@@ -751,7 +751,7 @@ def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
751
751
752
752
753
753
Examples
754
- ---------
754
+ --------
755
755
* draw a thick red vline at *x* = 0 that spans the yrange::
756
756
757
757
>>> axvline(linewidth=4, color='r')
@@ -1034,7 +1034,7 @@ def vlines(self, x, ymin, ymax, colors='k', linestyles='solid',
1034
1034
hlines : horizontal lines
1035
1035
1036
1036
Examples
1037
- ---------
1037
+ --------
1038
1038
.. plot:: mpl_examples/pylab_examples/vline_hline_demo.py
1039
1039
1040
1040
"""
@@ -1089,12 +1089,6 @@ def eventplot(self, positions, orientation='horizontal', lineoffsets=1,
1089
1089
"""
1090
1090
Plot identical parallel lines at specific positions.
1091
1091
1092
- Call signature::
1093
-
1094
- eventplot(positions, orientation='horizontal', lineoffsets=0,
1095
- linelengths=1, linewidths=None, color =None,
1096
- linestyles='solid'
1097
-
1098
1092
Plot parallel lines at the given positions. positions should be a 1D
1099
1093
or 2D array-like object, with each row corresponding to a row or column
1100
1094
of lines.
@@ -1497,10 +1491,6 @@ def loglog(self, *args, **kwargs):
1497
1491
"""
1498
1492
Make a plot with log scaling on both the *x* and *y* axis.
1499
1493
1500
- Call signature::
1501
-
1502
- loglog(*args, **kwargs)
1503
-
1504
1494
:func:`~matplotlib.pyplot.loglog` supports all the keyword
1505
1495
arguments of :func:`~matplotlib.pyplot.plot` and
1506
1496
:meth:`matplotlib.axes.Axes.set_xscale` /
@@ -1702,7 +1692,7 @@ def acorr(self, x, **kwargs):
1702
1692
- `b` is the x-axis.
1703
1693
1704
1694
Other parameters
1705
- -----------------
1695
+ ----------------
1706
1696
linestyle : `~matplotlib.lines.Line2D` prop, optional, default: None
1707
1697
Only used if usevlines is False.
1708
1698
@@ -1766,7 +1756,7 @@ def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
1766
1756
- `b` is the x-axis (none, if plot is used).
1767
1757
1768
1758
Other parameters
1769
- -----------------
1759
+ ----------------
1770
1760
linestyle : `~matplotlib.lines.Line2D` prop, optional, default: None
1771
1761
Only used if usevlines is False.
1772
1762
@@ -2231,7 +2221,7 @@ def barh(self, bottom, width, height=0.8, left=None, **kwargs):
2231
2221
the x coordinates of the left sides of the bars
2232
2222
2233
2223
Returns
2234
- --------
2224
+ -------
2235
2225
`matplotlib.patches.Rectangle` instances.
2236
2226
2237
2227
Other parameters
@@ -2304,10 +2294,6 @@ def broken_barh(self, xranges, yrange, **kwargs):
2304
2294
"""
2305
2295
Plot horizontal bars.
2306
2296
2307
- Call signature::
2308
-
2309
- broken_barh(self, xranges, yrange, **kwargs)
2310
-
2311
2297
A collection of horizontal bars spanning *yrange* with a sequence of
2312
2298
*xranges*.
2313
2299
@@ -2494,15 +2480,6 @@ def pie(self, x, explode=None, labels=None, colors=None,
2494
2480
r"""
2495
2481
Plot a pie chart.
2496
2482
2497
- Call signature::
2498
-
2499
- pie(x, explode=None, labels=None,
2500
- colors=None,
2501
- autopct=None, pctdistance=0.6, shadow=False,
2502
- labeldistance=1.1, startangle=None, radius=None,
2503
- counterclock=True, wedgeprops=None, textprops=None,
2504
- center = (0, 0), frame = False )
2505
-
2506
2483
Make a pie chart of array *x*. The fractional area of each
2507
2484
wedge is given by x/sum(x). If sum(x) <= 1, then the values
2508
2485
of x give the fractional area directly and the array will not
@@ -3111,17 +3088,6 @@ def boxplot(self, x, notch=None, sym=None, vert=None, whis=None,
3111
3088
"""
3112
3089
Make a box and whisker plot.
3113
3090
3114
- Call signature::
3115
-
3116
- boxplot(self, x, notch=None, sym=None, vert=None, whis=None,
3117
- positions=None, widths=None, patch_artist=False,
3118
- bootstrap=None, usermedians=None, conf_intervals=None,
3119
- meanline=False, showmeans=False, showcaps=True,
3120
- showbox=True, showfliers=True, boxprops=None,
3121
- labels=None, flierprops=None, medianprops=None,
3122
- meanprops=None, capprops=None, whiskerprops=None,
3123
- manage_xticks=True, autorange=False, zorder=None):
3124
-
3125
3091
Make a box and whisker plot for each column of ``x`` or each
3126
3092
vector in sequence ``x``. The box extends from the lower to
3127
3093
upper quartile values of the data, with a line at the median.
