@@ -162,44 +162,44 @@ def test_process_value_array(self):
162
162
assert_array_equal (res , np .array ([5. , 10. ]))
163
163
164
164
165
- class BaseOffsetNorm (BaseNormMixin ):
166
- normclass = mcolors .OffsetNorm
165
+ class BasePiecewiseLinearNorm (BaseNormMixin ):
166
+ normclass = mcolors .PiecewiseLinearNorm
167
167
test_inverse = False
168
168
169
- class test_OffsetNorm_Even ( BaseOffsetNorm ):
169
+ class test_PiecewiseLinearNorm_Even ( BasePiecewiseLinearNorm ):
170
170
def setup (self ):
171
171
self .norm = self .normclass (vmin = - 1 , vcenter = 0 , vmax = 4 )
172
172
self .vals = np .array ([- 1.0 , - 0.5 , 0.0 , 1.0 , 2.0 , 3.0 , 4.0 ])
173
173
self .expected = np .array ([0.0 , 0.25 , 0.5 , 0.625 , 0.75 , 0.875 , 1.0 ])
174
174
175
175
176
- class test_OffsetNorm_Odd ( BaseOffsetNorm ):
176
+ class test_PiecewiseLinearNorm_Odd ( BasePiecewiseLinearNorm ):
177
177
def setup (self ):
178
- self .normclass = mcolors .OffsetNorm
178
+ self .normclass = mcolors .PiecewiseLinearNorm
179
179
self .norm = self .normclass (vmin = - 2 , vcenter = 0 , vmax = 5 )
180
180
self .vals = np .array ([- 2.0 , - 1.0 , 0.0 , 1.0 , 2.0 , 3.0 , 4.0 , 5.0 ])
181
181
self .expected = np .array ([0.0 , 0.25 , 0.5 , 0.6 , 0.7 , 0.8 , 0.9 , 1.0 ])
182
182
183
183
184
- class test_OffsetNorm_AllNegative ( BaseOffsetNorm ):
184
+ class test_PiecewiseLinearNorm_AllNegative ( BasePiecewiseLinearNorm ):
185
185
def setup (self ):
186
- self .normclass = mcolors .OffsetNorm
186
+ self .normclass = mcolors .PiecewiseLinearNorm
187
187
self .norm = self .normclass (vmin = - 10 , vcenter = - 8 , vmax = - 2 )
188
188
self .vals = np .array ([- 10. , - 9. , - 8. , - 6. , - 4. , - 2. ])
189
189
self .expected = np .array ([0.0 , 0.25 , 0.5 , 0.666667 , 0.833333 , 1.0 ])
190
190
191
191
192
- class test_OffsetNorm_AllPositive ( BaseOffsetNorm ):
192
+ class test_PiecewiseLinearNorm_AllPositive ( BasePiecewiseLinearNorm ):
193
193
def setup (self ):
194
- self .normclass = mcolors .OffsetNorm
194
+ self .normclass = mcolors .PiecewiseLinearNorm
195
195
self .norm = self .normclass (vmin = 0 , vcenter = 3 , vmax = 9 )
196
196
self .vals = np .array ([0. , 1.5 , 3. , 4.5 , 6.0 , 7.5 , 9. ])
197
197
self .expected = np .array ([0.0 , 0.25 , 0.5 , 0.625 , 0.75 , 0.875 , 1.0 ])
198
198
199
199
200
- class test_OffsetNorm_NoVs ( BaseOffsetNorm ):
200
+ class test_PiecewiseLinearNorm_NoVs ( BasePiecewiseLinearNorm ):
201
201
def setup (self ):
202
- self .normclass = mcolors .OffsetNorm
202
+ self .normclass = mcolors .PiecewiseLinearNorm
203
203
self .norm = self .normclass (vmin = None , vcenter = None , vmax = None )
204
204
self .vals = np .array ([- 2.0 , - 1.0 , 0.0 , 1.0 , 2.0 , 3.0 , 4.0 ])
205
205
self .expected = np .array ([0. , 0.16666667 , 0.33333333 ,
@@ -224,26 +224,26 @@ def test_vmax(self):
224
224
nt .assert_equal (self .norm .vmax , self .expected_vmax )
225
225
226
226
227
- class test_OffsetNorm_VminEqualsVcenter ( BaseOffsetNorm ):
227
+ class test_PiecewiseLinearNorm_VminEqualsVcenter ( BasePiecewiseLinearNorm ):
228
