58bCgJXiJGzq3X67aGY7GYMREAC9gZ1hrJzPsaAWbNZtNAnJ+EgVeKa8B2w3cgISNNkmR6vZ7OnTuncDisra0tu2aSCf9gJ6G7GcbFswu+OYVEc/fd13TtWlalUlDxeNSA//Lysl588UWtr6+r2WzqT//0T3Xx4kWb3RmNRnX+/Kruu++GfvSjh+2+4tWDBQXceWaZPchzI+6RsAHFyJsAJSxM3EMYKyYvsG9pypHGjDL3zPsKJVkcxUqE3IsnGha4Wq0qFArZfGPemyIHQOibw7wnHyke6wOfCwDx/Qd8H3ygNH2hLjB9ggkNgDykflgvGGY6xwFOwWBQxWJxqsjEPsOhE4PBwAgNacy0Ah74TN+YQ+wnVtPEx/Nn73BMLHO5abhlfdAvwd/BFnuvOJ5e9jqKAHvLd+dz/TDD2G0ojrwnl3vNnuE9Wc8AZGIvYxUpAn3HOb/P3ie20JjG+5ETiE28B/GQe42NC5UUnMGLAgWvLsUorD7rot/vW28LVifAMmvU21dQidhzxD8/NYQcC/PtJzjQYIalIRAI6MaNG6a88n3JNV7p5XexUfT7fVOFUDHASD/tdduD01AoZA0F/X5Y3/jGz+rFF1/Rr/3at/Thh3m9/vpAjUZYs7NJRSJHOnHirO6994IymT29//5xff/7TyqR6Fr1Jk3GKg0GA2OVCoWCdcn5LlYWMSc2EKhgOkKhkDUQEez9cYUMYSZx8/ntdts2W7VaVa1WUzqdVjAYNNYUOeq9994zj9v29rYdHsA4EEb8cHINYIJ/cw4xCY6k0mg0lM/njS0AyPpNBFAjqfpmElhnFjHeLsAX1ZY/xarVaqlYLNqJFQQnGnMmXuGUIjeT2cLCgiI35eludzweaP/d15X+2AtqrhybdP+u3qXZ3Jo2v/1HFnhgiJifxxgNQDAJjyMnkcNYB5jAYbEJNJubm8Z4MOoFuYhN3umEFY93lUzmjP05ODjQ+fPndfLkSTsp5Xvf+541VrBmYrEjdbvjkS5IX0jpFAocqOCnHlSrVWNy6MJlLdIBjxzKGiSpV6tVY25p4vAg0zMNJOBerzfFHvBZnIKUy+WsUJJkIB9GgEQKI4EvFHZif3/fjqE9ODgwBmV3d9eOqyVxeYYGlgnwBWBfXl7W6uqqFb3IYTxnvLoHBwc6c+aMPvjgA7sHMzMztk69SkFTCQAI9kySFYK9Xk/b29uWDJLJI126NGcFEV7GlZUVPfroo/bfR0dHunbtmikQklQszurxx3uKxcJ2L0nOAGsAB+rGrQ09w+HQ1irSKd9jeXnZphtg7eAzvMxIjKEIBqCQNPEwrq2tTbGV3ivNZ8JESZryv8KKwiKxRziZqlqtWgOL9whyz71nz4NO/p/kzYQNgJC3dVGQsg8BfZ5tZ89THEoyEMx973a7VuAD5ACIPCM/pQVrBPcUdcpbx7znnpGDWBMAVr5xhqKF742ES1FHsy7xsd8fT7lhjB3qIiCHwjIUGp8W1mw2bT4nRSLMOkVaMpm0oh8/KvGJ4jEWi001kNFtj/JJ4ervuyTLU/wbcIqCIMl6IGDM+a4AcUaq8XNI83ice72ezX5l7+DpDQQC9kxhsL1Xk5jE6DTiIUUjRAIFRLlcNiIDkqbf72t5edm87MTIXq+npaWlqfFY9L3wXPxhBxQh4CAKa1TWxcVFi8EUBZAQH+V124PTSCRicwwPDg5UrYb1B3/wOT344JbuvfeCfvVX35j6+eEwoGvXVvSd79yvra28wuGBydOhUMg2F54xwGav17MjAUulki0CPDTr6+u2AAnSLDy6rdnM3twNkPW+DUlW4eH1uXbtmp0iQkCenZ3ViRMntLm5OcWeJpNJNZtNpVIpDQYDSyBIp94Pih/MswxsOoAb1yFN5uvRbEZzjZdGqIIBsDDBBHPflQyo4V5eu3ZNBwcHymazBvTwCLJZ5z/+onJzCwomxvJB5qFPKLN2QqORtP2n/07JaFiHP3lFi6ef0trf+Ifae/2biswmNPfEZ3WweUVXvvUVrRby5s8ikDJmhkAH6IBt9hI/4IVAjERIgENu5PkTzLgXzWZTly7N6p57inr55XVJMoP+u+++q42NDesG5phaPisen9WJE9e1s7NkYz0A+yTJY8eOGSOBKZ6KH2CHvAorQzGQyWQsAXU6HS0vLysYDBoYZXCzJANgVNncs8XFRRuOLsmKN7qOYaIIfAQ//snn88a8w6D5jtD9/X0bGcX4M4BxvV63QtOvO4os1i/suGcf6BQmYdEo5n3SgFTkWPzcNBdxj2BbAP2AUsaisRZIyF7aDIcDCoWiyufzVizjTcfe0+12dePGDZvvC3MRDo8Hi9dqVbXbXStY8OLxnGHeeI6AH5/wvV8YpgW5nNmQsINIv96rSiMTzyIajVr3L0U7UidsViKRMOtAODyedkIDD2tncXHR5FkmbczNzWkwGFj8onOcvQE7RqEDKMUKgt0FcEYsZlYuPrxarWZAkLjtYyX+wsPDQ+3s7Nj4KBhaYmW9XrfngDeXggymEssBxQ6s3+zsrE3ewF7EoRU0pXrZGU86DY+AQ9ahPyVQmhw0AWPn1S7G+dEIR/ELgw3IZj3gJ5YmM3PZT4AaGEHUPaajwCKi5DFSkZ8bDsenD+J1pAjynnP+jmdGXEFhpAGWnOafIXuDwoYcx1rGQ86YRywjzCLlQAQKFvabNLErYJPgmfMZKAQoAeRs9h9rE9ZyeXl5aiSj95bzDCm0wTjeH05+GRfHY5XCe03JfcVi0XoY4vG4eY6JpSggP+1124NTb3CWxlX1wUFX77xzly5cuF+zs1eUTnc0MxPQwYG0tbWo2dljN4PhgQKBsWyP94fqEAaEhMroDZINsxCp1PDXeflCGgevpaUlWxDSmCEk+UGfI8EQMNkYBHBpHNypIjudjp2sQ9BlUULt04UJa4kkSlBfWloyZhepFWmPn4GJAGhyP/zIC1jSer0+1dxElbi/v29NVwRYjpDlvrEpms2m6vW6Ll++bJUYrCbAJfPM5xVN5ewezz3whP339g9fVqdzoH6rpXP/5H+vO770Hyj96S9r1O+r+d5PdPH3/6lCGgNoP4ibSpVzymlaoPLGxM/zoVKWZKwiXbwc1YqXjsQTDoe1t7enSqWivb09nTmzrMcee1f33tvSm2+2zSYQCAS0vb1t3ZvSZCxTIBBQobCjhYU9vfrqx0yq95L26uqqVeJUsTQOzczMmExIMILBQm4jOFPp3xqsKSwIwLA6kiyp87skYtgFEnQmk1E2m5UkA1xcE9IR43sAvARh9orfE+Fw2Nbz1taWJWvAMwVCPB43/zagyscSWA6+L3vLe88A+iQCn9QkGajB++oVhoWFBWOLWft0NQPUxirQrBYXx6CaE9XS6bQuXLigr371q3riiSd048YNnTlzZmqaxLiZraVuN6RabVehUMwAj5/BWq1WVSwWrSgHZPFegM1wODzlLWSdsBe5T549hcHCj0ksIW4hx8NUAoQ8+MePSLwE5PLcpTFYZ3ySnzoAkMb/RvzzvtFcLjfFRgFiqtWqAWDkV1Qnvjt7i6KuXC5bJz37HosAthh82ayRZrNpxScNT1hA2LfERBpKAalMYvGFHZYQvgv7p1AomLfRF3HhcNgKwGKxaDGE/IdtiT0Jk+jBo/eoA+opVubm5qywYm/DqnMfAafeM0kRwfxaGOJer6d0Om2504P1cDg8FcNhl7k/2Bq8MsrPh0IhG7tFLODZ+kY8Yg65wNtlsMSAEVjbqHzdbtea/QD8KBHdblfz8/NKp9NWcLPGwuGwTUEhF1Kcb29v/zkvLb76/f19NZvNqePTOUWM+0VB49UM8Aig3xfkYBeeHTiB98LW4r37P+1124NTDPSwAt4T0+32dO1aSIlE1qQqjgGEpqdSz2Qy1gHJQ6Wr2QcAfleSedS8zAEIYXg5AGfcZT1ONreOdSKwY8JGDpf056pJfpf3h4mikgmFQnZ2N99PkjWiIPkDlJCcMeNLspE8fg4fsiFVpyQDEZjPGfPE/QGkEmy9FxMGwMt+BDs+A+BTrVbtumKxmK78k/+dPXvmOK6srGg4HKqxva1yuWyM+nv/9D+164vFYgp22zYax1fAsF3lctlkevyYFBaTQxsmyY8j9GAzCL6+cvcSoCRjgSuVgqrVRX3609d0+fID2t09NHtHLBazSpznPg5ee3rssbdVrc7pvfdC6vXG8jc+Le6TZzb5c/xgFBAUG5VKxY6RpRLHCuK7MAGhNJzAXOKNQoqlSYfniz+NfURypxDwNhECYqczPlTCnw/O73kvG0oEFgrvC6dRkMTNfmVtIyn6ZwNDwrPtdDq2R7AqEJgBbDQxSjK1wnfeIps2Go2pbnLWXbFYNGaKhpbNzTWdOvWe9veXdXDQMvbk8PBQ3/3ud/Xaa6+p0+moUqlYoRcKhdRo1PXgg1u6dClrcSWTyRgwlWTe2N3dXe3t7Wl2dlaFQsGY2UgkYl591jPPnrWBf5TvBlDnWfv9QqykG1uaHCXrmW0kdxhlYgAsMesFphulyM/N9XE1FApZvOGEILzr0nh8Dp/HdQJSAC80gPK9WCMweaPRyCwFyL18NooesXBxcdHGr7Gu8RTCGqNisbaIu97HiaLBNXDt3BtfNLJ3Dw8Pp453JTb7BiXWfaFQUL1et+fNdweAUmxTMLPXua9cL3sQm5QfX8ce975y3gvw6Pek98Hu7u5OKVvcC2IR68hPZGC/AoL5LH6e66bPAvYacOvjOUWyb9bk3jEKitjNfeA7owBhU6GBjzXGvSMvoah44gLljsMrKCgeeOABzc3N6bXXXlOxWDR7AXYN9irrkUKdgx+wSng2HIANSRGNRq0xGgWOuESRSHH+0163PTjd39836aNWq1nygK2AnSN40LFL5c/PvPjii1pbW9Mrr7yiYrFox1IyGoTAQXXnPYvhcNgaLkg8BwcHikbHp8B0u12TTSRZJ50kS7QEeG8vIPFx/i8bMplMmqTjJQv8lgBpNibghMqY2XQwQyxeEhFzCGFdYTphCDKZjEm/VFt0j7KoeU+kbu6lT+gEBZ+o/axCQIEHeAQJOl1hzEm4jUZD9XpdyWTSrpEADPCB7WDwPEEAJhz/JoCDRhb+IUFLMvAFgyzJGHcsIjBABMz7Hn9GuRe/rPm7Tum9RFKzw6v6wj/4d/q9//wPdLB/YNfkm2TGbMdQf/kvv6l8fl9/9EdPa25uXqHQobEbBBACG0Z8gC5/xz2igQbJErDq1wOjbgB/fEfkQUmWNKnC+e9ms2kKA9ItiQSQPxqNLDDy/hj9YQxQNryEj9yEFM410Y1MskQ2JGDCCCOXIe2TbFhHSKysUyQ2EjHMJwCYznGYJAAcdoaZmRljigHGFBE0pLCno9Go3nvvDj388Dl97GN1vfHGujF9rN/t7e2pbl0A/oMP9pTNtvXKK6eUTI4LFJ4JgAOJkf2PPMffwaQCyGEXfbw4ODgwTzosFfsYqRPWmT0PaCNJYh0CfMKUsaeZ4enldmIdvkLuCfsQNhPPLPGZ2F8sFg2sUSzBclGgc22j0chYOlhUjiflfnB/w+Hw1H7zvkd+HjDqwTCFOfdldnbWpp3wXCWZvQugCKimoOQeEjco2uhKR5FAAiduw8gFApMZrgBarpEiEfBHDPB2Iv6f+3nrXoN5ZL0D6ok5gGxiMMAaKwlNq1y7t/nAPDPpgpzFOva5nNzkZ7Pyu4BKACtKjyQD+xR8XCPMtydYyLe+ORJljV4OjpCFWcVOhMea+0meRpr39gf2HGD13LlzNmVBktkV2BMUBoB3/N0oHp7xZL0Sz4g7/X7fTvViz0my7wXY/Siv2x6cskAxX9MMwQPG04gHStKUYZsFj0zBAwMoDQbjWaf5fN4WBoBQkgUxpAhYSHxGCwsLBgZ8xc2CgCFl07FhGbmCTMMCxc8KG1itVs0Lyew5zm8mAPO9BoOBnansRwAh25FIZmZm7DQnqnjYCfxidMcTwPgZ3iOVSqnb7Zpki2yIR4pKsVQqGdBkY1GR4gmisuTeIitQMHA/uCaM2r4bdnwU5BiM1mo1m59IkYDchc+Lytkb9Lm+W5sUJNl6Yc14RgHQGAwGFV1c0l3/2/+LeoctbX773yrQ76jw4AnNPvgP9Nf/n6d06Xf+ji5e7CgWyziLRkerqx/qpZfe0/z8gf7Vv7pbR0erikQmCULS1JokOA8GgymGzAMSAAprA9nfd5f6QxakyTiiubm5qSYMAiD3Q9JUoicZUrHzbBiO7xMClhFAbyQS0fr6uqLRqKrVqpn38ZkfHBxoaWnJGgAk2X6UZGAXj3QoNO4EZ534CRPIzKxxmAYAD8mMROWnPQBSiDuAXpIB78OaQxEA8Pni4tKlpj74IKcXXthQIPCUDg/nLWaQEH0cGDPJR3rhhfdUqSR18eKMpDG7XSqVprqO+e5Iinj1YJ4pdFjLFIyMTWN9UxDjaQdIkoSbzabF5tFopDvuuMOuHyDB+3nmFfaMWEWhRZHP+iCmsH5ZE+w91hPAr1AoKJ1Oa3Nzc6qhiGcSiUTsmtgfAHbAogdfeHl5/vQV+HFPrC9UFa6Ffcc+wLJAocl6YQqBZwwpkHu98cEj7DPAP01Xo9HImqcYJk/+8/5jYjEq4M7Oju0Bbw3zJwUB2sk1xDca1VijEBLe30rDJjECEA5A4vr4eWk83g15ns8klpHjAGk0EdEI5T2jgCquB/KEddPpjA/w8euW66cQyGazhjuwlvD9KeyJPTw771UFc2AJarfb5mMGD5BbKbzYi95O5JVNaTIiTpoQBtznmZmZqWKJXIUXHfvVrcUoqjDXxrMJhSbTKLyaSs78KK/bHpwSTKmSWJSwHDBP+/v72tnZmaomCATdbldf/epXFQwGLWEgIeDB8F21BIZer6dSqWQVIpUhsgBSlmd4MM7Tsdrv960pBwqe78AwdzYqm37x5pncs7OzSqfTljjxthJYqchYbARLTO74SNioVOlscLy0SNiMo6pWqzY3D4kX0DYajazRgiRVqVRsUsHh4fgc8nQ6rbW1NWOmAEdsCDYxA9iRQHzghl2l6WgwGNhRowQDqljAKgEQ/1K5XDZmDfDBsbBe0qZCr9frJsHC9gCMvOfp6OjIGmGOHz9uXt3UY59UaDapt/6vf0/b75+VJF39ZlIf/zsh6eEv6Od/4Vc1ONpWsZhTpxNSJNLT6mpN0WhXV69m9c1vPqZeb0XhcMA+D+CH9Hd0dKRisShpPG6GdeNH6lD0ULlTuJEESdbskVarZYwVnc88J89UAvi9pQHZUpJV7ygMXBuSVbvdtrUF4MDbjBeK64RRpckF73OtVrNCjsBNExUeVprPPKsNcBsOx5MrhsOhMaiwyMQN1jv2AgooWDASHSPUYM8YISSNpTA69AHa+BQHg4F++MOPa23tz/TMM1/RN77xadVqIZP4SFTcp0RioM9+9sdaWDjU7//+s4rFIrYfmVELSEqlUtYUBTjzjRYMNJdkjFmr1TK1gfvlY64HjqzJ4XBoawZwKI0VHNYeBRC/RzymaYdnymB3RlmRPGlO8wwPDDunQPH8A4GAMfHEG0gBWDQSv5dUPdOUzWatgKjVasbW+7xDsoZFJX7zeShk/B0FH88CeZTYzu9S/GMd41lQoOIRpZAIBoNm5WEsFjYBgNKtrJg/rME3XRE/Z2Zm/lzzF0QB64JYArOPJA0QY88lEgmdPHlSweCk6RMvLt/71jy5vLxsQJN1SdwAmLH2UE/xSLN3KYhQfrgeihQ/nYPvzPdDyuaZ4XnGksfUD/YwthLPorLXYWABkP5wBuIrnk8mkqysrFhRRoFGTCVfEa9ZX8QK7AjkfZQL+i7Y89wr7rtnUHnueG/BJbHY5AQ97wv/i163PTil+gMUUb3ACBLcGBHCZltYWNDy8rJJ6M1mU8Vi0STvxcVF62RHwsSbWiwWLYB4Q3QymbSFxkDpaDSq1dVVLS0tqVgs2qYCvMJMEnB81ymBEpN1vV63BUBABmRS4VSrVcViMR07dkwLCwtaX1+3MTseWPMimDECJRqNqlgs2mB3vxEJhsh2VHVUiZKsmgTEwcZIspOmAoGAnQyEfMR3J6BQ8VONc2oRzIH3ptJpDSPmqzmCP8wYCRCJzs9kBGjQaev9mrwAHjBrTFoAYLHxObwAthW5JzI7vodHzaoF3kgkor3SnuaGA/0Pv/OkHjt9Vfn8gebn2+r1Irpw4S6dO3dcly+Pi5+lpYhVwNwPrg2gTUBiDbNOvd9qa2vLjvb09wkA4OVNLzX5U8b4XUCGB6H8PtcKoKlWq9YxD/ijmMDvGAgErDBBosXXzRG/AA72C+doY/fg+bE/kMCIBRQ0+KTYuwBYgCZjvjjWl+NZAZq8P4F/MBjYAQWsYzqzYSFggPDFoVy0Wi0DNVJK3/jGS/rMZ76pL37xa/rgg2P60Y9yqlbn7F6n0309/vhVPfLIlgKBkf7gDz6uSiWp2dmgHQ7C5zGnk8IBb7z3u/EduTb2bSwWs9FcTBuAXWVaB38GcGTcFMUQjTk0h6FGsD6498QlrCfYdQC50mSWKXuez8ZawP2h0YMYgo2FQgrvZKlUUqPRsDjM9XBv/GxeGkgoJnwhxxQV1DkKGdYS9531Duik4AUYwuQFg0EDmpAl7XZbhULB2HBvzfDWE/YwREW73baCljgN0UGuwSfJrGksIABg4gEgDX8wDU88B3//8d6yBmiQTaVSWl1dneqkxxeOIkbB1+/3DSDjZYZE4ThwX4QTn2DyhsOhTTDAn+39vMQgiAuwBZ+L/Yf3AQBTZLBmUQ8CgYAN+ffqBEUwuaLZbJodwDcTkxuIDQBSwDU2BFhY7jusPPme+MOaAGhi3+L5AlJ5tlgYpYnET6yjsMVWgpKM5bDRaPz/B2zudduDU4ze0NhseioGjuKiwQG5tlarWbMJGw22BUmJRSBNxrgQnBibQSKEVeWh+m5gHigbhcXk/YT1et1kErox8a5REVerVWO5qGaptliofDYbkY2A74hNRjBeWlqyoymlSWcsgPFWw3u32zUzP4kD1pGuVt8E4yssFjlyU7vdtq7048ePmwzEs0QihAEejUbKZrNaXFy0ewSzy39z3bCXbBwqaPxLsBgEcapCvwmXlpZMNkbGATghAYZCIauCAdOsA+QYvG/JZFLdzYuSPq+7f/k/0vt/8M8U63d04uPPqfDcF3T9m3+oanGo144e1vz8vD3HTqejbHZRJ07krTIGmMIkrq2t2b0CFKXTaZOgJdmwaNgdL0cjiRHM8I0ic0sTuwBgB7+gZ1xQADKZjJ1JTvCGkZL+f+z9d5Ss53XeiT6Vq2NVV+xw+iQABzkQBAkSBMBo5ihaFkRJVpiRONZIuhzb8pU9khUsjWxfDYcW7UWPZGlESaQkmlaWSII5gACInNPBiZ0qV3V3deWq+0ed365dhzMitJbW8l3nqtbCAnBOd9VX3/e+ez/7eZ6934n/FmaB7wJo29vbs2q+0WjogQcesMofltIHSQDsaDSy5FKtVlUoFGyPsL8I7PjAAdcAIy8D8oxZF/giOf6PmOGZe5IM8mU+n1cmkzFwB4sRiUTs4Axe9XrdEut4P8zpT//0Tbrhhhd01VUndf31p1Svz6jTiSgY7Cid7qjTCenBB1P65jfX1G7HFYl0rEjyXeMwK7DqsDM8Y06uITECMPC4QwKgdAyHQ7MVUdBIMkYOxtyzf8RdEhlAjeISeRB5ulQqGagm+SaTSZN02evNZnOqIEXG9KyspKnCH0DQ6XR0+vRpVSoVYwIlmZXAy8cXe+xg+1AkAA/EZOIy6x6lAbsFewF1CuALaAeo4Bv3Ejj3DqUMxq7b7RrLz2ld7GcsE6xxYhvXSn4B2BEvuS4KfG8hIp9yv5gGAvDjEBHIGOII392TM9JEtSRuDIdDA6D0WcAG+/F9FMJYmTyYJZ+QtyAj8MWz/7H4wQRiC/HSOZa7paUlpdNpm3iA/I9FjdiPjz4ej6tWqykcDiuVSikejxtQx04ljQsivMDEKW+DGY1GpmiwL/hz4hwFEvnQq43EM/It+QJ8QtFEXCQXcq9Y38whpiBNp9NWyL2U1yUPTldXV02yoLLk5gGcYEmo7Ojc8+OcqCiopPGGwkqxwela9NUeAIXf489IaIVCwRIYVQmsKp4kKiuCGEke2QyWgoQMoJBkwYqRFMgRnJPuG05gmiTZe8FIMbiahQnQZrHRLELjE4Z67i+JG3AHA4Bh3ssMsJMAZ4zs0WhUmUzGAkUsFrPrhfFEeoYtYJNwL+bn563JJ5FIGDtB8mV9EES9fMJ6WFxcVDqdVqlUsi5tGCSKhkgkYuARbywFCeOcaEIhSHWff1StP/8dHXrLXXrdy++0dVz88h+r8vk/sJNzer2enTBG5QuDDjtXq9VUr9eVzWZtfQYCAQv0BAqvJFAhYwPAh+u9mgAtgrl/prBUrA2Swf7+vuLxuPL5vD1HQI4kYyBg4/k81iRriUYnWEwkMBIorCXvyffm90laBGMAayaTsWZDJL+5uTkDYCRWPNHhcNhUFz9jFqkUm4mfd5lIJEzCheHjPvLs8GbyD88aqZi1ShIdg7WoHn74Rn3mMxldcUVRJ05I8fhAjUZH998/q0cfXVK93rnwnRvWwUsTmy+WKQA8W8Pz5b6QyAFVFJKAPhI14Bz1JpvN2nGnxANkXNh7QJ4vsACYJFh8ilwrjWf8npfFIQ98xz5gCgndW3zY6/wuXsK1tTUrpnn+fG8KdxpKAYh4uAF1xCyAC8CUxkz2IywmEj3AhGKo3+/bepVkg/JhtWGeif+AexhYTmUj7rMGAfMUqVgPpLGkjB2L0YIU1RA4rFGai1gPPCe8nigtgBxfnAwGAyvepHEx5r2iMK0Mel9YWJiKWVgWvE8a4M29JT763wkEAspms8ZC+yk2viAE2LIO+I6AOexNvneEMVwU3KwdimCUChqkYdexivlmL9ZMLDYeQemfX71eV6lUUq/XMzYX4Il6Aw5B0eP9vD2Q3AxW6nQ6ZiGk94LihVhPfIRgIG4y1YN9xbN+Ka9LHpwiP5DMYBwk2cB5FhvsITIFniaqK2n84Lx0DtCTZKeE4P/gYSaTSVs4oVDIpGs8jABORhgNh0Ntbm5aMIEZAHggB+HnpJq//PLLVSwWbfwGAIZFR0DBt0mQ5fpZYMvLy2bq5r4RGAhaDDqGmWIEF1WoZ2MACz4ZAXL8HEUaOAADPAMCNCwVwIWKjEoSEM/RiXhlYCsA23hpuPcEyv39fR0cHOjMmTN2yg3BgoY6WGqsCnNzczb82x8IcOWVV1qC9WAJ9nQwGNjz5rQigMmwVtTuySe0+9T9OqhXtHLzHcq+7r0KdJraf/jLarfb2tjY0N7enlKplBU03W7X5pUSDLh/nU7H7gsd1OwFCgyeDWwnZn1ACOCaIgl/HR5Bvz8884ydgP9GOgyFQvbMYV0IpiQ3GACeH/7CdrutbDZr8ileXs6rlqYbwNi/TO7o9cYny6RSKbtX+FYlGcOB4gEgPjg4sORNYQQgpSGFmYaxWMw8pSQw39RVr9e/bQYqNgO6r4k9sCPeUsKLdTUzs6DTp+NqNFImd44l2KEymaF5PLkn/hAM9gDfh45xEnAikbAikUaYRCKhfD5vzxGWjGtiwgVs7MLCgj1Xvi/PlgJ6MBhYYw6yMgBnf3/fGlsgChYXF5XNZq3JJxqNWpHsG9oAjMilgI1oNGoMPrYuCkjYQYplTtQDYDUajSlg4RtaKb4AlPgHPZBlbfF5ADPmH3t71OLiogF71ghFPdcCKBmNRnYcLAUPag1rGNBWq9WmOshhTwFu3DN/WMHKyoo2NjamTgH0wJnik3js7z/PHRYOiR0m0zdAocYhAzNJAD83e5QDF0ql0pS3nhjGdwfgIU2zXikiAHvYUJIXTkfDIuJ7LmggXVtbs94EvjtY4uDgwGbFUgz7tc4e9PN+JRkrzihI/MoU1dHoeC7py172MuXzeQObpVJJX/3qV7Wzs2MxAzYfgEoOgChjvBmAGLILpp5r4R4SOxhph7JCscve9jYIP07OF3Pf6XXJg9NarWZyM5JjoVCYkvGRR2im8eOHJJlMBFP0spe9THNzc3riiSe0vb091bDDw6Ui4nPb7fbUMWh0yPd6PZuhykal6mPz8jAJrDC0BAWCFUESlgODOUOekVy85EFzFgEL/ykMCdfJvZQmnff+/HmYEUkmh8IS+ONN/cgLgCTXzPBh5HVJBp7xCgKYvBwsycAO1T9gE3AIS4eMxOb3XZZYGpC+SYTM4APkSrKRItwP2A4CKsAD9ghQG4mMhyBzmhdBiyaC6BUv07G7fkqP/vKPKtofs/kvPvewLgsGlX7Dd2v/qfvUu9BYMhiMR16RPEhEyO2HDx+2YIbPFp8Z7AqMEiDBJymKj0AgoEOHDml2dtYGiHvg6e/Vzs6O+bKCwaBKpdLU5/vnRSKlKMJPBRAFLLCuAbz4u3O5nBqNhqrVqlloSKLsP4oggjWArdPpKJVKWUNYqVTSzs6OBeSDgwPr+u10Ojbqir1HgwHPn8YOJFYOhsA3SwEIQMFn6P16TDjgVCPsSJLMgkEBjdTY7/etAIPlb7VatmZ9Mw4zd5naAfNBMoFRBAAhsxNzeN7Ly8sGzhcXF42RYk3BCAGwYbvx/NKYyXfjnlAEEaOILcQkPIC+GYtnhGyO3QNQFwxOpmswQxRggLxNVzReRhL54ombtHjNKxSIz6nf76m/v6vm0/eru3XKAJCXesklFLJI/jzvpaUli5HEK747zxO2zB/FijQ7GAxUrVaNnAiFJvNZiW2+mxuwgyRbr9ctj/DZrGHWOeqK/7t+v6/NzU3zrjI3mpgXjUatsZacxLojt/oYA5Pq/eD8GfuYe4IC6ZuU+XNvueK5+TFNfqIALGI0Oh6ViJICQ4mKwD2ArfVNZpBcKEzSdLc99xulUJrM9KaJ1hM15HhIBoowH9e9HJ9IJEyhO3r0qI4fP661tTUjgJgY9LWvfU3nz5+3fQtIn5mZUTab1cHB+BQzrDMAdwggb7chXxM3IXR8YzJ7FsWQ/M138TjG79/v9LrkwSnd9QALf8TWwcGBlpaWlMlkrDLwAYbFHQwGp07NKZVKlqS8VASjgT+VB9Nut22QdavVMvmIzU01xwMFBCNvkNj9kYp7e3tKJBLWFU4SBwxLMtaMBQq9DtsHMCIQkSwBdgRraXJq1WAwNtBjjE+n03aazHA4VCqVsoqK5EODEAtX0pRfiGAAMEU6wJhNQEAWRT4Nh8PmUcMLd+jQIQMHg8FAq6urkmSVIHI+iQlTO7IewQt5jKCYy+U0GAymChieMRIHchUVLkEXwMO9np2dtdEgdCmTyDOve4+6hXOaCwzVk2zjFx/+upZufp2qo6ga5bI1MeB1BUiwtrx0BUu4trZmvmSAIn7nRCJhzUu1Wk1nz561az84OFC9XrfmKX8PsAjEYjFjBFn3/AxJh8kZnq1fWVlRo9GwI3Y7nUl3M35SGDNpYrlhX9C8AmsBmIL5gvGjuJEmxZNnC2KxmI16g0WFhWs0GuZlJsCGw2GTrCiWAKYkPhjx3d1dK9KwOLAe2dMADphR1Ak6fBOJhLLZrCUKRucAgthf+NhgXPBtUiCTsChiuOesI8AE34O9L01mLiM10sxHsxieXdasX2cUGlyTJGNnkey9VQGfJQoNBTPxlQHhsHJYrPACotxcDMqQV31c9J7V5sGB0re+Retv/C7FsqvqVnbUrhYUGgy1cPQqLd/5LrW2z+jg4S+p9vBX1el0ppqxLm5ew2/LPYCNxxOKFIqCQAELw0+hBgsGYAE00dhCTFxdXTX1gEKDItkXPL63gb3EffENlMR8ChBOL+M7oNxBCnhQ68F7JDI58Ywiz8+79fvR++KbzaYNroeVo7+A78b9ocjiuXJUKDkdthrwyB6heEP5CAQCVvTCDP7fAWDWPmtveXnZ9qLPCcQ/yCVyPJ8DeKRAu7hfgGdAIc93hkQDh1Dw0JQdCoXsyFr8+TREeesG95siglwM7iCeMlvd5zwsAIySoqhACYPRhpSjIfmlvC55cNrpjIfr53I5nThxQkeOHNHDDz+sJ554whY3nX104cOSUZmzsKimNjc3VS6XbVHSzQ2oo4oA7PgHDjsCyCNJ4OOhOkomk1pZWbEN5rsNSTgkCCp9FhR+R39yExvD+28lmZcE1sdLnDT7EPypGAlO7XZb29vbVm0RMPkeeBWRo0i2TEGAtaNTFhmdjmEkT5gnkivfmeAI+OO+eG8Yz0WaDMQn2RJkvNUAzxwBwlf9JDYqaqp+EhsAH6Yik8kYqOJaqTT90HlM59FoVJH5pEbdlv0Oz3R3f+zrbR60rOKHYcpkMpIm59NTSEkygMraYU9IslE0FC74q7znzzM7qdRELvZrm4AF0760tGTfD7mMJiTG6xDAeOF7JGFTRFF49ft9k+BpNGA+6aFDh6aKMyp1z/YRlL1qga8UYLS+vj6lQnAPuY/4GL1sx+egIrA2URnweGUyGZtnjIcMTyrAmj3A9TKGhmBOgkA14LoBpbzY67DxvD/+WP4fsIAtRZIVaQA/mGySUa/X09bWljqdjsUCJNyFhQU7I52RcjREwbQwt5ZnivTLWeysPWam4sVmFBvMGSwaccjPqAZgcd9Y+yRhLCxeUWk0GgrH4rrs+/+Zcjffqeqj39D2n/+mmqefUaVSGd+DcFipa27R2uveo/Q7fkRzR65S8M//i8m2/kAFngFjAFEieG6ASQA8zwkwxN83m02dO3fOfheFBECJhYZ7g73CF/y8FydAeWBJLCB+wXyzDmZnZ62hiwk1KIMeMEnjIgbLGusLyxyAXdJUkyONdOThZrNpB+VAzvAs2SPVatXiOn0TWE6IPewDTxRBlsAGsie8NY/9TYGGAsmccA+8U6mU+d1Zp9Fo1PYs10Ge4f34fMA0KmitVrMcBBESi8VsbjP2uUAgoBdffNEagWnMKpVK2tzcVLFYNOIll8uZUucny8BiM+WE/caz8/sJjzQqADmXNVir1Uwl8kWht9/hxybXvJTXJQ9OV1ZWdN111+ntb3+7LrvsMkWjUV1++eXa3d21Re4rDyq6+fl5k6FmZmbs7FmGC8Ms+q5LNjp/Pjs7OzVcPxQKWZL2MxBZCJFIxPx0vC+0u+/GIwiEQiGrIvFiwugAjuv1ura3t5VOp7W0tKSVlRUDjNL0CUaY9PEqkZiouAjCsDz9/ripCnN2PB6fYgQJSPhoOU95bW3NTOKwSjBuHC/pN0osNh4xUi6XlUqlbFMg23PPqcpIUGwyQDkyCv6maDRqHe/+JDGkJd8FOxwOzVMKSAdkwDQQoGjKAfhQxdPUwP2ORCImr7CGho2SIutXajS/pNrGhiWlK1/5Rg0HAw0q21pKLU3NPIQRpEkL+4P3eXp5CVYTACTJAiDyUTwe187OjgUTGu4otDKZzJQFwwM6ghPAjVmKgUDA1hD7gWKOZjuKHNb0xU1pgKBgMGjNZDS2eW8XbDosLIGZKRWcCATIR1bnWFqYFc8GklxQXGhIY4/ShIBn1rORFDH4rL0PmWfDzGPUnNFoZM+33+9rZ2fHYgYsC/EKdgsQQeJG7iZ5IxnD4sF4ocBIE1WDBp1AIKDl5WVbr54dRFkC+HtWluJJksU9aTL7kc+gCOL502BJseMLO/+cvVUFGdd7CekXIC7C3FIcMQe32+0qFA7riu//Z0rdeJte/Pi/1f6zD5nyBDgaDofafe4R9c8/p9Qtb9DKe35Uqea+Sn/w6wY+Yc15wUxDEFCMAAB9AxJJHsIDYLq3t2feSq/Wwehx37ynkHsLMAMQoGjhUwSMASQAtMQkYqefGMHzB5xiZfPABfIBAqfTmYwTQqXg91mjksw7DBnC+mCdAvy955oOfYC/b+bx49v4DEAw68RfNzEKdQSWX5KRCrCaMzMzpoLh84WpxAfM9/UTEmBruUYKcggh9iF+UNb4zMyMvud7vkf5fF5/8id/oqefflovvviiWTnYN0j4WNf4fwoA8iCqBIywb4ZENeQaIR8gImC5yd3kfX9/aJr0BAfg/KW8LnlwGo1Gdc011+iqq66yQHn48GEdOXLE5vyxScZnk48bRlZWVmwjSOMTKAgcNEDs7++bVAeDiHxItyeJC5aIIOHZNqozqigYIUZTAXxJAkhCVHilUsm6JqUxGwp7iLwDQ4fs4hudgsGgeYe8VysejxtII2H7hiJ8l3TswhpRPXEkWzwenwID+KtIrisrK1pZWZE0GYbvkw5+KqRG2ExpcgY3Xeye6WSzwfDhVfRgnqBJsIO14rtSAVLtcg9pjmDubb/ftw27urpqAQ9wyAgt35RFEkLqjEajqn3zr5W762pd9sF/o5mv/JmatbKyN96m3E236cwX/0RzwfF7VioVAwCsp/n5eS0vL9u1AIBg0pHke73xqSUwQnNzc3Y8HomSTt6zZ8/acyLJc5ymJDuLHJaOYoR7C7Dc2Niwdc7sREbl8FxpsJJkI6FYk41GQ7VazZgDmDcSHmufonF+ft6SgST77iQ8fK4kKfYFcjRgA4XDy+Ge3fUeMq9aIPNKMmYPaR7WwYN7Ci7fVEFxgR0GEOn3CHsYWwYeewAVMQbQgf+O5EmyxB5RLBYtOcP4kZBIMrC1FB8A5Hq9brNHuYZ8Pm+gFcaNU7xQI/Drol4Rk5EdKaQWFhaUyWTMZrK/v69kMmnJnntI8uPZoIKQxCm0AZySlLnpdmVveZ3O/+H/ocDm89aYQ0yGRKCptHr3p9XuD3T8u39c0a//tfaeecSYdGnilUfN6Xa7djoSViMf07GU0XyJHJ1KpYz1p0GXZwlYo4AE4BB/WfM0orE/ffMYa6Pb7Rro29zcNPtbq9UyxpxYUalUpgoRCkoaaGFNeRb8HM1x5BjeE5JDmkzYgETguohpsIne30xupYAEYAHCvP2Ae8C+gvhgXVOcEvsZCVcul6dAFc+A50NMRxlbWFiwnEnu4llxP7j3KJRc6/z8vDWteqIqHo/riiuusEKgVCpZLgsEAt82VxdGFnKFyQfkThrY+G+udXd314gOyCrAKhYy//PcO2msUmBrIz6g8qI2/z04vfCiciYISZNgTkCk0xbQBYPITaQTu9lsGivBezcaDTP7cxIGDAYVBvNSAYKS7NxcNj/eNZIxUhMBmwoQ5gRgSHMKlS3+G5iobDarfr+vUqmkg4MD1Wo1YwfD4bAtaL4zG5kgC3sKeOJYT6pMpEWYD2YeAgpgwUjIzWZT1WrVpHwWMnIgxnrsCCQdQA7scrfbNfYO7yHBCE8uY8IA176jdTAYGJtJ13G73bYh54AWGAAsFMvLyxZUfRDzwRtgQ1LDVwWb6ZsuYHvpNF2oVNSo/ivl3vjdWn3duxWeXVC3WtT2Zz+p/Xv+QuFw2EabEBBYM4zYgaFBTkHCpDuU5+EB6eLiot0fkh3sCDJTt9s16QYQynonuRCIkCrxKR0cHFhBBKvtPVl4wtiPMHOsSxgY1r80BrVMZYBBbzQaVihx6hj7DMlYmvigSWgUVt4zS8FCMeUtAbDhJF1sJrAeJD9sKIAj3+EMo1QqlYxtZQYsYB+5jyNFfSMOqgVMspcMuSfValX1el3pdNrWBeoKCYbvi0/MF7JYGQaDgT0XLB3e9gKwgdElaVJg+8MvAOQU2Z1Ox+Ig69Rbd2D78E3ilYUdnpubs4YW2EveG+sA64x1SQMKheza69+jvVNPq/roPRb7Ae6rq6tKpVLa3t7W008/rUKhoFarpdI3P6O1171Xx9783dp78Sn7THoMaB6hCAQwIKXOzs5aQYE6RvHF9+YwEu8NZK9wKhZxFyUBTzN/zvtAvkgTaw/MoWdwvcfUxzDAFUCNnICFg3wB8+Z/j7jH/aGJMR6Pm18ZoodCmz0HAQF7jmXIExd89nA4tH4DBvnzmR4A+3iyv79vCgBrGeaa8YHEILzs/DeMs7drEDOIt8RBD/IB/mABSeaXB2yybmEw2+22PvGJT2g4HOr8+fP2uyi5TMIA1ALaW62W+T5Z1+x1FBUke8Zgodp4GyA/C9CnQPCNkZBrxHEIPnzSxIKX8rrkweni4qJyuZwtsna7rfvuu0/PPvusSXL+BnqvTigUMlM+Gz4SiZjUdvjwYVsQdKSTcFkgxWLRxlUADPb39636JOEAOL3UTyDAp4WHxQ8W9+BCmiRSPxduaWnJGouQvvz8t7m58ZGqgCzfZAFQAZBwmgUVLEmKTXGxbQEQzn2DccYUTzBho8JGAzwAyvw+R37CSsHaSJMOc3xXvmiAEcXPxUZC4oxGo6pWq1OgkvdlpAdNPRQoNLVwHQTg7e1tk/cAwhQ0koxBxHNKk93+/r6y2awy3a4CtV+39cc6XZyf156TWjGily80SMGMefmG38dTjO8R9g2AyhgVninPggkLsVhMhw4dssYW9lYkMj5GkSIE1WF7e9smWQDQpPHge4Cvt7nwrAAGAEnWH4kT1tMzwb6SBwSzn5AvSTaeIeG7wlbCEPBMSY4US9K4sKWpDHBJ4qGZCVUEdYMCizFffrC2v3bWEwATK4yPPexJEitAws8VpOADgGBrIHHy/v4ewjrGYjF75rx817D3v/t452MAIJRE72MqL6RVzx4CSv0oM6RYYhNxESsDHkRiHPYb7hH3kWcIWwo4bTabml89qvnj12nr0/9R/X5f29vbWlpa0lVXXaX3ve99OnHihIHKL37xi3aU9ezMjHYf/pIyb/pe5Y8c1/Bgz2xAFO3RaHRKaSA++5jK/eZaiSdM3cB+472eFAMQFLCKPGfen2IZpcgXXhTqqDf+Zyg+8ZkTw7z1ijXC/WWtQKQAUFmPNBhR5LCWUUni8bhKpZLFXUBht9s1kIltamZmRtVq1e4poJr3Xlpast+BOWdtA+i4x6xTRp5RQNIcS+wiTsFYUwDix6YYwVrBveD++OfFfSePcu9o/ON7wIATwwqFgq1hcgBxgrVHseOLTIo+YiqFC6Ccv/eq6O7urubn55VOp20CDYUXVjJUFmI6+xPlLJPJGKHBxANPFP5Nr0senGICP3nypM6cOaO9vT2dPXtWxWJRkoxZo4sQ1A+Njd+GzUaDFQsIb6cko8QBogAUHppvYCAwAi55YCRjNjhJTpIBUl+RUQkxboUGJqphKq/5+Xmj8ZGH8LoSMDwQ5LtKsmYF/hxwDu3PRun1erZRkAOQ/9iEXo6HDe31ejp//rwCgfGYJhK8H+CPxYB7QSIEyJ85c0aSpkAj8ir3fWlpyYISndyAB0bKkNyLxaKKxaIFIcA7IBR2wDfc8LORSMQC497enk6fPq1AIGD+Nj8zE8sHQYLOZ8ZqkSxIBjBVJAtkQ4okng/yFkkHcMERvNls1tapJGte4vuw3tkX+XzeADyAE18nDAPv5eVnghbFE8/eN7IR5ElwvjmEQE5gpABgegUjqwCJ/Dfvyb3iSMKLgzbz+oaBjqKLfQUCfR00Oxr1Q8Y+YceQZEcgYx8AVAHcwuHxBAtp0ogDs8Q6xIdKUl1ZWbEkSBMjrHe9XrfkHAwGTQ4HbNPUCQNKQUEy8JYEEjssCT/HMwHcI6PzDFivdGv7rt16vW7vgazNyJparWYJjz0C4ACYs15QcWj4gQHkXnLEbz6ft8+CtWEfUpx5awSFKmCVRDkljx86oWG/p+azD0mS3ae3ve1tuv766+37pVIpvepVr9I999xjjar7T92v7Fu+XwuXX6/iA182lhdwjWc5Ho/bfEzWHdeTSCQMEOJJBvj1ej1roguHx6cAekaRZ4d3nKYprBoATooXgBRqBvmIYgOgjNcdVp7Yzn0FKMJIAxgBxawNpGs/axnmsVwuG8PuwR77hPcmT62urtq4MMZJ4e/EDkTeoUkMRYk9wNqgsPNyPDYhz+RyrDD3q9PpWI6ATcRaADOK15x9AgnBVAi+K/cBf2YwOJkRDYkEFiAG4RGm6OM0KsApShLkB6Ma8Sz7o8Q9jvA5Bta61WoZkQGOII/TTNnv9+0eYZEgf4GLiDWs578Hpxdem5ubuvfeezU3N6dnn33WFk0ikTAfKeOPYFdhvPDOIK0gG8Gu+I49Ru3gKSExwnz4uWwsZB+4vUSH33I0GllAZyRKNBq1jsTRaKRarWYghzEyGJXp4GSOaaVSkSQLXkgS2AJ4TzYNjASJD/8q/xBA+C4EQVgk2CvYVsAdflCqegIeTCG+JY6IBbSweWAOqOD7/fEcPgoND3qbzaY2NjbsmcIwEByYeeeHNfOsYCeovmElAYnI3NyLUGjS1EATC1YNGFySN8HHM1Dr6+tmi+DZIaMkEgn7OWQRGiUIblTq0uTYXuwOnU7HWFKmUPgExPvBPHKoAuCMBIiMyvBnfIaLi4vK5/NKJpNWZSPrrKys2H4hOHESC6xuJDIZ1C3JwDlgHN8XILtUKimXy1ni55hAfIywSDxXkj22j2KxqHA4qBvvXNDLXn5e2ci9CujCzEcFVBq8Rg8+eEj3f2ZL0UjUAirMAvIxRRIKC2w2nkUARCwWU6lUmho/1Wq1bP4w7Ii37fimLA8GfAJiP/lY4ru/PQvFdYRCIVMvYIHwYFLMsa4kTcUj/JNYlLBkSDJwSbzE64giRFwCBKEkkcyJC51OxxoKARf4xZG9ARY0f/J8ATYoP3xnTh5DbaIoCgaDiszNa9DaV2A0NDWLCS8AU16oCLCYwYM9jYZDdUYBlUolm1LC8+JglnA4bLN019fXbW3QZOetGMjgkqZiHYW1L3KJCTT/QabwrACWgcD4BCRYUIAwe5B9FQ6HbYoHZISPhb6pk/vLHoPdA3zTIEshSmMeFheKaiR3iCTWGMCNI3+911waS9rkRcAT14O/kdyDpYhnyOeQT3hPLHjkeRheLELY/7y0z+/TZOyb8ojNlUpFjUZDuVzOVCAKf8/6ex8qOZmf5R5TgESjUW1tbdm6x5fLxBvUAjBMPB43m42fzINET58ERE0wGLR8QP6ERPDWD/aCZ2GxU4EvKNrwVL+U1yUPThuNhh5++GEbHD0YjAfckvSZQ8gwbhYpQckzNvh2GKCO4Z3mAlhP/oyNRPChKcLLmiwq/s2mH41GOnv2rPr9vtbW1pTNZi1YI2nV63UDOdJkHA9+yXg8bnM/kUJ9FytBz39ngBkVLVLYaDQywMOJEAQLkqk0Gd+B7wvWBaANQPR2ADYavhTOF4YFYyOxKZE+YJuoLgkKAEb8THgD8fHhdYXBYsPGYjE7ax1wI8n8v8j6HHNK0MdzC/DxpnwPngAX3CNJxmKRFGArWR98PxIFbLk0DTgAITR3eQO7JGM28/m8qtWqyuWy9vf3lclkbEoBiQtwTKLlz4bDodbW1uy++eHfqVRK2WxWqVRKm5ubqtfrVmRQ/ADIWIsk2WAwaB2lsNvYFbi/FBzIQr44glXw7BF7rN1um8THmu90OkodGukD3/e85vSQdgPX69GtH1KjHNag39d8sqWrjj6ht9/6Db321mP6o0/fpNp9NStSQqGQ1tbWphg4igzWytLSknK5nAE37i0NQzx/QB4AkaQK8Eyn0/YsSSblclmVSsUa6fDJw5r6ZMNsR8ANsYFiE7aIgkGSMVXMzKWAAHD5ZsFeb3yKE2woexm/GkDSy4n8PnuLWApLyjQQFKFOpzPF4LFX+R4kcORyij9AEZ9B4uf7kkw1HCgQith6gv3DZkIu8DEdZSEQCisQDKp3AfACMpnpC6uNigEQIbbi5+ee+0kOgDPPErPWYA8lWf7gfT0ZQeGEpEocxhvtwQZAmbhMQRiJjOeukqOIKR5US5NDa1C9IIG8vWZ5ednuIWOpYOXpPfB+T1QY1iZKCvkK8gDPLMCONQ85BIj3gIz46/3JrVbLbHTsO/Y1DaeoXeyz0Wh8pCvFEsyjV5NYd775CkAH++q9rTx7uvr5zvw8TCvkB3GQ+0LsZy1Lk6Oa8fYWi0XLT5BVrVbLADh4hz0Iw04MwQYJ0cC4Kggj7hNr2TeavpTXJQ9Oe73xCRMbGxuW0KgwqE4wxtP9SWAnGCM/wCZQbXW7XW1vb9uIJDY2QZWFRXXBBvC+HhiGaDQ6dba7l3FZxP4fwPDc3JyNV2GRI2+xUXgvvGXenA4AbLVaKhaLBkozmYwBEMACXh5esEQEsoODAxv9w32iMvafxT3y8gaSIOdMc5oWSajf7xvTwxgfAnYgEDAgAMiiaqND1HuRkFZ4JiQ9WA5J5tOCLYfRQxYG+HBf+Dw2J9X0xTPuABB8N0YdEcCZRYnXjIDAqKfBYGBjOUiSq6urxjCxpgmoBCSsKngepYmvDVCHIkDTEIEPjy++sMFgoJ2dHe3v75ufF4BPIM1kMiYzl8tlJZNJewawY6zLra0t7e3tKZvNWhGCV63b7Vqz2MrKivk3STKAnlarZbYVWCfYm0ajoc3NTXs+l9+Y0Lvf+hm1A2v64kP/s7afbml3d8/eazQa6YmZG7V84uW684779APf/SV9auYteu7+bSvQAJSwASQUOpbxdxKDWJfew0uApzCDyfL+Ldgu3ygBA43sCeuMfMhns8ex9+APQ+Kn2PNeXLzdMCdM2zh06JCCwaAdrSnJrsdbSDhOl8ZG7AWsbW85Iu6QMGEYSYbem46M7cfZ+XsOUKVgABSS1PHpw67z37FYTAflHeVm5zWYWdDoAoNcq9X0hS98QZFIRJdffrlCoZBKpZI+//nPW3PJ3NycBsnl8TPerdiEC2I234/4zUlVFGSwxhRO/BnxHaAMEPZeTXyKxF7iS7lcNsaXz5c0ZS1bWFgwZYK4AjHDdBaAvCRrJiUmUCBSkKDk4XeUJiMKE4nEVEMXbKUkO/SCGAmoRHXw3d7EacAi3x3ZmjjlvZT4KOPxuB11HI1GzX6AxE9xz+dXq1Wl02kDZ6w3XyDwXCl6mANKIU1spTj33lLezxeckE08K3ID0yu83xt1sVwua2ZmfIQqbCWN3uRmnjMHDJBPaMAcDAaGXZiAwT3D/kd+lGR52Df80V8CTiB2sA553igoKHXf6XXJg1MGByNzk7iRvAheoHwWxdbWliVnSdrZ2THvDw+r1+vZGcMEA8+4wZZ6OYaqigeIh4UqX5KB59nZWUvYLI7hcKhKpWLMBAuEgAcgptLFExaLxQx4U/FR7RGI6BbOZrPGQmB3IPhJmpL3M5mMWq2WjbAhSNDlC3tAZ+De3p7W1tbM/O2bqKi86F6EIWb0y7lz55TL5ZTP5w0kAR4Z1yPJPLwECYIMDAMBmATZ7XZNimXYN4FLkp3sBTuMZELVzu8uLCzYkPnZ2Vkb+QED4+cq0nW8vb1tbGS9XrdRPgQWgiGgZGdnx4I8RQAgBTDhvXtUzch4nlnGZgC4Yg1RsfPsCayDwXiEFfeRvYE3yz8/pDMPlihGfEMNwJ61D7NPMQX7SiMaSYVjUrPZrNkNAKac1uZnwJ4/f37sPc3G9M63fkUHOqrf+43LFdPEFgOwYFRRtRrTzos36Lt/8Fn9w3d+Tb+58yodVDpTPjeYEMAS9yqZTJpHjz/3zAgxp1wum3qBdI1ycnBwoFKpZFYNmtoo6EhcXiYDnOFn9cANELO3t6dSqWQHGXCsqQe7ABuaH9gPrGmKNawuxD9iLEUcTYf8DkUrz5fkPxqNzKvGveQF20hBCGhtNpu2d1iTkUjEJoHk83lLrowNJMlzn2KxmDovPq5Bq6nEza/Xxl/9rrHJJ0+e1Kc+9SnlcjmFw2Ftbm5aIys/k37lm9SpFtQ++5zisaglawolbAR8ZwgHz5SVy2UrCPl51CaYeeIu4MnPUsVm0Gq1VK/XFQgElM/ntbi4aHYxgHAgMLYfcOKZB9GADmIBVhM+H8sII4zwUOKtB7DjE4Uk4F7v7+9rZ2fHLBsUqhTLksw7T2MXcYemVOIEMYP7BpDDo+2VAsAj1+HZSd4PNpB7BkagoAd8Qg5xLewnsAS4gIKNeOibqnjOFGkQGwsLC0Zc8R0pxLkWr+6yX7n32CIgZMi9xE/fwMi1YaXx82UpPKLRqNLp9FSxyH5kRioxiHziC2jvH+d9iS0v5XXJg1MkxGQyabIp1adfbCQU5jCyCEajkdbX19VoNGwR8jAkWQIgoJCYCUKLi4s2JBizsZfyqHgI5oAnEgFBJxQKWYWNV3ZhYcE6dUulkjUgMIgd1mxjY0PS2KPDcZN7e3t27B6NE7Cc0mQEF2xuPB6f6rbzcitGbpo8YIkAjQQ8mBHfREIQ9/cHnwxeKp7VaDTSyZMnjR3g8wFkeIaRhAgQsFQEJwoVDPokcMAbARaTN5KHN97D7AFMSFaSjOEh0NTrdfOSzczMKJfLGcBi4/omA4JPvV63OY7cL9+ERdHFvWEdYVkByPH9uF+ABUAOFXez2bRxJniKAFgkCb47zKg0YYthdAG4vkmBJAlzQTMgQZI5eHt7ezp8+LAk2Wgc3osgC1CCtfQzKxcXF5VKpYwZGI1Gdr/39/d1xzuiCquh3/+d29RudDSbmrM1z9g1AjHB+NOfOKEf+oGTevXbI/rKJ/tmc6HI5Hm1221jwmFvOHoQBoFiyEt7sO9cO9KZJEu0eNLYS/iNScLEHw6dgE2GmUOGhAEPhULWiMPa4DtxPwHVNF6RbKQJOPCeUeIGci5rj/cD2FKsh8PjY4H5njBdkozNo/gGhMD+srcKhYKWlpZsggaASpLZmQDwXp5njQaDQfVaByo/8EWlb36tBn/9CfvO5IBz586Z/E1sHw6H6oeiSt14u8785e8qEg5ZTiDeSJp6zr4Dm71KjCWXwI4xQm1nZ8fiEsoYcYm4d3E8CgaDtu7IL3jdkX8pmGn6Q7ECyEsyUMLveHkYiwb+ZiwdMNScOsQaYaRVqVSyZibAjDTxgRLPYEchY/g8HwuwKaAsAbz39yt6+cvLOn58qHC4p1ZrpGYzp/Pnr1C3OzQ72sHBgZLJpDULY6nq98dTcnxBj4QO2CbewID63gtp0mhNPMxms6aoQIrApvvc4UfuQTjg5YXBJv7QiAVbCrmGFYJ9ilIInqGAZj1AAFD4cn/xxDLbN5PJ2NHf+FDZD+QYJrjwrFqtlra3ty2v9no9Y9e/0+vvHJwOBgP9wi/8gn7/939fOzs7Wl1d1Q/90A/pZ3/2Z82bMhqN9PM///P6zd/8TdXrdb3mNa/Rxz72MV1xxRX2PtVqVT/5kz+pv/iLv1AwGNT73/9+/Yf/8B9e8owsXgBGKOxIJGIzHdkILCqkZjp/uV4+E7N8uz05YYmKjZmXLHBJtii73e63HRvnGxZICP7IQN6bhc+iAfCxMUlAgFdof74rLAMJyEsTHHsJQEdGpVIk4RAUY7GYgcdqtarRaGSNA8lkUqurqwZCCMjI7bB5LN5YLGbAFJbHyz8kKhgfPD80h8GSwdTwjEhQbLRQKGSsCc0U+FoBhfwbYJJKpZROp1WpVFSpVOyIVyQqGpXwURLkYVNhvQjCgGzmEh46dMgY19XVVa2urtq68XNEATKM1yGJEIx3d3ct8MC2Ekzp+od9hp2iQY5mMYzy3G98VgBy/EMETIKdb1jxwQgLhAdkBFlJBjD5/khqBHkYBRovAO0015RKJUuEKAAwrTx/Epk0BvjIjsGgdMXavTrXeoOKpyvGbtLJ+ta3vlXLy8u655579Mgjj9h8UXVjOrd7m65ZvVffiL5CM7G42VCwlSSTSQvogF2a0WCDJJkfk+8FaJmfn5+Str0cC/tIwubZACJ8o0+z2bQmId+IwL4pFArmS5Q0BT6IS8xC5e+Rm4lLyPSsddY5MQMWFhuUZ4+R/4LBoMVdfLE0eyD/wcLwvSkkAcYUs54tp5D2Xj/eA3sVawx5VpI2vvynSr/yTTrygf9FL/zWr6jf69oehCDwjUMz84s68oF/rkG3rcqDX1TgwjX66yOf4DUGqKLokAN4ViR63mdubs4aUllHvPyUBN/khNfQ+y7Zn7Bc3j7km2zIMfw814VlKxgczweHccWDCmHjbSL+LHeAUf3CiYs8d29xYJg9Y7hQbbAhEf9hj+klgD0dM71lveUtG3rlK6uamRmoWp1VpxNWPj9QOn1Ovd6jeuGF43r88au1tbWnnZ0di8G+oQgvMPGONULxwH5hmgT9ADD3xG1fpJCLKJhQJRgr55ugPOtI3GacHPkEZpkjg716BkEhTWZBEwso7rFp8HfkZt4fixBqKTEbvzzfm/wjTUbvYZEgp0Fk+e/+Ul5/5+D03/27f6ePfexj+vjHP65rr71WDz74oH74h39YiURCP/VTPyVJ+vf//t/r13/91/Xxj39cx44d08/93M/pLW95i55++mn7ot/3fd+n7e1tff7zn1ev19MP//AP68d+7Mf0yU9+8m91PclkcooJYL4hixGmisUvyU43oTsPr2O/31ehUDCPFmZiNjxJJBwOTzV/MHaG8Q40WEmaAsH8N0AHecyf5gF7R9UD8KTDEik0EBifvFStVq0qhE0l8AD26vW6DQKnGiyXyzaqxx8ggExaKpWMGctms8ZE8N7e/xOLxabO3PbeE4IQYNE3FHhvLoGce0RSh91bXV01fw1MCyBlcXFRm5ubU+OWSIgwh1R2JFsCPo0VJGtsIUggVLFUkt4PSwKiCKDrmEDGvQI8kNAxjTN+CSYYUOnN9SQfgg//4Lkj4eEHazabZvkAzHC/YLxglwnGfr8gHVGIMTOQwOWbSNgTrB+SO1I4gVGSATY6sqUJ0OT++8SA5xYwJ8kYd1iRWq1mTXNzc3M6cUtYM9rSg/e9WbncrO2xa665RnfddZeOHz+ucDis66+/Xnfffbe+9KUvWaK57yvz+t53b+jGN7xDL943OX0rkUhYACchwRKxdmkO8aAfxpMjKSm0mHDAfaPgYW+ORiNlMhmFQiGdP3/eQAgFG14wwFu9XjcQTdHSaDTUaDTMX8az8ceZ5nI5K4KIjzDCgC+K1Ha7PXVwAIWuP8qQA0U8M8P94PsBuPf39y3pcR9hpyUZe5ZIJGxvwT57UNBsNg14DQbjU/woZEiyrPXWQUPP/dav6OoP/oKu/OAvaPOP/08FWrtTnwuY0kJK+Q/8c0Xz6zr5G7+g3l7DFCRG79DYAxDErsL38aQCBSHEBCoQYAIbEMU7BSb3DdBDPGKfsibYRzRLsqd49uFw2IAR1jPuJYCLNZpOp82S4N8br6EkYx29x5lnRt5JJpNWjEK6+IYlz/7zGZLs+v00g8FgoKWluu6660lFo0M98EBWTz99mer1WctbMzO7esUrdnTDDWd07NgZfeIT16lancRFRv9JsrhLYQ/oIy55lpU46HsoJFmxDjijaIVRZWKEJHs2xFxOkuPeoM5AgMF8MrIR6w9rBVsLRR3PxRNCFKCQFNxjfMfkGPCSb34Db/A9sWiABxYWFqZIgsOHDyscDptvGsD+nV5/5+D0m9/8pt7znvfoHe94hyTp6NGj+oM/+AN961vfkjROOB/5yEf0sz/7s3rPe94jSfrd3/1d5fN5/emf/qnuuusuPfPMM/rsZz+rBx54QLfccosk6aMf/aje/va369d+7dfs+LeX8sITwwKBOfNBh8Ts5Uh8mPim2KS93ngshAcEgMn5+XnNzs4awAA8IqmwMb2nxwcp/EqAMX6O60VmQpaWZACEisuDHt6T02BIWFSxsHTMroQhgN1CyoZtANAEAgHrumQo8MWeVO4PLC8BEAlwfX1dt912mx566CE9+eST5t8j8LLR/IkUsDzI0iQ4pCPP6NRqNetSZV4qCdknfo7EJKFx32GllpeXrRqlg5zNi3UAyUeanBrG8GKqRl/scJAAkg7DqaVJp7KvuqPRqBVFFFiefb+4CQbWBfbIB3c8SIzQarfb5t8E3BN0/UQDEirsO41ODO8nscK6xGIxs5lQqMDu+gY5JH+YFJIsa5rkRjIkgSAXs669/xYfHQG2WCxqfX1dubWYhgpr//x4v8Nkv+ENb9CJEyem/Gu33nqrXnjhBZ07d27cRX82pJFCWsr0be0Fg0EraP1cQlgNfK/JZHIKWFO8cp3sS2lywhXrlpPd+H5IaDx3vieAEH8mMY39AJihCODZc1IPwId4SKKFhbm4KaNUKtnJRzDTkqyQJrGT4Ii/xDOsPxRSmUxGtVpNm5ubNp+TosdP20CxYNqDb1AEDMHu+TgK0IOx393dNR8h8aV9+imd+91/q0N3fUhX/7//kxpPP6jtez6j/m5Fi7m4ZnNrSt7yBs1ffoO69Yo2Pv6/qbN1yixLyK+Ajna7rUKhoOFwqGw2O9UYxtgwAAygy0vDEAkUwvw++QDmnRjom2woSFFT8ChTgPM77DPuHSz8aDSyYe7EjZWVFa2urk4BJbya7P1oNKrV1VVjO+v1ut0XSAoIDywX7Xbb5P75+XmLQ37sECAen6a3t6RSXX3f9z2q/f2ofuM3rlanM57Bvbw8VgfGuWNOX/nKvO69d03f+71P6h//4yf1O79zi86eHU4xz7x8oytMJiykVwc5rRCrDEos902aNKPxc/ig8Wz6CQnsPfYHagBxg7nFTLyg0ID93d/fN/8/zzGVSlkvCrYAroF7S54gRkgyxts333nSgr0E04wqjCcZ4od9HolEtLu7a4cnfKfX3zk4ve222/Qbv/Ebev7553XixAk99thj+sY3vqEPf/jDkqTTp09rZ2dHb3rTm+x3EomEbr31Vt1777266667dO+99yqZTBowlaQ3velNCgaDuv/++/W+973v2z7Xm/SlyVgLPH7tdlubm5tqNBomA0Ui46Mw2bhU75IMFJFAvNl3eXnZHhxSPwwH3c9cC+zs/Py8AT+CKRI5FRVVI4wBTGU0GlWxWLT3BGBwrbC3XuJotVoqFAp2njOd6Zw5zj3jO7LZqJTYYIyKAjTQLERSIDAhD7FpkISYOSnJZsEmEgldffXVuvnmm7W5uakHHnjAwBKgDQ8sXlDvzyKYM14L1glG23vV2HAkJkz8gUBAlUrFpGUkewAFXqpAIGDBwg88RtqGsQbMFotFC8aAY66dZ8v64D75qhQQSYJmHcDw+7+nY5N1zv0BKHFGM74f2CiSEGyIb2ShUxdWBoYTQACbQSXMoROsHcAx/m2AFUw/rAcB2XfesuYIwnihWGOAYDxbAEBYCwZKY33xJ6qN/bwjDQMz6nXa2rvg/8KbyjOQxkG6VCqpXC5bMJ+bm9dAM4rGRraWAYs0FBCwYRBYz9hruI98BkCkXC7beuMeetYfANNqtaZGEzEBAdafmakoRXNzczp27JgBSzr+iTUkQopK9gI+dVhzGhpRTc6dO2dF6dGjR3X48GF7lqxj/n5pacnAMw1yAIFisahut2tdvdhzsCgAKnk+2D+Gw6EdCoEcyrPjPhG/Wc+M+Zmbm7PZ0LC4FIShUEjd88/rhV/7CS1cd5vSr36rrv7gL0zlmdb5F/TC7/2ayg9/TbOxyVByEjo9B5zRPjc3ZxIpigyNaLBNyKgQHBTLABLWircq+QY89rEHe57FAtBAWkAyYCXzHmDfN5BIJHRwcGDyNSoBqgTkBUoIRQaKGADJT5vwRXMoFLJZzMQVrpOcCbDB5hMIBJTJZBSJRGzu9zvf+bhGo6i+8IW3KBYbKBSajPoi5kLcRCJp3XffFXrjG/9E73//C/r4x19puQp1gGdJ7oNcAhRKk3F1rB3me3vgyPVTYPsRfJ6c8mCP/IXa6husIdb42VKpZI3RgGbWC2SPt1TwfciH4B6eO9fr470/rZG1yvrCc0qRS0xiXcPKQkbQl/LfjTn9mZ/5Ge3u7uqqq64yCeNXfuVX9H3f932Sxl3vkuykD175fN7+bmdnx4zydqHh8SxFfubi16/+6q/qF3/xF7/tz1l0BPxQaDwmCcmVbu+trS2rsr286yUz/sEDR0UrTaQm2E42E0CRqhcgik+FxcU5wKVSycCYJAsgLHoCFFXrYDCYmntKAIeBKZVKtuEJ2N4T6If5t1otkxSooLgOAAIsg5dASHaAGjaYJGPaYNMAD48++qi63a6ee+457e3tWdcyLBOMsve6AaxY3PjmarWaMcm+CiWpk2S97EVi4j1IAFSDTBJAPqaowNOLh5h7GApNGhay2azJiAcHB/b/NOjgQyMB+cDCGejIszDmFA+czAXwI+nBxBw9elTVatUkm0AgYGCZ+wZwZ1/hC+Q+ELRYF6xxTmMKBALW5Q2o87PrWLNMJ8DScfbsWft/GLFOp2NFAn5JOmBhLwDwPlEzE5NCCcmVqREzMzM6cuSIksmktra2xqxBPaDwyp5GkZAl8m63q89+9rO68sordfz4cWsIeeCBB3T27Fnt7++Ph8rHQwprX4PBjObnR9ra2lKv15sa8cUUC2Rw5gWyl7iPMIjEAZIcRSnPGzWAKRCwLxSVXgEAeBBzAGmwuI1GwxqgvNd3ZWVF0WjUOqnZZ8QVJGMSKM2dMMa8N0nQN1F4Nikej9sEEp4VoM3bB6LRqO0/9rO3TbGP/Mk2kmxfE+ckmcICuMa6wCxZALu3Vo33eke7j3xF7ae+qdncmhSb1W6joWa1pDmN2fiF2RkrTPz9Rpny46YgEjiamQIZe0yz2Zw6SpL95RuYKN6Gw6EVJbVaTbFYbIq1xRpC7vKe6MFgoK2tLWMDUV54f8A+nkHYdgo/ilhYcO4nfnDiGHGFHBEOh1WtVtXr9ZTP56dsXMlk0uxnNOTC6HpCCLsDFhlyQyq1r0OHCvriF29VpzOj0WjP4jWkjI/v42JnqEceuUV33nm3jh/vaXNz7OdmhrcfPQfIajQatg/S6bQRH6ikjUZjCpxiiSAeNhoNU9xQU4ibfF/WJMosMVSSyfVgCxqUI5GIVldX7b2ZDpTP563JlfgEcw1QZt16JpVizts8PNPr74ePKVwz6wzMwfrm/wHjL+X1dw5OP/WpT+kTn/iEPvnJT+raa6/Vo48+qg996ENaXV3VD/7gD/5df5y9/uW//Jf6p//0n9r/7+7uan19XQcHB9rZ2TGmz3vekLJhE0lEvkGIcQrIuNDjW1tbJnPOzMyoXq8rk8koHo/bMalIntJkbqY/qhSqm2oSFpWgyYPlJBySHTKzXwR0x8MmIa+xUTCPr6+v2wba2dkx5o8JAQRVP58TqYd7xv3hZ+jma7VaWl5etsRKcGSD8L37/b5OnTqlF1980VjL4XBomx+5ArM98i7HjXoJnSqPjkWeMWASjyvMANUcQIJkUK1WbdC+JGNj6PSuVComOXW7XRUKBWsAoBAh6TMLkmQkyQA2gAQQD0jEQ+o78wGXnk1kpinHjSJ9Ad5SqZTy+bxJ94VCwWQpEgq/R7MBoM8zFKurq8YWw0CRyLz8BXPAHkJmZL9JMlYZwMne4llRXHGP/CkwMA8UBsh5TNQAiLAnvDcMCXBtbU2BQEAnH2/rNVdLV70qoPv/PGJ+sbNnz+q3f/u39da3vlXJZFJPPvmkTp48aaxYOBzW0ZvGa65wdk6tVsXkTIow1pdvhut2u8pmswZYkTgpnmB4ub+zs7NWwHBPWOfcVyZSzM3NGet1cHBgxSjvXalULD7A2i8vL1uB5n1k3Dcv8wH68Z+yDikQAUYAGkCaNDlFiYKZ50AM9Ow6p8BxHZLse2OjwmJEwyYjtlClSLC+8ZTYwLriebBe2HfEmH5/0vRHMu50OgqUtsYxfH9ftY0NdS8cxgLwgMkPBoN2OAgKDCCUuOcZy263awUWhQUFJk2yxDkUD5/oKdprtZry+byBeV8Ucb+9OubjGveFfch35vok2dQUVDD81JArnU7HprgAdml8YixavV63BmJ6ECigAY9cux/BNTMzo2q1aqAftYpc0+l0dNtt53VwENWjjyY0GtUtdjACjXyJ/YfPeOaZhG6+eU5XXvmsnn32Slv3sKgUfoPBwNQp1hvgPBaL2ZhCLAkc08r640WRyOd0OpOTwNjHkoyAAziiElJAAMyx16Fu8owoxlZXVzUYjKdZEBv8dA7PFlPgYNeoVqtTp1FSOBPTuZ/I+OAPWGFiGVgEoE2O+e825/Snf/qn9TM/8zO66667JEnXX3+9zp49q1/91V/VD/7gD2p5eTy0uFAoaGVlxX6vUCjopptukjT2+RWLxan3xZvH71/8Agj9TX9OQGY8By8eDEDPV+HMKWMMBN4ZKgBM/QR4FiwbDx+O99UB9NhwBHyocapvqjV8RJ69jcfjWltbs1E6GOo9y8DoK5ixtbU1LS8vW7PWzs6Otre3TRoniEqaAgNsLD4HwOql8HK5bDLdoUOHDOTBgvoGCK4NhgjvmJdJfOc+AZ/RWsi0o9F4TqSX+CWZvI28AgvAeBaCF0wu1wdYQaLBQwwgJ1EifRGEWEueiaXRSxozu7A3dKZKE9DW6/W0vLw85bOE1fen9lBxWuK80DgG8Ox0OiqXy3btrdb4SE1/PB4FBvcPQMJzAawTcAjoJH2sBNlsVktLS3YYBFJ/PB439peEX6vVTNJiTmKlUrGj9rAEUEx5i87FMman0zHWgeAN28Y4GRrHYBcBWs1KTKXey3X9lU/p8ZkjlnCLxaKef/55a4T0MjiFxDVXPqOKbtPmkyVJMnUFnzoMCMwv00H4XgCEfr9vDYSwmBwX6CeRAH6YgQkD5n1fyK8kcxIWTXYkJdgtfNwwt54t9OwKhRUe8PX1dVuzzCXGz+kBOowcEyVqtZoxosRT/OeAIL4r6w2mEUBOcgaY4ofn5DlAPPGWNQgYDQbHDaI0ZEEQsI9pCKTY5znF43FjkGEppckRysQJ3zzInqQB0PunKSgB2RTM2G8oOiiEvQWGE6Qo2IhffDcAL58DCMZfT4z2BQ7rk6Kae+iLFF+csbcAhsi9gD/WMaAfKZf9RD5gz/FZSPkQKx7swxrD5uIR5juEQiEdO1bUiy+uKxyeNR8sMduTB+RU2L9odEHPPXdIJ06c1s5Owkgnb8Ein3D95HK/D1mz3DNfPJIjYJ/5jqzxWq2mbDZr8YHfTSaTpqSR91nbxEL2nCTzffqZphAWsOrcS5pYibX0ChDLUKUoELFHwORLsnuLIgIWoADgd7AuMhueyQT/3ZhTzO7+BfKXpGPHjml5eVlf/OIXDYzu7u7q/vvv1z/5J/9EkvTqV79a9XpdDz30kF7+8pdLkr70pS9pOBzq1ltv/VtdD2wnMgqMIkAJUAJ9jvSO9EvQ954ZAgNVGpschoAGAap2Hh5gi6AjTU4covPVD8/nfQlkJPt4fHxe+ezsrLa2tuw0EWlcyXO608rKiuLxuLa2tlQul6e6WJHxfUAgQPs5mQQeX+35IMai9h6TQqFgQRXvIQvSG7qp3vB5MiVgcXHRzpkn+PK5yJydTse8s2x0aRz8CoWCgVNpMpIL4AWIg0GkOxjPbCgUUi6XM08wSV+SJTN8TDxjzyhyfvLs7KwBMHxdJAEAAb9D8AWA4S/kEAkSVrlcNqCHZ2tmZmZqNp7/7hRneNY4WhRvGIUBBRLfz48akWTeRga2M0kCYAHYR2LnXrNvYHoZZQKQB0gyIxEm1ScvpGQAWrPZNHaIE9BglgFq/DzMHKz2w48c1lte+Se6+s7r9NgXJgADVtc3QMBqrl/X0VLoMd176se1vz+x3ZAgvAROAwGxhucAG8WRsLCjJBoSE8kPYMS6wjYA4AkEAjYOj8Kaz2OvIgX7RDocDq0wSCQSNpycIgfpnsIK/xvfjcYePN7EdT9OBtaWGEaiI3ki9zJTd3Z21lSJtbU1WxOcEodawhrHO+qLQd8fQHFObAWkcC0AdvYJsQgbGgxYq9UylS0YDCqfz9sa895WChJmTiJjs+ZRp7gvFN/s14vHtdEENDMzY6QBsjhsNjmJMXQUR9LkSGQKUgB+MDgebVitVrW/v28eQ+5LtVq1e0PBSMwC6MNsst75f299w6KGPUCSFWkUaMRq1joxDcYVuRymFiBOrEXGjka7OjiYsZgBWwyxQnwbDAZWLKGa7e5GNTPTsyLRN7ORi3h5lYe9RBxAtZQ0dRQ2L94bTEABiUUFhTYUGs+BnbvAzvumIhQ7mkohE8jX7K/d3V3rOfBxAyxDrmcf+mZZrov7FghMTiLzcWpra0vdbtfsWuxRgDDPlJhB3BkOh+Z7fSmvv3Nw+q53vUu/8iu/osOHD+vaa6/VI488og9/+MP6kR/5EfsiH/rQh/TLv/zLuuKKK2yU1Orqqt773vdKkq6++mq99a1v1Y/+6I/qP//n/6xer6ef+Imf0F133fW36tSXNGUyBjxBLafTaXU6HZ05c8aqExIqgCUUCtl4EG985z3wgVENUknBggBiSawsaN+4gO8Omp73Z4F6ZoDGgkgkYmOiJBk1L8kSNL4sP9OORO/9IaurqzbeAkai1+splUpNUf9UQ7CnsFfSGHTic6EClWSjfJCHSJyMjKFAICh4rxLJFXBJ8CEpRyIRHT582NhTpHGYYe4b4IsKcnV11Wwa3mrgvbh+M5LsAA50QTLj1s8AJVhwX5aXl5XNZm0uaafT0YsvvmigyleoeHkIgsg+dPMDgvz0BxpGAPC+ESCTyRjYQpYhOfikTDULyIGZ8E0osNHeLx2JRAyIAyiwTmD6JyCyRrl3fjZlvV6fCmwEavYK34Gucr43fwZ7GYuND9LwjDasOAnj/OMjbd3wGr3+xv+q4eAu3feXTQPUrAXiRbPZ1A23J3TnzX+qneEb9fgXKyZ70UGOisH+ITmzl2DwUEp8B723uySTyamxd4yaWVpaMpWDhhm/hyg8/D5nf3KvBoOBeUo9cIcxlGRFDsB6aWlJm5ubqlar2t7etsKUUVeww+xJZFgvL2IrIJHBcgKcU6mUJT8KCNQeRrLxXfi+yJp8N2KPJEt+xG6YIpItoA0gSTImtpEfKE4ovgDnxCDfX4C3EWBN4Q2hwLgf4gj7jPfC00uB7QEc99bHf/IMLCCEAwCJQoTnK00sRfgUUWUA2JJM8qWIJYfQqOqLinA4rHK5bOAIBQglLZPJ2DOKRCKWR3mefHdsSxTigDdyGaxyr9dTtVpVrVbT3t6eVldXbS0OhwENBl2LXexjFBGUFcASsWFcNI80HI7Z4VqtpkQioVQqZQAPRQiVgjVNXMJLzjg4z76zzlCqyHF8H1htmHJGa3kSyE87gWTj2QKkUfcajYbtR1Q78pX/LIgBfp91D4lATJNkeQFGmrVPcervQ7c7Gaflm8J8wyb3wdvC/kbs9pJ+6m/x+uhHP6qf+7mf04//+I+rWCxqdXVVH/zgB/Wv//W/tp/5F//iX6jZbOrHfuzHVK/Xdfvtt+uzn/2sgStJ+sQnPqGf+Imf0Bvf+EYFg+Mh/L/+67/+t76ehYWF8SiYctmqBN9VGwgEtL6+btUxidOPeJAm/jXvIwFMItdjPeD3eA/8g9DssEokdJInTQJ4UKk2qayRlaXxyBkSm09GbA6YHUDEzMyMyuWyVWlUXiQ2xkLBiMJQkvgBBAR9vEskRe6HJGMXqLalMTvOe9XrdRvJlEwmjTGbmZkxyRaZg8DL/UUaAbSQADKZjD1bv2l9suS++MqOTUMQ8icD0fAWCoWMgWNj++SAH4ymj0qlomg0qkwmo+uvv15Hjx7Vc889pzNnzpjchsRJM9nMzIx1OOfzea2urmppacnkedbsxdIvSWs4HJocw3dj/cGmwrbyd7DPVP9YDliXkUjEkgDB1/+5T7A+gLGeYEJgJpD+fPc2wZHRVQQ11rQ0mVzQ6XRs4DTPE+YTuZj1RkKEaeC+BQJB3f2po3r79w71ppt/V8eveIse+kZCjfOjqWtNrg70rn8Q0eWpv1R5+Cr9199M6KA+ZpM9APCJBhAtTRQYilpAKU2GeLzxCTOA3zdRShNG0AP9vb29KRDHNeF3Y234gmN3d1dnz56dkmphFH1jFQCJNY5dBACNJYR46EEa70dxn0gkDFABaEmEyOG+oGq1WnrxxRetiGQAPaAf0CRpqgEP9pUmj9FoZMw6MZFihcKeOAAwpEkHYEG8CgTG4//W3vw9OvruH9bB1hmd/OhP296joIGYYP0AVCTZvsGmQ3zj9wCEAEriKmCEQof9gfLG/WSNcR/S6bQdWMGepHiixyIQGE9UwK+P4ubzGiCNIpXeAnzDiURCuVxu6mRBSWYZIU5zD8hrgCesa/v7+8rn8/ZdWRswbhQGKBX9/vgEp3q9roODGeVy+zZyCcZ4NBrZDF7iY7lcnmItc7mmms2ZqQYwcp5XHJgawt5ECaZQZG9SnPf7fZuBzvVTRHB/IFBQYtmTyWTSmprooaDJkDUGQUG+Iw4HAgHrL4Ew8D5e9gd2GCZjYNnANkEO96PLWCfShAVnfxQKBdtPtVpN4XDY9jy9Aewp7vFLef2dg9OFhQV95CMf0Uc+8pH/x58JBAL6pV/6Jf3SL/3S/+PPpFKpv/XA/f+7F2CFRiMYUub4BYPBbxtY7P1yAGYSD4uWICjJDOadTsc6Chl23el0DBAiSwA2CZL4uMrlsnZ2dkyupCqlMvPjjQBumL5JxND4MA3lclkzMzNKp9M6f/68DSrH6Ix0gAeJYIcRnGoYWp6NXa1WbWOwMKWxrYCGAYDHaDQyVodFyn2GHaACZaPCXsEwkqhqtZp5lPr9cQMXFTZBPBKJKJ/P27w8qm5+juADMwm4INH6BIzERXEB2PMMlm9q4pkvLi7q+PHj+sAHPqBEIqFEIqGNjQ1jBmBnvSztQWUoNG4Mq1QqFrCRqGBRkW5IBiRuL+cCCJkwAIOFD48kSdClc5sTwJCguVewJHwmMjHPF79doVAw8E2C8H5Sig3uK8Z+3j+TyUxNFWCN83vlctk6RPP5vLHKnhEnyQeD47mcrO1kMqk/+FhWd77/nbrm0D26/G0l1XWTDrq5sawbK2kp+Lg6gbyer3+PvvDJtjrNtiWhVqs1VRRyb3hGFJrsQQA/zTx4NmkOIfhXq1Vbg9hFvBSNPxdvLMnPM5QoDXTA87MUo91u146eZe+R6Lj/NOXl83mlUinrEobFG41GNk6vUqlYQ2itVjO1BzDpx94R64itqDQAaWlcxOLBY2QbLNShQ4essROwQgL23k4KLZ4PrGW/PxlLtnAkqmsubyoe62s4DGh/P6Ev/UlLlY1di+l48VJrR3T4rd+rYXdyXjnM+mAwMAUK0NBoNMyrTNGSSqXMotJqtZTJZOwaaS7xxTjgjngCK53P581nzH31QIr/5/vSuDYajay7m1iFrE/8IeYRz/1YOgo33/WOLQg5GvYNLzgvChfAPAUART3PjZ/BugPYk2RALhgMWuNlMBjU44+v6PWvf1Zzc23V6yEDcB6IASxDoZDtodnZgS677Jwee+w6I0R8F34kErHGLv+9gsGgHVZBAUGegRCiqKCAozDwo/FYkwcHB2b7Inb54heFgL8DN3hfLhgjHA5ra2vLcjpqBsW/90tLsgKAfgFerAViOjmCOARuwjZAfmCurzS2pFDkcv8OHTpkuOClvP7Owen/r72ommh6YiPgPeFGweh4mQywBjhgc7HAALgkKGbKSdNNOQRp/37SZLAw4IuOfQAoQMRvdKQ8L1ewGAFvjUbDAhGbB7kO2RjGDW/t4cOHrWPdy4rIlGzSXm88PocgBYDDd8WGASggIbHgqeAI8lwHQVKaHEHq2TqYg1QqZawticE3JGC6RsICjMPI+SRCEvTeWp4NJ3TgBfS+Wd99iAXCz4sjwGLvwL8FIJdkrD3AnbVCMIEVZxA2LMb6+roFddYSQAgpjQTjD4PwcgqsKTI4MhzdlgRYGGSKDQIjoGJpacmsLQymJpBKE9bPM4v46GAWvL2F+whgoyCEDQXgAZL4njxDupwBP6x97jeMR6VSUSgU0l//TlgPLr9R194R19GjZxUL16Sw1Oqn9fipH9QzX29Lg740kH0eoAAGZmlpSdls1pKNZ9MIzHhfsYB4xpw4sre3Z8UwTDHsii/kOp2O/T4Jl0RCUYRlgOcnaWq2JHOfmTpBUyRjZHgO2WzWJG38nxRWFKZ+ZBGAot/vWwMWz1WS7UGKeK6TooE9xVpFqYGxTSaTBgwoKlEKvOrmXxRHwWBQgWBQJ+6I69orn1Ra96uvOXWVVkADxRJFvewnpO3u6/XoA2vaebZr63fl7f9YB+dPKhAMKjQz9sEzhYDCnfXO/mIs3jXXXKNAIKAzZ86Y8hUKhczTTbxDZvUSvSQDsDB6MGd4qAEHkgz8cgwl8YyYw/1m3xAraDjyn+k9kkyd2d/ft16HbrdraxBmDq8pTD/WBhhkSBkUK/asjw1IwhAhSOl4o4l7rKO775buvDOgm246r2eeudVse0xC6PV6NrEExm9ubk7XXvu0gsGhnn/+cs3PTwAw5ARqB3/e7XbtudJMNxqNTPXDFoEqRKzACoiiQTGOysWeIHYT74gNxG/IGfYnKhKWQOICZJIvJHjOxCOKT/KPnyhCE2U0GrXihHvAM8S6iG2JhmoKP5h84mQkErH1So/PS3ld8uAUQz/JA0AGwCJQDgYDG9TupTGALcb2YDCoSqVinjkWNICPitMnARiJXC6naDRqs0y9D4NEQiVNUmNDIoNKk+MsvZ8HYMborOXlZasE/ew7fKG+SoZNjsVi1pWLdDQYDMykTTVGZc/v4iEjwPkjykhWVNp4KAlGyOHIVLwnwYDrxOPC/zNCCWO/T4oc74hUz/BfpD6Cmx/VQkBHEoGJabfbqtfrBnIATDDNfDcCMJ3OtVpNL774oh5++GHlcjl99atftaYtn+QBhQzvZ316lrrZbE4VBDxX2CdfvHDfkRbT6bQBesAszxkZZ35+fsr/2Gq1bH3BhAGeAY58lvd6ARAArn5EiiRLknSWsqe4bzQZsA+Q0Qh2o9HkKN94PK7l5WUL9gRbb5fhmfDsKDYAWrOzs2rutXTvX+zriwcB9XpxJ5kV7OjPlZUV605m/3mPGsoD1xoIBJRKpTQ/P2+fNTMzYwdQpFIpRSIRlctl2/cw1yQomBCSEYyOV0m85Mhzr9frtv7a7bbJqJVKxT6fpkxAPcwZa5IkS5EUDo+PIIT55bnjXwsEAspms3aUbSwWUz6fVyQSseNVecbsYdg/Eh33lyNHh8PJsHdiLYUMAItYs7S0ZPuIOMI8Tuvu7nf0XT8+0pHYb6nUvUF/9cDbdOqRqBKLY99rKNbXiVfu6/K1+/T213xR9698j77xxw1lr71FietepSd+7ad05Ls+qOCF+ETxSVIGUAG0iEM33HCDDg4OtLGxIUnWnEuDE5YFniu/m8/nNTMzY4UrQIY9wV7jfkK++BwC0cG6Yj4mOS0ej9voQKRwbGWMsqLQJ7b63gTsIqx9cgH7A+bO+5spJmENIW/C4fFEAM/oQkBgq+L3iOFjhjWgBx9c0a23Pq+trZyq1YTtE8C+94GOFYGqXvGKJ/TMM+va2JicwARryedTVAaDQW1sbJhVDEWDfeMV1Iv3lWdbWd/Ys/i5cDhs4I34igri4zqHIoAHKBJjsZjq9bpdP3mF5w024d7ToAWuyWQy2tvbs4KJ/QqjjPrCHiZns37BNVj8IAGlyalT/X5f29vbxuq/lNclD043NzfNX8GCJjFR3fAwB4OBLRoSPgGDP4O+Z/NScbCY6fyHHSyVStrY2DA2gk5TAEoikTAQ6LtbO52O/Z0/pQk2DVAKK8U4J+QSkjuMDOzT3NycMT2cqUszAqwmSYff4bvv7e1pNBqZN4m/Y+g2CxZmjgCUSCRM3idgsJj5LCozjNwEYQIBrC3AkjlsXC9MG/eSZE0AIIkgazAdIRAI6MiRI/Ycue+RSMSkFIIFMiFFCAwDoAnwyMzPQqGg3//931csFjMgQhJgfRGEWTMkN/99kA/xcpIgKLoAM7AypVJJsVhM6XTanqEHoDxz2BgALv4jmAPm9tbrdRWLRZOFCeCSjHXBtA9A8EUMlTlJkSSB9Mt1c5/wYiJbkog9A+TXEEmME2mQGmHYCeJ+xiWjvZBUJU3tHQon1tChQ4esoRBvHOAERsyDNc/mwbRxwASFEEnNs1++yOGe8A/fk3vC/UAah+0GOMIiwd7AiEuypIgqgqIEI4T9otVq2aEPrHuYcpodQ6HJsb94stmf7F/2N75UmlBI8FwTR4+GQiHt7OyYtAorQwxhL9Ioxrg0YgcM/v7+vlrttj7woYjWY5/TFx96lz7zB1uSiuPfiY/j/bA51EOfi+rh4B26431Vver4J9V52/eoe+MPa/eRr2pUKygYCChw4RrxPrOXPMuHYrKwsKCNjQ1tb29b8cUUBrrNh8NxJz5+bxpL77zzTl133XUqFAr6yle+oieeeMKYec/CwbxxZCSNXzDhAAxyHeuL50wMoyhoNBoql8tTI7oYaQhobbVa5lVnDbJfmVIgyYAw3xPLyMzMjE1fwA5DMQGDzN6neOl2u3aGPDEUQPfXf72mTGZP73rXPfrMZ67T008vWxHlJ+2MRkNdeWVRb3nLIyqXl/TlL9+gdrtpDXLEB4oNAN3MzIwdY83+w2ZBcQ7oZN0xbos9Tc6hCIRl5+Wbk5hGQiyjKAsEAnZAAEorShTzVnkWrEckdw++Ae54zdnrodDkQBlsIHw3mjMjkYh5jMPhsLHqfG8KDsgqejVisZjZg17q65IHp8jgVNYHBwcmn3U6HR06dMhGBiGf+HmjdG0y3w3QdPLkSe3v72t9fV3Ly8vGfvV6PSWTSRWLRZPWRqORsaj4LQkM0mQmHEBIGne50zEPuyqNwSXzTZlxSuXMwmJ8Ew1JbCoYQQKLbxLgfrBBYFEIUn4eIGN/qtWqBWICEBUllaqkKaDp5XbPqiIvIRMOBgOTN5GnCRih0GSSAQPv2fRYIkj+MEXSpJveV+2AFgZce4bCgxNf8XK/aAICiPH9aSBotVo6efKkSVgEU++JkibTFfh/mAGSNkBzb2/POtthoSRZg4UfrYVfFZBE8YQXEeYDcA0QoXkIVhWPsF8LdNYjlwLCWGe+cYDfazab2tnZMQCLBxVw6Ktp2CMKJkm2PmAEisWihsOheflgt/GcefCNz5u9SJc4QF6SddxLY2abMToc4IFXjUBOYyDrD4YIVcB3TLPvSHbFYtE8njDXfs4iLDCMqffOSuNGPa4nHo+bbAhY4Pnh//LgaWNjw+ZL+yOeWePsG2R1ACvxD8DrwdhgMLBDKZDu2HsUksQuvPh4aD0r3Gg0bGKBH0UDS8o+x9YgjadhEJe5bkAap4Xd9l2rOjrzSX3hwXfryW+MWW1AXDqd1uLionX5N5tN/eX/FdY7f+QtuvyVOZ2czWj7k78mSRoMhwo7uxEJHosC65xnUSgUtL+/b75R9gpAUZqMjWJEVyAQUDqd1k033aTV1VUtLy/r/Pnzeuqpp2yfEiNYi0joxE3iCF5nFBhkfwpFrgP2noIFK8loNLIZxexPlEgAFvvMN57BmiEfe180cjkxgKKHhjDv6+fZ443mFCYAL78fiUT0qU/dqO/+7pN697sf1x13nNRTT12mM2fy6nabWl+XbrihoZtuOqulpT1tbx/RV75yp1qtsnZ3dy2eQ/JQeKLWeKsS18i+TaVSplKxBvldch6xh7hBAec9uGAV1DzsYqh52AaZnoCqwHQO3xPDd2FfUKB6Zt0XfKxfrBDNZtPIO54NcQSCz09+QF3s9Xpm8fNKFjmceAKI/k6vSx6cSuPEVq1WtbS0ZB2k8Xhcm5ub1iXsPRgsQLyQBBt8mMheVA4EVGZQIvsQ7GCOqtWqsX2pVErtdtuM5Jii/atQKFhnHRK+B5ueHYQRQcphMeLJHAwGdh0ESBYegZVg4Cl/Xnt7e8buUW0BZGBPCBpsZFg6wCqVozfbI7uHQiELZgRLOkipyAlIfBfALV4+DwAuBjaAbpIu7E82m7UNj2zlzwBnw2OlQBKhEuXIWIADL4AeG5Iig3WDFzUajaparRpY974q35HJSBovv7NevT8LGY7CiLW9u7urdDptyRSLCs8NhoI1jpyILAaAhmXg+QJofNMJ9x0gjtKAwiDJmq5oKMMjzSgdqnpYRZgV1ivFHT7Era2tqSQsjWUpfFSASQovgDGSlR/tBRNI8hmNRgb0AWPsmYODAxUKBQvKFA6wkaw771cHBCC1Aqh5kchRI1B2eHbEn3q9PtVouLi4qGw2q1gsZiwVSYY1iqROAQHzhZ2DYyWJh8QaZg6fP39eiURCy8vLdhIXz5396SeXIL0z95cC0TdjoXYwEo05zSQ3ZGPYYoq3fn88dxVFh+QJ0MGnfcv1z6vcv0XnHk8okRifzZ5Op3Xo0CG97GUvUzab1enTp/X1r39dZ8+eVSQS1d1/sqibfuYXNLf1R2rVylZ0DS/YnLyvls+GVWJk19LSksmt5AXuPesOJQbLBUXy5ubmlC/RHy+bzWaVTqetqOZaYAqJWwsLC1PjprzVxYNAmhvpN+j3+9agyhqgYOA5c70UU6gl0uQIZIprP2oRBpD1z8+Tayna2T+dzmS+6NGjR42BnJubUy6XM/ay1+vpy19e0XPP1XTZZU/qVa96Urff/oTbUwGdPbuuBx64XZXKIfX7A1MuaRoNh8NTDZp8d8+Mcp99VzxsKvYmL80TJ9j/KHKNRsNiDiOXfIFOge2JKUglRgSyJr0izOfOz89bPwrFxv7+vk1s8LYQFAyYeNYAWIBDIiBtiOPkedY1NjCeCf0BFDoULnyf7/S65MEpyQzJBB9SJBLR5ZdfbouMxcNN5P/9aRGwh5FIROvr65Z0YEEAO74JCt8awHM4HNrAaWR4OtAxodOBXC6X1e12rTkH4OK/G2AAxsB3N0vjKuniU7UI4iTqeDyuRqNhzTd+oDiAiEoPm0Mul7PkSNDCFE+iBSQjffpObcAon4UfGImCIAso5V77pjWqVIID1wqDvLu7q+3tbavUSeQAXO4hmxuwjazrk7NnBcvlslqtlrLZrCKRiGq1mh3FyIYF5KXTadvQdHUCKv2UARIb82jxNiHXzszMaH19XRsbGwbEedYANHxKrBGKMWQXkhzP0cu3BFAKM8Aba4DAHI1GTdYj6Pl5m9wLv06QmKWJ/xPWGrDLKCOCMkHSs++AUb4bCQF/X6FQsFFjPAfAOswOcpz3V+JL9NdEQcppLWfPnjW2jnXqZXQGmLO38OcC3GESATFIa54VJciTnP356bClWBQA4IAD1giSIFM+8HjDpuFBpaBlLwA4mPCB9MwMReIg36HZbFpM3d/ft2saDofK5/MWU7g2b8nwjYf8HcUdCZjnn8/nLQ5Lk0MmKJQA+DDrFEwwi9fdeVxL+kM9XfopHT2a0N7eno4cOaJbb71V1113nakax44d09ramj796U+P/d93vl+jflvXBX5Wzy681YDX4AKLHI1GVamM597COKGi+IKONYh0zrMdjUbWVARw5Dtsbm7q05/+tJ599lklEgk98sgjUzaPVCplihOqFaQJrLXvzAZIUGQQc5mSQi8D82EZ/4OPlHjIDGFGMgGeUe/YczBz7GUAk5/1ykEHxEKeufdeE3sgXngGFPXhcNiUyLHdoasXX5zRk09ep1jsMh0+LEkH6nZDqtcXVKmMtLAQ0fx802Kgtz14fzsqFzEdgAywlmRsNXHa24NYg9wDnsfi4qLK5bIpDViE+DzyNrmF5jgYcc+04ifF2oViQv6lQONaifUULLCtFNzeT0weYIwgIBprEM/sYoWVohPSg5jGjG/6OF7K65IHp94/EQ6Hpwbiw47ACvkNNjc3p1qtpmKxaP4i5JnV1dWpkSjI1V4C393dVbValSSTrpg9BuOCDBsKhSyQdzodm/k2MzOjbDZrchEVbTgctgoF3xcJBB8cFSrA2jdPACyQC7rdrp1hDFjzpnsATiqVmhpevbS0pFKpZBUhDUjIvoHAZEYsyZBFyzOgmuYwAyRXAAoBkoXPJi2VSvZZgDoPuNh40hiM+2NA4/HxEZvIiF4uxidEsKD5iE3L8/JNIwQvWGGCHsCKgDwzMzN1rCrBC+mdU0BgaLlPTCqAzcaKMRgMjK1jLRMA0um0qQQwpFtbW+YFBNAjT1KUwYAA4Gh4GI1G2tnZseaywWAwxXxkMhljg5mHx/0AcMM0STI/lWc+eNasHZh3GBr2J2tdkorFot0r5jDy3KPRqCWGcDisYDSu9O3v1OKxqzV/5ITCswt68rf+Nx08ea8xkel0Wktv+yFlXvGGb4slBzvndPo//gstLS3Z885kMiZdI4/1ej2VSiUbp0XBk0wmtb29bYoASUmSsfAUqKztM2fOmPeY9ekbhtjnrG2SKx5SD+hh5QAy3iu2v79vHeYw86xH2LmVlRUDNew1QM/c3JyteQp7X+zgPeW7MpfUe7hJ9KxJfm5ubs5kToo5ki4xNB6P26QSioqVlRXd/Cqpp4R2npkzNvPVr361br755im2OhqN6pprrtFtt92mz97zgJIvf4P2Hv5DaS2qtZuy2nh2SZFYXIFQWIsrhzUfC6u9WzdQCThBwgSIYgOiEZF7Tc5g7/V6465yGONSqaTTp08rn8+besKaIPZEIuOxaH4sEffS26rIQTBp3tMN2InFYsYKeokboJLL5Sz2Ly0tGaDzzVi8LzEyEolYMUhTHmuOg0WwzjFgX5KNFCSXAnCYtkKh6dlkRgTidwwGUzp7dqBmM3yhmKlZ4UfsgR3EJw8hw9pFPeDgCU5NghlGQaLA2t3dVaFQMDWNPE6x5wkH2H1J9t++9wOri1ffKDp4L3KunxTCdXKNeFl5JjTZQe7wPCmY2ad8FsUkXnqAMXlOkikwoVDI4jKgHIsA4Pxir+3f9LrkwSngkw3tB6tTuUoy71ksFlM2m7WHjWzt3w+Wg4qTgAL9Dwiko5jKg+5lAApsFInXn+HMUXmAExY4wI+Fw0al6YfPQJ7gu7OQYRZgjABCJDoAj98Q0vSZ0nS6wyQjS+LBY+HCauDDk2QAhMWPzOUZMkAprFc4PBlDxYaGZUP6Zl4cErwkA74wmP48bcAg70XRAEuzv79vTQuAD66Be8f19Pt9bW5ummHfyzOJRGLqCD0PvGAuPJAgWLA++bNSqWQFEOsFAF8sFhUMBu0ISj+kmap4PLD6wJIBCgCSGzI5si8AwzMr3DsmAEgy7yoGfZgjwFu9XjdZHSACyOTceP7xzTUwabCq/E61WtXW1paBgH6/bww+LCKgnPXFGp5LZXX47d+vTrWog60zWrz8+nFSuOArhwUdDgca9Do69Qe/PsWYq9c2fyggiPVPsmTdSZOjend3dw1gU2AuLCwom83qhRdeMJaqXq8by8b65MQaCgfuUTqdVq/XU7FYtCN/Ga7upT6+v/f17e7uqlKpTHUMU6TOzs5qZWXFpjsADJi+4BMUsYpkls1mrbhBqsTawWgaPMzER6wY3vNaLpdtHeIFJaGzLpjUgdWIGI6FALA8O1NXR1lVKmMQi0+OZ+RfodB4wkpi5ZACwaBmb/mAHtAHFF6Rjr558nOv/OXfU+kbf6mzf/KbZt/yChHrAHBA7KVoGAwGZuNi3xGDyQvI3KwzYioECawxhTaAjxwGUMXbDbDnsyAk8C0y3o1YgRLH6CTek73MfgwGg8a4eSCDt5QYgeRLzKFgxYrCumbdsScgAlBiiPXSWD1ZW1uzY8T57sQecgH+SBr1fN8B6gyNR+Q2Po9DWZDdkfEhFHiGgHB6I/Dwe8JrNBpZvPTKHEwk9hwKFq6PfQ8YBrzSgOyVPfI7Sp6fycyBHZz4RjFAzvBjE3ke5FDkeXIX/n4a16rVqhUV5B7YWt6HZ/n3o6QuvKgQkEGQEmApMXTv7e1pa2tLMzMzJjGSILipnG9O9xubD4kGgMDMR+8Vu7gBhAXgfSjMYfM+DUCgNJm1GI/HTYKmwxmmb3d31zYSI5VYvIFAYMqsTZMKCzGRSCiTyRgQlWRgg2uh0kZaJuEBFln0VJ9UmLlcTjs7OyoWi5JkLIkf6QQDyIYGmO7t7dn9YeFzbY1GwwasA2gJlnjgYPuQ4Eiui4uLdtIWm9+PWhkOh9rY2LCZkJi/G42GVahUizA4voEFxgxgSvUpyTrJCfDcP8Ana5fAhDEecBMMBi0pcb2wxpVKxap3Ejqgl+NrAU7MkES2wWu2urqqra0tY0kBIDQPLC0tma+VIiUQCBgLin0CMMza8NeK5L28vGxFGHuS58i+Ixl3u92pk7MoEGKxmCqViiSZJE/CACz39+u655+/X7FRX0uXXavFy69XPBZX7QI4p/s1Go1Kw6GaT903FcRTqZTiFwboAyYACL5ZDGuP71Lm2TMpoFgs2v5oNptWHDN1ASaQtQSjgv91NBqZRAu7D9vlrUaAbj6Pmba8J5YnSfbneNIBuLlcTktLS6YUoXJI48MSsANsbW1Z/KDAZE9JsiZR1hMgACDEYQ4AjIstOxTGTM6gOKA5j7gOMBl/bkgBDacaAF988UXdeOONU556aczoPvvss6qeelbtT35YsUREr731i3ry1J2qbca18Jp3KRCJa/PPf1uVcyftmVzsLfQNpcRKfJ2sAaY+8DM8N4ANYIICDysJ+9BbYGDGpcmMUmJIr9ezOZiSlE6njRH3fvSLixTi0/LysileAB/AH3uP7wXQjkajKhaLVqjQONvv921aDeCT311ZWbFrINeQDwHjsMQAPxQxJghQsKIMBALjSSEwm9i6pMmJavhGPbD0HlBvbwJUs+e99Q2S4fjx44rFYtrY2DDCA7sF8YvY7huisewANiFx/Kiy0WhkIwUlWeMz8Z3fY79wnwaDgdLptIFvbweDzUdF5UAJiDbihKSp/IRHFeDucx/AlEZa/g6g/FLZ00senDYajSmfAw/G+0qRRwADyOIAIwICG9x7fHK5nKQJ84rZGCDHpoEB4Pf39/dNTkheOMIzGo0qkUjozJkzqlQqUx11AFZJU5IK1RZTCAaDwdSAZ74L14VPjio7k8mY6RlQwcZh0eNTwWuELQHPife7suFgDHZ2dmyMEZKjZ1QAaFRUeFvT6bQBP2Q8DPo0EOXzedvsgFb8l5x/7is8PFX4fGm2gmHg2v0IIO4pnjqeAUVMKBSyRrhoNGrzHguFgs23pTIFDPM+ABxvdYDdBXhh7+DPSSqwu7C0fi3DxFLVwpohPXY6HRuHw14gaHQ6HW1ublqDH6wE3xuWi+fiwRD7AxADU+zlHhovaGpYX1+3atzPXKQpDIl8aWnJ1ATsAEhufEcaoEjQBGi+22g00qC5q84FsCpJI43s+uxehsbvHZ+ZUSg+OXxhOBxqe3vbgDH7kn2EtMnnVioVW9vcPwpG5kB6SwZFIgyaT8Q8352dHUuoPGcSJU1FHIfKTFca/kjA+HT5tyRjLXlmdHrv7u4qn89bcmePAMb4XAohEihyHkU454TzeahRfEdYIm9DoTCiYKFgB5xS5ABylpeXrbGFeN08iCk+u6OBOhoNxqzlmTNn9Oyzz+qaa64xBrXf7+vMmTN69NFHVd3eVPfsKR1/ZVKZ9p+p9lRU+zsLmn/5GxUIBLX37IPavaBk+ca0TCajTCajXC43pURhl2J9sEZhMilQsX9xX/heKGCwsxRcsPh+ZjdNc+SoWGw8cxZ2F8aOWZnEBRg61roHyjB0TNVg/VJAAkTIr/zcxT59LGN+nJ3/XRpC2bvkOW9T8N3iNGrhoYScgVRijQH+UbxQYnzxRMOTb4AmL/BMWMf0OuCX596QDz2rzb65eEoJY7IoTlFUy+Wy2X54FnwPsACFG2ppNBo1hp09BxnDuK5+v2/FLtdOUYMVAeaTe8waI/d51QsvPM8MuwT/JnfxD3sfRfalvC55cErVUS6XJckkPyoT2DBYT4BZIpFQo9HQ1taWDg4OrPpCtvVdvoA+qHk8O1QI0WhUOzs7RoezeZHVWMhUwrBSSMlUHcwUA9QRPAAXniFG7gekxWIxraysmO+DiQFU4yxIKlK6q/HZIF1Kssoe+RCJm8qU70O1z33xgAkjOhJQMBg0LyFMjW/Oqlar1t1N4PLyDowUHlL+jgoPJsWzGty7lZUVZTIZ28wwD7B0sOg0LQEYCNxc4+Liot3TaDSqjY0Nq7oXFxdtHApSBwAfYAuwBtgA/HxygIWnwQLWC0YUMEZykmS2At/tCQtAcARgApolWdEBm839HY1GNuQdYNLvj4+SZYA4AJo9SFKmex0ZcWlpyTx4rAMKt5mZGbOp4JmWZAApHB53OdOYks1mjQlmX/vpCARFb7vY29szwAao7fX7CkSiOvGv/ouC0bj6B3uqPfoNnf+L31G/1bLGK5IPnkKANXs/nU5bYQUrAqDEL+6ByqFDhyxRFYtF7ezsqNvtmkQHYANc4LWlKKQxgvdg3frjSmn24v/5OZQU1io/m8lkrBGOmECiIhZQzOGFhSniueN/I5n7QtQ3SvIdAbew+fwu4KHfHx9fy2QC2Db2oSQrxJ66P6Jr39HSzW+M6uxDS+Zl/cxnPqNut6vLLrtM7XZbjz/+uO6//35tb2+bEvWu63fVHB3WmSfbWlwcKz26AJCZZcx+A8BAMtBgyjG8HuwBQCgQYABRDmhuZI4xsjAA0o8A4xhigBbNrzCH5DMYZmnaDzg/P2/xgJjY6XQsv0AkwGCz//AvAs68zxjPPcBudnbWwAwxl2vENsALcgKVDIaZApPY5ptyKJQ8ORKLjUeqMcrLF44UQLCoW1tbGgwGWl5etmvHv83kCNRLinByA2CNNY51BQbXN7qhIkEYDQYDUwXD4bCpAsRGYjKFGYpSIBCwGEMhglKEBWN7e9tycaczHiEHcEVlIU5S4FQqFYvvrB1sMN7mh9rMXmw0GpbLsRCCW1h/rdZ4XnIsFjM70Hd6XfLgFEkVqR6Q6W/23t6eNQZg4AdgAE56vZ6dkU7gQ1L23gtv9EfS6XQ6JsHys3hQvTGd30+lUiqVSlYFAjYJckhj3lfYbrcNKFOlsAmpcDyYpROXINRoNKaGS/v7RwWfyWTU6/VsQ+FJQ04ncHhZQpL58ZLJpCUUKngGiPPn+JykifTiDfNML4ClAYTBvsCqUozAtkoyRo57CQiDVWbD4pOEWfIe2WQyaYzq9va2VldXrYmExOebdtioMAh01PPdkAYJKlyrZzAAHjCT3D88eyRHQKYHZRcDAdQBCgZOmeI+wLbga0T6opkEGQ0JnaAK0xkIBHTs2DGlUiltbm4aoCFw0TTE+of5IwDyfWgmoWg8ODgwCwpyFOO9ALIkKxg+gDD3ioLAe6kBQfF43DynnXpZ21/6YzXPn1R/MFDqmlcof9vbFF8+ouc+9r/a88H/jAzOeonH49Yl7ycZ7O3taXNz0woYCl2KRUAAe5vGKN6TQekwGZy4QrIbDoc22WN7e1uS7PsD8gF6/nlwChO+M2bGkpjo6q9UKgaA8eXDxEiT02PY99h7sHywr1EFvALFugagce2saWIY7wugpzAiFgGMDw7Gxxb3N8MqDe/U5esPqPDUu3RwMGls/PSnP22s4tbWlo2X63a7WlpPai32OT169h2KRsfPuvHHH7UJK5Lsu8Fy8Vy2trYsRgNeAH/ei+/jO/EF9hPrlj+9kPtHIUpTJAUBBQP2Gu/n5pl7C5P3MLPG2D+Li4tWxKC2AICJ0xQ0FFs8K8APflyKM6RiYjLvj/0EBUSS5dF+f3yy0HA4NHWTIpD7SlGC8sc+577ACDcaDe3u7prShYcTthbLBTmew248G+m905VKxfYRudJbd4jhxLlCoWA2GvYrikY0GrWmM/ysYAxyAL0b2CNYI/V63YCyb0iEaCGexmLjOcx8D454xlNOoQlG4DnD6rNfua++X4SfBWPMzMwYKUIRjsXv77v1L7y8rMmNg53kFAZYRxgdHhynKwFMocdJHDBKVJxeliHIkMAOHz6seDyu06dP2yb2i4vmh7m5OZMVaAbBC8R1VSoVA7EAwoWFBftZuusxg5N4JdlmIjkiPfL/LD6oe041AnghdxC0pDFbkEqlDGD6BAPLTICkWACkABQxzHMfS6WSndVMMTAYDEwa4Bp8JesZauQvNhRNCZj9/VGOVMZUpEjmsK5I8wA8XnxH1gYVLoUACdR36PJcO52OyWLMEyWhhEIhHTp0SGfPnlWz2bTkVywWp2QSP8eUZ07Ak2Rgj+TAGpI05YHm30tLS1pZWRkn4kbDbBAEfd/8k0gkzGsLKGWtb21t2Vr19g8CE4EdAIzhHhbdS2KSzKoAgCcII0Xz3QFqNDHgxYTdIiGOwfeYYZmJz2h4IeEB9jf/+vdsj4ZCIXWef1j9elFrb/t+LVxzqyLPPaj5+XnbS0idkiyI7+/vm4cSLyvJWZIxZn4d+cYOGjRgglBRstmsrSNYIZhSPKfRaNROjAHM+/gnyYAIScw3XBHbSIy+y5zkDQPKXsFfzV70gJpimEIGDyKFHwWcLzqwfQBQpMk4HNgyv/9Rf4jvJOh+v6/HHz2hN938VR299Vr91W+3rRja2trSuXPn7Fmw/+YSC/qB/7GogWb09DdnFQpNYgwJlsQPW0XRw9xTWGR//QBIgM7BwfgYXz+BgGdLnMWuFYlELDdQkHkwSGFAgxOxFVYZhhy7ALI38QQAEolEzKMPEPd/zovYL00KaFQ24iC5AyaQ3gTuN/vNvxdFI7kXJccrAjxbfMcAZe/Jh4jo9/s2MYP35c/9uiMf4wuFQazX6yoUClMd6bCagC5iMNM2fF6m6CB38R7sfd8w5ZlRHxNRDDwQBoRy7/Bvx+Nxa/pCpSW3kQeInyienmUHD3kmlP4L9hOqIeoI/RfdbtfmJGezWTvcqFwum+XC58/v9LrkwakfBM8IDEkWyAeDgVKp1FTTUKVS0ebmpiVsTNxUxiTEq6++Wr1ezyrl4XBozQqj0UjlctnYMzYs0hUdc7BImMRpECIRI29UKhVjDLgmKlOYR7xDMDIkeryP+F9IIjs7OzYFAGaFxYYfiWHewWDQ5KhkMmlWA/ytGxsbSiaT5tGlKpXGAQcjPsmjVqvZqCwAmSQzUyOrMCookUjYWBXGBcEA8v6DwUCnTp0yhhB5jeo0mUxal7Mk6zT1sxEJAgAdb/wG8M7NzVln8uzsrLEDWC7w4fjmK07FASTwPDiDHakQpp4TwmBg2OTz8/MmXSPL0pSUy+VM+i0Wi6pUKjp8+LCNsPKMPtYFPx+VtekTTDQa1eHDh23tIYUhE9KYR8JtNpsqFArmiaT4ogDB4+bPcvbNQhQNBHZACLYUkjUMImwuxaBvliAQs/4Bpt6DnlxKqnQh4DNODc+aL3z2P/MHWn3L9yp1zcu1u/msksmkKpWK/Q57lbWys7Ojg4MDuw/xeFz5fF71et1Au7cg8Lxh2HK5nLFasEokA9YUa4Z1NxqNu4GLxaIxMLlcTm984xt17NgxPfvss3rssceMKcWrx+l1kqaaMi+eMhCLxQygAIKIkViUYGZhx4rFolqtlqkerKvFxUUtLCyoWCyaYsS+XllZMXUJJrher9tRptHo+MSdQqFgDBVFE8ATUBwIBPTwF/aVWf5Humn1U9KPvEd/+l921dpvG3DzAG4mHdc//IENpQIP67Nfe5/Khf0p33273bb4CgihwI/FYjp8+LDS6bTOnj1rHj/8pwBW1jn5h+IGhhIwSq5CPUKFYyoAjZlmR7lQSF/s2UUh8t5kwA3fH+ALiUAchx1DWWJ9Egv4fX+IBT+DrE/+Y617bzyWJYpWby2g+MAD7f3q5BhIB0A3cYB8SvMeoBbFzDccAcQAc8QP/LsUjewXTq9DEQD4FgoFY6exywH4aEoC9DP1gOtivQNWuVcwwuQUilD2UigUspGOEB7EU3IJANSDcD+lB0sN97LX61me8QWOX8sUEeAXT1wwm5y/h0GlR8Ers3/T65IHp9wk2EECOQ/JSxMsPElaXV21TnnPhhHE4vG4br75ZtXrdTujvVAo2AaIx+NWeSKFRiIR6x6kIxD5HbZQkvlfGA0F8wmzgQ2B6ooxMmwgAh7BsN1uK5vNGlCggsP30mw2VavVlMvlFIvFtL6+bhuGjksYH0nWXDQajabmrVYqFTv5giYQGAUCPAwn9orhcKharWajiPg55jnynAikBBAkQ9gXNqUfp1Sr1cynClBfWVmxTmi6DPHuIFkCbKvVqjHSfA5sB0maxifPLPJvEiceQZojeAFQAdkkdZrVsF0gaePVAUwOBgNrrMFblMlk7DvBnPNzjNUCeMD8E8RICAAVmBCSKT46ADXyGutma2vLfI5875mZGRWLRW1tbandbhuDQpDDokCCRYLiNJNkMmkMFaNsAGf4twjwgBb80LBhKBgExW63q2Zj7Nsb9AeW0GBKKHQkmRdw2Ouqf7CvyNzYE8wIp0ajYfGEggqGs9PpGGsKKIvH4waUUTlgwrDYwG6TmABESMEUEgA3zxgS69hDl112md72trdpfn5ea2trOnXqlMmL3HOeE6ACdof77psxsW/wDHwjWqlUUqvVsngXj8eNZcWC4a1NxF3eF6AlTTqDiY38A+PvFRlkU/ZAMDieZAGr1Gq19Cf/546a3/9e3XbFn+mf/ouMTpZv10P3xFXd7iocDenYtUu6/qYNrUb/XEPF9LlvvF+PfL1k+wtJnsLNg+BudzwTem1tTR/4wAeUSCT06U9/2jqnKfhh9z1LByHC/ocFBJgB5LArwczRcOZPqOLMcxQ+DtwAZAKuiKd0ZiP18xxgx1AuAEUAMm//QZbv9/vWz+E9uLBt5AN8r8QZcirFD8QJEjPsPtYqwBDXTQ4nr1BA0LgE80suY237mdv8GyYSgOp96MRVmte4536eNyMAAfJYzVBg6BPY2dmZyqEcWuF7P7zHmz/nvkL8oGp40E/hwTWRgyjgAPEUsrw/VqSlpSUD7r1ez5RX4iH/zV5gjY1GIysI+H/2IlZBwOnfy/oXXlTbsEKAlHB4PMie4dm9Xk/5fN6MviRxpEiocNgkgkG5XJ7qTONBeNM20i7JBxByccMInkMqHy9dpdNpLS8vW1KfnZ2dasQA+EDdM0uRYM9GIzCx0I8dO6ZarWad+MPhUKVSyVhDjP/IGVwvxmoCK6ek4JeD7YKFgllBiiRJNZtNk6GopkkyBCo2FvdhNBrp5MmTdu6zJO3s7FhFB8ilggUAnD17Vnt7e1peXjYWm0RAsCHQ4lvC+E4A2dzcNMCPPQGPDb6f0WhkthBvW4ANgc1AEvVSNV20eNlo1iEA4fENBoMqlUqWpHjGVNT4e6XJWckEXEA295TmAZj+TqdjzDzA23vC/Kk2/L/3ppIg8OiGQiE7ptd31sO8Aw7xc3EWOwkFWaler5v3mQQGy9dsNs2Dx34iqRHQud+hUEjBuXGwxb5AQUXigQkz31UsrvDsgjqNqrGcvV5Pq6urdhQxz280GtlagCHGl4nUz5okARNXSJ6+mRKGw8vDAA327P7+voEXpFR8X7zYe775BenVF1Jzc5PT8NLptK1x1i5M+Orqqubm5uxnOJ651WrZcdGwP172RxngABEvc6IW4K/0dg++O4XIcDi0Al2anAbGZyJbYp/6i9/a1tPXv1Wvf0dQJ9Jf1DXv3p3KFQda04MnX69n7p3TXr1jsZ14QnynUOV7DIdDHTp0SLlcTsePHzd2l5iCQuPnR/K8YauCwaAdKYytgdjB2gcoEYPpk8CnyfB/34FP0UX8BxxSJBMDUPywuFEAoYp4dYlYMzc3NzWuDEAK8GI9wsr6XgvAGyCIZk++szQGtqgRMH28H8VaqVSass1IMmDEaCS82h7gQs70epPjbsmP2FhYW5y053sU+J4UeaxL1rnvaaFRy7PHrAt+3zfpcv8pYsiR7H/WOGw+BSNkAvcVRW9/f9/mraMsoXIQC4iX3D/WAtNQ+L6AePplsA5BeHAfuNfY+MAdAO2X8rrkwSmI33cOAn4IiMi1nJTgqz0WPUwUzOvOzo7uvfdeM6yzMUiO3psCk0TlgjcmlUpZZcKCBVThZ8GOAIBBbqdJgbmqBBUS5O7urkqlkp3Di3wPowerlEqlbJA1XjASL+wsSZTmA9gaNjOy+Wg0Ui6XM9DgAT2VXyQSsTFR3qvFpgHY0XEfCn37uc0ERub34WdBusZrKE2OS8xkMsaU7u7uGhtIpczpRQzeh9FlM5JIotHxjMJut2v+VeR42BoSC8/y4ODAmHCKAIIy/h3YbsCR/64kCpg5GDhO0+J5SrIkwfvAiIbDYQMqNNCQRHmmzMGDdST4MM2C/RAKjWceNhqNKZncs1ewd4CEdDqtdrutQqFgbCNgTJJdB6wI/ljf6QzwgR2gMQ9wxrpgz2OJQHaDwSAxSOMku7e3ZyzE4WPHFZ+dU3g0MJA9Go2Ufd37FQgGVXjsXis0fHzgemFfh8OhEomE3Rv2C81b8/Pztq4B9bAwzWbTfFr4/wj0yL+wyDDP3N9arWaf22w2dfLkSf3RH/2Rjh07pkcffVS1Ws2SGXI799sz8RTcFBR+riTNcOvr67r11lsViUT03HPPWbGGmkBxj+LDM8AO0O12zdqD9Me9oyOd2OLjmCS7JpIyRYS31iDpUiQPBgNtPN/Up8/PSKFbdNmNMc3MSwGF1KgM9OKjLS0sRDUzE1a3u28kAmoGRAMxhTWOwlOpVHT33XdrZmZG29vbpmQFg0GTVGGYfNLmhDumJBALYI+9hxWQCZOJ7xRWUJooLlgEfBFEYQMo49oBPuRHciLkCF5C2FJYNQA3LCDECs+TWZnsO4gRgB5FurdSURQC2gDFFEheffOeTOKIpClFyr8gfVCyAIfBYNAAOnGLNUN+xFdPLvBHQbMeKSZ8Pwr3niKPPQApwP3NZDJmB8Qm5GM4+QDAzn1k3QOKWVO8byAQMFIAphmbEc8IVdP3S2C5aDQaZjOsVqtWGDNxAqBLMzTrgHubSqWsMOXvX8rrkgena2trNvoElg/zMlUngYORCjwgGC42FLLqkSNHFAgEtLOzo729PQN4VCeY/wlGe3t7SqfTlggBZqurq2o0GqpWq2YF8N5Wn5BY3NIYAJfLZaXTaa2srJh53AM+SQaIR6ORSqWSMQyx2OSIyZ2dHduwAFMkdyo4mF8AFR3eAAyAJFI8FScJlPuMfMn9pmrzZnUPshuNxvjElgtVa6/Xs+PqSH5sJAz7AEnYQ5q6crmc1tbWDNj0++OThZi/KI2lxPn5eS0vL6tSqVhwpmuSn+P68P9QSeP58idoAF7C4fE50AynBijCegCYsSzANnhLAQAOxgtgiiTKNQAufKUPQ0qC8b7C3d1dm5UIwASYeJ8w/0+zDPIPQR1GA4ALK5rNZq0Ao9GAa87n8xbE6SRlZBrfiTULcKNBA8sFjGqxWLQiFMYeVQSQsPb69yoyu6BYcsz0p294tTQ7Xrf1b92t2aW0Tvzk/0eNJ76p2tkX1Ov2tPyy27R07StVfuJ+tU8+ZifpIAl6qQz/FfsUwAxLePnll1uDAgkP8EEzRKfTUb1en2qQokDBd4cXjqKVYgumlnXb7/dVKBR03333TcU/ijrkUZJqq9XSxsaGJRPvOedaUqmUxSaGjp89e1aSLMmNRiNVq1U1Gg2trq7aGgBMklQzmYyx9LC2dFWj/gAI2WenTp2yIi+bzSqfzxsgp8iQZM0hvChOien3frZmDPlgwBGs45nUOzs7SqVS1o+A1M17wEx6FqvZbOqxxx4zCwPPDTkXpo0XChfxE0AAKIUk8ABQmjTTMdyf3CbJLCAAdGIdgIAJL0isNHNiF6Mo4Tu3223t7e3p3LlzVmiy5ihUUXogNOLxuBX6XtEi5rO28VxjeWOfIqsD3DitDxaRe0jegnHlnjOKjjhH7iG/UeDy3JmawHVJ4ykvxKFarTY13cbHWMgL7DHEd08mAXbJF6iWfDdsGJ7x9nPTKdJ5NuQgcifgn5+h6MA+JMksJnhaYVnJoYBgWGswE7Ya8iykHRMjAO4Uk3h1uU9e+by4iPpOr0senKZSKWM3AST+BpO4Jen8+fMqlUoGSmFtCCAwB1DeVIjemEy1TWKiemFxxmIxm8eI/LWxsaF8Pj81SoJmC6h1gp/vwPOMLYxKKBTS4cOHTc7iVCC6EP1YodFoZBsvn88rn89PHS1INYwESdXnJWpkZsCWZ80AFMgrm5ubllBJhDA/gDE8e1SpJNmFhQVrNMF3xzX6KpqgQWCCicGDxPNGsmNDsomQ+mdnx2cj7+3t6dSpU2o2myaTA2LxySJ1wihRcfO9YNkw9xOUYMtoAEMuB1QkEompU1GWlpasocZ3j3pwzXfDkrC8vGxBCxaDBEYBAGtDgiFQVSoVA4E8D5LAcDi06RLcI5rbCoWCYrGYlpeXLTFiRSD4sTbxNLKmdnZ2LNACWEjUft8BRrgupCn2BO9B4yNBeuX136VYKmfxYfXWN2j11jdIkh567Otq1WtqPPOg5o5fp+RNdygQDKlV3NTJ//Yb2v3W3Zq/wMz6RgOKK/zlsVjMigOAAuAP5YIGBqRTGApJ1oRUKBSMRWGf4UHv9/tWoO3u7prNZmlpyVg+Ch/iBU2Eq6urBpZoRPJNEwyVJ+HCkrHnkdwPDg50zz33aHZ2VltbWyYX+vnN3t4DK763t6f5+XkrRr1cySgbgDSsWrfb1alTp3TmzBlb+0wI4X4QY70EyjqamZmZmh3J57Fn+/2+FfioW4wOZNzdcDg5hOHQoUN2/2CNWq2WHSXsvYD4kXkGsEfEPpI7tgsSuZ860ul0zAPPeuB5SZOZxMQa7BDJZNL8x9hjsOsALNmb3W7Xmi49AMPTzz3CWwlri1JBjiTGEPcp4ojX+Gd9nOYFcGTdwiDzqlQqNo3Ce89hBP1IQ8Cc95gCsmD1iHMAREAjnw1ZAJCnUPLsH3YJCjoAMYBQkv2bWETMwF4B4SHJciaqBmuJvMz3o0eGGEPBwuD9ubk5lUolU9Li8bjlSdZ8IBAwO4lXUCiyWb+STF2mYQ6wS870fQPkvnq9bgUSeR3M8p1elzw49f5HfCb1el3lclnVatVmdzIKaH5+XtVq1aQyScZuwiJSCTMGhIH5VIPQ9/hxGH/kk/De3p7NDaShCRmCcTjhcNgWDZsK6pxu20KhYExUr9dTMpk0un5vb2/KEO3ZKE6FoGmDZgWkNc8oQPsTZGBNYFFJWiQygjOBFSYrl8vZ2AkYMDbxcDg0sMLnkVSQFL2MRCJk7A33HPBDxS+NjeoHBwd64YUXlM1m7b7FYjEdO3bMvDiwazQ3IVPCMuNnZVB+vV63Bh+6ZAFNsNiBQMAAMkBKGgdyNj9rjqSJpEVVyklNWDl8xywSINdKMF9fX58C8kgtsC8Aulwup/39fWM7GGhPxYyhHQAM0JE0ZfzH8wyrm0gkdNlll6nT6VhhgHRG8IMpwZPsm2EAgJJsHxGUYU/8SB/GchFIfaMHHs5er6fH/s3/YHYOwCIsL7aBx/7zL05V+ny3eDyuRuPAvOC8J//g4SqVSur3+8bkw271ej2TzWu1mk2OYP+iPrBv8IJyHwBgeOKQFzmEotvtmrcVNo//9vGQ/cFzY+9ReNA4SZc23klYTGTdVqulxx57zAAnXjISO1IgCd3LpSRKijS/jmHipHHyLpfL2traMqB+9OhROxwgn88rFArZ/qOIhR3FL0mzIAQFwIQ1zvojjpGw+dn19XVtbW0ZAGJ9DQYDUy+If8QH1qjvHZBkewClCSBPFzXqEYU8z4+GIyxQ5AevcAGsPPAjBmER6Pf7FoOZrAEQY9avJCsMB4PxUdh+HjJrh/uGAkmO8t554iDPl/UNg4gViD3Cs+F5YxHAbw7YrNVqRtgAQmEUsSzxmTCEfA4kEIUIBRg/R4wmR83MzNiUDcgMbGfEEV7eP813w5JFXCcP8HmsE+bzYrOr1+umqDJqkWdLnoWAQkEinlAUz83NmbrgCTOeL8+PSTzNZtPUA7CTH0XHGod99z5w1j1xBwUWr7C35nyn1yUPTtvttsmieB4jkbAWUzEdCSxqbiai7fMV7e+PDFjADiwsLKjRaNgJKWxGPH+9Xs/mDxJUaMqQZImb6hLpnBefg3+QxU9Fi9GY9xrLTskp1gaJBhay2WxadUlww3/FKQ1UWXiPyuWyjYnyAZJqiM+iatve3japHFkb4EhiwpBONUeAhUkkkAICqNwJkFTWdKbCZrLQAVkkHCo57j1gHZsCMiKBZG1tbcoYPxwODfh6uYOmHt6LwE8QYA4pXY74hEjerBGaZGCtJRnYZBOT6PzAZ7yUVMfZbHZKnkTaYc2Uy2Ulk0nNz89rZWXFzjMngSGBJRIJA8zYTXq9yTxf1geJisYc/EbpdFp7e3sqFovG+sK6s+9ofBuNRlNzA73UBOjh/rK2UQsA1kigvDdsFtdP8x8KBiDx4iYS2Di/x3mukqZOSWL9ckSxt0FQ5FHM4CPFPuOlPtYeEh8jgWBTqtWq+ei8PcODF8+EwgwiHSK3ehad/cveJYnCWPKs8NvS2MWMWphY7j+FBMkWMBgOh1Uqlcx7DQPE3oHd4j4DfljTPEuKcj7XDkTodHTu3DlVq1WFQuPxbKlUSrOzs8pkMjZejv3QarVsFuzFUxD4LjQd8ZxJvsQQpqTAlnKfUVI8Ox4KhUzy5bmxrmH4eea+UIpEIgZSIChgq4bDoc04Xl9fVyKRsD2MrYOf9fGfGANLBkhhXTOyC7AzMzNjFhFAOfmL+OsVOHzNfCYx0zf8AujJHUxrIB6QRyCLANrsXd+hz/t5fyOWMFRHZHcKYuI2RSHAFKuRJCsier3xeCZOgWKvwVKTd4n35BE/Pg4gjO+SHgNyIaDZj7vD/8+exreJxx1rCmCdOM21Y2Ug/6CKMW+ccVvLy8vKZDK2n7lG5o8CLGkYA4BC+uBp5gVhxHdhf4KZwBPM7fWFN+sAdeClvC55cAp7OBqNNBg1dNNrhzpx9GHNBc5N/Vytf42ef+5qPfNAdGqOKIuU/5c05UUl8FEV8f+h0PgYNJoD6FaDKWBgMhtSkjUfkeBIZsywJBGyyPwYGAIOFZ0fXQRgJTiyqfwYGyT8TCZjzK0/YQJWh0otHA5bQPX+p1QqpaWlJZXL5SkfHs0PviPRNy/g68Rbi2eTBQ576r87ki3BDNbQm8MpHvzz4hg1JCYYJxIOxnbegxfjv1qtlg4dOqTl5WWbyMB3gpGiy1OS3U/WiQ/83B/PgpJckBhhn3wVSnAkwfKzTHQggeVyOXW7XVUqFQUCATv5BVaCJhzAny+AAD4USQQnCjWqZb4niYD/xkbAOkVtgOGsVqu2RvkZSVZQUVgwmgipFc8ibBifRyEFQ42EdfFUDMapIfPCcHjPHOsBsACY5Z542Q6ZmQAPWPb+Khg439DnvXu+6Q9PKnuAZx6Njg+ZgNkG+HvfIYmIOICcjkTIvgMM0GiE55dnlk6nLY5R+JBAiauBQMBmQLM2KURYy5KMzaPRk+kcAB/uMV59QPXe3p7Fz2w2q9XVVQMDrEX2Ap8HowfjHFs9piM3v04zR69WZCmr/v6uGqee1tN/+J/UKW/b7MlwOKzE+mVafecPKXH5dRoN+qo8cb8Kn/k9BYMBYyZZR8QlWGRArCSLBRR4dLpTEDLZw08L8Q0jxPRMJmNrQJKx/RS0nU7H2GyuhTjIOoIx5Xf4DhTI5BRyg2d0t7a2DOhhBUKmJ2bzHCigIBl6vZ62t7enwBOjE1nT/MMepxhk1Jk/uph1zsEg9C5ge2PEHEyfV4s6nY6NPPREC/0Q5ANv0RiNRlP3nmKSPMbMbEAZ35//hughftIsSaHsC6bFxUXbG3wWxEMmkzFGl9MoDx8+bEUNxTJ4g+k0FCEUqahX3Gd88/RSkKv5XE/IUfSxR8E6MKFYBiE3iIs0NpLDKKL8OMW/6XXJg1MW6hW3jHTHzX+hoLraGbxZ9z//btVKI4XDIeWPhHTi8CO69dr/phuuWdZf/eVt6u1P5rLRiSdNjkPd3d21wcCA3729PZNnSbRUJQAUpE8kM7yBLDCqTCoTGBJkDiwIfjFRtTNcGyZsaWnJZG+CIw0HVL2j0cgGyOdyOeXzeQtczAKFwUylUkbpp1IpC5YkMYIr1SGsM9V4OBw2L20gENDhw4enmB8YEDxEgFo/gskDtHa7rc3NzSlAApviTdywrvi1YGsZ9o5dgYp6d3fXpBXAMECVpoiDgwPznJZKJY1Gk3FagC7AhjRO0Jubm5Im8+mkSZKIRCYniyDJeM8ThQcMEv5BArdvpuDPCKyAXxqJAoGAFUbcUwoaiheCLew878H7kVDYF/V63a4bSdZL8RQ/FDsAW9a/Bxh+ZBXPmfuGzw17DYkYcB6NRq3I8TP5KH5QICSZfcPbbWDBaC5CikfqBXi0Wi2T7wEWHIiBzcBPjODPuWaKTpIYXkuYGhgJfMoUWDBGFIWA6VarZbYOYgOgA0AvTUA894Z1RXMnRQl7kbXGOmWP8DmMGoI9k2RMD88UcMr9ODg4sCTJ/UC1YI0fHBzozJkzUwkZm4gfiQbAoJBGPWD/Ze54t+aOXKna499U48wLGsXntP7G79Ltv/xxPfMfflqd4saYIFjK6sT//KvqtfZ15s/+L8XmF7T82vdqYf0ynfsvP6/IBXAEQ0myJk4Rp2HMYOrsOi4wWD7WAO5QDCi4aEgFiLM+R6ORDd73rCaEAYcBUNwQ5yh02FuAZp4/f8574Rne2dmxgo3rZF03m01r8GTuM7EZ3zLACUDI+sdOARkD8cNzZU+gJlGosv6IOd6fSoylyMSvC/tPrAQQRqNRLSwsGHii8AJIY/GhwGNcGnlakt0zCmzUWe97Zx8R+yCw2Few6sQaf60U/tFoVFtbW1ak+cIflQLrBMoH1yXJ9h7eZeIyeRMcApbA/uWfAxNE+M48JwoEwC/31lvUJBnZw3p6Ka9LHpyGw2Fdf2dYr7rq97UzeKM+96fr2nlhS93uU5LGPp7iU7N6uJ9T/rr/l/7Ba7+i977rbn3hS+/VuZMDqxCpgIbDoTVVwXwRgEjMXiaC8aKTG5kllUpZowlyJxUZYLVarRqLA4VP9UOjDAwoC4rFn06nLWBg3Eeuohkjk8mYFwimB3ZRGicmACld83TL0w1IcoYxImgDegGmVKX4aKTxgl1eXp4ye+Nh8h2vJDXkbJgAZFrvnSXp04zF9a2trVmljhWBpiwCNtU9RYKXLmDNqGJJLltbW9aJzTrJ5/MaDoc2smljY8MkQNhL2EM2PoENWYv1xhB7ZE/AGfNDpUkjAtUrz4LEJsmKFook1pIku+/4hL23ud/vaWYmrAu5wRILTIAHcbBHFD1U7TRcIR0CuFljJCB8iDs7O+axmpub0/b2tl0bTBNBlP0nyZIP70kH6erqqgGZ4XColZUVAxibm5smHc7Pzyufz9v1kKwocnhWJBnuH+uCbnIahuhChhnjeXhGEdbBe2BJFgBAWHIYbhhdGAr+rNFomD8XZo5kwdrnsz3AQRIcDAbG6vlGM/YhoJp1TgMfsQkWqVKpmBqE5xmwzbgyCgwkfMABLGOlUrGOfD+KBoa63+/bqCj8egA4/rzb7Wr3j39bsf2KouGQyZSVR76mV/78b+nI2z6gU5/4sJrNplZvf5eC0ZjOf+xfqnT2xXEMOveCrvyffkkzV79KB0/eY6wiLPNgMLAzztnvPFcsDzxzL2EDGJFxKTKkyfGdFPr+73lPwAmEwP7+vhVKFGKw+FigsEH5Qh8QR2yWNCW387MU6L1eT5VKxWIAChAFHwoc94CCDHsDe5a4ynrnnvAMyaN8f2I4642ikt6N2dlZ664PhUJ2pC/x5mJfPAQFaxz2nfUHGUB8hnXm9DrmiWNPgmElh+Hhp7C++N7zggnGtoaPmsJLktk0KAC4X8QU/Lee2SXv47vlGmmm9t5iQDrfk5zFqEAPUCla/KEtTEPBx4yKSyweDAaGdficv5f1L7wyR0O69ao/0lbvLfrD/xiVhiVrsvF+sU67rae+/Lh2XrhG3/8/BvX6N9ytj5+6zea78TssDBKQ920h8YbD4SmTNRUOnlWAJdIYwZ9qkopNktHhvDhmjAXCIHaGkEejUasEt7e3p66LKhZASpMH81Y7nY5KpZIZqRUc6erbozp2fFfx2JZGKmv3YEHPPrKg1lbPNgDHnOE/814sEiyAQZqMuEJ2wgju5XiCGIkHxpIZpiQt7zfjs2CCSRIwcF5uIJByghSNcXileC5UnTRVIN14M7z32yIhAdiR8giiXn6FVQIMs54IqMhafujzysqKfX++B0wZIJ2h+NgNSBCwPAAD72dinfb7fbXbu7r66rJuuums8vmaQqGhhsOAKpVZPfTQip599ohKpYgdKYtMhGTFe5G0YaHx3+L5JJDxzOlSZw3RcAIDwT33bC