@@ -3421,15 +3387,6 @@ def bxp(self, bxpstats, positions=None, widths=None, vert=True,
3421
3387
"""
3422
3388
Drawing function for box and whisker plots.
3423
3389
3424
- Call signature::
3425
-
3426
- bxp(self, bxpstats, positions=None, widths=None, vert=True,
3427
- patch_artist=False, shownotches=False, showmeans=False,
3428
- showcaps=True, showbox=True, showfliers=True,
3429
- boxprops=None, whiskerprops=None, flierprops=None,
3430
- medianprops=None, capprops=None, meanprops=None,
3431
- meanline=False, manage_xticks=True, zorder=None):
3432
-
3433
3390
Make a box and whisker plot for each column of *x* or each
3434
3391
vector in sequence *x*. The box extends from the lower to
3435
3392
upper quartile values of the data, with a line at the median.
@@ -4900,10 +4857,6 @@ def fill_betweenx(self, y, x1, x2=0, where=None,
4900
4857
"""
4901
4858
Make filled polygons between two horizontal curves.
4902
4859
4903
- Call signature::
4904
-
4905
- fill_betweenx(y, x1, x2=0, where=None, **kwargs)
4906
-
4907
4860
Create a :class:`~matplotlib.collections.PolyCollection`
4908
4861
filling the regions between *x1* and *x2* where
4909
4862
``where==True``
@@ -5034,7 +4987,7 @@ def imshow(self, X, cmap=None, norm=None, aspect=None,
5034
4987
Display an image on the axes.
5035
4988
5036
4989
Parameters
5037
- -----------
4990
+ ----------
5038
4991
X : array_like, shape (n, m) or (n, m, 3) or (n, m, 4)
5039
4992
Display the image in `X` to current axes. `X` may be an
5040
4993
array or a PIL image. If `X` is an array, it
@@ -5117,7 +5070,7 @@ def imshow(self, X, cmap=None, norm=None, aspect=None,
5117
5070
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'
5118
5071
5119
5072
Returns
5120
- --------
5073
+ -------
5121
5074
image : `~matplotlib.image.AxesImage`
5122
5075
5123
5076
Other parameters
@@ -6528,7 +6481,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6528
6481
The return value is ``(counts, xedges, yedges, Image)``.
6529
6482
6530
6483
Other parameters
6531
- -----------------
6484
+ ----------------
6532
6485
kwargs : :meth:`pcolorfast` properties.
6533
6486
6534
6487
See also
@@ -7066,12 +7019,6 @@ def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
7066
7019
"""
7067
7020
Plot the coherence between *x* and *y*.
7068
7021
7069
- Call signature::
7070
-
7071
- cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
7072
- window = mlab.window_hanning, noverlap=0, pad_to=None,
7073
- sides='default', scale_by_freq=None, **kwargs)
7074
-
7075
7022
Plot the coherence between *x* and *y*. Coherence is the
7076
7023
normalized cross spectral density:
7077
7024
@@ -7448,13 +7395,8 @@ def matshow(self, Z, **kwargs):
7448
7395
def violinplot (self , dataset , positions = None , vert = True , widths = 0.5 ,
7449
7396
showmeans = False , showextrema = True , showmedians = False ,
7450
7397
points = 100 , bw_method = None ):
7451
- """Make a violin plot.
7452
-
7453
- Call signature::
7454
-
7455
- violinplot(dataset, positions=None, vert=True, widths=0.5,
7456
- showmeans=False, showextrema=True, showmedians=False,
7457
- points=100, bw_method=None):
7398
+ """
7399
+ Make a violin plot.
7458
7400
7459
7401
Make a violin plot for each column of *dataset* or each vector in
7460
7402
sequence *dataset*. Each filled area extends to represent the
@@ -7553,11 +7495,6 @@ def violin(self, vpstats, positions=None, vert=True, widths=0.5,
7553
7495
showmeans = False , showextrema = True , showmedians = False ):
7554
7496
"""Drawing function for violin plots.
7555
7497
7556
- Call signature::
7557
-
7558
- violin(vpstats, positions=None, vert=True, widths=0.5,
7559
- showmeans=False, showextrema=True, showmedians=False):
7560
-
7561
7498
Draw a violin plot for each column of `vpstats`. Each filled area
7562
7499
extends to represent the entire data range, with optional lines at the
7563
7500
mean, the median, the minimum, and the maximum.
0 commit comments