@@ -4606,33 +4606,39 @@ def reduce_C_function(C: array) -> float
4606
4606
nx = gridsize
4607
4607
ny = int (nx / math .sqrt (3 ))
4608
4608
# Count the number of data in each hexagon
4609
- x = np .array (x , float )
4610
- y = np .array (y , float )
4609
+ x = np .asarray (x , float )
4610
+ y = np .asarray (y , float )
4611
4611
4612
- if marginals :
4613
- xorig = x . copy ()
4614
- yorig = y . copy ()
4612
+ # Will be log()'d if necessary, and then rescaled.
4613
+ trfx = x
4614
+ trfy = y
4615
4615
4616
4616
if xscale == 'log' :
4617
4617
if np .any (x <= 0.0 ):
4618
- raise ValueError ("x contains non-positive values, so can not"
4619
- " be log-scaled" )
4620
- x = np .log10 (x )
4618
+ raise ValueError ("x contains non-positive values, so can not "
4619
+ "be log-scaled" )
4620
+ trfx = np .log10 (trfx )
4621
4621
if yscale == 'log' :
4622
4622
if np .any (y <= 0.0 ):
4623
- raise ValueError ("y contains non-positive values, so can not"
4624
- " be log-scaled" )
4625
- y = np .log10 (y )
4623
+ raise ValueError ("y contains non-positive values, so can not "
4624
+ "be log-scaled" )
4625
+ trfy = np .log10 (trfy )
4626
4626
if extent is not None :
4627
4627
xmin , xmax , ymin , ymax = extent
4628
4628
else :
4629
- xmin , xmax = (np .min (x ), np .max (x )) if len (x ) else (0 , 1 )
4630
- ymin , ymax = (np .min (y ), np .max (y )) if len (y ) else (0 , 1 )
4629
+ xmin , xmax = (np .min (trfx ), np .max (trfx )) if len (x ) else (0 , 1 )
4630
+ ymin , ymax = (np .min (trfy ), np .max (trfy )) if len (y ) else (0 , 1 )
4631
4631
4632
4632
# to avoid issues with singular data, expand the min/max pairs
4633
4633
xmin , xmax = mtransforms .nonsingular (xmin , xmax , expander = 0.1 )
4634
4634
ymin , ymax = mtransforms .nonsingular (ymin , ymax , expander = 0.1 )
4635
4635
4636
+ nx1 = nx + 1
4637
+ ny1 = ny + 1
4638
+ nx2 = nx
4639
+ ny2 = ny
4640
+ n = nx1 * ny1 + nx2 * ny2
4641
+
4636
4642
# In the x-direction, the hexagons exactly cover the region from
4637
4643
# xmin to xmax. Need some padding to avoid roundoff errors.
4638
4644
padding = 1.e-9 * (xmax - xmin )
@@ -4641,75 +4647,49 @@ def reduce_C_function(C: array) -> float
4641
4647
sx = (xmax - xmin ) / nx
4642
4648
sy = (ymax - ymin ) / ny
4643
4649
4644
- x = (x - xmin ) / sx
4645
- y = (y - ymin ) / sy
4646
- ix1 = np .round (x ).astype (int )
4647
- iy1 = np .round (y ).astype (int )
4648
- ix2 = np .floor (x ).astype (int )
4649
- iy2 = np .floor (y ).astype (int )
4650
-
4651
- nx1 = nx + 1
4652
- ny1 = ny + 1
4653
- nx2 = nx
4654
- ny2 = ny
4655
- n = nx1 * ny1 + nx2 * ny2
4656
-
4657
- d1 = (x - ix1 ) ** 2 + 3.0 * (y - iy1 ) ** 2
4658
- d2 = (x - ix2 - 0.5 ) ** 2 + 3.0 * (y - iy2 - 0.5 ) ** 2
4650
+ trfx = (trfx - xmin ) / sx
4651
+ trfy = (trfy - ymin ) / sy
4652
+ ix1 = np .round (trfx ).astype (int )
4653
+ iy1 = np .round (trfy ).astype (int )
4654
+ ix2 = np .floor (trfx ).astype (int )
4655
+ iy2 = np .floor (trfy ).astype (int )
4656
+ # flat indices, plus one so that out-of-range points go to position 0.
