@@ -4715,7 +4715,31 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
47154715 the hexagons are approximately regular.
47164716
47174717 Alternatively, if a tuple (*nx*, *ny*), the number of hexagons
4718- in the *x*-direction and the *y*-direction.
4718+ in the *x*-direction and the *y*-direction. In the
4719+ *y*-direction, counting is done along vertically aligned
4720+ hexagons, not along the zig-zag chains of hexagons; see the
4721+ following illustration.
4722+
4723+ .. plot::
4724+
4725+ import numpy
4726+ import matplotlib.pyplot as plt
4727+
4728+ np.random.seed(19680801)
4729+ n= 300
4730+ x = np.random.standard_normal(n)
4731+ y = np.random.standard_normal(n)
4732+
4733+ fig, ax = plt.subplots(figsize=(4, 4))
4734+ h = ax.hexbin(x, y, gridsize=(5, 3))
4735+ hx, hy = h.get_offsets().T
4736+ ax.plot(hx[24::3], hy[24::3], 'ro-')
4737+ ax.plot(hx[-3:], hy[-3:], 'ro-')
4738+ ax.set_title('gridsize=(5, 3)')
4739+ ax.axis('off')
4740+
4741+ To get approximately regular hexagons, choose
4742+ :math:`n_x = \\ sqrt{3}\\ ,n_y`.
47194743
47204744 bins : 'log' or int or sequence, default: None
47214745 Discretization of the hexagon values.
0 commit comments