|
| 1 | +""" |
| 2 | +========================================== |
| 3 | +Alpha parameter behavior with different image types |
| 4 | +========================================== |
| 5 | +
|
| 6 | +Demonstrate how the alpha parameter interacts with different image data types |
| 7 | +(2D arrays, RGB, RGBA) and colormaps in matplotlib's imshow function. |
| 8 | +
|
| 9 | +This example shows the behavior of the alpha parameter when applied to: |
| 10 | +- 2D scalar data with default colormap |
| 11 | +- 2D scalar data with custom alpha-aware colormap |
| 12 | +- RGB images |
| 13 | +- RGBA images with existing alpha channels |
| 14 | +
|
| 15 | +The alpha parameter can be: |
| 16 | +- None (default, no transparency) |
| 17 | +- A scalar float (uniform transparency) |
| 18 | +- A 2D array (per-pixel transparency) |
| 19 | +""" |
| 20 | + |
| 21 | +import matplotlib.pyplot as plt |
| 22 | +import numpy as np |
| 23 | + |
| 24 | +from matplotlib.colors import ListedColormap |
| 25 | + |
| 26 | +# Fixing random state for reproducibility |
| 27 | +np.random.seed(19680801) |
| 28 | + |
| 29 | +fig, axs = plt.subplots(3, 4, figsize=(12, 10), layout="compressed") |
| 30 | + |
| 31 | +# Set red background to make transparency visible |
| 32 | +for ax in axs.flat: |
| 33 | + ax.set(facecolor="red", xticks=[], yticks=[]) |
| 34 | + |
| 35 | +# Create test data |
| 36 | +mapped = np.array([[0.1, 1.0], [1.0, 0.1]]) |
| 37 | +rgb = np.repeat(mapped[:, :, np.newaxis], 3, axis=2) |
| 38 | +rgba = np.concatenate( |
| 39 | + [ |
| 40 | + rgb, |
| 41 | + [ |
| 42 | + [[1.0], [0.9]], |
| 43 | + [[0.8], [0.7]], |
| 44 | + ], |
| 45 | + ], |
| 46 | + axis=2, |
| 47 | +) |
| 48 | + |
| 49 | +alpha_scalar = 0.5 |
| 50 | +alpha_2d = np.full_like(mapped, alpha_scalar) |
| 51 | + |
| 52 | +# Create a colormap with built-in alpha |
| 53 | +cmap_with_alpha = ListedColormap( |
| 54 | + np.concatenate( |
| 55 | + [plt.cm.viridis.colors, np.full((len(plt.cm.viridis.colors), 1), alpha_scalar)], |
| 56 | + axis=1, |
| 57 | + ), |
| 58 | +) |
| 59 | + |
| 60 | +# Test different alpha parameter combinations |
| 61 | +for ax, alpha, alpha_type in zip(axs, [None, alpha_scalar, alpha_2d], |
| 62 | + ["None", "scalar", "array"]): |
| 63 | + # 2D data with default colormap |
| 64 | + ax[0].imshow(mapped, alpha=alpha) |
| 65 | + ax[0].set_title(f"2D data, alpha={alpha_type}") |
| 66 | + |
| 67 | + # 2D data with alpha-aware colormap |
| 68 | + ax[1].imshow(mapped, cmap=cmap_with_alpha, alpha=alpha) |
| 69 | + ax[1].set_title(f"2D with alpha cmap, alpha={alpha_type}") |
| 70 | + |
| 71 | + # RGB image |
| 72 | + ax[2].imshow(rgb, alpha=alpha) |
| 73 | + ax[2].set_title(f"RGB image, alpha={alpha_type}") |
| 74 | + |
| 75 | + # RGBA image (existing alpha channel) |
| 76 | + ax[3].imshow(rgba, alpha=alpha) |
| 77 | + ax[3].set_title(f"RGBA image, alpha={alpha_type}") |
| 78 | + |
| 79 | +plt.suptitle("Alpha parameter behavior with different image types", fontsize=14) |
| 80 | +plt.show() |
0 commit comments