|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torch.nn.functional as F |
| 4 | +import torchvision |
| 5 | +import torchvision.transforms as transforms |
| 6 | +import matplotlib.pyplot as plt |
| 7 | +import numpy as np |
| 8 | + |
| 9 | +# Device configuration |
| 10 | +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 11 | + |
| 12 | +# Hyper-parameters |
| 13 | +num_epochs = 5 |
| 14 | +batch_size = 4 |
| 15 | +learning_rate = 0.001 |
| 16 | + |
| 17 | +# dataset has PILImage images of range [0, 1]. |
| 18 | +# We transform them to Tensors of normalized range [-1, 1] |
| 19 | +transform = transforms.Compose( |
| 20 | + [transforms.ToTensor(), |
| 21 | + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) |
| 22 | + |
| 23 | +# CIFAR10: 60000 32x32 color images in 10 classes, with 6000 images per class |
| 24 | +train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, |
| 25 | + download=True, transform=transform) |
| 26 | + |
| 27 | +test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, |
| 28 | + download=True, transform=transform) |
| 29 | + |
| 30 | +train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, |
| 31 | + shuffle=True) |
| 32 | + |
| 33 | +test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, |
| 34 | + shuffle=False) |
| 35 | + |
| 36 | +classes = ('plane', 'car', 'bird', 'cat', |
| 37 | + 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') |
| 38 | + |
| 39 | +def imshow(img): |
| 40 | + img = img / 2 + 0.5 # unnormalize |
| 41 | + npimg = img.numpy() |
| 42 | + plt.imshow(np.transpose(npimg, (1, 2, 0))) |
| 43 | + plt.show() |
| 44 | + |
| 45 | + |
| 46 | +# get some random training images |
| 47 | +dataiter = iter(train_loader) |
| 48 | +images, labels = dataiter.next() |
| 49 | + |
| 50 | +# show images |
| 51 | +imshow(torchvision.utils.make_grid(images)) |
| 52 | + |
| 53 | +class ConvNet(nn.Module): |
| 54 | + def __init__(self): |
| 55 | + super(ConvNet, self).__init__() |
| 56 | + self.conv1 = nn.Conv2d(3, 6, 5) |
| 57 | + self.pool = nn.MaxPool2d(2, 2) |
| 58 | + self.conv2 = nn.Conv2d(6, 16, 5) |
| 59 | + self.fc1 = nn.Linear(16 * 5 * 5, 120) |
| 60 | + self.fc2 = nn.Linear(120, 84) |
| 61 | + self.fc3 = nn.Linear(84, 10) |
| 62 | + |
| 63 | + def forward(self, x): |
| 64 | + # -> n, 3, 32, 32 |
| 65 | + x = self.pool(F.relu(self.conv1(x))) # -> n, 6, 14, 14 |
| 66 | + x = self.pool(F.relu(self.conv2(x))) # -> n, 16, 5, 5 |
| 67 | + x = x.view(-1, 16 * 5 * 5) # -> n, 400 |
| 68 | + x = F.relu(self.fc1(x)) # -> n, 120 |
| 69 | + x = F.relu(self.fc2(x)) # -> n, 84 |
| 70 | + x = self.fc3(x) # -> n, 10 |
| 71 | + return x |
| 72 | + |
| 73 | + |
| 74 | +model = ConvNet().to(device) |
| 75 | + |
| 76 | +criterion = nn.CrossEntropyLoss() |
| 77 | +optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) |
| 78 | + |
| 79 | +n_total_steps = len(train_loader) |
| 80 | +for epoch in range(num_epochs): |
| 81 | + for i, (images, labels) in enumerate(train_loader): |
| 82 | + # origin shape: [4, 3, 32, 32] = 4, 3, 1024 |
| 83 | + # input_layer: 3 input channels, 6 output channels, 5 kernel size |
| 84 | + images = images.to(device) |
| 85 | + labels = labels.to(device) |
| 86 | + |
| 87 | + # Forward pass |
| 88 | + outputs = model(images) |
| 89 | + loss = criterion(outputs, labels) |
| 90 | + |
| 91 | + # Backward and optimize |
| 92 | + optimizer.zero_grad() |
| 93 | + loss.backward() |
| 94 | + optimizer.step() |
| 95 | + |
| 96 | + if (i+1) % 2000 == 0: |
| 97 | + print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}') |
| 98 | + |
| 99 | +print('Finished Training') |
| 100 | +PATH = './cnn.pth' |
| 101 | +torch.save(model.state_dict(), PATH) |
| 102 | + |
| 103 | +with torch.no_grad(): |
| 104 | + n_correct = 0 |
| 105 | + n_samples = 0 |
| 106 | + n_class_correct = [0 for i in range(10)] |
| 107 | + n_class_samples = [0 for i in range(10)] |
| 108 | + for images, labels in test_loader: |
| 109 | + images = images.to(device) |
| 110 | + labels = labels.to(device) |
| 111 | + outputs = model(images) |
| 112 | + # max returns (value ,index) |
| 113 | + _, predicted = torch.max(outputs, 1) |
| 114 | + n_samples += labels.size(0) |
| 115 | + n_correct += (predicted == labels).sum().item() |
| 116 | + |
| 117 | + for i in range(batch_size): |
| 118 | + label = labels[i] |
| 119 | + pred = predicted[i] |
| 120 | + if (label == pred): |
| 121 | + n_class_correct[label] += 1 |
| 122 | + n_class_samples[label] += 1 |
| 123 | + |
| 124 | + acc = 100.0 * n_correct / n_samples |
| 125 | + print(f'Accuracy of the network: {acc} %') |
| 126 | + |
| 127 | + for i in range(10): |
| 128 | + acc = 100.0 * n_class_correct[i] / n_class_samples[i] |
| 129 | + print(f'Accuracy of {classes[i]}: {acc} %') |
| 130 | + |
0 commit comments