4657
+ i1 = np .where ((0 <= ix1 ) & (ix1 < nx1 ) & (0 <= iy1 ) & (iy1 < ny1 ),
4658
+ ix1 * ny1 + iy1 + 1 , 0 )
4659
+ i2 = np .where ((0 <= ix2 ) & (ix2 < nx2 ) & (0 <= iy2 ) & (iy2 < ny2 ),
4660
+ ix2 * ny2 + iy2 + 1 , 0 )
4661
+
4662
+ d1 = (trfx - ix1 ) ** 2 + 3.0 * (trfy - iy1 ) ** 2
4663
+ d2 = (trfx - ix2 - 0.5 ) ** 2 + 3.0 * (trfy - iy2 - 0.5 ) ** 2
4659
4664
bdist = (d1 < d2 )
4665
+
4660
4666
if C is None :
4661
- lattice1 = np .zeros ((nx1 , ny1 ))
4662
- lattice2 = np .zeros ((nx2 , ny2 ))
4663
- c1 = (0 <= ix1 ) & (ix1 < nx1 ) & (0 <= iy1 ) & (iy1 < ny1 ) & bdist
4664
- c2 = (0 <= ix2 ) & (ix2 < nx2 ) & (0 <= iy2 ) & (iy2 < ny2 ) & ~ bdist
4665
- np .add .at (lattice1 , (ix1 [c1 ], iy1 [c1 ]), 1 )
4666
- np .add .at (lattice2 , (ix2 [c2 ], iy2 [c2 ]), 1 )
4667
+ lattice1 = np .bincount (i1 [bdist ], minlength = 1 + nx1 * ny1 )
4668
+ lattice2 = np .bincount (i2 [~ bdist ], minlength = 1 + nx2 * ny2 )
4669
+ accum = np .concatenate ( # [1:] drops out-of-range points.
4670
+ [lattice1 .ravel ()[1 :], lattice2 .ravel ()[1 :]]).astype (float )
4667
4671
if mincnt is not None :
4668
- lattice1 [lattice1 < mincnt ] = np .nan
4669
- lattice2 [lattice2 < mincnt ] = np .nan
4670
- accum = np .concatenate ([lattice1 .ravel (), lattice2 .ravel ()])
4671
- good_idxs = ~ np .isnan (accum )
4672
+ accum [accum < mincnt ] = np .nan
4673
+ C = np .ones (len (x ))
4672
4674
4673
4675
else :
4674
- if mincnt is None :
4675
- mincnt = 0
4676
-
4677
- # create accumulation arrays
4678
- lattice1 = np .empty ((nx1 , ny1 ), dtype = object )
4679
- for i in range (nx1 ):
4680
- for j in range (ny1 ):
4681
- lattice1 [i , j ] = []
4682
- lattice2 = np .empty ((nx2 , ny2 ), dtype = object )
4683
- for i in range (nx2 ):
4684
- for j in range (ny2 ):
4685
- lattice2 [i , j ] = []
4686
-
4676
+ # accumulation arrays
4677
+ lattice1 = [[] for _ in range (1 + nx1 * ny1 )]
4678
+ lattice2 = [[] for _ in range (1 + nx2 * ny2 )]
4687
4679
for i in range (len (x )):
4688
4680
if bdist [i ]:
4689
- if 0 <= ix1 [i ] < nx1 and 0 <= iy1 [i ] < ny1 :
4690
- lattice1 [ix1 [i ], iy1 [i ]].append (C [i ])
4681
+ lattice1 [i1 [i ]].append (C [i ])
4691
4682
else :
4692
- if 0 <= ix2 [i ] < nx2 and 0 <= iy2 [i ] < ny2 :
4693
- lattice2 [ix2 [i ], iy2 [i ]].append (C [i ])
4694
-
4695
- for i in range (nx1 ):
4696
- for j in range (ny1 ):
4697