7gj8YIvsP29vbUMaeeMeWZAIJmZsbHI66urmp/f1+bm5tT/mWkf9YGsjRd1lgzPEgDGCBpje9r29aOpKlxSagN7GUA+Gg0mXtI8uJFXABYzM7OWjxbWlqyAgNGBkaaawewwz5SWPNvgA6dzDB7gUDA9hQsO0fEevY9HA7bHvXxz4PdQCBgxx4/8cQTNimARL+6uqrl5WWb90rjKYmQ96ZJFfadwmVUPKfFXM7AeavVUq9aUKe4oUh6xdShW258jcqP36v+7sTH2H/8Ph0pbmrx+lepdN/nvu3+wKIBQCmG6vX6VMc2BTv+TqRtRm0hzeMD9Ywz35eCEd86yoCPZ8RBChwKB/7OFybI5dKk+Kd4hukmn9Achz2EZwzpkUwmtbCwYM8O1hh1g32K0gc7TxEOWMVywDWgCME00sQFYJ2fnzeQCGlALAVQYTmD2SOXAFix2/gmLvJWNDo+Ppd9SW7n3nFdnijh3wBU9hnrEUaTvCPJMIE/8hkfP3YGJhQQl8hDKLflclmzs7PKZrNmlSO+UzRKsvjIfsQe5D267EvID4o6AKwvAllP3A/iCAQJOQHVmGL5pbwueXB6/StK6gRy+vPfWVRQbc1ckIw52YTqDPazvl3SX/7lK/S9b39CL39DQK2/yFnwZfwQxzcSRFggPCQW3/7+vtLptElnTACADSLIcQazN2oT2P2iJggSbKjESeQkBDY7s+LY4DAUVIFUyVTmAPZwbKTXvKevo6l7FBsVtKcT6gySCoy6yiXO6OrX1VUJ3KlHn7hBz3+9OCUXwwR5OwDXE4lEdPToUWNKYQRHo5GxOL4RhWoZYAMzx+aAZUAu4/clWaXPZpc0VXkjeXMvaKLxnl4Sru+kHI1Gymazds/pdOW6fMNMIBDQ8vKynU4GQPJJFDC5sLBgwUaSPXeeL7IaoMF72vAT8nvR6Ph0KQA710JygNHzyQv55fDhF/Ta1z6h+fm+zp5N6557rlO/H9f8fFip1Hn9g3/wot7whlN68MHL9fTTt5gFZXl5WZJs3iUJyVsiaDghCMP6+WIFQz3rAfZ9YWHBCkU8iTBT/Dz+Kapz2CzWH0GYBh+aOKQJAG21WjZei3EsJAJfbBaLRZMIKR6kSUc9yRQ/KOfXc7iGNA0GYJWY8YnSAQCEXWHdsj+QUkkso9HI1isJid8DzDF9hHvD7zEOh7hGQYfMyBpGZWD/sPf8QHD2BN/TN0cB2olVMHkALWJkPB7X1VdfbUkfFgr5kYMpKpXKlO2HAga1IRQKmeXCRhvNLWp/87RGo5EW8quKJVLaO/u8zRvlvu6ffU6LV73cfPDEOgARewoAwfdHIfANLgAV3/gEE899xdYDCKbIYa4k/m6KDT/JgkLc26SICxAUFHsU/svLy2a3Iq7SjNjvTyZOwNR6No6RiNxfgHS32zUmk7155swZ1et1U0BYG/jisTt4vy5NQ6ghsJvcX2lyaABFHOojsRaCguYnrhViBYUT2wDxg++B8sS1+eZm9laz2bQ4x7Uj1yeTSYu95BZexEUKed4LFRQ7lLcHoFygdHqbgieE2PtcI0QLhTr2QR9nKWwZx8XaIR5yX7kumG9Aa6/XM0sV1pTBYGDTf2CBvRXjb3pd8uB0debrOlV8n0KjwJQ/6sYbb9Qdd9yhUCikU6dO6Z577rHhzhtPnFPhrW/UlUcf1deG1ykcjtj4mWg0askVvyVV8O7urtbW1qaCML4fFiFJmmDHwhgOh1pfX5ckW4heMmHB+uHrvvmExOoba1gckqy6o4sOVg6fINeXO7SgN7/7W5oPnNaZ3dfrwW8kVD41XtQ7Ozuam1/RK940p2uvekZvuO4/Kbv2P+lb/23MHtFc5E+dAViRQD2QJcDOz89bow7XS1DmugGRdNFS6fLzBIZ2u21B2M/hG41Gxjryu5xPzuD8wWBgsxcBLjCCbH6COglJ0pRpH7kV4Lm5uWlBmYIBoEP3J12WF3uNKVhgWX0nJUmCe0EBQyVMoEO2g+VFRqJBj3sxOzur668/qdtvf0TPP7+qu+9eU6ORUCaTuTBiKqyHH15Xu72l22/f0W23Pa98PqBvfetOY22DwaDK5bI1yXB/WBMM8vaWBAAPFX2tVptqRIMJiUaj5hHmH8AZew0mBZsFTU8UFiQHWBf2FmwOxY73KQOiKQr5GV6e6Qd0MK4OVprEh1S2sLBgR9PCQADSQqHxtIFsNmvfzzcJYQ9iXTB/ElaHJOcVgGg0OrXfvbc3Ho9reXnZAIAHWc1mU9Vq1dY/hRSe9nA4bApOv9+3OZDYjGCA8Luz/gHJ3HfWAIebMGILkOgPFWEt48Fl7QcC4zFDkUjEYjH79+JJG6u3vUXRZEaNz31S2WxWoew47g6bDYtPZgvaryu6kFAgHDEZnP2SzWbtuSWTSSMTANAAU4oXcgHrHaYQgMXxjzSpUYABzLl/xDy8zfwdI+/8kcA+RnprAcDCd31TOGJtAoQST4LBoNm7KF6IW81m05h8WGCmLxSLRbMe+eZOSBGKL5j+cDhszxnCgP8mr1FgwlDD1vrinrjrfZzBYNCUQkAaigAAGXYQ6wFHdKbTaV1++eXa29vT888/b+wn1wOjzL5lrRADveLmwSWxGDtCJpOZmsrDd+cZUmgxuxelEFIM/IBqREHOs4FQ8Z568h9KFHuT319cXLRiNRIZT43BlsPhBjxn+gu4bvYBOYzY/p1elzw4DaivFx9KKRY7MCnx+uuv1/vf/34DOuvr60omk/roRz9qFcdDDx/VO2/5nHJHrlT5/Dgorq2tGbhZXFxUJpNRsViUJPNxejN0p9OxsU5+dAWSg2848VUtXhqqMYILFTKJXtLUXFA/w5KFTYDx1wBjJckCbTwe1/xiVG9+97cUD5b0p5//hyo831Kvd2CfHY/H1e+N9MDne3rg85fpzf8opxtWP6bBez+kh/+sbIwksinMCIOiSVTYIqhQfSXlu//YkCQWP/PRAy/PWHPfqf69L7BarRqDzABvf3iAr5I9uIbBWFhYsCHVTDrwbKsPAgRPAg6JiKDXarWsO5OZtXTZ++kNBJ1QaDw31R+Xy7qZn583ZgRg7ZuCSCysO+QkpL/BYKBDh87o9tsf1oMPHtfXv36t9vebmp2NW+Apl8sXZMxZ3X33UZXLC3rrWx9WvR7VI4/cYE0gJFiAMkWUZ6sx8QOeeKYkN5I4P8eQbK6X9UBygoHi3hNkkeQAp8wY7XQ6VkTiHy8UCvb8UBrwL/OegAhefhQYo60A/BQZi4uLqtVqU4XH0tKSMpmMgVjkWZ4Xqg7TIWDN8Rx6EIk0ubCwoMOHD9upaDDMXCcgLhaLWYc6nd+SrOOZ71oul63Ihs3Di8az9QoHiR17CoU580IBaxQG+N/q9boBBywRxCyOaSSWsQ9gpOlEZ/7n8vKyeY3Zm0wPiUajYxJgfklHvuuD2j/zrJpPfHO8Dnvj9RfUpGGP64yGLswYXUqr2xzL+KhRFPkcbPDa175Ws7OzeuKJJ/Tkk09qe3vb1A3vqWT/I3kCgpi9zAlc/B2KCp8Zi8XMm8g+52d5b0YrwaYS11D0KPYikYiKxaL1OGDTYI0SU9gbNLMRZ+kfYH9g4UFKZu0i/RPP8OESq/BwA2p4jqhqsIdYKbif7DcKBK6FfygYyXvYjPg9rBhefvcKAnl1bW1N11xzjd70pjepUqmYCsRnE2PJwZwaSV8DOQ7/PfvEH/9J8cm+hDX2k2pQO1mDND8tLCxMnRQJOEZdQoHj58PhsLGsEBT8HsUjvRUXEyeQI0zlIBaTuyGTmCiAzUyazFd+Ka9LHpx2lVOtcGCs1tzcnO644w4DptJ40x45csSqg7m5Oe1uhqRbpEPHk9o82bBqisTDeCiABPIfjNjMzIxKpZIBBwIzMiK/57vmYVU8M0EwYiGwYTY3N+1sdapNqi8kJBgF/mEjSLIKFHA7OzurV72tqfngaf32f32jzjxyUisrK+r3J93CeCYJGF/647DiH7hTN2Y+pnuj36WNjQ1jYpiFxv3Fmwnzw72AHc7lcgqHwyZPwbDhJUP2xEZBwMXbwsZjswCAAa8EWcBJIBCwBhImEBDwCCae7aao4P0ANAQ/SeZ5ohomGQDwJBkYbrfbWl1dtSMpqVQ5lYbA5L1FSKi++Ykih/sGKOA9uX+sIcaKUOGPzfRt3XrrEzp5MqUvfvEKdTr7Jm/6EVyBQMB8rV/9alxzc+t69auf0rPPXqNud9IVyv3GKgPgIsFw2ALXjeQujRsAWM9LS0sqFouqVCra3d21sSq7u7tm1mc/0ciwtLSkfD5vrLKf4cfIGO9j85aRc+fO2Z6gyof1W11dtQIIlhIGmE53WCjYB9h7ngNgIB6fnP7Cc6eJhdiAjYh74RlLPM3sZZJSsVg0wAhQAfjA6EsTHzvsKfuFSR6FQkHdblf5fN6aZQBYNNzxDAGW+COZbMLPsf8pJiliADKoB/igS6WSQqHxPFMaH4mrFKyoFFhraNpkzBBMsWfDw+Gwlo9epuMf/Dfqtw907pMfVjqVGh+E0rtwWEE4amuW5xkIj/d2ubijfqdt94/7Lo0L/3Q6rVtuucXW/unTp40Nxd6EjYbvQBHlJ1jAksL44dWDKfOjoMhJMMLEAN/QCIjxvlRyIXHdr2mKYGI9ewybAAUM8RfP58LCgjHeAGQKU96beHYx0wigYcoADDUFZ6vVstm2PB9YT8A1z4UCkbjiD5OAXIDoIF5CEGHLajabplygcFI0APR4P18E0sgoyUBdvV6fsn0RC+krQBngGXtLCjmpXq9bbEF5IN9ApgH0uRbyBWsf2wN50nuOWcPEwcFgYFNLKBhQVyE/OCyA/TUcDq35Ed+rjz3gI8iLl/K65MHpUGE7RYnz7GdnZ79tnAFVYzabHS/w4DgAhaOTxphwePxexWJRy8vLSqfTVslzggSLjiqHQIfsxGkOBFYSM9XQ4uKivQ9jNlZXV60KIcCQAPh9TqHC07i9vW3+JO97IhjAXFarVRUKBSWTszqWuV9nm2/TM988ZZshlUrZ4GOSHRJuIpHQV/58pB/8Ien2d8RVODlnLJjvXofmB1BxvwAOnIrjJSU2rj+xhGRPdzkBlPsAQO/3x13Q+XzeNgWzYwnMjDohmSHZAvaxWpAMfGONn4pAJz+nPLFWfLcnzUmtVssSE0EqkUioUqlYRzr3DiYBNpUOaoIpAXx3d9dAOevaT4HAAkLTGmNSYGTGz/icUqk9ffWrdyiVStuQaUAHgdWDyHa7rc99bkGvfvVIx449p8cfv9IATiaTUTabneoGxt/Fd+cwiEajYcetwpxi9fDXf3BwoFKpZJ32JG+COT7Gvb09W0+nT5/W7u6uNW1JskQDo+Pl5os9b4Acul9hWSlSYHT4u52dHaXTaZPaYWoZHu6bwHyTJNYgaVxsZTIZkxkBhth2kPLj8fGcxn6/b6CSObAUEYAzpEcv85JU6TxmjfD3+GEBAawzSXatrE88dr1ez8ZAwc4QJ2D9iXkoKtg/PBPjkziNmjBa7EFALveHaybm0OAIYBiGozrxw/+rwrPzevzD/0yjekmhQ4fGhWdvvO4Cs/O2dxmQH5xbVK+5q3Zz32IvcSuTydheHAwG2tzcVCQS0de//nWdOnVK+/v7U94/aXIiEMVfOp02gMi64XtRdANuYDsPDg5UKBQUiUSskYa1yKQCWFkUCyT21dVVFQoF67yGRSWGeeDKMyamSjIvu58d7E9R63Q65vdmP0my4ph1WKvVLD74g0vwqtMoSJwGMKbTaSseAdGwtNwr3+DJOveWHN+4QwMa0j7eXuw1FFi9Xk8vvPCCRqORyeDkHW+T8geKoE7iVQZDeGsSQI9TKdnbAFTsSt7GVa/Xp9QRCldiEfeEQhV8Qe72J1/il6VwginGmgWRRHzY29vT5uamarWaKpWKEomElpaWbF+bV/vCKCoKYTADxdtLeV3y4DSiumq1iobDsUxUr9d18uRJq4ykccC47777DFwMBgMtrl0YX7Q7GVcDIPEzDIvFovb29rS2tmbM6+zsrBqNhp1eRMMU3h7MxMiEw+F4ThjgDT8SG1rSVFMH5nTkNbqgkVTa7bYd7Ufw3t3dtUVOBUMlGgwGdf0dUUVV1qPfyuqKKyZHYyaTSb361a/WzTffrH6/r6eeekqPPfaYJaFGbaCN3Vt1RebLSmRert5B037XBxw2D2MlfMU3GAxUKBTsd2Ae8UEhlQDAYT6pBmEaqNwBj3j58B9R5cMC+/uMNIy/hkBC1Ue3sDQZKo7nanV11QIEHeIwN8wXxCC/t7enfD6vQCCgSqWiQqGgSqWier2uXC6naDSqjY2NKdM/jAVMMp5lKl3kXdYGDCIgFDBWqVQMTLdaLW1vb2swGOjVr35elcq8trfzGg47tl5nZmaUzWaVy+Vsxi73gC7nJ59M6aqrXtCjj15hQYfzwQF1MITD4Xhw9uzsrE1pgFms1WpmOwBQkOzwKBPECbisf+8z9o05JDDWPIBL0lQxEo/HbX4lABoZiiKNwpCEA6sMUA2FQmbJwEtNksMzStHKe1EsEdArlYouu+wyK5hCoZB1GfOZkuz4P1gMnhMADQnfe6IBj3wn2CUKKJjxXC5nvnjiE++XTqftXuG5hikCxACo2cswvzxD1i/A2Td8wEYzn5K4SLc6RQNANZfLfdvzxPsIGxyPxzUMBHXZD/8rRdMrKvzh/65BdceA2XA41PCgod5+Q7OHLjc1AiAQXz2ug83T1kAC+KPDWhoXU88884w2NjZsAgRxh/UPGEP1IU41Gg0Dgoy34ztQwIRCoSk1hUKFvwOUsEZ47t66gbzM88cXi4WAYgxVEOaborRarU5179dqNfNN8vxgPgHWgFh8nMQjgBvxEvmd3+XeRaPjOZ80Q1J8scYBdsQDYoknFWDp8BITl/00Du99xo/JaCZYx1arpWeeeUZbW1tmK4HphAkNh8N2ch7KCPmZdQJ5wT0hL7KPKJZ9EyuFNzkQgMs99FNSKOzIrbCdrAtvsfIWNHIi94kXo7Ha7bYpI6xP1AumrxC/JdkeRKGhQAYLvJTX/x+A0z294vUJPfy1MSOwvb2tu+++W7FYTCdOnFClUtGZM2d0//33m49zaWlJ196yr4HmtP1CSEePHrVqHxMwyadQKBjbgWxOFcEChA2VZBUaEn4+nzdpy3tEYJeoXqhCyuWyms3mlIQCxb68vPxtBnIvY0qyRAG4CYfHA66PXVbVXvAG1V7cN19Lv9/X6uqq3vzmNxsLu7q6qmg0qnvvvVfnz59Xs9nUC0/ldOTVX9PRG9+lzcc21e1O5qjR6QlQY1OxIfBbbmxsTHXEYlkASAEgkckA+zDIsA/RaNSOGUQOoaJGgqfRioRHIqA6RQJNpVLWzcp9JhkAVHK5nI23Qubr9/tTTQWAKJ4BTQwE5lgspmPHjmltbc0SIMmTYocEhgyE/El1z/r01T/eITqUS6WS9vf37ShRwEkmc6BCYUW9Xt+AJd3it99+u26//XY9+uij+tznPmeFAv7H06druummF9Xvd7W8vGzAuV6vmx8P4MwzqtfrZjWQJhYTwBCsR6VSMdCBVYYigGLGdylzbwAYeOYoMrxMxdnQSHQ0VrBfYCnZM7C0AAIAHkAYppw/l6R8Pm8AlEDe6XRsgsT29raxhh7AYRfhPnv7AkUqCQ5Aurq6aox/tVq1e836R7bENkHyZPwUUl8wGDTmnTWLPMc+4nr9/aEAIVHDYLHOmZ9Yr9dVqVTMDoF/krjorQDEMuR6z5b7ewpzyfOnmJifn1c4EtXh7/1fNLt+hbb+8CNqn3te4XDYTrTjNKTWcw8pc8NrtHbiGoXaF7z7R65SLLuq2v2ftZPI8IpTKEciEdXrdZ07d86kaw9CYem4Z9gZ2u22ATbWV7fbtf0Hgz8cDpVIJJROp9XtdrWzs2PPm7UNAES+BmR4qwAn29Gsw58xRgyLACwgI6uSyaQ6nY41WxFXvGLItQLUsBFQyMEasiY8cYG9amZmxvInxR4/l06nlUgkzC+L3A8BAWmD1E685jvTBMXe5HdREFhHxBGkdPzgHrRiCwAYegUNn6X3VKKg8tn+u5PTo9GoAX+YUG+JwEqI15d9B/vNOsL+NRgM7BS5Q4cOmfzPHFhYbp4L6xiPMgU1bDT7mIKUvO1P5yN+U6gQo+iJQDljTb6U1yUPTneDN+i2O6raev6o2u22nTsLU+VP8jAAMBPT0dQXdH7/deoejBSLjWwxAjQAAvijgsGgqtWqBQwvjxBUJV0AAxnzI9I0wELb29uz66jX69Z9xyYYjUbW6CFNzN9YAnZ2dswDRBW6v79vrAZBiDO29/b2xl2uoQO1hykLPJjib7rpJjt9QpL590gmg8FAW2d3pVdLo0DTGovYIFTfXppaWFiwIE5yYEH7oOylCn/SCKAG+Q5pggRAoAfUAF7b7bZV78imMF0cmEAwmJ+fVyqVMhaVk60w5ROwMc77ZMDm92Z8WCea16ggKVAoCPBT8V0YFcPfwcTCNPhjEClsaKbjPah0OU2LgL62tnYhGPfUao2MOUSqhFlOp9M6duyYUqmUMXm893AYu7AuApqbm7fP5v5LsoYxQFGzOT6qD7kdoEDgBuDA2uFfY6QUbDBNMRfbGPCRwkDyHt6DjXTG6U8kW5qkms2mNdjAKuED5eQ1bBKj0Uj5fN5mDQMySVgwNDCJ/DlnplN8Mpu0VqvZkYbcByS8g4MD20Peswor7JuKRqORMTAAxPqF43wBdxRCJHWYKICFJAM7tVrN2GH2DZ38PonyLPy+A+RS3AEw8VwCamB9KMxowPBqD+wXny/JgOzFI/eW3/YDSl77SjWff0TDSEzxq14htdsKNptaSKc1Ov34uOi97zOav+aVuvzHflGVb35GwWhMS7e9Xe2dsyrf/wW7H8Q+WD5keiYZeHkURQePLYAP4IY6ApD2zxeLA4wrVjBiOyCD2A+bhmxaKpVULpeVzWanfM/kDPIHYF6S3VNiEXuFZ0zcocmS78kaxa8NieBZ3YvnrtIQtrS0ZBaqfr9vTVPkG6abAJTJE/j+YYkplijEy+WyHT3uvwtxjWeG/5SCgLzEaYv+ulFHsANd7Olk/RO/IWWI79gRYMyJ0Vix+DzWiFdS+bnZ2VlT/7BzEPeJM4BLSSoUCnZdkD3cC+wljKwbDoe219g/HvxDvrCO8CxDOEH6kFuZmDE7O2u2ERrJXsrrkgenz5y9SW+46nd17SuP6ZkHx76JXq+nnZ0dNRoN89Xhcer1err1bW3FRtt6/Fs5BQJtC/gAB8AV8yw5NaJcLiuRSJhPym9s/Fzh8PiEBzxNADzPfLFoy+WysTzSeBMkEgkbbE0FJY2D+RNPPGFyHIvcd+Cxab38lsvlxn83CisYGHvvAM/IOWwAaRwsHn/8cWMGQ6GQOt2xJNE66FnVCEgnaHGyCuwA7CrVI3INTROSpho4qITZPJyeJY2r+Xw+r3Q6rbNnz+r06dNKJpPK5XIKBoM2X41kSWMbMgwAAfkF0EhQZ3A4hnKeBYb5QCBgDA8NIUjw+HwALHt7e+Zt5rpozsOG0O12Lfn76yEABoNBHT9+3OSZ+fl5GzOGKR2pmHsHQMVmkUwmnS8rpnB4LOfhC2PtfulLX7KAQsBkhMq4MItpNJJGo7iBl253fEoJCkGxWDRLB5I5LCQ2FyRFigvYBmkyagdmgbXPz5GQKpWKAoHAlE9YGsvgtVrNurphdwnmBHyCKQAZJoK9iRTNmoClAGgmEgmbjwgIhYFGFSFBMnjd73eSAdLqxT54GBLYGG/rgAGhE5/Ew76v1WoGrAHtxA2K6GQyaYw0p0tJmgLzvLAncDIQBY0vAgaDgbLZrGq1mnWPoybhIyT2Yb8AZOPJ9ICKvUey9rM7WbMk+G73wmEcy4clSXMnXqa5Ey/7tvxw/4feqU6no3Sno9in/g/N3fE+pd/w3RoN+2q+8Ji2/up31W23LBGz51hbniVrNptTPnLuF/tPGrNdAMV8Pm/xodvtGtMHe8+9pwiDXCA2c28AuxTGrDPAG/I6nk2aZbj/qVTKWG08+qwdDpOBfSP+IK1TFLPOAY/eAsT3Yc9KMv8z1gIICvaNl9b9SCvyCbmi0WjY/gVAQ+ZQcAKMDg4OVKlUFItNZq3yjyeXWEeQD0jbnsiikAL0eRsa+YVnQaEcj8fthET2PEoBfnmKDmIO+xz5nEI+GBxPavD2Gex+3rdKs1iv17MTIv0eo8jmubEmKPQu9sRDtvnigX1AXOH3KVDi8fFBP34k3Et5XfLg9OS9I1171Zt15yv/WgcHr1d9M2GzwQjiyAsHBwe6871hXZv/tJ7b/QHtvNC2gOiTPB4sxkklk0ltbW1ZAiPxIYUAMqmaWIRUXwA5QCiyNqwSDCNAjtEOfp4oC5eRV9J4ESCT+7FEgFUOBRgH3ZLyi49ot51X7YUXbFHde++9yuVyOnLkiOr1ur71rW/p0UcftaMFZ2dndcUNQ40UkNozNlD54OBAmUxmqpELvw2eUJ9ASb5sgmazqTNnztgQe2R+D+IAcgCxer0+5cU0//AFjzDsBIEMMzwA0x9SwPuvrKxYEKIqpIoHfFIJwughD2HXAGhIshNWGIGD3whGnyrcN7OwPrrdrs6fP69MJmNFkB8APRgMbBA9hRcMzNzcnHK5nHXUp9NpjUbjgdvF4pKOH99WOHzC5G9pzKpsbm4asIK9lsbBdHZ2Vuvr51Uup9Ttjgs+9gWyFI05yIVIP8lk0rrcQ6GQDfGH7YPNgUEk2bRaLTs6cmFhQSsrK8YOoYzs7OxYUxF/BjsHIPayE4CYZAIDJsnYcADh4cOH1e12debMGWOqSI4wEFwraxPPGACYBAQbDBtOYmS4PEUb6w9pEHAejY5PjQHYUAB1u90pFpckR9In4cDgEGd8F3y/37cGJO51Pp+3Ji885xRpAHrfFS5NTwXhOWFF8Mc6st5RWlhvFF7+YAJIAs/asrcAxzznB/7tT9pMW9/0VqvVNDs7a0xoOBzW/iP3q/z5v7LJDvF4XP0LawR5mHFaXpWgCPQn0ZEzPEsK+4vUDgDFNgHwpFBrtVpaWloyVc379sb7tmiq1OzsrFKplL0fz8OzXL7QQnnxkjQqA7nDkxg0L1arVWPC+G78DnEXFpwDLTgOlH4D9jmK4nA4/Da2nrwH8EVpgtVDgYJs4D0Alqw9LFHkApofIQkgJ4jHgK2VlRUrGD2DSj8EB6fU63UVCgVr8CyVSgY68/m8rUUaTCFCeB/uO41UxA5f8FGMQUB4VRE1goIAhpf1SN6QJvYk7gHEF38GoCbOwtbznNiLqFUU4TRhDgYD8//7uOn7BshnL+V1yYPTYaerr/75VXr9e0Z6++s+o8392/TCE4c1Or+oer1xgX0J6+pbA7ryqg1lIg/pVPv79MLXckql2nZah/fKME4HuQv/CF1rkgwwIoHVajULjhj3Jdng41wuZ5V2o9EwViKRSGh7e1vVatUk5rNnzyoej6ter09VT6lUyjrxYLZIijA0LGakMU5vaHw5qBP/qKCb3rSkJ++uWsW9vb2tT3ziE8pmsxoOhyoWiyqVSo6Jiutl1z+v0uj12tuqW1VGQKMiRj6VZMGZk7HwveEJ9A1UNH1gfyBYcOwijJE3mq+vr08FPj82h2SJfITPNRwO27nRMIxIkWxCvhPsAz5KZA2Yd4znBIj5+Xlr+AEs0ExD4IJNC4fDUzNzWWcM1gZcc32ANQKKJJPmefZ0WhJcuc90fN57b07XXntaR49u6dy5iWeSa4vFxt3opVLJToVpNptaWmrp+PGyPvOZ66yZkM5sL0nDkjFajSkXMDwkblgoOjyR+UgSsLYM2Q+FQiqXy5akSJQEcubYHj16dGq2Lz9LscbaQw7mOcFIwhwiMZJMGPUkyYpdaXJ4BuvPFy+APwCRZ1Y9sPMsP0yQB7B40Obn51Uul1UoFOzZwtLAmpIAvZccYILP8OzZs8aa4y/D2gLgpYiCsaSg47+5f+xzwADKAjEABo39BMgrl8s2HxJG3Tdt0BgVi8UM0MP0kXhZFzBbDIzns5FPielMUmAcF0WXJGs6IuazHikGuLeoHIxqw9vtm3U8w0tRiiLFfgTwolrw+bC0sO7D4eQoVIo9vJCoEhQtkAz45f+/7P15kOTned8JfvPOrKzK+6qjqw+cBAEIJ8FLFE9RoihLFBcWNRoNxyNbESOv7VhF7HjtsNbhcIw9cnhjbVkeeVYT5krW0jIl0rRomhJJ8QIFkAJIgLgaQAPd6KOOvLOqsrLyzv0j+/Pkk80ZEY7Qxka0JyMQaKCrMn/5vs/7PN/n+3yf58WGwuGwNjc3NRqNzHY478QyGtdgD3lhD/g4n4weHBwsNZmurKyo2WwuaRjxpVREiE2eeeNZPdEAgKUiw1rC3pKQUHk4PDw0mQSsNmcNcMZYulKpZMkcscQ3F3F+2K9gMLjU2X9ycmITZ0huSVBhbAF/+ID9/X1JsniF3SK3qdVqdpFIJBKx9yDukLhw/phNzGci3eH8tFotSxQA+dhCOp2270XiyvclufSJC6DVJ4dUPcEKJEisHeM1eZ8f9LrpwWmz2dTJyYm++Klb9dCH36xT6c/rPW/7pk7eekq9cU4BTZWM7CumujrBh/X4xb+ui9/sK58PmRZFWoA9Ms7FjMiBXn/9ddtEMn+MF50OmaIkG5+CUZHtEFxhewhcHGAOGjIEqHovMA6FQnYtKIxONptVPp83bRMOgPLAbDZTuxpXvX+37rvzWb30tXPGyE6nU7322mtWqoZ5IRjcck9Y6dAF/dHT71SvV1+6TxlNHOBiNBqpUChYsIKFGw7nszer1aqVumEJABoIq9HM8t3IlP04JT8TcjAYaHd3dwmQcnBwlAQEX4aFacBRELToNscB4KAymYw1D7Dv0mLe3I3jnLjWjjl4wWDQGFW0RCcnJyqXy8ZaYF+UppCGEFwATUgSfMCgFInD8bNTX3stoKtXU3rXu67pM5+5ZUnLBSjA/hfNHSG9//1XNRhEdeXKLYpG+zaLEOfOPhLwAKTYBE2ClMEo2ZNE0TlPMx6M9HA4tOaoZrNp8z1h03D0sJnZbFbNZtNsiJIiJTCcLQPFJRnY8Fc51mo1TadTnTlzRqdOnbJ1BPDt7u4uNdzBPKJrw3ewlqFQyICJ79wHpHstG3+PLXH+mEIBQ0GXP7IKAAaAGbAFo0Yyyff3kiXfbIEtAMi4+pn9Go1GxtZ7LSgJExUT3ofgBiiiCYfACPgm0YpGozb8nAkKNIDB3mIvaMlpsvFaV/YK8EP1B8Z+ZWVF3W7XLtvgO6LbI5h7WyfBAhz56gu2CDPvddMkB7Cf7ANAjcTBVzMo8UYiEWtIQW4E8ME/cr45A8QfEvJMJmPlfL6XL7XzmdgbNgioXl1dtQSAPWEUGfppeiy8/tt3rWezWXtmJqIgNWEtYKoB+qw5bCYVRPaYhk9sDB9P9YQYRoJC4ybnbTqdand3d65ZrlSMiSWhkuYsfbVatauv2ReSH6qkEBwktTC5lPhJ4olXkDL4FfwFNubBIPYApqAyBpDd3d01iROxgyoADCfEAMk7FQ2wDskNNkqi4m223W5bNYs4h1wtmUzaKMrJZGJx4I28bnpwyqEoZ3NqfDeh852fVu5OaXv7qmLhY02mUuvkHl14oajWyz31+wfmOAAxHFpp0X2HRqpararf79t8QwwPfQqlRYwBNgP2iOyQz2TzyYBw9hg1joIDihja37IyHs+HPmMQ6IUk2bxMRh4xoqTf7+vZZ96k97319/W+X7hTX/zExDpCycJwEpTnVrIz/ej7v63DwN164est6+5lpAQShlgsZvoqDis6Skrtkkx+QEmAhjXKMGgiORQbGxsWNAjEOESy5VarpUqloq2tLSuzc80qAYWgGQ6HjenGqcGS4yQIOADqg4MD0/jwfqFQyDrxYVQp7+bzeWtoOD4+tjIgurB+v69SqaRMJmPMp3fyo9HIQBJBloArzZMosm0YI178DICH3wsGg3rssXv06KNP6AMf+DN95jN3KZcrG8M1Ho+Vz+e1vb19nR0b6G1ve0n33LOrxx57m05OZsY+EtBxkiRSvA8siSTbR4AmrACAABYTpwzwwLnxGThZmCXsidI0ejOYcwIrAIqGHV+S96y9LznzmZxFwD56L9/JCyvIP+wloJjkjVmvqVTKbh7DxyBxoEGBxEla3ANOJ7xnajkPJCasGewQ1R4CON3CvmkFJo81gq2BYUFzTfJIkkcSRGJCZy8BGM0da0yigI3A3LIG2CENdSRuPCtyDQAHvhNAUCgUDNyyjn5SBgmpTw74/1QvIAO8nVGWh6HDh/G7BGyvTYb9BzjT0Ibt49fphD84OFC9XrcpC/gRhvpzlnh2z4YhW0KfS1yChSexAVDST4ENR6OLq7objYYlb5AGgEWkWdjYeDy29/W+FLaSmIWWncsxYJx5D/YU8EbyAFssyWQi2CnriPwNW/cTADgPgCzOMXiBqiRnA79D/OdceckKE3CwX/wGFaOVlfl1t/F4XNVq1XTW2WzWbJuEMJVKaW1tTcVi0XolsBE/fQOpGPGE+OvlDEi/SIJgvUkaWWs68QH2PA/SI3CAryDjT8E1aG+xB19l4DtATL2R100PTrnVQbouXh8N9do32vrmXtOYyLNni+r368ZM+EyYTM/T3F7ETIBHCH14eGibiYOB3QkEAqad9NoPACpBjQBA+cHrJhEq4xgocXI9nCRjj9Af8qxko9LihhEMbjabaffCmp7b/IjuOfU7ivzVR/Xqk0kNOidWOqADvVQqKnMmo0fu+w9SIKivfulHlEsfWakHgDYcDu3gUC7EQHFaHCYCJOCfTJ+/p0uSeY4EXQI8EwnILHFaOIVSqbQ03grHTuaIM/dlJBgs9psAsLIyH91Egw3ib4BeOBy2xhjGBtGIx5rASMHcMAKJbJs18+AN5wrARW4gaYkp479xHjg1WAmybYDbPKjF9cUvSj/6o0/oF37hKT333L1qt+8wpzx/pqAqlaZuv/1pbW5e0pNP3q/z58+o260uJT8wkzBvgBmSHBr6CATRaNRmwMI8knjBavpGB0AjgJi1oZIgyc4XpTBK9OjrSDw5X6urq6pUKsZW+fvusTMSrqtXr1oTFnaxtramra0tjUYju3SD4Ep5DeYSH0LCRUMMYAzWHuANaCCx882IgH8uJ6jVagb+PGtEoGMvKYljP4Be/g5mH79GUAIs+3Pkx5yRGLAHTAYBJMDCopNmvAw6fXR6jEtjTXwCgi8niEqy5/NlYfwjQBjwDYAh0YdJY5+QDVDZ4rsBkNgTbAMpEn6VxiCAD8+ID+eMkvBwGyB+ERDL3lEGB0Cj4adqVCgU1G63zW/iwzh/JLKJRMKqE+122+IBZ4vyK+vJM/jGKkYjIinqdDpWQeQ7UW0gHrDuXmIUjUZVr9fNzxJvSRQp3eNT2L9IJGLNes1mU/V6XdPp1CZ2sE+sO2vEuQScM50FDTNVHOwvlUpZtZKEgPPHuSbpJtnHjknukDMRM0iyqPr5cx0IBEwuhlzwRlsnJvjZ2dimZ1SJe74Cxb7iM9LptKrVqlXrvNSFfeTPzWbTbIIYyf6SXK6urtqMZEr3MMB+1mkoFDJS4Ae9bnpwSqBBn8OGkZGUy2WVSiW1Wi01Go0lvSO6MsDL1atXrQkD/Ug2m1UulzO9BcwQ4A9t56lTp6xsAwiWZB3/GJrPnsbjsRqNhh1oSeZA0bGgWSXj5ID2ej3rPoZt4PcJaD7TxhG+9K11TSc/q3vOfFrbPxzVzvCDir1YVnPvRNFYQFtnJ7rzzFeV0nM61F3695+6T6FB3wA6z0GnI0EMwffe3p5CoZDK5bJpLQHrAD2YY9gaghaZ4NmzZ1Wv13XlyhVjT9CiobmlwePUqVMKBoO6cuWKBWycO/tDkgHDRUbPLSUEUg+MYHdxqjh9JA38HXPm0FqWSiVVKpUlrRIlM36/VqtZSXPRUb8Y5M/6+ICCMyGQjEYjZbNZK2kz+gs2H9aVslkkEtHOzrZ+67fa+omfuKwPfehxdbvf05UrG+r3wwqHR9raaimXa+ngYFV/8idv1+HhQ8rnp6Y99BpcBP0wWyQOrCE2zv4BXAgYw+HQbviqVqs2/JyEAPDBnt04MgmAB+NDxcDr4QCRgAYvZ/BMKiCP8TVc/ABAxHax+UBgMXaF4MU92ySvXLrBeV5ZWbGxYGjOJVmZrd/vG7sJ8JUW994jM5LmjHKj0VClUjGdKaU1fAbnKhwOW1PkdDo1vXMsFrPSZblcNoDF96WUB5vMFAHmEjcajSUJCZ+Ff6DECMCFqeHZvG6PBJsEC/uCrUTbj9/BrrA/znE6nbZKCbfu0YlN8uuZYkAuEhWaXgDBPA9g1E/ZODk5sbK3/54knyRsAHjOiyQDRfl83vTSMP++uQWQxJ+RMiSTSUuWkZVAetCYg33eqPNEhoAdzW8PXBAfAFYAGzIGzj9NrZwrSXbVN98RAFapVCxxBsx4gARjSgLE92RPuZCDvYRIYhoCwDSZTJomF7DumxeZ7JBMJs2mmIPMhQrYF7ECiRaxxss50K36Mj32TUKIpCcYXNxuRaLO78KQnpyc2HPHYjFjw+m85zxA/MCSci4B1F6TTYUQwoDvMhqNlvTc3PQHCUZzHvHIM6lUzEh++v2+9bSsr69bAzhJ/Q963fTgtNFoWCaHjga9HofJ3xyEzqXVapk+EueCAXLoYFP9gnMIpflGc+0fuhtJ1vVIaYr3YpN9J97a2pqy2aw1WHlhOBkolDnAgwHCfDagBedYr9eN0eS7UTaIRqP67ldj+vbsg3rL+2e6c/txbf9QVfqh+XrOFFB9/HY99tRf1kuP9xQMdBUOL/SLkuzAkJXhBAAfXkNFcMaoaRTDucCAlkolWwNAHIefBIHyIIcNJwBwpmu72WwusVIcajJQEo9ut6t2u61er2eTFwA1dOlmMhkDm4AsSeY4+AwYCEpesN0MTeczabyBCWZdo9GoisWiJRSAMxw3DVMEc5IWwINvyJjNZtZIxLqTFFy9mtL//D+/Wdvbff3Ij3RULlcVjY40GoXUaq3pscfeqZdeSioUCqtYPLSMngDNC1YKINloNCzxOjw8tE7s1dVVu4aTIM1/Yyt+jBFMD9+z2Wza/DwSPy93WFlZsRuV0JyxduzVZDJZmoFMQkPGTwIAC826+1IgmksAPyCLMzCbLSYv8HzYM4koFQGkJIBsgAY6WM9aUcKG7YGNgYEioYPt4LkpQ1JlgbWizAyoJFkjqGL3JP0wTtxuRgmUigyaN97TM0C+0oLPkxaAHm2/JKsUkYz48WRUTwDYgAQSC/aE8zedzseOoXNl/wm6HryQhABgUqmUrc3BwYGNEGu328buedadpOlGXzCZzAe6A1yQLxFLfPkaX8qEEElme4z6I4lFXgI4xKd2u10988wzJptiTTi7JFacAcAedhUKhcw2/OgxGrewcdYRuclsNjMfx4tzSLVsMBgsTX+haYkKFYAPXw47DREBM48Ns45es8l3wUbW19cVCMwvAPD7AgNNAjsajUyTSy8Df09cI+mnvI+dQYYBkLEtEj+IBpqyKOcDvCWZ9A3ATq8GUhakCb6PA4YXHTVnyWvbAbE8IzHTJ4OcZ9hqwGc8HrcxeMgbGOvF2QZTUDmDCPITX37Q66YHp1DlBD0MhU5vuivZFJwD7AObnc1mdfbsWct6vSaN30NI7DP2w8ND+91Tp05Zhkm2n0gk7Mo7shEOFc/KIYetI7uHWfONJVDtZEzj8diGnfO7OAwOGBknWfZgMNDe3pH+3W8Olc/fp3N3ZRVfC+qkN1Jjp69OfaR+v2bNVIeHhzarLpPJWIc+4JHOVXRNfsYrLB9lbbIrZAg4Stji4XCo8+fPG+sYCAS0vr5un4ljZi2YpuDBBBlkLBYzBiiZTGpjY8OyV5xMvV4EVfXmAAEAAElEQVS3gwZYoMmIjBb21Ts/vh/ZsiQDXbu7u7ZOPCOz4Jit6u0HZ4BzpLwGQCfLJaAQFHF6ODCazXhvgixJDbq4eRPZqv7wD8t2vSHjsGazoQKB0RI749lbWBoCMI1BXn6A82QSANpEHDNNAoA+NGokKzDRAIZAIKBKpWLBhs5cL8HpdDoGMEkAmYjhm4O63a4BdUBGPB43Bp3SGQw5t5/UajVdu3bNdKKsI8EAsFmpVOw7MOLGa2RJiviZ6XRqwYkADWCm+kMyDCDy2nfWjiDi9bCU2ABuXhZB0pPJZJTL5WxO897envb390WjGueL7wAzBjNDMkBZ2OvNkEH1ej3T3rFngFl+noqH12YCEmgEA4TTtUzDDP4f4AII9VpFbM0DU9YBPzmZTIy9RkokyT4He2H9p9OpgVYu9KBKAiDl2Vk/2Ej8KlIfnoXvjqyHm9iwQ3SSxKYbNfkwpTC9jFDCn3hJAbaGD+FcczEICYDXBAN2ScbxvYBED7iPjo4M2DPT10u+uOkPf8zZo7HXSzV4br4DZ5V1RqfLmZMWV9768wcoZioJ8RIWMhAIWGc7JXzshbgC4ULCTUUDoOhvxyORQ5vJ/sCg3ijNoKqAlAL/yD6DJ6hIglOi0fm1s36kJL4NzSnnjyZfkgRIPWINeKjX61nVTZIN9GfCR61Ws4oVCSAj/97I66YHp2THHAbmROJcMG4yVbJQjI/DRKkNvSDZBY6eUilA1zdyMB/s8uXLxpIRtGhIOjo6Urvd1tWrV5XL5VQul5eexzv8YDCoTqdj4BkNmjTPdtLptEajkY218EGNwyctgiGZlC9xwM5FIgkdN1c0OrqeVR/PMzgasAAlMDWAJNaeMglgEKeLkB5gRdMKdxMjvqcTlJ9lBiSaRvaG+ZG80IHBptLJ7oOWHxoNozkYDKwEu7KyoltvvdWy1lKppGKxqHq9bhMR0DTCCMFu0clLwMMxNZtNKzPBwk6n88sQCoWCarWaBQRpUdqq1Wo219CPCiGZAYRQAYAVJEj5hhWY/3q9bmOoYFUJbGjESFq8Hg82HJ2k18tJMgYCoTxADvaLG5gYlRONRlWpVJTNZjUcDpeGWfP+sJb+e/f7fdPAoePyOmRpUYaTZM6Vci7r68EQz+BLi0yDYGQNwBBHHYvFVKlUDHyRtACkfIJEFYXEGKAEKyTJAg97ADOCfILkh2TkxsDjG6Rg5FlvaXGZB7NuCVToLDudjlZWVrS1tWXJ2snJiU2nIBmAdQGw8Ix+32EyvYbQa2EBucxjxk6TyfklCCRAMHSUEimJApS8BAO/BvMOCPGVLu/b2SM/OgzbAYSxjrDfaD75Oc8yx+NxbW5uajgc6uLFi1aZIcHw2l/eQ1rMpeYM4QtgLqmujcdj047z/MQB2LBQaN6Uybg+pFWwaSTmMPckyeFw2GYEozulYohUhmZQmGyemb3jfOKDAC/sE4CIhll8GKCPhADWzZeBSWph6eib4FywH/gOXzEgiWb9SSYgIpi2wDnnjPG8gGP+nvekxE5c9PIwiC4AJyB0Op3aXFrA6+HhoV3k45spSYxYP54Ju0SKw97Tf8DPY7vEAp6ds0rcRP9Lb8bh4aHp8H1l1Dc+gyWIfV6TThUXv+J7dN7I66YGp9GVpCof+FkFCluKb55TJJnShX/z/9D4wnfstozRaKTMg+9R7sF3K1bYUCCW0KTbUf/Ky+p/7d+rvBY3tovZnhxshMWSrBxC2R1jZJRCr9fTSy+9pMFgYHpLROmAPDRBGxsb1hCFU4Utq1QqyuVyllnt7OyYKL3b7RqDhIwAh9jpdCyDoTyMs/d6J0mWEQJUoOcBezyLb1qCYeTwAMwwRkpt4/FY165ds0B65swZbW9v68KFC8ZmMEg9FJoPZ6dc6WdfUp732SEZPw6Yw08Q4ND43/GickkGZmGNYNknk8WtFwB/1gw2EsCDzGJ1dVXHx8fa29uzBAGWKBKZD2ze39+3jkgCKmAOUMF34r0JRv4aQxwDf8YRraysWJmYpCoejy/d0gQzhBOSFjPrYNgTiYQxaAR7P2KK74BWj3XFlvhc2G1Ym2KxaFUL1ohgihyD56RxCEeIRpPkkEkFmUzGSs44ZQLdaDSy8Txc5cdonXK5bMwm48AArr5TORQK2RQKggCzckmisBeS12w2a80w/jpgEibfgEJDZKfTsbJ2t9s1x08ZlWcB5HFZAqCU4HF4eLhU6mSsE74M8AzIJfFjXBQlO75XpVJRPp+3agfAx7PgkUjEypRcwEACSyCnJI0/k7QEdHku/AdgCL9L0wsyGZIqgnOz2dR0OrUZv/hCn1B5FhEAwlmr1+tLDSV017daLTvzTDBBHkCFAVmLb7Bk7wFD/X5/Kfnm7JCg1+t188mAPnT5Huhz1qgydbvdpXPgNY6egaQsju2hQ+Ws+651dOAAI9g4adFkwxrjF0lk8YMw+V5LynXdND2xF4BbJBGj0cimLbBHHlTt7OzYnFG+L76Jqhvn00sTiH8wgfg0/B9sN4kT60dSDYNNgybVPJKybrdrY56oilDJCIfD2tjYUKFQ0M7OjjGWVBCRZ3mNL3bCvtHnAYM9nU4NkJL8omEm3kMiwXh7tpv3gkRijWA+wRQAzFwuZ6QA8Y84TbxhAgDJlCeR/rzXTQ1OV7IFpd7+YY0PmjrZv6LILXdbeQEwOJ1OtXL2ToX7XY2e/YbqO1cUXMup9LYPausX71X7k7+mhGRMAle9UW7FEcPocOA5zKVSyVhYWFrKWX4OojQPVGfPnlUymbSgQnD1DRDoMjnUAK7V1VWtra1ZVyJldK+1k7TEGuFIfCc/z7+2tmbfEW0OzRm8N0wDTpKSQr1etxIfcgRE7ejdYKsZu1KtVhWPx1Wr1axxhKwbRhhHFY1GLUAGg0HTnvlyBQ7ZA1fPovE8MApc3XhycqKtrS1jH3BogDUYHUlLIJcysSR7Fhg2dL4wxGS9gKHXXntN/X7fwJrvqGYkC5ktgMcPWWduod8HymrYO40tAB0cJgwArCBAp1arWbYsybJffj6Xy5kut9PpaGNjwxizQqFgjL6fzAC7graXIAWQwpHCnlICoySL/ZK5S7JEEaAGm8OeU/IlUO3v75t0ABvg+QDOJGcwsTBjsNacRwIqDRe8+CxANHvDezDqiESB0WcALP7hbNPshRTj+PjYRtPA+sK2UAnAJ02nUxWLRat2oGkGYMPqcT7QQrfbbUtipHkSVigUzO4IyJIMdCGLQI/omT0vSfLVBhgVfGGj0bBh6qPRyK5T9rIkzlYikVC73VatVlu61plzTrWBUiN7Thzwza8eCADIYNthKpHdsGecrc3NTatosT/IaQDwAALPonOmGo2G7SUAiGdB60fsoORKGZqkg2oN4AXmF9DNTUasZ6fTseeAVOFMwSrOZjPrKAfUUlKHxfTnwycZaHZZd2yA88XZI+Fl3Ti3KysrRrIASHk/KpUQIOvr60ssI5UDXwniLBA/SLpheGkO3N3dtbNBHAJw4Wf5/lQH8bk0IVMRRYJE052PVTQ1M/eWpA0fB6jGv5NEoElF5gXmoFeGmdhI34jx+OZUKmUzuTnXrAu+ycdJpmbQuA0rimQLucRsNrPviBSNiheg9kYi7M973dTg9Ki+p5N/+4+0nlnT83strd1ytzLZjHRdI7iyMr/y7fiJP1Qyk1G73dbeq6/OHdArT+u2v/Frit35sFavPWdZMxkI+lKv9wqFQku3B+HwMWyMiAN2+vRp5XI5OxwcNA8uAbQwEFeuXLEANBgMjIUjA6I0gKAaZ3F0dKRsNmusKeNLOBA4UDQ0W1tbFsgQQQPyNjY2FAqFrFkIB0yGRQZHeQ12hJ/jkAQC827qvb09Xb161SQHlDyYBXt0dGQsIVk3XYSXLl2ybJGbmHAWlNjQPCKzIOvHCQIYAayewfMD5HH0OHC6pAEnMHDo/mDPC4WC3arl5ynCBGEnlB0JQgBYNFcEUs8CS3OnBHuOUB7dos9gKe9g+7BBlAMBDrBflNgo6SJPIHiyFwQrfn86ndq4F9gk7EOSOSfYV1g+EpZEIqGdnR31ej1z3NJCc0dStLe3Z3YG8Gu320sAKBQKqVAomLPn/1GuXFtbsysMAQAkBYBlQKYHrUhUcOxeouAbqEgM6XZGR0ZZGvYONoYSMPsL602gjUbnY7dgpGkgIfnzA7FhavE9MNK8D+AGOQu2jVYWgFoqlYx14vwgzUFmgz+CoSJY1Wo1ewYfwFhrAhvsFGuCrd5YjvXJ1sHBgVUYsE06i2HG/HB1zyYBrH1jCH4S3TQSJRIjfCngD0a3XC6brIZqHKSA13pil4A0fAosP9+LKy4ByJT0AaBUSLABzjdJBAAaO47H40Ya4BvxOTDOXpMOG91sNq0ZNxAIWHWH9/Y2yhmBTCCB50wQs9AUo7nGD1LNAKDCjPtqgJ/iQtLQbreVz+e1sbFhUyKoNgG2sRFuZPKgFPYzHA4bm8le0WCGbZMseUkNfmA2m9ktkJwhqjPxeNwaQmlYzGazarVaunbtmtLptAF0fCOD8vFt/DuVSplNegkicpzhcGgVTWIvpBVnBxmUb7KGfMFvFItFSXOtPlIMviPnyTPgoVDI7I4YynPDypPcwfr/oNdNDU4nw6FmvSMps6aV67oOMod2u23dw4BN9Hiz2UzTozm4m4WjunLlio2ZIjjT7e8F6hhitVo1Ro6MnCzPN0egEURY7jv8JFkzFOwE5XkycA4FgY/s3muZYIzodqd8hXOBzTtJZBW782ElzrxJ8XxZs8GJpvWrqn353ylQvaZoNKpqtapWq6Wtra25UwmG9OCv/r+0unFGL/3eb+jal37fggElnHa7bUaLDtCXI313pTRnqAmkNLgQOAlo0oJJzefzlrXSNMQd27CXOE72Aad49epVDYdDnTp1ypgI9qLX66lUKlnwnc1mqtfrajab5rzIjBn1BavtO8KRdUjShQsXDKAylobSJs6OQO8by3ypm3mpaPhu1IcS2AmcJB1+1hxgVJJ1fWPTlIlIfGBiKUOSLHEVXjgctltUCBx+NqAvRdHsNJlMVCgUlM/nLaAQzBDfMwaLYAm7yhmEFTw4OLD19c1BNIsAMriUghFO6C0BKzCZ6N0Aj5IseFMhIMiyD9gVWmWCdzwet5LW4eGhgXGCLcCBvSEB9TYG+A2HwzazuVqtWmmeZyIR88BYklWHBoOBXYFcLBaVTqdVq9VUrVbN1xCEJdmlGYBNzivle74fTCVsCUkC35uAu7e3Z/pJvjsgHHDC9yR4kjjCdGJfJLiSjNXZ3t62ZBbQSZMdvjUcDhsTj68lUZEWmk/v6/HTgF++K0wgzU/4VfTc+DSqPUgoCP6+dMx34kWC4v1IIBAwyQ82xplkf/m7lZUVSyS4tAQZlC+TUz5nz6g00TQEMUGMSKfTBkapCg4GA9VqNZMMcFZI5iSZVAEAytqRZHpghC3CFAJOY7GYfWd8C+wdvp1zha/sdDpqtVomnaDPAV8Sj8etSZX4Shz3+m58KNUibxOQM16GwHmHVGAtSbhIcCFMkKBIshGCsKQkEvzucDi0ZHc0GlkcoXGMGEgyxncjruEPPMjknLJfMNMwo8RbbNMn3Z6hxe/5ChQYCwYbX/lGXjc1OJWky5cv69VXX9XK1i3KSTruHmt0PRjAUKIPSZfWVdo+q0w4rtW3fkiSVH32Wxpd10DBclE6kBZaIErgBwcHqlarlunjcLkvmgyckSMcNOhv2MdUKqVUKmWlXMZO4dQJ2Gx+Npu1DJCgCCvS7Xa1vr5umkeAMl1/8XhciXd+WOHKWTW++w3Va1cVz+RVePuPa/2//VVd/Fe/qm79mjlNAOLZD/5lJXJlSQsZAKwJejFJxkbhGHhG5sgyVovvzOFstVrWrSzNhwHDwAKwMpmMDg4OrASdyWRMd0QAWl1dtXl1SCEIfoy8AVDBqF69elUrKyu67bbbNBwOVavVbBYizllazFVEm8g6wNzAJlDuh+kgCQIA4KQJFMxa9VpTmttIiNCuEVh8pzxryB4Asum0RjcH4w+ThPMjmeGzCW40XjA7dXt72xI1khBAKJMM0HpKiwHw8fji3nPAB6wXQd4zyNwuQ6IBkGCWZKfTMdYDGQVnkLEtyWTSytmcZRI9wK4vj9O4ADNBM6MPqozfgfWVZGVUmrwYD8WzAk48o+fL2n50FKCGtUDfSpc/YBv9LQPSGRPFmvuAiHwE0NNqtWydARVoYWFB8Eswi4BF1ozpB1Qq6O4lEBH0SVABtn6aBYkt7x0MBrW+vm7fx7OkBGvkWdgQ9sW5xldwBgA9sLAAV8rosNFo3GkwQ3vL55FEAhgmk4mazabJGbwOHELDT1KhSUaSSZsYZg5BQcIqyTTw+CrfwY8NHRwcmNYU3ToTQIg7wWBwqfOa6zbX1nZ1++0XlMn0FQpNdXwsXbiwqmeeKRuAZmYl1QfAO98LkIwf9fpEkkSkH0jTONv8DPGIPQREE2uxRxpgNzc3DRCyToBRSBv2nKSXNS8Wi1Y65zvBTPpLVGD4eT/OogfgJI8ARHwZhAESCGyY8w155MkiL6HweAMADPHAOQIE8+ywuYBI7AwQih+DtZbmbLufIlCv1+3ZwCgkHrwX3xuijGfc39+3qoUn5qhAUkH4Qa+bHpxevHhR/X5fW4msbtX1IcLjxbBarz+65Vd+XcHIfCOHRwd6+f/zz3X86nM2W5ADyOFmFqovheD4+/2+gVTK/YxJQqM3m81vy4H9kmSHLhab35mONo5mAkorjNPgPl0CCR36krS7u2ui/Wq1aoE7FFpcdXZwcDAfd/KVz+j46qvq9+al9a6koxe+rVv+z/9EuXd+WFc/9S+WR6FE4rr1gx/T/lc/o80f/3kl4nPn6TsTmXAAkMApA3L53oVCwZyyb6CaTqdL0xHIjGFGy+Wy6a1g0wB3MHbSomOdgwrwwxnSAMOBZ7IDQI5mt3B43sna7/dtKDEHjiCMs5AWZehms6l2u20lWEAGZR8PUAhqZNwEtvF4bIASppDA6svflKu9FESSOaJsNms6WoAB8hQ/IgawSQLFzMTRaHR9pNTM2D1ACiwOmliem+81nS4GlgN0Y7F5ly4aL3SIgB4CC+zSYDCwIMAz0PTBuB7fWEDmzzrx3dGXkcjgAzxTyBrz/30jAiNfeMZgMGhMhy/zwjajoaVMnUwmLdDz3pQ+uc6R5gxYD+yW/WSGqtd3AhawPx+ACO40l9HEg81zPpC4hMNh23+qN4AmwDWBExaaEl+tVrNkBckJgAZtJkw3I/6wF+wOsI79UJLGDjwz77uTYX+ZocmLa0PxfR5ks/bsA5p/plnwmTCLHrzgD2g6DYfD1kgI8wvY9T4KIAEgY83xgQACSSbVARjx8/hzdMYkGchSODu+IQmfubq6qtOnr+nhh19SsdjS0dGK6vWsxuOI4vG+PvCB1/S+913ShQvbeuyx28yWs9msVQCDwaC2trbUarVsfZDpwF77fgfYM+wRwHR8fKxSqaRkcn7pBo2nJHIQDSST/D/0z/hcZEbEExJMSQaYSPDb7bbq9bqtGckO3409xyd62Rp+gPI1vtg3x3Ju8KckAp65pdHP+wFfVZBkCT9svo8FgEL8EbYMHpAWVw9T+vf6b5hsKpuBQECbm5vmKwHVrBmVDkkmLaFMz/rwnajEcC7ZN38m/7zXTQ9OFw5qvtHRaFTD0OKqQ3QtwWBQF//1/6ixpJXyKWXu+2EFY3HrGl9fXzcQSMkER84AeO6iBcRRFiA45fN5lctlBQIBOzT+gAFYuFWq1WpZtsZ4qel0cYsLzA8BmSDAZ1NOQrNEOS0cDtt4LUp7K9fLzXTlB4NBdfev6nj3dUXy68Z2URq749G/rmFjT4OXn5J+/OctgAJ4CVI0AAwGA2UyGWMxfSdsPB43BphSPCAB5pPDiZHjVLiHHqeHEJ7slUyPbmp0r35WHgEKfZFnOvf29nR8fGwAgKC8tbVlwRQtHUGH7Ng3A4TDYZvb57WpgEiydso/AJ/hcDGHl+suAa3RaNRuN/PlMmQj3IbkgeG5c+f06quvajabGSuHs6nVakvgDK0QTAhZNWw2CQeOHGAN0KPZBZYPB+kb1xDN49w5C3TA4iBpCiPQE0BgXZDmwDZhVyQ36BHz+bxyudySvorvi51yjmFMaQLkGdkjyvKUuw8ODozhKhaLCofnw+LRn0mLJIGzS7kWVhL7IXhwzpFjEBzi8bgKhYLZNv6CYADg9zppfyWjB/CAFWwWdhZtG+zjZDKf9EHCgA0yriiVShkI9+N9+IzZbGbzTLFjAAGghrXKZDKmifPPyB5wOxD+ClCLvCSTySiTydiNWLClkpYkBJwNadFoR5DNZDK6dOnSEoMKiwgwpVqEr0Oj6ZNk+g4gNmCgAGb4H0nWkALAxCeSUMDQcfbQsyI7gPGGDWQqDODPa5bvuutZfeADF3X1alH/8T++Xfv72xoOJwaEE4kTvf3tHd1//0WdOlXXV7/6IY3HRWPDkJSgR4YMoNxL8w7gidIunfGSlmZik+AMh8OlaQwHBwdmf5KMIQS0YYf0Sjz44INKJBJ6+umn9cwzz1jFDrCIFAfNKlUE5FEku8Vi0aQB3W7X4u+NY+5IVgFrzPuk3wCZmCSTRpCEs+8QMdgG+49PYP1IqiBWkBDQBEW8pM8CwsJXMZlrKy1mIzNRiDhDPw6gmWqtB9+SrDEYP0j1kFsr8bOpVMrs0UtY/rzXTQ9OAZBeT8HhikQiBvQymYwOX31W4/FY3Vee0ZUnvqy3/cPfVqu6r+75J5aGYs9m81szKO+QPaNlI+ig9/Fz6ihTcLsLwYxsB+cLWMFgYXdoRkAXxeEnQ+v1etrZ2TEwQZkW3Redwzd2I3PTCUEDYBJKpnRw9TVzcIPBQJW7HlDx4fdp57f/RzNyWIzJZGJsA5ki17sdHh4qnU4rmUyqVqst6XaLxaI5TQACgnQcgXd0BFoYA0nGoBJgACRkoIPBwJIFMkFJppcjWEuyQw5Q9VksjhMtEkwHrIzvsIfVoCzIYT04ODB9EI4T4CDJxsEAuiTZ98S2cBQEKRhLSkOANc4BjhUnxwtHiNMEXFO2q9frlt0j3pcWnepIRRqNxpLEAZan2+2aZMN/d9+VDIPumw8IGCRxgHbE9ZwhQCSNPDhgHD7gDcfJ+7EvnJ/ZbGZd7QQPqiEw+cgF6ORtt9sql8umf2afYMg4q2tra8bG0fDBGhDY+M6UlRlfhcat1+tZNQJZxOHhoU25IMjTKUvg4Yyx13xf2BwSYII/DI7fQ9gPbIxrVjlXsJAw7lSN6OKnNAhgYY9ogvTPCctGUOUc0fSIto89wZ4Zg8VZ4jtwsxOMPJ/Ff1M9gpnDz3OuecGq7e/v6+DgwCal8BzhcNjOAOwmPgwQ4rWU6NVptAPgUW6XFlUf7BTbouqHhIIkhPiGxpm1AjRTen/Tm17VBz5wUY8/foueffZBSQGNxyOLM3M/VtDFi3epXr9P73nPF/S+9/2xHnvsY+r1pkt6bJJBCAnYbsASDXCMiyI+4pcgTEhqSqWS+S3WCFmBB1r4a1jDYrGoRx99VKdPn5Y0H5XVaDS0s7NjoBcZH3aE3cMKBwIBS4gBhFxEgs8DkJJo4tP5TuwRdkCSQqMbpAiJO2Ae2RIJ2urqqjVzYqv4CZI1zjD+ETDJn/HnEGTEfD6L5IyeDeIaVU4kS5FIxMaLYUPIHXysoxqKfESS6WElqVAoaG1tTU8//fT/Flxbet304BRwMRrNncxovJhziKMFFGazWbXb7TnjNunq6MoF3faBj+jq1ec0HA516dIlYx8pobOB8Xhc29vbS6Awn88baPHaGkAcZQBADqCCQ0dGDrjsdDqWReKQb+yixjHBfHCQJFmXIw4EoCstOqe5Rk6SKm/9gFYKFb34qd80vWUsFtO5v/zLOnrhWzq6dF6hVF7rWmT8DPCHlaMcyKFCVwPQjcVidmUcjrxer9shXV1dNUaY9fPasfF4bA1oHgzhmCORiAHrWGx+1z1JBYDO66XQ362tranb7dqEA5grnAqNPQRYQO94PLYZmXO90kzRaE/J5EShUNIAC89GYBmN5jfbUM72o3R8MMW+CLLoihDIw5DS7UkWT6PGeDy2WzsAZ97+cNTVatXKdCRWOEj2Vlpkzh7Mwt7DYMPywFJ7YMz3RSKwv7+v0Wi0BF75N5dOUDIkCIZCIdMR+5El0+nU1gFHTpAhKfCl8rW1NdOW0SUvyZgpGDi0ziRwXt5B8krDEh28sOzoMElGsSGCCgEynU5buZpyPAEGQIe221c0YJPwe6wDsg3sGH0pewHwAziioaW6lM/nDaT76R38/Hg8nwXN90S3SnKAVAZ7QdJy4+xNAiWgsd/va3t729hlmDdkD9gP+l8SD5JcfB62zPpy9gjg3W5X3W7XZiMTTLPZrNkHIFKSNS+ydmjZ/cB6/DFEABpsJCnYJueKJin8M8CGM+llHjC2kkwWAcCjlwL9cSgUsurSvIEwoPe+90W98MIteuaZ+xWLRa0EzxqjGWX83GOP/aTe977f17lzX9fu7sNLmkuYNypSSBqQWiGB8pMDWBN8mbQoCwO6Yexg/ROJhKrVqq5du2aD3QHzjAqjUijNGVZuoML3AYzxTSSG+CeqP+Fw2HSoVLZIrnyzEck0iQH+EjKCM8j7EG8gR2g+AyOwDtPpfOIJYw4hDiDZfBMlSQE+mbWFMJjrvcO6885LymaPFQ5PNBpFtLOT1cWLRU2nWrrKGLyBvdFAjM9D1oUPm06ntv7gDs4Y/+3nquIDftDrpgen6B15BTQf3XLq1CkNBgNVq9UljSABNhqNKppYUTAcMSE6gup0Oq3hcGj3k8PSkQV74bIXN3MQyXYkGbvI38diMTWbTZt7x4EAQBDcE4mEisWisSAYJuWuWCxmh0GSOWfAESxNvV638gFgp1AoaG3zjNb/q7+lg1efV/fZx+3q1dxD71Wiclrnf/ef6urly0qtT3W7pMFwcVUjz02w4PvCTlI+QQtDiZGSH9kpQZa70WkoATzDiB8dHdnAcLJYPgNHO5vNzFEQ0GFVYA4pzQLwfOMLTp7gTHCVZIwvDrjfP9H6+lW97W01nTmzr+uPq/E4pNde29Yzz5xRq1UythowDRPDKKCDgwOVy2VjSfl82DySILq2fbMREgSmGgAAsDFprkmGDcVpBgIBm1WJPMCXmWABAMyFQsHApO+UpbxOqQjQwh4C8GGcfBMJDhEHx5gpWBbfNX1jAwBnhX98g4YkSwZhRWHMuEzDl6JYT69xy2aztiZeA0cDGKVLbJ8SJMkPAFqSqtWqms2misWiaXoJijC52DDsA+8HgKFpKhAIWFkZMIOdICGAmefnsH/ANYAJf0aVA8BCMEbH7JsbYNu9/s0zssFg0GQHlAhh/agAkbz6742W3zejcqEBzDKJNlp6wJ5nPun69lUugiWVALTlrDHAKxgMWlKIfftGRkgOP9IJYOY71il/M9YJtgnpE7EBUIU9A4AAqnw27D6VH0A2DWBIuQALAKhz516RJJ0//zbFYgudPHOlScCRMMx9bVIvv3yn7rrreT311AMaDAJm3/hgwIlPNPwQeyRW2C3sHNVE9n44HFqCS3wlCQKAA8aQ74TD81FQL7/8sh544AGFQiHt7Ozo2rVrVmHB/6RSKWP98/n80vfk7NIoSOXTNyr5cjolfkgC2HJwAAkHTCjymUgkonw+r+l0ahMzYOE5U9gdSTixnD/7z2LdKLcTi5LJju6771m96U1XFQpN1ekkNBoFtbIy0QMPvKSjoxU9/fQpPf54SZNJ2M4vvpnqEyCZChfxF5+AlA/ygKSBs4pNYJdv5HXTg1OC8yw5DwiI9zmAB0dHypXWpelijE80GlXmlruUWD+t7vPfkrSY3RiNRs2g/a0xaGJgdHCuiPrJjDB8slrKXJKsm5pyGmUIX76ggaTXm99UwjWnsBocaso7OG6aTzgwzCPjs3yJOp4pqPTo39J00NOF//f/pEw6pUqloqP+UKd/7q+r8c3PaXTQNCaMF5muv36NIA6LCzj1urpUKqX9/X0r0QIsASDBYNCycTJjWFaYaDS/lJ19g1kmk7GSK8yRH31EEAyHwyoWi8Z2SzK2iywRx4H+0WtyQqGQKpUjvfe931Q2e6z9/TV961sPqd9PaTIZaXW1pTe/+XXdccclXbmS1Z/8yTtVrfaNJYHxPDg4MJkGf+fBFQ6a0i/BiP3DcePUKM3X63UDR3weDjYUmo+HwqnwXoyWovTEnpG5e2dL+RFgxpW8BDAABMwWTgpg1e12LSvn51lvtHYkiiQ8vCefj62TsAFgOY8AIAIaz4/GEJ0ondOAUq9LBPgQiLEBwKUkAy3oWz3rRoLFEHTADIw0zVIASwJcMBi0xkpYS5Ilf/78gHiADWU2AgZspmei9/f3LVlnbBVnAz/H96vX68YM8XeAYtj4ZrNplR8aNfGxkiz59E18iURC+XxetVrNfJIHeP1+X81mc0knR/UIO6GcDxtGYs2zkbhRmk8kEiaBAYRSGcGuAG+w6IB9zgr2CxFSrVZtRFqhUDA9OYkzPhDGFXuhFIxdEWPQTnNtMtInGDlYKv6b56Q8Len6APm0HnzwK3r55XXt7S0Sx0AgoDNnzuid73yntra2dPHiRX3jG9/QycmJ6vW6er2enn/+jO6553va3n5ZTz99WuFw2KRTVPMgGLA7dMe+jwCAB4vKefbacFhxqmfENMaFsSY03tLD8OlPf1rnz59XKpXS66+/bvaGL8WnYaMk6l7+hZ9NJpNWdaPSQtLMe1IFo0ms1WpZiZz4QmzCJ8ECZzKZpSRUkiXZs9l8RjBxhUQPmUE8HlelUlG/P7/AAbbcS2Ly+av6wAe+ofE4pOeff7OeeWZLr77aMRnd7bdPdebMs3rb2y7ottuu6TOfeVjBYNhwDOwyMZgzRvLHPpPQs0a+UsVawv7ynm/kddOD0+T971Y6sapEriRJyt3zVqXXT0nhkLpf/rSGU+mO/+FfqvO9x9XdvaTZaKi1rXNKP/QeTU56qn7l09JoZJlDs9nU7u6uHQoONo04NDsNBgMLpgRt2BwOIwfx0qVLkmRlCkq5OG5mXtKhSiBAlwj75odKT6dT7e7uWomfjFGSHS6C/8rKyiIziq+o8rH/i4LxFb32v/zfNel2NJpOtbOzo80f+3kFQxHVnvqaVsubCqfzCqfmZbCRQpom1pTQRJpOrMwoLQI6bAGNADgqgDPsGuwUh9pnzAQ2WAQOZKfTUafTWWIBptOpzXakcxPAglOQZGVIpAfsKQAQAHAjkEefBJOdyVzVT/7ks2q3V/Xrv36HarW8Nje3bMZmpzPT1asTrax8T+9851P66Z/+kj71qXeo241boKWLmaDHDEW/XjSQXb161cA+f4e2iT2ORqNqNpuq1Wra3d3V6uqq1tfXDaAymgswiVMmaAHopEXpdzAYqF6vm44PvSHlLM/cMBZmb2/PAD4JSzAYVLPZtFI3umT0xADh8XhszpnzBctCsCAItlotdTodG6sEUIdxgh3L5XKW1XtdNmOfAGQEJJJI3wxCUKEBhvXydoStwnoTGOPx+Q1dPB/sJ6CF3wdccMsMgBINHvppzgNSGm6yQZcqLZiYWCxm1xT6ZJbfJ4H2GnuSHnR6zGOlUUSS2QF+DNuEkYeVgXlHT41/IpEApLAuPB+ldFgupA1UDTzrHAzOpxvQiJrP522cHDYJM8RekxgjrYI1gkUiiYF1ZUYtiQQlY8A2wZj4gK15SdLKyoruuOMOpVIpPfPMM6bPJGmm0uDHuvmLGZCXMTSdRBO7o1KAHCqdHiid7ukrX3mzJTdUEh555BE99NBDlqSPRiN99atftZh1eBjV7m5OlUpNodA5SxSIT/y3Z7+ROAFUuFrWVzWwEy8hgi3lO+MvSPi8fA7mEt3xE088sST94T1CoZCRP9xitra2ZnuBf4LZpSrDzyPR8HaMr8KeIL6khYbbA7U5mznXNfu1wnYhW4ifxCDwAmd4Y2NDt912m/b29qxRltg6xwx7+uAHv6bd3Zy+/vX3aDKZ2/z6esK+a7OZ1pUrb9U3v1nRX/7L39Wjjz6pz372vTo5mfsBLpRgfThX6Fv5nlSO0KCyFyR5fCd8ACD3B71uenBa/pGfVjxftv9Ovfkt9ufMs49rJRZV/dtfUvq2e5W5920KRqIaHbbU+M7XVfvqpxU8ObJDvrq6qnq9rqtXr1rXnR+MTIbgGyz8+Idut6tOp2OZRqFQUCQynx9JaZVsX1qMfuGaSLI0zyaiwyP4+gYhGxPl9C6UjjC4QqFgTnU8k7b+67+taH5dl/71P9TRtYtW5mg0GlqPryqcXNPd/8NvfN86n/7Qz+v0h35eu//6H2hUuypJdosMhwrGAS0nuiJJ2tjYUC6X05UrVyRJpVLJBvAT+DkoOAMOsyQ7AGg4CajcNIUWFQdCuYZ1RAeVTCZVLBaXbgRjDQhOaFPRrsbjcW1uhvXRjz6v3d1Vfe5z79DeXkvRaNhADWC53e7o4sW0XnnlQf13/90z+umf/pb+5b+8x25konxFMuEHLvNeAABsBtCSzWatK5Ly6XQ6tc5pgi436Egy4CDJGpkAuX4ION8f0ApQZaQNa4pt+5EySACm06lpGWmcQ2ICi7q1taV4PK5Wq2XTF9LptDm9Wq2my5cvG3AtFAomb8GWYEAlWRADeJVKJQvKNBgRyAiKlOd3dnaWym/ofAuFgpVoPXuMrdDt6hsOR6OR6UXR5aJBBNxwRmAzCZDe/8Akchaw0VKppEqlokgkYhck+NFDfD9pMR6LPaWsHIlErCmNBhHeH0kFQAsWisAKiwXrI8nAOT6KhBstJpISwC3v63WMgFzYJvwcpUJshOkFvAeabeRYrCVVCPwDwDabzZqmHb/rE3gqPfhTzh1yDkAozWHokkky8VPeBwNw7r33Xt11111KJBL60pe+ZOCbEjtJFqVzbiH0TX0kNTBo/mpSPn/eD7ArSTo6CprE4fj4WOvr6zp37tzSuWE9iUdzW4goFhsYuwk5QLXEj2rDpqlsIUXgvWAYSfj8LFYSNRJe/BSMniQ7c5wX5i8zy5Q4wb7wzJ6lJKG6URrFuclkMjY2DP/PevAZSHva7bbFEOIVQDeTyVhjElI1pHu8H77WNzHxZ0kGtMPhsFqtlp588kmzAciruY3M9O53P6F6PaXPfe6tiscjikZDpgMm+SEBPjqq6Pd//xH9/M8/oQcf/I6+9rUHDN/gm0KhkEmfqLoi3UJC6KdUAOp9X89/Tqe+9F8AOP3Dv/p+DQYD3X777dre3rbSH+XeeDSiK//+t0zzyGFbW1tTKpHQ7Hqp9eLFi5LmG8PhkRaDbWGEECkDBtlIWFPKYJRQcVCSDFxx6NCYUCpALuBLafwuhk22WS6XLbMkqMN+ADb8rLXj3olu+W//b1rZvl1P/T//r4o2riwZYCKR0JUvf1q9C88oEJBGo7Gm04mSuZJOP/rLqn3rSxpcfE4ro55W0uklyQMd1L7jUJI5JEkGNtLptKrVqmlYAPCUgAAb/kpASnCJRMIE4twORPkfPRjNQwQuWKLJZGICeUkGqilh7+zs2HrzXuPx2Mp1b3rTXMf1b//tXZrNRiYjoHSJ7ezs7FwvdW7qs58N6+Mf/6YeeuhYTz8dN7CEA8SmQqGQOXPkIZlMxsaUNJtNY3NZSxrYcMCz2cxsi4YnP7AafRjB9cZBzQjeAQtkxDQgwUCwftizL10eHR1ZCQ5nxkgz9KywzOgQaYqhLM1oJpqCaHTDkeMgAUqAPcpN7ClsMiwmjh9b841KaLmKxaKdQcqWsCAwPzB82CbAj0DJMxB0vEwBNowuXgIyQJL39MwKCSg3ZfV6Pbsg4UaNKoGBW55IRCg3EyjpivbVCUC7nz1KsMKHSDKGMZPJKJlMmhwB1hhmdzQaaXNzU/l83kAfjAtA+OTkxLqbSWQpJaNz9N3DfpICOna692FnORN+BiT+iBFC9B2wXpwPJDD4LprP0BTDrHEOAI6eoPD9B7DF+D5iBoAK8D+bzazTm/J+IBCwWcH4KD6fmEQ8oroxr17UrvulAx0dLfTk0nyUXLlctrPy2muvGfhjLYPBsQaDeUIfj8fNzxGD8HVMmGA9abY8OjpSJpNZqpTxZzS6JEFo0zk7yWRS6XTapGn4NeKKn42aSDS1udlQIjHVdBpRq7WiS5eSppFn/ioMudfKkkgAhKm2HR0dqVAoKBaLaXd313y1f2E7fC/8AYnYcDjU7u7ukjTFrwXyNaotxBrPzAJ8GZPGGUebf8cdbaXTPX3+8w+p1xtL6htDjS44FApZPJ1Xhip66qkzeutbL+nZZ+dg2Ns/+8r3wkeCg1gr9olYgbSR9/E9OD/oddOD01qttuSI0GHi4LnNhhIXpQF+x9PQZLE4QJwsDAglAXQy/nPZkHA4bNdzEvTIyGCXAHKNRsO0LF7czqgbDJgSGXo9nA36SUAPQ9cBKpR0T05OVPrgf6X0XQ+r/vSfKlNaV+rWO4xh6ff72vvipzU7fE7T5o7d/DCdTjUubc7Xqb2v/qvPaHLdITKQOhqNWtMFTpiAQImAQ8n3A/DRLEH2xfQD9LaAIjI7ghbv57tmcZJ8xsnJia5cuaJweD59oVQq2eGBRaXMg/aPEiTSisX7BvTmN1/Vc8+dVjxeNPCBBpBMHYc7nU6vB9C8Ll3K6aGHrun8+U3T5NJVSgmP0pwk05cB7AlwdOIOh0Obg9jpdJbAG4AXewEo4WBYNzLmdrtt2loAoh9izdmiQYAgiC2XSiVLRtg3WBYADHsB880Z5P1I/Ci1M3c4mUzqtttus6kKsMGwcpwNACMBm05nmBKuUUWHOBwOlUqllvSpjUbDtNEEQh/UAekAbpIJ/AElSRgGgh1gT9ISM8t/w5LSQEOAANCQTPEz2Dwd0sVi0RqNCMCVSkWlUkl7e3u2V1Q40BWT7EmypJ19oTJxY5nRj7Ch3IkOEz0hz01pm3mLzWbTGpawF69VR1ePFhP7xWcQFGG+AaDsFRMr8K98N+yU883n8v1IILCH/f190w6S/GNn2O6NTGk6nTb5Au8JM0x14ctf/rJefPFFvf766wYGYXZhmAFkvgyOhIkSup8nDCHiqydz37ql0eg5ra+3denSnLUG1HzmM5/R3t6ecrmcLl++rBdeeMGqfXMdckrr6109/3zR9hif6qU9+F1GpzFeDwDOxALWCDvDf9AgynniO2E/VI9gt4kRk8lIW1tX9fDDL+ncueb1PQ4oFJrH3nY7rZdeul1PPpnVYBC02IxMgwpIu9228UyRSMSSVPyDr9hRpkeyASHi/Sp+A3us1+sajUba2NhQqVSyKgfnFP9KAxW+GrkWoNzrxb2E5eGHv6NaLa/h8KwymaFVcpF2sG+8B8/7yiu36x3veE133XVVL7+cNt/L+eKziWEA1VgstpQQU6HBJoiB+P7/oyHq+gvWgOBIGQ6QQSOTLxvQrAGI7HQ6dvsMIIFMGG0M2TUCaxwGBslmElRwot5JkYX7uYzVavX77g6nAcprXdGk0TUOc0bWTvYtyTJ0HPJkMlHq9O2SpOL971Dx/nd83zo+97lPWtBlzmc0GlUwMQ+umsmya4yw3W5b92gsFjMWlCyaUhhd/PV63UrFACFKFdL8IoKDgwM1Gg11Oh0T4JPNBoPzu6xbrZYFXj9ChfIHInXWmLEsgDycH+VNPhsQDEjAXm69dUex2EivvXaXddnOZjPbR5wXe4BWLxAI6Pz5O/ShDz2h1dW6xuNT2tzcNKYAp+JBmu9KpzyDY5Bk4LJSqSgWi9n/R5fKvdGwrTBv0mIGJpk+99sTgDlHVAdI6kjIACkkc3w2Z4RAQqnRd4+zPlwoQEMH9tRoNJYGXG9sbFgDEUEEoAezWiwWLfk6OTlRtVpVJBLR+vq6ySUAKwB4gnwikdDGxoYBhN3dXdXrdW1tbVmJDokHDPRwONS1a9dsvQlokuxWM/4fpTwSPeyMAATAAIhhCyRErDMBUJKtKecP/wLwZL2QseCn/KUQNONRguU9+HuYOAIc3xOJE//N2lBq5nuhEwWEYOskr7CQgA8SB1h4P8wekIM2fTqdmsafcxoKhYydpomL58B2/IgwtPckFtgEnwkgLRaLVsomWZEWd49ztnyyDHjFPwAM6vW6Xn75ZQUCAUuMJRnrytpQgfB6TX4O7ai0uCOe8+cb+NbXt3XhwpZ++Idr+s53IlY5ovGn0WjYSDFAPAnT9vYVJZN9Xb58l5ExVPj4Psyl9s9B7L1RS82ak0Dgh/BjnU7HxvgBtJvNpklqYFnnEouGfvInn9Ltt9d07VpKn/707bpwoaJ4PKtUKqlyuaq77rqgRx55SnfcEdfv/d79Gg4nS9U84lu/31+SUuGfMtevBMeuSQp9lQV2EmlBJBJRpVIxu53NZqblxNYlWfMzyRd2DbEFi4o/4/bCfD5vsq75cwZ16tS+/uzP3qrJZGI+emVlRYVCQW95y1t09uxZvfjii3rllVe0v7/v+mVWdPXqujY3r+iFF+6034vH49bc6G/LhMTArwOqAe5+qgrnAn/zRl43PTi96667rHGIYITOEC3hxsbGEs0eDAZVq9XMKcKAkrH4DJ+N8voWZvJJsgMsycCjb5CC0YB14HOi0agqlYoajYaV0WAhmQu6urpqDR6FQmHpWktmHhJIwuGwNjY2tLq6qnw+bwEcVubyv/6HVhqHHel0OqpWqyYe59DAKDK14PV//IvmLBBGU9aC6aXxw2fZgEWACIcbEOjLu7AOOBA6/gaDgXXn48BgHUkWGKuDTIFDl0ql1Ol0zCkCwqSFZAKhOsyF76alYzaT6eroKKGDgxWFwzNzOMlkUrlcTj/8wz+sdDqtxx9/3EqB7HW9Ptfb3XprQteuLbpSuZkKEMV++g5mslpfVh2Pxwbmk8mkld1wjDgRmCoADwmMtNBykZyRVLGm4XBYm5ubSqVSBowBeL4RDZaT18bGhpWMOXuM7qpUKspkMup0OtrZ2VE+n7c1RiscCoVMVwsQ4x/K3XwHyla1Ws3KYpShaRDyrDOsCIE+Go3ahRWsFVISP3swEAhYNcWDTIAIDR5oeJHzMDMXnRuAlOY8zhFJNAkV0w+oavBzzOMkSCWTyaWkluYvfBHJNbaNRILPgSGBuZlOpzYfF1kRjDjrzXdBd+vL/5xp2C8Cp//+rAHPADsICw07ShWEa2JZAxJLQBtnGu0tIHM2m6ndbhsYRvPIWcGvIx3A/tEss7/orv21v/gg/F+j0TD7QVZDYsDadbtdpdNp20NAF9NhSMq8PpFnJM4wYQJfOp1OVSqVdO7cOZ2cnOi11+YXqfR6Pb300p26666reuSRka5di5gcZjabWbMv/nYhgZjp7rtf0e5uQd1uSZHIyOwbthD7p1IgyQApPhZ5hGf92ScuYmFEo08iiBdUPakIzYHxSD/2Y3+qU6cO9ZnPPKAXXshcf47o9QQioMuXc3rllfu0snJGH/3oU/r4x7+j3/mdR3R4uJgzDdAE/JK8DAYD5fN503VKMpDqtdtUX/y8aiosoVDIAD9aXkA9bHK/37fbqJi3DTMpLRoAJdlZ9/0Tc/s4ViAgHR3FTBKBLZ0+fVr33nuvzpw5o52dHbulEjnYysqKer0V5fMNq0rwedJcooa+utPpGKg9ODiwsXOcfSou6GVpmiI5eyOvmx6cnj592kTyHLR6va69vT2dnJxoe3tba2trymQyVk7BSXr6Xlrce09WhAOiNNxqtSTJHDoZNV35gUBgyeFIi/t5CZyeMQOQEphjsZg2NzfNAVHSohSA3g+WEI0WDAMlCLLzUChk34nSOTontCOlUsmCyOrqqtbW1sz4ADswFZVKxQ4tWtszZ85oPJ7fpQ4AxdHz3cggj4+Pl6YOAOQpHfE5HMpAIGDjo9BJ+RLxYDBQs9m0Aw6Iw2EwvQAWle8Oo0wpkUMMY+m1ePN1DWkyCdnnjsdjdTodFQoFnTlzxg6pZxSQaQQC831PJALGnrOXOBa0d2SxlLP6/b7tLbcu0aiB9gnAA8NGJktQAFjRcIdtlUolY4sJ6gBqnC2fhwTDl64I+ouS29whAWxoQmEsktdeUwZij9gzyoO+wYEzQ+A/PDy0M4S2lGQEkT9sRDQatc7pWCymarVqIKparZoEgNI/gapYLFogSSQSOj4+VrvdNn0V3wN/w5gibp+q1WoWaAEtksyP+GHrpVJJp0+f1tWrV+1Mc2ZI9pDB8PPSnKnl4orRaKRWq2VAl0SCMiajvuZXViasVOirOlQZOPew65RySaoApQDqw8NDVSqVpcoEzCRngaQAu/K6uk6nY3bMi3FoSGDwufgwKlxMvuAz+DxJZrMwsCQkkpbeE9ACW46EBfB1eHho+kv0gaw3e4ptA/YBXjBo+IK5H0gs6Vr5B9/HzE4YbRJ/klKYyXw+r5/5mZ/RAw88oKOjI/3BH/yBvvOd76jRaKhajejKlbLe+97v6vd+L6Z+f13lclndblfVanWpCXQOskJ697vPa2OjpU984k7t7+8v+UrOMN3aN8ZQ1gAfRoIvLZp8iE8kE8wQprJGrCA5gdXs9Xr60R+9qjNnOvp3/+5BXbqUUSgUWLrgAZubr09Cn/70u/Sxjz2mj370OX3iE2+xzyPJ3djYWLoogPdgTi+gEv+0trZm0pfBYGCzVamotNtte1YSYa9zJZGlSgY5hLYYdhrfiS/kvIIh5uAUJrZvAJZ4VqvV9PTTT+vg4EDVatUa/jjX87g403QaMD9KzKEKge+BTeVnSJqoOHhWn7jAmSY5+0Gvmx6cMryazWdxCBYEZhgo5jpy4wwgEnkAQJcSTK/XM00UGfSNjT8wrcnkXJANgwGgwilz8Dj4OCHGp5RKpaX5aP5eZT9EGHYjHp+PKMIo0OJhlAzyJ6iSFWGYlGRgt2CsPDOApk1ajPwg8wbQEaRwOAT9ZDKp3d1d63IEHGezWQOXkiwbl2SBjz3hOSifJ5NJ7e3tWclQkmkUfcc9GZ/vouUQIWKHZaJzFUkB47v42ckkrlhspEgkbNq/ZnOuedrd3dUf//EfLzHlaLzmzWDd6/uWMJuiPCotM3A0DTQaDY1GI+tgDgaDdrMNjWSsM6wXnwmY8PITmCv0VDgbmBj+jgTPM5SATK6xo4yJ7XEF687OjgaDgZWWASOwgHSvArjREhNgSGhwkDh4GB5fUgOocE6xpYODA3PmJFGAO6odZP/NZtMYUthbWMlWq7XUAMMZYEqA13H5eZM0dwHwvBYMgObPYSgUskHgsJvpdNq0pOjdvf6Taorv4gY8Aqh9uRWQKC1u1BkO5xeMcC5hJ4+OjrSxsWHPBwuGLyFRJQkEJCI/Yd+Zf0sZnrI7CRINJaxXOBy25yZIUh1if6kqkaBgm7Cbk8l8TBigMpVKmWQA5pCqjffXXvPJdyYpIonh/bgoAj8ci8VMVkRTK+CD5jZJqlQqloCz3rC22MHJyYlVzLBn1puEi8+D4b3//vttigLj41qtluLxhL7+9Xfrx37sj/SzP/u4/viP79bhYUz9/sDK8mitK5WIPvCB13XvvXv60z99UDs7afV6RyYdIVGExce/pFIpZTIZtdttezb8O8k1TbP4OPwHLDIJDYz0aDSya1nR0AcCQ91zzyU999wt6nTOKhLp2t7gtwB9APnJJKpvfOMB/eRPPqazZ3t66aWonSViCNVN4hlVUSo2XMdMEoZulGkvnHFilq/O4EPZf6qfSGPYW6QDnGUv06C5r1KpWEVwbvtTzYfsVxUOryuVSqnf76tWqxkr++yzz1qJnWooZzaZbKjdXtwqif/DX3lMw+/QxOp7I4jX9IYA8H0D4g963fTglBE6gAPAVSaTsZKRtNBe0dxAmYLGBUnmgOkKTyaTpoEhSNJkQqMTWQkBBJDIpsZisSUtFOM9ABwAO0p9zDSFaaRrmbmN9Xp9iaFkDQhYBFicCqVYhPqU0iUt6VnJrCSZ88KJUoZrNBo6c+aMzaSUZGwga5BKzQf653I5GyWE80Avx/PzrKPR/GpPOhkpL+I8CLCwG2hVR6ORseI+w53N5vNqd3Z21G637bnYdxynZ3hxELBKsKihUEj7+wW95S0vamOjrWvXMsagRiKLIfkEQABEJpNRt9vVmTOvXs9UK4rFFvc1Ux73n0eHJlm5L/eQHBGAR6ORCephswjqgFOyXLRNsKg4Ft9ZOR6PjSn0sx+xC662Yw8BDCRHrVbL9o5zApvR6XRMh8vnkaB4Ngug4EvDyGb8GnmtHto/gDJADxvzlQNKrjR54RdqtZpJbXq9nl2X65MyQDp+gIoKQBWdJ2uAvgyNMHaWTqdNLtNut9VoNNRqtQzEDYdD1et1u+EGVgq9LT6B4MF5RVtPEMam/Xdn37Ch1dVVA/hUizzzThmdNSUhhnHE/1ENAFAjA5EWTUmwQiTlNG2ij4dtIRnzTUj4Veyv1+stVR/4npTtafBh0gL+dDweGwCEmULjzDMAsvBZgCfOIr6RShw+mDUDnHrpBs/oGWXva5DzAI6QdHgANpvNLEnElqheNZtNs9lisWg+7g//8D1617u+oZ/+6Wd0cHBezzyzpWg0IimqbDagW265orvvbms8DukrX3mrdnffrO3tiWnISUCJoTDQJJ5obdEPIyFjrYhDMIgw3fl83vw6LOxgMFCn0zF9MEnXvfd2FI8P9dJLdy6x8z7xZA2pNAQCAV29Wlank9S9917S1av32bmh5yGVSqler5uPwYaxN8gDkmGftORyOauQkFTik9Gyep0wsQRii0obfoV1QHpBAuUrHNIcBB8eHum7383pvvt29fLLD2tlZW2p2tFoNCx5wH6xq3S6oa2tA/3O79yiYDBomn3vp4gxVHr57pzBUCik9fV1I/o4k/gXZJTPPPPMD0Bu/wWAU9+BDwCTZMFsPB7bRnHgc7mcMZMYOSUGae44Op2OdZxK8wyBxgsYUjIq2NjZbGbMFpkcuhbf2IHRJBIJra+v27PBvMHicOhyuZwxXQANygadTketVsvYGdgEAhfZkAeF0PLMrJS0NNQc9hhHmk6nrevQl359UxGsAIGbwCvNs1y6mvmugAbKRegoy+Wy3a0Nk4mO2DcUUJ5ltBTd3Y888ohef/11PfHEE/Y7OBxYVFgTHA9Cb3+rVLPZNPDe663oXe9a0913v6p6/R3mcOcant5SSZ9ZpvOSclJvfvOreuWVde3tDU3eMZ1OrdMegIVzCAaD2tzcNOfVarXMVnxQwFYpB8EyApqPj49tjBdgD50l3ZckCDhpRo/grNEVUcL3GjR+ptVq2aSIYrFojLGf/StpqeRJ8GOyBOwBtksDDIELLRbXyML2ItsgAWGmKoGG22YIqNgon4c0AzYT0Atj5gMe+xEIBJYqFIz7QXfqO5eZYgE4ZB+5o73VapksgUAPAwFLKMk0ZZ654DvRSDEcDq2JEC0qZx974ZwBBNCgS7JbjvA/sKusCRp4gATg12tN2T/vc7wGHdCJ9pWLCfy8TEApz8u6eamBf8GCeYYVIIpGEr/EMwMi+R5MyPBXQ8N0AhiQuOCjAR9Igjh3+BP8h2eU8IWSbKZpJpMxcoIEGiArLeb4SjKJTyQS0c7Ojn7v935P29vb2t/ftws78L/zzwzrU596QJXKoR588Jre/vZL+pEfWTDpjUZSX/rSHXrllTNaXS0rmYxag1un07EKCX4Ef0fy0Wg0rIGWahn7y/4zu5dnY11J/Ii17AUxhcrG6dOXdOVKXo1GTNHoYozedDpVsVg0LTWVSkrmoVBML710ix5++DlFIg/YbVBUCyQtJRAwnblczpILnhltNEQMDZ1o+tlTZBLsM2V+qnr4Qb4n2ldkJfgq1p6kkMQJn/GlLyX0yCMNVSoX1Wq92Z4/GAxaOZ+zBykXDAb1yCMvqduN6+joHq2uys4zsZfnh9QgBrBn4A7kLWhW8YX8+cYz+r/3uunBKY0QaGhwLiwkGRpDz7nxB4MicNwIaieTiZrNpmWLzFjj8MAShMNhG8Y8HA7N0bGJZGGJREJHR0fmeGE7IpH5YGycL7ox2B864hG7o9khaMNM8L6SjJWr1+tWxvCsCY6A4fGBQMC+D2Uk1gHQhr6G7Jj1g2FFCzccDvXqq6/a3NJ5xpa2wAB4CIVCKhaLVlY4deqUOVYCCiCA2XHoBH0nMXpASofotkgmvFidblPeAxbRB12SFtaGvf+zPyvrfe+7qEzmdu3thW09KHvy3Sk/Hh8f681v3lE+f6w/+INtk2gw9Bl9IeUUgAVrBaOdSqXUbrfVbDZtogQzSllHABVNCdlsdikgMofQN6RQhlxbWzPdX6lUMqYSsO2BDow0yYWf7YgWFjCEXeCMAXeDwUA7OzvWFMXEA56VUVY4a+QGJJCcUUY2DYdDk9Ig9SgWi0vlbkr8N2rL6MSHzQbEMJ8VwAxDzfgeSQbCqIhQnYBJIynCLxwfH2t3d9c61Hl2ztrBwYHJjU6dOqVweD4blEkYnnlDawtDSDMHiZJndyVZIkXgI5HGPxEAqZLs7u7aM8MyU96kQkKw9eAblhcfWSwWjVEbDoe2Hj5Ycw7wK15fDCiFUccOqXh4RomEGFtDnoG2HwlGPp83v0TVBd13MBi0uavIaBgT5SVI3NhDBYKKD9U6bIYxTaxLMBi0KSuAHMDD6uqquG7Y9zmgqUXygia2Wq2q2+3qwoULNoYIwIzfZr+63Q099tiWnnwyoHi8L2modnukTkeKx+cyMoAYBIAkS1YkmQ+9cfoGFRASL84KvtR34lMmR7dPZaXVatlaIuEC8KysDFWvzxvuSF7w/VSUiCHHx8fqdDrKZrPX5UY5hUIzDYdtHR+HlkgaJE404dG4i8TO25evNrbbbfNXJFT0UCAXo7rqYyTJELIXSAUuOsA+vN6Z5IzkjrN/6VJEr766pve97zl97nMbikZPW+IJpqDiy9m8/fY93XXXJT322F0aDqfWM0O85PshacNXQlIhZ+MMQvRBfGDzVDbeyOumB6debO4bNtBEsZDNZtMct++OxdgpEcEshkIh2yQG8vp733GosKGxWMw0XTC58XjcjA+jg0Y/OjpSrVazrlTPfNFlDhuM+H84HGpzc9OACMxOpVJRIBBQo9HQwcGBlfLRtlKS47B4MM66dbtd1Wq1JUkA7AZOjs5Kae6QW62WjWkCVHc6HSvDUrYHZBA8YAi4TYrD77V/iPeRYXCzzY3lF6/VqdVq+uIXv6grV64Ym4dzJ1CT7TabTW1ublrARBrR6/WsvARQCoVCOn/+Nt1/f1sf/ODXVK//kDqdsDEKMNZkm71eT/fee6z3vve7euGFTVWrZeVycybb3+yzublpTIQHN5T8SqWSSqWSJQyRyOI6Uj8eiu9GpzjBBUYH0AuoiEajdkMXovdisahCoaBms2nX7sHAUi4muaBsJGlJk4xDZkxMuVy2JiVpoX+lsWA4nF8GQIY/mUzseSuVitLXL3sgiNAdi+6Rn0dXRXMPmT7lXNad5IR1o3yKrSP74exwrm58dqZvNJvNJeDPCx02ADCTyejg4EC1Ws0mepAoAP7p7sdWYWYAar45kWBP6RoWGz/mKwaRSEQbGxvmx9D94WfQPAIWSDwBhYBTkrTZbKZcLmf+J5PJWHJ3fHysarVqdueH3VP9IPEH9MHCwHx3u12bOoJOF22yvxQAe8Z+IQjwU+j9AX3ocGmMwxf7rmgY6mw2a0CSZhdpcSMRfp4Ej1I2CQvAgz9Li2tJeX5kYIDOUChk/RKcT2QqPNt0uhiZByBAq4qPp4mW58Ve5nrahCYTRhIeKhSaWRf2wcHBdb3qYj4m639jiTtz/TpTbIDqFz7CzwCHfWXPisWicrmc3cTYbDaX2GrfDDZnM0NLumKvt/fVSGQOk8nE9PHHx8gRkopE4pZY+0ZDEkPOL8ARmRg+Dx9IMk2SRazExjn3NBn5pIf1nD/Tqp0JQCmJCbgDksODRxrOHnvszfrIR76iD3/4S/rqV9+tTmfdGFNpAaLT6TW9/e0dve99z+vppzP64hfTCgbblkQiKZlOpyqXy5ZMJpPJ/019OwQDAB7yi/WB2Hkjr5senFIigGGDfocxoyxFFsuBp2QP2yXJQEowGLRZowzxp7MPAyRocN0dWSGjhGBe6VBHd8P7D4dDK09QPib7R4c6m80M/AUCAVWrVcuIJKnZbJrwn+7cdrutWq22VH4nqElaKlMCvJAjVKtVZbNZ+384Gd9oQEnXl10ppZE1+fIle1Cr1dRuty2z9gwjpSOAEDIIWL5Go6Ht7W1rSiBLRvva6/XsO8Ok+ttGJJmWCYaXtajVanaYAC6Um2Hf5wxrVl/+8nv1/vf/sf6b/+ZJfe97t+vZZ0/p5CRih7ff7yuXO9SP/dieHnxwV5cvb+qxx96qtbXFzDuCEuCB0g6aP39dLdenYsuAfhwLgYS1g/0AcLDPSDwACpTbWBfW2o8mozyPLfBc8Xhc6+vrpnX1uisvqIcp5/NOTk5Ur9eNScUuSHa8g4OlZHIEwZKgzDPBwnidKY0Dsdj8aluCMwkPa5nNZu1ZY7HYEjNAWY81BHjQPEEg5b28bpgyIc8O2wFL3+/3denSJTs7Gxsbarfb5vSZKHDmzBlLdGH9SYqZUJHNZo2t4Nl9s6JfV8YpAVgZW+UbLildY4vHx8cqlUrK5/NWwkUDCXMFk8dIJfa7UCgYMx2Px20mKL6LPaFZDX0/QEeSsVteIwyD5oM6mr10Om3aW18aJ+n3IJmyOvuTy+VsdBUXAPjGLi8bANQfHBws6VQBSgBH9JqUnSeTiSqVioLBoPb39y35hzVEAkPDINIrz4gyJ3h9fX2pWc9fNJNOp80PIOGgOsB34MyQdMF20tiKPMnbejwet3WB8SeWkXiQZJGgEEM4Ew888IAeeOABffe739Xe3p7FERIxphlQNTs5iWp19dj6DHy1CF02L6ZlUKUMBmuaTKTBILJ05llPfEwsFjMCCYIE+4ZBZIoCLDO4AlKFs0/jLr5Dkj2vB7pcxUq1z+MQbJZeCi7UIMmfX76T1Kc+9U795E8+rr/0l/5IOzs5PfXUlobDuKbTqPL5gG6/vam3vvW8stmBnnqqok9/+pQikbBpbvEdkpbODbGExl2IA99oTbKMr0arSmPjG3nd9OAUhH9jmQ7nhZPO5XLm4E9OTlQsFr/vJhXYBDJpQCbAkqwL3RYlKF50TsMo+mDJ3DC6FYvFojY3N401CoVClgkSaGCKPIj05TMybgISgNCXSH15hWwQ8AujQDZG96wkG3JON3YwGDT2cjKZGFtEabbX66ler6vZbFo5DwfidUqUCgmIZNtk/ARLNEyFQsHYzHw+r/X1dfss9pwSab1et0wexwMjQyaOo4RdPj4+Vr1eN6YcEMQaUH6b68vC+jf/5mG9610v6f77X9HDD7+kq1fLOjxMKBCYKpframOjqW43qsceu1VPPXW7ZrO+lVkJhr7JJJVKaXt729grNMWU5SjDoguFvcYeAG40l0yn8zFRZMUkJ6w9wnxALuyB10tT8qQ8i7aIUlan01EqlbJEjL8HQAMUYOIAjjBO0+nUJCu+MxqZBkD25OTE2D66kpEP8JwwPLCB/AzNRycnJzZ4HkeKfnIymXd4U1InGfSNHuVy2c6Jv7ZvMpnY+Cn+8Vo2fIa/EpNmDGQT2JUkkwyg8QJQUqL1ZfTRaGTAld+nPL+/v2+2ztkF8AOyYG+9NlSSnSXYqclkou3tbWvGKxaL5hsp57KGviGMkm8wGDRQDHjnbHOu2BPAHf8QLJkJSiXGa6oBNXTZ+0Y4EiDAFsQATCTvByAigQBI93o9Ww+kTVQp2D+Sb84XtgmjjB4S/wl48tUh5hzDwK2trdmUDs7I0dGRNRq2Wi3rnqYs3O121Ww2dXh4qM3NTeuEZ8/b7badCV6AMnTa7AO+AOaevaMCeGNfA0ALlh2pD6VtziP722639dprr+mll17SZDLRqVOnTLfMMzDzNRAI6NKlLb3rXd9RJNLU4eFcF4y8BxKKMwKonjeBHuuBB6p66aW8RqOpBoOe2QQJkCe2fBMjJIvXxWOTgMRwOKxGo7Hk05lRTOzgjCP1o9eF9SGpl2RrCLmGbZKc4U/8WRqNkvrd332bbr21qgcfvKaf+qlnl7DReBzUq69u64/+aFuvvBLQ6mrEiAgSOmIKfgF2nwa2G2ONjz9ICcEYVDEgPn7Q66YHp55e93PgYAZppPBZdSAQ0O7urm00mkvKYmQ4OCYofxw9ZbNMJmOZe7VaXSq30dEKewJoisfjVv7l+jYy0dlsZrpSr6PB8TFjDmdI00Q6nV4SX5dKpSX9DN8bgNHtdi3Lk2TMmge6gCdu7vGXGPDyN8/QZOW7hNF3SVqSBKA585oaMkfAAZk6rBbJAFMUONywPLw3wco33QCyKI3B3pK1wtDS/Upw9iOdFnKCvJ577n169tkj3Xbb6zp3bk/r6x1NpwGNRqv60z/9IT33XFaHhz0NBosrQQFqsCM4VcAZnZ5bW1sWANGnUY4iUMMewPpg7wCng4MD6+yFyeL/I40AKFFSpczsS0ucBS/boHwGWGaPYOPYX1gDf5bYC5gazwaT4IzHY9NFl8tlAwRemoKUg6SD9fODzbEBEkSfBKZSKXPMMMuAFpIqZD5UCSgz02zDmpFEwL6nUiljX5D6cIMSXb58ByYNwGDlcjkrbdbrdWMLYeP4GUpvXGcciy3PWK3X65JkTR1oSQk8HkBijwR2vhOsPAkgfg1gR6UGe4HNRJYxGAyMKecZsBf09oAEfLVvBoKVPHv2rAqFwpIWkN8HBBI8fbPKYpSbTDPHuntmDsA2Go1MEwzQw+5o8oCRh+li3W9k5zmXPnlmjfC53HGPz8JHUeVCq0r5GbBaLpetJyEUCung4MD2le8yGCymAxA78Gs0BdEc6UE9iRvVCsBHv983gMvZJrGBXOD8cOZ9XKXKNRqN9NRTT+nb3/62VQ0hkigvk3BR1bh06Zze/vZndeedr+prX7vV9pPPZnA88R+wdccdQ1UqJ/rGN+41IIWcDtkPvo1KKPHfT+8hofK2QmykkQgwxjllzQD62Bc+GkALk40NkPQGAvPZsrD4+CWvIyaRicdXdeFCSBcvnlKpNNTa2pESiYCGw6i63bImk9Xr1YaakQjB4PzWsv39fQOTjHejC9+TBnwuTDHgut1uK51OW3LF+r3R100PTulkm04XN5xQkiWzx2HA4LHxHFyAJLQ/omIcAx2MiLfz+bx1+HJAcHbc5BSNRm3ER6FQ0Pr6us1/Y4i6JAsCZMAcBoIQmSIllXa7bYeD4EQJBSF4PB7X5uam3Z1OuR8Ai4bJN02QhdNYBnhiNqUk1et15XI5A+uAIUn2vdrttg3AXl1dtXltvlOaBgKAwdramuklYTFoTIIxgFFgH9l79gAn4JvEfKNXMBi0kkM+nzeABkDFQVOKYmQLzMvh4aGt7Rw8zvTd757W+fN3Ln2eJA0Gc70qoJbvRAc4mTABAyaLhgeatUg8AGMwEQA/bA4gJC1kG6wPQRQbYzIAfw9w4PdILHD+AGLen6A3GMxvVYENpdGJ5NCXnr0O0rMdlIcJHIBfr/HzDYd02gIyKSFyAwuNA7APaMlISDqdjg4PD5euKUaOAwDhu3P2/fxJ2AXfwEAFA0CF3szLK2AhSTwBIoAp7BHg57XvlBJJSnyS6ScooOMMhULGnHMmkDzBXqMdI+hR7oaN4+fpTmdNSYTo6AeU4Md44VOY45nP560BkwR6PB5bl3a1WjXmC7snCccO/DxIwC+VAdiy4XBoExoAk+yFn5wA88wzw9zhX70EzDfh+fWG6eKzWSMqCgcHB0uMHqCdaQ4ewMH2ciaIZ+wr+kQ/LxpyAhC9tramUqlko93wzdg++mQ0lsjRSNTxgfgOzyDSYEpCwh4hsYK9579JZJBdeNBK5ebGJh/siPfgfBQKBb344lndffdLOn8+r3C4aEy+JAPqXiq3uiq9//3Pq9FY09HRrYpGB9+XjADw8vm8wuGw9vf3rdQNUEUSQRKBhCeXyy3dIIX/wJaQ/0CO0KANAGctvCaZZyPJkmRldc9i8xmQL5AGwWBQh4dxHRysma2GwwOtri4SIt/IJclG17GW3M5HzwWzj3kGadF8yP4Qi6k6Ip16I6+bHpxms1k1Gg0TEcPUDQaLIcYwCJLsQOAwMDAYGw47JTfKhTiNZrNpZXayvkAgYI4MUMP8S18q4eVnvFE+gkGRFpk0wX19fV3dbteuvPSgOhaLWXDrdDrGXtDFDAhFtiDNjZQROgQZnDyZMM9J1s/3lmQBGHC3trZmzQzD4dAcJE1cODJGcBH4PDsDGLp27Zp1X8OaBYNBpdNpW0sADs+LHkZaXDuIo+10OraWlJMBUadPnzYwCNsECAPYA3Yp5WEnlGf39/c1GAxsODZzG2GCKIEyVxHgQ5AExAJKcPQwcJTIYdFDofkoNAaaU/aBlWMECwANUIpd+5mZ2IUH9+wndgFziL7x6OjIwDMBHhalUqmYEJ99ohRIwgbI82NKCGZ+7fr9vpWoWQvei6SHM8x5ZH05m4BYNK+Z6/eyw3DBxlK2J6nF+fLMhULBAn6hUDDWDkdP8oSPgL3hTBCgAX2cE0A1zJHXuOJb+DP7Q4DzSUcsNh+7Fg6HrQkJ37K7u2u6dIAha4Dm3msPAXn4rNFoZIAPm2B6BL+HDcdisSVtMtMpmOtKojMezzv5+f+U+Q8PD82OAQfT6dQ+60YJyY2NOzCqBFt8GMABph0f4ZMgSQbSadiETWSP8Q0wgf1+Xzs7O1pZWTFiBB08d5Vz3jw4oqMbORIsL/7NJwasAzGKZAjgS0LhG4lIbvCLrAH+gr0CxJCkALKIpXRiU/HzYJ3Ei1I4vphKF3IkPw0DllaSgVH8OGefqp2XxnzjG7epUmnqp3/6Cf3BH/yQarWK7XcoFLLRS/OzGtDP/MyfKpk80Wc/+wGdnPTNZyaTSfV6PWva4bkAhDSlSjKb4hloUkNnjq+kEkDyh91zTr3ch4TA69DBF4BYtK1UNv2a07/iE1L8GxUo3+RYr9ct8ZJkCchsNlOxWFQ0GjUQypzccDhso97AScjtiMfgLJKU6XSqzc1NnTt3Tk8++eT3aYH/9143PTiFmsfh45QZeZFIzG9JIgtAhE55hwAKI4LTk+bOivIaYIOGGrRWOAn0Z8zzxBlLc6Pc3983DSfPSAAMBOaNOuPxWPv7+5IWrCTMKM6GkjYidQI0rC4AuVarWUDkkOGMAJysHeU9uvBwiojLAXfMeQV4SItSkiQbDeXLJ5ThcEYAEQAKZRwGE9OhTynZ34DFQQZE+MYfggABFuCQSqUsS/WMlbQIVgBtAvRgMFCtVlMul7Nh2zDZOC1KfgBwNK6UKAG0lIEjkYhNPmg0GjbmC+aRDJRn8E0L0mLEEqwV60hQI0DRyEAwBegBbldWVuz6PvaTyQQw5HTTBwKL4eyAaphwAIwkVatVm2kLAAIct9vtpXIXTXwEbgArAJISP4DASzPYZx88caSFQmEpeyf58zIUbgEDADDxgPI+a8F4KMArWl7WBD/hJ0ww7cA3p3lJC6xnKBSydfYlc+ak+oZNqgbYK/+NZhEQA7tDNYKys5e4EDAA1XRQE+TxeUh+AKYA/EqlYqw7U0JI2JDpUGrmrK+trRm4Q2vaarXsJirOeTqdttFL2ArfhcYtEn2CJ9+NswgryfojEwLUYT88L0kx6waApVGJ+dOsAYkazyzJEhYvZ8IXnD171pJQmFb2kljlgavXZnLmKPPSvOU1usPh0EAZ017wO51Ox2wbHwN7T+kbYMQs23Q6rUKhYM/r9wz9LLbkK0W+yZP1YM1ms/nIq3w+b2uOP4KF9KSRB5yc79lspnZ7oN/+7Tfp0Uef0y/8wlN65ZWMXnjhNtVqZ9Trzc9opXKsBx64rDvuuKLBIKI/+IO3a29PmkyObQSf7+gn4Yb8oPGYBNJfmsOaYAfEbnw0/01PB3FpOBxqf3/fJjDwu1RpvA6YWEusZ10AvZ6lZZ4sPwujz9pid3wmewH2QW7EdB/ep1qtLk084dnACiTDyBHw24lEQrfddpu2traMrHkjr/8iwCksAyVf0Hyj0TDxOA0ha2trFmy8MwFQktXworOTbj/uKMaRULImC6G0R9ZNyYGMBcbp8PBQV69eNRCEkBrjAlzjVKbTqYFsSnoARBqZAIPxeNxunuH7Y1QYJ6OqMERE/15n5bU4jDTy4zhwWF4nQ8lWkn13QCJZKsGQAMheUKYjG4RRAfCg8wEYUIblGdDHAJxwmjS3kDkyhobPQF4Ao3h8fGyjjNgTnBharXq9bmCNEjCll3w+r8lkoldeecW6aNF3AW7RI8PwY4u8J9kuQAstGHP8APgAA9hLhPuw1Ngg7wc7xVrRFMYAcuxkMpmPl6pUKgZucJLcHU9J0Hfgs4YwJgAgEgNYO8A4TnYymejVV181oMkzSPOSMdfweuaCucW+y3symSx9F1h+AivzWQHHN0oOaIRgZiVO2JfcOaPIDQjG2ADTJ/h+MDTVatUaEdkvGvH86CSSCpLYvb09q3TA3rGnJADIRJAZceb9OQWA8kysB8CN9eb84f+QDABsk8mk3baDhhaQBqiIRqMql8tmp1Q2YJY5F+wZDB+BEDaqVqtZksdVuJQ/0ZF7BgffzbxGtH/YKHpOEihftaCc3uv1dPXqVavWUFJHUsFZRINJHAD0oH32jSRUcbBnStswoTCagBrkJvV63eQKEAQQI7CzjJejiobEZmVlxfYAgOtnN/sEPxKZjz3yMZNJA0wouJFkQDLFngH+PDON38RGYAWxR+IciQ7+ABsIh8PWBPu5z2V05sxrevjhHX3kI09qPP6OhsOIwuGJotGxjo9X9Oyzd+vFF2/RwUFA4/FCLgVpwD7D7gNG2TuqY8TytbW1pbK6v2yDvYAUY4A/E0y8Xycu9Xo9k6dBeOFDBoOBTVtoNBp2dpilTcWI9UdDTILsp+Zsbm6a/MGfDewVksZXsLCDfD5vmAUMgA+LRqPG3lJVisViunjxos1Hxnf8oNdND07ZdA4oAZvsH5ZpbW3NRuBQ1mi1Wmo0GmYkgD5YTEqYlEXRmiG65wCTSaytreng4ED7+/u2cTQiFAoFraysGNuaSqWUzWZNdzUYDGymHkYOeMKxYFirq6t2/zf6WcobN2amAC8yf39QYBQxpslkYocRNqfRaNjtMXzvSGQ+OxG2iREysFU0ddAV7dkoAjmd/2T/OPFisWjTF3Z3d22/ADaUE7hZhewaYIE20esncbDsUTAYVK1Ws0APIIBZgZkjqALE/Gf5iwQIDL5siBNkjAx6T8qpvqRHkkHmjnNEewfrCKPEc+J0JJk2GHv0wnbsCyBAgw8BdDgcam9vzxhk7/Rw3IA92OJIJLIEAsPhsHUJk7zhXGESPaBjiDnvSXJC+Z7kAjkBpSSCI2tMF7XX9QKgAKTYKcGWgCHJmB9sFecKGwb4IfklKKD39gOrKeWRqMGY+uSUhkVJBmDxHyS0aGL7/b5VCyTZbWHIAWjSw94535xnzhXSgN3dXYXDYW1ubtrlDjDeAFuqBTTooR9j5jLMLo1U2Bb774EichbWAODC+aVsD0iWFrcQkbAgVyI5DQQW44tgqdgbvmu5XLbGoZ2dHZP2MFvZN5LxHVqtlvb3962LnbMraWkNw+GwMVc0bTFFwFcAALIAh0QioXK5vNSRzbnw7CogzvcSUL3CnrFdACPJKcx2MBjU1taWadun06kx54VCwaqGfowcQB4fQtIGcOa5sCkSN+QswWDQ1gNZEQwazTP4Tp/8UO3Ctnn/bDZrUoJQaD7JpFpt61vfSuv8+W3deutE+XxVUlehUFKDQUG7u6cUDNJgdGzrj6/hcwB7jDeTZP7dPxea8Gw2a/GSZAWZCVVaKm8k3Z5VZi/RnwOWs9mszZj1INrbsr9Ag/iDpMc3MCK5IZGmOkPS7IkY4goVqc7167KxJxIPX33zz8Tv4beYQEEi+UZfNz04xVFDlXsWEOfGwQiFQmo2mxoO58PsCUpoawByyeT8qjNKn2iKpIU4PxAIGCBGk0Lw81pTOoMJuuFw2PSM6FNwYGSK6OBoDGJQPUAELSoBhA5DHAbXImKQHCpKkpQHCNIAgJ2dHSv9omXk+wBiccSAI0AYQREmEzAMIAUUdLtduyrVrxcAGKcPGwwTMhjML1JgXAeBEydIEMX5zGfBjQ0UAOTz+byq1aoBAw4a5TICFpph1ggpBPbCHdaz2XzkBusdDoeXxj7BUuzt7Znj940RzA1ErxoOh003h12vr68vAX8AAEw3EhLGlEyni6HsdLUT2CeTia5du7YkWVhZWTHZAnuPBKZz/ZpL1oBgKS2a4HwXJ4wEz5NKpVQqlQwocyZ8xy0OtVwuW6LA95O0VJFAruEBIaCMJjreE6BDEkD5jc+YNxEcmm37BidsAtvzAQQfQGJF0KPTn4DnGVFYOn85BnKLw8NDm4l5eHhobIQkW7MbZSKsv7S4drDb7apQKFhCRrCjnIykAr+Db2NEjp/R6sfowLLF43G7zQ4/C6MCq0NiMxrNr97FT1EBIfjhzzgnDPYnueYSE89wS1qS71CFoRMaZjESWVyBy7P4KkMqldJwOFxqzvPJGyypl0UQF7ymGaYPFokKCsAFv0+yBmNK06hnCCWZH5Sk3d1dAxDRaNSkaDCV+DvOgjRPdq5du6bhcKhKpWJ7TGIPO4rkAcCdy+WUTqfVbDaXxglmMhlr/sFmx+OxMczEAWwPTbEv0QOOiStei893IBnHHrB/gKWXz+BvdnZy2ttLmUbz1KlTBihJ7Ph8RoOx3lQZwAeAQJhuwDpMIlVV3wA3mUxsWg8lff5MwgBTj/2SYGNrfB57iB681WqZ1ANwy1mm6ZgEAJbaV4wKhYLhGT4HX0TlFSBOQoVfJJ4S6/CLaNPxAz4p9CQMdvFGXjc9OGW+GqwjwZkASrNOo9GwphVYmlarpb29PWUyGSv3003umzjYNAIKVDildspUvHxXNcwfAA/HipYtHo+rc/2e9dXVVW1tbdmh4SAcHBwY0JEW99pLWirPUI7xYypgftDXYIQYvO9256BQokokErrllls0m80sOA4GA2v28N2YZIboVDhYjC+CyeNgIg3I5XJLzNlwOL81SJIxMWiH0Xvx3jg5AhGHTJINCvbX1SaTSWWzWVtPMkGvJcWRwUTT3c2LgIgDhglAyxkKze9lJ/lAm0dZhv9Gp0gihO2m02lLpij9YuNk1d1uV/l8XplMxjSsgD50xdLibnWYWfSi/X7fKgGZTMbYPz96p1KpWBMFzBhsGVIA1pqb2GiGovzKfmKXdAnTOMCzUXolYWG9sUtGmeHkbxyHAgsM+CTAA6oBoJwFEh4AmP85gBdNMZFIRLVaTbVazQIVIAQACVDhvXznMKw3n+2nCODsx+OxarWa2cDBwYFyuZzZS6PRsLPKZ8J4e/0l/5/nIzGk0bDb7WplZcXGCXkdPj6JYIfPBLgxFxZmDH05SQnsNCx7v9+36RiAAv6etc1ms1bhItDi47yuz7PcBEZ/0xbrTYnW+wSSMp6ThJOzTNKXSqVMlsH5QbZAVQjJgi9jsw8kNQRxrhv2foUEiskb+J1+v297XSqVDCDQ2OWrALFYzIgMzpgHTYBRWFjAN5UqfyWu13YijyHpIAllLjFn9PDw0KpG9GMwDQC/Swzk+8H+449isdjSGiOtQ6aBdh+7ZP/Onj1rMR8WkMY09lGSXVRAxYVkU1pUE7x0zE+nYZIOTDhVR84574O9UfKORCLGQPJ+wWBQ5XLZ1hPSYTwe25xggB2JAnEXgoAGV4Aw/hDWGzKB88uakEwQ+7xczyf5VCBIePw17SQxxB3fSAve8aMyvZTpjbxuenCKhujSpUtWMqOUSLYKQ0QnJeUJAjsAFCBbr9eNfaFjdjKZWCmY5pFarbbUDABA9F2THKxKpWIBEIoe7SdlLz+eijI1GZTv9CUbI0jDiFJe8A07sJEEYA4XpX9AJ6DUNzDhcDA2/ns0GqnRaNh6ArxxvOVy2W7I8eUGAD0AlLEcJBfceT4cDpeuvoRVjEaj1uCCFov1R/5AGQgWCKYS583vUVb060swAzAFg8ElB0kpnitiCaDT6dSkGF4LCGNFEwFMCIkRoIIZn17PCIji/6EVxRn1+31zDOwV3xeHB+DDOcHco0Vlv7FT5qpKshI9ARr2BwaGxMqP11pdXbWLGGB4MpmMNRr5Bg+aZSgreVvj/WGkASKsNYCPeY2+OoB9sgYAONhCEiQqLTAejUZjSSdGWe7Gkrzv4h0Oh1YyLBaLtlewiL55DvsB4OHgkS6QkHCmOb/xeFyVSsXGMnmNJ0E/n88bEEXKQnIjyRgufAN6aXwJbCBNdXw/b8skl74pkcSYUiMsPIEUn8OeAmzi8fmge1+94WY8wJEk0z/6JABNom+kgRkkIWXyhiQrw0ciEdNNU9r2Tav4VD89Q1o0y62srFizGL/jZT8kELBnsVjM5rO2Wi3zjyTV2AFAD7YLnT3NSTQ5Eq9813S5XDY5GBKTlZUV1et1tVotjcdjk3BQOQAcefCFDwf0EvcAk5xRfANSDaRHjDprNpu6fPmyScAAggBESRb3KPEjC4Hx5OfwjYBnSIpQKGR2B0OHHjwajS5degELiiSENeBzQ6HFNcwMzafq4/2+L2njy32zJ5UDALFveGKSDv7Ls7MkbL6JGj+BZBBpAuPsRqORJbrYPZ8LwIeAItnjGWGduXCHvQT/UFmmapBMJlUul5XP580HoyX21SqAPiyvn5bx571uenDqgSWMJWARfRigEcE3zF04HFa5XLaRSpT1tra21Gg0zJGSkREEeE8CAp3pnt1CTpBOp42BxRHj8MnUBoOBSqWSBT8OKLcpUZqDmfQBFmF/tzu/ix5HgPap2WzaLUuwqmSCOEP+ITP21yLCOPth0zAvw+FQpVJJ2WxWOzs7VoLJZDLmWMmqGKlTKpUMiMCEEQxhWlZXV7WxsWHOhMYXnLtnjmGlWI9wOGxBCqAGONvf37cGKdYTMEyWSSCgUaRSqdi+oSuCTYJhZ9QQAJNDzBw59JvSYlQVGjP0cd1u1zTOgNxer2f3fPspCyQuODMYbLR+DEUmaHkm07MAvB8ZsiRjoMnAYfgAqnyXTCZjdg1Q4mfQhqIVrtVqBgw4ryQZnjmVZAkYf/adq5yXfr9vszM58wQrEi7KvQRC7I2gCGDD3sLhsOluYTWw30KhYHdqY0+wKKxns9mUJJMIESCkhS4Txw1YZu28jpH3w9HDqtCwhHaa80DFgv1nJBNAEqCAzXE1JolMsVhcKkHDagEE8XU8IwDYPx8AW5LNU+Z7+LX2t4axvpALMC+JRMLGzaH5oznNB0PKx/g+gBSlVBh0Ki2+EgFg4sxzNrB9GDGqFADiarVqoIazh5zLa6ixb2wefw6AQSZCFQGZiz8HkmyeLcDs8PDQknpkXLByAFb8AvIO1oqKkC+/e1YYP0FSBJjCN5BA3dgFDrAkTnrJCrELZhPQwr4B+CEFvF1Ji+uW+Tt/gQlJFGeUeOYleN4nUKrnkgWAqW8ohcCKxWJ2HfZkMrFpAwB1GGVK8Px/fBTVE0gjgDcSOqYpeEkhQNITUiTjxCr+jM6eM+p7J9BA+8SC3/FnhxiGDwNr+LgQiUR0+vRpffzjH9dLL72kT33qUwqFQjZhqNlsLvkrzgLJwQ963fTgFHZhfX19SeeBo/WdnjAqHG4E+xg6gQ+AQgchTth3reHQKL/AwJChSHPNDll+LBaz4IyYmD/7oevoJ8l2O52O3eaDI202m0va0WAwqNXVVdVqNTWbTW1tben06dPa39+3Ug2HFEYPtpAMCDZHWpRTEdgT1Dy4Xl9fN6ZhNpsZoKLRgq7lzc3NpTE2AAoATavVMiaCrJ3mFsAiwA+mJ5lMWqbZarWWgigvnAVBdW1tzW5+4TsTuDxYJyih1yTwBwIB0xKn0+mlTBighAOiPEggxAmRYTOdAXBBGcWzdjc2uKysrCifzy9NaUCLDBtDmQqboFzqtamI3QkyBBxmliKy901UyGTQcBLIaezyzghwSEDG5tH5wSrRxMdZAhD7rthWq2UaQoIIbGYgMG9yhMmgHAtLQLkRxswDOc4DvyvJZBieMeL5cegkLJKs7N5oNJbunY9Go2o0GnYmAOFe/+wbIthv1oy/J5kMhUIWKJnvyTMGg0GbKUmTUSwWU6u1o1xuX4nEROHwser1iIbDqNk4jBNsSzweN1AJGCRg+uQBHwJggxHd2NjQXXfdJUk6f/68Xn/9dWP/sQ3YS5JRzjtyD3SM+EZK7vhrzjTMkB9/1m63TYvKue31esYwAfzwb+inPTChoZAKFvYVi8XUbDatV4GGWJgxWFbPsmO/9BbQF3Hq1Cn1ej2TosCcAdy8BhBASsVImhMxlKzxgUidBoP5jVwwqLDtAEIa6WA9/Xvw94z58i9AHWeBecnETXwUcZifxWcywvDo6EjtdtvOCH4dGQkzlBmfiBbZxyyAFxMIiGOUu/v9vhEjvqoESOPscobwy7zP8fGxSb4Aav3+/EZFEghfscBHkxjQI0Jc4ZxiY8Q1psVArMC0+kkb6GCR7fBeNyax0+lUtVrNCDjkBYDM0Whk8hffK8IZIt77HgzWlLGXFy5c0LVr16yx2bPZJGoAas7aG3nd9OAU508Q97PuOIRoXyTZPDecA44FMDUYzEflcPsGQIWAjuOEpaCMh4ZO0lImh86KTGRjY8M69DFcryVEJI4BEJwTiYQN0uaQ4rQBv9ls1rLUUqlk7BzaMUTgZLkwiOgafcmfwwdrSSmCUhDgBoE3g/Nh7GBRPeuIEyVZIIuH5QL4wZhR7vblJPZpNlvcyMMIK8qog8F8JAdlDgIfbCfr6TV/XsMEwMIBe0aE9fOaP4AY33t7e9tAkaSlqz8R2rPOlK1ZV4CKJOvsJymBOeI7w4ZQZiIQ7+/vGwjk+x0eHtp+AoB4EaiTyaQ1EBD0AeyARgKLTwYYd4XdFwoFY1vRDCKYR9cI4xYMBk0KwwvHTgc4AZDkEKc5nU7tLGUyGQNTnGvYNT9on4SBvQeIk0SwVqyP9ymz2XxuKt+X3/NJEeviO5XD4fktSSRW2BfOnudjj5GOkOzBPlNW9Kw2tjFnOWa69dYXtL39smKx8ZKffO21nJ555rR2dkLGODGWhnIq1QZ0nb6cmclkjPXF1wLg7rnnHv3sz/6swuGwPvnJT9rcVYIuNsg6kfhKMlCez+fV6/UMjHHOPaOIFvjatWvmd3ivZDJpl5DAxGK3JHD4A2lRXo5GozaDVFrokH1zC4AEEIKPwq+T0PkYBOgG8CKX8no/fKLX/nuNL1IuwAPJMjEGcIlumPchAUBKA+AABLZaLUswkCrxPNi1vynJ66bxN6ytr/JIi5mY2IcHltgu60jzKtM/0EPip3K53FIy4v1kLBazZJE4SNk6FovZmD5fbsZnSPNkqdfrqdFo2M1QJJaj0UilUsliJOcYHwdA85pjqn7D4dB8Nv4Kf06sZo/wN1RCYbSJb2AXwKgnlXg2kiEqpewBCTh+l2egvwZwPBwOl5p0fRMUsrQvfelLajQaRm7c2KsBeeE1s2/kddODU0kGZMiEvH4KoTABpVAo2OYAfHD2sCmHh4cm/AeQogGi+WNnZ8eMBU0jOldK4ozmoMRHJhMKhUw2kM/nTVvH+/jgTfbvDQ0pAGVmmDcYQhxTJBKxweA+8EHvA3ApcaDJ4yDggJnbx2FEK+uZKq9nTaVSqlQqxtLRIegBI8wlzBwJAqAdZsTr+HhmnDQd78Vi0bQygLJ0Om3AkfFC6Ek980qzAgHeAw2SDmlx4xhgl8Tn+PhYtVpNoVDIGoJwEjwPzwoYIHhR8qrVagYEPJg7OTlZ6rptNBoGllkbacFoEHxg+WlcQ+SODbPuBK5sNmuAyUsECOywZTwbYAUmByafxgvKarAzsIse6PpgQXLGOgWDQas+4LzRNRO0AeJIOPg32llYY5IJEkW0hTCbsIj+u5Mg8nnsPwyGtBhWz955X8N7Iu/x3d7Igkajkfb391Wr1VQqlVQul21v/A02JLCAGspq+JJ5Q+ZYDz74Hd1//8vq9eJ67rnbVa+/ScfHIQ2HR9rY6OjOO1/WRz/6tPb3L+qP//hHJOUkLZorYbT8ufRaW/4fNgFwxP9wbkgeGJnH3vhmTt+URoMlzVHokGkCARDxWewTiTalTxgifC0NfugIOW++QYYyKmALdgkJEP7F6/IAkPgqEhliDz4SWYskSzrPnz+/NFAfn8q+emYPsMfzSIsqENU6Rr8Bos+dO2dnB0kUumgScs9ojkYjY1uJMfyDnyIhwmdzZr2MCn0360AfA5/B3sE6A36YygIxAcFBnGAfYaSDwaBKpZLtLfYJWUJi6SUAJKq8H9+LBINzFo0u5ndyDtkL4hEJi69OURHyANOzqrwn0irOFXuN3+Cc3UjooBP380qp6FI54Dz5hiSIC15cw41EDHYT8oykmeofhNGVK1cMY9GwRpI4nU6NXPG6dU98/Hmvmx6cej0HQIDDxGZyENCOHB8f23w/nOnJyYlef/1107zhANlQ/kE7SWDDcAmivuTBYSHb4wDPZjM1m00dHx9/3+B6aXEFJ4cT51atVk3PCEgGvNH4goM+Pj5WNpu1eXGUVkKhkI0sImjiVOiWJiP1+kKeEX0LAIpuTjpAYQa9PoaOfJw35WP2DZA4m81sTAYBWlpotdAn8bwEew4h41YIHrCQ6IpbrZbdnEJQXF9ft6wc58vvkpVjW9I8QDSbTbVaLWMNYIqi0ahphwFcME04aQ45n0EZFcfG2pF8EIC63a4ODg5s/ZjmAMtDcuU1d/77wGDwHeLxuNmDL8PPZjNLrvgMABOTD3yJnmAgLZpHsBXsUJJ1LsP24cApY+GgATE0yMC+AHSn0/nlGr70BkPCiB4v7vcJECzN6dOnderUKQOPsDg0i8BO+PfHFgjIk8l8dEu9XreqBeeSs0syQQMhNsBeMZYJDSnnKhwOm9YZSQu/k8/nTTYyl2QE9Ja3/JnuuutVfe97b9X583dpOJzvc71e12Aw1rVrGX3nO29XuVzXX/pLT+unfurL+vznP6RebyFFgaHxszEBYjTksXe+M/rg4EDPPfecfvd3f9eSduRA+K9yuWwNYp6lBQh4oIM9wsyQbFOp8g1glIphFgEVAEVAPIDM6zlJ2mCCxuOx3S0+GAxUrVZNOsV5pQTOVcwASsCkB171et2alkql0tIcSLSPMGIAPBrCACT4CM4a1R6Yyna7bUAUtspXeGgEZtg6fs93u1MZBASzx+ydJwwgGpCTELMgC8LhsJEWrFcwGLTkhQoJCSCgsVQqWcz0ZX/K7NJiHjF+jZv5kNlxNvFD+A4kEZAzsISerMI2A4GAyuWynW+aiZgBy4jAXC73fQk1ZAjSM/w1dgUuYRKNtEhaWHN8HUkQhAjyGaq//X5fe3t7ltxQWYIx5f3wv1RWV1ZWrNLkMU0+n9fm5qbi8bh2d3dthjrP5GP/bLYYnYhkQ1qWSkCa/KDXTQ9OYb0AHcwSDAQC2tvbs5s0PAsJYxgOzzu0YbIkWdmZLIfAG41GLUtAt5XL5ezGjWq1aje1MJrBNxLA9KCHQi/kS9vSHDjASjH4GoPY3d2VJJXLZXu/VqtlBggAo6wPKCHLCwQC9swAbJwgg7dhOngWtC+UL5jtiLOksYESMleOAmwBkLwIIhx8QL3XnqIVbrVauuWWW7SxsWGanFQqpb29PXOaMAk4VhiAcDhs+03XP6Vt2G5+HmDJC0BGZt3tdlWv1+2qUUBDqVRSs9m0Eg7MLPMdWdfZbHE9LH9PcwhO3gMgtEUkR6xLKpUylmJtbU1nzpyx4M7PEGhhUmHzPKvNn/n84XCoYrFozPmNjQhINHypjr0kEPF+vHzHaywWU7FYVK1Ws7UnyybxabfbOjg4UDwet/en5E6wAkgRzOlqRpy/s7Nj47H4fYAK+jMazGhAk2SJKHe9EwABvbBdMAsETcDv6uqqgRqCOoCOEiSaVVgLmDgkEGgYPSgmkPE91tfXrSkJQH/u3It685tf1Ve+8pA6nYcVDk/V6x1qf39/qUlnvldr+l//1x/SL/3S9/Sud31F/+E/vFuj0WKKA4kJrBK25Js6SE59c0u9XtfXv/51C16+QYQkhwoL5xOQ5BvP/DlFw+uZaqQdyEpoXoPN8iPYCNwAIHy9nxDgu9VhD6kinTp1ym76IemHMUKjTUWCBB9ChMrTeDw2WYMkaz4j2FMSpRpE0ogMCDBPQg5bzdqiaeUsdrtdSyx5L5hlaSE3w39zNoklJHbERsa3YffYJ2eJtfGSBJIG/BhAizXyyTrMILHDz0L1I9Y8S8hZRLJAwsBzHxwc2IxqiCdiODZBoo2MiYSe0X6SbM9885eXfhHf2BfiKlVXCBtiDoAXpp49BCDGYjGrlnJOJpOJkWHENyR93PBIdTcYDBrzjA+ickZTJbp3SbbHyWTSEl5i/Wg0Mv8G2I1Go0tNodj2ysrKUj8KMeeNvG56cMpYFJpGCEQYAzoVyjmwqDhhDhD3E0uygDaZzLvfcrmcsRz+gKL9o7wryZhKryulwQXGgEwHAXM8HteZM2fMqHlOSlzD4dAE+75kQJDjkBA8AGUAaUqhMAWehYDFWltb0+7u7hKbhn6EtYtGo1YuAHTzs5SnKBV7yp/MGqdGlyaOniAuzbVAuVzObnFJpVLW9Y4+CrZJWsyUff3113VwcKBisWhMeDabtdIPrBnvSRmP/cjlcrYuHHb0jjBXaAO3trYM9OE4otGo6vW6NYpQnoLhRudIEIPdhD3CCRA4YGZgIrAvX9LzQ9WPj48tWDH1ARBNAkLpyb8IFPyDfdDIAZj2ZUeyaPYUhsfvMeyKn6PLOYT9JfE6Pj5Ws9lUvV5XpVIxfSdrhbPD+XGusV9Y31gsps3NTUWjUe3u7pqNk4jgHwCzBCDOJUCC0ny9Xjemk7MMWKdsiD4uk8lcZyrnye3BwcGSFIbAzMQJmCbOMx3usHWcXxhibAOfNAdGQ9199ws6f35DTz1VlPSqlfi8LROQ50Eyr69//SH9xE88rs3NIzWbJQP/JIrYESCJ4exIYkgwYPqRxtTrdftunBfOH2VR2Ex+l8YwgFqtVpMklUolO6eUp/kH4ApjzXPDqPpmDuyH38F3UsqFrGBvaa5KJBLKZDLGalO1wTZggAHdkmxCApIoSRbMw+HFYHfK+NgstoANArqwbZqEIBQAHbCA6MGlhX6Y8wwD7Ss2ftzhjWAdf0PZttvtmv1LMvbNS97ww3wfWEnOKFevsnec+dlsZj52b2/PYjjnG7+ALZE8kpz5Pg98JAwo7DOfF4lEbG42z0oixO+Q9PJ56JdpWkOyxzrzD98T5j2VStklEiSezDFHQ078utFvSosRWLwvSRux6uTkxFjLQqFgQJznIrEhRlNJQprFd0c2AyaCjIJQ4VmIBcgt6vW6MeicTXwY5+iNvG56cNrpdFSpVGyeIvfhkm0BDvP5vM1sBBytra1pY2PDtJE4NQ5uKBQyJ0CZhANAhkKg8DooH7zYZMox6KswQBgQ6HA6LHluMqpoNKrNzc2ljJjuVA5OOBy27I9uRbItz16STXtnzVw8D0DQvWCAfK4kA8Z8PmwjJUxJxhrBQsKS9Ho91Wo1FYtFm7lJZzOZGGBgOp3qypUrFlDQJpFZ4/BgXjhwlF1hE3AIOH9JuuWWWzSdTnXp0iU7uLA6gKNAIGDdyzg6nDqMJYAEFh2mHK0gztSXLRmATvkRJpVbjgDIlIooxQDwaKbiSkp0V7Cd6Fez2ax1j3e7XZtPC2hGU8fvYhew53TYsofsA2U7nJu/nhCG6+TkZInFTCQS6nQ6unLlipXyCA44Zq6QLJVKSqfT2t3dtaH1lLIJYNg2tpbL5VQqldRoNKzhg3Im++GlCNj2ZDKxIeQw6+gvAVR+VJQ0D9I0HQJgGB0kzVkqbhEjccBvwEJQ6kMDztlCW+5ZcZJlQOxgMND6+lVlsz19/vP3GsOGH0JLHI1GjVVbWVlRoVDQwcGGjo6e1T33XNQ3vlFZYpa9PAlgC3MCQALQJBKJpfIlSSiMVCwWs+HzsF0wXQAlmoTa7bbZwsbGhlUpkFlxPmkK5WYgzj