Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit ab9dbc9

Browse files
committed
Merge pull request sux13#25 from okhoma/master
Corrected beta1 variance derivation formulas in "Intervals/Tests for Coefficients" section
2 parents 7e357e6 + 3c1adcf commit ab9dbc9

File tree

1 file changed

+6
-5
lines changed

1 file changed

+6
-5
lines changed

7_REGMODS/Regression Models Course Notes.Rmd

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -743,13 +743,14 @@ $\pagebreak$
743743
### Intervals/Tests for Coefficients
744744
* standard errors for coefficients
745745
$$\begin{aligned}
746-
Var(\hat \beta_1) & = Var\left(\frac{\sum_{i=1}^n (Y_i - \bar Y)(X_i - \bar X)}{((X_i - \bar X)^2)}\right) \\
747-
(expanding) & = Var\left(\frac{\sum_{i=1}^n Y_i (X_i - \bar X) - \bar Y \sum_{i=1}^n (X_i - \bar X)}{((X_i - \bar X)^2)}\right) \\
748-
& Since~ \sum_{i=1}^n X_i - \bar X = 0 \\
749-
(simplifying) & = \frac{\sum_{i=1}^n Y_i (X_i - \bar X)}{(\sum_{i=1}^n (X_i - \bar X)^2)^2} \Leftarrow \mbox{denominator taken out of } Var\\
746+
Var(\hat \beta_1) & = Var\left(\frac{\sum_{i=1}^n (Y_i - \bar Y)(X_i - \bar X)}{(\sum_{i=1}^n (X_i - \bar X)^2)^2}\right) \\
747+
(expanding) & = Var\left(\frac{\sum_{i=1}^n Y_i (X_i - \bar X) - \bar Y \sum_{i=1}^n (X_i - \bar X)}{(\sum_{i=1}^n (X_i - \bar X)^2)^2}\right) \\
748+
& Since~ \sum_{i=1}^n (X_i - \bar X) = 0 \\
749+
(simplifying) & = \frac{Var\left(\sum_{i=1}^n Y_i (X_i - \bar X)\right)}{(\sum_{i=1}^n (X_i - \bar X)^2)^2} \Leftarrow \mbox{denominator taken out of } Var\\
750+
& Since~ Var\left(\sum aY\right) = \sum a^2 Var\left(Y\right) \\
750751
(Var(Y_i) = \sigma^2) & = \frac{\sigma^2 \sum_{i=1}^n (X_i - \bar X)^2}{(\sum_{i=1}^n (X_i - \bar X)^2)^2} \\
751752
\sigma_{\hat \beta_1}^2 = Var(\hat \beta_1) &= \frac{\sigma^2 }{ \sum_{i=1}^n (X_i - \bar X)^2 }\\
752-
\Rightarrow \sigma_{\hat \beta_1} &= \frac{\sigma}{ \sum_{i=1}^n X_i - \bar X} \\
753+
\Rightarrow \sigma_{\hat \beta_1} &= \frac{\sigma}{ \sqrt {\sum_{i=1}^n (X_i - \bar X)^2}} \\
753754
\\
754755
\mbox{by the same derivation} \Rightarrow & \\
755756
\sigma_{\hat \beta_0}^2 = Var(\hat \beta_0) & = \left(\frac{1}{n} + \frac{\bar X^2}{\sum_{i=1}^n (X_i - \bar X)^2 }\right)\sigma^2 \\

0 commit comments

Comments
 (0)