- vals = lattice1 [i , j ]
4698
- if len (vals ) > mincnt :
4699
- lattice1 [i , j ] = reduce_C_function (vals )
4700
- else :
4701
- lattice1 [i , j ] = np .nan
4702
- for i in range (nx2 ):
4703
- for j in range (ny2 ):
4704
- vals = lattice2 [i , j ]
4705
- if len (vals ) > mincnt :
4706
- lattice2 [i , j ] = reduce_C_function (vals )
4707
- else :
4708
- lattice2 [i , j ] = np .nan
4683
+ lattice2 [i2 [i ]].append (C [i ])
4684
+ if mincnt is None :
4685
+ mincnt = 0
4686
+ accum = np .array (
4687
+ [reduce_C_function (acc ) if len (acc ) > mincnt else np .nan
4688
+ for lattice in [lattice1 , lattice2 ]
4689
+ for acc in lattice [1 :]], # [1:] drops out-of-range points.
4690
+ float )
4709
4691
4710
- accum = np .concatenate ([lattice1 .astype (float ).ravel (),
4711
- lattice2 .astype (float ).ravel ()])
4712
- good_idxs = ~ np .isnan (accum )
4692
+ good_idxs = ~ np .isnan (accum )
4713
4693
4714
4694
offsets = np .zeros ((n , 2 ), float )
4715
4695
offsets [:nx1 * ny1 , 0 ] = np .repeat (np .arange (nx1 ), ny1 )
@@ -4797,84 +4777,48 @@ def reduce_C_function(C: array) -> float
4797
4777
return collection
4798
4778
4799
4779
# Process marginals
4800
- if C is None :
4801
- C = np .ones (len (x ))
4780
+ for zname , z , zmin , zmax , zscale , nbins in [
4781
+ ("x" , x , xmin , xmax , xscale , nx ),
4782
+ ("y" , y , ymin , ymax , yscale , 2 * ny ),
4783
+ ]:
4802
4784
4803
- def coarse_bin (x , y , bin_edges ):
4804
- """
4805
- Sort x-values into bins defined by *bin_edges*, then for all the
4806
- corresponding y-values in each bin use *reduce_c_function* to
4807
- compute the bin value.
4808
- """
4809
- nbins = len (bin_edges ) - 1
4810
- # Sort x-values into bins
4811
- bin_idxs = np .searchsorted (bin_edges , x ) - 1
4812
- mus = np .zeros (nbins ) * np .nan
4785
+ if zscale == "log" :
4786
+ bin_edges = np .geomspace (zmin , zmax , nbins + 1 )
4787
+ else :
4788
+ bin_edges = np .linspace (zmin , zmax , nbins + 1 )
4789
+
4790
+ verts = np .empty ((nbins , 4 , 2 ))
4791
+ verts [:, 0 , 0 ] = verts [:, 1 , 0 ] = bin_edges [:- 1 ]
4792
+ verts [:, 2 , 0 ] = verts [:, 3 , 0 ] = bin_edges [1 :]
4793
+ verts [:, 0 , 1 ] = verts [:, 3 , 1 ] = .00
4794
+ verts [:, 1 , 1 ] = verts [:, 2 , 1 ] = .05
4795
+ if zname == "y" :
4796
+ verts = verts [:, :, ::- 1 ] # Swap x and y.
4797
+
4798
+ # Sort z-values into bins defined by bin_edges.