7aQe9TYfm5NYzEgkYzElQaS7hi2utVAY7IRgDyJNkEe4K49+NeYkBZmbUmCWUdANmMikKKAPsH4OOsw/aNRiPt7e3ZGC6amADKXtZFqZtGFp7J2xdSLOYM3yi74jtDQACEAIdoIH3SShKJTbN+fh382jUajSWSyUvJWBO06iS7yMwAc8j3qFSEw2Gbo81nsc+M9OL7UfGRZJVOzgP/UCkjYSR+QgThn7BN9gA84PEJ70m8wSawWfYeWRAMJ+tBzCPh8QmRn9ZCEyQ2DQNaKpVMCgFDLS00xyRVVNN8Hw12gy77P+d104PT06dPG3Oxv79vDpV7azEsjIkyYaVS0dbWlsbjsa5du6adnR3LbhniDOtI4KAMgYNjjAtlFIIhmqBsNmuMHKAWBw1bhvPf2dnR/v6+OeJQaD6uSVrcP0zJHYDNcwF26eDEcDD2/f19u+kIQOeHfdNshZNaWVlZGofENYCsLQbpy9A+c2u32yqXy8YMA3rQx9TrdcvOYSII3JRbyW4pBXPrDyyGZ/kAeIj+U6mU+v35FYiXL1+2faBjGlaIwIUswo+wItgCGOgALhaLpo9C38uhJDAC0vzILEpmvHxTCIAXYAOTR2CAAZJkwM+XjHq9nvL5vOl/cURk8jwn+0bpCoaU/e73+8bskSBIMsfp79Hm+wJcSqWS6TZh75GnENz4M52tBGCc6ObmpjVSMOLIl6Zwvv62Is96EKibzaY1rLE+fhzMZLLcWMVZoTGDUXM8PwzbeDy2a18ZOQMIxw5gLLm5Bs0drK4kA0A0dOFL8E0wjQRer99lzSXp7rt3Vaslde1aSslkwnS14XBY586d0+bmpkajkZ0hyuCDwUDnz9+qBx54Vn/2Zz+sk5OpMT2cb4aDk5gRVNGC+5nO+BQaJ70MiHWt1+tWXfHVJ4IxjRYwav4azfF4bONxUqmUNfYBdqg0RaNR+/4kaPhkzhZ+C4kS7C4NI9ioJNsb9gwgS2kZNp514fxLUqVSkST7XqFQyCRXvvLlu/g9SYH/w0bwC/wsvoDyOoQKEgliBZp8ryOERcMH+sSR96bJhb2AxSsWi8YeUg3h7JEEAeolGfGDT4BN9GwzjClyLmwE0AWThw/j/WGJJVnCh79iH4jpAHJPwGAfnEVsnxdsP2CYChDrhtSEOEuck2QVEHTT/hlYZ1hzr7/m316e5kc+Ma4LOQ1zyb1OFrvyUkL2Ht/EmEtYXc4P4yupaiBTBNegX/b9IPgNEnvfiPXnvW56cEq5AKNDbyLJskDAFY6ZzvhqtarhcGj6Cn9VGwCFg4/gnc0gyOIMaR4pFovGpKDpoKQECITFQE8yHA6t45mNzefzkhYMJtk05QBfPiZTprmEQ0EJlNIVQ3MBE2Sb/tDjyAg+lPP4brAl6KB89ylZnb8+DTADa0nTSTqd1vr6upVpWBM0NQx9nk6n2t7eViy2GA8CA42j96CJhhScJNdwwmqSfcJy04jiy9S+xMttRr70DksCqEGKQWIAa8meUWb3TXtoc2kywDFiM+wxA8mr1erS5QEwN7lczgLsa6+9Zo4SoMAMSQIZoA4dKkCIgI4EgD1C+whoIAnAVvkZnDvMqSTLuL0+i/dAww2LS4mSAc8ACl8VSOdSeviDGVW2jhSLzDSeZtQ+SOmbn+/ppH5kTBCM7XA4NLDMXFlJZiOcJwLyxsaGzawNh8MqlUqmq4Uxowzpu5JhfrwuG/uhFOhZHhrcIpGIDZhvt9sG4LLZrElnJC2xJexRIpFQLjdVs5lWOLxoxCKonzlzRo8++qhisZieffZZfeELX7AmzMlkomp1ReHwVP1+VdXqPNlLp9MqFotLgBh7k+YXDZAEM/WE5+Vcw5jCtAOEDg4ObO14Dz/pgyRgMBiYFItyuyRbC0q+sPisO0wpNgOo9DcfISMCBNMUhdzCJ4/4CIAk5WlmRvKcNJcSb0hU0um0+WMSJF8ahgHEX8PMoxEGjPFe+FqSBr5zPB5XqVSy+AebBxjEh6HPJ1nyul8usPH7yJnAXviegGg+x59rpjoQK/HR3i6QtOGX+LuDgwPzpVQd0JnjZz3rDnuHHAX/Q7zGVvgeJI2+GQu7yufzxq5T0SSZQNbnmXjsk7F8xD4vE2M/YC6pklBxwt5ns8VVu6lUammyBTYGgGfPYTnBGNxYyNowDo2k3UuLILSQIWBP+HxslvjDGcWOGLtGhYb3JI5QKXkjr5senCLaRVN5+fJlCxyAFg4i140lEgkDcxzW4XCo/f19O8QEzOl0aozjzs6OBRpYFC8YxxhoyKJbF92bd4xk4jBglCNKpZKkuVN48cUXDeRRIgTg0OxQLpclyf6/JCu5dLtd+44wuL1ez7rscbwcTO7L9gPLKdcWi0XT6MZiMeXzefsOfHfWBVYBkA5DFgzOx1gArABmBF+yMwKTZ0G43xzmD8AbiUTUarUUDAYtwyMghcNhbW5uWnLi9XiUuHBSTFUg6KK9onSNQySbBgSSrfM9Yec8Szkez28eyefzCoVCS2UrnBydul4QjzNHooEtAvQpv9EIwAt2BCeNgyaZ4b1wVDR2kNBwXqTFHMp4PG5Jli9B8z2RvzC9ADtJJBLa2dmxYM/8RB/c+RwAqp8bOR6Pdea2it76oZHOZr+m6Kypo9k5DcdJhcMDnalc0n2/GNLe+Ef17Hc3dOGJi1YuRq/Hs04mE3U6HdOc+88JBoPGbgDg/XxASdZwQINBILC4cAPbokGEpgQqKARt9gPnjrYOW2DPYHVhfPELg8HAdN+BwEzTacBmYFJuDYVC2tjYULlcViQS0X333afvfOc7unLlilVNUinsvq2jo76VOin5AfI5fyTog8FgqXkT0ECZEJnFjeAmnU7bniBJgT2CJfTMPYktAIOKEcEYbTzBFyBxI6Dn2X2jBn4qFApZMo2NI8HxTDVJE+sbDM4b6nZ3d+3661wuZ+QI+4wN3DjSitGGPDszNJGe4WcARCQk/iYsxgb6pBzAyCg3ADjfk4TY29DR0ZFqtZpuueUWnTp1ytbbg32SWUk2/gkfCLvMehcKBbvQwcuz2EtYSs773t6exWs/6QTJD6z/9va2KpWKNSN6CR/2g8Qqm80aGcENThA1ECBMKOBFLOY7oTv2Ezmo8nHW0DzjA4lZ/vxSmkeHSpXEg8z9/f2lihXVMYgyxjBms1lL3BkPxr77XgYSACSGEB8k3ZBRkDDEAOI+8kaSEFhxkkhvT7HY/JKKdrttJMj/oTm9/kIXSTA9deqUsZt+9AbAdD4XcLLUGAJLgr6DcjMOkoDktSA0uNAY4++Zxkm3221VKhXl83k77NFo1DSZsFRkTByIdrut119/3RpxEomEjo6OzBhweNLimkN0W2jyeD7AGDQ+jrXdbpszxOApr1EeJHOH+aM0hM6UEkOn01m6hYKsM5/Pmz6NAEGpYjabaX9/X4FAwJgBDgiMBQ4REMB6waQhTaAMgeaOA0QHdjweV7VaNTYCPRtloWQyqXq9rk6nY5/NYVtfX1cmk7FZpjCHZL6AVoI22a2fSgDDSNMdpRQyf1i9Vqtl9hUKzQeTUwJDn+TZUkk2qxdJB5IP7ApGg8+Nx+PW4Q4QQkaCQyQgct88OmzsHVAiyUA6ei0qBdJcr+qbjSgzEpjQF/N5BE2+w2QyUaoc0KM/9y1F1dal9rv02Bek1893rk+CKGgtvaG3/3hU997+lH70ka8qlvpFfevTz9t64ISlOWPabDZtrxgRw5QAzheSjv39fcViMauG8H7SovGEkVz4iWBw3khH+ZhyJU2SMGXouPEXAA7YLIAXfgImE9uZ/35Uq6sDWzcu4ZCkK1euGLgksADE52dr/nNHR8sND5KWziHyGNi4OWM7l8iEw2E1Gg0L2iRN2BbJWjqdNn9L9YgkluSHjm1/9S7aUMqh2LqXURwdHS35aqoKnH9fOvVJN1UN9sxr5WGviB/4ffwNPglgwv4Sa0gsAbjsLYBmNpuZnhPfB0OF/0DWAVtIUu99n2dw0TuzvwAjzhHMltecUvWi4Zb39tVIPn80WtzhDrvqpQf4QHy0nxCCFIIqC8lYLpezpkNKw7lcznw8Gkm+FwkNsQSGnwQUAsSzpSS7w+HQGoLZR++LsX0YdBKHXC63dMkBCW8sFlMul7N4wbnlzOLX8ZngAVh8fqder9s5hd31TZNo9qnE+QsjICf8+aCkzws9K2CS83GjLIZEBPLOa5AhjUgEsHWew2MZYsIbed304JTGCq89yefz5hQIfmROZCc4DjSSzDtjJh8bjsOCaifgkyUBBPgHhxYMBnX27Fn7fDLc2WxmDS84Ys+ucmDy+bzW1taMrWGsDOwpgIDbn3D0sGyAYcrmsA7xeNy6WnHgUPY0efAZZO84uE6nY4JxACyOgeyYgACzgM6I54FZRPwPIOCqSr4jpUtJJhNgDdk7QJUkY1lhYNHmXbt2TZKsVEXgJANHQhCJRKzxBiadAw+jRlZJlizJ5g36YOalGOiAsCUSBg62t00SBtYPJxMMBlUul7W5uWmlL5wZon8/1mlzc9O0awB2giPsKUCHBIRsPRwOWxmQYEpywnxg2GAf6CSZQ+e7870pH5E4oGempI7Dnk6ndstWOp1W5VRKH/vYdzRVVP/pyz+n9rW+WvX6EqA/7Mz0ud851ldWb9Nf+VtHeveb/hcNfuyv6rkvXzCdIkEcpo6Awjgbf9UhLATP2W631el0TFfMngCUCDL4IgApfzcajazJC2aHUTBo2udAO2nsnpeV+FFQBIlF89i23vrWp3T27KoajUWyEQgE9NJLL+kzn/mM7rzzTr344ou6cOGCseutVktnz76i115b0eHhxKpBACJJligDznx5EjCIjQAKATLM4fX2IM2DFok7fhSw57WrnKlcLmdsI0wdfowXzX6FQmFprBK2JslKsX5+tbSsmWR2cSaT0erqqk33gJGaTCZ2sQDgE7YUv4KPIXHhcwBQNyawAM5MJmO6Sj4DppV1w+cFAgGrwJDk9Ho9m4F843gfgDX+FmYxmUyarAq/QSKMzABAhn6ds+Sb5LjJTJonudeuXVMmkzF9P4keZwL7pPo2mUzsIgAvJ5DmSQJjBMfjsarVqgHeZDKpVCpllSAa5NgLqnJeigDTSGwAoLJ3SDxgVVkLXxWlcW88Hqter6tcLlsVElvyMdrrt2+cyELCR9wnQSeOUrmEVSbWQThQQaUaSvMjmmV8Ki/iDJ8hyfwPcR75Ec/Pi+fFz1N9A3vAIuMX3sjrpgensEI4omazadnF2tqa6cQGg/m1pJcvX9bW1pakxbWLksyoJFlHeLVatQBPNyLGdHBwoFarpWKxaMJtdHnSItP0QAcGxN+PTGlvd3fXRk0AdOkw5pkAJDw3BgQjRtOIbwjqdrs2IJggc+rUKXPWx8fHarVa1hDBgS8WiwZGYPToSC6VSjZYuNFoaDwem6Mhqy0Wi8boAaZ4Dq+R6XQ61kQBkJJkjCrZfiaTsTE3JycndvuKH8HDXvth0awPXe3b29uaTqcm8sdxowMl2GSzWdMfktmzVuPxfAwHJcper2clQUAFf2Z+nKSlLBn2hv3EscXjcZsTi+6QTBq2l7m9OGLPiAHiYQtI0srlss6cOWMJBQxsq9Uylgum3pdlYGiwV36OZIqgSXJAiREJSzKZtDJ/MplUuVxWMpm0hhcYd84xrONoNNKPPdpSMDDUf/qjH1evtmjE8iwnAWQymehTv7Wq//q/H+g9D/9H7b3wHu1efn2pLEVigL1Ic4fN3EJmWQJsisWiJBmgRSrjmR0CjJdKAP4B34AIAgbOGx0hCQysGwkqfoRk0/87HA7ruefW9fDDId13344ef/x2A8PSvPz6zW9+U+fPnzfdHt8hne7o1luP9KlP3a5KpWKadcCmTxwI3rApAGi6wWmAQLIBEFgwtElrlpJk84xhKwuFgrGwaElhTAFhN04vgWkkOfPAkPPIOYAwoJTOfgJQsCGSZoAj3z+dTts4PMbbraysKJ1OK51O281W3W53iZUHTKOH9BdKHB0d6eDgYGmME+wVzBTkAf0TsNtcKTybzSwukUTSaFcsFpeSJj+H1DcE4aui0aj1W7DnxC3em8YYgCKxjHPEmaAUjA8HDPFsrC+TT86ePWtxG8CNDILpLcwu5RyROHngSeMkowj53E6nY/PHIRnQ8bIGXqaEDpRKD83LNDVSpSTZQA5GnGa//Zxpzjp250EezU34UM4GwI/GS56JiTkQLH5aCfvi9cpIB0iU8CGAeYggJFvsP9p15GH+vfl74hcJEufJyyX+vNdND05xApTBIpGIGo2GGQNsFDocgotvAoERAIChcYIFYcA+QJLPHQ6Hunz5smkKYbHILChRcu83QZExJrACbCiHmtmVHAq0NRgsGSuZMLM3KQN7Ebwk05QCfggQZFB0rVJy47BxQGlWAlBR0vZZGUGMkgEAgs8A1NOEgOC9Xq8bu4lzAtRRgmBoPeOCWGMCOdMVfLaL3IISBGX5aDRq5XXuoAdIoqVKp9PW0UgQoHQL4IOxx0kizOdaWoIepURYEFgJNKg4BwIDTCLBnP9fr9eXGsuQC9woY6CcR4mxXq/b+q+urlpTB8FwbW3NOnApaQF4CaJoJrkZBVBAhzllYEa4wQIz2iuVSlmyBguInhuZBcwb168OZy1tJh/Xs9VfUOdaz8qM4XBYt99+uwHtRqNhzOfx8bG++B839bGPfFF3/PBH1DvI2K1qrAdBD60wmmpsl/X1LC9MJY4Y9gxnDdAhMMGY4I/W19dt3BINUEyJ8E2NABXOn++OJSiTEEnSwUFcFy6c1d13v6xXXtlStRozdmg0GmlnZ8cGqQO8IpGAfvzHX1OvF1O//xbdfntJ0+l8nBo6RMqFBCbKggBRgAjn0Df8wZT6mc2sO0yqL4GSwLD2MKPYiSTzQ/hdqgIkqbByNCr6cjOgDMkJvp+KhWfUqCKR9AMS8U1UCSid0nTHd4RtjMfjFieoqnAuPBlCIgjoms1mqlQqtlb8Dn0TsJcwaKx9LpezPfcSGYAXkyuo1AF6AENcCcozJ5NJm5whaaniRxKD7hLSw0+f4M8ALaRqXnvM2iCbojmR3gz8J3IFKlbsP3sHMYU8A3mJrzpBrhDvSWLw+2isWUPiJdKfZDKpVqtlZx6bxd/CcmKDVH9oogOQe0B3I1jFb6CDl+ZAl54SfD6SEJ8AUPECD/hGPtaNs4L/8D0gkDMA7E6nY3IK3yQF6UCMAGRTSfWg+I28bnpwCoonUFMKkmSNFzh2GJtqtWrZtyQDjr5T1Jd1KQ+ePn3awAxzOTEUGDLeJxKZ33MeDAYt82cANWUBxNHj8WLWGBkfgZx/AIZkWWQwHERP7aP/IFOl25A5r178nEqltL29bYCG4ER5F90M3xHtqu+KhFVh1BZasHA4bA6c7tpoNKqtrS0LBDh2AILv+of9rdfrymazdvjJNkkgfIc4zT3JZNL+f61WMzYcBtA3e/C5iURiSc8GG06w9GNw/A0jAHLYAQIWDhLpBppQhprjBHgR5OkwpzQeCMyv1QN4szY0QqFNgkGkeQWWBz0dgQqQhG0h/cDuJZm+CNYTW6K8BZNMEgTLgGNlfqAkZTIZra+vG4CkIUaS2S+sH0DvAz+T1iwQ1ZNfGqp7eGSs+NmzZ/VzP/dzVu67cOGCPv/5z+uVV17RtWvX1PxeQx/88G2649z39LTS5pwDgYAlRKVSyZK0nZ0dA8U4XuYSwj4xQHs8Htv1uuwtwM8ztARP7BhQQ7mNOcQ0jVDh4VzSgY4OENYEPwbo6/f7+vrXb1e5XNOHP/w1/fZv36Vut2iBpd/vq9Fo2Lk8Pm7pox99WadOtfSpTz2ofn9iZwqJAUEmFApZUxSACLYJvSy+kFu+sD3PIAJwaDbx8gjYUio47BXrB6tHUgIA4Xf9+mLvNDihq/d3mgM6YFQBErwXwRvdPpUq9hIQjTwAOQ0B2et2kUgA+NBb4j+47c2z5XRtA1ZyuZydf69HZf8586urqyoUCmo0GuZXQqGQstms+VniAWfz+PjYfEAwGDRgDWiHZYdNwy/xfaiycIUsDCsgrdvtqlwumz+hgjObzZaGv7P+NNsy9SadTi+BPBhIiBJJdib9RSdU+4ifrDegkEqGZ7KxwUqlYiQN0gV8ITaLPVJa52yTxHl5CRUm4pQnT3yiAo5BruJBN/vA2UFmg92wllSLfdIMGOYzmQYyHA5NR++lQtjZaDS/eIWKHMQDMR75IIkqOARZiP9ef97r/yfgdGdnR3/7b/9tfeELX1Cv19Ott96qT3ziE3rooYckzbPbv//3/75+67d+S51OR+94xzv0m7/5m7rtttvsPVqtlv7G3/gb+tznPqdgMKiPfvSj+uf//J8vBes38sK5wh4Fg0Ftbm4uid8BDpKMkSJz5fcYzYDmgnt06b7D2bPxlLHIsHBi4XDYnM7W1pam06muXbu2pDc6OTmxay9pvlpZWbEryaS5fo1mCkYFUZ4CKHKQKNf7rlRAHqJ6P3oF1gsn6QcWX7582YA0gIXfxwnwmdPpdGkkVqlUWtLYEnDIULnijW5Bhv5SLkEzQ6AgEEkyx+pLQzQ6kKWzx75Ll05CxthQ4sc5UIqEdYEVpBuUxoXZbGaCcgTuNGlhG5IsOJEsIC8hcMPIhkIhVatV66aE2cT5XblyxaQFOEdu8fAz5mDaJC19Btdisu+DwUBXrlyxoAKQBoD58T0EWa72hb0hwOE8scdGo2F3qTPxAdkFNskFFoxf49xNp4sB6rBc8XhcpzdeUG3yIzqudy3ZuOWWW/ThD39YZ8+eNWbrh37oh9Tr9fTyyy9fL3MO9PRzW3r3A19XZv2/VywW0/7+viaT+Z3YyAb8DEP21Jd7kU7AEFEx8FMmksmkCoWC6dXYS79O7AGBl6oFnw/A8o17MA9IdJC88N4863Q61dHRVP/hP7xdP/ETj+mXfukZvfDCup599qx6vZIKhcJ1PzfTW96yoze96WWtrPT12c/er8uX8wqHF89MEjuZTOy2Lq6CRufdbreN3cXHwbqgkSQxy+Vy5gsAXQRqzhi+EtvxCSUMM1MEfLJNIGfcHf4DJssHfhJHr38kIaUyg3+KRBaXKcCmAdwBK4B0gjD2S7XL/w7gwIPocDhsIOjChQt69dVXDchCClDx63Q6xpb6sqokSxJh8/kufB7MGjGQZBc9IwCNxjCvLYalA9RCiAC2IISoNEHMwDQycQAwDsAEvCCJoOxOpcz7UfpBsBkPsiRZxZPeD86ZJzq4JQzfyTqw/17bzWcxxYMYSWwnNmCHnGEkHDDDPkHyccrjB/Sn2BjYABkayRh7ASMMWAYk8zycv1wuZ98PmwBo41+ZV85eA0rZVyRtVDrb7baxq9g//011A4DMHhCfftDrLxycttttveMd79B73vMefeELX1CxWNSFCxesbC5J/+Sf/BP9+q//un77t39bZ8+e1a/+6q/qgx/8oF588UXLKn7+539ee3t7+tKXvqTRaKS/8lf+in7pl35Jn/zkJ/+znocNR2BPJutnfgKwCIKUKAAKsBLT6XRphAIH4cyZMxqPx1amx7nCsFGSo5xMJuK1pTREwD6hVeMGD8TNlBl91ykMCIGhWq2aroqpBAAt9F4EC9jQUGhxP7Qfo0XGRYkRLakfNk0HpSQrkfjSBqUUHBDB22fbrA+lXxqrDg8P7VYU7n0nmNC8BmMCQOBnCO7ZbNakEzAkMLe+LLKzs7PU8MG0AX/4YXNgSmmMIFDjSFhbgsbJyYk1V3mNzo1sOkGLrJhMlTm7sPiAa5IoboPyzq3X69lAcuQdBBsY5Gh0PtP2+PhY165ds+AN80swIDBTisNGPGsKE4Td0FyRSCRMQwoYCIVCKhaLdmECsgjOI3YvLRokYHxms5kiwWN1himNx12z6el0anNQeYVCIRv/RWLbPYwoqLFWMysK9FfsukYSB0mWACEToWIBcwXIwHlTuSDg4Jz39vbM7mkYJPCQCBLsSQAJ0oDdW265Re973/t0cnKiP/mTP9GFCxcsKYZNRfbgGy0AGNNpWr/3e+/QI49c0T33XNb99++o01nVeJxQMDhSKnWoQEC6dOmMnn/+zep00kokFrfO3DhUPxqNWlJG8khA8o1dgFQSVyoDnU7HRhgFAgHTkhO4YG/wBVRPCJIEataehBYwRhnRN5dQuqe8SRmW6ghxAXsjQfYMJkAGYgBNJ0kYzBLSj8FgYAkEwZ/3wKcABLGhcHg+V7NcLqtarZpdIK1JJBK2LoAfkmEa5LAvQPje3p75Z2IdTBtd4ty6lUgkDHQBPEgESNC97h/wxZ6trq5a1QN/hf+AWUskEtrd3bUb1yjZI43wjUj4WfwOYJi19X/2lVGY6JOTE3U6HbvYg/fn56PRqNbX1401R74FsUIMB+xBcvB8vV5P9Xpd29vbdv6ohPq4R/XS2xjkEecM0Az7iA/xtuslHtJivi9NVZARYBPOEQ1ikEXY/Y3NTuHwfMLG/v6+fZ9sNrt0CxTYhCSM5+TPxEXAPbZLxfT/b2X9X/u1X9OpU6f0iU98wv4fomZpzpr+s3/2z/T3/t7f00/91E9Jkn7nd35H5XJZn/3sZ/Wxj31M58+f1x/90R/pySefNLb1X/yLf6EPfehD+qf/9J9qY2Pj+z7Xg0VJ5rwJ5pRbCFAsErocHyh82Rxam5+VFp1pjFABsMFQeWAK84KDHwwWtyGh+cHwyLZhbP14CAAtDpPMMplM2sgnPgvwhNMFxOAIyNwoq5EhcUEBbAeMGY6DTIwsEp0SGSqlGWkxokJadJPSuOObAGBNOHiU4zc2NhQMBu0iBElWtuj1esa8sC8EFw4yuim+uweBvikChpB9xUHidAlSMC84TgAVHZw4ARrG/LxDrvicTqc26Bx7KZVKisViqtVq6vV6lhSQMOB8YWCkObu/sbGxJPofDAY2hJvmFg/0GCN26tQpm+7A3hOsVlZW7KYtAhPlePYU+2ZNfGmJcq4kG6LtS4GAdMT0vBfPBoPAQG/WmaDCzSn9fl/TWVABje3sIM/odDra2tpaaurY29sTTXnZbFa5/Lx03D081vF1MA3L5e0zFpvPmIV54XPwIzh4WJtGo2EsGtIQtOg4at/Rze/zD0kqSSfBKxQK6dy5cwoEAnr++ed19epVA1d+Niol3JWVFfMZNFFK0vPPP6CnnrpD6+sXderUgdbWghqPg3r++S1duXKHjo+5RrJrYFOSMUGUbJHj+FEz+/v7kmTj4WB5YJVisfnEDc4bbCiadnwr5wxWF8aUBhMSAII2s419Ug/Q5dywV9gov4s+mN/B79ZqNWNoSUqpTpAE86wwtN5XAOIhODgf9AT4hhdAKn714OBA58+f1+7ursbj8dJEBHws5wmwwN97fTMSIwCvr2TAXAIWSW44qwAzGGjOEsknvh/AyDxUEip8V7FYtBngVPxoWq3X63a20V5SlQRsImMLBoOq1WpWzkciw0U09BR41pSfQZvqmWlP0ni5itecgx3AFdgt+wBx4Ktj/BsyiWSF38nn86YxxVehuSXeoBf2EiJGWVGBCYVCS/pgYjcaXTAD55DqDnYByYLNIcHB50gykAvBxLNh1ySfsNqwwvzjp2aMx2NLkDxO+kGvv3Bw+od/+If64Ac/qEcffVRf//rXtbm5qV/+5V/WX/trf02SdOnSJe3v7+v973+//U46ndYjjzyiJ554Qh/72Mf0xBNPKJPJGDCVpPe///0KBoP69re/rY985CPf97n/+B//Y/2Df/APvu//c5AAOaurq+YMjo6OjFlCLEwJmAPdaDTU7/fN6cOq0i0NGOHv2Hwak2D5YOoARZQUYNy42tGXtrhNwWttKH9zWMrlsrLZrGq12tKVfl7/yR3ysGl0M+K8AHOUmcni+TlYE5o2CK6JREKVSkWpVMrKjRsbGwZiYQ8ZY0TWTUOWZ3zQ/NJoQ+OQLwsCTP1cRrSGnU5HzWZzSY/Kz3DAySjJ/MjiYSdGo5HK5fLSiCcCnwe2AG00ld5eAIdk+TjU2Wxm4IXr6qLRxR3qAERpmbmhpCotgBwTG/r9vo1MCgaDKpVKBsYajYZ9x62tLdMoeqdNcBwOhzY3kpFhOFh/Te10OrVmLJIJSjbD4dC0hNiV71KF6WGteIZUKmV25ZtVdnZ27Lym02nVajVb92q1qqPemjKpa1LgtLEjg8FAn/zkJ/VLv/RL2tjY0MnJiZ599lk9+eSTCgaDVr0pbTQ1CuR1+ZXXdHzQViaTWWLs2Ve+L0wDjAxnF4YEsIP2HA03ui4SXC9PkGTld2xrOJzPWqTqQBBtt9v64he/qNlspitXrmgymVhSCNONr8Dn+H0EBM7B2UAvvljQyy/PKwaA7pWVgYLBkT0D5xz/idzDM2eA8kAgYLfocIEITDfnguoVYAfpCIycL1cCAhhD5EcBUjoOBoM2naLb7RpYJkkEuBFsOd9MRGBuNaw1ZfdMJqPxeKz9/X2bkRoKLW654SyT9JIg82wABwAP8YbGJz8iC1aa9yaxo1xOkAeMQhxks1kVCgWbAADZ4Rkp9pvyMolzOBy2EVf4I0bQkYQB0r1Pwv4BMsRQkm/WnTjKyEH/8n4UQgAChuH6ABqkAsQlWHUkHZFIxHpDSJ49awfJATEEOQRpAsgi1rKGxHlYaBp+SZTxXSQDzEznnMOswvpCkHB+6J4nrvHdwR7EEGIuf7e/v2/4ApYTuQBJFrGPKiOEABUG9oMJA7CvkELYGf0t2CTrihSDJAI7w55JykiKIeDw7+Fw2KR9b+T1Fw5OL168qN/8zd/Ur/zKr+jv/t2/qyeffFJ/82/+TUWjUX384x+3DJtyKq9yuWx/t7+/bzee2INeP1T8zI2vv/N3/o5+5Vd+xf778PBQp06dMifFIG0ORjKZ1N7ennq9niqVio0Y4oCS4TBjjRuYyDj9rD70itVq1fSYg8FAjUZDhULBmowoo5LN0I1NuRQgCkDlsMKiovOA1YQlnUwmdssO4MA3ZfDzGCcsHYZCIOZnyc79+6+srNi8PAyb5gBuWILCB5zDRPHcZG9k+JVKxYIDGSRlh3q9blofJBCwspLMCXkdF9c+ctuTH75N1ibJNLwAMIIAYA5GilFGaGHp/qYZBNYddgTdHU4OBk6SrSGXEsAM7O7uGrvBSBcCBPsGe4RtwGT0ej275Qs9Fxch0FFbKBQsYLLusBx+Ji+sTL/ft5I6GT37AGDmfNGcQxABSFPyqdfr4gYkRupwBiRZgAOIMEOQtYGhRIrBZw8GAz32tYR+7ie/rcxt9+jpP37G1uP4+Fi/8Ru/oTNnzuj4+Fivvvqqla3C4bAUGOlM/nFd7r5XwenB93VpD4dDA8O7u7uSZAko5x3tIo0ifBd8FuCC7wmoZRIC68a4IAIkiQ77DfCs1+v61re+pVgsZrKJXC5n+xWJRJbYZkAKoJlxYIADwKoH5TQ/oKfGhgBjyFcKhYKxtLA96NCy2ezS/GImiLBW2DJ7QYMmo/yQPcBKcXbwHZVKxSQ5nCk/E5fSK/4eOQE/69kdL1eBrQ2FQktssLc3WDdYIr4/2sNisWhnln3n/JJ4sNckJ+yJrz740j9ldGnRMIS0Cb+IZhQQ6jW3JEPFYtF8IVWjaDRqY9oAtlQMaWIDbPBMnCP8JZNqICZSqZSRDhAySAeY6uETG/w9n4l+ElkRZACVIHwQ9ukTIdaTWHB8fGxYgYoLUjAAI5I1zhrkD76I782zsVeMtaNyCtgDcCINxB8huUPeQXWO3gumhcC2+ioZWIP99nHd6+DZO2IvLxhQmFIkHycnJ5bsUMkgGeEsef2yJ5FYP0gY/AlAlu+2SHxXlq41pTr3g15/4eB0Op3qoYce0j/6R/9IknT//ffr+eef17/6V/9KH//4x/+iP85eAKAbX745p9Fo2AGIRqPWAYiRw5LxPWAjydDJ7jm4lM/JeACFjEgC2PD3XhPEQaLj3HcAcvABfNDtGCMOFIYQ4InmkpIPGSTrgL6GIIFWFM3XjXpG//4cNLJldF2UI2GGQqGQATMffGGBxuOxMbRkjgAgnIqkpTIe5Tjf1c4hG4/nw6NpRIjFYtawgBMBVCFoZ/QOwJiDBpPqy96sSbPZVKfTUaPRUKlUsnIVh5ByF4kHe+LlAGTQZOJ0McMqs3eU/SmjwcjFYvOJEIlEwkZf0eVMZry6umrM3alTp5YmJcA2wTIDVAiWOGg/KYGA5hkmAiDnBFAHo44z5P8BmjwYRRqAHguxPRk6+wHzzZmFAX3uiZ5+5sN5vfWdLX399w/NBoPBoC5evKgrV66YjgzpRDgc1ta9B4qqpVe+t6VyecHsM5+WZh3GYjHfl1IZ1Q2YP34HcO81ZAQJkg+CsG8ipCwWiUS0vb2tQCCgvb09SctMEDbCe/JvAmu73Vaj0ViaFsC+SjK9F8kTcg409JFIRM1mU81mU4lEwqRCDBBPJpOq1WqWOOHvePnmi9FoPv0hkUgYAMaH4HfQNpJQ834EWRICWEtpMfeRkjPNeZxz1gw9vCUk120bO6VJhmTU61kB9gRa/Ad7C0DJZrN2zmEhAV9IN7gYhaDO/hMPOH9UM/hOsIa8jzQHczSiwND6CsVgMLC9Ojk5MSkDFTZIENg27APdMOcLEOMbfSAovEyASoEH+SQefmYpjYlIspj9iv9HZsbe+2triYf+CmOewzPnNF55IgQfxexZSRbLWEPAvZfG+CkpsK5cCgHw48wTj9gLgCxVSuyR5kiSFxJc3xzkkwMvx2Od1tbWbDoFrDz2zWeSRJFwMk2I98ZWvc+jqRYZl18LzjMVSjTj4/H8woPj42Pzg/hz/B5rBSNLAnV8fGxyjB/0+gsHp+vr67rrrruW/t+b3vQmffrTn5YkVSoVSVK1WtX6+rr9TLVa1X333Wc/U6vVlt4DEMLvv9EXt/pQ0qPrLxAIaGNjw4yl0+kol8vp3LlzlulQmoXFYZFpFMEh0qQEOELnxwgaLzomEFH+JfDzHXGi/Lc0P/jZbNa0Hj4LRWeD+JyMHtodFob/Jkj6DBMtGcaEMwN8wa4iqL58+bJ9BmNoGCnlb0Py45t8OUJazGWDsWB90cVwoHlGsmfK4l6PSbDlkAF0WF+vP6Z8xOFhTQHlMNIAEH6uc/1ObJweY6WYy8r+r6ysWDczgvx8Pm9sG88LK8uasJc4gqOjoyXGKxJZzFpcW1sz/S4gHUkHJROaAJhByl6SnCUSCWOg+FyGyuPoKfvTxOJBJWeDgCNpaWA+YIURV7C7nA+CCjIXJjPAQpAAkm3TZLaY6ZvUMy+n9ZY7/73+T7/yi/pP/+opA8HNZtPWBVDe6/WU2Zzqvlv/o6qT96n6csuSKZpkeA4AKEwVzQQeXHj5BkwvtoE90kE/HA7t/RnRQiADoFGGJFCj60RWgD0RePl9gijAHt/CexDYsSuvBfed47woa/prIQGBvuEKu4FZZSwYDBElTs4xpU9/uQVVFEAOoKjZbC5dpMF6e507LCcVJaoBvlrE98T3+SSLhI0zSiJPks/6wuqSVFIJwCZhbpGV8D3oIOe/+R74a/wrCQ73wZP8MTOUmMM+k+R5PxSJRKwRiBIqySWfy/n3VS+fvANesHUuqyEe+DFwMG2QJxA7/X7f7IHnRZdK06H/PPyL13wTA/GJJCh8Nj4M3wcog41k7wDDPlnk6nHO2f+XvT8Pkvy+rjvRk3tWVlblvtTSG9DEDgJNEARBgptAcDEp2aJMSZQ4mje2pXm25WfZM+Ml7Pdmhvbzs2eeZ2RNjE0xxpbtEG3JJkWRgsQV4CJspLAJILZGN9BLbblWLrVkVm7vj+zPzZtN24AjPBFveiYjEATR1Vm/5fu999xzzr1fchLvTZKpI+QJ3+8BWeBHBlIU8ywYtQiYpaigMdR7/QG5fu9hW8PDTIEBCYQHtNVq/UgsxlbD+vIWPcgCYj3AkznHFCUctgCjitIA0IWNJ4bDkvqOf9QdaWbD4VkeHBxYrHijz39ycPrud79br7zyytx/O3v2rE6cOCFp2hxVLpf10EMPGRjtdDr6/ve/rz//5/+8JOnee+9Vq9XSU089pbvuukuS9PDDD2s8Huuee+75j7oeNkc8HlexWLTRLjxYmE4WLgkINjWTyajdbqvb7apUKtkIIxIDI3AI4F5aJxHhwWARAVKojgAvVHm7u7vGMpGgoc5DoZCKxaIFAeTlU6dO6brrrtOlS5f0wgsvmN9Jmm04Eh/AgdE9sDcsKpgBEieJ1h9hyoZloQLWSQq+MQGmkKCNLJPL5WwT0xGL1A9oYXNij8AbiScLaTCZTFpjjb+PaHR6/jHJA8YSmd4zWa1WSzs7OwoGg7rxxhutqYV3y0b0FTQMNqeVIAvT7c7zCQQCVm0CjpF/+PDuvRTGPdAB/Nprr819L4yet1Ewr5VAz+8m6RH0WFesWRguP4oK20Mul7OkwrthbRHYJZk3FEaL54WcVq1WDQABfKTZIQ0kQ6ROnlWr1bLrgk177KthFYv36IM3/oYyf/0/19f+5aZ6nT3zd6dSqSvs10in3h7RPbf8tg4na3rw8yX1XOcs90pB6X3V0qzZkkQGEBwOh/Y8YZVhU2D9j46O7OQvbDwANeRxWDz2EckZr/ne3p6xnonEdLoAgAFPJQUBf4/k4ptXFhYWLG5IMpBHt/TKyopZK1CJ+F/sJKxD4hG/C8b2+PHjSiaT2tzcNECO+kHCxevPWuI5AEDw+cHisFYkGWhh743HY9vH7Eu+t16vazwea3V11eIf4AU2yjP7HmhRLADGsXm1220DItls1ny+MJWoMv6QE9/k41UMSfaOkZ4l2TOiIAfkwewCZpGYvdTM/cA+SrLikGLEA1xyHcUccYiCa39/X9ls1uKAl7k9cwtjiv2L/QwD7QtbQBLgHCYNpQMrUqfTsbzh2XMKCnIQ18H1cb8+juEJpUCDLea9s56y2ay9M2IvPwdzyz6jmIIcgMGFtYzFYkZy9PvTOaI0bw2HQyN1/GEp+JClabFP/ANzMOGAtcr+JJbBwoMNvH2A/cvzJwZRtIEvyB0emKKa8nshTdg72BqJDVhJKCLZC6y5N/P5Tw5O/8pf+St617vepb/39/6efvqnf1o/+MEP9LnPfU6f+9znJE03yq/8yq/o7/7dv6u3vOUtNkpqdXVVf+pP/SlJU6b1Ix/5iH7xF39Rn/3sZzUYDPTLv/zL+tmf/dl/Z6f+f+jjZRsWLRvU+9v8WcNUFoA5ghrsK1Ui3lWAyMrKiskneOS8tOu9I8gLAFMCLouTYE9lDLAlwBFA8fetrq5qdXXV5rXxc77jFJbCd9JRfWNml2YSIGwF94LJHgM6gBSfJMwdG4nkSEVFEJBkACmTyVi3Ps1XgCYAQiaTUTKZnDYrLS1rsnJasVRWgWBIqaNDjTfOqt1uzcljvCe6LwFKNFn4pjACnCQ7RWtra8ueFZsVBpPrwtO2sLBgjHy73bZRIPikebYw1Hj3YLUAfRQ5BApOvSIw4/Pc3NxUPp+3pgMCPc8MQI8k5gMVMjwJzCsAmPPb7bbdUzAYVM2dV8/sVAJdrzcdmA9bCAsFwPJSPSwde8ffG88WryBzPbk+QCH3xZr7/X9V1gf/9Lv19vI/0+1/Y0Wv1N6v558MKziKazkd18qJjm5Y/76Sk5fVHL9DX/3CrRod9sxSEo1G1el0lM/nbewNQCefzxtDAYsGyOKZUrixPyXZbE6KUEk235HYQWKLx+M2zYHv4+eazaY1sfli5GpmjHtBWQDQwtB79oXTv7xHld+NBQdWEwDDOwNwe2DKGDiuB8kchiifz5s/EFYJaRdvIXHAH+AB2++tA9IM6AG+aEyDYQdIU2jwncFgULlcbq6I9sBkYWFB2WzWfKKlUmkOjCQSCZVKJTWbTb366qtzndYUJyRdFCxiMd/Pe4ARZ63BKFFM4dUEkPNz3AfrBk8q8Zo9RlFEAw/WHT9Kjz3ITGU6+HkeKCCebGF/1+t1A2HEEUl2vRRorDcAI7GPAoz1Ru7w/seFhQVj2OgfgEUFDFHoYzljtBE+bXzV/C5UO9b81bGMJjAKplAoZH8fpQpMAGjlfj2o9IAWLHG1AkFcgBEFDPJB9SEOEAMkmaWMxid870zNIQZhp8NrTcGOXQOvuyRTkYbDoV0/a3w8HpvKRr7B+iPJchcKMmuBtca1efvGm/n8Jwend999t770pS/pb/7Nv6nPfOYzOnXqlH71V39VP//zP28/89f+2l/T/v6+fumXfkmtVkv33Xefvva1r5lPQ5I+//nP65d/+Zd1//33KxicDuH/tV/7tf/o60EaCQano038EWxUrdVq1f6cwMlCgykg4CJTIRVRkbJxSQJXBwZJc1LM6uqqBRM8kgR+gq8Hq74RiSoUxqrf7+uZZ57R2bNnrYqkykaCAOCSQFjonk0dj8cGiGh+opJCIkTC8osZ3yhB3wN8/p3AmMlkdHQ0ncUKECE4k7Aiken5zwSdo6Mj5U7doKX3f0LL192hUDyh0VFPk/FY4XhCk+FQu889ps3v/K60ed4YKBKxtyjgsfMnOEmyDUz1jxUgGAwaO+YHaSP1Ly8vK5/PKxAIqFqtand3V4uLiyoUChZAAa3j8dgADsmrVCrNMUeZTMakmHQ6rVQqpXq9br5Tmg4oNgjo3AfMJ0CL+4Z9wWtIdY38lclkbNKCP4SBZM33eMsIXbPIebAve3t7NmKL74dd9kAa+ZbRT7BBvhkQloe5qjxD1n8wGNG3v1TWK6d+Rre9o65bcl/WWz98YPt/oqAqR/fpj195r15/dqjBYGjfTVKBjeAajx07pslkOl0BWcr7TgFnxItQKGQAfDgcqlqtWlEGO+JZa4pHksfq6qoajYaazaY1XuIJ9hM8aJDiXcCA+MMZAO0k+W63q3K5bEdQYj1hj3t/HAnFy6SsKRq5AAHIeMlk0ny5sdjsQAMKzK2tLYsxyOgka+IFsiBNJAADYgwxCDkUNgZAzTPB4wpoZ+95PysxzYMS74MmNtJlL83AjPfDAuRolAMAkVu8wsa9S1NWEqsG6x37C5Iq+5eeBAodfMcAXe+nZ8/yvPhzmEv24Hg8trhIcQvbi9cRC5fPNwBNClneBXEdthuCYjKZqNlsWoEPG0rX+fLysvkdDw8PtbOzY+sCPyiTZWjCIkZGo1Hl83krNMjRqAZI2+xv1qO3QwyHQ+Xz+bnfT76EGU2lUjYxhn2LEgWI9/vZS/VYa3g/foIEBY8HxOR4CiGImr29vbmxaBxQgEeeoow1zv5HNYPthAziZCf2FHnf+2+JtajHrAGvprCWAOrEJ9RM7JQ+3nuw/mY+/7ucEPXxj39cH//4x/+9fx4IBPSZz3xGn/nMZ/69P5PNZv+jB+7/uz74olhQ+XzeqG0SPi9HksmqXtqQZo1VbHR8PolEQq+//rrJzX72JBIxv4cqd3l52SpINgsVHw0ZV/uPYK+8Z5IEAeNEY5VPYCwW/i4jSPgZfyIWAYl7gXGUZD4imBDm1rEZPUtGkux2uyZ3MZyb64XRZiYsyZzADzPS6/W0fNu9OvF//zua9A9Ue/QPtPm9BzVs11Wr1VRYO6a3fPiTWrzzvbr9r/5P2vzav1L9O79jwWg0Gqler9uID0AUgZv/7yUiigQCrw8WFDqcFIN9gkq3VCoZS350dKSNjQ0bTUKCOHnypIFnWB+KIa7BdyB7fxoAmSNOSfj4g7humomGw+nAeE5m8uNiOEOeQLK0tDTnZUI6RiJjPBXJheCH9w5m4mq5lmfINcLgsob4OZIKDS+wFYBTDpfwcqI0BQ+tSlLf+dKKJoEPa/36BWUKizrqSxde6aix01M+P1IoFFa3u2djXQjWmPRTqZQ+8IEP6EMf+pA6nY6++MUvmt8ZEAOLiLdZmklVgB6KALyWND4AMijmms2mVlZWjMGhS5gCDwaXxiTiE8/Jj+CB+WJsEGCC5MC1AUBI2FiJ8MIDVvwIJTzgsG8URyReWGeABcW7b1Qi1o1GIwOInP6D/YkkTCMi30t88000rBf2g2/mgXiQNJcMAdiMxOJD7CUW5XI5dTqduRPfvNUGpY13f/W0Bfbq+vq6YrGYeWwBIOQRrx4R//xkEVQrpNRYLGZjoFgb2EKwQKDO8f89yKe48URFr9fT5cuXtbKyokwmY5YcRmpJsmMoYf8AWPirFxcXzSoFYcJ4KeICKhVyuj9GnOfp5V6eIZ58P4kBQOe9yORx9g5yOblNktmjaCxKpVI6c+aMNWHt7++bCjQeTw8vAIB5ewsg18/1zmQy1nfhCQz2JQwi90uO4NQ1bB14yimYUDn4MxStYrFo8YLnAQimm57GVkAscYl3iI2AfEzxgQJJ4bi0tDQ3wpF1xJQf1iPvjbzL3mCv8lyJCW/0+d8FnP7/0wcAwkIul8vWFcgoC9gQWIOdnR3zQXrpiS5oNjBVKIGVICfJWBaCEbI4i5pjwqD4YUgBnQBgEj4BhU0ImAEcEOgIHFSVvvsRmwGyC0mK4EggJiES2CTZpms2m3Md1QRf3ySBBAXFT9AvFAo2vQDGmMWOQd/LdqFQSMW3v19v+b/9DTWe+o42fuezCk7GSkajUjo9ZbD2Otr41hcUe+RBLd3zEa195OcVCIXU+t7vmr8VqRsQQbKALWMDwqzz3wkMVOdsSEn2TPf393X27Fklk0mtrKzYWuv3+9ZJD7CnaW1lZUWRSETnzp2ztQeYg7GkoPLNajRkAXAA1IAIrskXUEh2vlmOdUaCREpmPVMkACawhQB0SFS1Ws3elyQDyh4cACDb7batY5JNoVCwtRQKhcwrOxqNTOpmPi2glmJpPB6bjMWYuKnUGVP14livv9g2iTMQ6FtzEkkP/yBjnaLRqHK5nN71rnfZAQ+nTp3SCy+8MNc4hg8cthJlZnFxUdlsVp1OxyYpwDwym5WkCLMH6EO5oNt6MBiYDYXfB7BnisD29rbJljA9eP+Gw6Hq9bo1QbEWg8GgHUhAscDUCva3NAPbWIZI5BS7xMdcLjfnvwsEAnPqAnEGT6MkY4JQWohnFFbsS29FwvIDe0TsAQwDGDxI5eQxSWo0Gj/CxALgPavkSQpvnyKedrtde8a+iIzH46rVatre3jYGmXjPvgW04seE7eMQEpgnb4cJBAIql8umfrHu2f8w36wxD/ZY7zwT1jwEyng8tlgOCCLmSzKfJAog7Je3NtHLcOzYMaXTaVP3iGEw0LzHYDBodgue0cHBgb0fGuBYPxS25IKDgwNVq1UDWAAj4ibxjoI2l8sZGPJ5CfCWTCb19NNPWw5fWVkx0gogzP0iWbMvyWsUSKhwnjQij1GUUAQXCgUjSLyfdDAYaGVlRdFo1FQ4AB33RWFWLpcViUyPUadIwJ9Lo6q/NtYw64p1JGmu69/3p/C+wSBYc9hX5CDeE7+/VCrZWqN4IGfwrt7M55oHp973EAgETK6G9iYIE6j4d+j8qylwbxqHYSAh4MVEjq5Wq1Y9+g5DjuyEnSI483toInrttdeUSqXMYyLJgjZVL5V8OBy2cUuwbTAnSEYwZ4PBdNh8Op2eO0yADQXIHgwGxm4BmFnAVF4kRwCRB5g8B0AVHpV4PG5MKoGPRIP5Oh6PK3/8emV+/q+q9kcP6/V//atqX5kPynnyHLsJW3T45Dd18ehIJ37iv9Bg87wm2+ctwftnxoZC+uRDYgLUsMFYF555IiCk02k7qMH75XgPMC6TyUSlUsl8xCQJgFkgEDDWgQ572GesIDROMOYHQIaXGiDgj8WDtWZMSDKZtEavXm967C2FD8+ewITcR4c03fwY3Hk2Hoh4TybXh0QEaGDUEV2nqAQkD8CpVy5gdZC6Afy+0xSw2O127ehH3wBJ9Z/L5YzhpICioWF7e1vlclmdTkcbGxv2TgCSeFGxbQDqBoPB3GEXvGP2IGAwlUppcXHRigDiEn8nEpl2BG9sbCganc725Lmx/4kz3jsPO0uhenR0pJWVFYtxXCsxgqkHxDOeH0AbUICfkriD7DgajezwBdYCf4Zs6iV41jgFDqATBcV7NvHlHRwcaGdnR+l02pI675GCyHtkKWZ4FthLsBPBdhJfAf14Z2luArgQiwG8AFaeDddRrVYtnvujRZG0uWcYI9Y+RIJnAwHdJHNAHO8COwQMN9fB9VN0cq28F2lmc2DdePDFfGi8rAAZGHDyF+8R0BuPx21vA3SRhslZrEEUFPoSWNOeCQdg4nNljbGmyCneesIaJobB9HL/EBK+WIO55+CQcrlsRAbvBDDILG/uxZNDXhH1jWLEJQoi/Mxe/sbmw37mnfEzXrZn308mE7P8+EYv4qI/4pr4S26GlOD7iH80jaMUBgIBm72+tLRkCh85jxjrPbJgDki8QCBg5AzvRpJhpTfzuebB6XA4nDtHmcG8nHHuPUkEHj7MASU4MKCaF354eGgnxgCaer2eqtWqjeLA15fNZq3qhplA1oJNIbAApgnWLKhQKGRBCLmVE3sAL3hKkJtvvPFG+36Ama+QvGRKoxRMipeRCJbIyUhNNNowBiMWi1mnqgd3DLCH/WHT+W7AZrNpiXE0Gql80zs0GQ21/ZV/qtAVRhemgmoQ1gNAVPvu7yp3531auuvHdO6fPW7MqAf10hRsKDDWne+P67bbLmkxXFEw0NdwsqTq3o169vvL2r0wm0MIq8gHcHns2DGVSqU5BorqmuDAc5aker2uer0+56NaXFy0I3CRWTglS5qNwqF4odIGUPiu/16vZ8ENMLG9vW2gE8YGack3UNAhjQWEwoEkRaLkWviQIJDyqKhhyjc2Ngy4BAIB8wWORiOVSiVbj+wTn4BJODBSzWbTmFJ+HvYVMM1BBKPRSJVKxa6P/cf7wydG8dHv9/W1r31NtVpNr732mp5//nlrAOR5824Hg4E1JDAeiXeFRO7BB+AGeR0WjkKPZzIczsYKUbD4+MOft9ttk15J5B4AET+8x5NYhC0Fj6YkA0RMnfCKA95HEvGxY8cMGJF8PWj1EwwACHgnAaihUEhra2u2D1ibXg3wxRfAxjdgUZTx8zCPgDMAME0eTJwgbvJeYG0BW35yQr1e19LSkhVUrDPiT71et+fEvuPZEPvS6bTlG07fAsyurq5ajPCECP5nwCSxG0BMPwNKHEUu3luaCbFvwMKhXLB/ePZIy9wHYJ9/JNnJUTQ5AXqZZhMOh60o9Mf78s6IUXw/BbS/T1jGdrut9fV1pdNps95MJhPl83nbKxR+7Gv2sM+znh33o718kUEhWa1Wbc0QI5gKgE8b6xvSO8+Un4VdhckE4MViMTuNkusECGOXwHLF2C1iFeQB+AL2HbUF/zlxkxxJbPHsLBgGYoXiBi86mIm1wTombpBvWEPET+/v9WMnaQLkNDKvqr3R55oHp8x6JPHz8n3nH/4/vBW8HMCVNJtLR2Cly5dRGOl02k5RoUt1bW3NZjnSNOCbSgB0vkFJkgVsSTbr0wdeuvckmeeI4C3JJEQ/Oot5nJz1DZCkEiWZAKTwxWFyp/mFTliCuCSTcyTZJiHZjMdjkzvxLHI+MgkTCRmmKplManFpWYtvvU+HL35fy4m4uqNp5Z1Op3XjjTfacbaPPPKIzp07Z8Pqd3d3VXv8azr5yb+o3PHr1N66ZMzKbGRGX+/7yajO3PCYYqqrOXmHLjTu1HgcViLe1+rSk7ru/h3tTu7St7/zVl1+bt+AMfI7z4IKFtDA+yCI5PN5K2ZqtZp2d3ctqBAwkO8JAjRjMC/SM9hINoy2IXguLCxYAsQznEqlbLA6iYczy1ECALCwTbwfbA39/nSG33A4tFmngC8P9qUZSGUdhsPTU8Bo/vBFF/KSZ6h6vZ6BZCRA9rAP5h4k1mo1SzawIthoJBnrBQsNMwMggIlj3i8D/GGpCab8XvagJJM6CcwUGv7ZkYx8IwRFH8CB+EJx6d8vigoFCHYglA/GFrFWYLpYJzC0sMsrKytzI3p4h8xu5h4BQpLsngF9ACOYT+4DMEL8pHg/efKk6vW6yafIx6gx3mOHVw4mHeCFhIrFqlwuK5VKWYyiyGWP09xIjAqHw2ZtANxKP3qYAbH24OBAGxsbVrBRzKGgAPRheWHl+Lvsi9FoZKCOdQo4JkZSgGE1w5/J9QDweYdYtXiW2GGwfmCbAKDwngFOsPwM9UdJ4ffybiguWJ8AW9QSnh3WHya8wMDDklEwYWHyNhSYepQcbBDkNoAbFjDkc1g8QC++X/aej2ne2kQxQqHo7RlYO8ADnsnnecCM8jxRDvg90WhUjUbDSBveE2ub++b6/br3ANUTVuS9bDZrhBd/r9Pp2PNcXl7W0dGRtre3jf1cWlqyJlt8pY1Gw95hJpOxfUhMhsFFgaMPw/dloCLxPClgxuOxXRPPMxaLmT2O4uvNfK55cEoTzOLiovb3983vR+UXCARMXqXxg0qXDdjr9cyEjKnes46YgKlus9mssWGpVEp7e3va3t62RQG9z4xUbxyHGfWVPJsVycgnB6r3TqejU6dOmX8UWn5ra8u8SEjNLDoaOzgxBIkGeYpgGo/PBmgjlZKQSGokDRZqoVCwrmtAmiSTE7j+YrGoRCKhZrNp0lAoFFLxtrsVTqbUeea79nzz+bzy+bx+/Md/XLfffruCwaBuuOEGfeUrX9E3v/lN8/TtfP9bOvGJ/1LLt96jfrNqCWoKKib6k/9FX6ez39LF/k/oue+v6txTWzo8PLji+Uuq071TN70zrPe96xX9xI99QQ+lPqUffnvLGAlGbtEU4H1rVJx8Go2GHdXrZUwKAoAL42P4OaRU5tAix3MYA3++vz89B/76669XuVw2ls0PJU+n08aAhcNhq2oPDg7mJFKk52azaYWXpLmgNBgMDABgIaBblOBIBd/pdKw7F0nOy4AwozDwJPThcDYTEcYCBgbwOxrNjrQFzJPsCzfcrhMf/wUtnrhJwUhUh7UtbT/yB9r89pcs0JOwAQYEVDx+jMUB6PJOuJfDw0PVarU5DzDPhOceCoVMycCqwZpBriSJSbJ1hAqDqgNzjveTf5DX8vm8eb/xp1F4S1PZlKOV6VDGu0ssQs5FISAuUYT4U6FI9sQ7aTboncRLEo9Go0YOrKysaDKZzI1RYk0QG/l7XrYnRkWj0Tl5kRF4KCieReaZ1Wq1udjabrcNRCJpX+2NBCANBgOzA8ASeS9qJBKx6Qq1Wk2dTsfYYCY9kIwpGHg+PCvkf/alH13HQTSoN4AYJGYIA4pFrp1GSSZzUFCzd/kufJQoQ6urq8ZsoxDSjANgA6wTpxmlB4ikK9+vQwAa98FeB9ywh7xdDD8qp5KhrvX7fSsIIJz8pAFAJsCSHA8Q9bEECw7Nht7igMKHL5T1Cuj2amSj0VCn0zEmEoIKVcd7pj1TTQ4GCKKqUAyy3rFYcA+eTffEFqorJIIvwilWYFkpttjPvBv+Dgyr31vsG29JwC7EaClsgsRqYgYY5P9qiHIfAjGLAsYCypmxGv3+9GxnKHhkBKqvkydPWoBj0TGceG9vz7oVCTzQ2/guYCfS6bRtHLqvG42GLTiCMsmHwALIoEr3vkdodgLC1WCUDUYTCgmARI+9wTdceYN+vz8dwcIAYTZSs9m0zksvudJ0w0YC4APO8Pwy8NiPIqJDMp6e/ll784JioaBVvaurq7ruuusMyKRSKd166636wQ9+YL6ZdrutQaepQSBsfkbu796PdXU6+y091/hlPf17XS0syMA6QTGgkJ77bk+Xnr9ZP/PnlnX/Xb+tvdZPq3a2MwfG6ZBkA/OeABRra2uWJNmsHPrALFveHYEaloCiB+YlmUxaUIalYzYjzB2MI4EMRgFQChiEvfBqgB99w0kjrVZrTv6RZn5qvIvFYlGhUEiXL1+ea8iiYYokTKMY7BZgGXDJ8Y/MFWQeJk07ftwNTMRkMj0cwDOj4fUbdPun/xv1ti+o+ciX1d/f0ySRViJfNjsJyZP91mg05pgvSZbcYVDxVUozTzKswnA41MrKis3GhIHGDwrLBisDqw1jzD1xjwBjGE98nOxbSbZ+QqGQKRGAKZgQYgY2AgoRVA+fvChAfbInWbOmvFeNtcTaASgRdwDx+HBHo5GdrAQYIelRJADiJGlzc3PO/z8ej7W0tKRyuayNjQ1tb28bQPEjjrgPfr+3o8D+IJs2Go2506uQgWGuUBm8Nxh2DoabZ+S9rhRP7Bf2hQe1MNt41ZHo/e+r1+v2jnh35C4YRG8FwgoiyVh/TvCD2aQIo7kQoDscDm2ckz/cgeeC9YZc4vsgAPP4Ij17trS0ZEUXTaEw2+Px2O6LiSieDfSec0+UALZCoZApUb7Zl+fBemRUI55krBCsD7zJ5D3eAWCOU43IhxAwfhoH8RCiC/ac4o59TpFCYeqBNIUi7xmgDdvpVVzYU0Aya4e97YkSZp6yT8khPCfWH4SA77C/uphiD6HuUhBBVvHMIUdoPOR3vFm/qfR/AnBKcENSzuVyisViVqXCDlCBk0T4d8ZZSLIqJpGYnpLU7Xa1tbWldrttAA0WSZomkIsXL1oHKxUU/iIvCyDZMeqEwE8CJfjv7u7q4sWLkmRHPF59drVftEi7gBXO306n08aiUO3R5MBpNEiL/f70dAtmkQIyAQRUwbDKnrWBnd3Z2TFLgPe1kuiQw7zPUJL2Dw40DM4M1yRPOjsHg4Fef/11DQaDOTCjQED7V6Q5gmkotq+bV/5A5w7/c537bsDWB2c9sxHZcLFYTH/w24v6qU/X9e73X9DXL6+Z3IwsT7XL80dO5OO72UnKJGOGrMMkwD6MRiNLGhzSQEHCPQMg8I5xag3vX5L9XkCAl7wAH5IsaVKEDAYDaxDgfvGDeS8xSRTGwk+GCIVC1nxIURiLxcxH6yVgiqNut2uNQagGJB6OiazVatrb25ubr8iszf2joW7+qb+gzstP6dw///taTCRs/FSpVDIfKHONOdGJznPAiL8uAAf7VZIdnoBv1M+dpFmCIE88IBFTcABQAoGA+RZ5l/5kMPYxa4REgY2HWAVglmbNi4BEvLneT4cnmpmxgOyNjQ11u12ziXjWiGIHWTwcDtv38q58PMDT6U91S6fTisfjZvPA44wlBeaTe2e9eT9lMplUpVLRzs6O+v2+qQ54DbHQcH08B4oPGtJodsKmdHR0pN3dXVWrVWNmKQYkGQDlOcMwAspg87EMkGeY4EDBBfsqyUAgxaAvUsgJNFXxnAEGMN6sgU6no0wmo3K5bGOtYOkBRIlEwopLWC9idb1eN0DDHid/UgxS5EP4SDLLGOuE9wY5AQtLoUwe5Rl5GxBTU8iVKI2QRr7IJiYSi7hmLA6oG8QS2FtUroODA1UqFQNUgF+ANvHNezthFFn3/D4aRrkf1DUYcYpWcgasK/sV0EbugSnmOgCpsPx4fNmXgHViHOuE9+ALKW8n8zY82Grf0wFx4hsPiSO+iRegShykCPZ2EwA0eeyNPtc8OGUxsOgZDl6pVEwOY9HygPFB+sQFKwgwgIFl8bOQSGiAEDYJG4QXh7wFEKQa46i9ZrM51wQCuIXuR56n8xagx2xRGh02NjbUaDRULpeNdUUOpHuYapIqm+/EnzoYTI83xTTNJoUJQsqEZQPUsvknk4k1FZBESEDMTfQnagWDQY0PptJfau2EupfOKRKJWHf3gw8+qI997GNaWFjQK6+8oieffNIqy8XFRU2CYUWSaR3s1o0Rj8fjuuf+Q00CUf3h7wV1UNu2hJxKpVQul7W6uqrNzc25KrfZbOrZF27Xu279qsZLn1btUm2uMj08PLR3GAwG7Rnt7u6q0WjMzR+E8eMeYeBhYGHgk8mkscokQuR7wBIAigRBQuZ7YS+5VuQtqvqlpSWtrq7OFUGtVssYxJMnT5p/FWBFEMZLCAuCl5RTgYrFov1e1v/FixcNnBPYvZ0GqYygJ81OxWH/rqysKJfL2dxgJC1A+eJb71VkKa0LX/4NHR4cKBiJSldAUqVSMXYeWS0YDKpcLs9NVCAxAkTwXMMCUCgQ8EmWkgxE0BmM5InkValUrDmE2EKShY1YXFy0WaHJZNJ8liRwimxsN/5EOGw1JIlms6lqtWpNm0i8AOHJZGIsPfcD0+k9dj45kWS9VxkGhr+Pv8+DCy9bSrLYWCwWLcGm02mb/3x180in01Gj0bD9MRrNOuz5b9gqSPDsOWIT1w9rxmxKfkaSNdRJspFiJGyYWthFgJuX4gF4hULB9jpsoDRrJOQZEc+xvWCd4mdarZaNqOJ8dtQHfOp+Sgb34f2YFDhYAJBtySGQAQC8cHh60Ar7lLjl7RQ8S0bEsfYo6qRZP0QikTD7A3mWQguPJT5yZuMCIIl10mxObb/fN4WA3glyivebQ3zQKY8iSuEmzUZwcf3kUt/85NlE7g3/tJ/Ewl7md/Gu8YMSp8m3/F5wSq/XMxUPKws5kzVMbuXa9/f3TQlgDVDI0wvB+kDVZJ+QYyhsYGrJSainfg/BJLfb7bkCBQWAIpoijPXEPbKf38znmgenuVxuznMCA0eCoMqDHUG+6PV6tng82zUeT4eHU62ySX1lS3MMAA2zNh9YEz8SAyaEQID8BKMwGAy0s7NjfjDv7+JnqWq8XPTaa6+p3+9bIuCYVdi+wWCgYrEoSSZPAEa9J5dnQPCh+mfhIWtwL9LsbGCCN0wv1RrPjeAPezEajTTYOq/Rflu5uz+oo8rluWD+zDPPaHt7W7FYTLVaTZubm1alHxwcKPuODyoQjmj3ucdMnh0M+rrp+FPa6H9Ye5W2zYBbWlrS+9//fr3nPe8xw/h3vvMdPfroo+b1efo7I91za1x33renL/yjmorFojVFUKywiSUZGEcKhukDoONTIlkA8g8PD21WKOw5wAtLCX5GAiGBHC8ap1VJU2CLD4huawKwpDlfEe+RoD8eT8dSbW1t6fLly8pmszp16pStd74fgAkTORqN7JjTnZ0dA1f8POwZw8Wj0aitVZgKWANkM4pCAiFsE5U5v6Nw/e0aHOypH4rp7v/uNxQvrmnUP9Tl7/2+Xvz8P5rzFtK8QdKANeNneC80ikizgebIpDAXvV5PmUzGVAeeZafTMTAMy4XchT+a5wbwxUsGEIIxpItZmjK3HM/IOvHMjPegcQQknmUAA/eD/5e4QzMck0r8/EyeBwUXa92DLPy83mfmbSH8XgqFhYUF86Di/4NpYU2QECm6afra3t62fgDvU/RNOCRifPTs2YWFBTvKkdF+vDcPqv0a29/fN9ac+E+85OcA3d1u14Af38u6BUDxbn3BQIyVZKcASTIVjz/H0oPvEDCCFYV1wvdzzTB7PGOAFw2+ACfWI9fKvaAkUrh4+wTXx3OHqcUWAHiRNJdTaQQEVFIwex8pOcXvEYAz9+JtRRQ7EEIU8wy7J6ZCllC0JJNJGxMHM+tzNwqfn0iDZQH7CowkXmuuFWBLcc1zp/kKXAFRwbvCLugnNXhvMO+XmETMYT3xbolNzBlFHeS/MYaK2IIC4lU7ngvrnb3LxB9iJ01uXCfjvbCzvJnPNQ9OkcCWlpZ0+fLlaRIrFEwmYPxNKBSyah1DM/4vJGk6izlJgnmb29vbBsQIerwQFjuLwNPhLHC/GfDaMPCf4AY7J8mYXiolAjrdkPwOgAyBDNM5QIVERlXIYmQWKtdNxSXJjv30bBOsJhJep9Ox34dBPhwOq1AoWNAhsANAkAFJYke9QzV+8JCy7/ywdr7+eUvmAHNOtiFhksiDwaBK7/4Tar/0pKKDQ4WWlqbJK7avuCra3DymaLRqzG+pVNK73/1uM8WnUim9733v0+bmpi5duiRJmjQnqh3eqtV8w9gU3wQFW0qioFKlganRaNia8ZLV4eGhtra2rNCA3YGNYv0hDxKoSUbcL0HXd8FLs6NpYb8oZGAjQqHZXF1YH3yKzAB85plnLADdcMMNc3YA74mlmQjggD8R/yWDunO5nN7znveo0Wjo7NmzcxMOGEiOTAeLwnPghCX+gbVn7ySK6woEQ7rrV/6Bdh77qvqXziq4cp1OffintZjJ6+w///vmcUVJQbWAVdzd3bVnCwPGWK/RaGSgjeQGi8Bz5zlzzQAEb99hv0pTcEcTo/dk+YabVqtlzAa+dTxysGCsGUlWUPM+6bAGMPDxTDHvEh98PB7X1tbWj7BlMNl+hBxMEX5vpmbAHHuPLyCAQhZg6CVHwPJkMp3LzJ9zbbDlkqxB5+DgwMAIzaAwPr5xi+cEY0qBTFxCtof9xwqWyWQMZPAdkAB+OD8xnukEvC88in6GLDEXUoPB+fwOOrRpFuV9YYPAWgZAYa9zD97Pe3AwHXbvQSdAB1LA2zVgaFljxCZAKEDJ9yqw72Eo9/b2TBUCcHW7XSswiP+AH/IMeQtJm+YbgLTPf9xzo9Ew8giLCXEQYAoZQ/GGmolqtLy8bIQQhRkNWQA74r1nUQOB6dHVxNter2f7m/UOxvA+Wu/hZdqMfwac6kfcZ114zy1rhOdBTPT5lb3E/V4NPCkSGUlJYxVqDjkDQgRW2DdqkUfIi9LM4uHvnZ6KN/O55sEpG+Pw8NC8McPhUMVi0YItmzCXy5lfZ3t7WxcuXDBqne+i8x/5ZWlpycY7eKYFqhyWhYYQqrpgMGhnEPukxGBxvFd0RgLOksmkMpmMyW+DwcDYYbqeWYxYEvDiXD0KBbbHe+wkWeD1Bm1Jxu5x/QRkAhMbHTkFBgXA5rvCQ6GQ6vW63adnkgjQ3We/q/x9H1fpx/+sKr/761NG9QpTRSAnoSEXlT7wCS0df4te/2d/1zbR0tKSYotXmJR+0ADwZDKx6756zfDdAILhaEHJUE/Ly6s2wgewCXu4t7dnUpD/LuYzAupgm5D/JZn3l3vf3d21kSCFQsHkLMApa4+ghcndy6awpAB6WI9UKqWtrS2Tx0jCnuEBTHi/FgGNn4OtJSjDhpHwI5GI0um0JZ7l5WWdPn1aH/jABzQej/Xwww/rmWeesbPtSfaRSMTkdiQ25F/AUTAYtGYIxgCFFxIKxxd08aHf0av/6h9dGZvzkGILCa2+9+P64b/+X9WubigcDiuXy6ndbqtardpzJNhLMubCMxw0gwEoAG6ANc8QYxvwndawRSRC7sUDVfYV6wAZjqTKGuKIY0AwBzOwRigISFCAIfY7xTPAk3sZj8fWjMm79Q2USMDIpTxHQAaskbcAENs8uw7jRjz2sY94wBpDMQBYSVMGB2CMH554BCMGiJFmfkYKR69esJ4plIrFojX8AG5hRJFHYZ2IJawT3iFFCSyWZxth67zkyrvB5gQTCqCFGfTNrbx/wDeAn1hKbOJZS5rzPfKcYH4BlAAoCAZJFnuxjrEHabgjl7K2AJIe6HqlkXUOw1er1ew+2BfR6HR6SaVSMaDEOvJNbLxf1ErIHK6dn2f/QQLx9yhWsNIQ/4PBoFZWVqz57Wov/9VFpd/LxAOefSAQsD4F4gLWCoB4PD6bTYvKBoCFofUkAyQT9whLTt7m2Xh/sSQrQihGyd8ovRRp4ATWPvfFs2ed04jLfbTbbbPG5HI5s/0Q11Cr3uhzzYNTXgTsFYkfGQtDPCNKYFW63a7JQPhJqE6k6aLmGL+lpSUDnyRsEiyyru8ohHn01T8bhwHEJDASL55MqmY2DL4gP6OSgwDG47ExsDCmVJMsnsFgYHJZvV6330OSxrzOxiR5SLJAwCYFDFerVR0eHlogk2aD5Al4g8HAZC42N8AeBuKo09TmF/5Xrf/MX1YwENDG73xWIU2ss5SfjcViSqXTyr/nT6r84U+p9chXFKxesITc6XSUGE+TnYIDbW1tme+SU4FOnjypYHAKXC9fvqyNjQ01m03zV0YjQw0n8bmRWV52Qoqq1WpWfUvTUVKVSkWhUMhGLeFn9UwRXhzWa7VatWsEDCFncZ2wrDRScIoSDW9UwAAqWHk/mYBnDjsCazYcTueZ3nHHHQY+ADOAbb6XD8GOChqGoVar2TpYX1+3hh/WEEEYpmV1dVoAsF5JsEw5IGiyZyz5jqYJuPpH37ZGgGg0qvYfP6LV935c63feo+ZTh8bIwTQzpQPlhEM7kFBjsZhWVlbUbretk5hnhzqAD5BEMplMTMnIZrOWLAD47CHf6UpBiNwMAwJbA6DxvnNG3yHVEmMoWFArSCAUATTFIMX6c+xJ3uPxeI6hR5GBKY1EZiPrmFXsO8rx7TNmicRKV7T35tOMR/NWvV636SCZTMbUEd8Zj1QKkEFRgQ2iKMKKQQLlfgaDgREPgEoKIeRgJFHWiDS1w1AskKgpCj1Ygm0EnEImwBwzSog1DhDmO5hqQpyl+AEAANRRKVByyHsAVfZeNpu1HCjNfL8ADsa28QFs4i0FTBO7KUr9aELUo6UrihXFGepNJpOZG55PLsxkMib9EhsgWmj4hPjwRQzgkj2BFxmA59c0DDXKUzAYtENlAI7+mQMcKdIpUCkwiA+sGQgw4jLqB+sCYgr7RDgcNmWRMZHY42Br2We+cQ2lg/4DrEqMxqIBjv1G7GcN+R4Cnj/xh3eF15Vr8HYysJCf6kATJWuPvQ0rC+H1H9Oxf82DUzrvWHx4ezDzs7GDwaC63a4uXbpkPjiCCsmE6hsfoE/OVK5U+sViUePx2OZ+MfYF7ySVOawEC2A8HlsHdzqdtsSCD0+SycHMY0XWbTabVrGzeAgmeFeQwGChCDhI1bBpJDvv/WEUhR8FAuPGdzEWio17cHCgXC5nQRx/Dz4rAFM8Hrcj9AhsgUBA45ef1KXf+lUd++m/pMXTb1X18a+r+93fM3C1mM2r9M4PaeW9P65YrqzGt7+o/tPfMj8lrFD/MK4jZbR+rGYBajAYaGNjQ1/60pf0wAMPaGVlRY1GQ9/85je1ublpzyOZjCkTe1GvdX5M+/tNGxA+HA5NoiKANZtNe8+wMoxHQkaWZkft4YFiAgHjXbB7LC0tmf8ykUjYwHUaTmgSk6YBsNVqmaRIYAb4ws4kEgldd911c124nrkejUZz94WHFrM8Mm2tVrNqmO9eX183cABAk2QyerVa1de//nVNJhOdP39em5ubVuABGJBukWwBZKw1ijoCP4zAoNOUVk5otDc9PQk2odduSJIWUlnzhpEIKYRgVlBRrj6XmqKTpANjSjHA86EQgQnhu7yP1fu0CdYoKB64sgf8ekFGgzXCN+olOtg9aeYRQ1khbmEDYd8zlJ3YOBwOlc/nrTOc9bO0tGS/wzdW+lPPPIsEA7q8vKzl5WUruCAMfDMKhABAulwuW+F9dHRkTKcnCnyx55vUmFWLYkASRloEEPI+pRkThqLFnpVk9wFQDAQCNs+addBsNueObPSWDj9aD0aN/YWitb+/r93d3TnwTbc+J5GNx2NbF7wTCgYv5XONnK6UzWatKQ6PJ+wyeYtnQqENoIMFrVarFq9hSDkEwPt9+d08N5hU8gF7wPtFeUe+h6NeryuVShmg5VpGo5HN8gR0cR+BQGAuLwOqEomEFaQc7OA783mmGxsbNsWBOMQ9eaaTfcoBJbDbXjXEfy/J1pl/N+RtvOjY+VjznU5HwWBQhULBno2fCJPP5w1M9vt9yzOoXlhvpJkHmDUM2MZzzXMiJxP7ALHcL0qat2l41tTPv/UEHMDaTz15o881D05ZuLlcTqlUyoYwYyJmgRHIWLz1et2CBBKlB3iAMBInwRpZBMM8C6ZSqZh3bTAY6Pjx49b4gGcR/xqVGZI6AYvuaA8A8WLhOdrc3FQoFFKhULBB2YzoAaiyMfmHoAqjQSDH+A2zhmdwZ2fHFrSXerhHkhrACGM8VfrR0ZHJfwQCNge+G2biSVL7+ce1/eKzWn3fT2j1PR/X+od+RqPBkTQeKRRb0Hg40O4fP6rK7/66BtuvW7JhDBOB4Xz1Xp0ufVOr1/2k6hsV87A+8sgjevnll5VKpdTpdKx6Rh66+Z09RbWrxx6eBioYLU4tgZ0mEaZSKZPhqf6xeuCJovkOKQWgT8BCuvMsp2cUJFngAEhStQO+e72eTp48aXIkQR8P6+7urnVrA9LonCeI8vt5P+Px2GwsMCVYH2B52Uewub4Rotfr6Yc//KGtGcAr4AkGiSBPYi+Xy1YAhUIhG0XEM0kkEjrauSjdeEalU6d18PqRsUTR1PQACPWm/lRYJhIoPmvYoIWFBZuBCQspySwEAKB8Pm+yOnuRoo93gqWCws1bUABc7XZb5XLZ/N3sFX5/KBQypvrq2ZbYY9hrMBsMBsdjSxEsSSsrKwYUpdnM1L29PRs6zz+8J+KLT76+UcqDLl9osPdyuZxWVlZUqVQsNgNIKPhJgB4oAWgmk+m8xo2NDaXTafszyAYA6Wg0m+EJS+p92NwzRVqtVrNCIh6PW18BxYL3BfpmIO+LZPYjrDTMHICz0+moWCzaGplMJnMNWH5/capgtVqd65cATMDuJpNJSVNlZjSajTryM5Jh/bAuAbD5Mxr8AE2MWWw0GlbYs56QrwEiFFaoGYAtigRvYaMYpEkGHy/5kwkWfk44fR8QOblcbq6XgbgB+TAej23fAEzxSI7HYztYxPucmWJBHuK5ochBDGE/8B5dz2hz9HYkMhtJCXgHD9CsiteZQ36wUvBe8NAThyg4eZfNZlPb29sqlUq238klEEZ4b4m7WCtQZnz+QBFYXl6ea26jSId9J3bwZ8Qz4oFv4ASIUtT7nEJR9qaw25v6qf8Df6iy/IuDQsfwTCDhofICWSQ8dJolqFR8Zz0VHMAOSWh5edm6RWlqCgQCxtwwFB+AixeUwAF4Qz4nUDBLrVKpqFAoSJoNKg6FQuZVCodnQ3ylmQeSiso3w0hT2ZVEAyMHOA0GgyZJeMM0CZyTh7zfFtaFIIGfCjl8eXnZhmgzbJ7ADWsXjUZV37qsJz/3/9bSv/knWnvH+5VbOy4Fgpr09nVw/nl16xUbKdNoNDQczo4VZeTG49+I6KZPt3TXAwF977cWDHxSUW9ubhqYWFxcnDa8LS/ojtt+qLreo+a5tskY+H/xnpFcksmkVlZWbLYjciOeKIAnfjISIeuKyQWwrnQjA3SQ3xidBUPL9cBAAYI4NIIGF8ZVUTX7ESJIx0dHR3YkLSNsWOe8T6RuChQSLfuGRLawsKBisWjAGHaCe/QMK38OoGeG5Hg8NskKhoT/9cpI4PJLkv6UCvc8oMsXXzb5q3TvhzUZDXW08arFAGIDexk2h327srJi+45nhUxI13Y2m7X1TuI/duyYjZUjLjABAUaHpETyhPkE7BG8AUG+sPDSLb+b/cfvwzvnT4vBVgDIYcbzzs6OarWaPReYISTZnZ0dAzMwgQz1Zo/CxHqgCKPrYyrsM+PJMpmMWacoFvDLUUzDlgF0Kehg4gEUqEGJRMIml0iyIop1xM/DPqFg0XTDPiSGb2xsmHQLoMByxdrnveDjJTfAzGMdYY4u78s3gFKseKbNs7/ETpQ3b9Px/3iPqW+cYc0DFJeWlmwNEPN4d8QyQD3xgFgHSwjIYx0TFymUsY5RaEGu8KxgzmFqybX8Hmay0lTGVAvvveU5AvCj0ejcLNler6dmsznXPQ8rTgwgz7BuQ6GQMpmMRqORKpWKkTooob54l2QkEPGSeApg55739/eVy+Xm/hs2KV+0+mYvACgAPhqNWqMjk13YI1ynt+WgELNWsBNMx0/tKh4fa3ExoMkkoMFgdhCE38N+b/L9qMfei05e43eydnkv3pP8Zj7XPDiVZBI9C7Pf71ulIM2YKMaawBLCmrIgobQZ4cGLk2anO8Dk+NELVBVIIL4SjsVi2tjYsAH8GKfp8h4MBiqVSrYRePFIqTA+SBNU0KPR9FhTfDa+I5UFw6BtmDx/8hGBkSNDJdmQ9WAwqGKxaDMzmW/pmTMqdpIr8hbsj+9wJwh6kANjAdNCRZ5ZTiqy/arG3W1jOHlvfDffBRAHTMfrBb22+4Buzf0L1d7/Z/Tk71+e8/VxrcylDYakj/5sVUuhi/rKI/cpFmsZAKBA4HcAyph76hk3AjbPHunQV5l4F/l7yMU7Ozsql8s2OYHKlSQEawegAeTB7JEcScb4gHwxJWlOLqY4IaEtLCzo4ODA7CUUbeVyWclkUtVq1RQBDPkEW0bE+IThjyGEmaFxCtkHCZLrqdVqBjxgxpCvYQj2N84r/twjSr71Pq2MJ+pdfFnxkzcrffu9qn33dxU6OrjSJDUwphuJj3cC0+C9lcPh0Ipa3uHm5qYBby/vwTYBvLHCoESQgPCecuLY3t6eSf8wcBSngIVSqTR3Jjt7XpK9G2RBz2bA5mWzWSuGDg8PrVCCoUXl8SOMWBsUU+xVEiZNYuwLPHB8+G4OK6FAA4D4AlaSgWLeO6ATq5GX1Xn2GxsbFudgvVDAvFUFryhJ01u60u4oaby4sMbR6HS+JHuT+4MhQ6nxDDDsIh8Kr3Q6bcUWf9cP3G80GmZfwQbCtVIEE2NpbqtUKqa0EQfILdhu2Mv+IAhiPMycj8VcAzkQYCTJFCIAHs91MBgYE+cLEK7B5x5+Hu8u+xnwSXyiUYqZ5DBx4/FspCOFdb/fV7VatfxHccnezefz9ux9gxMqGB8P+kulkgFxJGrwAt+BLavf75uHlHslV6N+wLASe8ANrFHeswec+PFRYyqVitk9fKHGPUuzo5D99IZp8T3Urbfu6bbbntfx4ztzOOnChaxeeOF6vfhiRuFwfO4Ic8Bqp9OxAo8Zv1gYiHmstasPhrk657zR55oHpzCOVCLQ+vhneME8OKjsWCxmM/6Qs8rlsnK53Jz/iBE//hQOL4fSHIXfkE1KwGDj4D1BNqB5hoALfU7nKhsYwJfL5cwry8yxer2uhYUFlctlM0MjsfsgH41GrTvQV854UDC5Azr5/fw5Y4DY0DwDL/mSjNnMsCONRsN8SfhuCNbxeFz1en1udhpAnHE10myeIxMJVldXJc3mybHhh8Ohfu9fRPXJX7pbH7j1nypf+En98JGy9ht9SwBTlmKk47dG9YEPnlUu8ry+/cLP6exj28aewzwBZrl2JDLOXGe8WCAwmxNH0wFykk8qeLN8pzHjlTiVCkO9JLMN+HcCOwboglklqZKYfdeu98W1Wi2T+HnnXAsKgwcKJJelpSVrzGm1WtYM5MeZENRYB34ED+uGhAkrzHggABZ7D1mfIA4DvP/Fzypb3VT6zPu1fMs7NGzXVfv657X31EPmywOgwcThcyWoBgIBA31I2tw3jCenezG/llFAvGcSH6wQLC3/y16H0WPvwcihsnCNAFIvyQKskOxg1LCbUEw3m01jfkis3CsTO/CfwoTiuc3lcrp8eVrEccoWU09oPGHNoQoRF30sAbwje+J9r9VqVvxS7HL4BfEGywKMVavV0tbW1hxzCttDDPcTQog9sGyAMUmmzLD+OMqS5wSAjkQiJiUzFYGYB7sOEeH9wPw91BusSgAn9jNJP5FIWOGK+kPxwp5vNBpKpVL2e72HHgWFgosYxTpE7YLhglQAIFEw86yGw+HcyXvkBWIlqhPv4OjoSJcuXVIwGDSLBDI78YLnOplMzEdMAcdzI+eyl9gTgHzuhfulYPKexk6no7W1NWsKpNmIgom1gR+VIgOw6n2rAEdILdYlzYWoJTQCwUQTNwFnrFf2TafTUaVSUS6Xs/2M3YWCAVsYfk7yOXEZZQeAuLi4aHuTfDUt+Jv6uZ/7gTKZfdVqOX3967eq2VxQIBBUItHRHXds6mMf+yPde29Ev/3bt6nVWrVmJggQ+meYokLjL/vtamsBtkByFcXWm8Jub+qn/g/88SZq2M9Go6FGo2GLgJ8hCNZqNTOSIynE43HraIXlSKVSOjqajZDh38PhsNbW1pTJZLSxsaGtrS3zH7HIScQwcH6QNUEL3wgbgORPQABI7+7uGsUPyGAhsymg9vHZUA1SEbFhg8HpnFdkfypKRo34ZgzYJklzDFAikbBuceQaZC4CpmcgM5mMdnd3DRhJMnDDfTWbTQv+0uzEJJqEkBR8dyRdwlz/9Dri+refy+uBTz2gW0sP6rZPjLUzvF872xkNB1J8YUEnSueUCr6sw8AJ/f4Tn9Kz37hszWj+HfEMjo6OjD32pnLf5QlQRy7iZ73fkYID36FntpG0vVWA5AjDA6vIkaGHh4fa2dlRoVAwkOw9qZJMqvRWFgAk64+CCFkMII/U7EE1lb6XyiWZFxDQBFtGEoS9arfbc/cFA4RMxPpBiWBfAF6DwaDOfvF/096/+NW5MW5YeUgIsJ1YSEajkba3t40t4fhWfNeoCjQLEJTxnLLXUGXwL3v2k6TGcwEo8/E+vfF4bAmqVqupXq8rEAjYIQusm1arNdeAwDMFBAKqiX+8e5QTaTbiyfvCYGIBe17ibTQa9m580YUfk3mRxC7WD2uYQliaMYoU/fx+JEn+G2uGCRoUO1gJWEfev0cBAlEgyewIFDzsNSwg5AHY01KpZA2dHP0MC8u+XV9fNzsS8QdQIs3GWMH0UcjRcALIoMGRglCSAVUKXRg59g/subcTAJ5NUbiyR2C4aegEZPhh8X74OwUkBEk4HDbAybonHmI3oGcChZE44SVd8hsAlrXPzwBGfbGdyWRUqVSsXwKlifeGrzGbzc41iPLfUToB14uLi2q1WtZsxjuDPd/f31cikTAgRdEMSwmBgGUAywGxhEZg5lnzfmCdQ6Fp82qtVrO14mevj0Yjs01xzRRN/Cz5gJ4FSBoPggHCKysH+uQnH1O3G9cXv3i/qtWckUpTcLuob387rvX1vn7mZy7rz/7Z5/TVr+a1uZkwtp1CiLwHqQeZQDyBrKEA9oocRNeb+Vzz4JSqmQVDYC6XyxbAJc15PqHDMVjTtee7a6kC/fgYL7/AkCwvLxu4hIlFNm232ya1eSP54eGhtre3JcmCKuwXTBkg13sBkdhgyUgSJGISA8CF77m6qQX/jO/uBwwQRLAm+LmnPBtJBhph8JAvCKwwpMhSeFRPnz4tSarVaj/iuQXMAWg5WpL3t7CwoHw+b88MVhvZiSAcicT1jX91oMfSf0Lv+HBEp1efUvnYZQXV1zCwpMbwjJ56/t166ZGuGrXLNmKLJpFgcDpyBFmTNcQYLwIZ1TxJiqLGd5kTXPD58ezoWibwUSTt7u7a9QD6YTKQtvb29izpkth8EsDc76UYZH88dHhdYYIIZDDw0ox9o5EOqQr2yzMhgUBApVLJmhPq9brtF0AloIHGOIbNwy56/+dwOO0m5/x3wBoNFqxH9gusqSRjwBiZgrkfv2mr1dLm5qZ5fWEUGWckyYov9g4eOP6ciQuALOwbkuaYG6Rw3jlM2nA4NMBJfOG+kegDgYAdbcwewRqDr5uESEFIBy2FCPOSU6mUfYe3TVSrVQPwFL1cWzweN88se4D7Y/oGYJWTo2CUAEj++EsKf4A+PmsSG3E3FouZjxrbApaGZrOpRqNhfmDiB/fru7BhSSmgff8ALCQWq3A4bIWK79BeWVmx2aQATWIsnlvWNgmb90SShr2jGGHwO0CE8UDkAADH0dGRxWxYQHosYEhpeqHYo0CFAUOe55mzvjhABKmeGcbkL9+oyf7zhQbfg7rBPmV/7O3tme+VwofCk8KOCSB4P1Hc2A9M5Njc3DTWmWZGJi/wfJmlylrDukeR48csegsFjUn0L/h8CYglt3AcKIXE1Yx9p9Mx2wnXhc0jlUopl8uZ8kZMxPfJtXgVif0DcEQNIBbRxJfNRvTxj39X+/tL+sY3Pqxud6zJZDxHzLE3JpM1feMbt+ljH/uePvzh7+mf//P36OBgpgaBBdh72CAB0OwrFB5yJmy2tx680eeaB6fVatU2EZ4VAiTsJcwWA8uR3+iKxBu3tbUlSQYG2dgkDbwwBFV8l8Vi0WQwfFDMTCQ5Iv2ysKgQAdMwZf1+X6lUyuSF119/XdVqVdJsKLqv2JGRPLDm59h4yCHei0rSpNqEXQU8exkhEonYHDrvuWUT+250GBAqf04ikmTm9WQyqeJNdyp28zuUvO5WRTNFDQ+6Otp6Tc3vfFHJyWzA8QP/7Hv/3nffffU57f8Pf9kSD9c2Hl85RaQf0A9+P6Qnxm+X9HYNRyPtXRnVJHXVuyKpMy6HYoV3AZtHYlldXbV3xCgnAhQyi/fgRKNRHTt2TOvr6yYLLS0tGVtKZcz3EMQJDLDFADaAB93MkqxZDsmVJI91giYyAg1eMa5vdXXVjiKlEAGg4uXOZrM2F5dGKUlzCYfE7j1KrDdAAQGY/ci8UR/MIpHZ2dDYPLrdriVeClAA29HRkTV64WHk3mFovITrjyusVCpqt9v2c9hTfPJBTWA9INcx+xhgj4ePolKSFVeADE6a4jthZ5LJpMLh8Ny1UCCur68bAOV7KbQBev4kJ5qX/LrlneDvxmMJkCNObm5u2glpgOZsNqt8Pm+NR4AEJo9wnRQu4/HYgCr34k848oA2GAxah3ev17NrBXASy1EpUFD4XYAPGCQ8zaPRyIrrxcVFO0wDewsgh3fN3iUmBoNBs4phoWH8H3YGAJD3ngPsiRteAuV8dJQDD5h5ToBGgCQqAPnIA2DWQSwWs+dAXAYM4UeH2aJQpODAMlKv11WtVueGp1N0YiEgtvHuYLGJU4A05GDvQ2W+LbGNdwMYI9cB2CmykNPJmSgVTAQABPq9wd7l+R8dHdkhDvw8c1T5XknK5/MajUZW2BJv/DumQGDtAPbH47GRA1w/pBeWA+IT+4cYyHdTwPK+kMwZVUnOgC33gP+GG15VPN7Tl7/8IXU6s2Yrpg5Ismuexoq8Hnvso/rYx35Tt9/+mqrVE8aaAmYBzzxnMBbkE8+dA4Jg5YmPb+ZzzYNTHkQkErHTCur1ug2jZYExx63ZbM4NyYcppMuNxeJlKsAdbAILhw9yA4wXFc3R0ZE1QrE5eemAC6ooNgy/c2FhQaVSaU7iXVpaMnaKwEfilWQNWyRvJAp+L6ZvFpyfWQarAfvLIr1a0sXTSxDi2hqNhgXFtbU1A6wHBwdKpVI205DEknvHh7R44ia1f/iEmpWvKrKcUfaeD+nYL35G1c//A+1fOT3p+c/9nSkojsUUvHIfqetu1vqPfUKHr79g4JxgzgcQ7mWheCym0BUmAP8bdg5kSDYfxYkfoQSrAwsEEwZT7ytuZFuk7uFwqEajoWg0ahMEAKu+mQGZkqBOc9RwOJ25GgqF5uZVAohIYl5SI9lTOfvGKtYfkw+KxaKd1JLL5STJgLYHvQQ5iiHvAQR0UfR4iYg1T5JlfWKep4kBNtJLajAywWDQWFuUDd4V7DKyLc1aBwcHljiWlpZULBatOYcpFwsLCyoUCnPvgfsDKHn2EE/qZDKxZwWA9k1jHrTs7OyYzxY7C78Lxsh7vz27xfX4ES3YGfg7PAv2JmsIhpL3w/rY3t62cUKlUsniGfuF985aoWkOhp37x5sNGbC7u2uNNzDz4XDYpFiaPykUWAv4NvldyNDsO4Cjl9WZCYykS2KkUYkmPYoXPIleZeB5wdj5wp+inTwBM08jK2wnxRVAjgIcQOVJDq4RZpY4gvIGSKA4YgwYsY15yagq3F84PD00BhDGnud+ICcosFCkiJPe7wlwYq9yAE21WrX9RtzFc0gBBJDmz4i9nrXmQAeYOPII647RSfQqwPqjHMLsAQRRUgB+xCMP/pHkid8UQfwe7CJeiaPgY1+hgHEcOc9wPJ6ePplOp82uhjcUVQjASb7FysRax8tKjiSOETPJQXw/BeNkMtb117+g8+ePaXt7qHBYBiQhnNjHsO7gn7NnT+rMmct68slbdHg4MBDNASn1et3yCzGKosYTWVdbLv6vbv0rHza2NDvBJp1Oq1arqd1um/dnPB5rbW3NEh9ykSSrZpHZsAkQOEOh6fDc4XB2Ji1JudfraWFhQalUSuvr68bksGnxtvb706HrBE8kbxoTaDjgZ2DCMJPT1biysmKb3C9Cmg4IgIARP0utXq/PsQux2HTuHuzFcDg0XyiSJkwQwQ6ZWJp12IfD07OmL168qBMnTqhUKimVShmrDVOB121/f1/1Rx7U9u/8Y/WvJPJEIqH2c4/p+l/+HxS94/3qPP3E1FD/1HesgKChJHHHOzUZj3X06tNaX1+fa3AgmQCqpdkZy76DlGaEbDZr1T/JgKAqyQKtNBswzHPgQ0AmaC4sLJgEVKlULOkMh0OTJQOBgDVNESgpkpCgWc/MGvQ+QYI7ktDy8rJqtZp1edJshIQGsIIFr9frJlt6P1Oz2bSOcAomWD18ryQT/2yYbOE7/lk3BHjALvMISaqtVks7OzvGamFzaDQa6na7dhJbJBJRNps1VohAjRxJUqNoG41G1txF4VQsFtVsNrW1tWW/r1AozM02lGRj5QAVPDvWP8m21+up1WrZe5Bk7y4cDhsb758FewkGBOkbv2m1WjWwyNxVmHfsSwA/z1j6BMzaJ5nDDPvGDdSfXC5nIIZrpSAB1PI8sXXQzIkXlb1CzOD/wzwRX/L5vP2OdrttbLpnpymWSeDEEJIkhRiNaoAukjzXDLMIM4k311ujvN+bdUkzDAwcSRtQA2jz5ACADUsF14N8zDvnv9HlPhgMbBYuXnLsN6wnAAvWEU8W8H739/ct3zGJplarzREWo9ForliFZR2PxyaTM3h9MpmenLiwsGA2B8AeRQXrzTcpTSYTG4UEyKYJEA+1HzOH8kBeTaVSlrO8hxuSBasJPmesTdgZPCDl76PukfNQe7xVhqIYkMzvCAaDNkmAPEMOIcahYgDSfUMVuYLik7iQSqXsUAbmquPR5R74oNRgZeKUtFgsptXVipaX9/Tww++ca9SDwCJGULBxrYuLi3rxxRt0223ndPz4pl58MWdEAOoAsQoCBoDOPfh3HgqFbI6un3X8H/pc8+BUkr2w/f1984YcHR2ZjMbmhEkk0TEkGH8c8rMkC/CczEQHnR84DPsE+yHJ5iOSjHO5nLGnSP5UPfhJqNypDJHdObbSNxhRpY9GI/OzSLLNSfLn9A2C+tVNAv1+XydPnjS2GcbOS3QsTKr8eHx64gaVI1IHQAXvGdfAeBaSNU0G/X5fSxvnjO1ASuz393VYuax46ZglPjYbcu5oIi3feo/2XntB+7XtOaaQJI4M4SVBEi0+PWR8bAg0k8FSehsEyYnuxW63q1qtZsWBn1cYCk0PSCgUCjZAm3fG4GmAKeCKjkkAAAEfaQxwtb+/r52dHWO2mYsryRrlkJhh/ZrNpjG6TEDAVM87pHjzxYw0A1mwStwDp85nYgABAABJREFUTWAkDAALDIO/ZzyzvD+eEd+JHYD1CdsNYGONwTiRmJlfCRDC491sNu07uB9YRApGroNnzD72EiuWH/YMoAEJDiYHiRZARbzgO/h7zPj1DBEMKe+CZkM8XN7niiQMw9btdm2+KomQa2NSBskXtpaGKm9zoIuaOMTfJ8bgmaaxAi8f/mSYWUlz4JtrpsCmeNrc3LRmj6OjI+tipijgXnhO4/HYFAxOzsP+wDSAZrNpibHVahnwHY1GKpVKisfjxqLyvHm+vkgCPIxGI5OHUVhg+7g+z+zxoQkGvzgeeAa+e7sUa4n3QbEA00rcBfTCnGcyGft7NLiheJFbvBWtUqkYU0zxPB7PmnCvnhTBtfEuyCm1Wk2ZTMYmWhAjsAd5yxgqlC8waMrDXsHfAySjcHhLAPY04hR+XsCSJNvDxHPYX34OC4E/NY59iEyPt5Q1yHQLbErkIcA0wBCrAwWob/YDXBJPsGb5/Mt6hGSgb8QfSELe8d/DM5uuDUDnjVpYqFsRSzHMe6SoJVZOLTpJHR2FlUh0FI+vmb0ok8nYXqCwIj6yf9jvNIeyl8gHb+ZzzYPTQCCgtbU1Ax6AKCRwGDOAFixpqVQypoyFBcO0srJiDCzHVbLYRqPRnBQ6mUys+kF2hClgMwEiYSNIACRZSdaQ4xcRf39paUmFQkG9Xs862Nk0SACAae6VnwG0SLPRWLCo1WrVmkCQuwKBgJ2V7n1xgAf+3bNUNCpJMrYBWV+SBQM8XIBwNr/3k0WXM+pXNyxY023Jd+XvuFfhRFK1J79txmzAiAcvkgwIeuaCxALgoFoEAPEPbGipVLLnCFDAp8e6AEDSxYjPjvU5Go1UrVbVarWseKKhxDfdEDCRdw4PD1Wr1QzEc6qZNAOjWBS4foKmD8I8ey8PcS9YPfx/g90hcANIWR/sidXV6SgSGhFKpZLdD8wTKgC+qVgsZtYU1gHAk1FuMDeBwHQ8W6VSsXE3kszLzIdCgjWC5MtzwZfLnyGlIUUxqYKA7E9T8/MxkZcJ9pKsaxm2AlBAxzAyJj50koqfWUnjJr+HJOgncqyurtp9V6tVe2405yQSCdXrdfN+w/iRMHm/MD/RaFSFQsEsP94HR4MUTCH+70BgOnuUveDZFAAtDJGPX5KMZWLt4tMjviCbswb9uDmaWnyDJHuN+2GNAtgzmYwdv8uBG8RPGF7ukcacRCJhcRsQFQgErHiWZmfaY7khtsDce1kWho1ZzFihfJzodDpW6AHmsGXR/Mb+gOXllCiukbiGBxplr1Qq2eErSLnI5sPh0EbXeT8p8ZpCBjsZ64iJNcQYgCYqALkNsoY8wXd62xTPyRSxKyoNkwGazeZckcmzBkSzn9hDiUTCTk5D0qYI9V5lgCiFhzTR+npDb3/7nhYXBxqPhzo4iOrcuTXVanmNRrMTxCBjKP55foBNSQZWKRjZt16FIJ7ybLF5waSzV2g68rkXoD61BYQ0Hgc1GIwsJsDoD4dDK5rZN2AGnsdwGNTiYtgau9lLPmeg2ECg4A9HPSB/opB6VfE/9LnmwSksASc1sYFgAf0pSLAPnE1+8uRJC/6SbMwDXZYE0GKxaAGABA0DBcBlYQIG2Ez4zLxnj48HPL4DFGYLSQUpBgnNj2rAewPrAqPLQqNKkqaJ+dSpU1bpALgJoixYqjtkinK5bMFJmk8Mq6urVlnijxoMBj/S7MNmkqaVXKPRUDqdtsHWFy9e1HU/9icVWc5q97tfskkCvFOSYe5t79N4cKStJ76l4GgwN/CXRgyTHnIrWvvwp5Q8cYNCi8saH/XVr26q/shXVHn6EVsXBC2eB9/JvVBQ7O7uqtPpWHMQR8lefaY6py8RyGiC8uBvMpnYYQ/47fApASKp9pGXhsOhAUL+DoUC72U4nM0mJGB4WZqE7OVKiiLfAMDaoemBqvrg4EA7OztaXFxUPp+3d809waBz6pQx3ldAP+uYYmcwGKharSoYDKpUKunUqVM2rmY4HBqTgnfVswZe0vOjvEiqsFqsaQ8CeR4+kCMPA0BgpmjYgcHmO73Uy7PJZrP2vdwDjDiBHWsNrAmJj+OXAVDRaNQ8y/F4XIVCwRQe2FjP6HHN+MdZhwAD1ic+NBh/GFH2gd/ryHx0aANK/NxMP7ibxAwjSxMVxR5SMKCSBEiiBxjy/SR2nqMkswz5A0qIEfgYe72eSaF4folvjHriz1C1AD/sEe8HhoQAMJOYUQDwB+MdxBpEhzXAA0YXsOHVp/F4bNJ+KBQy7ypxAfDuAReAmuKo2WxaAcU4JlhI9if3iXebeOn7IgDGgOJ+fzoAH8KCa/bTIni37MuDg4M5yZ9njSeWe/Y2BX4GJpe8wZrw18k+hDWmMCdXwDbTFA1TOesN6OvWW1/Xu961pWLxUJ3Okvb2lnR0NNDaWku33fa6dneTev75t+jSpTPq9fpz+wMllDzv4ymj6FAK2ZPeZ8q6kDTXmM2eoTCpVqvKZrNWePEdU/UhqmBwrGbzsjqdrh0SQAz3hTvvFPZ8f7+tWGygo6MZoeTVBeJwsVg0Eo14CYAm1lF0BINBy49v9LnmwSk+NxYyyZmA4n1Q/Bz+utXVVa2uriocDpvHDJmMhTEYDExyxweGtMumQNaLRCI2NqlQKFjVwUknjI+iYmUhAygDgemYjqOjI0tQACYqVPyHXMva2ppVsywqgjl2BYCFl6FIjPw7Z43z/30Fi6RMdehZmkKhYHIVrFqtVrN78WOtJBnAH4/HWllZUSwW04ULFxRMF3Xqk39BBxdf0dajX9N4NE0isOH9fl/RxSUlbzij7ivPaCEcVDyZsgBLIQF73e/3FV3JKxRPqPPsH+qgUVVvONLK3R/Qif/sr2sxV1bnme/MnTjFaBm6YmHRGK6dTCZN7vHVKIGVBMIEBN9QRmVfr9eNRSSQk6i9/AejhJQrSdls1mSUZDJpaw0ZB/+1l/Rh4fGhUuUjnSEl4oMCaJJYPDhHEQDY1Ot1YyDYVwRdGgwqlYoymYzJ8Pv7++Z54melGbPGaBIGwwP+fLNSo9GwYhRAwvgrTs2iwUqSsWf9ft+YFd6Lb3whCQJ4ALJXs2R8L6AROwKyMs8IoOQ9jKgnxCpYd6wOAGusNDDvxC5Ybv+sSI40jlAUdLtdY9OwGbEHPXgm1uFBZD0DzjjBDNaJ2MG7B1ACinyzi5erl5eXtby8bA2BjN1hHfhmGkBYrVazZDyZTIy55WQnZlSjROzs7CgYnB1mwtoB2HrLB4zkYDDQ9va2AUuvqLC3YKQ4ZQvlgncEg0ZxRq+Ct7AgwfOd4/FY+XzeGskoILCBcTTx6urqXOHqO/op9HjGvBPIAaxYe3t7VkiWSiVrrvTHZlIAUBgBRClQaHYjZvGuke1571fnG/IMHm38pawjr/DxdyiI6XKn+IcYicfjBpouX74857+lEZRRhaiCFBVTYBfU3Xc/rZtvvqxz51b15JP3qdFYV6/Xv3Is60Srqw2dOXNR73nPM7p8uaNvf/udtu7BAdw7ecAreKgKFNgUkolEwuwKFIXgDklzDW2TyWRu0oAvHmKxmKrVoiYT6eabK9rfL9l6Zr0AHMntniy45ZZdhUITvf76jMSDXUeB8WQG6wBQyjolBrXbbWsgfjOfax6cEmBJJD5JAxjwNy0uLpqMhzRBZQybwQZAJkIa8wEVBoINBgCAZQEY0txBZctCZBPCTNJ5zTWyiDm7mMoHnxA+OR/IaRRAykLG4ruoPPH3ACSQYQkgCwsLNlwYQIN/hWRBImYWJMmQ5OW9VNIMqBDsJc0NgVY8qXf/yv+owcGenv/sf6vR/p6B48XF6ZnNrVZLsRvvUjAS1d4PH5+zSOA3ohghWbZfekrVZx8zYBQOh3X5xcd0+i/+A6Xu+ZCqj39tjimhkIFl4L0SuGG9uS/ACu+WooaCArABW4E/j5OvsHbQHMA7JoBVKhUbHbO8vKxisWjyIawNgUiagjD+PkGUUR8eGEWjUVunvAsSAbI018W1UrhJUrFYVKFQMDYUGZL36xkagA+MI/5U9h+APBSaNih6fzaFJ2ed4xvkz5FjKabwt0qzWYYEVprParWaeSCR9fndBGb+8SwWP0PyAejBhuH1Jfn6GcQARwCxn6ULUD08PDSmgqLHM4LEsNFopHK5PAfomIRRr9eNwYEN5Xmw5yleaZhjCgn3AiPDuqJhhCYHWCk/6gmA5kEakixMIwoDgMfHLQ+U/VB+P6MUJYW1iLcRfy4zTflzik2etZ9m0ev17DQ19gNFIIwqR78iu8LKE9u4Lt94RoOXHzXEewRoYLWRZPEZBhzmisKQ9exZfIA6IIFCfMoid7WyElEqlVA0uqStrbgODobmu9zc3JwrVCh62evE93A4rJWVFSv6mc9KtzbPCUAFe0uhR0FC3KIAYZ9ikYHZ855qrElXNy6Rq5gWQV8JHn8mJWCLQI0E7Po5x5PJWPfc84ROn97QV796l6rV25VKpZTPT5t5iDGvvBLTyy+/RWfOrOgnf/KHeu97A/rqV++ciwE8e1Qx9inEkM8fxGxyyHA4tBjDz3gFrdlsanNz01h71j0M83QNLuvy5TXddts5Pflk0dRcDmrgGtnLjOYLhUI6c+aSNjayunQprOHwwPzKwWBQjKejR4M55SidgFeYXt9wRsx5o881D06RV0iCe3t7VqETlEhuNHIgLfrRJ8jaJILxeGzHY7IYqdjZmH5IO3+eTCZtADKyJQOGqUwBfiSByWRiRnov8WP2JqhT3a+trUmSBWXkZp4HVaIPEn6sBWARloz7g5rP5/PGDhF4sE6k0+m5IEOCBVgR2GBUkBfYhHSA41/pHPZ1y1/4O4ouLuuFX/tvFBn2Fb+S7PgdyDLldz6g4cGedp7+Q/WvjGyJRmczGxk9tLe3Z0kSpiebzU4Zhr099Xariq+e0s7Ojl1Pu93W0tKSVZoEWi9lAgJhqoPB6TzEkydPKhqN2pxc5C7eOcGSREwV7BtnADIENACw74bG6+m7OQEprN1CoWBsHY1GsETcE8kVaTGbzRoj5cdZ4Q313kfeC+t9f39fS0tLNoEAawrJDqDkQSuSNPYVmBbeV6vVsnUMg83vYl1RXPn5q9JMOvSWEoae8y6ZiIF07M/V5nd7qdyzDuFwWPl83tiDSCRigFua79TnvVwtn4/H0xFGOzs7drzo0dGRtre3FYvFbEwPjYUkNd41YBlwwmQP9gnSG7Gu2Wza/XNaG/fCHuV38rsoYllrNCERQwCUFCaSTBFhBur+/r6SyaStSSxLvuEFXzhgBEaU9YZty3vHeUY8k1arZXEI5sazWMR0YjnsticZUAZgrADOAAaam/yxqzx/lCGmP9Ac4j22g8HAgANMrlcO8LV6BYI8w8lTFJi814WFBbXbDV1//Yb+9J++qOuvn403nK7XiJ59dlXnz9+q/f2oFV80pdEEOhzOT6Hp9XqqVqt2YiFMHicm+oMVKGT39vas8COXeraPuIHqQ0G2s7NjbDIs42g0MqXBK4f4371NJhicdtMD/lmLPv72+31jjieTidbWtnXjjef05S/fqFdeKapYnMbler2uVqtle474e/lyXg8/vKgHHnhc5fKyKpXTc9eE9YkijxnmvHfiJpYGil9yOHmBZ8re90rc0dGRdnZ2bFoJa7Db7eqJJ0r66Z9+Wnff3dVzzxXmbDGA2GazeQWA53VwcKCTJys6dqyub33rXluTvhGO/OlzOwQM2EmSxU5faFJcv9HnmgendMbT6YaEkc1mTf5glAOMUTgc1vHjxy04sJhg3PBlvPrqq9YghV8ORpCXLGmOhSCA+GYFLAAEFF481+N9PCzKUChkXlcqIEA4wRYfEEGRBA37hW/RN1fgJeTvFItFkwUxUMNUAvZhIfDd8mFDLy8vmwWAa/BGeAI870KabsJgJKrr/8yvaKG4rlc/99/qqLY15y9kwW9vb2shW9ANp29X65nvajIa2rgSf6wjm4LKmkaRUGxB4VhcoYVFLZ68VcnTd6j7wvetUQ32D2tIKBSyRhYCHFIRyRpP2crKiu677z5NJhM9+uijunTp0hxQ4buQ1waDgfkxt7a2jDX1sit+XjzE2FCYO3f8+HGl02m1Wi31er25bmMvn9Mcx3qQZqOkWq2WgXH8p/w7415SqZRWV1dtpBP3BfigoMHQj+qAVMgYJ8AFewVLCz5GaRoQ/RnxJBIKSIo9pNrl5WXbkyRrCgGeA/HA2y9oOISdYGYnrBRFGR42wAKNkHjZGbtDEYgKE4lEVCgUrKhjYggxA0ZjZ2fHmLZ0Om0Jhb2Cvw51oVKpmIwLS4OUDYAn+VOEcP28L/ygPDuvxviOed4VDDWFhp/DirzN++Mdev8kSRjmFBbYJ07eH4PdAZMzlmtiUnU0Oh2qT0zjw8/7iQowU96ixf3yD/7ker1uRZI060IGtBKPs9msxUTYItgjFA6sMQBgwCoj9CgCJJkP3bNqDDKXNNdkyc/DvE1jcUOf+tRDKhYPdfHisn7nd25RtZpWvz/WwsKh3vrWpt72tk3de+9Ffetb1+vxx4/p6Gj+mGAKA1Q6P0YQYFKtVq0QQ2HhmQIgsTthjWBqC7HHs7TscdRD1j3FBPYlfo6pNsQewD1eexQkFLDRaKSNjY25PeXz4JkzF7W1taCXXz6pxcWpBYjZ6JJM6YClHAwGeuGFou64I6e77trQt799u8VpSUaEsfbYI1wb+R01AlyAjYzij5jjm3N907NvOGKPRqNR1evX6dVXm7rvvke1t/dOXby4Zr8TPzjseyQS0enTXX30o0/r4sU1Xbp0SsXiyPYbzDrrxPffYPPBnnJ4eGinky0tLZlK56ce/Yc+1zw4ZTCwp5SRWHwC8uN+MpmMjh8/rpWVFW1ubuqVV14x+puXwbF/a2trOn78uF599VXrtGbR0oBDYovHp8fQMYxXkjEYyO4eqFHVcE1saB+sSQiSbJRIODw7YhIKnwVLIDg4mNL0/vxfKk6+17Op4XDYhsp3u13z7NFRL81O4giHwyYhwnDggfFNJu1229g5RmKQzI8GAx37yb+g5Mmb9PKv//fae+1Fe2exWMw6iUk8y7fdq0AwqMZT37EgyYYFTO/t7SmdThuTyv1lPvRpZe6+X5I0GY+1/8pT6j/2u2a5AADhb6LqHo/HcwcZkCgJmsFgULVaTU8//bQmk4k2NjZUq9WMUSEg48EhQAKIDg4OVCwWLSjBxNIkgw0kGAzakGcAqbd/4CE6PDzUpUuXrIgCPHpJmIBeLBZtXfj7kWbFjZfJc7mcXn/9dSvOkHlYF8eOHbO9J82YINYWrKe3MVBkAfYpLNkH3g9Hpb60tGQFHqysb1yisPEqAaARULmzs2PyLXYN2BKe2cbGhiSpXC4rFotZMwPFpm8qicVi2tra0ng8HcbNfuHdsEcBxhQpPAeAIYUFQHxxcdGkSr7TN7jB8viGTtYuMYcYA6iXZAwoexfGHODDuyA2+XvwHnufRDn5CSAPc8naooOea6FwQjXyo9sAKdgFYPR8YU9cgBnzTB3sGl444iJrArKCNcRzRbZEGgZQsk8o1H0R7JthKRogIdjn3rc9Ho+taIOhYv3jASVnwCAGAgFbExwW0e2e04c+9LAGg4D+0T+6Vfv7q3YEaa/X1cWLNVUqOT322M36wAcu6YEHXtbyckRf+UrWSJhQKGSn4xUKBVPUWIcU1oBUb0nL5XL2/llb/Lz3L/N7+D6sO8Vi0UYqRiIRi0tMZeBn8cizfyeTif0sqimFIbEHJREASH/AwsKCyuWgbr65pW9/+w6l0xl7zzQP4kulcEDhC4VCev7563X//T9QMLitXi9nmEOaFd2eSaYwIg5wjSitEErcD8y9Xz/D4dAmaVDoG+ly5Tv29vb0jW8M9f73d/XRjz6mZ54p6sUXb9De3jGFw2HlcjlNJhOlUg3dccdTuumm13T5cl7f+MY71O/3LJZxjbw34gT2C4pKWF7uA1UVwPxmP9c8OMXIe/r0aS0sLGhjY0OXLl1Su92eM6azqJFFqJ7xFlJNkqy9SRkgiMwCS8Gw42nwDOjkrUklM2EFg2G1GhE9+Z3zOuofqVwum6EYKY2gj3cOXxVJkpmVMHkADqraXq831zmKvMYGk2QWAhgXfG74tXK5nJ3b7DsKkdXY+FSPMKOwdAB0RubA1sF+9Ho9VSoVC3Z0cwaDQa38iV/Q8s1v1/7ZZ5RdXVeqWNZyt6v+UV/LS8tKVM+bL3E4HKr8zgfUb9XVeOlpLV/xmlEVkux5nnTPw/juPfUtdX74hJbLa0rc+HYFgkEd9qfvmNNeODKWROObmgD/vvuaQemdTkfnzp2zxjCeXbfbNTlVmm7k3d1dK3DY4PwsYI1RYZIsMPqB+pxyBtPB+qaqZv7qwcH0zO1isWizawHfNFZc3UQRDAbVaDTUarWM1eR5wHB4hsXbYwi03D+ja/xIMQrEQqGgaDRqSYRRO0h6/LskY6f8GkRSZQg78iLf70fuwMjw8+wTijA/hszLrABqGmsAiIBVusEXFxdVq9WMDSaJw1hLU9YBtpICmPeFesK1kRBp9mJfAqZ5pjAX2GiIJ1gGKF78+ebIjlgXvH+NmEaC5bljEYFFobHPg0YSKkAELycNI7DygFAkcuwIrJ/BYGAKBQAXRpOkyLV6Lx3sEvcG0C4Wi9bYxjvjedKwyvWR5Gn4IVkTA7AmwRzRo0AMBiABXlEZiKMUIc1mc26WKfnHHxjDn/HxDPV0/Ub10Y8+ouEwoN/93fvVanUVj4fs+YTDYVN9JpOIHnnkFo1GC7rnnmdUqdytZ55ZsudMgYiMTi6BnADc87wBjwBF9g0d6v1+X7Vabe7Z8MwozthLsK7e502xgWLg9yk9IzQocs0UP5IMaPI7AJoQBG97W1PBoFSv36FMZtGUSg9+sUdhp+BwhRdeKOgDH5CWll7V2bP7c5Y7bAVgBs+Ie5KBPAXzi/WPoh01KBQK2RxrYvQMa4TnjqedFukJPfjgXdraOq+3v/2y7rrrEdVqKbXbSQUCQS0vH6hQaGhvL64f/OBGPfroCcViASNm8vm8SqWS7R9ANwUHuRvCBgwD6QQx5ZtX3+hzzYPTUqlkQYoHRFXR6XRs3ANJk66y/f19bW1tzUk+MBmY+UejkR0viiRAcwWSSzw51s3vbulU+TEtaHN2YddL99zzFr144S49+a2eyUh0EVKlhsNhFQoFA4kkt06nY0crkvQKhYJ59/AMSTLpF2kDTxyzHmGEpBmYP3HihDXXAKT4GRKt9+7u7u6a3IHtAXCBpE9w88ZvAGY8HlculzM2K1Y+Mb32G85o8YYzP/Je+//8b5uEU7z+ZqVO3aTGo7+v+JVATaCE2YApZS6fb4Y5uPyaer2eNp8+UvRbX9JNf/7vKP9Tf1Ev/s//lXnV1tbWLKDDWOGHg4XGrwbghEVktA/JHkmF03CKxaK9C1iRXC5nY4cqlYqq1aqdEESQpkuTwAuTgnxONzvd4n4mpCSThlkDvG/YOfy8HjhR0HjPMvYMJGGCEqwRrIFnUVjPjUbD2HvPxPAc2Vc0AiBxAxhgrAFTJDR+nz9rnCDvDwSgczkUCtnw61KpJGnWEQ6rDCMtyRIVTDrXxogY7DHsndFopNOnT1vhSyKhGMYeAKhBLeFnfRMY79hLfKxlmGjWNwUEbAf+NA8iKTwkGYMN6PCjfRqNhr1PX7SS4Cni8cgCmMbj2aQM7/P3DUPIhJ794ecmk+mBEsyj9QV4vV6fOzWHQhv7yNHRdJA/PnfWFPsFIEtDH6CGggwQTNEzHo9tbi9FBVYjZGJiJOuUfU1Bw/QSYjfMXSwWM8CO1EosR7lgqgTvFDDAZI3d3V0dP76lfL6t3/iNu7S93bPvYy/A5tMPcXBwoIcfLqlUKugd73hNFy++z9YOxQf7j7FRFEjEGGnGLqOc4QsH6PL+IW7wBgNsyXdMO+AZeNKGXOcLOQD/0dGR1tfXlU6n1W631Wg0DBwRN4hRFMgcRoEHNBA40GgUVr8f0tFRx34/ahUAC/KDPTzdXzH1+2ElEiPLU6wD9h/72Pd5IJfzXlk3FEc8e8ApMcwTWqgK4JfJZGJxDHJlMpno7NllPffcjTp1ake33VZTIoE3NKnnn79V58+X1esNJfXnbBHeH4yfF6UBFY8ji33DHwUs98VeejOfax6cErAqlYptCFgI5G0WJ5uHhAVARFKBVZJkZn5A4GAwMABH4D52y57edeeXFdBIW4MP6bVzn1R7Z6jRYKBUcaAbbjqvu0/8W535cyl98/uf0MWnOiYNwpQVCgWrVkkU+GRgj5ACSIzebyLNOv8A0dJM7n/ttdfU7/eNXaHSJFmSXGFqeVaADKRa2C3fAAbbwaajuajRaJiEnUgkDGR6CfLVz/4/7XfQRBYIBHT58mWFw2GdPHnS7mPUbeiHf+tnLGghcVD1eoDhG3c4NYxrJgl2X/iBVv7kn9NoMa1+/zVJM7AB+0liYT1gOWi326pWq0okEspkMnZ6izQ7VQw5NZvN2maH5YIxCoWmJ9Pkcjklk0lryMrn88YwSfMSLMducmCDNDvXGeYKT2k0GtXKyoolE/yNMJNIRt7HSHMBwbTVaqnRaFjRlEgkdN1111lih1XsdDra3d1VMBi0zlm6pzHiwwZ4TyBSIIGQbnU6qTHbx2IxZbNZS9KcIU4BCUOC3WM8Hlth57tWYQ+RpAEnFBS+eYnGJYC6NBuFAytE4xVncHtvrfewArD8fFFYXy/zTyYTm/3rnwUgLBgM2jGJ3l9HUyfWIK6HfQLrzN6RZAoN42ZomkAVodgnwUqaS/Re6gV0IvvB9jMhAcDOmsfPh6cTZh3ml3VJEeIb5JB8WU++ccWDYSR5wBbsGoUY4+7Ym4PBQKVSyRhW/OQ8Q1htQAMFRyg0G5tFLPNyMg1U5Cp/WAkqRLFYlCTt7OyYKkCcBpAQH0ejkW655VXt7CxrY2NZS0sJY+8jkYhyuZwRM6hYgPQ/+qN1feITz2ht7UD7+6t2YpwfvcY6hZ3j49UFJq2g+EFY1Go1HRwcmLWNeyEP+D3h/fDsmUhkdmojiiIgH2mcuOpVDu8xpoAnt1HUzN71UIHASEdHfe3vH9j6pqCF4GBvASRnjOZEsdh0ugL7MpVKWaHMUbSJRELHjx+fm67C4RYUi4wmZN3iMSXv9Xo9GxXIXu1daQRGRYWVRdVjf5w9W9D29nUGHMl/V1thKAZgQilQUBEgBCAIyG0wwRB/7Gn6f97M5/8U4BTkj4RA8KYCp6GFDQ+4pLqHWsfXQ8WYz+eVSqWsquIzHo918raO7rvzi6pMHtDv/5uSutsdRaOb9nNnn+3qj76R0PG3fEoP/PhL+sg7/qW+Gfkzevl7O3ONUbAjklQoFGyTHB4e2gvf3t42vypMVzabVbVaNbYnm81a1yJVKYnQs3nIfngt4/G4VlZWDCDDlLApo9GoVldXdXBwoO3tbQs4sDuAHEA/i5rv4Z1Eo1E7eYekBFDFN0zFi6QQi8Ws8uc7SDipVMqYFQIn/x0WDAkN/1wqlZqylfFpZbecLVhioXkFtgQggZTMewU4SDKP19WsFiAFQECHI8Z9GmkAJaFQyAKwHSBw5Z5gQWHCSXSMQcJTRJNTMBi0GYbYG3jPvoMclpuOXN49MupgMDAQ6M3w+Xxe6XRa1WrVBsZ7HxKSEJ24FD+AUho+AoHA3DGd8XhcOzs7xpgCopijx1rY3d21I1klmX9P0txgdZhuQK/3v+E97Xa71viHPYL7yefzNt6H5kpGxPhZgUtLS1pbW7PJHd5TDhgBhHBPJEQ8uPjrYPe8TE7ipDggGXGtvC8ao/ysYk7DgzGkYcX7dZHYSUB4mjnU42oGln1Qr9etWKcpkeMtASDYpChWYWBI0LwPrjMej9uJbPwe71ekSANss575jEYjs2AxWoj9S2KHiYPhQ44l4ROP8bKXSiUrtLA8AH5oHqQ45O9T0IzH4zmrE4CHDm+sG81mU5FIxNhrhq0DqD2rt7Q00okTO3rooTtVLJaUyWRs7GE+n9cNN9ygeDyuzc1N7ezsmPoRDof11FNR3X9/VNddd07f/37aZGfuHftDMpm0s98p4PDe40dmn2N7GwwGNnGGIoY4jm+WPQvI8V5Mii1pdjhNLpezPBCJRMxHCogdjaZj0ZC4WTPkBeIle0mSms2IgsGJlpaqajZno9IoOFFQ8VETG6a/s6NodKThMGs+TpRaci4KAp5xGrq8QgsY9BI6ORdSx6smqFasb/YwxTHvEbaWOIw1zZMjvo+EOA/eYWwj8cMrCru7u9Zjg8JDjAUPMAmE/oA3+lzz4DQajWppaUmpVEqNRkPnz5831guTfLFYNIbNz4Xrdrs22wsmrlqtand313wVLEDk2U6no0CsqnedeUjb44/pS59LajKczqfjiDIqimQyqb3GRJ//J6v6mV+a6Mfe9luqXPyEDnamw4KRf7a3t21EBIZxmg5gEdjogGpfYQGIGP0DuxcMBpXNZq1SYoEzi5SRU1R3sHVsaphNFjRJkhlz9XpduVzONh6LlmBBpciG4Xki1UoylmF3d1eNRsOSJCwvG28WnJfmmBu6xr0Phu/PrR5Xv/+qzZyNRCJaWEwqefu7NB70NW5VDODR3AQDC6gFRC0uLlqzy7FjxyTJkguNVUiUyHeA8L29PUtaMNR+OgCbGdADcCBJw5zDTDOZAraG5zEcDo2txY+LZEQjFs+XbnlmN3r5n31SLBbV6/XUaDSs2QDbiD8cADCFh46gScLBH5lIJOaAD+8JlgOwsLOzY2CHopLnDfiQZmOjWB/+OrgPz4gi7ZEUkG+LxaIxP1cXR57VxCtGki2Xy7bW8cjxXgFPAG1YFp4LHbqeoeI54BVFovbzkUngFDQwOqgqeO2JD/1+36xEFBPI6twTjCe+Nwblcz3EU+wI3W7XCk1YMj9Gh4Yiz0pzEAl7FDWKdcx9eFYOn7Akm07CtdRqNfOxw5bv7u5qZ2fHPKW+mcbbAAA4xE484M1mU/F43PYYjCN/nzmkqB+7u7va39/X6uqqotGoLl++rMFgYHYdGDhACt5v9lEwGFS9XjelAyaLWICNgFw29ZK2FQhI9fqyAah6va6joyOl02k98MADuu666/TEE0/o4Ycf1vnz59XtdlUqla6s8YQWFuYbhpeWllSv19Vut22vUujBUntwRYMQzVmwrvR0oDJStKBKUchIMvKD90EcBCh6NY69TaFE/KJg9Gw/9gIsOOQJacqw7uysaX9/Qbfeek4XL95ssRdQzvcQR1D9FhYWdNtt53V4GNXOzikFApO5uMk7xePNOqaQgpVFDfANZ5xESHMs74A9xx4lN0lTAE9PDd76UChkh1LAAPP7iQ00mRaLRaXTaWsEZgQnMcMXFLzvq4/w9Raber0+19PzZj7XPDilctrb27POyEKhoHw+PzfKherJMwwEsEajYefXS5rrhiWQFgoFk1/O/NiWhsGcvv6vy2o1LkiSgeBoNGoLHF/mwf6Rvv5vTuvn/7OX9Y77J/r2b85O1uBz4cIF8/T0ej2b38g1RKNR84uSlPF6UoHSqY2Xiepmf39f9Xpd8Xh8bs4oi4xESfUIq8HmbrfbBkZ4joACggXS7t7enk6dOmWAVJodEeo9cvgz6dikGoThoYoHIBNkxuOxnTGPvAbTiY8Ymen4J/+SVsJRrTz7hGLjIy0VVpR/+/sVK6xp+/f/hfr70yoVBpSGOg9wYW4jkYgajYbN6RsOh2q1WsYu8L4lWUAgqPJhJiUNH7DXPEfvx2RiAbI0SYv3DsPP3/UME4EMIOeDnC9KvJoA+AVkD4dDA0lYM6TZ2B5vT/GsERIUQKpcLs8NS6dhDSYE1hmmBC8i4AgmQtIc2wJIosEKjxgBHBCA1A/D4BswksmkSqWS3TdA2jePIQvu7u6q3W7bHrx6tJjvaOddsg8BXoAI2EqKvtFoZImc0U0kaby2MFOAP+ZPcoIZzxSwhTeNa+fvYYMg/pBcKSqIEZJs9FEmk5nzxaHi8D5Y276IhTnnWZKssSWgWCwvL9v757lxn6w/L/Xy+yjYiQ0UEfjdYPxQKHhHFAc0PknTRI9/T9JcEXjx4kWtra3ZvTLZwLN9gGzYL5jBQCCgbDZrzwePM4QAewUm3zf84felyIrFYldG3x1diQMD1et1Y96Z4kI3PY1RsVjMVICpQhdWJKK5dzCZTI+TJmf494v6wLOD7UZp9OMDkZABstjmiAcokcS8/f191Wo1U/6IZQBV3+zLeojFZkfDDodDm+xBsxFNTABY1iIxPZFI6LXXbtVNNz2jb3/7eg2HESMuiCsUVCgi06JmVzfffEnnzt2iYDCm0WjfYjU/j/rCP8RbwDf7jGdI/KTwYZ0y2owTsFA0OKSAEYP+aFrYS98PQU4YDocWwyk+ffMcQBYPLxjI52VOa/QFC7nAM7oc1f1mPtc8OG2321bxxuNxHT9+XIlEwrxXvHg2MRQ6bAVNU/V63Whtb4LGY8VoBwUOdDL3hF7Z/SkdNFuWwAKBgNbW1vThD39Yo9FIL730koEMftel9r06mfmGFpY/oqPDnnk5T506pd3dXVswyIowMXTz+oCC55FFQhBGfoJNk6ZeMeaZwsQgvzMWBL8ayVSSsREAAarISqWiRCJh456oXlnk3hBOdcj14EcD0CC9VyqVOe8NJ2IcP35c5XJZh4eHqtVq5oEkOdPwRqIgeSwtLWnz8W9q5d0f1Y0f/zlFl9Ia93vqbb2mzd//l3r1O78vSQZC/EilbrerTCZjflBfRVONeukFKYhgwDVJsmQIkOC57e/v6+LFi+YHZvwYVTgsJAkLGZjfzTUR4P24GphZwAY2F4ILnkTY7nq9LklWEC0uLtq+oJGNpEABwnw7PGgUSSRnwD02CWRQfJypVErb29vGNpNIaZKQZKeswKixzwAJ/D7+l0Asya4DDxY+VJjueDxuHaidTsfGoUwmEwN1TLXo9Xpm5QCsM9kCZkGanQTDd5PgGeVFcsTDSRJfWlqyIyo3NjbM0sOeJgZRuOJvo/ERmwSxgYJDmo17wRvG7wSs8YF1Qv0g2VIA48Xm+SI14vOHTeXZwH5iU+h0Onbq0JQBXDaJnL1DAYEkDPPEPyR/lAneOcfohsNhra+vGyuLxxaPtzQ7wAA/LAzp2tqaVlZWzKdILMIGwAeWmrUKOOl0OiZz+mH6TIfAPxgKhZTP562QpUmUuCzJngHFPD7XWCymRuPoyvPvazSKWCyQpsXEgw8+OMe+4pmNRCJXDswYqNOZMeveO8h9e+CMRYkYhzWCfICqBEBD2SJeAjKJJd53zTsiVvl3Tg7ndxNTYbjZ8744R6WCAWw0GqaYcC+j0Ug//OFJnT79nH7iJ57SF75wt6TEjzTREXunpENIH/nIHysQCGhj421GFGE14xABCnVGlR0eHs7NvKbgj8fj1vAM20rukGQKky9cKpWKYQ1ILECrJJuvyzoDyC4vL8/NgS0Wi9bjgN+Y3M2UA66H4p84iCICLvLvIhQKWTxk/b3R55oHp+Vy2bwTSKmwBVSFfqOxUTnpiCQMtX7q1CmrbvCGwZju7u7qpnf0FdKhnntiWaHQ9LQmvu8XfuEXdNNNNykQCOjuu+/WQw89pEcffdQ24VPfS+pP//imTtyV0IXHB1pfX5ekOeYM36AfeMtIFX4O/w9sBn6sdDqtdDptVQxgFwYC7x1AHdYE0zm/jyaK7e1tayxhrA5Vk2+28LQ/yR+fGxVrMpk0WRZZkTmAeHtIZIAkgj/VmyRje5BeYC392C9ATOf5x9V4+nsGFiTZBvKdoUiB2WxW5XJZm5ub5lOG/aYSrdfr5gUGqMJSAga9fQR2zTMisMLpdHqucIJhpooHPPoPvw+mjkCPrxUmjcYTpglw/dlsVul0Wo1Gw4oGigSkMwKg9xIjnW9tbc35oUajkZ3pTmJn78CmAyRYwwRlRhz5Tn+YSCp03vni4qKNs2K/U2T5tYN0hYzG74XJ9okH3x/BlGsDkBDY8URKs1OQuD4KOQ8kYH6QyQGQFJdcvyTzrHEPXDP+XJQMnjcWHa4F4E5i852ysFD+iE88j8RBWDlAHA0tsFke1MLGei8ao+cAYN6Gw7XAqNHkgkeW+yGhc80keVgvaTZlQNKcf9qPAQSsAnIoVomZnILE+vZe6X6/b+AFoITiUK1WDdQDQkKh0FwzGX+GrMxzbrfbWllZUSqVMnBK7KZ4waPZbrdVq9VMnSGmYYWYelWD2t1N6pZbNvXss9cbqBmNpkfGsrdWVlbsudHglE7vqlRq66mn3mIs/mQyUSqVskINVhJVxQ9aT6fTc0CH94pdhb0Fiy3JGD6IFsAMMXh9fd3yCNYyGFd8ykyU6fenR/VyeAqNVX4KBHsK8MS6IZYHAgFtbh7qK1+5R5/4xGP66Z/+vr75zbep15s1cA0GA2swy+cH+uhHv69yualvfON+bW72FQ6PbB1ieQBUU5B1Oh1jXYlpxDpJtl+92hYMBufGvXF/qDxMzOB9b29vmwWR+MN6pminZ2Y8Hluc9n5viiKaNIm5nlCgAALkw9RSfLGf6BngGt7oc82D02KxqJWVFWtUIFGTjFgUePCQJwiyMKtUNjTYSDJQdXBwYJViPHGoYTCn9uW2gaxpB+UtuuGGG+zlplIp3XTTTXr++edn54W/Pn1p6ZzMt0kCJ1H4ShvARIUGqKhUKhYk01fOt/cjVwgqzOHElzkYDAzA4gnlyDYPaNjEMGw8D9+xif8Lz5kkA6IkHBpOACw8R8AanjVkBp9YYB/YnIADTqGQZNIcSWYwGBgI5WQXmlGwGfgh18h71WpVqVRKxWJR6+vrFqAobnZ3dy2Ik6R4BlwHUjjJhxFcyH0kbjY7kgnnxeNnI8mS4JD3CEC8d753a2vLigZpGuwymcycRA8QByBgumcv0MABYAVEwYCQmHwHOe9Fklk7POA6OjoyryxMICwke5WqnUYggDU+R8/uIN3yDilCedc0FuAP49/xtjJGikkFPGvvCYVFLhaLSiQS5pNlD8KScd/e8oA8j08WidD7pllzAEZpxtQwnxGGzDeXYAUAFPl9yHqjwKAYwrqBTQErEKCCPUhMpOmH74ftl2RJEhUFRQTlxSslfOLx6ZG8FGt46WFjMpmM7Qn2M4UZ7w8Awz8wxt66wvqjAOI9BwIBiwX+ZCX2E/Lo+vq6eX8hMhYWFsxaQNOnt3CwptkbTABgLeKPl2Q5CU+8NJu+wp5mn0EMUIj5z8xOktTLL9+od7zjaaVSJ82mwTgzvKvI9IC3aDSqt71tQ3t7Ub3++rqi0fGP3DMqQrPZNCWk1+vNedVRy1BAaAYCwGI1wtMKKAqFptNGarWaFYOMayO3eP8mzwnPPYUbzxCfI0cRA7S9tYYPBRSxNRQKqdEo68EH79cHP/gd/Zk/8x29/npO587dqL29ZQ0GfUWjDd1555ZOnKjo4CCiz372Bm1v7yufn74XCBp6XohdqFwAU5q3iLfkKuxoqDrergIIBJzTaJXNZtXpdMzfyVqmmRhPqx8LRnMs/RzS7IhiPjQzeWukZ0h5j6wx/858bvPWnDfzuebBKdIfiZ/F7GcvAtYIWtVq1Sq6wWAwF9w8S+AZMekK69Y/1FgRTUYjRRbitghhC/yHgI802+lMg2koOPWhIIcDegKBgJnsuZZsNmvsIZUZzSpIU5jvAbi9Xs/GekhTeQMJplAoGLihk7ndbpv/jk3hPT1UykgVkoxVYlHCpMTjcauSYQ9p7sB0j2EcIIo1gVE9nt0g+AHgSIySrPIDeLHR8RwR9DmvHQmcTlzPANDocvz4cUUiEauc4/G4rr/+emMD8GTR8IYdgKQOYGJd8f+9yZ3NzCgpbArcP9YHigKkVtgufJQUATwXqm6AF+sF6wDgbHNz0wbhe5lWkk0mIDHD6i4uLlpXMNdAQkUylGZmeQZo+8CMdE6zGazO8ePH7QCBnZ0dC25ra2v2s6xZGInJZGJA0HvtsMr4ZgSADU0cvvhkz3KvqVTK2BqAPNI1DATvmnvHCsS6JsFSOMGS4TvkXXnrBu8BHy73BcAFdMMwwwr65gpsJ8QUGFz2xPb2tmKxmNbW1uz6ASB7e3sG4ognXItvwmBfYwPimQNGfOc+jVZMzgAk8U4lmYWJ4gPWjIKUAsHPjPRAH7CLYhKLxVStVu3de98i+4EYUywW5yRf4hh2JoCft0bQVEphShGHUoQthWstl8vWuEPxDKsqyVQSCIhcLmfXQgwOBAIqFotmGXriiZTe/vagPv7xS/r614tzLDLxEMYO4JRMburOO3f0zDOnlUgsKxYbmZLB8+EELO6fYo04DSDH14x/HWbSWwRQzVgfngjiOwD5NPEBlskxSNrk1kxmeqITxymzb71igbQNHvC+WdQOiJKXXpro/Pn36ZZbajpz5pIeeOCxufxdrWb1ve+9U88+m9H2dlPh8Gx6i7cTsCYoCGClJdnkBWxCAHtiCHuM5wm55osyWGzfcEmMYE2Sx3xjWjQatX1H7CE/YIO4uomYuIg875v0ut2uNYBCPpEfaOoj1r2ZzzUPTqnUoJ3xEUmyZOGbNkhex48fV6FQ0EsvvWTsBT7DwWCg119/XbVaTcvLyzpx4oS9jIP9iCLjhiaxsDY3N40teuGFF/Tyyy/r9OnTGo/H2tzc1OOPP27zJQeDgQKhqW+t251VtmwYQBpVM5IEwX5zc9MSpu/ChnVFbqThi+C6urpqwGF1dXXudBZGjJDEmKkmyRgCktXi4qKdmUuSpClpMJgOAWZGI9+HgR0bAiwDR7MCqH0zESAOhsZLjyQTEhEJd2lpOneO6s9LoEiPTGjw1yXNGhV6vekQ6+3tbUtEvI9kMmnsNzaIZrOpcrmsUCikWq1mJnDPsgCQsDMMh0MDhX50Eb6sw8NDe2+sW0AEjTLhcHiuaQbQ7RsJ8Fnx/9vt9ty57t5T6G0X0szrCgtB8G80GjYPl8MFqNZh+vBbelaW90TCYE154MVcU8BBIBBQPp+3KRvMfeU72