|
54 | 54 | """
|
55 | 55 |
|
56 | 56 | import csv
|
57 |
| -import inspect |
58 | 57 | from numbers import Number
|
59 | 58 |
|
60 | 59 | import numpy as np
|
@@ -613,72 +612,62 @@ def _single_spectrum_helper(x, mode, Fs=None, window=None, pad_to=None,
|
613 | 612 |
|
614 | 613 |
|
615 | 614 | # Split out these keyword docs so that they can be used elsewhere
|
616 |
| -docstring.interpd.update(Spectral=inspect.cleandoc(""" |
617 |
| - Fs : scalar |
618 |
| - The sampling frequency (samples per time unit). It is used |
619 |
| - to calculate the Fourier frequencies, freqs, in cycles per time |
620 |
| - unit. The default value is 2. |
621 |
| -
|
622 |
| - window : callable or ndarray |
623 |
| - A function or a vector of length *NFFT*. To create window vectors see |
624 |
| - `.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`, |
625 |
| - `numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc. The |
626 |
| - default is `.window_hanning`. If a function is passed as the argument, |
627 |
| - it must take a data segment as an argument and return the windowed |
628 |
| - version of the segment. |
629 |
| -
|
630 |
| - sides : {'default', 'onesided', 'twosided'} |
631 |
| - Which sides of the spectrum to return. 'default' is one-sided for real |
632 |
| - data and two-sided for complex data. 'onesided' forces the return of a |
633 |
| - one-sided spectrum, while 'twosided' forces two-sided. |
634 |
| -""")) |
635 |
| - |
636 |
| - |
637 |
| -docstring.interpd.update(Single_Spectrum=inspect.cleandoc(""" |
638 |
| - pad_to : int |
639 |
| - The number of points to which the data segment is padded when |
640 |
| - performing the FFT. While not increasing the actual resolution of |
641 |
| - the spectrum (the minimum distance between resolvable peaks), |
642 |
| - this can give more points in the plot, allowing for more |
643 |
| - detail. This corresponds to the *n* parameter in the call to fft(). |
644 |
| - The default is None, which sets *pad_to* equal to the length of the |
645 |
| - input signal (i.e. no padding). |
646 |
| -""")) |
647 |
| - |
648 |
| - |
649 |
| -docstring.interpd.update(PSD=inspect.cleandoc(""" |
650 |
| - pad_to : int |
651 |
| - The number of points to which the data segment is padded when |
652 |
| - performing the FFT. This can be different from *NFFT*, which |
653 |
| - specifies the number of data points used. While not increasing |
654 |
| - the actual resolution of the spectrum (the minimum distance between |
655 |
| - resolvable peaks), this can give more points in the plot, |
656 |
| - allowing for more detail. This corresponds to the *n* parameter |
657 |
| - in the call to fft(). The default is None, which sets *pad_to* |
658 |
| - equal to *NFFT* |
659 |
| -
|
660 |
| - NFFT : int |
661 |
| - The number of data points used in each block for the FFT. |
662 |
| - A power 2 is most efficient. The default value is 256. |
663 |
| - This should *NOT* be used to get zero padding, or the scaling of the |
664 |
| - result will be incorrect. Use *pad_to* for this instead. |
665 |
| -
|
666 |
| - detrend : {'none', 'mean', 'linear'} or callable, default 'none' |
667 |
| - The function applied to each segment before fft-ing, designed to |
668 |
| - remove the mean or linear trend. Unlike in MATLAB, where the |
669 |
| - *detrend* parameter is a vector, in Matplotlib is it a function. |
670 |
| - The :mod:`~matplotlib.mlab` module defines `.detrend_none`, |
671 |
| - `.detrend_mean`, and `.detrend_linear`, but you can use a custom |
672 |
| - function as well. You can also use a string to choose one of the |
673 |
| - functions: 'none' calls `.detrend_none`. 'mean' calls `.detrend_mean`. |
674 |
| - 'linear' calls `.detrend_linear`. |
675 |
| -
|
676 |
| - scale_by_freq : bool, optional |
677 |
