Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 438f7d4

Browse files
committed
Directly dedent the spectral parameter docs.
There's little point in sending them through inspect.cleandoc. Also list the defaults right next to the parameters.
1 parent 70aadd0 commit 438f7d4

File tree

1 file changed

+56
-67
lines changed

1 file changed

+56
-67
lines changed

lib/matplotlib/mlab.py

Lines changed: 56 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,6 @@
5454
"""
5555

5656
import csv
57-
import inspect
5857
from numbers import Number
5958

6059
import numpy as np
@@ -613,72 +612,62 @@ def _single_spectrum_helper(x, mode, Fs=None, window=None, pad_to=None,
613612

614613

615614
# Split out these keyword docs so that they can be used elsewhere
616-
docstring.interpd.update(Spectral=inspect.cleandoc("""
617-
Fs : scalar
618-
The sampling frequency (samples per time unit). It is used
619-
to calculate the Fourier frequencies, freqs, in cycles per time
620-
unit. The default value is 2.
621-
622-
window : callable or ndarray
623-
A function or a vector of length *NFFT*. To create window vectors see
624-
`.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
625-
`numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc. The
626-
default is `.window_hanning`. If a function is passed as the argument,
627-
it must take a data segment as an argument and return the windowed
628-
version of the segment.
629-
630-
sides : {'default', 'onesided', 'twosided'}
631-
Which sides of the spectrum to return. 'default' is one-sided for real
632-
data and two-sided for complex data. 'onesided' forces the return of a
633-
one-sided spectrum, while 'twosided' forces two-sided.
634-
"""))
635-
636-
637-
docstring.interpd.update(Single_Spectrum=inspect.cleandoc("""
638-
pad_to : int
639-
The number of points to which the data segment is padded when
640-
performing the FFT. While not increasing the actual resolution of
641-
the spectrum (the minimum distance between resolvable peaks),
642-
this can give more points in the plot, allowing for more
643-
detail. This corresponds to the *n* parameter in the call to fft().
644-
The default is None, which sets *pad_to* equal to the length of the
645-
input signal (i.e. no padding).
646-
"""))
647-
648-
649-
docstring.interpd.update(PSD=inspect.cleandoc("""
650-
pad_to : int
651-
The number of points to which the data segment is padded when
652-
performing the FFT. This can be different from *NFFT*, which
653-
specifies the number of data points used. While not increasing
654-
the actual resolution of the spectrum (the minimum distance between
655-
resolvable peaks), this can give more points in the plot,
656-
allowing for more detail. This corresponds to the *n* parameter
657-
in the call to fft(). The default is None, which sets *pad_to*
658-
equal to *NFFT*
659-
660-
NFFT : int
661-
The number of data points used in each block for the FFT.
662-
A power 2 is most efficient. The default value is 256.
663-
This should *NOT* be used to get zero padding, or the scaling of the
664-
result will be incorrect. Use *pad_to* for this instead.
665-
666-
detrend : {'none', 'mean', 'linear'} or callable, default 'none'
667-
The function applied to each segment before fft-ing, designed to
668-
remove the mean or linear trend. Unlike in MATLAB, where the
669-
*detrend* parameter is a vector, in Matplotlib is it a function.
670-
The :mod:`~matplotlib.mlab` module defines `.detrend_none`,
671-
`.detrend_mean`, and `.detrend_linear`, but you can use a custom
672-
function as well. You can also use a string to choose one of the
673-
functions: 'none' calls `.detrend_none`. 'mean' calls `.detrend_mean`.
674-
'linear' calls `.detrend_linear`.
675-
676-
scale_by_freq : bool, optional
677-
Whether the resulting density values should be scaled by the scaling
678-
frequency, which gives density in units of Hz^-1. This allows for
679-
integration over the returned frequency values. The default is True
680-
for MATLAB compatibility.
681-
"""))
615+
docstring.interpd.update(
616+
Spectral="""\
617+
Fs : scalar, default: 2
618+
The sampling frequency (samples per time unit). It is used to calculate
619+
the Fourier frequencies, *freqs*, in cycles per time unit.
620+
621+
window : callable or ndarray, default: `.window_hanning`
622+
A function or a vector of length *NFFT*. To create window vectors see
623+
`.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
624+
`numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc. If a
625+
function is passed as the argument, it must take a data segment as an
626+
argument and return the windowed version of the segment.
627+
628+
sides : {'default', 'onesided', 'twosided'}, optional
629+
Which sides of the spectrum to return. 'default' is one-sided for real
630+
data and two-sided for complex data. 'onesided' forces the return of a
631+
one-sided spectrum, while 'twosided' forces two-sided.""",
632+
633+
Single_Spectrum="""\
634+
pad_to : int, optional
635+
The number of points to which the data segment is padded when performing
636+
the FFT. While not increasing the actual resolution of the spectrum (the
637+
minimum distance between resolvable peaks), this can give more points in
638+
the plot, allowing for more detail. This corresponds to the *n* parameter
639+
in the call to fft(). The default is None, which sets *pad_to* equal to
640+
the length of the input signal (i.e. no padding).""",
641+
642+
PSD="""\
643+
pad_to : int, optional
644+
The number of points to which the data segment is padded when performing
645+
the FFT. This can be different from *NFFT*, which specifies the number
646+
of data points used. While not increasing the actual resolution of the
647+
spectrum (the minimum distance between resolvable peaks), this can give
648+
more points in the plot, allowing for more detail. This corresponds to
649+
the *n* parameter in the call to fft(). The default is None, which sets
650+
*pad_to* equal to *NFFT*
651+
652+
NFFT : int, default: 256
653+
The number of data points used in each block for the FFT. A power 2 is
654+
most efficient. This should *NOT* be used to get zero padding, or the
655+
scaling of the result will be incorrect; use *pad_to* for this instead.
656+
657+
detrend : {'none', 'mean', 'linear'} or callable, default 'none'
658+
The function applied to each segment before fft-ing, designed to remove
659+
the mean or linear trend. Unlike in MATLAB, where the *detrend* parameter
660+
is a vector, in Matplotlib is it a function. The :mod:`~matplotlib.mlab`
661+
module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`,
662+
but you can use a custom function as well. You can also use a string to
663+
choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls
664+
`.detrend_mean`. 'linear' calls `.detrend_linear`.
665+
666+
scale_by_freq : bool, optional, default: True
667+
Whether the resulting density values should be scaled by the scaling
668+
frequency, which gives density in units of Hz^-1. This allows for
669+
integration over the returned frequency values. The default is True for
670+
MATLAB compatibility.""")
682671

683672

684673
@docstring.dedent_interpd

0 commit comments

Comments
 (0)