4799
+ bin_idxs = np .searchsorted (bin_edges , z ) - 1
4800
+ values = np .empty (nbins )
4813
4801
for i in range (nbins ):
4814
- # Get y-values for each bin
4815
- yi = y [bin_idxs == i ]
4816
- if len (yi ) > 0 :
4817
- mus [i ] = reduce_C_function (yi )
4818
- return mus
4819
-
4820
- if xscale == 'log' :
4821
- bin_edges = np .geomspace (xmin , xmax , nx + 1 )
4822
- else :
4823
- bin_edges = np .linspace (xmin , xmax , nx + 1 )
4824
- xcoarse = coarse_bin (xorig , C , bin_edges )
4825
-
4826
- verts , values = [], []
4827
- for bin_left , bin_right , val in zip (
4828
- bin_edges [:- 1 ], bin_edges [1 :], xcoarse ):
4829
- if np .isnan (val ):
4830
- continue
4831
- verts .append ([(bin_left , 0 ),
4832
- (bin_left , 0.05 ),
4833
- (bin_right , 0.05 ),
4834
- (bin_right , 0 )])
4835
- values .append (val )
4836
-
4837
- values = np .array (values )
4838
- trans = self .get_xaxis_transform (which = 'grid' )
4839
-
4840
- hbar = mcoll .PolyCollection (verts , transform = trans , edgecolors = 'face' )
4841
-
4842
- hbar .set_array (values )
4843
- hbar .set_cmap (cmap )
4844
- hbar .set_norm (norm )
4845
- hbar .set_alpha (alpha )
4846
- hbar .update (kwargs )
4847
- self .add_collection (hbar , autolim = False )
4848
-
4849
- if yscale == 'log' :
4850
- bin_edges = np .geomspace (ymin , ymax , 2 * ny + 1 )
4851
- else :
4852
- bin_edges = np .linspace (ymin , ymax , 2 * ny + 1 )
4853
- ycoarse = coarse_bin (yorig , C , bin_edges )
4854
-
4855
- verts , values = [], []
4856
- for bin_bottom , bin_top , val in zip (
4857
- bin_edges [:- 1 ], bin_edges [1 :], ycoarse ):
4858
- if np .isnan (val ):
4859
- continue
4860
- verts .append ([(0 , bin_bottom ),
4861
- (0 , bin_top ),
4862
- (0.05 , bin_top ),
4863
- (0.05 , bin_bottom )])
4864
- values .append (val )
4865
-
4866
- values = np .array (values )
4867
-
4868
- trans = self .get_yaxis_transform (which = 'grid' )
4869
-
4870
- vbar = mcoll .PolyCollection (verts , transform = trans , edgecolors = 'face' )
4871
- vbar .set_array (values )
4872
- vbar .set_cmap (cmap )
4873
- vbar .set_norm (norm )
4874
- vbar .set_alpha (alpha )
4875
- vbar .update (kwargs )
4876
- self .add_collection (vbar , autolim = False )
4877
-
4802
+ # Get C-values for each bin, and compute bin value with
4803
+ # reduce_C_function.
4804
+ ci = C [bin_idxs == i ]
4805
+ values [i ] = reduce_C_function (ci ) if len (ci ) > 0 else np .nan
4806
+
4807
+ mask = ~ np .isnan (values )
4808
+ verts = verts [mask ]
4809
+ values = values [mask ]
4810
+
4811
+ trans = getattr (self , f"get_{ zname } axis_transform" )(which = "grid" )
4812
+ bar = mcoll .PolyCollection (
4813
+ verts , transform = trans , edgecolors = "face" )
4814
+ bar .set_array (values )
4815
+ bar .set_cmap (cmap )
4816
+ bar .set_norm (norm )
4817
+ bar .set_alpha (alpha )
4818
+ bar .update (kwargs )
4819
+ self .add_collection (bar , autolim = False )
4820
+
4821
+ hbar , vbar = self .collections [- 2 :]
4878
4822
collection .hbar = hbar
4879
4823
collection .vbar = vbar
4880
4824
0 commit comments