228
def setup (self ):
229
- self .normclass = mcolors .OffsetNorm
229
+ self .normclass = mcolors .PiecewiseLinearNorm
230
230
self .norm = self .normclass (vmin = - 2 , vcenter = - 2 , vmax = 2 )
231
231
self .vals = np .array ([- 2.0 , - 1.0 , 0.0 , 1.0 , 2.0 ])
232
232
self .expected = np .array ([0.5 , 0.625 , 0.75 , 0.875 , 1.0 ])
233
233
234
234
235
- class test_OffsetNorm_VmaxEqualsVcenter ( BaseOffsetNorm ):
235
+ class test_PiecewiseLinearNorm_VmaxEqualsVcenter ( BasePiecewiseLinearNorm ):
236
236
def setup (self ):
237
- self .normclass = mcolors .OffsetNorm
237
+ self .normclass = mcolors .PiecewiseLinearNorm
238
238
self .norm = self .normclass (vmin = - 2 , vcenter = 2 , vmax = 2 )
239
239
self .vals = np .array ([- 2.0 , - 1.0 , 0.0 , 1.0 , 2.0 ])
240
240
self .expected = np .array ([0.0 , 0.125 , 0.25 , 0.375 , 0.5 ])
241
241
242
242
243
- class test_OffsetNorm_VsAllEqual ( BaseOffsetNorm ):
243
+ class test_PiecewiseLinearNorm_VsAllEqual ( BasePiecewiseLinearNorm ):
244
244
def setup (self ):
245
245
self .v = 10
246
- self .normclass = mcolors .OffsetNorm
246
+ self .normclass = mcolors .PiecewiseLinearNorm
247
247
self .norm = self .normclass (vmin = self .v , vcenter = self .v , vmax = self .v )
248
248
self .vals = np .array ([- 2.0 , - 1.0 , 0.0 , 1.0 , 2.0 ])
249
249
self .expected = np .array ([0.0 , 0.0 , 0.0 , 0.0 , 0.0 ])
@@ -256,28 +256,28 @@ def test_inverse(self):
256
256
)
257
257
258
258
259
- class test_OffsetNorm_Errors (object ):
259
+ class test_PiecewiseLinearNorm_Errors (object ):
260
260
def setup (self ):
261
261
self .vals = np .arange (50 )
262
262
263
263
@nt .raises (ValueError )
264
264
def test_VminGTVcenter (self ):
265
- norm = mcolors .OffsetNorm (vmin = 10 , vcenter = 0 , vmax = 20 )
265
+ norm = mcolors .PiecewiseLinearNorm (vmin = 10 , vcenter = 0 , vmax = 20 )
266
266
norm (self .vals )
267
267
268
268
@nt .raises (ValueError )
269
269
def test_VminGTVmax (self ):
270
- norm = mcolors .OffsetNorm (vmin = 10 , vcenter = 0 , vmax = 5 )
270
+ norm = mcolors .PiecewiseLinearNorm (vmin = 10 , vcenter = 0 , vmax = 5 )
271
271
norm (self .vals )
272
272
273
273
@nt .raises (ValueError )
274
274
def test_VcenterGTVmax (self ):
275
- norm = mcolors .OffsetNorm (vmin = 10 , vcenter = 25 , vmax = 20 )
275
+ norm = mcolors .PiecewiseLinearNorm (vmin = 10 , vcenter = 25 , vmax = 20 )
276
276
norm (self .vals )
277
277
278
278
@nt .raises (ValueError )
279
279
def test_premature_scaling (self ):
280
- norm = mcolors .OffsetNorm ()
280
+ norm = mcolors .PiecewiseLinearNorm ()
281
281
norm .inverse (np .array ([0.1 , 0.5 , 0.9 ]))
282
282
283
283
@@ -290,7 +290,7 @@ def test_offset_norm_img():
290
290
291
291
fig , (ax1 , ax2 ) = plt .subplots (ncols = 2 )
292
292
cmap = plt .cm .coolwarm
293
- norm = mcolors .OffsetNorm (vmin = - 2 , vcenter = 0 , vmax = 7 )
293
+ norm = mcolors .PiecewiseLinearNorm (vmin = - 2 , vcenter = 0 , vmax = 7 )
294
294
295
295
img1 = ax1 .imshow (Z , cmap = cmap , norm = None )
296
296
cbar1 = fig .colorbar (img1 , ax = ax1 )
0 commit comments