|
39 | 39 | import numpy as np
|
40 | 40 |
|
41 | 41 |
|
42 |
| -if 1: |
43 |
| - # if only one location is given, the text and xypoint being |
44 |
| - # annotated are assumed to be the same |
45 |
| - fig = plt.figure() |
46 |
| - ax = fig.add_subplot(111, autoscale_on=False, xlim=(-1, 5), ylim=(-3, 5)) |
47 |
| - |
48 |
| - t = np.arange(0.0, 5.0, 0.01) |
49 |
| - s = np.cos(2*np.pi*t) |
50 |
| - line, = ax.plot(t, s) |
51 |
| - |
52 |
| - ax.annotate('figure pixels', |
53 |
| - xy=(10, 10), xycoords='figure pixels') |
54 |
| - |
55 |
| - ax.annotate('figure points', xy=(80, 80), |
56 |
| - xycoords='figure points') |
57 |
| - |
58 |
| - ax.annotate('point offset from data', xy=(2, 1), |
59 |
| - xycoords='data', |
60 |
| - xytext=(-15, 25), textcoords='offset points', |
61 |
| - arrowprops=dict(facecolor='black', shrink=0.05), |
62 |
| - horizontalalignment='right', verticalalignment='bottom', |
63 |
| - ) |
64 |
| - |
65 |
| - ax.annotate('axes fraction', xy=(3, 1), xycoords='data', |
66 |
| - xytext=(0.8, 0.95), textcoords='axes fraction', |
67 |
| - arrowprops=dict(facecolor='black', shrink=0.05), |
68 |
| - horizontalalignment='right', verticalalignment='top', |
69 |
| - ) |
70 |
| - |
71 |
| - ax.annotate('figure fraction', xy=(.025, .975), |
72 |
| - xycoords='figure fraction', |
73 |
| - horizontalalignment='left', verticalalignment='top', |
74 |
| - fontsize=20) |
75 |
| - |
76 |
| - # use negative points or pixels to specify from right, top -10, 10 |
77 |
| - # is 10 points to the left of the right side of the axes and 10 |
78 |
| - # points above the bottom |
79 |
| - ax.annotate('pixel offset from axes fraction', xy=(1, 0), |
80 |
| - xycoords='axes fraction', |
81 |
| - xytext=(-20, 20), |
82 |
| - textcoords='offset pixels', |
83 |
| - horizontalalignment='right', |
84 |
| - verticalalignment='bottom') |
85 |
| - |
86 |
| - |
87 |
| -if 1: |
88 |
| - # you can specify the xypoint and the xytext in different |
89 |
| - # positions and coordinate systems, and optionally turn on a |
90 |
| - # connecting line and mark the point with a marker. Annotations |
91 |
| - # work on polar axes too. In the example below, the xy point is |
92 |
| - # in native coordinates (xycoords defaults to 'data'). For a |
93 |
| - # polar axes, this is in (theta, radius) space. The text in this |
94 |
| - # example is placed in the fractional figure coordinate system. |
95 |
| - # Text keyword args like horizontal and vertical alignment are |
96 |
| - # respected |
97 |
| - fig = plt.figure() |
98 |
| - ax = fig.add_subplot(111, projection='polar') |
99 |
| - r = np.arange(0, 1, 0.001) |
100 |
| - theta = 2*2*np.pi*r |
101 |
| - line, = ax.plot(theta, r) |
102 |
| - |
103 |
| - ind = 800 |
104 |
| - thisr, thistheta = r[ind], theta[ind] |
105 |
| - ax.plot([thistheta], [thisr], 'o') |
106 |
| - ax.annotate('a polar annotation', |
107 |
| - xy=(thistheta, thisr), # theta, radius |
108 |
| - xytext=(0.05, 0.05), # fraction, fraction |
109 |
| - textcoords='figure fraction', |
110 |
| - arrowprops=dict(facecolor='black', shrink=0.05), |
111 |
| - horizontalalignment='left', |
112 |
| - verticalalignment='bottom', |
113 |
| - ) |
114 |
| - |
115 |
| - |
116 |
| -if 1: |
117 |
| - # You can also use polar notation on a cartesian axes. Here the |
118 |
| - # native coordinate system ('data') is cartesian, so you need to |
119 |
| - # specify the xycoords and textcoords as 'polar' if you want to |
120 |
| - # use (theta, radius) |
121 |
| - |
122 |
| - el = Ellipse((0, 0), 10, 20, facecolor='r', alpha=0.5) |
123 |
| - |
124 |
| - fig = plt.figure() |
125 |
| - ax = fig.add_subplot(111, aspect='equal') |
126 |
| - ax.add_artist(el) |
127 |
| - el.set_clip_box(ax.bbox) |
128 |
| - ax.annotate('the top', |
129 |
| - xy=(np.pi/2., 10.), # theta, radius |
130 |
| - xytext=(np.pi/3, 20.), # theta, radius |
131 |
| - xycoords='polar', |
132 |
| - textcoords='polar', |
133 |
| - arrowprops=dict(facecolor='black', shrink=0.05), |
134 |
| - horizontalalignment='left', |
135 |
| - verticalalignment='bottom', |
136 |
| - clip_on=True, # clip to the axes bounding box |
