Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 3ce3835

Browse files
committed
Merge branch 'v2.0.0-doc' into v2.0.x
2 parents 6061a43 + 68d2327 commit 3ce3835

18 files changed

+230
-192
lines changed

doc/contents.rst

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,8 @@ Overview
88
:Release: |version|
99
:Date: |today|
1010

11+
Download `PDF <Matplotlib.pdf>`_
12+
1113

1214
.. toctree::
1315
:maxdepth: 2

doc/devel/testing.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ a colon, e.g., (this is assuming the test is installed)::
8686
If you want to run the full test suite, but want to save wall time try
8787
running the tests in parallel::
8888

89-
python tests.py --nocapture --nose-verbose --processes=5 --process-timeout=300
89+
python tests.py --nocapture --verbose --processes=5 --process-timeout=300
9090

9191

9292
An alternative implementation that does not look at command line

examples/color/color_cycle_default.py

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,14 @@
11
"""
2+
====================================
3+
Colors in the default property cycle
4+
====================================
5+
26
Display the colors from the default prop_cycle.
37
"""
4-
58
import numpy as np
69
import matplotlib.pyplot as plt
710

11+
812
prop_cycle = plt.rcParams['axes.prop_cycle']
913
colors = prop_cycle.by_key()['color']
1014

examples/color/color_cycle_demo.py

Lines changed: 11 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,30 +1,36 @@
11
"""
2-
Demo of custom property-cycle settings to control colors and such
3-
for multi-line plots.
2+
===================
3+
Styling with cycler
4+
===================
5+
6+
Demo of custom property-cycle settings to control colors and other style
7+
properties for multi-line plots.
48
59
This example demonstrates two different APIs:
610
7-
1. Setting the default rc-parameter specifying the property cycle.
11+
1. Setting the default rc parameter specifying the property cycle.
812
This affects all subsequent axes (but not axes already created).
9-
2. Setting the property cycle for a specific axes. This only
10-
affects a single axes.
13+
2. Setting the property cycle for a single pair of axes.
1114
"""
1215
from cycler import cycler
1316
import numpy as np
1417
import matplotlib.pyplot as plt
1518

19+
1620
x = np.linspace(0, 2 * np.pi)
1721
offsets = np.linspace(0, 2*np.pi, 4, endpoint=False)
1822
# Create array with shifted-sine curve along each column
1923
yy = np.transpose([np.sin(x + phi) for phi in offsets])
2024

25+
# 1. Setting prop cycle on default rc parameter
2126
plt.rc('lines', linewidth=4)
2227
plt.rc('axes', prop_cycle=(cycler('color', ['r', 'g', 'b', 'y']) +
2328
cycler('linestyle', ['-', '--', ':', '-.'])))
2429
fig, (ax0, ax1) = plt.subplots(nrows=2)
2530
ax0.plot(yy)
2631
ax0.set_title('Set default color cycle to rgby')
2732

33+
# 2. Define prop cycle for single set of axes
2834
ax1.set_prop_cycle(cycler('color', ['c', 'm', 'y', 'k']) +
2935
cycler('lw', [1, 2, 3, 4]))
3036
ax1.plot(yy)

examples/color/colormaps_reference.py

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,8 @@
11
"""
2+
==================
3+
Colormap reference
4+
==================
5+
26
Reference for colormaps included with Matplotlib.
37
48
This reference example shows all colormaps included with Matplotlib. Note that
@@ -35,9 +39,9 @@
3539
import numpy as np
3640
import matplotlib.pyplot as plt
3741

42+
3843
# Have colormaps separated into categories:
3944
# http://matplotlib.org/examples/color/colormaps_reference.html
40-
4145
cmaps = [('Perceptually Uniform Sequential',
4246
['viridis', 'inferno', 'plasma', 'magma']),
4347
('Sequential', ['Blues', 'BuGn', 'BuPu',
@@ -65,7 +69,7 @@
6569
gradient = np.vstack((gradient, gradient))
6670

6771

68-
def plot_color_gradients(cmap_category, cmap_list):
72+
def plot_color_gradients(cmap_category, cmap_list, nrows):
6973
fig, axes = plt.subplots(nrows=nrows)
7074
fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99)
7175
axes[0].set_title(cmap_category + ' colormaps', fontsize=14)
@@ -81,7 +85,8 @@ def plot_color_gradients(cmap_category, cmap_list):
8185
for ax in axes:
8286
ax.set_axis_off()
8387

88+
8489
for cmap_category, cmap_list in cmaps:
85-
plot_color_gradients(cmap_category, cmap_list)
90+
plot_color_gradients(cmap_category, cmap_list, nrows)
8691

8792
plt.show()

examples/color/named_colors.py

Lines changed: 10 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -1,44 +1,37 @@
11
"""
2-
Visualization of named colors.
2+
========================
3+
Visualizing named colors
4+
========================
35
46
Simple plot example with the named colors and its visual representation.
57
"""
8+
from __future__ import division
69