| - Whether the resulting density values should be scaled by the scaling |
678 |
| - frequency, which gives density in units of Hz^-1. This allows for |
679 |
| - integration over the returned frequency values. The default is True |
680 |
| - for MATLAB compatibility. |
681 |
| -""")) |
| 615 | +docstring.interpd.update( |
| 616 | + Spectral="""\ |
| 617 | +Fs : scalar, default: 2 |
| 618 | + The sampling frequency (samples per time unit). It is used to calculate |
| 619 | + the Fourier frequencies, *freqs*, in cycles per time unit. |
| 620 | +
|
| 621 | +window : callable or ndarray, default: `.window_hanning` |
| 622 | + A function or a vector of length *NFFT*. To create window vectors see |
| 623 | + `.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`, |
| 624 | + `numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc. If a |
| 625 | + function is passed as the argument, it must take a data segment as an |
| 626 | + argument and return the windowed version of the segment. |
| 627 | +
|
| 628 | +sides : {'default', 'onesided', 'twosided'}, optional |
| 629 | + Which sides of the spectrum to return. 'default' is one-sided for real |
| 630 | + data and two-sided for complex data. 'onesided' forces the return of a |
| 631 | + one-sided spectrum, while 'twosided' forces two-sided.""", |
| 632 | + |
| 633 | + Single_Spectrum="""\ |
| 634 | +pad_to : int, optional |
| 635 | + The number of points to which the data segment is padded when performing |
| 636 | + the FFT. While not increasing the actual resolution of the spectrum (the |
| 637 | + minimum distance between resolvable peaks), this can give more points in |
| 638 | + the plot, allowing for more detail. This corresponds to the *n* parameter |
| 639 | + in the call to fft(). The default is None, which sets *pad_to* equal to |
| 640 | + the length of the input signal (i.e. no padding).""", |
| 641 | + |
| 642 | + PSD="""\ |
| 643 | +pad_to : int, optional |
| 644 | + The number of points to which the data segment is padded when performing |
| 645 | + the FFT. This can be different from *NFFT*, which specifies the number |
| 646 | + of data points used. While not increasing the actual resolution of the |
| 647 | + spectrum (the minimum distance between resolvable peaks), this can give |
| 648 | + more points in the plot, allowing for more detail. This corresponds to |
| 649 | + the *n* parameter in the call to fft(). The default is None, which sets |
| 650 | + *pad_to* equal to *NFFT* |
| 651 | +
|
| 652 | +NFFT : int, default: 256 |
| 653 | + The number of data points used in each block for the FFT. A power 2 is |
| 654 | + most efficient. This should *NOT* be used to get zero padding, or the |
| 655 | + scaling of the result will be incorrect; use *pad_to* for this instead. |
| 656 | +
|
| 657 | +detrend : {'none', 'mean', 'linear'} or callable, default 'none' |
| 658 | + The function applied to each segment before fft-ing, designed to remove |
| 659 | + the mean or linear trend. Unlike in MATLAB, where the *detrend* parameter |
| 660 | + is a vector, in Matplotlib is it a function. The :mod:`~matplotlib.mlab` |
| 661 | + module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`, |
| 662 | + but you can use a custom function as well. You can also use a string to |
| 663 | + choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls |
| 664 | + `.detrend_mean`. 'linear' calls `.detrend_linear`. |
| 665 | +
|
| 666 | +scale_by_freq : bool, optional, default: True |
| 667 | + Whether the resulting density values should be scaled by the scaling |
| 668 | + frequency, which gives density in units of Hz^-1. This allows for |
| 669 | + integration over the returned frequency values. The default is True for |
| 670 | + MATLAB compatibility.""") |
682 | 671 |
|
683 | 672 |
|
684 | 673 | @docstring.dedent_interpd
|
|
0 commit comments