137 |
| - ) |
138 |
| - |
139 |
| - ax.set_xlim(-20, 20) |
140 |
| - ax.set_ylim(-20, 20) |
| 42 | +# If only one location is given, the text and xypoint being |
| 43 | +# annotated are assumed to be the same |
| 44 | +fig = plt.figure() |
| 45 | +ax = fig.add_subplot(111, autoscale_on=False, xlim=(-1, 5), ylim=(-3, 5)) |
| 46 | + |
| 47 | +t = np.arange(0.0, 5.0, 0.01) |
| 48 | +s = np.cos(2*np.pi*t) |
| 49 | +line, = ax.plot(t, s) |
| 50 | + |
| 51 | +ax.annotate('figure pixels', |
| 52 | + xy=(10, 10), xycoords='figure pixels') |
| 53 | + |
| 54 | +ax.annotate('figure points', |
| 55 | + xy=(80, 80), xycoords='figure points') |
| 56 | + |
| 57 | +ax.annotate('point offset from data', |
| 58 | + xy=(2, 1), xycoords='data', |
| 59 | + xytext=(-15, 25), textcoords='offset points', |
| 60 | + arrowprops=dict(facecolor='black', shrink=0.05), |
| 61 | + horizontalalignment='right', verticalalignment='bottom') |
| 62 | + |
| 63 | +ax.annotate('axes fraction', |
| 64 | + xy=(3, 1), xycoords='data', |
| 65 | + xytext=(0.8, 0.95), textcoords='axes fraction', |
| 66 | + arrowprops=dict(facecolor='black', shrink=0.05), |
| 67 | + horizontalalignment='right', verticalalignment='top') |
| 68 | + |
| 69 | +ax.annotate('figure fraction', |
| 70 | + xy=(.025, .975), xycoords='figure fraction', |
| 71 | + horizontalalignment='left', verticalalignment='top', |
| 72 | + fontsize=20) |
| 73 | + |
| 74 | +# use negative points or pixels to specify from right, top -10, 10 |
| 75 | +# is 10 points to the left of the right side of the axes and 10 |
| 76 | +# points above the bottom |
| 77 | +ax.annotate('pixel offset from axes fraction', |
| 78 | + xy=(1, 0), xycoords='axes fraction', |
| 79 | + xytext=(-20, 20), textcoords='offset pixels', |
| 80 | + horizontalalignment='right', |
| 81 | + verticalalignment='bottom') |
| 82 | + |
| 83 | + |
| 84 | +# You can specify the xypoint and the xytext in different positions and |
| 85 | +# coordinate systems, and optionally turn on a connecting line and mark |
| 86 | +# the point with a marker. Annotations work on polar axes too. |
| 87 | +# In the example below, the xy point is in native coordinates (xycoords |
| 88 | +# defaults to 'data'). For a polar axes, this is in (theta, radius) space. |
| 89 | +# The text in the example is placed in the fractional figure coordinate system. |
| 90 | +# Text keyword args like horizontal and vertical alignment are respected. |
| 91 | +fig = plt.figure() |
| 92 | +ax = fig.add_subplot(111, projection='polar') |
| 93 | +r = np.arange(0, 1, 0.001) |
| 94 | +theta = 2*2*np.pi*r |
| 95 | +line, = ax.plot(theta, r) |
| 96 | + |
| 97 | +ind = 800 |
| 98 | +thisr, thistheta = r[ind], theta[ind] |
| 99 | +ax.plot([thistheta], [thisr], 'o') |
| 100 | +ax.annotate('a polar annotation', |
| 101 | + xy=(thistheta, thisr), # theta, radius |
| 102 | + xytext=(0.05, 0.05), # fraction, fraction |
| 103 | + textcoords='figure fraction', |
| 104 | + arrowprops=dict(facecolor='black', shrink=0.05), |
| 105 | + horizontalalignment='left', |
| 106 | + verticalalignment='bottom') |
| 107 | + |
| 108 | + |
| 109 | +# You can also use polar notation on a cartesian axes. Here the native |
| 110 | +# coordinate system ('data') is cartesian, so you need to specify the |
| 111 | +# xycoords and textcoords as 'polar' if you want to use (theta, radius). |
| 112 | + |
| 113 | +el = Ellipse((0, 0), 10, 20, facecolor='r', alpha=0.5) |
| 114 | + |
| 115 | +fig = plt.figure() |
| 116 | +ax = fig.add_subplot(111, aspect='equal') |
| 117 | +ax.add_artist(el) |
| 118 | +el.set_clip_box(ax.bbox) |
| 119 | +ax.annotate('the top', |
| 120 | + xy=(np.pi/2., 10.), # theta, radius |
| 121 | + xytext=(np.pi/3, 20.), # theta, radius |
| 122 | + xycoords='polar', |
| 123 | + textcoords='polar', |
| 124 | + arrowprops=dict(facecolor='black', shrink=0.05), |
| 125 | + horizontalalignment='left', |
| 126 | + verticalalignment='bottom', |
| 127 | + clip_on=True) # clip to the axes bounding box |
| 128 | + |
| 129 | +ax.set_xlim([-20, 20]) |
| 130 | +ax.set_ylim([-20, 20]) |
141 | 131 |
|
142 | 132 | plt.show()
|
0 commit comments