7-
from __future__ import (absolute_import, division, print_function,
8-
unicode_literals)
9-
10-
import six
11-
12-
import numpy as np
1310
import matplotlib.pyplot as plt
1411
from matplotlib import colors as mcolors
1512

1613

1714
colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)
1815

19-
# Sort by hue, saturation, value and name.
16+
# Sort colors by hue, saturation, value and name.
2017
by_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name)
2118
for name, color in colors.items())
22-
23-
# Get the sorted color names.
2419
sorted_names = [name for hsv, name in by_hsv]
2520

2621
n = len(sorted_names)
2722
ncols = 4
28-
nrows = int(np.ceil(1. * n / ncols))
23+
nrows = n // ncols + 1
2924

3025
fig, ax = plt.subplots(figsize=(8, 5))
3126

27+
# Get height and width
3228
X, Y = fig.get_dpi() * fig.get_size_inches()
33-
34-
# row height
3529
h = Y / (nrows + 1)
36-
# col width
3730
w = X / ncols
3831

3932
for i, name in enumerate(sorted_names):
4033
col = i % ncols
41-
row = int(i / ncols)
34+
row = i // ncols
4235
y = Y - (row * h) - h
4336

4437
xi_line = w * (col + 0.05)
@@ -49,8 +42,8 @@
4942
horizontalalignment='left',
5043
verticalalignment='center')
5144

52-
ax.hlines(
53-
y + h * 0.1, xi_line, xf_line, color=colors[name], linewidth=(h * 0.6))
45+
ax.hlines(y + h * 0.1, xi_line, xf_line,
46+
color=colors[name], linewidth=(h * 0.6))
5447

5548
ax.set_xlim(0, X)
5649
ax.set_ylim(0, Y)

examples/misc/multiprocess.py

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,11 @@ def main():
7979
for ii in range(10):
8080
pl.plot()
8181
time.sleep(0.5)
82-
raw_input('press Enter...')
82+
try:
83+
input = raw_input
84+
except NameError:
85+
pass
86+
input('press Enter...')
8387
pl.plot(finished=True)
8488

8589
if __name__ == '__main__':

examples/pie_and_polar_charts/pie_demo_features.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,8 @@
11
"""
2+
===============
3+
Basic pie chart
4+
===============
5+
26
Demo of a basic pie chart plus a few additional features.
37
48
In addition to the basic pie chart, this demo shows a few optional features:

examples/pie_and_polar_charts/polar_bar_demo.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,15 @@
11
"""
2+
=======================
3+
Pie chart on polar axis
4+
=======================
5+
26
Demo of bar plot on a polar axis.
37
"""
48
import numpy as np
59
import matplotlib.pyplot as plt
610

711

12+
# Compute pie slices
813
N = 20
914
theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
1015
radii = 10 * np.random.rand(N)
Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,8 @@
11
"""
2+
==========================
3+
Scatter plot on polar axis
4+
==========================
5+
26
Demo of scatter plot on a polar axis.
37
48
Size increases radially in this example and color increases with angle
@@ -8,14 +12,14 @@
812
import matplotlib.pyplot as plt
913

1014

15+
# Compute areas and colors
1116
N = 150
1217
r = 2 * np.random.rand(N)
1318
theta = 2 * np.pi * np.random.rand(N)
1419
area = 200 * r**2
1520
colors = theta
1621

1722
ax = plt.subplot(111, projection='polar')
18-
c = ax.scatter(theta, r, c=colors, s=area, cmap=plt.cm.hsv)
19-
c.set_alpha(0.75)
23+
c = ax.scatter(theta, r, c=colors, s=area, cmap='hsv', alpha=0.75)
2024

2125
plt.show()
Lines changed: 16 additions & 70 deletions
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,12 @@
11
'''
2-
Demonstration of quiver and quiverkey functions. This is using the
3-
new version coming from the code in quiver.py.
2+
========================================================
3+
Demonstration of advanced quiver and quiverkey functions
4+
========================================================
45
56
Known problem: the plot autoscaling does not take into account
67
the arrows, so those on the boundaries are often out of the picture.
78
This is *not* an easy problem to solve in a perfectly general way.
89
The workaround is to manually expand the axes.
9-
1010
'''
1111
import matplotlib.pyplot as plt
1212
import numpy as np
@@ -16,81 +16,27 @@
1616
U = np.cos(X)
1717
V = np.sin(Y)
1818

19-
# 1
20-
plt.figure()
21-
Q = plt.quiver(U, V)
22-
qk = plt.quiverkey(Q, 0.5, 0.98, 2, r'$2 \frac{m}{s}$', labelpos='W',
23-
fontproperties={'weight': 'bold'})
24-
l, r, b, t = plt.axis()
25-
dx, dy = r - l, t - b
26-
plt.axis([l - 0.05*dx, r + 0.05*dx, b - 0.05*dy, t + 0.05*dy])
27-
28-
plt.title('Minimal arguments, no kwargs')
29-
30-
# 2
3119
plt.figure()
20+
plt.title('Arrows scale with plot width, not view')
3221
Q = plt.quiver(X, Y, U, V, units='width')
33-
qk = plt.quiverkey(Q, 0.9, 0.95, 2, r'$2 \frac{m}{s}$',
34-
labelpos='E',
35-
coordinates='figure',
36-
fontproperties={'weight': 'bold'})
37-
plt.axis([-1, 7, -1, 7])
38-
plt.title('scales with plot width, not view')
22+
qk = plt.quiverkey(Q, 0.9, 0.9, 2, r'$2 \frac{m}{s}$', labelpos='E',
23+
coordinates='figure')
3924