TPYAtj7g8FgztMGGEHh8HJsIBCwwM1Ip3Q6bc8V1pw9AVsHww9AQSLD8wWgYQrCxsaGKRj9ft/WCWuRQA7Y5DlQWOHbhfFvtVr23f4s8FgsZuNtYFfYc1wvIMt7PAFGDIL3XkeSz8HBgdLptAqFgtk/iB3YeziOl2dEkYEMjDcZfyEJcnd3V8vLy9YYCZnQbrftJKV4fDoAvN1ua3V1VQsLC6rX6xZDvc+cqSeVSkWdTkeFQsHYYZhumHampRweHqper2t5edm8tDBA2FyIgdhGxuPZwQOM3eG5Yt+BxQM4kAcA571ezxrOeI/YVsbj6Zn29XrdGOhut2tg8eGH79aHP/yEJpPn9dBDbzVWjHVJfB6NRspma/rUp85rezuhxx+/Tvl8xNhevIx4ThcWFrS7u6uNjQ0r/lEC+G5fENbrdYsF3B9d+IAdni0sI7GRmIzqwUmK9XrdQD5FGf/wbH0zF5Ymr1y1Wi1TkSiUIZz49+n9BPXsswU99VRWy8s9pVKTK4VeVMNh9srv2FO5XLailyY+7tMz+N5+guIESPQKAQQQPt1IJGL5nftmPXK9sKSQMUy6gKzBliPJnk2tVjPyAyWSPY4FAbCOzWs0Gs0x394uwLVzPYBb1o+//zf6XPPg1J/fjdwIG+iZHwZ4Q/cfP35cyWTSxseMRiM7Pg4gy0JgYyYSCV16Kaz7bjvSHe+P6aF/2bPKrNls6sEHH9SZM2fUarX0wgsvqNFoWNU3HA71ro/ENVJcW68EbZ4i0jiJhuQEaCPI+dEk4XDYGGMqG5IA143PKpfLKZfLGQjzzAvVPawUDQ18J9UtPk+eMSyf70iGnSFhwybAcsFkUO1xH5LmNgAgJBgMmiwSiURUKpWskcDPd4zFYjYAHj8NjAMSMUkYoETghmFC/iTgAFypLpGCCUSxxKLyZ96j7PW3KBiNqdQ/1KixqcpTf2hJWJJ5OGFnaCoBTAWDQTWbTTvfGlYBoMx57F7mJ2AAbiRZckO+olkHOZWqHqaEdYJH2I/mYg2yZ0KhkI1XoxA7ODhQoVBQoVDQ8vKyBTIUgMlkomw2a8ULJ4vwe8LhsDWCwJAR6GjygwXO5XI2qot1OJlMbOYecidrmPXIdbCHmdCBJ45EwTUgp/kGLN53u922U9xYTwBdwKWfUkBCZ/Yscne/3zdmjGcDS1QoFOw4ZPYgaxyw6O0uxCj8y6gYrFuABMCcUUPEAphvbAQ8C1/o80yxM7CeiXdYPGCD+dAAxbsidlJkEfNgexlUz75BKYBVplCiMJRksQOLDEWcNG3sYz/j0WbNIR1T/LJGANY8b/b9eDy2WbokYdYGRTTEhm8koTDc39+fG9lGbAKcU6TDrmF/AOxKMjCP0jMajfTHf5xRLPYOvfe9f6RyeVfPP3+dXnnlmHZ3+6bOrK52debMJZ0509TW1qK+9KW7NRzOJkiwvlGuyH1Y4JD78WwTP1EgKQjp0mbNsn/5O0wpofmHtce9AN55h/4ULt43LCxSOk067HP8wb1ez4gX8mA4PGuMRPYm9zIdZsroxxWLTff50lLATvvq9/vG7HpGnvUIEQL5EgqFzF7HmgD8kfu4HiaZwDDDyCP7c1iFHyN1tQ2Efcw7A8Czniisscl4UowYgQ2SPQTT7a1rxDSafK/2zwPOfQPhf+hzzYNTEq2nz2FGqORI2tDdflg37ByLDHDV7XYNpAEoQqGQWrWhqv27dNt1z+gHy8c0Hg1tcZ4/f96kT07z2d/f18rKirLZlG5/y+PamXxU0d70ZKhut2sdcnRA4sdChgBE0UmL95XARfKG3RoMpvPS8vm8sUQLCwu6cOGCDcgFGMEWwZqSTDhnHoYWtiOZTBo7I83OjWZTLi5OTyphyDwVNxsJZrvT6dihAbBBFAkwNgQCSeafo8objabzaAHKAAu8e77KlzTXSU5Q2dvbU6lUsmCHJIKhm0AQCExHHL33ve/V5m5XlfQJZd/+Y4osLuugtqXBwb7iyynFMkWVPvoLav7RQ+o8+ZA2zp81Qzq+HDrpaVTCW0dCA4Bw3CcVP+CCZIiMvrOzI0k2q5dAhJ8YCYoOTtb7YDAwkMC9eg8j3eneO8f7pumQdUjDkD/mEL8iz3pzc9MSDz5hQAOAhWDNSVAAaUkmg0ciEdXr9blCjgBMwGQ/U9FTGAFA+N1IlgzYH42mpwZxIopnZ2CKsBRgVeG7AIkUN4y+8esPdpjJHTC3vBOSKQwYz4afhc33PvpisWjJnZFx7AV8b/hbvazZ6XTm9oRnlVgLAGJiAtM08Jd7byjNmHjbWYv4FNmLFDCTycQACOypH94N++MnXCSTSbMYEUNI4KwVmLh8Pq9CoWB+Yr7XFyI0h2A1YGQVw+eZnIHkzDtBzvUSN2ubNcd6A1RTfAJ0UJd4dlgoAL2DwUD5fN6eG88DgEQMeOmlJTWbi7rzzrN673uf0bve9bx2dxc1GoWUSPSVTu+r1YrrkUeu1wsv3KxoNK5odFokVatVe9Yw2gA91g+Nn75pDNDs3y/3jOrAXGkKHGnmH11aWrLCjBmrhULBRmF50oHvZL8zrhH7GfmCJiEYXD+5xB8TDkvu/Z0UTul02vYx2AESh4KQOIPliffc7/dtRBq+VqZWYIGJxWK2ZrEPEe99ExN+ct49igrXhXLB8wUss675vY1Gw9Yryip4CCUL3EKTGjPNKaiIFZKsoEPJ9Pvp6OjIcpafUPBGn2senMIqcjbz9va2Vf4kVhiw8XhsQ9cbjYYBtEKhoH6/b0dDMhjZsyB4RYLBoF5+8S1675nf0vs+da8uPR6yZgYaBqiWCFDBYFBnPtDSQmBLzz97SsPh7NxavIwAMDYITBEJCW8Kx9/hU2HIPk0Z3C8Vl/fkwLIA4v1GZaH2ej2b/0oVTGL0cgzsI3KNJNu0ePBY0LB+jNeBlfCJYziczWMk4CPLIOdsbm6a5MCA/3K5bMUEAIcAMBwOtb29bcwGrAmVHZUqJnvugzlzBIBEIqE7P/AR1QcF5ft91Z74pi5864vafOWHikQiWl1d1fptb1P8tvuUe/fHtHz7u9T5x39b4V7XGNBsNmvgFHkeZiGfz891YVJdw1hIs1NWeP6BQGDO9wVz5rslkXBKpdKcf4mmkXq9bvIkn9FoOjGi0+lYMoExk6RSqaR6va5XX31VoVDIABAKgQ/gXMfCwoKN5cLD7Q8mYH0glwI2kB0XFhaUz+eVy+VMiiXZMR+R62BN0e1KRzV2CM8YSDKFgQM0/Exd4opnXPAEHx4eGuhEtWg2m3YEKEUHCQrrii+gpdlZ1rCFvDff8cqhBTSFUEjC9GL/AGBxnRSIPGdJdn/YEWj4A2wRk/g5ik4vnwIceJ7pdNpiCUCf58yap/sf4MozBuzhz8fmIc268ikQKDCIGdwbAJD4DDNeKBTsdxBfsDBIssZYz4RVq1Xbn1htOOEM1hNChPFfzF323lhiXywWM/8/IBbfLEU/zbmwrQAJfgbggyWI5qNwOKzXX1/U2bO3KR4/rjvvrCmd7isalSqVtC5dKqhSOaF+fzgXT2DZiCNcDyckrq2tWZHim0NZgxS3tVrNwJu3CwHGANsofF7C9812nkiih0LSHLDCFoNKA4Bj/bNW2Os0Ck8mEzuBazKZjolDTaDoo3iTpgUIPSk8m263q1qtZjmB/Mtzm0wm1hgcDs9OTeR+UAHBIOR+cg45mBgOwM9msza6Dy88DCcFBZYWrg2VACYZ4oifh6n38YHiiOZuD/axB1CIjsdjwzewqMRNekQoYN/oc82DU+QhNg6Lk6ouEomoUCjMVea+y42FgREbP0W5XFar1TJWFcA7Go30x48c6vh19+vO0mcVeOdf0HNfH1lFM2186thLTCQWdPt7d3Xzypf1yv4v6KXvnFf+irSXyWSsU73T6ZisKU0TFEESRsVT+NKsW3hzc1OVSsU2tt8I3u8F2FpaWjIpFdYLFgAZB5CNf4fnRmKEpaMyZog/xniGK3MEpK8SvWkbALGysqJEImGjpgiMBFWqRCT2Uqlkp2HwvEgGBBqkaAAAMhDyB/YBLA7+GcA0BoNBtUYhPXiQ1qi1rR/+47+tfrup0XCocrmsbDY73dBbF7S/+boufv1f6/Sf+3/p1r/093X+s39LlYuvWTBhs0uaY63G47F5cwk2sEIMf2edY/RnuLd/f5PJRDs7O3PvBWBJMMbXBoMhTYNiJpOxyRGAJBhyAAGBul6vGzuILIxygaQGyOa0HICVtw/wuwCAXCOd84lEQu12W5ubm9ZJCqNL0UBA5Zp9hzcJzMtv3p+Jl8/7X2FCJFkD18bGhsbjsfkuAaPVatVAczAYVKFQUCQSMb9jOp02dQD5EFUArzfrwJ+mw3ujaQzQg3+axieALutoNBpZR7z3ZZOkmSABSCFm4ptmrSAx0rRFnIVF5fkD2LGmEBOwZvAMJdnvwnrD2BnYbiZMsB9hIiXNFTl4UYnJgA3ujdFgrA2KYKwUKEGVSsUKVopyigdkVJj+fr9vDZTYKXiHrG1+jmkigDWsOIBvbE00yvGMAEP9ft/mTZOnYF2JYags3NeUfEjqD//wyrHM7r1lMgkFgwMr3skl2CgAZqxLHyPZKxwVSoylQffqIhTm2PulJ5OJHUPqG5loDkXJY2IOvRTkCN4JhTVMLYAZ6xPxiJyHauSbonj3sLZeloakIFcw0QMPPAVlNpudiyeoFX6+q1cWyZ/tdttULGKU98Szp1AwYCEp2OmT4DAFmr+Yf16pVLS7u2tFGVOGeN+8r/F4/CPTAyCAiKWw9lg9wEmQXCivKG0w8TDhjDF7o881D05hFY6OjlSpVHTx4kUDdWzg1pXzswFQGK8Ba/1+36pbEkEmkzGTP7IjbEc4HNa3/m1BH/rZ9+tM+de09ul36dnnrtNLj+xbAG6167r9vohuvumsMsGnde7w5/Xovw0ofqWioSnEs7r4bfBRspCZU5rNZm1OJxR8o9GwoeHSTAJnGD+bnUrY+4YkGTiiiuT3wJgAurl3FiTVYrFYNI8viY+A7yUgrlmaHXEoydgIPwsQFpgmHoIFFSFFAt2LSFEkFHxTwWBQp0+fliSbmkBHrCQDjQQ/Kkg/p29hYUH5n/hF9VsNvfS//A01tjdNasxkMlZhIr+0ty7qqf/xr+iev/1Zrfz4n9Vrf/8va2try4A0UjANF3ikAUaAaW8lIXHiRyWweRDHKBNYoEAgYIc3RKNRe4ZU7gS2VquljY0N+x3MWOQdecYKCWc4nJ7cxPxU35lN0gD4IdG3223V63VjOHO5nIEawJVnZbwH1XsRGebNOiToIjN2u11LFIuLi2bhoEGImcVI9rBXw+Fw7uhPiicKLYAta5JrZp+xNxiZheeRooeiilNYkNl57owp4r1jkQB0+lmPkuy/wdSwj4kDABzGnFHssAZgWWFQaWrD1sD+IKGhxMCW0qkMUPOJiucJk+1PgeOeJNn6YD0CBCSZVEqMIDax1mFHuV6AIgwdxT1+QWIfoHA8Htvsy0ajYdfLOoABl2SMK8+Efwck8x584wjACz88xSmgmSLU+9J9Yw8AiFgFiYJkSryG8UVR8XYSPhS/XgZeWFiwGZhecWMWNkwYoA8PfyAQsMMseJ4UEaw93zCTSCS0srJi0jQxAiBKrvC9Ffw3YhRefYoA1ny321WxWJwbicY7g5TxMR3LEM+Q38s+x7YyHo/t0A32JOOwUHVgb2FOvaWDe8VbzTtBBeXdgSXIx5lMRsVi0YoI8gFrlzXq1xq/C0KGn+ed8TwODw/VaDQsRmHZuprZxnZGgxv7GmDKeuEd8nuJ1+CaN/O55sGpNGsEwTTOQmbDkxD52Wq1anQ7w+EHg4FV/Gx0XgjSKYuBhfqN3yrqlvs+pVtvfF4fOvObet/biupNSgpMxloIbCmiXe0G7tUTr/8/dP7RQy0uhNS/MnsSho4EhSeNQM0Lhn2hGvRdyJcuXTKfy7FjxyxAsynwouBbBMThbQV00um6vz89/tOzxYlEQvl83lgEgCmbotvtmgWBBQtj7QM5wJHgjATCeCn8r7w7ScZScM8YxGGiSFAAUkD68ePHTbq7usuQgAogPzg4sM5OL7dLV86/LhxTYv16vfq/fUZRje266aTE85pIJOykpcjgUFvf+C2d/ORfVKKwqsP6tgUzqliCH4y8Z6zxU0mzIzvZ+LAeR0fT4fqwsbArjPiBFQdYSTL7CCBwcXHRGEmkGtaf/weg58fTeJkcoMwHsAJLCttFsk4mk8buEEQZ1wQ4Yb3m83k7+/vg4MAYLIoa3idgj6kBPDv8tjRkABJYs6lUyiQ5DuMA2JNcc7mcTStgP3kvGCwae4NnRjMYSQmWHTYEJgY2UpI1e7AG2a9I7bw/ZHhOxLk6ucMAtVote27VanWOkWRsDeDFN1VRXBCf+HOYLEA394tPEDA/HE4nUwDEvLwJwMhkMspmswaOIArY21iZsI8gZVOYw5ACTrBt+aOYAaPERsAOahKxCHABsMNvicfOg26AHZ33fjapX4sedDGqEHYOVg4blG9+BSzgC+73p82L9Xrd/p3iFpUQGwuxE8DuARXxFUaXuMyzgUFkDeDfZG/DrksyfzhrxjONTCaBNYfNBxT6aRFIzOw18h4ec1h/7BLEewor3i3XRDwl3hHTvWJFvERe975yP5HB+7S5NogDYjAsro+X7BUv8fN3uFavPHqvN0oPwO/fNULNM8QQHKwb1ixFIwSc3180lhEDUHlYC8QxSdb3AJvONBneJeQHuZZ492Y+1zw4hSVExspms+Yj82MNAKudTke1Ws3ocBpHer3pefbLy8uWiEgUvqGCF764uKhut6sX/nBPL/zhW1W+4YxO39bVwsJAk4l02L9Vr79SVO2VrvL5iDKZmIGDWq1mQ/OxIfhu3+FwqGKxaAsaRrJWq9nQdYbrQuMz1B/ZDz8c/k++g+Yjz1BwHi6SDczDaDSycUkwc3hYOK2CweHSrHNWkm1KmGeqQGQQpPlSqTRX9bF5afrxHrJsNqtMJmMNC4BL/i7AAqmPJEeCrFQqKhQKKpfLxiZyX75RDtYsk8mofN/HdNSsauOPvqdoZFpQrK2t6cYbb9Q73/lOs4w89thjunjxogKB6Vim8evPadw/1OmPfFKv/JvPWhADVCGTM35rMBhoc3NTk8m0053nhkyJBOXBeqlUmhsxBXhErsMYD+DGm0UAg6nJ5XIWpLCbFIvFuecMe0kzF+8cIAZQApDSscy/Y6PBo+Qbb7w8R1KGEWVmcSwWM6YWoACjl0qlrODie/D28tzL5bIBWZqafCMkDSoUqv4ISpIulpWtra25vUvswYLDtbNXSGrM+8U3hwyGRxTbDnImEiKxy3t2iRWS5lguSXNNWh44o8SQxAHaSLyAGL9WsSVgDcELDGiA/eP3kqDZs6w7wJpnhPk7AASkSJQLpHrWF3/GO6NI9P56GF1iPgCSYgq7CevEP3diFoUDQHI8nh2dCttHIyvMNgwiUwxYC/l83u6beaeerWKQPaoEkzIkmdee/ABTi/oCo3v1PF5AFYUQaxi2k/tmP1AYUygSR/iucDhscQDg6hUdfhfv0RdKrVZr7ohiaTZhh+fk/dXkJYpbbEMwt753IBQKWY73aikEDX0SuVzOWEL2DGsQ2xjWMbAAgBm7BYANkIu1QpL1crDvIHWI8xTd3i/trUOsPQ6MkWTPnvXFPeKnB5t4+xt/B6bXNx2ybnjX3A9FImAaIAsz7YsG9k84HFapVJqzSUmy98w7fKPPNQ9O2XwkewIlshbHb+Lp8MxXMBi0BipJBj4J/JyQRGXP5vOMIZum8fhQZ5+MKByOXKk+d5XJyCpUGCeM7QRaZHcqYDwyVB/4xwB3+GYAIH5gPiyITyAAXIzQSFiZTMYSkW/8gUFi8dIs4TvzYrGYee9Go6nflo1NUAuFQlbNc+/IVPwZz7tYLBpbSKCLRqNWVXP9zNlktJEf+4JMybOAHaDqlWQjjUjYo9HIgDYsEu/L2IOb71LryYeUSafMg5NMJvW+971P9957rwXRXC6nS5cuGVju7XVVf/YR5d96r6rf/O052RIAjT/UFxDMadzb29POzo663a7W1ta0sLCg1dVVjcdjnT171t4DRQ3BFUaP5IhfDK+bJGPmYB4lqVqtGmj0zK0kS7zYKbAewFjRMIJ0yJqkyocpAUgD1AhiNIJg0eC/4YVEIveHU5AcYAlofAA88MGn5xvS9vb27L9xT3iwMfrTOBiJRKxo4XvxAUszAARzAeggYbGO8ENi6cB6wUlE7C32XrFYtIYeGjP5Pu4R0EwBzTtlbWOLYH3gp2S9whDTFOJHXvE+APF0/qKg4ENnbQH6Q6GQdcoDQlhT3CPAmbVEsSHJmhthZb1iBfPJ34FNwjtNwU6s5nexfinS/M+w5skPfrQb3897Zr9RNFIUACoBZnSjA2i9aoIv2Kt5FD2tVmvOR43qwZ/TGBiJRKwBl2dI8QLo9JYVbGQUcN4r7qVvCit8ifF43GJ4JDId58c+YV15xpb7ZV1wv4B7coA0OwkpGAzODeAfDAZz9hXAs5eQycMUu95jz3PGPuBtVzDpFEpeqWJNe786RQE/z5qQZL+bPB6Px+f2K1I7FhoKYv4ehQHxibjimVIIBz++DsLF3xfXD2vrrxWFiA/73xfTPm7wfAGe9CiwJlEAvApI4XI1S/1Gn2senGJGJkgPh9PRCK+99poxKARygAQfEst4PO1YrlarVp0Vi0UbpwQLg4wxmUyH21I5+uDm/UwAhc3NTZVKJbMLUKn7M4R9NTIcDg2UArwYI4Fhno5IAiZDfpFnMMAjk+OtyWazVhES7GBaAbgs1EAgYCNHuAaAIosW4E6ghYn1wYjFTHJDCvTgFI8OwRHgS4c+IOvo6MiAMYxQLpczYHr58mW7Ru/1k2bdvbCPbDbWAcUCz3E0GikYX1SvWbVrgi07fvy4BeJgMKjV1VWtra3ZqKNYLKZes6r0TW9TOBy2xgMCAXYRRtbwbAjYAASCIYnm4ODAwBrB01swAPTYXAg+nrECPHo/Kgz84uKiHQYAeAO4sx4A/DC5BH0COqwjAJYmp+FwaImIxg4COYCOxgNYpmazaR42ABPjnyi2GCC/s7NjIBpwSacpTBn7lbmlAFOkNc9YEJwlmXVhdXVV+Xzexh/RPATzDkMlydZvJBIxMEhBhVeRJkKUCKwD0qwhC98vCg7BH7bm0qVLc+e2A3752WKxaF50JHHALhYHaXY6mG9sYWqDPw0KMMh10mCxvLxsiYq9MhwOravXxwL2Ls+ddw/I54PMPJ09OWVve72e1tfXLb5yXQAk5E/83BRE5AE/PeHg4EDValXD4dDG4ZBXKN5gtkOh6VD1VCplzCmF1Wg0O5SEfertYjQ7wiTS4JrNZpVMJufYRQgFQAKWLp45cX9tbc2UJa4ZIOKJGuwG+ECx2Hjv++7urgFj9hqACsmetUXMJL7yZ7B5eEzj8bhWVlbsXohVqJSsBdjNw8ND7ezsmO2DdURBRh7zz4Ji33/IX5lMZg6M0wDE9bI+KUIZr4dNBRscYBKmEosZsQGFBpUTawe/A4sQDaG+ICQWkEsajYbZ+Ihl5AFiGOsNldTL/6xvrILEfPYjBSQxhdzSbret0AoGg2blA8/wngHN3lqHt5xnRRHxRp9rHpxSmZHcqUaYuQfTxYKkSuSFAgQATFQigUDAKs2rFz/Vt5fjJdlmkuaPQ2Sz7e/vG5MLMEWmZiEAOrwnCOYEf1koFDKfIFIWgUySSRLh8PzRoCQE2A9AC8BHmjEOLOKDgwNjL7wvkyDhKzqeIR4xqmcYHpghNtbe3p4BGa6b070ILGxSkitJlSIBaZKKngrSyyEERiQrmuE4EYjNThcnLG2/39dkPNJoMpvxB2C6cOGC1tbWLFhdunRJtVrNEky/31cwHJYmYwvcJAxsI4AFAK/vWpVmXbdI5ARDgpsHN0g3MDULCwt2BjPfTYECMCKBw7DBlrAOKEYITjBZMDe9Xm8O0HgWisBM8ee9glw7/jkqed+c48Eu/+Dhg4FkHwJshsOh1tfXjV3DC0ZR2W63bc9Is2Y8igJkaEAfcinvj2SFTEgCe+2118w+AqPDGu10OtYsiB2I30WzIfcHGGUsEvu53W7P+b6IawAR1BTeG3YN2JNjx47pne98p4bDoR599FFdvnzZnj/vDlAZCoWsIPVnxvNe8EBjMUBWpYiC8SuXywaoSVZ4233BBMvDrF4YST/qCl/owsL09CKY32QyqY2NDUmaA7X+nfL/iUP8jPerU8AuLS2pXC5rOByafx2rCkDg6OjICgafsGnApDCCweL3+XnVa2tr9l0AIiwgqA29Xs8YNe6H6/YAiWkvzNTGRgObCPPKvuRZMZUBBhx/NtIvHxgzQC1FAs1dodC0iYr4SaxHrSIW8wy89xjCaDAY2KlQMHs8K8A/czsTiYQRPB4DcA8wwOwlii+KYGIrMYeY4pUDbG30hdDRT3zzCiL7JxwO2+EJMNLgEt8shL8eHME+98qXt+QsLi5aA5NXf8npAFdAI0USygMqGPErm81a8Qnjvry8PNeBT55h/eEhJm9gcSKXEIt8Ef1mPtc8OAWsYN5GOuQMbxiUwWBgEsTy8rJJT7zg3d1da75gpBFJwUt2JCu8fXQC0o0djUYNcLLgkD+ZL8lYJ5hDDPGMmkkkEnOS23g8tk5nNjobiaROogOE8LvpFqULD5+bNJPQYAEAn1TTVFwAuP39ffOnApoA1Pj9CNQcpUbjEEGbAMm9AchgTQC5+M5g2WBOpVmTCB29sBDSNKGm02mNRrNhziQ6QB4AhYq83+/b9+Fh5L8dtZsKZUrWtBWNRtVoNPTlL39Z8Xhc6+vrGgwG+t73vmcMDL64pbVTGu3Njq9lZiiBBG80YHI0GtnYEQCRJCuCmBgBc+YLofF4bIUZiQ5g7ufawQCXy+W5zmVpNmINqwfgFBaR9w+YCYfDVmHTLENhg7yI7MUoFNiZ4XBoo4N8MJZmwCGRSOjGG2+0YornT1CExYHFJJHAWsBSU2TCBqIseOmPfUFghin2Ujrvw4MdEoaXZJHZFhYWzBIgzWYJM4ifUWfEGawGFGx4s5k/CROO3NzpdLS8vKy1tTVjuIhvSHxMo/AACDmP6SQUetg1iC0oQd4i5GVnGCfkQxSYQCBgg/69/BqNRpTJNBSJHGg0Gms02lelsqBQaPreKVgpTnhmKA4UIoHAdPQWzU8U14AbYh+xk/vx3lriGWACFpkRcgA4fOx8F4kf9QaAz9+Px+Pmo282mza/FuBYKBSUy+Xs9zDeCmYMgEFMkGRyM8X/4eGhNUdhTUL6p1DBF01Mx7vOGmMdwZKydthXqEjSrODxvQH8N2K/V6UoxPy6YO/4pi+8jjRlEs/JO+QLVDXiEQ1+9BJ47yfkAgUG4Ja9TmyAUWWfkRdopOP3sceJzQBGP02FtQWxQ+7mv0MQoeYBWiFFOCUKrOF94Vwj34EKQ/5CkWq1WibVsz/xsPq5o1gBmUbh7R3c69HRkba2tuy/874hnchlrC9JVqyDOd7M55oHp9L0wXCGPIEHaQeZHzmqXC7bZgbYUkXhuyRBEeQIsJ5FYsQTAM8zioCtRqOharU6Jx8yiJ6g4v00SPhcE6ADZgGGFxAM0IHFxNrgOydprgiFQga4kd09O0UwSiQSBiiprCTZxojH4wYk+V2AbO+tglEmAfLnJAJYETYEVTX3TmMBUmg8HletVlOr1bImA6wPBGA2Lv7Gqxlt7Bh4qmi2gbGF0QO0TSYTNZ76jkrv+bh++Ju/qlqtppWVFQNEv/mbv2mjgy5fvmzjig4PD5VeOabUzXfr8lf+qbFesES5XM7GcZDkl5eX7ZhI7Byc9AWrwfBt1hpFAwEffzRAArDVaDSM5cHjDKPPdAtJ2tnZsaQfiURMzgdoAe54NpKM5WO/kTAoprCbUFXz7r2sS+ADABCUWW+Li4vmz8VLjh+LPYzUz3umQKWj1x+/yozFq/3arCMCLEwITOfCwsJcAwa/i6NYeUZcJzP/+v2+HdFJMUyih9FgL3j/IskLsI6Vh+9grBiMG9IsvnGKx06no0qlYiCaJkBYXN41fycSmT98gHcEQ8KEC/zzrBESN81ZSI2RyKFuvvk13XnnJWUyh3Oxu1ZL6gc/WNG5c0P1+0FjRQHQFM/sY4A9gIfuapQwQHYwGDTQzwcw6pl+Yqpn0wHTqCwUR4AUABFqDGCM91UoFHT77bfr+eef17lz56xYgzHkewA/MG+sBT/OiPULu4VXn5hfrVZtH/Au9/b2bEY3eYh75YQuWFBO9kJpouiUZKOHkN4ptJrNpq137xuXZl5MACH/eA8wIJxig5+BMeZUPQD50dGRkROeiWYdIKN7pZACjv1EgxT2LwpWSXPTErB7AfRQkCTNKTrkZaRzCAWKFN8DgvUN0kKSgWjWnp/XGgwGtbW1ZXmB5wsGIc9SxPj4Ksmeg/dzo0qgCGDFonDid0FOgXkoTrEp+gY98jkKJ+sc/PRGn2senDLHkJfmT0jxntNEIqETJ07Myf5eQkUK3NraskTL30XeIjDBLrHBr/vUryj79g/8yLUdu/K/L/5//kv1ulVbNN5nRkAjoSFhw6BBv0sz47zfoHjNkE8wYMNcwrb4mX71el3R6HTeJz6rg4MDG4XEZiTYMWoJnydVWiqVUj6fN8neTxcoFos2Uw4WFlsFxYI023RsbDYFsgUBmKo3FArNSVFUiATQbDY7Jxkyr817B/f3963yhkUjgPl1kclk1HvhMYUe+KRu+RM/qyd/69fVbrdVLBatAQe5jvEjeDFP3P+TGg8Hqv/Rw0pdkYzwoEkyNp2gjATPe0YN4PmEw9NTTxg5hozIu4fNZDoFtorBYHoUIgwZgXVra8vkOJIi1T1JAAbCe7WKxeIcUwU49JIeXjVYJtg6ig3YUj8pgTFuJGoSN8Vlo9FQrVazgytoMOL7vPxIwKb4Yx8ARJAjYUwpBgAdFCwkPdhBEki327VnCajNZDL2bin+rr/+ev3ET/yEDg4O9JWvfEWXLl2yhAHACASms1f7/b4uXrxoh4VQJAJ4a7Wa+dYAuX5mJqA+mUwaO9Jut+25U5TCbFGQU0SS1Pf39807C7tGcchED2IfyZ9kBzBJJBLW9JnJvKwPfvBxBYNjnTt3TL/3e1nt7kavHFvZ0003nddHP3pOvd4FfeELd6rRWDFlAPsAzwRWEAYHqZmxPxQlXFcoFDJQ45s6PCjCHgJ4YQ22223z/zHFxYNkYi3XlU6nLYHDsu3u7pr1AZsHxSc5BJuWtx+hOgASUddgtYix8Xjc1DgUjWQyaewofl+AIAVVu93W1taWCoWCgR9ypAfqvhucPe9P5eJ5kieQrgHVAG6emW9OQ11gvXDcNmoIjF2tVpMkI0vY6yiEMHkUT+RGwCke7vF4bCeZ8f/x67KHANT4g9kD/EP+w8OKzYt3C5FDTCVHSbI87ZnSVCpl4BqWl73FWgZ3oOpRrAJyyXPsCxRE3/sCMOV5QzKgKADSvXrK3xmNRuYp7/f7NtkF1tbbJYkD5KA3+lzz4JRAcPbsWUmyBcRMQTacr7pB+TCVeDi2t7dVr9e1sLBg7CpMjWetqPyoiiaPf03dc8/NjS457PV05hf/lo52qwofHRgjC7Bj8w2HQ2OmOO+Z5Lizs2OmfKpb2CHmg6ZSqbkZbGxIPxcRr2qpVFIikbCKmIotkUhoZ2fHGsuQZ/f39+38b19pUVFNJtNucKTtw8NDk9kAhWwcGlcoDGAiWq2WsS2AcZioYDBoPsVpopv5UPHewDgCPpCmaOBCLkZegtFhZBjVaDKZNOBVqVS0vLyst73tbZKk7g+/r9WPflrrP3xS0YNdAxWMC2G2Jgkkc+OdWrn/T6vxxNcVGk/fb61WmxtHg6wvTaUu3rXvYGUN4oGVZOw3wRbWBq8gPikv1RWLRfteWMGdnR0NBgOtra0pGo3q0qVLBgw5zWRxcdFmFALsYF55L75DlD3Fmh2NpqeNUMB4XyOsI4UA1hLWMUlga2vLmsxQMa4GusixMI/S7Chang1sHp4pmEq8xD4Y4wPDBtHr9ZTL5axwIuEATIgFFFwkRvyuHjARIyjYYCAPDw+tuCGBIDnCipLUeT7YV7xCwDQO1BlsIwBPYiFJHGaKxkSSGXsGWw2eOmLs2tqaqtWqFTjeZ9vv97W7u6vTp7f1/vc/ogsXVvT44+9Sux2wYnwwSGpjY6yLF0taWjrU/ff/QD/3c0/pN37jZp07tzt3ghcxDGVAmibSVqs1d+wr98MaQ1qGYYrH46pWq2q1WioUClbEco/YUCAgvI8PSwk5BQaOXEI8ODg40KVLl1SpVNRsNq3jnjnCNC/BtMLKIw/DXtPExL7DrgYpwPpHAeh2u+ZRB+DyPdi4AGAAzgsXLpjXlzXrRxBhjUMJY92Rb/DH4svlz5GWWUt4drPZrD1TWDxv4UAR5D59BzrfgVXl6oY1lLLDw0Pl83lrCEwmk2YZgFzi2cFK+0Y6chHEBYU6MZ/igDgHBoB5hBDDssb66PenB3jQSAWg9hYDCAUUiKvjOH0j3pNcKpUMB1Hk4F0Fr/gxgRQP/H6ePc+RooNr94UHBAVFKICYQ1Owi7DG3+hzzYNTPyyaihSPVTAYtPE7zEINBoMGOOnyJWlkMhnlcjlLGuPx2DqSofqxA0hToNBqtbT7zOPWFXt0ND2bN7Z+WuH4gpovPKFEImGbkW5wKrjJZKJKpWJJxjdEkUClGQiPRCJaWVmZk1qOjqZD3QGaVILhcFiFQsGCImwHICkUCmlzc1ODwcB+HgYOcArlT+MOvq1gMGisKxUdtD6bEb9PIBAw2UOaVnsczek3P5K0PzUGI3gmkzEpl3eBfHPq1CljikjsgDRJBuZ4lgCrwWBgp/0AhJvNpjU95HI5DQYDPf35/1mnf+m/153/1T9U7Uv/RAevv2jvkXdDR2fy5rv1ll/4r3V48RVVvv55C4SwLWxkmo8ADI1GwyYc+PEkAFgsEnRPc5IRwRrpl/svFouWdEi6eNcAleVyeU7OxLrBCSF8F4z18vKyJeSrAU+/31e9Xp9j/GBqkIM8mGQdwubxDx/WLM+LYA1AaLVaJneSlGiuwgcKwOEkrVqtZs2DVPp0qbK+sJOwTr0HFXlsZWXFxpnxPrw9YH9/X61WS+fPn9cXvvAFHR4e6tKlS2o0Gspms7Z3Ae08E/yy7EVA4cLCgtbX1+3dYR0g4TDT1lt3EomESqXSnO8P5o+T3QAXXHcsNpulCyiCQabRAhYNIOHXNgz1lJHd1nvf+4e6cOG4fu/37tBw2DOrCetsxjyG9fWv36+PfvS7+vSnX9E//Ie3a38/bvEDjz6/h6Y1gJiX6tnjgBnkZz9pAw873k0UHw8EmEPNs8afxz7nf1dWVtRoNGyNEENpmoTx4n/T6bQVmyR6/Pr0TLBO8YqypikyGddWq9WskKS4ogjmAzPs+wgoaInzxBDsJtwrrCTPn71AEciz4jtbrZb1bPgP0nEul5uTqSm2sMugXvHneGQBcJ5RJxdRmDHfnCKeuAcxQp5BksYy4huWWNuQMTwP1ji2N67NkzbcJ6QNvw8wDCNK0c8UFN4JxSA9J559JcfwfX5sF/uW54JnF5aZnEzDF+oc/4uM7/c8z5VJAL7/gHXv1wHN3TSaswff6HPNg1MWNJICPg7ofMZ4hEIhq/xJxJlMRnt7e9ra2lI8HjffmjTzh0QiEdtw+/v7OnbsmDXMtNttVatVnT9/3pITkszp+/+UJpOxjl59eu70J3/SBQHFNxvBxrBJSQq+YQi7gSSrNEkwvspqNBoGXjc3N41phbWlOqIaBITD4FIdE+ilmdTP5odpg90k+LMpuW+CLIALQAWLJk2TJqfLSLJ3SYcriXtjY8MSOSwXxQYJzXc7+6Y5kgBJj6YcH7yKxaICgYC+//3vT6Xugz394B/8Zb3zv/7/avXTf129rdd18VtfVPfcc4qHQwotZ3X83fcqe88DihXX1XnxB6r+7q9rcqVS94wXDXSACt436xdmjkRIQUIQRaJkzdM1SSFBoKNT17N6sEmwbjSWUSTAZPOseP/emA9Ig+UmiBIsKRoIvtVq1Xxm2Cl8hz+nRR0eTk9Oq1Qqc+we1T52mO3t7bn5mTSJFQoFiwnsxUwmozvuuEObm5t68cUXLVHjyaO4QzpH0maGI9aYcDhshR1+SN9Ig3+4WCxaoopEpqPSXnzxRWNoAPZI++l02mQyWAikXkC9B3xI7yQk3hsS52AwsILKxwv+DAA/Go0MdMIW05ABc00cISF7Tyk+VlgmPGmoCEtLS3r3uy+q3w/rwQdv0/7+NBFiS2HdAP5hxL73vR/TT/3Ub+uDH+zr0UdjVqyyp/Gz8w9NS8T2Vqs1N+qJOAJhQREiyQpqilPWfyqV0ubmpgEXQD95AMau1WppeXnZ4jFrlrg1GAxMkcOTDdnAGoEFRjb1ByFgm8Hr7AsvrhdvMPGUIpyGId4l7xtfIpYG/h73R1c/+cR7GVl3jKGSZrYqYpCPT0wQIXdxTwCXq5k4OsJh3WgMxOcMuPcMLXsdawT5pdvtmnIzHo/N0gSxxLrg+7l+5pEy6UeanXbHB+LIeysBb7DKxC7vxffeZwphvsezpeQLX5zyTFC+6MOAWeV++J2oGZlMxthWekWi0aiKxaL5kMm/MMesbeIV9wMBRp8GAJ84wr9TwL6ZzzUPTgF6VDBsJDbp7u6uMpmMsTiBQECVSsXAVCqVUqlUMsZjOBzakaG1Ws0aBwjq9XpdtVrNFlM+n9f29rYdz7awsKBQJKrCXe/T4aWz6jcqWrxypi+yFBuYhAiDAitEkoKRA8gCbpAPAVY0V3gvGCdpkGDr9bqazaaOHTtmTQySbLEDZrw8wvOJRCLWHAJgikaj1jBAAmEj+NFGVHswBtwXkovvngRU4IcrFosm/fDdHM3J9AMAKYEIEIec4eWHY8eO6cSJEzYPEwCCRI6dgSq22Wwqm81OB1+323rpH/9trbztPqXv/qBu+PRfVcBtwslopP1XntbWV/6ZGi89NX3GVzy+/X7fpBZYGvyAvhInOfn7894tghpAIxKJmIxL0xMsJewyhcp4PDaJHa9nt9tVrVZTt9udK+IajYYODw/Nk9xqtWz8FfNFCfqSbIID3kYKNCYxwAgBbCWZvxU5lBFDfDdAyYMDpCieVSAQsE52DtfAAwU43NzctFPVAP1+biVslu+uHY1GdtRjvV6fswuwp2jG8yBhfX3dikLWIsUIz0Sa+oF3d3fVaDRsyggJBnBF0kZxADCQzHinFDPYD9gL2AeQNGG+OfCC6+JdAHKGw+Gc9xpgDDvJf89kMlaoAmTodh4OO7r55st6/vmbFI8v6+CgOVeM0CRWr9ftnbTbbVUqFZ0+XdAtt7ymP/iDtI6ORuYrhoTwcjJJmnsmD/i5vMyQ5r0Xi0UrhFBeKL5gViXZ9AbkTpQSAAO/hwIHFp3nxL4gDhIru92u4vG4yuWyHfZAg46kuYKdYgRwQawEkGF/4h/WiffXc1Li0dGRXbv34FPgEv8pKAHcNGL5UViAbOIkexVlhdzKs/Nj9PDBe8sV64K1yvvFP00OlKbAn8Zib7WB5QU0wRpSpHpvPPtGmpI7hULB1D7yEIwtxYg0a5wChFEkci+wigBB2EvYYggEDi3B+kM8Z59iX/KjIvFFU0wREwGUrHcKD4rwqwkxCBCsaDDJPLtEImHebvAURArxB/8t6isA2hMnb+ZzzYNTEnG9Xtf+/r5VADQY4TNhwxPEMBpHo1Hl83kLKrAFVOmj0XRuHxUvyTwejxuoxBsIc5u55YzCi8uqPfwFS874gUiugGEW4Gg00vnz5zUej1UsFs03O5lMtL29bUGHzsxgMKj19XXz41CtsHHT6bSazaa2t7ct0MI08OFaqJi9zAHzTABEXsVHOBgMtL29bb4ffESTycS6ijHyw1gBlgDyo9G0s5X3wTv05nlATK1WM6aIjU13MhXl/v6+NjY2FAgEzOsXDofNWwobyH0TwABInj0l6CC/7+7uqrW7q8RLT2rv7DPSYkrDRFrheELhyUi7F16Zjp264vshqBHAYNoADQR7igjuF4aH5LG8vGxghoYLrg8gxLrAg0sSlGQsF8+SYIUcg2w/mUxn4MViMSuAYCDYY+wjCiqSPnsqkUjMVd2wPDAXdI+zTikEABWwoCR/1gi+at8hChClQQBbBHsStv7ll19WpVKZ83UFg7OTk2hIgEna3NxUp9PRjTfeaAUYoAU2plqt2mEENKAAPL23VZI9z3a7bUUyyX0wGNgRlLA/XAf+71deecVkemRD37gBqCTxeDmeGMef+6Tsm0dITtiL+HlJyuVyWl9fVyAQMM8wzZwkK0gAwMnJk1uKRIa6cOFW+7tcV7lc1sc+9jENBgM9/vjjunjxooGURqOhZ545pre/fUc33HCg55+fHRCBzeTo6MhsMIA+9jLsLyoPa5V1ijSMn593x7uFMMjlckqn08Y00WhIPJNmNis8nexL3hGgE4WKhP3/Y+/PgyQ9r/Ne8Mk9a6/cqrJ2dKOxNRYCBEgCpAAQIERQpKiN5lCWLPFq7Jm5tKzRSPZcjSKsGMuyLIViJqQbV/KErkaXnhiL2mhRlABaJAgSBAgCxNLYge4Geqs998rMqqzMym3+SPxOnmxqBDiu7RvRoYxAAOiuyvzy+973nOc8z3POWywWdXR0pMXFxRH/HoQDfnj2P/cN6T8SiZjS4hUVQI1vFgPwwDxXq1WLgX6qBXES8ARjRmFCUcBek2SWKL4zsY41AFiHcfbNueRn9jnXSD7HxuNVJ4p6Cjmm0Hj/NMAYdpSGIq6Xxlr2GnF3Z2fHCjaAc6PRGJHMeR/vz2VtUKDmcjkDo1wbII/ZvXjz2YuRyOAEulqtZnk5Gh0ca01BTR8K90caTqDx/nKAPfmNe0NR773+5AO+KxMYwDGAT/Y47L4k61WRhso1v/+f87riwSnyHqNjGLjPg2fTUTkDSP0NJvkwhoNkzuL0XcvIVmzqdrttwBYDefK2u9XrtHV45jkLIARQNg4NMAQBvC6wbPhzWPwEB2QUvB0EKT8qC6mwVCqpXq9reXlZ8/PzttEZw8Ln420BRFJl1mo1lUol69YloACA8DxWKhXb+DCbBGf8Tyzwqakp5XI5M/EfHBxoYWHBwA8BpVqtKpPJ2IlWWAcAtPjXSDp8DxIr14oFgfdE/oEpYRYuz5xNjVSey+VMHgFYJxIJHRR2dOnS02aVAEARwPFkwQjCSJFMYAfy+bw9P8CfbxzyNgmSEuAFf5KvXGGSc7mcsYokz16vZ13fSJbT09P2uzx7goyX8AhsJHJ+37MtqVTKbDGSbG94eY41h7QNq8IUiUgkomPHjpldhKYb/7n5fH4kiHK/8cex9/k8/p5AzrWwbymI4vHBEYRYHWC4YejYy973TOL3kiF7hbiUTqdHpod4iRoPKkmeZAF7yvgg1r+3I5D8mMXpx+CgNMDMAiqJWT4OIpvSMQwDMjc3p4WFBd1///1qt9t6+umnrTGHAgrmhmJoAOA6OjyMqF6Pq9msWLwZGxvTHXfcoRMnTkgaJNrt7W1jZwaNLEuSntXSUlSXLk3bPFD8qaz3bDaryclJWze+CYQ9zrxl2DuYMz4PlpS4w8+w11FxYJU8UEGdgZHywN/7tFn7NLKMjY1pc3NTBweDkwjn5+fN3sP943NpnoSYQOXxwIqcAAAmlvs45Cd1kMvYI/RrYC0j1xAz4vG4TZPY3d21XMYLls43kfH53W5X2WxW4+PjBphRflqtllnlGo2GsaR+nJa3tQBkJY0UYcFg0PYQxz2zL1KplJEWXCegdnx83OIAMZkOd5Q9YgQkUblcNpWEvEPzE9YAeixQO2G0IYbwgMIYU2h7bzMWQ9agb5jknvPsiZ+SjHkmvhK3UVa5h51Ox5hQ4iOg2scD8AXzXRlTR/Hh7XGZTMaeOUD+nV5XPDjlZjPWAa8NiwA5i6aIfr8/0t2OvFOtVjUxMWEngSAvEmSQWnmQy8vLJvvRLVir1RSfnNL0DXdo/82XdLhXNiM1FLsHuVDxVCVLS0sW6HxjD41bjATyUg0maxjNVCplwRWgxTGVMGoEerw++Fd8pzBMDYwE/iA69wA9sJR4AgGXePU8SIVFm5ubs4Hb/qQrP/6EIMj0g93dXbVag45AvGi+S5LEzLX4Tmt8Zt4CAgMAiGEoMXIaa6tQKBjoLZfLZgkhIBHQkGG49zQsEfy5555NkGSnuXBf+f1IJGIzKXk+eKq8JYQxX34sCDI3LCEMYL1et2MCa7WaFRc0FREg8WFxhjwgH+CDvQSZD+80UyEoCEkiMB0AB0k2Egr2mGcAs0hQZr4vCd/bFKThEcQAQgAlf+elTtY1zBQedDp7vUWGNca6JIGTLLPZrCkOSMwkQiRGDoEIh8NaWloyOZDGSDzAFDYcOUzc8o2HnPmONxkGj/eCBWTth8NhW1skSlgf7D8M5yaheNAC0JuamtLS0pLK5bKBg1arpY2NDQNtgCOJs9DD6veDBngpCLBaID3SpIdCM2Creur3pWg0OKIq7OzsSBowi/Pz87r33nt1++236/Of/7z5srEOSLJ4MD09baOJiOneTkPuwLcaDg+mEhwcHFiewK/oPcYwy7BhsFPcj/39fTtJjA5q4j3/LQ3HRCGlEicAcMQCLDHYoby1w9uvPNFC7vKAF4DId6OA7Pf7phLBRAIyeIZehia28mz9KVRI+tw737RGPGQfMGmF9+DeQFZQOHopGQ83wDSVSuno6EiFQsFGNHnWj+ZmVCMAGbkDkEye9koQOYJZ2Lw/+8UzqT6XgxOwM1AIwRzz/rw3exQAiZ2IApJGVWJ5pVJRJDKYBiJphKGnzwR7kbcNoYBi0aNgwo/NmuPIYfK1JGPSabjyBINndom/7/S64sEpyYSgx8y5RCKhfD4/GPX0diDg7PpmszkykxMJBWaNm9/tdnXp0iWbBwcAoCsyl8tZZ2WjMTgFZ/n7fkDBaFwHr33XQARdkSS5WCymq6++2saNSDJgBqDzTSfeH8Qmp8LDb0gAALTQvS3JjiMELLHBAUp8Jqwxf5bNZu07ADyl4TBiAqBvsgLY7+3tWTXMwQMkq0gkYnMQkZHwVMEGskl4HlwjzRlUjtIAhCDDMAOThAN7RWIgicEk0iggySRWf/oW64PkRMKfnZ21wAD7CkD1o064Twy3TqVSJtfwnX1DQCgUUjqd1srKitrtwbF+JF9/3wGK3GMkKeR/AAr3jkCLfO9P8MJ6AatHVY9cBBNB5U4AwgcbCARGmj/Yl3hkmXuH5xufV7FYNMl0enpaq6urlvAIvMlkUhcuXFC1Wh1J8Kwb5hN7WwSJDfYln8+rXC4bexeNRq1xCBbWJ3AOcuD/PSMHmPHAl8SDXAdwYF4othskOs+Gw0Zxf2HUqtWqisWiedApDsfGxpRKpWyPsO5QYHheMLnsE9YXQEqSeceJI8ivnU5HxWLREtEjjzyiRqNhzWpMAGBaAOyaBCgcVyzWVi63oX4/otXVVVNfXnrpJfN2P/bYY/aerNOjo10FAlK9LiuA/al8rLFCoaA333zTZH0YH7yKNOn5wpA9SDHsm8EA6IAHbFeSTP3gM7Bl+J9lfxFjiXesIZQt1iXFR6/XM4DGfWCtEfdZn36PQohgidrd3bXYCvuL9QN1hMIQEE9uQuamuZbP8s3FgBBiOZ5r7rPPxQAypG9IH88ue/sRawvfOmuMPQHAZk2T17gP0lBqJv8Rp4g39Xp9JE/BxsOQokiSe4n5/oQ3Ytn29rb5kIm/vhnVM73kNmIpMn4ymbRilXXIPoeUkWTPGRWFggPMQSELuQDzjYeYMYD0k7AOvNKHHcbL/3wP8gi5m6ZRcj+FI6o1P/tuXlc8OEXuomGHxExFg9eTzsS9vT3VajUbswKopduRGZdQ6WwKNizsZbFYVLs9GHDOKSXT09NKvfde9Y+aap1/xSo+kgI+SAK6NGBoqJKo7qmAMC7jV2K0A35BEq1fKLAv+/v7drTk7u7uCChHziWRIvsBHgC6mK9JggRMkkuj0bDqz0skyAzM2pNkAQCf4+zsrPmZmNuG9EoCYsxLLBbT0tKSgVHmidJJDCvMLFjkZ7yTc3NzSiQSKhQKJuvALMFYzM7Oan5+3ppfvMdLGrIIyOrcm6WlJSWTSWN5YKoJCJ4hgf3kOfvESHKjok6n0/Z8SIjhcNieHyCYhEtgI+l4P6F/0TQDwPKyILMfWSuAYaRV1itBn8+FLZFkgZ1xbVToBEUmRDBrD8ktmUxqdXVVh4eHNouSIOktD5cXa/6QB043ouEPWRMQvLS0ZM8XFoo1DUio1+tKp9M2gg3AEAwG7chjOl29FcI3yLBXOp3BAQLcRz6b/ScNACJF2MzMjO0Liq1SqWT7DOYpFBqcZ46EiHeaZ7+/v28+WBQQ5HPWIEUAianValmTEwdGSAPAfebMGXU6Ha2vr6vX61lig0nxw+cl6cyZKX3kIz1dd92uXnwxM3KC0e7urv7sz/7MvLPEaNbOyZOX1OkEtbWVkTTscCYho4qdOnVKp06dsmKKRlDYWQo92HJYfAoyDkoA+MIq0iiGNAqzxv0CDMzOzhoz5ZlmCjvAGYUJR1PznFH4mGpBYYEK41U61A3YO4BLu902oL2zs2PyOL+D4sIe930USNwANGKGJ2fINZLs3vvmKwo0ACXFjLe7eD8p95++BCwvnNonDdUOTrDDM0z+Q4lj39JgBLDyah0eY5/bYFHJazCOXPf09LRyuZz1isDeSrJmMEA19w1gGIlEbJwlxRjrhnUBk8x6Yzg+L4A3zD5xyjdCsqa9lYKcxLOjCKVYAiNxP9rttrHtkB00BmJTYl0zTxgSABIPmx7fA/acguGdXlc8OJ2crOrwcODfYwMBdliEJONCoaCNjQ21Wi0tLi7agHOqTf7x423wl/oOQzYBRz2ySJsKKrR0jbrnX1Kv3TIWcnp62qrcTCajWCym9fV1SbIKikCNvCDJOiwTiYQ1cyDps9gikYjNN8X7ySZjbBJJg6AEMGVR0yzlZSlOf6JJgmp4f39f+Xx+pAELsOnZNpIVSYPgjW1i8OwmDbQCUmg6YXMCjBkRAuMIyGODUV3u7e2NJGoPvvxpMQAbSSbhsX4IcPHF45q+9fs0cexGxVNZndivavfV53Tpr/+9Ym83s8XjY5q97V4lbrlL0flVhccn1d4rKvfMo1r/6/+gsdgAHFJtIuHgVSIZeJY1HA7bRIHx8XGdOHHCChIqez9ChMkKBCgsJs1mU/Pz8xasWKuSRthS/L0AbOT1UChkRn2ObAXIkQAImjwbz5zy5xy5SFCOx+MjEy+ouGHH6PLnsAjsBwAhZD0k8UgkYtMKeGE1gAGBPYbFAtRkMhkDzHwnEjixg7VOgwZ+N4CQJGMyAe4oEzMzMyMgwSdbrpMRSyQsLDGoFvjeaMiEscK7xt7G28a+JNHjmeUzvGdUkrG57C3kQxIhcrj3rPOie1eSxZS9vWmdO5fQhz5U0Jkzq1pfX7dia3JyUo1GQ/v7+2btYJ21Wg1dd90ZnT+/qnZ7XP3+8PQ83zTJtADWm/ftBQIBAxcAAmnA2mMfQWGSNJIfAAYUjRAdgCGUIaaRAPxpAvKnFfl9gj+auIKNh31PHGD/AQIoiri/NLqy5yYnJ22qRCgUsu/NM04mk1aIUIAgfzMblcKOf/yYKGIhahM9G0dHR3bcM/uMe+kntVA0+PVO0zBeRWIRhTd2HuI3hTx5ikKY5wlwgwxAXUDdgUQ5ODiw8+KxeVAAEHvAC71ezzyp7EdOsKLAkGREEHuUe+QJAHKVLwaIhRRPxCaAJniD5w4R4vGM98aSLwGhfloKORUADblBYevVR1hp71/mOwHiyS/YBii6IUtgh9/N64oHp5/97HdUKi3roYduUr2uEV8nLx4umyudTqvb7dogbRjGsbExra2tGWsIWAAgMXCZapCgyu9m3/eAAqGQ2m+9YIuJzcYsMah4QK7vcPSNF4Bi5kICDKmySSA+GZJc+DnPIiBnYU/g7HPkFZiweDxuG4zJBIykgbUhgOG1QQ6n8iIxk8jxApNk/Fw6mGSYDbx+SCySzDMrDRvgJI0EA953OM6mYw0FuVzO1kW/37fTdpCjeZ48EwLH7F0f19Txk9r+7qNq5dYVGJ/S6kc+pZUP3Ketz/+aArWiwvExrXz6Z3W48abKzzyi5l5JU8du0MrH/5HGj9+kV37n/2rBmoATjw+OgsSfyOdTzZJIYBA4uYpgBVvAMHXG3CCDAfKYn8m94hkQ1HZ3d42ppypHZvLzfvHQwj4DegG+eDe5x+wfkiaB19sCKJp8EdNut81DBqvKSTx4qwmssAocwgFg5edgZvwJNyQN9l+/3zd5HZsE+5DrpKkFHyDXTJEF000hSLLi/fAKdrvDgwNmZ2et6Wp8fFwrKytaXFw0DzHvy/UlEgljMwEVAHpmGqIGUNAgXbLmGSNFomYiCMmNRi9iEoAdEBeNDuYj4v2ETcSnB2BlDuypUyv69Kdf1m23FfWd70yY1YdENz4+rmuuuUY7Oztmv7r55tc0PX2gr33t/Ra7WU8cpkIR58kHf5AG+x72DuDhZWtJNvC8XC4bSMbTCFDi2fnjRllfXtUAdNNL4JlNGiYZe4QyJcn25+V2HfY5gDUQGJz8FQ6Hba8DxC6fIpDL5eyZoTLwjImTgCvYMuwAgDrYulhseBy0twwEg0EbSYcvkfUAwx8MBm3NokRRcFF0QRDgPeea2Y8wdCiixDHUSvoRAJjkF0AVljkPoD0rLMkajj27Ti4E2MXjcSvgYMC5f4AyACBgnkNrUHwoEtlfxBgKk1gsZvETthYgiWWBhshAYHjoB+oQlhzuO3GN+xwKhaxxbGJiwmw+kkamGRFvYcgZWYaXn9zIXg4Gh0eV47mnx+OdXlc8OH3yyffr3ntf1Gc+86S+8IX32YbwvqBut2uABAaDQCzJACZsHQsF0Eji3tzctOCBt6XXG8wUjUajmn3P96l7UFPupadsmDyLhMTnZQVJBqo6nY4uXbpkvkUWLGMl+G+SGwwMmwHJjgAKCOb7k8A8UKKyYjHWajU795eKlYWNBE/SImjQ2EHyZfPAatDwkk6nDSRTIeMDohCAmWOD+XE4MDd8N7ylbBA8Q2xo3ymJXMcz29/fVyaTMT8sG06SAeRWq6XaV/5I7dy6+t3hWebF57+lO3/180p+3yfVeeKLOup0tfXvf13F0y9YwXN0dKT3/MQ/09onP6vMzR9QIHfBrofO4EQiYadRUXH6dQJIb7eHRywCOAkc3Gsv7fD/+O84McYna0z/jJ4iaXsgIslG4uCvYkrC5uamMdfej0XARzankPHmethW3y2K3OS7WAm8JE1YIKS9paUlG5gNa87gbu8NZd3ihcJ2AHsIu8s68l39ML2Ay0ajYQ2E2WxW7fbg9BmSIT/jG+rwTgPeUABQR0hWFAGAdY71ZU0j/XEEpGdpAcGw4yRD2DxvGYLZk4YHBbCfaWrAEw37x98hJeI/5x5zryYmJrS4uKh2u63z5/t69dU9ffzjr0q6RW+9NTg9D7vGsWPHdMMNN+js2bPK5XK68cYzeuCBDT311Anl82kdHQ2AFIXIwsKCed/5hzUHGGT94bGExYMR5BpRqFg3sM58HgCX4ppngwpQr9c1Pz9vn4cPD9IDewlsGbYtVL1sNmsKCcUDNhcaJWOxmFZWVjQ5OWmNiXwe18yfYeGioQUlCPIAgMJaYV+w9oixFCvcQz8iDYIE360/JII1R3xHuQPgs67Zy1y/pJEGNmLb9PS05V8fR4iV+F4PDg6MvcPq5WMYzC3MNeAc5Ymf49rJIxAnvmiF3CF2Yn3D1sY9A8R5/6hnJymWAYOoF+xB1hM5HfaX2IWq5VlPr/r66S1YnogHhULB8jtFPkoCOYWiiwIQcO6JoF6vZ01U2Hy8rcUTg3/X64oHp4XCLXr44QU9+OB/0o/92Cl95SsZtdu9ERaQIE1HGh5FHhQdiwBbWD88NgR+P2uSCqNSqZicc/73f8Wqq36/b5IjVTESA8wHPg5GKiGLESSQF2E7kFipoPEhwTzSQJVOp82vGgqF7OcA7Gww76nEI+MTTrlctg3NWA7vUfUeSxI1FgDml5Lo/ey/Xq9n/hSqclggNjvygq/E+X+eFfPZpqenFYvFLODwcwQzKkN8SiQnWCY6+pvN4eD7YDCo2O5FTbnjHEOhkA6KO6pvnlcsmVX97WHezY11Y+bMW3vmlPTJz2pycU0HuQsW9AHaNCJJMn9VIpGwoOGTRr1eN+YAqTAYDGpra8ueP/If8r8vVgCG/B0zQfE9kyRh2nhe0iDwMbYHto7OcVh5EgCysX8vghUgG5aEPwdw0rVN5zH3ACBEMu12u7ZGJyYmtLOzY1aV+fl5A5zsOdhzfJLIqny2PwXKs/IUCigRgBL2PnI/iQ2maXFx0dhXPJ2wZfjt+v2+zTY8ODhQpVIxfzaBHlDmO7B9QwlAQxp2E/umSOLL9va22u22Dd/n/WCt9vb2rCkQ1p4RaCRjWG8/cB0/IHs6Ho9renravnc8PqYXX7xf8fjj+uQnX9K5c9v65jdnVK2mlMksa2pqSm++eVpzc2/onntOa22tom9/e1HPPnuDpqdjI95NYsrs7KwajYZN7oBpBEzC4AaDQZO8sdAQ/xnTA7M/Pz9vxRzPGbkZEI+vjj1FsmfyBXEIMIfMzFSIYrFo6laxWFSr1bLn7BuP+B3Am2cCuSbAJ2QC+75YLJrPm7ULwIGFY39dPiSddUxhCwFDEeDtUaxJyBUAFs+LptqxsTEbBUhDFewoBSLxBbAGmIJh9CwyuYucAfjCXsMeIFbSUHx0dGT5gZgD+zw9PW0zSSm6IEbIxax74iXFjieXiOv0v9CsSUHn+wB45sQEVCPYWQgJD1bxzHP/ybP8DGw4BQP3AnsI8QObIrYK1inKJj/P98LiRcz2lr2ZmRljr7ET8Dy4J+/0uuLB6aBpYEIPPfQ+feYzTyqVOqONjauM/fFVDc1RfgMzx5CGHkAcgbpWq9nQfQKT79alUqEjkIdNc0Eul7PqgqqOIdbSoKGrWq2aNwcZD7YpEAjYzEXGPnQ6HV28eNE8SjCJkkbkeWkovTPUG0aSjeBlHoAgkuDu7q55RjudjhYXFy3gMaCdwNLv95VKpUxewNsDeGHxMjmAkVeSRqp62JtCoaBut2uyLUkKFpDTeebm5ixw8XOAb+wPFCIAF1hUBrbzzACs+M263cEBDIBYglo8kVYrvylJdm/m5uasCzcWi2lmfnHw94cHI01XVOUTExNaWVkxX2Sr1bJgvru7a0Ab9hDwQ5HQ7/fNlgETQjcnqoA38FP5+nmD3sow9P0NvVuw04BJghwNgdVqVel0WsvLy5YEvK8WgM0zBdzNzc0ZoCMx0JnOaW2w9FTkvPzwcIpKGHb/fbDQIJNxfbDtfD6TNFZXVxWJROzUMT6L++lHP9EQAUAmbiSTSWN7PNMWi8UsmHPwBtIaBaCfRDEzM6NsNmvXyd8DVHh2rAt/kAR+Rvx5nF6EF43ED/O+v79vTUlTU1PmVfZAExbfxwmAv38WsEbsi6Ojrr75zQ9oYyOtG244rX/yT95SrbauRuNNBYOPaXKyrvHxI21sJPVnf3aTLlxYViw2PO3Jxw46tQEau7u7BqyxK3GPPPMOm8MapMGMNU7xAIvqZVnYVknmHc1ms8YOwmyvr6/bexLviWkAJ4Au1wgjxzMEPGL1YM8x+g/1DtaP/Y5ChdTs4zmsGNYA/p4mqnq9bs+Ln/EKDAdxABJ57uwLQJQ09B5T3AFEAb7kKYoJVMVkMmmKBDmV3EX+8n/ugR62FyxRkEQAZJ4/XerEA5hd7GLYder1uh1EQhwhrpBTIAcA6B6wYWfDasLvohjBjGNhIg/xbLxKAfvKKD0KQYph7jfPC2COx5Wf8WoMTWHM/uVZoXxQFOPpxtLItUMsEb9QFgDj3Le/PyHq7RcU+P7+Me3untEdd2xra+u4mYa9VIAkTUCNx+PGWuTzeasOmf9HQGYjB4NBO3oMFolGF9i5fr9vfkkCCkyNH+VEBY08RqBjgYTDgxE4jMPxnh0Ca7FYHGkAQ8aimolEIpbgAGJ4bpAt2NhIEPw/dgWAnzSo4GBYAT1+ph2BnU3tgQIBFLAZCoUMlOOD9b4iAhpHaVK5cR92d3cVCoXsTHWYZCQImFKCKJsbFg6WBCDkO0thiDHbA2xCoZDW7v1BxRMZnfvSHyrw9nBiOnphB3u9nmbu/Jg6jX3tnHpCOmrZeoRJJ9Ds7e2pXB6eLMVYEYIum7/b7docQiYmHD9+3AIkDIkkA6vSsFEGrzKBg2tg3ZJEBsOUO5pMTCgei6q4WzHPNQAAvyvPCMYOBYACCfYF9rVWq43497BiwErAvnlGkgaPbrdrn+87mSmGPAtMgQXDhGeUaQ7FYtEKxVBo0HkNq0rCYkyMT7Ywca1Wa6TBhXmm/D0AKRAImIRPgkUe5b6lUil7/2g0amAB/xb2IECGJPN3ezDBvaK4IO5IslOkANU8IxI/iYbiGpaX98L2AeiSZMUnqg5MDeoO4DcWi6nVWtHLLy8olSrojjuaCocHBdkbb4zrrbdW1Gwuvr0++2YjofDifRKJhG699VZ97GMf0+Hhof7iL/7CkiaxhsIPNhOpk6SMqsE+815rki7PngKPeAApwL4l5tLUB6AjviIjh8PhEdWp1xsclex9lygR7G1kU+RswFgwGLQxcHj8AL2whBMTE1peXlY8Hjf/aywWM7bRN0JiNcHmRpGSTqet4QXpluZESUZuEEMArfgx+Z4AJlhngLW3UHFMKveemEJRS/7xrKk0LBwDgeGkECxLAHp+h4NHIDcYcUfxQKxCBfCnT5Ez/GxR722mAKBZCPBNnPLXDOHBGiEntdttm6eNAsVxt3iaPcBHlUomk4ZVmENMwU3O4P6QU+LxuBFOxH2sV/QP0JdBnCZWE7/oKeAaafyG+Nrb23tX2O2KB6d0YO/v7+uVV47r+7//Ga2uhnR0NJSakXIJWoAxXwmyIAk+LHDYwPPnz9uIiGg0ak0LeNcYLRUKhYzN48QbOuf5TEl2RrWXjiYnJ0c6r0l2BKGdnR31+307n9onJJIbTBKMLMkFwzfVJIN6kb6pMElabEiAI8BbGvpjaD4iEHnDdywWs2sDzMLozM3NqVQqGeCh4QNzPpuByQRUlwR0PIskFkAFgJw5kIAhZG5pwCYwt5bqETBBAvYdsIFAQJubm2o0Glq7+Xatfeq/V/3C66q99G0tZOct+DCibHd3V9f+6P9eU9e8R+f/7Hd1WK1YMuI6YBdnZma0tLQkSfYMGUwtycAIjGU+n7c1BTCjYQP/KfI1tg6SLv7TtbU1ZTIZq5ZZ6wcHB7rq1qTuvKempfHHFO4Pmpd6imqn+UG9+nJatUsHxj7Q5OS7wgnQeO7w0RKwKQYJpNPT0+p2uyY30RELu8szl2QHIMBAsq9g3wEDsGwEV88AeP85QRfQ50dSEbA9mw+D7H3krKdgMGiNQJ41Qw6r1WrWlEdSlWTJ2v+8b2bimklMJFGAOfFKGh7VWS6XVSwWbRxZLpczxYSCsFqtmkeS4gYWksHxFG7+AAj2GuAiEomYfYcCAhaX3yHOpVIpBQIn1e+/V2+88ZbW19dVLpffLswPbG8D8phLy/HJ09PTuu+++3TjjTeq2+1qY2PDRghRaOzv76tQKNi0DgppkjrgiwIX1hmZk3tMgQ645fexgHC/YV0pFFOplNLptLa2tkbAMjYobyWBVGHP85wpYmu1mgqFglksIDxQE4iXFO+sLcD45OTkCJsJGOV+5PN5IyA8iTExMWG5j3jo16vf7zQJ+udNcYNnkX0kDZudfPw4ODjQ9PS0rrrqKt1www2qVCp6+eWXlc/nR54reZNCw/tQkePj8bjlTAgjCBTUKwggWEemB2Dnwq+7trYmSZY/KRr8ZAYm6/CdAcuwsZAL2MT8CDmm75CXALKAZnzTh4eH5u8kn3olDsYXVU0aqAPVatUa2nh/iADsbd6r32w27ThychVAntjqm/F88QtTy/Ol8fWdXlc8OGWDHxwcaHMzLUmamCir2UzZ5kRKQfplEVDxUwEi1SB34a9rt9vG1MGc7O3tjQA3AjQbGnYHRg9PEQxYOp22ilkabjoqSZpA6IRGOmRwNhK1l63S6bQBLuRXqvmDgwPt7OwY20NljrGcKhVgjBmbCst3jRLImO9JECHYE6S8xOYDNQud78FEAliQvb29kXPeYQRgfr1kgayNVOk7o2FJYM8k2X0huOVyOZs/S/DHJ8TPz87OajKd1fX/p3+lXrOhzT/5HzU+NmwMazabKpfLA5vBHffp2A/9jPZOPaba89+0pEJAJNhxbVSfrI/LgT3rkoYxZF1flQNyMpmMFhYWNDExoe3tbZOgsC4QyPAM0Vk+kYnqx//phtLBv1EzsKCzhY+qXIwrGIhocqap4wvP68H3P6b6+67Vn/3pdSoWS5Zw8CDCMCJ949uimt/Z2THpmRPbANalUsk6QmFsJJk/vNfr2RziSqViTDffhXUhyZohSWgEUPyL0WhUq6ur1mTCWmFGJKCIdeV9WbCpADEYapgiGhFIioB1SQZq2BuwFYA9miBZ24AjVAMvQcLWcK9Z41zT4uKirRneE0UFXxxMlpdQWRe9Xs/AAWuIv2cN41mlSKIAIFHyPoB1AMvp06dVKpXU7/e1sLBgiY3YQGzBJoMfmEIcMArAxLqCn9B74oiNqE3EdyRnAA9d5hQ8AC+eDQcikEMoaihcksmkfvqnf1qLi4s6f/68vvCFL2hjY8Oul+cN08uaJN57RYV7QLOkZ9LK5bLNYwbcAcpgd8lPjUZDhUJhZEwTJA3riX0BgCQuofIlk0ltbGyY3Qlm1zcbS7I1hFKFksP+np2dHfFr1uv1kT0OuLv99tt16dIlvfHGGwaYKYYhaFCZiAHkLhi9TmdwgATFCfuT96Pgxx/Md/fNbbCml8c43wcgDU9W47Qr8EA4HLapJsR+YoAvPPGeElNoIIOc8aw5uMUz+J6JJc7DkNO4ic2M/SUNxhrSSMp1e/KIveRtJ/F43Nj5cDhsp6lREDAhCPXy3byueHDqj/mSBsEmHu9ZEEGOBYRBwRMgOLYSQEbwozmBRgPYPknG+OCPA2QwLxJ5lUqKTlseJtUJVRSNMVTK0jDJ8nPdbleJRMJOr8G/yVxCFomXgjBB4x1iRBBJTxp2ZHspkiDMSB82N8GIgAHYB/whV/ohvEjoXAPMAGwEAQIgQKJm4zIjNhKJ2H1CGk6n05qfnzc5B2kSNsr7R700REUPEPBNVYFAwE4UsvsRG9P1//2vKhgb11u//ytq7RVNAoIZHhsbU3/+mK79J7+iymvPav3Pf88akQAGjcZgdidJF5YMK4gf24RtgvVCAotEIra+YEwB1gCT9773vXrmmWfUbrdtTi3SmSRL4O12W2OpkH70Rx9XUC099tJP6KXHDhQOBdXpNOxZPR66RavveZ/uu/uUfvrHH9efjd+ncy9WTf5k/qp/UYwQaL3JnwJJGs4H5V7QtezPsoelxN7CkZ2AXRKAB1PZbNYYWLrZARt4e0l+lUplhAWCvSDJIj+2WsPDBRhHQ3FMAUtxRgzh2hKJhH1nmgYWFhbM20fC9wUW64v5ln6/Er9YV1ynB4bBYFDHjh0zoB6LxUzqZV+TJNmrgGyKLtZvLpfT+Pi4HXDAcc++CZE1RkHLfoXd5hnz/VizeB9hcmDmPGlQr9f18MMPG6A/c+aMPV8SOh5kACNJHeUCOToQCFiinZqasutEAsULCNDiOwLQKF4oZm+99VbzLJ84cUInT57U9va2WR5I7qzDVCplZ5RzAhwxEXKCPZJMJo2IkIbFDSOaWKdcIxaW7e1ti5EUb7C87BOKSl/wEON5JrB0fH/2Gay6n3oAg1oul40NpkCRhlNAyANI2q1WS+fOndOf/umfqlQqWaMXYIkJK1hdIFaIG4DTRqNhawIJPx6Pm9WBZwpxwphEPzB/bm7OCndYdH6eawfoYe9h4gzWNg7lodEI3/fm5qba7bapE+xx9qG3C/H/3FOKGNRGYgM5mDVCgZrNZpVKpaxpiXXhi2TWJYoHgDgWiymdTlt88+CXn6MgZV+jcPnY/k6vKx6cwg4MBtQfvP1nUyNSI55RjpmkC4+mEW9qRq5nE0tSJpNROp22UU+Li4tWpU5NTZncw8JncdCpSKUtyTYtZ3PDDFDtej/p1NSUVldX7foAQfF4XOVy2RLm3NycYrGYNZWwkEgSVJQEEO81vJyh4b6xMdhAJKrl5WXzSQHqWZBInry/p/8XFhZs0RJIvV+JBDMxMWGSOxUnG5+gSuVIIqfYYPPiwQNw4AVl4xN08HkRlJGsYOXS6bT6gaBu+NyvaXx+Wd/9zf+zurlLJod5z184u6bsj/8LNbbO69z/97cUDw9Z9ssPQyDp+QkSgE6AJwGfAufo6MjY7U6no0QiYckBLxoWibm5ORuqj62B62WCw+HhoRSWPvmj35X6XX3+83cov7FjFguKh8EeCOvSiy39f964QT/1f4zrH/zwk/r97dvU3ekaUIIBYD/OzMyoUqmYbxA2ASUAAERThDQEbXS54heGWeGz/MxVpHtYHQ9SkNw8g88+ILmy9yKRwWEW3Cff9EcAZ+16Lzrr3DPoJE+ADusElg+WBBuAPw6QvUby9b7pywEpki/f3TcxeasK1xIMBs3DPjY2OGWMxMT7k7A9s+M7e7E14bkkQVH8ETex2JAMuXe+oQ4CgD0Lq0TxSJFJYXb+/HkVi0VNT0+rUChYbPXsH2yyNDz60Tc7EUdYD3j6KMCZoEJxxLPg9DRv86AouHjxogqFgtLptEqlkvn38N8ComBzURZQ1fAD++Y/r3DRNAhTenh4aH5Q1DFiGHER6RzCwINBijFiO0CD/UWMyeVydk9h5ymsOWCC4rHb7dokFZ9PWA/c/16vZ3NfO52Ogbh8Pm8HjwB0sE6EQiHt7u4qEAgYk0xuguWksdBjAtYquZp90ev1TDVi7fOZKDsUyliO/H2UZN93ZmbGxtwxeQcljEIN4sQrodxj7h3rnLXIvSOmETPIYXwPGixZF/1+X5lMxgoub99C1UFxojih2MAK4eNwOp22uMY9Yz2DaWBnfZ/Du3ld8eAURrRSqejGGyvq9QIqFmcNpFG1kXABMQR/vJK+CoWxhFWRZADj6OjI2Ac2IKAIoEswJ0ggTTabTW1sbFiiQqqE5SNhzs/PW4WCjC/J6HQkGhpROG0I2RYZiCAIcyhpZNwRQYJmJUA5bB6LThp6b0hsS0tL9h1gs2CRUqmUjd6pVCojC537RfMUBQEeN9g9ACZBAGaIDckzQwrjPgA4GdRcLBbVbDaN8SLRkQwZeyLJvIgkpmqtrtv/L7+p1HW36Lv/j3+h0pmXzI/KvYxEIgol5jX3D35enWpR+T//HxXodtQPBUekDgCL9wlKQ+mawoJOTYK+H4hN4w7etHA4rGQyaazH2NiYdnZ29NRTT9mZ7cjrJGXASKlU0ns/Pqmp/mn9xVd/XId7Dau0T5w4YVUyJxLBKD7x9VV97Pv/ve79oZD+6g/DBs5REOjqZf9JMgbEN914OcoXJzADfH+SMkGTOZUAGbx2PulTFFFg4BGFOZOGhzmw/7x0HQqFrOCElSBxEzPwb1UqFZVKJTuSEgmTfVIoFAz4wVbs7+8bMOY5IoOSTPwxmqwB/MRYjbheGgmRhrHx4KdmrcKm8rwoUGGQvWfu8vmqrDuSL95Z35DjrwUlidiJt5JnvLi4qEajoWq1agwXvkwIAn80L7E4n8+b9MjaYYwefsFEImFxAjsMChSWIhgvSQZyiQ+M0UJlocDHegFwwF7zyiuvqNFo6Prrr9fm5qbeeust88r7SRrs/2azqc3NTSseWP++wMO2AauHT9WrIN4/S/Hr+wEmJiaMmec+eusD64U4jHLkcyZ/TgMP98lbqXxDEjmD6wco+jWImkjxhY+SphoAEIUDZAZ7nF4NGpt4AV4pmJCXaXamiIas4Bny/QBs5EdUj6mpKYtrEFYcc0rM415wvXt7e6aQ+gkIxBnsBoBscg77lbVLzKYAA5sQw2j6hKBjDjrYgxd+ZzAMpBigmD6TeDxuZBx5kkY3DlCgOAAXEFtpjOLv3ul1xYPToWevp1tuuaBc7hpJKR0dDQdFt1qDM3T9bDmYlXq9rrm5Oav88fKxsXno0mDBFItFSbJBypIsAfoxNSThcrlsnhKSytjYmEqlkh1/FolEjEnFF0MQo/oHOPvNDuvHJoHhAez6rmbG/GBYJnDE48PzpfGpIS8DHpAVx8bGzHvFz9KdicczkUiMmOy5JiwW+GLYLDRycI+9/wcGi6AG0AOQYiGgc5SgGgwGDZAjpQGYkEs4wo6AXCwWVavVDODE43Gt/PA/1sId92r3+ccVjI9r+ft+wCrEWCym/DOPKhQf1/xnfkGhsQnlH/+ytHiNZuaPa3JyUjNHR6puXdTBzgVjRAEcExMTSqfTWl1dtSYogDESDqATT7Fv5CDJA56wr2xsbOi1116zAEYRQvCBzW2327p29TkV2h/Qfm5My8tJS9gf/OAHdeLECU1OTqpQKOiFF17Q2bNntbm5qfx6RRfr9+mGxW/rP8Vus0RPUGceLw1vJBwKiMXFRfOcUSgtLS2NXBusD81Enu1GZkP+hw2WBkwZM35JRgAwkhDNUsx7JKEdHR1Z4bi0tGRrmM5YSca8AKRIngBl9iXJH5YNcMB69yw/x8ey3pFyPYs6Oztrlh68zewvGukAith5uCfEJuIX4NyDmWg0agwmDEoymbRiEO8jBTAKC6wW+5DCh70KQAdcE0/5TMZ9+Ykd2CVgPPHZtVots1WxH7rdrsUU3p9nDzABYODhJ9l7hch7Q2HmfcEEaybJvO/EEoaiX7hwQYVCweI0BRj3CiCLbFqpVNTtdpXJZAwkUljA0EpD2xkF2/b2tsLhsJaWljQ7O6utra0Rz673pTNCyStpvlHPW8DwTtIgy3V7LydFAjI66w95eKhgTtl3Ih5DQLBeKIaQtz1LTOMRrCMSuy/OYecZuwi4hDCBJfQ2Em+visfjBvB5nhA0jHriu5NLIT5QBdhHhULBTmWiSYoiG9bSK6MUgKxXTyIQ/2CwPWONRYF7j0JFEdVut63QohCi0OFZQcIRTwOBgB3yA2glXjabTWsohwADfwDEab4m7uP3fjevKx6ckrhuu21PqdS+nn76Nrt5BClvqufBSYMmpKuvvloTExNGvSNlgv69bEL1TQUDy8hCJqASHPA7wXJOTEzYKTu1Wu17FjEbCIBL1QZgpoOeAMKGTKfTI8wtYBTgRvItlUra3t62zmg2PhU6/j+CKxXqwsKCDfGmci6VSgaA/OxBrguzNV2Pm5ubyufzWlxcNLaQRE9Fy9gSvDfBYNB8uDCskuw+wB4RdP19JxBJMnZckp1yARPGQHUkUroTO52OpteulSRlb79H2dvv+Z619/Jf/ZFmFlcVnhl0SS7+wD/6np+pvfRtvfUf/p+WKGq1mvnAms2mSYJbW1sWoGmWo0hiRiv3n0SDj5hgAvCQhnIOLIevwkOhkE68L6uZ/n/UN1/5CbsfmUxG9957r2699VZL7slkUgsLC6rX6zp//rzq9bqefzKhEw+WdMvdcb36xCCxwLCRlEOhkEqlksnL3haC35PiAK8UQbZSqeiqq64yBgZpDZm42WzaSDKALoET1o0mKgpKbCesB4o4AjjAkKAL4wVgQ8IFkAHw2eP9ft/8gkiWXCvFG2sXTyyyIkABSwJNS0i+8XjcThpiz/P+FLQeDAKCiRmwXAAf33VPXIM9Q4qGTer1euZ5o6EynU6PjNAjpnobAUUf18/9IoHBlJE8AdkQBChHFMF+VA+gxk8qIcnD4vBMGXDuYzX3ge7sVms4FN8rUJ7JBJyyDvf29ozZ595BSMBcUnBxT4lz0gDkwsJTlEIGQG74HMA6zWazFtMB7tFo1Jp4efaxWMz2ojQ8Ox1Cw4M+1jzFA+wsLCTgF4WCQoL3IF/ChEsyhQnlg14OyA68xngwKdRgfjudzoivHKCP0gA4hPgg/nl1DP8s98pbwihaYH55xsRSHxOQvyUZkeItWuQs7hUsI81BgGPPCkPyeM+rH/jPNSwsLIwU11gIICqIvUzNoeDg2niefHewEWvW20iIj4eHh1pfXzebHSy8b1DjGZA3eJ6+MHyn1xUPTiORiK66qqSPfvQFra9frWbzOoVCLVvcBCUkLWnIGjBbjEDAySGcLoHc5wMenbCwGjCfLLxOp2O0Oh4tAhWytve++PPOYSpghPgM6PZebzDzDynMd5ju7+9rZ2dHsVhMc3NzI9IGiQNQDcvInxOsGacBqwHTQDBGPgJQcHYxbAVMVKFQUKFQsL/Dh8U5zSQdgrtvwsAsz8IHRHvAzAbzI5JgxglQdF1TDcJc+pmTvV7PGjkYpxGLxWyIc/k3f05LS0t23ykiarWanQe+89ZpBf7Nf2cBg5M2GMuDB1mSSaqA+U5ncMLY+fPn1ekMZtESiBOJhDKZzMgQbJ9EWq2WzaTjvfDuwU4jT/kOSyYhJOcHwfXscwc6bMjW8HXXXfc9wYXOXSr9Sy/ldPSxjNLZ7kg1XalUrEHRS4qSrFigKQ9Ax5/7RIpVB9BB4UaC9LYIADf7BfY7Fotpfn7e2DYkfORsEgNBOxKJaHl5WeVy2RIWDB/2kWw2a6oHgZykSBMgzC5/B1sBG0WibjQaZnuhuGSdkURYA9LgzHTmGvN92MeAZ8A849rYa7u7uxZDuJckXNhH/H8wyhSpKB+ABG/1YZ37ROmHjxNbAM71el3FYtGAP+PzvBqAfE3RnEqlFI1GDUQigdLY6UGFl5j9rFNUB68uMeyetUpxzz7Z2NhQt9u1maE+RsKoHx4eWjFOUxNkCfIrP0eRgiSPTQlmjHhNEyRM8NLSkubm5szqk0wmLYew5rB+8JyQegEp7DOaZ/GcVqtVA0aALHzRxHTeB8YfVQ+mFdsb+Y8+APY8xADrjSIV0gjlAqaX+8HzxttI3KeQ4nqxHGWzWfO3YqcCQLE+KOi8RO9BPODSF/TsX547xBL3hMM4iGHegkdu8/0ZAGMsH8ToSqViPSQoZolEwg4pKJfLlk+I8RQXWGlgdiHUyAGsHVhk2HswEaSJt5GAifgMJh/wLMidxDxALN/93byueHB6003P6+67L2l9Pa0nnrhT09PVERmXU1hg4rwBXJIBQRjLWCxmGxgpDQmRCnxmZkb5fN6SFDQ2YBYgQYJlITCHjA4830QVCATsH2mwsTn2DZYC1iKXy1kwaDabI5UN40AIMAQoQCXyLpsMppfKl+vFJ3P11Ver1+tpc3NThULBGBEYk0BgcOIEIAXmIBaLWSCbmJjQ0tKSwuFhVz2JBellfHzc5Blm+HkJill2MC1cK4wiwYsmIJ7z2NiYVlZWzAjeaDSs8xlmlXvF5iIAeGkX4AC7nEqltLKyMjIsn4raV+QkPT92B98hbCMMCwkJb0+r1TJGleTe6XSUyWRM9oFVRbbh+yCNwkLD0MOu9TX4bPXCmp4et+f/t718kxJAoaNxRSJd9fvDZhSYRRgWAidrjgRHhy1FAH5LPG08B19Q4sFi/SHNEphJwIAcmBP+DQjx9gY8iCQ9ftf7UkOhkO1RnpsvGLgOhph7dsY3S3FCHdLp3t6eTXqgwKUoo8AiwcFWIK2Hw2GLE+1226Z5ANAk2XNG/idxkYDC4bABcaRBmCIKc0AAz51T8yiKvY8VkAgwZSQPo64oRNPptD17fq7Valk8KxaL9t1J/ig/gGj2m28i43kAgJktDdNUKpXMS8qaIG4xLxcAx3PluwC62OP1et2eAzODGajOP4FAwMiR+fl5a2BLJBJmSyIG8r58rjQAnAsLC0omk8Ysey8jhSoxjCKQIgiQxbrgmXv1CxJidnbWYrGPi3SmHx4eWnGKNI0Sx9olhwHqKA5QpGZnZy3+kOf8SXF+eL/PId6bSSxgXzAvOZPJWF7wnut+v2/3m0IAptuDMkCWb8DzPnDuQaVSMZAmDQ84AXzTgEUhFAgMj/0G5IFLiPWsNybE8L1RCriXFP1YJ8j9zEClUUySEV57e3s6PDwcaepCsWKPedWRPOHzEPEPIoj14fEFVrzl5WW7b+/mdcWD05tv3tDjj2f17W9fo+uuG/hUCoWCgU/AI4CRGzozM6OFhQU7BjMSiRjTgNwlyYIqf1ev1y3pwVQhJ/tuYYbc7+7ump+UDew78KjmmH2Kf0OS+bpIFJ4NoFJDXspkMlpaWrJ5ZFRCVFgA4cuvGfmG62KodqPRUDqd1gMPPKBisahyuaxCoTDShclYGVhfJAJ8LHQPw9bCfBJAuA6uF3DDxgRgJRKJEd/c4eGh2Qyq1ap157JJqBYJhAAPEgr3UJKBNy95ew8e3ZjRaNRmu+GxBLzmcrkRZsdfL5udew3bBLswNjamubk5YxIANnR+slZ8Um21Wkomk1peXrY1SpAlwMNGLC0tGWvAeePdbleHjUEAGZ8OK9QfVMq5XE65XM4GWfOq1+t64403hkFbfUVUU6s1lNfwhDGKhWHwJCZkZBKgJPMXkgyRiFKplBU/yHyAGZglFBGeeSAQUCKRMNWDBCEN1AM/KkwadpezJigsAC2Agfn5ebPmABwA3V7Kh8HGZwvwYjYqDAtAptvtjjTYUMj6I5aJNxS6NNOhPMRiMRueD/NPY+HMzIwlZk7Bk2QNjIBqEi/3mSLCT8hAjmZMD4UoPjc8uDA/JGAUHsALNgWf7GhCZH6yZ0TxvbG3YMIAwr55h4LFgxpYM0C3bzKhqYs1xVqDMec6YMUAIa3W8Gz7qakpY8tmZ2c1OztrDCnPEQBC8e2bB2k6oWmTdczaWFhYsLgxMzNjTCXMGioOVh/GYlFA+oKXFwCMe+UtN4ArWGuUDtYL6gSf7Y/6lGQxm0ZKPoOmIZQ3PpfCnXgIYAS44wf1vQSAR64H+RtPKBMNJFn/hreNES/4nhSIxM1gMGiKBXmEfghwAA2WfD8AJs3I3vbTbDbtmcA4Emv4PQBeJpOx78vfgTWw0Pl+C6YxkNtRJMjHfmQbuZk4eDlol2Tr0jeNAWgjkcE0E7y8qMSs21QqZV5Y4vk7va54cPqlL/2Iut2I2u0tm/lItU2lDP2PTIdfiaoeT1owGLTqhdmh3HxvjidwMtDXj0AhKMCW8hAJOjB4MCEkB5gV38AFUJGGLBKJDqbQJxteyE+wtTQ8seD4Lt5nhBxHBTU2Nmbz2ra2tiyoAC6Q5NiwNBqRUPmeML5UqePj48ZoIqvBCkoyUMgm5XMJbiSqRCIxYuCmok8mk9Zo5u0MVMzLy8vqdoeNIAS2Xq9nwVmSBQ2kQBIq94/qHQDCdWD2974pEqWXr2Go0+m0gfFcLmeyKv4/AkexWLSGAT4bdom1ws+SRBgLRUDhmjqdjrbejKp/MqgbPxjW8187sIa2hx56yO4T9/Wxxx7T5uam2QxWbxtXpF/R+Te65pPiOeGJY22yvgEC7XZbxWLRmB+GaXufJ92geC/xnvFMKEAACDxPSSbnSTKQIsnuD88PqZ0XhQPFHTIeic2vI1QFuvZh/mH/8KNnMhlbC8Fg0MAbMQWJGjae9+FaKJyZFILP2x8wQGIDaHOv/PgyD8KwMQH2iRfEFxhirg9wwprzrDFsZiKRsDV9uVRNvAAUACpmZ2ftvQGes7Oz1ozIvSbRAiRQCigOiCt8P+LK5OSkNVHR/OL3C4UQTF0gMJxHTaMTY+2I3wARGHCsEJzTDrin0AV4EU/xR9L9PDU1ZeuF/OM9iZzyBAiHqQSAsU9gt3meFNiwv95agUwPs48FiO/I3xHjfdFMzkBV4hhgnilKBiQQ+59ChRcxHwIBVcPPww6FQlpbWzOWzqspADEUEopXlB9OmqP4IsfTaHh0dGTkCaCYn2dvz8/Pm7IIqTM/P2+/D8GClcgXMn68G8oma5XijfcGdHpfMUQaCka73TaPPd+Ha0KhQ64H1NZqtZGpG+RQiDryD58FSTZ43+iItQuyirUGMQDApimKYundvq54cBoKTSgaHSSQra0tA44YxWOxmEqlkgEdFjfJFAkNeQ8QR1BBrksmk5a02Ih4aOiupuKh4ur3++Yn43hJ/CIsBDyk4+PjVlEhIZBwfIAgYLOpMd9THeGv9AwCm5yOSY43hI3j+2KAB/hduHBBW1tbFrgjkYhJgLCnDF32na90dOLRBBQz65QATONWKpWyqhL5HM9oMBi088kJ7DCi4XDYvHWSzLNGoQD7BQPE7E9JBtbopmakFAGFBC3JQCLgnSID+YJh9MiIh4eHunDhwghTGYsNBonj04VFmJ2dNekI5gF2AOO5JPsu+O0oXGCl8SZ5rya+1ME+Cdn6H3gLx5Xv3aMTq8/pLzcykgbM0Msvv6xaraaVlRWlUint7u7q3Llzpkb0ej19/ye2tN8/pnMvHGl/f8AiEZy9RMl9R87Dp1mtVm1dw57OzMxYgUOB5+0ueDsDgYB5c9PptD74wQ/qtdde0wsvvKC9vT3t7u6q3W5rYWHBkr0HZ0wSiEQiWltbM3aAvyfgLiws2D0HkMEUwvpIw/E1JEJJI6NWUAcikYh1dk9PT5u3Eo8zHbGx2OAYQhhPAKBvNERRYA1w32GPYQlZx9zrg4MDm+zhpxDQyc6+4mQfrCI0UCaTSWv6BGh6thZ/L/eEhAroJYF1u11tb28bCUDMJQkCzik2G43BaUeh0GDeKNIqz4yiC083hQAybigUsjE3FJDInAA2bEQADhQmWGHWZjg86Eb2DX1HR0dWpBETADkkecgD7xkEyNJrgGJydDSYjnDp0iXt7++bdYXc5Ztv+O74GimEeSGrAz7wwqdSKWvKgTUEpLKOpWEDn/cfAgyJT7CjrBnyDwUSDCDri3tKYQ8REgqFbA4vccSz+yhg5A5kZ0mmNNGtz71mHUAgsEdgUZlpCtuJ3Yr8SA8KjD/rjPwG+PcsLyMi8bOWSiVbm4BHYrX3rrM3AIzsAf6fBjLWGHmI74aqwX3xJBZ2RGKDb47q9dq6+upd3XTTOWWzJUWjXXU6IVWrU3r11TWdO3dc7fbYiIUDZXZiYkKJRGKkx4Hv9E6vKx6cbm9va3p6Wun04OhSqHbkLqQXbhqMBDJMv9+3k5546ATJra0t64hlw+zu7koaDOYHBHi2ptEYDnJHuoG59VIUjCO+JRhRgB+bARYRRrhSqRiTh49qdnbWTPnRaNT8VmwURlxwnQBBAs3R0ZE2NzdNVvSS+sbGhhKJhDF8BAc2DwDV0/yApYmJCfveJGnkDUzUAGaqMpIHzALPheoPOXxnZ8cCFsmGjccmpdggmMJQsCnpdOTv2FR+tBZgEb8erICfcUty6vV6mpubs3XAEZiwYpf7k6rVqp25DlAPhUJWMZO4YTUA/yQEqmXYRAoYwDBMAub/QqFgoLrdbuvUqRX9wB2P6bb7j+nVJ45sTb/22ms6e/asqQ4+sV1354Ky4W/qmbd+UJOTPfX7Q4m83W6bT9rvB5JWNBq1TnbWSbvdtmDqQSSM4djYmHK5nIEsmkvm5+d155136o477lCn09HFixetaY/g72V4ZG4YKeRHPhdfr08IgIK9vb2RDl/AGyAMkOYlNBISTYXNZtOAI4wn4BcbjzQsmij+YIXT6bQlUQAFBTVgk+TpwSkFMaCfBJNIJGziRafTscRJ8qWgB0zxM8SldDptcjTHkQLY/Pg49qdv9qBwzGQyI81t3BPf6ANrTYwDoFBQeIAEeAMwevsVLH0gEBgZdQTAYAQPh1tIMmmf9ezVJsBnKpVSt9vVzs6O2bNgf2F9me8KCIbNZo9MTAzPsye+IPH7PYzVgwNe6vW6eZfJW/gwiW3EH9hI9hH7mlhO0c3ne+Kl3W6bz12SHa3KWqEIarVaKhQKRjgg28MuEs8gLLzFgthI0cE6gqkkrnMvyPWsM+RzFEBiIQUKz5Fczn3lXvCseN+NjQ0tLi6a8kcsIdZxjcRZrIL0FbCGsRtQkPjDHchT3luOjI4lgYIFnymFB0UPEyi8f5T4Se7EikhfCsAyFotpdXVTd931XU1OHmp7O6mnnrpGjUZIicS4stm87r77ZX3wg6/phReu1XPPndTBQX8kp3uSDPzi9/Tf9briwSmy4MTEhJmPkbboYCf5ARwJNnTMAtqoyNlo0jAo4N+YmZmxILqwsGDBHT9QMpnU4uKijo6OjLWSZNUoDEe5XFa5XB50Tr/taURqQ5rqdrvWYb28vKyVlRUDKiQcTrXZ29vTW2+9paWlJaVSqZEROlS+sLJ8b6Qumr6Q1mEtvQeQM5BbrZYFf0ARFTsMLzIWEgLA5PDw0IIpjDLNZvheJZm3hSAOYAe4wLzNz88rFBrM9uQsYRIQ9xXwgDcX9so3dMFi03iBN5GgxIaHpYBx90wJwKlQKJikhSRI0uGZUXH6ZhLkNVi0cHgwYJ8OTQoswArgCoDFvUokEsZiIYfBUsDww+y98EhON9/8Yf3Qh7+loD6hrdcH36dcLtuaIZkdHBxo9aakPnr3Q6p1r9NjX9pXODAIQgAemAg83FTqfpQRoNvLhAxJZ0YpYBQAQQCnoAKEvvLKK2q1Wrp48aIxV0jMyGbdbtcSZiaTsWItFouZHQFGenp62g5yuLxBhmc9Pj44FYbxSlyLt6DAJLKOkO4oTFE7sCSgFqC8eN84Mh+TNI6OjkyeRCVgLflh8t4zhtyLLCjJ1ov3ZrL/PcBDuu52u8ZY8x7EKeLaxMSE+TH5nlhbGCHFffCyK6QBe404jRcVi5KkEbCGH5s/o5CX9D3FLAl0cnLS1r8HSDxzDibhnpHkeX88lxTb5A7AIEoNPkVUFfaDb5jzFgD2JYAR//3Kyop9P8A9gA5gzmgnrDDsOa613W5qaWlDs7MNhcNdSdsqFOa1vx8wgD41NWXFJWPsKK59Y2K/37d5ruxR7Ciso3A4bIUea4H7zHqMxQYHMXAPsalQbPn1w7306iSfBbAFKBHjiRsAau4Jg/v96CX2LdYB1IBaraa1tTUFAgHt7u4aScI+hjHtdrs24pEDIQD9FMuoj1w/Cgm9H+RBcAmgm1jFPfT7gKKK+EUOZr0ycQd2lSKWQuWWW7Z0332ntL29rK985Tq99VbA4n0mk9G5c+/Rt76V0403ntb73/+6pqcbeuqpuyXJAC5rGGWW2PhuXlc8OMVYD+jAM8g583ggCHyXy0g8dOR4pAHYSlgIpIfjx4+baZtAzPsDan01g9+p2+2qVCopl8uNyJWeVfMjKahseOi1Ws18tCx8WFn+H5ACo0bwLhaL2t3dNYmOhCfJKjYCJ8Fhd3fXpABJdtTg+Pi4CoWCSZKAQZqIuAb8bcg1gErYXYIFiYrz2ZFVaQCg+vcNZFSuExMTdn3b29vGxh0/flySjMWga9FLIGxoEg1FBkCVhivM4BjjkWVnZ2eVz+eVy+Us0AAesQ5wXwDwsE/YB+iWxSPEMyPo8Z3978MckRhofgiFQiavcI/a7bbZQ0i+ACmKny/8Xkyf/bn36JMf/kudvvFBPf43AXVzA+YB9m/heFoP/OS43rPysA77C/rql29XOFBSKpXS9PT0yNngeAFhwTmaFEDNukceYr3gScND5ZlfadQTCvt27tw5ra+vm4zrfdd4XgHBnk1BBWDvI/exHylmbezW2yPQSDY0eFWrVRWLRVvj2BFoFMFTCfBgnQNc8R4Ss2DxkS25RsbM4OklSZHoYVNQY1jPrVZLi4uLBsZg+4kpgDWeGXNzYSzxFiJBwn7CcMGeINmiHlCcePDASXWwvTCI7C8SHc+O7+hVmvHxcYu9sNI039VqNZtR7O0YnU7HhrdzzwAmMOzScPyNB0cUBd6nTFy7HKQgYdP8BNhGhuVeUBAQ01AkeI4U6BQp4XDYzqqPx+NWfHKinJdxQ6HRAwRmZnq65ZYzuv76tzQ5eah2O6Cjo6DGxroKBl/X+npCL7ywoosXx4xZjsfj2traMlWNnON7CWjURWnC84q/GCUNXzdgEBBKboXc4HugXtE8TG7EJubvK0QOQB+Vgzjvi2XW6/T0tNnAKFx5Fp4gIJfDYPL7frwc4BcGVJLNmuXZ0ewraeRACdY5awKAT3yhwKbAYmY4+YW/I2ZwTewbRpjBtIIriC3dblfXXFPTffe9pFdeWdazz96to6O2xsaGxc/wcKO4nnrqZu3ujukTn3hZgcCcXnnlfZaziHmSbD14W8jf9briwSkeFkkm2VNhwaQRBKkwkQmoSBi1gKQAixYMBm1R4GtkASCj8jBhMbEKsClJtoCwmZkZM977Ac8kH9hFmlnwp2LSl4azFKmcSPY0dNHEMz09rXq9rkKhYGOQVlZW7OhAEjIJk/ctFosjTSiSrCKFWeZ3+YcKkDFN+/v72tzctEoMgEjAAzjDYDGcnqRK8GaWp2ee8XHC4q6trWl8fFwXL1606hgg52U5LwfxnQiAgGw6ajudjlkj6ODEI8ohArOzswb6JBmYJAhxb3yHKUmY6+f5I8VQMXN/AOSAFdYVCZTvwnMBXFBJNxqNEcYMlo3fOTg40G//33v6hz//cZ3MPqEbfmpP+fb7VD1IqdOZ0MzUgRZij6ivkC5V79G3vpxUsDcMzPF4XKlUSpVKxeQr3h8Jmn1FNyffh7WwurpqLCTFCPsLAACLcPnAeN+gCPBCwuLzsTTs7e2ZhwwA5dkTQL1n5SiA8KviA+W5xeNxswrAzsIGsU+wAMDacu2STMrjuF06nWOxmDE5vhkMdpTGpmq1qkQiYYwFgM776Bg1RyLEysM9Z0bk/v6+KRt8b5Is9xIAgkeOZwnLJQ39ltgPJicnzVPMNVBQ+AZDScYQ+72HZQt5mO8PSJiZmbFuYmIoe2t2dnaEzUE+5wQi7lWv17Oislwu2z7CAtBqDSajeJWF4hy2jHsOE8oehz3GNgHYlmRrhEKVtU4sunwfwVa32+0R5YYYBwhaWWnqh3/4aUWjbZ0/f7VefvkqXbgQehvY93TNNTm9//3b+uEfflnnz+f0xBP36ehoADSxW2CzgdkHMNIY5Jl5YhLNZqxZpq9wL2DMpSGwkmTH9cIAs7bxOsPgAtg51MRP1fGqI4desH75fT8JB+bZFw++Oezw8NAOnuAZ4ruFbeYQEPI+uSwSiVi84/q4Z1hhiNEUUNgQUO2IJ5VKRZVKxQB2rzec8e1HkBEviEvkTSyJ3KtIJKL77z+vra1ZffWrJxWLNSx2+t+jqGy1WnrrrWN69tkj3X77c3r++TXDNXjieeYoN+/mdcWD0/39fTP0+4oYRE8FhUwxNjamVCo10gktDRcPVSgsCsHXeyolWdULqJifn7fxDICiw8NDlctl5XI5k8w4hmxyclJLS0sql8va3t62BYm3hpFOACp/LBuAD8+RB8xsTn4PE/Xc3JxJdX6eKQzK2NiYZmdnzQOKfwSZBvkT0MYmhsVi42KzoLJlU4yPD04H4tlgFAd8E0Soan1nP9eMJYMgBvBkI62srCgcDtsRfmNjY3b2eacz2phDwuWAAOwPeOyQfH2l7AM2jEsqlVKpVLKg5+ckwkgR1PHkIVUiZUWjUa2srKjb7Wpra8sOhyCwAPJXVlasC5NgjBw1Pj5uTDMgmCTM0Hv8djSumD81Etef/08lzaTu1PsenNLJay9pYfaCpK5anSk9f/GH9OTDDRW2q5qeDlqAxNcHoKahjgaWWCxmHdhIZRSKFI/sGeRv31wB+IEBoIDi+8NS8D080PGmfG/FwNNLJzayH/N+GetF8cpagE3h+il2/BrHfw0DhPUDVhyQRlOhLz6SyeTI4HziD+A5nU5bwxfsrE+m2FHwDvqkCINIQePZZAoh1A2+ozQAzuxjwAaFIc+CWOQbMiiiaHzh+3AfAVJMZiCewCLzM/4UJJLe0tKSFSwUL/j8JNkosampKWWzWSuY8fkVCgUDH6wlr24ge3KPABDcTwA6v8f6AuB6/zB/Ruxm/XlViyKaU5PoB/D+Vk6P8rNxWbd8DvFzEPu29aM/elp7e5P6y7+8W2Nji2+DziMDHvl8So88cpuSyTf18Y8/p/vue1R//dcfUrPZsdFH2ASIX+ROimv2IXM46VSHNIDNhEHlRbz3ZA3WHEAZuVvSSIMXbDfXxLP01gNma1cqlZECvtfr2eg31h+YoFwuG1tIHwjPCVsUYJvvxv5m/83Pz1suPDo6Ui6Xs0I9HA5bfASjUOgRRwDA7GNyiS/WmeqDAsh7k/PZ1xSj7DnY7kEzXEGLizV9+csf0NjYhO2vfD4vaTgxRxodXfXCC8f13vee1XXXnVe1erXW1tZM0ULpxRb2bl5XPDg9e/asnVFOJYGUTmXMiKdOp2M+RSphBhCziGF5kFKSyaQlTFg9gjqbAX9lNBq1AEIlEYvFjMmjk51KEpkRNoMJA8Vi0UDl5d4pTlCi8mNOJmwNDE4wGLRZc8wgw1vlz2tGCmKzMaOTRekBqPeTAuai0ejIMOZyuWyLFRDTaAyGT/uTs3zzDlVor9cz72soFLI5f1S1vV7P5ESAO/IqgEyS2TcAvgA1xoeRXGAspqenJcmeqZeUSJqSTOKiY9kfZefvH4mP+8PoJLrTe72elpaWjOny0svy8vKIvAnjgixKNynJC+YCEEDVjEcYUBCLDU4O815Iig3GqRR3S3rkj6p6aW5BY2PH1WoNDgE4ODhjfiZACkCf0S94sPFCElQBL3ipUCjwTOGD8mwD948g7Gfr8owBrrlczsAYxQz7Asm51+uZj9BL/4xgkWRJH7WCRkcAGOuHIomZhBMTE/bf3W7XOqB9A4r3fGNv8dK8T1Z8V+4B18H6yWazxr77KR6BQMCsKNzzSqUy0jxFAQxAYu0TO/DuZzIZa27h+okX7At+H+sTQFqSNXLgawcgE0MArhQUdPTz+awPnlepVDJbyNLSknV58yyR+Wlcm5mZUSaT0fz8vF23nyGNV5sCBMYVv7FXMDioIBAImI2K9Vav181KgOzd7XY1Nzc3MikB0AmoB1RTCLAfaVDz7PTlhUSn09HW1pb6/b7Zn4gBg6axpn7sxx5XqRTRH/zBCUWjfSWThyb7EycppKrV6/XQQ2H9yI98R7fc8rK++c01i/3NZtPWEJJ4MBi0RmEYa/YvxbufQQzpwxrlO2Fvw6uKbM8ki05nAJJZ3ygh7EF8+8RnSJF+v2+9JwAmz+QylSUSiWh+fl733Xefrr76ap06dUpPP/20Njc3LV52Oh3DDdgeAJcQDVhfsHygcHnPLSQFlgZGwZFDUBB5xv1+3ywGWCEWFxe1tbUlSSP2P/YFzcOoQChI3D8AcDQa1U03XVC9PqFi8bimpwdxHUDJfuD5eWY/GIxrff1qXXvtaT3++JLhDAA66qkvnP6u1xUPTldXV03WxxtFlx2BDemf5AANTUDzvk88HqVSyRizcrmsRqNhwY4Kn4XW6/Ws2m63B/MIGdBOkpmdnVU2mx3xUcF04fFA2ovFYqpUKtrf31cymbTmCxKCJGtkQsJFpvT+LZhSqjA+B4BzdHRkXZgkIzYXzSncx2q1aqdmeYnPe1sAUwQTAE2pVDKZBWYBywPABaDDiB38qzAaSEj4c0gEbD5Ym8nJSWUyGZsUAKvgT43ynjY2IGyXZ1a9t9NX1awl7nGxWJQ0ZCLp1iWIsX64LpqrJicn7RphilKplBn76eiF/eFYWpq78Pp4+Y/rphgieKVSKevWh6XEmN9qtQygsz4ISox2QYplPZDAkE8JfoByAM3BwYF2dnZszfC9I5GIdnd3LaCzVgjm/rg8nhH3goIJNpzRa97HB8AH9DAqiX0OUGINsH+Rm/f391Uul60DuNc70sJCTlJVsVhEsVhHR0fXWvHKXMNKpWJsUKvVslPSPGCGEYfN8LM96/X6CHOCZOq9q35dIp9LMr8ylgAAnm9M4rnAZFEQYF0CsDYaDVUqlZHmMZ67NDyFzKskl7OqrEWsEJ4h5D57iwRgDUIBcADoGB8ft4klpVLJVAOKMOIQbD2gBGn/3Llz5psFIErDAf4URMRfP8UBNpOYDpjF144E6tllCA3ijTScwxuNRm3v5/N57e3tjdwfgCrxLxIZDL0nV8H88b15nTx5oEympT/8w/dqenrB1CZiFewaa3BQxFyll1/e1m23beiFF25QNDpmgLTX65kaQ6HMe1DUkl8hAVD1GMdIsxVrGvWP9To7O2sHusC2MvWD+AJpQIyjMCEuse859Q3wThzg2RH34vG43ve+9+nee+81MHn27Fkbv+RtAnw++w71FFsKzW38PbYOcAmEBsww8dg3SQEm/T5m3xL/sQex/nimFB4wyV4R4bhgWO5oNKpksqZq9ZhSqTlTMfv9vo4fP65jx44pGAyaGuiB8tjYmLa2sjp+/E3t75dUr9eVTCatyKSw/vuGqLdfzPCUZMGw2+2ONCuNjY1Z40az2bRED0iDtcMTGQgMz+qVhucGIx/Nz89bMGFDsimRJJCSCN79/uAoNUAhUjMPEgDIImXR83cE9/HxcZMgmNcGm0lDA0nIS538Nx6tqakpC8QwOIFAQKVSyaQbAjFDu+nmrNVqI344kivHxPrRWlR+BDRpCEwJxPhpkVYJXAx+h9ng95HIaYLj2r0sCSBGfqbKJeAQZPBoAbCotqnECWqAj/X1dWNJAUkwudwPkh2HQniPKWuTZM/n89mAJoonkhpeZO4pRQ8yEkGPgxFgGPh92DpvAZmamlIikbDmOgoFkgIgB4nZNzGQLNhf/IOERLLyI1vYCwRlGrl4Lr7KBxiQhPB/47NDZqTBkVmg0lC+82NOfIMOQMM3P/jjFff391Uqld7eM3u68cY3dOONFzU11XKR55wajVM6ffpqvfrqMbXbgwCOTB0KhYzVBVATfwDoFJqS7HtzdDLj1bjP3h9HAd3pdEYGYvMdAZowVT65ExtYX+wnGEcKGgaRk5Tx4DebTftd9hY+Qwof7Bv+ebCvfdFycHBgcyb9DE1iKsUI3drdbtd8sdKwY5n9OT8/b88WFrrfHxwNefHiRZ0/f95mrSKzosxwnRRJMOioGzw3rDGAFkkjINsDDYAjz5GiwDf3+biFOgJ4P3PmjClv7KdgMGiFGxMCmDtbqVR0++0vKZebUaGQ1szMuDFpsVhM11xzjc03xdpDk9Pjj8/qttsu6JprctrYmDbAQhwD2HovtGfJYE85JhdCgMKBewWzz71AGvd/J8m64FEnyOXEIuxh/jlOT0+bP7xerxuz5/25gGvyvLesoMBRKAKiA4GAWcm4B+wx4i6AESsA9z0ajRrDnM/njSkHxPlrCwQCdvw2vmkKEJ4hHt5Wq2V52u8NfqfT6RjG4P6wvyKRrvb3oyN7DNKFIqHdbtsINAriged7gLXi8b729oYnPnqg/PcNUW+/vOEXYAHFzmKkgiJ5SrIxHaVSyX6f9wO4UR16Q32v19PCwoJ516DkSfz+2DsqZ6Qaxvv0+307XQObAZ3wl89Fo3nL+6KQpovFooLBoI2vyuVy1mHNoqFypZJiM8OawX6Nj4/bWcd05sNkxWKDsR+wvru7u9rb27MxRyR8mjySyaRVi/F4XIuLi5bkqGzxAQJmAJ7x+GAAOselklxhSSUZGEFugNlstVoG0GHMSBRsdp4pUi1sFPee5M0zgQXC73v+/HklEgkb0o58yzPv9/vGrJNAmPm3t7envbfPxqYDlrUJ+PZNAjSy0OiHDIlHlnmMXoLmvhCkeMasIYIo+wRbAUwX3fVIi9KQkZVk+wwGGpmQ/2Y90TWMF41ixXtvYTEoTmhaxOdJNzv+UBgRZF4Y4G63a8yob65BgmONAkRCoZA1IOzu7urw8FDZbFZjY4OZqjDRt9xS06c+9bp6vYBefHFOzz6bUb0+rWQyqXT6SCdOvKmbbjqjW255Q48++gGdPj1vDTTeMwc4rdVqyuVymp6eto7+ra0tVSoVZTIZm1mMtEeRQzHFPmAvHBwcWPNKr9dTsVgc+WzfDErBgM0DmwX7j0KFwpHEDSjm3lIwe9kP+wJghFhAYRkIBEbG++zv75uXEe9/r9czlh7AAwsE2IeNZn/ikZeGs3xhL9vttnZ2diTJClViPNcBwKexjxPtuKeekWd/+7iCxxPWGNbPs1j9/nD0EmoUB68QuyiKYOQ8u06841nQ+OLZdAqtqamIlpe39OijN2l6esZAVjgc1vHjx/WTP/mTSqfT2t7e1qOPPqoLFy7o4OBA29vbarVC2tiY0YkTW3r55bRdM88fsOIZPSZ+AKAAJTwTYroHinj5eY69Xk+5XE7SkFzCOsGz9zGSe0Ts901C3q8M0IVFBGz6KSzPPvusZmdntbq6asUogJdY1Wq1RuYBM/KOBi5iCo2WfA8wBsomMd/bqXyMJZaR8wHtFOLkc+8B5f4Su8kpvC85wufKwT0MqtOp2v4/OjqyXpidnR1jvbkuvvvh4aGWlztv54eIotHACDD3Bf+7eV3x4BS2h0oWhO9lTzr/6I5nc9BhR9InCODH4efYkPjjXn/9dUvukkzKRl73Jn7M0d4ojDeRSpxRNX5RsXEBFCQZL4sWCgWVSiWVSqURXwvVG4kyEokYM5bP5238EqwflD/fVxpsTOR1z4rAtJHAsTTAQO3v71vHMue9U7l5g7k3hlMIII2wSemaRsLjWXOPAVYYxwGXVKreqxuPxw34w6oDAv3zIiABcigmeAE2CWCzs7PmsYT5AAwRaElUzJfF53x4eGjd/zx/PJbIhrAxJAJpeHSsZ3ZI9oy+IYF7yWV/f99AJc+NJAFr6dkd1jbysr9f3COACJWzD474KPGB8/cUcVTkxWJRlUrFxr8RvAFogB9JI6NbSEbsVZ4Jnd48Z4okxvB4dhYZHSkSRunGG0v69Kff1NmzWf31X1+vdjviWOygyuWUnn02re9856Tuv/9FPfjgU2o2b9Gbb67Yc6JIAFBks1k1Gg0tLi5awwXMFZ5DvitePNgPElO3O5zQAQPDbGcYIawvJGTYOA8y2S/4PNl3+NQAiJ5xAZgBMEhGPC9J1rDE86dYZm0xIYAROyTv+fl5U1EYGs6e9149JEqABJIzcYx/T05OGlOFxYq9BBuHP95/X2IUewhPNQQErD8qGT5QDi/BFoMPlvclxvpjtPGMokiwP0ql0khBgSedPFCtVs3/iHowYNFrCgSken3S1ipNSu95z3u0tLSkYDCo5eVlpVIpPfvssyPFdaUS1+zs8ChmJjaEQiEbRcj1s4amp6etGUvSyFn0xEtIDixwPm9T8NBMA2nBNcCyoyqwl8hd+Espgsm5jBljjVOA+Hx1eHioL37xi5qamlIymbT+Aa6PQqzf71vOPTo60s7OjsUn8h6FA7HpcpaW62V0mjQE7+QqiChv2SBu9/t9A6zkMK90ESexmOBtxwJH/BzgkJTW1i4qHg8rEpkyRYqC0xdWxByu7dixXZXLUwoEopqZGbcmTuKX/37v9LriwSmgRxqersKmIeHA6HmJhKRFEAHcsgEBkCRg5GlM8gRKqmV8akgQbJRer6eZmRmTrgiq+MX4WYb++kSCFw9QIA3lXYJ6s9k0gzqBG+mh0+lYcxVBEAkTSwPzIUmCGN09sOUkJ5oDvG+J7kGYXPxnPAtf8VPtwQB7yScSiZjUDXuYTCaNjUEG9Z2unJoRCoVswgDyDu+D/Lu6uqput6t8Pm/FC40yzJWjApVk943A5jtxCbLeGgE44x4j9eNRPjg4GBm0TrMW78XzjkajI00XAF9Ob8Jj6GUg36QiySwCgASYT0BQJBKRwlElvu8HtXbsBsWXrlZ4fFKvf/43tfv0I8pkMoORTrGY5u/6qGZvulOx7JqC8XHt57a0/fQjKj/5sI4OG9apzgB2QAUA3VsyuO8etPI8x8fHlUwmTeb1nkpUCIax48HKZrNKJBI2B5QgDNjk+/P/JAzWJM81GAxqZ2fHrj+TOdJnPnNOr702p6997XYdHjYUj4fN7uF9foeHAT388K06OurqE594Rf/z/xxXq5XV1NSUFhcXzTsOyJKGBR17iAZEEgpsHbOHGfRPAYUkjCdZ0kjnMDERBotGvnA4bJI47DPFDew8ndUkZw9kvR2GYhwf6OHhoTHcyP88dwAj/8/7ALAnJycNlNKExalJ/D5xFP+9n46BLxEwyzPm/7EPUfhxLTQvUsBxjDLPKB6Pm9ePa4BVlmT3AOBBEicWcyLPzMyM+UUpJjz7yn6mOIbR8qPTaCqCoW42mxYTsHbwoljAOz85OalisWggr1qt6vz589ZAzB4Jh0Pq9Yan8WFtCAaDdhgA/nqURN98AxPt1SnIDGnIdnK/IBcoHiiyyQcUJRAFzEolrmJ1AKSRK7gHADmYWRqTabhCYWw2m9rc3LT94As08qYHtviVafpD2sfCgZpK3CX+e1+1txhBxPj7xtoi7nkrDc2bFOXEUwoSfndhYcFIB9ZwKBTSG29co+uvf0OZzGltbJwwa8Hl1jdY+WEebejYsS09/PAxwwkokuT6sbExewbviN3e1U/9r3j95m/+pn75l39ZP//zP6/f+Z3fkTRgN/75P//n+pM/+RO1Wi09+OCD+nf/7t9pfn7efm99fV2f+9zn9M1vflOTk5P67Gc/q9/4jd+wYPtuX3SJe29Xu92200y63e5IhytSaKVSsc55WKiZmRnlcjm9+eab2trastMhCNQ0a8CgSsMxNbCG+MC814duTcZbIf37bkMqIwb+T09PjwRw30HJgmMh4PMi+ZLUYFNisZgKhYLN8GRMFYuS+8dsU8+SsfDwiAEMGLczNTVlzCWLlc1HUoDBCocHY57C4fDI2dZUijSTAZK9Z5FnCauEnQHAy7Nst9va2tqyc8D5PJ4/p3JsbW2ZXy2bzerw8NBsFyQI/7nFYtG6wTOZjIFNAgGMCgGx0+nYfD5mSNJcwn2Bwdzd3bX1IA0KEBgB7jnBB9DPy8s1yIOSLMATxJgLSEKYyGS1+NEfV6daUqe4pfDqdRacrMEhPqalH/ucDjfeVOvV76hRKag9M6/rPvV/UO09d+ml3/4XVsH7I36locfUKwDcB47gRX5bXV01GwB7ivuIXxkGgRdBk4RIhY+nlcQOm+GHv8diMZunyd4ETAeDQX3wgwV1OmG99NJHNTnZkRSwfQCLyP4ngH/723fqqqse0h13bOqb30xakUMCIjbBksDYXd7Ygp2FdUWDEtYSrwpNTU1Z8gRYk8xgjHh1u11j2JiawBpnqockS/rcX8C4n1TCemP6BrEIWwfxBpDJM6DrmGdLAU2BgLVGkq666iorci4vyCnqAdUAHvYQMWxhYcHWHj8Dg8Tv+ueaTCbt0AHv2fWjlbgnFFfj4+MWx9fX1w3UMvN6amrKinpyFIUrwNs3E8K8wqJiUYAkYP9IsnwyJARa6vWkWKykcnnG1IlOp6Nnn31Wh4eHuvbaa/Xmm2/qzJkzVmABYmdmDlStRm0/8Zy9AkA+k2Txhufr7Wd+zfh7zPeGgCHG8qIZD0884J/GMogN1qpnmr3fv1KpmGrGASkwtTx7viNqF78LEIWUYo3ynaShZI6F0Ntc8Oez5rCLeGBKDud+kge98sa/sbqRh9lT3ANJhgvIRcTNnZ2dEYvX0dGRLl6MaHMzpeuvf0GvvTarVqs/0oDJfUSJwDJ2zz0b6nSCevHFjOUpPOi+2Yxi4J1e/1XB6bPPPqvf//3f1y233DLy57/wC7+ghx9+WH/+53+umZkZ/bN/9s/0Yz/2Y3ryySclDQLlJz7xCWWzWX3nO9/Rzs6Ofvqnf1qRSET/9t/+2/+sayDgIEtRqUiyBQ37QqPD3NyclpaWbK4X4A8JKBaLaXt72xYOVRzSPovJ+zipmMPhsNkH2JT8fiaTsVFQnFrCcPpMJqNarabt7W0bwULl5X1e3veFpDU7O2uyl990nmlDMpNkcjHJJBgM2tB/2ESqMaRf3y1aLBZHGq189YTkAohttQbHSwYCgzmkdCmyDvgeJFICf6/Xs0kLDJ4nALAZ2KyTk5NWWedyOQNXPJtGo6GNjQ0LfFgpuH/4f3me+H9hQLrdwbirpaUlC4isOwKPt4EQ6DqdQRMMGx6mlQAbCARUKBTUbo8e34qciE8tEomYjC7J3htbB75qqnMa5WBjAUOApEAgoO5BVRv/0y+qd1DT1Nq1iq/+D5qanNLE4qIF406vrzO/+3/T0fZ5ayDM5XIKNGpa+OiP65q7H1T4qUct+RMokfEBOjBIzDel+MK24VlnmANYSml44giAF6bCH4IB284+TCQSNvOSfQEzAmNEEIalHagFXb33vXm9+eZ1mppKq9Uq2jpKp9NmPaDhTNLbDNOUXnvtKr3nPef0xBNtS/C+2zsUGhwLiKWDmEXyJ8EADrkPjDDC18ez5VkS21hXzWZzZC4yYI64SKJizWA9AiQANHg2FMXEPMbncIY44IjmGcAcjX0URDC93mvM8+M412q1agUqawi7CveQxAtY8qwdwIPnBYPGniQJw6TyjEj6WG7K5bJ5xwGp/DfrjL0di8WsoPVTMABkgGxYP99QiErHfcFb7T3orBfWBY25ABk8j/1+VOfOZXTnnSW9/PKxEdWqXq/ru9/9rk6dOqVGo6Hd3V2NjY3Z902n61paqurb377emvpgAzudwegnH/NRRWgaxlbE/fDNPuQwineKTax1xEeKbpoZ2efEAC8XowD2ej1tbGwYACMOTE5O2iQH7yFlHFsgEDAWFFmbXO0VFQ/YUDf53vwd/+3JqVgsZnudvIXX+3LLFD0X7G/f5AQzzP/7AhflMhaL2Wi0fD5v+RAVi3uJlbBWq+lv/uYqffazL+ijH/2uHnvsbkWjk0Yy8T0omKLRqD7wgYu6/fZ1PfXU7cpkrrLChoKEnwOov5vXfzVwur+/r5/8yZ/UH/zBH+jf/Jt/Y39erVb1h3/4h/rCF76g+++/X5L0+c9/XjfccIOefvpp3Xnnnfra176m119/XV//+tc1Pz+vW2+9Vb/2a7+mX/qlX9K/+lf/aqSL9Z1eno0koPPn0PMY8glAmUzGHhS0PkwYPhFGyFAVA6QIxLBfJDhALQ1ELG5P3TMIHeaDBwpgiccHp+1gPmdwPsEpGAxa1UQSGh8ft4QZDAZNsoDdROrD4wZTCmtFICFAk5BgRGCvOLKR919YWDALAeN8mHXnpXlJBr79EHy+P/efTn8SWywWUz6ft/uCxO4H9rNBYZ+QLOfm5uy0F54BQRamgsTNZ3tPE1IawBSAQHJlNBSBCVsBjADXxzXNzMwonU5/T5FAEcA9rVar9rPb29s6OjrS3NycmeVZU6xFGr14xhQagBcSKYkDsB2JRBRsHqrfoVlsaH73cmmn09LeW68a04+ceHj2BemjP67UsWt1tH7apl1wehHMAECC4on95T2ZgDMS8+7urjV2ee9qPp+37y/JrAyAJ2RlSTYGSZJ1NnM/iAV4t5Gs2As33lhTPN7Wm29ep273yIqNdDqtW265RR/96Ec1Njam559/Xt/5zncMIO/t7enUqUV94ANndf31ZV26lDQPPMwoSd0zmnwuAAwASTEL+PLAkGLjcpaan6NYAPSyTrkvsD6MNQOoxuNxaxwC2GBP8u+Dr52RZntvH0ksDaeO8IyPjo5MyfFeWNYuDBIWDy8pYsmhwKQwhZENBoPGDOKvptgAUAAWJicnTTLGsgRAwpbgB/TjUcRmQ44hZpHwYfkpJAGVNGUCTlBTvJeVe4rNC9AK6AHE8T3Zl8jAxCgIhKOjI7344po+/enndOxYQ9VqynIg6yUYDI74XgHLt966roODuHK5axQOD8+bhxWlUEByxpbkQSQghWePIsn34rszWgr7Ar0H2LW8jI59zpMgxHw/qsn7kCXZ8yXOAPTIodhluL88Z9YOxYOfe8zpYhS6HOM9Nzdn95/4Ojs7qxtuuMH+3J9ohYpw+X6ORCI2bcA3V3m/N/uASUFYD9gblUrF+jSwwfi+BAqO9fVx/fEfX6t/+A/P6od+6Bt65ZVbVSpdraOj4YESgUBAk5M7uvXWN3Xddet65ZVb9MYbJyUd2X3l34BVLAzv5vVfDZz+7M/+rD7xiU/ogQceGAGnzz//vNrtth544AH7s+uvv16rq6t66qmndOedd+qpp57SzTffPCLzP/jgg/rc5z6n1157Tbfddtv3fB5Jghc+UqpjAAgbBT8lMhNNTzz89fV1Y3V6vZ69B8mKIIn3yXtMATr+iFMqZqr3RmNwNjmMA95AZHbO4Z2cnFQ2m1W9XrcTZAhml8s/BFxpyArDfgCG/HgONgNBjp9HxsQjRmIhUNGxjjSMRIXvkmqfZAt7srOzY1UlzUHlclnz8/N2fCGVLJsc2YhrQ46FifVyGv8vaQRok5QBPj5B4z+lokOG9vMTkVMIXKwlmHOCB9I8XjQYOkAhQYigwDXA2HGPAZRU9IBCRqFgkSCQEOBJBjBIMMGwqsjN3nsKY4b8ggxJIsAfKEnlSlnnzpzR5OSkHRnJ88nlcsaIRqYHwL9ezFky9x2tPDtkVq4N8A9DCHNAgYR/lBEugLtms2mJDibm8iY17BkwXoVCwQ46oJAgqTHQG1DImkkkEspkqup2gyoUwup2CzYRI5FI6MMf/rBuuOEGA8hvvPGGyuWyJa5yuaejo5BmZrrmC2WtAqb9dfu45lkyPNDEO9QakitsIgCHeABzh7S3v79vxznD+LO3KeQB9Kx37gnjglAmsOEAkthH0ejgVC3sJlzb+Pi4WWgAjBTtXDsSK+CdPZ5MJjU7O2tKCGzx2NjghCKKUmxMFNvcA2IdtihpWLCEw2HzAAOUj46OzAYGSw/AovmT7zs9PW1NUjSqJJNJ6xXg/vmCx7Nhft/7BhYYyWAwaPeNWE2BnM/nTWWhGMRKBfFy6dKcSqUJffzjb+jhh1fVaAy+B/N4+b7EiGazqcXFbZ04cVrPPXdS4XDcQB5rgobaWq2mfD5vbCdrmZ4ACn5yLgCHQsT7zllHnnQgn9No5skNgJ9XFOibgK2lwRSChecPKCZuINVjUSGv0rB6uUWJGEEh55W/drv9PQ2KsKbvec97lMvldPHiRQOfAFIatmBuPakxOTlpTVeQPdxXYijqAICdXEq+Iy5SLEkypp+C6cyZpP7yL+/Whz/8sj7ykUdVrz+tCxcWdXgYVjDY0tJSRYuLFe3vj+vJJz+oc+euUzwetqKXNQu28jHq3bz+q4DTP/mTP9GpU6f07LPPfs/f7e7uKhodnDvuX/Pz89rd3bWf8cCUv+fv/rbXb/zGb+hXf/VXv+fP8U7xsNggSMywRvj9qHxJclTSeDyZTQg1Xq/Xlc/nR7qxI5HIiIyBnAogQTJkNBO2AypcGgAkGehFdvKGeTrokGbxliFx8358b7ycNE7g06JTHbBWrVbfHh/SMoaYBe8DDgDcm98BhwRfjuFk09GIhmxOckS6AgAzmBtfD4mN4OWPpa1UKlb5Hh4eGkDE5I23iqCBP5bPQt7e3NxUoVAwjy9ADesDchAbmmSNfxcWEssCwK/f79v8W04rYbwVTIckk4VgiQ4ODuw+sUb9d8SH6+8TdgvWnj/Ngyq62+2ONAECMDmlC5kP9prgFQqGrAGCII2X0B8Bm/zQD6rXbGjv9edN7uJEM5hkEgTFlU927EMG3fuOVg9MY7HYCNsHcICdkGRSGKA3Go1qYWFhxGMGmGE9MGGBRgNOWBtMKeio15NKpcFkDWw4pVLJYkOvNxh/Uy6XLSgD9KWgwuHhfgUM8XxnZmascYNiATC/vLxsbAhTA/iOFJNMOICR8cAJ5h6vIgUf3wO2mAKUuAJLRVcyxS6xFPaTWEa8wePrE7+3Uflr50WR6OMdccHLwRRMMOB+3JoH+DRx0VgDi4pkDlHhCzFYKciMhYUFU7U8aEaKB1Sx9w8ODlQsFg2sMC0FW8DOzo4KhYIpQbxYE7wfrCaFAN+TRshEImG+RixIvkDv9/t2fHUmkzGg/q1vPaBPfOI/6ROfeFQPP/wh7e+PGXiFJaeIveaanD75yTd06VJGX/1qSuHwno0zA7yxfynoADgU9xTcsL8ANNY1uePo6GikoZCilfXH+uT+0ijlh9ePj48b+G21Wra3vHeZopjn672mACpYSg+yUVKxmbAXuc/NZtOapIlJFPGoRlh1yuWyvv71r6tWq1l/A/EL4EyxwFQbYgXSOhK8t7Nx/wGt7fZgZJq3ntBkCR6pVqs6Ojqyopc8Hw6HdenSpP7oj+7R4mJNt9xyQSsrOUWjR2q3Q9rbm9Rf/dX7VK2eVCKRVjzesFzPHvZTkhiTx4Eu7/T6Lw5ONzY29PM///N65JFHLPD9t3j98i//sn7xF3/R/r9Wq2llZUU7Ozv2sFutls3Ti0ajxsBReTHvE1aUChK0z/sAtKiWaILigeBboRokAPsRNrCseA07nY6diMNJPYz22N7etmCQTCZtBiKsGKAPZorrlGQbkutm8xwcHBiAJpgRnL3vifFKMFPcG4IxwAk7gmdA8O/BgmKVYK4ajB3Bg6YDABVdycVi0b4Pp3ww+YDngzcUyYDrJIDwbBKJhHWIEgBgm+bn5zU+Pq5KpaJ2uz0i/+O9wxvHs4VlOjw8tMTpr5E5uTRg8N08i48MBNMFkILFgy33J+l42wIMIx5g1pvv/uaZwNoSKAGeyKFezoJRn0gPwsTE5ITW1tbMAsCaJtn0+30lPvSDmrj6JlW//sfqNgfPgsTAiSH4PZmUwd6SBsUYx9VKsoC6t7dnkhUgHFWC/QirQPDGJ0lxwcgovj9rhKYSWFqYL/zhFEcDsNxVJNJTv7+nSmV4tnmtVtOXvvQlbW1tKZVK6cUXX7RnDyiJRFqKRttqNmO2JthrzDjc2dmxa5+fnzc5XRr6rbk+Eg0JnaKbYiWZTBogZe9S3HBdWB5KpZJJwX6vAfRhvLEWEVO8FQFQB/HAUcixWMz+DNaEeAFwxJq0ublpSRq2GusFzzMajdr0BVhTmO98Pm++dQ4qAERxH0mUkrSwsGA5AxCUz+dH2DnUI0gO7AUoDFicOMpTksV2FDOad2jEgQiYnZ1VqVSy4sgX4IPjRoegLZVK2b7xFhaeObmEQoC9QCxhf+/vJ/XVr35MH/nI1/UTP/EVnT27qJdeukrb2wnFYnHFYtL73lfW9def1eLins6fX9ITT9yjUKhgbCXsLcUwwBh7EjGV2E9RiWUEsgSGLZvNqtMZTjcgVxHPiS8Uulgd/OxPCizyP+sW9pRiCiuHJCuMOp2OnZbkRw3iFYX945rxyUuyOAlpxb3wLLC3hxC3c7mcTcHAUw0TzvUTw31RCauNakushkiAUKEwo0hCdSPne9sc95e4nk6n7c/6/b4KhZQefzxrcQC1ZYALosbOst/ZS+RIP3KNPfJOr//i4PT5559XPp/Xe9/7Xvuzbrerxx9/XL/7u7+rr371q+ZD8uxpLpdTNpuVJGWzWT3zzDMj70sw4Wcuf1E1XP6iY5xqj2AGY4RkT6cvmyoUChlIge3hRjOIHAaUbnY2ZbVaVSgUso2TTqfVbDYViURsOC8AmURPoiKIkLCSyaQ2NzdNtmg2m0a/U03hvYHtIyHBUuL34f5wzb4pxwdvpCPM1FRvBA0aikjyvGBx19bW7Jr8n1Nl8pk0GsFAU7ESGOhcBAySyKjqA4GAzaclqPNc8XjSSADbkkgkLKlT4QOYp6en7Zq63a4NxyfAkNCRiBgDhAeHz2ZYeCqVGmGP2bAkOthgJB08p53O4NxoZiPC9vi5jSRGwAX3G/ZSkgEgPMcwu5JGGAmYEgLj9va2nTA2MMEPwEK/17e91mq1zFxv0vv1d2jm+z+jynPfUP7bD5usCnuB/EvXNYlhdnZ2xJ+NLw21w3eawnpJMmYQpo6RPOwVBqBPTU2ZbxwWBxYcWwXSKvvJxxPu3djYmEql4+p2X9fddzf09a8nDYQcHh7q0qVLVgBRcGFpiUajuvHGC+r1Ajp3Lmnfge7f5eVl1et1nTt3zmRAGilpRKCgYh3yDLGrUKjAYCHV+33hWRcKGsAPcY31RKLj9DwaVOjyZSoJhQXJjiRZKpXs2GUUEvbZzMyM8vm8ATPWOZYY1g2JDqsTe8R3KxOvsYigGrRag1NySPre9kIhiIpHIe33IN56wH29XrdRSXgBAbDcd66Z2E0+4Xr8mC2OG97Z2RmxVnhZn5hP8Ur+YB8Rn4iVkqzYwpvJdwUYtFotFQrTeuihH9GxY6/rhhve0smT31a/L3U6QUUig/1+4UJaf/EXt6laPam339qsbBSYxEv2FnGLAqPRaKhQKFg8n5iY0MLCgpaWlmz0FMUSFjFiNc8CkoSJM/3+YBRkIpGwAjMcDps3H/VSkjU1jY+PG9D1/nzIAexRkixmw0J6n6ufSIAqCmAHhGLHA19QKFIkcX3M9IWEmZ2dtSLPT2Lh+/mCDmsBtiTiPZ/HdWIFoZgiplLk7+3t2Z8RH1DciL3+exDP/D1oNBqq1Wrm/Uc5BANJMtxAcfBuXv/FwelHPvIRvfLKKyN/9jM/8zO6/vrr9Uu/9EtaWVlRJBLRo48+qk996lOSpDNnzmh9fV133XWXJOmuu+7Sr//6ryufz2tubk6S9Mgjj2h6elonT578z7oeUD4Jj43Pg8T/Q5ClYuCIPSRMAA6BhYCBRMvD8zLC6uqqPWyafahOQqHB8YVUYVQTBDzOZCY5+E3g5WAPjKnUqazwdiK5eE9RoVBQNBpVNpsdkXkBCTC2GPlpOgAEwvbSgAUz2W63bUQSkgkJC5rfNyRIsqTCnwGyuF+ZTMYqtstlL5oNkK68pYFNzXP3nY++yqWhDfaF7meGgc/Oztp3Yj3x93jdJFliJJkis164cMGCAQ1kdIQjD1FsECiQSX3FDqil8YjmL38MH+w1TJwvnpBZGRmWzWbteeN/BQjTuDK4f4NEU6vXVN7dHemup8ls7NiNmv/oT6l++pTOfuF3NB6Pj9gCCoWCHc9LlQ+jybrkMAVJtraZ6wkoh4G6nLGB9eAgC4o/AB6FKTOI8SwyJ5aAiaxPY1w8HrefGST2uE6fzurmmy/okUdm7LN4BhRy3Evk56Ojlo4ff01vvbWgUkkKhTpWGHCPAIjcf9+AMXiPIwNKgFdp9EjcRqNhSY6mG5gj1imAh2QJQwpbCHjjc1AM/HP3/vDl5WXFYjGTskliqAuMikNurNfrxiAi1wIUstmsFhcX7Zl6LybAX5I1hiWTSbPfYEcBjAMCKEaxYHAvut2uNb8RT4LBwQg6CiskTpq7UInw4lIkA5p4HjSGsbZJ6rwPTGs4HFapVDJZlf0HoGXfA4yRhSES/P1D9o7FYuZJlDTyrPEvDoBCVAcHN2tn5x5lMpvqdDZ0eLinbjeucnlBb77ZfHtN9kbWON5l1Ac/y5UXz0EaDtonx46Pj+vOO+/UiRMntLGxoa985Su6dOmSrT3kc+4ngBziglgL4PHNSF7xBFyRt7E1MUWC2Mqr1+vZVBpyKHnIq4/sO3pBIGGmpqYsB0xMTCidTlve4r2wpoA/+v2+FhcXR6a/kIfYt6hkAEYsQNls1tYftgFYXA5HQPLHJgWGIC/iYef0KLzssO3kOYonii5yKsohe4liGuwC4cH390XAO73+i4PTqakp3XTTTSN/NjExoVQqZX/+j//xP9Yv/uIv2lDtn/u5n9Ndd92lO++8U5L00Y9+VCdPntRP/dRP6bd+67e0u7urf/kv/6V+9md/9m9lR/+uVzKZNF8obAGof39/3ypqwChsLlUtI0qk4SbD10IgIADDsAI+vHeKwE8CA8QAHr1UQUc6o5LoVOa/JVnC9t3NVNKSjIUkOQEq2+228vm8KpWKdfFhnAZsUfmy0KguSUYwTgAEPD68D0kFkORtA1xHMBjU4uKiarWayWEzMzNKpVJW6XtpjMQMwzo3N2feHsAAjWZcD7/vEzn3Bg8pARGfX61Ws6ociRyvD4y/T/ZIc2xQ/Kw0YVDlSjIbBA05vV5PS0tL1s1O4LrcDoInlMBVLBbt2fN8ed5cI1V/s9m08V2w6xQBMNAEGZ4ZzJ/EnNRBQmgftU06w7s5Pj6u0Nyq1v7Rv1Dt4hm9/Hu/okCvq267bQPYqbQBqZLMTwZjgm8OcI4022g0ND8/b95CChaYOMAsbDYMKGABwMZ9xNaAfQNbAIDgcu8ZjW6SbM7tt76V0D/9p9u6//4dnTqVNNYWxt6zwqgCH/zghpLJuh5++DpJwyMsWV/equCPGfRFnmeUWWvIfpz2EovFLEkAZDyzRmElDf2LAFP2BACEJgqeF2oShQBTPGCVOBSDvwPk8uzxB2LR4EjHvb09LS8vW2yjyOVZwnrTzEUB6dUV39BFwcLf82cUKiR/EjXxW5KN+SMfEId9wyCjlNg/qBWAZC+7TkxMWIxijfE8fLMO6xW5G1ANO02Mh3W+nGTx3kniGFIujDhWB5Q59nEwGFa9fq02N8e1ubmpZDL5tnK3bwAGNh5Ch+9cq9UMXM/Pz1szFvYkGhmJKcj6i4uLymazYkYnQ//z+bxNT+CFOkMspzBiv7NfuXfY5rwCghXOK2mwhagL5D6IF9hbyBtAYqlUsubkdDqtaDRqOTydTpuNwbOUTBdhH5MDWTMUKxMTEyP2E8AtoPRyP/LflqO5RvYmOY6YAchkb1PEobhSVJDL2MOQLexRCI1IJKKVlRW9+uqrpkKyVohXodDgUAs8uO/m9b/JCVG//du/rWAwqE996lNqtYZD+HmFQiE99NBD+tznPqe77rpLExMT+uxnP6t//a//9X/2Z+FhIwHBcvrRHQBKPKiX33gYJ/6fM4RpBAFw4jWUZACLChMwgDS2tLRkC4JgiScHrySNPgQHKubLje+weYBifJiewaBaBvhyLwA9VKkwhJxGhT+z0+lY1ymLGqYYXx9Jig3vrQawnDA13jMK2KT5B/Acjw+OlGRGK8AIpqDX61kwZC6k9z+ymRltA5Am6fAMGOMB6ItEBudZw8awLmB3YCwvt4Z43x3MH2DHH7Hqx4JEo9ERBnLgTYzYNAXYgqmpKaXTaeXzeWNZmATAvE7GdzFYGTmTih3LBwyyJAMzBFFYocW355nCAknS5NSk3RcC5tw1JzX/E/+D2ntFvf7/+hXFwiFFInGT6JjLm8lkzKvI/UaaIpGQcAmENCTg69ze3rZucvYfHsiZmRkbB0dlj48PpQKQD9vGPpWG5137hkeCP++BjzeXS+mJJ67WffedUzw+qWeeOW7+MsaxsGelvt73vgv6yEcu6JlnrtX2dlqNxoF11vJ94/G4FSywhJw9zzr2zUZ4xjnFyM9QrlarxpzT4Me+yGaz3yPPMToJ3x5FAuwkVhgAKoCX4vrwcDhsm/1AEkThwdPvm9Yo7gFMvumNxAqwI3HSOMe6Qc2gWJmamrLYy3f2vkEKUxQcQDnKBQwW4Aq2kOIvFhuc1b64uKidnR0Dot4mU6vVvqcg9t7P6elpyzO8sJRAfABCUALYv4AXABCgpVgsWoxCkSJfAbgBx8QAgN7Ozo6BHfYda4L7zJqAxecULm+vYJ/igfS+bva4NGj8fPnll3VwcKBLly5pa2tLksxuE4vFLN7Pzs5qfn7eAFYwGLQudiRn4ikxDMCP15nfg5zh3nufO3vJq3HEe+I695a1sbOzY0ecUxhQZPLsyNee1Op0OhZbsP4BZCXZXseGUalU7Ohb2GEOY/BNhsR6piVQIPLn5BFYWRRKplBAYABGx8bGTH0BuEsaIXXIqefPnzfchO2LtSHJiEFy8bt5/TcBp4899tjI/8fjcf3e7/2efu/3fu//7++sra3pK1/5yv/qz4YJw3/pfZ1Io5zuQ3VVq9W0sbFhlT6BFvkH30i9XreqJZFIGFsBlU2AhKX1A+slGUM2Pj44Waher9usPUl2lvfU1JSWlpZsPFE+n1er1bLzpmEPkKCo+ACRJI9AIGANBYzM4ndhOBk/xAYhScXjcauMkVCowNjA3pDvWUIAJlU+w48ZsYWPk78HIAGoqd729vZsXiz3DpM3IJnNgcTNpvWNKwRoggeBgQQMM0dwB2BSkc/NzZlMhWWC5g/PvmP85/0IPoBjAATJlM2cSqUsUUnD05wImHNzczb7lvuGXwiA4rvnWZcEV46qZJ0BqEnEBKGJ2z6syPikYrODanf+tu/T7OKq1Jd2Hv8rRcNhzf/vfkHB+ITyj35RyZs+YIkoEAjoqJxTcHdXmUzGWA1JxqxgOWg0GsZCMDpld3dXc3Nzto/YdyQ9gIcku48kEdgGGgMoSLiXyWRyxGMoycz8tVpN2WzWJnkcHg7P4aYIDQaD+upX5xWLRXTXXa9obe2CTp++TufPX2V+88nJiG68Ma9bb72kpaW6nnrqmL75zVWNjw8TDswaoJaCE28wTBMS+MLCgjWc4B32rBH+yJmZGeu+hjXnNCKKcM4ax8LA3oM5GRsbs9nF3vZBkul0OgZaYTnxRLdagzmK7HkPckmMFLOpVMqsRfwuCgGJj38AWe122zywFDxYD2ZmZgy8sIcoxCky2UsUmK1WywoF78+kkSkQCBjA4f7s7e2ZMgP4b7cHJ9h1u137rhSdxFP2NLlIkjHnxGzIAOKgl/mRsCEg2NtYOVjnFHje0sY0FeIfhQkgEyLGW6VoysKbSGzFQ85eBHB41hRLCPcNG1ynMziRijnAxB7UBCw0nU7H4ibxCyDngT33jOuH+Z+cnFQqlbLeEQgD2GhYV/yerC8KA2IPxQx/zl7z/QbEe4An14VyQ7HFc2OvQwrBfGNTgG30hAtriHVDruJ36HXgGQNiiZMA236/b0yvv+ewnqxXrAk8a99sybPxfSXNZtNICF+w+B4Dekfezet/E+b0v+WLap5uVTw3/ijH3bd9dPF43BIhDwF5bXZ2VrNvn6NM0GBREjBhnljsXqIDIAEEkAjHx8etgiFg4BeDmYBtRC7G/A1oRp7v9wfjrJD4vAeKJFGtVq1qhi0iSZF8MK7DWCBHIDch5yMbIUvQhIRchgeHxIa/C/sBQILgK8nel4QAE4y3iQANCBsbG7NEDUNOVVev122ztVotJZNJ8+ns7e3ZAHz8h5JMroGNphHCV61IYs1m09YNQR0pyTNGBB0/IgRGFDDY7XaNQYKB8QwZjBYMDs+WF+CMZhKA6erqqvlUYf74h3vF+DAYVBLB7J0fUzQxZ58xfeMHpBs/IEnaf/WpARszPZAMVz/5M9+z9yqnvqXxN1+xCh6fFwGLWb5zc3MW+Aj43rPIs8Jk78fWeC81a4l9yAxO2LlOp2MA2IMggm2r1dL09LQBV2lQSKfTaXu+HCUrBfTEEyf01lvjuv32i7rvvud1990vqlaLvL3224pEujp/Pq3/5X9Z1ObmomKx0dPhsKhQHCIRApRZT3t7e5qentaxY8eUyWS0vr5uAJKCGZACk7i/v2/7mDFIMB2sO66FtU/R5O+nl819Ux/7m2LVz3qGjeSeeQCDfw0wRRKmmPRAuVqtjhT6rHMfHxgpBwvPXkTFIYYgVVL8sv6xdfmeAOIWxSC+PIofYhUF6uHhoY3g4l7zbGDpiPHsb9avJGN0PQgkvhHTWNOAKg/4wuHwSBwCMAE6sHfg//fWEGK1JPM1wmB7GZ/im/tETAecQBr4wxJ4bhQA+EjD4bCpO14G5jshg0ejUWP+peFR0cRPng1AlpjNPgBAAXA5tMJboQKBgBUSXoZGyvdNc1hBKPiLxaLFBqxCFCqsC8gS1DH2DqokuZ68SK6gGKGRCYBXqVSsN4bvAdjjd7hGiDZICGIlOejyFw1SgGEALqoAazmdThshRHM218zapOiB4YetZ62/m9cVD05h6Wg+4caQ6DBBE8hgClnEoVDIqmeYlPn5eVvAbAxYUZhUGAZ8HkgNBMVarWYAFh8X40Jg86js2SjdblcLCwtGjxPwUqmUpCHd7rvTSS5sXqq6QCCg2dlZpdNp83tdunTJGomCwaCNZZmbmzNg4b1SvkuRhMAGrVarxlayWRkkj7+w2+2adwx5an9/X/l83qpNvGzpdNrkYJqKSMSSzPLQarXs2FkSAP4wgg/SENUdoIZExgs5hYSWSCSMlfKDz0k6TGUABCJR8vcEY9YeBQJjp3hOFC1U+awtkiXPl0BI8gIsEJy8j81X7QQ1aQBIYGrpHIWRPv87v2AnL8H48Nm8z/lf/xklEglr0gLQAORh9kmMtVrN5oZSyBA8eTYw0wQ0pGsCnTQ09GNRCIUGs3N7vZ51/MJisbaw9GCXSKVSFmAlmR+VPeODMh5E/OrZbPbtEV/zeuSRYzp16khXX72laHRwfQcHYb3wwqRKpfjb3vqusVHsEz6HtQRrDENF4xBScjKZVCqV0vb29ojPs1QqmSfTgxFY/lgsZvcCXyd7gONbOdLWS/QADC9Xepae+0isAQTMzs5qeXlZkrS5uWlJ3n831ACeOX501hdgjPm4MNfsPTxsxBIAsAeysK+sLeKfV2YAH6giAC/iG+CVZ+YlXLzjvMfU1JR5pYl/gBSvlsGGknP8RBQYYnKAV8DINXiNPYvG/aMoZ/wcUj/AUxqOWaJRDQUGcMjepKAkZ8L2QVLw3CFIKH64H9xnjrVutVrG2BFD8Ed6yx0xkGuG3WS9UDwTLylW+HM/MqlWq1kPBJL23t6eseesZS9RU7R79tIXg372cDKZtNjtC02G/dNTwn30U3J8Xwj3HuKH5806YW2HQiE7XMDP7g6FQjZRB883hQtFEPuYzybGFItFs4CNjY2ZwiLJCBjir7eEUaj5gqDZbNr9pkgDpEuy9fhuXlc8OIWOR0rCr0YVn8/nDeWzWGCfuNlULTwMQM3lVSeLjAUHA8OmANz2ej2TMfzsRa5pYWFB2WxW/X5f1WrVPCCM4iEx4TNivicgFVbB+5v4brAsiURC09PTuvfee3XPPfeo3W7ry1/+sp5++mmr+En0zBosFosmy5OcSCJIaj7osWAxzEsaGYHDxmdzEyQIwIFAwDrnkWYAZXiOYIG5Rqp8QCBgkc/xnYTJZNI2HYCS5877hMOD2avM3cQrRADAE8dw6Ha7rfn5eWMLSYr8t5fsSJ6wngQ8ABCBBKALaECW9wESfxdFB97dYrFoQYx1gwePZ5JOp+24Sk48ovDic71fKhAImGcYCQpgfHBwYEfkEQDp+saf6BtefEMDgViSdZziLZ2bmzNgAmMOw+M92SRpZCh8WfwsjBCFEIkD6QoAhAeRvcAeZIA/Y5hgtLe2pN3dZbuPg2KwIGnfAjiTAmA0ZmZm7FpyuZwdj+m7z2GRSqWSXnjhBS0sLJhPlr0ej8eNfSaJ+nF5hUJB1WrVwDvgoNls2sQQP1aL9UqRTTMPqgXgz09RIH7CzM7MzBhDTxENM0ocolj1z4Oz4+PxuDKZjPlOYRBRj2BmeV7EtHA4bE1uMDiZTEZbW1tWdMFcA2oAbXxnChikdtguSVYI4Qns9/u2ZwBkJP9Go6FcLmej5BYWFuykOcAUjC4AFPaMIoLJFn46DAUUwJZkT3zkPhFP9/f3R+YKM9OWSTCsE0APxToFLJYF2GlADmvFNykHg0GzgWG5kGQ+bk5ogwEnr2IR4Xux3gDLxJFms2k9H76I6XQ6trewb0ACwayzBtk3+GthDAFQgEzuC55WcAKFBwqWnyBDbp+YGJx+yH4jVoMRiFfY67g28oJn7Xm2MP6sLUgIChnWJ8UWvRNgBl8kSrKCqVwuG/DEikZ8g43lmbCeWLuhUMiUA6wH2OX4vjDw2FEA1O/0uuLBKTIKCYZK4vDwcCToElypWqmkOB2KUQ0ASN916Yfn8sLAzGYnYC0vL5t/Dmb06OhIq6urNtrm4ODAvD54P5DVCJgLCwtqtVpaX1/X7u6uQqGQTRhoNpuanZ21cUSMLEFmI3EEAgEdO3bMGkjW1tb05JNP2veiOcc3TkDfj60u6/Zb9jQ/+ZoiwUvq98NqtFM6e3pFe6/VLLmzGGFpYQjYnHSyswm63a4xpXxnwCiLPB6Pm0zCxuNZI78T6Jg/CGjxDIwHILxgEAFQMCqwBhQlgFWuee/t050AbFSjNH6wpgBqACPf5YtEA3Dw/jjuI+AZW4mXQTHrk7gpknzntiQrBJAni8WiBXUYZdYr421gPn2hw0gWGhkkmV0BEI4kisdxenranicdo74ZBNaGAAxAY7/AFpFcSGY8S545zS4AQZ6dB0fb29sjVTxAARAAe4v1IhwOGwNSKOHEewUAAQAASURBVBSsqOK54tcm2QDgSZahUMhkW2kAwPF1YmdgAgMgemVlRbFYTJubm9rd3bV1xD1hosf111+vYrGo06dPmxcTZoQTYLrdwUEV+/v7dg9YM5ubm+bRm5+ft+tl3/m1xX3xjBH+erz73W5XuVxOtVrNinruA/sGgMP7IJPjQeZ54GGrVqsjRRP+Wpg/fMKsD4pRYgbPGBDNGDbYPPYmoJwReEjm3geJekWjSKfTMd8wv48twduisEy024OpKRTJ7AXusy8wLgdVMLusc9abJLPGhEIhU/gAJljJKGLw+mOjgXWHAPAkCnHTy8Tku2azadMq/LVQFBeLRSMyYH3x/7NPYUhhTT0YonGIHAFw8xNLfFGPzxjWD5sJKpT34lcqFftcmoHz+byq1aqpeuQ/1hQkQbfbtVnnFBXkEth9L7uz7vkZigVJxpoSTygC+F0+k/VJQcWxwdKwCZf1Qo71Xm2UGt9s6/MI37FcLtu+8h5an/PAVtxzvL4oq5AB4AY8z3+bpeBve13x4BQZCVmT5hQWDw8EDwiAENkGNoyNy3vxvkgHbBgvg9DUAAjgGtjAHnjgCfXHo9FxyAKgoichIGGw4AgwADJYTBYs18xnStLp06d14sQJdbtdnTt3zhYXPqZOp2PgIxAIKL6yoA9+/7ayvd9QqN9Qvn6D6p1pRSJtJcee0v0n/1x33HSzTr12u956cnDfUqmUeXbPnTunixcvqtVqaXFx0Yz73NPt7W2FQiEdP35c6XTaRnn5DUYgJFGxGQKBgI2zoSHEH/8paaQ6p+rk96WB/4tTajBwIx1hw5BkjB2bHzaLBh8a22DFpaHJnO9xeHhox8jxbPhdghFVMYwYnw2DQkEjDYdAAwa4Xp49TSHM4kUu2t3dNTmdqpZ7kkql7NlTZEWjUWvGw+6BBA9w8cxouVy2ogrm3HfoJ5NJrays6PDw0DruYTORESUZS0GSAixTYPhTz3hO2Epgcig4YGV4Lnh48cAdHg7ObQ+Hw8ZKttttUymQ93ihJgBm2d8AZsAmhRV2BpKqv29YMfDdUSh1u12zmvD8y+WyWq2WLly4YJ+J9zMcDts+4M8B57DMfGdYMoABYNuPQCJhemarVCrZkPO5uTkFg0FlMhkDfCRgAAn3lrjIP3wf4huxMBAI2NHVTIkg9vFMAJCwOqwbf2JQLBaz44M9i4XCQlFPsob9BQzSL0CzFzOVWVsMm+92u5qfnx8ZoUeBQs4htwByebaenSanwIIC3gF+DKDn+wIG2LP0EPhGlHa7bawYYBsWjJgCWUC84PoArcQ42GQ+gwKQAgXpW9JI3gLck9vYozDUgE3USVhwYhJxhXwMqKJYYA/C6vk4w7+5Jk9e4DWF6ODPLp/2gArI9wT40hDoC2qKDe43hABWHb5fOBw2W43/7uSITqejbDZrhQRFpSQrZGjm5p5zrzlJjqZi9gs4BEALCwwrDinjYwSxi5jpfftYiriHrDnsdKwjD3bf6XXFg1NQPv4LOto4PYaKB8AD60SnPJ1tBCOCIDJsOBy2jckmYwPwYGdnZ3VwcGAVJCcH+Tl3eJ2QpkgASEeeGatWqyYLLi8vK5lM2jgQpJ1Go2FglY1K8PcNIM8995xJt2fPnrUEiVzjPVbTJ1f14F1/rmhnR+e2PqhTT0xIyripBotavv4WfeBDBX34hn+vTOZT+uv/d12Li0uWsPr9vg1jX1paMsmIBA57R1Ah4BKYYRJ4jhjyvb90bm7O2GOun2AJ6ENSlWQJTxrI9lTQgUDA7hcgC+N/MBi0E2AoSGDXAoGAzSIE6AOepSFDR/IDgGNj6HQ6NlYIgEIVSxJlTVC9cz+oUGEeWQOSjMnzEwqoovFCk2xYp8lk0pQCfh6WD5/k7u6uxsbGbDSXr/yZhsHwZhhiRmVhj8Bnur29ra2tLQM9GP95dp7ZgqlCaga08OwoJtmHqAewbn7EGUmI697b29PBwYEWFxftmgGNzWZT8/PzmpmZMcACK4rfT5IxwbA1+Fhh6HzTQTabtZm/vB/xIRgcNC/tvX2sLDIbnjieAyw1exiWa3Jy0kAZlhbiD4wjL54VTXoAK6wRxB4YONhQDqqoVqs2KQIwBCNMcgKsoDLw3zSBUUADDCkmx8fHrSmVooTiFFaVeMrz9sAL7zVrjzXsnwed/v70P2l4Tr0kO1ZWGkrAfB4AGvaK4hOFwbN+FEWMOpOG56ozL5e1dLmUDhAnV+CJZqb4+Pi4HfHqi2jULPYNKoFvaPO5ixOxPIjhH0gOjgSvVCpWtPEMYK699QLQJclyEc8G0Mba9vEJ0IcXloY2b3UivnrVje/L94LhhbghN9Gg2el0LM6THwDF0nDsHECU5y7JnjMFHYwouWhvb88KYLy/xA5iBsUITCzFLuofCg1ec9QXikowAColOcFbqACv7G+IDO5VJpMxtYW9yLpjbBv9NcSasbExZTIZwxmZTMZ6RCAkeC7v5nXFg1NGpzCY2jNCyL8MKoa5oWJaXV21Ez1ICmw2JMV+f3DCgyRjI/3YHzYa0iMbl+7ohYUFLS8vW/MMlaz3s7KBCb6AJozKk5OT1k3IxoMdAVzju/WS+vj4uMrlsp5++mlJMu8Z340k2Ov1NHPiKj34wS8q0KrqKw8/KPUXNTbWtxFYbOS3Xmzpte/O6OP/3T/QrYtfVOsnP63n/2Y4h298fFzLy8tqt9sm/5VKJZvpiuWA5BkKhayBAMDhN8P+/r7J0ryfJGNiAIK+amddVCoV1ev1kdNeKDh6vZ4lXDZjo9FQpVIx1gkWqlKpjBzD+LeNGiG4wEKSNAkkgEO+JxYNAKfvZAY85PP5kYYAlAECFVUsjL3vEO90hkfIBgIBa4qj2YFmBN9QAtCh2KNIgJEj6Xp7C9+fQkeSBW3AWrVa1dmzZ7WysmLALB6Pq16v2/r1Jzlx7+n0RxlgcgQFASw0QMYDB5hOSban8LNyvb6xoFQq2fB4Eim2CfYcUhsNb4BmJmSQsHiOyIaS7F7S0MbnwbyzHwC//lAP/MfM35UGPjI8m3xPniuAiy5ofgfVxsc7xsB5SwcsH3Hy2LFjxqpge6J4mp+fVyaTGfGLY5OgqAVYcX+QZUnOFBjsKWIJ9hoaYfz0C2I0rCJFBBL69va2dU9zbfjivE+TuMI6IRb52auebeNaAZdevWHf877s7VAoZD5MmnZRbpCukaCxvbBv6RYH+HvfK/I1yhv7EsaORi3AHb0CxEBfyNG8hPIBcUADDNMX+v2+qUO8D7mUHIbUT8ynUIap5XkBdMlr7BPiqe9NYH94bz/EBOofRBTeauI4igMxnvvHGsIHjRQ+NjZmlhlYVBrCYCd9nPLKCbmbz/YWKBhTCBc8r9xvYg24gzhCUQe+iEQiBgRhT3l+frwUKhLxioLE+5zZhx7cEkPwAqPQEGPYy1hV2BdgFGb3vtPrigensE14mGBAkBUImFT3/BkMDLNF+R3YFU5ColnDz/+kioPWhv3jhZcQNpYEyrXQXIKJnc+m4iDo1mo1O16ToEKnnZeuaTbApoDkBHj241GQcPD74An78N1RRdsb+tM/uVuh4Kzm5iYt2QWDo6Mjtrf39cR/7Gnmn3xGt618Ua/EP6labXgSDq9qtWrBjkAXjQ4PAPAMA0G82WyONEIBIBhE7zcGz56gQUKBkSDxAxzS6bQ9b0n258lk0sASZ0FzhCajSvC6UhVThFDh9nqD85WRrAnegGeSCuOPfEcvQb/XGzTV4QODZYWp8uyyt7Lgr4PFw18HoFldXR1ZJ4BlD9D4PQI81z0+Pq61tTVj7mBtCfAEb8A4kxRgHdgbgGDWHV36PD/2L59LQM/lcsaCLi4u2jrCbsCoISQrz2ADZEkAsDUACO49bArTBiQZ6+KBKiwonwFQKxaL5m/EZgDQxkNLAuKZA9j4OVgRvgP71HvJvTeZorzb7VrBzftJsmvHNsDvAa7YJ/w5QID1y34EEGJL8rIjzw+Qwfcl9qAYAJxgclgLJFhYIJrcANO+iIJx4tpgrLhGD2gABfwcUwpge/l8rESoGsSLdrttzWDed0osxctJwVMqlQwkAoQozPz3pwjjPtEXwH0HaLPesF54CwfKH+wh18vnAWL9czo6OlI6nTaWm2dOIQwA9/Yr/uG6IFWYKkGs9jOxKSIpaohR9G/wnoAw9oa3AnC/+FkIAhQ1mHFsJeQBv+5Z754BZk3CysJkLi8vW8wjJ8E2ItV3u11jqqWhr9k3JR4dDWZup9NpK9B4Fhxc4ItHcg+H0UAUwGB2Oh3DD8Rs3wCM5cP7p9nfEGzcEwponjM/z+EIKysrkmSsKjHa51/+HlsWz58YRZFMbH43rysenFYqlZE5Zr7rmYqXQMziholAEoUVJGGxcNg4NBwcHR3ZnESYBipHSfZvEjZy2s7OjlV9sLOMAqEiRMrycgGeK5KR93ggtcBEIgXk83mr6PBbwtqmUikzL7dareFIp4UFrYS+pNffvEnVvQlNTQ0C20033aT3vve9JtXs7e3pscce0+OPP65qtaonHk5p9dNxvff+tp75m4A1TiAVIfVKQ3M9jDGd34AR2FJJ9gywHiA9w5il02lreoN98ZUw7AnPLBAYziXkRaHCe5BQ2FxIfkhhqVTKqmNGZyDzl0qlEcmd6wAsenDjgQr3hIYZzPj8jJ8g4M8kz+VyxrQiwfL9feMA95n1ws/AAHc6Ha2vr1sgIvkifwLYvX+V9z88PDRQB4Dqdrsjs/54ruxREi0BFm82CY8ijsRBgiIYI/0mk0nlcjljv9l3gFxkblQRQAkyPSyJT7j4TklGBH+YJYoNwB1Jme8P4EOW6/f7KhQKI0c/Ar6QFfm+jDOClQIkEZ9I0NwPAGcul7P7DONWKBSMmYel23v72OJ+v28FI2vRn8V+dHRkFg4/qeHChQvGqsGkSLI1y2gd2FL8wQBY7k0qlVK327VGIvYQcY+CDaaHxIg9BiaTBA+DSgwHxDG9wzOAqAp+j0xNTandbhuIJm6S5PFAU4RIw2HyxAsOGvFj1Yjx3Ac6xQH8AIhMJmPKgSRTLjgRLRAIqFQqGfHgVTVYMiRjYpgkIzm4RoAt94HYB0jCTkBxyn0BdHI4CyCRwgNVj+KJ+EIMSSQS1vjL+uYZxuNxUxx4b+IIuRkfM8U84AlpfWJiwqwMkDX8frlcNosL14Xfl8k5KB80/vjCDU8mpMHOzo5NKQBI+kZPr3rSrOhn4xJ3YM+5/xTuFPpeuWCGMeAW8oLYjh/Vg36aGtkLvjEW0gQ7GPEL4o5C3vuXKZYoGrk+fKuokpBvFCHv5nXFg1OCKDcU7wyLVRqafakCvTQsyXxmW1tbOjo60tLSkqLRqFZWVizIAm5JhOVyWYVCwYCL/xmYQkAlTABeEzaPf+BUuWxUz0ZQidJAxLm6+EMYHcFYFWSrcrlsEjHfF9DGok0kErrnx69SpFfWpdfXdOzYqiKRiI4fP64HH3zQgqQkZbNZLSwsqFqt6rnnnlPh0o42Wx/TNUtP6Bl9RKHQoDLDzwMwxpYQCoWMVWY2KcHdd3Py/LrdQUcwgQ55mcYG5BySOnIcrCsbhWTux0RRLeMnZboD/10sFkeqZgKytw7AvsOWRaNRO8kKWwmMJuDicjYRKZCiQ5IVK4DV6elpnTx5Uh//+McVCAT0ta99TadPnzZgJ8kYeMYzwQTCCsMW4S2VZMCPMUSXj1zzQA0WgQTOM2AoOSxUJBLR3t6eMQ9YOgiK3m/lPdJ44hgnBXjy7N/Ozo4ymYyBRb4vnkzYC5g0CgNADmwXSYxiggH+Y2NjWltbsyBOkQK7B/ikaIS5xUuOHO8PfeAkIxIPSgTAhO9PzGAteG82wJz7x73GN4ndgGRar9ctmQIy8Jiy7wFLFApYiDz75RMTzDnxlP00NjY4W13SyCg9kjrebTzirEO+u5f7ASR+2ogHpePj4wZyAI4kV+wmAH72GSwP+SCRSJhVifWPMoEqNTExoUwmM3JIAIUiAIO8QSL2nlJpeGgGHl6OzoSFZn+Fw2GlUik7XIVn9f73v18HBwd6/vnn7bmylsgh5AA6y7FxAIKxi7AO2f+wXt3uYAYyjY+eeSMWTk1NWSFLfEbxS6fT1ji5ublpRSSNm6wfP6WDArBWqymXy2nWnWwmaaTgoxDi+QGiyYew1ShdR0dHVoDMzMyY/QQQyHW0222lUil7P56Dj6W+OUvSyHrn2cFQszdYl3g1YVUpJqampoxt9A1JKJjEWN4fUsPnH8Yf8ly4BiR4JP5Go2H3NpPJqF6va3t7ewSoMy+a+amsY+4RuQIiDhAcCARsCgZ2BSx75M9387riwWksNhiRA0vCDFPfWECw9UwqgHZqasrAzOzsrLLZrJaWlmz4sve4YMZHYkamhn1Ddkomk+ZVBJxR/THXdHt72zYkTCoVlCQDtY1Gw8APTI/3sJDgAea++xd6nkCGhN/r9ZTJZDQ1NaXNzU1lE+dVbV+nYGDZmgFuu+22EWAqyRblPffco1wup3K5rHMX0lq77j+qvn9aAa0ZEOWZ8HvSICExnoiB3ZVKRfv7+9a9T4Dld5GHfCc042smJiZGfEIcz+k9dbAagUDAgk4ymVQ+n7d7RILDWkFQzeVyJuEDmEgOyO3IqzxfWNpEImHAF0AG0MHzSrXr2UyCN1UvElM4HDY5jfUAsPX3gKAOw8Pz954okmSn07HqHhBAYIMN9t4mCrNSqWR7CZaYv5+YmLDGLL4LAZ0gTdCHuWGPIfsuLCxY4YWk2+127T5znTALmUxG+Xze5n1S/EnDM819IwiFCQBsc3PTfLnejuE9tDBwJCG8eO32cD4kQA6QLcmG+XO/Sfr8wzGnSIR05O7t7Wl+ft7ANYxhIBCwhj7P7pJ4aSra2dmxws9fP9Iz6g7FBifBoFiQpFi3ACLvqx0bG7NDQ2De/BimQCBgxRpqDTGEBkZkbZg3kix7haKDw1bYM9wr/Ht8Rwa+J5NJY3J49hSLrN1SqWQxAHBJHmHgPvvXqyvcZwAXcRtQCIiH7cxkMubzh+1GOcJaRoyhoAZIhMNhUwKwGMFIwuoCkGCFsVvQ6c96TSaTI/NuKXhQiwCDxDrPRKM+8v+QQrlczuRnLF3se3y2gCjsaYwgA6Sxttif/hlD1jBPF286cZPfgy1E9geQeoUGdt1Pq+GaIXT8IRDsUaZn+EkHsKSdzmCUI/eAAok8QpzudDqmXhQKBXuO0WjU7ARYo9h7lxevWMr4HhTCnpn2Ex8mJiZ0xx136NZbb9XFixf1jW98Qzs7O0bOoYRIsjWOQoZljdjMPsD7D/vM/qFA/PuGKPeCaifgcDoE52vj8QGoUNUDWNmgkpTJZJROp42F9R4QaHoWvD/lg0BPopcGSZFOZHwsVEZUKlS3UP38PV3KHqzGYjHrMKYiQ3pFgkK2oQqiqcL7Wgn2AOr9/X1FggF1+4Nmk0qlorm5OWPELn/B7s7Pzw/uX2fA2kzPRrW7dTDiDSJ4ElQpAAAiNFRIMsaLDUBwJTDBbCGpEohgPGg+gaEMBAKq1WrmxaFBzDd+1Go1CyqSrLDxzT/8LIkDq0I8HreZtYB43xUOa4NfCyCGxwtJCwmJ9RCLxSxwA6ykwUk8Dz30kCYnJ7W5uWnBm/V5eDgYdA1jROVbKpXs/TKZjDE6+L5YlyRZAHa/3zcQDIig2ZDEIw2lJZh+9mC1WrUZtXyn/f19a+LxsiGsIc+XRMde5bsy0ou1C+Pi7RAedHrlpNFo2MBqvNusQZ49CQs7iO8qJzmz5gjaAFJp2IgCmBsfH7c9CUPLmBnYMvzsMKswu9h2MpmMsbiAGeLE4eGhnSaVTqctkSN5AyIoiNjPeMewSBAPUGQymYxZIGhOIs5QILAvE4mEMbqFQsE+m+fABA/P4iEdYzcivhGrAHcAV/YfBeXy8vKINYu1AxCieOeaARWwtNwH2D1AAkUq66ff74/cV+7JMIl3de21HYXDZQWDOfX7k8rlFrS/v2Ax53LJmgHzPGvi1NHRkd3//f19Pf/885KGAIJ/A3KQcyEj+D7EUVhQih38ndJw4DsxcG9vz+IXcQiwIQ1HPF3evc4JZ4wcikaj9ry5nt3dXU1NTRnDyj5l4gDXDhsqaeRgGN+ohQXAFwQUkShyfH/yNLkGRi8Wi5n1j5zb7XZHvh9kVSAQGLFogAtQZigGUEYoFiFcpqenrcBkvF27PZhkgPXncpuXtwhBJtEICWlCjAYgQ7BwL1jTk5OTOnnypG655RYtLi7qzJkzNuOVWAkYlWR9ADwTmgzJKeAfSbaXWZfEa/8z7/S64sEpoIyqFsYkHh+cmU1i9d41mCBAJyBtampKGxsb1niDwZmKe2FhwRYtC5wHwfBhgiYTAjqdYdc01Q8+TEA1iywajVqgkDQipdFVSIcyjBXMCmZ7NhPVODIMm6nb7RpAZBh2t99UJNgx6SAYDOrChQtaXl421oFXs9nUa6+9pkqlMpAOIrOSpHq1oUZjKNUSaD2wRwblO4XDYfMM4nPc39/X9va2Aep0Oj3S1OSDGP65dDqtdDpt3a7IInRblkolS9KwQQR8X3GyVgg+PCcCF6wKMiWd8cgjMEusMX6PSphmLxpZCDiAB99Ig3xbKpUsgJw6dcqYSVhGpBaeNXIdMrRvDmR9AtopbpCj+F3Apu/gJAADhJhsgC0AaZeKnoSLpxowC8PMfmHIOsUH+4pKXpIxIXgcKcw4GIFGNoI3wBvmCRDLusBnij8OFYHn5T17KCXYVeguJjkCdD07CVvHfwNe+T6FQkHtdltra2sGjJihiBfWA2ykt0KhoEwmI0kjBRNMKvea7+09stybTqdjndS8iIckeQpcCm9kUknGzFKEIy0zj9Xfn2BwMFsXOwEeVkAnSZcYBkBCOSABY+mguAHk4cFDYZIG49tqtZouXrxo8rxv/iPG8b1Jpkjm+HRRI2CCAEiDdVrV9dc/oxMn3lIs1lKzGVO3G1IsdqRw+EXlcimdPn2dcrmbdHTUte/sPbgAFUAxPmhiAw1zl6t7xHDuL5YS7huNkIBrABR72gM7bDHJZFKNRkPlctkUJuRunhnjuchb5CcsAqwvSWbHwQ9Loe59t8Q+lEeKMwBoOBy2ZxwKhWyWsiQDipALxG/fkDY/H9DCQlW93oGaTalQGNf+fseKZAgE72dnVJYks0v4qSL0GlBowFJjq5BkhQAFAvFTkjXscoQ5I+hQBBmbhX2MfQZ2mJiYUDabtcYolFusI3hsIVWazaaeffbZkVhEIUxDHusQjMShBewVyDHfWIgqRBGIYsvzoTh5p9cVD04DgYCxpVTKNOX0+32r2DjGzwdwqgHYwLGxse8JXHSEsvgZAO/9UlQM6XTaFiCBl/OhmVnHogL4UPHBrLDgWTDMhywWiyNSJQHUywvRaFTLy8uWMGCLSQ7b29uKx+NaXV01GSMcDuuwOa5U9DEdHlZtE37rW99SMpnUzTffbEm12Wzq1KlTeumll2xOZ3atpZ5CCiijsbFhpzSNWciysI10wPpBzTDYnU7HGmNyudxIswCBko1Fxcrwa46OJBAAcmhK6HQGg469t44kjCcRGQwZGr8oDUNcO9+D6pP7TSECAwv7zWb3UxfwGAEeWLd0zfvmLRhhSQb6GKMFqOSaAOAEDMAOo1Aw1CM/w0z4DnISlKQR7+PlvjYaEgBt4XDYfpYEOD8/b9MTSDSAKmwY3ocKa0sC9B5k2D2KFFjxcrlsJ57AVnF/uPfpdFrNZlOXLl0aSYrscwAPn0uwJ9mQ+D3zkkqlzLoBcwCwBRj4sTuAN/YTzKv38wHeOUGt1+vZiCvvSybxJZNJ87zj9fLeUlgS3zjG+8Iq0dhJExZJ2wNIGutgg/k9L/lLw+kprC/vP2UtwZDyvSnIAIL4T7FgkPgBH+vr68aq+e+HJQBwwNQKCi3YNywm5AP2I8naz34NhUJ2YMBgzuOW7rvvG+r3A1pfv0lnzlynjY3u257tcSWTZ7Syckr33vsdbW9v6etfv0vdbsgKH5I5995PIKFgIs7AggHoyDNcj98j3uOMxQs5FjsQihqFOI1azIQG7HDPmaM7NzdnHm7fhIMnldhAnPIWEd6XfRuLxWw6ASoA+ZL1RfHCs+V9YTlDoZBZwLAHDdZ9R9nspm644axWVzcVCIyCpPX1pE6dWtWbb87ZPQAQQoB4jzH2B8aOwVizP3yeAMBjuSAGVioVK16JI1jPLme+2busSbr02ZvEdryxAEXWEp3/kow8qtVqOnfunCYmJlQoFHR0NJjcIMkUjlqtNtIPAUkBYYYKU61WtbW1NeKhhWnlPqGQvpvXFQ9OkbkJoL4y39jYkDQcX4M8xZB4PJyY4AGWBAoYHirdUqlkndIYqLvdri5evGgyDtKCr75Jwkg4JAAYW8ANsgOggaQJa0Llhu+uVquNyFsspKmpKeXzefuzTCZjQBR5jcC/v7+vV55J6dj37Wn+2rzeeHpg8i+VSvriF7+oer2ubDarXq+nl156SadOnbJh4d3omNYmHlKucrtSqeMaG2sYaAQU4DElKMNgkPT9oGnANg1FdOjDBviFzzguGMN8Pm8SCMGSAoVETiezJAOEU1NTtg649zQhpdNpY7V8BUkzDGuL9yTpkrxh3qrVqrEwMPVU4ICTfD5vZyAjHaVSKWWzWbOmwNzwIjghQRMQYYEwrRO88HfSSIXcBbBBGgIMYAOgKQFGtFgsmlRK4veGeTxqrAUKQORkwItvGAE4AcoBBvg6w+GwHdUpyfYRLLyfn4u/DPaRZICkRSMLPwdzRaFIAuF74CfHL9npDM6XxnuF7xHW3nufg8HB8PLd3V0dHh5qbGzMmuUAkd7XRTzAEoO8x3og0bOX/axavx5JhOwz1iy+b19kdLtd67QHdHJ/WMMUdLDpAFPiFs1ZfA+eC7NcsRskk0lLup69pgkQ9of3ARQzJQVWETYXz6wkUwHGxsZ07Ngxm5XMuscuRUxFPaCQKRaLqtfrdpIajV9I8TMzW3rgga9rayuhxx67T1NTWe3t7alcLrwNNlJqNK7SuXMLmpu7pA9/+Ju6//7H9Oij329qAPuJohXZFKDgx/Nw3wHyiUTCWEOUAoAKYJaCiFxDbOV5oIwASHnWNM6yX7zvXdJIEw75NZvNmr8UjzgMM+oTVh06xFnjrGvuhyeJsLaxvxOJhNmX2OOsY6w2weCR7r77Ea2tbahUmtUTT9yuV1+d0s5OXYFAU7fdJr3vfdv6kR95Udvbs/qrv/qAer3IiLWOomB5edn2pmdSuWZiMGwj8rdvKoM4gLH04x95Pxjber1u6xuVE0YXgonmU/IklkP+DTnBTFqaWwuFgll4fLykL2J5eVlnz55VoVCwewGrTB8GShzqCNYD1gX3g+tnP77T64oHp9Vq1SRLQB+yXjKZHFlUzWZTc3NzWlhYsADvPVoMKaaRiWCCvxQjc7fb1cLCglZXV63BicTMAshmsxZYqLz8gyyXy/aQvUTfbre1ublpLKgf6yHJqizknGBwMBCacRPb29s2DxJ2mA1FpzOgle7GwpMF3fmhe3T8quf18rffb4zC1taWvvKVr5hnD9M/RcDK/cua6Hxejz35oNkRqJgZWeWrQJghEh2nSyD5w1AiNyEdUzzgX+X/L5cS9t4+19wb4AGDAAoM8+FwWMeOHbMjL/EBMfQaGY4kBVCdmpqy78QzISixBgDdgGck6l6vZ4Z77y9E0vdBEmaW703hgsQLmybJZFRG+vB9kbx95Q3Io/LnPTlmD7DJXERYLd9Iwe9LsmvFukFSAahhdcDbuLu7O2JbofgDeJOc8FxKsmKt2+2ax5HKHeDGd/ceYe4tDNX6+rrK5bJWVlbMqgOAY1+ThJHESYowzJVKxaTBdrttsjGMF+sRG04gENDm5qYdSwo7jEePBMDnIK3CwGArwGfOHvGNCLwn7AVeMvYijIi3JPFeJFKaOgDurC2KdHzeKAIU2yg+viinAKCrGwKBInxvb0+tVstYFxgyQBXMHwUO353nDXNFgceaIV7D/knDozNhFnO53AgpQfxl7wH+WB+A9URiSh/+8KMqFpP64z++SYFAXY1GwHzlXD9FTq2W0MHBh/TJTz6um29+RS++eLPFRPIRBSXPnn9SqZSkYaHmewQAd1wvlhNUAwAG45ZotPIWH2kArPDQSoNinYkEsJPYrDgQBssWsfVyUgE5n7jmQbaPuxQl3qPo+zxgvmFFWcMU+ewB4ki329IP/MATWlio6CtfuUtnz2YkAerDOjwM6cUXZ7S5ea2Wl6t68MFv69Of/o7+w3/4gJpNjfSWEM8Bpu32YBoDjD4FGPsHqxFEB6QX8YzCl3iHR5MYCUmCHQn1LRwOW8xkLfD8+TOe6cTEhFk7dnd3VSgUbM/4gwRgwVmDqFEwyFwL7+WPmqbAHR8f18LCghE5gGxvH/NM8N/1uuLBKQGLk4AwGvtmB2l0KHi5XDbmoNMZDPqGVaB5ikUFC0dFPjMzM+LJCofDWlpasoBJlc1C6HQGswfxDfoZgmxEqhh8RwCcSqVifiwChfcaEYCRybvdrvL5vMlbfrYribFcLpukgbTT6/X0ja/P6zPf/6Q+8pnr9PRfL9vGbLcH543jRQ2FBnMIF+86qQ+t/pbytWt14a0JhcMhq6pgxqjG2OAERiQEWFwAWyw2GJcFkKWCA3jRvdjpdMzTioSNJxBZDy+pB2QEcFgxAiJSE35cwCoMCz47rr/X65ndgs0JM4V3CjDFEbmdTke7u7sG8jjqVhoeHci6IOkwCB6AhcezUChoenra5vvyHXn50WV0liKBsw5JXiQY7BEwEdx7LAM08vnKnz1G8eILJ4AFtgqqaSQ0aVh187mAeYCX97IROEmKvBfvR5A9OjoyZt97DLk+2DAa65jm4AEeSdZ77ry9hN/DwkCxBcPO/sfmkMlkjMWCoWKdAKR9Axh7HGnZs1gUyhRih4eD2czLy8umsLAOGStGjGBNYB/yrBVFDOzc7u6urU9iBTYXEhFeU2nAsiNvkvhYlyQ1wDNxjlE/kszTenh4aN5Iz1qRSClE8DSShBnKzv6CBQascb+JCysrKwaYiOPEY3IA7xOJRHTddTsaHz/Ql770QR0ettTp1IwhZu+2221tbW0Z8K1UospmM7rpptP67nePK5mc0/T0tLa2tuye8L24XwAB1pkHiqxvvNqHh4fK5XK2Fumx4PsgQ/uYi7LGCVQw/8jqrHHiJIoKBSQMNMUzMRiQBEDzgJUYiW8WZhxgTF8DjWIAV5/H+HlAWiAQsIL6rrvOaHGxrC9/+UPa3s6o0ahbkyykBetsZyepb3zjh/XAA3+pT3ziFX3xi7da7uZzt7a2zI/PPQFAepWJ6+Jek2thkVnXfF+sVoBrXyBC7BAXOT65XC6b9cArTqg6KAfexsbUAfaP944CmHu94dSEfD6vfD6vcDisTCajSqUywtyDsdhjgGFyBDkFsuHvPadvv2BsuDFsSEzUMDOJRMK8N/V6Xfl83sbd4OcCjHifETNP9/b2bK7bW2+9ZVIUkjNyox/6S6WH/ATYI6DBGNI5TOBcXFw0GwHyIcdI+mabXC430uEHg8ymDQQC9p5sAjyTSCd4l176xobWjv247jrxR/q+H/2YTr9yp2rrVVvMMHrt2IRuvm9Ot8//llqtmB7+8xvU7w+BAgHFM09YLmAiCMZUzSTTTqdjZ1XncjmTAanOI5GI1tbWBmxvoWBHJ5IoYUQIAhjLx8bGDFwC9mAVkKHT6bSBdpgbvI6AI+wIMD3Is8Vi0QIyJnaYpnq9bk0s/BnyHQwgLKY/ipB1TACKRCIjzNz09LSBHoAMRRqBBc8XXlrY0FKpNFKl++51EiHrmuoYhYDkgG8U0FMqlbSzs2Pfn2BM0Iat89YXOuh5P7rAAeGMC0un08bCso5h0WG6YedgIynMALPYPbivgH8a41gvfEdYtWazaYCPNQwjStAGrGHD8YUS94CmE54vYBOJ1LMlAAXfoQ9gk4bgAbaHwtszIt5rSdMUxQNJEM8mSkSj0VChUDAvGfeV6+IZHB4e2ug7fHaAIFgvJllIw/PpaY7p9/um3HAtPs6wZvyhBRQ8HvQQS2FL+VliOOCHQornSnJlPVFg8Fy8HYvGkptuekvr62nt7c1obk4GMNjrPBvfmR8IBPTkkyndeWdeqdQZtVqzdk9gxgEIyOHkD//sGNpOAcN3hjUm/hNP2ZvkBml4MAwqSygUGrGYkf+ILagHxAbvK+Y50KTDM0ehADARuyhs2Yt+L6FCQUYA2Ihz/DyFJd8VK8nMTEQ33nhBL754rTY2kgoEhoP4WZfESQiDXE568sn36CMfeVZLS33t7U3Y+DNp2KUO0eW/O2oT+Y1Y02637VAb1AZJtpcoGMrlshEe9Hf4s+l9M5XPPcQ2CsBcLmdKEz8L0TI7O2ujGD3b65tnJVkTNc8M4m56enrksAlvU4D44bqI9djJyJ/v5nXFg1PYromJCQM9PCQGi/ukAA3f7XaN/YLxCIfDNiiaOaeAAjrmSEwkWGQykiFsR61WU7lcNrqfBO/9IjQ/IPP4YIvfFTmLQAFlD8iUZBIXHhWYhsXFRWMZWeDT09MmhUoyuebw8FDP/adDdR/4ad15w1/o3lu/psKtD2gzf6sOGtMaG49oOlnRSuzLGuv+sXb3rtPf/MVJ9fuTmpkZLDMCIZsbIIA3F28e1TRsaTAYVD6fNwN5Mpk0NphGKh+8Yb65X9Jgo+GJyWQymp2d1cLCgh124OU/qlSCKMwH46EqlYqNAWNjU+SQdFqtljY2Ngxc+qTJRAWGUXe7XStQYB+WlpbMruHN7sFg0MCY9+TCZHS7XevY9PNF4/G4nUZEogcISsNuy2azaSONuHZeMBh8HoUb65W1FQqFlEqljP3ldCAaDH0wZ7Yss34ljZyMBANGxU0jDgye96AitWYyGZVKJZujyJ/DvPqObwIrnfBe1iRBkOgBM7wvoIU4I8kSlk+WxA8SK8UpvtF4PG4FNBIwnjmYEFg6fH0A1n6/bydrkSwutxxRvMHcMOGi0+mYpYj4NjMzrcXFLZ08eV5zcx2Fwz11OlFtbib09NNzKpdTI740DzBCoZAVaIDgqakpLSwsjFgpqtWqTQOgaJ2dnZUkA94oOSQy4jKJXNII0GINoPzgtQWEwtLCftHkwf1nbdDtT+EPU4ecifePuNrpdDQ+3tbiYkl/8ze3SZLdc/IIcWNyclILCwumzFSrVW1sRHXpUlw33FDUU08dWpc5ewtChcKZ4h17GMw+e98XGNin2BuFQsGeC2AHAIOnmPUNOcKepz8DJYqcJcmALp+DNO/vN958QB0ACyXNKzcAGPyMNDqOj4+bp9s3XXEN7F1sFzMzM3r/+3cUDnf1+usnzMfLe3uPJQw04O7ixWNqNl/Srbeu67nn3m97F4sWNjDWFewoxA4WDe41Ch85kL1CJz4xodfrGSZhbBrMI0CPGOJjea1Ws+cpyRqq+b4oINxfcoPvjWBGKvHLd+37YoW9z70Gn+ABpymSdUph4a/53byueHAKoKG5p1wua21tTbOzs1b1w6zBMOCRoqInuLD4arWapqamDGywibAAwEbu7OzY3zE2CpBJwmKD8zmwD34GX7FYNPZQGsqyAGBJxogRPL0HhaYHFg3MwPLysgUU/KXI4SxuGq/i8bg2Nzf16rda2nz5x7R2y55uvPY1vXfua3ave4pqq3iHnnr0uF575UjJZF9zc2O22ahmqbLYqNFo1GadUqECvhnhRXKGvfbyuq+WkUzxmMESVyoVK04AN0jVhULBpikg4ZdKJZPlGLvl5eFKpTLSsIFHC18WRnZp2NFOU12321Umk7FAy/33bAHSDEEbLzBeKlhUkuD/j70/j9U8ve4Dv/Pefd+3qrpV1Ru7uam5U6So1ZTgkWTLWuwoY2s8zoyRGcwAmUwSJEiAQQIESBBgMBtgTCaI8sckhjySLWsoy6YkLtpJimRTZLPZzV6qu7qq7vq+d6u7L+/NH29/zj1vyWPy77Iv0GCz69b7/n7Pc55zvud7vuc89Y5t6xIRyWjXJqyISHuanZ1NkKr5qM4mlP1im5WrnBF7QrIBrM3NzcXp6Wm8+eabMTAwEDdu3MhxKBI0ZSglemU9OiaJnr8/MzMTl5eXOWN3cHAwA3i9oWdtbS2ZK3ZBckIeoMzebDbzrFTQIVmhn6zSF+DPuVI+dt48h4YaYMSfYcwFBGyjcujk5GTeGIQVxMJbY53DpBQVLFepjKBAW6ls6Lv5yNPT03juubvx4Q9/OyYn92NtbSxWVqaj0RiM0dF2vPe99+IjH7kTb7wxG1/96sfj8HAuG5D8/ao3NNZOIq3SZHKCrmClZsml0rpEX8PY/v5+SqJMsqi3hvFVht/39vamfm5zczPXnU/n9yWTkpzh4eHY3NyM1dXVtNWIyIQfm+pcdcDpwTt7PpVnBvsbEVntcX6dS7KOo6PJGB296PKL5+edJsiqA2Vryv1kID5veno6FhcXExTSn5+cnCT4xzhKgIAyPkA8iLiaSNNoNPL8AkvkZaQYdXqEM4LpxgB6P0mGfTKSUbMXPTT2DahTDQH4+B2+zlmtV6Y+++y9uHt3KVqtnjg7O045y8LCQszMzMT8/Hw2mlaJTF/feHz3u0/Eu971Vnzzm59Kv1mbTD2HeIohJWE4PDyM9fX1jNEaFO1lo9GZJFQ18xqayY2QM/abr4qIrmtrJTMVZAPRCACSILYfcTW/ufaZiBcqKtW/X1x0JrI445oII64mmAChRmT29vZm0sfvfz8/jz04rXdc6+w9OzuL1dXVaLVaXd3pyhUyX53ktHnmqmkwUpqbnp7O0iPWR6YRETlKB6uxu7ubI0IuLjqzV3d3dzPb9E8duSPYCTYRkeJqQVPpcGxsLEv8GLuenqsBwEtLS2lYMnU30TBUB0VA7+q2Ph6Or/xuIz77j67H7dvviYmJRkQMxPHxYJyc9MTdu3ffKUUMJtNMm3r37t28D7iW2eq8T063v7+/a/qB0kUdh3JwcBCrq6vpmHp6ehKEy5Q5hNrQgDU5ODiItbW1mJ2dzZtKaqAEHre3t9P51E56TBFd7NjYWOr77t27l1mqTmqZK0BdO9Jd4RoRyRZgtrGnxo5wOoCHslsda9Pb25v6Hmy9rPhRxg/YlCRo/gKOlKgE6LW1tRyJMjw8HM1mM68lnZ6ezgy6lhWBmd7e3lhcXEwHXIFjlRpUPWxEpP1jxaou1Nk6OTlJh+3sKoudnp4mIMYQYMc0QZkFDPTUKzWBcaAWgCUJAdQkuJ7FJQyV3RFoJWEPHjzIMwtktlqtiIgctyZIkQthwVRQgFJBvU4YIPfhM6w3gPWxj307PvKRl+LOnZvxu7/7obh3byIiGsnYnZ29L27efD1+5Efejl/4hc/HF7/4U7G6OptB0J4ZE1QlM3TVkq3KFGG2Hy3xIw7m5uZiZmYmy5uqEuyplqtVOTCMgmENrECjhJd9KUfyfXyRqkmVBdA2asTp7z97xx8fdZUs7aWE2zNGRLJhna74O8maOT9Yqio7cdYx+lWLSXbDLymh14RLsgPE1CaX3t7e7OSen5/PSoIEO6K7iU+Dq2kh9lJXuH8ODw9TLlcnOSB6aJA9vzOKyJF8S9w9N7t2npEz9PDA+fDwUbz11mhWDExamZycjI985CPx4Q9/OL761a9mHOIvO3F+IoaHj+P09KSrKU08tme03vx5TQwODw+TveYL2SP/xI/ADv6MflVDJQbadB3796j8UKVMrCM9qax2TcpUKc/Pz/OM1kTX7Gx+eHBwMP0kdpjGHXmEQKvNmxj57/fnsQenhLm6DWUBAmJtPhLMZTFKP1XnJMAApKennXmMMzMzeaUcNspBcjA5T06lduJ6romJiQy+BMx1yHNtBtDpXRmxiKvZjxwwVgMY5eixTPWmJdkvBoKTowEFxjpgqB09PbNxeNjzTnn5MoaG+pPl4YA4fYOS6VSwSVtbWwnglC2UtmjbZmdncw1mZma6Rlt4Z3tXm0UwTTr8BSOZpECEDY24Gp+DlZJYYAIwnufn5zmiCEAllBd47Pv29nYGYrokAAizzqEI9tPT08k0j4yM5PSFiKsrAIF2+ybIR0Q2tMnY6Tjb7XaCw6qJrIGVzWn6U+bhmLEVGHbPFHFVVhNoBQz6SoyapNCZqposzhPbGhHJQJJD1KskgTPNLd7ZGfbnWIeayHhu55xmqpbyIyJLqEC0M+LP2BkJggTA2ZSkYS1NWvCuEoL+/s4syFar1ZVsHhwcpG1tbW3F5uZmBjsgwj4Cx7WZrVaInOvT09P4wR9ciY985K144YWPxosvvi+Oj0/i/HynS5ISEfHKK7fj5Zdn4+/8ne/Ej/3Y78U//IefiIODzlxSMhJgld1it4HyiOiSnDj7bI0frkk1NgnrOzY2lutHE1nX2qD9OskD02Zfq+YYmdDbezUUHlMKfNBrixUYs0586FwwMTd3FK+91spkSfA2O5iP1xTUASK9MT6+F6urneoUicHFxdVtUUrGEZHPIkbRDzcajWg2m3Fx0bkchhSAn+FT6KatlcoHH1obnGq3ubiGtMC+OzuSEje8IYPOz89TAlVtz/4qg3snP54DkSChlVRKmj07eQpAxu80GpdxeXl1kUl/f3/KLd5666148skn89wD08Z6LS6eR6MR0dMTmbyQgYhrdVYv37O5uZnrT8cfEZkMKafXiqa9JPewZ5V4AlDrSLyIK5lVJaX0VzgbzhTfByNI2uj569mbmprKM0h+R5ZzenqajDksJQ5KkhYWFvISFdhicnIyffD3+nnswanSEP0atsxmVqGxcp9Sr41TYsDMRFyV4bEenPDIyEiyW1tbWzkXTAZfx2EoxeoyBVSBXg1TAMvU1FQXk4vpxdgcHx8nSAGIsV46OwU3LERtUlI2kOUPDw/HgwcP4u23347h4eEENErZwDdQNDs725UhGl/leZUJrl+/HsPDwwkc1tfXuwAWIOuObYexdpN7H6DNgTdGyS1X2DGNHRgQIHhpaSnnOnqeoaGhBPI0iRFXTQOjo6PJFmAIBL7j4+P8M8+OKZfgyFCxf5wyxz03N5cAeHt7OyYnJ7vmVUo8hoeHY3V1NY6OjpLt5+DYHacM/AiqmDcJkDE39kA5DwsAFFbJQESkvOHatWuxuLjYNaViaKhza5r1azabecWkcpL1xmYCGQBqRGTDkCYX7GHVc1mX2lEdEdmsw7atkTNT7YsdG5vkBi5Ms6afkZGRnOFYG198J1DQbnemNtCEX1xcZBNU1VIfHh7GwsJC6mT5nToqCuBTosV+8jvYKIyxcief9SgDd3Wv+1D89E+/HX/xF0/Gl770RIyMdMqqbpmJiNQLdnR+vfHbv/2D8bf/9h/GD//wK/Ev/sUnc66yhCqiA3To350La6AKoHHKVYqqE3TBQK0zVhteABwNG+xzeXm5S9dfS5j6DbDWWENrDjBrZp2ZmcmRdX4qk0dHvbNzHvfvX48f+IG344/+aCL3XvLre0ly+J5OAG/G3NxefP7zzyQI29vbS/CMwSUFcd6qzs8tW61WK+UwgLOmTtIkzGEFJxGR8Ygkgc8wAUZCOjzcmcNbKxOSCiVbvRz37t3LGKGnIyLy7JJgVS1mxNXkACBZhbKycdbE+RgeHs4mH2vfaYwciqWlnnjrrdGuSoMm1ZWVldwnbL9Gz+Hhh3F83BeHhydxednx6+Kg3gEMoukJGv0GBga6dPGeEzHGR6l21qocvye5EWsxx9W/mcqAsfX3yB8QNsCs71fdOj4+zqRLhXFmZiaJClUF60ofbs1gCDFEn8HJyUksLCxkAyrsI8H+fn4ee3BKR8Lh1IzWvxNX7+3tda7rfCeTEKh1/wIeslGsR0R03Xd+dnaWt2YowxupwjH7XwYB3NDKHB8f561VgjPHKGvUhMORCGoCJip+d3c3wagua2NVOFLZHQBoPTAw/rxmjRoq9vb28nalaogCPgBG06lkpfwi21Uqi4g81JUVvri4SH1lbSDq6elJJ0N6AJQMDAx0BUbSiXpArAOmFOPEYcokXWtXm7gePHiQM1jn5+djd3c3dTbXr1/Pjm37S1NJy4tpozFTthHo63iQ9fX1lJ1cXHTGgt2/fz8irtg54Kuyr/RxAnDVrQowHH4dL2PsSW1SqY5TKbDqDO0l0FgbxiR2QL2GQTpQt6Wxb5pRzh2gHh4ezoYtdoDldz44VSO1AGFNDOy5JoRVBjE+Pp6joJQQjdWpkwjYJ1tVocGIY1sF7wpc+Q9rBwhjmLHkbna5detWnucKyN0ApbxJIqQrXiDl09hzb29v/NAPPYyenoiXXvpQnJ115pdWphG7bqKFUvq3v92MH/qhr8aXvnQWEVMRETk+aGxsLAG5xFsZ2rMeHx/H1NRULCwsdGk/Ly4uYnNzM4GjwMzGAE3slnWW3EdEAm/nSymaVAQQ0IgjYTQSrq+vL5rNZq5vlVc5I/zbyMhINJvN+PM/vx6/+Itfi5s3D2J3t7tBDZCwR8rzw8PD8fzzX4nt7eFotZ6KwcGBruRJ3MHUIhyAEf4Y8HCGT05O8sIYyQLmj3ytjuTyOfXzJW8RkbODNzY2ci8l1J4VmI6IXBtTPSS5SrzAKFkOcInJ9T51woP3x+S6JIB/c6sRGRXwevfujfjwh78b3/52xN5eT/qu8/PO6D5SPbNj4YKJifF4/vnVeP31hbysBaNuzSVBR0ed+aEqDWIwYIbc2trailarlUm2fdUcyb+2252G2N3d3ex9GBsby2S1rqWEAjAn+QBO+SfyGP7BGmGNVVfZwslJZ6ay+E3mWKt+j+6/vbeO5u16BjIRmOd7/Tz24FTJmrHWhhMMlP9vkwUehwOgkKUqxym7oeUBRWU7LCCw5kDaUIdZSVpDDwcho0Khy5gcIOyesUGCma67ra2tOD/v3Paj7HdxcZFZP/2mu5nR8fVAAcy1TBkR2ZQCDHA0mpgiupuplEKVaZSolfHqeAqldu+GNaOXW19fj7Ozs9yHg4ODuHv3bkxPT8fS0lJm/jJ1z+IQAQDA4tnZWU4s4Hzn5uayzI9NocMaGRmJhYWFGB4e7urcxuDs7+9nediYFzpR5ad6SUBthtHoRLfjEgBAx48LH+hD2ezAwEBqQeu4ldokIzC7RcuVp3S+tFW6wgEMTI6gNjrauZtcEMPuj4yM5MQEpW7nb2FhoauTs2ola3OgvaodvLJ+pSPrOTMzE2NjY7G+vh5ra2sJPunIOH7ASakK8Do7O8sJEADk9PR0PPXUU3F5eRn37t3L6Q9VlyUYHRwcpO1y5FUeJDFQQQHazWk1j5bPYNcuGgBkFhcXs9xXb8iJuGqWAQCBb2sm6bq8vMzy7Pb2VrzvfW/E228/Efv7A3F42MpncRZUARYWFmJ5eTklB3fvPhsf//g34j3veSO+/OUrICupM4WEb8P60BS7zU2iIiGsMx8BG2fEeisVYoT5Q/avTA/cskPNQdW3YcX5Yt+r0x3A5o/Hx8djZmYmDg4OUv7R29sbb721GM3mcPyNv/FK/Pqvz2dyUZuwxAFSs2vXXo13vetu/P7vvzvOzs5jYOCq+Uli9ODBgwQ01lWcAWDFi8o09/b2ZlWIZGJraytmZ2cT6NWSL8BDT8qmSZp8p4Td+asTPPi4ZrOZVbLx8fEkOKampmJxcTGT8ZroHR0ddV3r7B8Az35WeYpmLHFTN7+41mg04oUXrsVHP/pyLC29GJubz3TJoOxJ7fPQz/Dss9sxOXkYf/qnPxG3b8939UVUkgLrqFqKFbZPyuSqeqR7RklhlBFA2OQ64xbb+Ggs9v7Wh3zKOZPsIptIBhAdo6Oj8b73vS+mpqZidXU17t+/H6enp5nE2jfrJdlAPqg0IMGQXwgj++y8IcYQAN/r57EHp5ifyhJigpTlaVCUcBxG2TxG9PLyMml8jkaJzHcBvcAO40O/C3KMiTMHDgVigdlQbs9eZQhTU1Pp6JRsKoVPgDw/P5/fOT4+nje9aBYTVAQK5R4lmubuXjz5c38vFt/74Ri5+Uz0Do/F+W/+t7H3F3+coFs2vPDRH4/3/fBfi4H563HZbsfpxv3Y/+rvx/m3v5KzXmdnZ+PmzZsJ+jBHi4uLsbGxEXt7e9kMUrPFCtQx2DTDDnZEZEMGljQi8n0cfo005AAy4ZmZmWQWlH4wbzs7OzkaR1mr6igBiapjNrwYq0yjZL8xVZg1JUeTDWpAAB4jIlnFmZmZ1Pr19fXlszYajXSc9TMiroD67u5uzMzMJBBX9qqlHHICa+7zgX9TMKyPBEcnKQmBasWjAIbTxCJMTU1l4uMKRuUhejkyEFKGy8vLWFtbizt37mQyiiEGeiRFtGFAee1edu5JWz7xiU/E2NhYfO5zn4tXXnkl/65zK6Go50bzTm0MAkJrswfQBdwODg7G0tJSrsfW1lbs7+9n8yCgxlYirpJQAdW5nZ2djZmZmQyUOmr5BoBjePg8ZmYO4pvfXE6tXdXPYe40XaoMdIb0D8f6+o24ceNhnjkgz3MPDg4myJJwslO+U0OIMzoyMpIzUjUAAlCYngry7WvV8gOcAJXkTxJGHjA+Pp7d28B8TdwAevtBSy0px7TSQf76rz8ff+/vfS1++Ze/En/6pz8drVZvsmL0eB12+Dxu3PhW/OAP/km89NK1+NM/nY/j49UYHR2N27dv53B42kOJVJ1zyo/VK5wRAap9EntJbJ2t7GzXKpnkEOvqXGALq6xL868kuvpaWl8suTOF2Y+IlEsBxHVCDf8A0GnutPYaMNkdZlEPh1jYqWb2xRtv3IgPfOCb8eqrM7GzM5xVHHG5zvztxLPj+KEf+mY0mzNxcHAr5uc7ekzNkc5IlUaQSPHv5Fz+XEz23qpi9uXk5CRlAN5J9ePtt9/O9+E/gDxVh9p/QevqfWAe52tpaSnL8z/6oz8aCwsL8fWvfz3a7Xasrq7me83OzuazSRIiIht/R0dHo9VqZeUN2SORqDInkisN2N/Pz2MPTjkzbM/GxkZX0xKNnEwE06g0R++JAWs2m3mIx8bGYnJyMlkTmVHE1Z3RtGnNZjO2t7eTRTJqQqlQhmJTfa9Ox0czZXPN6HH8jnmeFxcXsbKyEk888USXVk+mf3FxkTfl0IkCxUtLS12Gfutd745nfv7fi/PdVpysvx0jT7w3LtuXafAO5+THfjKu//V/L/Zf/Ua0Pv/rcXLejpmP/Hgs/K3/VfQP/r+i8cIfpYNW9lHi6u3tjZWVlTwIMjSHF/MhiMosDw8PUz/DaW9vbydD7IBgcWsT2urqajx8+DBGRkYS6CgVA0tYL2yDDPLk5CS76QXyi4uLXAtlSQw5ZyZzxpBgHzSF9Pf3x8bGRr4zIKSsLQsVhPwZe5GF0wT5fHITWff5+XmyDzpFAUvgR5YtEArE3ss7VXG+pM0eY7yqlk0JnvNUlgPCyE4AEnvneQVIpX36Yp2oKgO1RI3tdKtWnXoB+NXze3BwEG+99VY0Go2sQEjEMLARVyxv1bGaKKB8XEd5AUe03oDP0NBQPPPMM6kDq3M6rZNkEzNIsmTupLK4qg45Ao2g4EmL2dvb0Q6vrOzGxsZpAiL2Ojs7G08++WTeGNVsNqPZbEar1XpnHvJgjI0dpq5VCd0MVmty7dq1ZHZrmVu1SFLHhvnAWtKnVaenW1lZycSCH7DngrZmKCxzbSSpVSi+1Jq6ROPi4qKrg5tmzvfVMn+73Y579xrxD/7Bu+I/+A/ejL/+1/9RvP769XjllWdjc3M2BgamYm6uL5544l68972vx/T0brz66rviz/7sQzE3d9WBruTqjFVSQYwAxJWkNb4+2iSj1F517XwjOwFQMW4079YF88//YHFptWupHkkgOXGW7bskVHkY8PdeJlfUucDYTdVLPoTe3P6S00jeXVaxv78fv/Vbt+Lf//db8Yu/+Cfx27/9w7G7e54JqktBEEuTkxfxcz/39RgZOYnPfObH4/IystpCm1yrEKoDpBY13vClmtz4Hj6cxt1oJklUb29vatWHhoZibm4uzwJ5BiLL+vj/9N2S3cPDw7zlUbJSpW+vvfZa3L17N9bX1/Oc3rlzJ87OzmJycjJlJt4RKQMQww3soDbwqZRWLEZC+f38PPbgNCKSXRAcdOgah0FY7eDTyNXROWYWClbYgOHh4dSHcIycikxvfX097t+/HycnJ5m1PCryrwEuIroYEo4U46CkVNlVXdMyLM5OQxB2xvPVErvPxUadnp7Gd77znaspAcMj8fp//h/H8XYzGrPX433/m/8y+vr7EhQAv7Of/OnYv/tqfOO/+j9cOfZ//P+Jv/b//lyMP/+pOHvzxdQobm9v555EdJymG4TqkPCTk5MuPY/yP6dJgG5urbmnJycnsbGxkbd/eD8H2gGWpday++rqarTb7ZyriWE0U9BtPRMTE3H//v0uLav3xsgAQbVBgn6ZJu78/DznoGKTNHwpsdRDjY3hwLGDnBmAZb+xG4K/NQdYJQQYjA5LMxR9fUfR03MYx8fnOee0ltsjriZDqC6w38pw+b2dnZ3UCw8ODmbJ2Ggu+wbscLrOCcc9OzsbR0edqxmxMYODg3Hz5s0EGN5rcXExZxBaizp54NFpGjL/vb29+PznP5/v532tNb+BQTBT17tj6rF3mNoKnPr7+7tkIYIXmYuJBPxWX9/VJSCXl5cJRgQl9uV76AutI9sRiKleenuv1tj/1gRZgDo8PMxxfJ0k5zROTzv+0DuwDzbsmbBUfX19Caq9D1vxXY92XmPbXKLBbymv1z33jpIJrM709HRMTk5m5UoJXGnW2CWf7/1JBdikveFvnc3j4+N3Stg98V//1xPxqU/txwc+8Fb8jb/xxa5Y1G434s6dG/Fnf/aRaDZvRl/fZUxOjualLG63wzTxWdatNjF5flUC+nM6XhMdVITo5oGm7e3tJDg02dUb5LDOrVbrLxEkFdRKtrCjCBXXXAKMtTu8zm9m03t7e7G+vp7g1tqbLjA5OZn+DlMsJiMDgHqykYmJidjevoh//I8/GX/rb309fvmXfz+++90b8cILt2Nzszcro+Pj2/Gxj70azzzzRlxc9MUXv/izsb7eiL6+rQTJYgutqeSo2iQZhWTcOQAadcA7o86G5mH2S1LW39+fMhbJVK2Oki9J9Jw/koxKkpgWQHO7t7cX3/rWt9Knzc3NZR+LWKAKhTEWx1R9+DNXIdPMehcSNT7X+3w/P489OGXYtRQuU7d5dDEyM81OdGq0aZubm12ZsgxoY2MjmQo3LEVEdqLTZco+BE4s6PDwcNy8eTM30cb7O8o59F5VmyrI1ivOlHlJCsgaBDFspIaM6mQiOg1Aa2trWWpvn5/F6XYzdnd3Y27xdr6bTE+JrHdwOPZX7yZg1PF6eXoSjcuLDEhYaSyBICBQWVvTFDg5xo91qmUDZVMlVIynspg1V77XdcqR0SqZezowMJD3L+tArAGUI6hOQxAbHBzMQc0LCwvZ3HZ5eRmtVivnDHoWwEyptzZ5ADcCFD0PFpBtczyAn5mTAA/NHBuYmJiIhYWF2NzcTHlHBwxvxg/+4J143/seRH//1U0e6+sz8fLLz8WLL87Gzs5h2goAU3WNdLOy7P39/RgcHIzZ2dmuK/8wQGaiAgyYawDVUH0yBkw3VhLAE3QllkAgp+o8CDYSPME9ItKO2JbxMRKJiEjWiPQEM00zSeMbEanPGhwczIHW9ok8aGZmJqanp2N7ezsnTfgeQE4CgaWotxCRJzgjVcJiPI5Sq1m6HSB2GEdH34gnn3wYX//6QjLXGB3f7zvZfge8nsT8/Hq8/vpCvh+GqCaBfIXgaK2U5R+9XtH0Bt8reaR/87s0fxqhBEOM9vb2djbw8IeaCSVv9mpoaCjPwOTkZCwuLmb16fr166kjN2he7wLb4N+rhOHVV5+Mb33rmRgbeyvGxvZjYOAyTk4G4uHDW3F6OvGOXz9LPwiknZycdMUZFwkAdVXXh7Vynuw7O5HYqdbVErBRfWZFW3usMWBIr61Z5tq1a7k/9hngtWeqFXXeMj/m2QA9fk1MUgkaHR3t0onThlbta9XgI4YqQzww0LnIYXZ2Nqanp+MP/uB2PPXUt+Ppp1+K9773XhwcDMbZ2WAMDFzEyMhBHB8Pxbe+9UR84xtPxtlZT+zvP+wamed5YQmAmhyqVq70XRjvpLmIfET8MG2m6rLFD8wsmwfKkQ58AvmNpBLJhRUGkPUO1CY/Fz1IuOttmBII8dnaS5wkxggYBJiEH+FSGxAbjUYXm/qv+nnswSlnUbs5baTSMMBXM3ALzNlhMX1mo9G5NcMsxaWlpWS7gCSgwMEnmsaOKF1zODozlTlrGVApuXbSAtIrKyvJsmmUUn7mPFqtVupPBZjr16/H1tZWlgaBrr6+vnjmmWcSBCr9dhxbpwFjb28vXn311Qy6Q0NDcXr/tZh578fiub/2K7H2jT+O3v6BeO6v/zvRMzgcW1/+3WQwxsfHk6GcmprKzujZ2dmushS2UDABhGpjE00eETnAQcPkHw4Wy0arKQACDBw3Fr3dbsfU1FSuk0w9IhKM0NI5vDLDmZmZLK0IumaXKpVgiAFqzJXuUaCMI6h65YhIWcLi4mIcHR3F/fv3s+lBYsOxuC9cOXJ7ezu2trbeYTT74qd+6s/jmWfWY2+vL77xjadja2suWq29mJi4iA99aDt+/Me/FJ/4xGD8zu+8L775zdFkJgTneo2moOTcqDzMz8/H2tpal8ZNGZ6DB3Q11bTb7WQfgBWyi/Pz85RX6NzF/NBsGSWm1FUbECKumokqK/VoqQzDrVTqzPhvgA0NG3kDyYCgwdY0MnjuiOiadCFRAYgxzjUxqs/OXu0tnZlE2RkDLDpneSBeffWZ+MAHXosvfem9cXraSLsifYnoMMEaRs1vXF5+M8bGjuKll56M0dGrETeYGv5Rpam/vz8WFhaSpa6SF/8rsSQJ4KO9rwpF1beS75BHqWYZTYXN39jYyOBckwlsYZXxTE9Px+zsbCaS5FXsxjmvlw5IeA3Q7yQVESsrsxExm/5rYmI8Hj7c6+ohsO+CPOkNqYNzERFpQ84YwqLZbMb+/n4sLS3l7/l79gZwOD3t3M7lM+hWVYOUsCXd7I4+mP0o44tjJycnCZIRF8Ane1aJqP5PBz52dm5uriu5qc11yBvVR8/pd9k+1lLMp+N/8OBm/PmfPxm3b6/HxMRaDA+3o79/MnZ3p2J19elotfbemRfb8fdzc3NZeXFZS9VBI7I0SrdarbRDjDQwS7fM9iM6LDcpBJwBH9S4QnoCtJt2o2rJX0mM2+122iGphERQE6UqguocLOJz7Zl/r70tmGRVPBhH1dmlNuxQ0uz67+/n57EHp+Pj41nmrrrAOrttf3+/q9HITx3XoaQjm9WwoHQ1MzOTpeRaXiJMVgLg3CMiR0YJuBFXGdr5+XkCona7nQJwQAz45WAZIMCt3H9xcZHgVBey8q8DoZwt+xwdHc0DqJSHFRC8ZYkTExM5Rmrzd/9/MdM3GM/9nf8knvs7/0lnDQ4fxr3//v8e52tvZYb48OHD2NnZyTKo7wJ0OK6HDx/m4H4MowxaEDcSShkOc+3ecQw1kBARWSIWELBlnkciUGfBygBJEgxHN8JEMCX6HhgYiP39/Xjw4EH+Lluq+i66SYGx1Wolu4xh1sDnRzmYozb+DJMOMANpwJXPwtg9fPgw1tfXo91+GP/uv/tWTE0dxa/92lPx4ouzcfPmkzEwMBDNZjMePnwYL798O5577lPxkY98NX7hF74R4+MfjddffyKBlskKMnnAqDIZHCnQhlGh36WnqtIbSZN9i4gMtPXSBk7RGa+6MCw2J3t+fp46NcCfRorMBcCq+tlaZu7p6YnFxcU4OzvLs1k1sc1mM5NOz1clMHt7e2kXzijbw5pULZc9xf4792dnZznU3jur6ACV/A0mWtlwaGgovvOdp+P5578Tn/hEM/7kTxYTbCnTCcKShA7D0o4PfvDVWF2djdXV0Rga6s+u4lrVENwePnyY4I4/UTa2zkbtRVyNpIqI1JKSQQwODuYtaIDXo2fbWjlzZFn0r8qUpFgDAwM55s5nKmvevXs39dASvYhIuQAtqP0SWyr7KMHRUX9xcRHj4+PZlFobM4eGhmJ+fj4nnywuLma1CwPKN2LT/GN9VJ2wZ+xPAlY1oJWYEF+qvZv/rJkHG9rf3xkNZN/dGAfI0sNKOkjHxDb6RTZWZ2vbBxppFRC/Ozw8nOBILBIXnUEzt/kM8bXjP3piY+PpeP31zqQR9jU4OJDEAlmAiSYAMfLG55qUUnX0/LlkEYiPiJQ/8DUqkGKDmduYcg21KmoAJFtXRSPjk4QCqJKZmZmZLqDuv/M9YgSfC3ewTViIxEaSAr94t5pA0LqKiWKe3/9eP489OOWs3FAg+CuTywJlfRi8tbW13PAqCgaiGA5Do+s8Pz/P8lGj0egSDDtw6HxZasRVaVbG8frrr+dVn55V8PFegKYsXANIHWNSy5kOD30mzaeDLShiCCIitUkA2fLirfx+oFSQ7zm7iPPt9dj++h/EzstfjaHRiZj91M/G9f/ZfxIv/Tf/+zheXU1Wg04WCAHya4ONzM5AdAcRoADAODuNVA491oEuDbPR19cXm5ub0Ww2u4a7YykdLk7BDE5BE4iVoU9MTMTm5mZqs2opQ8JgMoS18470bbJfwIJdAeKcNrtSUpZJR0Qy3BXMYRkx8Byg9RofH4tf/MWXYmLiMH7jN344Xn75NKamJhNkLC8vZ8a/stITd+9+MH7iJ87j05/+ehwdTUazuZRAw7MqNQsstQGFI2angLrOfkGHlgp7WIfOY6wxxmwQe6MRBjjA+A0MDOT3Y+iwcFW/Z4wO8CKgCNB1dI+AKyDVdze1oWqDBYKIyHKo8qhuc8xro9EZzSXQVsfuhjfaZskaJnZ2djYlDgKpJFb59PLyMra3h+L1198dH//4C9Fq/Wi89NJoTh3gr0gDBgcH4+TkOH7sx16I+flm/M7v/GjaKpBmALnxcYKp+awYFLby8OHDZIXZsHNtnwDHWhKt+1L3FagEZPhaZ1pS4BloGwFKY6R0jCtzW0P2pDql7F2lWCcnnTmj165dS0KjSg+WlpZiaWkpS6lsypiwg4ODWFlZSTYWwKzPwR7Zj2YlPxitiKsxT9aqaoitK2An4atTLCRo7BQhwI5MMKkED3uoWlDgB0Fk6sbMzEyy7BIqts5/NxqNPAcRkUwiIAsEqWJYK368xgs6U7IOa6PqItlx5tbW1uLy8jLm5+eznG+uqAQT+DYiip+qI+jYFVKEfbFjs0z5Mec7IrpYUleNIx7Yr+SE5Mc+tVqtBMu1+57Ma3t7OxMQayWJbzSuxkWaplAnFgCpGFiyoZOTk5TGRETKC/T5fD8/jz04raJddLhDoklDKUzWW5kIP4IsdgugbbfbsbGxkTPbjCJykPf29rqG5dPbjI2NZRkSaOHQd3Z2UrepCQczZpMdTEPeNXsMDHSGuBsZsrm5GY1GI5aXl/PgygqHhoayXNdoNGJxcTGZDuVvei2d23Nldqb1Bahmf/4/isv2Raz82n/RGdp8fBw7L30l3vWf/lex+FP/87j3j/6rzLb6+/vj2Wef7WKCZKXepd3uXLPJoThgVSqBEaBnAvIAYMDGjD+OS4keI1SblWhxI66CpSyaw1QiodlcXV2NVquVY7KwwEAp5y/rV47ijNzuImPFXBglJpjUtY+ImJuby/emT5TNYiJ1W0vQqoD+xo3deNe7duKf/JMPxv7+Yty8eTVWSYAT1ICP//F/fCauXduPD3/45fi931tKLVjVc0ZE6QrvyBRIUmpDDOZVcImId0DTdjJRh4eHsbW1laNWTNjg5DFh7OGK4Wuk7YyOdq69VTI2PqiyAsCmfcCqTU5ORrPZTMbBdA0AxaUJ7MXfc+YFqvPz82xMqaXq4+Pj9D/ALl9hTX0u8K7aQ/vIh1VmmI4tIrIKIEAC9CcnJ/FHf/ShGBs7in/r3/qjGB9/d7z00pMpr8Fyd2QSO/Gxj30z3vWu9fhn/+zd8cILjRgdPcvkdGpqKi892NjY6BpzFNE9/ox9CsI071WuAGBIrPgvvlKAxg7zjWZCS+qQEWxpb28vy7P0w+zNOmEfp6enu85NjR91tqXEzw+db71tB1vlDKj0+FHiXl9fzy5vDaRVdqK6JMYAdM5TrfTxbc48Lbc1xEjzc5oE2RvAgngxMaSyhLr1xVrMuwTYenbGlw0nqyqRkGD19vbmmCexTpJVmV3MorOBVUUe8FvWy7PbH0RTBbbiCf+u3wOpQxtKx8+2xMCI7mZDxNbo6Ghe/CGxcGadX/tTZ5kjsSSeVZJTpUUqCK75lhiTKFYdsj1jN7BDtU/VIfazuLgYExMT2TMh2ZAkiA/eEYCVBPk+1d6ISN/yvX4ee3BaZ+Kh1+sBVsqu4ySwDw4FQwUcgEMGR08qExHwlNVl/2bjARpra2td7EREZLDq6+uLJ598MkGyOZS1+5aWi0HT3hwdHcXCwkIcHR2lMPzatWsJvvw9zp+GScOE7IoxRkSWFvv7O+zOyPBIvP2OVmt2djb2oz+uP/0Dcf83/5/5POayHbz1Ssw8+3xsjV7doV3ZLp3rtCnKAJIEQUvGLZC5qSXiykFIGuyL7F5gcljpnjACQGkV6O/t7SX75TMqGCG3WF9fTwfGYRCNR0SXtjLiSidYx8bQxB4dHaVUYH19PXZ2drKsiPFQiqMHs9b1UgbzV/2uIKCkLPh/+MP3YmdnNF56aSqWlzvgH4NjTNng4GCOQouImJycjW9+85n4K3/l6zE6+jBOTkYSVFVAXKUWJh9IJDQTRFyxIJjvsbGxnG4ByAMjyl0CVG9vb2ruMD8YCTe+YWSwCcAMvV1l39xPzj75ifX19WwsFGTOzjoD1VUANO14b3ICwVyyxVbZnaAguALbFxcXGRRoZ7HRRuVg6c7PzzMppeETFCpjc3h4mB3cSrvtdjv+6T/9cHziE5fxqU+9HJ/4xHfjrbeejgcPpuLw8CImJiKeeWYlrl1bjaOjofid3/l4vPDCSK4nRjPiimmTFPh3IIoN8MXsmh8ADCSLZl26ThWYIg+StKuMkPQY28cnqPRojgQOVB3YSC090j3XmdB6E/r6+vL9BeBa2geE+DNgzLmlh+UXfDbgOTExETdv3oydnZ1YW1uLsbGxlCxhEvkfvs658hnshv8EjOv7Y0+rHEfzTMRV9UWSMjo6mtKTiEh2TbLB9wMp9ryulWoRnbwqGX/p85xLgNS5sY6+H0DzDJIdALYSH2IFO5TMiRk+m3ynygn4z7Ozs5S5YUXJMpx9MQy54PxpOqyEmM+sPQduKrMnYgj5l4Y2ALey6hLwWpGpNhIR6Ue3t7cTlzh//BWJAEkDAoTftQd0tBrqNCvyhUD72NhYzt39fn4ee3DKGdXS0uTkZOzs7MTW1lYGHOJ0RqhbWzd+REcPxjkwOuNxMHB1Xp3gwFEwkpOTk1hZWcnO5IjoAoQRkU1GVaNV53YCJJyFrA/DyChr5g6QMW7ft7CwECcnJ9lMA3zt7OzE/fv3Y2trK5aXl7OkHBGxf3AVJPf392PvsuOsHu7vx8U7TkYZ5rLRE413Dr6MOCK6hqDv7OxkY0Nvb+eq09HR0a4yMCfkgFQxNtDJUXBMEZFMIvZT16QuegAck1a1NgBpROQaV1mB3xOMGo2ru5A524WFhbxtiQa2DnS2TzTGyo2jo6PJonCE5n8CV2dnZ1k+wfKcnXUmS9CASpgEUJn0xERPPPfcarzwwofi8jKSOert7Y3bt2/HL/3SL8XMzEzcu3cvfuM3fqNLg/vqqzfiU5/6Vjz33BvxzW9+JIMDxi8i8sYXrKK9EQzq9a0cO7COoaGbs272tM5gBKTNGhQ42YigIut3hmtjidJcZXOAKM0dBotHXOk3MQKSJ0kfIC94KSPWoF31khIPydDu7m6OrBO4MFmcvTWls8WUAhy1tO53VXguLi5yYkkH4O/Hb//2U/H1r787fuiHduLJJ78Tzz77akREXF5GbGzMx5/+6U/E3bu3Y3//JCYmDjKZoz/0Dz1hX19f3qQmca5r4RzyCwCCfySMgDlAIQjTNgLiGuAEdee6r69zMQHfi+28vLzM81/PdbPZTHYTCDAe6fXXX+/S+1fA57Mxlmx1Z2cnQSIwUpMRibNEUmMrYMwm+Tm2tr6+HltbW5nAe3/2DiTX6RURV81SZCsuWPC+5ElkZxIsSaEmVlUPZ5p8RsKDTefjxTZ7Y7JIq9XKGDs/P9+VxPBVgL9Yxp9X/474qVI9bDvgTirBDvmqWo1ip3w4udFbb731l2494lN8XkSnmqWi2tvbm/NDrVVtNOZraqyfmJjITvuIyH6QR+fZ1iSgJk10+5Ira8SHqDzSE9cmSDFA1UaVGKHjd4FfwN2EEcSR76ssq3nM/+b60vLjjlcOXfkP8yRIDQ0Nxc7OTmxubmb3HaZFZ5oySwWP/f39sby8HI1GIx48eNA1K873ABSYHtnFwcFBjI2Nxa1bt7IxgBietqWnpyfLyATpEZ0DOj8/n45C09P5+Xm88cYbqb/zvnWuqaxLqU+mJhhrrpmdnU1Q22q1YnbmWkREXJxf3Ql+eHgYx5srcdm+iOUf+qvx1it/nizY7lk7Rp98TzRf/kY8ePAgwSnWhIZJIALEOA5lqc3Nzbi4uMgRGBGRThzrgv3gEGWBvb29yRRERDoeJT0ASRlaYMeeKTXKsmvDA0CEqZyYmIi9vb1syDo4OMhucsnLxcVFBnXrQXMJIGFKMP4YB3qjmgHXEjznYXQQtuxRJ9FxIs3o7W3HyspcHB/vRrPZjJGRkbh27Vr81b/6V+Pd73539PT0xOzsbNy5cyc2NzczsJ6dDUSrNR1TUwddmla3E9WJEs4Mbaq9lVkbnaVcZaYq23WDFyDQ09OT68zZDQxc3SAFGJmZKygcHh6m/krQkazoRJ6dnU0HXsucwAkGSFVBQMekeycMNtaGDTWbzZifn4/h4eEEPs4Xdu7evXuxubmZ4IT9sDlVl76+zmQIlyPwV7TZAnPVq/s7Riz5M1q78/OheOWVZ+Mv/uL5ODnZj6mp0ejpGY2jo+N3nrMDdAV/e7O9vZ0Min3WaBIR6VOUDZ0XZ8KfO8MYZAkBMIXJ5ifo4XVzV6AJhEREav8lKYI4m1tYWEgAATzwHZ6rJi+CfpUBeW+JtDX1LBhIoBGrHREJeL336OhoV7mV/+KXveP169eTRecPTk9Ps8FQ01x/f3/6WcCcPVX5E/YfSOaLgOKIqykla2tr8fbbb8f5+XksLS3lfFXnjR93NgA6fpkf55uASusggaPb9GcYPOVvMYzMh94VSPdZDx8+zNvOyKYww4ODgwmi6aTFa6SH5innXgzmE6y9RARgU96WFFR/5+/xbeK3BGx3t+OXq1SDbGBrayu2t7fj1q1baWsAM122qUP8FZaWHZlgUXWmADsfrWLpv9UqsjPiM/hGjDiyyfvU2PW9fh57cDoyMpJlzOqQZQaGpzPgiEjHc3BwEM1mM/r7O9fZYagcVB3fY2Njuak2pc6Ji4jUewBFjBslX0tM2Fcbr1N0dHQ0h2ALgA6kwKnrt96es7y8nAJl0gAlHc0jGKvt7e28u97w5uHh4Rj70I/HeU9f9E90hk/PPv+JGJ2/FsPDw7HxL34tBmM7tr72xZj9+E/Grb/3f4q1r/1hjM8txK2P/1T0DgzG6ud+I50OZsg6YjgAKgxzxBVb+eDBgwSeyiHj4+OZoW1tbaXezd+v+hsHH1hQfsYaTE1Npa5WeQe4qh2YAL29FpDYVp3VWpnCra2t/GzZew1I5rG6WUUAuHbtWjqI2rmMgcGARXSGlLvuD0DEvGKnAJaenp5YWnr4zho3kkGzHhMTE3ke6ARp+jRB9PaOxtBQI0tpvb29eblCRKRemnOqDl9GPjw8HEtLS9mJWpv+rGk9B8PDw3Hv3r1oNptxeXmZTXmYIYyBkv7S0lJsbW1lI2TVhgKyWBrJ1vLycuolm81masdIIuooOu+jvK4pQuCPiBxPhJlj5xFXo+4qeFfhmZuby+/C0ABCnD6mcHR0NCUNEVe3eylpDw0NpVxEZzeZCTChBP32228nKHn48CKGh8+69Gp8FPBxenqawJrPow/WuCUQT01NpZ5eMxxwXIMdICRJxIADlvW2J4G2r68vbURDa9X+a3qszKnvZ5/WxVoDr/xQb29v6pUxX0Au5nJkZCSefPLJBD0RVxczsHHvqnpFnz44OJhjnpw1jWyA9tzcXDbBLC8vx8zMTN78pPJXgTDZEDsnoQKO+UaNnJeXlzE9PZ1ATHk6q2bvMHnNZrPr9iFJBp/D3iIifRD/CfxL2tmNvQfCKgPn/bDDQB4JHn2z5JOfr81NAK2EhG1hScUfz+hs1qYgGMJ/l9ReXFzkFBp+2XfBB963XjUbEYlB+AUE16PaVEmhfhPJ5dzcXEqGHjx4kKQG34tEwaZKvMfHx7MXIyJyLcgWPCNbRZzBDLSsbL2SDOycHMWUnjqf9l/189iDUyWVeusHTQ5nZ6Yo/VmjcXXbRqPRyDFRSnvKGdgV2RCdCs2owbto9oj4S40adDibm5sZ+DhdZataMqgZHjBZRz9ERNL/Mi1gpg7w5wgArcvLy7hx40aOWOHIlQrnf/Tnon9qPtd1/sM/mv++/Y0/jKHeRqz+9q/G6ca9GHv+h+PpX/j7EY1GHLz9Wtz51f9bnNx/LYEbXaNMXpatrI4pru9V/7GOHA+nrZRvgoF5a6QT1vDs7CwBriH1k5OTWRquGT6mEmDiwKvI3OGs+rfe3qur3SQ0tEMOsEwXk8TWZPY0T5OTk2lvSrHAztHRUZY8BdU6Q9TfN6HB9ZMd9qazbktLI3F8fCOf8/j4OF544YW8zWx9fT3eeOONZDwXFhbi5s2bMTz8udjeHu0S0J+cdG41qqPIZO+1JCmLb7fbOau2Mv8cmEBobf1TpR06mpW31tfX4969e3FwcBD379/PCgRgovJRm2acS2dOIqprXjKr6uC72+12JkfOpDIwNmh8fDzm5+fj4uIi1tbWUtMLrGD0AHPyE/bquZVDyQJoDyU6JgFohtIgMTDQuQXIzF03LTlzAK73Z6eAZy0/Yl3tozXE6kmU6zgswY6tSwjIOWik+WEJtvWowK0mOBERt27dihs3bqTMyXryWxGR8h2AVyLmM5W9+UrJ48XFRWqZVZYajUYm90DtwMBAJp9GwPnunZ2dZMhdAFNJBO8RcdUwFXHFNNcKCQDu/VXaqvSp6mSBTIkpYF+lJphhjHdEZHJKWwncYVKbzWba+/Xr11N7XX3r9vZ2Mvhi0aPjlCQ3ExMTeeYlOkidytT5XzIPTCYbNmOYv7G31o99WxuSCNpz55t8ThLHPoyQ48fEUsmoJOLw8LCr+crZcZ69KymXM1KrMkrrQJ+kAzao0z34IwC5NlPT32u6VE1TvfPfYCGEnbNNG86fiDH1eZEvlcxgx2Ij+zXF5vv5eezB6crKSjo/OlGCb+wYJ1/p6VpGjIgsjdROR9mfzFMjTbvdzrJuFSIDLYwbwwTwGB0hQ9c57znfeuutmJmZSfA7Pj6eV2tiVwUKP4xVdr67u5t6OFoaBmmElqyJuH5oaCje+m/+t+kcAa3Nzc1sECKA3v3q5+LOZ/+HzNYjIoYuL6PvnVFQyhgO3OHhYY6YqGVf8gXdmsqgb7zxRvT09MS1a9cyUD1a6vF+AJIDuLOzk+sL3FTGwRD1WrLw3bLow8PDePvtt2NgYCCWlpay3F73XxAUAIEPCQpx/tTUVJZTFhcXIyJyUP3Kykq0Wq1k4jgCyZAAy3FyEhhMDo6dCgBA2MXFRTx40I7Dw6FYWHglXnvtowl8Ly8v45vf/GZee7q6uhp37txJW+uMyGnF+PiDePnlT6auTZOH75FE+QG8BgYG8sKFzc3NnNVaWQ5nQlmarKTqmx4djVRnHWJl1tfXU8bg87FE9tM+OzsSVUGO1ll5rr+/P5aWlqK3t9PUdv/+/QQC7O/mzZup+axAFlspufH5Ozs7XZdIVMYY60hXJ2gIOMq4rnfVQKdqgP3wTgCcswwY82tu6LJetGoSInNGvZNqhsSSHVR/Wdkwz8xunXk6QqXw2kxTr35lV/ypphGNZFhMOtMHDx7kjXeaVPn7yjYCjaauYLLqWCV2PDTUmUe6ubmZ1ShSIglUbbQRB6yTxLTVaiWbBFxgN53TmZmZvKUOw+h56WOvXevIrcgMPINqjj0Ws0hZgEBJgz8nA/B3xUwSGkkSwsFP7W5Xrhbn6qgjZWf+yVrVM1ZlD8Ake0JI8PkAk/dwXmqVADCrWn1Jv++WDDunAGhtyGy1Wl3SOlUYvtesciCQ/QC+bLom2OIX/4mAqH9mfSWfbttzRuv1xxJOgJI/ICd03iWwkk3Ju4Q4ItIPewb7SLIlUWbjAKzkA8MtLvqc7/Xz2IPT9fX1dHio/ojI8m9lHPv7+xMgApFGR9WROlXQK2PXxMEwMIJAp0HpFxcXsbS0lBqYSofL0hqNRiwtLaUz9tyYIUFKaf673/1ulrl8361bt/LQAOeGwkdEZkuzs7P57ysrKxkE6vgU73d5eRk7Ozs51qK/vz//LCKS7lea0iyCDeM0e3s740e8PyF7LZn6bl2c9RYS5Qz/0Lc6jJgppcDFxcVkGiKiC3A2Gp1xUFiiqampWFhYSHZdKb+npyf1WPSp1dFjrxxA2SEN1O7ubmpLV1ZWYnJyskvLBajUEgyH6TaQOgtydXU191yWKugfHx8n06O0CWDUUk9PT0+89NKT8YEPvBqf+cxinJ0tZfmtv78/vv71r+ee1TV744034gd+4M/j7Kw3Xn75RtpKRGQJkAPs6enJkiJ2+ODgIMcOcXoaJJTPjDvDjHtuawUoRXTkIJubm7G7u5vANSLyvFpHicnMzExKcmoTHMCnEQ574FldWjA0NBTLy8sxMjKSl0Swt0cDvOZDVRZOe2ioc2uZpAYQlSxh3wTUCo49q/XY3NyM9fX1tDdnlW69TnTAvLBrunf6Mowd38hPRVyNyjG5wTuQo5AOVaADfPq7GLaIK4bFszoz7FYlod1u51Wk3q3KMayjZh3TMyQZEjv+uibAypvHx8ddmkmSH4l0nSqCMDA1gIaUjlnzI6BoTql9BGJoUe1nbRaVvPPn9sv69fZ2xvzYS9pqvsPvAGwSNGBKUuJ5xSagTNIsCZGc21tNPxGRibBytgSQH1VJkXCQZZCm1dnAehEirgbn8wEY2d3d3RgbG8vYVYE+NhSb6lw9qlE1eQDL7jlIeG7dupW2powuCafvrOVxTOXTTz8d4+Pjcf/+/bwGu16/2mg0UvokOaONpo8l9dJ8KfGkD2X7ZDHY2bt370ZfX19eDgSMLi4uZtJkhrSzKRn2Z/aoI9u6ipkwh9GY1sOen52dxdzcXPpM8QyQViVWUfl+fh57cKqU4I7zOgNveno6nQOgxfHJTCMiB+5qxNDJTouqA9j4mqGhoRSpb25uRkRkIED/0ykeHx/H6upqNhDIyGRLVdu2sLCQZfeLi4uYm5uLubm5eOutt6LZbCZQUs6QsXBS/f39yapMTExkwFSSq80I/f2dmXTmcerck7HWcsPe3l6ypzL72dnZHGlBP2udsFpnZ2fpGDHZdVg6vQ/AdnZ2lowV0FZHtwBxhvbv7OzE+vp6rK2t5TxQAcXzY6JkujSbgphAaT2VyCOuBi0DN5w/RlO3Ji0j9nxnZyevvcOKbm5udo3WwTAAfRKfu3fvpu1ubGzE7OxszM3NZWdqRCRbNzAwkGUmJeSIzq0m9HF3747HRz7ySnzqU3fjy18ezyTCmks4sGOHh4exsfGteP/734wXXliIo6OIoaGrDuy5ubncO810nsG6mQ1bL32QzNUy9+zsbDLC9qayb1gbY788g05XQM1cRdWD2nBgv8hBzs7OEtBj7dmBxkX2j+EwokhCAJjV0rgSsCRXOdH+aszCLNOUYdAAJokR8Ooczc3NJTuuyRCor9IX55w8CRtt5icJBE2wAfhYpWpHnt9n12YQa8vHAV0AmQQeQCRv4sOsO+ZKMLVXkmL7NzIykrpMduZZens70yd8roAuwfb/JcXAa2XZj48711cCM8qaEVdTKHp6etJGrXGtClnvWsrGNukzwBrztZLvpaWl9AF1TBYQwA5UiWr1Z2trK+bn53Oqy/Hx1YUBtMmeD2iTMKi+AJXsR6MoGc/29nasrq5mc9rTTz/dJWkCuIB0541mMiLS74nJVfMr1mAEZ2dnUyahWrGzs5M+Vjx0nvQgDA0NZWIL8KtkeSfJJeaevhVrPDU1FVNTU7lGEu9nn302fumXfinm5+fjzp078Zu/+Ztx9+7dLikAjbKk3TQGNlMrP9hI1aI6ngmgJkXg94HwauPOet0/xA7bFcf8nv2QwGv+9fsA/+joaI4NJEuR2Kja6muRfPIF3+vnsQen169fj4uLixwqHxFZ3mIUgqIDDqDKsm7evBmNRiPW19eTHVB2o3cz3BkIVVpX7hkeHs5bhiIiAd/5+XkGw9qNp3O8NiFsbGwkcJDxzs7OxvDwcJZHsa27u7uxubmZ4EgwrWLkCi7Pzs5yhIXSgXlkyp8av2jQNPEIqpXd47R05SoNMNiIq4YXYGbqnevvjL85OztLsIpx8rs0mRzbxMRENitUED81NRVvv/12tNvt7GzV/QlYKEkrnwommoKUiSp4rk0b2JaI6GpKUTqWBQuufX19WSYT+Gm+KmvHsZAnCHz0O4CjxCbiSkpQg66AJOBW7V2rdRRf/OKT8elP34nT05F49dXns/FHOY6j7mTMu/Ef/odvxtnZQHzta++Oi4sOS+OZMKxu4vL/AUOgUUIyNjaWJX0gEjgVTDRm7O/vZ8kMcMZWu2bw4cOHsbCwkOVIAds+VXmFoGnN5+bmuhwt3XltXlIR8P19fX2xuLiYDAN200xO7LzvF+wEPmcJs0WXurOzEzs7OzmNo5bF+Sv+x59JdGqlqOomlTN19Q8PDyc4lTwBnvfv38/kSNCqV3ZqyvG9x8fHKfMhobm4uEjWSHDHHkZcXfYArGKT2u12jhmSNGLezs7OotVqRbPZjPHx8bh161aCGPpmUgMJ8cOHDxNwKPXu7+/H9PR0Vjb4MT6lzh8G5tiAa4WxlLXZhr+UoNbEXHLivPu8+fn5riYXjDyGClPnrNPl0nj7HvbMD5EUsTUxTyyYnJzM3og6QaG/vz/7E2qTCwADjAHykvylpaUu31dBWZ08sLm52dVYJPEDYFTRjDv0eVNTU+lX6OExgWxTNcbakMYBWDMzMzE1NZUxjYxjYWEhb86ToEtE2Kq9BMLI5IaHh+OZZ56JT37yk3H79u3o7e2N97znPfHud7877t27l2zixcVF9gfwBb4PQaLaKe7Yv0rQ8HVmLiNcYAnVSPGAn+IzKhi1DhIGDLmEJSLS56gAaXYUQ529zc3NmHrnxrVK+qlCsr1/ozl950cmWnU+9dYlAbjq9zCVgvnTTz+dAmXjfSr97vdmZmZyI/0OcX0doQD8OsCVYenv78+yEOq+jrIA0ugbOUd6Sd8vY4yIDJYM/+LiIgEDQzo7O+saAVI1Jhq9BHyMbk9PT66lg4HFpKMDBKrOS+kSeHM7i1uE/MhozXhzAGtGXLUyvb29mRgonSn7yYybzWYeVsAFwLEWp6edK1sFBdmtgKXjFqAwf5JgXicvm8K8R0SOm8Kg0BkpUStvcU4CDmcyPj6e5auJiYkM+BV4YlsuLztX7pGqCAQALof3W781HJeX8/GTP/ntuHlzJ/7szxZjY2Mg+vr6MwA1Gnvx3ve+Hh/60BtxcdEXn/nMj8Tp6UBEXGSyQN+FAca09fb2ZnnP9Af2QitF2lFlHkrBkgP3dtfxRfv7+7G0tJQNUewuIhJEsiVlMdUBDpZ0AbAEsDwHBq7qy+g7gSDlQNIAQEtwf1QHrGTrvGNyjE7CDmNOyXJ6enpS6+y5xsfHs5HEvjebzWzQuXbtWt76dnJykg1ogjk2B/DhF7BYtOcHBwcxPT2dVQhMZQVm1q3q5JT/PCPWqMo2VJ4uLi7yMgGB1/r5bOeTz/Q9gjbWlV8aGRnJqgY5h+BeGVIJMoZPRUmiGxFpz3UcEV8KtNSkgQQA+OOH+GnPVvXZqjAaWqoWVoLCtwEAGGSMo0bICm6MPSRBqEw9Jq2ON2Kj9LNHR0eZIC8uLqb/GhwcjMXFxWi32wkaazc6RhkDqoTOPv1OBe8kSNZUp7jPrzIabOfc3FwmxGa/+vP+/v6sFpnEoYJ6cnIS29vbmaA5DxKGiMi4D6BqdOOfa7+EPawspHV23jQqGY/mnEhiXOfNV7CBk5OTmJmZyYRV8qvpSrLi/U3FAC7FstpcKpaxfYDZ2le7FEsiriYwSFAAXJNdIq5mw9POi93fz89jD07R2JW2lk3vvHPP6+joaCwsLGQQFZA5alosWkk0OT2QwEzwLMOJiOzsZMCCDpaMsdBWYlt2d3dzeoBs8YknnshSO2apGkrtcBTkHfqzs7PUwACEHNL09HRe+1fnRHJ6QC/mUEZbO+oBVuvldzEA169fzwNuTzgFjLHvx2I92kl9ft65uQvLJqMHSAn3OZa+vr6umzyq3qtqaE1EoE/kCMkOgGSXE9grTRecMH2yv1sF/bVLsXacC+reAwuhScNtP9hOLL2ZnkCF4fnKywIN8FIZMP/Lho6OjuOf//Pl2N+fix//8QfxK79yPzY2hmNtbSIuL/tjaqodN26sRUTEK68sxZe+9HycnY3HyMjVDWPn5+d51Sw7Pz4+TjYFI1WZErZSwSF2k1ZZxi8xE7QqKOH42bvJGsq7ApTpDRUMkBEAiuwAOMNiSCJOT0+zkx/DgLEE+iUvdObWWuAHJiVHY2NjWU5XmjTDF5NV7XFsbCybGPb29lJHi7n2HhJCgLXqmLFy3o02tqen09Dk+l++ytr7jIjI55OQAl78mu+yVsC1pKTuryTd55pVqflIUuez6x3wbsGrt3fxyUgATJKzxkaAMHuhuVLQB8wkD6enp7G5uZnaTwC7asZVUqpGtOrXa+UposMKIgb4SN/JxldXV+P8vDP+qDYRtdvtjBmjo6OZBLBXJIPflTR5ho2NjWi32+80OfZmAjH1zrXKFfBIEBAmZHKkFkC+NcUEj46OxsrKShcAldzxHypIlSDyPkYgKqN7Buyq2I4EkqTzRVh546/4QnG+yjjIw5BBPT09sbCwkL9X2VMkgJj4xS9+MfXor7/+eqyursbFRWfkJFkKO6wJlLW7vLzM2KpxkQSvr68vpqens6xfLxGRpNKB8oERV2Mx2V9EZK+Cd64No/wEBhtBoONfnPbM1mhqaipWV1ezQg2XkOQg0CIi+16+189jD063traSPeUAx8fHc8QG0BgRXSNhZDmo95mZmQRpp6enXWwH/ZySvmwHIOJoiJo53YirkSH1lipOUkbjGYFG2tWa9VfavTZNeBa3MXGiMmesW83cd3Z2Ynp6Osv4VZuJZRwcHMzDEnE1EB9tX1k0AbkymQC/7FOTGF2OgEjzwgljz6wvdgcYrI1MgmNtdqmzXQXOycnJmJiYSCYbuFcSxQ6wCRkuHRoGGQABwqw3bRHpB6AEwFU9ngOvJMsO2Koy+dLSUgYhf2Y9BMzx8fHs8MUKKh8B05OTk/HUU0/F0tJS7O72xj/7Zz2xuLgat269FOPjO9Hbux+XlyPx1a++P15++YnY2+tkvf39V531JAhYC80jAjB9pMSCfWL4PVvVQbFH7+U7amPcyUnnzmlVCfbhSkfSBIzS3NxczM/PZ2nYHnPIr776an4G5tq5VFkQHJSJBVV2S0fpdwRatinIk8xUZphO0DNV8AFs+D2J8NDQUJbTrZ3KjBKnMrWzjLUhI6gAUrCxl4IXHXnVByrnk18o4fE72EM+DaMTEQmSSHyWl5fjxo0byawqx0p6a9NGf39/XL9+PVqtVoIOgBEo5p9Js0hKvOvp6WlsbGwk2IuIrH4cHBzkVBT6XcluHR9YJRwRkdf01kaRCk6xWcC495KUYv2B+Eajkc2cNH+CPR8KaNZKFA1r/SGZqXq/wcHBroZWewKIGOkELE1PT6fMxFpIXqovRIxI0JxJNmdPJVd8uBgtqSK3kNA4N+Ip4Ew6gIH3bmwfKON35+bm0q84F2JTRGSjEl/qf+0J8GpMVbvdmSbxne98JzY2NlKGRLogPrPFR5Mu+/molIiNkXbR37IDSa+Yh8UX24BwTYGSH8mUqQSwxcbGRiYHsAebAn6x8L7DTZhIuNr74MzxJ3y/df5eP489OFW+EUh3d3czm464ajwSvDS+cDyo6hs3bsT+/n6sra1l91wV2MuqaLjqSAtOVcMOxnVubi6dARDJuddmK92LrVYrIiIzmzrrjEOSsQA9s7Oz6Tx6e3tzMDIwEBFdo6UABhltLT3v7OwkQ+cAYk6BBs0rbrbCom5sbKSwe2ZmJhnLiEhQymiBCc6kZoGAj0y2skH+LvaogjzOe2trK8G3A+uqVFrX4eHhWFhYiFarld9dS/10NkY9Ad51mgBnh3XQzb+6uppgEZDB7AB2GAt7x5HS02mUmJyczOtjsRVKrRsbG11sjoCAYaglvXql3OXlZayvX4+XXhrIgDAzMxOtVitarZVM7JQ7aX2BZPvje3V32mOSBexiu93p4PZdAJ4B2QB4bZgBfMlsAEV6rspASQ7ZqO8UmAF7ZVOMv4ZHg/BpUZVpBS8JrJFVmlZUNUZGRpLBxXYAm5WhsB51/JnfcaEGpkXVAkvEhywtLeV5Pj8/z8CCda83IgGhZ2dneYUnDaJ5kXxJ1YnWBGxkpHPnfAWGyubGNrEpoJitSNbtl+Y+v48htbcAZW3Yw1ZHRALt2lmtIRJ7D+BiI/0+aQaAA1g698482wAskQ1iCxaLH/RcdQ1qX4BkwnkAEn3W0dFR+irXUPNpRjGJURJqNqt7XvLj3GO6xTU+E7tYwYWKG328ZAfraPzV9vZ2gnp/zz64PEVSBjQhNlQu2SL7k9zwF6RANPU9PVfjroBh5/jsrDOfFRGyuLiY5AxCCQC2d9h/cQbRIuYBcGzSCDHTcEh67t27FycnJ/H000/Hhz70oTg87NxKJ5G1Rpona4VNnHVboP2pxIJ3dp53dnYylgOjfIj4KWZL5Gs8sDeSbnG0Jh1V/gN31CkT/KL9RZL4LtOO4AVjz77Xz2MPTpViBQEOmFZQ1sEglfOMXzF4f2NjI9bW1pIpwOxVLWV1bL6rjhiSITrYHJmMdGJiIod0+1xB8MGDB7GxsZGlKwZaAd7w8HBXsHSAR0ZG4ubNmxlI2u2rmZACEFahdtFyzIxYts6pHx8fx9NPPx2Dg4Nx9+7deOutt9Iolc0daEavs1IDVu3kBCSN+KCPBZxOT08TyPgzLAMQPzk5GW+//XZsbW1lIPG9DiS9DtahNuKYFVdLHG7RwMpILo6OOteJCtT+GxZZ6dLFDIbM0+EIiJyWJEFXaERkuY4+usougH6BwLP39HRmUW5tbWWFQAlUEmSPBaq33norS3DWU7YLFEVcXXQgCamlPHop2t1WqxVra2sxNTWVOreaVAgq5r1i1mhWp6amcsyX8+YssRN2wV4FeyyKc4KR29/fzzFe7M4YGM/vBiABnvwA8MSIYAHsfUSkzpA/UYbf3NzMfQJoarOLsr2Ewv7yUbS6kldsDFALMEnUSDacQcy2tWff7A0TK9A5CxFXI580oPFLKgJ8WWVF+ETAy9/BJtPsCaTWmi+KiJTr1BvzBGAVF8CRT5fIaAAS0PldkzxMIRFo+cFKBmg8iug01krW68gde2h9VYOA+dHR0QzsVaNbNfKaPJ0ztuMM0UvW4F8bUyXFGOqIqwSfjdtH7BXG1rWvVUYgVk5NTaXcoK+vMxNaMtTX15fyoVotqJrxiCsJE98D9NUkzT5GRO6zpBGZIxHhH5AXgLcKDuDlH/FGKVoCJFEDlJ1VPh9gE6OspQoAKY19U5WtGlCjEtkoHy0ZwAiLqSqvql3OkiQXKaCiuL29ndUDEgpn3X5qTsWkO/P231ogENis9eTzq13W5Na5xv4jDkjh2B/pHiz2/fw89uCUKDgiYmZmJq86EzCBSoxn1aoog2EvMKARV8N5OVtde4J/RHSNwVEiFGQfZcgcYuVfQdhBweYyOkHm+Pg4uxgxajQ9jEfZIyIyQCrVKNlXoMf51WHnzWYzZmdnY3Z2No6Pj3MMyNDQUFy7di2H8aL5lQAcTOyQDNbvOKR7e3sJCrG+AwMDeUOTcoQsXnDZ29tLkKLM2d/fnwGispj2szZM0YsCeXStQ0NDqe/kdOwNLREH5jPdJCYb59hl8cokfiQgyp/2s6enJxYXF5MdAaQ5uIhO4FxbW+vSkVaWRAJh0LXyJ4YkIlIT19PTk8kM4EMqwRnSRXpWjo2Wyv5KBgBbmmJMO7vwI4GYnJxMpu3o6CiTPKCVDpMd62qWbNQyM9DGOZuvp4zHYVp/70vqEHHF3kVEVzmZhlnSpwQPNAEagBjNMCbz+Pg47t2715UAYIRIYKosp55TWmPD5TFptN8kI0qQAAP7s74YZuvunCuR1kYXEzcAVJq5jY2NlLM4W0CLAEZnrDJV9X3WRPk1opNAsDNMp9JmT09P7qlz4iz5DKwYAFQlDpI8k0kETMyS4Nnf3x9TU1M50aWW5mkiAS3rArhUmRVZk0aW2pfQbreTaVLVA0QuLjqXTZDB8OdYNmdHBcDMXudSdQ2wJ9saHR1NIKpKIHmrcgBriiX2784D8EYWBoyMjnauWjbyrNFoJONPCqXfAilT5R+qbZp22D6QXnWeEZF6V3Zl7ZxTz0vyQR5WGx29F8C/u7ubybmqi6QAg6yaRgN9eXmZrLqY4iy9+eabmXQ6C2LIozF+b28viQRMrOe3DhJ6vuD4+Dh9AcKA7+L/nS3rIbaKu/aEXbbb7a7kjvwI+MUgIzvIGSULcAl9s98XJyVl38/PYw9OMU7GEMmSHQ6sDQ2aMgMHWEtInA8nd//+/RwdxICrg4q4ytDqSJnx8fHY3t6O+/fv52ZubGzEW2+9FRFXo2uOjo5ibW0tDWZ+fj4BquwWo/Ho38Ng1i5D2Sh9ZETkQcYCAhtE1mdnne5k9yUr19H5bW5uZqCdnJzMWzeUyrHLtWxfs/daMomIrvKBsraZobpPsYy0OKOjowmCAAXlF07YeymXAb91TJGAKoiMj4/HwsJCrK2tdb2nbmrjcYybkUEbgIyZ4fwXFhbScQCQmCNjTrBdMlushssPgBkszMzMTK6rzNmYIyOaMIpmjVaAKLhwIHUWqpKVoNjXdzXgWZKiSURTWXXOOsQPDzu3fQF2fX19eUWe542IBFVski5LFUODoMyesxsdHU0NL+a06tfqtbTuAKeHGhsbjfnFtZhbasRlnMbu1mk8uHsaOztXNyhVloputkoX7Du7xjz6u/X6TeANQFFaVJb0Gdgq+yRIRFwNV+/p6clmSTpadlDPvSZN+l5MZ9UHXlxcJEuMwXG2vMPExERMT0/HxUXntrq1tbX8DqAco1013xgViRfZDX8EpAIyVctcAx5pRQXTfAz7qT6bbUREXp4ASNakUvLpPayT+EB3LCkDAiSzlfUE4E0ssAZkGnTH+/v7WV0iRTL/UjmfT7+8vJq+4B2qTEfcOTk5yQRleXk598F+AqDWa2NjI/cYUSC+1fmsxtRVptLeGMHnXGruqlU3Z5qUSLKkmUrFCatXGyTFLfvpHfgsOnCVEP+dHxgeHo75+fmUmzSbzZR0PZqA0qjv7u7G4eFhXgCBiKgd/OKaOGttyFVqEuDvsXvvqdLg7wKr8IYEUy+JczI6OpqYxnW5bF8iXysY/r/kt14+oYLn/zvHfJV10qtBZlMbUtkD8KzCSovOv/Nd8/NX16D/q34ee3BaBfvmH3IwBPcRkSUgQUJ2eHp6mjP3lEEjOk5jc3MzdnZ2kvmsDMjU1FQ67oWFhSwvYM+AsXa7nWOBFhYW8haigYGBBHtYo+Hh4RgbG8uDiyVyYB1wxqcMSQ8kQ5NVA5gOBwetTIZ5qeViBw+DVQHg+fl5zM/Px+zsbF5WIHM7Pj6OlZWVGBsbi4WFhWQrPasZc/amdocKbkANh3bt2rXUtXgPzlKpDSPssAFHERHNZjOOjo66rs7s7+9Pzd7ExETqdJSzzs4690jv7e1l96GEBzh2mYIMuYrqlRR1jVZWjnMDKGdnZ5ONFdzZztTUVMzNzXWxCtV5R0Q6Eay0zBe4AtaVDb1H1bG5ecnfPzw8TJus7BxmgKOMuLpDGgttRihZSWWVgHn6OmAJI1q1cAJpxBVL0G638zY4ZVnazzfeeCMTKyxJxMP4yA+fxTNPfT5Gejvdo5fRE41oR/uyN97aeHf8xZfnYnfrVoKcqm9kL4KL8iMNsYoJIOAMDg4O5tWYa2trcXBwEJubm12SiohIkODMX15eJlNvUoNzwzbZUGWwaXE9C+AE4G9tbeUaz8/Px9HRUWxubsbZ2VksLCwk006mAogMDw/nsH7+knQCILQu/zKpiLF09lpQtmd8E3DAxyhnAsGTk5MJRiTVAI3KkUZX1Y/+/v68lEWSbL2AZSCQH3QuBFpzN/keQNW/Ay+agpRCAVP+st1up/6QLMOkEuQCRuv4+Lhr9mxdcwkpYL+3txcLCwsJbvVb0NiTkqiiWAtnzrzK2vhExsHO+Z2IyMsaaERV0IBm+4F9rmAOgTQ0NJSxVMJU2TfrKf5JBGZmZroqNkCWSodeDjZpnJsKJHB2eHiYvp8kBehiuxJkYM4/S0tLWZWVTKnwHR8fZ8c+oF6ZcmvB3iWwfX192Zi3u7ubEhmYhc0AvGKlmCy5lwBLdtmS9fccbEf8JINQpQSma38F0gfZAF+wWdUBVWQ+8Pv5eezBqTKyIbucDxBwedm5E3tiYiI2NzdTgwboKE0oKWJslOwI95XUOTBUvKYVxnV5eRkrKyvZ9SlgTE9PZ9aJ2q9OwWGq/7u1tZWyg0c1WRGRh7jdbmcg0ejhSj2fBwzTgmLEanbo4ACdyjKu5Ozp6Yknn3wyy63WkJPR6IEpGB4ejuXl5SyBnpx0LjjA1GG4pqamcq4edswzCEhDQ0OxsrKSwJnzADgFuwrst7e3s6wHQNKokQhwhsCCxiRMlmDPIej0FZArWww4AnFV+wc8PRrYHXTM0szMTEpMfJ+AC8DRRHGoVU+HIW21WjE6Opq3OFWxvZIMtl9TExmE7JvG2nxBTh2j4bkXFxeTbbh27Vp2729vb8fdu3ezfOoz+/v7UyelgUyy42pKonrAo9pYRGTJs91uZ8OGtZ+afxh/829/OQZ69mKj/+fja299KDbu9sX+3kH0j0b8wMcO4+kbvxO/+Df+MF5f/cH4488+k7ahZGU9sfwCjBE8yv6AXA0gnsMZsd/VZq09G19YWIi9vb28HMP8QsECmGdvgovmD4yhxA7QF3CqrlEAbDabWZWg5XOeq7Rjeno6GXXgDIPiFj7rIUCdnZ3l3zeuTROZxAlwUAau4ITGzdm0ZhHR9bue1VmlPcXcGd0zMTGR59ieih30zycnV+Of2FhNKI6OjmJ9fT3ZaJ/pbNaGJGV9DSOeX+BWiaL7xOh6RiP6Dg8PUyONPQcI9/f3kwVVXevr60uJGPkDfxHRSYrm5uZiaWkp2u12rsHU1FRKOAB2jKV3BHABMmujCqTUjKGmh+TTJQV8EB2maqHzXaVpEsTaJyB+qaZVcOYCBeCzyib6+/u7+k3Ixvi0amdVJ6sK4t0wxIgkmtmTk5OsfullwChX5pHUSZx46qmn8gIg55dUg3/h4/W51Gqhz2QX8I399F0kQJJRZ0zV2eguPoVfnp6ejsnJybQVcZtfE9Psu96K7/Xz2IPT2jELMFZa3Mw8Oiw/tEVK4DJKOi+lcI6G0xFgZBCu0bx//34eNKUd2TcDdWA5rYiOQ8VcAnuMFPPgGU5OTlJXJBi3Wq2cEuCZG41GBhTMpfeqoAjrGHE18kaZh6NRRrt27VoGVFo2jMPGxkb09fXlrFMlKWzizMxMRESyxlVfqfu7zjXVOXp2dhabm5uZsdOnaoKRJfsucofa6KCchiX19zggHbmcpgHS2GxAxSGnlQOyamYaEVm2Z4f0VrJcjItEQrYsSGNdKkjiXHp7exOICXQcobVZWFhINqGWY72DfcO0A7SCAZvUFAg0Rlx1dUvO/D3O7OLiIj760Y/Gxz/+8RgYGIjXXnstfuu3fiveeOONrnWo7xURyUIKsnU8j4TPcxnPgolxFmX1126142d/9g/jqPfp+O0/+tnY+NZr0dfzzWT/1nZ24tv/fDcGZp6On/+Pfj4+cO3/EZd/9Tg+/5nnYmxsPKUKGnWcd41K09PT2XCHqbAP/m5EZCPU+fl5ll3Z1ODgYF7G0NvbG9evX4+Pfexj0d/fHysrK/Hyyy/H66+/npp1a+TMLyws5Jpj9OyL8yS5FCyr3KQ2NlQ9n1F6wKHufEDkueeeS7kJjaOEECND9+ZGoMrUXFxcdN1qBwgJnLU58OTkJO7cuRMRneqNd2aHfI4myapFdK5IgIDPameAzPr6eupWHwUPmKPKwEm6gUigyDpERGqg7Z2qHfDpcz2PpM9ovzoRw94jF9gXHaSGQgmDy0ywcltbW3lOIyLtTxkaS++dNcQBofyWuZxYbDIGZJCGJOdabCRFU23ATEuG+GkD9MVtEgSNpi5u4AeRKN5LXLVvEVc3JNJTkjy4mlRDU+3DoAOua8o+/TjvU1NTMT8/n3Kb7e3tGBrqXG1uLdgJ8Feb3hAinm1rayvjvXK831U5kWywR+dKmR22cf74frIBCS0GeGBgICsEzWYz7ty5k/KbmZmZTMBJOSIi/Rzii8wN0fbomLP/qZ/HHpy++93vzg03dBkLavFkNzaKwZrRpgRC1E0LWo3VRkZEllto9Ghap6amuhqVIqLrsHNQyhCAkWeszk6XHKervKv0+uhBVG7DVsgSvY9DqSw+ONjpMq/3tzuIVaOF9TIfkl6HQcveIiIDhbVuNBqZoQoQrVYrSzURkQ7HlXfz8/PJ0gHqnL7SEhbz+Pg4Qe7Z2Vnq5gBPAVzJWrnz4uIiy2T2j9MEgun6OD/OgRPv6ekMbz44OIhms5ljyu7fv58AXpkds1T1zuQF2KTx8fEEBwITxqLRaKTODvh3I9O1a9cSkFvvWvquUwM4W04NYGRLdQSLWYEYCL9T9wywYZuNRiOuX7+e4PKJJ57IsmFlnTFDAhFNnCa3KvWoAXp8fDwDC2YcmzI7OxtHR/vxc7/4jTjufSL+u3/wdNz7zmeir69z/ei1a9eSVZqbm4v9/b34o199OS7/F/9ZfPj6/zm2fuR6fOvP+hIgsymAxExIkwAODg4S+FcNpQYEAVaih5myL67/nJ+fj09/+tPx6U9/Ohv9/sk/+Sd5dzi7BhJpqYHIiMjvNc1D4OMDzfEks1EpkVxZa3vrz9generExETXhAMMsWYZVYf+/v4cjWQckkRWkl8rTXwfSRTGUDD0e8B6s9lMeYURV7XRi78FZKwBYM1vRUTuCx95+/btBCpV2uHflcMRDCpRERGbm5vpm5eWljIBAEQlhwgJREbtD5C4iR+aFdnX0tJSJtf1ubDsNP3sVWUKoDM9AFjh8yXVfBXQbO9rMoQgEXsiIsER6QKQVacBVK2wxJL9VEDKv6g+Il4wimdnZ9k/4YfMClA8PDyMpaWlHBXHPiS1nrOWoeGBmhxU6Yi9HR0djRs3bsSnP/3peNe73hWvvfZa/KN/9I9yzzC/jUYjq58R0dW8VHXIiCFJjkqChBoRUGUS/g6tNra0ngm9L7TcfHEdg2ktVBsRaHXaAGmJc2iyiIqOxt52u51d/t/Pz2MPTonnHzx4kIHeQjEWtyXp+gVKlGwd2sqsKhsuLi5mk0XE1W01mFrBHYNK81MFy9iXVquVzyDonJ6extzcXGrxqvZsZmYmjo6O/lJGTsu2sLAQEVdjlJaXl2NpaSnm5+djcnIyXn/99dSe0HMKWpg1gYQhAq8jIyM5wFqZUcmR0NxBwdTJrr27hhpgioaolh4qYAeojVgRMJQ/laWV8O0bx0c3AwivrKzE8XHnFiOjtdhFo9FIZkCyQr8sq8YcelaA3d6wPTolDhvzzlbogpRDrHVEt1ZRkFba4STcWGXkFeajltbn5+cTsGxtbXWVurC1l5eXsbGx0SVfEWAwKpwiCYuxZ2QXghbbVpqUBHgmLAxAwMFKAGtJljzCvpK7ABsRkQwWAM7xHh0d5XWb7/1kT4w0HsRn/uTnY+feN1KYLxg4t+yw3W7Hm59rxY2/+fPx/ve8EN/440+kLdTkDiPB3gUJtkJTKMlVWRBEMbGufDUGTBPZc889lzZCG7q0tBTj4+N/Scs6NTWV4JR8wu8sLi6mxEgiouvZ+gOBfNzKykpEdECQLvKbN28mc6xcKRA6nyoMl5eXXbph718DFDsjDzk7O4t79+7le9Vm0q2trSwfRkQ2NOoHGBoairm5uSQVACnnBtje2NhIxhewpRHkv5SIld7th4kK2F2VDEkg0EtzrrGIPxkeHs4JK5jLR5Mbn+vvqNJI+tiWZNs5txcRkfp4YAX7eHp6dcsZ4Ay4kruJRcbaqaCQUSmNR3RA8+zsbLRarVhfX492+2q0HsIHUYKZ5/+dfdIYJInGvVqxrGcLi315eZlTKKrchn+UiER0qhUjIyMZCyQyEVeN06RldLyaGTHOWOfqM2sSxTe6XQ0gk6CJrf47310rbNahVpM0lVYpTNX8SmbglNo0az730tJSF2srmbQuda1UUTDXply4YlwvgUqImCbBrDYogYmIrt6B7/Xz2INT5XpMk7FIo6Ojsby8nGwERkn3K5BmYzlZ2rCbN2+mATnghPyu3ms2m3lAlIYE/YjIRgtlAd/DKLBvFbxoYmi1WrG/vx83btyImZmZ2NzcTMZpe3s7vwNgxXIJQLu7u8n81C52oNR3yeD891rK7+npSbBKq2u+KI2TYF6bBTCDVXOrDOHw1iamiCuAbfqBwfaalZrNZh6oiMj3JLXgXAVijmxoaCgWFxcjIlL4zTFFRDavsAl6UqXiqm9zJS726tvf/nZqBrGvwHM9oM1mM/eilojdUYwB8cwHBwc555Gj6+m5mkOpzEnLpwGu3r3OyQ4MDKQGUNMfhlLiZQ4oQMJGd3d3s8mPU7O2AwMDWZHQPDE6Ohpf/epXs9z70ksvZQmKg6xBGHuxvr6e/05f5qf+OwaZrWmWEbA/9vGV2Gl8NF754zsJYjTH/PRP/3TMz8/H5uZm/NEf/VG8/fbbnTO8sREvfvuZ+Mn3/FY898EfjNe+1X2ntXKc7xCkJEUY4LGxsWSLVAokXJy631VOd46+9KUvxfDwcJZht7a2skGSFrbKG9gJZpGEBBgWGDFedL2Tk5NdUhR7JinGDPkemk1nDsDhew4ODuLevXupMcP4YKoAJeul1CsQ0p4ODg4mwGPn2H9zK9fW1uLo6Chu3bqVPpXmkcxA8nR6eto1rL1WspRG6yxr5wuJMT09HYODgykhYQPWWCImmXrw4EFXNQJoxkRVdpB/q3pjayQRl6Q4N2xexejo6CirNqoc/IeK4MjISMqonCvECPaSPfvxXWdnZxm7KoNe9dUR0ZXkVj9eK4xst84sdoWvtaqSqQrqKhirJAZQxoYxq6aq2FcymGonntG7kN4AgaoOVXMq0cMwPnz4MFZXV+PLX/5yvPjii/HgwYNsPIQryGqcPzaq36Q2RtkD34EYkBwo+0vC+HE2473JG8U6E3i8izNQpX7O/f7+fhJkqi9VcoLMkQyybxUV7K3P/X5+Hntw6qC4kcJIDtkYsIBl4aQvLi6SRaplSYChLvDR0VEaFp3jzs5OHhpAQMaBiqe3YZwjIyOZ0To0Sm7ADJBIpuD9AEZOFRvJeXCCxjfRRWHC+vr6YmNjI8EMR4apOjk5yUPiMBuxNDg4GHNzcxkUrYEygjWspUYMmuwZA+B3OU2GLuhp/BCcgD4Z2/j4eOplASRADuOl5E9UDjwpR2GIBS4OVkCXvQO+EZEOG/Dq7e1NsOhu5iq8x5pyflUSUJsuOHvNMFgLNvLw4cMc0QQkzc7Opg2zGzZDAiLR8i5nZ2fZUX///v0ciI6x9T7OiAA8NzeXyVMNyrrXj46OsqP75KQzy/C1117LMSvYbiUgTXaAvBuwlPyUqCMiAbM9IHnAtALivb29MTk/FPP9X48/v/vvx9jYXrJkzzzzTPzKr/xKPP/886nPmp+fj1/91V/N2a/f+Oyr8cn3PxdPvqcZr35zMe1LADBeDRDGLvk80xIkPrURgoRlc3Mz7dSeOzNf/epX44033oibN2/G9vZ2rK+vd4EoQauy8wB+fR4lOKVndmdd+TmfpUTrOcge3nzzzWSgNLGpSihVV3sDDiSibDUiMgjzBRGR/kmSD/ALtuQb/CnAcH5+/pd0eZIISRVmrCbU5F3svTaCSnKXl5dja2srgZ0kAvkgAcd8VY1nBT4AgLFFWHqJlZmlEgNrU9lLn1vXrALDiYmJuHXrVjKDKnvOO4CKYOjt7c15thJp+8BPIWKQBDVG6E3AivJNYilNJeKGHGltbS0rWcCpeIn5q3poIFXVSkUIc65ace/evbT/mZmZvHJV/OerPC9frlKqtC95qrpT3+VaZmfj8PAw381kGoSRxHN0dDRZcWtPQqO8TrLEX0oSAE4JhTgMvFbJH+AtuRGvYQIMqekNmGd7V2Oac0E6onpAugMs154UFTYNVmRskvBKKPyrfh57cPrgwYNksnp6enJzldl3d3fj5s2bMTMzE+vr66m3ACIepc8FakwFJ0d3wgEqz/X398fy8nLMzs6mIzSYG+vGsAQIWSj9ofKWTPHGjRtZJltZWUlqHhNz69atZFCVpSMiA2bt9MXkHB4exsrKSlxeXsa1a9dynIn3lPEaZcJhGUEU0Qk0buQ6Pz+Pzc3NPKBLS0vJCNbs1vtx5jJITUF0WAL/ozMAq0he5iozBfCrdknwqVo2jgJLA4Q76NbPYQQq/DvGGVsmQeBwDw8Psxzy8OHD2Nvby6DE8VmXwcHBmJ6ejo2NjQRhJycnCUwx+9hd9kySYeKD5MB+yfJrJz/mTCDAtNAiCphYV6O3ZOFG+Uie2DuHDZzSZxlyfXx8HOvr67G5uRmTk5PZzEDa4uyxUYHC+VOKM3NUKRagMPsPGD4+Po6FZ65HRMTqnasxNsPDw/HUU0/Fc889l+vT29sbTz75ZF7LODk5Gf17e7F/di2GBq+0U5LVOloIUBLQ9vb2cgKIygy5gA54gcFZdNYE/jqb8Otf/3qWn4EWMhmNMKQldQxRxFW5EGCs1Y+IyOpIHTouKWUHBwcHGQhrN2673U45iaTTO9WZyTqHe3p6YnNzM/0TsA48AEL8Lh2s56Ett1YAFOZWsNR05M+rNlrTp+TWvvDzQEJlESV8j0pTBgc7EykEe+dWcjo5ORnXr19PDX8dt4PRs/dAqV6AOp2lgipxBsulJF+bOp2jw8PDWF9fj8nJyRyD19/f/5fmTQJDkij+oTYgVs3jyspK7g3Ntn0G0tiv+IMYEiudJ+cZIaJpWMm/MvrOXJU68TEqP6enpylFogWuMg927f/z9z09PSllANSdhdPT09xbdqL5p/pKfkeiziZOT09zbRALY2NjuXZu9IMvjDHEzF9eXuZtVwAmv49ksl6qMM6h5FDsFRNqvERIqDiyS4l81aKrWPDv4pmEioRPnO/v74/r16/H+fl5xu/v9fPYg1M6N05XABNwdZEBJsafEHArSQEi1QEai9DT05NsqixQxg9UCeDKyhymQ6ScjXaX7Tx48CBL7hgIgavqZjm7iMiSpf+2ubmZwcphwpoyRCAZaKslisHBwa7bkNbW1vKOdeN6GOL8/HyWtxgypsnaKCMrTdaux6Ojo5yRhwXAzGBzONyTk5N0aLVDEzuj3GWkh+5na43RoA1yKUJPT08ePkGPs5RNapRQKuUo6EFrEuOAzs3NJbiIiPy7bM9/03Tie2m3ZPnGUCl/SrqqJgwYx2LWUs/FxUVKPSKiSyuK8ZLEmHZQbR4763Pb7XaCZI4Xk8Im2XREdJVrsRATExM5pqjKPQREAQLrjGXFIKpOuI0GqMFqnF50nuPk8DBOTztgamFhIRvv6g/wh5nt6+uLaF9Go7cnz66yvD3DUlxcXMTa2lp+FskOTeL09HTORz4+Po75+flkqjBudf339vbyXNi/ZrOZpdiaKDq/2DBJFlapJs6qN8AA5kjSg4WpYNVZNf5HUmAUnkTefd8Rkc0X2DOJvKqBc0+nioFypp15+9/b25saePIe0oOIiKWlpbi8vIwHDx6k1ts5rvpJDI6B7J7LGiMJxIHaPW1t6O0uLi6yokbvyG4lUrdu3Upw77srE1mTf6VrQLSSI2INn2VPkQhsAmAg7ZE0Ybb5MOX9np6eLj8uoTg8PMxkgP7V/gKHKmXONzatJrLOrOerkpjayNff359NjdYdCUHqhghygx+QbI5yrVqQv5m8Yx3Fk/q7/DJQxg/xZ5hHRJf1Um2sfhRZUXsE+ELfKVHq7e3NaROIGDpV0qk60QLw11yt4mcf+FgJltjr9zxDTZQ9O/8h/sE8SCKSGTptzYH2hb+r7+nvSDCcye/189iDUzpTukZZW9VMuBOes8QIObiyb5kYJyw7UJp2mBmnw8+YBF/z3cbGxnI4rzJEBXACvDKJzHZ3dzezFJpIDszhGRwczOH/nO/k5GR+x9HRUQZf7+D6NEYl21OuePPNN7sCB+CnQYBxcsC9vb15TSznQ+Mo+JMtWK+BgYFYX1+PiKuyhduOGo1GBpzT086IKg6ZcxCUOROssvmgAgNQp4w0OTkZrVYr7t27l85UpikQAq7W2hWOQErVtW5tbSUAo1HVVa0U6xBzTG6+Wly8Kh1be8CFM8KajI6Opma22WxmkwQbrYkTsGI0TNXMSgYwuK6RxPBpCtAY4JKJOqCcvWMKIyKBtDM4PDycGlbs/ODgYGxtbUWz2YyRkZGYm5tLsAB06dBeXFzM58SWYt6wv4DM2VlnrNLs7Gy0Tzrgf3ruIjaHhhO437t3L1588cV4//vfn6DlhRdeSE0ioDHcux7bR8tpC2yT82f7mpnsqekVgIzbXg4PD6PZbKY+vLKNGrOcTb6FU6fhctYnJiYyqQVEPYvkWNCozSHu5Y6I1HljM6enp7OLm30bMxbRCeA6nflZe161zMPDwzE3N5frUhMowY4tsxdnDrs9PT2d97pjvzTKmJFManJ8fJzzgrGn/HFt8hOM5+fn0158Z50v/Kh8xrMDSBGRQLLew14v0Dg87FyhqcyJdQXs+CyVuKotBDIkK6peJEs1UZMYAc8qRd5pc3Mz9vf3Y2xsrGu4P3YWqVC75iOuJGOmx0gujEoCUGpFR9IRESmj8Hf5AXtpPZESZsWSI1ifysIDdhh9YG98fDyeeeaZ/D1SJLI2kjBxVULJnvhWlQZYARi3zt6LTakoWAt+W9LhLNFV+xxxHVFCb+sMk+JgZBuNRiwtLaX0TCwE3lUeMbDYaj6YTz07O0t5GJICKN/Y2Ihmsxn7+/vZPG3PPef6+npsbW1l0xzfqUEWAVHjo6QbEfO9fh57cKqj++ysMxN0cHAwb4Hg+GRpQObFRef6N9oKOjAaUeVvwNMsOAGb8Ff2Xcee1HFOnIuO5q2trXzmOsyZwwI0MVVmFGIwvAcGBR3PWQIbMjDlfB2D8/PzXWwGB+cAAtFYg62trZQfCKqYAA0pldoXSJV5Iq5u8OKkaG8xOpykjBKgAgaazWYGJolFRHQ5Uxlbo9FIZ4Qd85kc08rKSqyvr8fAwEB2NsvcOV6TCSIixf11CDnNknIYB3J+fp5MNPsTyLHrng1DDog5/BVE6kI3SN97R1xp25RRSVSUcq111W9xKlWHZM8iOizY7du3E2CrHJyfn+dFFrJxlQksvz/DvglEQGhlsh7V9EVEgvw6NUPQAoKOj49jbW0tg54EbHh4OPbWD2K392Px/A88iLvfel+Ci6Ojo/i93/u9ePHFF+OJJ56Is7Oz+NrXvpbv2G6348bTjZhovBJfeeOTMTFxmGVGIB4jZw/ZrYqMvZAEVhZV8JQgSTSAjke1fJKEykhERFczR/U31psmW3mcDQj+VVvONwE99ifiigkGiOs5cwaULnUQC6qeUSOXBLeW5tmsQKgvwCg7YMtzCnQSbkmMZoyIq2tGa/lVILY35FnVh5AusEs3BUr0JGd1GgnQYR3YK8BIWmBvSYxqZc+a8GmahKpEAyBWBeN7a5zAFkpIAEDvdHp6moDbu4hRfl/yUKU/NL38jbWuTD6Q5lxI0iprhtnd2dmJ8fHxmJ+fj97e3pzNOj09HdPT07nfyuYqKcrFt27dShlXb29vjmMD6muzIuBN3lAlYWw5IvJacownwF2lB5ubm9HX15djwZz7CuyV9knSJI8IL34M085+yB0krth1VQ5VjToSsO4TEqkmpb7T+qmumWvNPmuyzPatD9KMdIiWmU9SBXZhggsVaK/rNczf6+exB6dVrwIMAmq0f5OTk1nypvW5d+/eX8o8LTBwQv8J4Pj7HCtGBeslIHHYtQmEVqZeRyiA1K50GRonzKgFb2VV5ZeIyDLYxsZG7O7uppaPM1U+B6gdZPenG2h98+bNpPCtW09P50pTs82azWasrKxkpzcmFiuAtVCO1VQTEV2sHe2gbAz7C6xgrmtZgaME/mTLGMx6MB1U4OHg4CD1Vdjl8fHx2N3dTb2nocMACBbm7OwsgWhfX1/qQunAsGY9PT0xPz+fINSa1/vE/S6nGhGZ7Gg6E1xJFyIiGXl3TGN1JVDWjDQk4mpuoiCCkaprdHJykrMBBR72SXsLiCsBCcDAv98ZHBzMyxR8N/bcWiwuLub7A+KcKA0YaYckxbP5PsCeNIbc4I21H44Pz/+XceP283G4N5raNM0IDx48yNLl4OBgzM7Oxv7+fnz4h9fjuGc5Xv7jvRgfHs1y7Pl55573Wl5kR4CYxpRHtePOpets/X832GxsbORzYFgEY+eg0ehcgbq9vZ3lYBUVZ0w1YWFhIX0ZPwU4eddaaQA0BSZXmvJFdf5mRCTLw6/5wRjywYKv4A1USHz5B6V+DSTYL4Cr6kUxWXTKZr4ODg4my7i1tRVra2txfHycw9/5DHsuSZW4nJ+fJ0ixrpi0iI58ipyFFAzYxGpJKLwTEmNgYCATOefGf9/Z2UmyRFm7aurZ0sXFRcrOML2SkcrOAkwSQdpvTahAaI1B9odNSKo8U19f5yrPjY2NTFY0Hs3MzMTDhw/jwYMHqTEVn1Q2JAlsQcNd1fc3Go0s1a+urqa0TUXT+05PT8fR0VEymUA2dhZbrUGKzXvnSlrwlTXpQ/KIzWzVyCtJKd/E1/FXlbm0Bp59cXExtre3cwau50I4VZIBwJXks2Hg1Vm1/xGR68/PY/sRLsfHx6lP3d3dzfnd8A4iSR+O8WiSS9UWEkFJ+dLSUhcOkkh7vu/n57EHpxb15OQk7t+/H4uLiwkwZTFV80VQzhFyLJyO7mRZNZZGaVOmhCkAFGUMgCAHqKQg29AxOTIyEhsbG6kHYSyAF8E6B+t7KygQwJWlgBAl1ojIMTeycfoygIJTGxoaysxOQCH21o1dM3Tvgz3SJEP3KRsF+FZXV7N04mApPaytrcX8/HyONdra2oqpqakUWJuz2m63sxkJc3B0dJTZJQDYaDTy4GEalGpnZmZicnIyy36YiQo+leu2t7dzzwBq2XPVAsuCLy8v8+9aBwccMOVYHOaTk5PUogEq1a7IRWTMGtLsxeLiYoIbQEUGS2qhRGR/XSwBgNZmltXV1QQDAljV+O7u7iaoBWKBLxpvUxV8Bk0Xx+czK3toALaZnUAOQGAeIQBubWkAz8/P4+U/OYv3/dJSfOLHXojf/c2P5dnSqEBjS/JweXkZT7znOG6OfzG+0/zbcXm2F33jV5MY6LPv3r2bQUJwcT5nZ2cTwLRarWwAEpDp/WZmZnLCAX8kWQI0Td8AtiVvAOrJyUmyr/aizmrGkLMrSY5rDJ17ZXWArQaTvr6+DL7sAMC7f/9++idBXcWiziP1d/gUPqw2qrBZer1awsQCey5JOoafnzT5pMp0VJuAiMpQanL0bioJ2MXKGgH+bM34NedTRavqSDGaPT09MTExkQkyv+F9aDB938DAQFy/fr2L/bNec3NzMT4+nqBD4ilxxnBVvbN3s6YjIyM54UNvATtVkfP89t8702ny2RhkIJT/0Knu3LNvYA1A4w8jOjPKJXT8cbPZzERHL4GpOj09Pfm7GjRdr3l4eBhbW1tdjT58CztXjTg7O0s2F/tOK3l2dpYyHZ9BKoCBBvj5ROffM4pBJDsSGOfRhIN6JSoihhxJhZPkQDJGu02Pyi4kbprHnPHV1dWMT9PT08l0+jz26H+9g9/zHrTiSBmz3GETsSAi/o3m1I8ssbIOhlBPTk7G+Ph4tFqtPEScqazCweaoGDMQUjtnI66yNRsXEV2i74jIW5xkgpptBHuzA5UwaFEGBgZifn4+HYZNVrJSllNqBE5dt+mgYVCUqYmje3t7s5t8fHy8Sw92fn6e7Ci2FHvcaDQyg5+bm0sWjP5Elqc07TM4aWvFufT398fm5mYmBMCtEpDfW1paiuHh4VhfX08ZBEd4enoaN27cyC5HGWcdqyMoOkBAR3VCQIA1kz0CMjJkzChphpuwBGnrXJukOISjo86NYwaJ617nHHTYm2JwdHSUN2bJ5g319p32H/jEPleJAObi8PDqLmVJVe1cjbiSL7AjZ8g+CqRAm9KywfK1DGu9OXxrUYM4UBnRcay1+UYpf2RkJAEJTWLE1Q0s9nhgYKDD8Kyuxh++7+/Hp5/9z+PHf/YyfvP/ezsGBqZjdXU15SGA4eHhYTz3wbP48R/6Ymz1/Fh843Mj0dt70CUTarc7zYbNZjP3LKITqDWQYesxUIK+4K4Eh0lyDgQfe4JVAmIqq+q/YTMirlg9Noft4t/q2CDsiquUzaadnZ2Nvb29WFtbi7m5uVhYWMg11gQ4MzMT5+fn0Ww2Y29vL5NerKC9PTs7y/cUHNmS2aaAD5YOyMCKk+/wCfw6tpWcBpiS2PFt9NkHBwfZ1IPJqU1+qgi1efH8/DxnZKt2aHybn59PhhdgUapnyxMTE7G5udll46Y7YEE1eGlgUVb2D2nD5uZmMsCGqtcmLNWciCuJhFjlGbFu+guOj48TRFUf1dPTk+9IElK1t/ycP6uNelXbT7/Ld+t+x/Y1m82uRivVH+eDHElSbnybi23EFLbA1kl/sN7ivOojH4cdBRhXV1djfn4+myYlnpIv8c25YzdkOmKatSSHQ2SRVdEI17F44ozzQn6gs1/CSivteeAOgFel0mdWf1J13REdHfvCwkJcXnYuYLDOpGCNxtV111UqUn2y7yYtkqxVuZ849v38PPbglCiZ88VaMYDp6ekYGBhI9ikiuu7UHR4ejoWFhTReYxo4AwfSeAUGUnUi2DMg8t69e8nKAYGcUUR0lTGrBgnwNUC/ZiVKSEotGhqUwQEqrIOyWB2hImjKioBpGkDsHOPGclSBsz+rgvWLi4vY2tqKs7Oz1PL5HWupTKhkUD9HBt9qteL09DQWFxfT2Sq3AQf0TxzfrVu3cratQ2NN7OfgYOd2HVIPjC9ZRu1q5xD6+vri9u3b0Wq1One2X7sWl5eXGbzsnWABJGCyNS84rMp1MzMzcePGjXjqqadifn4+vv3tb8e3v/3t1FU+yvRyiABRBfkYAP+tsuo+qw7glwwp7Sq7n5+fd7FlVTbiTEmgXJ7AnnSjY/Y8V6vVyiBnrAwGVsMAdg2LFHE1uLuCb8COHVamxd4Bk3/0338x2v/u/zp+8tn/Nv7+f/h2vPrW++LLXxiKRmPsHaC8GzefWokPf2IjFsdejo2efyv+2a/djMt3Erx2++pKSWVOmknBy/oDqxjEiYmJ2N/fj1arlcFCUFA+k5T09vbG9vZ2BtAql3DOJXzLy8sJRDG3mFa/o4znzAo6/IIksVY3BFDsDxuu7GhEZGKjugEM0JEr8wJUJApYJsFVcGaPdawen2TN+ASJlec2vgno0/nNV0qo7A1ZkUDOP0q4atMVWzfurE4S8ZmAtzODwWMPElBrVxvd2DGGDMtXpUtYKqy1sweQaYQExDDle3t7WQrH1Po9CYfKGU2p5JAPVHWUYNQKjfexVmzAf68SqsrAWWNAk48wOB65pIqgwqf6QxJCVkSWVM+i6pr1tsZitHe5uLjIz5TkYJKtmx/Anr15d4y9JAMLWv2SCl5tPOarVJHYkzWuEzdMCEIs+Hd2c+3atfx+Eh9Ng1X/SuLIh4mdWH2+s1bnSErMHVcVIdOrkgJ7LXaJiWz3e/089uBU2d3Adizm1NRU7O/vx8rKSgrzaUpraVGpt9Vq5WgXLF0dNyJLp4ECLtHu9K2McXh4OEuUypF+zxV2DL2WKWVKdK/YTM5bV6BARd8DjGAsIjrsnvmrnJ9r/wRUJUpsirI0gCBA9Pb2Ztl1c3MzZmdn89Bo0hL8HHLrDvAa+RER2XHrYAElAnVExMbGRurgBLBa0tBwhDXBpkREMlH2sNVqJSjY2trKodTXrl3L7BuL4v8PDFxd9ejg1vKPzFS5gwPBop+fd7oeb9++ndeLKgX/zM/8TNy+fTtGR0fj/v37sbq62qVzJeGQrWL0OP3R0dFYXV1NPaL10WCgXEpPuLa2lomAfW2329kEwsnXUiSdNadEPO+93Z8OINPiCqYa+JS86i07EZHNQIAUxyZR4xy9Ry1tYq8EL8Bib28v/uBXvxhbP/O/jE/+2F4898xvxPuf2oqzy/G4uByI/sbD6G2cxm7/p+Ivtv6zePGzrThubUbE1Q0tvs8719m+JAHKcJI0waEybgKXP8dgmuZAY6yxTECuGnfzRZV2JcxnZ52rBn2+5JfEQrKp3CdhcJb5nJGRzjXF9IlsXXCtHeT2Q8mYj1RlYKf9/f15pWvtfgZegDprAlg4nwI8KUjVsAqk1rTqdclhJPk0pm7G2tnZSbAukDqngrnPPT8/j/n5+QQa9tpa1sakVqvVlbCrFvBRCBSMF7BomgGA5/mHhoYymVG9koTwkeILYK6KRW9rr3w2v3j9+vWcrSlZwMQ+fPgwNaDe0Q/5lCqTIe1A6vT0dGr4+XsVMf7BHo+OjuacYeAHCVQrkkZeYSYlYeRcZC3OUG3iwjQCWWxPRdL0C2SUGC0RjYhkHcXFRqORSWBlvyU97J2P6u/vzP60/3TeEm5+zj4Y1+XvqhrUpEVjJZ+JoZaMeA9+QrLB7sVEZ4d8BqYQR9kpGSR/DadI6rDS/AI53/fz868FOLVQrVYrr1tkTNXQgSgbG3E1AL3ZbOY4FJ3GSg4MEMiLuGIQq7EDEDqXa/OCv08L2Gg04v79+1lScyPIzs5OzgeldaFDARzMR9vY2Mj3V97SBNLT05OssaAbEVkmoXvlbOs8UuVk3dq7u7tZnl5dXU1WDyDAsAFJxnsJMrW0RFen/FuF8wKkddfYcf369QTutGGAAyZP8G6327G2tpZ7CEy5dSci8l7voaGhWF5ejrm5uQxw2HDBe2pqKm2JVGNubi7Xo9VqpUMbHx+Pa9euxdjYWDoVjJIyNwfjCjyJVC2T7O7uxtLS0l/KRAEYQbXOkcUiTU5O5u1lEhK2KfBHRL4bFoPzAjgiIh075stYGdILAUiABewuLi4ykLJHyc3p6Wncu3cvz6GkBihzM1DE1Q0mgKiEIeLq3u7aaEIvOz8/HwfffRCffek8hm79/Xj/Dw/FxNh+9DTO4vioP+68NhRv/ukbMTv+oJMMvKPTplMUPEZGRrpYXuwmfS8NetVnskXPhQlyaQb2mpMn78FARETO9FS6879+qubXWVSpcd4w5nW2qS53CQLd3OzsbJ4fwa6yi8qsEiUMj0oFdhIL39PTk0HcuTJf2vzXiYmJuLi4yItR6gxN1Qtnho2oOGHU+UgVF2OCfD8gyxfVSQpYfPq72iD0aOywFuKF4M0WMaaXl5cpAXArILBIFmRqQrvdjqeffjqefPLJ2NnZie985zvRarXi4qIzUxWQACTFMPvvM9iiMYHkUQCmRIu0jT17dokieVSVCtWpNKpQElMkTC1vq57VxjLVE/7RO6mkIH8kIVh6vp304vLyMhv8kBA07nybSRjIJHsqmZ+YmMgEzfdqcCRXe+KJJ+LkpHOlsrVTIbA+IyMjKY+rfRjWh/266czZqjPQraPkTUWCvdWJCG59k0CI1/AEPf7i4mISaBhf50eyAc8456qIxnrRjosvgH+VsJ2dnWXsAGKPj4+z/P9vNKfv/EDr29vbOVOQHo2DrE0+Vfw/OzsbZ2dnOX+RQxgZGYnJycm4du1a9PT05J8rlQsmRmIsLy/H9PR0nJ11Bs/rjlPSkC0qLTlsynrExUqK9IJTU1N5QxOAG9F9CxDGro7xcEiUur23QA98YWdk4ljn+fn5GBkZSadINwTc0+MA6zoTMRQDA5273x2I4eHhFP4vLi4mg4r14RgjIplOzteoEhpFv4dZwCRi6BwUGjeZZtXvuRLPPcK+v+rTlISUejV3WD/MjrFjGObl5eUEp/RPGkrYws7OTnz2s5/tYuIHB6+GYI+OjnYNlAaKBB+jfQRsZWhNXNaXBorGC9NSu4fpouy1Bqa+vr48H0CBbB/IdfmDqQ4c1NzcXDpNjKL3kLypZGBaK2smkVGtAJCUTgVD+yfQDA4OxvXr17vKiyevfTf+6JWLtP1msxnHx8cddu2JJ7KEbg8wQ9gAkh2gr3b7mzRQk9ZaDu/p6ckmKUyN71GuZU9sky1HRDYyCrT2xrroqJYESlYEPo0Q1X7ZxdFR5wYgrLNnryVMn1sHhwPWSqcRkQPqa/Ik0VUR8Vn2GIDS1MRWPSN9qd/3O2QP2B72Qmcp+ZfwKFNiPff29jIxUPb0HNa3MpuNRiNnVasyVYYfWwUM6PCWdNdKmHm9MzMzMTc3F08//XS8973vjQcPHsQrr7zSlXBVHePFxcVfun3P7WtATZX1sD+AfHV1Nfb392Nubq7r0o96RarvVrIVnxYWFmJkZCSuX7+e76NaKFZq9tEsqaLFN/X29ibQwZavr69n0iP2kSAgVMSyiEj/bq/9uUqhRix7h800Cuzy8jLnSwO2Eg7VhWeeeSb+7t/9u3F6ehq//uu/Hi+99FJeD+s8eT9a0VarlRd+1MplbYZaX1/PRMEaSpAkeaoEqjNiHQBtIk+9fdAZMolDMqfCaI3EEkm2c4RYmpmZyeSwNoix7+pL2Bn7r/I+/Tv24Hv9PPbg1GLKrNDM6+vrySTVrjTieX/XlXSo7lp2WF5ezqtIBwcHs7tQCVggYJSYBA6/lvEPDg7i7bff7mp8mJubSw3J5ORk3hb18OHDWF9f7+rqpic9Pz9PI8CQOAjY3tXV1RyoPjs7m2wcoAew1tIuAIxRNtC+lhFpN4E+mXJPT08OF9ZssLS0lFpE4yg8U09PT2bx5+fn6QAr0OZEzbfktICDiMgMVCaLda4l8d7e3pRxKO+8733vi1arlaVKGS1QKSOenp7Oiw5krbr9sVBGe1WNl2SJ/EO51W0gEgFAGwNn+Dq2hT6pBjt6Lw68r68vGRWgvr+/P2+u0dAAXHEk3pe90cM6S2xBQFFiEtD9PcmhRMS60zFXWYaApYO3slMYMZpx7H9lm60V28fqKikvLCzE8PBwtFqt2NraStDO4c/MzMTU1FQ2Zmxvb8fU1FRXqa0mEXXih3FY9pczp+ulybVGmkmMf3PWAaYKINzSJcBWcOo76qg5vkgi/uDBg4i4uu5VN7R9PDg4SGCl7KYUr/QJvLlgAnDg27CFys4qQwMDA3+pSYk/mp2dTTBlj6om8vz8PKejRFyNxdF0aMxTTcQE51oVsCZ+lCJrbAAogYJr167lc9IWY+2rHwQcsHz0r/S12NfaRb6zs5O2CcScn58nyJfkvPHGGxER8fLLL2eZXPKgmqFaxL97H9/NZ2Gwq27cWbf2qiQ9PT2xsrKSTViPsrt8DFAmIWq323keqq5Yefj8vDMb24QWeylZsFamCNT38R21/E6e4HdUryojivzo6+tLnbuKD/9zcXGR18qyY98vgRLnNYJ6//n5+exB4IN3dnbSZml+2SMfXceD8Vs1ae3v789k5ejoKBNkawRjsHfg1ruR8rADjGqVBUnwxBZJt1il0gFY2jPnnY1r1NW0ZT9VQT0vv6Xy9r1+HntwSi9jYC0gJdDJ8DgnG8Fp7u/vx9LSUmZ3MlRUvqAkcz46Oso7yOkmZSj0WXNzc9mZGhFJofssLKPDRuNXB0dzFnW0hzKVw8BZjoyMZENKbazAWjAgcwoNd2+1WlmKkkXWzNj4iNHR0Xj77beze5TujmP0OT6f8xb0OPqIyMOLuaQ14kywN1V/5Hd0CguG9tQtX5U5MkD8/Pw8Njc38+8pQXuOiKura91cBUhh7WifNJHpeB4aGkqGaGZmJra2tuKVV17J93aLiHVVemu327GyspJZ7NTUVMzOzqZztleAhVKZ5wLmaaw1Mgy8U56W2QqK9KBYna2trWQiaGEBcOxRs9nMv8f2qh6J4wU06jqdnJxkIMamK+kBKrpXZfQaZny+xMI6+g4gRYLHVmo3LWZxZmYmm/OAhXa7neU/ch0sAtureqoqq+AbaD09jz9rNBo5Z/H8/DxZl1rmHBkZSeAdcdX5H3FVBQJ+Ly6ubgQywPzk5OrigqrPi4g8B6oXNODOW9VbmrVoDfic0dHRWFtbS7vGsmBqnO/Ly8vcU+ulQnJychJbW1uplVSqN9TcGZQg21vVnZWVlejr68sZl0q8ZCQRkaXs8fHx1C6z9SoJqOAGW3j9+vV4z3veE2+++Wa88cYbCfKrHWIVMdJVL8o30vQCCJeXnaZOcixrRnfp/Ug4jo+P4+WXX+6SjJAd6ElwS56YJSGuMiNrRb8rhoiLSBMM6fDwcPrHWo0CbmtjFxBStfyqkcBrrR7QPD5a+hczJIyY/yozQnxYV+/hPElCKgt4dHSUUygQASpSfX2dsYCqfnWiif8uyTw5OYm7d+/GP/gH/6BLWgI4k4k5IzTf/DuQjk2MiK7ReTXRn5ubS1ulH7UW3tNn+T1N0s4TgqEypsCpM68CZ1IQwoAMYGhoKOOOpj6YwjNvbm6mP5HEeLeDg/2IuNJ6kwX8G+b0nZ87d+7kVYkyT/QzzdSDBw9iYmIiu0o5ZYaPlRSI6PcePHiQjBHhNKdUx5xwbA5MHWp8enoazWYzpqam4qmnnuoSmfvOdrsdd+/ezeyQngobU+dwMg5gTgmslmsXFhby4G5tbWXZXca0uLiYB0DZsX62Eo9bUABRAVUZtZZmZeoRVzdi1I5CwbE2YgGHAKZ76GWEsknsSURkJ29/f3/qPWsTDmeLVR0cHEz2UDlQw8bJyUmOGMJ8j4+PZ+IgaHp+ul/O09qzI88BvNFPYcbm5uZSPvLgwYMuAM8hYHpl5JeXl7kHlQ3Ggtc1JnHo7e3tGrqufOQfzSrW0fWRgLJSvkkFytAYAxMLBCo2K1O3z4J21fJubW3F+fl5AuWI6GqIi7i6s9lzOGO1wYjjxtRhUzHugiwA7SxxshEdcKcUeXFxkUCI75iamkod5t7eXspa7A1mD4OMCdTMgL0eGhpKnwBY+h7sscHsJlPoAq+lWgxwX19fgrVGo5GlXeyMwGNdxsbGotFopKYRmGEfzhmgZ40rOCMLMLMSqPfZOnb5kKrT7enpXE5hzSVfzi7bqOzm4uJilumVN4Fqsh3nn404k2yZpERw9y7tdjteeeWVZNaw3OfnnZnOknAgwDB3EwIQDfalSoCA5zoRxLNo5OSXAQi2STImEZbE8InWStUJ+08qExHpr6yDv6vxxdldWFhIMubRWaYRV7dnYRW9X9UlRkRWtpAa3p0t1oqNxNT3AbK61ysDaQ34AWvOV2Br2aDPEk80l/JLKgOeSXz1+2QJBwcHmYywY1IszKF9xT5W5tf784t0q/y/uHp62pk2Y51dWapqQaMqkbHHkgaJjLWv5fQaz9jnzs5OnoEqpfDszp2/B2zWRL8jqViPd73rlXj66TsxPHwcjUbE6WlfvP76QvzZn81HqzXSpY//V/089uAUa4UBuHHjRgwODiYzVTdKI5RM4MaNG7GyspLgDsP68OHDeP3117uE8wCUjcJsAmEYNQOPOZBWqxXr6+t5LRqnrMRQDyCjk7nX0pJg5WaZ5eXlLEubCQl8EIjLfAQ0B7jdbueNJwwU6AHggBhrMjs7m2X6jY2NXFvAVyCr9/S6Ks699uvr69lY4xpLyYSs0OdgYbDHMlxNVLJATqvdbud8wKWlpSy/aIgChjlgz0xnODQ0lAEUkyJ7FjCwARzW+fl5AgNjr2rJ1XpxYvaYlOPu3bsJSADXWi7R5GFeIudbWVVMVkTkugjqtFFmYq6vrydYMQXC3isVYTTGxsZid3c3AZJO/P7+/szO6aBk8Rx7lZFgeMkc1tfXE0gLNBEdsEbXJJHC0HDEnLuA5FwopQIpVftVm3cEK37D+/b29uZ1nZqU7JX9qtce+kws2Pn5eTbRGKDNNiMiWRv7JzhgZrz3zMxM+pa7d+/muca0T01NZdWD5EPTn3Iklls5mM5SUlxL0dPT0zE2Nhabm5sJUgXL+fn5XCN+jsaTjQCxEVe66P7+zsi9iEhdX21q4mNqVUhTFPZRJQEoHR8fj+np6Uxg6mQOgI/PVA1z5iYmJmJlZSXOz8/j2rVrqb9bWVnpSmqAQGeBT5LwAq40rdeuXYvR0dHU3mMdMfmAqwTC+klksGsADVuemppKEIUl5b99tr2sOnVnHUgFAK2B/+9ZvLN1l3gfHV1dwSuxw0xqhsTCYWcBUQkC8MWPslcjmPwZ4OM8RkTuLZYR6KtaZz778vIyz6XEBrHT09OTiavqi6QWAeDPkAt7e3s54kolzmQJlTLJZdVrittDQ0Npj5ro7J2zB6xWSRWiaH9/P/b29nJkG025Ln7jtKrvIVFaWFhI27auiBqf75zYd7hDvKmAX/UVUzw9PRAf/vDn4vbtu3F8PBDf/e7t2Noaj3a7J0ZG9uPd7347/v7fX4nV1Tfin/7T931f2O2xB6d0FJubm6n1lAkpcfT29sb9+/fT+GzQwsJC3L59O771rW+lIDmic3NFs9lMnRDDGRzsXAM4NzeXjgi4BJqAVQZIW8pQHAyg6vT0NFZWVjIbVSbVRctQBFclos3Nzfw7S0tLCZCUPBwkwnOGzelq/AEgNFk5UJUVoQH02Vi+WrKr3eZkCEAuBoyjrmUpewWM+D1Mlc51JcSIyAYDTlGm3tfXF9euXYunn346NjY2otlspuTASB7fi4WioeG06tDjqvUEnjBBOpR7enryBrA6woW2zz5zcmzWbN1Wq5VJh05aGs2Iq7l9GCmA/fj4OIemGyPTbDZjcHAw5+BxOv39V5cDVLAgUcFYPnz4MJMLmiaNQbURgaOvDCa9ETuXiAF7WCCMxdbWVjKYAAK7UU60D8ponsW6VBtwfjV69fX1xeDNZ+PG3/0//kv9xov/xX8a7eaDBAHKYoeHh7Gzs5M6cSXI6enpeOqpp+LWrVuxu7sbd+/ezWHW7XY7kwgMnJFOAkhEJIu8tLSUzJeSNBAhccbWDQ4OJrgFDCUVh4eHeQXp5ORknhlBWhBvtVqxubmZchDPhZGmLQUcJA20jABJRGSSbf8FV8mcqxHtO/D16Jxn2mGMTUSk7o19Sy4ajUYsLCxkw19fX1/s7u6mBKRKfgAnvskaIAsiIitaIyMjmVxaW5URzy2hF6iV52mTVTEkiru7u2mzuqyVT1dXV9Pn8hPOmtFpNSmmdVVtAoSdEeygJEiiBSCZHCDxR0iQFDi7GtrYTZVMqbCofvh3ALc+D8AWEZl0X79+Pe0e6He2nVc2CKiqVJBBiTnAMFkCrT1g60x4nsr6itOSm729vTw7GjidHdiBT2cbfqzT2NhYJpASTGVt/haxxb9JIIFXbPDOzk5OstAP4bs8o/2VwPf29ubtjd5ZxYQ2mJ2SyJyediaHkB5ar9nZ2ZwlToIT0Umkl5ZG4gd/8H+IwcGd+PznPxyvvXY72u2+rrX/vd9bjJs31+Nnfubt+OVf/lr8xm/8S91u189jD04xTgCk7B6YcrORgyGjOjk5iW9961uxvLycAWBgYCAmJydjamoq7t69m0wfDR4nRuwfEcnIaiZAo3NwyjtKNsfHx9mhahoAZypL55g13ihJOFhPPfVUHBx0bkHp7e2N27dvZ2citiEiUuNUZ2QqMQAl3o+uSPAT/OnR+vo63dsYPcBT165sc2BgIJaXl1Nvs7OzE3fv3o2ISEBkrJPyrQPhdzhNTqsyvpyMkknVDAI1WENdtDSCfiQA9rM6ESVYP7XEBqgq9elyBjqxDw4sLZYMnlPDRBn/Ya0BZk0enIvgVMtNWA7stz+PiAQZbEeHcJ36QItdy6oCk3XEPmG96jgconvl7Ef1vZ6lMjhV2wi8Yv4lSTUwVk2ihKjq/kx8wAJV5lQpMCJi589/L/befCWBwOHhYRxtrMTFYacJgo0JhCQrdR7s7Oxs/MRP/ER86EMfioODg/jqV78aX/rSl2J9fT3Xz7vyF+QY7Br4sY7ezZnEgrFxwMmVnIeHh7GxsZEs69zcXGxubsb29nY2H7Ex+y0Rxdg9+eSTyVqxD9poo66svzMOCAmoziyGCki2dlVjbr6wCpezzgaqXMbzA2dK5/v7+3n7UtXIkkSxCzflkXgByLSy1gbDjfUCvp3tynRGRMoW+HLxhh1KDoFysiSJEzmHakpNwGrSD7xLkqqW0zNIlJxBfnRycjJtno+QdNfE2b87W8Y20Yo7I8ARZhx5UdcEU8eX1KkogC1mVezymapjjwJrdkRyZE0RNBITMUjS6/vcbGgSiVgfEckqn56eJjPJ35K68PF8DmDpmmj2oQeAHAORwYeppJEVeGd+lMbW2d/d3U2w32q1ErQDvM6KMZVsB3YQ9+y9PgXr5r3hi6pfvbi4yMZtn2O/BwZ64yMf+b0YHHwY//yf/0x85zsHcXn5MEkC0w8OD4/iG9/oi9dffyb+3t+7ExH78b1+HntwOjg42CVgxl4sLCzkJvgRfJROV1ZWclMYEgaFcBlwMUsRy8AhCR4aQtD/lT2hrxMsNGDp2pYBNxqN7OomKfDMZAVYAh37p6enOcwYoGi3Ox2RS0tLXfcpb29v5+xTZWLP2Wq1IiJyKP3JyUmsrKxkM4aMsGpp6egqo6k0NjIykowFrZtgy+lqRpuYmEipAE1YT8/ViIya+So/1gYh+kDv6bYbiYZLB4Bn6y2rltDU8VZuIgHeqj6Y7sre1s8m14iIdCAPHz6MsbGxBPcRkU65jqtRehG4IiLLyp4Vy8TZycYxUXVvsR7sRNkNc2UtBCJrNzIykuVdwQFA9WyCiyDtBhhJAYDtH5/faDSyAmA9a5NaZQy869HRUc5+5PQjIhutBCfgzjM1FjuVkPOVO7H51S/E+vp6ylMiIs+CUrz1tk/AupLts88+Gzdv3oyIiJs3b0ZPT0984Qtf6LqZ5+SkMyOx1Wrl7EQgRnAjcdBMA3zYM1pyCQ1bl4gJIgAx+Qdbdhb5OYH4/v378eabb8bS0lKydMbHYacBpKp1tb98rWa3drudt1+RBgDdfCaQRitH+8gm+A6fR2unvClB8F7AqXdUyVDZ0oDmHvfKCAIytcMa4AEcMZVAun6BiMg5skrOziAw1m5fXRFbk6Y6O5aNOMuSY4lMfS6MmGob8sT5wSBOT0/H0tJSvPbaa7G5uRnDw8O5n2JJb29vNiNdXl7mPkheKnACWvnrnZ2dODg4SHYTuVGTeNNurAu/ZrpDrWTSdgNj2Gb+jzxOAlqZRv+IvWK+/18T6lrSB57JIwBg7KqKi8Sx83ciFhfvxjPPvBYTE0fR03MeR0e9sbKyGA8efCjOzqa7JEM0z5IS5ItmKHaBrHBeHu0dmHrnAiF7Lz5JdMhnyDhIMMQca2j6xNbWVsocTTQS16oUhIYbazw5ORnLy/djevpefO5zPxvN5mgMDp53aYDFRXZ5dnYWn/nMhyLij//VwC3+NQCnw8PDeX2l8tbMzEwMDQ3F9vZ2OkEMJQDSaDT+0k0GysVKuxxaNWzsQLvd3aG6urqaDlGG0m6349atWxnsGSjN4d7eXqyurqZDr6MsMEpYQxkx47u4uOh6/vn5+WxWUDbC6A4ODsbm5mYGx52dnZQEcIhKS8rcQHdEJHhaXV2Nw8PDLAnU8tLU1FSsra2lJgtAAqJl4MfHxzE5OZnZIjbAegLjFWBJGHyGbFWJWBaoIaOW/WSHHLOB5Zw7oM1J0Z/KyoEIWj72cHh4mIeZ0JyG0BWpCwsLsby83MVw6pysjIR39j6Sjco2YDmVMgE3IGNraytnDgp8OnUF5aoZrKyNpELZniC/Jn3YIIGNA66a5Tq5oF5EcHx8HBsbG9mo5HuqDUkCMXECP3BYE69Wq5WNeAKgEW/WCdsQEXHRvojGwFCMvFNqZZOY/ZOTk5iZmUkGnF1sbW3F5eVlLCwsdJXEIzqSlve///3xZ3/2Z7muEgzrL4lUfsTk1OfEitNgsx9rSxJSmWMgwB4AYTVxNvS/6u4bjUaOOTLJwJ8B2JouRkY6sy3ZvCH8teMZSARE61gZz+R7/T7AhsGpzD9bpv2mE6c1ZbuSD+vSaHQuNOGL2BebBBKcQ5rXWrWyvsrdJEf2C3g5PDzMm4mwqABHrVhpJJQAObu+VwVKH0NtJEOMSIRVvpSt2a69E9eUhiWlzrZGQfIkZx1D6HN6enrSJm7fvh0f/OAH486dO7G/v58afT6AhIH98ukRkUmXCgRJAHayJhz8FMAlOeN/z87OkgWtsdzv81FYTyBZ0kHniUEG9BE+EhNn2j499dQr8fzzL8bk5EFsbk7ExsZMHB1dxOjoaXzwg6/GRz/6SqysPBl//MfPR7PZkwCUX6+zn2mHJQFwA9/qOcTdSkohFSTtekgGBwfzc2rvhyqGhOTysjNVwYUFEkbxCqnxqI91Lt/73tei2ZyP+/fnIuK8q5KkSdo7kAb19PR/X9jtsQenFnFkZCSWlpZieXm5S1cYcXX1pIDMaDgJ4IsYPyKSNdB5Nzs72zUwGsABHnVFDgx05v7p+hRsAQEHa29vL7M+jUv+HGNQKXZz7+q4D4aL8XBrkZEaDq4sUcCYmprK0TQY04grFkP5nBM6Pj7OznPlvFr28jxLS0vJEpgd+ajoHPDUhIKdcBEBkI5J5kTu3buXyYfgU2/BwQ5iCwzVFmgjrkoQFxcXXVe4AQ3eja7OLSFsxCxOQNUMP46e8wEo/d2IDqjAIJtnKeGgNbRvVchu/2gbOYHaHFC1V2xKMMBWAJfA76PNFTJoGbqMnF17zypXAQg9m6SIbgprVeUAgKFEkNOuYH1jYyOBh3MGrLF1QRqbgCECDP0TETH3s/9eLP7ifxyXFxex+8aLsfl7vxZn629nCdGz1LmstRlubGws3nzzzXjppZdicXExy6X1ju2IyN+fmppK34J55FPop82e1FymRA7AmCKB+T89PY3JycnY2tqKzc3NnDWKzcIiCep1ti9Au7i4GHt7e1kajOie0KEMLiFbWlpKu2XjbH94eDgTOXZnvwCWi4uLrg5ovsSZOz/vXADRbrfT50kmK9jTZMd383E0lOfn55kEYH0kGuQutRELw6ZJR3UNUJHICfCbm5sZQyqglvjT+/ozfx9bzE7ddoSd3t7eTv/Fp7F7/qUCuIjOlc7ABy1yq9WKnp7OhQ8qepIIAFvlpcYG8RE7Bxy12+2Ym5uLZ555Ju7fv5/+QQwAXsQe+yNeOOs0lGRp3hPIBoYkB56dz0R61BF4QKdzy4bFFHaKZCJj4FftkXf1zFfJ1mX8yI+8FB/4wHfjtdeW43Of+8F4882hODg4TE314uJ4PP/8WrzrXV+Ln/u5lfiN3/h47OxcjYDE5vP/2HK2NTQ0FDMzM4lR+AEMLH8rMRRTxVuklQqKhEySUcm3VquV02bESf0TiDrEDj/oeYeGtuPGjZX4yld+IhqNqwk9qqLvete7YnZ2Nt544428WZOf/n5+Hntwur+/n6AwIvIGEMFla2srS/J11ptNkHEpXQquMnzGxaE1Go2Ym5uLVquVoGB5eTlL0BgRzyQ7VQpxwN3XPTMzEysrK7GyspIGTENCK8h5z87OxsbGRhweHuZncFZAppIqUKtUzoCxg/WQyNCN5AKa6vgmN2BFdBICupjDw8NoNptx48aNHOiMQXJVnDVUThPEabdqMAWGAFOzG5VCK5tK7K284Fk0ZwmgAjuGQwDGkHO8DnUtDT/aqFC7ywU4jprD50TcuT06OprA8PLyMh2nrnSl7kc7LCtgrp3rntN7eAeOrmq+dIYD/r4LuI+IdIYSOGATIJVVc+y+ow7HZ6sSEwFE2R4rCNxWrSrGFKBxDoAtgYfmCgBjV41GIxkS0pOxsbHo62nE9rf+LLZf+mqc7G3H4PyNuPVXfzkm/oP/a9z57/6z2Ln3p3kOAIaq07QXWPfPfvazcXnZaa47Pj6Or3zlK2lrmuvo7LyvkrukBlDRMGKSAqZOIuRzSCgqQ0+iQ3fKZ0REF7vOfsgWJLw0zhUkVtYH4LVPksuI6Goq5B+xdsq0SpKe1VkG2nSl16C9sLCQPpLtSh5q97VkRPlbJQOQtLZsHPCoTTiCq3IqVnFwcLCLAfa5zWYzgztAwD4AZcm/pI2OEXmhNG6vxBg+cGtrq+vaXlpTfhIAI9GoDLQ1bjQaOb+0NgeSnD18+DBmZ2czGZa8OYMauc7Pz+PevXvxO7/zOwmaVFeUrcWI+fn5TIbrvGl7XjXVJycnSfDw96RyyBf2Zw0kbHyAv2NPgTbJsW5/Z0+srLrXR6/vxXQPDQ3FRz/63fjAB16LP//zH4yXXnruHV+zlXKniIidndP4xjdux9tvPxk/+qP/LP7m3/xq/Nqv/XBcXEzkVBbxcXp6OpMiLLbqCIJBZYA+l1YUmHSrXcUkzpH+FLjFebJGDx8+zIoucoaf19ciqXRG2M3s7GpERLz++ngmTuLtwsJC/MIv/EJcv349vvCFL8Tv//7vp38mCfteP489OJWZyazW1tYyOxwc7FxnWA2islUobk7AaBwCYU7s4uIiVldXU+/m8x2MnZ2dLOlGRFLsSuUjIyM5lsfYoPPz82Tm2u12Nj8JasaT6Ng359TcUu8iO8QoDQ8Px927d2N1dTWvbRPYaxa9traWjt97R1zdVgSUXV5e5i0RZqUp7wlUgoGgNjExEQ8ePIg7d+5ERGeG2/Xr16Onpyc2Nzej3b7qbn7w4EEyTxw0oM8pYs84wPHx8QQCGOmqfX20dEyrFdFht3Z3d3N/MCdLS0vpqDgLSYv/LyDJPjlgzpemDsNTu1Tn5uayFCZY9PX1xeLiYgYW5SyjWM7PO+NvfE/VpvlvDx8+zDKaUp+AUBmbra2tHPjsFhwAXemQrAIAwFLXQPwos0S3rNtV9+mjbLYzcX5+njM6K1OtDAswSfBIWiKiS3agc39iYiKD7ebmZpycnCRTsHfnO/Hgm1/J91p98cux/rU/iI//X341Zv/K34qX/uTzmbSQ7gCjEZGMj8szjo+P4w//8A+TGVhfX89LMQAZARNTJAER/NfX1/MGpHo2rZ3ZqSQZNGjsCNjFBFonchUTFpQH60ibkZGRuHHjRjLb/KZyLaAJJEs+BJ1Go5E+C9MccaUlJo1hfzXxiOhmMTG9pD8aiUxA4EeqLQJjypgkRNbQmC9JBckHX4lYAKIvLy+zP8A7AF58Wk3sNI7V0id2UPLvXegHAUlrUiso1X9JSMSQy8vLlHqQqq2treWszTpNgt/zA/x51qqJBUIwqUCe88xn3L9/P/1xPbdu+wNWMb3kAPXyApUY701DWhsY2SpN7tQ7d9FbV6whn+CzSeHEM7GyMqoSc4SG+A38WgsyqZs3h+JHfuT1+M53PhTf+tYzcXR0lbQsLi7m9/tnb68/Pv/5n4qf+Znfih/6odfis599fyYcKSl6J7mrybpxXUNDQwmaEUUHB52raafeud3y9LRzjblGU3ukegRMStQw85JD+yZmHRwcpD7UOmmGJhNQyRkfb76DCXrzXMA8qjq1v0Bcd96/189jD04thiBAd0MsbqYip2YD/Xuz2cwyQkR0sXIalmq5xMFn1Er4zWYzWdyFhYWYmZlJ9habJIApxWA2qjaScZg5ODg4mNkYYCMAY0Zlu97fWB9CcodDIB4ZGcnr3HT/K3s0m82upgz/fnZ2liAcEOVQlpeXu0rKmDL/jX5td3c3r8jEVPnfxcXF1FIp0c7OzubswpWVlSw3YaIwCZpZMAey46p58g4azgQHjsJBxfYoYQvcGloESawL7atB/1U/aVYkRyHQKQeyIXskUakNALVMVicOKKMBXrSmGE+sLqAsyNPoehalyojImbARV4OcaQGVc9gSGYKxI85X7Xyvly9YS2NuAOS5ubmYnp7O60YFWravOQGzC9CYKAEoApBbW1uZMGlEi7i6Se58/X5sv/jlmHn+h2JicirGxq7KnEqbSrXK0gad9/f356gcVwxbFyO+IiIZI4FWUO/t7c1LQCQHbhA6OjpKxgf7ExHJ5gmI6+vrOYzee+tOPz8/j+np6RxjpBnFnvl9/kbgou20rwazq1RIDiIi7UFJGaOn3C5YqSZI0vxdDO3q6mompfWMmtvIH9T5tZgdsiLSDnYqabJ3riHmU5VznfHKCEtePSfG8eKi08iJLFCliYjcA5NTnCH7Jbn3HPU2oogrWQ+5EqBVzzMw4FyqolT2WsyyvpeXl1k9UFUx01aFgcRADFVtJHniX0ly+CprIoFyvsk6ACXTWiSUElFxik04z7U6pYpQ40ctR3snFQpJeU9PT1aDTJ/QEGXtJbdsyTk8PT2NZ5+9H+12X3zrW++Ls7PTZBBrmVrCKF4eHFzGyy8/F88//+34wheeTduQFJkc4Nxp9rt582aXXUrqPWPtQ0AQiOmIjYjIxLUmUfby+Pg4bURcRjqJHy4KQZDYuw4xMfFOLDiLnZ3OGSRZajab8ZnPfCZHcVaQXJvQ/1U/jz04FRw0BwhaNthiyUw5S1m8Q2pDZfaAi8CCzjb2xK0qDjSQubu7mzMLNRo4YAy91Wolu1LLsYKbcr9DZDwGZw+Q0rwyLKXXiIiZmZlYWFjoYqWmp6ezcSriqtGp2WxmF7IgWYOlgHF6eppXZQ4NDXXdIIGJaLVa8eDBg9jd3Y1r167FyMhI3L59O28jUUYw2UBpD6vBIQFz9vP+/fvpKOt8TDZQHbgyPUchEdnY2MhxX5gRn3/t2mE8//x3YmZmM3p7T6PdHojd3cn42teux/7+aDKiDrZDjHXx5/R4AKpAvrGxkc8hqTk5OYk7d+6krgq7U1ksQF03NsYK8zU/P5+O2vBxJaHDw8Nk8Niwv4fVU3LUuAGks4Gqqa6ZOgDWbncuP9jb24uFhYV05MppmPnj4+PUv1ZWfmBgIMX6u7u7eUGAcwtk21/AFqsVEZmsabSwP5x7DWSDg4Nx8XAnevoH4vqt29E+uZoNbA6yz4mIZIoEVJWEOu6HFllAdwvP3NxcPHz4MNlVzxIR+ewYUVIe7INEQgNT/QfLFRHZRa+xKyK6yq+SAjaKccJOYbgiOkHR9AkBEIvoOXVh+07BVRLEP1Z7lBRjvVQYgBdrh2nFGvGtFayouJivaV339/djY2Mjb5Djm+tUD+8lBgCok5OTCU5rb4DzSrKh3I9wwE5j1UwRAQoluGQbQBLAyR4lX3xeJQcQKJ7NZ66traVtsEdNcRKcoaGhrukszoObo1RNpt6ZDV6bxx5NcKuGVRwD1rHt9pdNRES+lxgIjLL/Ov+Wfz88PEz5mcTDn0toSBCQFxhDgFulorKK4rR1JAHq/PeeeNe7vhuvvno7ms2j/Py+vr4kIXxevTFsf38//uIvbsQHP/hifPKTe/HNby5kQo2cqr0TKmNVvoWU4IfYAdAK+Ht2BEadasBn9/b2Jp6pkzrESziHn6czlUxLzCIiNjbGo91uxLVrd+PNNxeTmCFb+PKXvxzf/va3MwGU7P4bcPrOj3IKJ6BrUBYi8GFhIiIDo9I/4AdQ2LhaFpZBz87Ods1iY3gRnSzG/6/sm5K78sfR0VGCDSAaZa6EJuOk4RC4/YyNjaWx1U7Nmm3Llnp6ejJjA6aGhobi+vXrXaNd3KBlrThHzBvmjANQcoqI2N3dzWwZsCVhELCxKbI7DSPK9gIRtqnVasX09HT+vv3kcAXOyp7KNA2spoHSlMbJescnnzyOn/zJ1+LmzZ04PByJt95aiO3tsxgZiXjqqa34t//tu7G9/XJ89asfjHv3ltOZKHkS89eSOufA2ZydncX6+nreu65s6d8dak1tgqAgz6EroXGSxu7UsTXtdjuDNBtySxVgYo+Hhobixo0bydRU8IJpdDc9kBoRWVLlbCV1QAh7jOhMkajzDzldZ9dIFeepr69zH7Zgx5YFbcy+56ELHhkZSfBbpz8YwxURefvSwMxCXJyeRM/FefQPDsba2lraeg2m1tPamoRRNW/+DOhqNBpdt3qtrKykzfqd+rwAFF8APEkgDw8P46233soSKumBpIokwJWiVe9LcqTSUZkabL8Gsv7+/tja2or79+93SSz4JT+qDrWjGpgDsmiFnVkBV9IggFUWTXCLuJorymcCoVUuEHEFwiVaGExaWc8ogZdsLSwsZFC+vLy6I96z0VSfnJykr6F7JEfgQ4AggBsry0f29/fnOldJAt/h74sR1gyrS9pw586dPKM779z2xv8ODAzE5uZmVscqW60CAhB5BqBwe3s7bdg/qjrVN7mPfXR0NCVoNPv2SBOsBiSJmJhmjFu73U4QLem4vLyMjY2NiIisvvhc/qieN1UxSRqSpPoOSaN+E+uqfL25uZnAc3LyMEZHj+Mv/mI8iQs2a6JMrU7xg319fbG+fhirq9MxOfkgenqezWfUeOgciXW9vb35HZUdhSOq7p4PqrO+yZiGh4fj3e9+d5ydncXq6mr6vypxc7b4dYkKaUBNXGlqYaD9/YG4e/dWfOADb8ULL9xKbT6wT6Y4MTERc3NzGcMlEN/r57EHp5gf2fXNmze7yiccinEYDjPmQxaltCXYO5yCuM3l8CKu7iIWHKanp2NmZiZ1N7UjGmt1eXmZJVEBiIPG9rh3ud1u5/WRo6Ojsby8HJubm/kMvp9swVgi/91h7evrjFYytsRhEKwI8r3frVu3um6/UPreeecqNU4C62Bk1f379xMwA9J7e3txcnISs7OzyWBLAujZsMSAStU1cibLy8uxsbGRBwD4tM90Q8qVnJVyimAg6A0MDMTNm/fi7/ydu7G5ORJf+MKPRav1XOzvH6d+6pVXJmNu7u143/tejJ/6qT+IP/zDD8bXvnYjmx6qRou91GYkfy5g9fd3rj08OjpKQDQ9Pd3VJa/kxraBD2XT2sXM8Qq+guXGxkZOiwAG7fng4GB2AU9OTqb0QPYOSPh3dhQRyfLQidmza9euJRh2fjBjm5ubKZ1RCqyNRpz2+fl5akydWcFLUGg2m7G9vZ13h7PPOgKG3e3v70djaDQTgQRtkwsx+d6PRevbfx4PH+7lRIEa9DY3N2N3dzfBwNzcXNoRdrSyrEC798NmVEZbA+TZ2VlKW9gKVsY7bG1tdWnHeno6ndhGhY2NjXXNEAbi2YdEUpWiJqUYtsrmsF2a6Cpn8Xvn5515yGtra2kLc3NzMTk5maOVFhcXo9lsxtbWVoIBTZIAprPKzq2dpDUiMumyr0az2es6Qo8eemZmJq5du5Y+lH9wkx4m1v5J/FU8Wq1WNl3SMW9vb2dc0axiekKtzAEwQI8KnuSYzWPbkBoSbKBB4vioRpWvtm60xdWm2NLW1laWcSWEdKfONjYSsLBeNXmkVfc5kgAMv/OvUUglqOrwBwcHo9VqpZ8jWeDbVRd3d3ez4mRqzezsbBI8/JaY68xKZvr6+nICipFLZDQkC0gVFUsAS/IyMqJfZKQr+acdVm2tCTmmv+OTB2Jw8OoKctIZ0iCATcWTnbADFVFEgLOn/0Cy4ow8ioH29vay+VsSD7MgNsQQoBq2mZ2dTUlXZbZ7enri5Zefi5/5md+L55/fijfe6ExlIBlyLlRC2Wxf3+b3xG0R/5qAU1odmknXcAFk29vbMT4+HpOTk12CdV1wVbunwxzbNDIyEteuXYvJyckUDlcWCzMraz4/P0/N6vHxcWaaFYxxdNg+nYmysr6+vq6OTQ4UyMCsCFB1fFREJNgTGNvtdnaLNhqNWFxcjMXFxQQGo6Ojsb29Hbu7uykiV0pljBUQ9fR0j+Aic5DJAoaSAJn36elpZlgcsc+6d+9eloKBU81hAKqGBwHD7V8OOwBm3WT1SoCSh4uLi5if34yf+7m347vfnYp/+A+fjFu3FmNi4krs3inbH8XOztPxu7+7EB/4wJ/Gj//4X8T6+kl87WujmaWenZ2lXowzV74V6C8vL2NpaamrQQLbBlCzHVo+kgNZv3J+LS9JXmr2bUwR26ZBxIRXrZnGhgoGT06ubg4iGyE50HA0Pj4es7OzGWw41NpQs7CwkDpltq+jmy1LCmtjALaXpCHiSsNZGxKVujSYYCQE697e3rj9K/+7aLQv4ujeq9Hf2ojJ2++KyY/8RFyen8b2F/9x15piVc/Pz/MMWAdBcGFhIa9JJdlwlq0XZqHKCgz1F6CcCcxhxFWVRvDWZCA4sh2BTGATCElKTk5OYnJyMgMceYCAo2JjPyIiz6wmHAAZMKC51GFcddHAP+0jEFSlLfYQMy5o1mYkCTepz+DgYN5qRfMr+aoyIvs0MjIS8/PzCazqpQI3b96M+fn5WF1dzZE31ppWWXDFqJKUkNLQeEZEXs5Cz+c8+qE/N8mhv78zvq/qyiWttQGR1hNIAaiRDDSMtVHIPF/g5fz8PBPWi4vOxS0IE0ynNfLuWDbVA3rdiEgNP3uuTWPIjDpVQtzR6DgwMBBvv/12niXJQU0wfL8JCpV00cDDD+7u7ublFj6rNrepBIiLSt/sUKJmv922NT7e6TtZXl6I4+ORTJAQVN7beUKiaLbt72/H+fnVOajECTutkyDEGH6vMsqDg4NZabEP1teaY9zv3r2bVYHKvvqeKmnhK6yvCp8fz8HvXF5exoMHs3Hnzu34iZ/4SuztRdy7t5Dxnbzj6OgoR99dXq7GX/trX4lf//Xvjd0ee3BqQzm6RqORYJETkCE3Go1kXubn57Os7KAwEJ3HDhhGw6ZyYpxLbWYSSARXZR0HBjMKyAHCHKnPB3YwgoeHh/HKK69kOb+WcFZWVqK/vz/vPT49PY21tbUu7RjGQonz4OAg1tfXI+JK/+ZzMSg0YfSVJycncfPmzdSxau7yPgCQMoiGJg1SvrsyiwYBAysnJyfRbDZjYWEhHbXs0UHG6hh7RQcHTGsaqxk14GU244/92Bdia2sqfvM33xuXl2f5+RzG9vZ2kQs04l/8iydjfPw4/vpffzPefPNTuT4Cria76hSrHpVkwvWTnADbknVi46rMBKNBW1b1l5h45S/74O/RoZ2fn+dkAtk7UAPYCFT+HvALRDYajdS/1efCtii3SuCAIMD14OAgHaYSt1KghIVzJxdptVrZhBfRYUbYOfmOMyw4RnSc88NXvhbTH/yRmP7kT8fc0EhcHDyM09e/GZt/8Jvx8MGbqXFTaSFVwEhZTyXMpaWlLHvSVZkZq+QpCcSQVq3Y6elp2k0dV1TLkP4Xy/8vY9JqqV0i86gkQ6dvLQNKjGqZXvLJ70iY5ubm0o4FK0nVxcVVEx/2CNjFJNZ7utmcpP3hw4fJwq2vrydo8h2udTw+Po7V1dWsHFV9ZbvdzqSTHySZAgYwx87G8PBw1ygma+mShfPz80zYaPSrjEDSDOgcHh6mrAgY5D+At4jINXCOdH8bmM4fVB2iSRmqcs6JG7DYUgX9JyedUU2zs7MZgxqNRtd8bonN8fFx1w1P4oAYhwnlhyTifX19uQekJLUCY9yZOEr/ag/Eh7onEZGA3HQd+8jn+19gv0oGsIy1mYrmuo6+os+2bybhdEinsTg/74tbt7ZjZ+dW3lhYJUeSB88GIA4NNWJhYStefPGJlI5J0q0xIDs/Px9HR0dZDTBtiDTF+STHqckYQqNO1Hi0eqZp2t81TtH5opOXQPu82kvA52Chv/CFj8dP/dRx/PzPfzleeOGZePHFJ+Phw6H0yZ1EaSeefXYlPvShb8f2dvf0iP+pn8cenAowgAgRPwcWEXm7C6NUNmC8BOzr6+vR09MTTzzxRNy4cSM33ow4WSlGS7Zi+D1GU8ZcZQPKyhGROkWlfyBQmV2Jzp8rN1WNVr0Bif7Ms21ubqZmU+crkBYReTDccW/igf/d399PpwkE0RKura2lkxoaGuq6eclzC7Lb29s5jouUQZdzbUbilAVEXe/KYTRxOu1NV8CWKBcC5oJdRKTWCSN5cXER167txdzcZvz2b38yGo2BmJkZT7AVEcmKnZx0rqLsOOf++PKX3x3/zr/zhfjoR49iZ2cmA3Mdx+XWFFpIIBlLHRFZDuFoOeg6lFtpjm6wPhd2ACAHGmT0GB6JAWcuYas6QRIDjglDDZjSqNVynKAKFE1PT8f29nasrq4m863ELKj29fXFrVu3MnnArOmqj+gERCPX2DVQjAGIiGSsgIha7mo2m/n7By98Mfa//oV8XyyKM3dxcZHNMAIGnzI2NpYzVQU7mlNnnF06284/nS5tL4CgWVEgcE40auiUlwjXffZ3gVlJD0CuMoSVrYxyZe0kBtZAcBb4AVK6QglN9a+SEokRxk61qVaonKuqewO0awUAgAMC/I7yrrKnMwTsavDr7+/PxNZaYBSxn5qnqvbTc3tHDWECv3OietPf359SDmtfg7qqgL93cnISGxsb0dPTEwsLCxHRPepODCIbEUecYWft8vIyr4p1DpTkgUF7inWzL5JuXdjsNiLSXwKdYhSfrDuffWKbXbEZ0WGKXYiAtDg9Pc2kDnNZWWnJnb14FBhVMqhOAlEOp9fGRKsIqKaRQlWJH223WdgRV0TTyUlP3LnzZCwvfy2+/vXncsLMyspKMoxVQiT+nZ2dxdNPvx1DQ2fx8stPJfCPiNw3lUiJvmS66rIlqBJSZAc5guamyoobKyZOn52dxdraWlxcXMTS0lJWQCQI7Oby8jJHZWKbNzc3M74cHh6mFKYDlgfiT/7kZ+J97/tKPP/8q/GRj7wWb721GK3WaJyfR4yPH8ezz65HX1877ty5Hr/7u++JiM99D+T2rwE4Zfiy+4ircQtYJnMAZU+Ajk1V2sOgzs7OJrMEBEZcXadXs+eqvwSIq44VQKBNBPY2NjYyYNZxM8oXtUQs6wHCAYWjo6NYXFyMGzdudDEQIyOd27LobiIi/z6nzlFjEnV2y0g5aVna4OBg3LhxI8ERp1gF/PR+bnsyExGwBfgePnwYe3t7MT09nYyZhoIK6ByeiYmJvJavAmPO07oBOycnJ8mq7uzsJNOorPLEE1+K3d2hePHFkZibm42ISFDO0Y2Pj+ccS3KA4+OI9fWleP75N+O73/1Ufi5bEFyNMeGksKVAEObAmDPjaXZ2dpIJoANrNptZVsT4GA9kH2qAx/YJNgMDAwlSsPV0iHR5ykiyaQDAnsq8ldl9NyYGeHOTEOaxr+/qRiQBHigHWlQUlIwf1awNDQ1l8wC2HSt1ctK5DGJgoHP7kSTF2lbbrM0GSnXsT7WlJg/Kk/yFv//w4cMsIwqYzlJtgtje3s6Sm0SsjosRZJToMMsCGGAlsXUb1czMTHZXA6+7u7vJsPB1fNqjZXHvWIGA9fBs1Ub5PutP+lC1awAMv6LyYmQaOxkcHEybd2vU/Px8Mp5AsfNYQZF3qSVkIKHqaGkA6fbZAmDEZ1X2yOQVvo7UCBiWxMzOznaBVXvufc1djYhsYIuIrO5okpMk1oRd8xXShD+puu+apDgjWEX2oPpxcHCQY9vsCX/BfgDhWnWKiK6YY5KDzzHuy/eLh5phySFItqqvwECOjIyktIKW9vLyMhlJNqwCKikg1TC3lrxhb28vm4aMZcPqWb/JycmUNrDD4eHOdZ8S4G9/++l49tnXYnLyL+LBg+diaGgo5ufnMwm2J855x58dx7vf/VLcv38jtraGYmDgan87jVaTebYkLj7P+ahVKDZv7/kAFTb+E9CWpOtp4K/MUm+1Wkky8Kd8apUn2QOVp0pWqHj84R8+G7//+4vxAz+wGe9//2q8610b0dNzGUdHffHlL9+OV199VzQa89FuH34P1Nb5eezBKcAJrNSMkZOppU+Z5+HhYQ5kvn//fjKAJycnWZYmeue0lVo0JQmmdCcCSGWmNCRVzc7BwUHcu3cvD+f/n70/DZL8vM57wSf3pSozK5fKWntDA93Yd4AASIIbBG6WtVCiLOnK0lgT15eX0rUtz4zDDjvCy0gaaz7ozsSVFfZcm145kimRokVSFHeQQAMEQOzdWBu9VlVWrlWZVZmV+3zI/p082dQI8IwVjkCoIhASu6sz///3Pe85z3nOc86LkZIBozMCGHhRtReCc/gzmYyVEzngNEQAVhuNhpWHuAkKYEDJBwcNCGcMDhkrrIYX5lNiJzPzWTgTAqrVqoHQeDyuo0ePWiZPoxUd3zgXSofxeNyYNYCZB8g036ChgkEBKJ8/f97YBOZBFos1Xby4rrm5lNmJ16qhsUTzCmBKJBK6ePGQ7rjjGRt3g1Nh3wEdOCMAIA6bfcapwgpFItMbW2DEL168qHK5bE4HRlOS3UKD8yDAksCwFzR61Ov1mZm02A4yFGwd54UThC3zMgaYUJwZ7wJLAQhOJpPK5XJKJBKq1+t2kQVAHSfLmsCYHD16VOFw2NhGr4HE1gieABDAJGec55Ckra0tRaNRFYtFK83iB+icR+/IvlM1oRToAzk/ABHWPxaL6ejRo8Yus6a+giDJWGxsDwYOPStJCMAuEAgYCCZxW1xcVL1et4H+tVrNmlNoGuL9AEKUDSntMTIGyU6/35/RDlO6xz+QQLC2dKFjBzChlAvxKVRiGFUDkXBwML0lic9EU0lZ2uviAWLoab02GmCUTCbtgpFisaj5+XkjIvAjxWLRkhL8EAkJyRuxAJa02+0aIw4o97IYKiYAAEDR4uKiPTdAKBSadLYHg0G7bQzgDAMGc0a5GrLFnz1sFODGs/vKG3EHgEgsA/D7hjf+nPdDQoN9AKIBRQAjng2NK8AP9pTngg2FtSQ55POpKEiy7+cs4OchYBhF6CuO+BySAJIY/BIVVT+LGeA2IUyiev31Zb3//U/rm99c0v7+IdMjNxoNO1MwkKFQQO95zyml0w09+eTHjY1HG8vv0ViJZAR7JNFEduDXnwQFthRf4/eHc8p+BAIBa4giYQAbIe8jQfXd+vgk/jd+i0ZncMPkXbK6fHlVb755gz1LpzO52CaTiSuXm8oB3urnHQ9OCWzcLwyzQhYoyRwHBx+dDE6RQE7JZjQaqVQqWSmALB7GBNCVSEwG/VOWwak0Go0Zsf6xY8d+iMk5fPiwOR30YOh1AM0YHocRh0BGG4lMhoK//vrrxrpQWiGQ5PN50581m01jEiVZidLrGCmXAKJzuZx9F38PYIYpQLMiaSaA4jQBECQOZMCwAGS8sDDVatVuy7ha8wgwYW9oyvB6KL92CwsL1lDEDSKx2FChUMaa3HCKABHAoy8VRyKRKzNigwqHhxqNunbTk2cI+N/cnSzJggqA9Wq9IUwnzDaNLNgmz4eDAlzAfpJQYRewjqVSSeVy2RyUv3FHml5byL76JixsHcAcjUbNLgl2BDcaWtB387nobJnyQPAmCFMiIxmBUSDokN1LMpaKZ4RZALRR/kL6QdAHvKAfJ2ADMnyZEtCEbIAEjmcAKJFkYYvSdJA8fgS7BqwxK5VkkrKoL1+GQiELRmjLAbB8n5dUkHDHYjFtbGyo0+nYZwMKkZ2whrDOXuPJ2fPDzJlYkUgkbM4y8h1JBip98wT7BuM8Ho9NU09DCD4YX0By75lw5FDsH0G8XC5bUsaMavw9UpFYLGYSm1QqpcXFRUkTNhiWFv9Hwlgul2dYXs4HNkaJn7OD7QIoKPkCTLnNj78bjUa2FzC7MIv5fF7Ly8uWXPgGXdaSteBsIgFgfQAh2EOv17PyNn7Fzz8lGYYhBfBRPYNV5/spzXuChfUDGHE+IHZolqHBB2ab7/cMHWuOTaJVxZ/A7OJ3JNkaEs/xnSQAJJT4GqqR7B8JYzqdtgpOIBDQn/7pXfqpn3pCP/IjX9GLLz6o3d17TRKCrG9yPqu6/fYntbR0Qd/85r166aWxBoOWVTzy+fyMDhbwyL5LMmIGrEJsZy9Go5H1hVD2J2mFhCAp47m8L6Jyij36xBDiCpwC7iFWY+9MDuHf4884r+wJ1WgS77fz844Hp4uLizayxpcDKWn6sp007fyF2h+Px8rlcqrX69aFhiGRFRAoMA665Pnh8/2cN9/FfXBwoLW1Nc3NzalcLhu7g7OAESSIUV6iXEVQ9mOEGFaO84fdQNvSarWMvge8j0Yj5fN565iHLcHQKZm8/vrrymQyppHypSiAJ8wKNzExYB92j2cmeOA80JwScPk8Zhb6LnPWgLUaDAbW4MMPiQgjt8hsKaHEYjEtLy9bJj0BtgF1u7tWopUmUg7sA+dLuZ3gOyl/jjUcBhSLzSkUCltpCd0ygMMDFK9vRq6BwwVUkVHD/FYqFQMbsIflctlsCiDsS5V0vmO/OEr2lySDzLzVaqlQKFi51jvTg4MDs3Mf6KTprWwkCV4jmE6nraGQ52DUm29eABgwLxYABYNF0gC7R2KGA8eeaNhAAkH5CodMQOT9cLD8nSTTaHImYFVYd69jPzg4sPNJNYDkgsoGmlTPaEjT+Y0AcoAHjEckErGGBvaC94FN9zpYbK7b7apYLFqy47tw0YDC6sBQYZ/YoDQt3QMWCXjVatVuumE6BxcuUDlAooAfIsDByqOb8wPnvQ3A5AIISULYJwAgPgs9H34aQIXEgmSY5HZpacnsC6ad/02pmYDt/REVB/aHOEIVCb8YCEyaBWloI1gDuEj2sF0S8mPHjpktlEol9Xq9mcYYYhJJFCAFZgvmETsC3AAQYrGYNYjy+5wB/CGVHxJN5sGiz+TPSDpImKXJZBiYOc4iJX5YzW63a7Is/A+ESzabnXkv7IRzhX1i78SSxcXFmTmlfAb2ArhC/ra9va1sNiumQFAhgTzxIxO//OUP6v3vf0p33PEtdbuP6c03r9PGxryaza5SqYFuuqms1dVtdbtJPf74x3XmTFjSdEoClQ0qAeANWNVIJGIz0bmwg3NBzPHAkbUi8YCs8c2NSCCQWpCo4YslzUwHAucQN4l9voJHwx17Aw5gP7AzfB9xD9t4q593PDjlejtKCRwi2BRfHsNpo+GiiQHdH6wEzopr+ILBoHX9YUiSLKh3OpO7y1utllZWVkzDQWbK8ywvL2tjY8OyS19WSiQSMw4fTSbGQGChMYPmHzJxnDudqzhZ2FmcMk4LnY40NcJsNqujR4+qXq9bFyq3TCUSCW1vb1ugInj4EhjrSAc/bDFOhmeSpow3AD2RSBjjvLCwoHQ6bWCD7Bt2Ag0rAYkgh9MEGHDQfZf7xOHGVSxu6uzZpEajsZX72X//nAQTnOjqakWt1oLG44n+ENBPUuQ79umWxSFTnqJExnPDRiElaTQaMzpLnMeFCxeUyWR05MgRW+tYLGblUcZVwdTQILOzszNzz3WxWFSpVFI0GjVAC9CDHfAMqu+mJsDAzuGUKKfhAGEw+XxAqS/Jd7tdlUole3bKV5wbQH29XrekBOePzICqxWAwUCqVstFZS0tLNjYGn1Cr1WwPWDf2m3I4zSM8I2Bfmr2NCYYVln00GtmIISoYJGeSDFQCzDY2NtRoNBQIBJTP5+0zsVGek5Inaw/TyLPC6sHkwaTwXSSjvV7PGtbQo41GoxlNKPZO8tPr9VSv11Uul40d9+VWWEhf4SHgU5akqeLixYs/xP6FQiG7oY7kiVIi/oCyKzKfXC5nIJKkS5qyzl4WhAadBFeSNUQBcvE/JDiwdawfjTwAxXq9Pum2P5bSsZtjSqV7Go+jqpSW9NSf7ql/pUIFcBiNRtaAQ98DsWR+ft5GHQL62WPkY+wR6wwL6mURPHulUjGbW11dVbPZ1Pb2tknfOp2OKpWKAT4Sb4BtIpEwUoe1gRHnVikvh0BPCQPOOfSJGr6Y7yTp5J2I0ZA+0Wh0Zswa/QkkHfhP/j2sbKFQsCSU2888aYBvpjGNffeVl/F4fCX+hvTNb96vxx+/QbfddkHXXfe6briha5hja2tR3/ve+9Vo3KLBQAoGN6z3AP8PU44NoKn1zw7L6H0IlwgRM3q93gzm8MwrpAk+wRNOXiZHtcI/C6w71RkSQhIdnh0230vVsAt8BGQF/Tl/CU6v/Ozs7Nh99mRwLBJBHedOR6E/QGhXYDdw7GT2OAsyaZiMcDhs7B7aKEbHwAYCBinBvv7666pUKjaMHwaQzCaVStkoIRo9yESh7L32lEYGRtjATFAK4fpABr1L01lmzMnDGZCZBoNB3XDDDT+kFUK7KGkGmDJomPEvfCcllauZMl9GlGQshzTVD6+vr6tYLKrT6dhtKDDTvJvXUvnkhIO+tLSkbDar7e1t62Ak63/ppWP6iZ/4vg4d2tfZs9NRRGTh4XDYHCU/E8nAgQ4duqCnnrpHpVLJmgRgbvm3XqvT6XRsqDfsmx/TQgJBogAoQjNLGR12YzCYdKpePcuS8jAlU0Am64w+lhJVPD65KQe9rx+uD8CD8QL0w1w1m01zbvPz8wacAMbpdHqmaxwmkjMG28WQc0rHNMNQ+uv1erp8+bI6nY5pZbEBksJYLGaSDkbocOMPw6IBMpT3ON8AR/RqlL0oT6P1BoStr6/bnpO8Eix4bxgL2En+N0kcTAca5Xw+r2g0arfUsY5UIJAUeEDC9aaAE9+UBnjBRkh8kMjwZ41Gwy4x8J+BfXY6HevWp6kxkUjYlcQkvQDpnZ2dGe08dsdzUkkh0fcNTJIsKPpGItiZg4MDa/ry6wlxwOxiGKrxeGwVo2g0anIPqhTt9uTKTjTfyKlIrKiSeCA/HA5Vr9d0+wdzuv+Bqpaj/0kBjTVWQAGNpaJ0z20n9NK5u/T9r3aMtp0vAAEAAElEQVQUUcT6EPCJweC06TKRmAzpP3funIEW2DBsFr0nZIckA488L/4HLTF7hc/gu/wtVcjc0KwD7FlX/Oh4PLbZ0ltbW5b4w7pTKeJse70ngBfCAfkCF2kggfCjpSYNRn2TbABsmUxBSR9yiaSaKQMAIxISYj0yDfwFbB+VSgAdvomzsLMj7e7eqO9970YFgz1lMgm120GFw7Erida0WshMXhh5npV3IiHJ5/MGAvf29kzSR9WBdfOJEXZOyV2SAW3kegBEaSoPwL8BFn3vBtI3CAGeg0oYpB5g1Mu0ALIk4nwG7L+Pm3/ezzsenGJUbAilpPn5ea2vr2t/f19bW1saj8cmRIZFIniNRiMDLj5bIWMHbJC9QGujkxmPx6ZhhcUELPGMpVLJRigVi0XTVkkTxwyrs7+/r/PnzxvQxKlwmMLhsAqFggqFgrElvLs0vX8ZJhiHB+uKExqPxzZCBYC7trZm891g//b39y3o0gxFMAuHJ9ff1Wo1mxlHEOLfww4VCgV7TsZ6AbJxCDg5RjihdeN76WYnaFOqujow8T2AKL4T51yp5LW7m9RHP9rUZz5z2JgeMm9kCWg4YX9uueUFjUZBbWzcqMGgYo1wgBvWi3IfQRt9MpocHAFBEAaj3+8bS+0daywWM6E7ZRqaRmhg6XQ6NsYLZ0SSgA6VUigApFAoGFuLYyTTRqdLiYn/CwPNewA8cXCSjCUgcfBCe96JgFEoFOzSCAA1Z6tUKllDHt+Lxg7wkEql7EYiQBGsNUEdh86awIwCMhcXF4095PzS/Li9vW1nhM8HFFSrVWv04TpIQDysBD+AD5I4mHP8g5crcKsNiQ4+jlF4e3t7KhQKltCQcLKmqVRKy8vLxmTxDr4hwmsFsSuSBeQcsIVUklZXV5XNZo0A8E0afsQRbB9XL3ttMk2CCwsLymaztm/+wg2Ct09+Sax4X0CuJNOOAzZJigB2gDVsHxY+mUzq3LlzNlaH5AqQDDExHA4VjQf1N/7P0lr8i2rqRj1z8a/r2W/tq9MaKhoL6to75nT9zef0rqP/Wbd+6rC+/u0Pq1sOWFMdIIUpBrDlvB8xw5fmSeLR4uMrYcZg6gAuNKV62VkymbRbuqRJsrC5uWmVFRIKbJ9EF3vE3ikRwy6TXJJQrayszPQiwPqOx+OZhkNJlvDSpEYlhnf0TUfEMhJz2EK024FAwL6XpIf4BPGBPyW+cM7QfHpAzuf7HhUqf8jZAoG+nVlfTQAcwwLj/2hQg0wgCe71eiat8gkt8YEpKVc3PfFnAEKabgGF2WxWqVTKLm0Ar0Cy+dv8sCMS/+FwaHJHNMjYFXaJDXLOIQJXVlYMU72dn3c8OMWocJgMPGcsB3olMimCOcbMotdqNUnT689gwiTZZhA4AJX+FilAItmnNBWIl8tlRaNRraysGCNIx38ymbTrwyido0v1jppsxZegyFwlGZBC2wdD48v/3KPMgG9u/8BhU07wZYVUKqVcLmdsKaVQAj8SALSBBH30hX7OJe9C6Xo4HGppaclKypFIxBgd3pVuV0kz2Xa1WlUsFjNWwo9KwhnVajXT/BAEJk4iqaefvkUf+tD39dBDEX3nO2ElEknT7cEQSDLAfezYG7r11tP6wQ9uVbU6nRcJaEerx7On02m7e5igx7WFOHmaXxYWFhSLxUx8DqgBxGCz6N5gDX1DH06QqyIBpjgsPjubzZr9SzKGFNCGrdNkBfuPFhr5COwNQGA4nAxez+VyJvvABj1gJAsnoDYaDbu3GyALM8dZ8qwJOmrYBMAHpW4aH/y6ALwpuQGGYPeRnEjThj7YNf4jmNBggM8gYBLAq9WqLl++bEyG15P3+5PB5SSyADPYHJ6Vkiod0DwP818ph2NPXo82Ho+tcY2z5Efo7e7uGnvn97BcLltCDDABBAAWYNMotSIhCgQCNpMYn0rpUpokBDwTtkUZFcYb6QikAAkIrCLJHL4OFogzQvULuQa+1evjfDClisE5YIIJUwA4r6PRSO3Onv7qL2yqEP2Bnr7wKZ15pKNgMKTy5u4VX5nRpdMBnX12XQtLn9THfuxJffQDn9effudntLMjiw+8I5U0poiglyTBwQdhw/xHYxk6cewPYMt8U0rF4/HkZrqVlRUtLCxYMgX5ADADnHj7B3xAsDB1g1hEhWJnZ8fYQpIP3+AHUUTiBpCBSfSAByLBJ4HEJuQ1MK1UlAaDySgw5BLosil3e0aXzwak+Y5+Ek6qLJxBfhdfC3gmcfOAlzMGOIMF9f6cRL7X65kfoSJA5YtYwpqSYHMmmRCB3tfrm/F9SKO63a5hC4grziozn6lo0bTIhJxGo2Gxnx/wAoCcvQHkSjJM8lY//83B6W/+5m/q85//vF555RUlEgk98MAD+uf//J/r5MmT9jsHBwf6u3/37+r3fu/31O129eEPf1j/4l/8CxOlS9LFixf1qU99St/+9rc1Pz+vX/zFX9Rv/uZvWsb0dn986RKgCcA6c+aMDfkejUY2WDudTluw9M0RvquVciuOwTtUgjR0PYGEEho3clCepKvfd7AScBkXhZ4jFArp0KFDxnZysPf3943tGo8nt7Fsbm7OdGqSXSEbQCaA46GkAJjgfTEqAPri4qLm5uZUr9dNKwl49MwpQR8wUS6XTZ/C59JQQbcsgm32AABOCR9mJZ/PG1tdr9dVqVSMBcZxex0Zzol14PtZP8qIZKhnzqzp4GBZH//4porFsR577BprCCPbnwDrtt797i3df/+bev75FX3lK3nFYjvmuMluacKD2aXJh9JHJpOx0n4ikbDRX4A01hVbRDtGpz1JEMCOf+c7MgETDGf2oIgs2JcucWY8P8GcQIIThX1AHM9/lKNqtZqVeAOBgFUIeB7PCLE+/PloNDL9KGVY3j0ej9tlGJ7JowFnNBrZGhLUOZOUP2FsYMUl2dkl4SQZg93I5XIzo4tgMwgu/lxe/Xn+7/l91o9AiO4sGo2ab8I/cCawBQAa55XKB8ko+jbYUG4QIugz4gsbgtni3KDR9PNWkUqMRiNjlbE9f+UpwRx2HlvCZ6L1BYQR2EjkGQUFK+0bvJDnsN8EYuyW8w+YAGTxeQCScDhsjVxIALBtdMKQGdlsVr1eb2bySzgc1rv/6kDF6BN65KW/oTPfrV6xzfAMYKZU3uvN6wufvUef+LlTev8HvqNvND6oQCBgsg1AKGeOtcJnIOvgXLPOiURCq6urVqmgqWtnZ8e00MiFAN78HkQIo8qQTvhRYolEwuyEiyTo4CZO0bGPX8UmYMuoJIbDYasQECu8ptt/LvsMcYCvYH3oGyDpx/bxRSRakgzk+uoDSTc+k+QJGwNoAgAhYA4ODqxaxecDOkmYAXMAfWI0ZxHNLH6N9yV5Y7Y0cZYzQxzHR/C+yEKungiSzWatmbBWq6lcLpv/J4EkSej1eqpWq+YrqHBKsn+Dz4dsocLimyTxtb6BCx/N77/Vz39zcPrII4/o05/+tO655x4NBgP9g3/wD/Twww/rzJkzBs7+zt/5O/ryl7+sz33uc8pkMvqVX/kV/eRP/qQee+wxSZPs4+Mf/7iWl5d16tQpbW1t6a//9b+uSCSi3/iN3/iveh40MwiKg8GgsZWIwcnci8Wi6eRgGGDYCMqIr8lokQnAUnJofHmSYAkzQzbEYSYIIiwHKHM9Hiwj4mMCMiCWMjas4Pz8vPL5vJU9/QgX/sMYs9msMXU+28xkMuYgeB/ez88vRONKFktW52/gILOMRCKq1WqqVqvGqHARwXA41OXLly0TBVzxPGisYIOkyQgngjEjreh0jcViluFTliOQYYfsNR3vgCOaGr7znXX1+3P66Ecv6vbbt/TGGwW9/npB/X5MiURAq6sl3XDDtsbjgB577Li++c1DlvmSHXIgSTBgvGGm5ubmDHyFQtPbnrzOCIYVgIJTAhzCRvhGARw8+ikvMcABUi6EkUKfSmcnCRHOGYfDOvMeNO1gMzgj9ND8GfP9CFJomqTpGBOcm7+IoFKpGGBDQ4XjQzPotb2Uvfz7j8djuzaQsi1+Ac0agYszyT5gf7yLNO3gxy590wTgnMRT0kzDEPuIb6K8x2clk0nTslLNAEh5dhLQTdDkB+DB8Ho0sZwT2BuADoAY6QI+OBQKqVwumwaQd+AKScAA4I93p1Md/TFnAfCLnhqAANjANtG0BoNBu/YSNgx5Cs02e3t71hjqz4IHrTCJlUrFmkXR2OPXSWBhTwOBgDH7SJKY+MIadbtdBYJDnVz5ni50flSvPNqc0SsjiwFY4EP39qRvfvsu/egHvqDijQ+r+Xh0Ru/NWeRd/VglbAYA4Mu5JIgkctg5iRiMHzbFevnGvGQyqeuuu86SIJg/n2hxPiil+6kJ2WzWEkyee25uziZUcN7xg/xvEjgSC76b6gjPyRgoKmtMGGHtYELR2BO7OI/4XEgrn5yzplfLRfxUjoWFBdNPk1zjuwD7XgMcCEyuXI3FYubHfFykYkP1iSSFXgyYUDAD8ZC9hhji7HDeqX5KspjAszWbTV2+fFlHjx41aQPJg2di/Ygszmiz2Zy5VMOPNqSvhTX37Kxnwf+7aU6/+tWvzvzvf/tv/62KxaJ+8IMf6MEHH9Tu7q7+9b/+1/rsZz+rD37wg5Kkz3zmM7rhhhv0xBNP6L777tPXvvY1nTlzRt/4xje0tLSk22+/Xf/sn/0z/b2/9/f0j//xP37bLyfJnCQjN3BKoH+/8PV63Q4aJT0Yr3q9rl6vZ00OaM98mQo2BSDoy9uDwcD0HWTEXmjN/4XR9KJ/gEilUjGggZMKh8PWtEIZ2GvLeH8yd8TMGD7XtVIW4CBwwGGFoPz5LPREMJJkwTBmAHwyuGQyaeN7CJqZTMbGVrXbbetaxfAJZPF43NhmAhHXr1KqBBCxF3QgwyJT1qcMDVDCQXLow+GwOdiFhQVduHCgf/WvTuqWW8q65ZY39bGPvWK2Va8n9dWvHtK5cyclpZVKTTrfAZg4afbSl5oZQ0MAhjFCo1goFIyx8BodtEYEDXSG0nT0EZ9PgI5EIsbkYfcwEdgBQRGH7oX1viSGjfqmiqtLjL7MBtOZy+UsGSP4wy6QVfMcOHvsC90nAQCmI5VKmbyAcTYI+RH8UzUA1OKwh8Oh7QvNaZwvQKBnY5nFCohFDkK1gwSTffDAglnH7JNnEaieMN6NAM270mlMBzqfQ2IXDAbt72hi9Lplys8AR8aLofeGUfR6WgJxODy56KBWqxmjSJLA2B3sAQYan0TiwJ6ybtigZyd9IxT+DgCRyWRmLqmAHKACw2xa1o1gjfwBX0/TT7fbtZmy7D/VMyoZNLDC9JLwojUcDCajiXZ3d3X9AylFVdWLT68oGt2z5CYUCunBBx/Ubbfdpm63q1dffVXPPfecXn/9dVWrVT3z3Xl94P3HdM3xF/X0nyStKoSfZBIDWlnAOIw178r/BXxw2xtyCAAiz8W59wAnlUoZ+0iyz5pwtS1NYSQ++CfOM/bspVlciOH/nmQRP+SrL/giGvq63a416DFHFyDOfpBw4vtYn3A4bNMxms2m3U4HU+s1oyTevmrnkz7iImfEy7IAkvh6nsHrPQFvxFCSqu3tbQ2HQ2M1eWe+A0mOT5a93pc46RlgfCrnEp0oUgb0zJJmemJIDknU+Pdeush3EE/T6bRhFWINk3jQzwL8eWb27e38/IVrTrnSMJfLSZJ+8IMfqN/v66GHHrLfuf7663X48GE9/vjjuu+++/T444/rlltumSnzf/jDH9anPvUpnT59WnfccccPfQ+byg+BABaNTI4xIBg0znRzc1OS7AYXKPRms2mGSje5z0IBP+j9fCkf50HGO73SbFqKw1gxXkrYvoEFuh1hOSAhn89rd3dXxWLRDi1XYcJsIlVAx+p1VwQzBNqwtmS1lCq9E2HtKNtQtu52u9a5CegjGBEMeXfP5F1dYuMSANaoXC5bs0sulzMHSfMZB4j3B1hwsAniBNJgMGgZLKVkNI0wRyQPiPDb7bY2N9fUbn9A+/tNNZvbevnl85Im+7q0lFI6nTKHgVMlSQGMeODTbDZVKpUUi8W0srJiz+tLmLDgaHBh6Sn7U4aTZI6NTBwHit0CMBkL5vVrfqSXT5IYeQMTzu8CYGArcUwwsZQNR6ORXQsoaaZsSNLiSz08E06Uz0CSQJJH8OUcUr7P5XJ2kcLe3p4ajYYxA57hGAwGOn/+vNLptBYXF83p+gkYJJkEfhIv7JrKCU59YWHB2Bbv9GncoaoBcGR9kVh42Uaz2VQ8PrkpTZI1HNRqtRnnDhjmGSlNAmwl2Zriz9BfTu/Fns5RpUO82+0aqKRxAvtFZiHJRrexftg993UXi0UtLS1Z0sM4LMaMUTLkuWG+Ye0ZOwdjTdIMg8vwfRIWWLRLly6Z30PaAqPDPtJIx7/1TS6cC94NfTONjADX4XCoY8fOaydwl7Zfnd4OFYlEdNttt+lnfuZnLEm/+eab1e/3denSpSuBPqTXL92h2w7/Fw1CH1cymTQpCvtLGRUmLxwOGxiDcWfd/FgiSvuUe2FGGUFH3KPJi1I1wALJTSwWs2k1+AYSE84VGu6rGU8qALw/9kgTLskrvoMSMklJuVw228bOSUKwWfweyQafTRLHuUEW44G0b6Ak2SZODwYDYw1JsDm3AC2Y5EajYZUxr8lnD9rttra3t+15SSZ4D89Gsq+BwHSKAQkwwA+JDPGR8Vk+4UCjjA1w1gDPNL9xRbAH6Uj98C+QVcQZbI11g0UlznFuAMMAWT8y0OO0P+/nLxScjkYj/e2//bf17ne/WzfffLMk2SgB9Cz8LC0tqVQq2e94YMrf83d/1s9v/uZv6p/8k3/yZz5DIBCwa8YQ3AMEMUYMnAWWZAEQZs43UhAEAL0YBkDMlwwY0o/zGQ6Htmnotbjr+dChQzOliN3d6TD4SCSi48ePa21tzUDTwcGBsYnb29u6ePGiwuGw1tfXDQTB0LRaLbsqVJLNeQS4AcIlmUPDMVGmQPgeCATsHciIANCAMRizWCyohYXndf31FxWPtxQIDNTphHX2bElPPrmkjY15A7Y8B+wrwWlpaWlm/BKNOzg+Dh7OCLBG6VKSOQWuaiMI8n0ALJi/RCJhwJXsdm+vo14vquFQGo8HJlegTE6wA4QDenwHMN/vG4fIgH0jWafTUbFYtGkIMFTb29u2/zBCMB+SLDigLSSJ6na72tzcnPlOmPTRaGQNfABkSpsEDxyvn9bAqBjYb1gJEhjYTf4N8gM/qcI/B0COfefZYUL39/e1sbGhWCxmjWL4B9/oANsVDodtzBJMA2sEQ87zEgjC4bDN0ERXRgLHLVqj0XQkFrrQq6U8JFzsq28+gyX11xfT4EczD4mrn0ZAQwfzm2EQPUCl0Q27QQ7kAy1ngmADIPPJuyQ7Z14SRHDH3lKplM0jlaYXmQD4vA/xjRt+ZiLrlE6nTdKAb/KVDSoFgAyCJIAFYEdSgM3x7wEiJINXJ9GAXA+e5ubmrPObagFgIR5uqtU9bOzaaDTS2tqa7rzzTivNst6AZ/oJNi4MdMfhgcIJKdQMmW9ArkTSjbTBD0xnPBZlUg9SsQWv9UOzf3BwoJWVFVsjWFJY/k6nY8kkCQfxjKYWGsq8zx0MBjOTREhYaKLL5/MGguv1ut0GNhm5NPEFEDTYJdMLiOHokH1pG7+AbIOJI4yfQ5LB3qNt9RUI5CJedgNrjb+g9E7sBrgCUjk74AvIGC9J85UP33UPkeRlFPV6Xf1+X4VCwZoQYaqxe8gjKovIm+i9QENNXCaRB8jyvTyfj62sERgKXzQYDCxpQsMKvmFtpenEInpe8KE+Vr/Vz18oOP30pz+tl156SY8++uhf5NdIkv7+3//7+rVf+zX7381mU4cOHVK5XLaMgMOAhiSZTJqIGDobB0h5h4wGJ4rDwxl57Sjgzwc+L9Iul8vm+HCibCpBlkMPqEI0DQDe29vTpUuX7ODAtsCKBIOTIcIInSmB07AESA4Gg9re3rbMFX2fBw00jBDUg8HpNZa+VErZmGYlwEq3e6Bi8Ru68cYzisc72tpa1uXLyxoMpGSyo3e967Le854LOn06o29840b1+wt2SCkDStMSLGvGOCNADoeGPcCxwZpzYJAi+CYLSobJZFJLS0tWyqRTlewTFnYwGPxQVg8bg1Pc29vT5uamMTcEYphi2GEAH/bJmpZKJStRM86l2+3aZAP+DdpPnwywXpShYefJbKkKAPoA4oBxyoowgNh4KBSy8UuUHMvlssLhsN3CVq/XTb+IzITSVqvVMl0wzgmGDbBFqRWgT6maoILGqVqtzjDSnCNJM+cbRrher1sApbRIhzIsL87bJyi+xOXPMqVmysL4CknWLOOZHGzZl2BJvAj0JAGAWuQKAH6kFgA9QAm+A2ZUktk3nweAnp+fN6aRRMPPgLy6k5rghya7Xq9bmXVra8s6/en6h/VcWVkxPe/VzWzMZ61UKsa2YVMkKV5uBZsJePKVKyo/yWTSmGAqTxsbG5bgjMdjq2yh7YaNkqYkBKPzSMTxeydPntTJkyd17tw5XbhwQf1+33y+NJYUsAoFSRDvh3/e39/XG2+8McPCRiKTZCWXzyvWjxtYYL04g5xTPpumXc4aLC4gzs+ThcnFr/qkgfFCaIqJUyQy/HA2aKBBfwzLTpJNdQKigqoc5xbbxwf78jxkQrvdtjF1VENXV1dnboKDKWT/sHGvO4Y9RJuKv/ZSHM6JJPOvrBXPg9+n2QxiwSdbJK3YAEDaVxZYR5/ohcOTxjAm/ND45BNyGt9yuZwlJNgQ7CnJ4Gg0Mp+M3hmfymf0epPB+fSK+AYtPhs9PesFO0ps53eRZqFbp7eEtSNeePC9v7+vSqXyVnBusl5v67f+f/j5lV/5FX3pS1/Sd7/7Xa2vr9ufLy8v2wJ59nR7e1vLy8v2O08++eTM53GHLL9z9Y8XdfsfdFR+QznkMIp0FyIkpoRCAN7f3zfA58uklKhY9EAgoJWVFQtOHCAvWh+NJp2V3G6Dw6YUySHxZc5gcNKwheMgGOAofGBD5+M1WbwLzh1nUq1WrfwC8GOY9dUiZt+lu7W1pXw+b9pHGGRJZoiRSFAPPPC4jh49q7Nnb9L583eoXk9Zc8TEMQ60snJG73//Jf3yLz+jz3/+AfV6y5Zx8Ux08VIm9iVWtGIwCwQDxqbgLL0ThxEhwAPWqtWqsZ6XL1+2kivvRnMB4BjGptfrmVaLfeP5wuGwlpeXZxpnCCqUhAAXfG6/P5nRuby8bDYA0Jqbm7NRSdgWyQygVNJMgKczltIMZZVMJmMd3jgqQIovxaG3RmIiTYMEYG1nZ8cckS8v8WwMkycojUYj0zvD4rEnOEXeg4YwupiLxeJMqRZWmOBI8KQMxnnmWdDNsdcwkEgWYrGY6bLC4bBKpZIlaYFAYKYkzvN3OpMrENF9wQDBlqBni0QiNrcVNtQzXszq5d9SRvezbQmIJBOAVcAcwBRZEoDZlztZt0wmo2w2q42NDetYx2YkWeIO40fyQHkdScP6+roqlYo1tEnTa5vR+/NOADBkA+iEKff7dxwOh6aj9AkHJAK+j73g2WD/WE9kAn7yBe91+PBh5fN5nT59WtVqdUaek0qldOedd+pDH/qQHnnkEVuner0+ma4xTGsuVlcsVjS/2Ww2derUKa2vr+vEiRMaDoc6deqUyuWysdzz8/NaWu9prICS4bQGsYHJJ4gXSI/wXVQLqCKREFE+9hdj+CoMpVaasxjThJ1BWHA5A8DJS2xIsgCerA0aR4ArIAZAQ9LuG8PQwnIOiRkAcvTkfowdzDAJjTS9mhqtPn/n54KSvABQuVUQWyRZg5EGmPPs4ArWg7NDn4dnR/H3vCd7xlSZWCymra0t8/kwmydOnND58+dt9ms8Htfy8vKMD+M2PS87wndh26lUysAlPhhbgMjY29uzNcGXUb6nCszeQUIR9/GvNNUBfPGFvjLjZXQAearK/900p+PxWL/6q7+qL3zhC/rOd76jY8eOzfz9XXfdpUgkom9+85v6xCc+IUl69dVXdfHiRd1///2SpPvvv1+//uu/rnK5bPe3f/3rX1c6ndaNN974X/U8lCz29/e1vr5uWQ80Newkzt2zZGwehwfHAesgTQ9IrVazQfWU2/l7tKPM6xuNRsYgtFqtmcHFsAdeywcYS6fTymazNhx3d3dXg8HAGCkcAWM+otGolcYwKvZoPB5bUwPZkTQ9nAQv2CSACOwpbJ/X1tDQsLOzo3vueUJHjlzUd77zPjUat15h1Vr2/ZMgEdKZM8e1sXFEn/zkU/rEJ57UH//xR7W5OW0koaQOO0WAlWSZLGCOO8J9CRcgRGmNEgd/fnBwYJk0ZT4aHtDeAbJwBJlMxsqLnU5H58+ft/I+WlA6rLnVCPvCaQBoWGOyYPRLOIWDgwNtb29PgtnSkiKRiN0qA2CjVANIw649yGNNAM2ARJp9KIOSfBDcYDJ8mZymGioINAcBujgTlUpFxWLRZiyiaaOJIJPJqFarKRAIaHFx0bSj7C86Op4ZRmRlZcU0crVaTalUysqEvD+27p02zXWcLZh0ZBewdti/NKlIcKc5ujUcPsGHpjWCOmeZ0ixMCKUwKgzo+vz5omsYe6OLfGdnx3xPKpXSoUOHdM011ygSiejs2bO6dOmSWq2W7SOMPuwF7Cc2jjZemnZgY9+SjOEi2eAzYJqRa3iADAjA/wBuYGB9IyuJLe+KFhmbB0yQnPuZj1wLjGxCkrGNnlH3JUhPXIRCIQP6/X7fSqKUo72vicfj2tnZ0YULF+weeQB3OBzWufNreteJP9Dcym3a2wvbPO033nhDn/3sZ3X06FEFg0GdO3fOyugTX9nRsbUXVBk9qEapYqOGvN0B0Ik7JN5UiHgGfwtcvV7X/v6+SRFgxpjssri4aJcphEIh00pzVmDHSEb44Xz4Jhk/PorYBdtPzwRA2O83F47gtxmlCBDzkjv8CVUgYirnjXhJMgiBQNWH6hUYgDgHY+srE8Qz5mrDEFJ19eQH+n/G/xHnWQfGpJFY4J8581Sfzp49+0M9E/gZ4gLVOs5hoVCwZ/AyJhJrKo/ELfxBs9nUpUuXFAwGLZaQ3EHeIZ3y7CgAFGaVpAZbYC9g+QGfnG3wAVMOIDje6ue/OTj99Kc/rc9+9rP64he/qFQqZRpRWJpMJqNf/uVf1q/92q8ZqPrVX/1V3X///brvvvskSQ8//LBuvPFG/cIv/IJ+67d+S6VSSf/wH/5DffrTn/4z2dE/7we2hVLB0tKSgQvmiCHUD4cno6Lq9bqWlpYsQNCwAvNIlywAh0BEyZ/FJ6CkUikDLFD9GBRgGLYHw+Jw8W8ALV6bGI/H7XmlibGSlRKIfBZHdgcow7ETYMiEYBPJosnMOJhoSQm+ZOulUkmhUEjZ7I7uuuuCnn76ftXrt6jd3jdWic5iSuqTz13W1772Qf3ET3xFt912RuXydWbUZGkAdubWkaGSRXpNEgE5FpsMPV9cXDRACFjEmfs1B3RHo1Gtr69bWbDbnV6PByPNHrRaLW1vb1uDDaxIMDjpol5aWjKnSyJARi9pJtsGfAG6ccY4Vg+qPBtCs9N4PNbi4qIxlF475cv6/D3MGk6c5iUYIJhTScY40h0NyJFkzS9cZUlnPU5ZkiV7OG5sAQAN8I3FYlbuDwaDpiMdDAbGVqXTaStRwQAwrgY2nGDjWXZAEvteLpeVzWa1vr4+02yB/jGRSJgOC6fPu0y63S/pwQf7KhYH6vVa6nQCqlaXVS7nNRiM7XN8yYwADyAnoeRsYQuU6kKhkN3kAjBNpVL6wAc+oHvvvVeBQEBvvPGGfv/3f9/00VfryXhm7E+SlYEZuk6QlybBf3t72wIbSex4PNbW1taMzg85DyV/mGAaTtH88TwkAJJMX8nzECh94oN0gjXyTSL4Ug80fR8AfoB3QmKAvTFF4dVXXzW2Do0test2u63vfve7euyxxwxowG5J0plTId11Iq2b31VT7dz0IpFut6vXXnvNmrO8TKbdbuu6O+aVCbysR155n/b3SwaSuEYVmwZYs2YwjrCX+GUAgb+lEBCRTCZVLpeNKefPYOv39/dNb8538n2Mh0NSAlCUpIUrN58B7ofD6TXNnF0Apm9O9BpI4mitVjN7w+8hMyOR44xgK76bH2CMlhMNN2tD4gV49jIWYj+3FBJ3wuGwlbjxQ95PUw3a2dlRvV635uREImHj20ajkWlUWVdYby63aDQaWltbs9iDn+e58PPVatW6//2lNvxfpIoAdAC2rxYTu5Ew4geIRyT4vDPJBGPYWB90pJ4EYu/5d1S9fGUV3/R2fv6bg9Pf/d3flSS9//3vn/nzz3zmM/qlX/olSdJv//ZvKxgM6hOf+IS63ekQfn5CoZC+9KUv6VOf+pTuv/9+zc3N6Rd/8Rf1T//pP/2vfp54PK7V1VVVKhXV63Ulk0kLbDifVqt1JSj3lUjsKhzuK5udV6ORVKs12TT0aQxhx0nC9JCl1Ot1G31Bxx0gzgd0dF5Q+zh1xlBwwAkg0vQmKjQbjFwhG0un01peXtbm5qY2NzdNn+WHd6PlyefzZuDJZNKYAwAwgR6JAmwPWW4mk7FsiUC+vLysUCikBx/cVKeTUL3+HgWDXWNFcAyAM+5Lz+Vy2twc6Pnn13Tbba/rO9+5RuFw0hwxgAb9KBkk4JSyCuwemldAVK/X06FDh2Zm11Ei4ztwKNgCJQ1KizSAbW1tmVwCGQVrw3xZDjuOHlBLGZFbeOhCp7wFGMFRcBZGo5FKpZIlOK1Wy2bdclUpdsdQdDSABOxAYKKL4+/ReJJY+KYwAC+aSD6j0WjY+gI8sV3AM9ID3hU7xVmzR9jEysqKOS7YaD8PMZPJaOHKPec+uNOUJ8nYXxgVzg17ure3p2KxaO8VjUaVzWZNp+YZeLJ8NGScH/ZlMm5nRw8+eE433bSlUGisViulg4Ox4vGeFhYuqtV6Sa+8cq0uXrxb2eyaKpWKarXaDHhC40vJmoSV0iUaSf4MZoMEmGanQCCgo0eP6rrrrlO/39cbb7xh+wRL7wEhe8Caj0Yjk0wxLgpwB8DwTBWSEpIHwDIJFLKXTqdjgNWz1/gTJC3od7E3QK9n+Pk3ABcqA9g0yRlJCeCGdSVQk9QCgjkXrAUzUJEOcKEJNydJsr6FhSu357X3unqj/IBOFP9Yl9/1N3X2+5NzCygaDAaqVquW9I9GIy2v5fXQjzyjduAaXXp2Kmvx8hK0fJJMM41kwuuLB4OBnQ1m2AI6YYBhLEOhkM3R9I1hyHwSiYRdP+svAAkGJxNYGMfkqy5+7qXfZ4ASDDw+G1vhXWF/8W34jv39fatGkrAB4HkXOtUB6Ezo8FIn9pn9ACC2Wi2LP0iqSJb9XGAALckdSfdwODStPWwvfw4A9TYI3oBUgqzjfVgjX5nBF/C+S0tLtlfgFsgNyvGQMiRJyAXxL3wWyRv+BekNlUmqxrDI2DRVRn73aiDd6XTM9xCbeQ6v1X07P38hZf23+onH4/qd3/kd/c7v/M7/1985cuSIvvKVr/z//TwYMUZ1cHCgcrmsVqulnZ0dpdNpHTvW1403PqGjR88pHEbT8qz6/ZDOnFnV888fUa+XsgNJI4JnWAAZGCgHsFaraTgcan193YCk1xT5bv5ut6tqtWoOhqyfRqjNzU3rGkcnC/XPIdzY2LA1JgjyTHyX1/pGIhF7DkoosJVkSDRvEMwBhRx4/nwSxHu68cYNvfHGHapUGtbw4cciEUxgJgGWp08f1733ntPx4xd07twNph/zGhveU5K9P2U2z+bEYjG735tn4PrW4XBov0NDB6DFg0lJlhWyb7u7uyanYJ9g530XKiws7xAOh+0KyHq9bow45Z2dnR0LirVazcrFPDvBsNvtKpfLGTvvGwsAPDgrytbcCkQiRCZNWYfbigAeSFn4ITHwzHEmkzGAOj8/PzOQG4AO4IMdxRHyH8+NQ6ZMj/yCIIJelhItwYqsXJLdOkVZij2WZBIYyluA/3w+bywvQMuXItGTLi0tqVwuKxKJ6LrrWvrJn3xWvV5ETz11Qm+8cZ2CwUWb07u42ND73rejO+44reuu29QLL/ys2QE2zA07gMaDgwPTOgJOOHexWEzlctlucsrn86rVanr00Ud17bXX2iUFaOZgm/x5JiBx3pFKEHA9W8V64jtIvgBBnmGh1FsoFKxyAlvmx8eNx2PTwgNmfI8AXer8GTMtV1dXzad1u10tLy+bdMY321BNgtmECZRk4IPSLiVcwARyBfSxGxsbNunA2zjnDE05z95sNvWl/xDQL/+t6/Te2/6dItFf0ivfm96Qhf4SO0zlovqrP3dayeCGvvStn9LuFe0e4/S8tCSVStnoL4A9Z5UYw2xoNO/cOETjIWs5HA6tAgfbRWMmmkT0o4wZJLnE/0lTeRAgi88iKQWQ+HI8iTCSsUKhYL6p3+8bkzkej40wGAwGFjs5/wcHB1adWlhYsOS70+loYWHBpG34osXFRbN3JAskTf5M8N6wu1SNsEfOEMkl61+tVi3Z2d3dtbiGvfmudKQWSKfQ1JKMI9PwWmGSZc4QibIHfL66CEnV601uMUMv7vXGxEv+PaO+2FdiOw3WVJeRsyGZggDi70kymOADTsAPwGhjw2/n5y98zul/7x+cWbPZVD6fN93nBFSG9f73P6rDh1/X/v6czp69T83mSZVKTY1G+1pbu6Trr39Dt912SRcvVnXq1APGrgE4/M1DMEgEx4WFBXOAuVzOHGSj0TCqn00jMJGZA5S8loqSFCwbHYFkbl7XIU1LeZIMLAPg0KehfQRgUjLCiaFpBIjCeJHt7uzs2DMMh0MVizuKRPoql6+VpCtl/uxMkwqgjkMydd4FVatpFQp1vfzygQUNmBRf2oEtoHxOSYnSIYeYUrV3zNIU8A8GAyv3EQwZIuw1ftKEWVhbW1O/37cRQzs7OzMzEwHi6LVwoAQqunjJnMnM2X9Jxoyhv6NTPZfL2WEH0AMQ/PWkgEf2kmALYwbLAXvBmkoyeQATHXBC7APPCKPGWSJQ+UsBeG/v1MPhsL07F0Ngo777FxkBs1l92RVnyh5RAcG+yeSRMTDSBxaahC4Sidi58A0nnDfsFOd87bVd/fRPP6NLl/L61rce1HAYvcIwxCzxK5WG+ta3juvFF0/qIx/5tm655T/o7NkPajyO2ud5GYafzUplBeAIwER/LMnAzhNPPKFQKKTDhw/r5Zdf1muvvWaNkpxXz7Syz/gnmk3YSyQP2BzBEhYb/SPaT68zxF6Q3vBuy8vLZqOheFTrdw2UyewrHOqpP4ioup3Q60+MLeng/WFs8YuAB8AhfiQUCllpFVCxvb09MyNSkjGFnhkF8EmT65hh1ILBoP2ev6UnEAjYTVOwygD1SCihL/3+Tfr4z0T1nuv/V91w8kG98vqNOvdU11jMtetTuv2+uo5lv66R4vrG4z+j1uXpvfFeF4/P5fzRgEMnOKVcRut5FhSSgIYgGog5k5FIxM5uqVQyHSx+iLXlzzn7NP5yHapvcOv3+zPnn0a3QCBg+lbsHlCEbyC5IHnjZkHYcWkq6cD34I8DgYCNHQMcMdaMz/UkAhNuIAUkWYMTdkxpnRmiyCAkzcjs8PWAZ6oO2FwqlTJ7RmsOgcFnwZjie5Am8SzsJ4kXoJkqFzGOs+ArB5xPzjj+7+okFAmKJPN9NH4xo1WajtICmBKnru7roNma3hN/zS6jxjh3b/XzjgenOLfV1dWZcQ/B4Egf+9hjKha3dOrUgzpzZlWp1MIV3VROu7t1PfNMRk89dUI33nhJ73nP03rf+w5ULt+qXm9oRtrpdHTp0iVJsvI9ZVIGfONwyLLovmMOJDeXtFotmzNIZgyDBHPlu6LRVJG5SJPDxow0Mj+CMpkRLGCpVLKuewIiBnz06FFzWnTE021IE8zFixctawcsx2ITx1mrdRUMTphS9J7S9KYJhOawzuh+Dw6iSiZHxrJ5UEygoLza6XRmgDpZNCX248ePW+kU5hwnNxgMjB1GZ+azXcokAEMcLp2yrClZKmU7PhN2zzsIDrw0zdYBHSQkxWLR1oJbRGBUcAy+jBIIBGaaPgjSJEw4WhIpSra+qxNnTwBBVoJOCzYSwOPLgpKsVEOCxiUMnU7Hyro0BJA9o8OGGcWBX910CKCVZMAKbSRZvG8CovwH8KQMSkkKwMUaoX/DiRJkmVoRjUZVqVQUCkk/9mPPq1rN6+tff1CjUVjxeNSCG0EtnU6rXC6rUumq3X5An/zkd3XPPc/qkUfusqCIHQLo5ubmZi6CoMwYDAZ16dIl2yPOI7b+6KOPmg3gV/x6wtJ4phZfQdNRMpnU2tqaMe0LCwvG/lMm5bpS3yxDsgWokGTd9tVq1RKs3HpW9zzU1pHU7yk6LqujdQ00r5D2dSJ9SfecyOli8wN65ttp1V6uzTSBUsWh8SSTyWhjY8OAo29eQnoRiURMJ4nNo+WUZIGXs+rZLXwTIJVEAL0//odqBjZaLBYVj6T1+X97jW5537W68doX9J4Tv6v7TyY00IKC6igy3lEvsKgXLr1Xj301oPh43z6LMjIAwGuzOXMkd9juwpUrcGE5OZewdvhNGD8v5eBdfQc6Z5+Y43WHxBFsFl/KjEuYQ0mmX2YqC2wqVZTd3V3rdOd5pnKZtE1MyWazWlpasgSt0WhYHAWg45sgjKjKIdPi/PspCsFg0OYjt1otS9IBzF5WQmLITUfhcNieqVKpGKmDhAK/SJKG72cf6vW6je3q9Xp2kQd6fDTU+CBsT5LpOdHReymYn2CAjVL58LIAaSqd4opqqrmSzF+DB1gLkkXWnZjtZWO+lwCdMaw9UkBkbtjKW/2848EpmRM0OizJe997WsXiph555KMqlVY1Nxew7BEWYbKhUb366nG120k9/PAjuvde6dVX328lV8Z/UGZEN+I7HymJkWHk83nLXsnE6fwmkAJ+YZcWFhbM2NGEEsz4rmAwqOXlZRUKBSvB+SYQQAFZP4PPATWeyfWsEWURtH+bm5v2/jRSoKXs95kd2Nf29o4FQG7uAFg0Gg3LSgE5k+ftq99P2OH0GitYMsoRsCmwc2SRrA9jtAjQ6XTaGsYA/zSswRRKsjKl1/fAWuBo8/m8TUSgFI9+lm5UgiaXM6A/Rt5AMlIoFFSr1dRsNrW2tqZ8Pq9SqTQzwokDXy6XVa1WTb+VTqdnxv1QRgP4Etj6/b7K5bIFdMr87I8fnwYjAQgAGLOGaPhw2gBCgBYOFdE8gcPboTTV7zUaDS0tLc0EUwLG3Nycsft0KaOd8uVptGkkWNgFwRonTlKDk87lclauikan1236ElcikdDRo/tKpw/09a+/X8nkgjUp8f3B4KSjHBnF5L2Cev75E7rzzlf0gx/cbczI3t7eTCcrkx5ImthLKgr+xiTONA2LVD9YK96DS0e4/hIb9k0MsIuALBhTpEqcO4J0vz8Zt+bZXdYUiRMJZSgU0trNRX3kg19WZFTX2cr9eumJnIbtnCUDc4tD3frAro4ufFPrPxbXf4m8Xy8+vjHDttNAMT8/bxMesKFwOGyNYgBvQJT3rTBjkqz8jGQE34fcBZYSAI4PIFkEKFERAghOqlwJPffNA2299CEdvfnjmstXNda+er2gquWgHvmjS6psn580vyT3Z3w0SQfAz+t+JZnUhkRwOJxe1IHW0wNQkjbOIskYn4mdpVIpu0Ia/TPMaKvVsh4LpEHESBJHNOSsEYDXl54BkRALgGCqVox786VgSZa8Ua4mLnlSghgszQ6Ll2T6Wp6p2+2qUChY7wHnjPjtfaNnYyFHSNhheCmzE7tgdtFmA1RhUP2EFqQWHpdgt9lsdqZ6iaQBHwfZAQFCnIZ9BYPgtwGPsOt+qgAAlEoWsZ7YgC/l80kWsEvWDxbZV3bxA74KR9x9Oz/veHDqDwyMSiIx0I03ntUzz9yos2czisUGxmqR9TPCQ9IVDd2annlmW3fe+ZrOnu1qMIjq3LlzSiQSWllZsRIqGiVfQob5oiRFNsb8RpwTAZcuZIwbRzIcDu0mJe7lJesuFovmiCl9klFTejk4OLA5mARFAC7Mpp+1Oj8/b+UdSq1MEtjc3FShUDAGDrDYaqU1GgW1tFTSa68tzrC8sIYEYmYp0kgRCu2pUGjplVdWrQxPp+jCwoI5N8Z94CwoE3CQaIR56aWXDFRSsgBMoz/DMZJJAwLYD2nqePy4GRyMH1iNnIA14bsJKjh1hPdkrHRYcsAB+2iwstmsMpmMyuXyD2l6YCno/KYsRAbOO3DjDqU1nDjOiT/n+wuFgjGgvmxH8GKOKUkVjBz6KJ+pewaUtfINKoyCoQwP209QDIUm0xQApiSYkmzvKbONRiMbvE3wJSjAsCD054f1xAZIJABisVhMd9+9qc3NrDY3k1pZiduIIZgJglCn07GS9O7urp5/fl13331G119/US+/nLSRQYPBwJI2mkfQ/QLmAWXetj0bSAkdHWc+n7dxaiQzJAQ02RBMYrHYDPOJtINyt2dPCciJRML2E4YMnwPY48/zx3L62Ae/qP4woc9/7iPaqUiRSFDBYHNq7422Hv18Rk9nf1wf/4mn9WMf+7pq5Xdp+3zbfAQgfnd3V9lsVtx0h3/FHkk4i8WiAUlAR7/fN3BFA4skA02j0WTsFGOfXnjhBVWrVdOBckb4Ds7m7u7ujKYfv53N5rSSul6VjYrOnDmjUqk0sZX+hJiAOSMJIPkEsOBbCPC8I4wWNoTvKhQKNn4In9nv9y25RdLDflI588AGQgVAw/eiq2QUFeP9SERIZrFJfDRAkmYc9o3zBfnjp3mwnlQifIMdwBpfwg9yE6/NB8D7foXxeDyjQZWm13h6aQr7SALumxTxj/xvtMfsGQkj0hFiPuc9FArp6NGjphEFX0B6sG8kCWhv8Y3+WXwFDTkCwPHqxJo/I+n349/C4bCddapw+AYSQMg1ziLJNQmpb0DlbPA5PAcyBp7/7fy848Epi0+m2W63deedlxQMShcu3KZIZLIEUP+UzHwHvjRx2qdPH9ddd72i1dXTunjxzpnMk4DG6B6AJKCNg1qpVCwD5WCS1ZCVwl7ACsBucgMVd4IjOAd0AURarZYBBrr0eLZOp6N8Pm9lPw43BkjAwpER5GFvC4WCDh8+bAwR4BkHHYnM6fLla3Ty5Cv63vcKJmugtAio4o53aVJOSKVSuuOOib7l9Ol1RSKhmcYOAqs0vQ0IQAVrCYuMVg32ZHqbi2YCE2tPIERnB2uFA4WNarfbtlbc0jU/P28d6/F43HRcOCNJM3YFAwVDuLOzY2UPsvBut2u2RyADOB85ckSlUsmcNEGawAjQYz9gNL2gHwcjyVgEABZXcdIowrmQpteiAoYIngQ19GoAFoIbJSKYXpw2wJ6pAH4MCecOaQUAHdai1+tZ0sP5IgkAaHL7CmVzqigkY7AV2BTOlMCLFjmZDGttbUvf/e5darfbqlQq5ohZU6Z2+IkBkwAb08bGig4fvqyXX75esVjMZk1iM5TjAdbNZlPFYtFKYZRC2ScPXOhsxmcBwLg2kmoDds17cwao+Pj3Pjg4MN0oiQlndWlpSa1WS6VSaSbRwB4BhB/5sTc1Gklf+L07NThIaH4+aHYJ8w0A2i119IefvU2f/Lm2fvrnL+s//G/HzG/5Ej9SBHTI6I4pF4fDYWWzWesCZ5Ynz4n2Fg2kL6HSqBgIBKxHgeSO7mUSJd6ZG6WQhCSTSR05ckTvete7lMvltLOzY755NBpZwGbPSGJIJrzUhj2i3A/BQHLN/qEvx4YBM7BlSGKwc0AfewD5ACuNr2+321peXrb18VpD9pHGHvbIS8ZofEHmwWU2sNZowTn/yH84myQeACAIE5ooie2Mf9rd3dW5c+fU6/WMoKFRFX8HA1iv1435Jl6wTkjDqC5CSPjRiV7nSezzzVusGRIvr5FHwkcTmm9WA/xCOlDNhI2kykQyyZoDbGEw2W9IAthm/h2aZuIRLD3yDEgy/D92TByEgPOXmyCron8Cf0Hco1rj+xve6ucdD07R4xGMA4GAbrjhgnZ2btGNNz6gG264QadOnbIgShkRlA/4mWgQ+7pwYV033XRJp09fZw4OpopNptRL9oSzp9xGQAC0cLMK8gMae9h4Ol0jkYiq1appNjB2tHuUWf2sOf9OyWRSFy5csM/nEGHAnukFYLVaLW1ubhpIA7yyloA1SsnhcFivvXaDHnroDZ04UdPly3Mz3YEePAFwJ3cvJ3XDDa/p3Lkj2t8PK50e2eEk0ODsOIRktpKsyYhZi74UyaD2QCBg+lP2Bafc6/W0tbVlzALPxr5Q/ovFYtYhGwqFdPz4cUscyA739vZmhluHw5N7nyORye1AOIZAIGCNXYBRmE+CEyxhtVo1hoXxS7BzlEqSyaQx8oANuixxFuhrKZV5JoqgLsnsA8DBGLFKpaKzZ8+q1+tpaWlJ11xzjQEJAja6KLSrGxsbxg7g2PkOkg4/+BmWMxaLGVOPg6aBwAdK3hP7YN9ZP88mwBJ77RQBbHd31xqKsNmJfXLhxkR3xfqiF+PzaDoC3NPotLsb0dLSdOg4gLrRaOjixYuKxWIGEgA5sD/4AdYmEAioUqlY9QAwTNk7Go1qd3fXrmLk83q9nsrlsjWjsR/8DjbO55HYSdO5klQtYOsIViRPrPfh29e1qM/osdOf0P5uUMlkyKovzJnmDF+4cEHtdlvt+lDPvf4jeve1/1JHb7xJtUvT0Xp8Lk1BTC7AJgBu6ODwDbA0SFjq9frMrFz8CpU1+gBosoTN5nlJhgG8AE3sIJVK6eabb9Y999yj8Xisc+fOGZjF/+ITQqGQXXWdSCRULBbNpjmf/hYwbrrCx6LL9r63WCyqUCjMyGgA1gBaQCBMGR3sVBX92SGZ4UzgVxkIPzc3p9XVVUv0+TwAKv+eZ2k2mzMyG0gGABbJpm+IJEkkZjEyD1CJJEeSVldXjcHDB+HLWVt8Ds1ffsKATyQ4b7DAxHnIAICil3ZBECBBwMd7n4BumAoL9gEgxT5gNZFT8eck8Z1OxxqNIaGIVQB43p21ZrY3ZxGQjO+HJV9aWrK9pgpMooq/7Pf7M+AW30H8wEfzu7D0V2uf/7yfdzw4hdWSZFlNIrGn119PaXNzw2aeTpoeJrPE2Lhms2llcBxLvZ7T8nLFHAeZIKwRxgtTS3NSMDi58z6fz8+whj4AcUBWVlYUjUZnhghjGAsLC3ajj9di+iYFgiXBBdAUCASsu5Wg7rUlANnl5WVtbW0Ze8A6xGIxA0pLS0vK5/MGsiWZrrbZjOj48UU9/PDT+r3fC6pc7lrpB9DMnkwAfkDvetdXFYl09NxzNyoSmV75ilODGebAUUZGm0tWzvQEStIkA2TeW1tbCgQCkyaGK8wIjoofgBtACYcgTS5W4BpCSlm8C+CERAXQhwPk+wA+ZLvD4dCC/Xg8VqVSsdtXSJC80B92AQYSsExJC1sHzBCsyaoJEDBH29vbMzewkOXC0vE+pVJJzzzzjEkyrrvuOgOg2C8Nfjh4GNNMJmNlNP/+sIP8e8qWyWTSEg3slP+LzXrAGwxOphnAFiAbYEwYAAymn/8AmV4e4psiJrODE1fWpS8pbkESzSHsvE9GvBYvGBzp4GCgCxcu2LXFNBn4Zi1mKTOcns+zUnk+b0GPTmLf9SxNm9Pa7ba2tra0tLSkRCIxcy82wBa2zjdqEPR3dnZmdK5cF4tuO5/P2xqxz9jcu963p56y2ji9oFQqYI2Ed911l+6++26TLDUaDf3hH/6hlTjPPTXS3det6I537+hrn80aQ469opXENmhWo0zL+xOM8XPsNdpcPz0EWRR2n8lktLi4aEPXkWzVajUjGdAk+ga/cHhyLefRo0dnRlBRLqd0jI7e9wLgc/gzNJfpdNoqIAAg/qzdbuvy5cumkcSuYKb4DBhSmH7fzEjjDvppgA6fiWQFVpxKFkxzPB63Kh/xahIjJx3pc3Nz1qHNGWs0GiYdIRmHJPGgGtafhIQYSVyld0OS+VASDmkq9/ETL3h/JEOAds4cBAT7wdmGvaXqxp76kjoAGxkUjXw8I3EETEASjYwBOyUB5LOJIZzNbDarnZ0dXb58Wd1u167pZq99XGd9AYj8UJnjnZhMgGYeQO77aZDtYFtIBmF9Sd6wH8AxxKCXZfyl5vTKz+7urlZWVqzMOgE9QzWbHW1sbGhzc9PmsBFs0PZg6Ol02gbgDodBhUIj00BSsvSjUMjMyUq8Q2GOHYGC4NvtTq5RHAwGWl1d1eLiogHrV155xZhHP7DZU/5kJhwQQKo0OUzb29t2G8vq6qoBJg428wH5fMDA4uKigXWvo8XR7uzsqFQqGavbbreVyWT0la/cox//8Uf1cz/3lB5//Da9+OKyfQ9sRCIR16FDTd111yPKZuv6wz+8XWfOTG6lYi/4Lp/tU2aYsNn7yuVyisVi2tzcNDDoS/nhcFjb29tWeiUjXV1dtdEXAC70WTgcDi/XbnL46drnQgSCiNfdAISwIUo9HHIAU7PZtFEtVwcVDrskG4mFoyHI9XrTWa0wRpSc0NUCLvh7r3FDk+kBcTgctqYa/jt37pw5lkwmY1cL01VMkxR7xXrRAUrAw3kDegAHBEdJFjh5VvYCxtjPFgaYoYf0TRAw9AQddMDIEGBEcKYkcp51D4cLGgxCymYbSiaXTH+2t7enpaWlH9JykhxhQ7lcU43G5NpBAgzJBkkuz7G5uWk3bZHAIq8pFou2Rly4wFr6LlzONEw2oGdlZUWJREKLi4s6efKkcrmclUIBW/gQDwzwY6wLbBxni8ADSF1LPavL9Xu1v983sJtOp3XnnXfOzFheWlrS3XffrWeffXZiswro8v77tT73TbXbD8ywTfhY3p/KFj6FRhJsNxgMzshPkKlQhsbfcwbi8bjJTPCh+G5K7YAU1iRz7AYV3/WQMiduUyxXVKDf1VPBnpKlmvr1bWu4WrjrA5q/+X7FFtcUSsyp36yrd+k1xR/5I3WqW6YT5UxDdBCX8FfRaNQSdUkGjGHL8C0kLwAl5Ge+YZdGKhptkTX1+31LtGCeSbJ4xmw2a82OV8elbrerUqlk++P1zBA5+BNiF+V3P9aNC02oHuLPiE0AcYgJz3TiJyORyVXP5XLZpEH4j0KhYNUS/D1+AGbz4GBydTSlcHo0YGqxdzTBVHtomoV5BJzT68BnYKdonjm3u7u7M6VyQCCVPmIMIJImJ8AflRH8Ko3WvrGLc86/pTk0mUzOXOeM3ImmSeRFYBzik5cYeMkcSQ1TFlqtlpFmb/XzjgenFy5csFIDAbPbjSiZ7JjubX9/33SpdLaikSSAkYUnkwfq9aLWXAS4YYOGw8nNEbBElKY8E0gHqte+eeE4+hO0QWjZOIQcyrm5OQtOBHmyRwwCtoymC4wcAyYLRvskybr2MEjeDWeJAH1+ft5uyTg4OJgBIZFIRH/yJz+ihx56Tg8++APdd19Ep0+vaWcnLymi+fmejh8/p3y+oWYzpa9+9Ud09uxAe3u1mcYxNKs+WYAtBsgxhYASOUkIZa3RaNLgtri4qG63a9djSrLDTnMaTDG6NBwNEgccMXsAgwdL4vVLOENKf5TQvAaJPfOfXygUbIIAI0s8c8i+oB/lfSkN49BhmmiiCgaDpl3l33rdYDwet//q9fpMl7c0GRXUuDI0/Oabbzbb5PlYL9/lCmMEU+A7T9PptCqViu0ZAYX1G41Gxt6jm6KEyg/lT+yakiKlPAID6wuAJoGoVqtWFqcUSLBAghAOh3X27FHdeOM5PfvsjRqPJywCbCNni6Y3AsuEVbislZVdPfPMfaaH9EP+CYJ+pib7A2CmTIi2kH31N9mwViSUkkzXCtCHLYrH47rxxht17bXXanl52WQ22Cq2RaIGwIFtx2dSUoXZgnELa1f77cTMzNxcLjfThCZNErBcLqdcLmfl8s6BFEnuzNgU4AHgjf14SYZP1DiP2Nby8rKtKWCaJIu+gEQiYddNe8Dw6quvWsAlmRqPJ/Npj3z0ZxU/dJ22n/q2IvsNLSyvq3Lre/UHezEln/qaNs6dm2h2V46q1yhr5/ST6rdbCsxntf6+H9XhE3fo0r/6R2qdf0ORSETFYtEYZSoIPDeAAFvn2QGM2KvXMMJ8o+X0WtBOp2PVMLSDJDJUhHypF7tAM816ef8QCoVMAgfDSZ/BoUOHLLaRLMBiQooQV3zlAf+BvROLOL9oX3l//DoALB6P2xgkYqxPcIjRAFvOIBIOzhR9AeFwWNVq1eKKJKsm0EAJEUbSKEnFYlGZTMZYdvaU7yc5pRKEbIAEDRskiaTiwk2F6OORCO3s7JgcEFsYj8cql8t2tgCW+GziJMk3/tj3eOCrYV0BpJBbVANIEmHIfUymEfqtft7x4PTqeWe9Xk+XLy/rmmvO69VX3zOTzfgyK/+b7O7y5csKBse65poLKpWOWrYH+4hjYJNhqyhXUi6n4Wk8no5DkmSaSMrBADS0RoBJPp9uQrSAANVKpWLg1DOAXvAO/Y+4muCPoVK+wfiQIlzNQKFnXFtbs0YDD7QTiYT+5E/uUjx+jW655bxuuOGi5ubOS5KGw6A2Ntb06KM3qlRa1/x8StnsrpVXccSU9dDycshgAfyhzmQyxk7B7qDjoUEmGAxqY2PDghNAFdBFiYJDSQnSlyb4cwIBzJTvlh0MBiqXy1byAmTANqBB9o0Jg8FAxWJRy8vLdh0lAcSXoyml40wZJcMkgEwmo62tLZXLZSuFSbK14ndIwGCYcH4AGc9mzM3NqVAoGItAMw3JA0wGpV3v6P0oMcpWfvoCDChdsul02oAkZ4BObYAm9zxHo1GdP39ew+HQOpq9jsxrlv1oJQKtNL0CEj2qNO3kXltbUyAQ0LPPHtbJk2d1/HhZp09nDQTDGnsZhDQtJ95//3nt789pNHqXIpG2ddcTtAkylO4l2VnFByDhYM0pnY5GIxsMjz0DVDnDMDaUTUnoSE4WFhZULBZ19uxZY8oAgT65BaD4JhtfnvUazrHCksaW/Hqwz5qz7uwdZyQQGGmksFUasD+AAJdSkEQAvKhC+OBIBYGgi7xha2tL3W5Xi4uLVhkigHrNLRMQkIsEAgGbhJJKpVT53h/r7FOPSqOhTp48qdprYQ2f/rYO/81f13buuEqlP5nY4R/9v2a66LvdrsaXXtGx/+nXlb3zfapeOmed6l7CRezA1+3t7WltbU3ZbNb08LBRsLReu0lcAIywV36Chh/LBPPM75LIw54uLi4aMMHf87vY6mAwsFvXkGBQccN2GFXFyC50lfgV4lO9Xp/Rxl5dsvf6TEmWtMKk05wDOcD98EtLS8aKYxO80+bmpn1Gs9lUOp3W2tqaFhcXjX0GBAI+iYlMOVlcXLTSO7JAGhbxLyRXnCESUCoQaHulySURAGkkZkjEiCtopYk3gH9iNHtARQxb95iHmM66+MYzRhR62cHu7q6dU8BxNDqd1cuZ4j/K/vi5t/p5x4NT2CsAQTab1ZkzJ3Ty5DktLp7T5cuHFI/HDezh5Mk4pentGjff3FAy2Va5fL+xnhgdRoZhUZKVZJkSWhxKN4AMSfb9sKMwKTxPKpVSsVi0QJhOp+25GCZMcKBc4TsjvcYQx8K/9+UbP0/Qi5cByGg6+futra2ZsiglGdg6SarXx6rVTuiRR05qMOhqOOwqmVxQIsHQ4YCVIXBQXp9K52UikbCDBdOHFgsWhoyaDJPsm/m1+Xxe3KLCwSQ7RaMDw8Bkg6WlJc3NzZlGje5QyjzoAbEf1hdQDDNAqU2SsRM+kAJCFxYWdPfdd2s0Gmlzc9OcNb9DKYuSEY6J34G55Go6aappA5QQSMiksQHsBzDEOkgTJwkYgk2gexMGGQcL48FZohwsaQZoM1bL35pGU48kA6Rk+jB4gE/KxL5CEIlE7JpfgivAlL31M2gJDL4khZaOc9ZoLKpUWtEDD3xf29sf0mh0WOFw2ECgn10Ky3vkyFldf/2beu65BxQKRRUIdCxhQtuOPtfLHUgmfPLFWmM7W1tbVoLc2dmxK28pAfrOX3wO+rTBYKAXX3xRZ8+eVaczuXYUBosyrWem+EzAoDS9AIFmTm5pGwwG6qqghYUddToZe5dXX31VL730km677TYr+Z47d06PPPKIjeSSpPR8U73xopWNGYeUTCa1t7c3M+KJPWfigZd5xGIxG3XHGQMckoSyfoBrdKxMRel2u3bRCX6TpGtnZ0f9ypMaDweWqHY6HbU2N1XcvqRwbtn8Jv6FBLLf7yvQntj3MDgd+E4J2RMkXkZAoy6SIapZxJ1er2fzWgFFw+HQpjmwf6wRDYQwnb4UTNMfZ40ZunwXespOp6NyuWzgMxaLzYyuIvH380hJ+BlL5aVMkCfYHkCHv/MzVpF8YKswc1zUge/iuWKxmI16gqjgeSCbSGYglPL5vI0nQy9K7AeYsybLy8v62Z/9WV177bUajUZ66qmn9MUvftHkZF4PnUwmTdMJ+eJtZXl52TTX2CWVVM4ZfRfeL8DoUrGF7STZx+dJMsYZ/8wYO98ARvJH1Q8NMbgG+yERgnAjJhN7vC6X/X6rn3c8OMUgEFgnk0lVq8uqVHK67bandOlSVlLQmCOArGcYJll2Qrfe+rRqtRW9/vpYvd5lczgcYpxUtVq1jMaPX6jX68rn8yoUCtaxzEFAV9btds1xElj4HQAHBxVwhgFK0y45Dm+hULAsku9BK0rw87dSwR5xrWKr1dLe3p5pkXBikqzM5RkKf/g8E0QmHgwGdeFCWc3mJR09elTr6+tW/qNTHaDNYfDz6nwWDjBFc0q3Pb+PTpSy3sbGhjY2NrS/v28gS5IFXBp3arWaXb0WDk9v+mKP6XiG2WBvKC0jdOdAktmSlPgGHPR+dOwyluyFF16wCxX6/ckAfXTJPBcidS+mhx1jxBnODOCFHfIZw+HQRPs0SXjtE6VFLxmghCrJyleUkWBOcbTMtAQwAWBJFq+2KTRNBNJsNmsACsDCc6C5YryRH/pNWR1GgIYV1gEBPxpMStvsKeffd2R///sf1gc+8Af6iZ/4tr7//Y/pwoU5q4QMh0PrhD442Ne1157Rhz/8ul5++ZBee+1WJRJDAxmAHUpuBAkqHR7c05QBECOBJfltNBoql8sz55P/YGawxUKhoGg0qmq1agktndCAEvyWt09JBja8RhP/FA5P702XpDe3btetS7+n7OKPaac6Cd5bW1v6yle+oosXL2plZUVbW1t68sknbSTVcDhUPD+v1egf6uWND1rQ9GPQYLjm5uYsAUSLybtjdwR1np2qUyAQML2cb5hqtVpaWFiwhlHGG8HSwvoB7mHu0a+WSiVLCkNzafUqGwYWqEal8kX1+n11glHlHvxxSdL+m6ftbFB9AHTRGOTZPSZb8L2ASBJh5gGj7aeiA4vpyQn2OplM2qgnL8sKBoM6dOiQlZhhd6WpJINrwQExVFNIQDxwht2FMMLn0MSHHQG6fIMP54MEHrDNOafywDxbyttU4QCAjPOisRiSwTddMsEEMoFnJaH3jCLnJhQK6dixY7r++uvt7++//35tbGzo6aeftrK3JxK8PIFEiOoEFTnOIb6C9/T76StcrCk/sVjMGlDBQ544giDz03kA3lQieNZisWjEF9IzALb3u8lk0kgaYixnE0Lv7fy848EptDslNFie733vAX3843+qhx76lr75zQ8okUiZUaH3kSaNH+m09KEPfV3R6J6+8Y2P2QHCSEKh6bxCaTpkHnaJgAylDmhlUwFRaGroLKdkyHOT9XMYJdlnwM6hyQPUYfwYSbvdVqlUMmaKDMfrwZgjiGPl8+lQx5Hl83lls1lr8PEjegqFggFmRh9tb2+r2WxaiRYHNhqNVC6XFQhM7q/mAAF2FxYW7FpI9LCAE5wyn4eYnfehEzUUCtkIHkBOIpGYkUtQusKZ4pi4Ri6dTqtYLJqzBAgCvinPAEJ7vZ6VwtgzWAvYA0nGEqOnazabKpVK9m7oMdF34agoy6PHg+kEbJAgeHCPU8cZFotF+z1utWIiA8J9SnC1Wk2JxOQ2HWblYfuAVPbMywn8jEHOlZeeAHgYeQWr728IY98IruiyaPxD7xUKhaxsj2ZOkiUYNNOxtzhhZq1SQvXPx+/t74f1pS89rIcf/o4+8IE/UL2+otdeu1GvvRZVpxNQsTjUsWOv6PjxM0qlOnrqqTU9/fS7FIm01G537MyhGyQQwMoj4clkMqarZDQYDNnW1pb29/e1uLhoAZc9Gg6HJk+hUkLjB+uOn6IEh+34ub4EQIBht9vV0tKSPTfAB7YSlha7ePX7c7rlr4Z030eCeuZrRQOLFy9etOeo1WozTYTBYFA3v7uvwLirZ74TsRF5+DyYPs/mEeyokOD7Go2GSUfw59gqtgPI8GcZRpUkiikSVL7QesPyesIA/5e940FFFwra+trvzSQX4XBYC7/0jxUIT5K6XmtXFz7/LzW69Kr5PJroqPCQIAKM8QXYNv+bvQPMoaFmjia/S5MbE2SIHwAgABpMGu9KQuUT3EqlYhNjfGVjOBzOjG9EwsKzwsJ5zTu/yzNx/vGLXvcoTRg/P10EX0Ai6VleEgrsh2Sdc46vZA2QAPpkjz2ApQS4o3GlEoQchh8qOF6PD/sejUZ/iPzp9XpaW1szf0ATNqDdJ0dgiXw+b81XTFCgqsD+ANjZb98ozZmHRGCfmL1MvGHtINWQ2BE/Wc9AIGC+W5peF8x3cA3z2/l5x4NTys0EhvF4fKW0u6ZvfUv6wAe+pk984iva3LxHZ8+eVDi8aExbItHRbbdd1MrKUxqPB/ryl9+nZjOjTCZpAIbOOt9RBwigZIizwLkytoIMChaCsg+GFYvFtLq6KklGy1P6huE5evSoGo2GZb2xWMy6/sn0YFHoVGVOHZkuhoT2KhicdLpyCxUBPBgMqt1um1YVlsGLnX0nNs4ZoAlI9tMMOFgEBoYU++5gWEECY7/ftxufwuGwarWaSqWSga56va5cLmeOgdIOzRcwZ2gK0WxVq1VjgilF8H6wbJlMxjLVRqNhGSw/lN0Gg4E1W+zt7WljY8MSJO6jhqnDLgBHjUbDxj/lcjnTgvkGGN4LKQesFYAd6QUgHC0wCQSaJFh5mA1pOhuUwIpjx4YAJGTykgzgUU2QpqV2dN1+GDe/Q7cu9gPDTALHWVpeXjbWAUdIiZKsnhmilP7oXgeAwNiyVoAGgjs6K4CbNB0bw9lsNhP67GffrePHS7r99ou6775v6r77pv5mMAjpjTeO6Pnnj+q116R0eqBAYHqtJ9dM0lSBhpd9IRCQ6JIAAaoI1P49AF2wlzw7+4G8geH+rDsJHaw1TBFBCQ2v1/Gij4WxpMrE2Q+FQurudHW5+1d0ovBFdd71v+iNZ/bt/arV6ozWjc7t2z50Qrcs/TtdaDygZj2gXrw+09FNQxgMnTRNcLBRbJeEnPMgTTu88U1bW1taXl7WaDSy7mSkOZRGASVoc2Eud3Z2TNcIq7W2tqZoYUWLP/Up7b7xkraf+Lpy2QUDBQcHB3rzM7+uaDypWHFN6VseUHw+pcoV3wvwR1JD4kG1Dx/UarWMzOCcII3xCSLSB5hxqhPIRwCFnFP2zifZ0lSTjy8BkGGPNBcSAwDuEBMws5T6pUl1BLBFfPZNpZlMxiYpcEYpazOLmXcCEJGkQdIQO0hydnd3zXfD/APO2u32DDlDok+pH+ad84Wfws8g9eh2u9rY2NDRo0cVCARULpf18ssvG6CLxWJ2cQMNyCR4gGYSP6pvXkMNhiA2QNDgI/APxBLsn2Zv7AtgiaYfP+0ngJBI4E8gLXauXBpDQukb23gPnl+aEC8QOmtra1paWtIPfvADvZ2fdzw4lTTTiUoH20SXuK4vfvEjuvfe13Xs2Pd07NgjqtWyCgZTCoUOlMlUNB4Hde7ccT3yyLra7ZSGwx1rQsEBjkYj0yein4PxBOQAXGGJKKvAaJHxYPyeNYVyh9Ht9/uWJeMwAD5kMwQ3AgESAMoxlE0ALVDxOPfBYHILUrvd1smTJ2eaV+jKxFn45g5YBAAwZQUajQC4jJehXEjWBuCnEYTAK8nKd3wv60iWz+9I0zmflJppeCGzZY1ee+017Vy5DpCZtwBA3ung4EC1Wk1LS0v23JubmzPDzBHf4+honIANh5GhGYB99uVbDjZlMkomMA+SZjJ2nhOmoLXf0sqxReUWk+r3Agp0Y+pU96w5IpfLKRAImDPy0gacD1osgCDBDn0kcgkycNY5mUxapr+7u2tJ1nA4NEE/czyROWA7JFE+y/Zl5EAgYCwYbCrglsYywBMaQiYNoI9qt9uKx+MzDU8wdwR/Aga+ggBM1y/AbGdnR889l9GLL96ufL6r1VUpHB5qPE5qYyOhavXgSqCeyBGKxaLplGFmCHhXS1W8dp2KBWAD+Qy2QKOTTy4lWbJbqVQsMJIg7+zsKJ/PzzT/AFTR5ANWYW2x0Xq9bt/NGsEawTICOF/89mEtfOxO3Xrtv9DB8Gf18qPT+bPYV6/XU73R0J0fWddH7v9PavaP6nP/e1iDXtPANzo1P3kB+8IH8ywkjZRbfbnUz8BFr0kCAyCk6kIyA0ijogA7620EiU8/FNPKT/6KRgdtvfaZ31A4NAFi6C0lqV8ua21tTb3SWW28/LSO/c//NzVrVVUf/6p1VAOGaMiBFcf28eWsIwPnPWgE0ANYYJQBu6FQyDrPIQJgBr1WnnXhPLIP6Mo98wx4bzQatgdIxwAqnCMAJhMaAEuS7HnwA8Q0zgfsrZ9aMDc3Z7aP9EmaTmLAHwCiOB+AaWIIlUaAG9prbJBkGT/PGWTN9/b29IUvfEGHDx9WMpnUK6+8YhVB72sgPby+fDgcamFhwZJJqhv0KgCkeX/GfRGrqbSEQqGZSghJKxILXyUFqFLmR6YHU49fZJwiGARAjp1xriFw8N389Ho95fN5nThxQqlUSi+99NKfg9amP+94cOq7Abvd7oy+KxAIKJU6pscfX9KpU7dqZeVFFQotZbNhjUaLqlbv0Nmzx3X+/ORWplRqOpeSgE3poVarmePCCLyIORKJGDNFZu81JWQl0N+rq6vG9lJ2xQjRyaAf5LNwapRZarWams2mDYWmvEpAR7MEy8sBkGRBkMwVB9Xr9SyocbB4J/Q8jGTBwftxJmT0SAt8R7Av/fJvfVc2d2gTlEulkprNppaXl5VKpWwQPXpGnBEsKewNiQIlLknWTY7DhXXinSmpB4NB00HSZIWTp0TkyyAEERgoSl6UMwko6Ia9lpY1pOnJs1dk2u12W+snV/Tuj4R1vPB9xccbticjhVUaPqSnnlrV9ul9c/KFQsHKUdJ0TmmhULBgt7CwoE6no83NTXP2gHEY9mw2ayyOtwOcE2dFks0JJLji+HCQMOWwAlwRmk6nJU3Gm8HQAA5ggwAV2KW/0QcBP7bKmkcikzl+vokMDRiJnzRlUfwEgHA4bOXycrmsdjthjDm3teHgOZOAD7TXgF5GLBEgWWuSNYAF+kWSvmKxaM07vAvVGxgwZBI0l/Ds0lQvzn7t7OwYm8uYL/RhsJwAeN8sRbJM4sl/7WZHj371ft39oZjuP/G/65aTJ/T65Xv15ksZ9TtBzWfjWjnR1s+s1pQeP6JK9y598T8eVb+7q06nbeOK2AskRtgQWnOCJ8w0mkvAIzbPD37Ny6p4X+8rABzhcNjs2OtQ0+m0ksnkRLYTT2r15/6uAtGEXvxf/086aFRnGijr9bqdYfa/261pf+NNrdz/sHaf/uYPNXCiO9zf37c5negrScwAI2gC2RNpwtIhE6D7Gh8GWEG6RTULPxAKhUxa4rWgXseKD6PBEL8F+eDHl83NRTQaDazqBeiFSPH/P5WRRqNhNkjsw1dI00YzCCBP7OCLWXvWJxCYTHRBY8/YK84N51uSdeZDMlB1ItFgjbmljYa2SqWil156yZ6XaiDTBoLBoJE1NG3CIAPw8ZnIESmnQxzxHzECwEvS4J/RV8Ro9vUyP2I+M2WJmb5qRnzifUhIrsYBEBrNZtMSDggIEmLY27fz844Hp/1+X4uLi1pZWbGbUGq12owGpdlsKhKJ6NVXb9bLL4+s65vsE2ZLknXZcfAALF43COVPgOMwU0YFCGBInuKHoQNEwv5NNG/7prlcWVmxwEVpFsfHgcWxSpODRBnYN0HRCFAoFIzZQV9KCfDPYm9gSWDCAH80Mo3HYxWLRe3v79uAeEpnzLQrlUr2b9mrVqtlawl7SFDkgBDEvWjcM2/RaFTlclnlctkcV6FQsEPly0BLS0uqVqsWqKTpHdwczEqlYs6OiwYAlzgEgK9vQIBRp/yFQ4d1QNwvSaVSacZZ5vN5m7vJZ+L8YQ+DwaA+8otLuu/4FzRWWBt779OrLz6o6taeEnNRrR7r6cbjL+jH7vuqGvffr2//yT3a25yCbn9G0JR53RV3WedyOdOQ8u5cXYidUk4DPFMVoCTM58LEYGOrq6tWFoMN8Teo8SwbGxtXbmtatiSNYDQZlD8dMo0TJMvnlrBIJKLV1VWb9ZpIJLS1tWW2BhAFBABgSAy2t7dtj/25QgYBI+w7hQeDgQVZWBZsdzgcWjMT+0GyQ7mM50gmp0PEmX3L+tC8yNmD0Th8+LCtOwmZJNNg+zIfa4J8hKQArTQ+jOSFRIKqDr6O5K5cLitYDWrr4qoO3foLuvX2S7p97f+tO9amQHGsgLYP7tcPXvx5nXshoIN2x8qQgFNKzgA8SVbOxB/D+jGRgeSYeYokeQRRn2Qg10BexTvyPbBegCEvXQmHwxoqoNVP/i1F88t66rf+trZP/2CmjE1i4xm53d3dCfCNxRWMRC1p8aPSIAz29vZUr9fVbk+u0o1EIqpUKjNSFErxsNYEf8AbPhE/QvUJhhL2K5vN2nph0x54sV7ICSBTIDkajcaVfdhTJnNBP/7jFR07VlIkMgF87XZEzz+/qBdfvEbS5Ia+TCajEydO6K677tKlS5d0+vRpVSoVA9aAxn6/b7GPJLparc40qhHPmb8LgQNBA7CmhyMcDlusZf04i3Tqx+Nxu8AF4gh7QvOPjwDw9ft980nR6GQ8n/d9jUbDEkM+E59C1QRfANNNQg7B5qtNPtaHw2EDvMxQ56yT8PA5ECNocjnrmUzGkivipWfOSeoBuiSNNJ4BZr3EYG9vT2+88YYlDG/n5x0PTsnKWERGNtGFjIHhDGm6QP8hybScsID8/5SzycTYcN+RjCGj45ImbAxMHbpJhMg4JkT5ZIIYIHQ+5ToOL/Q+DBIZLQASvSQ0PmvB70oydpcMPp1Oq91uq1KpWHCHvaSxQZIqlYqBMcAmne+scSwWs3ejLEFjDxo6P9CZdSM7pLscBg5GDPaSjLdarRpIYEYoiQUZJ2VKgAWlYL53f39f58+ft47q0WhkI6jQt66srFj3M53kXvqABhNwjcMEsMAKwXywH41GQxsbG2q1WlpeXrbyG6wFAD6RSOgDfy2s21f+QOf2fkwvnzqi7v5Eo7i729VoNNQrz/T0xdaq3v3wrXrofY/pwx9r6A9+/371drpmr0gvGOaM3V+6dGlGG8X/T2Y8HA710ksvzZSJCP78jjTt5CZwoo8DhFIe4kxRPl1dXTVghf2jk8Opsncw5pSxaCyCbZKmCQffhX6r1WqpUqlYwpRMJk1riM2g3/b6sp2dHaXTaeVyuRkNIA6cZM1rsABVBCTOPswIY724OhO2Bv9DNYaEFIlJJpNRLpezjnFYYGwFXwQ7iwzENz4ApnxDpk9CvWaNz2YdYa79FanY1Wg01iuPt/TmD4qKZX5Cc/mOEkmp25FKbx4oNMoplYopGBzaPhPE8YOsPecAP8M6UNnhvJEQUO2h6Yx9vdqnsmf+/DP1xEsFYCHZx/5gqEN/7W9p/uj1evF3/pGG2xesg5rPjcbjWlrIKxkOzDT6zR85ofjSYbVfflIrKyszfps1gETY3t62XobFxUW7PY/qEAy5l7Lg86gMkKghjSB+ANrQGZLo44tpsut2u5ZkwZKTnLOe7XZb8/NV/fIvv6SlpT3t7KR0+vTt2t9PqNc70Px8TbfdtqH779/UuXMreuaZH9Hi4qLuvfde3XnnnSoWi3rzzTcN3JCcAer9GfIVJ9hJZBw+oWMPvW/DT3nWEQCFX+Cc1ut1Yx5hA0mCWX/OMfEchpj4giaUJAHtKxVDn5ACwiVZ4kCTJBW8RqNh5ARnkUoa70Xs4lk9IeYbDb0mG3BNJQFJCrYEwKWaSMyVZMAfn8/+RSKT6RJvvvmmVZf/slv/ys/y8rJqtZqxDTQUoO8g08aQcrmcGWs8HtfS0pJisZjOnz9vh9J3btIQQPaazWZ16NAhBYNBlUol06dS7qO8s7u7a6CSjllJVsaAIYOFGY8nd0IzvBxdK3ojSg7oYii1ogHlAPkr5AB6u7u7BiZgwiQZcwgrhAEC+GgGAziiO6M0BUPAmvrOvkAgYABE0kzDw2AwMBYNcIBAHVYbMMnd7NyxzVqm02m7EYqgBlPgASrlG5wRGSiC9EKhYIGbJgmCMSNZJFmz2c7OjlqtliU5dIkvLy/PrC3grFqtGvCk8QCHijOlIYdAGYlEdOePZHT7yr/TC1s/oee+vqBkcjpCiEYHNF6XX03qc+UH9dM//Yj+yidf17c+d6va+20DTwRTst3hcKitrS2bNgCjns1mbZ/9WBqcK1m6pJmOXLJzmCEYZT8zED3qYDCwUjdd15xL/owuWH/hBEmaNAnIq6urlsih1WavCEAerGITfgA9bD3AzrOqBPrxeKytrS0DygRG7B2QAoMMoKNczdp5HSQMJnZJgod9+gpGIBBQrVZTuz25TrVSqSgcDpvOFWBJIAOsw1zjH1gHSqgkUTyfNB0kTuMJsglGuUkTrXksNrnwwmt8u92uGufb2n1+195JknK5qYwiGAxqcXHRdM2cXfwcYIOyMKVo2ExK0PggCIiTJ09qYWHBtLnM96xWq0qlUuafqGTByrN++DUqBkxiOfaJv6n0Dfdo5/STWlw7pJUjx4xlDQQC2nnue0qms7rm1/4fGl84rfq5VxVv1LRePKSl+x/W8KCtztNfsyQKCRM+WpIlQfzvVqtl1yxXq1VLGNgjmD0AC2VzGDjKttgmIAtmn9IuRAAVQj6Hz0XyBUCZdJq39OM//rRarYT+43+8XTs712h+PmV2Ewod1Qsv3KPDh8/qPe95QQ899F/0/PP/B7355pum42eeJkkoIJmkFh9fqVRMokSFk5hHpcozx1QEqOjRc4DN+Kk6AFzfxyHJqorZbNakHzD3AEl88MLCwoxf9Jp1fA3VOs4ikhHGU5Lk+efyt0YRr/meSCRi9sc5oIIDYCbRptrgK0PYP7Ohib+cDZ4ZnwLphN+grwPMIMkSQEgy/v7t/LzjwemFCxfsACJsJvuRZOBTmmomyELRMFHCYePQTfpONz6bIDU3N6elpSVzHsgDMDZJpsMA5KGrhDlg4wG13JyDpgrHSXYLLT8cDpXNZme0fwQUGA1GfPC/yZIo48ImxuNxK2/QuMQacZczbA5MF0P8yQD5PmnSICBNRvtwYNF9ARTR7EkTsE4CwfdHo1HT8OCE0MJyqChjcVBgoLw2i3WB5aJchQaH7JdnYH4t4J7SKwAEMLu7u6tarabFxUULbNwARsmfsijgnATD397U6/V04cIF+5xMJqNDhw6pVNrSrTc8pfLgPn39sz3F4y2zP7JmEiJsYuvMjv7oT27TJz/6HWWvu1v7z07Hz7B+7DGjuPheADmsDA7L645gN9BJMU2BpiLYZM8uw8L7YOoTH26GouwVDodNJ8d68uf5fN6AJAkOQIuKB6CBs+v1oTh4GEOAtZcpwJKw1368G4E/nU7PjNbxTBRVAs9kYaew1wR8WLDxeGxVCgIOVReSAd6R3/GzLGFNwuGwdeIScNkTrsFEygSbure3N3Nm8KHcNT8ajYzV5f2Z2RsOh+0dOJOUlPGzNNJQqQI4k7ySgPrmQQgCwDgs0GAwGcVEcoE/BCQwIeTq/QZQ8G9JfJnAgUzBN2BKk2Q6dehaSdLCTfdq4aZ7fyj2tF48JQ37Cp57QSoeUW79euXCEfV26yp9/5va+sbnNKe+ybPwN6wliRlX69Is6itv/C62yBnymkT+86yiv64bsoVzOh6PbbQWiTg2cnAwuabaS+Im8WhbP/qjL6jRSOlzn7tHrdZIyeTU/klOg8GgTp9e08WLc/rZn/2+brjh3+trX9vRM888o/n5ebvZDm0xCSFnHRKJRA/dMV3wuVzO5G/ENpJpzgrvwZrwzh5Mek07NkkswyaZ/AKjjv8hdsHy42t8iR4/zb57XTwMtiQjc3zFET2oNL16FTwDqPfJq29Y8npSklYSE6/fxw9D9nA+IYu4KpzvJymCBPMVa841fvIvmdMrP/V63fQa6ElwZjhANg+2DCp9f39fr7/+ugUjgg4lakBaJDJpBlpYWFA0GtXZs2cVCAR06NAhDQYD05h43ZAfBUEAkWTZBU4YwTHzOmm6wnAwfjIighv6Nv59r9cz9oWDTYmH3yEIUjby2RHXiWazWZsJSXCPxWK67rrrjML3DWG1Wk31et20gwB9HAJzRQliAGp0NZTuKY+jQ2U8CMlCp9NRoVCw0U04tHa7rc3NTQN2jOmBIcE22KPV1VXrbEe/6B0/DpagJWlmrQmEOCmCO/ec++dCbkHjUTQaNSaAofIcZBieUCikteujygTO6I+f+hlFo30D+clkUseOHdO9996rcDisF198US+88ILq9bri8bheeGxXf+Uja7r+prMqvTjRE2M7fAfvjBMk2YEJhnWh1A9zgINEW+WDp6QZWQuAiO/2TR0AARw5Ns41vZydWq1mZwmgR3AnaPi9A8z6vYRZgfnnjIdCIQM/nmWt1WoKhUIGqNjvhYUFA64wBX6yxc7OjhqNhi5cuKDRaGQNKvgGdGnS9NIPNFyNRsMAH3MMkRYRhBgVhn1S8sb+GPlFSRa2iEpIIpGwRFXSTAINiETvTRBljVg31tYz/b65j2kYsFEknB4EoLsnUYRh4nMA0PhmdH2AYgAwfjAUmozF2tzcNPv1jSpLS0v2zgADPg/wQNygi5nfCQaDuvzvf9OaXbDRZrM5Mx+1tbujN/7z7yiTyVxpnmsbOEqn0wpe0dVyhrFPEjbWmz0Yj8eqVqvGAmcyGbO/q6tDfs3wd5RbiRMAKxjofD5vCSpgsFgs2jsR72BO+d+33/6iAoGxvvjFezUeJxSJdI39p4IBIJ4QEAv6whfu1M///CnNzT2r06dXlE6nLV7A1sIqEyNJML0fIpn1PqPT6Vi1ApvGJoizkmZkLMFg0GI4MVOS2SikEfEDbSZAGL0v6+2bz/AJxFawAxVR/t43KfomUGIFs2tJMqlCQSR5n0BCiS3jB6iYwdATOyAYYEo5F+Amn9BB6lBV9Qypn3iBP/OSIRK8t/p5x4NTrp4EfFCyQd8BICJjgBEEkJL9M3AeZ0b5AUCLQWGQNC5w0AFXXhDPYWKems8yfLYBzc8YGEk2H7BSqVhQhMVgth1BhmDimQ3uC97Z2dHGxsYMIETkDfVPdlQoFHTDDTfo1Vdf1dzcnJUO0ZpRcuS5eRZKdpQRyQwB4tKULfH6T68PhK1hj8gky+Wyms2m1tfX7YCRddOsBTCh3O8PCvIKmmxgEiKRiJUrCUbS5LBydSs2xKEke8Wh4mBwAGh6kYOQ2QIEwuFJFzisJzpWGtYGg4Hq9bru+vCmOoHDOvPorgLjiaNOp9M6duyYPvnJT5qE4KabblI6ndapU6eMTX7h9bTuPfE1zeU+rfFB384ADCjBGJvq9Sajk9APe3AEs4cEhvLdYDAZLUSwlDTzuZQHJdl+YHN0vwKKkQ3U63WbfwhAhQ2p1+uqVqtKJCZXvyJ9AVBQEgSAEdgBOWjqpGk1A5DgQYNnUpklyz5jP8wnxkYJiFtbWwoEAlpcXJzRfMFgXM145nI5S5rm5+e1vLxsJWXOjWdd0QzCLPHenAVuBfPzKgGVXpMHMEJOJMnKf9ij91lovgE8hw8fNpvgnWDrYAABFH5EEGsYiURmqj6cC2mauHOeqtWqJWz4lGh0cjc4zB6aVcbPea0+AdffMEdZlOcjAaGagd0geeLzWS80hjyDpJmqFH4WX+kDvGdpkQ4g56Eh0zf40bTDnpO8IQ+hURFtfDabNXDAVamsAdUozh1MNSwsgBr/7CVic3Nh3X57SWfOHFWl0lcsNp0FGgqFVCgUtLS0pE6no4sXL0rSFdnFqkqlou65Z1Nnz65bknj1c0FKeE07sQ7g6nWj3u9zxvf3963i6atFvLc0Hf6fyWQsZuATfcUDP8h6S7KrTSF80HwS15giQbMhkhdPMtFUhe+iaoK9ezmMJEtCwRz8RzwhaQWc8u8hTvAhVHZhQCUZcCa2gTlgPrHFubk581UAejTAjMPyyTDs6tv5eceDUzIEjBHHwA/MizSh4cvlsv09ZQEAhC9JYiSUsGD3JFlWx3w8nD1D62mkwhkFg8GZayLJ7n1HHqCLAIKDoNTKqCIAM6VjmqcAp9z8k06n7brQaDRq4J1DCIinLDMajbS+vq677rpL2WzWHC5ldgI/zB/sCWzCcDi0GZp8PpKFwWBgrBRAIR6Pa2VlRYFAwMCgL0vh5H1WPhqNVCqVJE0ZKETogCQ/7okyJ1IEz2pcnXFTzqnX6zPByWeZ/C7aHYIrGb4v75DlhsNhraysWIMDCQ7v6Ofc7e7uTkpe0bp2B9dpPBxrrMlhLxaLeu9736vl5eWZ7z18+LCeeeYZA+5bF+sKnugqPDdUpbRjwKTT6ejChQum3/IzCPP5vM0RZF0Bm6yfb2ShE94nEzgkgK0vIRHYYfev1oIxIxa2gY5uQCgsM/+GM4I8AXYaIAEQojmF9WKU0tLSkgE9Gm24GIERUsz5pUQGG0JCAnvM79B4wjghmGDOGL4AcLWwsGBMKcEJf4ZPgwGBqeEmKSodyCqYY+ilLnRDM6IK4E0iRnAC9AKSdnZ2rPpBl//W1pbJBsbjsZqdA60/9NPKXXeLkuvXKpSc18XP/W9qPf+o+VyePXvvw1p6z8cVXiho0G6p/fJTqj/yeTXrNXt3P66G94e9oemLBkduk8MOVldXZzT8GxsblkhRvgQQ9Ho91et1Y9f8/wX88ntIFEgWGO+UTCZnZCT8OxpiuFGvWq0aEKIk7JlSAJMkO480tUKa0HTKXEv0pKwbDOLm5qYOHz6sSCRisYCkBVBMVQz22681tsB6A9KpFlx33SXF4z2dOpW3pBHWslgs6qMf/ahyuZyeeOIJlUolA6G5XE4bG3fprrv+REtLfe3tLdjZBMiHw2GrkCBpQAYG+GIuNu87M03hCusMqKRa0ev1LBGh4Q5Zl9dm4rNgDL3chKuLicW5XM4a6YhzxGD+HWeRaTkkUZJmKg1IcnxCCYZhXcAZnN3hcGhaeX7fN17hz9DMAtS50jsej9usbwgGfD7+NZ/PW6IWiUTsBkRiXq/XM5DN+/vr0SFk3s7POx6c+rIhZSSyYd/4gqOFBQJ0UG4iG6UExWEmiJVKJesahiHzszBhDdBVbm1taXt72xp/er2ejezxWRvZaa1WU6PR0Pb2tvr9vmXM3KKCY4WZonsRATclbITPPK80vT4TITnlfDJ/MiZJFrBomCHz4rDTuZ9KpQy8Mf4HRongDehkzSORiN2t3m63beQEYJeEACcTDod15MgRM37K4Bxgvjsej9v4np2dHRuDhBZ2NBpZqZY14rCTfKB5RV+LbfE+OEXAiZ9ewP4gBAe8XQ1ucQwkCr4zPZFIqFwua3t7W4FAX6NxyFg+AuDVhx6gTXPLeDzWoH/l2UcdWyfeFUdN6RpnBAjkyklkLTh9yoiwLt5hA5yk6bXAsPfecZJ501CWSCRs78LhycgX7ITLLqhKeLkKzwmzgS3DxFByAmggNSFxkGR3snuQEItNrgLl/NDM5i8nIKjUajVde+21M055bW3NkjKvx7J9uSLFwa5ocgJYc+sZySzfxTSHra0t1et1S97y+bz5EM4twandbs/MUKZZiBIsTBlBljWWpokWiVShULBKE8BtFI7ryMd/Qf3dqrrlS0oevUEaz0oEJCnzvp/U6od+SrsvPq69x76kxNIhZe95SMHcss7/3/+Out2uVatIKpB/0KADqINF87IspCbeNtFuj8djXb58Wbu7u1YJGo/HSqfTM/IGgO14PDYmEFBPfBgOh6rX63a7GftDUgZwxX9R6YD5Bwx5EI6PYzwWCQrl0lBoMuf12muv1fnz51Wr1UwyAYgC2B0cHNj1vpwzr3/MZrPWRIkuF7sHKHIOAfWMXZskkGU1mwlVKlFJQ9Njrqys6IEHHjCZ0f7+viXAvOPW1pIkaW6urlotYVdEA5YAjuieATjhcHhmJBvaUvwtP9gMNwaSABPTuSQFEMn3sVaQVzQno6VGDgHLSZUClluS2Sm26Vl51oDYyb6wx/1+3xIX/oymW0as7e/vK51Oa2VlRa+//rp6vcmYLRIx2Hf6M6h0oqf3a0nMw2f4aQPeHwQCk6kyS0tLVgmDTACvkKCxXxAI2NdfNkRd+YGNDIfDNo7BN3SQSeBoKIHBcvgSMxS8d/TMd/OlMRqwcrmcgVECT7VatZLO5uamDekHzKBf8lo+P0Abto1gi8PldzmMgC70grBwmUzGNKxbW1tqNBo6fPiwNVYxIBhnHQgErFv09ddf18HBgc6dO3cFJAUMgABqYYp3d3e1tbVlTpQysAcLMGhknXRZwwxzaNG1Am4B4AA3RsTAgJFVw+aSaeL4KT377JHsW5KtJXsAm0AGSQMOgWBzc1PD4VBHjhyxzwO8SbIDj+143RtjSyTZUHNkIOyz79wfjUY66MWUnGup10sbwKpWqzp16pTW19eVz+c1GAx05swZPfroo3b17Xg81pHliR1ub+xICliw8wwSZ4Kkrlar2VpfXXKnZJVKpYy9wRlT6qYcS0NTrVZTKpWyOamwYDhRGCFKQ57dBKAmEgnTHIfDYfssNJrFYtGYLZIubJxnpkxO0OKzAFrD4VDb29sKhUIWfHg3GEuCGs8GsCdxxMYkzVwfC5NKSc+X5mDCWBeYaq72HQ6HZq8kDjASBC+SXK9XxJdRlpRkty1hR77iwhWRABKCGDZN9WN+ft5mCofDYYXGAz31D35O82EpsX5cR//Hf2bvCOM4l1/S8vt/XJUnv6nal/+NBoOB9iIRqVlT7uGfV+6W+1R57jFJsgQOBhrfxzli9A3vX61W7T2xHXw7kyFgojc3N7W5ualer6ejR4+aBMwDtN3dXeXzeaXTafOxMNewmtgLgdlLiLwW9Gpmv9PpWELgR6fBckoTkENpHjYNXXw2m515X5JepiYwUonnzufzBi4hHPj33vcBoLzdSDIww15ObEkaDqM6fPiwVTjoPl9fXzdgKcmSCgBYqwUjfmCJGzGF38PnAO74c/wLJXTkNiQs7Avvzy1R6Ff5fcBpOBye6YZnrwBfMOAwr4B/5C7EXNhX35tALwJnHt8Jm+q1v/gYX/GlXwVgSh8HskWAMe9GQ20+n7cxc+Vy2ZhW9oK9QcbCGYLYQlPfbrdtsgx7TIJPEkUTFb4RcMvvsLbYwlv9vOPB6bXXXmtaD7IPAiYdt4ihCVz1et30PH4uGqCSzIPZhGidwuGwldYotSPcr1QqdptKLpez7J0ZorBRHCQYJQwuFovpyJEjpjMlswTcSbJSKUGDblgMDocADc8w5nK5bFeueTDutSILCws6ODjQ008/bd/BZQYIw2GG0fFUq1Vz9gQ+6H/YSN9B6IE3a4k+rt1uz7AoAPNms2lzMXH2HAy0qmjAWCu0PK1WS0tLS8rn8wYKfLMcJWzWH2fI4WUtAUr9fl8LCwszUweQCPBOSAf4t5TYcEDSBFw3m03VajUD8MyynJub08ULHT1w41cUXfxr2nplU9lsVs1mU6dPn9a/+Tf/RnfffbeazaaeeOIJa8LAAd1w04b2Aie1t72vRHw6ToWbUGAkYYBwhF5bBaNMMyGzZbFDGGh0jVQWYDgouTFaikzdA2MAH/sN6CfxikQiNk6GiRu+XDwYDCyIZzIZK0fiGH1g4XuQeQB+ueZ3PB5b0gfDybOyjzBQNHXw+6wJSRsNcrC1aAXj8bhdN+pnMSNtgNEjwCKjoNEQFgfNF8wHUiLPqFH65bmQFcAmsfYkVB5Uocn2ejfAHIC41WopMuwqlS0oeMVuYAYBEaljNygYCmv/5Sdtv6LRqHpvPCc9/PO65gM/quDWG6bd5zNgh9hr7zsBoQA8qiCsC5UNAj4TRfgdwJGXmFBGJpnBzwYCAZMwoaOkpIuEB3nS/v6+qtWqIpGITXDBDtlT2HoqDZFIROvr6yZ9IV551m13d1cvvfSSybEA61d3QwOSSJjxXfg34hKNpUilsHE+F3sZDAYGiiZXIs8pFptehQtzd+HCBT355JNmS88995zq9bqdw4mMYQLAe72IaZRZA6ovxNp6vW5joHgnEnuSA5g5Li5AkoVfx4/RW8FZxN9TqSRhQH7BeUETXa1WbWoCZezt7W3zf14S5xtD8fMksMj7OBv8PuV9ziAVRvYD1pNbqSqVykyyiB+XZJiE6lIsFrPYO2W/E+ZjkcihU5dksQkdNmAdkg6pmn8+5EfIziCXIG3e6ucdD06PHTumJ5980kBLKpXS1taWpOkNIFDudNsFAgG7DQgQ5PVDo9Hkrl46HzFOGn58VsYGMqMsGo3OMEYEIjR06DAxgt3dXevSRwjPgcOZUI712iBfYoT9RM93cHCgRqOhQqGga6+9dmaGI13n3JzC84/HY5XLZWO2lpaWZhqPpKkTpHkJYCnJvgPnAwsAk03ggD3jdhcSCc86sua+aQyHQufq1Q0qvozj9aKAEQAGmSTlHUlW0hsOJ/fE+25DAHW329W5c+csCHqBObpcgikgmHUhyHsxeiQSMdYul8up3+/bvefPfKuld90Y17s+NNB/+sG0SSMUCun555/Xm2++KUmmgTYmODvWcvRRPb/xPyiT7lviRIDKZrPW1cysVsAdZTwGSA8GAy0vLxvbgJaS9eTdpKlmi8Y5PhcGjMAjyYAQDUmwjX4yAAmld4iVSsWuz/XarIWFBS0tLenixYsz0hKCszRltn0jAqwlZX/OvCRjSuiQJunxZxJA5JsPeCeAiK8coPUGNLOWVBhgSwG8MKIAi2AwaKW2arWqXq9n8pL5+XktLi5aIJOmVyOSRACqKFNjvyTm7Cf7gN3DQtOMBvimHBiOxc2m6Uofj8fa63SUlZSIRtS98tmtVkuBcFTLkhKrx7SysmJTOXzTBuwLPgHQCItJQ5g/zwAESAFAGvs8Go0siWPsFwCJCx4o7SJpILFFJ+81diTw2BiXcMB0I8eiu9nHI5I3P1+ZxIgKBFIPEkj+ns+hhMtnw6bBJPPn/F+ANOQIbKqXshArfQNwKBRSvb6om27qKB6/oIODI+ZnO52OXnjhBZ0/f960zpxlEqTrrz+v0SigZnPREjkux+CymH6/b4QPoBG7ZG8YdF8ul63PgHhOsxExFR9Gco2vA1gjzcJ28Ikk+JBCjUZjZq5oLBaz5JlzBxNKAkaii74VmQz4BH8NUGRfsFEqKpyparVqmnt8Cteu8nn4Cph5ZBoASD+uz9siFQYvxfGJKgSA93NUAHhX36hH5YcS/1v9vOPBabVaVbVatVIwzoEAy4GRNFNGIPABVjudjtHS/MAaSjJqm0NHhyggxxs5uj6vm+LAkykHg0GtrKzYKBsMi8/kfdCSUh5Gn+PZPTIoshpJJmTm8A4GA+sixLBgEyjHAiDI7FdWVhQMBo1Zw0Hu7OzY97RaLbsGVdKMQJoB05RwcHhk7MxlPXLkiOkRCUjoVgB+ZIbsJ2VOX8qHgaN5JB6P26Hyh0+S6fJCoZCKxeJMGRM7QfcD4AVwo0kCrKO58Sw3zovGNxgP9Mf8W89iIO8YDqI6V7tfNxS+rvWb36vmxX1jVdrtti5evGjXxE4lBAm9/0c3NAwk9Nx3Jsw8rD2sKayBb8bDtnBu2A22y4gzhP6MDGL8EnsBI86eYaP+fbEfEhAAiCRLlEgwsRmaABmEj9MkiCwsLOj48eNqNpumjUQXK2lGq4iukvPf6XSsKuAZPJrFPKjENmGccdw0P1AZ6PV62tjYsKSP80UwoPqBUyewYrOxWMySBX48Q+0ZXSaNSNMEbmtry6Z1eP0odosdA4IZqQbDTqKIH8I/8e8AgbBXqfTi5PsjYSslZ7NZtUuXJj506Yg6zz1uoPAgNfEVwbmMMV+Li4u2J9gF5wUAgzQDKcJwOLSuaWyPhBA/w/MARiTZeUODnM/nrQkOtoqEisANWEHSQqItTTSF3q/ygwYTQEzvgm/KuXjxotlaJpOxhI6kmj1tt9u6dOmSAoHAzPxofCVlZOIDpAoyFQ+WvKTFJyucB+IfCUM4HNbly1nddltCt956Tl/+cnKG2ebyG8rRMPET0NnTsWMv6Ny5de3uRtTvT6tenAn2GukYsidiFrZOrECbzNqTzLC3VDn9exNLKGPDwPMZXmvMn9MgyDn038nzwzLD8FJZ4Lsp82MLJEsQGMSKWq1mchQvU+v1JuOlSJJJjiFSkIbhr/GlYBTPTDNByGuol5eXlc1mtbm5aX6KBjrYZHTIECucM76TqidrzXl4Oz/veHD67LPPSpJ1cBIsaCLg5hgGC5OhwGwyIsULs8nMcTaUmcmcOBC+LIaTQXsJi8Pn8vswBVDusGiZTEaVSsU+g4PnAzTPwSBiOsxpjMFxoqft9/tWElhZWbHsicw3FJoOo0fjgqOmK575i6FQyGbNwSAvLy/PaBRxNhx+DnEwGNTW1pZ1hpMhhsNh+5x6va5Lly5ZqQ5dnM82y+XyjPC6UCgok8mo0Whoc3NT8Xhca2trljlzkOhcprQ/NzenQ4cOGWgqFosKh8M6f/78DIAiyybDpunF3+xFCQXnA4DwuieCAUFga2vL5AD+rnbm0PZ6PX3198P6pf8ppf/jLz6vP/zSB9Q4u2vlFMpKNOUl5xP60M/taS32dT197n9UeDTU3NzYyrmsJzaNfAW7BOjDxDF1geSOJiNADecCuQJngEADW8T308hBcwKMFY631+sZwGO9wuGw3ZhWrVZtYgRBm/meOH7O5MHBwcwgeBJVyk44UNh9nC/M9p9VakOuwLqReFEyJsjDqHL1Ln6FRAAtK4ECu+bv0UxiVyRYfhYkWlT2AGYI2+BWuF6vZ5Uh/669Xs8YbsrWMNUkugQ1WDbOPP6H/el0OkpceY5IOGLNIvPz82qde0V7F15V7t1/Rc3ShoavPqvM9Xfp2p/9XzQa9BUIT2ZXkhx4/8H3eD0cwRgfV6vV7H+jxaQpluTb6wbZ92AwaAPGqRoQ4NkLfC22SYMTiQAAGUDjQROgSpKdb8rhJOicEUYfclUyg/h9bOFziSXEB84mfs0Dc+Qg9CCQzGHr7Dl+nDPsy+MQLpS3X3rpGt1zz8t64ok9DQYLM+wqSQ1rj75xdfVVZTI7+upXT1rS4cc4Ul7GxvDV6ER93wggC/+IbRD/kMP4BIB9Jcmg9M5+Ato8Cw95JU0njyDR8TNuAaWQPKw9iQzkEZUz5ISsGQQBWIC4ATNJIg3Qg23F94MfIpGIMZ0ARvwmxAqsP8wxIBX/5dcWgEvCjlQAuyCOUQ3El+OLWfu38/OOB6eNRsOyGNil+fl5G5tA0PLjN9hgytsEAm/8XrvlNSI4Hn/Lj9caSVO2hkPIbSaSDHz1ej2Vy2UbCsxh7ff7M06RTItyBYCJTLVUKqler+vYsWPGpJH9kV3DKIZCIWNPMCaMDXYPdo5MkfWCGd7d3TVw5m/lAMxQroQJljSj+cExEjhhe6QJ28v3wWCi5cXJMhkAAA54BbgwMoRRJ61Wy4Y+0wTE/59Op21WpjV7XGEqeF+c+tbWlh1QbIu1BsgAUFlPmCFAC00yqVRKxWLRyix0UXtpSWuno8/8y2v0N/7mOf3Mx7+gs7sP68nvJnRw9sD0weV6We/7yVXdedMZpccv6gcXf0Fnvts3ycnCwoKxopRsWS9JFqw9o8s5wF7H47FpPrF9gCFBCMAbi8WsBIpTp/xUrVYNCHg9E2uNc4ZRIDDV63WrPGDDkuyM7+/v6+WXXzbWk3WeNGO07PMon1GiwkF3u12bgkHTgWfupCnLDpgJBCYzdVdWVmZ0ipHIZBzO+vq6AY1QaNJNu7GxYUBsZWVl5pxjV8gqSHYZi4ZkZjAYmAbVa4C9veFjYOvYZ88KYqObm5uWPCNdwk5I2Pgc/AMBF00sP2ONjbEGDJ7797+l43/9/6LjP/e3J78zGqr22FcUXb9WiaVDBuQA2+gJAaCBQMCusEULSIKEXVerVbMx9Oec2VwuZz4H/0wVwDe6+C5on4jgEyiRLiwsWHJCouuTThJ7mDqmoRCTWHuS/YWFBbuu9MiRIybVAEQCVLz2DxsslUrmdyUZiE2lUpqfn7eOda+vJwHw8zE9i0oFbHt7W9vb2zbrOxwO67XXbtDJk5f08z//ov7ojxZUqXSN5SfhIXEdj8daWdnUe997Sm++eVil0rJCoa4Bb4gR/LO/Khc9L1UHL4MAFOKvkTtgn8w69dfBcuOcJPs8zj4JIXEPwAjR5BuHWUf+LpFI2J4CXMPhsI2pAxheDTgBjyQVJOnEBmIb/hB75PIE3pP+D0+2cdaJvc1mU5VKxfAOlcKFhQWTkpF8kEyje+Vs8hy+aRVsw1XTYCb2yFef/7yfdzw4pWPVNzL5kVIHBwd2GHDOGDsHGGOSZI6R0gg3dAA+YBj4ocsQzRH6DQ4BDCABgsyJIABzS3MNAQhmFIBK9ox2CjaEZi9E8zgfPgsWCYfHHMPl5WULijiZWq2mcrlsOki+w3flkRn68SVodXAIMG3FYtHmvCH6L5fLBjQk2QFeX1+3jN+XqmACRqPJkHBKgM1mU5ubm6bdyefzlsHCnhGA6EREKwkzTHDhMFerVXMClLl8mW13d9cYDJxBMBi0+YYwR+yBTwyYidnv9+3CB5zDm2++qVgsZjIKRr80m039639xQg//1EjXLv+pTv6VpprB29UbZRQYHygdfF3R8SOq9u/Vt5//Rb3y/T1jGRKJhIEg7JTkDPaNBIDEjQzfd0DDavGuDGTGbigRYUuAOJw4DYJ+hm+9XresHFbDN+54HR6sEKwiCRxD67mdSZJ1oFcqFQOyXieKI8W5opHk2QGLkgysw5r4AeWhUEhLS0uW3EiyPS6Xy+p0OlpZWTFNIt+VyWSsclAulw04s44kRD659GVhqjdUD7BnSVYSJCEejUa2VwQ0Sm6wdzDljD0CrDMvFn03e4A+kIstotGo+jSsjCaXScBKSlKwWdfmv/8NjeYWFEikFDloqdOo6Jpf+3/qoLJhyQ2+heBHIMefcCMY7L+vcPF7nFt8Lx3O2C7vQYCem5uzZJ739RUdJFr4aC/PwX5IHK5m5TiDsEvhcNgScRhffDNJ9N13361SqaRTp04ZWGc/YL987CDZgClkzThjk2akhD0z9oXWFjKHOEXiuby8bFp1QMZgMFC5vK8vfOE+/dRPndInP/mInnzyOj377JL6/aRVSvr9vgqFgW666WXdeusrunx5WY8++l4lEiONxzIQDFuHZAh7Rr5BLPMzvCORiDF4MM7EHkr+vm8BvS6fhT0gySIh90wrcexqkoleDmKoZ9k9uUNliOSg2+3aM5OEctkJk2PwG36sYCw2GWtHHPSafPTfPHMsFrM4xe+RPGObsNz8+WSfChbHSU4hs5AA0dxI9dPboJ+Vi/8GXBOH3+rnHQ9OvY7Rj9QhEKEb9LM+aQyio1Oa3ncLi0lWxp8NBgOb/VkoFIwtw+lI0xmBlIt5LpwDB5jfl2Tie5y0lwqQ8RI8/fsCbmmyovsU/VO3O7kCkqHdNArAXqFXQ5cEGEBiADPGWhGY0NLQwY5mh+wQ5pL1BnxLMg0PrAZrwfpKsswLBgItFuUPykJkxDRw+TEwOFwOE6VSnLg00flsb2/PNJdRrqVbG3ZoIuy/3i4dqFQqdgBZM7q5kTlgUzg19pF3g6mDnYEpYr0ovwy60pf/41ip9Ad1+4MhrR3eUSR8oF4/qsuNO/WdL3fV253T3FzLSt7+tiMfLGEkEdgDBihNM2ePkrCXWBAMB4OBlVOLxaJ6vZ5NHfBsKraNjpkkA+cIcKV8i9aJgASbwplmXBqBOpfLaXFx0ZJFWBBAUyaTsaAZDAbtLHi2n7XhWbA/r9vDdnlOfi8YDGp7e9turoJJj8ViNomBf8dQ7OFwaLp2AizP6cd08e9IaAiWlPd3dnasEZJSLCCExAF7J7HF93kgGI/HLSnwlZIJGCkbk0/ZnASTd5r4vun6rKysWFLF5weDQQXauxq26hpHIooUVhVbKGjvxVM2RcOfd88wzc/PGwuOD/VJIc8LOIB4yGazViXxjCySHvwENwXt7u7aUHSANYnaeDy2f89tdSR5fI5vYqKqAEhifjL2j5+GEUQHDliBySZB43Y0fBoJtY8FVPjwH4BbvhdJATaAhMX7fTTMgBzWjkR3f39fu7tRfeELH9KDD76g97znjB544IzOnVvV/v6cBoOuFhaauvbaunq9iF588UadOnVS4/F0uoaXHiAt8/NFPRMMA8/59NVOyATWgYQinU5bPCf+AUTxgR4EMlaRGMd6kdTgyzkD0rRTn3OKbVJG9yw10hFJlhzD6vvv874ZQoWknY56EktIMq8rBmdw1jnfAHK+gypfp9MxDTa9CKw17D1ECj4NG22321pcXLT45SsxAFr28K1+3vHglKHrBOZoNGpjf7jf2+u6AIZsFsEH48DRw755QTalUgTPAN1EIqHV1VUDIzBRNGnAIg0GA/sc5ppRWoJl8cOwvQEyEsezTaPRyA4jB03SjC4PcOSzZ4CYB5ToXgCePhuk5AKbCDtTLBbN+bHOBINUKqVqtWojMBgmzpqS9c/PzyuXy6lcLmt3d9cmHgAuEWpLsuDOv4WphpUCTAN2ec9Op6PFxUULgr45zWtms9msTU/wGmay1qvBN2tJUoGDhBkEuOMUaD4BoMPgr6+vG3D2ThrAB/Ny9pmxzj9fMEZxMk5FisUGBo7r9bqx456pCAQCpo0lqclkMuYkAfUEAt6dgItto03mml1AFDNFYRWWlpaUSExuUSNZi0ajKhQKM5MzOBcAH4ICGThrQJmPdyDYeCYjGAxa1y6f5YNYKBQyMOSbpGCpGMNCsMbR+zVhOkQul7MmPdg6GjLT6fSMPp3PLZVKdkEBukXfFAYY4UYxklBYO+yAG9yq1aoKhYIN72e+JdUSwDoACL00ZzQcDqtUKs00ygCy8T0ERN7Tg9VQKKSD3pXb04bTCgzAlN+FaUkkkkp95H/QqNdV+4XvKX+FYSIR8iyXb/igGW15edmYLKRNkiw5JpGCEGBNIRDw1yQ03Oq0tLRkwRptID6T98AO+X4vk/Dgf2dnxxhKgCK6dOyKc+NHiJ06dcr2mV6Dq/X8nGnOHyVn/iNRATjz7l52w0xjYh63pqHthZUFzHK2qAoNh3F961v3KxS6SSdOvKFrry2rUGhoOByp1Yrqj//4pLa2blA0mtbBwY729qZjFyWZjIlmQqp0djveFX9HUgkYHAwG2tjYULVatXiIRICzDTNInCFm0JgGGw7jSnwhIZNkvoZ/hySDPwM/4G/wJ2AJn5yQ4AQCAbuAhx4AmFr+njPHRBVJlpQTg7AHzgUxgzjoS/vYERIhCDtAqLczYhRAG5KGM8+7U/n1TdVe141PZi3f6ucdD04JiBzMUChkWT36rMOHDxtjRNcxQQcwSGYEwyVNSzTSdMQCjnA0mnT3wv6Q1ZbLZQ2HQ9NISlPGo9FomNA8lUrZLVBkrHTrIpznmYbDyYgjNv7g4MC6CX2WQvnQd9YRKPf39638yud7HepgMLDGHH+tIrIIACO/0263zYHBJCJ/oGTFXEl0LzgQrqnzQfPg4GBmXiD6Ycr8OH3GG/nRRsg3YN9g3PgumD/PXlPWIGnxWabXgKIj5fpVSdZYQlmeEVCsqddWEiw9y9Vut9VoNCzIAjaxQ2YRAoJgmKrVqmXNMPqUnmE+AJjsPw6E8hVOhYBHaRhggrOEocOB48wAD16bzBWSlUrFnBTgfDicDLovFAomwUB3C2CFUe92uyoUCjafF4advUMOgrSFrnhK65wPGBmkALwzThjgAlPm5yXCusL6MwtzfX3dLpIAlKCNxuZJECi1VatV0y2z1x7kIRGhOY6yXS6XM1kOiQFl2EgkYk1PJDMkiL7phX0ZDocGQPCX+AgYa2wSMEmzCGBoe3vbPptznLrrgwpEE0rEJprb2LFbFE5llYnFNffMt9Tba6rw8M8rkkiodfENRYZDLdzzQcVWj2njD39Xza1LGs3PGxPuGSNJph9FB44cBdYJIAw4pDoBUKBhhPWWZEGVRIOEjfWANMAvAsxI6GCjIBl8NQsmlHPCGYBwoDGG8rMvxyMNg8VEBjUYDJTP503qgUbba3J9ogZAZj04A+wZZxIWzyf9PDPPCsDzmnLK20hGXnrpNj333MD8EEAcMoj4Ew5PLzWhasc68Gz+shLiM+vHeee55ubmVCgU7DPQxnrwxX4AtlKplNbX161CgX+UZCwoJBGxkGSUaim2yOd6Rp+kgGZDkjL+LpvN6ujRowYs/ZXjPAu+ixjNvvhmP2zHV4rwY+wDgD4ajVp/An8OUYF0g6Y5iAgSF6oq3FzH2YGdZUQmJBexn31/Oz/veHCKY6DrjqyEbCMajSqXy9n92XRiYnwEwcXFxRkmcXNzUzs7O9b44Nk+gg/anfn5eSuzAYwwcJyjv96UbJhnl6bdeJQVACdcMACTiaNgxMvly5eNCaGbns/FUTByhaySElClUjGGzjdT8T1IDWC2aAChJMK1npQqcfyS7FYtymK+GxrwyppynSc6FoY/k/UTiLa3t02HCsACxDO3DqBDYwRJCnu/ubkpSfZ3sJqSrIxPUIZV7Pf7pmtMJBKmb0V7SlDAaWB77D+26Z0G78C1tTAIZM2UZkajyT3v6AMJjDht9ILNZtMGvOMUfRMNUgEcPhUB9p51wpEBdNHdocelyUOaNmHwb2kUAwBRDcCOAN00BCIhCQaD1vRGwxHjyCqVirG/0iRh9COSmCbAug+HQwPrgAcAByXfWCxm807j8bhVBdhzNL/IVgg0ADQYKG6aQwYEg0W1gXEszGwF/MAYUz1BkkLAQ/rAZwKCfVkX7Rk2wXNxLa3XHcKq+mYUZmLif9BisucAxUqloq2tLbuRi8Rl4b6PKppdNFso3vWg/f/tl7+v+KCnUX1T0bs+pKXr79V4PFL78hva+tf/V7XOvmg+1I97IlHDFwLAfKOFB5IEUl9i90k9oL7RaJjPY99JVEiYqtXqjA4ROQ9yA8B7Op228VbEEM4Sz4C/xSfCkJOwhkIhA37od/FdlL8Bs4uLi1ZGBTz48wuRQmLuATS2QjWMKh4+Fj8EA42/vrqUi188fvy4vQt+AHYOW6fyAeD0lRmqGvioTmdyY16lUtHCwoKKxaJdtMK5grWjwgTDSCPR1Y1s2CizuD2Awo6Qj1CCZpQayQHrwudylgFhaOohRfA7+Cy/lkhrwAY8P74FQO6bA5ljSpKBLeNDSKx8HPdJBT0NPsFirjhnHp9KNRSmmrNDDMNWfZM42ADShdgSiUTMr7+dn3c8OKV0ymHl+k46XdE2Qr9ns1mjxHF0sHRkWdwf70e+kEGQrRPMYLL4Lg9WyKL8YeUQeG0lJbuVlRUzinq9bp2XdEN64f7c3NxMRy1ZF6ViD04BM+h8vPHAvuBQ/dBgfnK5nAqFgiRZsxkMLtk55X5AE2wdGRkHVJK9k2eP/OgqtIfRaNRAYaFQMI0UpSFYHxxKsVg0Qf2FCxdsNhxBHMeKUyQD3t3dVbPZNODC/lLqC4VC1pVKJ7JnYCRZCcxf7gAABzjAIuBIAVY4DBh/fkeaTiHo9XoWSAlw2DWOYXV11YAijskHHA/apekQfZ7HAzpJ5nTQKpM1k1zhHBmOTZYPsEa/nc/nZ4ZI0zhEcw2SB4IWa0n5FAaMqgOAAGCH9tMzPujkOp2OFhYWjN2GpfZgEmaiXq8b2GfdWMdAYNKdyjlCC0vS54dbAzJhO1gDWH3KywQfWFACFSCEvQCEUaWBLfPPhr2QgJAQUTLl+ajCMCWEs769vW2gl/8IyjRJwFoPh0O98lv/swWmfn86j3RxcdHAyOC576n+9LfNTqrV6oyEAqYNvXM8Hle1WtXOzo49GyAFlhFgD0AAsPZ6PZsji51i76w3ZW6vQ/TnFskF6+3PTqfTmWl0wefgb2CLqGDQDOobAYk7nFGSGK8NBbT5ShMNtb6XgX0GtHiJGl3wyBkAPBARXueLXxqPx6rX6zNNPlTbPPCjKoRdEo/YVxg93of44Bva8D8kp+wPVR4ICEA7z0qso5mUZlqv38WP+WcJhSYTM5CwMNgfpjQUGun48Ys6cqSsWKyvUCimTiel1147plpt0Zh6YodvnvY+mX3a29uzS0+wfWkyBQGfTTwivuCDYEM5+4BQMAVgF8zDZxFjSPxrtdpMpYgrWYlLTADgOynPk7RAXPhrmEnGJJkfI6G/ePGiScPe7s87HpwuLi7aSIV6vW6jcLzjJniQzdIhR1ZMJuNHu/hSRLfbtflrgNBCoWBzJnECBBff8Ue2MxxOBnmTafGMbDasGd2cOMVut2vsArQ943rQxwIYANuwTDgY2GGYJoIvBujLkr1ez8AFDC0OBYCMJgyZAIAKZghgjBaREkK5XLZDxL+DOSCwoNkhiHS73ZlZgTgAvgdHwdWfBBRJdmjZB9iA0Wikixcvanl52QI4pVqCLQkD4IW/p3RHMx3aVknW2AIzDNuFPXCzTzAYtK5ZD0rI8n05nsAI8+AdNmuL44ZpwpliXzCik6aGXRtbBlii4Q3Hgs3i2JC0YBvoz7B9gl2v19PW1pbm5+eVTqdnxix51laaXhiBJjSTyRjDjjOEDaK8ho0S4PkcQPT8/LwFBMrzNCYBTDkHJGy8P/a7trZmiRg2BNCBxcXu0FFz1gBPJIcwrYA7gC8NSIBSWEQCE+/udYPYlq+C8DmeBUM6QPBtNBomJyIwsQacc3SPjUbDkjOeIxwOG6PtR7FRQcJe/DNTNZJkZwD/xWfDxJAQsh65XE6dzvR+b5hwWDmYX/aArmWYcfZyf39fb775psmnkOn4PgL8K/5qOByqUqnY2QWojkYj80loo/GZMGUwubwvtkojGeuN7Ayw4atnsGpePkElq9vtmt+nqgSoZi2QQQD0sE1YRN/pzRmjYZiECqaUBAjZHHGpUCjYFb7IRfL5vDF0XocbDAYtMSWuAjQB8zD9XEdKlQGZBxIlSRaLiS0QF5wxJC/YbSIxuUSEhAomeVryb+u2257Rdde9pkSio+3tlPb2YkokRjp8+IJuv/1VlUpFPfPMSZVKR9Vut20KAL4fBp39ImHycRVwSCIEWGf6CAmiJ4XwOfgfmNZsNmvYgQRH0gzTin/217dCcPnZxcibOJvEFoConywA68z3YqOcUXAFzdhv5+cdD05Ho5FpMTjcoVDIBvzi6DxbSVCCVeDwU84myOOwAoHJ3bFsKgGCBg9JpqsjO0WjRCaKNoSyfzA4GUxPJjgajXT58mVtb28bIANoI7TOZDLWad1qtVSr1ZRMJu17l5aWjG5PJBJ29RmBplQqWSDyGk1KxbAJXFPIYeTQSbIyEiCl3W4rn89reXnZSkewWpIMiMPKUsrLZDIqFApqt9sql8vmoK8eXk+JnXIcAZZxWd7pIe9g/Xh+grckYycB7ceOHTM5B0EnHo9bIwhJDd/VarWMlWft0PEAoNLptDkLDj2djoAUaap1QgphjGk4ovx7flTJQ9cpeeg6hZPzeuXf/pYOzj47Uwq697f/+M88E4cltV5/QZX//NvmKH1ClMvltLq6qlqtZnbgy/4+aPrvg03GtikJwpASOGBXSPIogQWDQbsil7UOh8PGbgGSOT+U3AeD6WgYPpcgTuCB0U6n03bm0V5zBSjv4+2eBIAzD+j1+lAfuAmMnPPBYGASG4IfNsHd7vx7/EAikbB34M84T/gXQBfMEGvY6/Us6aOpijMD6PLsINpR9s/f7oYcAlkHlQl0mOwT8z0BHbD42WxW5XJZo9HIACABj33gbNF4IsnAdjAYNADCFA5mulJVAcQAoGhCAUQxF5bEmrXg+f0VoSRJfv2xKfYL28BnEsSR99DQSqVtZ2fH1o4GT5Jxzpa3bWwW26YUConCCEFfQqWq5CsmxDFKx5SniTn4Fi4CoHud7/YVCcYY+v2lCsE5B9TAwjYaDe3u7pqWHFuBAOJcMsYQ/br3MYBs4jj2jM8k3rC+jITjbCPfoTmRdYEhROJB46Nnn6PRjh566BvKZps6f/56vfjiMZ07N0nWJlWWkQ4fvqgTJ07rYx/7nh57rKGnn77WfCVgj2cHoAEuYVBZSyQfkixmIy8itgEqWW/i4dUTIEioPEHF1BCSbJ/c+obN4XBoCft4PLbYFQgEjEn1WIikA826r14mEgn7TKpEaF/fzs87HpxeunTJuqkRRMMySLKxN7BfvrTLwcApcUB9UCIThekCqAAwOegEPzQajIqB6cRgAoGAOVQAZjgctnEhsE5oDWFhcHAwJX4CAMFMkhkJh9AbKSyCd2CUfZLJpGq1moExNE4euFBm9bophg2TsfpRQgQ/1jgajerSpUva3t5WpzO5jco7D4LEzs6OLl26pHA4rOXlZQNXNEXRWYpuqF6vW2MF+1AoFHTNNdeoVCoZgMJBpFIp1et1c4KAB96XG35ghAAAZOokFPzwmQRp2CfsA3BAKZmudxhKftDa9qNzWn7ok+o1KhpUNxQ+fFLxeFyXarWZ7vutz/+uNdTggNZuuVu5+z+q9tkXrRt2aWnJdFfsD8HNN93BChHIAYIEdWnaGU0QXVxcNGcGw+vF/JR8+X0vSyEQIqHBDnk2MnFG/XCTzubmpg3nByD7K4A52374dKfT0dramiU2PkCT6VNau3jxorFOMAOAWt80JE1GkhFo2Xd+3ye7XgKCVpDmS9YD2Y+fLUtiCIOVTqdtPzzrBmimYaZWq80wHiQHjJCjwYMAC0AGgHCpAUCMxAx/hH8hoaV6BaPL7yGRwufwA7vq2X7fQQz7CVMLiGe2LDYPe8oIvXa7bUGS8i3JNxWJaDRqlQF8GQw81RTYTvaFpiV+F9BNKRNQjU1xoYiX0AC2YbTQX8IawuYCxrBHX9IlgSEmEK9gSvFpxDneF8Ds9b2JRMLYe6QWSEJYD5oCsX18BPFjfX1d8/Pz2tramrnAA9tmzagQQFDAHqKDhtUeDAbmf72emqpZJBJRrVYz8On1o4BtGEsAFYz1VNe7pw996AmlUm19+9s/pnZ7Xfv7Lc3N7evg4EClUknz8/N69dVlPfVUQg888Kre856XNB7Hdf78bUYmALwrlYpJAKlGAN44u/F43G5U9M1TAD18HDGbygNVA3wyMd5XowCM+DWvYWasHbJCzgeSFIDnYDCwGM33MR+cMyrJRnHRX9Dr9cxXIJ/g2d/q5x0PThk0jX4llUppa2vLDi4ZO4chHo/b/b3eaJldSrZNFuQ7JMlyaXLxnZ2U0AAbBGt+H7DHwfMlOAIgTj4cDlsJxzMBlPs56L6E4rU20P/xeFyXL19WuVy2MiTgFC0LwRb9kB/NEQ6HZxpI/FVolIVJBGq12kzDF4eTz6I8A6id6n2mA6vb7bay2ayBe9iPbDZrYBxNDZIMPrPb7dr4In4PxlmaSi1wIAAfDh9lYQI+AYnSMA6FMT2AKDJmskgyVcCH11+hU5NkJVSAFSB2bm5OO609nf/tv6XoqKdAflUrv/SP1B9MmrIKhYKJ33uPfdWSHMp20fver/F4pNbpJyRNy0P8/wSuzc1NSyo4Jzgq9Lhra2sG8CKRiGX4sVhsRv+GPECSJUqwBqwBTA5sip+WQGC/elyX13MWCgUtLy+bjRKc/JW6MAA8mzRx7ktLSyY98OeedYf1IcGq1+sGnng3KgrYjU9cYITQJfNdnJmjR49qdXXVfBFnngCAXUnTxhaeC0AHmCZZBpRTyeA5AaOAzUAgoGazaTNew+GwaXU90GIN2Ws/UBz/wLsBtKmCeB8II80eAlD9LGTWDdDMu+Az+XeADfaVBq9YLGajbpADAe5qtZr29vZmmgsBrfyOZ/R80GdfWVPYSPwNzT/YGHGBpAFZEX6HUj574bvmiQedTsfmccLQsg6cM69nxo8BUpFFpVKpGX9L9YjyMwkCTbZ+v3k/SUZ2FAoF9fuTSStIO2DpkD+l02lrFiURA9TD5pZKJZtVjc0BdvlO7JjkDbKAv4O19VM5fHMwkhLkMV5Sx3uTyM7NzemOO15QPr+rL3/5w2q1FjQet+zvIbAYT5lIJHXhwodULD6hBx74gZrNW5RMFuy9mTxAnwTnBKKCM0yyT4zHJsbjsTHRNFfDtvuKHlVE3tGz1BBI+GakBF625/eXteE84A+3t7dnQP7c3Jw2NzftFjMuwSEhpNmTOM4e/WVZ/8oPehcyhe3tbVs8HB8Hma7tZrOpVqtlHfqj0chKHzCuBDsACoGboNbr9SygUBL3DIfvipRkUwIkWabCn8FIUEIjMM3Pz8+AMQJhKBRSoVCwIAhghJEdjSZDgXd2dkywTzMCYMKX8mgeobsS58PYKN7ZGx1BHi0XRo+T3dvbm2lkIQj3ej0Vi0UNBtNB371ez7JxZjfSDAa4oSzhdY/8/8grisWiDconi/cieUoiwWDQbpqC2fJSBO+8WXdKmSsrK1ZeIkCiPQK0sr/ILwqFgmnNfHewZ+xgavf39xUcjxTsdxRNJLTn9Khey8gesJfpdFr90ViJ6+5Q5/wrUrtpTBHO0WtjaUTqdrv2eb7BgeoANsg6wIa2Wi1lMhkL6Fc3xLEeXJaAY8WO0AzzXTQzJpNJ0zKjo8V5kgCOx2Obscs6oEVEB0rQgnGClanX63b1JUGIfYaNpWTsg81wOL32GKBE8kQgQ9sJQ++BH8GWZIZgSMICq8zoM57Xl2ipDHjAQsCl2sP/Baw2Gg2VSiVjswCmJAIkg16fTWAERPDn7Bsg0euh2U8/uo41W1hYsJu9NjY2DACzR+wTayrJmE1AOcmAJJPUUILF/vCFPgEmSSEYSzImnQSWyhusHgkE7BtyIpJM7AuGmO8hzvhGFNgwSbbXXhdaKpVmgAdJr5cu8E6sL9USz4qxLr7SgxwNsIytt9ttq5IhJ/AsJ2w5bCo2GI/HVSqV1Gq1zOcQM4kRyHE4B5LshjjfL8B34U+8Rpe4y9lnX/H3xF0SSgC7v9nOfz/vFIlElMuldfPN5/Xyy4d18WJcgcCOJV8kD+hXiTHNZlNPP32rjh17RUtLT+vMmYDFcdaR2cQ0WpOAenuJx+NWucD+Q6GQ+f98Pj+j+wcHkLyTtMJgI8kBj2AvEAlUNYjjaLzZU+R/xITBYGATX1hDSfbdAGeSFPwA/Tc0FL7dn3c8OAVI+A27uvveayphT9A5UVp58803LZjg/AlguVxOiUTCykWNRsNK5HR0S9MZqQQmytAAVGY78j1e+0Rg8WU+stX9/X27jxeHgyYUMMznIGJnPqMkYxivBontdtuMzmuzAJqhUGjmpiA/+41uZUraBBECCWACpgAgmE6nVSwWrWTA4cnn8xYMuDUEBtVrbwkKaKcI5nST47gpofsA1+0eqFjc1OHDNaXTQfX7Ae3sxHX27BH1+wkLCICOQqFg4A976Pf7tuewQfwd+0o5sV6vG7MXDAYt8fA26zuR9/f3ZxKDfD6vYHLC/qTTaR0+fNjYEzJyWPLxeKzR0jUKJea19cTXDbiSZfO5JAySzMb4QfoBGMI5wVait0WigsOHKcYZcoUng/p5T8rV4/HYZufG43Gtrq5agAIIwaibDlcTtrnVaimVStllGPF43ErHMME07mAnJJLYOaPfaDjA5imvIgngnWAX2GPsHomOlwv5tSQo+qkGABhABQEILS/MNT6LYMOaSLKLIgB+4/HYxsQBoLDTer1urLyfmcrNRUgBYKMJjpxRqgFIlujsZl1hl5EzAFQAi4AWWEX8FmAF+5Jk+k+02yTo/DmMLTZMgozf8SSDZ4qogsFyFQoFOw8ABCpk0vRiF77TA83hcKi1tbUZhgumvtvtWskX9rPf71sTJXHn6kZT/DYMIY2rntWSZAmJr7zBnLEGSBwALLu7uzPNbBOAlrNmSvz41f7aazcp61697yRuu7u7WlhYMKaPZLbX69n3ciaoYHo2F9v2Dam+XEzDKu+HPtVLxq5ubMTnEi8gZdbWLmhurqNnnlmfISaQPx0+fNhiZ6VSsZGJw+G8XnppRSdOvKZHHlnXaBS08ZDSVD4IiQXg5RnZZ+wSvACg5fexP/TKVEAhBGg84rs4D17jCiMLMMbnxGLTa1H39/etg5/9Yk84pxAEyG7QxOIvSMxhw8EpXqr25/2848EpoKlarVopeHl52cqpc3NzSqVSKpfLKpfLlvFJ007c8Xiszc1Nu62IEgGapu3t7RlRMJu6sLBgjoVyB46DwA8TK00DLvrEg4MDAweUJgjY0WjUZsBhBDSLkFlyAAErdF7CItGsIckaGPhuScZgoPfzDSlIF3Z2dmbKb7lczgICwYqMDmCJfggWBycbDodt0gF3cMMywbLwvYFAwNaZQ1coFGyUF8J4yuOM8eL9meE6AWhN3XLLed1yy5taWGhqby+qbjeuSGSsG27Y1333PauXX17Riy/eoG43q3w+r52dHZXLZeXzeQMAPC+MKcAkm83arSeSjAGEVSTgE6C4OcxfPQvTgS1Q8ostLJmdR680vknT0hcBQ5IW7/mgRoOeBudetLIMjtk3l0iyBjsvC0BiEAwGLWj5GbY4KeyDs3FwcGCji9AD0iUOu0o1AcBLAxMgzzMVvkmKigJBAFssl8tKp9PK5XLmaHHCrCGAlfFZrAFnjYoD6wlIovzItax+HQGzgG0Ynf9Pe/8dJvl91fni76qu0NWxQld1dfdEjaRRtKxgBSdZloycA2kBAVrgspddvGvw/siX5XmWZe0Ld1mWsJiwhrvX2Aa8ToADsiTLkhUsyUojjTQjzWi6p1NVh+rq7urK398fNa9Tp8bGFqzRyOP6PM880kx3V3+/n3DO+7zP+5wPgJBgLp/PW/ai0WiYPAGgR+AJM8b94oAz5DY+W0DBCGACkMaaAa75DFLwFOihU4R9RuPqpRw4NG7ywpH54AvAyjxjQzkjnhSQZBkZAADZGUA37w1bBhuJzURqkc1mzW75G4eoSCYbQOof24GEgDXHvsIOA5aQtrAeOFqYIkB1u93W4uKiza+37aTCmXecO8H19va2BcGSzD7CZFGwwnnztrbZ7NxAJcmYetYK7T2BLYDY73f2uZdHeaaZ8+EDMCQbBGnJZFJTU1Nmq2BzCejYH3SYwW9h0wA53jfTf9VrRtnnfn94VhF/lc1meyQlMLEAVZhYmL5U6pjW1sZ08mRcodCOFW/G43FdddVVuvHGGxUEgR5++GF96UtfUrFYNMnS4cPTuvzyOSWTmyoUOj1C8UesI3p5D4yxF2hMQ6GQZUvZz96eE/QDmiFFAPxkA9l7/Ds2j/llLbCrsOcEfj7Fj2aVDAJzAutKTQ4Muw/qNzY27CZASJEXMs56cAq7KclSKESNm5ubmpmZ0TnnnGMbFKDnK4K91ohF4b9UpBYKBY2PjyuTyWhxcdFYUYTJGBLYCMCZJOuj6Y0ui0xKaWxsTLt27eqpBCTF5AsaYBGpuveaTQqK2OhsMtJVkozuR58K8MOw89xER7lczgofeF82/fDwsAEz5oNInsjaMxeTk5OKRqNaXl623oA4WfRrjUbDKkBXV1dtbVZXV82YYnDC4bDpEGGufMVwp8iqqre97SHNzKzq6NG8PvOZg3ryyYgGBxOn2nhUdO65R3TVVYu68MI7ddddr9bS0riCILBenKTlSf9Ksv1VqVR6InvSgDhg3p90B3tucnLSWBuiWpw8N3Rtbm6qOVbRiLqV1t7gkyKs1+saGBzS6MHLVXn2caleNV0W+9GnY3Z2dixIgPXB8ZElwIECUnEkRPI4AtL9vscf54bf742hrwgG6BLg+PSlJEtPwggSvMGsEPhRCMkaUPGKbaAQwBdFYvD5bNaEgA2wQKDKZ8Ga07KN5+W5yMTgXNDz8pycIRgq/3loGFk75psgD+mBH+wX2KLl5WVJ3VQcBXo8P+vtNZN8H9/jC4eo3PdpR3TxrVbLWvXwR5IBZmwuAICgk3lDquIlDThPWDNv42hjx57D0ftOAzwPtsdnbQAy+ApkGBAWSJR4BqQ5vBMFizD/7OtQKGT9tCuVihWabG9vW3ErwSfsl6/Ix24S/MLosaaetUTOgB0hZU6lP4QLBYecN2oJkHPBtqEnZc8CCEnlY5e8tMX7Nql7lSdSHrKUnvUHfAKayBZyltmbyOxYQ7S07AGeBYb09D0IiUImCjyADj4Wq6taTdhzAfqSyaQOHjxoRMT4+LgBNtZmY6MT3KdSEVWrY3Z22I8EFIAzsghk0yDRisWiZaAgtzij9LxGu+1vSvNdURgEBF7XSoaWvYavzmaztu83NjaMAffyJ+wZwaa/tY3MLT6b72OfMxf9av1TA1CFMB5WQJIxOMeOHVOj0bBblLymhM1A0REpA0AjhtX3iEMUXCwWVS6XLUXFBuL/t7e3lU6nVavV7Jafra0tE5ITBWFER0dHNTY2psXFRTMqUqcXHJsHLRlXWQJwONTIGjDOXhMEwCI9AliByfGV+d6YAHr5O8wohl/qlTRIssNGtEj7G3qkIauArSGtGg6HDTjF4537yGFoAeSkXqemplStVjU/P286PtLnHe1hW+94x0NKp8v69Kdv0PHjI6cKDbqauu1t6aGHztczz1yqN73pMd1ww5f0wANpHT8+0fP+sF/VatVawFCgBhvDOpDKGx4e1smTJ+3rpK5ZC4pUmM9Go2FNzwGU7XYn8KrX6nYLVCaTsTYsGPnkJdcpHI2p+vRDtv8xQOgApW6KniITDN3k5KQFAIVCwViYsbExOw/1et0cvBfdA5LRGY6OjhrwJR3FWmPAaMcVjUZ7nJ0HrrDSgD/03yMjI3b2kG/AsnptoJetkKryoIh39ykyQCt7js8j/Y3Dk2RMnw8IST0DfDlPfm8ASpG0SN3OFujPcCykC5mfkZERqwJmvqrVqjGEZCiYM4pRCoVCTx/JXC6nqakpC24AduFwpzclLDAsLgFhKpXS9PS07TtJJkOgGCKXy1k3AO5yZw545kwmo5WVFa2srJjd9Bp1SWYv/JnzLBLAjrmG/dvc3FSxWDR7R7Acj8c1PT2tZrOp1dVVawuF/ef2J1g4QDRMLfYSlgjf4a+SZs/gHwDnMKCkgoeHhw2kAlKwYWQD0VIysOtIOAiaLUA9RSoQFDLXzAFsOmeFYIS1Zd9io9m77ENYuLW1NfMDZCfIuEUiEQvGJFlBLcGeTzljG3heslGVSsUa1vOz4XDYursUi8UeRtZn5wCTACT2JT5HimpgYMcyloDaarWqkydPateuXarVanr66actEwFeiESCU74uYn4bMoLAzAdMtHGUpEKhYBgDqaC/Zavdbtte5F2KxaIRbuw/JErMv78WmZ6xQ0NDJm3hzAFgNzc3LXiAYWcNsOme/InFYkZUsB8AqATNzC17Bkb2m42zHpyS8ohGo0qlUj1Gc2BgwDYmkSFgAwMiydJtbJhCoWDGxhf7UJkKCwXVTVHJ6UUFRNj0OkRqAINC2gxgQ5UwhVIAGp4fTSJRIdE9Dmx7e1vZbFZDQ0PWvgfAig6GVCpRE+lnDPjy8rI5Zp92l7pXfnphOsCzVCppeXnZPg/ARToSZoS5ByR41po54RYODhoHhXkHkHCQcrlcjwAe8H/BBUeUza7pttveqM3NvMbHO6ARMIOzIGX3hS9coze/uaUrr/yM5uZ+qGddAZYYaX9IMew8J3uF50EPy34A0MCOZzIZS0fx2aQew6eicG/wSZlRHdlqtTRz8bVq7Wxr/dADVvwB88dZWF9ftz66vvgmGo0qm81qfHzcmDLvQKXuPdSSrHOFZ09wXBg2mPnBwUHrf8uc+TYmtVpNhULBtK7oDYnmkU5wpknpk/oE1JGmhhFCT4c+G8cJw4TxZz/7YJAUGOw/wBPWzxc1pNNpY7Iw5pJsL1O0QcCHgUeryZ5mf1OE5G/iwaYhT4AJXllZsYCW8w4gkzp6/Oeff95avkgyx9VqtbR//36NjIzoqaeeMi3lgQMHtGfPHh05ckTr6+s9KWUcHsWVAHxAGsVRBOOAMoIwf893uVw2u0uQS6qeQo9kMtlT+AU7yrnjXBCMwQJ6DSaMKNkbUqg4+Ww2aywmQTJ7HlkFzBbMJ+sAe07Aj8P29Qqkn2GvJPV0PcF+cFYAefw+PscXpVHwRgCGXhEGjwxOLBYzZp5+3MwtbDIZPWyEDzgJlAC0gCjmB+AEqPGgE1tIZxHkHgSBvB8+js9EAiHJzjPng/fCHvBcPDvrjo/lTJOR67T3mlAqNadEIqxms3sL3erqqu68804dPXpUzWZTs7OzVjzNWufzHfZ5e3vYsgtkN5ER4BdpecbzkHVBh4vvJBAmsOR3cd4JasA6vBPEAmtAEMBcYWMI6jkj2A+CHIIaXw/ArZdc080cgV94d0gGPoOMmtfVfqNx1oNTWnYkEgnrLcehYNPgCAAQMAH+0BBFAF4x9LAqXv/D58BedbQsnb6XQRBY43oONqBscnKy50YfoisYgvn5eUsVU7CAEeNAs9GlbuqFdBtsAAaM6nHS7ujaYKp4DsAg6SEONmkTnh9wvLm52cMQhUKhnj6ulUrFrorDeG9sbGhlZUVDQ0PKZDLGVLTbbQOkUldbxDySgsKpU1lcKpXsulYqt3Esy8vLGhmJ66KLntOTT+7V8ePDSqUiPTo/DIski7ZbLenBB1+pd7zjL3XeeSe0spIxZtyz4ugXYYR4Rs9cwazUarUeCQa/C6YHBoxUJszjxsZGhy2ODCslqbJTMUOEVpXgKjKS1Ph5L1PpkS9J7ZbJNQC49Xrnas5CoWBXq/q2Nxgu1p8UPsCc9/b7BmDoA0EYY/aIJDPEGxsbPS1kqDItFosG/H3xAIwN70iggGFEDuDTmRTSEaz6vYs+lbPkK2YB6+xJCj1YX/4rdbWsOGN+N0xbu902HbRf87W1NUsfklo7XQ4CcALkkjrHDvA7cdAU3uE0AGwUtiCH8cEGe7/Valm3DALIfD6vN77xjcpkMspkMlZZ7xmgcrls4B7HjxyD38k+Pr1yn3dCr4wEiGDL66l5Bmw0gUKxWDSdI4HI0tKSgV/PBO7s7JjuE5YcQID+HuDNZy8tLRnRwZ48XbvNXML0wtx5oEnQx15kbSnC8ySGt0nIltArA3bI6nGmsYfUT/D7KUzyunAKBQGPgAfOHcV4vkKbPQLoIvvA97HWkuw9WUsyCmSypG59A4P5hOThPXz/aknWT5wzyT7zvTnxoX6v0cqQFDTve/ToOTp48AHl84d14sSFZo8IHo8fP25zQjaT8YpXLOrEiUm1WklFIt3UN+sHUCeQQxdMID4wMGCSNcAhRAl+gIAFsgh7mMlkzL5Rz+KzQNRgsLcgogj+eC58vbcfpOsBz9h9fjeZKOwvGlbWaGNjwzICZAJfyDjrwSkHkcIBKvco0IDphLHigEmylhbc8BIKhVQoFKydAoYMTQwbmKInKufZ3N4A4Rh9mjefz5szRkwfjUaNkcWpk5ohzQFDBtMCoAME4zgGBgbM0GxsbCibzSqTyVg6dWNjw0CVvw8cJhWjw2ZFu0JqhdS2d55Evmh1FhYW7Nm54tL0k81utXsmkzEWKhqNmrAcx4NQniIcfj6dTtva1et1LS8vq91ua2pqqqdZ9v79JzQ0VNWhQ+dY6hBGkdZTyWRSc3Nz5uw7zOaQ5uf3aN++x3T48LtUqez0AJPx8XHlcjljjAgaACy+0AEGBcYGoAJLSl9Nf4sQxrqrNWz07PORkRFz2nRRGLnyBoXCAyp85Xa1TjkcDFg4HFapVNLi4qKkblP1kZERY3BwYjCX6FIBFzh4DA9giHerVqumcYO9IKCjYwHOFWZncHDQikNg2iluwbgSZLJHa7WaMfsUnWE8ySYASqPRqDKZjNbX17WwsGDMGY4kFotpcnLS1gCWgvWhqDCdTpuWDDBGitFnVZhDijIBPPF43LqCoNMaHR3Vzs6OFhcX7Wzu3r3bCh0JwqROypxzD/sFyCDjQqGCB+UEOTgw5pB9Ho1GVSwWTcpBAQ/PSKAHmMcZ+nYxpP1hTn2qFKdLYFev161DAU7dd1SJxWIql8tWWEnGC11fKBSyKmYAs2efyQTUajVjNJPJpCRpYWHBMkXJZLKnUIk0Jx0+eA+CYL8vAZ74G2wfzCyggqANnaEkO9fsb847th9fwPkBZBGUYHN9IR+MF/ZmYGDAQDr+CN+BRhZfwbmivR1sO1k70sCAPOwxrDFrzFx4dpigbW1tzQgOtKDoxplb7KbUS0zg59bW1szOEjBABgwNDdn5gQn22RSAKUx0h/AY1PPP53TJJUd1+PBuZTJZ07bjl2u1mhWe0Z91fHxB+fy6vvCFGyxzgZ3jWZrNphYWFqx7AdX+XvtLcEY2hGAXm4X/3d7etmuDfbqc7yFghMEElJIV4PfApBJU+nnmDz/vs06n6+sJwLBB3v/QX97LLF7IOOvBKdFkrVbTwsKCOVRYOw6Zr3Tb2dkxBgnAiRFlQxOpSd1rvtCIoDeExQLkkt4lIsQAw25QzIRT4XBSCEBUyO9AmM3hhvHB0I6NjVnPOt6Zwe/FUfEuPoVTLpdtTjDqHGLSbwMDA9q9e7dqtZpOnjxpDCtOBfbn5MmTJlEAXARBp0l0sVjU2tqapqamNDU11QOAarVuyyZJFr37G11gmTnkRHccct+WCCCYzx/X/Pywnnmmbs/KfI+Njeltb3ubms2m/uZv/kYrKyuSZIHIkSP79frX36VweF0DA8M2h14fViwWDQxhSKnYJx1F+y/YB6/TLJVKFpAANli/WCym6de9Q9GhEVVDHbYhfem1Gsvv0mB8UFtfvdPY5kqlonOufr1qpRU1F55TwgE93jkajZo+zQdgngGhCEPqdKOgSAjGCxaCd8Exc6sIxs3fvOUZM9LJOzs7Vmywurqq5eVlzczMSOrt5YrzY7DnkL7w8wAuL1nxwR1dHLiFxTt0X8TIXvL7xOvvAEncEsZZQQJE0eHAwIDy+bw5GII+WhNhS7hYAufEJSC8C3uZwjpavQGayQL4FJ8kK0wg8ERSQhGTdxwURaGLPHbsmD7/+c9rYmJCTz75pDFr2FC/X7FvPqgaHOw0b0+lUgZYKYKkCMMXoZGiB0AMDAxYc/zl5WXrIIBzJnBlXyKTyOVy5nh9tT/7EMaO/TE+Pm61AMPDwyoUCiqXy2aDYbKGhjrXTBKYsx6wmYAY/A8ZpLGxMS0tLfXIRND10lnFZ23GxsaseDUWi/XcxEWgwxnz0iHAEcUzXs9PGhYJDXYUWRS6XQJN2HZJPeeW32Uyo3D3YgLODGcBG012yIMtr7UnM0fgxj726WFsEushyToQ8DspokUuhd3wDGYoFDLwzfw88cQlestb7tDVVz+s+++/QvH4oM0/Ok3PiMfjW7rhhru1ujqu+fldSqVi5lNZe7KZnnwgrY6sBxkf2Vqej/0M1kAHirSIdyTQwTYByPG1vtCSzjvYH4gBH3ySPaRjBe9Pj/JarWb1L9hK7JHP0sBas4bs7W82znpwinH20bnUZRcQYnPYMR4DAwMm5PdaS3QTPh3DhqFBOCxMJBIx9pK0N01pYdYkGQtCymlgoFPoQdGBj36IdGEJaUFBNA6r6SvnACqkkCmuoUq0UCgYW0mU6r/fF20ArAF9/DsMxd69e1UqlWweOIAU8lBkgUFKJDoN/oeHhzUxMaFdu3apUCiYMVxdXVWpVDK9DIer1WqpWCwac0eal7nxnQjQdcGqdJjDljY3u7fm4OAbjYbOP/98XXnlldre3tZXv/pVm78uoO+ws4ODddXrnXSTd1zlctmixYWFBc3NzRmTxrrCqMAaMrccepxJu922NYvH48b+JK95o2LpnO3z7OWvsf/fOnRvtxBw9wGN7btA6/d9VplTrDJBAUaQxstUsZNyI01P2pK0EwxvJBIxxgVgRNcFr0/zVwaTNcjlcjpw4IA5ekC61xPDyPFMOEKvtSSD0XUUcTOineK2uD07DBZFX0NDQ5qenraAx1e0YtA5c1K3JQv7j702OTlpDD7FCLwr7KDUTYFR0ATbgyPDcfJeF154oTY2NrS4uKjl5WXTzbJe/qx7za4Hpzg8HAg2EeCCfIP55DORMqHVhkUvl8s9AJK9wp5mL+OoYrGYpqene6q8vS4cthJnxvpS9c35JB1Mp5NMJtOTWsfhI4nB3vP97AlJFljDoJ1e3DM3N2fV0uxJ9oXv3UtqGydOESqtm5hv39UiFospnU5bQOP9AHpDwBc6S0CGB4hIEbC/ng1MpVKmxQTgeyba72eYXDoz8F4AdkgApBBo/LEjACGedWxszEAk7x4EgRXtsvYUPHqpBmeez4Xdptpe6jC56XRaCwsLJo/BNviA21ess3a8I/MAMEV+xxkrlfbpnnuu1Gtf+7BisYZuv/1cRaP7emoLRkdHVSwWNDj4rG6++ZjC4ZAeeuh7NDgYszPjtfFoWj1Bgh9k/wHa/WUHkiwAYd15T+ybl/cwv16aAWsP0GVdWH8kHWQGCMIhECicxDaRHSEYx8Zhk3ge9gk2F/vkSbJvNM56cEr6ieIOX5XMAnrNClEFX4NhRR8Yi8UsFU3qks1A301f1AOLCTPGZ3ttH2kPNJeAZow8bKMk6yu6e/du64mJhoYNwQHn4GLASa9KtHMp6pprntT4+LKi0bpCoYRKpaSeeGKfSqWotYkipQBjQ6Ww714QiXSvAgVoVKtV04ARIWJISMcgaYAdBaDjNPg3CmcwXLCjS0tL9hk7O50bvkZGRpTNZg3Ief0mTjEc7lRXIhTHwEsdZvDhhx827Z8XhXfmriRJisWGzMjxB9aAdwUcwHBLsmACw42T8g4tl8sZa8ecNxoNra2tKQgCPfRrt9ozB0Fgt5nxHPSODMoreuKXv9+MEgZCku2Ter1ut4TBgsL+U1XPrTmwEAALGPVkMmmA2KffYRn4nSMjIz3XA1PgRXCFhhCDODw83HMFqf+5RCJhWlVJllrGSePkaZpO0NlZu5gVLIZCnSs8y+Vyj/43l8uZUUZ3ys8jaYHJI+0POPK6Ks+2wEohceBZfAEj7B3vS/odhh6AiKacQBpdWiaTsbWBbcW5+Upb1tkDcPYPDpM9AjCi6XgikejpDMA+9gwXTCeFT9hKnB+BHI7Vzx8aZkAXQQ2aTkkGhLE5HgDzTrwLDC9AkrNDQAOYI1XJjXitVstsLiQGgQvMN+eUOgPkJrDQzA/PRlDvB2liAhA/9wQvHtyRqSOTtbS0ZM/s9zk+EHtJZoEsD8wx+wggsb29be3TCDphz5DJeNIExpIaAs40kghfOOq1tzwLcgUIBAAcPscDbXw3sgdYWS6eYF19rQFnmFZeBCvodn3HgHA4rNnZl+v22wd0/fUP6bLLVvTcc/M6efICbW8PKghqSqVW9Za3PKN8vqzl5VHdccdNiseH1WpVe/TS+DCyM9gC5pHADvYc4E6NDH6X+eVcIRPwRYnsH/Yi3w++wH4wvJYZ30GvZBhXgjt8MsRPJpMxSQFMKsENAJXn4FkJBtD4frNx1oNTjBaGrVqtWpqkVqtZgQ/fW6lUbLJnZmaMdSNiQqsDcyp1U+xBECidTlthBYaE383nN5tNayMF9T8xMaGVlRUDH+gqc7kOO0aqF93svn377F5bDhdOlbQImhL0Wclk8lRvxGVdffVXlc8va3t7UM8/n9H6ekOpVEK7di3r4MHjKhSSuv/+S/T00x1HAKsDO4xBIn1Fn1ciMR8xEjXiyGiK7tlnQNH29rY2NjbMIWM09+7dq9HRUS0tLWlxcdGcKwU2gH50j6d3EkB/SnquXI5oz551TUxk1G53r8BrNps6fvy4PvzhD5tGFYOLxCKTmVMQSMViQ6FQVz5BcEOgQiEJGiSiYwAxzq5Wq5n+DFaRFkmtVst6V3KzEusIQ8YejsfjViCAxofomj2YSCR6tKQwgLCUrBdGlLnl+1gTwDQAC/BC9AzQx4GiUyPQ2t7e1tGjR5XL5YxBAXgggyHlDjDEQK6srNgccB7Z+/y8rzgOhzvX0YZCIS0vL5uMAHnI+Pi4Mfp+TgiKYMVh0HGmnFH0pJLMwPPe2AGfIoeRbjY7RW7ZbNaYa3+tLkH15uamabBJmRNs1ut1S4kTWEvqSfEB/LzsBbvFmYG54t/ITNCDmSAJYOGDbcCmt4mSevTGAAycKHYJx8q+pL0XuvfV1VUrsgG8YBOYS84crB31AdhWQBLBH9pH1pKABB8AWCWALBaLVjAH0+yDLgAqGQ40yqRIAQV8P8GJZ7PRxDLn6XTamHb0fV4nSVDXaDTsPPvMRywWs3MEAMJPsCeR7vhiJ586B3AA8LBZsMU+dQ+oIgjAVhKQYKeRE/hsSrXauTOeczQ2NmZ2BC0q1fcwfPhkCKPh4WFjLLFR2AV8MKAO+R3FYEhMms2mnbNKpaLHH8/r6adv1AUXPK8rrzypgwdP2N4OAum557L6i7+4VCdPTmloKKRUqmLtBCORToFzLBYzu033DwA3/pF2ivhMTzJQrHm6tIqCL/wWek/WvtVqaXl52fY1vwuwjCyKdSfogmFmn0WjUfPnEHTZbFbJZNJsBwEv9hl/QcDN9xIUelb7G42zHpxCTTOBTNjExITR5jBeRI0Yf9JnpPc5tCwKxhxwxSJzyAG2GIVcLqfV1VWLJGEHotGo9SlbWFiwDUEqGMMCA7u+vq75+fme6kyeW5K1a/IGiUNxzjnLuuaav1epNKaPfexiPfNMVu12WIuLi5qcnNTQ0IU699x1veIVz+qtb71HsdilevjhyZ6CF5yUdzSALzYeBWeSzKnCXHID0sDAgBl05tVH5KRFx8bGNDExoUsvvVRPPPFETzcAKrJh+UZHR0/1J902WQGSDfqANptNPfhgUi972Qnt2VPU3FynSwKMzMrKipaWlqxy0s/xzk5FF174rE6cyKteH1SrtdOjreN3EYUHQWApDcBSMpnsKczb2trqcXw4X6nL/OP02ZsYZbSrPv1O2ikejxsjI8nmFJad/QLjSPEHaXUMKAwAVblEy/ybzxr4VBR7ZGdnxxgKzyoSqKExhZEhnYqxRtIAEwbj5nWJABfSl4BdftYz4zgnUvH8+9jYmIEFWEIcGF0NsAuwoJw3nB+/FxDJMwBQeEaegbvt8/m8gVYPqn3KPRKJdK6sDYetUImUNU6cIAHABDNG6hzHhVwCwNhsNo0hxMkQrGGDqtWq0ul0TyGV1+/yvThaqpEJlNFiUuyHzAXdKM6YjAsOmNoAgheADEEEaUts09TUlBqNTksxv56+yIfnJHOFVpi/+6KQyclJK3TN5/OWFYL0YH4kmczFd0MZHx+378eW8HfABFkCDzSRK2FXsXEUwqyvr6tUKhlj69PxAEfYV7J0FO1hr+i3yp6cnp42CRWpY/aYB75IP1hrz/ji/3zwTYC4srJiZ7xe7/TjLpVKarVa1rmDPcj5JMNGho7PpvMAQRDgE3Z8dXXV/BaACm04ds6Db9hobFpnfwe6997deuqpS5TN1hSN1iRFtbU1qFotcSoAatle8bpL2Ed8B0EtgSPzRlANadVqtcyO8q7gDwq72UswwvxeAjb2E5kh7L+/SMUXpwLmsQlgFKl7WQDPhl3nAoCRkRHb15wd/B4ySNbSt/f6ZuOsB6fQ1F5Y73VK0On8nWb929vbWllZsQ0HKMApxmIxY8f4bIwYTcp9qqlarZoRZiPC3pKaJJWNofXpcQAgn+f7lBLxcNhHRkaUz+fNqAPkUqlFXXvt5zQ/P6O77nqtSqWKdnaW7ZBQeFUo7NcnPzmt669/VDff/ITa7VHNze0xeYPUAU20DwFIweIyp3v27LEImD+xWMwat5OG4XuYMwwczFI0GtXCwoK1aDnnnHM0MDBgN2nMz8+bQfNaHowgAP2cc84xjczJk1GtrIzpwIEndPTouKUk0M7yHpKMgaxUKspmV5TLlfS3f/sq1et1Yyt8D0ZAy8DAgLLZbI8AndQZaS72D4aJ9J8XtPP809PTGh8f70mjRSIRYwXZHwBUetFS0NVqtQwUwByh7QPMY7RhxoIgMBaXVJUkY4O98ZS6hUnsKZwcxUk4SAw3gAZDWq/Xe25zQj4DGwUrAVPiU8Srq6saHh5WJpMxnSBBG8EQZ3F7e1vJZFK5XM4qWzGwMBJDQ0NWgUzrrHA4bK3Z2B8YePYeRSu1Ws3ujafwALDP2QdI0s4HB0FzegIDHAMtivh/WFHOOsFUs9ntAuF1p+wzwCx7Ec3wyMiI9Q+tVqsGxDc3N61AkqIXzjOODbaT8+MzI2gMkWPQa9lfmYhjA3AAVnlXsg48j2cRQ6FO5wfWhcAGuw6A3NrasiLVzc1NyzZ4YAfokro37MAQEUxylpln2F7AV61W08rKinbt2mWBDdIsPpNsAmvRvVije35gGbkSFHCysLCgUqlkBaNcbLC2tqalpSXzM+l0uidYwDZIMpCJ3QB4IoFiHgGZPCN7huCarBRkAUEZVfKAbD6fz8XOYTfYR6lUyggHqSu7Yx34XN4BP+T7w1arVTvzBH5ecsM+RXICgATIQRBxXgYGOrc+1Wrd3rKcTxhbGFj2PAAXJhdtJ2d1fX3dakzAEH7v4TOazaaBQPwjzDPM5/b2tkkvfLaEd8MWAw697AdtOV+jzoTsAcEl9k2S2TNAqN9X2Hf2IBgGMu+FjrMenGIgcfSkcDx1jlP8ekwkUR/6CYBuoVCwzc7hT6fTGhsb08rKihlytFk4IZwFBhjDABAgclxfX1ehULCCD19BSeTlqX0YtkqlYuktIiPe7eKLb1ehMKpPf/oyjY520vw4d/SZHLx4PKH7779W6XRb11//qD784d3WrBjHwxwBMH0rq2g0qn379ml0dNTaMXGgSMcSYUldLSRAHK0KLN2zzz6r5eVlu/O90Wjo2WefVaFQMMmCN6akjwhOOCgYoyAI9NhjFd1444O66KLn9Mwz50vqaIy5atAXQ3RautR1ww33a3V1VHNzUz26Rl95DbtDQdnOzo6BWF/Asra2pkajYd0QAKqkYAlIJFmXCS9TWFtbU71et6scScnncrmeIjtfeEVai70EkGDvkVUgvcyeZf+SniGd6BlengFHyHsALnK5nLWo8sbds8ywnPzBecMURyIR5fN5jY+Pa35+XkHQKUZkjQkkSEkBUAAy7XZbxWLRUkz8HPo7nDIaXV9MxdkbHx831gVGnv3qQYUvFEE3SWsgzhuOimbva2trBhQAsnR3oOAPzbokA3ScJW8LCPBge30xHppCAFo+nzeZESwdwAK9GC2UCPAA0qTCOWO+Opn1bLfb5uwpBON3jY+PmzSGfYDT9HplAOfGxoZ1syBjwLqQhmcufBqbW+TQWMMkceYAoKTdmVdJxrYhEaAwjYI1LnOAXQR8IoEaGBiwlDHnhL3G70DLjSwL/8T+AKiUSiVtbW1JkmXYxsbG7MYp9hXBDrIRwBsMWzKZ7Ck6Yu2oJaBoi/PLDYr4z3K5rNXV1R65Gj6Ws0uASfEMRTfs14mJCcsi1Ov1noyPZzaRMAH8JJlfJ7iFVELW5Ns5eYDEWcJ3k4GhWwSA2ReCgQHo2wtQJ9Ch7zhacfw1a40tgrihfgLpGGeZwIXzSwEUQJpArlQq2Z7GnuNbOP88P88F1vBMql9/zhzzi2bcryPP7DMS7NFoNGpXaANuTwex/5hx1oPT3bt3m5aTggd0Rq1WSysrK7YBvS6IiD2ZTGpiYsIiKNKzlUrFNhYgbWNjw5wAaQaMDCBS6t41jMEm1UUEToEEff/a7e6d2WwYnEahULCIBMOAEy6VSgYw0umCJidL+p//8wJJHbo+Ho9rz549dkuHj6hgUe6//0J9z/ec0O7dJ3X8+IylY4jq0PfBakDhv+ENb9DLX/5yHT58WHNzc5ZOB5jCoC4uLvawEDRnh+3BmM/Pz1vqh0iYzge+MAtDAiODCL1UKvWsfQcgJHX48JZe97qvqtks6YEH9qjZbJpODSPfAQALuvnmuxWL1fXhD79KsdigvYfXd9HXDScFSCbaJ5ChDy36I4yKF8hjAHwRAcbdFwsMDg7adaKAAYyaZ7cIhngmjJ8k25+kymDiAUnLy8va2NjQxMSEBVaAb9aPswGgw1kDkujaALDg/WA5YDwATmhw5+fne5qE+6IHr5Fk7+G4KezgWQDSnD80VFzhiTMJhUIWZMFaETCyHgRkzCGMDIyF1Ck4ozsIjAFMtnf6vt8lfRlJ19EH0TtpHCq/A0bNp2JxnmRvPLiVZC2+6vW6fRbFCkg2YKNIU05OTtrP0XGAgJaAIJlMmv3AUWPbmHuYZF9YxLzzDLBOpOo9Qw8ggXBYXV01m+jBC0wta0MmZXV1VWtra1ZECdtEQOTlJIAEb+e57AI7BUsIyILZhrlbWlrqkeewX/EjrD02AwDhM2j+rEQiEStUhKVCisSZBHjCJMOy+UskWAP2Opk43p3nIfDEfuCvsCN8Lj/HvvHnAuIBu0MfTFLHfk4I3DjDZCA4w+jpSWV7mRJryfpLsj1OsIyN5+f92iLDwb4RqLAnAVnI2CAo8OeQTABZ9hJddch4jY6OGrAFd2CHfaBFxsrvze3tbbOh/C6vjcf+c4aRY/G+XLtKyzR+hiwswBrQ6fXy2GRwBUE/0j1sMEQUrCpBAnv4hYyzHpzCTrEZ0WmhQaNVAodzcXGxJ/VA5WulUlE6nbaok00DaCWtVKvVrHI2l8tZtAmzNjY2plwuZ+mZaDRqWj9S3yyo1AUmbAKiZvQzPvXKZ+IMANiDg4O6/PJZbWwktLJyQOPj3TZLpB2DILAWThjjRqOhkycHtbCQ1iWXPKvZ2T0Gdjy4gC2COU0mk7rkkkuUy+V08uRJo/b9TS/r6+uq1WrmjL1DAsTWajU7YPycJAOjMMqbm5uanJw0YM7B8mk2jAeOvZPyreuee16uUqmmm246pquvPqknn9yv2dlzFQQDikSqOniwqgsvvE/5/KzK5RF9/OM3qNlMKh7vdjHAefiUx+rqqqXIYJp99SWpX96LSBctDylZSWZgYPQJmjA4sKQ4+p2dHc3OzhpTIMnSWMgKYKkIvsgE+Fup/C0sONjJyUlzesx/OBy2VBD9G1OplAWAAN9CoaBSqdRTgAhDhfPCwdHixUfoOEfYKL6XdD8gzEf/Q0NDph0FuGQyGW1tbVmUz5rBrmBgw+GwpqenjQVnn8O6eT0gX280Gsb+kCrHOfFfX+zQaDRsLXF4/hyQUmU/1+t1k10A5JjvZrNTvbuzs9Oj2UMfi7wBkAcDBkvMNaK+swZsCoyNByqw6TgpCh8AyL5bCEEn/VrR8QOsTp482bOvWReq5720g2A6Ho9bP1icPmcRAAVBABvnuz0AtNHaEkj5zA37yv9cPB431pCULfvHrwlz46UB7BHAqi88BNz7Sn/0k4BrwDmfyTzCbMKASbKfWVxctL3kC5h4RkAH/46v4ffwO8mqsYdhpr1UBRDI12FIAdukihuNhu1Rvob8iaASOQtAkf00Pz9vdpGgRZKBK4A1n4c8TOpeKkChHQGll3QAwACydIzwWS2+Z3l52fap93O+xoUA2Wfa6vW6gWr8Ee8OKYN0kKJNaj0Imrk1yz8ThAB+kj3ogTLAdnR01KQT7A98AIEPNg6fwD4noGH9yLSwlgREvJPUbQGIDflm46wHp6urqxYtshlSqZRpupLJpDEFOGPAENo+qvcBP1JXc4fR5RCSRg2FQka3k3rc2trS0NCQdu3aZWwRkSU/u7a2ZmkRmD4OMxEW0gCpm+ryKSIOKymydrutiYmCjh3La3BwyA4eLNzMzIyuvfZaHTp0SIcPHzZAiBbrqadSeu1rT5hDYtNSjIMD5BAPDw/rgQceUCQS0bFjx+yZiKb9IaPCH0OG0H9ra0sTExP2/SMjIz0aXw4QhxjNJwebrgCkatDdEj0isG80GvrqV6/QyZPn6uDBI7ryymd13XXP9OyhlZWsvvjFa3X8+F5tbzcVDretgA7HzjpTiOFT4axPKpWySDSZTGrPnj0919MCoHHsPv0LiGAPe+MCK0m6FsPi24xVq1Wde+65kmSdImAwWBc+w6eiJZnzglXwhgwnwpWzfn1gMXDI3BhEQCLJ0soAElLDROcjIyPWRJ3gjq/BwgNkcGqwq2hueR9Yw0QiYdXXGFCvUaVnn2cV2fswgewhgInXocGQIS2IxztXCFPERPNsbAlME04Yg46jxD7UajUtLS0Zi45ODdDjGR0CHmwHjptAB4DqAyscCylp39MSe1itVq2qnhZwUgcIjYyMaHt7W6lUytrMSOoJ4HDyOOv19XXLwvjCSa9j40Yd1srrwZmfY8eOGUDgJipsI/PHO1KAA7NKwA1wwn42m01rAee7XhDkkhEBrAESAAO818TEhO1J5hIwTOAGa8yaI8Uh6CGD02q1rKiWK7FhsXyBkl833gX5BXMbiUSsQwTtlVhPpGlkFciiRCIRu9mJ9QV8IH9hn/lUPz4DQM4eQFZzukYdEoG5oIsOxWKcTQIxn83h3HFTHmtGupxn5cywrgAs/JgHp+yVWCxmxX1IAer1TgedZDJpxX7xeNxkCdgLWu5hT9jDnEfPuG5ubpr/w/ZK6inCZK54P+bbExkQFqwNfoPzXCgUTBrjNfHo4NkXZOIgBAg+JJktZL64Jpg5JOhBU+2vfP1G46wHpwjwMaqZTEYrKyvGUnLgfCoIFmh1dbWHycPIwZbCduIgiX7C4bBdW7qzs2NV3/Pz8z2VvM1m995kqdt8GkMHcOOA0tBfUs99wRglDg4iaTZVJzpraHOzCwZ8tJhIJHTllVcqnU7bdZLxeFyrq6unAFxCsVhTw8NDarcD01LheL3WB33To48+qoWFhZ4IGadBUQFtj6jQ5d3QlKLtwqh35AlpK+IBCJEWY974Nw4KIJSiNBy4JAN2W1t5ffnLST388JVKpZYVClW0vd1QqzWhWm36VPeBHYvIeVYvA+HfvPaRKxdh14hCMRy8P5oyrqdlL2CQS6WSNjY2rM0M0Ta/k7StJAOlGFEYJNJrgEy+l/66/K5qtWprBZPEPiM7gHEaHR211D5OEQcEcOCsYSBheVqtlpaWlixVODg4aM8OswxYqNfrKpVKZviZ387VgeMG2lnXTsu0lLWKQTqB/GFiYkITExMqFovmpOnTCvALgkAnT560VKqknvQi+4kWaDChtJzyvVWpyMYpSuphjTH8OCzskU/r4Qx8EQjnbmCg2+t0YmLCgl3kAKS0cZJoAHEiXsJUrVaNWcJeSV3wj+Sg3W4rn88bqANMIVVKJBI2F4DrjY0Ns6/oCP0tT5xf9h3BJ3MDYIGtWV5eNkbNa4d9IQprR1oWMMf7e40vfwAPZNkAoaurq7a30QIjoWAdAdWkN5PJpBUvQTKwx3gnH9h5fTLyMcAzTLtnJwE2sFo8sy9SAYzAjNKPlff2wTvyGhhxD2YInGBVSS2zR31WgPMWBIGl/SnQAQTCKGMf2VcQGOw1Pze8Dz5udHTUAnKyUfwepBakmX2Ac3rgxV5DloJ9BR/4cwhxBXuMtANtcrVatXoHspOcCWwy58rbZzqbeL/Cc1J/wfcD+sgI0ZcbEAxoJVCi/V42mzXbAoAEtyBLw/+CU9bW1uxdsSd8PRwOG+j29gk/4H0yvuCFjLMenDKxsHJsKnRMVMFJXW1KOBw2QLm6umqbjUiCA0hEQ8ozkUhoaWnJDgaHc25uTolEwrRlsI44GKJSGBf0cBxQRPIcMKJkUp+kGNk8yWTS5AwYwlYrorGxuGkKMTSktMbHx63ARpIBqs57hdRsDigS6QIzolRAFJWYRKFEa0Skvi0FaVjfcw6WgaIyhPakppApwMj49l787K5du7Szs6OFhQUzNr5IhWfz+jeesdVqmZbpxImWRcSxmJTPd1O4VLZ7gEz1Lk7VMyuw2VwygAidgqNqtWpaztHRUVtr1oA+oFK3B2MkEtHKyoqxLoABsgDouQYGBkyDRu9AQBAAk31KpIyhpRIcJpL0NTICDCaOGadBkcj29rZVT5MKBPDSrQLgCFs2PT1taVbOhNS9ZQb2nXSWLzhIJBLWZokCNNg42M6hoSHt3bvXgMDq6qqWlpZsT3vmArALSwVIK5VK2r9/v+0V9j0aXRhTzyrDcAP2ANE4Y9gsfp75L5fLdlbI/ORyOft96EE92MOm4FRwBNVqp98ojB1MFoEq2k3OP89GuhAQA9AmA4DjIWhDlkBWCQdPAAtjim0i1RyJRCxg8U3f2Wuk1Ak6PRNIpxQvY8Epsu7M5/z8vAUbjUbDbpmDOfeBCe8Ja+Rto89Y+eps1paAGmDM+WXPsJ/R4mezWQVBYIE0bCTtBjmnSLjYAwS7nHeCQGwwzwTo2t7e7unlSVbJs5XsC2ykB3X8LgCSpB69tiQrmEPbSODrAaXXgEajUbvcgYwHPqrR6O0Dyl4D5AGMAWDYRK8p5Z38unCxB88yNjZm2RnsDdI2fh57gu8FOGLjyLB6QMaep3uO99P8nnK5bK0E2e+Ae4In/AgBg88oEqyvrq4asXG6dAr7Rl2Ct5u+8JbnJlhF0oivGxrq3KCJ7w+CwC7jgMUeHR21vYRNo10gUo0XMs56cMph8G2GSFvx/xwENjqsQTKZ7KkqJT1J6gvgg9EfGhrS6OiotZ8JgkDPPPOMHn/8cSUSCV188cWSZOk3Nn40GrVUJv3tSEkSZSKch1EBkNJDDycPW8edzlwlWSqNamqqaIep2WxqdnZWCwsLxpASjaFNJJWWz5/QxsaIGSbkDxhxwA26FiotYc1IocPYwT5j5Llznh5+RO6ALhwdxkKS6bswFhiTUChkVzkiw0BbhuNjT2DsuQkI/RpsJ+laCsuogPVV97DAvmk0xgIgi2FFBkCUimPGcMO+hEIha6xPNEtxliRz3hSveRARjUatdyTGCOBNn1p0i2gMaRWFlg+dGYwCBtBr3dAmAYC942YvU1GKE2Pws5xDWHTeeWRkRJubm1pfX7eesPzO5eVlS1/5NOHg4KAymYykbsNpwG+hUDDmib669LxlT6ErxOnwvrlcrgfswtJ7IAsDEgqFTAvJDSpUN/Nc2CCfaSEViWPAeXDeYZAByTgUAIok03CTguVMYtN4fq+fZR8DFGq1mp0d9ifvzFoRZNJfGLaeQIdzQbCD5IOAgvnzjC0OmsCOpuVce4qNJI0N+GEOfRELTBuZGNYZHaivggfAo9PDXqFz5D1JB8OG0iXA618JomGDWQP2Bmlh5A+sJzpRng37hnwGEmBxcbGn9gD2GDkMwJx38EU0sH2w2KR+YfK5ypjfza1eBE608+Mz2b9IigC6PBuBjGeUt7a2rG84jD/zz/5jTUlL43cBx0grfIESxIRnbT3p4nWy+Ez2Aj6f88zeZZ0oXqQokb3A93L+CEggWmBPfZYEe+d1w7CgFDriBzwpxfnkUgcINuYtfepKam7wg7wgoI1Go8rn88Zw4q99kMS+4evsY2wHvgUWHWYZFvX0zCWkDPYA/0eg53tvf6Nx1oNTNjvRMdqdYrFoQBRw6NlKaGyMFkbfs7BsbKr1uKUFJigajdr94b4FEvfFR6NRYzJZMNhRNopPIRANcYuGj4586pG2RehthoeHdezYhbrhhjs0MbGu9fUJxWIxi9YSiYQxcUQ5Y2NjmpmZUT4f1fnn363bb7/AbkrhnT3jAM0PM4nGBOdLHzsYKYAojA6pvXa70+qHymgcMYYe8MThAUSSzqBPIxpNmAQAHsYB1gOwyGFjDnzau1gsWoNoZCGkBAGjpMGomuRdYUdwip5dI6onANrY2LDvQRdH+5BoNGqV3+gWSZ2Q/oR5ooraN9Dm32D8eHfmlkbVXkuVTqfNqAI4AXBoen26j72IA6FvbS6XUyTSuTGF50IjjYMlJUWDaN+HMp/PGyvoC2S8zCYIAutL7MEUxX0EJzDwpMEIttCdw1qSGgas8jk4OfY9gJMewKQqAb0UnuHMACQ4JwotfSsc7hJHVxYKhay/J6ljSfYe2CVJxk6TkibdCajEARNME3yFw2Fbay+R8Olgz0zibGBykGQQFBP0wBTBujDH0WjUzhH2A9CMI8apATBgo+fn53uCT9g19i7BJ/sDQCbJgvyZmRlj2X2aG+kUjBVZHzIFFKL6rAggnRoBAiGYMfYIgR2+AxvZbretfza6dNL6XpNeq9VM2w0AZ196TSiAAwALYwooBWjDDAPqvKYwmUxaNtDbV1oSAW7QNQP2vG3KZrMGHmF/T5en4N+Gh4etpgDWOpVKGStHjQhnmzO4tbVl0hJ/NmGeWZvOBTNDZqcJeDgrPt0MUx4EgbUoBJwRFPL/aDSx0cgBkKUAKAnWIQg8PsHnswd8tg+5BTaV/4ZCoR4Gn9oK0vkewBPwsycJ3mFLYTqx6b7GwcsFkTISLLCX1tfXrahZ6l7F6wMH5pog7YWMsx6c0pSb6BamB4eLQUMXgzPa2dkxxgUGDzDi03E+bUNFNAADg3/++edbOgoWCQMuyYyyv3aPTYpOg5YzUveWIKl7Ow3RNO8AyzIyMqKRkRGtrp6v7e0H9PKXP6P779+tZrNTeZ1Op7WwsKDZ2VkrlCGiHhoa0v79z6rVCuvw4d1qt6vGxqBNWVxcNKeNboZIlRTlxsZGD/M1ODhovfkwcjgKAoF8Pm8tvJhj0ihEq7Ozs6bz8axGKpWyCJCIkbQLBtiDOu5Vl2TAjDWWuq1hcARE/hgG1okCCg4pbBU6WT7fOzCAFewc7DUROoCEfUOFMmw9IAjhOoYxHo8rm80aA8A1mBh0ABXsIvt6cnJS4XDY+miSJl5bWzOjiPHHCGK4ve6NNL5ndABhS0tLli4HuAGgAUiwEl66wC04/H4MNyx7KpUyB8cZw1h7J8D1t/wZHh42dgEdNMDDp8dxGOwFHBjMLs+OIyIg8GsYBIHW19fNwKP/pMKffwf4cj4A414zTgDDXOH0cUY8C0BmbW3N9MQ4I3SgMJy0tyE4jEajlgXxzDAADlCAI4tEItbGiLMPcPRAEmbMO3eAy65du6zvKXsH4E6PWhw1jLHUJSIABABH1oxnwLYRYAPepO7d9r6DCHIK32kBFhL5Aay813ZLMj8AaxQKhawfKbpDCmdZh9Pnhn1LoSV7BRYKEOTBnpc+wIgC/HzAEA6HtXv3bpVKJa2srFjAQXrZF/DAxAGw8EEAPkAHwQXv4C+haLe7LcJ8ahx98MrKil2DSjcS/jAIaH1RMGcAIEtHD59pI7DgtjpsD5IvAk4C13a7rampKdvLAF2CbnSmvk0dew2WlH9vNpsm2SBoIPMHyPcZJm8b+S/PBdjz2m+f6cNuj46O9pwX9iFziTQuk8mYv+RZPeuPHSZIod8xWAB2no4oUlczz3oRnCNdeCHjrAenUPgYBDYOWjS+LnUjJrQlGAcMKlGh1AWisD6NRkNLS0sWQWH8KGJhYWAYiAyLxaK2trYMEALGkBr4W1k4gERzgAH/zBMTE+akYEA7m7qmRx55mV796vvUaBzVoUOX9Ii1iarQH1UqFc3MHNYFFzyiBx64SJVKV183MDBgqVX+i2NmLkkTBkHQI1kASOEUSOXt7OxYk2YAQxB0m9vzOwEFpJHX19etKMUXIlCYQBqUdSctgYGEPYCl8ppPGEWKRwqFggEYACvGl3SpZwfGx8cVCoWUy+UUjUa1trZmoBYA4ecLVoA0HWwqDuJ0oIphCIfD1kIIlgJjADtKYYUv1IApxvHgXPk6QJnInNY5VB/D1gNA+TfvAL12amtrS6Ojoz2Ntmnx4gE9bCPFJ753XiwW08LCggWYnFF0ZzDBMFWwdwQ46GBh9elFiYbNR/acr3C4034KfR7PCpMHoCS9DNtF4OGdjC8iwLmRBkebDCuDg/QOmrllf+KosEWk230B18jIiJaXl01+kU6nFYlE7PpL9la73ekH7DW/sH44Xe9MCdBxNkgr0MASqFA4RseNlZUVTUxMmD0krexZIgIUQDAgBk06+5h5h2TgvQk8sev1et36oY6MjPRoFAkGkYLE43HT9sJIQxzwe/hZwKIHcZxjggMyBQBIf/Uv+wAmtVgsWuDJOYfZw8bgE1gL7NDW1pZlbnzvT0BSKpWycwOzKnVbxkky9ozOGN4GSzIZDXsWBpYARZIWFhZUr9dNkoN0BwYRH8dnYrcB4hRdclMZASN2kc+rVCpWAyLJfB0MKD+XSqWUTCZNv0t2gp8BaHEGeR9/viRZEE1WEoCJRMqDOGw7a+CDHvaRB2oENIlEwmy2L5r19TL4Hr6O/YTtJgDw0gcvj8F2kN3FxrA2fk/6GgrPeo+OjloBKcQUdgS9r983nGfvX7/ZOOvBKWkNHAtGDZCAcYtEInaLDqlFWBOfGoIhgKFEc7Gzs2MHFEMK68oiEj2R6oHJwLmgV9re3rY0Cs6GSBSjSiqcz4rFYpqYmFA2m1WpVDKHgP6mUqnoyJFzNTZW0cte9kUNDBT0la+crxMnKsa0SToFUgvav/9hXXvtcR0+vE+PPHKJotGKtfHIZrPWQJ+UIFW6pIGkbnslgAqyCYo5eG+A/8DAgFZWVuzzcELo4KamptRut40xRQspqSfVA0MNU8LcEeGSGj5diynJWDPALu2bKHojQsxms2a8MGwcUFJ+7A2AFcylJGM8MaieKYUBYL6Tp+5Fx2Bh4EgFo31rNptWyQsA99o3WGWE+evr66ZPbTab1leUalGvlyMoo2sAIBrdJSlrWCz0V6QtfWW4JJO5kGb2Vc6wtLATMNXMAdpmwPD29ratIefI7y2CAZ8qoxsA78G5xBDzc+zfoaGhHp03gJPfBTPEfNE2jj2J5AQ2xwMw9Jnoy7AtXvfrNWA4LwJe9LFIa3gHQAnMxf79+82GsE5IkgAi2ErOMnPMHMCYwa7w/xQ6UOjnq99hyDhbaL8B0wA2Cq/IbuGAfYqaOQR8wZB6rVur1WkXmM1mTSJBZsl/PkEVNgS7i+xCktUmID9gXWD3fAqXc0ygTtcTSVZ4NzU1ZRmT07uGYLNzuZyxZJAb7Jl6vXNVqNfwoiFHvsL8t1otO0usJ+dRkrUZgzQgoANw796927TA7FP/vfwOgBBED0RHJBLpaVGERAUAyF7DZpL9kLq6eva/ZwnZT7wTwS+2BFuI/wR8l0olra2tmS3iuThTnJnNzU3rRAB7Sxs6ADhSD0BYpVJRJpOxvYjNIsDlHLDfEomEZbD872c+2RucM7oFAXZ9low55wY4ghdIMfTNvoaA5yS1Dzj2ASx2DqYY0I/dw/7w+zmfknouiyF7xLriA77ZOOvBKemWyclJS+uGQp2iGSI1jBSHCSOHkBuGA6MvdcW/pGJZmFQqZamWer17I5BPJWMs+dydnR0Vi0WL8gBaLCrAh+iRFAjMweTkpKLRqC666CKl02mdOHHCgBMsEmm++++/SOXygF7xise0f/9Tmp3dpeXlA9raCrS9XdS55x7VwYOLkgLdcccuPfjgQY2NyQ4HPQ7j8e6d1Bhj2Af0h0RbgCqfEvIFYRgmGANux9rY2NCuXbu0e/duK4DyhhLQQQEWxrRer9v95xzWYrFoKXdSvBxSAC1/J9qEZaECkSbepEVh/bgdigbP4XDYmjOPj4/3NCgmxcXeIKIHEO/s7GhlZcVu7sCgA1pghEZHR3XJJZdoe3tbzz//vGq1muliAR+kh8kUlMtlzczM6LzzztPs7Kza7U6RF07c70nSpRTnAR5JTxIk+UAEZwBzQKQvdVlfnALMB+km30eU9juAKvoLlstlKzYkowF7C4AnivdFb0gaPDjEMSN7YG+y9rAo7Bn/c/x+LtTAcWG8AT/8TooScTLIINBxwkwSBG9vb1swgBMCCOAUJBnYArCTfmcukD/gHKempmw/UsTnq7KDIDBWlcCdzAxOHn07siTYa54H+8g6o3Xb2toyFpLWSjBb2ARsBKwiYIFUJusRiUSsiwr7G9vM58F8EnQC7Hg2il6z2az2799vtoTv5RIN5FGAQ2QxHqT5NL6vhAZ48T6cSV/sQiBD0IquHYaUgBUbCsvVaW0XNh+EfcbOoH+E7fbFPLTo47l9sRfAkSAcUAKwRf4QiUSsXzHXU7OO7D8ACyCGZ+f/w+GwnWH2Gtk/zhGBeKFQsKJZAmyeo9Xq3PQ4NzfXI4GRusEFmTL6unqNKP6R/b20tGRnjL3vZQXgCsAXJBb2EXaWGyPZV7wj6wbLyt7ykhBYYkAdPpVnglDDDlGEhWwgCIKetnE+gCIzibSn1WpZYRX1DwSqBIEQD/hLwCcZIu83faBCURt2CJ/8QsZZD07r9bpNJFojdGJeiL+zs2MpKbQVAChSv/y8T835gotGo6Hl5WWj6gEhMIA+7SR1Nius1dLSkgnRMdQ+3USbDdJofA9tHgBs3LQCtU6Bj9fvPfXUQT3ySFYHDhzXtdcua//+u+yZNjdH9PDDl+rRR6dVKgXGpgFkAMUUZQEwaUBMwRjFFpLsEJP6ouUFoAS2D4CD4wYQkU7AUGO8iKiJKCuVin0uNxRRaY9OxjM5uVzOKjJpyo5gfHt7WysrKzrnnHOUyWSsdyQtwfwcU+jBfGNUmAf2GYaLwiYE+uwrgCuBEu+G42HvAWQwuMPDw8Z2+hQfwAqdIVraxcVFY6gxUAQMNI72+lKvnwL8kUJH6gEjNzQ0pJmZGeuygIMFbPlUE5IIQB3gGMcFk8O88rskWboYJoL9AeNJYOfPLr8TphfQsbGxYYVE8XjcZAXxeNxStszTs88+a4wzrVYw3EgKYL5x6vTWlbpFTLFYzBwDgR1sLlmF8fFxzczMaGVlxbI6sDQ+8EMiApAl+J2amlIQBDpx4oStNUAAlhqtMmAcWQNpW9YBAEwhhi+2oNMCwAAwxu/iZ/gc5nV5eVlzc3MaGRnp2fM+5Uzwvr6+bmtPD1tkTr7IxxeNLS4uSlJPoMReKxQKBnxg2XzRH+sJOUDLJ/YBNp1+zwRe7C+kR4DbSKTbxmhwcNCKoXzhltQBznNzcwZE0QXz7B5EIuVhPnluPs+DTOaTbE40GjVZS6PRUD6ft+ACO7m4uGjr5wFFEAQ9YISABPBP6pbAj+AKthSbhd9l3ZB+0OHCayDRJVPsCmjDR6D/zefz1lIP4gimnXPp25PxLl6XzB5g/rCFp2eUWHOf3eEMsUfoBAExxVzCQlPctra2pp2dHeu/DOMPaQLQ8/IT5GReOuFlLgSofg1GRkZ6QLIv4oOYSCQS1oqSVPzOzo5leumAAlHGXDJPBF6cOewNt3Fyjr/ZOOvBKYNDnU6nLbILhzuFHxxC0tAcMgDswMCAVldXzcAA0HxbhXw+r3A4bEYPZ++N8uLiohUeUFmNmBtRMqkxQG2lUrG0PMCNn4nFYhbJJhIJnThxQsvLywYKuZGHCIsNglbs2LFLdfLklRoejmlwsK2NjbpGRzOnGIy69u8fMYe5urpqBwWAzyEAKFBYQEU4AA2HL3VbdqD/gdlFZzQ5OalQKKSpqSkDZEgTeE8AJpXFGH30pyMjI8YaUPWayWTM0bAmPm0IAMbYkRqiMAiHR8V7IpHQ9PS0gTdJFi0DWJkbHCyAFmdK9SvOBGc4OTlpzgTn4tOoUgfkHD9+3KJY9gjshr8gAiMnyaQYAItqtdqT3kYPR0Gb1K3Mptk9BhfdMNkJfs7vN99ihtQr50zqFptRVOQj7VAoZL1LS6WSAToiddLGyEEw3AQ9MDYwCTACsEO+oNGnmn2hGrpv2BGyGPR8pHDIBxU4eNgdHyDW63WtrKxYtgDgC5PvdZ84F2QGsHX05qSCH3bEywhisU43Dq46hoVuNBp26w+ML4AWZhiGDYcHC4pzz2QyisViKhQKPaAQ2QrAPZlMqlwuG+MCgzU8PGz6R5wbwJZAFjabTg9zc3N25SxXFbNGsGdeboDzHxgY6OkVzPdns1mbr2PHjlnREYCN/cz7cUlDvV63tnNkOWCsASbMJXsBAEPaVOq0/vF7k6+HQiHLEIRCIQOnZM14z4GBAQMtFO+urKxYwBKPxy2oLpVKxhDSK3ZtbU1LS0um7fSMKXsC+xMKhaxVEYDLyzYymYz5TIJQglLYcrSdaMoJcAjKCBrW19ct04H/YG658AObCJGAnfI9SGETsa3YDS628Zk73o95Rm8NA41PZn7RzWPHfJbSPxOSC+wewTv2BRLAr2+z2ezp3EN2hMH78W68O5kgCDB8DvswkUgYQQNZB4lGtxrOndeeonUNgsBIGWQkrCG2zhdeEVx4iZDXtb6QcdaDU59KRIDvm9+z2KQBVldXrQH8nj17lM/nzaGQ0oPZ8boxGEAWCi0aLCPpdwAIDoD2U2zOVCpl/c4wuhMTEz3VjqS6PJ1OVSxaVRwCxg4WD+PDhulEUYHq9ZCq1bbi8bqlAXkmIkxul8Cx+ZYvGCG/4QGAsMPoBjOZjDlyDBxAF2MEuwlTSNEWTBrPJskMRaFQMMaAPplS5+Byn7BPOywuLvaI3L0Y3BsPgGUs1rnrGElILpfruecdloR0Z6VSsetz0QoBXHh+0joYQYT6OBgMhjcypMVJtwCUYLBgECnCgPWmGTxgERYOECB1r/ikIT7sni/Kk7oFXOx1WCgYbJ/iwpAS5MG2YCQ5k6SCQqGQSRUikU4Lqp2dHSuQIlWGbhDmoNlsmr57dHTU2Bn2FKwA+1Dq9tuEgSKgIBjEMNdqNWuPBKMDo8bXo9GotSbjLCMh4t9gPHHQXvsGY4TNqdfrmpubMx2cD0xgpgD9ABZJFjiwvuiq2WM47mq1asGb/0z2IPvedzFB4gF48gw+Vec4czRrZAoikU51OUyNz1T5m67QZxNU4exJza+vr6tcLiubzVodAeAGwIDTBFjWajWtrKyYRASmlKCQQijAKH9Il54uHYCdRtdPkMOV1GgVfaEp64/tg0HDkQMs8FWk7inGIkPBOvPutOSiGMvLzwBIFJ3RdWB9fd0CQXwI7Q1prYZd8v8l/Z3L5bS6utrT1oz9ga3D7/GOnDXOfjweNxAII0cgTtqcwliAWL1eN3kVRBEBEJebkAL3OmfOOmuFP/IBAnaB7ioEDQyIFUnmJ1g3CBIIGnw/PbMha2BuaVUJgZDL5SyDsLq6ar4aIOuxCuuOn52fnzfgR2DL/sN3kAFln/o6FiRlyMvAF8w3NhmgzbrxfNhun+1ENkTvaQIzgOsLGWc9OOXQeA3M8vKypRM4jLFYTCsrK5aiJwIg6oFlgYHF6OIUEfpWq1UDk2tra9ZWJRzutNLBUHpxMQJpvgagYDPiNNGjAfoAbmxIjEM6nbbPxDDgOH0UyWYlisTIUTG8srJixhkGFga03W5bZ4ChoSG7ng/GgXRyONwpmIF9SqfTmp6e7mkx4zU3pDNOF1nn83lLQQEeAWyAcX43xk2SidqRdwC2KF5DGoFh8qkxr/HzulFJpin0LT8ITFhvDIOvlAek+ObeBA8wSzw/7wKoSiaTGhwc1NLSUs/PMN9eLA9TSJ9U78SpmsdRwFYRBNCDFAALGCd9uLm5aQaQdCJpYVLbSAU4Nxg9GBWcZLlc1tramtLptBnUoaEhY3xYG5j5IAhM/0i7Kp6TwijAAIAcRx2NRs0pAxaociVtS1V3uVw2hohzirPkPEoy9tRrgtkj7DX2P0x5LpezG+jIGjAvsDuARWxAq9VSsVi0gEOS/S4KOMj04FDYm2hoCUhpF1YsFm1uAU7oYCngIlCGkeXz2Csw7ASWAG/fKgxGCX0zbW+wDdhTzhvyHoAzUhHWB/CMHWOeALcE8UijOEc4duaIAHRkZMQAj78MAIkVaVECMV9MAkFAJq7ZbPaAZxhe/InXDpL1IjOAPcaGYBOlLuMLsEVrz74dGhrS9PS0BVMUUyEJ4uwCngjgMpmM2u22MWcE4cwlc4hGk70NiUNQxLutra0ZI4rcBF9HVoVUr58LfwsUNg17hdaY1LrvTQ6z7NcdWQj/RjbFB4cwsbDnoVDIMgy+Wp/9if9mjQncfOaCdYHogCX3TLcky04MDQ2ZHAHAT1aTjBZZq2azexsZDCUBA/OJdAG/xp7jz+rqqpEaGxsbPfp1iBIKRmFQCfaRl8HuelmVPxcw2gBegmeCqkqlYgTIN8VuL+i7vo1HEASanJxUNptVoVCwtIEkY6EwWBzkSCSiVCql8fFxA4w4UpgaSabJ4P8lKZvNmj4DMOMjJg5bNptVrVazXmM4v9XVVZMfcBC2t7d14MABVSoVLS4uGpUP2ELjA7syODioc845RwMDA1pYWLCULcCFdB8HhlQ5xhH2AR0fKUIcIaDTt+JKpVJaXV01jR2Gn9QgzAdOg5/zKS+cM/pdInaALs8PAOKmGJggCpIIFoaGhgxIeAYIjSyMM0YLh4X0whd3YPw3NjcVHUupmRjTdquhrUpFwakDCrhClJ5Opw2oAYhxJlNTU2YAYUxJHRNYYBzGx8ctYKBgiGISnnFgYMAApCRziqRySqWSNUvGUGPESMkio2BP49j9LViwihTPoJMF3APSeE8CKEnW2SGXyymXyykIAmOsJFkhFwCU/UP/U9oOEYgQvHANKQVsVPx6HSUdH0jbDg0NaXJy0iQoUof1ohAmm80akxiNRu08ejkPwRUMHXubHsC1Ws301RhpCtoAWTDzq6urlkaDWcSm+AbgSIQoWMIpVioVLSws9BR/kGpk/iYnJ5VMJrW0tGQsB1pSBiAXhoWgmWAZx09xIoEtfweIcE5pG1csFo0tBUCRVeKMshe3t7c1Pj5uWnSY5VarZe2JdnZ2rD0W/ZBh9pjbWq1mBV4EJMwP60HQXa1WzRZAWGBnCSIApdhJAjr6NROgYtMB14ODgwZ8ABvMFcEoDdoJbAm00um0ARhYVQA5QS7PBRgcGBiwHri83+TkpO0ptJ4+ePOacSQmXvLEvvYFeGSFCAjD4c5FNEi/6K6CBhffB/nig2vWxWeHAHXMt89Yep2o73jj0/+1Ws06i5CeZs3QZOK7+SzsBWeVQk1sGPIdWGFS3QToBDGsq89qEEQB9rAv29vb50hPhwAAX4hJREFUPWfQs/7hcOcqdRh97FS9XlcqlTLbCSNMgMy7IRvg+TljgGfmU5KBXp/VZK6we3wGZ5Z9CCuOTfatxfgMP8cvZJz14NSnITHobB5SJvTsyuVyBigw6kSnMDgYu2q1apVtbCKYBMT0pCMkmQaVCJFrSsfHx7WysmJGPxKJmLbMaxWJYKLRqFHyGCuvByG1Pzc318NKRiIRE0cT0QH4oN+JgPzzUKlIdSvpTaJWUo6AXX/AidYk2fOhJYSt4rPa7XYP2KR9UywWM0ePEcMQEPEyvxi8RCKhqakpbW1tGRsOiKDnKI2aifxInQFEPRs6Njam+kBc0Quv0XmXvlrRsZTtr3p5XcX7P6/mMw9qZ2XJnCLC9snJSQN+QRBYYMOhptrRMzmk+2D3SPcCCnhOvg99om8tBkDzPecajYY5DPZYvV63FBIFB7Q1Ym4ajYYFTaTzSa9KMiPGfsKpHbgsqekDW4rHy2q3B7S9OaJjX40pPZ62no7lctn0e3TSkLp9hJHMjI6OKp1OW9GK14v5ylDSrT6FBZPD/HIbWRAEVlE/MjKi+fl5Oy8EDgRHMM+waL76lNQ0n+kDTl9xC4DFwRFIsv7JZFITExPGoLA+nCnajuGIqMLF2eEwATVBENjNb77Ig5vISJuTLj/dicIEoQHG5vAOMDsE3awLshXfHgtg4zW+BLg4RwJV9LnYK9hj1nlwcNAC8SAIjNlPJpMaHR3VysqKyWv89dPsCeaBn6UTC2eI58eh+zoESRYQomnG3rHm1DQAAn3WDXZaktkWpDaAD6+bRSKDfcPJswewnWjsCa54JqlTO0HrOwA46VfOC3sBqQz2yZ8j5oCzhG6bMwgzBjPoOyRIsgwcc5PNZs2OkMkE0AOc0Xd7v+KBPmQEw8+NT8OTWeLMUuVOoM35iMfjSqfTxlxK6vHJ2AZ8K6DSBw4EqWQ9KUiDvKCmAV+FZBD7StYCJrJQKJhtJ6DlvAMQ6ZwAScU78kzI7nwx0vj4eI8thIHl57z80AcZZK5oYQjOgVzx8+GzkAQmgNZvNs56cFqtVlUoFDQ+Pm7GnOIWImw2Ae1aYDNoUQTrNjY21nOFFxo4D3gBasViUTMzM5qYmOipWCPqIjVAGpnDwkLDOmGoFhYWelIqUqftQyaTsUper8Xb2NgwdgnnAAOMpjMej/dUXTcaDWPYYEth+zDIbGh0naSPYC2YQxwcrbpIxWGwiNIw0AQOOHuCg2q1au+BsUErA5vBAYJdmJmZscMDWMOwAS4AJqRrSP+g8yQ4mJmZUewVN6t+4CoFzaY2HrtbG4cflho1hWJxRXYd1ORr3qaBm75fxS//nVb/6g97jCkHX5KlvFgn5sGzunQ8oF1RPB63Cm5Se+wngCApaGQffA5O12sgJVl0T7qXFBP7K5PJmE4SphajDFsHq+CrWqvVquKDcV36upguOPcJpUJfVSs0pEYoo1BQVyxT1GX7hrRUfb2OPrZPicWEaZVgUDGwvvId8EZQhdNlvwDUiOZZQ1JYGETfAsobz0qlosnJSeXzeS0uLvZUR8MM+T2E7SDYkmSsFI68WCz2AB1+Hp05jpU5R7rBz+IcaV22e/duey6cFI6e1joARK8NJuPDswCgSK2T1fAXPeD4PFhst9t2EQHnGwZ7YmLC9G7IbNin9HI8ne1iTWGlYKUpbAPwsr9gXLkBDGaYtCq2h0CUfU5xKYEeIMgHoDCy2WzWPpOzQerTa64ByegtKaCSZBpfX+zSanVvpyI1j6YVMAsAxS6wnxYWFozxZY5g4plTgCt72WtcAQx+r+IPYB0BkOwZdLpkfAgOsCXIcwgaYcvZ50izvEwDe0X6V+owdZAC7BFkRJxdQBksLQwoc0SACjnir/9mvQDeBE+w3DwjQQDESK1Ws1Z6BFWw1V4OCJkE6OJM0GccgA/YA5BSPIRdJkMUiUR6KubRpXumkyyIZ7PZ617yMjg4qHQ63QOWuYEM7EFwg21lf/nMANphaklisZgFihAe+HWCJKQBkFVeIse5eCHjrAenbNp8Pi9JxkhwIIgqvCCbg8JCpdNpTU5OKggCPfvsswqHw1bUQyTLoaJoplarWfRTKBQUiUSs1yh/iMyolsTwk0YiaiZyk2TpbJ9y4b1IqSLKJxWJzqjZbJqTAuDg0GAReQcMO4aagw5zwmHnIHITD5o6isoASvTia7fbOnHihLLZrEWQOAgOCMaVe5yJbjlMaDUBGRhlDNLGxoaWl5ct3Ygz4lCura31RHvsE6LqtbU1i6BD17xNjQOXq/qVz6ny1Tu0sVo0OUe90dDxe/5exz/1P3T+m39I2Zv+haKjST38+79qYIS+iEEQGBuIAfLNjUkP4gxhLTw4oACJQVuqsbEx0+ThGAD/VJbC1vhUPk7FP1elUlE+n7f9TBEcbAIGXJJFzuVyufNsYwm9/dai8pEvaDW4Vg8896+0fHhIw4lOe5hYKqQDLy/onPSdmrrmNo1nb9Whe6ZVKBRs/ZFisMYwgfF4vKfjAUAUFo8UcOnU3e5IPOh6AcuHg8RIklKFKaDND6wBjKW/WcwzlxhljD6MKr8DAAqLhv1hzQmKOJdoQ2mpQ3sZUsw4W84864hEZ3t726rI0dLTCJ1MAABIkq2pd4yk1tfW1rRr1y5rE4feGLYGWQeaSTp1EGDwOZxfn17Emfqikng8bhkaAjjYTPYD11bSYBw9IjaYYAoGzfdnxA5JMv0e6Ur0gBSIeEkItoLMFM9GdwckQGR+CJrRPcNYcr55DtLC+JZms9tajWcA1NGHeGJiokfyxdojHZuenu553kqlYjfbea0j7B/2e3Bw0IAgwIn2hYAhdI+AC6QUPKPULRQi6zEw0G07RyBFxsCzlQSLFABRcIvsDCKB9+IMwCYDqEZGRqzQDxYP8A5Q9+lpqXvdL/9PgMtZZI+TNUJaRHtB8AT7FV8lybIfzBdyEQA3RaHYaQLPUChkwaoPNPks2FbOYaPRMAaa2gQkHX4/UsSHhpfnJxD3mnXOjNQlBJDIEJj59mPYGC/9a7VadlMlAb1n07/R+I4Ap0EQaHFx0ZwqbFEymbQqTioV0S9KnYnP5XLmGHHw/i5t0hDtdrunQhN2gb+z6FxhRsQKU8hhZFPCKHKw0Z1xcNhopJHR+SCiBxT5KylJiUndVKwvhICB3b9/vyRZSwscbyQSsTRGNpvVyMiITp48aREwKWgOE9/L3GGUwuGwjh8/bgYWYIbBgs3mWWGaYHJpGcIarK+va3Z21iK2QqGgUqlkLWtgygHVvD96IgAiqT+Kx2KXvU46cLmOf+R3tPHo3dZ8HwcLWK5UKnr2b/6ntgvz2vdD79XB7/lJHf34n1qEiRNEfA8o9/02faEC7wqTgxHF0FExjqGr1TrtrYhwPcPqQW4oFLIrBJkPACFzCQhCNwmL6R0T0Xm5XDawEotH9K4fW1E2cr/uP/J/6Ol7GxoYaGp0tDNX8Xhc7a227v9kTHc0XqPv+YmSLj/nT1St/rjq93bSoOVy2QoLYZjYzzgwAjbOEswA3REAoPw7WQKANFIFmClkOzs7O5qcnDS9Jekz357Js30wopwNmH1AJ2uMQ4I1hLHw91kDdmEDpU7g4YuHsE+AULTAzWbTOn5QNYsWlH1KOyaYJYAyGaBQqHPfez6fNy2816IR8BLQAhQodqFBOoCf4jdJBugBDzCPFEsBTjm7qVSqp5iO/ejlOQRV7GnWGcYPhh/nTI0Bz0C2QZLy+bxVhFMASlbFF0Sxbqyj77IBoGcdCUgIDtk36G55fgIDQCh/2PvYShw9rDY21dtZGHiyWti8IAi0tLSkubk528/YW2RGgAXkar4vKtIdAA+Ao1qtWpcUT7zE43FjGynsQUbFenrg49+XM8ulAT6z4Cv7Oe9kRdDJk2bna9hMfC2Ak04Bvo0Xz4SPYJ4olCMoJNjDL/Nz7HX8PecLu4z8hfPKz8GeEjCyHyha9WDPZ/bYd7wHtoFAzJMw+DzsFllT5Bl8Dz6qXq/b+eSc+IyHly56+Qgg1QfMvDvBvwfr32yc9eAUcECBEtWpGHgOD7dynO44OAxEdfTQxCERmeZyOWUyGdPQDQ8PW+9Onx6EBfPFIhRBoH9CrE60AbuCcQBkAo7YMBgUmsmThuAZ/EYnOvLpYyJ5rlAlgkVDBVtF42n0uswpkoWFhQUlEgljQJFEcLglmT4J9pUo2+uyfJqfg+N1sp6t8JGd1wHRnw7Nj9S9HxpHNT8/b2lBKsWbCmns2jdq48HbtHTf35tRwBhQqACrVKlUtPboPUrMnKPp13+3lu/6lBkrABa3Vg0NDWlhYUHlclnJZFL5fN6MFpc/ZDIZA/ykrUil+cIAAifeAWeDAYFR8ppUqpNhrTH6fDas2/T0tKV8SLFh7Hd2OreaDQ4OKpfL6bp3Dmoy+nF9+ckf09zjYWMbL7roIp177rmSOo3Pn3nmGR05ckS3fXRMb/yhV+vqiz6qE0+8S6VStycrxXCSLB3PXKGh4pnRerOWvMf6+rql3QhQAdoYb7TaVKV7pgTJC4CkWq1qeXlZ5XJZ6XTaAjnuiEcmEYvFtGfPnh4NJ4BicHDQ1pTnDYfDlnXgnGEfAJeS7Dx4qQbBCQENrDq2BPDkgylJNocERABE7r2HvR8fH7fMEy2RCIZhkAmASO3DhJGV8S11ONecZy/j8ACH6yWRk2xsbKhQKJgshXmDOQXcABrZQ6RjuSa12WyqWCwaSIZZBORgW9kXPi1P+hq5iL9OElsyPj7e09qNwITPZV3JCmGTS6WSaXix84Au+msDOk8PvmD5feYN7Th9UAEfrCFnmL0BcIDZ8oW72GXvk+gOAzhiLbx9xW8SzKP15t85H76a2zNr2GJYYfbq6QV7zAeZRrIfHgTTPxgwxpzgJ9j/7Bmpe50qWVWYSAgNL+OAAGJvkvnkohNJFiSTrcN/+loYT06QASG48lehcoPgxMSEBWWAU/pm00mBwRmdmZnpOY/sB7AJtoFiyXq9brpUAi9sE+QLn8/FAKwNc03Qxj6lvdQ3G2c9OCVdQGTCIgPqiNIp/sGI+IiIhWIBPevAgeKA4qQkmXbGOxE2Emzr4OCgLr30Ui0uLvb0DiTViAEEuCABAHj4w0hkBoMG0MWJoG3lFqdkMmkFA8gXMCgUf8DoUAW9srLSkwaW1NNMH4MmqYf+h8GEIWHOAUvMG3MCk4tUgLnmvf01i8gsANCkwKPRqLXL8ZcehEIhaxReKpVUKBTsszFKmater4HEiLYevsNSVMPDw7r88st14403mph+aWlJ9957r44cOdK5t/mBv9fka9+h6eu+S89+7i8VCoVMUoJhBjjwhw4QGAKAFxpV9M8bGxsW0QNgccCk1tnzsI/DqYwSuZlOoNWsqVhcNl1wo9GwwIG0K4VXgH+YBhhadMSwDKOjo5rZNaP9ub/WUvVGzR+KamhoUHv37tVVV12lyy+/3LphNBoNnXfeefrUpz6lY8eO6Z4vXKx3vuEenXd1RXMn2ibsl7rFQ9zUhRTGF54AWHl+ehaiRyMF7LVkOPalpSXF43Ht27dPUvduaRwdAIFzy5lgbvl377SZP75GJgTHdXraDMeLZIA+uTAjyG0o2JNkgQHPSJAC6CV483bCpy9PnjxpTM3ExIQxgTggCt8AVKSUAQo4KarQKTKUulp4AlPkL1QQN5tNFQoF7ex0bvIhRch+JkOCTWNOyDBIXc06gQDpd3TFADBa2RAMMteZTMbsIfYSoO9tkE+vsy8A/wTiBPvYGql7banXG7KeMMRSt4IZX0O6lewY34OGj7XgOdLptMnQyJQgj/KBweksM+tK/02yVTw7oOj0VD9zDoBGUhCJRMwX+mdgXWGrkXHBDPJ9PCMSFtYQBtdnFOr1Tps3gjh/0QkESaPR6ElZQyrhg9fW1myOAd0E+PhaqSuZgbnd2NgwkoE1JwsKY49fZ3gmmPoAbC9zxV4hK8QzIeNgH/D/vtUhz4cdIiPs5QwASmwO+wOSjM8BiPoz5bMf2B/sI/sdkgwMgM9gXgk+OK8EDS9knPXgFEZU6hoExO+rq6tmCLhai0btgBwGhsWzFoAj7kFH/E96fXl5Wevr67awLBxpOPr3XXjhhdYQHkZ3bW1NhULBojoWvNFoaNeuXZK6uimuWGTDkFqjuhungg6U4jDYTNpt8Ht8X0QOgI/Qc7mchoaGLALyhzOTySiVSikSiWh2dtYcNtWCnjFAXwR4ge3FKKbTaWOTEYOjgyKiZxA4EK0BYJBIMN/oxmA7iSjR/1iBzMGrtHX0MS09e9g+f/fu3Xrzm99sznh8fFyTk5NqNps6efJkByTVtrVx+EGNXXG9ap/6nwawfOsain8ymYyBHTSRaA9pm0QVJ+3QeOdyuayNjQ1rEcPPtFotBQpp8MClGrn8dRo7/+U952Ho6GPa/OoXFZ49bAwrDBLvGQqFrCfexsaG9UuEjfEt18LhsHIXtDXUfk6PHrlZ4XAntXjFFVfoyiuvNMAsdRzk+eefr7e+9a362Mc+ptnZWS23btAF+x7R3dGLFAp1b0mBZWd/w0h5rSznFiYE8B+LxXpuM5FkjCRgrN1u2/sRHNHjE8dF+pt0OQznyMi6ksnnFYs1FAqVtbm5pVJpyOwLThbHRoqdvoZe3woopPcyP+urnn0VLWAkm80a0PVZEoADwScsZDQa7ZEXMYfoNWHM2u226T5hkDc2NlQsFs3mYe9IPaO9QyvnK4B9sErjcV+RTVBAj0xkO0EQWDp+e3tbqVTKUpLVatVANIUaAHE0pX5+cebsb2wkgR+SEew9QBanCqgA9BIoUYBCmpTvAQgiS4G55DkAU8PDnXvkBwcHe250IwCApVtfXzf7itQJYIkO22dSmAvmqV6vW/cGr4HGL8LwI19hDpH14CORZ0WjUWMvYUYJIthb2HfAUSwWsys6fdDDXiKDCOD054TsA/UcCwsLisc73RnS6XTPGceW8TP4T96V/+IbAFAQU7ScgwkEyBEg4kO4pIOCw1qtZsVaSEskWc9ggn/sgi8mhWDAngJ48Z3YLbJI9EuG3IEA8n1zYdBpC4aExHf9Yd+QJfYEB3OCX+DnIADoXgSpxaUn7B1v81kf9j5r8M3GWQ9O0UVBjbMJjh8/LqnD6PF1QAvpS4yRT5kD1DigNM8FSMzMzFi1M1EFI5FImMHhUDSbTX32s5/Vc889Z9EF0SYgMRKJWIoVHZXUqepFEO21M6RV/KYApBFVoaUhGkwmkwac0NsBTtEOwWDAgpJ6IZqbmZlRKpWyA0h1L5EZN8eUy2VLJ3LoSFdy8HO5nMka0PeRLvNGC90SgIN0TalUsmeZmJiQ1CvqpkAA40BaEs1ZJJnV1nN3SpI1D7/iiiu+JiVBOhZDFwqFVF84rpFzLjEjA/NJ2hImAoaJSByHtr6+rkwmY/1oYVTb7bbpiCiagR2EzYlmZ7TrB35W0VROW88/rYVP/JGCrXWFQyHF0pMauvSVmv4X71F9bVk7/99vKlIp2ZwADInaYWxI/7DHAG9ovfK7TmgnvE+b86OKRqu6+uqrvwaY+vnau3evpqendezYMR0+vE83XPIFTe27QpX1QTOwBIOjo6PavXu3MRIAKPYCIIVbpGD1cXjouwkoSc+i5+aZACbeMXKmO0VhGV144Zouuuiocrk5SVKrFdbAQPvUeXpQTz11nh5/fErxeMrOOylKAiapa/hxSpwjqaMfXFhYsOwArb8Al+ix0b6SyvXZHJhUAmFaKuHc2H+0FaIFHs9LBbVnqmGm6P8Mc03xZSwWM+0jZ8hfuACTTSeCSqVi4JQ1IU3M3iLThUbYp0TZr77gEkCKwwW0A/aokCc7w+dKsjNEhTTBrdc/+0IRJDCkqgESFIUQJGGHmXOeC/23r7bmWfkvchw0sNiISqVigSIaXgJzJAwUhc7OzmpkZMQCCCrR8QkAU7IhPmNINgCgh72CCGi1uj1v/bsBDsfHxzUwMGB6aQI/WEKf8WFfQY5MTk6anaY2hH1YLpft9xeLRZNl0E2HS2i8zMMXRHEm8VNkHdHSAtroL4o0AGkINh3dJqQQZxrQiHQB2+nZUgCaLzbm3cnGpFIpA3MEoaw3mVxfK8Fe9lIt1oQsJ/IXLlqBjMCPhsNhA/zVatXWdnl52S7wIPMCAA+CTks2sAK2D9vB78du9TWnpwa6DVI2RBUccIwgRUdsZtIaLBgp4VarZVoeBqwjqaxMJqPNzU1rnO4LJySZaBwdYbFYtAN8eroe4zgyMmIMDEwHYIeWIzgTfpboRuqmbNDeAXTS6bTpJkkx12o15fN5Y2Ax/OPj4wYaWq2W3Tvvb0Eh/QLzg7PiYPo2G6FQyD6DYhQA+dbWltLptKLRqPUtxIFGo1GlUinRzgpGAiNE0QgACwNCb0QAgWekOLS8W2ggqqBZN+kDQA02zA/mmXmKNmoKR2MGSoaGhtRoNLS8vGxslNQNGgDKgHH0Qtls1lIrRM+kVNknBBxBEChIT2n3j/2qGusFLf7xr6p45AlLY7HOtcMPqLX3fEVf/d068H/+uo7/j/+ocGlZ+Xze1gNtl78RhOdF2yXJjNtAeEvV1qSi0ZhSqbT27dv3dYEpIx6Pa8+ePZ1LLlY7EpiRVERbq237PQQavlgiGo2abotKYRxdqVSylBMsHGvmCzMIPAF8Xn9WLpethx/ArVPZGteb33yv9u5dULGY0/3336iVlQvUakVVr1c0NPScLrroqK699mFdfPGwPve5G9RsDpptgNX0+kjAjtcnwpqQeucOe8611C1MkLp6O19cSXYGJwsrQlDI/PNZ3MKFIwRoYqMajYbdZgUrBgit1WrW7B0GHjCFzWKvAtoAFbBIZA+ogvfdKCTZGtC2huIjGBz2JKl7gj9YLzJgACOegTOF7t4XkLGnYD6RCoRCIUsPw4h5IMycenDC+sNk+n0NwCUg4jyjLQWAMy9of72W11/QAEtKNox6gkQiYfMHY0rBEf7l9KI0gh7OD/vPy5GQdfDZ29vblhqGYIH5rdVqJp3wMhfAIkDWt/rCtyE1YG1yuZxViTPHSNuQd/jaDvzCxsaGnQeYbwgB3gGAis4XvwXjT0DE83kGmqIp7AgBIvud2hL2HR0FAIrYVeYJaRXZy42NDZObMIdkD8Aq2AXOvtevsibYI74PgJpIJEwmRas63scDeObJ16qQHcRecQ4pRIWF/3r+8x8a3xHglMIaKnqJnJvNphYWFsxQTk5O2iEHCLHIpMwQMkuyDQVj0W63tbCwYMATLRy3JrGIRA4cPoTYXt9FgQ6L7FlcHADV62hVMT44ivX1detSQJoin89bOp+oHsYSlo4Nh5MbGxuzFArpRwwLrCIGDhBAKtAXecDywv56Qy7JDDMgulgsmkEhlQxTS0/FSCRiURmaNhgTDCXOiKgNmUEsFjPtm9dCxWIxBfWqhtNZ7Zx6nlgspsOHD+uSSy6xwiapkyaam5uz4reRkRGFBofVqlaswT7BgpclcA+5r4iPRCKmS6SSnH1KtWsikTDGr1KpWANyDY5o/62/pMbKglY/9ruqb24om80as8PcjYyMKF7dUOGv/qvG3vGvtfdHf0EnPvArZmh9NwMACQUWgEOMI4691QoUDXckCXv27LG1/YcGTjibzSqa7Rj2+GBCzWb3linkLc1msycqx9A3Gg1NTk6a06DSGmc6NjamlZUV03wBjnDm6EFZSxh5ziX7JZkc0fd93yPKZlf1mc+8RsXigVPpw21j8Le2ZjQ7m9Ho6EV661vv1Vvf+gXddts7tLExaIEsKWqq7wlkPLOCnMj3fvQpU4otYNakbkN4ngVpDmcTGQ1XnxLU4SDRH5JWBSTDapKiTCQSVpCHljQS6dw8BGPEHBMYw6ACCj3bjnNFVwtbxFqxbgR4nDWKaLi2lgAEO00HFWwsaUYv85E6KVB0hDhpNNwAGWwHDDqEAClt37KKd4Ed8leEInNKJpM9PW7JmgBkYYcJypENkE6mOMpfBONTxAMDnSLTY8eOWUADSOI8orFlrgD4NPEnG8P3Ap5ZM9hr1g/5D9k2vjY5OWnBHz1qPbNMCh52GvBPpoOLRYIg0PLystkj5j0SiVjXCPYGe41Ag88jQ4mt5T1Ix3uf6lPpnnn3WAImkMwHNo0ghwwsPjyZTBqI5tx5CR6kDUEUEiqAL/tTkhFSsM6cqV27dmlmZkYjIyPa3NzUwsKCZmdnDfD6gIwgiT2LHwZw+owB0hf8OKwxYNsTat5mYU8JdCEACcZfyDjrwSk3ZnAdHkUw4XDYIgqM4OmVhUgCAFwMX+mNhpNFbDQaev755w0IRKPda9U8A4vxIw2CUcYQEKF4pg+Ggg3G19FN+rS3j4gokCIdD0uBYUcXBACgMpJCIpwl16YBsInqw+GwCoWCPQsaG555Z2dHiUTCQDNOtt1ua2JiwlhW5pX0DRGYL1Qh/YHhhYHycyXJ5BmkCgksAAekPmCyJBlbGIvF1Fh4TpH9l2qj/MedlHgspkOHDimRSOiGG26wtPCjjz6qu+++24xKOBxW8mWvVOXE02ZQaUrOTWOSTETO+xEknH6zD4bIV5bi3Ej9bW5u6rx3/rgG4gmVP/dnGgha5sRGR0c1NTVlwUO5XNbJkye1uryo4p+9Txf/8h8pccmrtPTAZ20/+EpmdNSI3dEVSl1t005tWKnhedXqncsWHn30UYVCIe3bt89YOn92FhYWdOzYsQ5gTnbmI6glFApVzKGxjgRRgGyvfYZZwCl5J4djiUajFozxWQREBEHsWWQ3OKzx8XFde+1jmpws6jOfeb0WFibUaHS7W/j0VKvV0vJyRB/5yDW65ZYv67rrPq8PfeiVtge8HIdWNhhzz85IsiwJQSNg9nStu3dyfC9gw2sLSRVyvnDo6LAlGWMcDncq1NfW1ozB9lkfAk2cajweUy63rnR6TYlEoGh0TJubE3ryyUCVSmcuKaqRujUABF90RCBIBxwjA/CSDGwZdhDnzToARmDfSHNyk93w8LDK5bKxWbCfsIVes85cMP+8B/aDuQaAc1580QvzB+OKJo9G/awje3Bzc9O6TDBnAwMDPel9bu/L5XKWDQQ4ox/e3Nw0YEEwsLa2ZjaRq5IJPLHvsM0Ez/V6XQsLCwbmYG4Bh/hPiAdJlnqGVMFWeHmb12KTLSKgoqsNvURh+yQZuPPaYD6PLBisLfubbGm73TZpiy8e8gDKp8jJwDDvrKNvdbe6utrzvpyJVCplrC02iAI2fw7RVntdL+AXIN9qtaw2Bj/C78K25vN5XXXVVZqZmVEikVCxWNTOTud6X/ZCOBy23+2ZT4AxNghCgvn0Rcro8CE6ILC46MJrfllzmGZkbHQ5eCHjrAenUrdqnCpkUs9ERUQKbDycHJEom49bK1hcjAfs3d69e7W5uanjx4/bpqjX61paWrJUVDjcuVsctoK0La13SKkcO3bMpAYcNm5HwZh4CQDFTv4gZ7NZJZNJa4dBiopnB6ABqnCKGDvS45Js/iQZkwOLCZggEkbwj4Phaxx2+scCdn1BEIwBh5D58a1ecAI+JSLJdFzoZj0ricPikAHEceqSjKFMp9MKPXGPkhderbGDV6hx4ilJnYKOp556ypiS5eVlLS8vG8M5ODio6tik4tkZzX38j7vp9lORKfIGWiI1Gg0tLS1ZwYBncEl/4lT4ftjAUChkkfnK6qpyr3qTdp7+ilrbZYvaJycndeONN+q8884zA33s2DH91V/91Sm2f1MrD92piWveoKOf+jONntKmVSoVk0vg1HFAnA3mLBwO65knsjrnmkVF0if09NMdLfODDz6oG264QW94wxvMiNZqNc3Ozur222/Xc889p52dHR185SMqBZdp4fiWgSrYKFKNzWZTs7OzBgrJKGAcAZcw6jAKsDSVSsU+d2NjQ+l0WkNDQwbUceI+PdhJ4TV10UXH9cQT52thYcIkLzgvr6MisAyChO6++0q95S13a/fuba2tjdg+hcWBDWfv8u/ME04JB4kzI1vB12HxeF/YRkAKBV7sdewU7yvJGHuv5zxdZ+xBAft5YKClSy+d18UXH9Hk5Mapz4ooGu2A2IMHU3r88X168MGU6vW4sdqk2gcHO/2IE4nOVcNUKJNqLpfL1oHDd0GgaBUwC/DzXRYoduSKaOxuPB7vscW+0IZ+yTDX4+Pj5nRJ8Z577rmKxWJaWloyu+VtLnOOpAFQyO9MJpP2LKw3EgGKVwBTEA34qHA4bFpSJAAECbDF/vvr9bq9O/p+bByZHOaxUqkYu8qlJ6TTV1dXDVxxPrzWn71PZoXG+awJLC0MOEEjbLtndJG2+fnE7uDnmDOCEnwCZ4rBnkXagK+FVfWMpiQLvukWggaZuecMArRGR0e1trZmc0tHAFLbPDtED+8LqxoEgQUsBGjsbS83gjAgo8T3ESjt7OxoenpayWTSbMWJEyd08uRJ64OMzweIe/LLX6PK1efsP54TRpl1RwpJHYUvICeLNTw8bCQVQQ1EnZdEfqNx1oNTmASMHI7Fa3/og+hZByac670AGmhR2aRUN5IilmTpG3pw0iuUyAoZAI7X0/qwaBz+ZrNpPS8lmWaTiJLNw89wG4OkHjAGyAYIFYtFe2/0PvQ3RSNCtDM0NGQGbGJiQkNDQ1Z9T6QEiB4YGNDa2pqWl5d7rr1ET0R05QX+zC1pRIwETMrQ0JBVX/ubPzY2NrS2tmZAGQM+NDRkTezr9brJHgBXHDaMOUwAAHp7e1vByWc1vDyr3I3fq9LHfleNasdgb21t6bnnntPa2pr1Z8UxDsTiyn/XD6haOKnK808ZAJBkYBLnA+tFy7Dh4eEeAT3BACkp5A2k/WGQY7GYDrz6uxQbz2jn8AO2f3O5nK6//npdfPHFPazFwYMH9bKXvUxzc3Md9urBL2jylW9U5pJr1Jp72gwcWiWCBL/PfCo6kUjo6XsX9cprL9P+A0/qiXvOUSTS6c139913K5/Pa8+ePSqXyzpy5IiOHDmi2dnZTtXpZEgToXt1z+EftDXCKAO2fFEfwB7gWSqVjNGSeptAk5UoFoumpSNdR0CF8YaJoaqZfXjRRScUi9V15MhBc+7tdqdNWTabtfvK19fX7bYvSTpxYlKbm6O68so5ffnL+w2QcO4JPPgs5pdzAeCgGtoDQ4JGHDRgF20a+9GnJX2lLlkYriHGscO2UD0Niw/bApBZWlpSNLql7//+o5qa2tDx41l97GNXamPjfA0ODqvdbmhmpqDzz39K11//qC69dEyf/ez1krpththLZA8ADewrzget5LwdAHxyjsbGxhSNRm2vDg4OGttPKhrgBeAYHx+3VnI+2OUcs/8BMZLMPmxtbZmOnwCC50Efy/NT4Ernlna7rVwuZ+ADAIUthyDARuG/YL8JbmH40DrCwq6vrxvgIaj0cjDmwBeuDAwMGDsNo4gtpcCKfQ8jFg6HDbSz98hs8O+ebTwdjMBMo33MZDJGSnCTFpkJCuKYe+RxrA+A13d84d3xL5AJ/JzPVnDWyAhx2xJ7lMwqgJP3hFmmFSW+HOIDu4K/xgfUajWTowGekZcAov37QUZxXjjLvBe1DM8++6wBYbTH+GOfdicoA3hDCEGycQaQPZF9QG/LvvTnhIDBusWc+h5kbbSuxHZ5f/SNxlkPTnFkROxECaT1RkZGzIiTyseQs1BEXd5BEEGgiQuFQnr66aeNeSRyPnnypCRZRS4tgGACYU34Haurq7boPv3PjVFURbI52RS8BykhmqTDvpGKwBijFwuCwKIlPmvXrl1W+eiBHExDMpk0JwdIx0hRdLRnzx5jsbw8grmnmh59FwfdR5QYzWq1apo90q4YJm+AcUYAbWQNaOCCoFMo4Q84LBqMOeu9tram1Q/9V130b9+n1Nt/Us9/6L9YCoPbvEqlkmn6NBDRzFt+QvGp/Tr+wV+3ufFOjb0ndQtbMJBcDQlDRLsQDjuAnEIK2J90Oq3kgQsUtJoqnzhiEpb9+/fr4MGDX2MIotGopqenlUqlOu+xMq+g1dTUuRdos7xobBHpMUBCKBTS9PS0FVdwBqSO0T/07JV61YEP6rLX7dLqs7vMQH3pS19SJNK5wheAXa1WFYq09fqbHlI1lNfhe9vmSEhhEYwQUHLLEb8PJtkzLxQH4HgIxtDEYXBxFh1NadIcW71eV6FQMLCze/ezev75jObnAw0P1419m5iY0Fvf+lZdccUVqtfreuKJJ3TnnXeaDKLVaunQoT16xSsO65OfvED1etKcgAdYpIBhZGmZhRPGKZNVYP+wz6vVqhYXF63anvdlr6MvRE/oC3NarZbZBED/6bdi0RIPSUnHjm7qx3/8sEZHW/roR1+r5eXUqV6s68pmO4zd3NykyuXzNTy8pOuu+7Te/vY79Xd/9yYFwbDNM8/TarX0/PPPW1W21NGDYnO4eMPLCwgwmA/WJZvNWmGcJAsIsK9c44lkw593ggYCFcAyFcmQDLCl6Hb5O8VBvp0ga0qtA46+Wq1qfX3dmM2hoSELTtnzgCiyfNg4skD4Nn6Ove9TvhZoB4HZn3A4bG25sCfY41KpZIAc1gtghv3GL3lm0cujCLqkbmEOc4w94b1YTzTmPhPIHEndXprsA4rVmA8CBAAmDDBMHvIBX83O5/D92EaCAWwyhITP6njAl0wme2R22EZsPOz2xkanBoBMB51imA/sIuCe+gVkJKurq7YmBLSFQsHOeaFQcNmbwM6JD2RYJ/YUz0a2jkJAvh8ZCvIX9jT7E1DL/mDd0+m0YRbwEYGNn+9vNs56cOqF+hwgH5l6bQ4sCBPIZg+Hw2ZMMNak2TCkxWLRwBvOZWJiQnv37rVolGo9oiacFYVS6FNIx7EJ6ItK+kCSPRO6IZwTBTrtdqfZOyANI8OBpTKv3W6rWCwaq4selzQ1TdABie12W5OTkxYV+Vs7Go2GZmdnFQp1C028foW5pP8iQBN9LAae9CWieFJ4sESpVMchbmxsaGpqSjMzMwa4E4mEFR3BvHltLi1v+J2Ac184BVO1euRxnfzIb2vXD/ysdv3Er2nutr/W9tMPKhqSOaLtak3T175BUze8S4PZaT37/75ftRPPSJI5Hoy4Z8sBMr4dB8wqRQX1et0YOZwwRg3DNzw8rFAkKrWa9j2+ZdXpo9Vq2U0eOKWg2dDwWFLRU4UW3ADGPdhoPgEFkuzaVlLBj3y2pMkfe5decd7/0rOZH9XCE3tVKpU1NzdnRo61TuYH9Zo3fFnDoeP63J3fq0R8QKHB7kUZpC1xWFynGA6HtbCwYG1nstmsRfBkO1hv+mhy/TBsB6w01egUC8LEYQ86jHpLCwspczo4qF27dumyyy7T+Pi4JGn//v164IEHrPfg1taW1tYGFYm0VS4vqVqtKZPJaHh42AIL9G78P3uV1Bd7BqAtyc6C14sBPNBLoynHRoTD4Z47wAFUgNZoNKqpqSlzPKTx+XkYNxiiH/qhgpLJhv72b2/WxsawhobCBnK9vhVQuLr6Br3znX+v17zmfn3hC6+zlLPPjsBuwvh57Rqf7S8wINsRi8WsIwrrDoNKIINu1BcHNRoNFYtFjY6OWp/gtbU1K3Bhjk+3vUHQqQfIZDLm1NkrPjBHD4rTr9U67ZdgONmvnFNkC94v4KNgY6VOMEV7PwpXsZuwtOxvWC4PeAk2AHb8brJb7H9/Huj/idbVa8gJrvGz7Xa752pdD6jZg4BlwIyvhUDyBXlA1hKmGkCLP4E5JkBAygCzC5jGN7InCF48O8nzsxZeKsbAflOfgV2WZMw52QzmGfDPefc1Dj6zhl1FyocdQGrH5/o+4ltbW1peXu6x89S6QLiRAYNMApATpAVBYMFvKBRSoVAwTTR7Hs2z3z88K+cVdtwTeHwfRaGRSMTIoRcyznpwSgQUBB0xOZuFqA0jlclkLMoibY7GicpzKtTQGNKEdnp62hYFEOeZOEnm9FkY9IITExNaXl62VAsUeavVsqv2MHCASd/eBENKqwjE7vTdbLfbPVEjTgYjg1Zoa2vLpAyk9jOZjEVuvkIQnR8GWZK1gMEIIEAn4l5dXVW12umTiPGTZOA2m81aW5lyuWwtjdDEobchvYXsYH19XalUylJDRNK8K0VqRN/j4+PG5HpGEuOM1gugO//wPVpbPKm9b71VB3/4vWpVK6qceFrhVkO5QBrdf7EiQyNaP/ywZj/2B9Lqgr0fbDM6HxwfIB9QUa/XTft4eqqKNHo2m5XUvVbPp1XKq0WlY4NqBlL1lP4wHA7r6NGjuuyyy6xwQJJpohcWFjqM99CIwvGEWjtbpl3k3dlHBDIwxwAmDFtnDiO67UNxBbf8C52X/n+163V79Hzh1Zo9lJJaTYUGGkrtb+jSy+c1PXiXmqFx3Xn/LVo9UVO73W0JBZsA6KWJOuluHLZPDcPKhEIhaxQOY041ND/H3HE+cDK078rn8+pU4MMWhs0OdP4eMl0VzDYdLEhPdxhdCkEGLHuD06xUKuZk+DfOMufq9Ab8zDldIWjD5EETxTMeEOEUfXUtAQfnGWZkYGDAMhQwSF4HOzi4rXPPPakvfvFCLS3FFYl07BoZENaHW4TS6bRCoWk99NAVetWr7tXIyKY2Noas8AWAx3pwvqPRaE9LKeyXr6TGyXNjEIEyTLsHYKRmx8fHLdgh3Upw6CvQCWaRbBHI+AKcnZ0dFQoFKzr0jCcBgAf67FEvH8NWwobCRPEOABTW13dxmZ+ft0ATe16r1Sz9yvxgdzxIR1rmi+ui0agFW/wb9hDwjV0pFos2LwQN7DvenbZlfr0A/wB+1tyzwwQW+C5JRihx9phH2L2BgQFr38RZxRcToEE8USALUMUms0+wb1TLr6+vWwcdfFetVlMqldLExIRJ9whqkQXwzD6Q8rafPYpfA8hBNMG4AwBTqZThA4AebCZBAwQTZxGbCDZhHfCNYAvWgM9hHcim+gt+KPzGrqCbT6VSdj7ZO75HN9lcgpYXMs56cErK2qfiAWFjY2M9t7kApNi8AIVwOKzp6WlziuiK2GSk4Dik8XjnVpWlpSVrkl4ul61vJMCIjYdTXl9ft8p6AJlnS+gpCONHGpDngPmg1QiGiDupSc+y0YjkaEUSBN2+mbVazUAzhwADxDtyALwDzeVyPRojUqRoTHHIpDaJ+mq1mvWWxNFzGDGKvCc/yzz4r6GDikQi1mNtc3PT1sj3hPPpaYAqOlxY5p2dHa0/+Yg2Z59VZs85Sl/9Bg3P7FcokVSwWdbzd3xC24/drdbGikXKGFV0xKyHJPv9QRDY7UueqSYyhZ33qRgKQGBXpE6RVnXzYaXf+KPaSu3W4tN/b30/0cSed955Fml/7nOf01NPPWWttLJXv0aSVH7uSStmQIOLDANg1mg0LBiJRLrXFubz+Y5erVrTnR9OaO2GX9Lucw7pYPZ/6cIbeg1RJbRPh4s/oI0T+1Vf2VYk0r0ukMAJXR9MSjqdNseLoeNMw37S1xGnfzqjAegFMLAePiOAlIG9WC6HNDjY6dGYyWTsfZ9//nl96lOf0g033KBGo6G7775by8vL2t7eNqM/Pr6tZjOkViuueDxsqUF6dvoiH5w/bAPpxdMZf6QKOEiGD0qxW/zd95L0oBD9WaVSMbsA88h5w54Bbi6++LDa7bCeeWafpenQQXPmkdKQAahWqzpyZJde8YqYLrroWT300JVm22C2KPTDCRIoco7pYEFGSFLPHBIsQwpQ8EMVOJkSglL+S0DiC20Ai4AySAzAGBpZzlaz2bkKFw0lQQRBgCSTKMF2esaUCnmYK6+FbLfbFjDi8KXuLXuAIlLYFDNNTExYpgMShb0ZCoWsxyl7z8sa2APIxwhavH+EadvZ2bHrdWHXAeG+en50dNSCQeQsAFkuZYChZH+TvZK6fXlpaUjxGsECtyahRweceiYaoMkeI3gAFLKXsQ/YHi8l4vu9zIQ9hj0GgPssiCQLlthrSBuwqwQ22HykBfV63W4UDIU6vU55JrKISLFgYjnrPJNvJ8i7MXZ2dqyjg5eX4bupM/HnolQqKZfLmSaXvcTaLS8va21tzS6nkWTvPTMzo2KxqBcyznpwigbRC3U5+CwqhgxwODU1ZQCBNOnk5KQdTHp7kqJg09GSit+FoyDChbnjd6NVyeVyGh8f1/r6uubn55XP55XP5429gEnlhiYMg9eWEMFwCIiacOKAVJ9eximSMpekQqGgcrlsV6QuLS1ZdTkpMw7X4GDnlpW5uTmVy2VNTU1Z9E3LFMBDOp2W1K26x4Bj2KjcJW2FljQSiZgOmAPLoeHARKNRK9Dy84PWDi0uLAnrD+gHUMAOYFiJxE2rW1xU4+8/YoJ3GL29e/cqfmo/kLKnJRUtiny6jTZUBBe8Dw6F4gl+Lw6S5wKkwoSE6+vafu6QJl/9FhW+crs5oWPHjulP//RP9brXvU65XE7PP/+8HnroIbuAotlsKnnVjdp+7gltL83aPHBDCMaZeWb+JVlHB64CRvoRjUY1++iGTjyyS/WBW7Tn4rBGR0OqVpsqLjQ0/2RdQ4mwEomCMSjsQ4AlDeFhwZPJpLFMME9UqhJMbG1t2Zqx5r7alvOI4Qfskf3IZDJmHwALjz02pne+c1bh8KpCoRlz5FtbW3r88ce1urqq4eFhHTt2TCsrK1aRvblZ1sUXz+q55/JKpTI9OkCcXqPRMC04QBOmk3eFTcLZ+6ASh8uNWMiDmM/R0VGzDfxupDJe70oVNnPLPHhdJRrr7/3e53X8+F6FQiOSugWNgFP2LKwWms94PK4TJ87Tnj3HdO+9lxr7h6aT/U3xpW93xNexd16SQ6Hm2tqaRkZGLKuDM/XV4ADCSCRi8gqvZyUoAtiQrve/m3PF/HtWGmCATWPvMUfYTLJD+B58CAVf1AxI3Z6k7AOYLaRPgDdS2Ng55A/Dw8OWUSIzhkSCjg6lUqmH8fQSJGQVBEXYR//HkxSQBdQReEaOW+f8OSD9D8EDYcPcA7J8KhkJAkCeAIV5QHoHaGI/SrK5P/19vdQGQEjQxLrwrmT8vPaTueeMQj7AsJdKJdOPeymGJBfMjluAyH7k/XhebIPPxkajUfO1ZDoJZOhORF0I7wszyxyQYSRtj27d3/iGzYA1JTACG3D2ybJhZ2jP5+1SX3N6amAEvRaEaBNKnoOGVo0r+YiuMJDoYYgsOSTb29udAppTqetwuNNImaITmEA2iBdtw9wsLi72iPfRs3CIMVBElaT5w+FwT986oksvom+1WtY4mkiaaAzBMxsZwEQzZg4rgHpyclJTU1MGrtHmoDObn5+X1NUjIUFgrgDaknoMQigUsitUSTNySAGR/BsO6vQUqNdDcshhojAi1Wr3UgEiUYyu7+xAw3IKZiTZXoCFgH0H+NDe4+TJk6pWq9YEn0PtI28cCQZO6mqnWFtSQVJXP4jRgznBeNcO3aP0O35K2ctfo/qxx63d2NbWlu6//37FYjHbu4A47bpA8ZkD2vjY75uxX11d1ebmphWnsK/Yi4DocrlsRU6Li4vGPuPkeb6nvqhTxYGD2tkJFLQ7bNHi4qKxVTh9ugxUq1UtLy+b3mptba3nthaYIjTSnFcafxeLRZPw0Fya1CF7FWNMkIZDo69js9nUV7+a0VveclKvetWaDh2q9LQ5CoJAR48eVTweN0MMKNq3b13p9Lbuv/9VmpmZsX2GIyCgpc0ObB57CMfB3kci4tkzzg0sM3060e4BvmFIcXx+H8LWAyzZv35vw5B3bERNCwspu+oXSQ4BIu+AA/S9SIvFqPbvrxoglmQyEZ+Kl2SMnz83MLWsAYAJRgyWmD2MrIDAFqA8ODhoQSegEMYKUgF7RDofGwqQgQ3EnvviD4JHD3Bw7F4TjG1m7vnji9rYt5IMbKMn5HnRY0KuEBSj3Qb8IqFAi033ChhSCAvsNUEb9gXwiR0gsMCu+yyjn1cfNPI5EALYdMA068D+BhDif5jPUqlkRAB7hWDFM+kAObJQkFClUsnwgS9Q5dko0MXe+MCuUqmYlAP9MvNK3Qg+G0zB+sBAE7xJvZkdQB5a8JGREQsS8BVgEEnW4m9iYsI+b3l5uUfy44MM9gX+CjyEXYBt9ZlPmGHOKL4IqQPrNzAwYK0uY7GYcrmcSWhYUwIVz9x+o3HWg1Mizmq1ahEtEQSThIZrZGTE0vGJRMKa2vo0LI5oe3tb2WzWACNRPf+eyWQMaPgiJhaYaMwvcCqVsopTxOIU8KAtQt8Eeyap5++wj0tLS+Y0YC9x9FSdwjLhJMfHx5VOp81Q4RBI8+EAvaaGaBD2slwum9HyOkUOOw7AC9XRHwG2YMwoAGK+MAJe+4WxymazVtENIzA9PW1FRZLMUJdKJc3NzdkzwNaSpuM5ud6V9QHAYbhpKQZgGRkZUSKRsBQwmq3NzU0rMPJty/idIyMjWl9fV6FQMKYwk8lodHTU2HsuevB99dgXzWZTjUe/rIFzLtOBH/n3Wvir31Uwf9RAMMCDVGi1WtXwuS9T9q0/ofKh+7Xy+L1qnlpTvoduEzDxgHm0mLAyOBQYJIqN0G7BhpEOJfjyWiSq6AFsBCfsM3/jCowKkTpFc2ia6IYBKAIQSOoJfJaWlqznKc6WdyHoGRhI6umn9+vqq5/X/Pw+FYtpA7i+VyDyoI4Wva63vOVhra2ltL19QENDnfcnmIvFYgaumQfsD3uL88O58yl270jIKpBSZo8S1NBqi4AcJpEgDP0fazcxMWF7FlDhGfpQqHtdIu3nOPu0IcJJoYUj8AsCKRTqBI4wrevr6xY8ohkl2+OZKs4Stpr0K+COtYDp5OpFbBA6uWaz08dY6oIfbtSh+h+wIalHdjQ2NmasFDfk0U7I1wosLy+bDeL5CHYJpGH7eCYCAQIo9iLABr00c+TTrxTtUi8xMDBgGTI+H7AUDodNGgZbiP9YWVlRvV63Yq/x8XHl8/me54FMgHiQZHuQ7jbYZGwo/gGWj79Xq1WtrKz0dJdB4kZ2ycsh0DF7e9tqtWwdYBUB/ZBLPCuFPQQqED6+UIq1bjQapr2mMMgXVkPYkPmAecT2JRIJA82QBPwuf9kHe45zBoEASGVO8em+ngMtKM+3srKiQqFgwRGSNYgCzi0Amb8T/GL7AKenF9YhpSIw8n11Cco3NjYsWPL2TOpKM+jT+0LGWQ9OG41OixKMB4bYg0acFkwXAApdkSQr/EBHQVTkW5mQpmfzlkolraysmAGFISOCg3rH0HNwcCi0O0GLiVYIx0NERCSMQXjuuee0urqqVCqlVCplzZ2pZCe1QEoG5gpj1mw2rRMA6TlYEVopDQ4OGstF9TdRH5FUpVIxg0CkzgHwhh+jAvDhwPuDC/PpdUJ8z9TUlNLptKXL0R4S9XmNFTovmrpnMpmvObQ48pWVFYVCIdOMwuZgvGGXOdyS7Ko9r3kjwIGxBqThxIgoMRDJZNLWniAA9oyoFwNLmqRWq+nYh/+r9v7QezXzA+9V6ZG71Hr4Du2cOGLpmZ2dHcUm92jmFTcpfeUN2n72MS1/8o8VGRjQ1qn9zUUQY2Nj9q5UN+PkfYUmBljqSEJIYUndNm4ADBwPwID9BossyYK9VCplesiNjQ0z6gQp7C+po8GjMIJ38BdJAH5g0WKxmJ0JWB4YsWw22wOUbrttv7LZFb31rV/SJz5xpZaWsuZ8WDsKSyqVWf2Lf/GYhoYa+tSnXqdKZVOl0oadaYoqYIzC4bAVW3L20SCmUqmeKm32hr84gPQ4e8mDKkm2hltbW1YMRCaHanKAMcCN3yV1r0SNRCLKZDLa2YkrEimqUChocHBQMzMzlhZmzmCgCKxY21RqRzs7cdsDgAhfARwOh63AhnWk2KXVahnA570JYmnWz7kAnBFoEASyL2mDRHaLv3PWeH6ubsXWYKd8wZPXhxKwcuMOwDMajVr/XNjMdrttoAcwRJDnu3Fg0wlOyuWykslkDxjgnI2OjiqbzZqPwz5iO8PhsF35S1cWzi5Fm61Wy7qXANp8tgD7Smrey3IIwmGKR0ZGlE6njf3kvOCHffAidW9Gg0Xk3zzQhlXkzOFTAWsrKytW2OT9Kywegay/mQxWFptKkE4gij1C205wBIMOcAQrsEd4bwgb9kEul9PGxoYWFhbMjpDBIRgFNCKdgwX2Z5x0PmAcIoWzCznhi8CGh4etBgXyjGcFsHsNKWSIr/3oBu8D5tfwUVy9yj6RuteSI6HBPn2zcdaDU6kb7QOcYI84wGjFMCaefSP9wx9AB3Q5B8tX+MOWJRIJTU9Pm+FLJpNqNBqmbYXJiEaj9nwAXg4OrTgoLALU0mII48fBwnmTEuAuZ9JLm5ubyufzCoLAgDNzBEj16R6ex8sEMPgYT5jlaDRqzt1H2wAH0pe7d+/W8vKyCoWCGWSpAzJom4FulvcABAGOAWvJZNIYXZ6RKI0Cm1qtpoWFBWNRMNJE7byrJDM6GFLAMGkrNDwAW5wmzHMkErHG7+wzDDg6PpgdNDgwhjx3oVCw9yeIYr8SwaOvI1gZGBjQUDyuZ//sfRq9+rt0zs3fr9RVr1dt6YRqq0saCA8oGElqZPe5qpdWNP+5D6n8wOcVkrra1VNgk+wCxj0UCllfV96BCHpyctLWG8MJ6+8r4gGuAAffzYDAhncBhAACAIq1Ws0YFdaGII5WSIAQWCpJmpiYsD6nPB9sI5kVAAyOE8e3tbWlP//zC3XLLc/oh37oAc3Pz+jxx/fr5MlpsxWTkxs677yntGvXEdVqUX3iE6/W0lJYicTXZk1gHXHwu3btMufOnGFbkCtIMmeBEwBgI1nxOmpYO9/AnAwJLdx4doqNKG7Y3Nw0oMdzA1SefXZaV1zxnO68s6jt7SH7OaQDPDepZbJN4XBTBw4c19NP79PW1pYFoTDiOFT2H+wobKPPQLHWkAEES3RpAIygLeZ2nqGhzpWY2FGAMECXgNSzPTC85XLZsi8jIyNKJpPGuNN9wdcfML/8ARywv5AHAKAJtiA6cN4e6LFnyWTgY7C/ksyekVEBMDG/XstJeh/ZC8/BGa7VasYy+wxMq9Wy9l1eoy11+67yXPTl5ns59+iLd+/ebYDLs5MegMGgZzKZnnQ7c3o6sKQmwcvB8B/pdNplAUJWeIjdpz5D6raZqtVq1kYLuY0PwvAT+FCfSeW5/MUg+CNsAf4Z/yvJSBmvncf2Sd0bL5EKNRoNq3ehuJC97Vl4nosAfXt722RtnD+PZ3wRppfdwIxDqq2srPTgGM/GUmCL/WN9Xsh4SYPTP/iDP9Bv/dZvaWlpSZdddpl+7/d+T1dfffU/6jOgyPl//gD6BgYGLIKGGcLoA9wAY+hpfCqcTY7xIBKC5YGBi8U6PfnQp66trVlfRElmQPP5vDKZjI4cOaKFhQWVy2VLZcOSopUj0l9aWlK73amaJooj1eajUzYyUSX9TklF4KhhKrLZrDlxQJUHwEtLS8a+ArQmJiaMnfEibq8TI5JFo+K1sejGYEXQtXbSjpme708kEtamgwpSScZ0FotFlctlK1xqNjstmbxuqlbr3gzDeo6Njakdjih34/dpdN8FSh64SJGhURU+/aeKzD1p6zU8PKzV1VVVdnY0cP4rNHjDOzWendZEo6bq4gkVP/8X2jlxxG7IgDnx7K9PUcPGt1qd9kSAVTTSODQANC1xJBnoGx5KaPnOj6v++F2avup6DV1wlaKJYSkU0ubirJ748B+o9NSDmsx1GkKTnmGthoeHrfKdc4DzRxojySQRiV0HFD3vSg3uvUAz6ZyalU1tnTiiwhf+UvWtdXM+lUpF6Wtu1rlv/gHFUjnt2S6r8PBdOvmZ/0+Dka7zIiAiMPHSGX6v7+OH0Ww0Ok24S6WSsb+wbrBEaLVhEAATgASco7/BrcO6jupTn3qlXv7yNV144RG9+c33qNUKq9GIaWCgqWi0qe3tYX3lK+fp/vsn1GzGNTQUM5mH18fR6BwWFDuxvb1tbA7PCVsFI0KxBYA8m80aI0PrNUk9WnjkATB98XjcgrbJyUkrJPKpNgKTVqtlt1utrKzoq1+d1tVXH9UllyzqiScOWCak3W5bgQ3zDbjtZDae1uBgXQ89NG3Aywfa7PloNGryJW9rYRvR+tFtgz3rtW1Im/h3zkw4HDbgjb0i+BkeHrZ+p16jn8/ntbm5qbW1NWOXUqmUZUQgNLC1tBv0+lD/e3x3EBg8zjyBJ+QHAwKCbB8aX9aG2gFa6wEc0NvCoOEDybLhD/k8QDnaRSRfgEskWENDQ8rlcna2yDog4cGPkEUkmIXA4CayZDJpvU+xc5xxr+UFtAMKAb0AQ/wvmUS0xbRiYm/AwKKn9jIjpDYw+qd3CkGKgTbdBwTYTjKI2C7fLYGOJ+12pztBqVSy+gmySswt2TAAIWcR+4u9g+X0YBp/RncE72f4XV4qg/0DL4ANIL5Yc/ASewE84YuzAL6+jgb/jKzJFzi+kPGSBad/+Zd/qfe+9736wAc+oGuuuUa/8zu/o5tvvlnPPPOMcrncC/4cDhDsGkbXR8sYQjY7hRUYBBwb6ScPVjmIMKwwhD5Vhy6J/qgAPChw0mrZbFZXXHGFhoeH7c52rkYlCuN50+m0FTrAaNXrdeuNSgqPnwE4S+oxlqT4mBd0qe12W9ls1qqn0+m0ZmdnVSgUtLm52VOVzwHACRCZE5UvLi4aeA2Hwzpx4oSlR9iobGr0n6urq2q1Gjp4cF2XXXZCk5MrikTqarUGtLExoiee2KvZ2YOW3vXV+hsbG8YSnTx50qJ9dF1S1wASzcEaJBIJFYtFVUJRXfG2W1VbW1Zl/rjGzntZp7r3FFiuVqunnrGl6Xf+nxp92StV/Mrtqn7579QORxTP71Et1BWdw14Rvft581ciBkFgRorv9QwA4GZ8fNxSKhgKzxQNxmIqHXpAha/ebf0Ri4WCTj71lCYnJ02eguHd2tqyNl/sq3a7raWlJUnqcZ5BEJixH7z89Rrac75Wvnq36sWTGsrklLzqJiX/7W/qif/ys9pZL2pwcFB73/Hjyt/w3dp66ivaefQuhZJZTV//do3M7Nf8h37TwDWMBWw0LBosyebmplXGZzIZ5XI5A2Jo02Dy0IFK3XY+sAMABCQ/PiMgyYzr9PS0Njc3tb6+rvvuG9d9971CudyazjmnplQqpmYzouXlqGZnJ7Wysn4K7HQLInAmMB3oXAFZGGyfMfBaXdLmBFEEnHwmadDV1VW7CccXYQDiSK9ToAcw9HNEoIzDrtc7N9Osra2pUqloauqAZmf36eqrn9TcXE61Wpfpg93G9lQqFY2Pj+vgwXG98Y1zeu65nLa3k4pEQj3sKOCJc8gaAT58sQ6ZJN7Bp4nJrHAOarWaSqWSrS+yEjSv0WhUGxsbli3ya8XvJfgbHBzU1NSUPVur1bKiK/pLS7KsEVIyX+VMepd9BxlC4OLZMrINBEfYftaMwAoQT6arUqnYrUKQAmiHYbM8k4cMC5lJLBazTB96Q/p6UyDqOxzQugoZE78Te9FoNHrkbvhJf77QR3splAW+p/YjtpnPBhxBZpBJwr/BzJOZ9EWzyNg4GzwDASk/l0qlLMiD3RwdHTVQibaW4IbgE1vrQTpgEx0rdoz3gLRhH8AiExTOzc2Zzpj1HR0dtSvSCYTwHUjNlpeXValUNDk5ab4ZbII+2xf18nVkYB7E+8I5ziYdVbw0w+9RMsAQbLC4Pvj6RuMlC05/+7d/Wz/5kz+pH/uxH5MkfeADH9Df/d3f6YMf/KB+8Rd/8Wu+H4PEYCNQgc9mZ5KJLGAQocZhpajOg0mU1NNfEaMBC0nURTRB6hajC0NFjz2a6mIE19bWtL6+rtXVVYtiMJpTU1M9DkVST5Xs9PS0pemh49GlwjDOzMxIUo9WiM3C9xNpZ7NZYzUBrOiiMDJE3bFYp/EwVbc03uXZATIw1qT1qADmth82/NramsLhsPL5eb32tY9rbKymjY2cnnrqKg0OZlWprCsaPaorr3xML3/5IT3zzMV67LGL1Gp1+84Vi0XV651WKhdffLE5KV8QB2BF3A27SnFLcXVNwf/1w4o0qwpPzOjS/99/08bGhgpzc/buQRBo+MJXaPzy1+qZ//GftPLIPT3V/PQbhOGAsSPChxkgJUOEScqf4h3S6/SY83uTamL2G4CXDIAkra6uWuTNbWHoSL22DWdAihzHRRcHdKIEEc1mUwt3fFyt4py2TqURK4mE1h65W+f9u/9H0zd9vw79ya9rJDulg699u9Yf+ZJm//J3LX25vTSn6bf9uOqXvVLhpee0s7Nj3QLQe7PfMMCw6gBQ1ouzTmahWCya45ybm7OKVhgKUnBUdfM5FNJ4VgIAROpzeTmlZrPTtgWjGw53rjL0rVbQygKiSLXD7pCS53eRkUHnHIvFTF+Igw+C7pWJzz33nDksWFgYQuwcPQVpX8PexXn5VCvsKg4HsETRlyR98YtX6MYbi7r55i/ptttepbW1pIE0AnTeeXh4Tddff4c2NyP69KcvULlcMj2t1+35imHmeWVlxQJaDzphZQlmYQhJffriIc9uoVmkXRQt/RqNhum2yfgAGH1WBTJjZWXFsjm+YBSADGD0LZ18Ghfm3xedkBnwRbowgnwf3wsYJeCAWOGaa/wL2QIYO8AY2S7kYAAi9gH2yDOAkUjEOtGwL9iTsLpra2vKZDL2eyjEoQ8nc0RXGIA6aWvOAbf74cNrtZoRKz5d7+U4ZP9YO3wJABsfzB4CVHktq6/oHx4etj2ADIZrR5kvbCHPQPcPJEcw+AB9zm86nVYikdDS0pKx7BAyMJce9FGEzXw3m01lMhkLNLBJXqaBfWH9IMlg+MEs+Gj2LnIK3xeVwBCMQwBH4AqLS7CCTpbCai4NQZ7h5QvIQv7BEbwER61WCwYGBoJPfOITPf/+oz/6o8Hb3/72r/szv/ZrvxZI6v/p//mW/5m+5MrgPx4Ngpd/961f87Wf/Ov7gn/1sfsDSUEoFAqiiaEz/rwvhT8/9YmHgp/6xEOBpODC73pX8B+PBsF517+p53uGUpngPx4Ngu/5Lx8648/b/9P/0//T/9P/8+L9mZub+4Y4MBQE3wy+vvhjYWFBMzMzuvfee3XdddfZv//8z/+87rrrLj3wwANf8zOnM6elUkl79+7V7OyspaD746UxyuWydu/erbm5OWNkXspjuRHWR9dH9IbRHV2U6FYa1trSB1ZG9bJEQ7FQoMd2YmoEIY2F23rVSFXnDzbP4FP/08f/7voEgfTB1RGlI229K1nRM9WIPlce0ncnt7U71r2RpRFI/704ptRASz+a2f5WvsJZPb7dzs930uivzUt79NfnzI/glGxrenraMsFfb7xk0/r/2EGq4vQxPj7e34Qv0TE2NvZtsTZbVUnrOiXwTti/L56KhY7WYgqHpJsmpHhY+koprM+Wh5Qcls4d/vqf+e0w/qnr8/imtNWWbkh2KqJ3xSSVpbXwsC52H/fcKTy63R74ttgHL7Xx7XJ+vhNHf21e2qO/Pmd2vBDC8CUJTmlVsby83PPvy8vLyufzZ+ip+qM/ekejo5/XTlv68V3STEcqpYPD0u89L92z/uKA04Wq9Nim9PyOtNGQEgOdZ7khLWVivd8bBNLDZemrG9JqQ4qGpMm49IYJKf+1sd0/eqzUpc8VpV2D0ss6bTo1NSjNxKV716XRiLQv0fm+zxSlsDoMan/0R3/0R3/0B+Mf5lTP4IjFYrryyit1++2327+1223dfvvtPWn+/uiPMzkinSJdJSNdYCpJsbB03rA0X5XaLwLw+vK69PSWtD8h3TwhXTEmze5IfzInFWq93/vpgvT5ojQVl944Ib0mLY1FpErr63/2P2ZsNaWPLnTY4+/NS+FQ92vfO9UBwX9TkH7vhPTRRemikQ4gjr0krVB/9Ed/9Ed/nKnxkmROJem9732vbr31Vl111VW6+uqr9Tu/8zva3t626v1vNuLxuH7t137t66b6++PMjrNlbUZPnZ7hr3NV8PCA1JZUb0uDL+wq4X/yuDYpTQ9KAw4MXjQi/dFcB7i+61Sy4cnNTsr9+/LSBSP/8Of9U9an2pI+vCBV29Ktu7pzwxiLSP9yl7Ral7ZbUjoqjUSk/3pcyrywnsz9cWqcLefnbBz9tXlpj/76fPuMl2RBFOP3f//3rQn/y1/+cv3u7/6urrnmmjP9WP3xHTYWqtL/OCm9PSdddppM6b8e7zCE79nX+++fXJYOb0m/eE7nTvEzMf5krvPfn9zd+e8H5zplkj+xu5PebwTfGtay2Zb+YqGjwf3haWlX4pv/jCQV69IHZqVXpaTXZ/73n6M/+qM/+qM/zo7xkmVOJend73633v3ud5/px+iP/vgHx0Uj0lc2pGMV6ZzOLYGqtKQj2x1t5ZkCpkEgbTel7CnNaa0tzdekq8alO1alB0tSPehIEl6fkS4e/af9nnYg/a9l6WRV+v6pFw5Mg0C6faWjeb2yX5fQH/3RH/3RH268pMFpf/THmRwPljpp6s1THaGObEvlU///ivFOuv5VKempLemvFzvp9fiA9PCG1AqkG84gG/jElrTZkl53CnSuneqA9eRmh+m90ToLSB9f7vz/P6V467aVzrycN9QpDHt8s/frFEV9vig1g47utB1IhzY7YPkdOWm8n9bvj/7oj/7oDzf64LQ/+uMfGPeVpA3XqvTp7c4fSbp0tANOR05pKW9bkR44BUp3DUrvmvzWVL//U8bXq5j/5+ossEw7rUrnz+mD35+PSw+UpCc2pZA6v/9HpqV9Q//439kf/dEf/dEfZ/d4SWtO+6M/+uMfN7aa0p+flFrqgFAKk9DNJiPSv93X+zOfXu6Axl860Fth3x/90R/90R/9cSZGv4lLf/THWTJ8xfwPTfdWzL/QzgL90R/90R/90R9nepyV4PQP/uAPtG/fPg0ODuqaa67RV77ylTP9SGf9eN/73qdXvOIVGh0dVS6X0zvf+U4988wzPd9TrVb10z/908pkMhoZGdH3fM/3fM1FC7Ozs3rLW96ioaEh5XI5/dzP/ZyazW/Pa0BfzNFsS3+52NGW/sBUtxCKMRqRRgY6OlRJev/7369QKKSf+Zmf0War07M1qPfX50yO+fl5/fAP/7AymYwSiYQuvfRSPfTQQ/b1IAj0H/7Df9DU1JQSiYRuuukmHT16tOcz1tbWdMstt2hsbEzJZFI/8RM/oa2trRf7Vc6q0Wq19Ku/+qvav3+/EomEDhw4oF//9V+XTzr21+bFG1/60pf0tre9TdPT0wqFQvrkJz/Z8/Vv1Vo8/vjjes1rXqPBwUHt3r1bv/mbv/nP/Wr94Udwlo2PfvSjQSwWCz74wQ8GTz75ZPCTP/mTQTKZDJaXl8/0o53V4+abbw7+7M/+LDh06FDw6KOPBm9+85uDPXv2BFtbW/Y9P/VTPxXs3r07uP3224OHHnoouPbaa4NXvvKV9vVmsxlccsklwU033RQ88sgjwWc+85lgYmIi+KVf+qUz8UrfNqPVDoKPLgTBfzoaBEe2/uHv+1whCP7j0SD4zFefDvbt2xe87GUvC37mF345+L+fC4IPz/fX50yOtbW1YO/evcG//Jf/MnjggQeCY8eOBZ///OeDZ5991r7n/e9/fzA+Ph588pOfDB577LHg7W9/e7B///5gZ2fHvueNb3xjcNlllwX3339/cPfddwfnnntu8IM/+INn4pXOmvEbv/EbQSaTCf72b/82OH78ePDXf/3XwcjISPDf/tt/s+/pr82LNz7zmc8Ev/IrvxJ8/OMfDyQFn/jEJ3q+/q1Yi42NjWBycjK45ZZbgkOHDgUf+chHgkQiEfzRH/3Ri/Wa3/HjrAOnV199dfDTP/3T9vdWqxVMT08H73vf+87gU33njUKhEEgK7rrrriAIgqBUKgXRaDT467/+a/uew4cPB5KC++67LwiCjtEJh8PB0tKSfc8f/uEfBmNjY0GtVntxX+DbaAA6PzIfBI+Vv/YPY7MRBP/luVbwfz22GXzwweeCH/5Pvxf82leWg//8bBAcXSn31+cMjl/4hV8IXv3qV/+DX2+320E+nw9+67d+y/6tVCoF8Xg8+MhHPhIEQRA89dRTgaTgwQcftO/57Gc/G4RCoWB+fv6f7+HP8vGWt7wl+PEf//Gef/vu7/7u4JZbbgmCoL82Z3KcDk6/VWvx3//7fw9SqVSPXfuFX/iF4ODBg//Mb9QfjLMqrV+v1/Xwww/rpptusn8Lh8O66aabdN99953BJ/vOGxsbG5KkdDotSXr44YfVaDR61uaCCy7Qnj17bG3uu+8+XXrppZqcnLTvufnmm1Uul/Xkk0++iE//7TV8xfynlr/2D2MkIj35335eWjymYvocHXjn/6H2Vkm3zkizjz3YX58zOD796U/rqquu0vd93/cpl8vp8ssv15/8yZ/Y148fP66lpaWe9RkfH9c111zTsz7JZFJXXXWVfc9NN92kcDisBx544MV7mbNsvPKVr9Ttt9+uI0eOSJIee+wx3XPPPXrTm94kqb82L6XxrVqL++67T6997WsVi3X1UTfffLOeeeYZra+vv0hv8509zqpWUisrK2q1Wj3OU5ImJyf19NNPn6Gn+s4b7XZbP/MzP6NXvepVuuSSSyRJS0tLisViSiaTPd87OTmppaUl+56vt3Z8rT++/vjRXS/s+z760Y/qK3d8Xg/+3/9Jg4PS6173Rr385S/X9A2/oy/21+eMjmPHjukP//AP9d73vle//Mu/rAcffFD/7t/9O8ViMd166602v19v/v365HK5nq9HIhGl0+n++vxvjF/8xV9UuVzWBRdcoIGBAbVaLf3Gb/yGbrnlFknqr81LaHyr1mJpaUn79+//ms/ga6lU6p/l+fujO84qcNofL43x0z/90zp06JDuueeeM/0o/XFqzM3N6T3veY9uu+02DQ4OnunH6Y/TRrvd1lVXXaX//J//syTp8ssv16FDh/SBD3xAt9566xl+uu/s8Vd/9Vf6i7/4C334wx/WxRdfrEcffVQ/8zM/o+np6f7a9Ed//DONsyqtPzExoYGBga+pMF5eXlY+nz9DT/WdNd797nfrb//2b3XnnXdq164upZfP51Wv11UqlXq+369NPp//umvH1/rjnz4efvhhFQoFXXHFFYpEIopEIrrrrrv0u7/7u4pEIpqcnOyvzxkcU1NTuuiii3r+7cILL9Ts7Kyk7vx+I9uWz+dVKBR6vt5sNrW2ttZfn/+N8XM/93P6xV/8Rf3AD/yALr30Uv3Ij/yIfvZnf1bve9/7JPXX5qU0vlVr0bd1Z36cVeA0Fovpyiuv1O23327/1m63dfvtt+u66647g0929o8gCPTud79bn/jEJ3THHXd8TUrkyiuvVDQa7VmbZ555RrOzs7Y21113nZ544okew3HbbbdpbGzsaxx3f/zjxo033qgnnnhCjz76qP256qqrdMstt9j/99fnzI1XvepVX9N67ciRI9q7d68kaf/+/crn8z3rUy6X9cADD/SsT6lU0sMPP2zfc8cdd6jdbuuaa655Ed7i7ByVSkXhcK+rHBgYULvdaQzcX5uXzvhWrcV1112nL33pS2o0GvY9t912mw4ePNhP6b9Y40xXZH2rx0c/+tEgHo8Hf/7nfx489dRTwb/6V/8qSCaTPRXG/fGtH//6X//rYHx8PPjiF78YLC4u2p9KpWLf81M/9VPBnj17gjvuuCN46KGHguuuuy647rrr7Ou0Kvqu7/qu4NFHHw0+97nPBdlstt+q6J9pXH/99cF73vMe+3t/fc7c+MpXvhJEIpHgN37jN4KjR48Gf/EXfxEMDQ0FH/rQh+x73v/+9wfJZDL41Kc+FTz++OPBO97xjq/bIufyyy8PHnjggeCee+4JzjvvvH67ov/NceuttwYzMzPWSurjH/94MDExEfz8z/+8fU9/bV68sbm5GTzyyCPBI488EkgKfvu3fzt45JFHghMnTgRB8K1Zi1KpFExOTgY/8iM/Ehw6dCj46Ec/GgwNDfVbSb2I46wDp0EQBL/3e78X7NmzJ4jFYsHVV18d3H///Wf6kc76Ienr/vmzP/sz+56dnZ3g3/ybfxOkUqlgaGgoeNe73hUsLi72fM7zzz8fvOlNbwoSiUQwMTER/Pt//++DRqPxIr/Nd8Y4HZz21+fMjr/5m78JLrnkkiAejwcXXHBB8Md//Mc9X2+328Gv/uqvBpOTk0E8Hg9uvPHG4Jlnnun5ntXV1eAHf/AHg5GRkWBsbCz4sR/7sWBzc/PFfI2zbpTL5eA973lPsGfPnmBwcDA455xzgl/5lV/paTPUX5sXb9x5551f19fceuutQRB869biscceC1796lcH8Xg8mJmZCd7//ve/WK/YH0EQhILAXXPRH/3RH/3RH/3RH/3RH/1xBsdZpTntj/7oj/7oj/7oj/7oj2/v0Qen/dEf/dEf/dEf/dEf/fGSGX1w2h/90R/90R/90R/90R8vmdEHp/3RH/3RH/3RH/3RH/3xkhl9cNof/dEf/dEf/dEf/dEfL5nRB6f90R/90R/90R/90R/98ZIZfXDaH/3RH/3RH/3RH/3RHy+Z0Qen/dEf/dEf/dEf/dEf/fGSGX1w2h/90R/90R/90R/90R8vmdEHp/3RH/3RH/3RH/3RH/3xkhl9cNof/dEf/dEf/dEf/dEfL5nx/wdv3qRQTEswqQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -676,10 +678,11 @@ " ]\n", ")\n", "\n", - "plate.run(image, show_progress=False)\n" + "plate.run(image, show_progress=False)" ] }, { + "attachments": {}, "cell_type": "markdown", "id": "eae9d37c-0751-48d2-93d3-8773836868d0", "metadata": {}, @@ -702,6 +705,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "id": "55870034", "metadata": {}, diff --git a/docs/ipynb/photometry.ipynb b/docs/ipynb/photometry.ipynb index 74e43626..c30c3271 100644 --- a/docs/ipynb/photometry.ipynb +++ b/docs/ipynb/photometry.ipynb @@ -49,7 +49,7 @@ "target_dflux = 1 + np.sin(time * 100) * 1e-2\n", "\n", "plt.plot(time, target_dflux)\n", - "_ = plt.ylim(0.98, 1.02)" + "_ = plt.ylim(0.98, 1.02)\n" ] }, { @@ -79,7 +79,7 @@ "np.random.seed(40)\n", "\n", "fits_folder = \"./tutorial_dataset\"\n", - "simulate_observation(time, target_dflux, fits_folder)\n" + "simulate_observation(time, target_dflux, fits_folder)" ] }, { @@ -229,7 +229,7 @@ "from prose import FitsManager\n", "\n", "fm = FitsManager(fits_folder, depth=2)\n", - "fm\n" + "fm" ] }, { @@ -269,7 +269,7 @@ "source": [ "from prose import FITSImage\n", "\n", - "ref = FITSImage(fm.all_images[0])\n" + "ref = FITSImage(fm.all_images[0])" ] }, { @@ -324,7 +324,7 @@ "calibration.run(ref, show_progress=False)\n", "\n", "ref.show()\n", - "ref.sources.plot()" + "ref.sources.plot()\n" ] }, { @@ -337,6 +337,34 @@ "```" ] }, + { + "cell_type": "markdown", + "id": "c1146768", + "metadata": {}, + "source": [ + "````{note}\n", + "The three consecutive blocks\n", + "\n", + "```python\n", + "blocks.Cutouts(21) # making stars cutouts\n", + "blocks.MedianEPSF() # building PSF\n", + "blocks.psf.Moffat2D() # modeling PSF\n", + "```\n", + "\n", + "Are used to model the effective PSF of the reference image (with a `Moffat2D` model). The effective PSF is then stored in\n", + "\n", + "```python\n", + "epsf = ref.epsf\n", + "```\n", + "\n", + "and its model can be shown with\n", + "\n", + "```python\n", + "epsf.plot_model(epsf.model(epsf.params), contour=True)\n", + "```\n", + "````" + ] + }, { "cell_type": "markdown", "id": "e4961482-c93a-4f55-9c83-cc0f25f6d520", @@ -379,7 +407,12 @@ "\n", "photometry = Sequence(\n", " [\n", - " *calibration, # calibration\n", + " calibration[0], # reusing the calibration block\n", + " blocks.Trim(),\n", + " blocks.PointSourceDetection(), # stars detection\n", + " blocks.Cutouts(21), # making stars cutouts\n", + " blocks.MedianEPSF(), # building PSF\n", + " blocks.psf.Moffat2D(), # modeling PSF\n", " blocks.ComputeTransformTwirl(ref), # compute alignment\n", " blocks.AlignReferenceSources(ref), # alignment\n", " blocks.CentroidQuadratic(), # centroiding\n", @@ -419,7 +452,7 @@ "metadata": {}, "outputs": [], "source": [ - "raw_fluxes = photometry[-1].fluxes\n" + "raw_fluxes = photometry[-1].fluxes" ] }, { @@ -463,7 +496,7 @@ "plt.ylim(0.98, 1.02)\n", "plt.xlabel(\"time\")\n", "plt.ylabel(\"diff. flux\")\n", - "plt.tight_layout()" + "plt.tight_layout()\n" ] }, { @@ -479,7 +512,7 @@ "source": [ "import shutil\n", "\n", - "shutil.rmtree(fits_folder)\n" + "shutil.rmtree(fits_folder)" ] }, { diff --git a/poetry.lock b/poetry.lock index 8e0565b5..8d1756db 100644 --- a/poetry.lock +++ b/poetry.lock @@ -19,7 +19,7 @@ pygments = ">=1.5" name = "alabaster" version = "0.7.13" description = "A configurable sidebar-enabled Sphinx theme" -category = "dev" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -270,7 +270,7 @@ tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pyte name = "babel" version = "2.12.1" description = "Internationalization utilities" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -602,7 +602,7 @@ files = [ name = "click" version = "8.1.6" description = "Composable command line interface toolkit" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -833,7 +833,7 @@ graph = ["objgraph (>=1.7.2)"] name = "docutils" version = "0.19" description = "Docutils -- Python Documentation Utilities" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1118,7 +1118,7 @@ files = [ name = "imagesize" version = "1.4.1" description = "Getting image size from png/jpeg/jpeg2000/gif file" -category = "dev" +category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" files = [ @@ -1430,7 +1430,7 @@ trio = ["async_generator", "trio"] name = "jinja2" version = "3.1.2" description = "A very fast and expressive template engine." -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1923,7 +1923,7 @@ testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] name = "markupsafe" version = "2.1.3" description = "Safely add untrusted strings to HTML/XML markup." -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -2131,8 +2131,8 @@ files = [ [package.dependencies] numpy = [ {version = ">1.20", markers = "python_version <= \"3.9\""}, - {version = ">=1.23.3", markers = "python_version > \"3.10\""}, {version = ">=1.21.2", markers = "python_version > \"3.9\""}, + {version = ">=1.23.3", markers = "python_version > \"3.10\""}, ] [package.extras] @@ -3655,7 +3655,7 @@ files = [ name = "snowballstemmer" version = "2.2.0" description = "This package provides 29 stemmers for 28 languages generated from Snowball algorithms." -category = "dev" +category = "main" optional = false python-versions = "*" files = [ @@ -3679,7 +3679,7 @@ files = [ name = "sphinx" version = "5.3.0" description = "Python documentation generator" -category = "dev" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -3732,6 +3732,23 @@ code-style = ["pre-commit"] doc = ["ablog", "docutils (==0.17.1)", "folium", "ipywidgets", "matplotlib", "myst-nb", "nbclient", "numpy", "numpydoc", "pandas", "plotly", "sphinx-copybutton", "sphinx-design", "sphinx-examples", "sphinx-tabs (<=3.4.0)", "sphinx-thebe", "sphinx-togglebutton", "sphinxcontrib-bibtex", "sphinxcontrib-youtube", "sphinxext-opengraph"] test = ["beautifulsoup4", "coverage", "myst-nb", "pytest", "pytest-cov", "pytest-regressions", "sphinx_thebe"] +[[package]] +name = "sphinx-click" +version = "4.4.0" +description = "Sphinx extension that automatically documents click applications" +category = "main" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sphinx-click-4.4.0.tar.gz", hash = "sha256:cc67692bd28f482c7f01531c61b64e9d2f069bfcf3d24cbbb51d4a84a749fa48"}, + {file = "sphinx_click-4.4.0-py3-none-any.whl", hash = "sha256:2821c10a68fc9ee6ce7c92fad26540d8d8c8f45e6d7258f0e4fb7529ae8fab49"}, +] + +[package.dependencies] +click = ">=7.0" +docutils = "*" +sphinx = ">=2.0" + [[package]] name = "sphinx-copybutton" version = "0.5.2" @@ -3779,7 +3796,7 @@ theme-sbt = ["sphinx-book-theme (>=0.3.0,<0.4.0)"] name = "sphinxcontrib-applehelp" version = "1.0.4" description = "sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books" -category = "dev" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -3818,7 +3835,7 @@ test = ["pytest"] name = "sphinxcontrib-devhelp" version = "1.0.2" description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp document." -category = "dev" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -3834,7 +3851,7 @@ test = ["pytest"] name = "sphinxcontrib-htmlhelp" version = "2.0.1" description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" -category = "dev" +category = "main" optional = false python-versions = ">=3.8" files = [ @@ -3850,7 +3867,7 @@ test = ["html5lib", "pytest"] name = "sphinxcontrib-jsmath" version = "1.0.1" description = "A sphinx extension which renders display math in HTML via JavaScript" -category = "dev" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -3865,7 +3882,7 @@ test = ["flake8", "mypy", "pytest"] name = "sphinxcontrib-qthelp" version = "1.0.3" description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp document." -category = "dev" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -3899,7 +3916,7 @@ test = ["coverage", "pytest", "pytest-cov", "sphinx-testing"] name = "sphinxcontrib-serializinghtml" version = "1.1.5" description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)." -category = "dev" +category = "main" optional = false python-versions = ">=3.5" files = [ @@ -4331,4 +4348,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p [metadata] lock-version = "2.0" python-versions = ">=3.8,<3.12" -content-hash = "5855668e8debdfd37b6d5bcd2f5701be40c4096a812ecdd801cdc9bb1a807b2a" +content-hash = "42692e0e84a2b6e220f0f932358dcf8b185d6ffe0d0d3a73a5f953ef777322e7" diff --git a/prose/_cli/___init__.py b/prose/_cli/___init__.py new file mode 100644 index 00000000..69afa4c7 --- /dev/null +++ b/prose/_cli/___init__.py @@ -0,0 +1,82 @@ +import argparse + +import click +import yaml + +from prose.cli.astrometry import add_solve_parser +from prose.cli.calibration import add_calibrate_parser +from prose.cli.fits import ( + add_db_parser, + add_fits_parser, + add_info_parser, + add_organize_parser, +) +from prose.cli.stack import add_stack_parser +from prose.cli.visualisation import add_show_parser, add_video_parser + + +def make_parser(): + main_parser = argparse.ArgumentParser(prog="prose", description="prose") + subparsers = main_parser.add_subparsers(required=True) + + add_calibrate_parser(subparsers) + add_show_parser(subparsers) + add_stack_parser(subparsers) + add_fits_parser(subparsers) + add_db_parser(subparsers) + add_info_parser(subparsers) + add_video_parser(subparsers) + add_solve_parser(subparsers) + add_organize_parser(subparsers) + + return main_parser + + +def to_yaml(parser, output_file): + def parse_arguments(action): + argument_info = { + "name": action.dest, + "short": action.option_strings[0] if action.option_strings else None, + "long": action.option_strings[1] + if len(action.option_strings) > 1 + else None, + "type": action.type.__name__ if action.type else None, + "default": action.default, + "required": action.required, + "help": action.help, + "choices": action.choices, + "nargs": action.nargs, + } + return {k: v for k, v in argument_info.items() if v is not None} + + def parse_subparsers(action_group): + commands = {} + for action in action_group._group_actions: + if isinstance(action, argparse._SubParsersAction): + for subparser_name, subparser_obj in action.choices.items(): + command_info = { + "help": subparser_obj.description, + "arguments": [ + parse_arguments(action) + for action in subparser_obj._actions + if not isinstance(action, argparse._HelpAction) + ], + } + commands[subparser_name] = command_info + else: + # Handle nested subparsers recursively + commands.update(parse_subparsers(action)) + return commands + + cli_info = { + "commands": parse_subparsers(parser._subparsers), + } + + with open(output_file, "w") as yaml_file: + yaml.dump(cli_info, yaml_file, default_flow_style=False) + + +def main(): + main_parser = make_parser() + args = main_parser.parse_args() + args.func(args) diff --git a/prose/_cli/astrometry.py b/prose/_cli/astrometry.py new file mode 100644 index 00000000..18a11e51 --- /dev/null +++ b/prose/_cli/astrometry.py @@ -0,0 +1,81 @@ +import argparse +from pathlib import Path + +from prose import FITSImage, FitsManager, Sequence, blocks + + +def solve(args): + if args.output is None: + output = Path(args.file_or_folder) + else: + output = Path(args.output) + + if Path(args.file_or_folder).is_file(): + solve_sequence = Sequence( + [blocks.PointSourceDetection(n=30), blocks.PlateSolve()] + ) + image = FITSImage(args.file_or_folder) + solve_sequence.run(image) + image.writeto(output) + else: + fm = FitsManager(args.file_or_folder, depth=args.depth) + images = fm.files( + type="*" if args.type is None else args.type, path=True + ).path.values + + if args.reference is None: + reference = images[int(len(images) // 2)] + else: + reference = args.reference + reference = FITSImage(reference) + + Sequence( + [ + blocks.PointSourceDetection(n=30), + blocks.PlateSolve(), + blocks.GaiaCatalog(limit=30), + ] + ).run(reference, show_progress=False) + + solve_sequence = Sequence( + [ + blocks.PointSourceDetection(n=30), + blocks.ComputeTransformTwirl(reference_image=reference), + blocks.AlignReferenceSources(reference=reference), + blocks.AlignReferenceWCS(reference=reference), + blocks.WriteTo(output, overwrite=True), + ], + name="Plate solving", + ) + solve_sequence.run(images) + + +def add_solve_parser(subparsers): + solve_parser = subparsers.add_parser( + name="solve", description="Plate solve one or several FITS images" + ) + solve_parser.add_argument( + "file_or_folder", type=str, help="file/folder to plate solve", default=None + ) + solve_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + solve_parser.add_argument( + "-t", + "--type", + type=str, + help="type of FITS files to plate solve", + default=None, + ) + solve_parser.add_argument( + "-o", + "--output", + type=str, + help="output file and/or folder. If leave to default files are overwritten", + default="input", + ) + solve_parser.add_argument( + "-r", "--reference", type=str, help="reference image", default=None + ) + + solve_parser.set_defaults(func=solve) diff --git a/prose/_cli/calibration.py b/prose/_cli/calibration.py new file mode 100644 index 00000000..f05e74d5 --- /dev/null +++ b/prose/_cli/calibration.py @@ -0,0 +1,66 @@ +import argparse +from pathlib import Path + +from prose import FitsManager, Sequence, blocks + + +def calibrate(args): + fm = FitsManager(args.folder, depth=args.depth) + observations = fm.observations(type="light") + observation_id = None + + # observation selection + if len(observations) == 0: + print("No observations found") + return + elif len(observations) == 1: + observation_id = observations.index[0] + else: + print(f"{len(observations)} observations found:") + print(observations, "\n") + while observation_id is None: + print(f"Which observation id do you want to reduce?") + observation_id = input() + if not int(observation_id) in observations.index.values: + print("Invalid observation id") + observation_id = None + print("\n") + folder = Path(args.folder) + calibrated_folder = Path(str(folder.absolute()) + "_calibrated") + calibrated_folder.mkdir(exist_ok=True) + observation_id = int(observation_id) + + files = fm.observation_files(observation_id, show=False) + darks = files["darks"] + flats = files["flats"] + bias = files["bias"] + lights = files["images"] + + # calibration + calibration = Sequence( + [ + blocks.Calibration(darks=darks, flats=flats, bias=bias), + blocks.Trim(), + blocks.WriteTo(calibrated_folder, label="calibrated"), + ], + name="Calibration", + ) + + calibration.run(lights) + print("Calibrated images saved in", calibrated_folder) + + +def add_calibrate_parser(subparsers): + calibrate_parser = subparsers.add_parser( + name="calibrate", description="calibrate FITS files" + ) + calibrate_parser.add_argument( + "folder", + type=str, + help="folder to parse containing science and calibration files", + default=None, + ) + calibrate_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + calibrate_parser.set_defaults(func=calibrate) diff --git a/prose/_cli/fits.py b/prose/_cli/fits.py new file mode 100644 index 00000000..8766ae5e --- /dev/null +++ b/prose/_cli/fits.py @@ -0,0 +1,181 @@ +import argparse +import shutil +from pathlib import Path + +import pandas as pd + +from prose import FITSImage +from prose.io import FitsManager + + +def pick_observation_id(observations): + if len(observations) == 0: + print("No observations found") + return + elif len(observations) == 1: + observation_id = observations.index[0] + else: + print(f"{len(observations)} observations found:") + print(observations, "\n") + while observation_id is None: + print(f"Which observation id do you want to reduce?") + observation_id = input() + if not int(observation_id) in observations.index.values: + print("Invalid observation id") + observation_id = None + + return int(observation_id) + + +def fits(args): + fm = FitsManager(folders=args.folder, file=args.file, depth=args.depth, leave=False) + observations = fm.observations() + print(observations) + + +def add_fits_parser(subparsers): + fits_parser = subparsers.add_parser( + name="fits", description="parse and store data from FITS in folder(s)" + ) + fits_parser.add_argument("folder", type=str, help="folder to explore", default=".") + fits_parser.add_argument( + "-d", "--depth", type=int, help="depth of the search", default=10 + ) + fits_parser.add_argument( + "-f", + "--file", + type=str, + help="SQLite database file to save parsing results", + default=None, + ) + fits_parser.set_defaults(func=fits) + + +def db(args): + # observations + # ------------ + fm = FitsManager(file=args.file) + observations = fm.observations( + telescope=args.telescope, + filter=args.filter, + date=args.date, + target=args.target, + ) + print(observations) + + +def add_db_parser(subparsers): + db_parser = subparsers.add_parser(name="db", description="explore a FITS database") + db_parser.add_argument( + "file", type=str, help="SQLite database file to explore", default=None + ) + db_parser.add_argument( + "-m", "--max-rows", type=int, help="max number of rows to display", default=50 + ) + db_parser.add_argument( + "-t", "--telescope", type=str, help="telescope name to filter for", default=None + ) + db_parser.add_argument( + "-f", "--filter", type=str, help="filter name to filter for", default=None + ) + db_parser.add_argument( + "-d", "--date", type=str, help="observation date to filter for", default=None + ) + db_parser.add_argument( + "-o", "--target", type=str, help="target name to filter for", default=None + ) + db_parser.set_defaults(func=db) + + +def info(args): + image = FITSImage(args.filename) + print(f"filename: {Path(args.filename).stem}") + print(f"telescope: {image.telescope.name}") + print(f"date: {image.date}") + print(f"target: {image.metadata['object']}") + print(f"filter: {image.filter}") + print(f"exposure: {image.exposure}") + print(f"dimensions: {image.shape}") + print(f"JD: {image.jd}") + print(f"RA: {image.ra}") + print(f"DEC: {image.dec}") + print(f"pixel scale: {image.pixel_scale}") + + +def add_info_parser(subparsers): + info_parser = subparsers.add_parser( + name="info", description="print FITS image information" + ) + info_parser.add_argument("filename", type=str, help="FITS image filename") + info_parser.set_defaults(func=info) + + +# experimental +# ------------ +def organize(args): + fm = FitsManager( + folders=args.folder, + depth=args.depth, + leave=False, + ) + new_folders = {} + + main_folder = Path(args.folder) if args.output is None else Path(args.output) + obs = fm.observations(type="light") + + if args.separate: + for observation_id, observation in obs.iterrows(): + date_str = observation.date.replace("-", "_") + new_folders[date_str] = fm.observation_files(observation_id, show=False) + + print(f"\nprose will create the following folders (in {main_folder}):") + + for dates in new_folders.keys(): + # sum all len file files in folder dict + n_files = sum([len(files) for files in new_folders.values()]) + print("-", dates, f"({n_files} files)") + + proceed = input("\ncontinue? [y]/n: ") + if proceed == "n": + return + else: + for date, files in new_folders.items(): + date_folder = main_folder / date + date_folder.mkdir(parents=True, exist_ok=True) + for filetype, files in files.items(): + im_type = date_folder / filetype + im_type.mkdir(parents=True, exist_ok=True) + for file in files: + if im_type == "images": + shutil.move(file, im_type / Path(file).name) + else: + try: + shutil.copy2(file, im_type / Path(file).name) + except shutil.SameFileError: + pass + + +def add_organize_parser(subparsers): + organize_parser = subparsers.add_parser( + name="organize", description="organize FITS files by date" + ) + organize_parser.add_argument( + "folder", type=str, help="folder to explore", default="." + ) + organize_parser.add_argument( + "-d", "--depth", type=int, help="depth of the search", default=10 + ) + organize_parser.add_argument( + "-o", + "--output", + type=str, + help="folder to store organized files", + default=None, + ) + organize_parser.add_argument( + "-s", + "--separate", + action="store_true", + help="separate each calibration file into its respective observation folder", + ) + organize_parser.set_defaults(func=organize) diff --git a/prose/_cli/stack.py b/prose/_cli/stack.py new file mode 100644 index 00000000..d7ea43b7 --- /dev/null +++ b/prose/_cli/stack.py @@ -0,0 +1,80 @@ +import argparse +from pathlib import Path + +from prose import FITSImage, FitsManager, Sequence, blocks +from prose.core.sequence import SequenceParallel + + +def stack(args): + folder = Path(args.folder) + + fm = FitsManager(folder, depth=args.depth) + calibrated_nights = fm.observations(type="calibrated") + files = fm.files(int(calibrated_nights.index[0]), path=True).path.values + + # reference + ref = FITSImage(files[len(files) // 2]) + + # calibration + psf_sequence = Sequence( + [ + blocks.PointSourceDetection(n=args.n), # stars detection + blocks.Cutouts(21), # stars cutouts + blocks.MedianEPSF(), # building EPSF + blocks.psf.Moffat2D(), # modeling EPSF + ] + ) + + psf_sequence.run(ref, show_progress=False) + + stack_block = ( + blocks.SelectiveStack(n=50) + if args.method == "selective" + else blocks.MeanStack(reference=ref) + ) + + stacking_sequence = SequenceParallel( + [ + blocks.PointSourceDetection(n=args.n), # stars detection + blocks.Cutouts(21), # stars cutouts + blocks.MedianEPSF(), # building EPSF + blocks.psf.Moffat2D(ref), # modeling EPSF + blocks.ComputeTransformTwirl(ref), + blocks.TransformData(inverse=True), + ], + [ + stack_block, + ], + name="Stacking", + ) + + stacking_sequence.run(files) + + stack = stack_block.stack + stack.header = ref.header.copy() + stack.header[ref.telescope.keyword_image_type] = "stack" + stack.writeto(folder / "stack.fits") + + print("Stack saved in", folder / "stack.fits") + + +def add_stack_parser(subparsers): + stack_parser = subparsers.add_parser(name="stack", description="stack FITS files") + stack_parser.add_argument("folder", type=str, help="folder to parse", default=None) + stack_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + stack_parser.add_argument( + "-n", "--n", type=int, help="number of stars used for alignment", default=30 + ) + stack_parser.add_argument( + "--method", + choices=["mean", "selective"], + help="alignment method. 'mean' applies a mean to all images, 'selective' \ + applies a median to the -n smallest-FWHM images", + default="selective", + ) + stack_parser.add_argument( + "-o", "--output", type=str, help="output file name", default="stack.fits" + ) + stack_parser.set_defaults(func=stack) diff --git a/prose/_cli/visualisation.py b/prose/_cli/visualisation.py new file mode 100644 index 00000000..d2b45c31 --- /dev/null +++ b/prose/_cli/visualisation.py @@ -0,0 +1,112 @@ +from pathlib import Path + +import matplotlib.pyplot as plt + +from prose import FITSImage, FitsManager, Sequence, blocks + + +def show(args): + image = FITSImage(args.file) + if args.f and not image.plate_solved: + print("Image is not plate solved, cannot show frame") + args.f = False + image.show(contrast=args.contrast, frame=args.f) + if not args.f: + plt.axis(False) + plt.tight_layout() + plt.show(block=True) + + +def add_show_parser(subparsers): + show_parser = subparsers.add_parser(name="show", description="show FITS image") + show_parser.add_argument("file", type=str, help="file to show", default=None) + show_parser.add_argument( + "-c", + "--contrast", + type=float, + help="contrast of the image (zscale is applied)", + default=0.1, + ) + show_parser.add_argument( + "-f", + action="store_true", + help="whether to show sky coordinates frame", + ) + show_parser.set_defaults(func=show) + + +def video(args): + fm = FitsManager(args.folder, depth=args.depth) + images = fm.files( + type="*" if args.type is None else args.type, path=True + ).path.values + + if args.output is None: + output = Path(args.folder) / "video.mp4" + + else: + output = Path(args.output) + + video_sequence = Sequence( + [ + blocks.Video( + output, + fps=args.fps, + compression=args.compression, + width=args.width, + ) + ], + name="Making video", + ) + + video_sequence.run(images) + print("Video saved in", output) + + +def add_video_parser(subparsers): + video_parser = subparsers.add_parser( + name="video", description="make a video of FITS images" + ) + video_parser.add_argument( + "folder", type=str, help="folder containing the FITS", default=None + ) + video_parser.add_argument( + "-d", "--depth", type=int, help="subfolder parsing depth", default=10 + ) + video_parser.add_argument( + "-o", + "--output", + type=str, + help="output video file", + default="video.mp4", + ) + video_parser.add_argument( + "-t", + "--type", + type=str, + help="type of FITS files to use", + default=None, + ) + video_parser.add_argument( + "-f", + "--fps", + type=int, + help="frames per second", + default=10, + ) + video_parser.add_argument( + "-c", + "--compression", + type=int, + help="compression parameter for the video block", + default=None, + ) + video_parser.add_argument( + "-w", + "--width", + type=int, + help="width of the video in pixel (if resizing required), aspect ratio is kept", + default=None, + ) + + video_parser.set_defaults(func=video) diff --git a/prose/cli/__init__.py b/prose/cli/__init__.py index 824f133a..2dffe78e 100644 --- a/prose/cli/__init__.py +++ b/prose/cli/__init__.py @@ -1,5 +1,6 @@ import argparse +import click import yaml from prose.cli.astrometry import add_solve_parser @@ -10,72 +11,21 @@ add_info_parser, add_organize_parser, ) -from prose.cli.stack import add_stack_parser -from prose.cli.visualisation import add_show_parser, add_video_parser - - -def make_parser(): - main_parser = argparse.ArgumentParser(prog="prose", description="prose") - subparsers = main_parser.add_subparsers(required=True) - - add_calibrate_parser(subparsers) - add_show_parser(subparsers) - add_stack_parser(subparsers) - add_fits_parser(subparsers) - add_db_parser(subparsers) - add_info_parser(subparsers) - add_video_parser(subparsers) - add_solve_parser(subparsers) - add_organize_parser(subparsers) - - return main_parser - - -def to_yaml(parser, output_file): - def parse_arguments(action): - argument_info = { - "name": action.dest, - "short": action.option_strings[0] if action.option_strings else None, - "long": action.option_strings[1] - if len(action.option_strings) > 1 - else None, - "type": action.type.__name__ if action.type else None, - "default": action.default, - "required": action.required, - "help": action.help, - "choices": action.choices, - "nargs": action.nargs, - } - return {k: v for k, v in argument_info.items() if v is not None} - - def parse_subparsers(action_group): - commands = {} - for action in action_group._group_actions: - if isinstance(action, argparse._SubParsersAction): - for subparser_name, subparser_obj in action.choices.items(): - command_info = { - "help": subparser_obj.description, - "arguments": [ - parse_arguments(action) - for action in subparser_obj._actions - if not isinstance(action, argparse._HelpAction) - ], - } - commands[subparser_name] = command_info - else: - # Handle nested subparsers recursively - commands.update(parse_subparsers(action)) - return commands - - cli_info = { - "commands": parse_subparsers(parser._subparsers), - } - - with open(output_file, "w") as yaml_file: - yaml.dump(cli_info, yaml_file, default_flow_style=False) +from prose.cli.stack import stack +from prose.cli.visualisation import show, video +@click.group() def main(): - main_parser = make_parser() - args = main_parser.parse_args() - args.func(args) + """ + \b + ░▄▀▀▄░█▀▀▄░▄▀▀▄░█▀▀░█▀▀ * . + ░█▄▄█░█▄▄▀░█░░█░▀▀▄░█▀▀ .* + ░█░░░░▀░▀▀░░▀▀░░▀▀▀░▀▀▀ + + """ + pass + + +main.add_command(show) +main.add_command(video) +main.add_command(stack) diff --git a/prose/cli/stack.py b/prose/cli/stack.py index d7ea43b7..752828ac 100644 --- a/prose/cli/stack.py +++ b/prose/cli/stack.py @@ -1,14 +1,46 @@ import argparse from pathlib import Path +import click + from prose import FITSImage, FitsManager, Sequence, blocks from prose.core.sequence import SequenceParallel -def stack(args): - folder = Path(args.folder) +@click.command(name="stack", help="stack FITS images") +@click.argument("folder") +@click.option( + "-d", + "--depth", + type=int, + help="subfolder parsing depth", + default=10, +) +@click.option( + "-n", + "--n", + type=int, + help="number of stars used for alignment", + default=30, +) +@click.option( + "--method", + type=click.Choice(["mean", "selective"]), + help="alignment method. 'mean' applies a mean to all images, 'selective' \ + applies a median to the -n smallest-FWHM images", + default="selective", +) +@click.option( + "-o", + "--output", + type=str, + help="output file name", + default="stack.fits", +) +def stack(folder, depth, n, method, output): + folder = Path(folder) - fm = FitsManager(folder, depth=args.depth) + fm = FitsManager(folder, depth=depth) calibrated_nights = fm.observations(type="calibrated") files = fm.files(int(calibrated_nights.index[0]), path=True).path.values @@ -18,7 +50,7 @@ def stack(args): # calibration psf_sequence = Sequence( [ - blocks.PointSourceDetection(n=args.n), # stars detection + blocks.PointSourceDetection(n=n), # stars detection blocks.Cutouts(21), # stars cutouts blocks.MedianEPSF(), # building EPSF blocks.psf.Moffat2D(), # modeling EPSF @@ -29,13 +61,13 @@ def stack(args): stack_block = ( blocks.SelectiveStack(n=50) - if args.method == "selective" + if method == "selective" else blocks.MeanStack(reference=ref) ) stacking_sequence = SequenceParallel( [ - blocks.PointSourceDetection(n=args.n), # stars detection + blocks.PointSourceDetection(n=n), # stars detection blocks.Cutouts(21), # stars cutouts blocks.MedianEPSF(), # building EPSF blocks.psf.Moffat2D(ref), # modeling EPSF @@ -56,25 +88,3 @@ def stack(args): stack.writeto(folder / "stack.fits") print("Stack saved in", folder / "stack.fits") - - -def add_stack_parser(subparsers): - stack_parser = subparsers.add_parser(name="stack", description="stack FITS files") - stack_parser.add_argument("folder", type=str, help="folder to parse", default=None) - stack_parser.add_argument( - "-d", "--depth", type=int, help="subfolder parsing depth", default=10 - ) - stack_parser.add_argument( - "-n", "--n", type=int, help="number of stars used for alignment", default=30 - ) - stack_parser.add_argument( - "--method", - choices=["mean", "selective"], - help="alignment method. 'mean' applies a mean to all images, 'selective' \ - applies a median to the -n smallest-FWHM images", - default="selective", - ) - stack_parser.add_argument( - "-o", "--output", type=str, help="output file name", default="stack.fits" - ) - stack_parser.set_defaults(func=stack) diff --git a/prose/cli/visualisation.py b/prose/cli/visualisation.py index d2b45c31..bf9d33dc 100644 --- a/prose/cli/visualisation.py +++ b/prose/cli/visualisation.py @@ -1,59 +1,99 @@ from pathlib import Path +import click import matplotlib.pyplot as plt from prose import FITSImage, FitsManager, Sequence, blocks -def show(args): - image = FITSImage(args.file) - if args.f and not image.plate_solved: +@click.command(name="show", help="show FITS image") +@click.argument("file") +@click.option( + "-c", + "--contrast", + type=float, + help="contrast of the image (zscale is applied)", + default=0.1, +) +@click.option( + "-f", + "--frame", + is_flag=True, + help="whether to show sky coordinates frame", +) +def show(file, contrast, frame): + image = FITSImage(file) + if frame and not image.plate_solved: print("Image is not plate solved, cannot show frame") - args.f = False - image.show(contrast=args.contrast, frame=args.f) - if not args.f: + frame = False + image.show(contrast=contrast, frame=frame) + if not frame: plt.axis(False) plt.tight_layout() plt.show(block=True) -def add_show_parser(subparsers): - show_parser = subparsers.add_parser(name="show", description="show FITS image") - show_parser.add_argument("file", type=str, help="file to show", default=None) - show_parser.add_argument( - "-c", - "--contrast", - type=float, - help="contrast of the image (zscale is applied)", - default=0.1, - ) - show_parser.add_argument( - "-f", - action="store_true", - help="whether to show sky coordinates frame", - ) - show_parser.set_defaults(func=show) - - -def video(args): - fm = FitsManager(args.folder, depth=args.depth) - images = fm.files( - type="*" if args.type is None else args.type, path=True - ).path.values +@click.command(name="video", help="make a video of FITS images") +@click.argument("folder") +@click.option( + "-d", + "--depth", + type=int, + help="subfolder parsing depth", + default=10, +) +@click.option( + "-o", + "--output", + type=str, + help="output video file", + default="video.mp4", +) +@click.option( + "-t", + "--type", + type=str, + help="type of FITS files to use", + default=None, +) +@click.option( + "-f", + "--fps", + type=int, + help="frames per second", + default=10, +) +@click.option( + "-c", + "--compression", + type=int, + help="compression parameter for the video block", + default=None, +) +@click.option( + "-w", + "--width", + type=int, + help="width of the video in pixel (if resizing required), aspect ratio is kept", + default=None, +) +def video(folder, depth, output, type, fps, compression, width): + fm = FitsManager(folder, depth=depth) + images = fm.files(type="*" if type is None else type, path=True).path.values - if args.output is None: - output = Path(args.folder) / "video.mp4" + if output is None: + output = Path(folder) / "video.mp4" else: - output = Path(args.output) + output = Path(output) video_sequence = Sequence( [ blocks.Video( output, - fps=args.fps, - compression=args.compression, - width=args.width, + fps=fps, + compression=compression, + width=width, ) ], name="Making video", @@ -61,52 +101,3 @@ def video(args): video_sequence.run(images) print("Video saved in", output) - - -def add_video_parser(subparsers): - video_parser = subparsers.add_parser( - name="video", description="make a video of FITS images" - ) - video_parser.add_argument( - "folder", type=str, help="folder containing the FITS", default=None - ) - video_parser.add_argument( - "-d", "--depth", type=int, help="subfolder parsing depth", default=10 - ) - video_parser.add_argument( - "-o", - "--output", - type=str, - help="output video file", - default="video.mp4", - ) - video_parser.add_argument( - "-t", - "--type", - type=str, - help="type of FITS files to use", - default=None, - ) - video_parser.add_argument( - "-f", - "--fps", - type=int, - help="frames per second", - default=10, - ) - video_parser.add_argument( - "-c", - "--compression", - type=int, - help="compression parameter for the video block", - default=None, - ) - video_parser.add_argument( - "-w", - "--width", - type=int, - help="width of the video in pixel (if resizing required), aspect ratio is kept", - default=None, - ) - - video_parser.set_defaults(func=video) diff --git a/pyproject.toml b/pyproject.toml index ee880232..b84c63b5 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -28,6 +28,8 @@ twirl = "0.4.0" multiprocess = "*" pytest = "*" imageio = { version = "*", extras = ["ffmpeg"] } +click = "^8.1.6" +sphinx-click = "^4.4.0" [tool.poetry.group.dev.dependencies] pytest = "*"