40-
# 3
4125
plt.figure()
42-
Q = plt.quiver(X[::3, ::3], Y[::3, ::3], U[::3, ::3], V[::3, ::3],
43-
pivot='mid', color='r', units='inches')
44-
qk = plt.quiverkey(Q, 0.5, 0.03, 1, r'$1 \frac{m}{s}$',
45-
fontproperties={'weight': 'bold'})
46-
plt.plot(X[::3, ::3], Y[::3, ::3], 'k.')
47-
plt.axis([-1, 7, -1, 7])
4826
plt.title("pivot='mid'; every third arrow; units='inches'")
27+
Q = plt.quiver(X[::3, ::3], Y[::3, ::3], U[::3, ::3], V[::3, ::3],
28+
pivot='mid', units='inches')
29+
qk = plt.quiverkey(Q, 0.9, 0.9, 1, r'$1 \frac{m}{s}$', labelpos='E',
30+
coordinates='figure')
31+
plt.scatter(X[::3, ::3], Y[::3, ::3], color='r', s=5)
4932

50-
# 4
5133
plt.figure()
34+
plt.title("pivot='tip'; scales with x view")
5235
M = np.hypot(U, V)
53-
Q = plt.quiver(X, Y, U, V, M,
54-
units='x',
55-
pivot='tip',
56-
width=0.022,
36+
Q = plt.quiver(X, Y, U, V, M, units='x', pivot='tip', width=0.022,
5737
scale=1 / 0.15)
58-
qk = plt.quiverkey(Q, 0.9, 1.05, 1, r'$1 \frac{m}{s}$',
59-
labelpos='E',
60-
fontproperties={'weight': 'bold'})
61-
plt.plot(X, Y, 'k.', markersize=2)
62-
plt.axis([-1, 7, -1, 7])
63-
plt.title("scales with x view; pivot='tip'")
64-
65-
# 5
66-
plt.figure()
67-
Q = plt.quiver(X[::3, ::3], Y[::3, ::3], U[::3, ::3], V[::3, ::3],
68-
color='r', units='x',
69-
linewidths=(0.5,), edgecolors=('k'), headaxislength=5)
70-
qk = plt.quiverkey(Q, 0.5, 0.03, 1, r'$1 \frac{m}{s}$',
71-
fontproperties={'weight': 'bold'})
72-
plt.axis([-1, 7, -1, 7])
73-
plt.title("triangular head; scale with x view; black edges")
74-
75-
# 6
76-
plt.figure()
77-
M = np.zeros(U.shape, dtype='bool')
78-
XMaskStart = U.shape[0]//3
79-
YMaskStart = U.shape[1]//3
80-
XMaskStop = 2*U.shape[0]//3
81-
YMaskStop = 2*U.shape[1]//3
82-
83-
M[XMaskStart:XMaskStop,
84-
YMaskStart:YMaskStop] = True
85-
U = ma.masked_array(U, mask=M)
86-
V = ma.masked_array(V, mask=M)
87-
Q = plt.quiver(U, V)
88-
qk = plt.quiverkey(Q, 0.5, 0.98, 2, r'$2 \frac{m}{s}$', labelpos='W',
89-
fontproperties={'weight': 'bold'})
90-
l, r, b, t = plt.axis()
91-
dx, dy = r - l, t - b
92-
plt.axis([l - 0.05 * dx, r + 0.05 * dx, b - 0.05 * dy, t + 0.05 * dy])
93-
plt.title('Minimal arguments, no kwargs - masked values')
94-
38+
qk = plt.quiverkey(Q, 0.9, 0.9, 1, r'$1 \frac{m}{s}$', labelpos='E',
39+
coordinates='figure')
40+
plt.scatter(X, Y, color='k', s=5)
9541

9642
plt.show()
Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
'''
2+
==================================================
3+
A simple example of a quiver plot with a quiverkey
4+
==================================================
5+
'''
6+
import matplotlib.pyplot as plt
7+
import numpy as np
8+
9+
X = np.arange(-10, 10, 1)
10+
Y = np.arange(-10, 10, 1)
11+
U, V = np.meshgrid(X, Y)
12+
13+
fig, ax = plt.subplots()
14+
q = ax.quiver(X, Y, U, V)
15+
ax.quiverkey(q, X=0.3, Y=1.1, U=10,
16+
label='Quiver key, length = 10', labelpos='E')
17+
18+
plt.show()

0 commit comments

Comments
 (0)